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Preface

The 16th International Workshop on Cryptographic Hardware and Embedded
Systems was held in Busan, South Korea, during September 23–26, 2014. The
workshop was sponsored by the International Association for Cryptologic
Research.

CHES 2014 received 127 submissions from all parts of the globe. Each paper
was reviewed by at least four independent reviewers, with papers from Program
Committee members receiving five reviews in the first round of reviewing. The
43 members of the Program Committee were aided in this complex and time-
consuming task by a further 203 external reviewers, providing striking testament
to the size and robust health of the CHES community.

Out of the 127 submissions, 33 were chosen for presentation at the workshop.
They represented all areas of research that are considered to sit under the CHES
umbrella, and they reflected the particular blend of the theoretical and practical
that makes CHES such an appealing (and successful) workshop.

We would like to thank the Program Committee and external reviewers for
their expert views and spirited contributions to the review process. It was a
tremendously difficult task to choose the program for CHES 2014; the standard of
submissions was very high. It was even harder to identify a single best paper, but
our congratulations go to Naofumi Homma, Yu-ichi Hayashi, Noriyuki Miura,
Daisuke Fujimoto, Daichi Tanaka, Makoto Nagata, and Takafumi Aoki from
Kobe and Tohoku Universities for the CHES 2014 Best Paper “EM Attack Is
Non-Invasive? - Design Methodology and Validity Verification of EM Attack
Sensor.”

We were delighted that André Weimerskirch was able to accept our invitation
to be the invited speaker at CHES 2014. His presentation“V2V Communication
Security: A Privacy-Preserving Design for 300 Million Vehicles” cast a fasci-
nating light on a new and far-reaching area of deployment. In addition, expert
tutorials by Guido Bertoni and Viktor Fischer and a poster session chaired by
Nele Mentens made CHES 2014 the complete workshop. Thank you all for your
contributions.

We are, of course, indebted to the general chair, Prof. Kwangjo Kim, and the
local Organizing Committee who together proved the ideal liaison for establishing
the layout of the program and for supporting the speakers. Our job as program
co-chairs was made much easier by the excellent tools developed by Shai Halevi
and we offer our thanks to Thomas Eisenbarth, who maintained the CHES 2014
website; both Shai and Thomas were always available at short notice to answer
our queries. On behalf of the CHES community we would like to thank the CHES
2014 sponsors. The interest of companies in supporting CHES is an excellent
indication of the continued relevance and importance of the workshop.



VI Preface

Finally, we would like to thank all the authors who contributed their work to
CHES 2014. Without you, the workshop would not exist.

July 2014 Lejla Batina
Matt Robshaw
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EM Attack Is Non-invasive?

- Design Methodology and Validity Verification
of EM Attack Sensor

Naofumi Homma1, Yu-ichi Hayashi1, Noriyuki Miura2, Daisuke Fujimoto2,
Daichi Tanaka2, Makoto Nagata2, and Takafumi Aoki1

1 Graduate School of Information Sciences, Tohoku University, Japan
homma@aoki.ecei.tohoku.ac.jp

2 Graduate School of System Informatics, Kobe University, Japan
miura@cs.kobe-u.ac.jp

Abstract. This paper presents a standard-cell-based semi-automatic
design methodology of a new conceptual countermeasure against
electromagnetic (EM) analysis and fault-injection attacks. The counter-
measure namely EM attack sensor utilizes LC oscillators which detect
variations in the EM field around a cryptographic LSI caused by a mi-
cro probe brought near the LSI. A dual-coil sensor architecture with
an LUT-programming-based digital calibration can prevent a variety of
microprobe-based EM attacks that cannot be thwarted by conventional
countermeasures. All components of the sensor core are semiautomati-
cally designed by standard EDA tools with a fully-digital standard cell
library and hence minimum design cost. This sensor can be therefore
scaled together with the cryptographic LSI to be protected. The sen-
sor prototype is designed based on the proposed methodology together
with a 128bit-key composite AES processor in 0.18μm CMOS with over-
heads of only 2respectively. The validity against a variety of EM attack
scenarios has been verified successfully.

Keywords: EM analysis attack, EM fault injection attack, countermea-
sure, attack detection, micro EM probe.

1 Introduction

Side-channel attacks have become a source of major concern in the design and
evaluation of cryptographic LSIs. In such attacks, side-channel information, such
as power dissipation, electromagnetic (EM) radiation, and/or the timing of inter-
nal operations, are observed or manipulated. Two of the best known attacks de-
veloped thus far are simple power analysis (SPA) and differential power analysis
(DPA), both of which were proposed by Kocher et al. [1][2]. A variety of related
attacks and countermeasures have been reported [3]. EM analysis (EMA), which
exploits EM radiation from LSIs, is also known as a potentially more versatile
alternative of power analysis [4]-[6].

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 1–16, 2014.
c© International Association for Cryptologic Research 2014



2 N. Homma et al.

One of the main characteristics of EMA is that it can perform the precise
observation of information leakage from a specific part of the target LSI. Such
locally observed EM radiation underlies the effectiveness of EMA [7]. In a semi-
invasive context, it enables attacks to be performed at the surface of LSIs beyond
the conventional security assumptions (i.e., power/EM models or attackers’ ca-
pabilities). For example, the study on EMA in [8] showed that the use of micro
magnetic field probing makes it possible to obtain more detailed information
about an unpacked microcontroller. The authors of [8] first showed that the
charge (low-to-high transition) and discharge (high-to-low transition) are dis-
tinguishable by EMA. The feasibility and effectiveness of localized EM fault
injection exploiting this feature were also demonstrated in [9]. In general, such
semi-invasive attacks are feasible since a plastic mold package device can be
unpacked easily at low cost. Hereafter, we refer to the above sophisticated EM
attack measuring and exploiting local information by micro scale probing as
“microprobe-based EM attack.”

More surprisingly, the possibility of exploiting leaks inside semi-custom ASICs
by such microprobe-based EMA was shown in [10]. This impressive work showed
current-path and internal-gate leaks in a standard cell, and geometric leaks in
a memory macro were measurable by placing a micro magnetic field probe on
its surface. This suggests that most of the conventional countermeasures be-
come ineffective if such leaks are measured by attackers. For example, measuring
current-path leaks circumvents conventional gate-level countermeasures involv-
ing WDDL [11], RSL [12], and MDPL [3]. Furthermore, measuring internal-gate
leaks (e.g., from XOR gates) can be used to exploit, for example, XOR gates for
unmasking operations. Conventional ROM-based countermeasures using dual-
rail and pre-charge techniques can also be circumvented by measuring geometric
leaks in a memory macro. These results still seem to be only in the realm of lab-
oratory case studies. However, there is no doubt that microprobe-based EMA
attacks on the surface of LSIs represent one of the most feasible types of attacks
that operate by exploiting such critical leaks.

In order to reduce current-path and internal-gate leaks, a transistor-level coun-
termeasure was also discussed in [10]. Such leaks can be reduced using transistor-
level balancing (hiding). However, transistor-level countermeasures usually
increase the design cost and significantly decrease the circuit performance. In the
worst-case scenario, designers are required to prepare many balanced cells for ev-
ery critical component and to perform the place and route with the utmost care. In
addition, the literature does not provide any countermeasures against geometric
leaks. Thus, the problem of designing effective countermeasures is still open, and
the threat ofmicroprobe-basedEMattacks using such leaks is expected to increase
in the future with the advancement of measurement instruments and techniques.

A natural approach to counteracting microprobe-based EM attacks is to pre-
vent micro probes from approaching the LSI surface. The detection of package
opening might be a possible solution [13], but such detection usually employs
special packaging materials, which limits its applicability due to the substantial
increase in manufacturing cost. In addition, tailored packaging cannot guarantee
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resistance against attacks from the reverse side of the chip. Another possibility is
to install an active shield on or around the LSI to be protected [14]-[16]. However,
the power needed to drive signals through the shield is non-trivial. A dynamic
active shield surrounding an LSI was first presented in [16]. The new concept of
3D LSI integration is designed to counteract EM attacks exploiting all aspects
of the LSI. However, such shielding countermeasures inevitably increase power
consumption and implementation cost.

With the aim to address the above issues, this paper introduces a new coun-
termeasure against such high-precision EM attacks using micro EM probes. The
countermeasure is based on the physical law that any probe (i.e., a looped con-
ductor) is electrically coupled with the measured object when they are placed
close to each other. In other words, a probe cannot measure the original EM field
without disturbing it. The proposed method detects the invasion by employing
a sensor based on LC oscillators and therefore applies to any EM analysis and
fault injection attack implemented with an EM probe placed near the target LSI.
Such sensing is particularly resistant to attacks performed very near or on the
surface of cryptographic cores, which are usually assumed for microprobe-based
EM attacks, such as in [10]. In addition, the countermeasure uses a dual-coil
sensor architecture and an LUT-programming-based digital sensor calibration
in order to thwart a variety of microprobe-based EM attacks.

The original concept and the key sensor circuit block validation were pre-
sented in our previous report [17]. This paper proposes a standard-cell-based
semi-automatic design methodology using conventional circuit design tools. A
demonstrator LSI chip fully integrating a complete set of an AES processor and
the sensor is brand-new designed by the proposed systematic design methodol-
ogy. The sensor is composed of sensor coils and a sensor core integrated into
the cryptographic LSI. It can be designed at the circuit level rather than at the
transistor level since all components of the sensor, even including the coils, are
semi-automatically designed by standard EDA tools with a fully-digital standard
cell library, which minimizes the design cost. The validity and performance of the
sensor designed based on the proposed methodology are demonstrated through
experiments using a prototype integrating a 128bit-key composite AES processor
in a 0.18μm CMOS process. We confirm that the prototype sensor successfully
detects a variety of microprobe-based EM attacks with overheads of only 2% in
area, 9% in power, and 0.2% in performance. Thus, the major contributions of
the present paper are establishing a systematic design flow for the sensor using
conventional circuit design tools, showing that the sensor can be developed at
the circuit level, and demonstrating the validity and performance of the proto-
type sensor designed by using our design flow through a set of experiments for
different attack scenarios.

The remainder of this paper is organized as follows. Section 2 introduces
the concept of the countermeasure with the EM attack sensor. In Section 3, the
semi-automatic design flow for the sensor is proposed. Section 4 shows the exper-
imental results obtained using the prototype integrated into an AES processor
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and discusses its capabilities and limitations. Finally, Section 5 presents some
concluding remarks.

2 EM Attack Sensor

Figure 1 illustrates the basic concept of the EM attack sensor. When a probe
(i.e., a looped conductor) is brought close to an LSI (i.e., another electric ob-
ject), mutual inductance increases. This is a physical law that is unavoidable in
magnetic field measurement. Assuming current flowing through a coil (i.e., an
LC circuit), its frequency shifts due to the mutual inductance M . The original
frequency fLC and the shifted frequency f̃LC are approximately given by

fLC ≈ 1

2π
√
LC

, (1)

f̃LC ≈ 1

2π
√
(L −M)C

, (2)

respectively. Thus, it is possible to detect the presence of a probe that has been
placed inside a common LSI package by detecting the frequency shift induced
in an LC circuit. Note that the corresponding variation in electric field is also
detectable in the equivalent principle by capacitive coupling.

The single-coil sensing scheme in Fig. 1 is simple and straightforward, but
it requires a frequency reference generated either inside or outside the LSI for
detecting frequency shifts. However, any external clock signal, including a system
clock, may be manipulated by the attacker, and therefore cannot be used as a
reliable frequency reference. In addition, an on-chip frequency reference requires
area- and power-hungry analog circuitry, such as a bandgap reference circuit.
These drawbacks of the single-coil scheme are overcome by using a dual- or
multi-coil scheme.



Design Methodology and Validity Verification of EM Attack Sensor 5

Dual Sensor Coils

fLC1
fLC2

Sensor-to-Probe Vertical Distance

Fr
eq

ue
nc

y
Sh

ift

fLC1

fLC2

Attack 
Detection by 
Difference

Fig. 2. Dual-coil sensor architecture

Figure 2 illustrates the concept of the dual-coil sensor architecture, where two
coils are installed on the cryptographic core to be protected. Using two coils with
different shape and number of turns, it is possible to detect an approaching probe
by the difference of the oscillation frequencies of the two coils. This dual-coil
sensor architecture avoids using any absolute frequency reference that is required
in the single-coil scheme. The difference of frequencies is constant and remains
detectable even if a frequency reference, such as a system clock, is tampered
with. In addition, the difference of the frequencies of the two coils enables probe
detection in a variety of probing scenarios (e.g., dual probing and cross-coil
probing).

To enhance the attack detection accuracy, PVT (process, voltage, and tem-
perature) variation in fLC should be suppressed. A ring oscillator can be utilized
as a PVT monitor for calibrating fLC [17]. The abovementioned LC oscillators
do not employ any varactor capacitance as they have a positive temperature co-
efficient (kTC > 0). Instead, small MOS capacitors with low kTC are connected
to the oscillator only for calibration. The fLC variation in this design is inversely
proportional to the transconductance of a gm cell in the LC oscillator. As a re-
sult, the LC and the ring oscillators have a monotonic inverse dependence on
PVT, and thus fLC can be digitally calibrated in one step with only two coun-
ters and a small lookup table (LUT) used for converting the difference of clock
counts into capacitance values (i.e., the number of capacitors).

In the calibration, first we switch on both the LC and ring oscillators, after
which we check the outputs of the counters attached to the oscillators, and
finally increase or decrease the number of capacitors in accordance with the
difference of counts. Here, a relative frequency difference is utilized, similarly to
the attack detection concept. Such digital calibration setup is implemented in
a compact and low-power manner since it does not require any analog circuitry
for frequency reference. In principle, this calibration only handles fLC shift due
to PVT variation, and the shift Δf due to an approaching probe always remains
after the calibration. Even if the probe is placed close to the chip before the power
supply is switching on, the probe can be detected immediately after wake-up.
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Fig. 3. Circuit diagram

3 Design Methodology

Figure 3 depicts a circuit diagram of the sensor core circuit. It consists of LC
oscillators connected to sensor coils L1 and L2, ring oscillators, a detection logic
circuit, two calibration logic circuits, and a control logic circuit. For the best
compatibility with the standard digital design flow, standard digital cells are
assigned to all the circuit components. The gm cell of the LC oscillator can
be realized by using two gated CMOS inverter and the MOS capacitor bank is
composed of 2n sets of unit MOS capacitors with switch controlled by digital
binary code Ccode. All other circuit components are of course realized by using
the standard digital cell library. The sensor core performs detection of frequency
difference, calibration of LC oscillator frequencies, and timing control of the
sensor operation.

The detection logic circuit calculates the difference of LC oscillation frequen-
cies by subtracting the clock counts of LCclk1 and LCclk2, which indicate the
digitized values of the oscillation frequencies fLC1 and fLC2, respectively.

The two calibration logic circuits calculate the difference of clock counts of
LCclk1 (LCclk2) and ROclk1 (ROclk2) obtained from the LC and ring oscilla-
tors, respectively. Here, note that we know both the frequencies of LC and ring
oscillators in advance under typical PVT conditions. The difference is converted
into the capacitance value Ccode1 (Ccode2) based on the lookup table (LUT)
connected to the calibration logic circuit. The Ccode1 (Ccode2) switches the
number of capacitors connected to the LC oscillator and consequently calibrates
the LC oscillator frequency.

Figure 4 illustrates the process of calibration, where the LC and ring os-
cillators have a monotonic inverse dependence on the supply voltage and ΔC
indicates the capacitance determined by the difference of LC and ring oscillation
frequencies. Although Figure 4 illustrates a case when the supply voltage varies,
this calibration method is applicable to variations in process and temperature.
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In order to suppress the fLC variation within ±1%, a 10-bit Ccode resolution
is high enough. The LUT for this calibration is essentially a 10-bit subtracter
whose gate count is only around 0.2k gates.

The control logic circuit provides the timings of detection and calibration
operations, which are determined depending on the cryptographic operation to
be protected. Calibration is performed once before the detection operation, which
is performed in a timely fashion before and during cryptographic operation. If a
frequency difference is detected, a signal to that effect is generated by the control
logic circuit. The cryptographic operation is then changed in accordance with
the detection signal.

As described above, all components of the sensor core are implemented as
fully digital circuits available as standard cells (including transistor switches
and capacitance cells), and therefore the sensor can be scaled together with
the cryptographic LSI to be protected. The coil size is also scalable due to
transistor performance improvement in device scaling. The sensor monitors for
probe approach intermittently and periodically, which saves power and minimizes
the performance overhead. In addition, the oscillators do not interfere with the
cryptographic core since the sensor is usually activated while the cryptographic
core is idle.

Figure 5 shows the proposed design methodology for the above sensor with
conventional circuit design tools. The cryptographic and sensor cores are first de-
scribed by a conventional hardware description language (e.g., Verilog-HDL) at
the logic design step and synthesized by a logic synthesizer at the logic synthesis
step. Logic synthesis is performed for each functional block since it is assumed
that all functional blocks handling sensitive data are protected by sensor coils.

After the logic synthesis step, the sensor coils are designed in accordance with
the above design. At the netlist generation step, a netlist of the sensor cores is
generated for a SPICE simulation of the sensor core. In parallel, the external
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shape of the cryptographic and sensor cores is fixed at the floor planning step,
which determines the overall coil size (i.e., length and width).

With the coil length and width fixed, at the coil design step, we determine the
number of turns, which determines the oscillation frequency. The gap between
the wires is also adjusted to fine-tune the oscillation frequency, and the wire
width is adjusted to ensure stable oscillation. A wide wire reduces loss in the
coil and hence meets the oscillation requirements, at the expense of using more
resources to make the wire. Then, we perform a SPICE simulation with the coil
parameters for a range of possible PVT conditions and determine the required
capacitor bank structure (i.e., the range and step size of capacitance values).
Unit capacitors with some margin are pre-arranged at the placement step, and
then the actual bank structure is constructed at the following routing step by
hard-wire programming between the capacitor bank and the LUT to convert the
frequency difference to capacitance value for sensor calibration.

At the coil layout step, we design the coil layout according to the above
parameters. Note here that we can utilize digital layout grids to provide the
width and spacing of wires. A digital-friendly 2-layer coil layout style [18] is
employing where coil is drawn by two different metal layers for orthogonal edges
(Fig. 6). The coil can be hidden in the sea of logic interconnections as it only
consumes several tens of logic interconnection tracks. Since a high Q factor is
not required, it is also not necessary to have a thick upper layer of metal for the
coil since phase noise (jitter) in the LC oscillator has no impact on detection



Design Methodology and Validity Verification of EM Attack Sensor 9

M1 M1

M2

(a) Conventional 1-Layer Coil (b) Orthogonal 2-Layer Coil

Logic Wires

M2 Wire 
Blockage

Area

Fig. 6. Coil layout: (a) conventional one-layer coil, and (b) orthogonal two-layer coil

accuracy. Therefore, the coil can be fabricated by a standard digital process
without any analog/RF options. Unlike analog LC oscillator such as for RF clock
synthesizers, careful dedicated analog design is not necessary for this sensor coil
and oscillator design, further lowering the design cost.

Based on the coil layout, at the placement and routing step, we place and
route the components of the cryptographic and sensor cores, including the ca-
pacitor bank and LUT. The capacitor bank has n capacitors of different sizes,
and therefore encodes 2n−1 capacitance values for an n-bit input. Finally, we can
verify the overall functionality with a digital verification tool at the verification
step since the input and output of the sensor core are digital.

4 Validity Verification

The validity and performance of the proposed sensor were demonstrated through
experiments with a newly fabricated chip designed on the basis of the proposed
methodology. We assume here four attack scenarios with a single microprobe
approaching during the sensing period, a larger micro probe approaching during
the sensing period, a single micro probe approaching while the supply voltage
was being changed, and a single micro probe approaching before the sensing
period (i.e., during the sleep period). The first scenario assumed a conventional
microprobe-based EM attack, such as that described in [8] and [10], where at-
tackers move a microprobe close to the core surface while the sensor is working.
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Fig. 7. Die photograph and measurement setup

The second scenario assumed an attempt to avoid detection by a larger probe
crossing the two coils. This scenario is equivalent to EMA with two micro probes
close to the two coils at the same time. The third scenario assumed that the at-
tacker manipulate the PVT conditions to cheat the sensor. Finally, the fourth
scenario assumed that the attacker can place a micro probe on the core surface in
advance before the cryptographic and sensor cores are switched on, manipulating
the PVT conditions.

The proposed sensor was implemented in a TSMC 0.18μm CMOS process by
commercial CAD tools. More precisely, we used Design Compiler (G-2012.06-
SP3), IC Compiler (vH-2013.03-SP2), and Virtuoso (6.1.4) for the logic synthe-
sis, the P&R, and the coil design, respectively. Figure 7 shows a die photograph
and the measurement setup. Two coils (a 4-turn coil (L1) and a 3-turn coil (L2))
were placed above an AES processor. The L1 (L2) coil had the resistance of 76Ω
(55Ω), the capacitance of 68fF (64fF), and the inductance of 13.2nH (8.5nH)
according to the EM field simulation with an equivalent circuit model. The AES
processor was based on a common loop architecture operating at one round per
clock cycle [19]. The test chip was mounted on a side-channel attack standard
evaluation board (SASEBO R-II) [20]. A micro EM probe was fixed on a ma-
nipulator, and its position was controlled manually by monitoring through a
microscope. We conducted successful microprobe-based EMA using EM wave-
forms observed in the experimental setup, where the EM signal from the probe
was amplified by a 100 W +40 dB power amplifier.

Figure 8 shows the frequency spectra of L1 and L2 in the presence and
absence of a micro probe. The oscillation frequency of each coil was clearly
shifted by the probe, even at a distance of about 100μm. The result indicates that
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microprobe-based EM attacks such as those assumed in the first scenario can be
easily detected by the sensor.

Figure 9 shows the difference of the frequency shifts of L1 and L2 for different
distances between the coils and the probe. The shift ratio of L1 was clearly
different from that of L2 when the same probe was used. This suggests that
the second scenario is also thwarted by our dual-coil detection scheme. Even if
the attacker can observe the magnitude of the frequency shifts, they would still
have substantial difficulty in matching the shifts, which are determined by many
coil parameters, while performing high-density EM measurements. This result
indicates that EM attacks with two micro probes are also detectable.

Figure 10 (a) presents the frequency shift dependence on the supply voltage
VDD, where the left and right hands of the figure are the amount of frequency
shifts before and after the calibration, respectively. The proposed one-step digi-
tal calibration suppresses the fLC variation to within ±1% over the temperature
range of 0-60 ◦C at a VDD voltage of 1.6-2.0 V which corresponds to a vari-
ation greater than ±10% from the nominal VDD voltage of 1.8 V. This result
shows that the proposed sensor is robust against PVT variation since the same
calibration method is applicable for a range of possible PVT conditions.

Figure 10 (a) also shows that the sensor can thwart the fourth scenario. The
frequency shift due to the approaching probe remains after calibration. The
result indicates that even if the probe is brought close to the cryptographic
core before its power supply is switched on, the probe can be detected immedi-
ately after wake-up. Figure 10 (b) presents the result for a sophisticated fourth
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scenario, where the attacker can manipulate the supply voltage and suppress
fLC variation to within the working range (±1%) with a micro probe close to
the core surface just after the power is switched on. It should be noted that such
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Table 1. Overheads caused by sensor

AES Core Sensor Total (Sensor Overhead)

2NAND Gate Count 24.3k 0.3k 24.6k (+1.2%)

Wire Resource 0.40mm2 0.05mm2 0.45mm2 (+11%)

Layout Area 0.48mm2 0.01mm2 0.49mm2 (+2%)

Performance 125μs/Enc 0.3μs/Sense 125.3μs (-0.2%)

Power Consumption 0.23mW 0.02mW 0.25mW (+9%)

cheating was also thwarted by the calibration since the fLC variation is always
corrected to within ±1% in the absence of a probe.

Table 1 summarizes the overheads caused by the sensor hardware. The time
for a single detection operation (including calibration and sense operations) can
be reduced to <1% of the time for one AES encryption operation, including
data I/O. Note that the application considered here is a simple device with a
few IO pins, such as smartcard, which can be mainly targeted by microprobe-
based EMA. Such device usually equips serial IO and outputs the data at each
time. This intermittent sensor operation at <1% duty cycle significantly reduces
the power and performance overheads of the sensor. The power consumption
was estimated from a calibration-and-sense operation before an AES encryption
operation. With overheads of only 2% in area and 9% in power, the proposed
sensor can be used as a countermeasure against microprobe-based EM attacks,
filling a large security hole not covered by conventional countermeasures.

5 Discussion

The experimental results show that the proposed sensor is effective against
micro-probe-based EM attacks which cannot be prevented by the conventional
algorithmic- and circuit-level countermeasures. EM fault-injection attacks using
a micro needle probe, such as that in [9], are also detected by the same princi-
ple. Using middle layers to draw sensor coils could also prevent attacks from the
backside of the LSI since the magnetic sensing can work through interconnect,
transistor and substrate layers. Thus, the proposed countermeasure can detect
EM analysis and fault-injection attacks performed close to or on the LSI (front
and back) surface in a robust manner.

The proposed sensor would also be invulnerable to frequency injection attacks.
First, attackers must measure the original frequency very close to the coil surface
but cannot measure it without disturbing the original one. Even if the frequency
is known, a significant EM injection power is required to lock an oscillator since
each coil is oscillating in a full swing manner. Such powerful EM injection must
affect another oscillator. Note again that the oscillation frequencies are different
for each other. If both oscillators are locked to the same frequency, the sensor de-
tects it immediately. An attacker might attempt to attach a frequency-injection
probe directly to an embedded coil, but it is hard to do it without affecting other
wires.
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One possible attack on the proposed setup would be to eliminate the differ-
ence between oscillation frequencies observed by the sensor by using two probes
or similar alternatives. However, performing such a sophisticated attack is ex-
tremely difficult, even if the attacker can observe the frequency shifts shown in
the above experiments. In addition, it is difficult to identify and disable the sen-
sor prior to the attack since the coils and the sensor core are embedded in the
sea of logic gates and wires. Reverse engineering to removing the sensor would
also be a rather challenging task when the cryptographic core operation is linked
with the sensor operation.

The detectable distance between the probe and the sensor is limited to a
maximum of 0.1 mm in the experimental setup. The limited maximum detection
distance means that conventional EMAs on the chip package such as DEMA
and CEMA are still possible, even if the proposed sensor is installed over the
cryptographic core. The extension of the maximum detection distance is an
open issue that will be addressed in future work. For example, we could extend
the detection distance using larger coils. Extending the maximum distance may
enable the sensor to detect chip unpacking as well. On the other hand, the
proposed sensor can be combined with any other conventional countermeasures
due to the low area and performance overheads. In practice, a combination of
conventional countermeasures and the proposed technique would work well in a
complementary manner.

The power and performance overheads are further reduced by the optimiza-
tion of intermittent sensor operation. The sensor should operate continuously
during the cryptographic operations for increased security. However, intermit-
tent operation would be sufficient for many applications. For example, one-time
calibration and sensing before continuous cryptographic operations might be
practical. Designers and users can determine the operation timing according to
the target application and intended use. The post-detection operations (e.g.,
termination or dummy operations) should also be optimized depending on the
application. Such optimizations will also be examined in future work.

6 Conclusion

This paper presented the design methodology and validity verification of a new
countermeasure against microprobe-based EM analysis and fault-injection at-
tacks. The proposed countermeasure detects variations in the EM field caused
by a micro EM probe approaching the cryptographic LSI, and therefore thwarts
microprobe-based EMA that cannot be prevented by conventional algorithmic-
and circuit-level countermeasures. A dual-coil sensor architecture and an LUT-
programming-based digital sensor calibration can prevent such EM attacks in a
variety of scenarios where one or more micro EM probes are used under different
PVT conditions. All components of the sensor core are implemented in a fully
digital circuit and therefore can be scaled together with the cryptographic LSI
to be protected.

The proposed systematic design flow for the sensor is based on standard digital
circuit design tools. All the sensor circuit components, including the sensor coils,
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was semi-automatically designed by the synthesis and placement software once
the coil parameters were fixed. The validity and performance of the sensor were
demonstrated through experiments using a prototype integrated into an AES
processor. The results show that our sensor successfully detects microscale EM
probes approaching the AES processor for all assumed attack scenarios.

The sensor was designed based on the proposed design flow and integrated
with overheads of only 2% in area, 9% in power, and 0.2% in performance,
which are much lower than those of alternative active shield techniques. Such
low overheads make it possible to implement the proposed technique together
with conventional countermeasures developed for other types of attacks. Al-
though the proposed countermeasure cannot thwart all types of EM attacks, it
can significantly reduce the complexity and cost associated with conventional
countermeasures against microprobe-based EMA. One direction of future work
will be to find the most effective combination of the proposed and conventional
countermeasures.
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Abstract. The use of constraint solvers, such as SAT- or Pseudo-
Boolean-solvers, allows the extraction of the secret key from one or two
side-channel traces. However, to use such a solver the cipher must be rep-
resented at bit-level. For byte-oriented ciphers this produces very large
and unwieldy instances, leading to unpredictable, and often very long,
run times. In this paper we describe a specialized byte-oriented constraint
solver for side channel cryptanalysis. The user only needs to supply code
snippets for the native operations of the cipher, arranged in a flow graph
that models the dependence between the side channel leaks. Our frame-
work uses a soft decision mechanism which overcomes realistic measure-
ment noise and decoder classification errors, through a novel method for
reconciling multiple probability distributions. On the DPA v4 contest
dataset our framework is able to extract the correct key from one or two
power traces in under 9 seconds with a success rate of over 79%.

Keywords: Constraint solvers, power analysis, template attacks.

1 Introduction

In a constraint-based side-channel attack, the attacker is provided with a device
under test (DUT) which performs a cryptographic operation (e.g., encryption).
While performing this operation the device emits a data dependent side-channel
leakage such as power consumption trace. As a result of the data dependence, a
certain number of leaks are modulated into the trace together with some noise.
In order to recover the secret key from a power trace the attacker performs the
following steps:

Profiling: The DUT is analyzed in order to identify the position of the leaking
operations in the traces, for instance by using classical side-channel attacks like
CPA [4]. Then a decoding process is devised, that maps between a single power
trace and a vector of leaks. A common output of the decoder is the Hamming
weight of the processed data as in [22], but many other decoders are possible.
An effective profiling method is a template attack, which was introduced in [5].
Profiling is an offline activity.

Decoding: After the profiling phase, the attacker is provided with a small
number of power traces (typically, a single trace). The decoding process is applied
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to the power trace, and a vector of leaks is recovered. This vector of leaks may
contain some errors, e.g., due to the effect of noise.

Solving: The leak vector, together with a description of the algorithm im-
plemented in the DUT, and additional auxiliary information, is converted to a
representation that is suitable to a constraint solver: e.g., a SAT-solver [21,22,28]
or a Pseudo-Boolean solver [17,18]. The solver solves the problem instance, out-
putting the best candidates satisfying the constraints. However, previously used
solvers require a bit-level representation which creates several challenges. In this
paper we suggest a new solver which uses a byte-level representation.

Related Work. Side channel cryptanalysis was first suggested in [12] (cf. [13]).
Template attacks were introduced in [5] and further explored in papers such
as [24,20,7]. Algebraic side-channel attacks were introduced by Renauld et al.
in [21,22], and first applied to the block ciphers PRESENT [3] and AES [15].
These works showed how keys can be recovered from a single measurement trace
of these algorithms implemented in an 8-bit microcontroller, provided that the
attacker can identify the Hamming weights of several intermediate computations
during the encryption process. Already in these papers, it was observed that
noise was the main limiting factor for algebraic attacks. To mitigate this issue,
a heuristic solution was introduced in [22], and further elaborated in [28,14].
The main idea was to adapt the leakage model in order to trade some loss
of information for more robustness, for example by grouping hard-to-distinguish
Hamming weight values together into sets. An alternative proposal [17] suggested
to include the imprecise Hamming weights in the equation set, and to deal with
these imprecisions via the solver.

Despite their success, using generic SAT solvers or Pseudo-Boolean solvers still
leaves room for improvement. The difficulties stem from the fact that in order
to use them, the cipher representation has to be reduced to the bit-level. For
byte-oriented ciphers this produces very large and complex instances, that are
challenging to construct and debug. [16] notes that an AES equations instance
may reach a size of 2.3 MB, depending on the methodology used to construct
the equations. However, the most problematic aspect of bit-level solvers is their
unpredictable, and often very long, run times. In [18] the authors report that run
times vary over an order of magnitude between 8.2 hours to more than 143 hours
on instances belonging to the same data set. The solver behavior is very sensitive
to technical representation issues, and is controlled by a myriad of configuration
parameters that are unrelated to the cryptographic task. Algebraic side-channel
attacks which use local calculations were also considered in [26] and in [8].

Contribution. The focus of this work is a new constraint solver. Our solver
embeds a model of the encryption process, accepts the known plain-text, and
the output of the decoder, and outputs the highest probability keys with an
estimation of their likelihood. However, unlike the algebraic attacks of [22] and
[18], our constraint solver is not a general purpose Pseudo-Boolean or SAT-solver.
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We wrote a special solver that is targeted at the unique types of constraints
that occur in a side channel cryptanalysis of byte-oriented ciphers. Our solver is
fundamentally probabilistic. It tracks the likelihoods of values in the secret key
bytes, and updates them step by step through the encryption process, utilizing
the probability distributions output by the decoder. A key ingredient in our
framework is a novel method for reconciling multiple probability distributions
for the same variable.

Applying our framework to a byte-oriented cipher with available side-channel
information is quite natural and does not involve complex representation con-
versions into bit-level equations: the user needs to supply code snippets for the
native byte-level operations of the cipher, arranged in a flow graph that em-
beds the functional dependence between the side channel leaks. Our framework
uses a soft decision mechanism which overcomes realistic measurement noise and
decoder classification errors.

As in previous solver-based attacks, our framework requires a decoder. The
decoder accepts a single power trace, and outputs estimates of multiple inter-
mediate values that are computed during the encryption and leaked by the side-
channel. An estimate of a leaked value X in our framework is not a single “hard
decision” value. Rather, as in [18], it is a probability distribution over the pos-
sible values of X . The decoder is usually constructed as a template decoder [5].
As in [18] we do not assume a Hamming-weight model for the leaked values -
the decoder may output any probability distribution over the leak values. Note
further that we do not impose a particular noise model on the decoder - e.g., it
is not required to output only a single Hamming-weight value (or set of k values,
as done by [28] and [18]).

We tested our framework on the DPA v4 contest dataset [2]. On this dataset,
our framework is able to extract the correct key from one or two power traces
with predictable and very short run times. Our results show a success rate of over
79% using just two measurements and typical run times are under 9 seconds.
The source code can be downloaded from [27].

Organization. In the next section we introduce the probabilistic tools used in
our solver. In Section 3 we describe the construction of the solver’s flow graph.
In Section 4 we show how we applied our method to AES. Section 5 includes the
performance evaluation we conducted using the DPAv4 traces, and we conclude
with Section 6.

2 Probabilistic Methodology

2.1 The Conflation Operator

A central part of our framework is a novel method of reconciling probability
distributions. The basic scenario is as follows. Suppose we are trying to measure
an unknown quantity X via two experiments. The outcome of the first experi-
ment E1 is a probability distribution PE1 such that PE1(X = i) is the likelihood
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that X has value i. The second experiment E2 measures the value of X using a
different method, providing a second distribution PE2 . We now wish to reconcile
the results of these two experiments into a combined distribution P̂ . Intuitively,
we want P̂ to “strengthen” values on which E1 and E2 agree, and “weaken”
values on which E1 and E2 differ. Thus, we want a probabilistic analogue to
the logical “AND” operator. At one extreme, if PE1(X = i) = 0 (the value i is
impossible according to E1) then we want P̂ (X = i) = 0. At another extreme,
if PE2(X = i) = 1

N for all N possible values of X (E2 provides no information
about X) then we want P̂ = PE1 .

This general question was tackled by [9,10,11,6]. In particular, Hill [9] sug-
gests a method called conflation, which is essentially the point-product of the
distributions. In the case of two experiments E1,E2 the conflated probability
P̂ = &(PE1 , PE2) = (p̂1, .., p̂N) is defined as

p̂i = P̂ (X = i) = 1
γ · PE1(X = i) · PE2(X = i)

where γ is a normalization factor to ensure
∑N

i=1 p̂n = 1. And in general, if
multiple distributions P 1, .., P T are given then the conflated distribution is the
normalized point product of all T distributions: P̂ = &(P 1, .., P T ) = (p̂1, .., p̂N)
such that p̂i = 1

γ

∏T
t=1 pt

i

Hill [9] thoroughly analyzes the properties of the conflation operator. The
paper shows that conflation is the unique probability distribution that minimizes
the loss of Shannon Information. Further, conflation automatically gives more
weight to more accurate experiments with smaller standard deviation. Finally,
as desired, conflation with the uniform distribution is an identity transformation
(i.e., it is indifferent to experiments with no information), and if P t(X = i) = 0
for some i then P̂ (X = i) = 0 regardless of all other experiments. As we shall
see, using conflation as the main probabilistic reconciliation method is extremely
effective in our solver.

2.2 Conflating Probabilities of Single-Input Computation

In a byte-oriented cipher, many steps are transformations operating on a single
byte. E.g., an XOR of a key byte X and a (known) plaintext byte is such a
transformation. Similarly an SBox operation takes a single input X and pro-
duces f(X). Suppose a template-based side channel oracle E1 exists, that re-
turns a probability distribution PE1 of the values of X , and a second oracle
E2 returns a probability distribution PE2 of the values of f(X). Assuming the
transformation f(X) is deterministic and 1-1, then PE1(X = a) should agree
with PE2(f(X) = f(a)). Thus, we have two experiments measuring the value of
f(X): one is E2, and the other is a permutation of the distribution E1. Combin-
ing the experiment results via conflation gives us a more accurate distribution
of f(X) - and, equivalently, of values of X . Therefore, the reconciled probability
for a single-input computation is defined to be:

P̂ (X = a) = 1
γ PE1(X = a) · PE2(f(X) = f(a)) (1)
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2.3 Conflating Probabilities of Dual-Input Computations

Suppose we have a function f of two independent byte values that outputs
a byte: f(X, Y ) = Z. We have oracles providing the probability distributions
PX , PY and PZ for X, Y, Z respectively, and we wish to reconcile them. We first
calculate the distribution Pf of f(X, Y ) based on PX , PY : assuming X and Y
are independent we get Pf (c) = P (f(X, Y ) = c) =

∑
k,l:f(k,l)=c PX(k) · PY (l).

Now Pf and PZ are distributions from two experiments estimating the same
value Z, which we can conflate as before: P̂ = &(Pf , PZ) so P̂ (c) = Pf (c) ·
PZ(c) · 1

γ (for some normalization constant γ). However, we want to assign the
reconciled probabilities P̂ () to the inputs X and Y . Specifically, we want to split
the probability P̂ (c) among the pairs (X = a, Y = b) for which f(a, b) = c
such that each pair will get its weighted share of P̂ (c). Assume as before that
c = f(a, b), then the weighted split is:

P̂ (X = a, Y = b) = P̂ (c) · PX (a)·PY (b)∑
k,l:f(k,l)=c

PX (k)·PY (l) = P̂ (c) · PX (a)·PY (b)
Pf (c) =

1
γ Pf (c)PZ(c) · PX (a)·PY (b)

Pf (c) = 1
γ PX(a)PY (b)PZ(c)

(2)

Thus we arrive at the following reconciled probability for the pair X = a, Y = b:

P̂ (X = a, Y = b) = 1
γ PX(a)PY (b)PZ(f(a, b)) (3)

3 Building Blocks

Our constraint model is a directed graph which describes the flow of information
in the encryption process, as it affects the side channel leaks. The direction of
the graph is from the unknown input bytes (the key in our case) to the output
bytes (the ciphertext or intermediate values). Each part of the graph represents
one of the following three constraint types: single-input constraint, dual-input
constraint or data-redundancy constraint. There are two types of nodes in the
graph:

1. Registry nodes - used to store possible values of intermediate values and
their corresponding probabilities.

2. Compute nodes - used to connect registry nodes containing possible input
values to registry nodes which should contain possible output values. Each
compute node contains a code snippet implementing some step of the cipher.

3.1 Single-Input Computation Constraint

Suppose one of the steps of the cipher is a single-input byte function f(X). Sup-
pose we have two oracles, Ein, Eout providing the probability distributions of X
and f(X), respectively. Let αin

bn
= PEin(X = bn), and let αout

f(bn) = PEout(f(X) =
f(bn)). These are the estimated probabilities of the input and output values given
by the side channel information.
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Fig. 1. Illustration of three types of constraints: a) single-input constraint, b) dual-
input constraint, c) data-redundancy constraint

For a single input computation we define two registries: the Input-Registry
contains the values {(bn, αin

bn
)}, and the Output-Registry contains the post-

computation probabilities {(vn, αvn)} s.t P (f(X) = vn) = αout
vn

.
We connect the input registry to the output registry via the Compute-f node

(see Figure 1a), which contains a code snippet. The Compute-f node receives
the tuples {(bn, αin

bn
)} from the Input-Registry, computes the function f for each

tuple, and for every value bn outputs the tuple (bn, αin
bn

, f(bn)) to the Output
Registry. Upon receiving the results from the compute function, the Output-
Registry conflates αin, αout as in Section 2.2: α̂n = 1

γ P (X = bn) · P (f(X) =
f(bn)) = αin

bn
·αout

f(bn). After the computation is done the Output-Registry contains
tuples of the form (bn, f(bn), α̂n).

3.2 Dual-Input Computation Constraint

Suppose a step in the cipher is a dual input byte-function f(X, Y ) such as an
XOR of two intermediate values, and that side-channel information is available
for f(X, Y ). In our constraint model we represent such a computation by two
input registries entering a single compute node which includes the relevant code
snippet (see Figure 1b). The compute node has to take into account all possible
input combinations {bX

n } × {bY
n }. For every possible combination (bX

n′ , bY
n′′) the

compute node outputs the tuple (bX
n′ , bY

n′′ , αin,X
n′ , αin,Y

n′′ , f(bX
n′ , bY

n′′)). The output
registry now needs to compute the conflated probability for the combination
(bX

n′ , bY
n′′ , f(bX

n′ , bY
n′′)). As described in Section 2.3, the conflated probability in

the output registry is computed by

α̂n′,n′′ = 1
γ · αin,X

n · αin,Y
n · P (f = f(bX

n′ , bY
n′′))

for a normalization factor γ.

3.3 Pruning Records from a Registry

The output size of a dual-input compute node is the product of sizes of the
input registries. In some cases storing this much information is not feasible. For
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example, when both input registries contain 2562 records the output registry will
have to hold 2564 records, which is prohibitive. To avoid such a combinatorial
explosion we can prune some of the records in the input registries by discarding
all records with probabilities below a certain threshold t. Tuning the threshold is
a trade off: selecting a tight threshold keeps combinatorial complexity low, but
might cause pruning of records derived from the correct key bytes.

3.4 Data-Redundancy Constraint

We now deal with the case where some intermediate value X is used as input
to more than one function. In our graph notation it means that some registry
R0 was used as input to two or more compute nodes, C1, C2. Denote the output
registries of these compute nodes R1,out, R2,out. Each record in these registries
contains the relevant value of X for that record. Enforcing a data-redundancy
constraint over the value of X means that the records from R1,out, R2,out should
agree with each other probabilistically. For this purpose we introduce a special
compute node which we call an intersection node (see Figure 1c). The records
in R1,out, R2,out are observations on the same value of X thus we can conflate
their probabilities as before. Note that unlike the single-input or dual-input
constraints, for an intersection node we do not require a side channel oracle.
Note also that if the input-probability of some value is 0 then the conflated
probability for that value remains 0. This means that if the registries entering
an intersection node were pruned, the intersection node’s output-registry only
includes combinations of the un-pruned values.

3.5 Constructing a Solver for a Cipher

The structure of the solver’s flow graph follows the information flow in the cipher,
as reflected by the side channel leaks. At the beginning of the flow are the first
unknown values - the key bytes. We now follow the cipher’s first computation
which is done on those key bytes, and construct the compute nodes which perform
that computation with their code snippet. The compute node is connected to its
input and output registries as in Section 3.1. We continue to chain single-input
constraints until we reach a dual-input computation. We then use the dual-input
constraint (Section 3.2) to describe this flow of information in the algorithm. In
the registries used as inputs for a dual-input constraint we may wish to impose
pruning to prevent a combinatorial explosion in the output registry. Note that
each record in a registry contains all intermediate values used in the computation
for the specific value in the record. Thus, different registries in the same layer
may share some intermediate values. In that case, it is useful to combine these
registries via a data-redundancy constraint. At the end of the flow we have
registries containing values of intermediate computations. Each record has its
assigned conflated probability and contains the key bytes values which led to
this intermediate value, and the framework automatically does everything else.

Thus we see that in order to instantiate the framework for a specific cipher,
we need to construct a flow graph that mimics the flow of data through the
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cipher operations, with registries per side-channel leak. We need to supply code
fragments for the compute nodes, select appropriate registries to prune and the
pruning thresholds, and insert intersection nodes when possible.

4 Designing a Constraint Solver for AES

To evaluate our framework we built a constraint solver based on the side channel
information from the first round of AES encryption, in a software implementation
of the cipher. Our decoder extracted side channel information on:

1. 16 bytes of the output of AddRoundKey computation
2. 16 bytes of the output of SubBytes
3. 52 bytes from MixColumns computation:

– 16 bytes of an XOR of 2 bytes, 4 in each column
– 16 bytes of output of xtime computations , 4 in each column
– 4 bytes of XOR of 4 bytes, 1 in each column
– 16 bytes of output of the MixColumns computations

In total we have 84 intermediate byte values. For each leaked byte our decoder
(see Section 5.2) produces a probability distribution over the 256 possible values.

Note that in the first round of AES the main diffusion operation is done by
the MixColumns computation. MixColumns operates on groups of four bytes,
thus a change of a single bit in the secret key can not affect more than four
bytes of output (in the first round). This leads our constraint model to be a
graph that can be divided into four connected components. Each connected
component describes a constraint model for a single column. Each of the four
components reflects the byte reordering done by the ShiftRows sub-rounds. This
observation means that our solver actually works independently on each set of
4 key bytes.

4.1 Initialization and Single Input Computations

At the beginning of the computation for every key byte we consider all 256 values
as possible. Since initially we do not have side channel information on the key
bytes the probability for every value is 1/256. The AddRoundKey and SubBytes
sub-rounds are single input computation. Note that no computation is done in
the ShiftRows sub-round, thus it does not leak additional information and is not
used in our constraint model. The left side of Figure 2 illustrates the single-input
constraints for four key bytes.

4.2 Basic Computation of MixColumns

A common implementation of the MixColumns computation in software on an
8-bit microcontroller (cf. [23]) is to compute the following intermediate values:
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Fig. 2. Visual representation of the constraint solver tracking four key bytes up to the
X4 computation in AES. Registry nodes are drawn as rectangles and compute nodes
as ellipses. Abbreviations: AK-AddKey, SB-SubBytes

1. The XOR value of four column bytes:

x4 ← b0 ⊕ b1 ⊕ b2 ⊕ b3

2. The XOR values of adjacent bytes:

x20 ← b0 ⊕ b1
x21 ← b1 ⊕ b2
x22 ← b2 ⊕ b3
x23 ← b3 ⊕ b0

3. The multiplication by 2 in Galois field F28 (“xtime”) of the four values above:

xti ← 2 · x2i |F28
for 0 ≤ i ≤ 3

Constructing the x2i constraints is done by using 4 dual-input compute nodes
followed by a single-input constraint, for xtime (see Figure 2).

4.3 Pruning

Until the x2i registry, the AddKey and SubBytes registries contain 256 records
for each of the 256 possible key bytes. Thus, the x2i registries and hence xti

registries contain 2562 records each. If we naively use the xti registries as input
for a dual-input constraint X4 to compute the XOR of four values - it means
that x4 registry will contain 2564 records, which is prohibitive. We note that
by the time we reach the xti registry the probability assigned to each record is
conflated over 6 side channel leaks: 2 AddRoundKey bytes, 2 SubBytes bytes,
a single x2 byte and a single xtime byte. Therefore, the conflated probabilities
of incorrect key bytes have dropped significantly. Hence, this is a good spot in
our constraint model to perform pruning. We chose to prune all records with
probability of less than t = 10−25. This specific value keeps the correct records
for 92% of the 600 traces we experimented with. On the other hand, this t value
leaves no more that 500 records (out of 65536) in each xti registry, leading to
low memory consumption and fast running times
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Fig. 3. Visual representation of the constraint solver tracking four key bytes, of column
0, from x4 to MixColumns computation. MC stands for MixColumns

4.4 Computing the Output of MixColumns

Each record in the xti registry contains all the values involved in the computation
path. That is: 2 plaintext bytes, 2 key bytes, 2 AddRoundKey bytes, 2 SubBytes
output values, 1 value of XOR of 2 bytes and 1 value of the xtime operation on
that XOR output. Here we can make a useful observation: We have leaks for x4
and also for x20, x21, x22, x23. But these leaked values need to be self-consistent
regardless of how the implementation actually computes x4:

x4I = x20 ⊕ x22
x4II = x21 ⊕ x23

Thus we can compute (and conflate) the values of x4 in two ways. Since the xti

registries contain the corresponding values of x2i we can use these registries as
inputs for two parallel dual-input Compute-x4 nodes. Figure 2 illustrates the
constraint solver up to the x4I , x4II registries.

Assuming we did not prune the records of the correct combination of key
bytes, the quartet of the correct key bytes should appear in records of both
x4I and x4II registries. Thus we now use a data-redundancy constraint (recall
Section 3.4) to intersect records according to the 4 key bytes. The output of
the data-redundancy node is inserted into a registry called x4. Each record of
that registry contains all the byte values used for that specific record, that is:
4 plaintext bytes, 4 key bytes, 4 SubBytes outputs, 4 outputs of XOR of 2, 4
outputs of xtime computations, and 1 value of XOR of 4.

Each record in the x4 registry contains all the information required to com-
pute the 4 output bytes of MixColumns. Since we use a single record to compute
a tuple of 4 output bytes - we consider this computation as a single-input com-
putation. As before let {αin} denote the conflated probabilities of records in
x4 registry. Since MixColumns has 4 output bytes - we have four leaks to con-
flate with, representing the separate side channel information on the four output
bytes: {αout,0}, {αout,1}, {αout,2}, {αout,3}. The conflated probability is given
by: α̂ = αin · αout,0 · αout,1 · αout,2 · αout,3. α̂ is then normalized so that all prob-
abilities sum to 1. The final result is the MC registry. Figure 3 illustrates the
constraint solver from x4I , x4II registries to the MC registry.

4.5 Finding the Keys

We now have in each MC registry, for each “column”, a set of records representing
the possible computation paths and their corresponding probabilities. Recall that
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a “column” is defined at the entrance to MixColumns, so the key byte indices
are reordered by the ShiftRows operation. Each registry record represents a
candidate combination of 4 key bytes. Together all the MC registries contain
possible combinations of 16 key bytes.

A naive way to iterate over the key candidates would be to sort the registries
in decreasing probability order, to set some upper bound R, and to try all can-
didates from ranks r1, r2, r3, r4 s.t. ri ≤ R (one per MC registry). This approach
is bounded by R4 key tries. However, using the method of [25], it is possible to
iterate over these R4 keys according to their probabilities, thus speeding up the
key search. An alternative method for reducing the candidate keys is to run the
constraint solver twice using different power traces and then intersect the groups
of key candidates.

5 Performance Evaluation

5.1 Experimental Setup

We instantiated our framework for AES, and executed it on power traces ex-
tracted from a real implementation of an AES-256 variant. The implementation
is the one presented in the DPA contest v4 [2]. This implementation contains
a power-analysis counter measure called RSM described in [1]. The deviations
from the classic AES are:

1. RSM-AES utilizes an arbitrary fixed 16-byte Mask. At the beginning of the
encryption process a random offset between 0 to 15 is drawn. Let o denote
the offset, and let mo denote the cyclic rotation of Mask by offset o.

2. The 16 bytes of plaintext are XOR-ed with mo. Let pm be the result, i.e.,
pmi = pi ⊕ mo

i , 0 ≤ i ≤ 15.
3. In the AddRoundKey sub-round the round key is XOR-ed with pm instead

of the plaintext.
4. RSM-AES uses different S-BOXs for every byte, which are derived from the

value of the mo.
5. The ShiftRows and MixColumns sub-rounds are unchanged.
6. An additional sub-round is added to extract the unmasked cipher text, but it

is not relevant in our attack since the power traces only cover the first round.

5.2 Decoding

To profile the power consumption behavior of the RSM-AES implementation we
used techniques similar to those of [19]. Our leak model is the Hamming-weight
model. This model was chosen since our experiments showed high correlation
with the Hamming weights of the intermediate values. Using the raw values, on
the other hand, showed very low correlation. 100 classifiers were trained to clas-
sify the Hamming weights of 100 intermediate values. Of these, 84 intermediate
values are those described in Section 4, and 16 values are the masked plaintext
bytes of the RSM counter-measure (see pmi description in Section 5.1). We used
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Fig. 4. Percent of classification errors per classifier, evaluated over 600 traces. Classi-
fiers 0-15 are for Hamming-weights of pmi, 16-31 are for AddKey outputs, 32-47 are
for SubBytes, 48-63 are for x2, 64-79 are for xt, 80-83 are for x4 and 84-99 are for
MixColumns outputs.

200 traces to train the classifiers and an additional 200 traces to evaluate the
classifiers’ performance, in order to select the best trace-samples to be used as
inputs for each classifier. As described in [19] the classifiers were trained to iden-
tify Hamming weights 2-6 and were then extrapolated to classify all 9 possible
Hamming weight values 0-8.

Let Cl be the classifier for leak l, and let Cl(hw) be the probability that clas-
sifier Cl assigns to the event that the correct value has a Hamming-weight of hw
for hw ∈ 0..8. To evaluate the classifiers performance, we define a classification
error to be when the Hamming-weight with the highest probability, as predicted
by the classifier, is not the correct Hamming-weight. Our decoder is far from
perfect: most classifiers have an average error rate of 10-20% and some have an
error rate as poor as 55%. Some intermediate values are decoded with low error
rates (e.g., SubBytes) while others are harder to decode (e.g., MixColumns).
Specific classifiers’ error rates are shown in Figure 4.

Note that in our framework a classifier failing to predict the exact Hamming-
weight as the most likely value still conveys significant information: as long as the
correct Hamming-weight has higher probability than other incorrect Hamming-
weight classes, it helps the solver distinguish the correct values from the incorrect
ones. As we will see, even with these far-from-perfect classifiers, our framework
is able to find the correct keys.

5.2.1 Overcoming the RSM Counter Measure. As described above, we
have 16 classifiers Ci, 0 ≤ i ≤ 15, trained to estimate the probabilities of the
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Hamming-weight values of pmi = pi ⊕ mo
i , where mo

i is the ith byte of the Mask
rotated by offset o. For every possible value of o ∈ 0..15 we derive 16 mask bytes
mo

i and compute pmo
i = pi ⊕ mo

i . Let HW (x) denote the Hamming weight of
x. Recall that for a given value hw, Ci(hw) is the probability estimation of the
decoder Ci of HW (pmi), i.e Ci(hw) = P (HW (pmi) = hw). For every value of
o, we compute the offset score: S(o) =

∏15
i=0 Ci(HW (pmo

i )). The offset o which
gave the highest score S(o) is declared the correct one. We experimented with
this method on 600 traces (distinct from the 400 training traces) and measured
an offset prediction success rate of 100%. Thus we see that the 4-bit side-channel
counter-measure used in RSM-AES offers no protection against template based
attacks, even without a constraint solver.

5.2.2 Probability Estimation for 256 Values. Our constraint solver uses
a soft-decision decoder: it requires as input a probability estimation for 256
possible values of every intermediate computation. We do not filter out the less
likely Hamming weights: instead we split the 9-value distribution given by Cl

among the byte values X , according to their Hamming-weights. Let

Shw = ‖{x ∈ {0..255}|HW (x) = hw}‖ for 0 ≤ hw ≤ 8

be the number of values between 0-255 with Hamming weight hw. For every
intermediate byte value bl among the 84 leaks l ∈ 0..83 and classier Cl - we
assign the probability for value x ∈ 0..255 to be P (bl = x) = Cl(HW (x))

SHW (x)
. Note

that
∑255

x=0 P (bl = x) = 1.

5.3 Implementation of the Constraint Solver

The custom solver designed for AES as described in Sections 3 and 4 was imple-
mented in Matlab R2013a. Our code consists of 6200 lines of code over 25 files.
The implementation consists of general registry and compute blocks, and special-
ized compute classes to be used by the general compute blocks. Other than the 4
registries used for the intersection constraints, each registry is associated with a
specific leak l among the 84 leaks. They therefore receive an a-priori probability
estimation for every value X as explained in Section 5.2.2. These are the αout

values described in Section 3.1. The graph representing the full constraint solver
is depicted in Figure 7.

5.4 Results and Discussion

We ran our solver on an Intel core i7 2.0 GHz PC running Ubuntu 13.04 64 bit,
with 8 GB of RAM and a SSD hard drive. Over 600 traces the median running
time of decoding + running the solver was 9 seconds. Solving of 98% of the
experiments completed in under 30 seconds. The maximum running time was 85
seconds.

At the end of a run, each of the four MixColumns output registries contains
records with 4-key-byte candidates. A full 16 byte key is constructed by taking
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Fig. 5. Evolution of entropy of 16 key bytes at different solver phases, for 10 runs on
randomly selected traces. Abbreviations: ak - AddKey, sb - SubBytes, x2 - XOR of 2
bytes, xt - xtime, x4 - XOR of 4 bytes, mc - MixColumns.

a record from each of the four MixColumns registries. The median number of
4-key-byte candidates (for a single column) was 43930, and the median number
of full key candidates was 261.2. To measure the solver’s success, for each registry
we look at the rank of the record containing the correct 4-key-byte combination.
If the maximum rank of the correct key quartets in all four registries is lower
than R, then exhaustive search for the correct key would require no more that
R4 tries. We found that in 38% out of 600 power traces, at least 3 key quartets
were among the top 5 records. The correct key in over 50% of the traces can
be found in less then R4 = 230 attempts. We believe that using the optimized
algorithm of [25] to iterate over key candidates according to probability would
significantly decrease the number of tries before finding the correct key. We did
not test the approach of [25] on our results. Instead, we opted to use a second
power trace and intersect the candidate key-quartets (see below).

Figure 5 shows how the Shanon entropy of 16 key-bytes drops as the solver
uses the side channel leaks. At the beginning of the flow each key byte has
probability of 1

256 , giving Entropy = 128, as expected for 128 unknown bits of
key. Figure 5 shows that the entropy dropped from 128 down to 0.2-6.6 bits.
This means that although the solver outputs a median of 261.2 key candidates,
the probability mass is concentrated over very few candidates.

When more than one power trace is available for the attack, we can run the
decoding + solver on each trace and intersect the candidate keys. The inter-
section is done separately on the 4-key-byte candidates for every column, and
the probability distributions are conflated. To measure the performance of this
approach we ran 250 experiments, each with independent traces. When the in-
tersection was not empty, the median number of candidates per column was 4
and the median number of full key candidates was 315. Figure 6 shows how
many power traces were required to yield the correct key as the first ranked
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Fig. 6. Number of power traces needed to find the correct key.

candidate. It shows that with only 2 traces we can identify the correct key as
the top candidate with success rate of 79.6%.

We submitted our solver to the DPA v4 contest. The formal evaluation process
of the DPA contest is equivalent to a single experiment (in contrast to the 250
we performed). According to the above statistics, a single experiment has 20.4%
chance of needing more than 2 traces - as actually happened. When more than 2
traces are used, our solver requires more time to perform the intersection between
the possible key candidates. The DPA v4 hall of fame lists our contribution as
requiring 5 traces and 55 seconds per trace to complete. As of the date of writing,
our solver is one of the leading entries in the contest.

6 Conclusions and Future Work

In this paper we described a specialized byte-oriented constraint solver for side
channel cryptanalysis. Instead of representing the cipher as a complex and un-
wieldy set of bit-level equations, the user only needs to supply code snippets for
the native operations of the cipher, arranged in a flow graph that models the de-
pendence between the side channel leaks. Through extensive use of the conflation
technique our solver is able to reconcile low-accuracy and noisy measurements
into an accurate low-entropy probability distribution, with extremely low and
very predictable run times. On the DPA v4 contest dataset our framework is
able to extract the correct key from one or two power traces in under 9 seconds
with a success rate of over 79%.

The technique is not dependent on the decoding method, does not assume a
Hamming-weight model for the side channel, and does not impose any particular
noise model. It can be applied as long as it is possible to decode the side-channel
trace into a collection of probability distributions for the intermediate values.
We believe it would be quite interesting to test our framework against other
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Fig. 7. Flow Graph of the Full AES Constraint Solver
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implementations of AES, against other types of side-channel information, and
against other byte-oriented ciphers.
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Abstract. The resistance of a cryptographic implementation with re-
gards to side-channel analysis is often quantified by measuring the success
rate of a given attack. This approach cannot always be followed in prac-
tice, especially when the implementation includes some countermeasures
that may render the attack too costly for an evaluation purpose, but
not costly enough from a security point of view. An evaluator then faces
the issue of estimating the success rate of an attack he cannot mount.
The present paper addresses this issue by presenting a methodology to
estimate the success rate of higher-order side-channel attacks targeting
implementations protected by masking. Specifically, we generalize the
approach initially proposed at SAC 2008 in the context of first-order
side-channel attacks. The principle is to approximate the distribution of
an attack’s score vector by a multivariate Gaussian distribution, whose
parameters are derived by profiling the leakage. One can then accurately
compute the expected attack success rate with respect to the number
of leakage measurements. We apply this methodology to higher-order
side-channel attacks based on the widely used correlation and likelihood
distinguishers. Moreover, we validate our approach with simulations and
practical attack experiments against masked AES implementations run-
ning on two different microcontrollers.

1 Introduction

Estimating the success rate of a side-channel attack –that uses a given number of
leakage observations– is a central issue regarding the physical security evaluation
of a cryptographic implementation. The empirical way is to perform the attack
a certain number of times and to record the average number of successes. How-
ever, this approach is prohibitive against implementations protected by effective
countermeasures since the attacks may become too costly to be performed sev-
eral times (or even once). This does not mean that the implementation is secure
though; this only means that the implementation is secure beyond the means of
the evaluator (which may not compete with the means of a motivated attacker).
This situation is not satisfactory in practice where one desires that the compu-
tational cost of performing a security evaluation be fairly low and uncorrelated
to the actual security of the target implementation.
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In this paper, we propose a methodology to estimate the success rate of higher-
order side-channel attacks targeting implementations protected by masking. Our
methodology is based on the approach proposed by Rivain in [13] in the context
of first-order side-channel attacks. The principle of this approach is to study the
multivariate distribution of the score vector resulting from an attack. Specifically,
Rivain suggests to approximate this distribution by a multivariate Gaussian
distribution, which is sound in the context of additive distinguishers such as
the correlation and the likelihood. We generalize this approach to higher-order
side-channel analysis and we show how to derive the distribution parameters
with respect to the leakage parameters. We show that using this methodology
makes it possible to accurately estimate the success rate of a higher-order side-
channel attack based on a simple profiling of the leakage parameters. Moreover,
we demonstrate the soundness of our methodology by comparing its results to
various attack experiments against masked AES implementations running on
two different microcontrollers.

Related Works. In [10] and [17], the success rate of first-order side-channel
analysis based on the correlation distinguisher is evaluated using Fisher’s trans-
formation. The obtained formulas are simple and illustrative, but they lack of
accuracy. Indeed, it has been observed in [18] that the estimated success rates
using this approach do not well match to the experimental ones. As explained
in [18], this is mainly due to the incorrect assumption that the scores for the
wrong key guesses are independent of the score for the good key guess. That is
why, one should rather focus on the joint distribution of all scores as initially
suggested in [13]. In the latter work, the author provide accurate formulae for
the success rate of first-order side-channel attacks based on the correlation and
likelihood distinguishers. A more recent work [6] further focuses on the mono-bit
difference-of-means distingusisher as originally described by Kocher et al. [9].

Paper Organization. In Section 2, we provide some preliminaries about prob-
ability theory and the (multivariate) Gaussian distribution. Then Section 3 intro-
duces our theoretical model for higher-order side-channel attacks and Section 4
describes the general methodology for estimating the success rate of such attacks
based on additive distinguishers. In Sections 5 and 6, we apply the methodology
to the correlation and the likelihood distinguishers respectively, and we show
how to compute the score vector distribution parameters. Eventually, some at-
tack simulations and practical attack experiments are reported in Sections 7 and
8 that demonstrate the soundness of our approach.

2 Preliminaries

Calligraphic letters, like X , are used to denote finite sets (e.g. Fn
2 ). The corre-

sponding large letter X denotes a random variable over X , while the lowercase
letter x a value over X . The probability of an event ev is denoted by P[ev]. The
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expectation and the variance of a random variable X are respectively denoted
by E [X ] and Var [X ]. The covariance between two random variables X and Y
is denoted by Cov [X,Y ].

The Gaussian distribution of dimension T with T -size expectation vector m
and T ×T covariance matrix Σ is denoted by N (m,Σ), and the corresponding
probability density function (pdf) is denoted by φm,Σ. We recall that this pdf
is defined for every x ∈ RT as

φm,Σ(x) =
1√

(2π)T |Σ| exp
(
−1

2
(x−m)′ ·Σ−1 · (x−m)

)
, (1)

where (x−m)′ denotes the transpose of the vector (x−m) and |Σ| denotes the
determinant of the matrix Σ. The corresponding cumulative distribution func-
tion (cdf) is denoted Φm,Σ and is defined for a pair of vectors a = (a1, a2, . . . , aT )
and b = (b1, b2, . . . , bT ) over (R ∪ {−∞,+∞})T by

Φm,Σ(a, b) =

∫ b1

a1

∫ b2

a2

· · ·
∫ bT

aT

φm,Σ(x) dx . (2)

If the dimension T equals 1, then the Gaussian distribution is said to be
univariate and its covariance matrix is reduced to the variance of the single
coordinate denoted σ2. If T is greater than 1, the Gaussian distribution is said
to be multivariate.

3 Higher-Order Side-Channel Model

We consider a cryptographic algorithm protected by masking and running on
a leaking device. A (higher-order) side-channel attack exploits the leakage re-
sulting from intermediate computations in order to recover (part of) the secret
involved in the cryptographic algorithm. Let s denote such an intermediate vari-
able satisfying:

s = ϕ(x, k∗) , (3)

where x is (part of) the public input of the algorithm, k∗ is (part of) the secret
input of the algorithm, and ϕ is some function from X ×K to S.

For an implementation protected with masking, such a variable s is never
stored nor handled in clear but in the form of several, say d + 1, shares s0, s1,
. . . , sd satisfying the relation

s0 ⊕ s1 ⊕ · · · ⊕ sd = s (4)

for some operation ⊕. In the common case of Boolean masking this operation is
the bitwise addition (or XOR), but it might be some other group addition law.
One of the share, say s0, is sometimes referred to as masked variable and the
other shares, s1, s2, . . . , sd as the masks. For masking approach to be sound, it
is usually required that the masks are uniformly and independently generated.
In that case, the (d + 1)-tuple of shares can be modeled as a random vector

(S0, S1, . . . , Sd) where S0 = s ⊕⊕d
j=1 Sj and, for j � 1, the Sj are mutually

independent random variables with uniform distribution over S.
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3.1 Leakage Model

During the execution of the algorithm, the processing of each share Sj produces
some leakage Lj revealing some information about the share value. In what
follows, we shall denote by L the leakage tuple:

L = (L0, L1, . . . , Ld) . (5)

We shall sometimes use the alternative notation Ls or Lx,k∗ to indicate that the
leakage arises for the shared value s = ϕ(x, k∗).

In this paper, we shall make the common assumption that given the values of
the shares, the leakage has a Gaussian distribution. This assumption is referred
here as the Gaussian leakage assumption, and it is formally stated by:

(Lj | Sj = s) ∼ N (mj,s,Σj,s) , (6)

for every j ∈ {0, 1, . . . , d} and for every s ∈ S, where mj,s are expectation
vectors defined over RT and Σj,s are (non-singular) covariance matrices defined
over RT×T . We shall further assume that the leakage Lj can be viewed as a
deterministic function of Sj with an additive Gaussian noise:

Lj = fj(Sj) +Nj . (7)

This assumption, referred here as Gaussian noise assumption, is equivalent to the
Gaussian leakage assumption with the additional requirement that the covari-
ance matrices Σj,s are all equal to some matrix Σj . We then have fj : s 	→mj,s

and Nj ∼ N (0,Σj), where 0 denotes the null vector.
As a final assumption, we consider that for any fixed values of the shares,

the leakage components are independent. That is, for every (s0, s1, . . . , sd) ∈
Sd+1, the random variables (Lj | Sj = sj) are mutually independent. Under the
Gaussian noise assumption, this simply means that the noises Nj are mutually
independent, and that is why we shall refer to this assumption as the independent
noises assumption.

Remark 1. For the sake of simplicity, we consider that all the leakages Lj have
the same dimension T . Note that our analysis could be easily extended to the
general case where each leakage Lj has its own dimension Tj .

3.2 Higher-Order Side-Channel Attacks

In a higher-order side-channel attack (HO-SCA), the adversary aims to extract
information about k∗ by monitoring the leakage of the shares. Specifically, the
adversary observes several samples �i ∈ L of the leakage Lxi,k∗ , corresponding
to some public input xi that he may either choose or just know. According to
the above leakage model, the leakage space L is defined as L = RT×(d+1) and
each leakage sample can be written as

�i = (	i,0, 	i,1, · · · , 	i,d) , (8)
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with 	i,j ∈ RT for every j. Moreover, the Gaussian noise assumption implies
that each leakage sample coordinate can be further written as

	i,j = fj(si,j) + ni,j , (9)

where si,1, si,2, . . . , si,d are d random mask values, where si,0 = ϕ(xi, k
∗) ⊕⊕d

j=1 si,j , and where ni,0, ni,1, . . . , ni,d are samples of the Gaussian noises N0,
N1, . . . , Nd.

Once several, say q, leakage samples have been collected, the adversary makes
use of a distinguisher, that is a function mapping the input-leakage samples
(x1, �1), (x2, �2), . . . , (xq , �q) to some score vector d = (dk)k∈K ∈ R|K|. If the
distinguisher is sound and if the leakage brings enough information on the shares,
then the equality

k∗ = argmax
k∈K

dk

should hold with a probability substantially greater than 1
|K| .

In what follows, we shall consider a natural equivalence relation between
distinguishers. We say that two score vectors are rank-equivalent if for every
n ∈ {1, 2, . . . , |K|}, the n coordinates with highest scores are the same for the
two vectors. Two distinguishers d and d′ are then said equivalent, denoted d ≡ d′

if for every (xi, �i)i ∈ (X × L)q, the score vectors d
(
(xi, �i)i

)
and d′

(
(xi, �i)i

)
are rank-equivalent.

In this paper, we focus on additive distinguishers which we formally define
hereafter.

Definition 1. A distinguisher d is additive if for every (x1, x2, . . . , xq) ∈ X q,
there exists a family of functions {gx,k : L→ R ; (x, k) ∈ X ×K} such that for
every (�1, �2, . . . , �q) ∈ Lq we have

d
(
(xi, �i)i

)
= (dk)k∈K with dk =

1

q

q∑
i=1

gxi,k(�i) for every k ∈ K.

A distinguisher equivalent to an additive distinguisher as defined above is also
said to be additive.

It was shown in [13] that the widely used first-order correlation and likelihood
distinguishers are both additive distinguishers in the sense of the above defini-
tion. We will show in Sections 5 and 6 that their higher-order counterparts are
also additive.

4 Estimating the Success Rate

In this section, we generalize the methodology introduced in [13] to HO-SCA as
modelled in the previous section. Namely, we show how to get a sound estimation
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of the attack success rate by studying the multivariate probability distribution
of the score vector for the case of additive distinguishers.

The success rate of a HODPA, denoted Succdx,k∗ , is defined with respect to
some input vector x = (x1, x2, . . . , xq), some secret k∗, and some distinguisher
d, as the probability:

P
[
k∗ = argmax

k∈K
dk

∣∣∣ �1 $←− Lx1,k∗ ; . . . ; �q
$←− Lxq,k∗ ; (dk)k∈K = d

(
(xi, �i)i

)]
,

where �i
$←− Lxi,k∗ means randomly sampling �i according to the distribution of

Lxi,k∗ .

Remark 2. For the sake of generality, we chose to fix the input vector x as a
parameter of the attack so that we do not need to assume any specific strategy
for the choice of the public inputs. However, we will investigate the particular
setting where the xi are uniformly distributed.

According to Definition 1, the score vector (dk)k∈K resulting from an additive
distinguisher satisfies

dk =
1

q

q∑
i=1

gxi,k(�i) , (10)

for some gx,k : L → R. Then a simple application of the central limit theorem
yields the following result, where we define the occurrence ratio τx of an element
x ∈ X in the input vector (x1, x2, . . . , xq) as

τx =
|{i; xi = x}|

q
. (11)

Proposition 1. The distribution of the score vector (dk)k∈K tends toward a
multivariate Gaussian distribution as q grows, with expectation vector (E [dk])k∈K
satisfying

E [dk] =
∑
x∈X

τx E [gx,k(Lx,k∗)] (12)

for every k ∈ K, and with covariance matrix (Cov [dk1 , dk2 ])(k1,k2)∈K2 satisfying

Cov [dk1 , dk2 ] =
1

q

∑
x∈X

τx Cov [gx,k1(Lx,k∗), gx,k2(Lx,k∗)] (13)

for every (k1, k2) ∈ K2.

Proof. The first statement results by definition of additive distinguishers and
the central limit theorem. Equations (12) and (13) directly holds by mutual
independence between the leakage samples. �

The above proposition shows that for a sufficient number of leakage observa-
tions, the distribution of the score vector d = (dk)k∈K can be soundly estimated
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by a multivariate Gaussian. As in [13], we now define the comparison vector as
the (|K| − 1)-size vector c = (ck)k∈K/{k∗} whose coordinates satisfy

ck = dk∗ − dk , (14)

for every k ∈ K/{k∗}. The comparison vector is a linear transformation of the
score vector by a ((|K| − 1)× |K|)-matrix P whose expression straightforwardly
follows from (14). This implies that the distribution of the comparison vector can
also be soundly estimated by a multivariate Gaussian distribution N (mc,Σc)
where mc = P · md and Σc = P · Σd · P ′. Moreover, by definition of the
comparison vector, an attack is successful (i.e. the correct secret k∗ is ranked
first in the score vector) if and only if all the coordinates of the comparison
vector are positive. We deduce that the success rate Succdx,k∗ of a distinguisher
d satisfies

Succdx,k∗ = P[c > 0] ≈ Φmc,Σc

(
0,∞)

(15)

where Φm,Σ denotes the Gaussian cdf as defined in (2), 0 denotes the null vector,
and ∞ denotes the vector (∞,∞, . . . ,∞).

Remark 3. In [16], the authors propose to extend the notion of success rate to
different orders. The o-th order success rate of a side-channel attack is defined as
the probability that the target secret k∗ is ranked among the o first key guesses
by the score vector. The authors of [16] also suggest to consider the so-called
guessing entropy, which is defined as the expected rank of the good key guess in
the score vector [11,3]. As shown in [13], both the success rate of any order and
the guessing entropy can be estimated using a similar approach as above.

Methodology. According to the above analysis, we propose the following
methodology for an evaluator of some cryptographic algorithm to estimate the
success rate of a HO-SCA against his masked implementation. We consider that
the evaluator has access to the random masks generated during the computation,
and is therefore able to predict the value of each share involved in the successive
execution of the protected algorithm. The methodology is composed of three
main steps:

1. Profile the leakage of every share using standard estimation techniques.
Under the Gaussian leakage assumption, this estimation amounts to com-
pute the sample means and the sample covariance matrices of the leakage
(Li | Si = s) for every share Si and every possible value s ∈ S based on a
set of collected leakage samples.

2. Use Proposition 1 to compute the expectation vector and covariance matrix
of the score vector with respect to the leakage parameters.

3. Deduce the parameters of the comparison vector distribution and evaluate
the success rate according to (15).
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The precision of the obtained estimation is impacted by two main factors:

– the accuracy of the leakage parameter estimations, and
– the tightness of the Gaussian approximation arising in Proposition 1.

The accurate estimation of leakage parameters has been a widely investigated is-
sue and efficient techniques are known to deal with it (see for instance [4,15,1,7]).
Basically, the more noisy the leakage, the more samples must be used to get an
accurate estimation. Note that in our approach, the evaluator only has to esti-
mate first-order leakage parameters with respect to the share values. Practical
aspects of leakage parameter estimation are further discussed in Section 8.

On the other hand, the Gaussian approximation is the main issue in our
approach. One can fairly expect that if the considered implementation is not too
weak, the convergence toward the Gaussian distribution should be rather fast
compared to the number of leakage observations required to succeed the HO-
SCA. In order to validate this intuition, we provide in Section 7 an empirical
validation of the Gaussian approximation.

5 Application to the Correlation Distinguisher

In this section, we apply the general methodology described in Section 4 when
the linear correlation coefficient is used as distinguisher [2]. For two samples
x = (x1, x2, . . . , xq) ∈ Rq and y = (y1, y2, . . . , yq) ∈ Rq, the linear coefficient is
defined by

ρ(x,y) =

1
q

∑q
i=1(xi − x) · (yi − y)√

1
q

∑
i(xi − x)2 ·

√
1
q

∑
i(yi − y)2

, (16)

where x (resp. y) denotes the sample mean q−1
∑

i xi (resp. q
−1

∑
i yi).

In the context of HO-SCA, the correlation coefficient is used together with
a model function m : X × K 	→ R and a combining function C : L 	→ R (see
for instance [12]). The combining function is involved to map a leakage sample
into a univariate sample combining the leakages of the different shares. On the
other hand, the model function computes some expected value for the combined
leakage with respect to some input x and some guess k on the target secret. The
correlation distinguisher dcor is then defined as

dcor
(
(xi, �i)i

)
= ρ

(
(m(xi, k))i, (C(�i))i

)
. (17)

The following proposition extends the analysis conducted in [13] and states
that the (higher-order) correlation distinguisher dcor is additive (see proof in
appendix). This particularly implies that the methodology described in Section
4 can be applied to this distinguisher.

Proposition 2. For any model function m : X × K 	→ R and any combining
function C : L 	→ R, the correlation distinguisher dcor is additive. Moreover, dcor
is equivalent to the distinguisher d′cor defined for every (xi, �i)i ∈ (X ×L)q by

d′cor
(
(xi, �i)i

)
=

(1
q

q∑
i=1

gxi,k(�i)
)
k∈K

,
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where the function gx,k : L→ R satisfies

gx,k(�) =
1

sk
(m(x, k)− mk) · C(�) , (18)

for every (x, k) ∈ X×K,withmk = 1
q

∑
i m(xi, k)andsk =

√
1
q

∑
i(m(xi, k)− mk)2.

Remark 4. If we focus on the uniform setting where the input vector x =
(x1, x2, . . . , xq) is balanced (meaning that each value x ∈ X have an occur-
rence ratio of τx = 1

|X |), then mk and sk are constant with respect to k and dcor
is equivalent to another simpler distinguisher:

d′′cor :
(
(xi, �i)i

) 	→ (1
q

∑
i
m(xi, k) · C(�i)

)
k∈K

. (19)

Application to the Normalized Product Combining. Let us now study
the particular case of the higher-order correlation distinguisher based on the
centered product combining function [12]. This combining function is defined for
univariate share leakages (i.e. for T = 1 in the model of Section 3), namely its
domain is L = Rd+1. For every (	0, 	1, . . . , 	d) ∈ L, it is defined as

C(	0, 	1, . . . , 	d) =

d∏
j=0

(	j − μj) , (20)

where μj denotes the leakage expectation E [Lj].
Note that in practice, the adversary does not know the exact expectation

μj but he can estimate it based on leakage samples. As argued in [12], the
number of leakage samples required to succeed a HO-SCA is substantially greater
than the number of leakage samples required to get precise estimations of the
expectations μj . Therefore, we can soundly assume that the μj in (20) are the
exact expectations E [Lj ].

We recall that, according to the leakage model presented in Section 3.1, the
jth leakage component Lj satisfies Lj = fj(Sj) + Nj where fj : s 	→ mj,s and
Nj ∼ N (0, σ2j ). Since the noise Nj is centered in 0, we have E [fj(Sj)] = E [Lj] =
μj . Moreover, we shall denote νj = Var [fj(Sj)]. By uniformity of Sj over S, we
have:

μj =
1

|S|
∑
s∈S

mj,s and νj =
1

|S|
∑
s∈S

(mj,s − μj)2 . (21)

In the following we shall further denote, for every s ∈ S,

αs :=
1

|S|d
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

d∏
j=0

(mj,sj − μj) (22)

and

βs :=
1

|S|d
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

d∏
j=0

(mj,sj − μj)2 (23)
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where s0 = s⊕⊕d
j=1 sj .

Note that both (22) and (23) can be expressed as a higher-order convolution
product of the form

H(s) =
∑
s1

∑
s2

· · ·
∑
sd

h0(s⊕ s1⊕ s2⊕ · · ·⊕ sd) ·h1(s1) ·h2(s2) · · ·hd(sd) . (24)

We show in appendix how such a convolution can be efficiently computed for all
values over S in O(d · |S| · log |S|) operations.

We then have the following corollary of Proposition 1 for the distinguisher
d′cor with centered product combining function (see proof in appendix).

Corollary 1. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let �i
$←− Lxi,k∗ for

every i ∈ {1, 2, . . . , q}. Then the distribution of the score vector (d′k)k∈K =
d′cor

(
(xi, �i)i

)
with centered product combining function tends toward a multi-

variate Gaussian distribution with expectation vector (E [d′k])k∈K satisfying

E [d′k] =
∑
x∈X

τx M(x, k) αϕ(x,k∗) , (25)

for every k ∈ K, and with covariance matrix (Cov
[
d′k1
, d′k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′k1
, d′k2

]
=

1

q

∑
x∈X

τx M(x, k1) M(x, k2)

×
(
βϕ(x,k∗) − α2

ϕ(x,k∗) +
d∏

j=0

(νj + σ
2
j )−

d∏
j=0

νj

)
, (26)

for every (k1, k2) ∈ K2, where

M : (x, k) 	→ m(x, k)− mk

sk
. (27)

Remark 5. For the distinguisher d′′cor defined in (19) and which is equivalent to
the correlation distinguisher in the uniform setting (see Remark 4), we have the
same result as in Corollary 1 but the function M is simply defined as the model
function m.

According to Corollary 1, the methodology presented in Section 4 can be
applied to estimate the success rate of a HO-SCA based on the correlation dis-
tinguisher with centered product combining. The first step of the methodology
shall provide estimations of the leakage functions fj : s 	→ mj,s (and hence of
the corresponding μj and νj), while the second step shall simply consist in the
evaluations of Formulae (25) and (26).
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6 Application to the Likelihood Distinguisher

In this section, we apply the general methodology described in Section 4 when
the likelihood is used as distinguisher [4]. The likelihood distinguisher, denoted
dlik, is usually applied after a profiling step whose goal is to provide an estimation
p̂s of the pdf of the random variable Ls for every s ∈ S. Then, for every sample
(xi, �i)i ∈ (X ×L)q, the likelihood distinguisher is defined as

dlik
(
(xi, �i)i

)
=

q∏
i=1

p̂ϕ(xi,k)(�i) . (28)

In practice, one often makes use of the equivalent (averaged) log-likelihood dis-
tinguisher d′lik defined as

d′lik
(
(xi, �i)i

)
=

1

q
log dlik

(
(xi, �i)i

)
=

1

q

q∑
i=1

log(p̂ϕ(xi,k)(�i)) . (29)

The log-likelihood distinguisher is usually preferred as it less susceptible to ap-
proximation errors than the likelihood. We straightforwardly get the following
proposition.

Proposition 3. The likelihood distinguisher dlik is additive and equivalent to
the log-likelihood distinguisher d′lik. Moreover, for every (xi, �i)i ∈ (X ×L)q, d′lik
satisfies

d′lik
(
(xi, �i)i

)
=
(1
q

q∑
i=1

gxi,k(�i)
)
k∈K

, (30)

where the function gx,k : L→ R satisfies

gx,k(�) = log(p̂ϕ(x,k)(�)) , (31)

for every (x, k) ∈ X ×K.
Under the Gaussian leakage assumption, it can be checked that the variable

Ls has a Gaussian mixture distribution, with pdf ps satisfying

ps : (	0, 	1, . . . , 	d) 	→ 1

|S|d
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

d∏
j=0

φmj,sj
,Σj (	j) , (32)

where s0 = s⊕⊕d
j=1 sj . Note that for every s ∈ S, the estimated pdf p̂s obtained

from the profiling phase has a similar expression as ps but with estimations m̂j,sj

and Σ̂j for the leakage means and covariance matrices.
Here again, it can be seen from (32) that for a given � ∈ L the probability

ps(�) is a higher-order convolution product as in (24). The set of probability
values {ps(�) ; s ∈ S} can then be computed in O(d · |S| · log |S|) operations (see
details in appendix).



46 V. Lomné et al.

Let us now consider the two functions:

λ(s1, s2) :=

∫
�∈L

log(p̂s1(�)) ps2(�) d� , (33)

and

ψ(s1, s2, s3) :=

∫
�∈L

log(p̂s1(�)) log(p̂s2(�)) ps3(�) d� . (34)

Then, by definition, we have

Λ(x, k, k∗) := λ(ϕ(x, k), ϕ(x, k∗)) = E [gx,k(Lx,k∗)]

and

Ψ(x, k1, k2, k
∗) := ψ(ϕ(x, k1), ϕ(x, k2), ϕ(x, k∗))

= E [gx,k1(Lx,k∗) · gx,k2(Lx,k∗)] .

A direct application of Proposition 1 then yields the following corollary for
the log-likelihood distinguisher.

Corollary 2. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let �i
$←− Lxi,k∗ for

every i ∈ {1, 2, . . . , q}. Then the distribution of the score vector (d′k)k∈K =
d′lik

(
(xi, �i)i

)
tends toward a multivariate Gaussian distribution with expectation

vector (E [d′k])k∈K satisfying

E [d′k] =
∑
x∈X

τx Λ(x, k, k
∗) , (35)

for every k ∈ K, and with covariance matrix (Cov
[
d′k1
, d′k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′k1
, d′k2

]
=

1

q

∑
x∈X

τx
(
Ψ(x, k1, k2, k

∗)− Λ(x, k1, k∗) · Λ(x, k2, k∗)
)
. (36)

According to Corollary 2, the methodology presented in Section 4 can be
applied to estimate the success rate of a HO-SCA based on the likelihood dis-
tinguisher.

7 Empirical Validation of the Gaussian Approximation

In Section 4, we have presented a methodology to estimate the success rate of
higher-order side-channel attacks based on so-called additive distinguishers. The
principle of this methodology is to approximate the distribution of the score
vector by a multivariate Gaussian distribution whose parameters are derived
from the leakage parameters. This Gaussian approximation is asymptotically
sound by the central limit theorem. However, in the non-asymptotic context of a
HO-SCA with a given number of leakage samples, it is fair to question whether
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this approximation is sound or not. In this section, we conduct an empirical
study of the Gaussian approximation. For this purpose, we compare the success
rates obtained from attack simulations, to the success rates obtained by applying
the methodology of Section 4.

Since our purpose here is the sole validation of the Gaussian approximation,
we do not focus on the leakage estimation issue, but we assume the exact leakage
parameters {(mj,s, σ

2
j ) ; 0 � j � d, s ∈ S} are known (in a univariate setting).

From these leakage parameters, and for a given HO-SCA based on some dis-
tinguisher d ∈ {dcor, dlik}, we evaluate the success rate with the two following
approaches:

• Simulation success rate. We perform several attack simulations and count
the number of successes in order to get an estimation of the success rate. For
each attack simulation, we randomly generate input-leakage samples (x1, �1),
(x2, �2), . . . , (xq, �q). Specifically, for every i, xi is uniformly picked up and
�i is randomly sampled from the variable Lxi,k∗ according to the leakage
parameters. Then we apply the distinguisher d to these samples, and we
count a success whenever the good secret is ranked first.
• Gaussian cdf evaluation. We apply Corollaries 1 and 2 to compute the
expectation vector and covariance matrix of the score vector with respect
to the leakage parameters and taking τx = 1/|X | as occurrence ratio for
every x ∈ X (in accordance to the uniform distribution of the xi). Then we
compute the Gaussian cdf of the comparison vector to evaluate the success
rate according to (15).

We plot hereafter the results obtained with these two approaches for different
HO-SCA targeting an AES Sbox output:

ϕ(x, k∗) = SB(x ⊕ k∗) ,
where SB denote the AES Sbox function. For the leakage parameters, we used
sample means and sample variances obtained by monitoring the leakage of two
different devices running masked AES implementations (Device A and Device
B, see Section 8 for details).

Figure 1 shows the results obtained for a second-order correlation attack
with centered product combining function and Hamming weight model func-
tion (i.e. m = HW), for leakage parameters from Device A. Figure 2 plots the
results of a second-order likelihood attack with the same leakage parameters, as-
suming a perfect profiling (i.e. p̂s = ps for every s) on the one hand and a slightly
erroneous profiling on the other hand.1 We observe that for both distinguishers,
the experimental success rate curves and theoretical success rate curves clearly
match. This validates the Gaussian approximation in these HO-SCA contexts.

In order to test the Gaussian approximation to higher orders, we also performed
third-order and fourth-order attacks, with leakage parameters fromDevice B. The
results of the correlation attacks (centered product combining function and Ham-
ming weight model function) are presented in Figure 3 and Figure 4 respectively.

1 Specifically, we introduce random errors in the (mj,s)j,s used in the estimated pdfs p̂s.
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Fig. 1. Simulation SR (plain curve) vs.
theoretical SR (dashed curve) for 2nd-
order correlation attack
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Fig. 2. Simulation SR (plain curves) vs.
theoretical SR (dashed curves) for 2nd-
order likelihood attacks
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Fig. 3. Simulation SR (plain curve) vs.
theoretical SR (dashed curve) for 3rd-
order correlation attack
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Fig. 4. Simulation SR (plain curve) vs.
theoretical SR (dashed curve) for 4th-
order correlation attack

The figures for the higher-order likelihood attacks are provided in the full version
of the paper. We see that the curves perfectly match, which further validates the
Gaussian approximation in these higher-order contexts.

8 Practical Experiments

In this section, we confront our methodology to practical attack experiments. We
report the results of several higher-order correlation attacks against two different
devices running masked AES implementations. We also apply our methodology
to estimate the expected success rate of these attacks with respect to the inferred
leakage parameters.

Experimental Setup. Practical experiments were performed on two microcon-
trollers made in different CMOS technologies (130 and 350 nanometer processes,
respectively called devices A and device B in the sequel). The side-channel traces
were obtained by measuring the electromagnetic (EM) radiations emitted by
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the device during a masked AES-128 encryption handling one byte at a time.
To this aim, an EM sensor was used (made of several coils of copper with di-
ameter of 500μm), and was plugged into a low-noise amplifier. To sample the
leakage measurements, a digital oscilloscope was used with a sampling rate of
10G samples per second for the device A and 2G samples per second for the
device B, whereas microcontrollers were running at few dozen of MHz. As the
microcontrollers clocks were not stable, we had to resynchronize the EM traces.
This process is out of the scope of this work, but we would like to emphasize
that resynchronization is always required in a practical context and it has a non
negligible impact on the measurements noise.

In our attack context, the random values involved in the masking/sharing
could be known by the evaluator and we used this ability to identify the time
samples corresponding to the different manipulation of the different shares. This
step allowed us to associate each share to a unique time sample (the one with
maximal SNR) and to profile the leakage parameters.2

Estimation of the Leakage Parameters. To estimate the leakage functions
fj : s 	→ mj,s, we applied linear regression techniques on 200000 leakage samples.
When applied on leakage samples 	1,j, 	2,j , . . . , 	q,j , corresponding to successive
share values s1,j, s2,j , . . . , sq,j , a linear regression of degree t returns an approx-
imation of fj(s) as a degree-t polynomial in the bits of s (see [15,5] for more
detail on linear regression in the context of side-channel attacks). We applied
linear regression of degree 1 and 2 on Device A and B respectively. Once the fj
function estimated, we could easily get an estimation for the variance σ2j of the
noise Nj by computing the sample variance of (	i,j − fj(si,j))i for every j.

Methodology versus Practice. In order to validate our methodology in
practice, we performed higher-order correlation attacks with centered prod-
uct combining function (see Section 5) and Hamming weight model function
(i.e. m = HW). On the other hand, the success rate was estimated using the
methodology described in Sections 4 and 5 by computing the parameters of the
multivariate Gaussian distribution arising for the correlation distinguisher with
respect to the inferred leakage parameters.

Figures 5 and 6 plot the experimental success rates versus the theoretical suc-
cess rates for the second-order correlation attacks against Device A and Device
B. In order to validate our approach with respect to higher-order attacks in prac-
tice, we also compare the results obtained with our methodology to third-order
and fourth-order attack results on Device B (see Figures 7 and 8). We observe a
clear match between the experimental and theoretical success rate curves. These
results demonstrate the soundness of the methodology in practice.

Further experiments are provided in the full version of the paper in order to
observe the impact of the leakage profiling phase on our methodology.

2 The knowledge of the masks was however not used in the attack phase itself.
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Fig. 5. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for 2nd-
order correlation attack on Device A
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Fig. 6. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for 2nd-
order correlation attack on Device B
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Fig. 7. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for 3rd-
order correlation attack on Device B
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Fig. 8. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for 4th-
order correlation attack on Device B

9 Conclusion

In this work we have presented a methodology to evaluate the success rate of
higher-order side-channel attacks. We have shown how to apply this methodology
in the particular cases of attacks based on the correlation and likelihood distin-
guishers. The soundness of our approach has been validated by simulations and
experiments performed on different microcontrollers. Using this methodology, an
evaluator can estimate the side-channel resistance of his masked cryptographic
implementation at the cost of inferring a few linear regression coefficients.
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A Proof of Proposition 2

Proof. Let (dk)k∈K = dcor
(
(xi, �i)i

)
and (d′k)k∈K = d′cor

(
(xi, �i)i

)
for some input-

leakage samples (xi, �i)i�q ∈ (X × L)q. We have:

dk =
1

sC

∑q
i=1(m(xi, k)− mk)C(�i)

sk
=

1

sC
d′k ,

where sC =
√

1
q

∑
i(C(�i)− C)2 with C = 1

q

∑
i C(�i).

Since sC is strictly positive and constant with respect to the guess k, the
score vectors (dk)k∈K and (d′k)k∈K are clearly rank-equivalent, implying that
the distinguishers dcor and d′cor are equivalent. Moreover, after denoting by gx,k
the function �i 	→ s−1

k (m(x, k) − mk)C(�i), we get d′k = 1
q

∑q
i=1 gxi,k(�i), which

implies that d′cor is additive. �

B Fast Evaluation of Higher-Order Convolution

Proposition 4. Let d be a positive integer, and let (S,⊕) be a group of size
|S| = 2m. Let (hj)0≤j≤d be a family of functions from S into R, such that hj(s)
can be efficiently evaluated for every s ∈ S in o(1) operations (one typically has
a look-up table for every hj). Consider the function H : S → R defined as

H : s 	→
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

h0(s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sd) · h1(s1) · h2(s2) · · ·hd(sd) .

Then, the whole set of outputs {H(s) ; s ∈ S} can be computed in O(d · 2m ·m)
operations.

Proof. For every s ∈ S, the function H satisfies

H(s) =
∑
sd∈S

hd(sd) · · ·
∑
s2∈S

h2(s2)
∑
s1∈S

h1(s1) · h0(s⊕ s1 ⊕ s2 ⊕ · · · sd) .

Consider the convolution product of the form

h1 ⊗ h0 : s 	→
∑
t∈S

h1(t) · h0(s⊕ t) .

We have

WH(h1 ⊗ h0) = 2
m
2 WH(h1) · WH(h0) ,

whereWH is the (normalized) Walsh-Hadamard transform (WHT). This convo-
lution product can hence be efficiently computed from three evaluations of fast
WHT that each takes O(2m ·m) operations.3

3 The WHT is involutive, hence we have h1 ⊗ h0 = 2
m
2 WH(WH(h1) · WH(h0)

)
.
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One can check that the sequence of functions (Hi)0≤i≤d defined as{
H0 = h0
Hi = hi ⊗Hi−1 for every i � 1

is such that Hd = H . One can then sequentially compute the set of outputs of
H1, H2, . . . , Hd = H by evaluating d convolution products, which gives a total
cost of O(d · 2m ·m) operations. �

C Proof of Corollary 1

To prove the corollary, we first introduce the following lemma.

Lemma 1. The expectation and variance of the random variable C(Lx,k∗) re-
spectively satisfy

E [C(Lx,k∗)] = αϕ(x,k∗) (37)

and

Var [C(Lx,k∗)] = βϕ(x,k∗) − α2
ϕ(x,k∗) +

d∏
j=0

(νj + σ
2
j )−

d∏
j=0

νj . (38)

Proof. Since the Nj are independent and centered in 0, we have

E [C(Lx,k∗)] = E
[
C
(
f0(S0), f1(S1), . . . , fd(Sd)

)2]
= αϕ(x,k∗) ,

On the other hand, by definition of the variance, we have

Var [C(Lx,k∗)] = E
[
C(Lx,k∗)2

]− E [C(Lx,k∗)]
2
= E

[
C(Lx,k∗)2

]− α2
ϕ(x,k∗) .

Then, we have

E
[
C(Lx,k∗)2

]
= E

⎡⎣ d∏
j=0

(
fj(Sj) +Nj − μj

)2⎤⎦ = E

⎡⎣ d∏
j=0

(
(fj(Sj)− μj)2 +N2

j

)⎤⎦
where the second holds since the Nj have zero means and are mutually inde-
pendent and independent of the Sj . By developing the product, we get a sum of
monomials, such that each monomial involves random variables that are mutu-
ally independent, except for one single monomial which is

∏d
j=0(fj(Sj) − μj)2.

We can then develop the above equation as

E
[
C(Lx,k∗)2

]
=

d∏
j=0

(
E
[
(fj(Sj)− μj)2

]
+ E

[
N2

j

] )

−
d∏

j=0

E
[
(fj(Sj)− μj)2

]
+ E

⎡⎣ d∏
j=0

(fj(Sj)− μj)2
⎤⎦ ,



54 V. Lomné et al.

which gives

E
[
C(Lx,k∗)2

]
=

d∏
j=0

(νj + σ
2
j )−

d∏
j=0

νj + βϕ(x,k∗).

�

Proof of Corollary 1. Applying (12) and (13) to the functions gx,k : � 	→
1
sk

(m(x, k)− mk) · C(�) as defined in (18), we get

E [d′k] =
1

sk

∑
x∈X

τx (m(x, k)− mk) E [C(Lx,k∗)] ,

and

Cov
[
d′k1
, d′k2

]
=

1

q

1

sk1sk2

∑
x∈X

τx (m(x, k1)− mk1
) (m(x, k2)− mk2

)Var [C(Lx,k∗)] ,

Then Lemma 1 directly yields the corollary statement. �
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Abstract. We find mathematically optimal side-channel distinguishers
by looking at the side-channel as a communication channel. Our method-
ology can be adapted to any given scenario (device, signal-to-noise ratio,
noise distribution, leakage model, etc.). When the model is known and
the noise is Gaussian, the optimal distinguisher outperforms CPA and
covariance. However, we show that CPA is optimal when the model is
only known on a proportional scale. For non-Gaussian noise, we obtain
different optimal distinguishers, one for each noise distribution. When
the model is imperfectly known, we consider the scenario of a weighted
sum of the sensitive variable bits where the weights are unknown and
drawn from a normal law. In this case, our optimal distinguisher per-
forms better than the classical linear regression analysis.

Keywords: Side-channel analysis, distinguisher, communication chan-
nel, maximum likelihood, correlation power analysis, uniform noise,
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1 Introduction

Any embedded system that contains secrets, such as a cryptographic key k�,
is prone to side-channel attacks, which proceed in two steps. First, a leakage
(power consumption, electromagnetic radiations, time, etc.) is measured, which
is a noisy signal dependent on internally manipulated data, some of which are
sensitive, meaning that they depend on the secret key k� and on some plain-
text or cipher-text (denoted by T ). A distinguisher is then used to quantify the
similarity between the measured leakage and an assumed leakage model. The
result is an estimation k̂ of the secret key k�.

In the literature, side-channel distinguishers are customarily presented as sta-
tistical operators that confront the leakage and the sensitive variable, both seen
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as random variables, in order to extract the secret key. Different choices of dis-
tinguishers as statistical tools yield different performances, depending on the
scenario (device, signal-to-noise ratio, noise distributions, leakage models, etc.)

There are certainly various ways to appreciate the quality of distinguishers. In
this article, we focus on distinguishers that maximize the probability of revealing
the correct key. In the field of side-channel analysis , somewhat paradoxically,
most of the academic works have eluded the precise mathematical derivation of
the best distinguisher given a precise attack scenario. Specifically, the community
has introduced popular statistical tools (maximum likelihood (ML), difference of
means (DoM), covariance, Pearson correlation coefficient (correlation power anal-
ysis (CPA)), Kolmogorov-Smirnov distance, etc.) and addressed two questions:
Q1: what distinguishes known distinguishers in terms of distinctive features?, and
Q2: given a side-channel context what is the best distinguisher among all known
ones?

As for Q1, there have been some publications that attempt to highlight speci-
ficities of distinguishers. For instance, Doget et al. [4] show that some distin-
guishers seemingly have different expressions, but are in practice the same one
fed with different variants of leakage models. Mangard et al. [11] argue that some
distinguishers achieve success performance all the more similar as the noise vari-
ance increases; they conclude that only “statistical artifacts” can explain the
difference of success probability between a class of selected distinguishers (no-
tably maximum likelihood and correlation). Souissi et al. [20] note that the closer
the noise is to a normal distribution (measured by a gaussianity metric), the bet-
ter the correlation compared to other distinguishers. Besides, it was noticed by
Prouff and Rivain [16] that the way a distinguisher is estimated seriously impacts
its success rate. This is especially true for information-theoretic side-channel dis-
tinguishers, because probability density functions are to be estimated, which is
a notoriously difficult problem. In contrast, Whitnall and Oswald [24] defined
metrics (such as RDM, the relative distinguishing margin) to rank distinguishers
according to exact values, independently of the way they are estimated (notably
mutual information). However, the RDM has recently been found questionable
in some situations [17]. All in one, it appears difficult to identify salient features
that make one distinguisher in particular more appropriate than another.

Regarding question Q2, a usual practice is to estimate the success rate using
enough simulations or experiments until an unambiguous ranking of the distin-
guishers can be carried out. In [21], Standaert et al. also consider the quality of
the profiling stage when comparing distinguishers. But the fundamental short-
coming of this approach is that the pool of investigated distinguishers is always
limited and does not necessarily contain the best possible distinguisher in every
scenario.

Contributions. In this paper, we answer the ultimate version of Q2, which is
also related to Q1, namely: Q3: given a side-channel scenario what is the best dis-
tinguisher among all possible ones? The “best” distinguisher is to be understood
in terms of success probability maximization. Our analyses show that such an
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objective coincides with the one pursued in digital communication theory [5,23],
where it is rather formulated as the minimization of the error probability (i.e.,
one minus the success probability). Interestingly, in this approach, it is not nec-
essary to investigate how a distinguisher can be estimated as a stochastic tool,
since our analysis already gives the optimal way of estimating the secret key
from the measured data.

We show that, when the leakage model is perfectly known by the attacker (on
a direct scale [25]), the optimal distinguisher depends only on the noise distribu-
tion, not necessarily Gaussian. Consideration of different noise models (Gaussian,
uniform, Laplacian) shows that there is no “universal” distinguisher, only one
best distinguisher per noise distribution type. Surprisingly, in the additive Gaus-
sian noise case, we find that neither the DoM, nor the CPA are optimal: we
exhibit the optimal distinguisher that slightly outperforms them all. The opti-
mal distinguishers for uniform and Laplacian noise are different from Pearson
correlation or covariance, and simulations show that they can be much more ef-
ficient. When the leakage model is only known on a proportional scale [25] (i.e.,
ax + b where a and b are unknown) and when the noise is Gaussian, we show
that the optimal expression leads exactly to Pearson correlation coefficient. This
in particular explains optimality of CPA in this context.

When the model drifts away from Hamming weight (or Hamming distance)
and is thus (at least partially) unknown to the attacker, we use a stochastic linear
leakage model with unknown coefficients drawn from a normal distribution and
derive an optimal distinguisher that outperforms the linear regression attack [4].
Our result has the merit of showing that a rigorous derivation of the optimal
attack is possible and that it yields a new expression, which is interpretable in
terms of stochastic vs. epistemic noise1.

Outline. The remainder of the paper is organized as follows. We express the
problem of side-channel analysis (SCA) as a communication problem in Sect. 2.
The mathematical derivation of the optimal distinguishers in various scenarios
is carried out in Sect. 3 when the leakage model is known. Section 4 derives
the optimal distinguisher when the leakage model is partially known to the
attacker. Then, Sect. 5 validates the results using simulations. Conclusions and
perspectives are in Sect. 6.

2 Side-Channel Analysis as a Communication Problem

2.1 Notations

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote random
variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write P for probability distributions, p for

1 In our paper, we use the term stochastic for the independent noise N added to the
leakage model, and we resort to the term epistemic to characterize the distribution
of the leakage model when it is not deterministically known.
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densities, and let pX denote the density of X . Symbols in bold are vectors: X or
x; implicitly, the length of all vectors is m, which is the number of queries (i.e.,
X = (Xi)1≤i≤m). We denote the average of x by x = 1

m

∑m
i=1 xi, and the scalar

product between x and y by 〈x|y〉 = ∑m
i=1 xiyi. The norms 1, 2, . . . , q, . . . ,∞

are denoted as ‖x‖1 =
∑m

i=1 |xi|(Manhattan norm), ‖x‖2 =
√∑m

i=1 x
2
i (Eu-

clidean norm), . . ., ‖x‖q = (
∑m

i=1 |xi|q)
1
q (q-norm) with q ∈ R, . . ., and ‖x‖∞ =

maxi∈�1,m� |xi| (uniform norm), respectively. Let k denote any possible key hy-
pothesis from the keyspace K, let k� denote the secret secret cryptographic key,
and let T be the input or cipher text in the cryptographic algorithm.

2.2 Modeling through a Communication Channel

In this section, we rewrite the SCA problem as a communication channel problem
(Fig. 1). Our setup resembles the one presented by Standaert et al. [22], but
focuses specifically on key recovery.

Fig. 1. Side-channel analysis as a communication channel

The input message is the secret key k = k� (assumed uniformly distributed
over Fn

2 in a Bayesian approach). The key is most often recovered piece by piece
(independently) using a divide-and-conquer strategy, so n is typically equal to 8
(as in AES, a byte-oriented block cipher). The encoder can be any function
ϕ(f(k,T)). In SCA, the sensitive variable f(T, k) is normally assumed to be
known, since it is part of the algorithm’s specification. Depending on the scenario,
the leakage function ϕ : Fn

2 → R can be known (see Sect. 3) or partly unknown
(see Sect. 4). Accordingly, ϕ(f(k,T)) can be known or partly unknown. The
communication channel is the side-channel, typically with additive noise N. The
decoder to be optimized maximizes the value of the distinguisher by taking its
maximal argument over the keyspace2. The output of the decoder is then the

2 Given a function g(k), we use the notation argmaxk g(k) to denote the value of k
that maximizes g(k).
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decoded message k̂ = D(X,T), where D is the optimal distinguishing rule. Notice
that we consider the distinguisher as a deterministic mapping, which allows us to
rigorously derive optimal expressions. There is an additional side information3

T, which corresponds to the message or the ciphertext, which is assumed to be
known both at the encoder and the decoder.

Capturing m measurements means that the channel is used m times. Specif-
ically, the output of the encoder is an independent and identically distributed
(i.i.d.) sequence (“codeword”) ϕ(f(k�, T1)), ϕ(f(k

�, T2)), . . . , ϕ(f(k
�, Tm))

depending on the i.i.d. sequence of side information T = (T1, T2, . . . , Tm). The
channel is assumed memoryless so that X = (X1, X2, . . . , Xm) (“received noisy
codeword”) again forms an i.i.d. sequence; this implies in particular that the ad-
ditive noise (if present) is white, and successive noise samples N = (N1, N2, . . . ,
Nm) are i.i.d.

The problem is to determine the optimum distinguishing (or decoding) rule D
so as to minimize the probability of error

Pe = P{k̂ �= k�}, (1)

or equivalently to maximize the success probability Ps = 1 − Pe, which is also
referred to as the theoretical or exact success rate [18]).

Theorem 1 (Optimal distinguishing rule). The optimal distinguishing rule
is given by the maximum a posteriori probability (MAP) rule

D(x, t) = argmax
k

(
P{k} · p(x|t, k)

)
. (2)

If the keys are assumed equiprobable, i.e., P{k} = 2−n, Eq. (2) reduces to the
maximum likelihood (ML) rule

D(x, t) = argmax
k
p(x|t, k). (3)

Proof. This is similar to a classical result in communication theory [23, Chap. 2]
or [5, Chap. 8], except that one should take the side information into account.
The optimal distinguishing rule maximizes

Ps = 1− Pe = P{k̂ = k�} = P{k� = D(X,T)} (4)

=
∑
t

P{t}
∫
p(x|t) · P{k� = D(x, t)|x, t} dx. (5)

Since P{t} ≥ 0 and p(x|t) ≥ 0, it suffices to maximize the a posteriori prob-
ability P{k|x, t} for every value of (x, t). Thus the optimal distinguishing rule
is D(x, t) = argmaxk P{k|x, t}. To evaluate the latter distribution, we apply
the Bayes’ rule P{k|x, t} = P{k} · p(x, t|k)/p(x, t). This gives the MAP opti-
mal distinguishing rule D(x, t) = argmaxk P{k} · p(x, t|k). Furthermore, since

3 This term, not to be confused with the side-channel, is used in communication theory
to refer to a variable that is shared unaltered between the encoder and the decoder.
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T is obviously key-independent, one can simplify p(x, t|k) = P{t|k}p(x|t, k) =
P{t}p(x|t, k) so that the MAP and ML rules become as stated. �

Remark 1. Distinguishing rule in Eq. (2) is useful if there is some a priori knowl-
edge about the distribution of the secret key k� (e.g., weak or semi-weak keys in
DES [12]).

Remark 2. Provided p(x, t|k) is known (for instance through a profiling stage),
optimal distinguishing rules (2) and (3) can be readily used as an attack. They
are known as template attacks [2], which are indeed optimal.

3 Optimal Attacks When the Leakage Model is Known

3.1 Derivation

We first consider the scenario of an attacker who knows precisely the leakage
model of the device under attack on a “direct scale”, in such a way that the leak-
age prediction Y (k) coincides exactly with the deterministic part of the leakage.
For example, in an AES software implementation, the device might leak in the
Hamming weight (HW) model as X = HW[Sbox[T ⊕k�]]+N , where Sbox is the
SubBytes transformation and Y (k) = HW[Sbox[T ⊕ k]] for all k ∈ K.
Proposition 2 (Maximum likelihood). When f and ϕ are known to the
attacker and Y(k) = ϕ(f(k,T)), the optimal decision becomes

D(x, t) = argmax
k

(
P{k} · p(x|y(k))

)
. (6)

For equiprobable keys this reduces to

D(x, t) = argmax
k

p(x|y(k)). (7)

Proof. Since (k,T) → Y(k) → X forms a Markov chain, we have the identity
p(x|t, k) = p(x|t, k,y(k)) = p(x|y(k)). Apply Theorem 1. �

Corollary 3. When the leakage arises from X = Y(k�) +N,

p(x|y(k)) = pN(x− y(k)) =

m∏
i=1

pNi(xi − yi(k)). (8)

This expression, which can be substituted in Eq. (6) or (7), depends only on the
noise probability distribution pN.

Proof. Trivial, since N is independent of Y(k). �
Most publications [2, 13, 18] examine the scenario of Gaussian noise, which

we consider next. However, this might not always be valid in practice. Due to
other activities on the device, or to some sampling/quantization process for X,
or even due to countermeasures, the distribution of the noise might differ from
Gaussian. This is addressed in SubSect. 3.3.
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3.2 Gaussian Noise Assumption

Theorem 4 (Optimal expression for Gaussian noise). When the noise is
zero mean Gaussian, N ∼ N (0, σ2), the optimal distinguishing rule is

DM,G
opt (x, t) = argmax

k
〈x|y(k)〉 − 1

2
‖y(k)‖22. (9)

Proof. Applying Corollary 3, a straightforward computation yields

argmax
k
p(x|y(k)) = argmax

k

1

(σ
√
2π)m

e−
‖x−y(k)‖22

2σ2

= argmin
k
‖x− y(k)‖22 (10)

= argmin
k
‖x‖22 + ‖y(k)‖22 − 2〈x|y(k)〉. (11)

Since ‖x‖22 is not key dependent, we obtain Eq. (9). �

Remark 3. Notice that the optimal distinguisher corresponding to the optimal
distinguishing rule of Eq. (9) is E

{
X · Y (k)− 1

2Y (k)
2
}
, which does not normally

reduce to a covariance or correlation coefficient.

Remark 4. The scalar product 〈x|y(k)〉 can be negative, but the optimal expres-
sion in Eq. (9) does not involve absolute values. This would only be necessary if
the sign of the model was unknown.

Remark 5. In the mono-bit case (i.e., Yi(k) takes two opposite values), the dis-
tinguisher simplifies to argmaxk 〈x|y(k)〉. However, somewhat surprisingly, this
distinguisher is not the same as the usual DoM from the literature [3,8] and em-
pirical results show that indeed our optimal distinguishing rule is slightly more
efficient. This is detailed in Appendix A.

Remark 6. For a very large number of traces 1
2‖y(k)‖22 becomes key indepen-

dent4. However, as we will show in Sect. 5 this factor plays an important role,
especially when the signal-to-noise ratio (SNR) is high and thus the number of
traces needed to reveal the secret key is low. We insist that the expression in
Eq. (9) is a deterministic value that can be computed from a series of m sampled
pairs of leakages and corresponding texts. As the second term (− 1

2‖y(k)‖22) be-
comes key independent when m→∞, this expression approximates to 〈x|y(k)〉
or even 〈x|y(k)− y(k)〉 (similar assumption as done in Footnote 4), which is an
estimator of the covariance. This is why it can be claimed that when the leakage
model is known, the noise is Gaussian and m→∞ the optimal distinguisher is
very close to the covariance (or to the correlation, since the normalization factor
of the Pearson correlation coefficient is also key-independent for large m).

4 Informally, let us make the hypothesis that T is uniformly distributed in Fn
2 and that

Y (k) has the following expression Y (k) = ϕ(f(T ⊕ k)); then, for large m, we have
1
m

∑m
i=1 ϕ(f(ti⊕k)) ≈ 1

2n

∑
t∈Fn2

ϕ(f(t⊕k)) = 1
2n

∑
t′∈Fn2

ϕ(f(t′)) which clearly does

not depend on k. See also the EIS (Equal Images under the Same key) assumption
in [19].
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Remark 7. As already mentioned in Remark 2, the best distinguisher when the
model is known boils down to a template attack (ML). When the model is known
and the noise is Gaussian, it specializes to an equivalent distinguisher which is
all the closer to correlation as the SNR is low (by previous Remark 6). This is an
independent proof of the main result of [11]. More precisely, the CPA is tolerant
to any scaling of the leakage function, provided it is positive; otherwise, the
attacker must resort to the absolute value of the Pearson correlation coefficient.
It is known to be less efficient as depicted in our empirical results in Sect. 5 since
there exists more rivals, and the soundness can even be impacted (e.g., if there
exists a key kc �= k� that satisfies f(k�, t) = −f(kc, t) for all t ∈ Fn

2 ).

Remark 8. The expression in Eq. (9) can be computed only if the leakage model
is known, including its scaling factor (denoted direct scale in [25]). In contrast, for
CPA the relationship between X and Y (k) is only known up to some affine law
(denoted proportional scale in [25]) such that X = aY (k�)+ b+N , where a and b
are unknown. These coefficients have to be estimated such as to maximize the at-
tacker’s performance, i.e., minimize ‖x−ay(k)−b‖2 in Eq. (10) so as to maximize
the likelihood. The following theorem shows that this is equivalent to CPA.

Theorem 5 (Correlation power analysis). When the leakage arises from

X = aY (k�) + b+N where N is zero-mean Gaussian, k̂ = argmink mina,b ‖x−
ay(k)−b‖2, is equivalent to maximizing the absolute value of the empirical Pear-
son’s coefficient:

k̂ = argmax
k
|ρ̂(k)| = ̂|Cov(x,y(k))|/√

V̂ar(x)V̂ar(y(k)) (12)

where the empirical (co)variances are defined by Ĉov(x,y) =
∑m

i=1(xi−x̄)(yi−ȳ)
and V̂ar(x) = Ĉov(x,x).

Proof. The minimization mina,b ‖x− ay(k)− b‖2 corresponds to the well-known
linear regression analysis (ordinary least squares) [6]. The optimal values of a

and b are a∗ = Ĉov(x,y)/V̂ar(y), b∗ = x̄−a∗ȳ, and the minimized mean-squared

error takes the well-known expression mina,b ‖x − ay − b‖2 = V̂ar(x) · (1 − ρ̂2)
therefore minimizing mina,b ‖x− ay − b‖2 amounts to maximizing |ρ̂|. �

3.3 Non-Gaussian Noise

The assumption of Gaussian noise may not always hold in practice. We first
consider the case of uniform U(0, σ2) and Laplacian noise distribution L(0, σ2)
as depicted in Fig. 2.

Definition 6 (Noise distributions). Let N be a zero-mean variable with vari-
ance σ2 modeling the noise. Its distribution is:

– Uniform, N ∼ U(0, σ2) if pN (n) =

{
1

2σ
√
3

for n ∈ [−√3σ,√3σ],
0 otherwise.

– Laplacian, N ∼ L(0, σ2) if pN (n) = 1√
2σ
e
− |n|

σ/
√

2 .
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(a) Uniform distribution (b) Laplacian distribution

Fig. 2. Probability distributions for σ ∈ {1, 3, 6}

For example, uniform noise can arise in side-channel analysis in the case where
the only measurement error is the quantization noise. “Oscilloscopes” or most
“digital sampling devices” use Analog-to-Digital Converters with only 8 bit res-
olution. Appendix B shows that Laplacian noise is a good approximation to the
noise when combining multiplicatively two (or more) leakage samples.

Theorem 7 (Optimal expression for uniform and Laplacian noises).
When f and ϕ are known such that Y (k) = ϕ(f(k, T )), and the leakage arises
from X = Y (k�) + N with N ∼ U(0, σ2) or N ∼ L(0, σ2), then the optimal
distinguishing rule becomes

– Uniform noise distribution: DM,U
opt (x, t) = argmaxk −‖x− y(k)‖∞,

– Laplace noise distribution: DM,L
opt (x, t) = argmaxk −‖x− y(k)‖1.

Proof. In case of a uniform noise distribution U(0, σ2) we have

p(x|y(k)) = pN (x− y(k)) =

{
0 if ∃i | xi − yi(k) �∈ [−√3σ,√3σ],
(2σ
√
3)−m otherwise.

(13)

Hence, argmaxk pN (x|y(k)) = 0 if and only if ‖x − y(k)‖∞ >
√
3σ, i.e.,

DM,U
opt (x, t) = argmink ‖x− y(k)‖∞ = argmaxk −‖x− y(k)‖∞.
Assuming a Laplacian noise distribution L(0, σ2) we have

argmax
k
p(x|y(k)) = argmax

k
(
√
2σ)−m · e−

‖x−y(k)‖1
σ/

√
2 , (14)

which reduces to argmaxk −‖x− y(k)‖1. �
We can even be more general. Let q ∈ R. Consider the generalized Gaussian

noise distributions [14] of variance σ2:

p(x|y(k)) =
(
q

2α
Γ

(
1

q

))m

e−
( ‖x−y(k)‖q

α

)q

, (15)
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where Γ (·) is the Gamma function and α =
√

Γ (1/q)
Γ (3/q) σ. The optimal distinguish-

ing rule becomes DM,q
opt (x, t) = argmaxk −‖x−y(k)‖qq = argmaxk −‖x−y(k)‖q.

The Gaussian, Laplacian and uniform distributions are particular cases obtained
for q = 2, 1,∞, respectively.

4 Optimal Attacks When the Leakage Model Is Partially
Unknown

For standard technologies, the leakage model is either predictable or can be
profiled accurately, while being portable from one implementation to another.
However, in some contexts, profiling is not possible (the key can neither be chosen
nor varied), or changes from one device to the other because of the technological
dispersion. Accordingly, the model might not be known exactly to the attacker
yielding epistemic noise. We now extend our assumptions made in Sect. 3. We
assume a linear leakage model as in [4,19,25] arising from a weighted sum of the
bits of the sensitive variable and additive Gaussian noise N , i.e.,

X =

n∑
j=1

αj [f(T, k
�)]j +N, (16)

where [·]j : Fn
2 → F2 is the projection mapping onto the jth bit. But now, the

attacker has no knowledge about α = (α1, · · · , αn) (except that α is distributed
according to a given law). This α is unknown but fixed for the whole experiment
(series of m measurements). This setting is just one (stochastic) way of consid-
ering a leakage model that is not entirely known5. See e.g. [1] for a motivation
of this scenario, and [4, 24] for assuming and evaluating similar scenarios.

Theorem 8 (Optimal expression for unknown weights). Let Yα(k) =∑n
j=1 αj [f(T, k)]j and Yj(k) = [f(T, k)]j, where the weights are independently

deviating normally from the Hamming weight model, i.e., ∀j ∈ �1, 8�, αj ∼
N (1, σ2α). Then the optimal distinguishing rule is

Dα,G
opt (x, t) = argmax

k
(γ〈x|y(k)〉 + 1)t · (γZ(k) + I)−1 · (γ〈x|y(k)〉 + 1)

− σ2α ln det(γZ(k) + I), (17)

where γ =
σ2
α

σ2 is the epistemic to stochastic noise ratio (ESNR), 〈x|y〉 is the
vector with elements (〈x|y(k)〉)j = 〈x|yj(k)〉, Z(k) is the n × n Gram matrix
with entries Zj,j′(k) = 〈yj(k)|yj′ (k)〉, 1 is the all-one vector, and I is the identity
matrix.

5 For example, diversion of bit loads due to routing, fanout gates, etc. are difficult to
model; we used randomly weighted bit sums, randomization being due to techno-
logical dispersing (like for PUFS, analog characterization is highly device-dependent
due to unpredictable manufacturing defects) and with the idea that the design is
balanced (e.g., FPGA, full costume ASIC designs) so that αj ’s have equal means.
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Proof. Again we start from Eq. (7):

D(x, t) = argmax
k

p(x|yα(k)) = argmax
k

∫
Rn

p(x|yα(k),α) p(α) dα (18)

= argmax
k

∫
Rn

1

(
√
2πσ)m

e−
1
2σ ‖x−yα(k)‖2

2
1

(
√
2πσα)n

e−
1

2σα
‖α−1‖2

2 dα

= argmax
k

∫
Rn

1

(
√
2πσ)m

exp
(− 1

2σ2
‖x−

n∑
j=1

αjyj(k)‖2
)×

1

(
√
2πσα)n

exp
(− 1

2σ2α

n∑
j=1

(αj − 1)2
)

dα. (19)

Now expanding the squares and dropping all multiplicative constants that are
independent of k, the distinguishing rule takes the form

argmax
k

∫
Rn

exp
(−R(α)/2

)
dα, (20)

R(α) =
1

σ2
(‖

n∑
j=1

αjyj‖2 − 2

n∑
j=1

αj〈x | yj〉) + 1

σ2α

n∑
j=1

(α2
j − 2αj) (21)

=

n∑
j,j′=1

αjαj′ (σ
−2〈yj(k) | yj′(k)〉 + σ−2

α δj,j′)− 2

n∑
j=1

αj(σ
−2〈x|yj(k)〉 + σ−2

α ) .

Using an n × n matrix notation as αtQα =
∑n

j,j′=1 αjαj′Qj,j′ and atα =∑n
j=1 ajαj , Eq. (21) takes the form αtQα−2atα, where Q = σ−2Z(k)+σ−2

α I =

σ−2
α (γZ(k) + I), a = σ−2〈x|y(k)〉 + σ−2

α 1 = σ−2
α (γ〈x|y(k)〉 + 1) and I is the

identity matrix, Z is the Gram matrix with entries Zj,j′(k) = 〈yj(k)|yj′ (k)〉, 1
is the all-one vector, 〈x|y〉 is the vector with entries (〈x|y〉)j = 〈x|yj〉. Now,
αtQα− 2atα = (α−Q−1a)tQ(α−Q−1a) − atQ−1a. So,

argmax
k

∫
exp

(− 1
2 ((α−Q−1a)tQ(α−Q−1a)− at ·Q−1 · a)) dα (22)

= argmax
k

(2π)n/2| detQ|−1/2 exp( 12a
tQ−1a) (23)

= argmax
k

1

2
at Q−1a− 1

2
ln detQ. (24)

Finally, multiplying by 2σ2α we achieve the optimal distinguishing rule. �

Remark 9. For Eq. (17) to work the ESNR γ should be somehow known from
some experiments (e.g., Pelgrom coefficients [15] for σα and platform noise for σ).

Remark 10. If the ESNR γ is small, i.e., σα is small w.r.t. σ, expanding about
γ = 0 and neglecting the term σ2αγ in the expansion of the logarithm gives (at
first order in γ):

(1+ γ〈x|y(k)〉)t(I + γZ(k))−1(1+ γ〈x|y(k)〉) (25)

≈ n+ 2γ 1t〈x|y(k)〉 − γ1tZ(k) · 1t. (26)
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Since 1ty(k) =
∑n

j=1 yj(k) = HW[y] and

1tZ(k)1t =

n∑
j,j′=1

〈yj(k)|yj′(k)〉 = 〈
n∑

j=1

yj(k)|
n∑

j′=1

yj′(k)〉 = ‖HW[y]‖22, (27)

Eq. (26) boils down to maximizing 〈x|HW[y]〉 − 1
2‖HW[y]‖22. As expected, we

recover the optimal distinguishing rule when the Hamming weight model is as-
sumed to be known and αj ≈ 1 (see SubSect. 3.2).

Remark 11. If ESNR γ is large (σα is large w.r.t. σ), a similar calculation as
done in Remark 10 shows that the optimal distinguishing rule becomes

γ〈x|y(k)〉t · Z−1(k) · 〈x|y(k)〉 − σ2α ln det(Z(k)), (28)

where det(Z(k)) = ‖y1(k)∧ · · · ∧yn(k)‖22 is the Gram determinant, the squared
norm of the exterior product of the yj(k)’s . This simpler formula can be useful
to be directly implemented for small stochastic noise.

Remark 12. Note that, in contrast to the linear regression attack (LRA) [4],
Dα,G does not require an estimation of α explicitly; Dα,G is already optimal
given the a priori probability distribution of α. An empirical comparison is
shown in Subsec 5.2.

5 Experimental Validation

5.1 Known Model: Stochastic Noise

As an application we choose Y = HW[Sbox[T ⊕ k]] and X = Y (k�) +N , where
Sbox : F8

2 → F8
2 is the AES Substitution box and T is uniformly distributed over

F8
2. We simulated noise from several distributions pN and for σ ∈ {1, 3, 6} result-

ing in an SNR of V ar(Y )
V ar(N) = 2

σ2 ∈ {2, 0.222, 0.056}. Note that since the SNR is

equivalent for all noise distributions, we can compare the performance of the dis-
tinguishers across different noise distributions. For reliability, we conducted 500
independent experiments in each setting with uniformly distributed k� to com-
pute the empirical success rate (noted P̂s). Moreover, as suggested in [10], when
plotting the empirical success rate, we highlight the standard deviation of the
success rate by error bars. In particular, since P̂s follows a binomial distribution,

we shaded the confidence interval

[
P̂s ±

√
P̂s(1−P̂s)

nexp

]
, where nexp = 500 is the

number of experiments. If the error bars do not overlap, we can unambiguously
conclude that one distinguisher is better than the other [10].
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In the scenario where the model is known, we implemented the following
distinguishers, where the labels for the figures are put within parentheses:

DM,G
opt (x, t) = argmax

k
〈x|y(k)〉 − 1

2
‖y(k)‖22, (Euclidean norm) (29)

DM,G
opt-s(x, t) = argmax

k
〈x|y(k)〉, (Scalar product) (30)

DM,L
opt (x, t) = argmax

k
−‖x− y(k)‖1, (Manhattan norm) (31)

DM,U
opt (x, t) = argmax

k
−‖x− y(k)‖∞, (Uniform norm) (32)

DCov(x, t) = argmax
k
|〈x − x|y(k)〉|, (Covariance) (33)

DCPA(x, t) = argmax
k

∣∣∣∣∣ 〈x− x|y(k)〉
‖x− x‖2 · ‖y(k) − y(k)‖2

∣∣∣∣∣ . (CPA) (34)

Figures 3a, 3c and 3e show empirical success rate curves for Gaussian noise.
One can see that for all levels of SNR DM,G

opt outperforms the other distinguishers,
including CPA. As expected from Remark 6, scalar product, covariance, and
correlation have poorer but comparable performance than DM,G

opt for high noise.
Figures 3b, 3d and 3f show the empirical success rate curves for Laplacian

noise. For low noise, DM,L
opt is the most efficient and DM,G

opt is the nearest rival,
whereas DCPA and DCov are less efficient. As the noise increases the difference
becomes more significant. As expected, DCPA and DCov become equivalent for
high noise, and DM,U

opt fails to distinguish.
In case of uniform noise (see Fig. 4) all optimal distinguishers behave similarly

for σ = 1, whereas CPA, covariance and the scalar product are less efficient.
When the noise increases, DM,U

opt is the most efficient distinguisher. One can see

that DM,U
opt for uniform noise and DM,L

opt for Laplacian noise require less traces

to succeed than DM,G
opt does for Gaussian noise. More precisely, for σ = 6, DM,U

opt

requires only 28 traces to reach P̂s ≥ 90%, DM,L
opt requires 200 traces, whereas

DM,G
opt in case of Gaussian noise needs 300 measurements. This is in keeping with

the known information-theoretic fact that detection (or decoding) in Gaussian
noise is harder than in any other type of noise.

5.2 Unknown Model: Epistemic and Stochastic Noise

To account for a partially unknown model, we choose Yj = [Sbox[T ⊕ k]]j for

j = 1, . . . , 8 and X =
∑8

j=1 αjYj(k
�) + N , where αj ∼ N (1, σα) are unknown

and changing for each experiment. Note that in this scenario Y(k) is a column
and not a value as in the previous subsection. Figure 5 shows typical values
for σα ∈ {2, 4}, showing that the assumption about α is realistic (see e.g., [7]).
We compare our new optimal distinguisher with the linear regression analysis
(LRA) [4], which is a non-profiling variant of the stochastic approach [19] and
the most efficient attack so far in the case where the model drifts away from the
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(a) Gaussian Noise, σ = 1 (b) Laplacian Noise, σ = 1

(c) Gaussian Noise, σ = 3 (d) Laplacian Noise, σ = 3

(e) Gaussian Noise, σ = 6 (f) Laplacian Noise, σ = 6

Fig. 3. Success rate for various σ, with a known model

Hamming weight model [4, 9]. LRA is defined as

DLRA(x, t) = argmax
k

‖x− y′(k) · β(k)‖22
‖x− x‖22

, (35)

where y′(k) = (1,y1(k),y2(k), . . . ,y8(k)) is an m × 9 matrix and β(k) =
(β1(k), . . . , β9(k)) are the regression coefficients β(k) = (y′(k)t ·y′(k))−1y′(k)tx.
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(a) σ = 1 (b) σ = 3 (c) σ = 6

Fig. 4. Success rate for a uniform noise distribution, with a known model

Fig. 5. Exemplary values of α for σα = 2 (blue) and σα = 4 (red dashed)

Criterion (35) is also known as the coefficient of determination [6]. We com-
pared the optimal distinguisher to LRA and CPA, for which we used Y =
HW[Sbox[T ⊕k]]. Apart from this we used the same experimental setup as above.

Figure 6 displays the success rate for σ ∈ {1, 3, 6} and σα ∈ {2, 4}. As expected
CPA is performing worse than both other attacks. Remarkably, in all scenarios
Dα,G

opt (labeled Optimal dist alpha) is more efficient than LRA. This is perhaps
not surprising as regression analysis involves mean squared minimization rather
than direct success probability maximization as Dα,G

opt does. As already observed
in [4], LRA needs a large enough number of traces for estimation, that is why

P̂s stays low until around 10 traces (Fig. 6a and 6b). One can observe that both
distinguishers perform better for σα = 4 (Figures 6b, 6d and 6f) than for σα = 2
(Figures 6a, 6c and 6e). This can be explained by the improved distinguishability
through the distinct influence of each bit. On the contrary, DCPA becomes worse
when σα increases, because the model drifts father away from the Hamming
weight model.
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(a) σα = 2, σ = 1 (b) σα = 4, σ = 1

(c) σα = 2, σ = 3 (d) σα = 4, σ = 3

(e) σα = 2, σ = 6 (f) σα = 4, σ = 6

Fig. 6. Success rate for various ESNRs, unknown model
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6 Conclusion

We examined the key extraction problem in a side-channel context as a digital
communication problem. Following the reasoning used in digital communication
theory, we derived the optimal distinguisher (called optimal decoder in digital com-
munication theory). It is a formula that takes as input amultiplicity of pairs of side-
channel leakage measurements and corresponding text chunks, and that returns
the key guess that maximizes the success probability. The methodical derivation
of distinguishers yields an estimator that can be directly computed from the mea-
sured data.

In the case where no information is known about the channel (Sect. 2.2), we re-
covered the template attack.When the leakage function is known (Sect. 3), the ap-
proach yields a different distinguisher for each noise distribution. For the classical
case of additive Gaussian noise, the optimal distinguisher cannot be interpreted as
a covariance nor as a correlation, albeit very close for low SNR. In addition, when
the leakage model is known only on a proportional scale we recover CPA exactly.
When the noise is non-Gaussian, the optimal distinguishers are very different from
CPA or correlation and each optimal distinguisher is the most efficient in its sce-
nario. When the leakage model is partially unknown (Sect. 4) and modeled as an
unevenly weighted sum of bits with unknown weights, our method outperforms
the non-profiled version of the stochastic approach (LRA).

This study suggests that a mathematical study of distinguishers should prevail
in the field of side-channel analysis. As a perspective, our optimal distinguishers
may be tested on real measurements. This should include a preliminary step to
determine the underlying scenario as precisely and efficiently as possible in terms
of the number of traces. Especially, the determination of the noise distribution is a
notoriously difficult problem. Moreover, the extension of our work to higher-order
attacks (when the noise distribution might differ from Gaussian) seems promising.

References
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A Optimal Mono-Bit Distinguisher for Known Model
and Gaussian Noise

In the mono-bit case, every Yi(k) (0 ≤ i < m) takes only two different values.
W.l.o.g., let us assume Yi(k) = ±1. Then, ‖y(k)‖22 = m and is thus independent
on the key. Thus,

DM,G
opt(1 bit)(x, t) = argmaxk

∑
i|yi(k)=1 xi −

∑
i|yi(k)=−1 xi. (36)

Surprisingly, this distinguisher is not any variant of DoM presented in the semi-
nal paper [8] by Kocher, Jaffe and Jun (DM,G

KJJ ) nor in the alleged t-test improve-

ment [3] by Coron, Kocher and Naccache (DM,G
CKN). In particular,

DM,G
KJJ (x, t) = argmax

k
x+1 − x−1, (37)

DM,G
CKN(x, t) = argmax

k
(x+1 − x−1)

/√σ2x+1

n+1
+
σ2x−1

n−1
, (38)

where n±1 =
∑

i|yi(k)=±1 1, σ
2
x±1

= 1
n±1−1

∑
i|yi(k)=±1(xi − x±1)

2 and x±1 =
1

n±1

∑
i|yi(k)=±1 xi . However, when m is large, the two distinguishers DM,G

opt(1 bit)

and DM,G
KJJ become equivalent, as n±1 ≈ m/2 (independently of k, using an

argument similar to that of Footnote 4). But even in this case, DM,G
CKN is non-

equivalent with them. We notice that the normalization DM,G
CKN is useful when

there are many samples, since it normalizes the difference between Y (k) = −1
and Y (k) = +1 (hence avoid ghost peaks), but this consideration is out of the
scope of this paper.

The success rate of all three attacks for σ = 1 is displayed in Fig. 7 showing
that the optimal distinguishing rule (Eq. (36)) is the most efficient to reach a

empirical success rate P̂s = 90%. For σ > 1 all 3 distinguishers were found
almost equivalent, which is reasonable. Those results highlight that intuitive
distinguishers (such as DM,G

KJJ , that aims at showing a difference of leakage) or

classic (such as DM,G
CKN, based on the well-established t-test) distinguishers are

not necessarily the best.

Fig. 7. Success rate for one-bit attacks Fig. 8. Empirical distribution of X1X2
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B Noise Distribution Resulting from Multiplication

When combining two leakage samples multiplicatively in case of Gaussian noise,
the noise distribution is no longer following a Gaussian distribution. More pre-
cisely, let us assume we have two leakagesX1 = Y1(k

�)+N1 andX2 = Y2(k
�)+N2

that are multiplied, then

X1X2 = (Y1(k
�) +N1) · (Y2(k�) +N2) (39)

= Y1(k
�) · Y2(k�) + Y2(k�) ·N2 + Y2(k

�) ·N1 +N1 ·N2. (40)

Due to the product, the distribution of X1X2 is no longer Gaussian. Figure 8
displays the empirical distribution in this case, which looks similar to a Laplacian
distribution (compare to Fig. 2b).
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Abstract. We apply the FLUSH+RELOAD side-channel attack based on cache
hits/misses to extract a small amount of data from OpenSSL ECDSA signature
requests. We then apply a “standard” lattice technique to extract the private key,
but unlike previous attacks we are able to make use of the side-channel informa-
tion from almost all of the observed executions. This means we obtain private
key recovery by observing a relatively small number of executions, and by ex-
pending a relatively small amount of post-processing via lattice reduction. We
demonstrate our analysis via experiments using the curve secp256k1 used in the
Bitcoin protocol. In particular we show that with as little as 200 signatures we
are able to achieve a reasonable level of success in recovering the secret key for
a 256-bit curve. This is significantly better than prior methods of applying lattice
reduction techniques to similar side channel information.

1 Introduction

One important task of cryptographic research is to analyze cryptographic implementa-
tions for potential security flaws. This aspect has a long tradition, and the most well
known of this line of research has been the understanding of side-channels obtained
by power analysis, which followed from the initial work of Kocher and others [22].
More recently work in this area has shifted to looking at side-channels in software im-
plementations, the most successful of which has been the exploitation of cache-timing
attacks, introduced in 2002 [32]. In this work we examine the use of spy-processes on
the OpenSSL implementation of the ECDSA algorithm.

OpenSSL [31] is an open source tool kit for the implementation of cryptographic
protocols. The library of functions, implemented using C, is often used for the imple-
mentation of Secure Sockets Layer and Transport Layer Security protocols and has also
been used to implement OpenPGP and other cryptographic standards. The library in-
cludes cryptographic functions for use in Elliptic Curve Cryptography (ECC), and in
particular ECDSA. In particular we will examine the application of the FLUSH+RE-
LOAD attack, first proposed by Yarom and Falkner [40], then adapted to the case of
OpenSSL’s implementation of ECDSA over binary fields by Yarom and Benger [39],
running on X86 processor architecture. We exploit a property of the Intel implementa-
tion of the X86 and X86 64 processor architectures using the FLUSH+RELOAD cache
side-channel attack [39, 40] to partially recover the ephemeral key used in ECDSA.

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 75–92, 2014.
c© International Association for Cryptologic Research 2014
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In Yarom and Benger [39] the case of characteristic two fields was considered, but
the algorithms used by OpenSSL in the characteristic two and prime characteristic cases
are very different. In particular for the case of prime fields one needs to perform a post-
processing of the side-channel information using cryptanalysis of lattices. We adopt a
standard technique [21, 30] to perform this last step, but in a manner which enables
us to recover the underlying secret with few protocol execution runs. This is achieved
by using as much information obtained in the FLUSH+RELOAD step as possible in the
subsequent lattice step.

We illustrate the effectiveness of the attack by recovering the secret key with a very
high probability using only a small number of signatures. After this, we are able to
forge unlimited signatures under the hidden secret key. The results of this attack are
not limited to ECDSA but have implications for many other cryptographic protocols
implemented using OpenSSL for which the scalar multiplication is performed using a
sliding window and the scalar is intended to remain secret.

Related Work. Microarchitectural side-channel attacks have been used against a num-
ber of implementations of cryptosystems. These attacks often target the L1 cache level
[1, 2, 5, 10, 13, 14, 37, 41] or the branch prediction buffer [3, 4]. The use of these com-
ponents is limited to a single execution core. Consequently, the spy program and the
victim must execute on the same execution core of the processor. Unlike these attacks,
the FLUSH+RELOAD attack we use targets the last level cache (LLC). As the LLC is
shared between cores, the attack can be mounted between different cores.

The attack used by Gullasch et al. [20] against AES, is very similar to FLUSH+RE-
LOAD. The attack, however, requires the interleaving of spy and victim execution on
the same processor core, which is achieved by relying on a scheduler bug to interrupt
the victim and gain control of the core on which it executes. Furthermore, the Gullasch
et al. attack results in a large number of false positives, requiring the use of a neural
network to filter the results.

In [40], Yarom and Falkner first describe the FLUSH+RELOAD attack and use it to
snoop on the square-and-multiply exponentiation in the GnuPG implementation of RSA
and thus retrieve the RSA secret key from the GnuPG decryption step. The OpenSSL
(characteristic two) implementation of ECDSA was also shown to be vulnerable to the
FLUSH+RELOAD attack [39]; around 95% of the ephemeral private key was recov-
ered when the Montgomery ladder was used for the scalar multiplication step. The full
ephemeral private key was then recovered at very small cost using a Baby-Step-Giant-
Step (BSGS) algorithm. Knowledge of the ephemeral private key leads to recovery of
the signer’s private key, thus fully breaking the ECDSA implementation using only one
signature.

One issue hindering the extension of the attack to implementations using the sliding
window method for scalar multiplications instead of the Montgomery ladder is that
only a lower proportion of the bits of the ephemeral private key can be recovered so the
BSGS reconstruction becomes infeasible. It is to extend the FLUSH+RELOAD attack to
implementations which use sliding window exponentiation methods that this paper is
addressed.
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Suppose we take a single ECDLP instance, and we have obtained partial informa-
tion about the discrete logarithm. In [19, 26, 36] techniques are presented which reduce
the search space for the underlying discrete logarithm when various types of partial
information is revealed. These methods work quite well when the information leaked
is considerable for the single discrete logarithm instance; as for example evidenced by
the side-channel attack of [39] on the Montgomery ladder. However, in our situation a
different approach needs to be taken.

Similar to several past works, e.g. [10, 11, 27], we will exploit a well known prop-
erty of ECDSA, that if a small amount of information about each ephemeral key in
each signature leaks, for a number of signatures, then one can recover the underlying
secret using a lattice based attack [21, 30]. The key question arises as to how many
signatures are needed so as to be able to extract the necessary side channel information
to enable the lattice based attack to work. The lattice attack works by constructing a
lattice problem from the obtained digital signatures and side channel information, and
then applying lattice reduction techniques such as LLL [23] or BKZ [35] to solve the
lattice problem. Using this methodology Nguyen and Shparlinski [30], suggest that for
an elliptic curve group of order around 160 bits, their probabilistic algorithm would
obtain the secret key using an expected 23× 27 signatures (assuming independent and
uniformly at random selected messages) in polynomial time, using only seven consec-
utive least significant leaked bits of each ephemeral private key. A major issue of their
attack in practice is that it seems hard to apply when only a few bits of the underlying
ephemeral private key are determined.

Our Contribution. Through the FLUSH+RELOAD attack we are able to obtain a sig-
nificant proportion of the ephemeral private key bit values, but they are not clustered
but in positions spread through the length of the ephemeral private key. As a result, we
only obtain for each signature a few (maybe only one) consecutive bits of the ECDSA
ephemeral private key, and so the technique described in [30] does not appear at first
sight to be instantly applicable. The main contribution of this work is to combine and
adapt the FLUSH+RELOAD attack and the lattice techniques. The FLUSH+RELOAD at-
tack is refined to optimise the proportion of information which can be obtained, then
the lattice techniques are adapted to utilize the information in the acquired data in an
optimal manner. The result is that we are able to reconstruct secret keys for 256 bit
elliptic curves with high probability, and low work effort, after obtaining less than 256
signatures.

We illustrate the effectiveness of the attack by applying it to the OpenSSL implemen-
tation of ECDSA using a sliding window to compute scalar multiplication, recovering
the victims’s secret key for the elliptic curve secp256k1 used in Bitcoin [28]. The im-
plementation of the secp256k1 curve in OpenSSL is interesting as it uses the wNAF
method for exponentiation, as opposed to the GLV method [18], for which the curve
was created. It would be an interesting research topic to see how to apply the FLU-
SH+RELOAD technique to an implementation which uses the GLV point multiplication
method.

In terms of the application to Bitcoin an obvious mitigation against the attack is to
limit the number of times a private key is used within the Bitcoin protocol. Each wallet
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corresponds to a public/private key pair, so this essentially limits the number of times
one can spend from a given wallet. Thus, by creating a chain of wallets and transferring
Bitcoins from one wallet to the next it is easy to limit the number of signing operations
carried out by a single private key. See [9] for a discussion on the distribution of public
keys currently used in the Bitcoin network.

The remainder of the paper is organised as follows: In 2 we present the background
on ECDSA and the signed sliding window method (or wNAF representation) needed to
understand our attack. Then in 3 we present our methodology for applying the FLUSH+
RELOAD attack on the OpenSSL implementation of the signed sliding window method
of exponentiation. Then in 4 we use the information so obtained to create a lattice
problem, and we demonstrate the success probability of our attack.

2 Mathematical Background

In this section we present the mathematical background to our work, by presenting the
wNAF/signed window method of point multiplication which is used by OpenSSL to
implement ECDSA in the case of curves defined over prime finite fields.

Scalar Multiplication Using wNAF. In OpenSSL the scalar multiplication in the sign-
ing algorithm is implemented using the wNAF algorithm. Suppose we wish to compute
[d]P for some integer value d ∈ [0, . . . ,2	], the wNAF method utilizes a small amount of
pre-processing on P and the fact that addition and subtraction in the elliptic curve group
have the same cost, so as to obtain a large performance improvement on the basic binary
method of point multiplication. To define wNAF a window size w is first chosen, which
for OpenSSL, and the curve secp256k1, we have w = 3. Then 2w− 2 extra points are
stored, with a precomputation cost of 2w−1−1 point additions, and one point doubling.
The values stored are the points {±G,±[3]G, . . . ,±[2w− 1]G}.

The next task is to convert the integer d into so called Non-Adjacent From (NAF).
This is done by the method in Algorithm 1 which rewrites the integer d as a sum d =

∑	−1
i=0 di ·2i, where di ∈ {±1,±3, . . . ,±(2w− 1)}. The Non-Adjacent From is so named

as for any d written in NAF, the output values d0, . . . ,d	−1, are such that for every non-
zero element di there are at least w+ 1 following zero values.

Once the integer d has been re-coded into wNAF form, the point multiplication can
be carried out by Algorithm 2. The occurrence of a non-zero di controls when an addi-
tion is performed, with the precise value of di determining which point from the list is
added.

Before ending this section we note some aspects of the algorithm, and how these
are exploited in our attack. A spy process, by monitoring the cache hits/misses, can
determine when the code inside the if–then block in Algorithm 2 is performed. This
happens when the element di is non-zero, which reveals the fact that the following w+1
values di+1, . . . ,di+w+1 are all zero. This reveals some information about the value d,
but not enough to recover the value of d itself.

Instead we focus on the last values of di processed by Algorithm 2. We can determine
precisely how many least significant bits of d are zero, which means we can determine
at least one bit of d, and with probability 1/2 we determine two bits, with probability
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Input: scalar d and window width w
Output: d in wNAF: d0, . . . ,d	−1
	← 0
while d > 0 do

if d mod 2 = 1 then
d	← d mod 2w+1

if d	 ≥ 2w then
d	← d	−2w+1

end
d = d−d	

else
d	 = 0

end
d = d/2
	+= 1

end

Algorithm 1. Conversion to Non-Adjacent Form

Input: scalar d in wNAF d0, . . . ,d	−1 and precomputed points
{G,±[3]G,±[5]G, . . . ,±[2w−1]G}
Output: [d]G
Q← ′
for j from 	−1 downto 0 do

Q← [2]Q
if d j �= 0 then

Q← Q+[d j]G
end

end

Algorithm 2. Computation of kG using OpenSSL wNAF

1/4 we determine three bits and so on. Thus we not only extract information about
whether the least significant bits are zero, but we also use the information obtained
from the first non-zero bit.

In practice in the OpenSSL code the execution of scalar multiplication by the ephem-
eral key k is slightly modified. Instead of computing [k]G, the code computes [k+λ ·n]G
where λ ∈ {1,2} is chosen such that �log2(k+λ · n)�= �log2(n)�+ 1. The fixed size
scalar provides protection against the Brumley and Tuveri remote timing attack [11].
For the secp256k1 curve, n is 2256− ε where ε < 2129. The case λ = 2, therefore, only
occurs for k < ε . As the probability of this case is less than 2−125, we can assume the
wNAF algorithm is applied with d = k+ n.

3 Attacking OpenSSL

In prior work the Montgomery ladder method of point multiplication was shown to
be vulnerable to a FLUSH+RELOAD attack [39]. This section discusses the wNAF im-
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plementation of OpenSSL and demonstrates that it is also vulnerable. Unlike the side-
channel in the Montgomery ladder implementation, which recovers enough bits to allow
a direct recovery of the ephemeral private key [39], the side-channel in the wNAF im-
plementation only leaks an average of two bits in each window. Consequently, a further
algebraic attack is required to recover the private key. This section describes the FLU-
SH+RELOAD attack, and its application to the OpenSSL wNAF implementation. The
next section completes the recovery of the secret key.

FLUSH+RELOAD is a cache side-channel attack that exploits a property of the Intel
implementation of the X86 and X86 64 processor architectures, which allows processes
to manipulate the cache of other processes [39, 40].

Using the attack, a spy program can trace or monitor memory read and execute ac-
cess of a victim program to shared memory pages. The spy program only requires read
access to the shared memory pages, hence pages containing binary code in executable
files and in shared libraries are susceptible to the attack. Furthermore, pages shared
through the use of memory de-duplication in virtualized environments [6, 38] are also
susceptible and using them the attack can be applied between co-located virtual ma-
chines.

The spy program needs to execute on the same physical processor as the victim,
however, unlike most cache-based side channel attacks, our spy monitors access to the
last-level cache (LLC). As the LLC is shared between the processing cores of the pro-
cessor, the spy does not need to execute on the same processing core as the victim.
Consequently, the attack is applicable to multi-core processors and is not dependent on
hyperthreading or on exploitable scheduler limitations like other published microarchi-
tectural side-channel attacks.

Input: adrs—the probed address
Output: true if the address was accessed by the victim
begin

evict(adrs)
wait a bit()
time← current time()
tmp← read(adrs)
readTime← current time()-time
return readTime < threshold

end

Algorithm 3. FLUSH+RELOAD Algorithm

To monitor access to memory, the spy repeatedly evicts the contents of the monitored
memory from the LLC, waits for some time and then measures the time to read the con-
tents of the monitored memory. See Algorithm 3 for a pseudo-code of the attack. As
reading from the LLC is much faster than reading from memory, the spy can differen-
tiate between these two cases. If, following the wait, the contents of the memory is re-
trieved from the cache, it indicates that another process has accessed the memory. Thus,
by measuring the time to read the contents of the memory, the spy can decide whether
the victim has accessed the monitored memory since the last time it was evicted.
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Monitoring access to specific memory lines is one of the strengths of the FLUSH+
RELOAD technique. Other cache-based tracing techniques monitor access to sets of
memory lines that map to the same cache set. The use of specific memory lines re-
duces the chance of false positives. Capturing the access to the memory line, therefore,
indicates that the victim executes and has accessed the line. Consequently, FLUSH+
RELOAD does not require any external mechanism to synchronize with the victim.

We tested the attack on an HP Elite 8300 running Fedora 18. The machine features
an Intel Core i5-3470 processor, with four execution cores and a 6MB LLC. As the
OpenSSL package shipped with Fedora does not support ECC, we used our own build
of OpenSSL 1.0.1e. For the experiment we used the curve secp256k1 which is used by
Bitcoin.

For the attack, we used the implementation of FLUSH+RELOAD from [40]. The spy
program divides time into time slots of approximately 3,000 cycles (almost 1μs). In
each time slot the spy probes memory lines in the group add and double functions.
(ec GFp simple add and ec GFp simple dbl, respectively.) The time slot length is
chosen to ensure that there is an empty slot during the execution of each group opera-
tion. This allows the spy to correctly distinguish consecutive doubles.

The probes are placed on memory lines which contain calls to the field multiplica-
tion function. Memory lines containing call sites are accessed both when the function
is called and when it returns. Hence, by probing these memory lines, we reduce the
chance of missing accesses due to overlaps with the probes. See [40] for a discussion
of overlaps.

To find the memory lines containing the call sites we built OpenSSL with debugging
symbols. These symbols are not loaded at run time and do not affect the performance
of the code. The debugging symbols are, typically, not available for attackers, however
their absence would not present a major obstacle to a determined attacker who could
use reverse engineering [16].

4 Lattice Attack Details

We applied the above process on the OpenSSL implementation of ECDSA for the curve
secp256k1. We fixed a public key Q = [α]G, and then monitored via the FLUSH+RE-
LOAD spy process the generation of a set of d signature pairs (ri,si) for i = 1, . . . ,d.
For each signature pair there is a known hashed message value hi and an unknown
ephemeral private key value ki.

Using the FLUSH+RELOAD side-channel we also obtained, with very high proba-
bility, the sequence of point additions and doubling used when OpenSSL executes the
operation [ki + n]G. In particular, this means we learn values ci and li such that

ki + n≡ ci (mod 2li),

or equivalently
ki ≡ ci− n (mod 2li).

Where li denotes the number of known bits. We can also determine the length of the
known run of zeroes in the least significant bits of ki + n, which we will call zi. In
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presenting the analysis we assume the d signatures have been selected such that we
already know that the value of ki+n is divisible by 2Z , for some value of Z, i.e. we pick
signatures for which zi ≥ Z. In practice this means that to obtain d such signatures we
need to collect (on average) d ·2Z signatures in total.

We write ai = ci− n (mod 2li). For example, writing A for an add, D for a double
and X for a don’t know, we can read off ci, li and zi from the least execution sequence
obtained in the FLUSH+RELOAD analysis. In practice the FLUSH+RELOAD attack is
so efficient that we are able to identify A’s and D’s with almost 100% certainty, with
only ε = 0.55%− 0.65% of the symbols turning out to be don’t knows. To read off the
values we use the following table (and its obvious extension), where we present the
approximate probability of our attack revealing this sequence.

Sequence ci li zi Pr≈
. . .X 0 0.0 0 ε
. . .A 1 1.0 0 (1− ε)/2

. . .XD 0 1.0 1 ε · (1− ε)/2
. . .AD 2 2.0 1 ((1− ε)/2)2

. . .XDD 0 2.0 2 ε · ((1− ε)/2)2

. . .ADD 4 3.0 2 ((1− ε)/2)3

For a given execution of the FLUSH+RELOAD attack, from the table we can determine
ci and li, and hence ai. Then, using the standard analysis from [29, 30], we determine
the following values

ti = �ri/(2
li · si)�n,

ui = �(ai− hi/si)/2li�n + n/2li+1,

where �·�n denotes reduction modulo n into the range [0, . . . ,n). We then have that

vi = |α · ti− ui|n < n/2li+1, (1)

where | · |n denotes reduction by n, but into the range (−n/2, . . . ,n/2). It is this lat-
ter equation which we exploit, via lattice basis reduction, so as to recover d. The key
observation found in [29, 30] is that the value vi is smaller (by a factor of 2li+1) than
a random integer. Unlike prior work in this area we do not (necessarily) need to just
select those executions which give us a “large” value of zi, say zi ≥ 3. Prior work fixes
a minimum value of zi (or essentially equivalently li) and utilizes this single value in all
equations such as (1). If we do this we would need to throw away all bar 1/2zi+1 of the
executions obtained. By maintaining full generality, i.e. a variable value of zi (subject
to the constraint zi ≥ Z) in each instance of (1), we are able to utilize all information at
our disposal and recover the secret key α with very little effort indeed.

The next task is to turn the equations from (1) into a lattice problem. Following
[29, 30] we do this in one of two possible ways, which we now recap on.
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Attack via CVP: We first consider the lattice L(B) in d + 1-dimensional real space,
generated by the rows of the following matrix

B =

⎛⎜⎜⎜⎝
2l1+1 ·n

. . .
2ld+1 ·n

2l1+1 · t1 . . . 2ld+1 · td 1

⎞⎟⎟⎟⎠ .
From (1) we find that there are integers (λ1, . . . ,λd) such that if we set x=(λ1, . . . ,λd ,α)
and y = (2l1+1 · v1, . . . ,2ld+1 · vd,α) and u = (2l1+1 ·u1, . . . ,2ld+1 ·ud,0), then we have

x ·B−u= y.

We note that the 2-norm of the vector y is about
√

d+ 1 · n, whereas the lattice deter-
minant of L(B) is 2d+∑ li ·nd . Thus the vector u is a close vector to the lattice. Solving
the Closest Vector Problem (CVP) with input B and u therefore reveals x and hence the
secret key α .

Attack via SVP: It is often more effective in practice to solve the above CVP problem
via the means of embedding the CVP into a Shortest Vector Problem (SVP) in a slightly
bigger lattice. In particular we take the lattice L(B′) in d + 2-dimensional real space
generated by the rows of the matrix

B′ =
(

B 0
u n

)
.

This lattice has determinant 2d+∑ li · n(d+1), by taking the lattice vector generated by
x′ = (x,α,−1) we obtain the lattice vector y′ = x′ ·B′ = (y,−n). The 2-norm of this
lattice vector is roughly

√
d+ 2 · n. We expect the second vector in a reduced basis to

be of size c ·n, and so there is a “good” chance for a suitably strong lattice reduction to
obtain a lattice basis whose second vector is equal to y′. Note, the first basis vector is
likely to be given by (−t1, . . . ,−td,n,0) ·B′ = (0, . . . ,0,n,0).

4.1 Experimental Results

To solve the SVP problem we used the BKZ algorithm [35] as implemented in fplll
[12]. However, this implementation is only efficient for small block size (say less than
35), due to the fact that BKZ is an exponential algorithm in the block size. Thus for
larger block size we implemented a variant of the BKZ-2.0 algorithm [15], however
this algorithm is only effective for block sizes β greater than 50. In tuning BKZ-2.0
we used the following strategy, at the end of every round we determined whether we
had already solved for the private key, if not we continued, and then gave up after ten
rounds. As stated above we applied our attack to the curve secp256k1.

We wished to determine what the optimal strategy was in terms of the minimum
value of Z we should take, the optimal lattice dimension, and the optimal lattice algo-
rithm. Thus we performed a number of experiments which are reported on in Tables
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2 and 3 in Appendix A; where we present our best results obtained for each (d,Z)
pair. We also present graphs to show how the different values of β affected the suc-
cess rate. For each lattice dimension, we measured the optimal parameters as the ones
which minimized the value of lattice execution time divided by probability of success.
The probability of success was measured by running the attack a number of times, and
seeing in how many executions we managed to recover the underlying secret key. We
used Time divided by Probability is a crude measure of success, but we note this hides
other issues such as expected number of executions of the signature algorithm needed.

All executions were performed on an Intel Xeon CPU running at 2.40 GHz, on a
machine with 4GB of RAM. The programs were run in a single thread, and so no
advantages where made of the multiple cores on the processor. We ran experiments for
the SVP attack using BKZ with block size ranging from 5 to 40 and with BKZ-2.0 with
blocksize 50. With our crude measure of Time divided by Probability we find that BKZ
with block size 15 or 20 is almost always the method of choice for the SVP method.

We see that the number of signatures needed is consistent with what theory would
predict in the case of Z = 1 and Z = 2, i.e. the lattice reduction algorithm can extract
from the side-channel the underlying secret key as soon as the expected number of
leaked bits slightly exceeds the number of bits in the secret key. For Z = 0 this no
longer holds, we conjecture that this is because the lattice algorithms are unable to
reduce the basis well enough, in a short enough amount of time, to extract the small
amount of information which is revealed by each signature. In other words the input
basis for Z = 0 is too close to looking like a random basis, unless a large amount of
signatures is used.

To solve the CVP problem variant we applied a pre-processing of either fplll or BKZ-
2.0. When applying pre-processing of BKZ-2.0 we limited to only one round of exe-
cution. We then applied an enumeration technique, akin to the enumeration used in the
enumeration sub-routine of BKZ, but centered around the target close vector as opposed
to the origin. When a close vector was found this was checked to see whether it revealed
the secret key, and if not the enumeration was continued. We restricted the number of
nodes in the enumeration tree to 229, so as to ensure the enumeration did not go on for
an excessive amount of time in the cases where the solution vector is hard to find (this
mainly affected the experiments in dimension greater than 150). See Tables 4 and 5,
in Appendix A, for details of these experiments; again we present the best results for
each (d,Z) pair. The enumeration time is highly dependent on whether the close lattice
vector is really close to the lattice, thus we see that when the expected number of bits
revealed per signature times the number of signatures utilized in the lattice, gets close
to the bit size of elliptic curve (256) the enumeration time drops. Again we see that
extensive pre-processing of the basis with more complex lattice reduction techniques
provides no real benefit.

The results of the SVP and CVP experiments (Appendix A) show that for fixed Z, in-
creasing the dimension generally decreases the overall expected running time. In some
sense, as the dimension increases more information is being added to the lattice and
this makes the desired solution vector stand out more. The higher block sizes perform
better in the lower dimensions, as the stronger reduction allows them to isolate the so-
lution vector better. The lower block sizes perform better in the higher dimensions, as
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the high-dimensional lattices already contain much information and strong reduction is
not required.

The one exception to this rule is the case of Z = 2 in the CVP experiments. In dimen-
sions below 80 the CVP can be solved relatively quickly here, whereas in dimensions
80 up to 100 it takes more time. This can be explained as follows: in the low dimension
the CVP-tree is not very big, but contains many solutions. This means that enumeration
of the CVP-tree is very quick, but the solution vector is not unique. Thus, the probabil-
ity of success is equal to the probability of finding the right vector. From dimension 80
upwards, we expect the solution vector to be unique, but the CVP-trees become much
bigger on average. If we do not stop the enumeration after a fixed number of nodes,
it will find the solution with high probability, but the enumeration takes much longer.
Here, the probability of success is the probability of finding a solution at all.

We first note, for both our lattice variants, that there is a wide variation in the proba-
bility of success, if we ran a larger batch of tests we would presume this would stabilize.
However, even with this caveat we notice a number of remarkable facts. Firstly, recall
we are trying to break a 256 bit elliptic curve private key. The conventional wisdom
has been that using a window style exponentiation method and a side-channel which
only records a distinction between addition and doubling (i.e. does not identify which
additions), one would need much more than 256 executions to recover the secret key.
However, we see that we have a good chance of recovering the key with less than this.
For example, Nguyen and Shparlinksi [30] estimated needing 23×27 = 2944 signatures
to recover a 160 bit key, when seven consecutive zero bits of the ephemeral private key
were detected. Namely they would use a lattice of dimension 23, but require 2944 sig-
natures to enable to obtain 23 signatures for which they could determine the ones with
seven consecutive digits of the ephemeral private key. Note that 23 ·7= 161> 160. Liu
and Nguyen [24] extended this attack by using improved lattice algorithms, decreasing
the number of signatures required. We are able to have a reasonable chance of success
with as little as 200 signatures obtained against a 256 bit key.

In our modification of the lattice attack we not only utilize zero least significant bits,
but also notice that the end of a run of zeros tells us that the next bit is one. In addition
we utilize all of the run of zeros (say for example eight) and not just some fixed pre-
determined number (such as four). This explains our improved lattice analysis, and
shows that one can recover the secret with relatively high probability with just a small
number of measurements.

As a second note we see that strong lattice reduction, i.e. high block sizes in the BKZ
algorithm, or even applying BKZ-2.0, does not seem to gain us very much. Indeed
acquiring a few extra samples allows us to drop down to using BKZ with blocksize
twenty in almost all cases. Note that in many of our experiments a smaller value of β
resulted in a much lower probability of success (often zero), whilst a higher value of β
resulted in a significantly increased run time.

Thirdly, we note that if one is unsuccessful on one run, one does not need to derive
a whole new set of traces, simply by increasing the number of traces a little bit one can
either take a new random sample of the traces one has, or increase the lattice dimension
used.
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We end by presenting in Table 1 the best variant of the lattice attack, measured in
terms of the minimal value of Time divided by Probability of success, for the number
of signatures obtained. We see that in a very short amount of time we can recover the
secret key from 260 signatures, and with more effort we can even recover it from the
FLUSH+RELOAD attack applied to as little at 200 signatures. We see that it is not clear
whether the SVP or the CVP approach is the best strategy.

Table 1. Combined Results. The best lattice parameter choice for each number of signatures
obtained (in steps of 20)

Expected SVP/ Z = Pre-Processing Prob 100×
# Sigs SVP d min{zi} and/or SVP Algorithm Time (s) Success Time/Prob

200 SVP 100 1 BKZ (β = 30) 611.13 3.5 17460
220 SVP 110 1 BKZ (β = 25) 78.67 2.0 3933
240 CVP 60 2 BKZ (β = 25) 2.68 0.5 536
260 CVP 65 2 BKZ (β = 10) 2.26 5.5 41
280 CVP 70 2 BKZ (β = 15) 4.46 29.5 15
300 CVP 75 2 BKZ (β = 20) 13.54 53.0 26
320 SVP 80 2 BKZ (β = 20) 6.67 22.5 29
340 SVP 85 2 BKZ (β = 20) 9.15 37.0 24
360 SVP 90 2 BKZ (β = 15) 6.24 23.5 26
380 SVP 95 2 BKZ (β = 15) 6.82 36.0 19
400 SVP 100 2 BKZ (β = 15) 7.22 33.5 21
420 SVP 105 2 BKZ (β = 15) 7.74 43.0 18
440 SVP 110 2 BKZ (β = 15) 8.16 49.0 16
460 SVP 115 2 BKZ (β = 15) 8.32 52.0 16
480 CVP 120 2 BKZ (β = 10) 11.55 87.0 13
500 CVP 125 2 BKZ (β = 10) 10.74 93.5 12
520 CVP 130 2 BKZ (β = 10) 10.50 96.0 11
540 SVP 135 2 BKZ (β = 10) 7.44 55.0 13

5 Mitigation

As our attack requires capturing multiple signatures, one way of mitigating it is lim-
iting the number of times a private key is used for signing. Bitcoin, which uses the
secp256k1 curve on which this work focuses, recommends using a new key for each
transaction [28]. This recommendation, however, is not always followed [34], exposing
users to the attack.

Another option to reduce the effectiveness of the FLUSH+RELOAD part of the attack
would be to exploit the inherent properties of this “Koblitz” curve within the OpenSSL
implementation; which would also have the positive side result of speeding up the scalar
multiplication operation. The use of the GLV method [18] for point multiplication would
not completely thwart the above attack, but, in theory, reduces its effectiveness. The
GLV method is used to speed up the computation of point scalar multiplication when the
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elliptic curve has an efficiently computable endomorphism. This partial solution is only
applicable to elliptic curves with easily computable automorphisms with sufficiently
large automorphism group; such as the curve secp256k1 which we used in our example.

The curve secp256k1 is defined over a prime field of characteristic p with p ≡ 1
mod 6. This means that Fp contains a primitive 6th root of unity ζ and if (x,y) is in
the group of points on E , then (−ζx,y) is also. In fact, (−ζx,y) = [λ ](x,y) for some
λ 6 = 1 mod n. Since the computation of (−ζx,y) from (x,y) costs only one finite field
multiplication (far less than computing [λ ](x,y)) this can be used to speed up scalar
multiplication: instead of computing [k]G, one computes [k0]G+[k1]([λ ]G) where k0,k1

are around the size of k1/2. This is known to be one of the fastest methods of performing
scalar multiplication [18]. The computation of [k0]G + [k1]([λ ]G) is not done using
two scalar multiplications then a point addition, but uses the so called Straus-Shamir
trick which used joint double and add operations [18, Alg 1] performing the two scalar
multiplications and the addition simultaneously.

The GLV method alone would be vulnerable to simple side-channel analysis. It is
necessary to re-code the scalars k0 and k1 and comb method as developed and assembled
in [17] so that the execution is regular to thwart simple power analysis and timing
attacks. Using the attack presented above we are able to recover around 2 bits of the
secret key for each signature monitored. If the GLV method were used in conjunction
with wNAF, the number of bits (on average) leaked per signature would be reduced to
4/3. It is also possible to extend the GLV method to representations of k in terms of
higher degrees of λ , for example writing k = k0 + k1λ + · · ·+ ktλ t mod n. For t = 2
the estimated rate of bit leakage would be 6/7 bits per signature (though this extension
is not possible for the example curve due to the order of the automorphism).

We see that using the GLV method can reduce the number of leaked bits but it is not
sufficient to prevent the attack. A positive flip side of this and the attack of [39] is that
implementing algorithms which will improve the efficiency of the scalar multiplication
seem, at present, to reduce the effectiveness of the attacks.

Scalar blinding techniques [10,25] use arithmetic operations on the scalar to hide the
value of the scalar from potential attackers. The method suggested by these works is to
compute [(k+m · · ·n+ m̄)]G− [m̄]G where m and m̄ are small (e.g. 32 bits) numbers.
The random values used mask the bits of the scalar and prevent the spy from recovering
the scalar from the leaked data.

The information leak in our attack originates from using the sliding window in the
wNAF algorithm for scalar multiplication. Hence, an immediate fix for the problem is
to use a fixed window algorithm for scalar multiplication. A naı̈ve implementation of
a fixed window algorithm may still be vulnerable to the PRIME+PROBE attack, e.g. by
adapting the technique of [33]. To provide protection against the attack, the implemen-
tation must prevent any data flow from sensitive key data to memory access patterns.
Methods for achieving this are used in NaCL [8], which ensures that the sequence of
memory accesses it performs is not dependent on the private key. A similar solution
is available in the implementation of modular exponentiation in OpenSSL, where the
implementation attempts to access the same sequence of memory lines irrespective of
the private key. However, this approach may leak information [7, 37].
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A Experimental Results

Table 2. SVP Analysis Experimental Results : Z = minzi = 1

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

100 BKZ (β = 30) 200 611.13 3.5 17460
105 BKZ (β = 30) 210 702.67 7.5 9368
110 BKZ (β = 25) 220 78.67 2.0 3933
115 BKZ (β = 25) 230 71.18 3.5 2033
120 BKZ (β = 20) 240 14.78 1.0 1478
125 BKZ (β = 10) 250 6.81 1.0 681
130 BKZ (β = 20) 260 15.12 4.0 378
135 BKZ (β = 25) 270 57.83 20.0 289
140 BKZ (β = 20) 280 16.47 9.0 182
145 BKZ (β = 25) 290 57.63 29.5 195
150 BKZ (β = 20) 300 19.05 17.0 112
155 BKZ (β = 15) 310 13.14 13.5 97
160 BKZ (β = 15) 320 14.00 16.0 87
165 BKZ (β = 15) 330 15.75 17.5 90
170 BKZ (β = 15) 340 17.09 23.0 74
175 BKZ (β = 15) 350 18.14 23.0 78

Table 3. SVP Analysis Experimental Results : Z = minzi = 2

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob
65 BKZ (β = 25) 260 5.17 2.5 206
70 BKZ (β = 25) 280 7.93 13.5 58
75 BKZ (β = 25) 300 13.58 23.5 57
80 BKZ (β = 20) 320 6.67 22.5 29
85 BKZ (β = 20) 340 9.15 37.0 24
90 BKZ (β = 15) 360 6.24 23.5 26
95 BKZ (β = 15) 380 6.82 36.0 19

100 BKZ (β = 15) 400 7.22 33.5 21
105 BKZ (β = 15) 420 7.74 43.0 18
110 BKZ (β = 15) 440 8.16 49.0 16
115 BKZ (β = 15) 460 8.32 52.0 16
120 BKZ (β = 10) 480 6.49 44.0 14
125 BKZ (β = 10) 500 6.83 45.0 14
130 BKZ (β = 10) 520 7.06 48.0 14
135 BKZ (β = 10) 540 7.44 55.0 13
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Table 4. CVP Analysis Experimental Results : Z = minzi = 1

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

150 BKZ (β = 15) 300 32.43 3.0 1081
155 BKZ (β = 15) 310 33.90 8.0 424
160 BKZ (β = 20) 320 48.26 13.5 357
165 BKZ (β = 20) 330 50.97 20.0 255
170 BKZ (β = 15) 340 39.58 22.0 180
175 BKZ (β = 15) 350 41.20 26.0 158
180 BKZ (β = 15) 360 43.50 31.5 138
185 BKZ (β = 15) 370 44.30 39.5 112
190 BKZ (β = 15) 380 45.98 42.0 109
195 BKZ (β = 15) 390 46.15 46.0 100
200 BKZ (β = 15) 400 45.41 60.5 75
205 BKZ (β = 15) 410 48.45 65.5 74
210 BKZ (β = 10) 420 41.89 59.5 70
215 BKZ (β = 15) 430 49.56 76.0 65
220 BKZ (β = 15) 440 49.88 86.0 58
225 BKZ (β = 10) 450 44.58 77.0 58
230 BKZ (β = 15) 460 53.23 92.0 58
235 BKZ (β = 10) 470 52.86 88.0 60
240 BKZ (β = 10) 480 48.37 90.5 53
245 BKZ (β = 10) 490 49.74 89.5 56

Table 5. CVP Analysis Experimental Results : Z = minzi = 2

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob
60 BKZ (β = 25) 240 2.68 0.5 536
65 BKZ (β = 10) 260 2.26 5.5 41
70 BKZ (β = 15) 280 4.46 29.5 15
75 BKZ (β = 20) 300 13.54 53.0 26
80 BKZ (β = 20) 320 21.83 17.0 128
85 BKZ (β = 15) 340 20.08 25.5 130
90 BKZ (β = 20) 360 23.36 35.0 67
95 BKZ (β = 20) 380 22.40 52.5 43

100 BKZ (β = 20) 400 22.95 67.0 34
105 BKZ (β = 20) 420 21.76 77.0 28
110 BKZ (β = 15) 440 14.74 81.0 18
115 BKZ (β = 15) 460 14.82 86.5 17
120 BKZ (β = 10) 480 11.55 87.0 13
125 BKZ (β = 10) 500 10.74 93.5 12
130 BKZ (β = 10) 520 10.50 96.0 11
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Abstract. Researchers have demonstrated the ineffectiveness of deter-
ministic countermeasures and emphasized on the use of randomness for
protecting cryptosystems against fault attacks. One such countermeasure
for AES was proposed in LatinCrypt 2012, which masks the faulty output
with secret values. However this countermeasure does not affect the erro-
neous byte in the faulty computation of the last AES round and is thus
shown to be flawed in FDTC 2013. In this paper, we examine the Latin-
Crypt 2012 countermeasure in detail and identify its additional flaws in
order to develop a robust countermeasure. We bring out the major weak-
ness in the infection mechanism of the LatinCrypt 2012 countermeasure
which not only makes the attack of FDTC 2013 much more flexible, but
also enables us to break this seemingly complex countermeasure using
Piret & Quisquater’s attack that requires only 8 pairs of correct and
faulty ciphertexts. Finally, we combine all our observations and propose
a countermeasure that employs randomness much more effectively to
prevent state-of-the-art differential fault attacks against AES.
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1 Introduction

Ever since the demonstration of fault attacks by Dan Boneh et.al [1] on RSA
cryptosystem, fault analysis has been extensively studied and cryptosystems
such as DES and AES have been shown vulnerable to fault attacks. The purpose
of fault attacks is to retrieve the secret key used in the cryptosystems. This is
done by injecting a fault in a specific operation of the cipher and exploiting
the erroneous result. With respect to AES, there are multiple flavors of fault
attacks. While some of them exploit the relation between the faulty and fault
free ciphertext [2,3,4,5], some attacks can succeed with the knowledge of faulty
ciphertexts only [6]. There are attacks which require as many as 128 faults to
recover the secret key [7] whereas there are also attacks which require as few as
one random fault to retrieve the entire secret key of AES [8].

With so many variants of attacks introduced so far, it is now a well known
fact that fault attacks are a serious threat to the cryptographic implementations

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 93–111, 2014.
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and therefore, sound countermeasures are required to protect them. We focus our
discussion on AES, for which many countermeasures have been suggested. These
countermeasures can be broadly classified into two categories - detection and
infection. The detection countermeasure is usually implemented by duplicating
the computation and finally comparing the results of two computations. But in
this countermeasure, the comparison step itself is prone to fault attacks. The
infection countermeasure on the other hand, aims to destroy the fault invariant
by diffusing the effect of a fault in such a way that it renders the faulty ciphertext
unexploitable. Infection countermeasures are preferred to detection as they avoid
the use of attack vulnerable operations such as comparison.

In FDTC 2012, Lomné et.al [9] showed that infection countermeasures which
use deterministic diffusion to infect the intermediate output are not secure and
emphasized on the need of randomness in these countermeasures. In LatinCrypt
2012, Gierlichs et.al [10] proposed an infection countermeasure for AES which in-
fects the faulty computation with random values. Despite the use of randomness
in the infection mechanism, the countermeasure for AES128 [10] was attacked
by Battistello and Giraud in FDTC 2013 [11]. They observed that if a fault is
injected in any byte of the last three rows of the 10th round input, then the
erroneous byte remains unaffected by the infection method and can be exploited
to retrieve the corresponding key byte. This attack assumes a constant byte fault
model to retrieve 12 bytes of AES128 key using 36 faults on average and recov-
ers the remaining 4 key bytes corresponding to the top row using a brute-force
search.

In this paper, we concern ourselves with the countermeasure proposed in [10],
study its flaws in light of two different attacks and subsequently propose a mod-
ified countermeasure that prevents the differential fault attacks.

Contribution. The main objective of this paper is to develop an infection coun-
termeasure for AES based upon the idea proposed by Gierlichs et. al [10]. For
this purpose, we show that the infection method employed in the countermea-
sure [10] is not strong as we can remove the infection and obtain exploitable
faulty ciphertext. Using this observation, we can attack the top row of the 10th

cipher round input, which makes the attack presented in [11] more flexible. Fur-
thermore, we show that despite the presence of infection we can mount a more
practical attack, i.e the Piret & Quisquater’s attack [4] on this countermeasure,
thus exposing its weakness against classical fault attacks. We finally present a
modified algorithm that avoids all the pitfalls of the countermeasure [10] thereby
thwarting state-of-the-art differential fault attacks.

Organization. The rest of this paper is organized as follows. Section 2 sets the
backgroundby briefly explaining the infection scheme proposed in [10], followed by
the attack description [11]. In Section 3, we examine additional flaws in the scheme
[10] whichmake the attack of [11] more flexible and finally demonstrate an efficient
attack on [10]. Based on the observations in section 2 and 3,we present themodified
countermeasure in section 4. Section 5 concludes the paper.
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2 Preliminaries

In the rest of the discussion, we use the following notations:
RoundFunction - The round function of AES128 block cipher which operates
on a 16 byte state matrix and 16 byte round key. In a RoundFunction, the
SubByte, ShiftRow and MixColumn transformations are applied successively on
the state matrix, followed by the KeyXor operation. AES128 has 10 rounds in
addition to the initial Key Whitening step, which we refer to as the 0th round.
S - The SubByte operation in the RoundFunction.
SR - The ShiftRow operation in the RoundFunction.
MC - The MixColumn operation in the RoundFunction.
Ii - The 16 byte input to the ith round of AES128, where i ∈ {0, . . . , 10}.
K - The 16 byte secret key used in AES128.
kj - The 16 byte matrix that represents (j − 1)th round key, j ∈ {1, . . . , 11},
derived from the main secret key K.
β - The 16 byte secret input to the dummy round.
k0 - The 16 byte secret key used in the computation of dummy round.
The 16 bytes (m0. . .m15) of a matrix are arranged in 4 × 4 arrays and follow
a column major order. We denote multiplication symbol by · , a bitwise logical
AND operation by ∧, a bitwise logical OR operation by ∨, a bitwise logical NOT
operation by ¬ and a bitwise logical XOR operation by ⊕.

In this section, we begin by explaining the countermeasure for AES128 pro-
posed in [10], followed by a brief description of the attack [11] mounted on it.

2.1 Infection Countermeasure

Algorithm 1. Infection Countermeasure [10]

Inputs : P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES128
Output : C = BlockCipher(P,K)

1. State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2. C0 ← 0, C1 ← 0, C2 ← β, i ← 1
3. while i ≤ 2n do
4. λ ← RandomBit() // λ = 0 implies a dummy round
5. κ ← (i ∧ λ) ⊕ 2(¬λ)
6. ζ ← λ · 	i/2
 // ζ is actual round counter, 0 for dummy
7. Rκ ← RoundFunction(Rκ, k

ζ)
8. Cκ ← Rκ ⊕C2 ⊕ β // infect Cκ to propagate a fault
9. ε ← λ(¬(i ∧ 1)) · SNLF (C0 ⊕ C1) // check if i is even

10. R2 ← R2 ⊕ ε
11. R0 ← R0 ⊕ ε
12. i ← i + λ
13. end
14. R0 ← R0 ⊕RoundFunction(R2, k

0)⊕ β
15. return(R0)
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Algorithm 1 depicts the infection countermeasure proposed in [10] for AES128.
At the beginning of this algorithm, plaintext P is copied to both R0 and R1 and a
secret value β is copied to R2. In this algorithm, every round of AES is executed
twice. The redundant round which operates on R1, occurs before the cipher
round which operates on R0. There are dummy rounds which occur randomly
across the execution of this algorithm, in addition to one compulsory dummy
round in step 14. The input to the dummy round is a secret value β and a secret
key k0, which is chosen such that RoundFunction(β, k0) = β. To prevent the
information leakage through side channels e.g. power analysis, dummy SubByte,
ShiftRow and MixColumn operations are added to the 0th round and a dummy
MixColumn operation is added to the 10th round of AES128. The intermediate
computation of cipher, redundant and dummy round is stored in C0, C1 and C2

respectively. A random bit λ decides the course of the algorithm as follows:

1. λ = 0, dummy round is executed.
2. λ = 1 and parity of i is even, cipher round is executed.
3. λ = 1 and parity of i is odd, redundant round is executed.

After the computation of every cipher round, the difference between C0 and C1

is transformed by Some Non Linear Function(SNLF ) which operates on each
byte of the difference (C0 ⊕ C1). SNLF maps all but zero byte to non-zero
bytes and SNLF (0) = 0. Authors in [10] have suggested to use inversion in
GF (28) as SNLF . In case of fault injection in either cipher or redundant round,
the difference (C0 ⊕ C1) is non-zero and the infection spreads in subsequent
computations through R0 and R2 according to steps 9-11. Also, if the output of
dummy round, C2, is not β, the infection spreads in the subsequent computations
through the steps 8-11. Finally in the step 14, the output of last cipher round
is xored with the output of dummy round and β, and the resulting value is
returned.

2.2 Attack on the Infection Countermeasure

In the absence of any side channel and with the countermeasure [10] in place,
it seems difficult to identify whether a fault is injected in the target round by
analysing the faulty ciphertext. For example, in the implementation of AES128
without countermeasure, if a fault is injected in the input of 9th round, then
the expected number of faulty ciphertext bytes which differ from the correct
ciphertext is 4. In this countermeasure, the presence of compulsory dummy round
ensures that the expected number of different bytes is 16 when the 9th round
computation is faulty. Moreover, the occurence of random dummy rounds makes
it difficult to inject the same fault in both the branches of the computation.

Despite the strength of the countermeasure [10], authors in [11] showed how to
attack it using a constant byte fault model. They observed that only one dummy
round occurs after the 10th cipher round of AES128, which limits the infection
to only 4 bytes if the 10th round’s computation is faulty. The attack details are
as follows:
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Suppose a fault f disturbs I101 , i.e. the first byte of second row in 10th cipher
round input I10. The difference between the faulty and redundant intermediate
state after the step 7 of Algorithm 1 is:

R0 ⊕R1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 ε
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
where ε = S[I101 ⊕ f ]⊕ S[I101 ].
R2 and R0 are infected in steps 10 and 11. After the infection steps, we obtain:

R0 ⊕R1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 ε⊕ SNLF [ε]
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
Finally, in the step 14, dummy round operates on infected R2 which further
infects R0. But, the ShiftRow operation of dummy round shifts the infection to
column 3 and leaves the faulty byte of R0 in column 4 unmasked. The output
of compulsory dummy round differs from β in column 3 and therefore, the final
difference between the correct ciphertext C and faulty ciphertext C∗ is:

∴ C ⊕ C∗ =

⎛⎜⎜⎝
0 0 β′8 ⊕ β8 0
0 0 β′9 ⊕ β9 ε⊕ SNLF [ε]
0 0 β′10 ⊕ β10 0
0 0 β′11 ⊕ β11 0

⎞⎟⎟⎠ (1)

where β′8, β
′
9, β

′
10, β

′
11 are the infected bytes of the compulsory dummy round

output. Since the byte C∗
13 is unaffected by the infected output of dummy round,

it is exploited to retrieve the byte k1113 of the 10th round key using two more
pairs of faulty and correct ciphertexts. Similarly, the remaining 11 key bytes
corresponding to last three rows of k11 can be retrieved. For details on attack
procedure, the reader is referred to [11].

If a fault is injected in any byte of the last three rows of I10, the resulting
erroneous byte is left unmasked and hence is exploited in the attack. However,
if a fault is injected in any byte of the top row, the erroneous byte is masked
by the infected output of compulsory dummy round. This attack does not target
the remaining 4 key bytes that correspond to the top row and they are computed
using a brute force search.

Observation 1: Ideally, the countermeasure should infect the entire result if
a fault is injected in any of the rounds. But Algorithm 1 fails to protect the
last round and it is exploited in the attack. Moreover, in this algorithm, the last
cipher round is always the penultimate round. Thus, using a side channel, one
can always observe a posteriori whether a fault was injected in the last but one
round.

In the next section, we present additional flaws in the countermeasure [10]
which were considered while developing the countermeasure presented in
section4.
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3 Further Loop Holes in the Countermeasure: Attacking
the Infection Technique

It might seem that if the output of compulsory dummy round infects the erro-
neous byte of 10th round’s output, then the attack [11] can be thwarted. However,
in this section, we demonstrate that the infection caused by compulsory dummy
round is ineffective and can be removed.

3.1 Infection Caused by Compulsory Dummy Round

In Algorithm 1, since the input as well as the output of dummy round is β, i.e.
RoundFunction(β, k0) = β, we can write:

MC(SR(S(β))) ⊕ k0 = β

Using this relation, the xor of RoundFunction(R2, k
0) and β in step 14 of Al-

gorithm 1 can now be expressed as:

RoundFunction(R2, k
0)⊕ β =MC(SR(S(R2)))⊕ k0 ⊕MC(SR(S(β)))⊕ k0

=MC(SR(S(R2)))⊕MC(SR(S(β)))

Since SubByte operation is the only non-linear operation in the above equation,

∴ RoundFunction(R2, k
0)⊕ β =MC(SR(S(R2)⊕ S(β))) (2)

If R2 = β then the execution of compulsory dummy round in step 14 has no effect
on the final output R0, but if R2 �= β then the output of compulsory dummy
round infects the final output R0. However, this infection can be removed using
the above derived equation and the desired faulty ciphertext can be recovered.
On the basis of equation (2), the xor of correct ciphertext C and faulty ciphertext
C∗ in equation (1) can now be expressed as:

C ⊕ C∗ =

⎛⎜⎜⎝
0 0 3 · x 0
0 0 2 · x ε⊕ SNLF [ε]
0 0 1 · x 0
0 0 1 · x 0

⎞⎟⎟⎠
where x = S[β13 ⊕ SNLF [ε]] ⊕ S[β13] (for details refer Appendix A). Ideally,
every byte of C∗ should be infected with an independent random value but here
the compulsory dummy round in Algorithm 1 infects only column 3 of C∗ and
that too, with interrelated values and leaves the rest of the bytes unmasked.

In the following discussion, we show the significance of this result, by attacking
the top row of I10, which was not shown in [11]. Subsequently, we show that the
infection can be removed even if the fault is injected in the input of the 9th cipher
round. We prove this by mounting the classical Piret & Quisquater’s attack [4]
on the countermeasure [10].
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3.2 Attacking the Top Row

We now demonstrate the attack on the top row of I10 to retrieve the remaining
4 bytes of k10.

Suppose a fault f disturbs I100 i.e. the first byte of 10th cipher round input
I10. The difference between the faulty and redundant intermediate state after
the step 7 of Algorithm 1 is:

R0 ⊕R1 =

⎛⎜⎜⎝
ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
where ε = S[I100 ⊕ f ]⊕ S[I100 ].
R2 and R0 are infected in steps 10 and 11. After the infection steps, we obtain:

R0 ⊕R1 =

⎛⎜⎜⎝
ε⊕ SNLF [ε] 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
Finally, in the step 14, dummy round operates on infected R2 which further
infects R0. In this case, the ShiftRow operation of dummy round does not shift
the infection and the erroneous byte of R0 in column 1 is masked. The final
difference between the correct ciphertext C and faulty ciphertext C∗ is:

∴ C ⊕ C∗ =

⎛⎜⎜⎝
ε⊕ SNLF [ε]⊕ β′0 ⊕ β0 0 0 0

β′1 ⊕ β1 0 0 0
β′2 ⊕ β2 0 0 0
β′3 ⊕ β3 0 0 0

⎞⎟⎟⎠ (3)

where β′0, β
′
1, β

′
2, β

′
3 are the infected bytes of the compulsory dummy round

output. and ε = S[I100 ⊕ f ] ⊕ S[I100 ]. Here, we cannot use the attack technique
described in [11] directly, because the erroneous byte of 10th cipher round has
also been infected with the output of compulsory dummy round in step 14. This
is different from the case when fault is injected in any of the last three rows of
10th cipher round input. In order to carry out the attack [11], we need to remove
the infection caused by the dummy round.
Now, we can use equation (2) to write the above matrix as:

C ⊕ C∗ =

⎛⎜⎜⎝
ε⊕ SNLF [ε]⊕ 2 · y 0 0 0

1 · y 0 0 0
1 · y 0 0 0
3 · y 0 0 0

⎞⎟⎟⎠ (4)

where y = S[β0⊕SNLF [ε]]⊕S[β0] ( for details refer Appendix B). We can use the
value of 1 ·y from C⊕C∗ to remove the infection from C∗ and therefore unmask
the erroneous byte. As a consequence, we can perform the attack suggested in
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[11] to get the key byte k110 . By attacking the top row, now the attacker has the
flexibility to mount the attack on any of the 12 bytes of 10th cipher round instead
of always targeting the last three rows.

Observation 2: It is quite evident from this attack that the infection mecha-
nism used in the countermeasure [10] is not effective. The purpose of this infec-
tion countermeasure is defeated as we can easily remove the infection and recover
the desired faulty ciphertext. This is a major flaw in this countermeasure as it
makes even the 9th round susceptible to the fault attack which we will illustrate
in the following discussion.

3.3 Piret & Quisquater’s Attack on the Countermeasure

The presence of compulsory dummy round in the countermeasure [10] ensures
that a fault in the 9th cipher round input of AES128 infects all 16 bytes in the
output. Even though the countermeasure infects all the bytes of the resulting
ciphertext, we show that we can again remove the infection caused by compulsory
dummy round using equation (2) and obtain the desired faulty ciphertext. To
mount this attack, we consider the following two facts:

1. The authors of [10] havementioned that an attacker can affect theRandomBit
function in the Algorithm 1, so that the random dummy round never occurs.
To counteract this effect, they added a compulsory dummy round at the end
of the algorithm which ensures that the faulty ciphertext is infected in such a
way that no information is available to the attacker.

2. Also, because of performance issues, Algorithm 1 should terminate within a
reasonable amount of time and hence, the number of random dummy rounds
should be limited to a certain value.

First, we show that if random dummy rounds never occur in the while loop, then
despite the presence of compulsory dummy round in step 14, we can mount the
Piret & Quisquater’s attack [4] on this countermeasure and recover the entire key
using only 8 faulty ciphertexts. Subsequently, we show that even if the random
dummy rounds occur, we can still mount this attack [4].

Attack in the Absence of Random Dummy Rounds. Consider the sce-
nario where the attacker influences the RandomBit function so that no dummy
round occurs except the compulsory dummy round in step 14. We observe that
if a fault is injected in the 9th cipher round, then the rest of the computation is
infected thrice. Once, after the 9th cipher round in step 11, then after the 10th

cipher round in step 11 and finally after the execution of compulsory dummy
round in step 14. To be able to mount Piret & Quisquater’s attack [4], we first
analyze the faulty ciphertext and identify whether a fault was injected in the
input of 9th cipher round. After identifying such faulty ciphertexts, we remove
the infection caused by the output of compulsory dummy round and 10th cipher
round. Once the infection is removed, we can proceed with the attack described
in [4].
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The attack procedure can be summarized as follows:

1. Suppose a random fault f is injected in the first byte of the 9th cipher round
input. Before the execution of step 14, the output of faulty computation
differs from the output of correct computation in 4 positions viz. 0, 13, 10
and 7 which comprises a diagonal. But the execution of compulsory dummy
round in step 14 infects all the 16 bytes of the faulty computation. Therefore,
the resulting faulty ciphertext T ∗ differs from the correct ciphertext T in 16
bytes. We use equation (2) to represent this difference as:

T⊕T ∗ =

⎛⎜⎜⎝
m0 ⊕ 2F1 ⊕ 1F2 1F3 3F4 ⊕ 1F5 ⊕ 1F6 3F7

1F1 ⊕ 3F2 1F3 2F4 ⊕ 3F5 ⊕ 1F6 m1 ⊕ 2F7

1F1 ⊕ 2F2 3F3 m2 ⊕ 1F4 ⊕ 2F5 ⊕ 3F6 1F7

3F1 ⊕ 1F2 m3 ⊕ 2F3 1F4 ⊕ 1F5 ⊕ 2F6 1F7

⎞⎟⎟⎠
(5)

where Fi, i ∈ {1, . . . , 7}, represents the infection caused by the compulsory
dummy round in step 14 and mj, j ∈ {0, 1, 2, 3}, represents the difference
between the correct and faulty computation before the execution of step 14
in Algorithm 1 (for more details refer Appendix C). Now, we can deduce the
values of F1 and F2 from column 1, F3 from column 2, F4, F5 and F6 from
column 3 and F7 from column 4 and thus remove the infection caused by
the compulsory dummy round from T ∗.

2. After removing the infection caused by compulsory dummy round, we get:

T ⊕ T ∗ =

⎛⎜⎜⎝
m0 0 0 0
0 0 0 m1

0 0 m2 0
0 m3 0 0

⎞⎟⎟⎠
We can now remove the infection caused by the 10th cipher round. Each mj

can be written as zj⊕SNLF [zj], j ∈ {0, 1, 2, 3}, where SNLF [zj] represents
the infection caused in step 11 of Algorithm 1, after the execution of 10th

cipher round and zj represents the difference between the outputs of correct
and faulty computations before step 11 (for more details refer Appendix C).
If SNLF is implemented as inversion in GF (28), we get two solutions of
zj for every mj . Since the 4 equations represented by mj are independent,
we obtain 24 solutions for T ⊕ T ∗. Here, T is known, therefore we have 24

solutions for T ∗ as well.
3. After removing the infection caused by 10th cipher round, the attacker makes

hypotheses on 4 bytes of the 10th round key k11 and uses the faulty and
correct output of 9th cipher round to verify the following relations:

2 · f ′ ⊕ SNLF [2 · f ′] = S−1[T0 ⊕ k110 ]⊕ S−1[T ∗
0 ⊕ k110 ]

1 · f ′ ⊕ SNLF [1 · f ′] = S−1[T13 ⊕ k1113 ]⊕ S−1[T ∗
13 ⊕ k1113 ]

1 · f ′ ⊕ SNLF [1 · f ′] = S−1[T10 ⊕ k1110 ]⊕ S−1[T ∗
10 ⊕ k1110 ]

3 · f ′ ⊕ SNLF [3 · f ′] = S−1[T7 ⊕ k117 ]⊕ S−1[T ∗
7 ⊕ k117 ]
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where SNLF [b · f ′], b ∈ {1, 2, 3} is the infection caused in step 11, after the exe-
cution of 9th cipher round. The above set of equations is solved for all 24 possible
values of T ∗ (for the complexity analysis of the attack, refer Appendix D).

Identifying Desired Faulty Ciphertexts. As done in [4], we call a cipher-
text resulting from a fault injected in the input of 9th round as desired faulty
ciphertext, otherwise we call it undesired. It is not difficult to identify whether
the given faulty ciphertext is desired or not. With the countermeasure [10] in
place, if a fault affects a byte of column i in the 9th round input, where i ∈
{0,1,2,3}, we observed that the following relations hold in the xor of faulty and
correct ciphertext:

(T ⊕ T ∗)(4·(i+1))%16 = (T ⊕ T ∗)(4·(i+1))%16+1

(T ⊕ T ∗)(4·(i+1))%16+2 = 3 · (T ⊕ T ∗)(4·(i+1))%16

(T ⊕ T ∗)(4·(i+3))%16+2 = (T ⊕ T ∗)(4·(i+3))%16+3

(T ⊕ T ∗)(4·(i+3))%16 = 3 · (T ⊕ T ∗)(4·(i+3))%16+2

(6)

where (T⊕T ∗)j represents the jth byte in matrix T⊕T ∗. One can see from equa-
tion (5), that the above relation arises because the compulsory dummy round
uses the same value to mask more than one byte of the faulty computation.

Attack Considering Random Dummy Rounds. In the attack explained
above, we assumed that the attacker influences the RandomBit function in the
countermeasure [10] so that the dummy rounds do not occur in the while loop.
Now, we consider the case where the number of random dummy rounds occuring
in every execution of Algorithm 1 is exactly d1. Since λ = 0 corresponds to a
dummy round and λ = 1 corresponds to an AES round, we can view the compu-
tation of Algorithm 1 as if decided by a binary string of length (22 + d), where
(22+ d)th RoundFunction is always the 10th cipher round. We choose to inject
the fault in (22 + d − 2)th round as it can be a 9th cipher or a 10th redundant
or a dummy round. This increases the probability of injecting the fault in 9th

cipher round.
Assuming that every string of length (22+d), consisting of exactly 22 1’s and

d 0’s, is equally likely, then the probability that (22+d−2)th RoundFunction is
a 9th cipher round is the same as that of a binary string of length (22 + d) that
ends in ‘111’. Since the while loop in Algorithm 1 always terminates with the
execution of 10th cipher round, the binary string always ends with a 1. There-

fore this probability is: (19+d)!/((19)!·(d)!)
(21+d)!/((21)!·(d)!) (refer Appendix E). If d = 20 then the

probability that 40th RoundFunction is a 9th cipher round is nearly 0.26.

Simulation Results. We carried out Piret & Quisquater’s attack [4] on Al-
gorithm 1 using a random byte fault model with no control over fault local-

1 If the value of d varies across different executions, one can still compute a mean
value of d by observing the number of RoundFunctions through a side channel.
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ization. We implemented the Algorithm 1 in C and used the GNU Scientific
Library(GSL) for RandomBit function. The simulation details are as follows:

1. The value of d is kept constant and 1000 tests are performed.
2. Each test executes Algorithm 1 until 8 desired faulty ciphertexts are ob-

tained. However, as the target (22 + d− 2)th RoundFunction can also be a
dummy or 10th redundant round, the undesired faulty ciphertexts obtained
in such cases are discarded. The equation set (6) can be used to distinguish
between desired and undesired faulty ciphertexts.

3. An average of the faulty encryptions over 1000 tests is taken, where number
of faulty encryptions in a test = (8 desired faulty ciphertext + undesired
faulty ciphertexts).

4. Subsequently, the value of d is incremented by 5 and the above procedure is
repeated.

The probability that the targetedRoundFunction is a 9th cipher round decreases
with higher values of d but it still remains non-negligible. In other words, higher
the value of d, more is the number of faulty encryptions required in a test as
evident from Fig.1.
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Fig. 1. Piret & Quisquater’s Attack on Algorithm 1

Observation 3: The feasibility of Piret and Quisquater’s attack shows that the
infection method employed in the countermeasure [10] fails to protect against
classical fault attacks.

4 Improved Countermeasure

In this section, we propose an improved countermeasure based upon the princi-
ples used in the Algorithm 1. The observations enumerated in this paper were
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used as a guideline for developing this countermeasure. As evident from the at-
tacks explained earlier, the infection countermeasure for protecting AES against
the differential fault attacks should have the following properties:

1. If a fault is injected in any of the cipher, redundant or dummy round, all
bytes in the resulting ciphertext should be infected.

2. As shown in Section 3 of this paper, merely infecting all bytes in the output
is not sufficient. Therefore, the infection technique should result in such a
faulty ciphertext that any attempts to make hypothesis on the secret key
used in AES are completely nullified.

3. The countermeasure itself should not leak any information related to the
RoundFunction computations which can be exploited through a side chan-
nel.

Given below is an algorithm, which is designed to possess all the aforementioned
properties. It uses cipher, redundant and dummy rounds along the lines of Al-
gorithm 1 but exhibits a rather robust behaviour against fault attacks.

Algorithm 2. Improved Countermeasure

Inputs : P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES128
Output : C = BlockCipher(P,K)

1. State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2. i ← 1, q ← 1
3. rstr ← {0, 1}t // #1(rstr) = 2n,#0(rstr) = t− 2n
4. while q ≤ t do
5. λ ← rstr[q] // λ = 0 implies a dummy round
6. κ ← (i ∧ λ) ⊕ 2(¬λ)
7. ζ ← λ · 	i/2
 // ζ is actual round counter, 0 for dummy
8. Rκ ← RoundFunction(Rκ, k

ζ)
9. γ ← λ(¬(i ∧ 1)) ·BLFN(R0 ⊕R1) // check if i is even

10. δ ← (¬λ) ·BLFN(R2 ⊕ β)
11. R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) · R2)
12. i ← i + λ
13. q ← q + 1
14. end
15. return(R0)

Following additional notations are used in this algorithm:

1. rstr: A ‘t’ bit random binary string, consisting of (2n) 1’s corresponding to
AES rounds and (t− 2n) 0’s corresponding to dummy rounds.

2. BLFN: A boolean function that maps a 128 bit value to a 1 bit value.
Specifically, BLFN(0) = 0 and for nonzero input BLFN evaluates to 1.

3. γ: A one bit comparison variable to detect fault injection in AES round.
4. δ: A one bit comparison variable to identify a fault injection in dummy

round.
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Apart from these elements, Algorithm 2 exhibits the following features which
makes it stronger than Algorithm 1:

1. In Algorithm 2, matrix R2 represents the state of the dummy round and is
initialized to a random value β. This state matrix R2 bears no relation with
any of the intermediate states or the round keys of AES. When a fault is
induced in any of the rounds, Algorithm 2 outputs a matrix R2. For fault
analysis to succeed, the faulty output should contain some information about
the key used in the cipher. However, the new countermeasure outputs matrix
R2 which is completely random and does not have any information about the
key used in the AES, which makes the differential fault analysis impossible.
Since in the case of fault injection, Algorithm 2 outputs dummy state R2,
the pair (β, k0) should be refreshed in every execution2.

2. In Algorithm 2, more than one dummy round can occur after the execution
of last cipher round and consequently the 10th cipher round is not always
the penultimate round.

3. Since the number of dummy rounds in Algorithm 2 is kept constant, the
leakage of timing information through a side channel is also prevented.

For a clear illustration, Table 1 shows the functioning of Algorithm 2. If any of the

Table 1. Computation of Algorithm 2

Step Redundant Round Cipher Round Dummy Round

5. λ = 1, i is odd λ = 1, i is even λ = 0
6. κ ← 1 κ ← 0 κ ← 2
7. ζ ← �i/2� ζ ← �i/2� ζ ← 0

8. R1 ← RoundFunction(R1, kζ) R0 ← RoundFunction(R0, kζ) R2 ← RoundFunction(R2, k0)
9. γ ← 0 γ ← BLFN(R0 ⊕ R1) γ ← 0
10. δ ← 0 δ ← 0 δ ← BLFN(R2 ⊕ β)
11. R0 ← R0 R0 ← (¬(γ) · R0) ⊕ ((γ) · R2) R0 ← (¬(δ) · R0) ⊕ ((δ) · R2)
12. i ← i + 1 i ← i + 1 i ← i + 0
13. q ← q + 1 q ← q + 1 q ← q + 1

cipher or redundant round is disturbed, then during the computation of cipher
round, (R0⊕R1) is non-zero and BLFN(R0⊕R1) updates the value of γ to 1. As
a result, R0 is replaced by R2 in step 11. Similarly, if the computation of dummy
round is faulty, (R2⊕ β) is non-zero and δ evaluates to 1. In this case too, R0 is
replaced by R2. Also, if the state of comparison variables γ and δ is 1 at the same
time, then in step 11, R0 is substituted by R2 as this condition indicates fault in
comparison variables themselves. In case of undisturbed execution, Algorithm 2
generates a correct ciphertext. Refer Appendix F for more details.

5 Conclusion

Recent works [6], [9] suggest the use of randomness to build sound countermea-
sures for protecting AES against the fault attacks. The infection countermeasure

2 One should note that even a new pair of (β, k0) cannot protect Algorithm 1 against
the attacks described in this paper.
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in [10] introduces the element of randomness through the use of dummy round
but is still ineffective against fault attacks which target the last and penultimate
round. This is because the infection uses the same unknown value to mask the
erroneous byte as well as the non-erroneous bytes. One can easily deduce the
value of this unknown mask from the xor of correct and faulty output. Also in
the case of erroneous computation of 10th cipher round, the infection doesn’t
affect every byte in the faulty output. However, the modified countermeasure
presented in this paper affects every erroneous as well as non-erroneous byte
with independent random values irrespective of the round in which the fault
is injected. Since these random values bear no relation with the intermediate
output or the secret key, analysis of the resulting faulty ciphertext is a futile
exercise for the attacker.
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A Execution of Infected Compulsory Dummy Round:
First Attack

After the execution of 10th cipher round, a fault f in I101 infects the byte β13 of
R2 in the step 10 of Algorithm 1:

R2 = R2 ⊕ ε =

⎛⎜⎜⎝
β0 β4 β8 β12
β1 β5 β9 β13 ⊕ SNLF [ε]
β2 β6 β10 β14
β3 β7 β11 β15

⎞⎟⎟⎠
where ε = S[I101 ]⊕ S[I101 ⊕ f ]. Thus, the input R2 of compulsory dummy round
is infected. Execution of compulsory dummy round in step 14 on the infected
R2 is shown below.
After the ShiftRow and SubByte operation:

R2 =

⎛⎜⎜⎝
S[β0] S[β4] S[β8] S[β12]
S[β5] S[β9] S[β13 ⊕ SNLF [ε] S[β1]
S[β10] S[β14] S[β2] S[β6]
S[β15] S[β3] S[β7] S[β11]

⎞⎟⎟⎠
For clarity purpose, the output of MixColumn and KeyXor operations of only
3rd column is shown:

β′8 = 2 · S[β8]⊕ 3 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β2]⊕ 1 · S[β7]⊕ k08
β′9 = 1 · S[β8]⊕ 2 · S[β13 ⊕ SNLF [ε]]⊕ 3 · S[β2]⊕ 1 · S[β7]⊕ k09
β′10 = 1 · S[β8]⊕ 1 · S[β13 ⊕ SNLF [ε]]⊕ 2 · S[β2]⊕ 3 · S[β7]⊕ k010
β′11 = 3 · S[β8]⊕ 1 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β2]⊕ 2 · S[β7]⊕ k011

Since RoundFunction(β, k0) = β, we can write the 3rd column of β as:

β8 = 2 · S[β8]⊕ 3 · S[β13]⊕ 1 · S[β2]⊕ 1 · S[β7]⊕ k08
β9 = 1 · S[β8]⊕ 2 · S[β13]⊕ 3 · S[β2]⊕ 1 · S[β7]⊕ k09
β10 = 1 · S[β8]⊕ 1 · S[β13]⊕ 2 · S[β2]⊕ 3 · S[β7]⊕ k010
β11 = 3 · S[β8]⊕ 1 · S[β13]⊕ 1 · S[β2]⊕ 2 · S[β7]⊕ k011

The remaining columns in β and in the output of dummy round are same. In
step 14, the result of compulsory dummy round is xored with β.

∴ RoundFunction(R2, k
0)⊕ β =

⎛⎜⎜⎝
0 0 3 · S[β13 ⊕ SNLF [ε]]⊕ 3 · S[β13] 0
0 0 2 · S[β13 ⊕ SNLF [ε]]⊕ 2 · S[β13] 0
0 0 1 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β13] 0
0 0 1 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β13] 0

⎞⎟⎟⎠
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B Execution of Infected Compulsory Dummy Round:
Top Row Attack

After the execution of 10th cipher round, a fault f in I100 infects the byte β0 of
R2 in the step 10 of Algorithm 1:

R2 = R2 ⊕ ε =

⎛⎜⎜⎝
β0 ⊕ SNLF [ε] β4 β8 β12

β1 β5 β9 β13
β2 β6 β10 β14
β3 β7 β11 β15

⎞⎟⎟⎠
where ε = S[I100 ]⊕ S[I100 ⊕ f ]. Thus, the input R2 of compulsory dummy round
is infected. Execution of compulsory dummy round in step 14 on the infected
R2 is shown below.
After the ShiftRow and SubByte operation:

R2 =

⎛⎜⎜⎝
S[β0]⊕ SNLF [ε] S[β4] S[β8] S[β12]

S[β5] S[β9] S[β13 S[β1]
S[β10] S[β14] S[β2] S[β6]
S[β15] S[β3] S[β7] S[β11]

⎞⎟⎟⎠
For clarity purpose, the output of MixColumn and KeyXor operations of only
3rd column is shown:

β′0 = 2 · S[β0 ⊕ SNLF [ε]]⊕ 3 · S[β5]⊕ 1 · S[β10]⊕ 1 · S[β15]⊕ k00
β′1 = 1 · S[β0 ⊕ SNLF [ε]]⊕ 2 · S[β5]⊕ 3 · S[β10]⊕ 1 · S[β15]⊕ k01
β′2 = 1 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β5]⊕ 2 · S[β10]⊕ 3 · S[β15]⊕ k02
β′3 = 3 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β5]⊕ 1 · S[β10]⊕ 2 · S[β15]⊕ k03

Since RoundFunction(β, k0) = β, we can write the 1st column of β as:

β′0 = 2 · S[β0]⊕ 3 · S[β5]⊕ 1 · S[β10]⊕ 1 · S[β15]⊕ k00
β′1 = 1 · S[β0]⊕ 2 · S[β5]⊕ 3 · S[β10]⊕ 1 · S[β15]⊕ k01
β′2 = 1 · S[β0]⊕ 1 · S[β5]⊕ 2 · S[β10]⊕ 3 · S[β15]⊕ k02
β′3 = 3 ∗ S[β0]⊕ 1 · S[β5]⊕ 1 · S[β10]⊕ 2 · S[β15]⊕ k03

The remaining columns in β and in the output of dummy round are same. In
step 14, the result of compulsory dummy round is xored with β.

∴ RoundFunction(R2, k
0)⊕ β =

⎛⎜⎜⎝
2 · S[β0 ⊕ SNLF [ε]]⊕ 2 · S[β0] 0 0 0
1 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β0] 0 0 0
1 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β0] 0 0 0
3 · S[β0 ⊕ SNLF [ε]]⊕ 3 · S[β0] 0 0 0

⎞⎟⎟⎠
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C Diffusion of Fault and Infection in Piret & Quisquater’s
Attack

In this appendix, we explain how the fault diffuses and infects the computation
of Algorithm 1, when a fault is injected in the input of 9th cipher round. Let I9

denote the input to the 9th cipher round. Suppose a fault f is injected in the
first byte of 9th cipher round input I9.

I9 =

⎛⎜⎜⎝
I90 ⊕ f I94 I98 I912
I91 I95 I99 I913
I92 I96 I910 I914
I93 I97 I911 I915

⎞⎟⎟⎠
After the execution of 9th cipher round in the step 7 of Algorithm 1, the difference
between the faulty and redundant intermediate state is:

R0 ⊕R1 =

⎛⎜⎜⎝
A 0 0 0
B 0 0 0
C 0 0 0
D 0 0 0

⎞⎟⎟⎠
where A = 2 ∗ f ′, B = 1 ∗ f ′, C = 1 ∗ f ′ and D = 3 ∗ f ′.
After infection in step 11, this difference is:

R0 ⊕R1 =

⎛⎜⎜⎝
A⊕ SNLF [A] 0 0 0
B ⊕ SNLF [B] 0 0 0
C ⊕ SNLF [C] 0 0 0
D ⊕ SNLF [D] 0 0 0

⎞⎟⎟⎠
In step 10, R2 is also infected.

R2 =

⎛⎜⎜⎝
β0 ⊕ SNLF [A] β4 β8 β12
β1 ⊕ SNLF [B] β5 β9 β13
β2 ⊕ SNLF [C] β6 β10 β14
β3 ⊕ SNLF [D] β7 β11 β15

⎞⎟⎟⎠

Since 10th redundant round executes without any error, after the execution of
10th cipher round in the step 7 of Algorithm 1, the difference between the faulty
and redundant computation is:

R0 ⊕R1 =

⎛⎜⎜⎝
z0 0 0 0
0 0 0 z1
0 0 z2 0
0 z3 0 0

⎞⎟⎟⎠
where z0 = S[I100 ⊕A⊕SNLF [A]]⊕S[I100 ], z1 = S[I101 ⊕B⊕SNLF [B]]⊕S[I101 ],
z2 = S[I102 ⊕ C ⊕ SNLF [C]]⊕ S[I102 ], z3 = S[I103 ⊕D ⊕ SNLF [D]]⊕ S[I103 ].



110 H. Tupsamudre, S. Bisht, and D. Mukhopadhyay

In step 11, R0 is further infected, therefore the difference between faulty and
redundant computation at the end of the while loop is:

R0 ⊕R1 =

⎛⎜⎜⎝
m0 0 0 0
0 0 0 m1

0 0 m2 0
0 m3 0 0

⎞⎟⎟⎠
where mj = zj ⊕ SNLF [zj], j ∈ {0, 1, 2, 3}.
R2 is also infected in the step 10. After infection, R2 is⎛
⎜⎜⎝
β0 ⊕ SNLF [A]⊕ SNLF [z0] β4 β8 β12

β1 ⊕ SNLF [B] β5 β9 β13 ⊕ SNLF [z1]
β2 ⊕ SNLF [C] β6 β10 ⊕ SNLF [z2] β14

β3 ⊕ SNLF [D] β7 ⊕ SNLF [z3] β11 β15

⎞
⎟⎟⎠

Thus, at the end of the while loop, 4 bytes of R0 and 7 bytes of R2 are infected.

In step 14, when compulsory dummy round operates on R2, the infection in
the input of R2 spreads to all the 16 bytes. Using equation (2), we can write the
final difference T ⊕ T ∗ as:

T ⊕ T ∗ =

⎛⎜⎜⎝
m0 ⊕ 2F1 ⊕ 1F2 1F3 3F4 ⊕ 1F5 ⊕ 1F6 3F7

1F1 ⊕ 3F2 1F3 2F4 ⊕ 3F5 ⊕ 1F6 m1 ⊕ 2F7

1F1 ⊕ 2F2 3F3 m2 ⊕ 1F4 ⊕ 2F5 ⊕ 3F6 1F7

3F1 ⊕ 1F2 m3 ⊕ 2F3 1F4 ⊕ 1F5 ⊕ 2F6 1F7

⎞⎟⎟⎠
where F1 = S[β0 ⊕ SNLF [A]⊕ SNLF [z0]]⊕ S[β0], F2 = S[β10 ⊕ SNLF [z2]]⊕
S[β10], F3 = S[β3 ⊕ SNLF [D]] ⊕ S[β3], F4 = S[β13 ⊕ SNLF [z1]] ⊕ S[β13],
F5 = S[β2 ⊕ SNLF [C]] ⊕ S[β2], F6 = S[β7 ⊕ SNLF [z3]] ⊕ S[β7], and F7 =
S[β1 ⊕ SNLF [B]]⊕ S[β1].

D Complexity Analysis

A random byte fault in the input of 9th cipher round results in 24 solutions for
T ∗. Every solution of T ∗ gives 1036 candidate values for 4 bytes of the 10th round
key k11 as described in [4]. Thus the expected number of candidate values for
4 bytes of k11 is 24 ∗ 1036 = 16576. If we repeat this attack process on another
pair of faulty and correct ciphertext we expect to get no more than 2 values for
4 bytes of k11 [4]. Our experiments also reveal that we are left with at most 2
candidate values for every 4 bytes of k11.

E Probability Computation

Consider a set L = {s ∈ {0, 1}n+d: #|1| = n ∧ #|0| = d}.
The number of unique binary strings, consisting of exactly n 1’s and d 0’s, i.e.
| L | is (n+ d)!/(n! · d!).
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Thus, the number of unique binary string (Stotal) consisting of n = 21 1’s and d
0’s = (21 + d)!/(21! · d!).
And the number of unique binary string (Sfavourable) consisting of n = 21 1’s,
d 0’s and ending with ‘11’ = (19 + d)!/(19! · d!).
Therefore, the probability of uniformly selecting a binary string from the set L
with n = 21 and terminating with ‘11’ =

Sfavourable

Stotal
.

F Values of Bit Variables During the Execution of
Algorithm 2

Table 2. Status of Variables during Execution of Algorithm 2

i%2 λ γ δ comments

1 1 0 0 correct computation of redundant round

0 1 0 0 correct computation of cipher round

X 0 0 0 correct computation of dummy round

0 1 1 0 detection of fault in AES round

X 0 0 1 detection of a fault in dummy round

X X 1 1 detection of fault in comparison bit variable
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Abstract. A successful detection of the stealthy dopant-level circuit (tro-
jan), proposed byBecker et al. atCHES2013 [1], is reported.Contrary to an
assumption made by Becker et al., dopant types in active region are visible
with either scanning electronmicroscopy (SEM)or focused ion beam (FIB)
imaging. The successful measurement is explained by an LSI failure anal-
ysis technique called the passive voltage contrast [2]. The experiments are
conducted by measuring a dedicated chip. The chip uses the diffusion pro-
grammable device [3]: an anti-reverse-engineering technique by the same
principle as the stealthy dopant-level trojan. The chip is delayered down
to the contact layer, and images are taken with (1) an optical microscope,
(2) SEM, and (3) FIB. As a result, the four possible dopant-well combina-
tions, namely (i) p+/n-well, (ii) p+/p-well, (iii) n+/n-well and (iv) n+/p-
well are distinguishable in the SEM images. Partial but sufficient detection
is also achieved with FIB. Although the stealthy dopant-level circuits are
visible, however, they potentially make a detection harder. That is because
the contact layer should be measured. We show that imaging the contact
layer is at most 16-times expensive than that of a metal layer in terms of
the number of images.

Keywords: Stealthy dopant-level trojan, Chip reverse engineering, LSI
failure analysis, Passive voltage contrast.

1 Introduction

Chips are widely used as “roots of trust” in modern security systems. The trust
originates from properties that chip internals are difficult to inspect and/or mod-
ify. Limitations and improvements of such properties have been studied over the
last decades in the chip security community. Recently, two related threats to the
properties are drawing attentions. They are (i) hardware trojan and (ii) chip
reverse engineering.

Hardware trojans are malicious modifications or implantations to circuit sys-
tems. An attacker uses a trojan as a backdoor to compromise security of a
chip. Threats of hardware trojans are emerging because of the globalization [1].
Nowadays, many parties (e.g., IP vendors, design houses, foundries, assembly
and testing companies, etc.) are commonly involved in a chip development. The
parties are not always trustworthy.

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 112–126, 2014.
c© International Association for Cryptologic Research 2014
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In chip reverse engineering, on the other hand, an attacker tries to recover
a netlist (or ultimately its logical functionality) of a target chip. The attempt
is made by investigating depackaged and delayered chips. The attacker is mo-
tivated, for examples, (i) to make fakes, (ii) to obtain trade secrets, or (iii) to
get an embedded secret key, etc. Nohl et al. showed a successful recovery of
a hidden cipher algorithm as a result of reverse-engineering an RFID chip [4].
Analysis techniques are catching up with shrinking CMOS process. Torrance
and James [5] showed that even a chip fabricated by a modern processes can be
reverse-engineered.

Two problems are related. They can be modeled as a game between two
players:

– Hider who try to hide something in a chip,
– Seeker who try to find the hidden something.

Note that the players Hider and Seeker appear throughout this paper. The labels
are used because roles of an attacker and a defender are interchanged between
the contexts of the hardware trojan and reverse engineering.

Seemingly, Hider is now advantageous because of the stealthy dopant-level
trojans proposed by Becker et al. at CHES 2013 [1]. In the stealthy dopant-
level trojan, dopant types in active region is modified. The proposers assume
that measuring dopant types should be difficult even with scanning electron
microscopy (SEM). If the assumption is true, then Seeker cannot find the trojan.
Becker et al. showed a proof-of-concept modification and some realistic attack
scenarios, which attracted much attentions [6]. Such a modification in active
region is realistic especially when the trojan is implanted by a malicious foundry.

Soon after the proposal by Becker et al., an anti-reverse-engineering technique
called the diffusion programmable device (DPD) was proposed by Shiozaki et al.
[3]. DPD uses the same principle as the stealthy dopant-level trojan. Therefore,
reverse engineering of DPD is as difficult as detecting the stealthy dopant-level
trojan. Both (i) the stealthy dopant-level trojan and (ii) DPD are referred to as
“stealthy dopant-level circuits” in this paper.

As a first contribution, validity of the assumption, on which the stealthy
dopant-level circuits are based, is examined with concrete experiments. Specifi-
cally, a dedicated chip containing DPD is measured with (a) an optical micro-
scope, (b) SEM and (c) focused ion beam (FIB). As a result, we show that the
stealthy dopant-level circuit is detectable contrary to the assumption made by
the proposers. All the four possible dopant-well configurations, namely (i) p+/n-
well, (ii) p+/p-well, (iii) n+/n-well and (iv) n+/p-well are distinguishable with
SEM imaging. In addition, partial success is achieved with FIB imaging. The
reason is explained by a technique called the passive voltage contrast (PVC) [2]
studied in the LSI failure analysis community [5] [7] [8].

Although the stealthy dopant-level circuits are visible, however, they poten-
tially make the detection harder. That is because the contact layer should be
measured for detection. As a second contribution, the cost is estimated in terms
of the number of images. We show that imaging of the contact layer can be
16-times expensive than that of the first metal (M1) layer in our setup.
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Fig. 1. Cross-sectional view of a CMOS circuit

2 Stealthy Dopant-Level Circuits

2.1 CMOS Circuit Fabrication

We firstly recall chip internals focusing on dopants. Fig. 1 shows a cross-sectional
view of a common CMOS circuit. It has a layered structure. The layers are
created through a series of processes summarized as [9]:

1. create n- and p-wells,

2. deposit and pattern polysilicon layer,
3. implant source and drain regions,

4. deposit and pattern metal layers.

Photo masks are used to determine shapes of circuits in the processes. A goal of
circuit designers is to design layouts that is then converted to the photo masks.

In the stealthy dopant-level circuits, wells and dopants play important roles.
At the process 1, wells are formed by implanting a moderate concentration of
dopant on substrate. The implanted region is referred to as p- or n-wells de-
pending on the types of dopants. Then, at the process 3, the source and drain
junctions are formed by doping a high concentration of dopant (shown as n+
and p+) on the wells. Here, the p+/n+ regions are called active regions. Finally,
contact plugs are formed. They connect between the p+/n+ regions and upper
metal layers.

Notation. There are four possible dopant-well combinations. They are denoted
as (i) p+/p-well, (ii) p+/n-well, (iii) n+/p-well and (iv) n+/n-well in this paper.
Corresponding dopant types are summarized in Tab. 1. Two different junctions:
the Ohmic and PN junctions are formed. The Ohmic and PN junctions form a
resistor and diode, respectively.



Reversing Stealthy Dopant-Level Circuits 115

Table 1. Notation

name source/drain dopant well dopant junction

(i) p+/p-well p p Ohmic junction

(ii) p+/n-well p n PN junction

(iii) n+/p-well n p PN junction

(iv) n+/n-well n n Ohmic junction
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Fig. 2. Stealthy dopant trojan

2.2 Stealthy Dopant-Level Trojans

Becker et al. proposed a new hardware trojan at CHES 2013 [1]. Their idea is
to make a trojan just by modifying dopant types in active region. They showed
a proof-of-concept circuit modification to a CMOS inverter. If the modification
is made, an output of the inverter is stuck to a constant.

Mechanism behind the modification is explained. Fig. 2 (1) shows an original
CMOS inverter. Fig. 2 (2), (3) are modified ones. When the modification shown
in Fig. 2 (2) is made, the output port Y is tied to VDD through a resistor
formed by the n+/n-well. The connection between the port Y and GND is
opened because of a diode formed by n+/p-well. Therefore, VDD and GND are
safely insulated. As a result, the output of the inverter is always high, i.e., it is
stuck at 1. Stuck-at-0 fault is achieved by an alternative modification shown in
Fig. 2 (3).
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Table 2. Truth table of DPD-LE

A B XOR XNOR BUF B INV B BUF A INV A OR NOR AND NAND

0 0 S1=0 S1=1 S1=0 S1=1 S1=0 S1=1 S1=0 S1=1 S1=0 S1=1

0 1 S2=1 S2=0 S2=1 S2=0 S2=0 S2=1 S2=1 S2=0 S2=0 S2=1

1 0 S3=1 S3=0 S3=0 S3=1 S3=1 S3=0 S3=1 S3=0 S3=0 S3=1

1 1 S4=0 S4=1 S4=1 S4=0 S4=1 S4=0 S4=1 S4=0 S4=1 S4=0

Such a simple principle leads a variety of applications. Becker et al. showed
example attack cases targeting (i) Intel Ivy Bridge RNG and (ii) iMDPL: a
gate-level side-channel attack countermeasure.

An attempt to detect the trojan is made as follows [1] [11]. Firstly, a target
chip is depackaged and a bare chip is exposed. Then, the bare chip is delayered
one by one through polishing or etching [4] [5]. The exposed layers are measured
with an imager e.g., SEM. Secondly, the images are compared with golden images
for a possible difference [1]. Becker et al. assume that distinguishing dopant types
in such images is difficult. Consequently, the trojan made by the dopant-type
modification should be undetectable.

2.3 DPD: Diffusion Programmable Device

DPD is an anti-reverse-engineering technique inspired by the stealthy dopant-
level trojan [3]. The idea is to make a programmable look-up table (LUT), similar
to that of an FPGA, but programmed by dopant (cf. SRAM in FPGA). There
was a conventional dopant-based anti-reverse-engineering technique [11] [12] on
which the work by Becker et al. is based. However, DPD is the first academic
publication on the topic to the best of our knowledge.

Fig. 3 depicts a schematic diagram of a design unit called the DPD logic
element (DPD-LE). DPD-LE implements a 2-input LUT. The two inputs A
and B are used to select one out of four terminals. The terminals S1, · · · , S4
are connected to the dopant-programmed ROM. The ROM is made with the
stuck-at-0 and stuck-at-1 modifications shown in Fig. 2. Note that for the sake
of performance, the ROM in DPD-LE is simplified from the ones shown in Fig.
2. DPD-LE can be configured to any 2-input gate. Tab. 2 shows a truth table of
example configurations.

Layout of the DPD-LE is shown in Fig. 4 where programmable regions are
indicated with rectangles. Similar to the stealthy dopant-level trojan, logic func-
tions using DPD-LE are identical except for dopant types in the programmable
regions.

An attempt of reverse-engineering is conducted as follows. Chip images are
taken in the same manner as the trojan detection. Then, the images are analyzed
with an image-processing tool [10] to extract standard cells and interconnections
[10]. To reverse-engineer a circuit with DPD, Seeker needs revealing the ROM
contents S1, · · · , S4. However, that is as difficult as finding the stealthy-dopant
trojan. Therefore, Seeker cannot recover a netlist from the images.
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3 Measurement Principle

In this section, we firstly recall a measurement principle of SEM and FIB. Then,
we explain a measurement technique called PVC [2] which potentially detects
dopant types.

3.1 Measurement Using SEM/FIB

SEM is a common instrument for LSI failure analysis. FIB is another popular
instrument for the same purpose. Although FIB is known for circuit modification
(e.g., micro surgery) [7], however, it can also be used as an imager based on the
same principle as SEM.

SEM and FIB are advantageous in spatial resolution over optical microscopy.
Resolution of optical microscopy is restricted by wave lengths of lights that are
around 200 nm. That correspond to around 250–180 nm CMOS processes [4].
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Fig. 5. SEM/FIB measurement system

Therefore, SEM or FIB is indispensable for imaging chips fabricated with modern
CMOS processes.

A measurement system of SEM/FIB is shown in Fig. 5. Measurement is con-
ducted as follows:

1. A primary beam (i.e., accelerated electrons or ions) is injected onto sample
surface.

2. As reaction to the primary beam, secondary electrons are emitted from the
surface of the sample.

3. The number of secondary electrons is measured at the detector.
4. Iterate the above measurement by scanning the primary beam through mag-

netic field in the coils. Finally, a contrast image is complete.

The primary beam is different between SEM and FIB; electron and ions are
used, respectively.

3.2 PVC: Passive Voltage Contrast

SEM/FIB can also be used to measure surface voltage of a sample. That is
because a static field formed by the surface voltage interferes with secondary
electrons. As a result, the number of secondary electrons caught at the detector
is changed. Measurement based on the principle is called PVC. The method was
developed in 90s and now widely used. We refer a paper by Rosenkranz as a
good survey on the topic [2]. Voltage-contrast images of DRAM and SRAM are
found in the paper by Rosenkranz [2] and one by Chen et al. [13], respectively.

The dopant configurations in Tab. 1 can be distinguished with PVC even when
a chip is measured at power-off state. In the following description, we consider
a case wherein contact plugs in Fig. 6 are measured with SEM.

When the primary beam is accelerated by a voltage around 0.7 kV, the total
number of secondary electrons emitted from the plug exceeds that of the injected
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Fig. 7. An optical microscopy image of the DPD array in a delayered chip

primary electrons. As a result, the plug charges positively by lack of electrons.
At the same time, external electrons are provided to the plug because of the
voltage difference. In other words, the positive charges are shared by a whole
conductive region from the plug. A resulting surface voltage, at stationary state,
is determined by the mass of the region conducted to the contact plug. The
mass depends on a dopant-well configuration. That attributes to diodes formed
by PN junctions as shown in Fig. 6. For example, the contact B has the smallest
conductive region (i.e., the n+ region only) because of a reverse PN junction
illustrated as a diode. On the other hand, the contact A has the largest conduc-
tive region involving the p-well, n-well, and p-substrate. As a result, the masses
of the conductive regions are ordered as the contacts A > C ≈ D > B. When
the resulting surface voltages are compared, they are ordered as the contacts A
< D < C < B. Note that the difference between the contacts C and D is caused
by the diffusion potential at the p+/n-well.

When the plug charges positively, secondary electrons are attracted back to the
plug, and thus less is measured at the detector. Therefore, brightness of a corre-
sponding pixel in a SEM image become darker as the plug voltage is higher (con-
versely, it become brighter as the voltage is lower). As a result, the brightnesses of
the plugs are ordered as A>D>C>B, or equivalently (i) p+/p-well> (iv) n+/n-
well > (ii) p+/n-well > (iii) n+/p-well. As a result, the configurations (i)–(iv) in
Tab. 1 can be distinguished by looking at contacts in SEM images.
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4 Experiment

4.1 Target Chip

Experiments are conducted using a chip implementing DPD. The chip is fabri-
cated using the Rohm 180-nm CMOS process1. As a preparation, upper layers of
the chip are removed with mechanical polishing and the contact layer is exposed.

Fig. 7 shows an optical-microscopy image of the prepared chip. The figure
shows a DPD array containing 10× 10 DPD-LEs configured to different 2-input
logic gates. That are XOR, XNOR, BUF B, INV B, BUF A, INV A, OR, NOR,
AND, and NAND gates as shown in Fig. 7.

4.2 Experiment 1: Distinguishing Dopant Types

The prepared chip is measured with SEM and FIB. We used the Hitachi High-
Technologies S-5200 SEM and FB-2100 FIB.

DPD-LE configured to 2-input XOR is measured. Results are shown in Fig. 8.
Fig. 8 (1) is the original layout. Regions shown in green and yellow correspond
to S1, · · · , S4 where (S1, S2, S3, S4) = (0, 1, 1, 0). Fig. 8 (2), (3), (4) are images
taken with (2) an optical microscope, (3) SEM, and (4) FIB. Many dots found in
the images are contact plugs. The rectangles indicate the programmable regions
(see Fig. 4).

Dopant types are undetectable by optical microscopy as shown in Fig. 8 (2).
Meanwhile the contacts show different brightnesses in SEM/FIB images in Fig 8
(2) and (3). In the SEM image shown in Fig 8 (3), the brightnesses of the contacts
are (p+/p-well, p+/n-well, n+/p-well, n+/n-well) = (white, dark grey, black,
light grey), as expected in Sect. 3.2. Therefore, the four possible configurations
are distinguishable. In the FIB image shown in Fig. 8 (4), on the other hand,
(p+/p-well, p+/n-well, n+/p-well, n+/n-well) = (white, white, black, white).
Only the n+/p-well is distinguishable from others with FIB.

The same experiment is repeated for other DPD-LEs configured to other logic
gates. Results are shown in Fig. 9. We can observe different brightnesses depend-
ing onS1–S4 configurations.That correspond to the ROMcontents (S1, S2, S3, S4)
summarized in Tab. 2. The results also indicate that measurements are well repro-
ducible.

4.3 Experiment 2: Distinguishing Dopant Types under Various
Measurement Conditions

The stealthy dopant-level circuits are visible. However, they potentially make
a detection harder. That is because the contact layer should be measured in
addition to metal layers. One metric to evaluate the cost of detection is the

1 We used the 180-nm process because a good fabrication service is available. That
does not mean PVC works only with old processes; PVC works with recent processes.
For example, a successful PVC of a 65-nm SRAM is reported [15].
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Fig. 8. Image of DPD-LE configured as XOR

number of images. That is because (i) usage of an instrument (e.g., SEM) is
sometimes charged at an hour each [16], and (ii) a computational cost to process
acquired images should depend on data size2. The relationship between the (i)
number of images and (ii) gate counts are estimated in Appendix.

In order to estimate the cost, the chip is measured with different configu-
rations: (i) acceleration voltage, (ii) scan speed, and (iii) magnification. Tab. 3
summarizes examined configurations and corresponding brightnesses of contacts.
The acquired images are shown in Fig. 10.

Firstly, difficulty to detect non-dopant patterns is discussed. It is a com-
mon practice to use patterns in the M1 layer to identify types of standard cells
[10] [14]. Therefore, the layer is desirable as a counterpart. Images Fig. 10 (2)
and (3) are SEM images acquired at magnifications of x400 and x1.5k, respec-
tively. The contacts are not visible in Fig. 10 (2). Therefore, the magnification of
x1.5 is needed to image contacts. Patterns in the M1 layer, that lead standard-
cell identifications, are in the similar dimension as contacts [14]. Therefore, we

2 The cost to recover a netlist is not considered. That is an emerging research topic
and is beyond the scope of this paper.
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Fig. 9. SEM images of DPD-LE with various configurations

Table 3. Visibility of dopants with different measurement configurations

(i) (ii) (iii) (iv)
Case Inst. Accele. Scan Magnification p+/p-well p+/n-well n+/p-well n+/n-well

(1) SEM 0.7 kV Fast x1.5k, x3.0k White Grey Grey Grey

(2) SEM 0.7 kV Slow x100, x400, — — — —

(3) SEM 0.7 kV Slow x1.5k Black White Black Black

(4) SEM 0.7 kV Slow x3.0k Grey Grey Grey Grey

(5) SEM 0.7 kV Slow x6.0k, x8.0k, White Grey Black Grey
x10.0k, x15.0k, (dark) (bright)
x30.0k

(6) SEM 2.0 kV Slow x1.5k, x3.0k, Grey White Grey Grey
x8.0k, x15.0k,

(7) SEM 5.0 kV Slow x8.0k Grey White Grey Grey

(8) SEM 30.0 kV Slow x8.0k Grey Grey Grey Grey

(9) FIB 40.0 kV Slow x2.5k, x5.0k, White White Black White
x12.0k, x25.0k

assume that the limit of magnification to measure the M1 layer is x1.5k in the
following discussion.

If we want to distinguish the four dopant-well configurations, the case (5) in
Tab. 3 is the only option. In that case, magnification should be at least x6.0k.
Therefore, the number of images is 16 (= (6.0k/1.5k)2) times larger than that



Reversing Stealthy Dopant-Level Circuits 123

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

DPD-LE configured to XOR
p+/n-well

p+/p-well

n+/n-well

n+/p-well

n+/n-well

n+/p-well

p+/n-well

p+/p-well

Only a fraction 
is available

Only a fraction 
is available

SEM, 0.7kV, Fast, x1.5k

SEM, 0.7kV, Slow, x400

SEM, 0.7kV, Slow, x1.5k

SEM, 0.7kV, Slow, x3.0k

SEM, 0.7kV, Slow, x10.0k

SEM, 5.0kV, Slow, x8.0k

SEM, 30.0kV, Slow, x8.0k

FIB, 40.0kV, Slow, x12.0k

SEM, 2.0kV, Slow, x3.0k
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in Tab. 3)

of the M1 layer. In summary, the additional cost for Seeker to find the stealthy
dopant-level circuits is the cost of imaging of one additional layer (i.e., the
contact layer). The layer is 16-times costly compared to the M1 layer.

On the other hand, distinguishing the four configurations is not necessary
when the modifications in Fig. 2 are considered. That is because the dopant-
well configurations appear in pairs. In other words, we can recover S1, · · · , S4
if one out of the four dopant-well configurations is distinct from others. Such
a detection succeeds in the cases (1), (3), (5), (6), (7), and (9). Therefore, the
x1.5k magnification is sufficient. That is the same as the one required for the
M1 layer. As a result, the additional cost for detecting these circuits are very
limited i.e., the costs for imaging the contact layer at the same magnification as
the M1 layer.

Finally, we discuss how to determine dopant-well configurations given images
only. That is not trivial because the relationship between brightnesses and the
dopant-well configurations is not consistent as shown in Tab. 3. One possible
solution is to conduct a profiling using an open sample fabricated with the same
CMOS process. Even without open samples, we can make an educated guess.
That is because references are found everywhere in the chip. Important land-
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marks are the lines of contacts marked in Fig. 9. They are used to tie p/n-well
voltages to VDD/GND, thus they should be p+/p-well and n+/n-well. Since
wells are regularly placed, contacts near the line of p+/p-well contacts should
be either p+/p-well or n+/p-well. In that way, Seeker can efficiently find refer-
ence contacts for the four dopant-well configurations. Such a guess become easier
if standard cells are found in the chip.

5 Conclusion

The assumption behind the stealthy dopant-level circuits (i.e., the stealthy
dopant-level trojan and the diffusion programmable device) is examined with
concrete experiments. As a result, it is shown that all the four possible dopant-
well combinations are distinguishable with SEM. It is also shown that the stealthy
dopant-level circuits are resistant against optical microscopy, however, that mean
only a limited practical benefit because modern CMOS circuits are small beyond
the limit of optical microscopy. To detect the stealthy dopant-level circuits, the
contact layer should be measured. Additional experiments revealed that the layer
can be 16-times more costly compared to the M1 layer in terms of the number
of images. The results show that the assumption used in the previous works –
dopant types are difficult to measure – was too optimistic.

An improved stealthy dopant-level circuit is opened for research. Since the
measurement principle is known, thus we can possibly make a circuit that is
invisible to the measurement. For example, the high contrast at p+/p-well could
be reduced if p-well is isolated from substrate by a deep n-well that is available in
a triple-well process. Meanwhile, the principle hints that a dopant modification
is undetectable by PVC if modifications are limited to regions not connected to
contact plugs. Making a meaningful circuit with the restriction is an interest-
ing challenge. However, we stress that PVC is just one of many measurement
techniques. Other options involve the active voltage contrast method and PVC
combined with FIB circuit modifications [2]. Therefore, it would be more im-
portant to make a reasonable assumption considering these techniques, before
rushing into studies of improved circuits/trojans. Knowledge in the LSI fail-
ure analysis community will help, because we will need to know state-of-the-art
measurement techniques to make a reasonable assumption.

From the view point of trojan detection, cost will be a matter. That is because
the detection becomes more expensive as chip size increases. It is estimated
that we need 5.16 shots/kGE (see Appendix), but mega-gate chips are common
now. One possible direction for settling the problem is to use a built-in testing
instrument. The problem of finding a trojan in a chip may be reduced to a
smaller problem of finding one in the testing instrument. However, Becker et
al. already showed an example of bypassing a BIST (Built-in Self Test) without
modifying the BIST itself. Building a sophisticated testing instrument will be
an interesting research direction.

Another important viewpoint is a dilemma between goals of trojan detection
and anti reverse engineering. We want Hider to win the game in reverse engi-
neering and Seeker to win in trojan detection at the same time. A problem of
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finding a new technique that satisfies both requirements is opened. An important
observation is that there are asymmetric capabilities between trojan attackers
and circuit engineers. For example, the circuit engineers are allowed to modify
metal layers while the (dopant-level) trojan attackers are not.
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Appendix: Estimating the Number of Images per Gate

The relationship between (i) the number of gate elements, (ii) chip area, and
(iii) the number of images is estimated.

As a target, we use an open-source AES core called AES Comp [17]. The core
is synthesized with the standard-cell library for the Rohm 180-nm process. The
total cell area is 288,000 μm2. The area corresponds to about 15 kGE. The
utilization ratio after place and route is assumed to be 70 %. Then, the AES
core uses about 411,000 μm2 (=288,000/0.7).

In SEM imaging with x1.5k magnification, an area involved in a single image
is about 5,000 μm2 (≈ 63 μm × 84 μm). Therefore, we need about 77 (≈
411,000/5,000) shots to cover the AES core. If we normalize the number of shots
by the gate counts, we get 5.16 shots/kGE.
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Abstract. Differential uniformity and nonlinearity are two basic prop-
erties of S-boxes, which measure the resistance of S-boxes to differential
and linear attack respectively. Besides these two properties, the hardware
cost of S-boxes is also an important property which should be consid-
ered primarily in a limited resource environment. By use of Feistel struc-
ture, we investigate the problem of constructing S-boxes with excellent
cryptographic properties and low hardware implementation cost in the
present paper. Feistel structure is a widely used structure in the design
of block ciphers, and it can be implemented easily in hardware. Three-
round Feistel structure has been used to construct S-boxes in symmetric
algorithms, such as CS-Ciper, CRYPTON and ZUC. In the present pa-
per, we investigate the bounds on differential uniformity and nonlinearity
of S-boxes constructed with three-round Feistel structure. By choosing
suitable round functions, we show that for odd k, differential 4-uniform
S-boxes over F2

2k with the best known nonlinearity can be constructed
via three-round Feistel structure. Some experiment results are also given
which show that optimal 4-bit S-boxes can be constructed with 4 or 5
round unbalanced Feistel structure.

Keywords: lightweight cryptography, S-boxes, Feistel structure, differ-
ential uniformity, nonlinearity.

1 Introduction

S-box is an important component of symmetric cryptography algorithms since it
provides “confusion” for algorithms and in most cases is the only nonlinear part
of round functions. S-boxes used in cryptography should posses good properties
to resist various attacks. As a nonlinear part, an S-box usually takes a relative
high cost in hardware implementation. Thus the cost of hardware implementa-
tion of an S-box is also of significant importance in lightweight cryptography
algorithms, which are aiming to provide security in a limited resource environ-
ment. With the rapid development of lightweight cryptography, it is of particular
interest to investigate the problem of constructing S-boxes with excellent cryp-
tographic properties and low cost hardware implementation.
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Feistel structure is a well-known and widely used structure in symmetric cryp-
tography. There are too many block ciphers designed with the scheme, and the
most famous one among them is Data Encryption Standard (DES). Feistel struc-
ture is also used for constructing components of block ciphers. For example,
MISTY used three-round Feistel structure to construct its nonlinear part FI
[20]. The S-boxes in CS-Ciper [24], CRYPTON [18] and ZUC [25] are also
constructed with three-round Feistel structure.

In general, the cost of hardware implementation of nonlinear functions is in
direct proportion to its input and output size. For example, the 8-bit S-box
of AES cost around 200 gates [5], and optimal 4-bit S-boxes cost less than 40
gates [17]. Thus, implementing functions on F2k often cost much less area than
implementing functions on F22k . An advantage of constructing S-boxes over F2

2k

with Feistel structure is that it only need to implement round functions on F2k .
Therefore, comparing with 2k-bit S-boxes constructed directly with permutation
polynomials over F22k , S-boxes over F2

2k constructed via Feistel structure with
round functions on F2k cost much less area in hardware implementation.

However, the best cryptographic performance of S-boxes constructed with
Feistel structure is not known clearly. Differential uniformity and nonlinearity
are two basic properties of S-boxes, which measure the resistance of S-boxes to
differential and linear attack respectively. S-boxes with lower differential unifor-
mity and higher nonlinearity posses better resistance to differential and linear
attack. Then it is interesting to investigate the lower bound and upper bound
of differential uniformity and nonlinearity of S-boxes constructed with Feistel
structure respectively.

There are already some work on the provable security of Feistel structure,
such as [19,21]. Based on the assumption that round keys are independent and
uniformly random, it is proven that the average differential uniformity of all
permutations constructed via r-round (r ≥ 3) Feistel structure with round per-
mutation f and all possible round keys is less than or equal to Δ(f)2 [21]. Note
that the bound is an average bound over all round keys, then for some fixed
round keys, the differential uniformity of the corresponding permutation may
larger than the above bound. This has been verified with experiment results in
[1].

In the present paper, we mainly investigate the problem of constructing S-
boxes with low differential uniformity, high nonlinearity and easy hardware im-
plementation by use of Feistel structure. Without any statistical assumptions,
we investigate the lower bound and upper bound of S-boxes constructed with
three-round Feistel structure. We show that differential 4-uniform permutations
with the best known nonlinearity can be constructed with three-round Feistel
structure. It is also shown that optimal 4-bit S-boxes can be constructed with 4
and 5 round unbalanced Feistel structure.

The paper is organized as follows. In Sect. 2, some preliminaries are given.
In Sect. 3, the bound on differential uniformity and nonlinearity of S-boxes
constructed with three-round Feistel structure is characterized. In Sect. 4, a
class of differential 4-uniform permutations with the best known nonlinearity
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over F22k for odd k is constructed via three-round Feistel structure. In Sect. 5, it
is shown that optimal 4-bit S-boxes can be constructed with unbalanced Feistel
structure. A conclusion is given in Sect. 6.

2 Preliminaries

An S-box with n-bit input and output can be represented by a polynomial on
the finite field F2n . First, we introduce the definitions of differential uniformity,
nonlinearity and algebraic degree.

Definition 1. [22] Let F (x) ∈ F2n [x]. The differential uniformity of F (x) is
defined as

Δ(F ) = max{|RF (a, b)| : a ∈ F∗
2n , b ∈ F2n},

where RF (a, b) means the set of solutions of equation F (x) + F (x + a) = b in
F2n .

F (x) is called differential δ-uniform when Δ(F ) = δ. It is easy to see that
the lower bound on differential uniformity of F (x) ∈ F2n [x] is 2. Differential
2-uniform functions are called almost perfect nonlinear (APN). The differential
spectrum is the set {|RF (a, b)| : a ∈ F∗

2n , b ∈ F2n}.

Definition 2. Let F (x) ∈ F2n [x]. The minimum distance of the components of
F (x) and all affine Boolean functions on n variables is called the nonlinearity of
F (x). It is denoted by NL(F ) and can be computed as follows

NL(F ) = 2n−1 − 1

2
Λ(F ),

whereΛ(F )=max{|λF (a, b)| :a ∈ F2n , b ∈ F∗
2n}andλF (a, b)=

∑
x∈F2n

(−1)Tr(bF (x)+ax).

For odd n and F (x) ∈ F2n [x], it holds that NL(F ) ≤ 2n−1 − 2
n−1
2 [10]. For

even n and F (x) ∈ F2n [x], the upper bound on the nonlinearity of F (x) is still
open, and the best known nonlinearity is 2n−1 − 2

n
2 [11].

Definition 3. The algebraic degree of G(x) =
2n−1∑
j=0

cjx
j ∈ F2n [x], which is de-

noted by d◦(G), equals the maximum hamming weight of binary expansion of j
with cj �= 0. In other words, d◦(G) = maxj,cj �=0{ω2(j)}, where ω2(j) means the
number of nonzero terms in the binary expansion of j.

For other cryptographic properties of Boolean functions and vectorial Boolean
functions, one can see [8,9] for more details.
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x y

P1⊕

⊕P2

⊕ P3

F (x, y)

Fig. 1. An S-box constructed with three-round Feistel structure

3 On Properties of S-boxes Constructed with
Three-Round Feistel Structure

Throughout this section, we consider S-boxes constructed with three-round Feis-
tel structure as in Figure 1. Let Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3. Then an S-box over
F2
2k constructed as in Figure 1 can be characterized as

F (x, y) = (x+ P1(y) + P3(y + P2(x+ P1(y))), y + P2(x+ P1(y))).

We also write F (x, y) as FP1,P2,P3(x, y) when the sequence of round transforma-
tions P1, P2 and P3 is emphasized. It is easy to see that F (x, y) is a permutation
over F2

2k and

FP1,P2,P3(x, y)
−1 = FP3,P2,P1(x, y),

where FP1,P2,P3(x, y)
−1 means the compositional inverse of FP1,P2,P3(x, y).

This construction has been used in CS-Ciper [24], CRYPTON [18] and ZUC
[25]. In this section, we mainly investigate the bound on differential uniformity
and nonlinearity of F (x, y).

First, it needs the following result. Remember that for F (x) ∈ F2n [x], a ∈ F∗
2n

and b ∈ F2n , RF (a, b) means {y ∈ F2n | F (y) + F (y + a) = b}.
Lemma 1. [6,1] Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box
constructed as in Figure 1. Then the following statements hold.

(1) Let a, b, c ∈ F2k and (a, b) �= (0, 0). Then the equation F (x, y)+F (x+ a, y+
b) = (c, 0) has |RP1(b, c + a)| · |RP2(c, b)| roots in F2

2k . Furthermore, these
roots are (zi + P1(yj), yj), where yj ∈ RP1(b, c+ a) and zi ∈ RP2(c, b).

(2) Let a, b ∈ F2k and c ∈ F∗
2k . Then λF ((a, b), (0, c)) = λP1 (c+ b, a)λP2(a, c).

Theorem 1. Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box con-
structed as in Figure 1. Then the following statements hold.



Constructing S-boxes for Lightweight Cryptography with Feistel Structure 131

(1) If P2(x) is not a permutation over F2k , then Δ(F ) ≥ 2k+1.
(2) If P2(x) is a permutation over F2k , then Δ(F ) ≥ 2Δ(P2).

Proof. (1). Since P2(x) is not a permutation over F2k , then there exists a ∈ F∗
2k

such that
P2(x) + P2(x+ a) = 0

has at least 2 roots in F2k , which means |RP2(a, 0)| ≥ 2. Notice that RP1(0, 0) =
F2k , Then according to (1) of Lemma 1, F (x, y) + F (x + a, y) = (a, 0) has at
least

|RP1(0, 0)| · |RP2(a, 0)| = 2k+1

roots in F2
2k , which implies Δ(F ) ≥ 2k+1.

(2). Firstly, we choose b, c ∈ F∗
2k , such that |RP2(c, b)| = Δ(P2). Then we

choose a ∈ F2k , such that RP1(b, c+a) is nonempty. This means |RP1(b, c+a)| ≥
2. Therefore, according to (1) of Lemma 1,

F (x, y) + F (x+ a, y + b) = (c, 0)

has 2Δ(P2) roots in F2k . Hence Δ(F ) ≥ 2Δ(P2). ��
Let

λk =

{
2

k+1
2 k odd,

2
k
2+1 k even.

For F (x) ∈ F2k [x], we assume it holds

Λ(F ) ≥ λk,

which is a bound accepted widely for F (x) ∈ F2n [x] with n even, although it is
not proven yet. Then we have the following result concerning the nonlinearity of
F (x, y).

Theorem 2. Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box con-
structed as in Figure 1. If for any a ∈ F∗

2k , there exists b ∈ F∗
2k such that

|λP2(a, b)| ≥ λk, then NL(F (x, y)) ≤ 22k−1 − λ2
k

2 .

Proof. We only need to prove Λ(F (x, y)) ≥ λ2k. Choose a ∈ F∗
2k , c ∈ F2k such

that
|λP1 (c, a)| = Λ(P1).

According to the condition of P2, there exists b ∈ F∗
2k such that |λP2 (a, b)| ≥ λk.

Then according to (2) of Lemma 1, it holds

λF ((a, b + c), (0, b)) = λP1 (c, a)λP2(a, b).

Note that

Λ(F (x, y))=max{|λF ((u1, u2), (v1, v2))| : (u1, u2), (v1, v2) ∈ F2
2k , (v1, v2) �=(0, 0)},
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Table 1. Properties of known 8-bit S-boxes constructed with three-round Feistel
structure

Algorithm/S-box Differential uniformity Nonlinearity Algebraic degree

CS-Ciper/P 16 96 5

CRYPTON/S0, S1 8 96 5

ZUC/S0 8 96 5

then it holds

Λ(F (x, y)) ≥ |λF ((a, b+ c), (0, b))|
= |λP1(c, a)| × |λP2(a, b)|
≥ Λ(P1)λk

≥ λ2k,
and we complete the proof. ��

As for 8-bit S-boxes, which are the most often usage size in real applications,
we have the following result.

Theorem 3. Suppose FP1,P2,P3(x, y) is an S-box over F2
24 constructed by three-

round Feistel structure with round functions Pi(x) ∈ F24 [x], 1 ≤ i ≤ 3. Then the
following statements hold.

(1) Δ(FP1,P2,P3) ≥ 8.
(2) If Δ(FP1,P2,P3) = 8, then NL(FP1,P2,P3) ≤ 96.

Proof. Notice that there are no APN permutations over F24 [16], then the dif-
ferential uniformity of any permutation over F2

24 constructed with three-round
Feistel structure is larger than or equal to 8.

If Δ(FP1,P2,P3) = 8, then P2(x) is a differential 4-uniform permutation over
F24 according to Theorem 1. By an exhaustive search, it can be checked that
the condition of Theorem 2 is satisfied by all differential 4-uniform permutations
over F24 . Then according to Theorem 2, we have NL(FP1,P2,P3) ≤ 96. ��

The permutation P in CS-Ciper, S-boxes S0, S1 in CRYPTON and an S-box
S0 in ZUC are constructed by three-round Feistel structure. The properties of
these 8-bit S-boxes are listed in Table 1.

The permutation P in CS-Ciper is an involution over F2
24 , which means

P (P (x, y)) = (x, y) for (x, y) ∈ F2
24 . The differential uniformity of the permuta-

tion P in CS-Ciper does not achieve the bound in Theorem 3. In Example 1,
we give an involution over F2

24 , which achieves the bound in Theorem 3 and has
a better algebraic degree.

According to Theorem 3, the differential uniformity and nonlinearity of S-
boxes in CRYPTON and ZUC can not be improved by choosing different round
transformations. However, the following example shows that the algebraic degree
of S-boxes constructed with three-round Feistel structure can be improved to 6.
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Example 1. Let P1(x) = x3, P2(x) = x + g6x10 + g3x13, where g is a root of

x4 + x + 1 = 0, and P3(x) = x3 + (x2 + x + 1)Tr(x3) =
14∑
i=4

xi. P1(x) is a case

of Gold function [12,22], which is an APN polynomial. P2(x) is a differential
4-uniform permutation over F24 got by computer searching. P3(x) is an APN
polynomial which is CCZ-equivalent and EA-inequivalent to P1(x) [3].

It is easy to check that FP1,P2,P3 and FP3,P2,P3 are S-boxes over F2
24 with

differential uniformity 8, nonlinearity 96 and algebraic degree 6. Furthermore,
FP3,P2,P3 is an involution over F2

24 .

4 Optimal S-boxes Constructed with Three Round
Feistel Structure

When k is odd, the upper bound on nonlinearity of F (x, y) in Theorem 2 is
22k−1 − 2k, which is the best known nonlinearity of functions on F2

2k . Further-
more, there exist APN permutations over F2k with k odd. Thus, it is possible
to get differential 4-uniform permutations over F2

2k with the best known nonlin-
earity.

Suppose k is an odd integer, gcd(i, k) = 1. Then x2
i+1 is an APN permutation

over F2k and denote its compositional inverse by x
1

2i+1 . Let F (x, y) be the S-
box over F2

2k constructed by three-round Feistel structure with round functions

P1(x) = P3(x) = x
2i+1 and P2(x) = x

1
2i+1 . Then

F (x, y) = (x+ y2
i+1 + (y + (x+ y2

i+1)
1

2i+1 )2
i+1, y + (x+ y2

i+1)
1

2i+1 )

= (y2
i+1 + y2

i

(x + y2
i+1)

1

2i+1 + y(x+ y2
i+1)

2i

2i+1 , y + (x + y2
i+1)

1

2i+1 ).

In this section, we show that F (x, y) constructed as above is a differential
4-uniform permutation over F2

2k with the best known nonlinearity.
In order to characterize the differential uniformity and nonlinearity of F (x, y),

we need the following lemmas firstly.

Lemma 2. Suppose k is an odd integer and gcd(i, k) = 1. Then for any (b, d) ∈
F2
2k with (b, d) �= (0, 0), the following system of equations{

dy2
i

+ d2
i

y + b2
i

z + bz2
i

= 0,

by2
i

+ b2
i

y + (b+ d)z2
i

+ (b + d)2
i

z = 0

has exactly 4 roots in F2
2k . Furthermore, the following statements hold.

(1) If bd(b + d) = 0, then the 4 roots are (0, 0), (0, β), (β, 0) and (β, β), where
β ∈ {b, d} with β �= 0.

(2) If bd(b+ d) �= 0, then the 4 roots are (0, 0), (d, b), (b, b+ d) and (b+ d, d).
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Proof. To solve the following system of equations{
dy2

i

+ d2
i

y + b2
i

z + bz2
i

= 0, (1)

by2
i

+ b2
i

y + (b + d)2
i

z + (b + d)z2
i

= 0, (2)

we have the following cases.
First, if b = 0, then d �= 0 and the above system of equations becomes{

dy2
i

+ d2
i

y = 0,

dz2
i

+ d2
i

z = 0.

It is easy to see that the above systems of equations has exactly 4 roots in F2
2k ,

which are
(0, 0), (0, d), (d, 0), (d, d).

This is because αx2
i

+ α2ix is a linear mapping on F2k with kernel {0, α} for
any α ∈ F∗

2k , since gcd(i, k) = 1.
The case of d = 0, b �= 0, and b = d ∈ F∗

2k can be proved similarly.
Next, we prove the case of bd(b+ d) �= 0, which is equivalent to b, d ∈ F∗

2k and
b �= d. Let

A = b2 + bd+ d2,

and
B = b2

i

d+ bd2
i

.

Notice that k is odd, gcd(i, k) = 1, b, d ∈ F∗
2k and b �= d, then A �= 0 and B �= 0.

We add equation (1) multiplied by b + d to equation (2) multiplied by b, from

which we eliminate z2
i

and get

z =
1

B
(Ay2

i

+ (b2
i+1 + bd2

i

+ d2
i+1)y).

Substitute the above equality to equation (1) and multiply both sides by B2i+1,
then we have

0 = dB2i+1y2
i

+ d2
i

B2i+1y + (bB)2
i

(Ay2
i

+ (b2
i+1 + bd2

i

+ d2
i+1)y)

+bB(Ay2
i

+ (b2
i+1 + bd2

i

+ d2
i+1)y)2

i

= bBA2iy2
2i

+ (dB2i+1 + (bB)2
i

A+ bB(b2
i+1 + bd2

i

+ d2
i+1)2

i

)y2
i

+(d2
i

B2i+1 + (bB)2
i

(b2
i+1 + bd2

i

+ d2
i+1))y

= bBA2iy2
2i

+ bA2i(b2
2i

d+ bd2
2i

)y2
i

+ bA2iB2iy, (3)

where the coefficients of y2
i

and y is computed as follows. First, we have

dB2i+1 = d(b2
i

d+ bd2
i

)2
i+1

= b2
2i+2id2

i+2 + b2
2i+1d2

i+1+1 + b2
i+1

d2
2i+2 + b2

i+1d2
2i+2i+1,

(bB)2
i

A = (b2
2i+2id2

i

+ b2
i+1

d2
2i

)(b2 + bd+ d2)

= b2
2i+2i+2d2

i

+ b2
2i+2i+1d2

i+1 + b2
2i+2id2

i+2

+b2
i+1+2d2

2i

+ b2
i+1+1d2

2i+1 + b2
i+1

d2
2i+2,
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and

bB(b2
i+1 + bd2

i

+ d2
i+1)2

i

= (b2
i+1d+ b2d2

i

)(b2
2i+2i + b2

i

d2
2i

+ d2
2i+2i)

= b2
2i+2i+1+1d+ b2

i+1+1d2
2i+1 + b2

i+1d2
2i+2i+1

+b2
2i+2i+2d2

i

+ b2
i+2d2

2i+2i + b2d2
2i+2i+1

,

then it holds

dB2i+1 + (bB)2
i

A+ bB(b2
i+1 + bd2

i

+ d2
i+1)2

i

= b2
2i+1d2

i+1+1 + b2
2i+2i+1d2

i+1 + b2
i+1+2d2

2i

+b2
2i+2i+1+1d+ b2

i+2d2
2i+2i + b2d2

2i+2i+1

= b(b2
2i

d(d2
i+1

+ b2
i

d2
i

+ b2
i+1

) + bd2
2i

(b2
i+1

+ b2
i

d2
i

+ d2
i+1

))

= bA2i(b2
2i

d+ bd2
2i

).

The computation of the coefficient of y is easy.

d2
i

B2i+1 + (bB)2
i

(b2
i+1 + bd2

i

+ d2
i+1)

= B2i(d2
i

(b2
i

d+ bd2
i

) + b2
i

(b2
i+1 + bd2

i

+ d2
i+1))

= B2i(bd2
i+1

+ b2
i+1+1 + b2

i+1d2
i

)

= bA2iB2i .

Note that b �= 0 and A �= 0, then equation (3) is equivalent to

0 = (b2
i

d+ bd2
i

)y2
2i

+ (b2
2i

d+ bd2
2i

)y2
i

+ (b2
2i

d2
i

+ b2
i

d2
2i

)y.

Divid both sides by d2
2i+2i+1, then we have

0 = (
b

d
+ (

b

d
)2

i

)(
y

d
)2

2i

+ (
b

d
+ (

b

d
)2

2i

)(
y

d
)2

i

+ ((
b

d
)2

i

+ (
b

d
)2

2i

)
y

d

= (
b

d
+ (

b

d
)2

i

)((
y

d
)2

i

+ (
y

d
))2

i

+ ((
b

d
) + (

b

d
)2

i

)2
i

((
y

d
)2

i

+
y

d
).

Notice that gcd(i, k) = 1, then αx2
i

+ α2ix is a linear polynomial on F2k with

kernel {0, α} for any α ∈ F∗
2k . Note that b

d + ( bd )
2i �= 0, since b, d ∈ F∗

2k and
b �= d. Therefore, it holds

(
y

d
)2

i

+
y

d
= 0

or

(
y

d
)2

i

+
y

d
=
b

d
+ (

b

d
)2

i

,

form which we get the roots of equation (3) are y = 0, y = d and y = b, b + d
respectively.

Substitute the values of y into equation (1) and equation (2), then one can
solve and check that the roots of system of equation (1) and equation (2) are

(0, 0), (d, b), (b, b+ d), (b + d, d).

Then we complete the proof. ��
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Let a ∈ F∗
2k , denote La(x) = ax2

i

+ a2
i

x and take α · β = Tr(αβ) for inner
product in F2k , where Tr(x) is the trace function from F2k to F2. The adjoint
linear mapping of La(x), which is denoted by L∗

a(x), is a linear mapping such
that

Tr(βLa(α)) = Tr(L∗
a(β)α)

for all α, β ∈ F2k . It is easy to see that

L∗
a(x) = a

2ix+ (ax)2
n−i

.

Lemma 2 means that

L(y, z) = (Ld(y) + Lb(z), Lb(y) + Lb+d(z))

is a linear mapping on F2
2k with kernel dimension equals 2. Take (α, β) · (y, z) =

Tr(αy + βz) for inner product in F2
2k , then we have

(α, β) · L(y, z) = (α, β) · (Ld(y) + Lb(z), Lb(y) + Lb+d(z))

= Tr(αLd(y) + αLb(z) + βLb(y) + βLb+d(z))

= Tr(L∗
d(α)y + L

∗
b(β)y + L

∗
b(α)z + L

∗
b+d(β)z)

= (L∗
d(α) + L

∗
b(β), L

∗
b (α) + L

∗
b+d(β)) · (y, z).

Hence it holds

L∗(y, z) = (L∗
d(y) + L

∗
b(z), L

∗
b(y) + L

∗
b+d(z)),

where L∗ is the adjoint mapping of L. By an elementary knowledge of linear
algebra, we have

dim(ker(L∗)) = dim(ker(L)) = 2.

Then the following result holds.

Lemma 3. Suppose k is an odd integer and gcd(i, k) = 1. Then for any (b, d) ∈
F2
2k with (b, d) �= (0, 0), the following system of equations{

d2
i

y + (dy)2
n−i

+ b2
i

z + (bz)2
n−i

= 0,

b2
i

y + (by)2
n−i

+ (b+ d)2
i

z + ((b + d)z)2
n−i

= 0

has exactly 4 roots in F2
2k .

Theorem 4. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over
F2
2k constructed by three-round Feistel structure with round functions P1(x) =

P3(x) = x2
i+1 and P2(x) = x

1

2i+1 . Then the differential uniformity of F (x, y)
equals 4. Furthermore, the differential spectrum of F (x, y) is {0, 4}.
Proof. Let a, b, c, d ∈ F2k and (a, b) �= (0, 0). Then we need to prove that

F (x, y) + F (x+ a, y + b) = (c, d)
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has 0 or 4 roots in F2
2k .

First, it is easy to see that the above equation is equivalent to the following
system of equations{

by2
i

+ b2
i

y + F
′
(x, y) + F

′
(x+ a, y + b) = b2

i+1 + c, (4)

(x + y2
i+1)

1

2i+1 + (x+ a+ (y + b)2
i+1)

1

2i+1 = b+ d, (5)

where

F
′
(x) = y2

i

(x+ y2
i+1)

1

2i+1 + y(x+ y2
i+1)

2i

2i+1 .

Let
z = (x+ y2

i+1)
1

2i+1 .

Then according to equation (5), we have

(x+ a+ (y + b)2
i+1)

1
2i+1 = (x+ y2

i+1)
1

2i+1 + b+ d = z + b+ d. (6)

Raise both sides to the (2i + 1)th power, then we have

by2
i

+ b2
i

y + (b+ d)2
i

z + (b+ d)z2
i

= a+ b2
i+1 + (b + d)2

i+1.

Furthermore, according to equality (6), it also holds

F
′
(x, y) + F

′
(x+ a, y + b) = y2iz + yz2

i

+ (y + b)2
i

(z + b+ d) + (y + b)(z + b+ d)2
i

= (b+ d)y2i + (b+ d)2
i

y + b2
i

z + bz2
i

+ b2
i

d+ bd2
i

.

Thus equation (4) implies

dy2
i

+ d2
i

y + bz2
i

+ b2
i

z = b2
i+1 + b2

i

d+ bd2
i

+ c.

Therefore, (x0, y0) is a root of equation

F (x, y) + F (x+ a, y + b) = (c, d)

if and only if (y0, z0), where z0 = (x0 + y2
i+1

0 )
1

2i+1 , is a root of the following
system of equations{

dy2
i

+ d2
i

y + bz2
i

+ b2
i

z = b2
i+1 + b2

i

d+ bd2
i

+ c,

by2
i

+ b2
i

y + (b+ d)2
i

z + (b + d)z2
i

= a+ b2
i+1 + (b+ d)2

i+1.

Notice that (a, b) �= (0, 0), then a �= 0 when b = 0. Note that x
1

2i+1 is a per-
mutation over F2k , then (5) does not has solutions on F2

2k when (b, d) = (0, 0).
Therefore, we have (b, d) �= (0, 0) when the system of equation (4) and equation
(5) has solutions in F2

2k .
Hence according to Lemma 2, the above system of equations has 0 or 4 root

in F2
2k . Then we complete the proof. ��
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Theorem 5. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over
F2
2k constructed by three-round Feistel structure with round functions P1(x) =

P3(x) = x2
i+1 and P2(x) = x

1

2i+1 . Then the nonlinearity of F (x, y) equals
22k−1 − 2k, which is the best known nonlinearity over F2

2k . Furthermore, the
Walsh spectrum of F (x, y) is {0,±2k+1}.

Proof. Let a, b, c, d ∈ F2k , and (c, d) �= (0, 0). Then we have

λF ((a, b), (c, d))

=
∑

x,y∈F
2k

(−1)Tr(c(y2i+1+y2i (x+y2i+1)
1

2i+1 +y(x+y2i+1)
2i

2i+1 )+d(y+(x+y2i+1)
1

2i+1 )+ax+by).

Let z = (x + y2
i+1)

1

2i+1 . Then x = y2
i+1 + z2

i+1 and z runs over F2k when x
runs over F2k . Therefore, we have

λF ((a, b), (c, d)) =
∑

y,z∈F
2k

(−1)Tr(c(y2i+1+y2iz+yz2i )+d(y+z)+a(y2i+1+z2i+1)+by)

=
∑

y,z∈F
2k

(−1)f(y,z),

where

f(y, z) = Tr((a+ c)y2
i+1 + az2

i+1 + c(y2
i

z + yz2
i

) + (b + d)y + dz).

Firstly, if a = c = 0, then d �= 0 since (c, d) �= (0, 0). Hence it holds

λF ((0, b), (0, d)) =
∑

y,z∈F
2k

(−1)Tr((b+d)y+dz)

=
∑

y∈F
2k

(−1)Tr((b+d)y)
∑

z∈F
2k

(−1)Tr(dz)

= 0.

Next, we suppose (a, c) �= (0, 0). Note that

f(y, z) + f(y + u, z + v)

= Tr((a+ c)(y2
i+1 + (y + u)2

i+1) + a(z2
i+1 + (z + v)2

i+1))

+Tr(c(y2
i

z + yz2
i

+ (y + u)2
i

(z + v) + (y + u)(z + v)2
i

) + (b + d)u+ dv)

= Tr((a+ c)(u2
i

y + uy2
i

+ u2
i+1) + a(v2

i

z + vz2
i

+ v2
i+1))

+Tr(c(y2
i

v + u2
i

z + u2
i

v + yv2
i

+ uz2
i

+ uv2
i

) + (b+ d)u + dv)

= Tr(((a + c)u2
i

+ (au + cu)2
n−i

+ cv2
i

+ (cv)2
n−i

)y)

+Tr((av2
i

+ (av)2
n−i

+ cu2
i

+ (cu)2
n−i

)z) + f(u, v),
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then it holds that

λF ((a, b), (c, d))
2 =

∑
y,z∈F

2k

(−1)f(y,z) ×
∑

u,v∈F
2k

(−1)f(y+u,z+v)

=
∑

y,z,u,v∈F
2k

(−1)f(y,z)+f(y+u,z+v)

=
∑

y∈F
2k

(−1)Tr((cv2i+(cv)2
n−i

+(a+c)u2i+(au+cu)2
n−i

)y)

×
∑

z∈F
2k

(−1)Tr((cu2i+(cu)2
n−i

+av2i+(av)2
n−i

)z)

×
∑

u,v∈F
2k

(−1)f(u,v)

= 22k
∑

u,v∈R(a,c)

(−1)f(u,v),

where R(a, c) is the solution set of the following system of equations with vari-
ables u and v {

av2
i

+ (av)2
n−i

+ cu2
i

+ (cu)2
n−i

= 0,

cv2
i

+ (cv)2
n−i

+ (a+ c)u2
i

+ (au+ cu)2
n−i

= 0.

Note that (a, c) �= (0, 0), then according to Lemma 3, the above system of equa-
tions has exactly 4 roots in F2

2k . Denote

R(a, c) = {(ui, vi) | 0 ≤ i ≤ 3}.
Notice that f(y, z)+f(y+u, z+v) = f(u, v) for (u, v) ∈ R(a, c) and (y, z) ∈ F2

2k ,
which means f(u, v) is linear on R(a, c). Therefore, f(u, v) is a balanced function
or a constant 0 on R(a, c). Note that (0, 0) ∈ R(a, c), then it holds

λF ((a, b), (c, d))
2 =

{
22k+2 f(ui, vi) = 0 for all 0 ≤ i ≤ 3,
0 otherwise.

Hence
λF ((a, b), (c, d)) ∈ {0,±2k+1},

and we complete the proof. ��
At the end of this section, we investigate the algebraic degree of F (x, y). The

following results are needed.

Lemma 4. [22] Suppose k is odd and gcd(i, k) = 1. Then the compositional

inverse of x2
i+1 over F2k is xt, where t =

k−1
2∑

j=0

22ij mod (2k − 1). Its algebraic

degree is k+1
2 .
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Lemma 5. [4,7] Suppose F (x) ∈ F2n [x]. If λF (a, b) ∈ {0,±2n+s
2 } for all b ∈ F∗

2n

and a ∈ F2n , then d
◦(F ) ≤ n−s

2 + 1.

Theorem 6. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over
F2
2k constructed by three-round Feistel structure with round functions P1(x) =

P3(x) = x
2i+1 and P2(x) = x

1

2i+1 . Then the algebraic degree of F (x, y) equals k.

Proof. Firstly, according to Theorem 5 and Lemma 5, we have

d◦(F (x, y)) ≤ 2k − 2

2
+ 1 = k.

Next, let S = {2ij mod k | 0 ≤ j ≤ k−1
2 } and for s ⊆ S, define

2s =

{
0 s = ∅,∑

j∈s

2j mod (2k − 1) s �= ∅.

Then according to Lemma 4, the compositional inverse of x2
i+1 is x2

S

. Hence
we have

(x+ y2
i+1)

1

2i+1 = (x+ y2
i+1)2

S

=
∑
s1⊆S

x2
s1
y(2

i+1)2S\s1

= xy
(2i+1)

k−1
2∑

j=1

22ji mod (2k−1)

+
∑

{0}�=s1⊆S

x2
s1
y(2

i+1)2S\s1

= xyd1 + F
′
(x, y),

where F
′
(x, y) =

∑
{0}�=s1⊆S

x2
s1
y(2

i+1)2S\s1
and

d1 = (2i + 1)

k−1
2∑

j=1

22ji mod (2k − 1) =

k∑
j=2

2ji mod (2k − 1).

We claim that ω2(d1) = k − 1. Otherwise there exist 2 ≤ j1 < j2 ≤ k, such
that 2ij1 = 2ij2 mod (2k− 1). This is equivalent to ij1 = ij2 mod k, since for an

integer r ∈ Z, 2r mod (2k − 1) = 2r
′
, where 0 ≤ r′ ≤ k − 1 and r

′
= r mod k.

Thus k|i(j2− j1). Note that gcd(i, k) = 1, then j1 = j2, which is a contradiction.
Therefore, it holds

ω2(d1) = k − 1,

and hence
d◦(xyd1) = k.

Notice that xyd1 does not appear in the terms of F
′
(x, y), then the algebraic

degree of y + (x + y2
i+1)

1

2i+1 equals k. This means F (x, y) has a component
function with algebraic degree k. Thus d◦(F (x, y)) ≥ k. Then we complete the
proof. ��

According to the above results, we have the following result.
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Theorem 7. Suppose k is an odd integer and gcd(i, k) = 1. Let

F (x, y) = (x+ y2
i+1 + (y + (x+ y2

i+1)
1

2i+1 )2
i+1, y + (x+ y2

i+1)
1

2i+1 ),

which is the S-box over F2
2k constructed by three-round Feistel structure with

round functions P1 = P3 = (x)2
i+1 and P2 = P1(x)

−1 = x
1

2i+1 . Then the
following statements hold.

(1) F (x, y) is an involution over F2
2k , which means F (F (x, y)) = (x, y).

(2) The differential uniformity of F (x, y) equals 4 and its differential spectrum
is {0, 4}.

(3) The nonlinearity of F (x, y) equals 22k−1 − 2k and its Walsh spectrum is
{0,±2k+1}.

(4) The algebraic degree of F (x, y) equals k.

Remark 1. When k = 3, i = 1, it can be checked that F (x, y) in Theorem 7
is CCZ-equivalent to x5. In general, we do not know whether F (x, y) is CCZ-

equivalent to the Gold type permutations over F22k , i.e., x
2i+1 with gcd(i, 2k) =

2. However, the permutations in Theorem 7 are still interesting due to their
efficient hardware implementation.

The following result also holds, whose proof is similar to the proof of above
results.

Theorem 8. Suppose k is an odd integer and gcd(i, k) = 1, α, β, γ ∈ F2k . Let

F (x, y) = (x + (y + α)
2i+1

+ (y + γ + (x + β + (y + α)
2i+1

)
1

2i+1 )
2i+1

, y + (x + β + (y + α)
2i+1

)
1

2i+1 ),

which is the S-box over F2
2k constructed by three-round Feistel structure with

round functions P1(x) = (x + α)2
i+1, P2(x) = (x + β)

1

2i+1 and P3(x) = (x +

γ)2
i+1. Then the following statements hold.

(1) F (x, y) is an involution over F2
2k when α = γ.

(2) The differential uniformity of F (x, y) equals 4 and its differential spectrum
is {0, 4}.

(3) The nonlinearity of F (x, y) equals 22k−1 − 2k and its Walsh spectrum is
{0,±2k+1}.

(4) The algebraic degree of F (x, y) equals k.

Remark 2. “Characterizing the F -functions whose maximum differential prob-
ability with keys is small” is an open problem proposed in [1]. In that pa-
per, the i-th round of Feistel structure is a transformation as (Li, Ri) →
(Ri, Li + f(Li + ki)). F -function means f(x + ki), where f is a permutation
and ki is the i-th round key. Theorem 8 means that for any fixed round keys,
the three-round Feistel scheme with round functions P1 = P3 = x2

i+1 and

P2 = x
1

2i+1 always posses the best differential uniformity and nonlinearity.
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5 Constructing Optimal 4-bit S-boxes with Unbalanced
Feistel Structure

Four bit S-boxes are always chosen for lightweight cryptography because of their
less hardware implementation cost. It has been shown that, the best differential
uniformity and nonlinearity of 4-bit S-boxes both equal 4 [17]. These S-boxes
are called optimal 4-bit S-boxes.

In order to reduce hardware implementation cost, a method of constructing
recursive diffusion layers is proposed in PHONTON [14] and LED [15], and
further studied in [26]. We use a similar idea to construct recursive S-boxes in
this section. We show that some optimal 4-bit S-boxes can be constructed with
4 or 5 round unbalanced Feistel structure.

Construction 1. Suppose f is a nonlinear Boolean function with three vari-
ables, and xi ∈ F2, 1 ≤ i ≤ 4. One round unbalanced Feistel structure is a
transformation as follows

Pf (x1, x2, x3, x4) = (x2, x3, x4, x1 + f(x2, x3, x4)).

Then an S-box over F4
2 can be constructed with t round unbalanced Feistel struc-

ture as follows

F (x1, x2, x3, x4) = P
t
f (x1, x2, x3, x4),

where t = 4 or 5, P j
f defined as Pf (P

j−1
f ) for j ≥ 2 and P 1

f = Pf .

It is easy to see that P t
f is a permutation over F4

2 for t ≥ 1. In order to update
every bit of the output of the S-boxes constructed as above, t should larger than
or equal to 4. Considering the efficiency of S-boxes, it is better to construct
S-boxes with not too many rounds. Thus, we choose t = 4 or 5 in the above
construction. P t

f can be implemented with nonlinear feedback register (NLFSR)
as shown in Figure 2. It also can be implemented similarly as the implementation
of S-boxes in Piccolo [23] and LS-design [13].

x1 x2 x3 x4

f⊕

Fig. 2. Constructing S-box with NLFSR
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Table 2. Boolean functions such that P 4
f are optimal 4-bit S-boxes

f Operations Gi f Operations Gi

x2x3 (1, 1, 0) 8 x2x3 + 1 (1, 1, 1) 8
x3x4 (1, 1, 0) 8 x3x4 + 1 (1, 1, 1) 8
(x3 + 1)x4 (1, 1, 1) 8 (x3 + 1)x4 + 1� (1, 1, 2) 8
x2(x3 + 1) (1, 1, 1) 8 x2(x3 + 1) + 1� (1, 1, 2) 8
x3(x4 + 1) (1, 1, 1) 8 x3(x4 + 1) + 1� (1, 1, 2) 8
(x2 + 1)x3 (1, 1, 1) 8 (x2 + 1)x3 + 1� (1, 1, 2) 8
(x2 + 1)(x3 + 1) + 1 (1, 1, 3) 8 (x2 + 1)(x3 + 1) (1, 1, 2) 8
(x3 + 1)(x4 + 1) + 1 (1, 1, 3) 8 (x3 + 1)(x4 + 1) (1, 1, 2) 8
x2x3 + x4 (2, 1, 0) 8 x2x3 + x4 + 1� (2, 1, 1) 8
x2 + x3x4 (2, 1, 0) 8 x2 + x3x4 + 1� (2, 1, 1) 8
x2 + (x3 + 1)x4 (2, 1, 1) 8 x2 + (x3 + 1)x4 + 1 (2, 1, 2) 8
(x2 + 1)x3 + x4 (2, 1, 1) 8 (x2 + 1)x3 + x4 + 1 (2, 1, 2) 8
x2 + x3(x4 + 1) (2, 1, 1) 8 x2 + x3(x4 + 1) + 1 (2, 1, 2) 8
x2(x3 + 1) + x4 (2, 1, 1) 8 x2(x3 + 1) + x4 + 1 (2, 1, 2) 8
x2 + (x3 + 1)(x4 + 1) + 1 (2, 1, 3) 8 x2 + (x3 + 1)(x4 + 1)� (2, 1, 2) 8
(x2 + 1)(x3 + 1) + x4 + 1 (2, 1, 3) 8 (x2 + 1)(x3 + 1) + x�

4 (2, 1, 2) 8
x2(x3 + x4) + x3x4 (3, 2, 0) 1 x2(x3 + x4) + x3x4 + 1 (3, 2, 1) 1
x2(x4 + x3 + 1) + (x3 + 1)x4 (3, 2, 1) 1 x2(x4 + x3 + 1) + (x3 + 1)x4 + 1 (3, 2, 2) 1
x2(x3 + x4 + 1) + x3(x4 + 1) (3, 2, 1) 1 x2(x3 + x4 + 1) + x3(x4 + 1) + 1 (3, 2, 2) 1
(x2 + 1 + x4)x3 + (x2 + 1)x4 (3, 2, 1) 1 (x2 + 1 + x4)x3 + (x2 + 1)x4 + 1 (3, 2, 2) 1

Let Qf(x1, x2, x3, x4) = (x4 + f(x1, x2, x3), x1, x2, x3), which is also a trans-
formation that can be implemented easily. Then it is easy to verify that

P (Q(x1, x2, x3, x4)) = (x1, x2, x3, x4).

Hence the compositional inverse of P t
f equals Qt

f . It should be noticed Qt
f also

can be implemented with nonlinear shift register.
By an exhaustive searching, we list all Boolean functions f such that P 4

f ,

P 5
f are optimal 4-bit S-boxes in Table 2 and Table 3 respectively. The cost

of hardware implementation of one round transformations of P t
f , i.e. x1 + f ,

is estimated in the two tables. An element “(r1, r2, r3)” in the “Operations”
columns of the two tables means that the number of operations “+” (XOR), “∗”
(AND) and “+1” (NOT) in x1 + f is r1, r2 and r3 respectively.

According to [17], there are exactly 16 classes of optimal 4-bit S-boxes up to
affine equivalence. An element “j” in the columns “Gi” in Table 2 (resp. Table
3) means the P 4

f (resp. P 5
f ) is CCZ-equivalent to Gj in [17]. It can be checked

that the S-box used in PRESENT [2] is affine equivalent to G1.
The functions with a “�” in the superscript, such as “f�”, in Table 2 (resp.

Table 3) means that P 4
f (resp. P 5

f ) does not have fixed points. For other functions
in the two tables, it can be checked that there always exists nonzero constant
(a1, a2, a3, a4) ∈ F4

2, such that P 4
f (x1+a1, x2+a2, x3+a3, x4+a4) (resp. P

5
f (x1+

a1, x2 + a2, x3 + a3, x4 + a4)) does not have fixed points. Note that adding a
constant to input does not change the differential uniformity and nonlinearity,
then for any function f in the two tables, optimal 4-bit S-boxes with no fixed
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Table 3. Boolean functions such that P 5
f are optimal 4-bit S-boxes

f Operations Gi f Operations Gi

x2(x3 + x4) + 1 (2, 1, 1) 7 (x2 + x4)x3 + 1� (2, 1, 1) 4
(x2 + x3)x4 + 1 (2, 1, 1) 7 (x2 + x4)(x3 + 1) + 1� (2, 1, 2) 4
(x2 + x3)(x4 + 1) + 1 (2, 1, 2) 7 (x2 + 1)(x3 + x4) + 1 (2, 1, 2) 7
x2x3 + (x2 + 1)x4 (2, 2, 1) 13 x2(x4 + 1) + x3x4 (2, 2, 1) 13
x2x4 + x3(x4 + 1) + 1 (2, 2, 2) 13 x2(x3 + 1) + x3(x4 + 1) (2, 2, 2) 4
(x2 + 1)x3 + x2x4 + 1 (2, 2, 2) 13 x2x4 + (x3 + 1)(x4 + 1)� (2, 2, 2) 13
x2x3 + (x2 + 1)(x4 + 1)� (2, 2, 2) 13 (x2 + 1)(x4 + 1) + x3x

�
4 (2, 2, 2) 13

(x2 + 1)(x3 + 1) + x2x
�
4 (2, 2, 2) 13 (x2 + 1)x3 + (x3 + 1)x4 (2, 2, 2) 4

x2((x3 + 1)x4 + 1) + x3(x4 + 1) (2, 3, 3) 11 (x2(x4 + 1) + 1)x3 + (x2 + 1)x4 (2, 3, 3) 11
(x2x3 + 1)x4 + (x2 + 1)(x3 + 1) (2, 3, 3) 11 x2(x3x4 + 1) + (x3 + 1)(x4 + 1) (2, 3, 3) 11
(x2x3 + 1)x4 + (x2 + 1)(x3 + 1) + 1 (2, 3, 4) 11 (x2x4 + 1)x3 + (x2 + 1)(x4 + 1) + 1 (2, 3, 4) 3
x2(x3x4 + 1) + (x3 + 1)(x4 + 1) + 1 (2, 3, 4) 11 x2(x3(x4 + 1) + 1) + (x3 + 1)x4 + 1 (2, 3, 4) 3
(x2(x4 + 1) + 1)x3 + (x2 + 1)x4 + 1 (2, 3, 4) 11 x2((x3 + 1)x4 + 1) + x3(x4 + 1) + 1 (2, 3, 4) 11

points can also be constructed by adding a constant to the input. For example,
let f = x2x3, by adding (1, 0, 1, 0) to the input of P 4

f , we have P
4
f (x1+1, x2, x3+

1, x4) is a optimal 4-bit S-boxes which does not have fixed points.
With the method in this section, it can only use 1 XOR, 1 AND and 2 NOT

for one round transformation to construct an 4-bit optimal S-box with no fixed
points by 4 round unbalanced Feistel structure, see Table 2.

6 Conclusion

In the present paper, we investigate cryptographic properties of S-boxes con-
structed with three-round Feistel structure. A class of differential 4-uniform S-
boxes with the best known nonlinearity over F2

2k for k odd is given. It is also
shown that optimal 4-bit S-boxes can be constructed with unbalanced Feistel
structure and some experiment results are given in the paper. The problem of
constructing new, which means CCZ-inequivalent to known ones, differential 4-
uniform permutations over F2

2k with the best known nonlinearity is an interesting
problem that needs further study.
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Abstract. A popular effective countermeasure to protect block cipher
implementations against differential power analysis (DPA) attacks is to
mask the internal operations of the cryptographic algorithm with ran-
dom numbers. While the masking technique resists against first-order
(univariate) DPA attacks, higher-order (multivariate) attacks were able
to break masked devices. In this paper, we formulate a statistical model
for higher-order DPA attack. We derive an analytic success rate formula
that distinctively shows the effects of algorithmic confusion property,
signal-noise-ratio (SNR), and masking on leakage of masked devices. It
further provides a formal proof for the centered product combination
function being optimal for higher-order attacks in very noisy scenarios.
We believe that the statistical model fully reveals how the higher-order
attack works around masking, and would offer good insights for embed-
ded system designers to implement masking techniques.

Keywords: Side-channel attack, differential power analysis, statistical
model.

1 Introduction

Differential Power Analysis (DPA) and its variants, Correlation Power Attack
(CPA) [1], Mutual Information Attack (MIA) [2], and template attacks [3,4],
have been invented to successfully attack cryptographic implementations in many
embedded systems [5]. Often these attacks exploit the correlation between the
observed measurements and one intermediate data, so-called univariate or first-
order attacks. Masking was proposed as an effective countermeasure to protect
block cipher systems against first-order attacks. In masking, a random mask M
is generated for each execution of the cryptographic algorithm and applied to
the internal operations. During the execution, any intermediate data Z is re-
placed by its masked counterpart f(Z,M) with a carefully designed masking
function f . Various masking methods for AES have been investigated [6,7,8,9].
The boolean (exclusive OR) masking f(Z,M) = Z ⊕M is the most commonly
used one and will be considered in this paper.

Theoretically, the leakage at any time point of the execution on a boolean-
masked device is independent of the secret key, and therefore cannot leak the

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 147–169, 2014.
c© International Association for Cryptologic Research 2014
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key. The boolean masking protects cryptosystems against all first-order attacks
that use only leakage measurements at one time point (or at multiple time points
all related to the same intermediate data). However, higher-order attacks using
leakages at more than one time points corresponding to multiple intermediate
data are able to reveal the secret key. Particularly, let us consider the second-
order attack that uses leakages L(t0) and L(t1) at two time points t0 and t1
on the device protected by a single mask variable M . A second-order attack
can break the protected system by selecting the key kg that maximizes the cor-
relation between the guessed intermediate data Zg (before the masking) and
a combination function of the two leakages L(t0) and L(t1). Two combination
functions are studied most in previous literatures. The absolute difference combi-
nation function |L(t0)−L(t1)| was first proposed by Messerges [10] and analyzed
mathematically by Joye et al. [11]. The centered product combination function
[L(t0)−E(L(t0))]× [L(t1)−E(L(t1))] was proposed by Chari et al. [12] and ana-
lyzed by Schramm and Paar [13]. Gierlichs et al. analyzed the higher-order MIA
attack using the centered combination function [14]. Oswald et al. compared sev-
eral combination functions with simulation studies [15]. Prouff et al. provided
a mathematical analysis of the second-order attack [16]. They showed that the
centered product combination function is the best among product combination
functions for CPA, and it is better than the absolute difference combination
function in noisy situations. This analysis, however, does not tell if there exists
other kinds of combination functions better than the product combination func-
tion. Standaert et al. applied the information theoretical framework to analyze
second-order attacks [17]. They showed that when the noise increases, the infor-
mation leakage of the centered product combination function gets close to the
upper bound (the information leakage of the joint distribution), while for small
noises, the information leakage of the absolute difference combination function
gets close to the upper bound.

Recently, Prouff and Rivain [18] provided a formal security proof for a mask
refresh scheme by a secure masking oracle as a leakage-resilient cryptographic
primitive. Our work does not consider such sophisticated mask refreshing scheme,
but attempts to bound the success rate of higher-order attack on standard
and practical masking schemes. Previous side-channel modeling and analysis
work [19] derives a simple success rate formula for first-order DPA attack on un-
masked devices, which is explicitly dependent on the algorithmic confusion coef-
ficients introduced in [20]. The formula shows the effect of both implementation-
determined signal-to-noise-ratio (SNR) and algorithmic confusion properties.
They demonstrated that the formula conforms with the empirical single-bit DPA
attacks on DES and AES algorithms.

Our Contributions. In this paper, we adopt the algorithmic confusion analysis
and apply it to higher-order attacks on masked devices and derive an explicit
success rate formula. The analytical formula allows us to decouple and quan-
tify the effect of the algorithmic confusion properties, SNR, and masking on the
effectiveness of power analysis attacks, which will be useful to system design-
ers when designing, implementing, and evaluating side-channel attack resistant
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cryptosystems. We will formally prove in this paper, for the first time, that
the centered product combination function (CPCF) attack is the best possible
combination function attack in noisy situations.

The rest of the paper is structured as follows. Section 2 presents some prelim-
inaries on which our statistical model for higher-order DPA is based. Section 3
derives an analytical model for second-order DPAs and also extends to general
higher-order attacks. We then use numerical studies on both real measurement
data and synthetic data in Section 4 to validate the derived model. More discus-
sions and conclusions are given in Section 5.

2 Preliminaries

2.1 Success Rate of Maximum Likelihood (ML) Attacks

SCA on a cryptographic system utilizes the correlation between the noisy physi-
cal leakage observation L and a key-sensitive intermediate value Z(X, k) to reveal
the secret key k, where X denotes a known input plaintext (or ciphertext). We
denote p(L|k) as the conditional probability density function (pdf) for L given k
is the true key. With n independent realizations of L, l1, ..., ln, the most powerful
side-channel statistical test is the maximum likelihood (ML) test [21]:

k̂ = argmax
kg∈S

1

n

n∑
i=1

log[p(li|kg)] (1)

Here kg denotes a guessed key and S = {k1, ..., kNk
} denotes the set of Nk

candidate keys. The secret key embedded in the system is denoted as kc. We
define:

Δ(kc, kg) =
1

n

n∑
i=1

[log p(li|kc)− log p(li|kg)] (2)

as the difference between the two likelihoods for kc and kg. With (Nk − 1)

incorrect keys, we have a (Nk−1)-dimensional vector, Δ̃, with an entryΔ(kc, kg)
for each kg. The ML attack (1) succeeds when n is large enough to yield all the

entries of Δ̃ positive. We denote Δ̃1 as Δ̃ with only one leakage observation l1,
and the mean and variance of Δ̃1 are a vector, μ, and a (Nk−1)×(Nk−1) matrix,
Σ, respectively. With n independent realizations of L, l1, ..., ln, according to the
Central Limit Theorem [22], Δ̃ converges in law to the (Nk − 1)-dimensional
Gaussian distribution, N(μ,Σ/n). The overall success rate of the ML attack,
defined as the probability that Δ̃ is a non-negative vector given n, is therefore:

SR = ΦNk−1(
√
nΣ−1/2μ) (3)

where ΦNk−1(x) is a known function, the cumulative distribution function (cdf)
of the (Nk − 1)-dimensional standard Gaussian distribution. Equation (3) holds
generally for most SCA, while the mean vector and variance matrix would vary
for different attacks. We found that the entries in the mean vector μ are in fact
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the conditional entropies similar to those defined in the seminal work of mutual
information analysis [21]. However, the success rate formula in (3) considers not
only the effect of the mean vector μ, but also the variance matrix Σ on SCAs.
The mean μ reflects the overall system side-channel signal and Σ reflects the
system noise. The term Σ−1/2μ can be taken as the system signal-to-noise ratio
(SNR).

The higher-dimension Gaussian distribution ΦNk−1(x) in (3) is the asymp-
totic limit of ML-attack statistics coming from the Central Limit Theorem, and
is independent of the actual noise distribution in the system leakage. Hence,
formula (3) is general and does not require any assumption on the noise dis-
tribution. When assuming Gaussian power noise as in [3,23], the μ and Σ can
have analytic forms constituted by algorithmic properties as defined in [19,20]
and side-channel SNR. In this paper, we also consider other noise distributions,
like Laplace, in Section 4.3.

2.2 First-Order Power Leakage Model on Unmasked Devices

For a cryptographic device, a commonly used linear power leakage model is:

L = c+ εV + σr (4)

with r as a standard Gaussian noise, N(0, 1), and V = V (X, kc) is the select
function on the intermediate data Z that depends on the known input X and
the secret key kc. At a leakage time point corresponding to Z’s switching, L
is a univariate random variable. Here c is a constant, representing the base
level power consumption of the system, which is independent of both operations
and data. The ε reflects the side-channel signal strength and σ is the standard
deviation of power measurements, i.e., noise from both measurement and other
parts of the device. The side channel signal-to-noise ratio (SNR) is defined as δ =

ε/σ. Under this model, the probability density function p(L|k) = φ(L−c−εV (X,k)
σ )

with φ(·) as the pdf of the standard Gaussian distribution. For a single-bit DPA,
V (X, k) is chosen as one bit of the non-linear SBox output Z = SBox(X, k). The
ML-attack with unknown parameters (c, ε, σ) is equivalent to the distance-of-
means (DoM) attack that selects the key kg to maximize the DoMs. For multi-bit
CPA, often V = H(Z) where H(Z) is the Hamming weight (or distance) of the
SBox output Z. The ML-attack with unknown parameters (c, ε, σ) is equivalent
to choosing the key kg that maximizes the Pearson’s correlation between L and
V g = H(Zg) = H [SBox(X, kg)]. That is, the Hamming weight power model
results in the Correlation Power Attack (CPA).

2.3 First-Order DPA and CPA Models on Unmasked Devices with
Confusion Coefficients

In general, the physical power leakage L is affected by both the implementa-
tion and algorithm. To measure the effect of the algorithm, Luo and Fei [20]
introduced the notion of confusion coefficients for single-bit DPA to reveal the
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distance between keys in terms of side-channel leakage. Let S = {k1, ..., kNk
}

denote the set of Nk candidate keys. The confusion coefficient κ over any two
keys (ki, kj) is defined as:

κ = κ(ki, kj) = Pr [(V |ki) �= (V |kj)] (5)

Here V is a chosen bit of the SBox output Z = SBox(X, k).
Fei et al. [19] further showed that the success rate of the DoM attack follows

(3) and the mean vector μ and variance matrix Σ can be explicitly expressed in
confusion coefficients and the SNR δ = ε/σ as:

μ =
1

2
δ2κ; Σ = δ2K +

1

4
δ4(K − κκT ). (6)

Here κ is a (Nk − 1)-dimensional confusion vector with elements κ(kc, kgi), i =
1, ..., Nk − 1, defined in Equation (5), and K is a (Nk − 1)× (Nk − 1) confusion
matrix that consists of three-way confusion coefficients:

κij = κ(kc, kgi
, kgj

) = Pr
[
V |kgi

= V |kgj
, V |kgc �= V |kc

]
= 1

2
[κ(kc, kgi

) + κ(kc, kgj
) − κ(kgi

, kgj
)].

(7)

The confusion analysis is extended to CPA in [24]. For first-order CPA that
exploits leakage by multiple bits of an SBOX output, V in (4) is the Hamming
weight (or distance) of the SBox output Z = SBox(X, k). The ML-attack’s
success rate also follows (3) but with:

μ =
1

2
δ2κ; Σ = δ2K +

1

4
δ4(K∗ − κκT ). (8)

where the definition of confusion vector κ is the same as before. However, its
element, confusion coefficient, is more general:

κ(kc, kgi) = E[(V |kc − V |kgi)2] (9)

Here κ(kc, kgi) is no longer Pr(V |kc �= V |kgi), because V = H [SBox(X, k)] takes
values among {0, 1, 2, · · · , b} for a b-bit SBox output. In the variance matrix,
there are two (Nk − 1)× (Nk − 1) confusion matrices,K andK∗, with elements:

κij = κ(kc, kgi
, kgj

) = E[(V |kc −V |kgi
)(V |kc −V |kgj

)] =
1

2
[κ(kc, kgi

)+κ(kc, kgj
)−κ(kgi

, kgj
)], (10)

κ∗
ij = κ

∗(kc, kgi , kgj ) = E[(V |kc −
b

2
)2(V |kc − V |kgi)(V |kc − V |kgj )]. (11)

When b = 1, these two matrices are the same, i.e., the first-orderK with elements
in (7) for single-bit DPA.

When δ is small, i.e., noisy situations, the higher-order δ4 term can be ignored
and the variance in (8) can be simplified to Σ = δ2K. Then the success rate
becomes a simplified version as in [25]:

SR = ΦNk−1(

√
nδ

2
K−1/2κ). (12)
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3 Statistical Model for Higher-Order DPA on Masked
Devices

In this section, we first present the second-order power leakage model for masked
devices. We then derive an approximation of the ML-test statistic under noisy
situations to find the correspondingly equivalent optimal second-order DPA.
Under the Hamming Weight leakage model, this turns out to be the centered
product combination function (CPCF) attack. Finally, we derive the success
rate formula for the optimal second-order DPA with explicit constituent terms
of algorithmic properties and SNR. In the end, these derivations are generalized
to higher J-th order masking models with J random masks.

3.1 Second-Order Power Leakage Model on Masked Devices

We consider the boolean masking scheme where a secret intermediate data Z
is masked by one random mask M . The mask M takes value uniformly in the
setM. Therefore, the masked variable Z ⊕M follows a uniform distribution on
M, independent of Z = Z(X, kc), according to the property of the exclusive OR
operation. Hence, the leakage at any selected time point only leaks the random
Z ⊕M and no longer leaks any key information, and therefore the first-order
DPA will fail.

However, often the power consumption at another time point can leak the
mask M , and can be combined with the leakage on the masked intermediate
variable Z⊕M to break masked devices. We assume that t0 and t1 are the peak
leakage time points for V0 = V0(Z⊕M) and V1 = V1(M) respectively. Note here
V0 is key-sensitive and V1 is key-independent. We denote V g

M,0 = V0(Z
g ⊕M)

with Zg = Z(X, kg) under key guess kg. The ML-attack on the masked device is
still of the same form as in (1) with the log-likelihood 1

n

∑n
i=1 log p(li|kg), taking

a two-dimensional vector leakage input li = (li,0, li,1), rather than a scalar one
as in univariate (first-order) ML attack. Assuming the leakages at the two time
points are independent of each other, the log-likelihood becomes

1

n

n∑
i=1

log[p(li|kg)] = 1

n

n∑
i=1

log[
1

|M|
∑

m∈M
p0(li,0|kg,m)p1(li,1|m)]. (13)

The above log-likelihood expression involves an iteration of m over all possible
mask values: 1

|M|
∑

m∈M. We use the notation Em to denote such expectation

over M . Hence we rewrite the ML-test statistic as:

T g
ML =

1

n

n∑
i=1

log p(li|kg) = 1

n

n∑
i=1

log{Em[p0(li,0|kg,m)p1(li,1|m)]}. (14)

The linear operation Em above prevents separating the factors inside the log
into sums. This results in a mixture distribution density function, and is com-
putationally intensive.
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Under the commonly used leakage power model, the power consumptions at
the two time points in a masked device are:

Lj = L(tj) = cj + εjVj + σjrj , j = 0, 1. (15)

where the noises r0 and r1 are independent standard Gaussian noise, N(0, 1).
For n executions of the cryptographic algorithm, each with a distinct input xi
and a random mask mi, i = 1, ..., n, we denote the n realizations of (Z, V0, V1,
r0, r1, L0, L1) as (Zi, Vi,0, Vi,1, ri,0, ri,1, li,0, li,1). Then under model (15), the
ML-test statistic from Equation (14) results from the mixture distribution:

T g
ML =

1

n

n∑
i=1

log{Em[φ(rgm,i,0)φ(rm,i,1)]} (16)

where φ(x) = e−x2/2/
√
2π is the pdf function of standard Gaussian distribution.

rgm,i,0 =
li,0−c0−ε0V

g
m,i,0

σ0
= ri,0 + δ0(Vi,0 − V g

m,i,0) is for time point t0, where
Vi,0 = V0(Z

c
i ⊕mi) is the correct select function at the point with the specificmi,

and V g
m,i,0 = V0(Z

g
i ⊕m) is the guessed one under kg given a randomm. rm,i,1 =

li,1−c1−ε1Vm,1

σ1
= ri,1+δ1(Vi,1−Vm,1) is for time point t1 (key-independent), where

Vi,1 is the correct select function at the point with mi and Vm,1 = V1(m) is the
select function given a random m. δj = εj/σj denotes SNR for j = 0, 1.

The ML-attack select the key kg that maximizes the statistic T g
ML in (16). In

contrast, the centered product combination function (CPCF) attack select the
key kg that maximizes the statistic

T̃ g =
1

n

n∑
i=1

C̃if(Z
g
i ), (17)

where f(Zg
i ) = Em(V g

m,i,0Vm,1), C̃i = l̃i,0 l̃i,1 with centered leakage measurements
at the two time points as

l̃i,j = [li,j − E(Li,j)]/σj = ri,j + δj [Vi,j − E(Vi,j)], for j = 0, 1. (18)

Here E(·) denotes the unconditional expectation over all three sources of random
variation in the leakage model (15): (a) the random mask M , (b) the random
input X , and (c) the random noise vector r = (r0, r1). This is different from
the Em(·) operation defined earlier, which is in fact a conditional expectation
integrating out the random variation from the first source (a) only.

In section 3.2, we prove the equivalence between the ML-attack (16) and the
CPCF attack (17) in noisy situations, summarized in the following Theorem 1.
Then under the Hamming Weight model, the prediction function f(Zg

i ) can be
simplified. We then derive an explicit success rate formula for the equivalent
attack in terms of the confusion coefficients in section 3.3.

Theorem 1 Under the second-order leakage model (15), as the noises increase,
δ → 0, the ML-attack is asymptotically equivalent to the CPCF attack.
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The main idea of the proof is to check the Taylor expansion of the T g
ML in (16)

under noisy situations (δ → 0). Many leading terms in the expansion are in fact
key-independent constants. The first leading key-dependent term turns out to
be proportional to δ0δ1T̃

g in (17).
The previous work [26] also analyzes second-order ML attack, and approxi-

mates the Gaussian mixture density (16) by a bivariate Gaussian distribution
using the techniques in [27]. They show that CPCF attack maximizes the likeli-
hood for the best Gaussian approximation. However, there is no measure of the
information lost in using such a Gaussian approximation. We prove formally that
the CPCF attack approximation of ML-attack becomes exact in noisy situations
(δ → 0), and would indeed provide the same security bound asymptotically.

3.2 Approximate ML-attack Statistic under Noisy Situations

While the ML-attack is the strongest statistical attack, the Em operation in cal-
culating (16) is time-consuming with complexity O(|M|). Particularly, the com-
plexity increases exponentially with the order J of masking, as O(|M|J ). Hence,
the exact ML-attack is computationally prohibitive in higher-order masking, say,
J = 8. In practice, adversaries can use attacks based on some combination func-
tions to avoid the Em operation. Since the Em of powers of rgm,i,0 and rm,i,1 can
be known with explicit forms, we wish to approximate the ML-attack statistic
and therefore find practical but yet asymptotic equivalent attack to the ML-test.
This is achieved by taking a Taylor expansion of (16).

We aim to extract the key-dependent components from the ML test statistic.
We set the base of T g

ML as its value when the SNRs at both time points approach
zero, which by model (15) becomes a key-independent constant:

T0 =
1

n

n∑
i=1

log[
1

2π
e−

r2i,0+r2i,1
2 ]

with the noises ri,j = (li,j − cj)/σj for j = 0, 1. Removing this constant from
(16), we get the rest key-sensitive part of the test statistic:

T g
ML − T0 =

1

n

n∑
i=1

log(Sg
i ) =

1

n

n∑
i=1

log{Em[eR
g
m,i ]} (19)

where Sg
i = Em[eR

g
m,i ], Rg

m,i = − 1
2 (A

g
m,i + Am,i,1) = O(δ) and δ = max(δ0, δ1)

with

Ag
m,i = (rgm,i,0)

2 − r2i,0 = 2δ0(Vi,0 − V g
m,i,0)ri,0 + δ

2
0(Vi,0 − V g

m,i,0)
2 = O(δ0);

Am,i,1 = r2m,i,1 − r2i,1 = 2δ1(Vi,1 − Vm,1)ri,1 + δ
2
1(Vi,1 − Vm,1)

2 = O(δ1).
(20)

When δ → 0, we have the Taylor expansion Sg
i = Em[eR

g
m,i ] = 1+Em(Rg

m,i)+

O(δ2). However, this leading term Em(Rg
m,i) = Em[− 1

2 (A
g
m,i+Am,i,1)] does not

contribute to the key selection since it is a key-independent constant. This comes
from a simple but very useful fact summarized as:
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Lemma 1 For any statistic Sg of the leakage measurements at a single time
point, Em(Sg) is independent of key kg.

The above Lemma is due to the fact that, asm iterates over the rangeM, Zg⊕m
also iterates overM. So the sum over the rangeM would be independent of the
actual value of Zg. Hence, after the Em(·) operation, any statistic of Zg ⊕ m
becomes independent of Zg (hence independent of key kg).

Lemma 1 implies that Em(Rg
m,i) is key-independent which is the sum of two

statistics on two different time points. We need to take in the next higher-order
term in the Taylor expansion to find the leading key-sensitive term in the ML-
attack statistic, Sg

i = 1 + Em[Rg
m,i] +

1
2Em[(Rg

m,i)
2] + O(δ3). The key-sensitive

part in Em[(Rg
m,i)

2] is (−1/2)2Em[2Ag
m,iAm,i,1] after applying Lemma 1 again.

Combining this with log(Sg
i ) = (Sg

i − 1)− (Sg
i − 1)2 +O(δ3), we have

log(Sg
i ) = Ai +

1

4
Em[Ag

m,iAm,i,1] +O(δ
3), (21)

with a key-independent constant Ai. From (21), we get:

T g
ML = A+ T g +O(δ3), with T g =

1

4n

n∑
i=1

Em[Ag
m,iAm,i,1], (22)

where A is a constant, Ag
m,i and Am,i,1 are defined in (20). That is, the ML-attack

asymptotically (when δ → 0) is equivalent to selecting the key kg that maximizes
the test statistic Tg in (22).

Remark 1: The error in the Taylor expansion of eR
g
m,i in (19) by 1 + Rg

m,i +

(Rg
m,i)

2/2 is bounded by max(1,e
R

g
m,i )

6 |Rg
m,i|3. From the definition of Rg

m,i in (20),

considering that V is bounded and Rg
m,i is linear in ri, Em[max(1,e

R
g
m,i )

6 |Rg
m,i|3]

has finite moments for each i. By law of large numbers [28] there is a constant
Q such that, with probability one for large n,

1

n

n∑
i=1

Em[
max(1, eR

g
m,i)

6
|Rg

m,i|3] ≤ Qδ3

uniformly for small enough δ. Hence the above approximation (22) holds uni-
formly at the rate of O(δ3) for small δ with probability one for large n.

Next we simplify the expression of test statistic T g. We can rewrite (20) as

Ag
m,i = Ai,0 − 2δ0 l̃i,0V

g
m,i,0 + δ

2
0V

g
m,i,0[V

g
m,i,0 − 2E(Vi,0)];

Am,i,1 = Ai,1 − 2δ1 l̃i,1Vm,1 + δ
2
1Vm,1[Vm,1 − 2E(Vi,1)],

(23)

where Ai,0 and Ai,1 are constants independent of guessed key kg and the random
masks m. Using (23), we find the leading key-sensitive term in Em[Ag

m,iAm,i,1]
relates to the CPCF attack statistics (17),

Em[(−2δ0l̃i,0V g
m,i,0)(−2δj l̃i,jVm,j)] = 4δ0δ1C̃if(Z

g
i ) +O(δ

3) = 4nT̃ g +O(δ3).
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Plug this into (22), and the approximate ML-test statistic T g becomes T g =

B + δ0δ1T̃
g + O(δ3), with B as another key-independent constant. Hence we

establish the equivalence between (16) and (17), i.e., prove Theorem 1.
Given specific V0(·) and V1(·) functions, f(Zg

i ) = Em(V g
m,i,0Vm,1) is a deter-

ministic function and Em operation can be skipped over using algebraic proper-
ties. We further simplify the test statistic T̃ g in (17), eliminating the iteration
overM and finding an explicit formula for f(Zg

i ) under the Hamming Weight
power leakage model:

V0(Z,M) = H(Z ⊕M) and V1(M) = H(M). (24)

By Lemma 21 in [16], for any b-bits randommaskM ,Em[H(Z⊕M)H(M)|Z] =
− 1

2H(Z) + b/4. Applying this formula to (24), we get

f(Zg
i ) = Em(V g

m,i,0Vm,1) = −1

2
H(Zg

i ) + constant.

Therefore, under the Hamming Weight power leakage model, the CPCF attack
maximizes

T̃ g = −δ0δ1
2n

n∑
i=1

C̃iH(Zg
i ). (25)

Remark 2: The above derivations for approximate ML attacks assume that
the system parameters (c, ε,σ) are all known, and therefore the theoretically
strongest attack can just plug these parameters into (18) with E(Li,j) = cj+εj

b
2 .

The real applicable CPCF attack does not know these parameters and needs to
estimate E(Li,j) =

∑n
i=1 li,j/n and (c, ε,σ) just based on the power data. We

therefore consider such two attacks: (a) the theoretical strongest approximate
ML attack and (b) the real second-order attack. The real attack (b) should be
less powerful due to parameter estimation using finite power data. Similar to
the previous work on DPA and CPA modeling, the second-order approximate
ML attack (a) provides a theoretical bound for the real CPCF attack (b). We
will derive the success rate formula for (a) only in Section 3.3, and will compare
these two attacks in Section 4.2.

3.3 The Explicit Asymptotic Success Rate Formula for
Second-Order Attack

We now derive an explicit asymptotic success rate of the approximate second-
order ML-attack, in terms of algorithm confusion coefficients and SNRs. For the
test selecting argmaxkg∈S T

g, the Δ(kc, kg) in Equation (2) becomes:

Δ(kc, kg) = T
c − T g =

δ0δ1
n

(−1

2
)

n∑
i=1

C̃i(H(Zc
i )−H(Zg

i )). (26)

As explained in Section 2, the asymptotic success rate of the ML-attack is
ΦNk−1(

√
nΣ−1/2μ) given in Equation (3). The mean μ and variance Σ are
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for the (Nk − 1)-dimensional vector according to (26). Then i-th element in μ is

μi = (
1

2
)3(δ0δ1)

2κ(kc, kgi). (27)

For the ij-th element of the covariance Σ, we keep the leading term and simplify
it as:

σij = (
1

2
)2(δ0δ1)

2κ(kc, kgi , kgj ). (28)

The detailed calculations for (27) and (28) are provided in Appendix A.
Therefore, under the power leakage model (15) and (24) for masked devices,

the asymptotic success rate for the second-order ML-attack is given by:

SR = ΦNk−1(

√
nδ0δ1
4

K−1/2κ). (29)

Here definitions of the confusion vector κ and the confusion matrixK are exactly
the same as those for CPA attack on unmasked devices with elements given in
(9) and (10). Compared to the simplified formula for CPA in (12), the second-
order attack involves the same algorithmic confusion properties (κ and K), and
the product of two SNRs ( δ02 and δ1

2 at the two time points) introduced by the
masking.

The success rate formula (29) provides a good approximation of the true
success rates when the noise is high. To also approximate well for moderate
noises (δ ≤ 1), we keep all the terms in elements of the variance matrix Σ
without approximation (in Appendix B) and get the complete theoretical model:

μ =
1

8
δ20δ

2
1κ; Σ =

1

4
δ20δ

2
1(1 +

b

4
δ20)(1 +

b

4
δ21)K +

1

64
δ40δ

4
1(8K

∗ − 2bK − κκT ),(30)

where K∗ is the higher-order confusion matrix in (11) for CPA attack on un-

masked devices. Then the general success rate ΦNk−1(
√
nΣ−1/2μ) in Equation

(3) can be calculated with this full variance formula (30). Numerical results in
next section show that this complete SR model is very accurate in moderate to
high noise situations.

3.4 Extension to Higher-Order Masking Devices and Other Power
Leakage Models

We now consider the J-th order masking scheme with J shares of masking vari-
ables,M1,M2, ...,MJ . EachMj takes value uniformly in the setM. The previous
results can be extended to this general J-th order masking setting. The (J +1)-

th order attack combines the leakage of V0 = V0(Z
J⊕

j=1
Mj) at time t0 and the

leakage of V1 = V1(M1), ..., VJ = VJ (MJ) at other J times points t1,...,tJ , respec-
tively. Denote M = (M1, ...,MJ). The leakage vector is li = (li,0, li,1, ..., li,J).
The Gaussian leakage model is now:

Lj = L(tj) = cj + εjVj + σjrj , j = 0, ..., J. (31)



158 A.A. Ding et al.

To discover the first key-dependent term in the Taylor series, the number of
(J + 2) leading terms will be kept and the (J + 1)-th order ML attack can
be shown again to be equivalent to the centered product combination attack.
Furthermore, we can get the general formula for the success rate. The mean μ
and the simplified variance Σ of Δ(kc, kg) in (26) has elements

μi = (
1

2
)2J+1(

J∏
j=0

δj)
2κ(kc, kgi); σij = (

1

2
)2J (

J∏
j=0

δj)
2κ(kc, kgi , kgj ). (32)

Therefore the asymptotic success rate for (J + 1)-th order attack becomes:

SR = ΦNk−1(

√
n
∏J

j=0 δj

2J+1
K−1/2κ). (33)

The detailed analysis for the (J +1)-th order attack is provided in Appendix A.
Formula (33) shows that each time one more mask is applied, the entire system
SNR (the factor inside function ΦNk−1) changes by

δ
2 (normally lower than 1) and

therefore the attack success rate reduces. Comparing a J-th order masked device
to an unmasked device, we assume the first-order attack on the unmasked device
requires n measurement traces to achieve a certain success rate, then (J +1)-th
order attack on the J-th order masked device needs measurements in the order
of n(2δ )

2J assuming all the δi are the same as δ. It is clear from this expression
that higher-order masking is more effective when the noise is high (small δ).

We derived the results above under the Gaussian noise assumption (15) and
Hamming Weight leakage model (24). Some extensions to other leakage models
are possible. For non-Hamming Weight leakage, the CPCF attack (17) maxi-
mize the correlation with a function f(Zg

i ) that may be different from H(Zg
i ).

However, the f(Zg
i ) is still a deterministic function whose explicit formula can

be calculated from the given leakage model. For example, recent work [26] does
so for linear regression leakage model. For Non-Gaussian noise, the success rate
formulas (29) and (33) still hold for CPCF attack. Some experimental results
are presented in Section 4.3 with more discussions included in an extended ver-
sion of the paper on eprint.iacr.org (#2014/433). Full extensions to other power
leakage model and other masking schemes remains an open topic.

4 Numerical Results

In this section, we verify the derived statistical model for second-order DPA
attacks on realistic measurement data, and also run numerical simulations on
synthetic data for second-order and higher-order attacks.

4.1 Empirical Success Rates on Measurements from a Physical
Implementation

We first verify the analytical results of Section 3 on real measurement data of a
masked AES implementation on an SASEBO-GII board with a Virtex-5 FPGA.
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The SASEBO board implements the boolean-masked AES algorithm according
to the scheme described in [29]. A 128-bit random mask sequence is obtained
from a set of linear shift registers [30], then XORed with the input plaintext
before the AES AddRoundkey operation. The AES SBox module implementa-
tions are modified to keep all intermediate states masked. The overhead of such
masking is large, with 50% more slices and 67% more power consumption than
the unprotected AES implementation on the same FPGA board.

We collect N = 1, 400, 000 power traces with 3125 points for each one. The
two leakage points are at the time points with the highest correlation between the
power measurements and H(M) and H(Z ⊕M), respectively. The first leakage
point leaks the Hamming Weight of the random mask M , while the second
leakage point leaks the Hamming distance of the first byte of SBOX output in
the last round of AES. We find them at the 581th and 2873th points, with their
SNRs 0.0926 and 0.0955. To obtain the empirical success rate we repeatedly
sample n traces from the total number of N = 1, 400, 000 traces. We conduct
the second-order DPA attack on the sampled n traces with 1, 000 trials and
calculate the empirical success rate for each selected n. We plot the empirical
success rate versus number of traces in Fig. 1. To draw the theoretical success rate
curve, we just use 10,000 traces to find the SNRs at the two points, and then plug
them into formula (30) once, without complex experimental trials over millions of
traces. Fig. 1 shows the two curves, Empirical SR and Theoretical SR, track each
other very well, verifying that our theoretical success rate formula predicts the
empirical success rates accurately. The analytical formula depicts the relation
between the attack success rate and the number of traces, without collecting
millions of traces and running statistical analysis to empirically calculate the SR.
Such formula will be very useful for efficient countermeasure design evaluation
before real implementation.

We also check the noise distribution in the measured power traces, and find
that for the Virtex-5 FPGA chip on SASEBO-GII board under 65 nm technology,
the power model is indeed linear. Fig. 2 shows the average power and distribution
for each group of power traces (with different Hamming distances) at the two
time points.

4.2 Success Rates on Synthetic Datasets

We further verify the analytic success rate formula on synthetic datasets gen-
erated from the Hamming weight model (15), to evaluate the effect of system
parameters, SNRs, on side-channel attacks and validate our approximate ML-
attacks with the centered-product attacks. For simplicity, we take c0 = c1 = 1
and signal strengths ε0 = ε1 = 1 in the simulation. The range of noises, standard
deviations σ0 and σ1, is {1, 5}. That is, the SNRs δ0 and δ1 take values in the
range of {0.2, 1}. These settings are similar to those in previous work [16].

For each set of generated power leakages, we apply two attacks as discussed in
Remark 2: (a) the theoretical strongest approximate ML-attack that assumes all
the parameters (c, ε,σ) known (as a system designer); (b) the real second-order
attack with CPCF that only works on the power data (as an attacker).
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Fig. 1. Theoretical and empirical success rates of the second-order attack on a masked
AES implementation

We plot the success rate versus number of measurements for different SNRs
δ0 and δ1 values in Fig. 3, for the two attacks and the theoretical model. 10, 000
simulation trials were run to compute the empirical success rates of the attacks.
We can see that the theoretical success rate curve fits the empirical results
well when SNRs are small. In addition, attacks (a) and (b) match very well,
showing the equivalence between our approximate second-order ML attack and
the second-order attack based on the CPCF. In each graph of Fig. 3, when one
SNR increases, the attack requires less measurements for the same success rate.
When the SNRs are big, δ0 = δ1 = 1, the three curves diverge for small n but still
converge for large n values. This confirms that our asymptotic analysis works
for big sample size n under very noisy situations (small SNRs). In reality, SNRs
are small and would not be as high as 1.

Finding the success rate of an attack based on simulated power data can be as
time-consuming as on real measurements, especially when the number of traces
is large. For example, the 10, 000 simulations to create the success rate curve
for δ0 = δ1 = 0.2 in Fig. 3 took about 11 hours on our workstation while the
success rate curve using the explicit formula is produced within seconds. Hence,
the analytic success rate formula would be very efficient and insightful for a
secure system designer to evaluate any implementation.

The theoretical success rate model also helps us better understand the effect
of masking on the security against SCAs. With masking, the number of mea-
surements for the masked device should increase to be (2δ )

2 times the number
of measurements for the unmasked device to achieve the same success rate. For
example, in noisy situations when δ = 0.1, that is 400 times.
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Fig. 2. The linear power model with Gaussian distribution noises at the two time
points

Fig. 3. The empirical and theoretical success rates of second order attacks (a) known
parameter ML-attack and (b) the CPCF attack on masked AES SBox.

We see that while the second-order attack can break first-order masking, it
is much harder to conduct due to significantly reduced information leakage.
Moreover, the leakage reduction is much more pronounced in noisy situations
with small SNRs. Hence the security benefit of masking is greater when it is
combined with other countermeasures that aim to increase the noise and reduce
the SNR.

4.3 Extension to Higher-Order Attacks and Other Power Models

The general formula for higher-order attacks is given in Section 3.4. As men-
tioned at the end of Section 3.4, the success rate formula also hold for other
non-Gaussian noises. Here we numerically study these extended SR formula.
Firstly, we generate power data from higher-order mask model (31) with J = 2
and SNRs δ0 = δ1 = δ2 = 0.2. Fig. 4 shows the success rates of the correspond-
ing third-order approximate ML attack again fits the theoretical success rate
formula very well. Compared to the second-order results in Fig. 3, the number
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Fig. 4. The success rates of the third-
order attack on simulated data with all
three SNRs δ0 = δ1 = δ2 = 0.2.

Fig. 5. The success rates of the second-
order attack on simulated data with
noises from the Laplace distribution
(δ0 = 0.0955, δ1 = 0.0926).

of measurements needed for the third-order attack increases to 100 times of that
needed for the second-order attack to achieve the same success rate under the
same SNRs (δ = 0.2). Secondly, we generate synthetic power data from model
(15) with Laplace noises instead. That is, the noises r0 and r1 both come from the

probability density function p(x) = e−
√
2|x|/
√
2. We set the SNRs δ0 = 0.0955

and δ1 = 0.0926 the same as the SNRs observed in our real measurements. The
success rate curves for the second-order attack are shown in Fig. 5. We can see
that the theoretical success rate formula fits the empirical success rates equally
well for Laplace noises. The plot is very similar to the plot of success curves
under Gaussian noises with the same SNRs.

5 Discussions and Conclusions

Various other combination functions have been proposed in literature. Joye et al.
suggested raising the absolute difference combining to a power α in [11]. In [15],
Oswald et al. proposed a combination function based on the sine function. There
has not been any theoretical result indicating the optimal combination function.
Prouff et al. proved in [16] that the CPCF is optimal among all attacks using
the product combination functions in noisy situations. We prove for the first
time that the most powerful SCA, ML-attack, is equivalent to the CPCF attack
under very noisy situations. This gives a formal proof that the centered product
combination function based attack is indeed optimal among all possible second-
order and higher-order attacks on masked devices.
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Appendix

A Derivations for the (J + 1)-th order ML-attack on
Masked Devices

For the (J + 1)-th order ML-attack, the attack statistic from Equation (16)
becomes

T g
ML =

1

n

n∑
i=1

log{Em[φ(rgm,i,0)

J∏
j=1

φ(rm,i,j)]} (34)

where m = (m(1), ...,m(J)), r
g
m,i,0 =

li,0−c0−ε0V
g
m,i,0

σ0
= ri,0 + δ0(Vi,0 − V g

m,i,0)

and rm,i,j =
li,j−cj−εjVm,j

σj
= ri,j + δj(Vi,j − Vm,j), j = 0, ..., J . Here V g

m,i,0 =

http://eprint.iacr.org/
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V0(Z
g
i ⊕J

j=1m(j)), Vm,j = Vj(m(j)), and δj = εj/σj denotes SNR for j =
0, ..., J . The Em takes expectation over all possible values of the vector m =
(m(1), ...,m(J)). That is, each element m(j) iterate overM.

For the (J + 1)-th order attack, we need to take J + 2 terms in the Taylor
expansion of (34). So the leading key-sensitive term (22) before becomes

T g =
1

n

n∑
i=1

Bg
i =

1

n

n∑
i=1

(−1

2
)J+1Em[Ag

m,i

J∏
j=1

Am,i,j ], (35)

where Ag
m,i and Am,i,j in (23) now become

Ag
m,i = Ai,0 − 2δ0l̃i,0V

g
m,i,0 + δ

2
0V

g
m,i,0[V

g
m,i,0 − E(Vi,0)];

Am,i,j = Ai,j − 2δj l̃i,jVm,j + δ
2
jVm,j [Vm,j − E(Vi,j)] j = 1, ..., J,

(36)

Using (36), we find the leading key-sensitive term in Em[Ag
m,i

∏J
j=1 Am,i,j ]

relates to the centered product combination as

Em({−2δ0l̃i,0V g
m,i,0}

∏J
j=1{−2δj l̃i,jVm,j}) = (−2)J+1(

∏J
j=0 δj)C̃if(Z

g
i ).

Here C̃i =
∏J

j=0 l̃i,j and f(Zg
i ) = Em(V g

m,i,0

∏J
j=1 Vm,j). Plug this into (35),

T g = B∗ + T̃ g + o(

J∏
j=0

δj), with T̃ g =
(
∏J

j=0 δj)

n

n∑
i=1

C̃if(Z
g
i ). (37)

The f(Zg
i ) has an explicit formula as Em(V g

m,i,0

∏J
j=1 Vm,j) under the Ham-

ming Weight power leakage model:

V0(Z,M ) = H(Z
J⊕

j=1
Mj) and Vj(M ) = H(Mj), j = 1, ..., J. (38)

By Lemma 21 in [16], for any b-bits random mask M , E[H(Z ⊕M)H(M)|Z] =
− 1

2H(Z) + b/4. Apply this formula once, we get

Em(1)
(V g

m,i,0Vm,1) = Em(1)
[H(Zg

i

J⊕
j=1

m(j))H(m(1))] = −1

2
H(Zg

i

J⊕
j=2

m(j)) + b/4.

Repeatedly apply the formula another J − 1 times, we get that

Em(V g
m,i,0

J∏
j=1

Vm,j) = (−1

2
)JH(Zg

i ) + constant.

Hence under the Hamming Weight power leakage model, the centered product
combination function attack maximizes

T̃ g = (−1

2
)J

(
∏J

j=0 δj)

n

n∑
i=1

C̃iH(Zg
i ). (39)



166 A.A. Ding et al.

We now can calculate u and Σ in the success Rate (3) for the higher order

attack. From (35), Δ(kc, kg) = T
c − T g = 1

n

n∑
i=1

(Bc
i −Bg

i ). So as in Section 2, u

and Σ are the mean and variance of Δ̃1 = (Bc
1−Bg1

1 , . . . , B
c
1−BgNk−1

1 )T . Using
(37) and (39), we get

Bc
1 −Bg

1 = (−1

2
)J (

J∏
j=0

δj)[

J∏
j=0

l̃1,j][H(Zc
1)−H(Zg

1 )]. (40)

Recall l̃1,j = r1,j+δj[V1,j−E(V1,j)]. Since E(r1,j) = 0 and r1,j ’s are independent
of the Vi,j ’s. We find

E(Bc
1 −Bg

1 ) = (−1

2
)J (

J∏
j=0

δj)
2E{

J∏
j=0

[V1,j − E(V1,j)][H(Zc
1)−H(Zg

1 )]}.

Recall that V1,j = H(m1,j)’s are Hamming weights of the random masks for j =
1, ..., J . Using formula (46) in Appendix C, taking expectation over the masks,

E{∏J
j=0[V1,j −E(V1,j)][H(Zc

1)−H(Zg
1 )]} = E{(−1/2)J [H(Zc

1)− b/2][H(Zc
1)−

H(Zg
1 )]}. Here b is the bit length of Zc

1 . Since E[H(Zc
1)−H(Zg

1 )] = b/2−b/2 = 0,
we get

E(Bc
1 −Bg

1 ) = (− 1
2 )

2J(
∏J

j=0 δj)
2E{H(Zc

1)[H(Zc
1)−H(Zg

1 )]}
= (12 )

2J (
∏J

j=0 δj)
2E{[H(Zc

1)]
2 −H(Zc

1)H(Zg
1 )}

= (12 )
2J (

∏J
j=0 δj)

2 1
2E{[H(Zc

1)]
2 + [H(Zg

1 )]
2 − 2H(Zc

1)H(Zg
1 )}

= (12 )
2J+1(

∏J
j=0 δj)

2E{[H(Zg
1 )−H(Zc

1)]
2}

= (12 )
2J+1(

∏J
j=0 δj)

2κ(kc, kg).

Here the confusion coefficient κ(kc, kg) is exactly the same as the confusion
coefficient for unmasked device defined in (9). Thus we arrive at the first formula
in equation (32)

μi = E[B
c
1 −Bgi

1 ] = (
1

2
)2J+1(

J∏
j=0

δj)
2κ(kc, kgi).

The ij-th element in the variance Σ = V ar(Δ̃1) is

σij = Cov(B
c
1 −Bgi

1 , B
c
1 −Bgj

1 ) = E[(Bc
1 −Bgi

1 )(Bc
1 −Bgj

1 )]− μiμj .
Since E(r1,j) = 0 and E(r21,j) = 1 for j = 0, ..., J , using equation (40), we have
the leading term in σij as in the second formula in equation (32)

(−
1

2
)
2J

(

J∏
j=0

δj)
2
E(

J∏
j=0

r
2
1,j )E{[H(Z

gi
1

) − H(Z
c
1)][H(Z

gj
1

) − H(Z
c
1)]} = (

1

2
)
2J

(

J∏
j=0

δj )
2
κ(kc, kgi

, kgj
).

Here the three-way confusion coefficient κ(kc, kgi , kgj ) is exactly the same as
those defined for unmasked device in (10).

Taking J = 1, (32) becomes (27) and (28).
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B More Accurate Formula for the Covariance Matrix Σ
in the Second-Order ML Attack on Masked Devices

Equation (28) only calculate the leading term in σij . We can calculate all the

terms to get more accurate formula. Keeping all terms in l̃1,0 and l̃1,1 we have

Bc
1 −Bg

1 = −1

2
δ0δ1[r1,0 + δ0(V1,0 − b

2
)][r1,1 + δ1(V1,1 − b

2
)][H(Zc

1)−H(Zg
1 )].

Then, since E(r1,0) = E(r1,1) = 0 and E(r21,0) = E(r
2
1,1) = 1, we have

σij = 1
4
δ20δ

2
1E{[H(Zgi

1 )−H(Zc
1)][H(Z

gj
1 )−H(Zc

1)]}
+ 1

4
δ20δ

4
1E{(V1,1 − b

2
)2[H(Zgi

1 )−H(Zc
1)][H(Z

gj
1 )−H(Zc

1)]}
+ 1

4
δ40δ

2
1E{(V1,0 − b

2
)2[H(Zgi

1 )−H(Zc
1)][H(Z

gj
1 )−H(Zc

1)]}
+ 1

4
δ40δ

4
1E{(V1,0 − b

2
)2(V1,1 − b

2
)2[H(Zgi

1 )−H(Zc
1)][H(Z

gj
1 )−H(Zc

1)]} − μiμj .
(41)

Using (44) and (47) in Appendix C, this simplifies to

σij = 1
4
δ20δ

2
1κ(kc, kgi , kgj ) +

1
4
δ20δ

4
1
b
4
κ(kc, kgi , kgj ) +

1
4
δ40δ

2
1
b
4
κ(kc, kgi , kgj )

+ 1
4
δ40δ

4
1 [

1
2
κ∗(kc, kgi , kgj ) +

b2−2b
16

κ(kc, kgi , kgj )]− 1
64
δ40δ

4
1κ(kc, kgi)κ(kc, kgj )

= 1
4
δ20δ

2
1(1 +

b
4
δ20)(1 +

b
4
δ21)κ(kc, kgi , kgj )

+ 1
64
δ40δ

4
1 [8κ

∗(kc, kgi , kgj )− 2bκ(kc, kgi , kgj )− κ(kc, kgi)κ(kc, kgj )].
(42)

Here the three-way confusion coefficients κ(kc, kgi , kgj ) and κ∗(kc, kgi , kgj ) are
the same as those defined for unmasked device in (10) and (11).

Thus we get the formula (30).

C Formulas for Eliminating Em with Hamming Weight
Power Models on Masked Devices

Here we list some formulas used for calculation in the above derivations. We
shall consider the b-bit mask M similarly as in Prouff et al [16]. We are going to
consider quantities involving H(Z ⊕M) and H(M) for a fixed Z. By Lemma 20
in [16],

E[H(M)] =
b

2
; E[H(M)2] =

b2 + b

4
. (43)

Therefore,

E[(H(M)− b
2
)2] = E[H(M)2]− bE[H(M)] +

b2

4
=
b

4
. (44)

By Lemma 21 in [16],

E[H(M)H(Z ⊕M)|Z] = −1

2
H(Z) +

b2 + b

4
. (45)
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Combine (43) and (45), we arrive at

E{[H(M)− b

2
][H(Z ⊕M)− b

2
]|Z} = − 1

2
H(Z) +

b2 + b

4
− (

b

2
)
2
= −1

2
H(Z) +

b

4
= − 1

2
[H(Z)− b

2
].

Hence for fixed Z and J random masks M1, ..., MJ , we have

E{[H(Z
J⊕

j=1
Mj)−

b

2
]

J∏
j=1

[H(Mj)−
b

2
]} = −

1

2
E{[H(Z

J−1
⊕

j=1
Mj)−

b

2
]

J−1∏
j=1

[H(Mj )−
b

2
]} = ... = (−

1

2
)
J
[H(Z)−

b

2
]

(46)

The last result required in earlier derivation is

E{[H(Z ⊕M)− b
2
]2[H(M)− b

2
]2|Z} = 1

2
[H(Z)− b

2
]2 +

b2 − 2b

16
. (47)

This equation (47) follows from (43), (45) above, and (48), (49) below.

E[H(M)H(Z⊕M)2|Z] = E[H(M)2H(Z⊕M)|Z] = − b
2
H(Z)+

b2(b + 3)

8
; (48)

E[H(M)2H(Z⊕M)2|Z] = 1

2
H(Z)2− b

2 + b

2
H(Z)+

b(b3 + 6b2 + 3b− 2)

16
. (49)

Equations (48) and (49) come from straight calculation using formulas (43),(50),
(57),(58), (59) and (60). The above calculation used the formulas below which are
derived similar to those in in [16]. First, let ∧ denote the bit-wise multiplication.
Then the following formula is the property 2 in [16]:

H(Z ⊕M) = H(Z) +H(M)− 2H(Z ∧M). (50)

Let Z(i) denotes the ith bit of Z. We derive the following formulas, using the

fact that E(M(i)M(j)) = E(M(i)) = 1
2 when i = j and E(M(i)M(j)) = 1

4 by
independence when i �= j.

E[H(Z ∧M)] =
1

2
H(Z), (51)

since E[H(Z ∧M)] = E[
∑b

i=1 Z(i)M(i)] =
∑

i Z(i)
1
2 .

E[H(M)H(Z ∧M)] =
b+ 1

4
H(Z), (52)

since E[H(M)H(Z∧M)] =
∑b

i=1 Z(i)

∑b
j=1E[M(i)M(j)] =

∑
i Z(i)[

1
2+(b−1)14 ].

E[H(Z ∧M)H(Zg ∧M)] =
1

4
H(Z)H(Zg) +

1

4
H(Z ∧ Zg), (53)

since E[H(Z ∧M)H(Zg ∧M)] =
∑

i,j Z(i)Z
g
(j)E[M(i)M(j)] which becomes∑

i=j

Z(i)Z
g
(j)

1

2
+
∑
i�=j

Z(i)Z
g
(j)

1

4
=
∑
i,j

Z(i)Z
g
(j)

1

4
+
∑
i

Z(i)Z
g
(i)

1

4
.



A Statistical Model for Higher Order DPA on Masked Devices 169

We get the following two formulas similarly as (51), (52) and (53) above, with
the detailed calculation omitted for space.

E[H(M)H(Z ∧M)H(Zg ∧M)] =
b+ 2

8
H(Z)H(Zg) +

b

8
H(Z ∧ Zg), (54)

E[(H(M))2H(Z ∧M)H(Zg ∧M)] =
b2 + 5b + 2

16
H(Z)H(Zg) +

b2 + b− 2

16
H(Z ∧ Zg).

(55)

Taking Zg = Z in (54) and (55), we get

E[H(M)H(Z ∧M)2] =
b+ 2

8
H(Z)2 +

b

8
H(Z), (56)

E[(H(M))2H(Z ∧M)2] =
b2 + 5b+ 2

16
H(Z)2 +

b2 + b− 2

16
H(Z). (57)

Taking Zg to have every bit equals to one in (54) and (55), we get

E[H(M)2H(Z ∧M)] =
b(b+ 3)

8
H(Z), (58)

E[(H(M))3H(Z ∧M)] =
b3 + 6b2 + 3b− 2

16
H(Z). (59)

Taking Z to have every bit equals to one in (58) and (59), we get

E[H(M)]3 =
b2(b + 3)

8
; E[H(M)]4 =

b(b3 + 6b2 + 3b− 2)

16
. (60)
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Abstract. We describe a new technique for evaluating polynomials over
binary finite fields. This is useful in the context of anti-DPA counter-
measures when an S-box is expressed as a polynomial over a binary
finite field. For n-bit S-boxes our new technique has heuristic complexity
O(2n/2/

√
n) instead of O(2n/2) proven complexity for the Parity-Split

method. We also prove a lower bound of Ω(2n/2/
√
n) on the complexity

of any method to evaluate n-bit S-boxes; this shows that our method is
asymptotically optimal. Here, complexity refers to the number of non-
linear multiplications required to evaluate the polynomial corresponding
to an S-box.

In practice we can evaluate any 8-bit S-box in 10 non-linear multipli-
cations instead of 16 in the Roy-Vivek paper from CHES 2013, and the
DES S-boxes in 4 non-linear multiplications instead of 7. We also eval-
uate any 4-bit S-box in 2 non-linear multiplications instead of 3. Hence
our method achieves optimal complexity for the PRESENT S-box.

1 Introduction

The implementations of cryptographic algorithms on devices like PCs, micro-
controllers, smart cards, etc. leak secret information to an adversary. Typical
examples of such leakages are electro-magnetic emissions, power consumption
and even acoustic emanations. An adversary can use this information to recover
the secret key by applying different statistical techniques. Differential Power
Analysis (DPA) – the most widely known and powerful technique – is based on
statistical analysis of the power consumption of a device [KJJ99]. Other tech-
niques including Template Attacks, Correlation Power Analysis Attacks (CPA),
etc. were proposed in the past [CRR02, BCO04]. More recently, a side-channel at-
tack on RSA was proposed using the acoustic emanations from a device [GST13].

Masking. A well known technique to protect implementations against power
analysis based side-channel attacks is to mask internal secret variables. This is
done by XORing any internal variable with a random variable r, for e.g., x′ = x⊕

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 170–187, 2014.
c© International Association for Cryptologic Research 2014
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r. However, this will make the implementation secure against first-order attacks
only. Second-order attacks against such counter-measures is proposed in [Mes00].
In this type of attack the adversary combines the information obtained from two
internal variables. This will require more data (power consumption traces) in
practice, which could make the attack infeasible in certain cases. In general the
above masking technique can be extended to secure an implementation against
higher-order attacks. This can be achieved by splitting an internal variable x into
d shares, say, x =

⊕d
i=1 xi. Using this idea it is easy to compute any linear/affine

function 	 in a secured way, since it is enough to compute yi = 	(xi) for 1 ≤ i ≤ d.
However, it is not obvious how to do this for non-linear functions. In practice,
nearly every cryptographic primitive includes some non-linear function, e.g.,
S-box, modular addition, etc.

Generic Higher-Order Masking. The Rivain-Prouff masking scheme is the
first provably secure higher-order masking technique for AES [RP10]. The main
idea of this method is to perform secure monomial evaluation with d shares of
a secret variable using the previously known ISW scheme [ISW03]. Namely the
(non-linear part of) AES S-box can be represented by the monomial x254 over
F28 . Prouff and Rivain showed that this monomial can be evaluated securely us-
ing 4 non-linear multiplications and a few linear squarings. By using this scheme
the AES S-box can be masked for any order d.

This method was extended to a generic technique for higher-order masking,
in [CGP+12], by Carlet, Goubin, Prouff, Quisquater and Rivain (CGPQR). Any

given n-bit S-box can be represented by a polynomial
∑2n−1

i=0 ai x
i over F2n using

Lagrange’s interpolation theorem. Hence, any S-box can be masked by secure
evaluation of this polynomial with d shares of a secret variable. This is the
first generic technique to mask any S-box for any order d. In this technique a
polynomial evaluation in F2n is split into simple operations over F2n : addition,
multiplication by constant, and regular multiplication of two elements. Note that
multiplication of two same elements (i.e. squaring) and multiplication by a con-
stant – both are linear operations over F2n , hence easy to mask. For performing
a secure multiplication of two distinct elements, i.e. a non-linear multiplication,
the CGPQR masking scheme uses the ISW method as in [RP10].

Asymptotically, the running time of the Rivain-Prouff and CGPQR masking
schemes is dominated by the number of non-linear multiplications required to
evaluate a polynomial over F2n . Namely with d shares, using the ISW method
an affine function can be masked with only O(d) operations over F2n , whereas
a non-linear multiplication requires O(d2) operations. Note that for achieving
d-th order security the Rivain-Prouff scheme requires at least 2d+ 1 shares.1

1 Originally it was claimed in [RP10] that the scheme is secure against d-th order
attack with d + 1 shares. However, an attack of order d/2 was shown in [CPRR13]
against the scheme. The authors of [CPRR13] also showed a d-th order secure scheme
with d+ 1 shares for some subset of S-boxes.
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Efficient Polynomial Evaluation for Masking. The CGPQR masking sche-
me can be made efficient by optimizing the number of multiplications required
for the polynomial evaluation in F2n . In [CGP+12] two techniques – Parity-Split
and Cyclotomic Class, are used for optimizing the number of such non-linear
multiplications. For arbitrary n-bit S-box, or equivalently for evaluating any
polynomial over F2n , the Parity-Split method has proven complexity O(2n/2).
Here complexity refers to the number of non-linear multiplications required to
evaluate the polynomial corresponding to an S-box. For the particular case of
monomials (e.g. AES S-box) the Cyclotomic Class method gives the optimal
number of multiplications in F2n .

At CHES 2013, Roy and Vivek [RV13] adapted a generic method for improving
the efficiency of polynomial evaluation in F2n . They demonstrated the technique
for the polynomials corresponding to several well known S-boxes including DES,
PRESENT and CLEFIA. In particular, the Roy-Vivek method reduces the num-
ber of non-linear multiplications for DES to 7 (from 10), for CLEFIA to 16 (from
22) and for CAMELLIA to 15 (from 22). This technique also achieves the op-
timal number of 4 multiplications for the monomial corresponding to the AES
S-box.

Our Results. In this article we propose an improved generic technique for
fast polynomial evaluation in F2n . For arbitrary n-bit S-box our method has
heuristic complexity O(2n/2/√n), compared to the O(2n/2) proven complexity
for the Parity-Split method from [CGP+12].

Our method is as follows. We first generate a set L of monomials xα, including
all the monomials from a cyclotomic class. We then randomly generate a fixed
set of “basis” polynomials qi(x), whose monomials are all in the precomputed
set L. Then given a polynomial P (x) over F2n we try to write P (x) as:

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) (mod x2
n

+ x), (1)

where pi(x) are polynomials with monomials also in the set L, and t is some
parameter. Since the qi(x) polynomials are fixed, the coefficients of the pi(x)
polynomials can be obtained by solving a system of linear equations in F2n .
Then to evaluate P (x) one first evaluates all the monomials in the set L; the
polynomials pi(x) and qi(x) can then be evaluated without any further non-
linear multiplication. The polynomials P (x) is then evaluated from (1) with
t− 1 additional non-linear multiplications.

The number of monomials in the set L must be carefully chosen. Namely the
larger the basis set L of monomials, the more degrees of freedom we have in
solving (1), with fewer polynomials pi(x) and therefore fewer additional non-
linear multiplications; however the number of non-linear multiplications to build
L will increase. Therefore the number of monomials in the basis set L must be
optimized to minimize the total number of non-linear multiplications, namely
the non-linear multiplications for building the set L, and the additional t − 1
non-linear multiplications for evaluating P (x).
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As a concrete application of our new method above, we show that for the
generic higher-order masking of several well known S-boxes, e.g. DES, CLEFIA,
PRESENT, etc., our method reduces the number of multiplications compared
to the previously known methods [CGP+12, RV13]. In particular, using our
method PRESENT can be masked with 2 multiplications (instead of 3), and
DES with 4 multiplications (instead of 7), see Table 1. Our method achieves
optimal complexity for the PRESENT S-box since it was proved in [RV13] that
2 non-linear multiplications are necessary to evaluate it.

Table 1. Number of non-linear multiplications required for the CGPQR generic higher-
order masking scheme

S-box
Methods DES PRESENT SERPENT CAMELLIA CLEFIA

Parity-Split [CGP+12] 10 3 3 22 22

Roy-Vivek [RV13] 7 3 3 15 15,16

Our Method (Sec. 4) 4 2 2 10 10

We also prove a lower bound of Ω(2n/2/
√
n) for the complexity of any method

to evaluate n-bit S-boxes, a.k.a. masking complexity; this shows that our method
is asymptotically optimal. Our new lower bound significantly improves upon the
previously known bound of Ω(log2 n) from [RV13].

2 Generic Polynomial Evaluation Technique

Before we describe our improved method to evaluate polynomials over F2n , let
us first recollect in Section 2.1 the method proposed by Roy and Vivek [RV13,
Section 4] to evaluate the polynomials (over F26) corresponding to the DES
S-boxes. Their method requires 7 non-linear multiplications. The method in
[RV13] is based on the Divide-and-Conquer strategy, which is an adaptation
of a polynomial evaluation technique by Paterson and Stockmeyer [PS73]. The
technique consists in decomposing the polynomial to be evaluated in terms of
polynomials having their monomials from a precomputed set. Our method is
partly based on this idea.

2.1 The Roy-Vivek Method for DES S-boxes

Let PDES(x) ∈ F26 [x] be the Lagrange interpolation polynomial corresponding
to a DES S-box. Here the 4-bit output of a DES S-box is identified as a 6-bit out-
put with two leading zeroes, and hence these bit strings are naturally identified
with the elements of F26 . Note that for all the DES S-boxes, deg (PDES(x)) = 62.
Write

PDES(x) = q(x) · x36 +R(x),
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where deg(R) ≤ 35 and deg(q) = 26. Then divide the polynomial R(x)− x27 by
q(x):

R(x)− x27 = c(x) · q(x) + s(x),
where deg(c) ≤ 9 and deg(s) ≤ 25, which gives

PDES(x) =
(
x36 + c(x)

) · q(x) + x27 + s(x).
Next decompose the polynomials q(x) and x27 + s(x) in a similar way but,
instead, dividing first by x18, and then using x9 as the “correction term”. One
gets

q(x) = (x18 + c1(x)) · q1(x) + x9 + s1(x),

x27 + s(x) = (x18 + c2(x)) · q2(x) + x9 + s2(x)
where deg(q1) = 8, deg(c1) ≤ 9, deg(s1) ≤ 7, deg(q2) = 9, deg(c2) ≤ 8, and
deg(s2) ≤ 8. Finally,

PDES(x) =(x36 + c(x)) ·
(
((x18 + c1(x)) · q1(x)) + (x9 + s1(x))

)
+
(
(x18 + c2(x)) · q2(x) + (x9 + s2(x))

)
.

(2)

In [RV13], the monomials x, x2, x3, x4, x5, x6, x7, x8, x9, x18, x36 are first
evaluated using 4 non-linear multiplications. Namely a non-linear multiplication
is required for each of the monomials x3, x5, x7 and x9; the rest of the monomials
can be evaluated using linear squarings only. Each of the individual polynomials
in the above expression such as x36 + c(x), x18 + c1(x), q1(x), and so on, can
then be evaluated for free, that is without further non-linear multiplications. To
evaluate PDES(x) from (2), 3 more non-linear multiplications are needed, and
hence totally 7 non-linear multiplications are sufficient to evaluate a DES S-box.

To sum up, the basic idea behind the above technique is to precompute a set
of monomials, and then obtain a decomposition of the required polynomial in
terms of polynomials having their monomials only from the precomputed set.
Note that the said decomposition is obtained in a “fixed” way that depends only
on the degree of the polynomial, which is required to be of the form k (2p − 1)±c,
for some parameters k, p and c; we refer to [RV13] for more details.

In the new method we propose next, we also precompute a set of monomials as
above, but we also include every other monomial that can be computed for free
by the squaring operation; that is we always generate the full cyclotomic class for
any computed monomial. Then we try to decompose the polynomial as a sum
of product of two polynomials having their monomials from the precomputed
set. One of the two polynomials in every summand is randomly chosen, and we
try to determine the other polynomial by solving (for unknown coefficients) the
system of linear equations obtained by evaluating the polynomial at every point
of the domain F2n . This approach of determining the unknown coefficients of
the polynomials is similar to the Lagrange interpolation technique.
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2.2 Our New Generic Method

Let us first recollect the notion of cyclotomic class over F2n and introduce some
notations. The cyclotomic class of α w.r.t. n (n ≥ 1, 0 ≤ α ≤ 2n − 2), denoted
by Cα, is defined as the set of integers

Cα =
{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n− 1

}
.

Intuitively, Cα corresponds to the exponents of all the monomials that can be
computed from xα ∈ F2n [x] using only the squaring operations (modulo x2

n

+x).
Since our goal is only to evaluate polynomials over F2n , we will be actually
working in the ring F2n [x]/(x

2n + x), which is an abuse of the notation F2n [x].
In other words, we treat any polynomial P (x) ∈ F2n [x] to be the same as P (x)
modulo x2

n

+ x; hence P (x) has degree at most 2n − 1.

By d
$← D we denote an element d chosen uniformly at random from a set

D. For any subset Λ ⊆ {0, 1, . . . , 2n − 2}, xΛ denotes the set of monomials
xΛ =

{
xi : i ∈ Λ} ⊆ F2n [x]. Finally we denote by P(xΛ) the set of all polyno-

mials in F2n [x] whose monomials are only from the set xΛ.

Description. Consider an n-bit to n-bit S-Box represented by a polynomial
P (x) ∈ F2n [x]. We consider a collection S of 	 cyclotomic classes w.r.t. n:

S = {Cα1=0, Cα2=1, Cα3 , . . . , Cα

} . (3)

Also, define L as the set of all integers in the cyclotomic classes of S:

L = ∪
Ci∈S

Ci. (4)

We choose the set S of 	 cyclotomic classes in (3) so that the set of corre-
sponding monomials xL from S can be computed using only 	 − 2 non-linear
multiplications. We require that every monomial x0, x1, . . . , x2

n−1, can be writ-
ten as product of some two monomials in P(xL). Moreover, we try to choose
only those cyclotomic classes with the maximum number of n elements (except
C0 which has only a single element). This gives

|L| = 1 + n · (	− 1) . (5)

Next, we generate t − 1 random polynomials qi(x)
$← P(xL) that have their

monomials only in xL. Suitable values for the parameters t and |L| will be
determined later. Then, we try to find t polynomials pi(x) ∈ P(xL) such that

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x). (6)

It is easy to see that the coefficients of the pi(x) polynomials can be obtained
by solving a system of linear equations in F2n , as in the Lagrange interpolation
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theorem. More precisely, to find the polynomials pi(x), we solve the following
system of linear equations over F2n :

A · c = b (7)

where the matrix A is obtained by evaluating the R.H.S. of (6) at every element
of F2n , and by treating the unknown coefficients of pi(x) as variables. This matrix
has 2n rows and t · |L| columns, since each of the t polynomials pi(x) has |L|
unknown coefficients. The matrix A can also be written as a block concatenation
of smaller matrices:

A = (A1|A2| . . . |At), (8)

where Ai is a 2n × |L| matrix corresponding to the product pi(x) · qi(x). Let
aj ∈ F2n (j = 0, 1, . . . , 2n − 1) be all the field elements and pi(x) consists of
the monomials xk1 , xk2 , . . . , xk|L| ∈ xL. Then, the matrix Ai has the following
structure:

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak1
0 · qi(a0) ak2

0 · qi(a0) . . . a
k|L|
0 · qi(a0)

ak1
1 · qi(a1) ak2

1 · qi(a1) . . . a
k|L|
1 · qi(a1)

ak1
2 · qi(a2) ak2

2 · qi(a2) . . . a
k|L|
2 · qi(a2)

...
... . . .

...

ak1
2n−1 · qi(a2n−1) ak2

2n−1 · qi(a2n−1) . . . a
k|L|
2n−1 · qi(a2n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

The unknown vector c in (7) corresponds to the unknown coefficients of the
polynomials pi(x). The vector b is formed by evaluating P (x) at every element of
F2n . Note that since P (x) corresponds to an S-box, the vector b can be directly
obtained from the corresponding S-box lookup table.

If the matrix A has rank 2n, then we are able to guarantee that the decompo-
sition in (6) exists for every polynomial P (x). To be of full rank 2n the matrix
must have a number of columns ≥ 2n. This gives us the necessary condition

t · |L| ≥ 2n. (10)

We stress that (10) is only a necessary condition. Namely we don’t know how
to prove that the matrix A will be full rank when the previous condition is
satisfied; this makes our algorithm heuristic. In practice for random polynomials
qi(x) we almost always obtain a full rank matrix under condition (10).

From (5), we get the condition

t · (1 + n · (	− 1)) ≥ 2n (11)

where t is the number of polynomials pi(x) and 	 the number of cyclotomic
classes in the set S, to evaluate a polynomial P (x) over F2n .

We summarize the above method in Algorithm 1 below. The number of non-
linear multiplications required in the combining step (6) is t− 1. As mentioned
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earlier, we need 	−2 non-linear multiplications to precompute the set xL. Hence
the total number of non-linear multiplications required is then

Nmult = 	 − 2 + t− 1 = 	+ t− 3. (12)

where t is the number of polynomials pi(x) and 	 the number of cyclotomic
classes in the set S.

Algorithm 1. New generic polynomial decomposition algorithm

Input: P (x) ∈ F2n [x].

Output: Polynomials pi(x), qi(x) such that P (x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x).

1: Choose  cyclotomic classes Cαi : L ←
l⋃

i=1

Cαi , and the basis set xL can be

computed using − 2 non-linear multiplications.
2: Choose t such that t · |L| ≥ 2n.

3: For 1 ≤ i ≤ t, choose qi(x)
$← P (

xL
)
.

4: Construct the matrix A ← (A1|A2| . . . |At), where each Ai is the 2n × |L| matrix
given by (9).

5: Solve the linear system A ·c = b, where b is the evaluation of P (x) at every element
of F2n .

6: Construct the polynomials pi(x) from the solution vector c.

Remark 1. If A has rank 2n, then the same set of basis polynomials qi(x) will
yield a decomposition as in (6) for any polynomial P (x). That is, the matrix A
is independent from the polynomial P (x) to be evaluated.

Remark 2. Our decomposition method is heuristic because for a given n in F2n

we do not know how to guarantee that the matrix A has full rank 2n. However
for typical values of n, say n = 4, 6, 8, we can definitely check that the matrix
A has full rank, for a particular choice of random polynomials qi(x). Then any
polynomial P (x) can be decomposed using these polynomials qi(x). In other
words for a given n we can once and for all generate the random polynomials
qi(x) and check that the matrix A has full rank 2n, which will prove that any
polynomial P (x) ∈ F2n [x] can then be decomposed as above. In summary our
method is heuristic for large values of n, but can be proven for small values of n.
Such proof requires to compute the rank of a matrix with 2n rows and a slightly
larger number of columns, which takes O(23n) time using Gaussian elimination.

Asymptotic Analysis. Substituting (12) in (11) to eliminate the parameter 	,
we get

t · (1 + n · (Nmult − t+ 2)) ≥ 2n,

=⇒ Nmult ≥ 2n

n · t + t−
(
2 +

1

n

)
. (13)
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The R.H.S. of the above expression is minimized when t ≈
√

2n

n , and hence we

obtain

Nmult ≥ 2 ·
√

2n

n
−
(
2 +

1

n

)
. (14)

Hence, our heuristic method requires O(√2n/n) non-linear multiplications, whi-
ch is asymptotically slightly better than the Parity-Split method [CGP+12],
which has proven complexityO(√2n). If one has to rigorously establish the above
bound for our method, then we may have to prove the following statements,
which we leave as open problems:

• We can sample the collection S of cyclotomic classes in (3), each having
maximal length n (other than C0), using at most 	 − 2 non-linear multipli-
cations.
• The condition t · |L| ≥ 2n suffices to ensure that the matrix A has full rank
2n.

Table 2 lists the expected minimum number of non-linear multiplications,
as determined by (14), for binary fields F2n of practical interest. It also lists
the actual number of non-linear multiplications that suffices to evaluate any
polynomial, for which we have verified that the matrix A has full rank 2n, for a
particular random choice of the qi(x) polynomials. We also provide a performance
comparison of our method with that of the Cyclotomic Class and the Parity-
Split methods from [CGP+12]. Here we do not compare with the results from
[RV13] since that work is mainly concerned with the optimization of specific
S-boxes and polynomials of specific degrees; however such comparison will be
made for specific S-boxes in Section 4. In Appendix B, we list the specific choice
of parameters t and L that we used in this experiment.

Table 2. Minimum values of Nmult

n 4 5 6 7 8 9 10

Cyclotomic Class method [CGP+12] 3 5 11 17 33 53 105

Parity-Split method [CGP+12] 4 6 10 14 22 30 46

Expected minimum value of Nmult (cf. (14)) 2 3 5 7 10 13 19

Achievable value of Nmult 2 4 5 7 10 14 19

Counting the Linear Operations. From (5) and (6), we get (2t− 1) · (|L| −
1) + (t − 1) as an upper-bound on the number of addition operations required
to evaluate P (x). This is because each of the 2t− 1 polynomials pi(x) and qi(x)
in (6) have (at most) |L| terms, and there are t summands in (6). From (10), we
get:

(2t− 1) · (|L| − 1) + (t− 1) ≤ 2 t |L| ≈ 2 · 2n
Similarly, we get (2t − 1) · |L| ≈ 2 · 2n as an estimate for the number of scalar
multiplications. Since the squaring operations are used only to compute the list
L, we need |L| − 	 ≤ |L| ≈ √n · 2n many of them (cf. (13)).
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3 New Lower Bound for Polynomial Evaluation

In this section, we show that our method from the previous section is asymp-
totically optimal. More precisely, we show that to evaluate any polynomial over
F2n , any algorithm must use at least O(√2n/n) non-linear multiplications. This
improves the previously known bound of Ω (log2 n) from [RV13].

To establish our lower bound we first need a formal model that describes
polynomial evaluation over F2n . Such a model, the F2n -polynomial chain, has
been described in [RV13, Section 3]. For the sake of completeness, we briefly
recollect the definition in Appendix A.

Previous Result. Let us recollect in slightly more details the previous lower
bound ofΩ (log2 n). The following proposition gives a lower bound on the number
of non-linear multiplications necessary to evaluate a polynomial P (x), a.k.a.
non-linear complexity of P (x), as the maximum of the quantity necessary to
evaluate its monomials. LetM(P (x)) denote the non-linear complexity of P (x).
If P (x) corresponds to an n-bit S-box S, thenM(P (x)) is also called the masking
complexity of S.

Proposition 1. [[RV13], Proposition 3] Let P (x) :=
∑2n−1

i=0 ai x
i be a polyno-

mial in F2n [x]. Then
M(P (x)) ≥ max

0≤i<2n−1
ai 
=0

mn(i),

where mn(i) is the length of the shortest cyclotomic-class (CC) addition chain
of i w.r.t. n.

The following result gives a lower bound on the value of mn(i) in terms of the
Hamming weight of i.

Proposition 2. [[RV13], Proposition 1] mn(i) ≥ !log2(ν(i))", where ν(i) is the
Hamming weight of the binary representation of i (0 ≤ i ≤ 2n − 2).

Since ν (2n − 2) = n−1, hence polynomials having the monomial x2
n−2 will have

non-linear complexity at least log2 (n− 1). Hence Ω (log2 n) is a lower bound on
the number of necessary non-linear multiplications required to evaluate polyno-
mials over F2n .

New Lower Bound. Our technique to prove the lower bound of Ω(
√
2n/n)

on the non-linear complexity is similar to the one used in the proof of [PS73,
Theorem 2]. But we would like to emphasize that their result is not applicable
to our setting since they work over the integers and the cost model used there
is different from the one used in our case.

Proposition 3. There exists a polynomial P (x) ∈ F2n [x] such thatM(P (x)) ≥√
2n

n − 2.
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Proof. At a more abstract level, an F2n-polynomial chain evaluating P (x) ∈
F2n [x] that uses r non-linear multiplications (r ≥ 0) can be equivalently de-
scribed as a sequence Z of polynomials z−1, z0, . . ., zr, where

z−1 = 1,

z0 = x,

zk =

⎛⎝βk,−1 +
k−1∑
i=0

n−1∑
j=0

βk,i,j z
2j

i

⎞⎠ ·
⎛⎝β′k,−1 +

k−1∑
i=0

n−1∑
j=0

β′k,i,j z
2j

i

⎞⎠
(mod x2

n

+ x), (15)

where k = 1, 2, . . . , r, βk,−1, β
′
k,−1, βk,i,j , β

′
k,i,j ∈ F2n . Lastly,

P (x) = βr+1,−1 +

r∑
i=0

n−1∑
j=0

βr+1,i,j z
2j

i (mod x2
n

+ x), (16)

where again βr+1,−1, βr+1,i,j ∈ F2n . .
Since the squaring operation is F2-linear in F2n , and that x2

n

= x for all
x ∈ F2n , it is easy to see that any polynomial that can be evaluated using at
most t non-linear multiplications will be of the form as given in (16).

The number of parameters βk,−1, β
′
k,−1, βk,i,j , β

′
k,i,j in (15) for a given value

of k (k = 1, . . . , r) is 2 · (k · n+ 1). In (16), the number of parameters βr+1,−1,
βr+1,i,j is (r + 1) · n+ 1. Totally, the number of parameters are

(r + 1)n+ 1 +

r∑
k=1

2 (kn+ 1) .

Since there are only |F2n |2
n

distinct polynomials in F2n [x] (i.e. up to evaluation),
and a given set of values for the parameters enables to evaluate a single polyno-
mial only, we get the following necessary condition to evaluate all polynomials
over F2n [x]

|F2n |
(r+1)n+1+

r∑
k=1

2(kn+1) ≥ |F2n |2
n

,

=⇒ (r + 1)n+ 1 +

r∑
k=1

2 (kn+ 1) ≥ 2n,

=⇒ n · r2 + (2n+ 2) · r − (2n − n− 1) ≥ 0,

=⇒ r ≥
√

2n

n
− 2. (17)

Hence there exists polynomials over F2n that require Ω(
√

2n/n) non-linear mul-
tiplications to evaluate them. ��
The above proposition shows that our new method from Section 2.2 is asymptoti-
cally optimal.



Fast Evaluation of Polynomials over Binary Finite Fields 181

Concrete Lower Bound. In Table 3 we compare, for various values of n,
the previously known lower bound for non-linear complexity with the new lower
bound as determined by (17).

Table 3. Lower bound for non-linear complexity in F2n

n 4 5 6 7 8 9 10 11 12

Previous lower bound [CGP+12, RV13] 2 2 3 3 4 4 4 4 4

Our lower bound (cf. (17)) 0 1 2 3 4 6 9 12 17

Note that there is still a gap between the lower bound from Table 3 and the
achievable value of Nmult for our method in Table 2. This is because in our
method the decomposition of P (x) as

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) (18)

is performed by first generating the polynomials qi(x) randomly and indepen-
dently of P (x), in order to have a linear system of equations over the coefficients
of pi(x). Instead one could try to solve (18) for both the pi(x) and the qi(x)
polynomials simultaneously; however this gives a quadratic system of equations,
which is much harder to solve.

4 Application to Various S-boxes

In this section, we apply the generic method described in Section 2, to several
well known S-boxes. Using our new method, we reduce the number of non-
linear multiplications required in each case, resulting in an improvement over
the previously known techniques.

We stress that in our method for an n-bit S-box, the maximum number of
non-linear multiplications required is invariant of the choice of the S-box when
n is fixed. Hence, the number of non-linear multiplications obtained for a fixed
n actually provides an upper bound on the masking complexity of an S-box of
size n.

4.1 CLEFIA and Other 8-bit S-boxes

The CLEFIA block cipher has two 8-bit S-boxes [SSA+07]. Let us denote the
S-box lookup table for either of the S-boxes as Sclefia. We choose

L = C0 ∪ C1 ∪ C3 ∪C7 ∪ C29 ∪ C87 ∪ C251. (19)

This implies that after choosing t = 6, and then 5 basis polynomials qi
$← P(xL)

(1 ≤ i ≤ 5), the following system of equations is constructed in F28 :

Sclefia[xj ] =

5∑
i=1

pi(xj) · qi(xj)︸ ︷︷ ︸
Q

+p6(xj) j = 0, . . . , 255. (20)
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We have checked that for some random choice of the polynomials qi(x) the
corresponding matrix A has full rank 256, and therefore we can determine the
polynomials pi(x). Given the solution to the above system, the S-box evaluation
is then the same as evaluating the polynomial Q(x) + p6(x). To evaluate all
the monomials in {x, x3, x7, x29, x87, x251} we need 5 non-linear multiplications,
implying that any monomial in xL, any qi(x) (randomly chosen from P(xL))
and any pi(x) can all together be evaluated with 5 non-linear multiplications.
Moreover the evaluation of Q(x) requires 5 additional non-linear multiplications.
Therefore the total number of non-linear multiplications required for evaluating
the S-box is 10.

Note that it requires at least 4 non-linear multiplications to evaluate the poly-
nomials corresponding to the two S-boxes of CLEFIA by any method. This is
because these two polynomials over F28 have degrees 252 (S-box S0) and 254
(S-box S1), and the result follows from Proposition 1.

Invariance. If we choose some other 8-bit S-box, then the matrix corresponding
to the resulting system remains the same. Hence, we will still get a solution to
the system for the same set of polynomials qi(x). This implies that we can use
the same set of basis polynomials to obtain polynomials pi(x) for any other 8-bit
S-box. Hence, for any S-box of size 8, the number of non-linear multiplications
is at most 10.

4.2 PRESENT and Other 4-bit S-boxes

For the 4-bit S-box of PRESENT [BKL+07], we choose t = 2 and L = C0 ∪
C1 ∪ C3. By selecting q1

$← P(xL), we construct the following linear system of
equations:

Spresent[xj ] = p1(xj) · q1(xj) + p2(xj) (21)

The monomials used to construct q1(x), q2(x) are {x, x2, x4, x8, x3, x6, x12, x9}.
All of these monomials can be evaluated with a single non-linear multiplication
and to evaluate p1(x) · q1(x) we need only one more non-linear multiplication.
Hence, the PRESENT S-box evaluation requires 2 multiplications. As in the case
of 8-bit S-boxes, this proves that with the same q1(x) any 4-bit S-box can be
evaluated with 2 multiplications. Table 4 gives the corresponding polynomials
for the PRESENT S-box.

The polynomial corresponding to the PRESENT S-box has degree 14 and
hence, from Proposition 1, its masking complexity is at least 2 [RV13]. This im-
plies that our evaluation method achieves optimal complexity for the PRESENT
S-box.
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Table 4. Basis polynomial q1(x) for 4-bit S-boxes, and solutions p1(x), p2(x) to
PRESENT S-box. The irreducible polynomial is a4 + a+ 1 over F2.

Basis Polynomial

q1 (a3 + a2 +1) · x12 + (a3 + a2 + a+1) · x9 + a2 · x8 + x6 +(a3 + a2 + a) ·
x4 + x2 + (a3 + a) · x+ a

Solution to linear System

p1 (a3 + a) · x12 + x9 + (a3 + a2) · x8 + (a2 + 1) · x6 + (a3 + a2 + 1) · x4 +
(a3 + a2 + a+ 1) · x3 + (a2 + 1) · x2 + (a2 + 1) · x+ a2

p2 (a2+1) ·x8+(a3+a2+1) ·x6+(a+1) ·x4+a ·x3+x2+(a3+1) ·x+a2

4.3 (m,n)-bit S-box: Application to DES

We now consider S-boxes whose output size n is smaller than the input size m,
as for the DES S-boxes with m = 6 and n = 4. We can view an (m,n)-bit S-box
(m > n) as a mapping from F2m to F2n . Given any such S-box table S, we want
to construct a system of linear equations

S[xj ] =
t−1∑
i=1

pi(xj) · qi(xj) + pt(xj)︸ ︷︷ ︸
G(x)

(22)

Note that each S[xj ] is an element of the smaller field F2n , but each G(xj) is
an element in the larger field F2m . One trivial way to remove this inconsistency
is to consider S[xj ] as an element of the larger field F2m , by padding the most
significant bit of the S-box output with 0’s. Then, we determine the polynomials
pi(x) by solving the corresponding system A · c = S, as described in Section
2.2. However intuitively this is not optimal, since we are creating an artificial
constraint to be satisfied by the coefficients of the polynomials pi(x), namely
that the m − n most significant bits of G(x) must be 0, while eventually these
most significant bits will simply be discarded after the evaluation of G(x), since
to get S(x) we only keep the n least significant bits of G(x).

Instead, we consider the representations of the unknown coefficients of the
polynomials pi(x) in F2 instead of F2m , and we transform the system of linear
equations (22) over F2m , into a system of linear equations over F2. By doing
this, from each constraint G(xj), we generate m equations over F2, instead of
one equation over F2m . Note that each of these m equations will be an affine
combination of the unknown bits of the coefficients of the polynomials pi(x).
Only n of these equations are actually necessary, since the output of the S-box is
of size n bits. By equating each of these equations to the corresponding output
bit of the S-box, we get a transformed system of linear equations B · c = S,
where B is an (n · 2m)× (t · |L| ·m) matrix over F2 and L is the set of elements
from the chosen cyclotomic classes. By solving this transformed system over F2

we determine the polynomials pi(x).
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Example of DES. The DES block cipher has 8 (6, 4)-bit S-boxes [oST93]. A
DES S-box is a mapping from F26 to F24 . In [RV13], the authors consider the
S-boxes as a mapping from F26 to F26 , where the two most significant bits of
the output of S-box are fixed to 0, and as recalled in Section 2.1 the evaluation
can be done with 7 non-linear multiplications. Also, for the same representation,
there is a lower bound of 3 non-linear multiplications necessary to evaluate each
DES S-box [RV13]. From Table 2, using our generic method over F26 we can
perform the evaluation with 5 non-linear multiplications. Below we show that
by working over F2 as explained above, only 4 non-linear multiplications are
required.

We choose L = C0 ∪ C1 ∪ C3 ∪ C7, t = 3, and q1(x), q2(x)
$← P(xL). Then

using our method we transform the following linear system of equations

Sdes[xj ] =

2∑
i=1

pi(xj) · qi(xj)︸ ︷︷ ︸
Q(x)

+ p3(xj) (23)

to a system over F2. That is, instead of embedding Sdes into F26 , we write the
system of equations over F2. This can be done by considering the binary repre-
sentation of xα evaluated at any given value in F26 . This will give 6 equations
over F2 for each equation Q(xj)+p3(xj). Out of these 6 equations only 4 will be
necessary since the output of DES S-box has 4-bit values. By solving this new
system of linear equations over F2 we can determine pi(x) for each i.

The number of multiplications required to evaluate q1(x), q2(x) is 2, and Q(x)
can be evaluated with 2 additional multiplications. Hence, the total number of
non-linear multiplications required is only 4. In Appendix C we give an example
of basis polynomials q1(x), q2(x) for DES and the solution polynomials pi(x)
corresponding to the system of linear equations for the first DES S-box S1.

As previously, once we obtain a full rank matrix for a set of randomly fixed
q1(x), q2(x), for any other (6, 4)-bit S-box we can use this basis to find the
corresponding polynomials pi(x), since the matrix A is independent from the
S-box. Hence we can conclude that the masking complexity of any (6, 4)-bit
S-box is at most 4.
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A F2n-Polynomial Chain

Definition 1. [[RV13], Definition 4] An F2n-polynomial chain S for a polyno-
mial P (x) ∈ F2n [x] is defined as

λ−1 = 1, λ0 = x, . . . , λr = P (x) (24)

where

λi =

⎧⎪⎪⎨⎪⎪⎩
λj + λk −1 ≤ j, k < i,
λj · λk −1 ≤ j, k < i,
αi # λj −1 ≤ j < i, αi is a scalar,
λ2j −1 ≤ j < i.

Though · and # both perform multiplication in F2n , the operator “#” is reserved
for the multiplication by a scalar. A step such as λj · λk denotes a non-linear
multiplication. Let the number of non-linear multiplications involved in a chain
S be denoted as N (S). Then the non-linear complexity of P (x), denoted by
M(P (x)), is defined as M(P (x)) = min

S
N (S).

B Heuristics for Choosing Parameters t and L

n t L |L|
4 2 C0 ∪ C1 ∪ C3 9

5 3 C0 ∪ C1 ∪ C3 ∪ C7 16

6 3 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C11 25

7 4 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C11 ∪ C15 36

8 6 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C87 ∪ C251 49

9 8 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C45 ∪ C119 ∪ C191 ∪ C255 73

10 11 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C45 ∪ C119 ∪ C191 ∪ C155 ∪ C255 ∪ C339 101

C Evaluation Polynomials for DES S-boxes

In Table 5 we give an example of basis polynomials q1(x), q2(x) for DES and
Table 6 shows the solution polynomials pi(x) corresponding to the system of
linear equations for the first DES S-box S1.
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Table 5. Basis polynomials q1, q2 obtained from P(xL), for DES

Basis Polynomials

q1 (a5+ a4 +1) ·x56 +(a5+1) ·x49 +(a2+ a) ·x48 +(a4 + a3) ·x35 +(a5+
a4+a2) ·x33+(a5+a+1) ·x32+(a3+a) ·x28+a2 ·x24+(a5+1) ·x16+
(a4 + a+1) ·x14 + x12 +(a4 + a3 + a2 +1) · x8 +(a5 + a3 + a2 + a+1) ·
x7 +(a5 + a4 + a3 + a2 +1) ·x6 +(a5 + a4 + a3 +1) ·x4 +(a5 + a2 + a+
1) · x3 + (a3 + a2 + a) · x2 + (a4 + a2 + a+1) · x+ a5 + a4 + a3 + a2 + a

q2 (a+1) ·x56+(a5+1) ·x49+(a+1) ·x48+a ·x35+(a+1) ·x33+(a4+a3+
a+1)·x32+(a3+a2+a)·x28+(a5+a3+a+1)·x24+(a3+1)·x16+(a4+
a2+1)·x14+(a+1)·x12+(a5+a4+1)·x8+(a5+a4+a3+a+1)·x7+(a5+
a4+a3)·x6+(a+1)·x4+(a5+a3+a2+a)·x2+a·x+a5+a4+a3+a2+1

Table 6. Solution to the system of linear equations for DES S-box (S1). The irreducible
polynomial is a6 + a+ 1 over F2.

Solution to linear system

p1 (a5+a4+a3+a2+1)·x56+(a5+a2+1)·x49+a4 ·x48+(a4+a3+a)·x35+
(a5+a4+a2)·x33+(a5+1)·x32+a·x28+(a4+a2)·x24+(a5+a)·x16+(a5+
a2)·x14+(a5+a+1)·x12+(a5+a4+a3+a)·x8+(a5+a4+a3+a)·x7+(a5+
a4+a3)·x6+(a2+a+1)·x4+(a5+a4+a)·x2+(a5+a4+1)·x+a4+a3+a2

p2 (a5 + a2) · x49 + (a3 + 1) · x48 + (a5 + a3 + a+ 1) · x35 + (a4 + a2 + 1) ·
x33 + (a5 + a4 +1) · x32 + (a5 + a4 + a3 + a+1) · x28 + (a3 + a2) · x24 +
(a2 + a+ 1) · x16 + (a5 + a4 + a3) · x14 + (a4 + a3 + a+ 1) · x12 + (a4 +
a3) ·x8 +(a5 + a) ·x7 +(a5 + a4) ·x6 +(a5 + a4 + a3 + a2 + a+1) ·x4 +
(a5 + a4 + a) · x3 +(a5 + a3 + a+1) ·x2 +(a5 + a) · x+ a5 + a4 + a2 + a

p3 a · x7 + a · x6 + (a4 + a+1) · x4 + (a5 + a2 + a) · x3 + (a5 + a4 + a+1) ·
x2 + (a4 + a2) · x
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Abstract. An effective countermeasure against side-channel attacks is
to mask all sensitive intermediate variables with one (or more) random
value(s). When a cryptographic algorithm involves both arithmetic and
Boolean operations, it is necessary to convert from arithmetic masking
to Boolean masking and vice versa. At CHES 2001, Goubin introduced
two algorithms for secure conversion between arithmetic and Boolean
masks, but his approach can only be applied to first-order masking. In
this paper, we present and evaluate new conversion algorithms that are
secure against attacks of any order. To convert masks of a size of k bits
securely against attacks of order n, the proposed algorithms have a time
complexity of O(n2k) in both directions and are proven to be secure in
the Ishai, Sahai, and Wagner (ISW) framework for private circuits. We
evaluate our algorithms using HMAC-SHA-1 as example and report the
execution times we achieved on a 32-bit AVR microcontroller.

Keywords: Side-channel analysis (SCA), higher-order SCA, arithmetic
masking, Boolean masking, provably secure masking, HMAC-SHA-1.

1 Introduction

Side-Channel Attacks. Traditionally, cryptographic algorithms are designed
under the premise that a system can only be attacked in a black-box way, even
though in practice this assumption is not necessarily true. An attacker may be
able to obtain some partial information about the secret key(s) through means
that were originally not anticipated by the system designer. A typical example
are the so-called side-channel attacks, which can be mounted by measuring the
power consumption [14], EM radiations [8], or execution time [13] of a crypto-
system, or by observing its response to fault injection [1]. It is widely accepted
that these attacks are very powerful and can completely break a system.

Masking is a common countermeasure against side-channel attacks. Boolean
masking, firstly suggested in [3, 10], consists in splitting every sensitive variable
x in two shares x′ and r, where x′ = x⊕ r and r is a randomly generated value
[3]. The two shares are manipulated separately according to the cryptographic
algorithm. Such modification is straightforward for linear functions, which can
be computed separately on these two shares. For non-linear functions, such as

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 188–205, 2014.
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SBOXes, the usual technique consists in pre-computing a randomized SBOX in
RAM for every new execution of the algorithm [3].

First-order Boolean masking is vulnerable to a second-order attack in which
the adversary combines information about the two shares x′ and r; such attacks
are feasible in practice (see [18]). Boolean masking can actually be extended to
any number of shares, e.g. when using n shares, an implementation should be
resistant against t-th order attacks, in which the adversary combines leakage
information from t < n variables. It was shown in [3] that, under a reasonable
power leakage model, the overall number of executions required to recover the
secret key grows exponentially with the number of shares.

At CHES 2010, Rivain and Prouff [20] proposed an algorithm to protect the
AES against t-th order attacks, based on the Ishai-Sahai-Wagner construction
[11]. Their basic idea is to write the AES round transformations as operations
in the field GF(28) and mask additions and multiplications. This approach can
be extended to any SBOX by considering the polynomial representation of the
SBOX, which can be computed using Lagrange polynomial interpolation over a
finite field [2]. Rivain et al introduced in [19] a table re-computation method to
protect any SBOX from second-order attacks. The classical randomized table
countermeasure, secure against first-order attacks, has recently been extended
to work against t-th order attacks [5].

Security Model. We definitely aim for countermeasures against side-channel
attacks that can be proven secure in a reasonable model of side-channel leakage
(i.e. we will not be satisfied with heuristic “ad-hoc” countermeasures). Perhaps
the simplest such model is the probing attack model proposed by Ishai, Sahai
and Wagner (ISW) at CRYPTO 2003 [11] (see Subsection 2.2). They initiated
the theoretical study of securing circuits against an adversary who can probe
its wires. In this model, the attacker is allowed to access at most t wires of the
circuit, but he should not be able to learn anything about the secret key. The
authors show that any circuit C can be transformed into a new circuit of size
O(t2 · |C|) that is resistant against such an adversary. The approach is based on
secret-sharing every variable x into n shares xi with x = x1 ⊕ x2 · · · ⊕ xn, and
processing the shares in a way so that no information about the initial variable
x can be learned by any t-limited adversary, for n ≥ 2t+ 1.

In recent years, numerous papers on provable security against side-channel
attacks have been published in the literature, forming the rapidly emerging field
of leakage-resilient cryptography. Building upon the leakage model introduced
by Micali and Reyzin [16] and on the bounded retrieval model [6,7], the leakage
resilience model assumes that the adversary has the ability to repeatedly learn
arbitrary functions of the secret key, as long as the total number of bits leaked
to the adversary is bounded by some parameter L. This is a very strong secu-
rity notion because an attacker can choose arbitrary leakage functions; only the
amount of leaked information is bounded. In particular, it is more general than
the ISW probing model [11], in which the attacker has only access to a limited
number of physical bits computed in the circuit.
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However, cryptosystems proven secure in the most general leakage-resilient
model are often too inefficient for practical use. In practice, one typically has to
design a countermeasure against side-channel attacks for an existing algorithm
(such as AES or HMAC-SHA-1) instead of devising a completely new algorithm
based on the principles of leakage-resilient cryptography. The main advantage
of the ISW probing model is that it can potentially lead to relatively practical
designs. Another benefit is its interplay with resistance against power analysis
attacks. Namely, if a given algorithm is proven resistant against t probes in the
ISW model, then (at least) t+ 1 measurements in a power acquisition must be
combined to obtain the key. As shown in [3], the number of power acquisitions
required to recover the key grows exponentially with t. This means that, even
if a real probing attack would be physically impossible or too costly, it makes
sense to obtain countermeasures with the largest possible value of t since this
translates into an (exponentially in t) increasing level of security against power
attacks. In this paper, we mainly work in the ISW model.

Proving the resistance of a countermeasure against a single-probe attack (or
a first-order attack) is usually straightforward since it suffices to show that all
intermediate variables are uniformly distributed (or, at least, that their distri-
bution is independent from the secret key) as in this case a single probe reveals
no information to the attacker. To prove resistance against t probes, one should
a priori consider every possible t-tuple of variables and show that their joint
distribution is independent from the secret key. This approach has been used to
prove the security of algorithms against second-order attacks [19]. However, as
the number of such t-tuples grows exponentially with t, this analysis becomes
unfeasible, even for small values of t. To work around this problem, Ishai, Sahai
and Wagner introduced in [11] a very practical simulation framework in which
one shows how to simulate any set of t wires probed by the adversary from a
subset of the input shares of the transformed circuits. Since any proper subset
of these input shares can be simulated without knowledge of the input values
in the original circuit, a perfect simulation of the t probed wires is possible. We
follow the same approach in this paper.

Boolean vs Arithmetic Masking. Boolean masking is widely-used counter-
measure for cryptographic algorithms that use only linear operations over the
field F2 and non-linear SBOXes (e.g. DES and AES). However, if an algorithm
includes arithmetic operations (such as IDEA [15], RC6 [4], and SHA-1 [17]), a
masking scheme that is compatible with the arithmetic operation must be used
[3]. For example, if x3 = x1 + x2 must be computed securely, we can mask both
x1 and x2 arithmetically by writing x1 = A1 + r1 and x2 = A2 + r2 for some
random values r1 and r2. Then, instead of computing the sum x3 directly, we
can add the two shares separately, which results again in two arithmetic shares
for x3 = (A1 + A2) + (r1 + r2). Note that throughout this paper all additions
and subtractions are performed modulo 2k for some k.

Besides IDEA, RC6 and SHA-1, there exist many other algorithms that exe-
cute both arithmetic (e.g. modular addition) and logical operations. Examples
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include ARX-based block ciphers like XTEA and Threefish, the SHA-3 finalists
Blake and Skein, as well as all four stream ciphers from the e-Stream software
portfolio. Hence, techniques to protect both kinds of operation are of practical
importance. One approach to achieve this is to use appropriate masking (cor-
responding to the operation) and convert between the maskings whenever it is
necessary. Of course, this requires that the mask conversion itself is also secure
against first-order (resp. higher-order) attacks. Another idea is to use only one
kind of masking (either Boolean or arithmetic) and employ secure algorithms
to perform the needed operations directly on the shares. While there exist some
papers about the first method, the second approach has, surprisingly, not been
studied in detail. The decision whether to apply the conversion or not depends
on the target cryptographic algorithm. For HMAC-SHA-1, the second method
yields more efficient implementations, as we will show in this paper.

Our Contribution. Currently, there exists no practical conversion technique
that works for masking of order two or higher. The present paper attempts to
fill this gap. We introduce the first conversion algorithms between Boolean and
arithmetic masking that are secure against t-th order attacks (instead of first-
order only). We start with the problem of how to apply arithmetic operations
directly on Boolean shares and present an algorithm for secure addition modulo
2k with n shares (where n ≥ 2t+ 1) that has a complexity of O(n2k). Then, we
introduce algorithms to convert from Boolean to arithmetic masking and vice
versa, again with a complexity of O(n2k) in both directions. These algorithms
are proven secure in the Ishai, Sahai and Wagner (ISW) framework for private
circuits [11].

We apply our countermeasures to protect HMAC-SHA-1 against second and
third-order attacks. We implemented and evaluated all our masking schemes on
a 32-bit AVR processor. Based on a detailed performance analysis, we identify
the most efficient algorithms in practice for different levels of security.

2 Previous Work

2.1 First-Order Conversion: Goubin’s Algorithms

In this section, we firstly recall Goubin’s algorithm for conversion from Boolean
to arithmetic masking and vice versa [9]. Goubin’s conversion algorithms are
proven secure against first-order attacks only; thus, we restrict our attention to
first-order masking. For Boolean masking, we can write x = x′ ⊕ r, where r is
a randomly generated k-bit value, while for arithmetic masking, we can write
x = A + r mod 2k (as mentioned previously, all additions and subtractions are
performed modulo 2k for some parameter k).

Boolean to Arithmetic Conversion. The Boolean to arithmetic conversion
method of Goubin [9] is based on the following function Ψx′(r) : F2k→ F2k

Ψx′(r) = (x′ ⊕ r) − r
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Theorem 1 (Goubin [9]). The function Ψx′(r) is affine over F2.

Due to this affine property, the conversion from Boolean to arithmetic masking
is fairly straightforward. Given x′ and r so that x = x′ ⊕ r, we have to compute
A so that x = A+ r, which can be done as follows:

A = (x′ ⊕ r) − r = Ψx′(r) = Ψx′(r ⊕ r2)⊕ (Ψx′(r2)⊕ Ψx′(0))

where r2 is a random element of F2k . This conversion method is clearly secure
against first-order attacks because the left term Ψx′(r⊕ r2) is independent from
r (and, therefore, independent from x), and the right term Ψx′(r2) ⊕ Ψx′(0) is
also independent from r and x. Note that this technique is very efficient since
it requires only a constant number of operations (independent of k).

Arithmetic to Boolean Conversion. Goubin also introduced a technique to
convert from arithmetic to Boolean masking, secure against first-order attacks
[9]. Unfortunately, his arithmetic-to-Boolean conversion is more costly than the
conversion in the other direction since its time complexity is O(k) for registers
of k bits. It is based on the following theorem; we denote by 2x the multiplication
of x by 2 modulo 2k.

Theorem 2 (Goubin [9]). If we denote x′ = (A + r) ⊕ r, we also have x′ =
A⊕ uk−1, where uk−1 is obtained from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (A⊕ r) ⊕ (A ∧ r)]

Since this iterative computation of ui contains only logical XOR and AND
operations, it can be easily protected against first-order leakage. We refer to [9]
for further details. Recently, Karroumi et al applied this method to obtain a
first-order secure addition on Boolean shares directly [12].

2.2 The Ishai, Sahai and Wagner Framework

In this subsection we describe the framework of Ishai, Sahai and Wagner (ISW)
[11] for proving the security against an adversary observing at most t variables
within a circuit. We will use this framework in Section 4 and in Appendix A to
prove the security of our conversion algorithms.

A stateless circuit over F2 can be defined as a directed acyclic graph whose
sources and sinks are input and output variables, respectively, while its vertices
are Boolean gates [5]. Such a stateless circuit can be augmented with random-
bit gates to form a randomized circuit. As stated in [11], a random-bit gate has
no input and produces as output a uniformly random bit at each new invocation
of the circuit. A t-limited adversary can probe up to t wires in the circuit, and
has unlimited computational power. Given a stateless circuit C, we must trans-
form it into a new circuit C′ that can resist such an adversary. However, this is
only possible if the inputs and outputs of the new circuit C′ are hidden since
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an input of C might contain some secret-key bits and by probing these bits the
adversary can obtain information about the secret key. Therefore, we allow the
use of a randomized input encoder I and output decoder O, whose wires can
not be probed by the adversary. Both I and O should be independent from the
circuit C being transformed.

Definition 1. Let T be an efficiently computable, deterministic function map-
ping a stateless circuit C to a stateless circuit C′, and let I, O be input and out-
put decoder, respectively. (T, I, O) is said to be a t-private stateless transformer
if it satisfies soundness and privacy, defined as follows:

– Soundness: C and O ◦ C′ ◦ I have identical input-output functionality.
– Privacy: the values of any t wires of C′ can be efficiently simulated without

access to any wire of C′.

In our conversion algorithms we will often work with k-bit variables (for some
fixed parameter k) instead of single bits; in this case probing one such variable
will automatically reveal its k-bit value instead of a single bit. Clearly, this can
only make the adversary stronger.

The ISW framework also includes definitions for stateful circuits, i.e. circuits
with memory gates. As shown in [11], achieving privacy for stateful circuits is
easy once privacy has been achieved in the stateless model. Thus, we focus on
the stateless model in our work. We recall the main theorem from [11] below.

Theorem 3 (Ishai, Sahai, Wagner [11]). There exists a perfectly t-private
stateless transformer (T, I, O) such that T maps any stateless circuit C of size
|C| and depth d to a randomized stateless circuit of size O(n2 · |C|) and depth
O(d log t), where n = 2t+ 1.

Privacy for Stateless Circuits. For an arbitrary circuit C the corresponding
circuit C′ is constructed by maintaining the following invariant: for each wire in
the circuit C, there are n wires in C′, which add up to the value on the wire in
C. Without loss of generality, any circuit C can be represented using NOT and
AND gates only. Thus, if we can transform these two gates, the whole circuit is
transformable. It is easy to transform a NOT gate using the following simple
relation: If x = x1 ⊕ x2 ⊕ · · · ⊕ xn then NOT(x) = NOT(x1)⊕ x2 ⊕ · · · ⊕ xn. To
transform AND gates, the authors present an elegant solution, which is shown
in Algorithm 1.

3 Secure Addition on Boolean Shares

In this section, we describe algorithms that can be used to perform an addition
(or a subtraction) on the Boolean shares directly, thereby eliminating the need
to convert masks from one form to the other. Formally, given n Boolean shares
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Algorithm 1. SecAnd

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi ∧
n⊕

i=1

yi

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ← rand(1)
4: rj,i ← (ri,j ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
5: end for
6: end for
7: for i = 1 to n do
8: zi = xi ∧ yi
9: for j = 1 to n do
10: if i �= j then
11: zi ← zi ⊕ ri,j
12: end if
13: end for
14: end for

of x = x1⊕· · ·⊕xn and y = y1⊕· · ·⊕ yn, we need to compute n Boolean shares
of z = z1 ⊕ · · · ⊕ zn satisfying the relation z = x+ y, i.e.

z1 ⊕ · · · ⊕ zn = (x1 ⊕ · · · ⊕ xn) + (y1 ⊕ · · · ⊕ yn)
We propose two algorithms to solve this problem based on the ISW method.

3.1 First Variant

The first solution is obtained by transforming the k-bit addition circuit into a
circuit of XOR and AND gates so that the the ISW technique can be applied
directly [11]. A modular addition of two k-bit variables x and y can be defined
recursively as (x+ y)(i) = x(i) ⊕ y(i) ⊕ c(i), where{

c(0) = 0

∀i ≥ 1, c(i) = (x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1))
(1)

Here, x(i) denotes the i-th bit of variable x, with x(0) being the least significant
bit. Since this recursion formula involves solely XOR and AND operations, we
can simply use the ISW approach from [11] to protect it against attacks of any
order. The resulting algorithm is shown in Algorithm 2.

Initially, there will be no carry; therefore, we set all n shares of the carry to
zero (Step 1). Next, we compute the carries for the remaining bits through the
formula given in Equation (1). The loop runs from 0 to k − 2 only, since the
carry from the last bit does not need to be computed in a modular addition. In
Step 8 we apply an XOR operation on the two inputs xi, yi and the carry ci to
obtain the n shares corresponding to x + y mod 2k. The algorithm SecAnd has
a time complexity of O(n2) and, as a consequence, the full algorithm has a time
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Algorithm 2. SecAdd

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

1: (c
(0)
i )1≤i≤n ← 0 � Initially carry is zero

2: for j = 0 to k − 2 do � Compute carry bit by bit
3: (xy

(j)
i )1≤i≤n ← SecAnd((x

(j)
i )1≤i≤n, (y

(j)
i )1≤i≤n) � x(j) ∧ y(j)

4: (xc
(j)
i )1≤i≤n ← SecAnd((x

(j)
i )1≤i≤n, (c

(j)
i )1≤i≤n) � x(j) ∧ c(j)

5: (yc
(j)
i )1≤i≤n ← SecAnd((y

(j)
i )1≤i≤n, (c

(j)
i )1≤i≤n) � y(j) ∧ c(j)

6: (c
(j+1)
i )1≤i≤n ← (xy

(j)
i )1≤i≤n ⊕ (xc

(j)
i )1≤i≤n ⊕ (yc

(j)
i )1≤i≤n

7: end for
8: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ci)1≤i≤n � z = x+ y = x⊕ y ⊕ c
9: return (zi)1≤i≤n

complexity of O(n2k). Algorithm 2 has to perform AND and XOR operations
only. Due to the ISW scheme, we already know that such a circuit is protected
from attacks of order t, where n ≥ 2t+1. This proves the following theorem and
shows the security of Algorithm 2 in the ISW model.

Theorem 4. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of Algorithm 2
and let 2t < n. For any set of t intermediate variables, there exists a subset
I ⊂ [1, n] of indices such that |I| ≤ n − 1, whereby the shares x|I and y|I can
perfectly simulate those t intermediate variables as well as the output shares z|I.

3.2 Second Variant

The second approach is based on the recursion from Goubin’s theorem (Theo-
rem 2), which uses the relation x + y = x ⊕ y ⊕ uk−1, where uk−1 is obtained
from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (x⊕ y)⊕ (x ∧ y)]

Algorithm 3 represents the solution based on Goubin’s formula to compute the
addition. Here, the function SecAnd is called with arguments of a size of k bits
instead of 1-bit arguments as in Algorithm 2. In this setting, the ISW scheme
has to be adapted as follows: (i) all 1-bit variables defined over F2 are replaced
by k-bit variables defined over F2k ; (ii) the 1-bit XOR operations are replaced
by k-bit XOR operations; and (iii) the 1-bit AND operations are replaced by k-
bit AND operations. This extension still preserves the security of the original
scheme. Note that this method has been used before in the higher-order secure
masking technique for AES proposed by Rivain and Prouff [20].1

1 In the Rivain-Prouff masking scheme, the AND operations over F2 were replaced
with multiplications over F2k instead of AND operations over F2k .
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Algorithm 3. SecAddGoubin

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

1: (wi)1≤i≤n ← SecAnd((xi)1≤i≤n, (yi)1≤i≤n) � ω = x ∧ y
2: (ui)1≤i≤n ← 0 � Initialize shares of u to zero
3: (ai)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n � a = x⊕ y
4: for j = 1 to k − 1 do
5: (uai)1≤i≤n ← SecAnd

(
(ui)1≤i≤n, (ai)1≤i≤n

)
6: (ui)1≤i≤n ← (uai)1≤i≤n ⊕ (wi)1≤i≤n

7: (ui)1≤i≤n ← 2(ui)1≤i≤n � u ← 2(u ∧ a⊕ ω)
8: end for
9: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ui)1≤i≤n � z = x+ y = x⊕ y ⊕ u
10: return (zi)1≤i≤n

The time complexity of Algorithm 3 is still O(n2k). However, in practice, this
algorithm will be faster for two reasons: (i) the number of calls to the function
SecAnd inside the loop is reduced from three to one, and (ii) all the operations
are directly performed on the k-bit variables instead of single bits, thus there is
no need to perform bit manipulations. Similar to Algorithm 2, it is easy to see
that the security of Algorithm 3 follows from the original ISW scheme.

Theorem 5. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of Algorithm 3
and let 2t < n. For any set of t intermediate variables, there exists a subset
I ⊂ [1, n] of indices such that |I| ≤ n − 1, whereby the shares x|I and y|I can
perfectly simulate those t intermediate variables as well as the output shares z|I.

4 Secure Arithmetic to Boolean Masking for Any Order

In this section, we describe two new algorithms for conversion from arithmetic
to Boolean masking of any order. That is, given n arithmetic shares with the
property x = A1 + · · · + An, our algorithms output the corresponding Boolean
shares satisfying x = x1 ⊕ · · · ⊕ xn, secure against attacks of order t, where
2t ≤ n− 1. We describe in Section 5 the algorithm for secure conversion in the
other direction, i.e. from Boolean to arithmetic masking.

We first present a straightforward algorithm with complexity O(n3k), where
n and k are the number of shares and the register size, respectively. Then, we
give an improved algorithm with a complexity of O(n2k). Internally, both algo-
rithms use the secure addition function we described in Section 3. Though it is
more efficient in practice to perform secure addition directly on Boolean shares
(due to the overhead of converting between the masks twice), such conversion
algorithms may still be useful, e.g. when the required number of conversions is
lower than the required number of secure additions.2

2 For HMAC-SHA-1, it is more efficient to perform secure addition directly on the
Boolean shares, as we will show later.
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4.1 A Simple Algorithm with Complexity O(n3k)

We first describe a simple approach for converting from arithmetic to Boolean
masking with complexity O(n3k). Assume that a sensitive variable x is shared
among n arithmetic masks as follows:

x = A1 + · · ·+An (2)

We separately re-share each of the arithmetic shares Ai (1 ≤ i ≤ n) into n ran-
dom Boolean shares xi,j (1 ≤ j ≤ n) so that Ai = xi,1 ⊕ · · · ⊕ xi,n. Hence, the
sensitive variables x is now given as:

x = (x1,1 ⊕ · · · ⊕ x1,n) + · · ·+ (xn,1 ⊕ · · · ⊕ xn,n) (3)

For each arithmetic share Ai (1 ≤ i ≤ n), such re-sharing can be accomplished
by generating xi,j independently at random for 2 ≤ j ≤ n and letting xi,1 =
Ai ⊕ xi,2 ⊕ · · · ⊕ xi,n. We then sequentially add the Ai’s using their n-Boolean
shared representation Ai =

⊕n
j=1 xi,j . For this, we use either the SecAdd or the

SecAddGoubin algorithm from Section 3. Eventually, we get the final result x in
Boolean form as

x = z1 ⊕ · · · ⊕ zn (4)

Since each of the n− 1 calls to SecAdd has a complexity of O(n2k), the overall
complexity of the arithmetic to Boolean conversion is O(n3k).
Theorem 6. Let (Ai)1≤i≤n be the input shares of the previous algorithm and
let 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n]
of indices such that |I| ≤ 2t < n, whereby the shares A|I can perfectly simulate
those t intermediate variables as well as the output shares z|I .

Proof. We show how to simulate any set of t probes, for 2t < n. We firstly con-
sider the initial re-sharing of the arithmetic shares Ai (1 ≤ i ≤ n). At first, the
set I is empty. If there is a probe in the re-sharing of Ai, we add the index i to
I. Then, we consider the second part of the algorithm, starting from Equation
(3) to the final result given by Equation (4). This second part is essentially an
iteration of a circuit obtained through the ISW transform. Therefore, by apply-
ing the ISW methodology, we can simply continue with the construction of the
subset I, so that any probe in this second part, and any of the output shares
z|I , can be perfectly simulated by knowing the inputs xi,j for j ∈ I and for all
1 ≤ i ≤ n; moreover, we know from the ISW methodology that |I| ≤ 2t < n.

For any i /∈ I, since the re-sharing of Ai is not probed, we can perfectly
simulate the xi,j for j ∈ I without knowing Ai. Namely, since |I| ≤ 2t < n, the
xi,j for j ∈ I form a proper subset of n shares, and we can perfectly simulate
such a subset without knowing Ai by generating the values independently and
uniformly at random. For i ∈ I, we can simulate the xi,j in the same way as in
the “real” circuit because we know the input Ai. Therefore, as required, we can
perfectly simulate the xi,j for j ∈ I and all 1 ≤ i ≤ n.

In summary, the t probes as well as the output shares z|I can be perfectly
simulated from the knowledge of the input shares A|I , where |I| ≤ 2t < n.
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It is easy to observe that one can improve the complexity of this algorithm
by using fewer shares at the beginning. In particular, Equation (3) contains a
total of n2 shares, while only n are necessary. Therefore, at the beginning, we
use only two shares for every Ai instead of n shares. Then, we build a tree where
at each layer the number of additive terms is divided by two, while the number
of Boolean shares within an additive term is doubled. In this way, the overall
number of shares remains n or 2n at each level, and so the complexity becomes
O(n2k) instead of O(n3k). We provide a complete description below.

4.2 Our New Arithmetic to Boolean Conversion Algorithm

In this section, we describe our new algorithm for converting from arithmetic to
Boolean masking with a complexity of O(n2k). Our algorithm is best described
recursively. Assume that we already found an algorithm An/2 for converting a
set of n/2 arithmetic shares Ai into n/2 Boolean shares xi such that

A1 + · · ·+An/2 = x1 ⊕ · · · ⊕ xn/2.
Now, given as input a variable x represented with n arithmetic shares Ai:

x = A1 + · · ·+An

we can first apply algorithm An/2 separately on the two halves to get

x = (A1 + · · ·+An/2) + (An/2+1 + · · ·+An)

= (x1 ⊕ · · · ⊕ xn/2) + (y1 ⊕ · · · ⊕ yn/2)
We now apply a simple expansion step, in which the n/2 shares xi and yi are
each expanded to n shares. This can be done by randomly splitting every share
xi into xi = x

′
2i−1 ⊕ x′2i and similarly for yi = y

′
2i−1 ⊕ y′2i. We obtain:

x = (x′1 ⊕ · · · ⊕ x′n) + (y′1 ⊕ · · · ⊕ y′n)
Then, we apply the n-Boolean addition circuit SecAdd or SecAddGoubin from
Section 3 to obtain x represented with n Boolean shares x = z1 ⊕ · · · ⊕ zn as
required.

We now show that the algorithm has a complexity of O(n2k). For the sake
of simplicity, we assume that n is a power of two. Let Ti be the execution time
of Ai, which takes i arithmetic shares as input. We proceed by induction, based
on the assumption that Ti ≤ c · i2 for all i ≤ n/2 and some constant c. When
running algorithm An with n shares, one first applies An/2 on both halves, and
then executes the expansion step (with 3n steps). Finally, the SecAdd algorithm
is performed, which gives:

Tn ≤ 2Tn/2 + 3n+ c′ · n2 ≤ 2c · (n/2)2 + 3n+ c′ · n2

for some constant c′, such that the execution time of SecAdd with n shares is
≤ c′ · n2. We get:

Tn ≤ (c/2 + 3 + c′) · n2
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Algorithm 4. ConvertA→B

Input: (Ai) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n∑

i=1

Ai

1: If n = 1 then return A1

2: (xi)1≤i≤n/2 ← ConvertA→B
(
(Ai)1≤i≤n/2)

)
3: (x′

i)1≤i≤n ← Expand
(
(xi)1≤i≤n/2)

)
�

n⊕
i=1

x′
i =

n/2⊕
i=1

xi =
n/2∑
i=1

Ai

4: (yi)1≤i≤n/2 ← ConvertA→B
(
(Ai)n/2+1≤i≤n)

)
5: (y′

i)1≤i≤n ← Expand
(
(yi)1≤i≤n/2)

)
�

n⊕
i=1

y′
i =

n/2⊕
i=1

yi =
n∑

i=n/2+1

Ai

6: (zi)1≤i≤n ← SecAdd ((x′
i)1≤i≤n, (y′

i)1≤i≤n)

7: return (zi)1≤i≤n �
n⊕

i=1

zi =
n⊕

i=1

x′
i +

n⊕
i=1

y′
i =

n∑
i=1

Ai

Algorithm 5. Expand
Input: xi for 1 ≤ i ≤ n

Output: yi for 1 ≤ i ≤ 2n with
2n⊕
i=1

yi =
n⊕

i=1

xi

1: (ri)1≤i≤n ← Rand(k)
2: (y2i)1≤i≤n ← (xi ⊕ ri)1≤i≤n

3: (y2i+1)1≤i≤n ← (ri)1≤i≤n

4: return (yi)1≤i≤2n

Hence, it suffices to fix the constant c so that 3 + c′ ≤ c/2 to get Tn ≤ c · n2 as
required to prove the result. A formal description of our new conversion method
can be found in Algorithm 4, which, in turn, uses the expansion step specified
in Algorithm 5. The following theorem confirms that Algorithm 4 is secure in
the ISW framework.

Theorem 7. Let (Ai)1≤i≤n be the input shares of Algorithm 4. For any set of t
intermediate variables and any k output shares, there exists a subset I ⊂ [1, n] of
indices such that |I| ≤ k + 2t, where the shares A|I can perfectly simulate those
t intermediate variables as well as the output shares x|I .

Proof. We first prove the following property of the Expand method.

Lemma 1. In Algorithm 5, a set of k outputs (k ≤ 2n) and t probes (t ≤ n)
can be perfectly simulated using at most �k/2�+ t inputs.
Proof of Lemma 1. We proceed by induction. When n = 1, the algorithm gets
only x as input and outputs (x ⊕ r, r) for a uniformly random r. Now, we have
to distinguish between the following two cases: there is no probe (t = 0), and
there is at least one probe (t ≥ 1).

In the latter case, i.e. there is at least one probe (for x, or r, or x ⊕ r), then
t ≥ 1 and the probe can be perfectly simulated by using the input x and gener-
ating r uniformly at random. This will also perfectly simulate both outputs.
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As a consequence, for t = 1 and any k with 0 ≤ k ≤ 2, we can perfectly simulate
the t probes and the k outputs using at most 1 ≤ �k/2�+ t inputs.

We now assume that there are no probes (t = 0). If no output needs to be
simulated (i.e. k = 0), then knowledge of the input x is not required. If only a
single output must be simulated (k = 1), where either y1 = x ⊕ r or y2 = r has
to be simulated, such output can be perfectly simulated by generating a ran-
dom number uniformly, without knowing x. Finally, if k = 2, then one input is
required. Therefore, for any k with 0 ≤ k ≤ 2, the number of required inputs is
always at most �k/2�+ t.

For n > 1, let us consider the i-th sub-circuit and denote the number of out-
puts to be simulated by ki and the number of probes by ti for 1 ≤ i ≤ n. Based
on the above arguments, the total number of inputs needed for the simulation
is then at most

n∑
i=1

�ki/2�+ ti ≤ �k/2�+ t,

which finally proves the Lemma.

The proof of Theorem 7 is obtained via induction on the number of shares
n. We assume that the result holds for n/2 and prove that it holds for n. We
distinguish among 5 sets of probes:

• The tA probes for the Secure Addition subroutine (Line 6 of Algorithm 4).

• The tEL and tER probes for the left and right Expand circuit, respectively
(lines 3 and 5 of Algorithm 4).

• The tCL and tCR probes for the left and right Arithmetic to Boolean con-
version circuit, respectively (lines 2 and 4 of Algorithm 4).

From the security proof of the SecAnd algorithm given in [11], we know that a
set of k outputs and tA probes can be simulated using a subset of k+2tA inputs
in each of the two input shares x′i and y

′
i. Therefore, the property also holds for

the SecAdd algorithm.
According to Lemma 1, a set of k + 2tA outputs and tEL (resp. tER) probes

can be simulated using at most �(k + 2tA)/2�+ tEL = �k/2�+ tA + tEL inputs
(resp. �k/2�+ tA + tER inputs). Since the result is assumed to hold for n/2, the
�k/2�+ tA + tEL outputs and the tCL probes of the left conversion can be sim-
ulated using at most �k/2� + tA + tEL + 2tCL inputs. An upper bound of the
number of inputs for the right conversion can be derived in the same way. As a
consequence, the total number of required inputs is at most k + 2t according to
the following equation

|I| ≤ �k/2�+ tA + tEL + 2tCL + �k/2�+ tA + tER + 2tCR

≤ k + 2(tA + tEL + tER + tCL + tCR)

≤ k + 2t,

which proves Theorem 7.
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5 From Boolean to Arithmetic Masking of Any Order

We now present a new algorithm for converting in the other direction, i.e. from
Boolean to arithmetic masking, again with a complexity of O(n2k). Algorithm
6 specifies our arithmetic-to-Boolean conversion in detail.

Algorithm 6. Conversion from Boolean to Arithmetic Masking

Input: (xi) for 1 ≤ i ≤ n

Output: (Ai) for 1 ≤ i ≤ n, with
n∑

i=1

Ai =
n⊕

i=1

xi

1: (Ai)1≤i≤n−1 ← Rand(k)
2: (A′

i)1≤i≤n−1 ← (−Ai)1≤i≤n−1, A′
n ← 0

3: (yi)1≤i≤n ← ConvertA→B
(
(A′

i)1≤i≤n

)
�

n⊕
i=1

yi =
n∑

i=1

A′
i = −

n−1∑
i=1

Ai

4: (zi)1≤i≤n ← SecAdd
(
(xi)1≤i≤n, (yi)1≤i≤n

)
�

n⊕
i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

5: An ← FullXor
(
(zi)1≤i≤n

)
� An =

n⊕
i=1

zi =
n⊕

i=1

xi −
n−1∑
i=1

Ai

6: return (Ai)1≤i≤n. �
n∑

i=1

Ai =
n⊕

i=1

xi

We use the same randomized XOR method as in [5] to compute An ←
n⊕

i=1

zi; we recall this method in Algorithm 7. The randomized XOR method,

in turn, uses Algorithm 8 (which was first proposed by Rivain and Prouff [20])
to refresh the masks.

Algorithm 7. FullXor

Input: y1, . . . , yn
Output: y such that y = y1 ⊕ · · · ⊕ yn
1: for i = 1 to n do (y1, . . . , yn)← RefreshMasks(y1, . . . , yn)
2: return y1 ⊕ · · · ⊕ yn

Algorithm 8. RefreshMasks

Input: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
Output: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
1: for j = 2 to n do
2: tmp← Rand(k)
3: z1 ← z1 ⊕ tmp
4: zj ← zj ⊕ tmp
5: end for
6: return z1, . . . , zn
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The following theorem proves the security of Algorithm 6 in the ISW model;
the proof is provided in Appendix A.

Theorem 8. Let (xi)1≤i≤n be the input shares of Algorithm 6. For any set of t
intermediate variables with 2t < n, there exists a subset I ⊂ [1, n] of indices such
that |I| ≤ 2t, whereby the shares x|I can perfectly simulate those t intermediate
variables as well as the output shares A|I .

6 Implementation Results

We have implemented all the solutions proposed in this paper on a 32-bit AVR
microcontroller for security level t = 2, 3. We then applied all these techniques
to HMAC-SHA-1 and compared the running time with respect to an unmasked
implementation. Table 1 gives the running time of the addition and conversion
algorithms along with the number of calls to the rand function for security level
t = 2, 3. As expected, the addition algorithms using Goubin’s theorem (i.e. the
second variant presented in Section 3.2) outperform the first variant (given in
Section 3.1). Therefore, we applied the second variant to implement the secure
conversion algorithms.

Table 1. Execution times of all algorithms (in thousands of clock cycles) for t = 2, 3
and the number of calls to the rand function

Algorithm Time rand

second-order addition

Algorithm 2 87 1240

Algorithm 3 26 320

second-order conversion

Algorithm 4 54 484

Algorithm 6 81 822

third-order addition

Algorithm 2 156 2604

Algorithm 3 46 672

third-order conversion

Algorithm 4 121 1288

Algorithm 6 162 1997

HMAC-SHA-1. The hash function SHA-1 operates on blocks of 512 bits and
produces a 160-bit message digest. Each message block is divided into 16 words
of 32-bits each, which are extended to produce 64 further words (i.e. the total
number of words is 80). The main loop contains 80 iterations corresponding to
each of these 80 words. In order to protect HMAC-SHA-1 against side-channel
attacks, we follow two different approaches, which are summarized below.
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In the first approach, we use Boolean masking and perform secure addition
on Boolean shares directly whenever required. Every iteration of the main loop
requires four 32-bit additions, which amounts in a total of 320 additions for 80
iterations. Moreover, five additions have to be performed at the end to update
the state. So, in total, 325 secure additions need to be carried out per message
block.

In the other approach, we use Boolean masking and convert it to arithmetic
masking wherever necessary. In this case, we need four Boolean to arithmetic
conversions and one arithmetic to Boolean conversion per iteration, yielding a
total of 400 conversions for 80 iterations. Additionally, we need 10 conversions
to update the result, i.e. a total of 410 conversions per block are required. The
execution times of both approaches are summarized in Table 2.

Table 2. Execution times of second and third-order secure masking (in thousands
of clock cycles) and performance penalty compared to an unmasked implementation
of HMAC-SHA-1

Algorithm Time Penalty

HMAC-SHA-1 104 1

second-order addition

Algorithm 2 57172 549

Algorithm 3 17847 171

second-order conversion

Algorithm 4, 6 62669 602

third-order addition

Algorithm 2 106292 987

Algorithm 3 31195 299

third-order conversion

Algorithm 4, 6 127348 1224

7 Conclusions

In this paper, we addressed the problem of secure conversion between Boolean
and arithmetic masking for any order. By applying the ISW framework and
Goubin’s results for first-order conversion, we developed two algorithms of the
same asymptotic complexity to securely add Boolean shares. We then described
novel conversion algorithms between Boolean and arithmetic masking that are
provably secure at any order. Practical experiments based on HMAC-SHA-1
as case study show that, in the case of second and third-order security, using
Boolean masking and performing secure addition on Boolean shares directly is
more efficient than converting between Boolean and arithmetic masking. Even
though the proposed algorithms entail a massive performance penalty, they can
still be practically useful for applications like challenge-response authentication
where only a single block of data needs to be encrypted.
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References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

2. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

4. Contini, S., Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: Improved analysis of some
simplified variants of RC6. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636,
pp. 1–15. Springer, Heidelberg (1999)

5. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014)

6. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

7. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
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A Proof of Theorem 8

We recall the following Lemma from [5] (with |I| ≤ t instead of |I| ≤ 2t) and its
proof.

Lemma 2. Let (yi)1≤i≤n be the input shares of the FullXor algorithm. For any
set of t intermediate variables, there exists a subset I ⊂ [1, n] of indices such
that |I| ≤ t and the distribution of those t variables can be perfectly simulated
from y|I and y = y1 ⊕ · · · ⊕ yn.
Proof of Lemma 2. We first consider the series of n RefreshMasks. If any variable
yj is probed inside any of the RefreshMasks, we add j to I.

Moreover since t < n, there must be at least one RefreshMasks that is not
probed at all; let i∗ be the index of this RefreshMasks. Since we know y =
y1 ⊕ · · · ⊕ yn, we can perfectly simulate all the shares (yi)1≤i≤n after this i∗-th
RefreshMasks. Therefore we can perfectly simulate all yi’s until the last Refresh-
Masks, and all intermediate variables for computing y = y1 ⊕ · · · ⊕ yn.

In summary before the i∗ RefreshMasks, with the knowledge of the input shares
y|I , we can perfectly simulate all intermediate variables yj for j ∈ I, and after
the i∗ RefreshMasks we can perfectly simulate all intermediate variables. Finally
the tmp variables are simulated as in the real circuit. This proves Lemma 2.

From Lemma 2, the set of t1 probes in the FullXor circuit computing An =⊕n
i=1 zi can be simulated from An and at most t1 inputs zi. From the previous

lemmas, those t1 inputs zi and the t2 probes in the remaining circuit can be
perfectly simulated using x|I , for I ⊂ [1, n], where |I| ≤ t1 + 2t2. If t1 > 0 we
add n to I; we still have |I| ≤ 2t where t = t1 + t2.

It remains to show how we can simulate An, as this is required for the simu-
lation in Lemma 2 if t1 > 0, or if t1 = 0 and n ∈ I, since we must simulate all
outputs A|I . We select an arbitrary i0 /∈ I such that i0 �= n; this is possible since
in both cases we have n ∈ I and |I| ≤ 2t < n. We have:

An =

⎛⎜⎝x− n−1∑
i=1

i�=i0

Ai

⎞⎟⎠−Ai0

Since i0 /∈ I the variable Ai0 does not enter in any computation of the simulation.
Since in the real circuit Ai0 is generated uniformly at random, we can simulate
An by generating a uniform random value. This proves Theorem 8.
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Abstract. RSA–CRT is the most widely used implementation for RSA
signatures. However, deterministic and many probabilistic RSA signa-
tures based on CRT are vulnerable to fault attacks. Nevertheless, Coron
and Mandal (Asiacrypt 2009) show that the randomized PSS padding
protects RSA signatures against random faults. In contrast, Fouque et al.
(CHES 2012) show that PSS padding does not protect against certain
non-random faults that can be injected in widely used implementations
based on the Montgomery modular multiplication.

In this paper, we prove the security of an infective countermeasure
against a large class of non-random faults; the proof extends Coron and
Mandal’s result to a strong model where the adversary can choose the
value of the faulty signatures modulo one of the prime factors of the
RSA modulus. This fault model is clearly strictly more general than
Coron and Mandal’s, and it captures most of the non-random faults of
Fouque et al. Such non-random faults induce, together with the infec-
tive countermeasure, more complex probability distributions than in the
original proof; we analyze them using careful estimates of character sums
over finite fields. The security proof is formally verified using appropri-
ate extensions of EasyCrypt, and provides the first application of formal
verification to provable (i.e. reductionist) security in the context of fault
attacks.

Keywords: Fault Attacks, PSS, RSA–CRT, Infective countermeasure,
Formal Verification, EasyCrypt.

1 Introduction

Signature schemes are among the most widely used constructions in cryptog-
raphy. Although there is much interest in signature schemes based on elliptic
curves, RSA signatures are still widely used. Moreover, many implementations
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of RSA, including OpenSSL and implementations for embedded devices such as
smartcards, use the well-known Chinese Remainder Theorem (CRT) technique
for computing modular exponentiations more efficiently: exponentiations using
the CRT can be expected to be 4 times faster than those using full-size ex-
ponents. However, when unprotected, RSA–CRT is vulnerable to the so-called
Bellcore attack, first introduced by Boneh, DeMillo and Lipton [7], and later
refined [3,29,9]. An adversary who knows the padded message and can inject a
fault in one of the half exponentiations can efficiently factor the public modulus
using a single faulty signature and a GCD computation.

Many countermeasures have been proposed to mitigate this vulnerability, in-
cluding extra computations and sanity checks of intermediate and final results
(see [25]). The simplest such protection is to verify the signature before releas-
ing it. This is reasonably cheap since the public exponent e is usually small.
Another approach is to use an extended modulus, as in Shamir’s trick [26] and
its later refinements which also protect CRT recombination using Garner’s for-
mula [6,12,28,13]. Finally, redundant exponentiation algorithms [19,25] such as
the Montgomery Ladder can be used. Regardless of the approach, RSA–CRT
fault countermeasures tend to be rather costly: for example, Rivain’s counter-
measure [25,20] has a stated overhead of 10% compared to an unprotected im-
plementation, and is purportedly more efficient than previous works [19,28,20].

Boneh et al.’s original fault attack does not apply to RSA signatures with
probabilistic encoding functions, but some extensions of it were proposed to at-
tack randomized ad-hoc padding schemes such as ISO 9796-2 and EMV [14,17].
At Asiacrypt 2009, Coron and Mandal [15] paved the way of provable security
against side-channel attack in a practical setting by proving that RSA–PSS is
secure against random faults in the random oracle model. Injecting a fault on
the half-exponentiation modulo the second factor q of N produces a result that
can be modeled as uniformly distributed modulo q, and the result of such a
fault cannot be used to break RSA–PSS signatures. It is tempting to conclude
that using RSA–PSS should enable signers to dispense with costly RSA–CRT
countermeasures. However, Fouque et al. [18] show that it is possible to break
RSA–PSS using certain non-random faults if the result is not checked. Indeed,
they obtain a key recovery attack with a few faulty signatures on CRT imple-
mentations of RSA–PSS that use the state-of-the-art modular multiplication
algorithm of Montgomery [22]. Thus, even with PSS, it remains important to
check the signature before releasing it.

Infective Countermeasures. Checking results before release is a simple and
practical security measure, but it is not sufficient by itself, since simple tests
can be easily bypassed by flipping the outcome of a comparison [2,27]. Infective
countermeasures are an alternate approach in which results are released all the
time, but become gibberish when faulty computations occur: a fault (usually not
controlled by the adversary) results in a random value, which consequently makes
the faulty signature random. From a security point of view, since faults may not
be random, we may not be able to prove that the faulty output is fully random.
However, one may ask that the output be independent of secret information even
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in the presence of non-random faults. Infective countermeasures have been used
before by Canetti and Goldwasser [10] to deal with fault-injecting adversaries
when decrypting ciphertexts in a distributed manner. One such countermeasure
for RSA–CRT was proposed by Boscher, Handschuh and Trichina [8]. In their
technique, the signer computes the signature S and recomputes y′ = Se mod N
to check the signature against the padded message y, before returning S + y′p −
(y mod p)+y′q−(y mod q) if y′ = y, and an error otherwise. Even if the adversary
bypasses the verification y′ = y, the output signature mixes the fault and correct
signature in a non-trivial way. Still, this countermeasure was later attacked by
Trichina and Korkikyan [27] for deterministic padding schemes. We tackle the
problem of masking faulty signatures so as to prevent the exploitation of faults
and protect validity checks.

Our Contributions. In this paper we generalize the fault model from [16] and
consider a very powerful adversary able to inject non-random faults. More pre-
cisely, we let the adversary set the value modulo q of the computed signatures
to an arbitrary value of his choice. Clearly, since he could choose that value ran-
domly, the model is strictly more powerful than the one considered by Coron and
Mandal. In addition, it captures many other types of faults, such as the “null
faults” and “constant faults” introduced by Fouque et al. [18]. If such a signa-
tures is directly returned to the adversary, he can clearly factor the modulus, but
we consider a simple countermeasure to avoid that problem. The countermea-
sure, described in Fig. 1, uses infective techniques, mixing additional randomness
into faulty signatures in a provably secure way. In practice, we show that our
random infection masks faulty signatures enough for us to prove the security
of RSA–PSS under the RSA assumption in the random oracle model if enough
additional randomness is provided. Concretely, we sample a random value r′

and add r′ · (y − y′) to the signature mod N , where y is the original padded
message and y′ is the padded message recovered from the signature. When the
signature is computed correctly, (y − y′) is zero and the correct signature is
returned. If the signature is faulty, we show that the masked output is statis-
tically close to uniform and hence leaks no secret information. We prove such
results in two key lemmas corresponding to [15, Lemmas 1, 2]. Since our faults
are non-random, the probability distributions are more complex; we use careful
estimates of exponential sums attached to corresponding rational functions to
establish their regularity. We only analyze this countermeasure when the validity
check is performed in the standard way (by computing the public permutation),
but our random infection might also be used to protect other checks such as
Rivain’s [25,20]. A discussion of the faults we model can be found in Section 2.

The second contribution of the paper is a formal proof of security of the coun-
termeasure using EasyCrypt1, a computer-aided framework that has previously
been used to reason about the security of cryptographic constructions—but was
never applied to fault attacks and countermeasures. Our proof is the first appli-
cation of formal verification to provable security against fault attacks, as other
works [11,23,24] applying formal verification to fault attacks are focused on prov-

1 https://www.easycrypt.info

https://www.easycrypt.info
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Figure 1. Protected signing algorithm

1: function Sign(sk, pk,m) � sk = (dp , dq , αp , αq ,N ), pk = (e,N )
2: r ← {0, 1}k0 � Start of PSS padding
3: ω ← H (m, r)
4: st ← G(ω)⊕ (r || 0kg−k0)
5: y ← os2ip(0 ||ω || st)
6: σp ← ydp mod p � Signature computation
7: σq ← ydq mod q
8: σ ← (αp · σp + αq · σq) mod N � αp = q · (q−1 mod p) and similarly for αq

9: y′ ← σe mod N
10: r′ ← {0, 1}ρ\{0} � Infective countermeasure
11: σ′ ← σ + r′ · (y − y′) mod N
12: return i2osp(σ′)

ing the correctness of the countermeasures (that is, that the protected program
either returns the same result as the original program, or fails), but do not
provide any provable security guarantees. Apart from increasing our confidence
in the effectiveness of the countermeasure, our formal proof reveals a glitch in
the proof of Coron and Mandal [15], and also paves the way for formally veri-
fying the effectiveness of the countermeasures on standard implementations of
PKCS probabilistic signing, in the same way that [1] uses an older prototype of
EasyCrypt [5] to prove security of an implementation of PKCS encryption.

Related work. Christofi et al. [11] use a combination of program transformation
and verification techniques for proving Vigilant’s countermeasure for CRT-RSA.
They take a source program p and output a program p̂ that contains all possible
faulty behaviors of p. Then, they show that the program p̂ either returns a value
that matches the value returned by p on the same input, or else returns an error,
they conclude that the program is correct for all faults. While it is a natural
guarantee to seek, their theorem does not constitute a proof of security in the
sense of provable security, but rather a heuristic to validate a countermeasure
implementation.

Rauzy and Guilley [24] develop symbolic methods to analyze fault attacks
against RSA–CRT implementations. They model arithmetic computations as al-
gebraic expressions, and define a simplification procedure for expressions. Given
an expression e (representing the algorithm to be attacked), their tool tests for
all possible faulty variants ê of e if the expression gcd(N, e − ê) simplifies to
a prime factor of the RSA modulus. If some expression ê is found, then the
algorithm is considered insecure. Their tool is useful to find fault attacks on
an algorithm, but only provides guarantees of security against a restricted class
of attackers. Moreover, it is specialized to deterministic signature schemes and
cannot deal with randomized paddings like PSS.

Moro et al. [23] focus on the specific class of instruction skip attacks, in which
an adversary forces to skip the execution of a targeted instruction. To protect
against skip attacks, they transform a program p into a fault-tolerant program
p̂, by providing for each instruction a possible replacement for execution in the
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presence of instruction skip faults. Using a model checker, they establish the
equivalence between executing the instruction without faults and executing the
replacement sequence of instructions with instruction skip faults. Their approach
is general, and significantly improves resistance against instruction skip attacks.
However, it is not suitable for obtaining the strong guarantees required by prov-
able security.

2 Our Results

Instead of considering the many possible faults an adversary could inject in Fig. 1,
we give the adversary access to two distinct oracles (Fig. 2) that compute valid
signatures (oracle S) and generalize faulty signatures (oracle F ), as justified in
Section 2. As discussed, our fault model is independent of the algorithm used to
compute modular exponentiation. We therefore use simpler definitions for public
and secret key, where a public key pk is composed of a public exponent e and
a modulus N , and a secret key sk is composed of a private exponent d and a
modulus N .

Throughout the security proof, we consider a fixed k that serves as the size
of the modulus and signatures. In particular, we assume that the modulus is
balanced, that is N = p·q is such that 2k−1 ≤ N < 2k and 2k/2−1 ≤ p < q < 2k/2.
PSS padding is computed using two hash functions H , outputting bitstrings of
length kh, and G, producing bitstrings of length kg, where kh + kg + 1 = k. In
addition, the padding scheme uses a random salt of length k0 < kg. For simplicity,

we model H as a function from {0, 1}∗×{0, 1}k0 to {0, 1}kh , and G as a function

from {0, 1}kh to {0, 1}kg . This is done without loss of generality. In algorithm

Figure 2. Oracles in our fault model

1: oracle S(m)
2: r ← {0, 1}k0

3: ω ← H (m, r)
4: st ← G(ω)⊕ (r || 0kg−k0)
5: y ← os2ip(0 ||ω || st)
6: σ ← yd mod N
7: return i2osp(σ)

1: oracle V (m, σ)
2: r ← ⊥
3: s ← os2ip(σ)
4: if 0 < s < N then
5: y ← se mod N
6: b ||ω || st ← i2osp(y)
7: r || γ ← st⊕ G(ω)
8: ω′ ← H (m,r)
9: r = b = 0∧ω = ω′∧γ = 0kg−k0

10: return r

1: oracle F (m,a)
2: r ← {0, 1}k0

3: ω ← H (m, r)
4: st ← G(ω)⊕ (r || 0kg−k0)
5: y ← os2ip(0 ||ω || st)
6: σ ← yd mod N
7: r′ ← {0, 1}ρ\{0}
8: σ′ ← yd ·αp +(a+ r ′ · (y−ae)) ·αq

9: return i2osp(σ′)
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and game descriptions, we denote with i2osp and os2ip the conversions between
integers and their binary representations. For simplicity, i2osp always produces
a bitstring of length k.

Under the Generalized Riemann Hypothesis, we reduce the UF -CMA security
of the faulty signature scheme presented in Fig. 2, where the adversary is given
access to the faulty signature oracle along with the valid signature oracle and
the random oracles H and G, to the one-way security of RSA. We consider a
forgery valid even if it was produced by the faulty signature oracle. In the rest of
this paper, we use S to denote the valid signature oracle, F to denote the faulty
signature oracle, K to denote the RSA key generation algorithm, and V for the
PSS verification algorithm. Subscripts identify the game in which a particular
oracle appears. We denote with Q X the set of query-response pairs for queries
made to oracle X so far.

Figure 3. Initial and Final Games

1: game UF -CMA
2: (e, d ,N ) ← K ()
3: (m, s) ← AS,F ,H ,G(e,N )
4: b ← V (m, s)
5: win ← b ∧ (m, s) /∈ Q S

6: return win

1: game OW -RSA
2: (e, d ,N ) ← K ()
3: x∗ ← [0..N )
4: y∗ ← x∗e mod N
5: x ← I(e,N , y∗)
6: return x = x∗

Theorem 1 (UF -CMA security of protected PSS in the presence of
faults). Assume that the Generalized Riemann Hypothesis holds. For all δ > 0,
there exists a constant κδ > 0 depending only on δ such that given a CMA ad-
versary A against the faulty signature scheme (K , S ,F ,V ) that makes at most
qH queries to H , qG queries to G, qS queries to S and qF queries to F , we build
a one-way inverter I such that

Pr[UF -CMA : win ] ≤ Pr[OW -RSA : x = x ∗] + ε0

with

ε0 =
(qH + qS + qF ) · (qH + qG + qS + qF ) + qG · qF · 3 + 1

2kh
+

(qS + qF ) · (2 · qH + qS + qF ) + qH + qS

2k0
+

1

2
k
2−1

+ qF · 2κδ · 2
kδ−ρ

2

Remark 1. The constant κδ is as in Lemma 1. As observed in Remark 2, for
large enough N , it suffices to take ρ slightly larger than a given m to bound the
final term by 2−m. In addition, as mentioned in Remark 3, we assume that ρ is
chosen slightly larger than kh so that the assumptions of Lemma 3 are satisfied.
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Fault Model Justification. In this section, we justify our fault model, de-
scribed by oracle F (m, a) in Fig. 2. Our faulty signature oracle computes the
correct padded message y, samples r′ and returns σ′ = yd ·αp+(a+r′(y−ae))·αq

with a ∈ Z/qZ chosen by the adversary.
We allow multiple faults to be injected, but only during the RSA–CRT com-

putation (lines 6-7 of the protected signing Fig. 1). More precisely, we con-
sider a scenario where the computation modulo p is correct whereas those mod-
ulo q is faulted to result in a constant a chosen by the adversary, i.e. σf =
(yd mod p, a) ∈ Z/pZ× Z. Then, using our countermeasure we obtain:

σ′ = σf + r′(y − σef )
= ydαp + αqa+ r

′(y − (ydαp + αqa)
e)

= ydαp + (a+ r′(y − ae))αq.

Our fault model leverages the results of Coron and Mandal in [15] who treated
the case of random faults against PSS scheme, and those of Fouque et al. [18]
who proposed various faults: “null faults” (forcing a small register to 0), “con-
stant faults” (forcing a small register to a constant) and “zero high-order bits
faults” (forcing part of a small register to 0). When applied during the RSA–
CRT computations using Montgomery multiplication, Fouque et al. showed that
both “null faults” and “constant faults” result in a chosen, fixed value for the
the signature modulo q, and those highly non-random faults are thus captured
by our model together with the random faults of Coron and Mandal.

3 Statistical Lemmas

We need several results on the regularity of the probability distributions related
to the infective countermeasure. Recall that the statistical distance between a
random variable X on a finite set S and the uniform distribution is defined as:

Δ1(X) =
1

2
·
∑
s∈S

∣∣∣Pr[X = s]− 1

|S|
∣∣∣.

We say that X is δ-statistically close to uniform when Δ1(X) ≤ δ.
Our proofs rely on character sums over Z/qZ. We refer to [21] or the full

version of this paper [4] for basic properties of Dirichlet characters and character
sums. The main statistical result can be stated as follows.

Lemma 1. Consider integer intervals X = [1, X ], W = [w0, w0 + W ) whose
lengths X,W satisfy X,W < q, and for all t ∈ Z/qZ, denote by T (X ,W ; t) =
XW
q ·

(
1+V (X ,W ; t)

)
the number of solutions (x,w) ∈ X ×W of the congruence

xw ≡ t (mod q). Assuming that the Generalized Riemann Hypothesis holds, then
for all δ > 0, there exists a constant κδ > 0 depending only on δ (and not
q,X ,W) such that: ∑

t∈Z/qZ

∣∣V (X ,W ; t)
∣∣ ≤ κδq3/2+δ

√
XW

.
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In particular, the distribution of the products xw mod q is statistically close to
uniform in Z/qZ whenever XW & q1+3δ.

Proof. Note first that all elements of X are invertible modulo q, whereas at most
one element of W is divisible by q. Denote by W ∗ the number of elements of
W which are invertible modulo q, which is thus equal to W or W − 1. We then
have:

T (X ,W ; 0) = X · (W −W ∗) ≤ X and hence
∣∣V (X ,W ; 0)

∣∣ ≤ q

W
.

On the other hand, for t �= 0, we can express T (X ,W ; t) as a sum over the
multiplicative characters modulo q. Indeed, the orthogonality of characters en-
sures that, for all x,w, we have

∑
χ χ(xw)χ(t) = q − 1 if xw ≡ t (mod q) and 0

otherwise. Hence:

T (X ,W ; t) =
1

q − 1

∑
χ

∑
(x,w)∈X×W

χ(xw)χ(t)

=
XW ∗

q − 1
+

1

q − 1

∑
χ�=χ0

∑
(x,w)∈X×W

χ(xw)χ(t),

by putting aside the contribution of the trivial character χ0. Write that equality
as T (X ,W ; t) = XW∗

q−1 ·
(
1 + V ∗(t)

)
. We then have:

V ∗(t) =
1

XW ∗
∑
χ�=χ0

∑
(x,w)∈X×W

χ(xw)χ(t),

and we can express the sum of the squared deviations
∣∣V ∗(t)

∣∣2 as:∑
t�=0

∣∣V ∗(t)
∣∣2 =

1

(XW ∗)2
∑

χ,χ′ �=χ0

∑
x,w,x′,w′

χ(xw)χ′(x′w′)
∑
t�=0

(χχ′)(t).

The sum over t on the right-hand side is equal to q − 1 if χ = χ′ and vanishes
otherwise, so that:∑

t�=0

∣∣V ∗(t)
∣∣2 =

q − 1

(XW ∗)2
∑
χ�=χ0

∑
x,w,x′,w′

χ(xw)χ′(xw) =
q − 1

(XW ∗)2
∑
χ�=χ0

∣∣S(χ)∣∣2,
where S(χ) =

∑
x∈X χ(x)

∑
w∈W χ(w). Now since X is an interval of the form

[1, X ], it is classical that GRH implies, for any δ > 0,
∣∣∑

x∈X χ(x)
∣∣ ≤ cδX1/2qδ

for some constant cδ > 0 (see e.g. [21, Eq. (13.2)]). Hence:∑
t�=0

∣∣V ∗(t)
∣∣2 ≤ q − 1

(XW ∗)2
· c2δXq2δ ·

∑
χ

∑
(w,w′)∈W2

χ(w)χ(w′) ≤ c
2
δq

2δ(q − 1)2

XW ∗

by using orthogonality again. Then, the Cauchy–Schwarz inequlity yields:∑
t�=0

∣∣V ∗(t)
∣∣ ≤√

c2δq
2+2δ

XW ∗ ·
√
q − 1 ≤ cδq

δ(q − 1)3/2√
XW

.
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Finally, observe that for t �= 0, we have:

V (X ,W ; t) =
q

XW
T (X ,W ; t)− 1 =

q

XW
· XW

∗

q − 1
· (1 + V ∗(t)

)− 1

=
qW ∗

(q − 1)W
V ∗(t)− W − q(W −W

∗)
(q − 1)W

.

On the last line, the first term is bounded in absolute value by q
q−1

∣∣V ∗(t)
∣∣, and

the second term by q
q−1W . As a result, we get:

∑
t∈Z/qZ

∣∣V (X ,W ; t)
∣∣ ≤ q

q − 1

∑
t�=0

∣∣V ∗(t)
∣∣ + q

W
+
∣∣V (0)∣∣ ≤ cδq3/2+δ

√
XW

+
2q

W

which yields the stated result for κδ = cδ +2, say (as a coarse upper bound). ��
We now discuss our key statistical lemmas. The first one ensures that the

faulty signature σ′ = yd · αp +
(
a + r′(y − ae)) · αq is indistinguishable from a

uniform random element in Z/NZ if the nonce r′ is large enough. We write x
instead of r′ in the rest of this section.

Lemma 2. Let N = pq be a k-bit balanced RSA modulus and e the public ex-
ponent, 0 ≤ y < 2k−1 a random integer and x a random nonzero ρ-bit integer.
Fix an arbitrary integer a. Assuming that the Generalized Riemann Hypothesis
holds, the statistical distance between the distribution of σ′ = yd ·αp+

(
a+x(y−

ae)
) · αq mod N and the uniform distribution modulo N is bounded as:

Δ1(σ
′) ≤ κδqδ

√
N

XY
≤ 2κδ · 2(δk−ρ)/2

for any δ > 0, with κδ as in Lemma 1.

Proof. The statistical distance between the distribution of σ′ and the uniform
distribution can be written as:

Δ1(σ
′) =

1

2

∑
(s,t)∈Z/pZ×Z/qZ

∣∣∣∣∣ Pr
(x,y)∈X×Y

[
σ′ ≡ s (mod p)

σ′ ≡ t (mod q)

]
− 1

N

∣∣∣∣∣
where X and Y are the integer intervals [1, X ] and [0, Y ) with X = 2ρ − 1 and
Y = 2k−1 respectively. Let us estimate the probability

P (s, t) = Pr
(x,y)∈X×Y

[
σ′ ≡ s (mod p)

σ′ ≡ t (mod q)

]

appearing in that equation for some fixed (s, t) ∈ Z/pZ× Z/qZ.
We have σ′ ≡ s (mod p) if and only if yd ≡ s mod p, i.e. y ≡ se mod p.

Hence, the solutions of the first congruence are of the form y = (se mod p)+ pw

for w in the integer interval [0,Ws), Ws = !Y−(se mod p)
p ". Then, the second
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equation, which is equivalent to a + x(y − ae) ≡ t (mod q), becomes x(pw +
(se mod p)−ae) ≡ t−a (mod q). This can be written in the form x(w+w0) = t0
(mod q), with w0 = (se mod p)−ae

p mod q and t0 = t−a
p mod q. The number of

solutions (x,w) is thus T (X ,Ws; t0), with Ws = [w0, w0 +Ws). Hence:

P (s, t) =
1

XY
T
(X ,Ws; t0

)
=
Ws

qY
+
Ws

qY
V
(X ,Ws; t0

)
.

Note that Ws depends only on s (not on t), and that t 	→ t0 is a permutation of
Z/qZ. Thus, for fixed s, we can sum the previous equation over t ∈ Z/qZ, which
gives:

∑
t∈Z/qZ

∣∣∣∣P (s, t)− 1

N

∣∣∣∣ ≤ q · ∣∣∣Ws

qY
− 1

N

∣∣∣+ Ws

qY

∑
t∈Z/qZ

∣∣V (X ,Ws; t
)∣∣.

Now Y/p − 1 ≤ Ws ≤ Y/p + 1, so that the first term on the right-hand side is
bounded by 1/Y . Thus, Lemma 1 yields:

∑
t∈Z/qZ

∣∣∣∣P (s, t)− 1

N

∣∣∣∣ ≤ 1

Y
+
Ws

qY
· κδq

3/2+δ

√
XWs

=
κδq

1/2+δ√
XY · p/2

using the coarse upper bound Ws/Y ≤ 2/p. Summing further over s, we finally
obtain: ∑

s,t

∣∣∣∣P (s, t)− 1

N

∣∣∣∣ ≤ p

Y
+ κδq

δ

√
2N

XY

and hence the desired result, since p ≤ √N and Y > X . ��

Remark 2. Concretely, this result means that, for large enough N , it suffices to
take ρ slightly larger than m to obtain a statistical distance of 2−m.

If we do not want to rely on the Riemann Hypothesis, we can obtain an
unconditional bound by replacing the use of GRH in Lemma 1 by the Pólya–
Vinogradov inequality (or the Burgess bound). However, statistical indistin-
guishability from uniform then requires somewhat larger values of ρ: at least
k/4 + m + o(1) with Pólya–Vinogradov or k/8 + m + o(1) with the Burgess
bound.

The security proof requires another statistical lemma which ensures that the
adversary has a negligible probability of querying the correct value ω ← H (M, r)
given a faulty signature. The proof, which uses Lemma 1 in a very similar way
as the proof of Lemma 2 (simply replacing the interval Y by a subinterval Yω),
is given in the full version of this paper [4].

Lemma 3. Let N, e, a, δ, κδ be as in Lemma 2. Assume that ρ ≥ kh + δk +
log2(4κδ). For any choice of σ′ ∈ Z/NZ and any kh-bit value ω

′, the probability
that a solution (x, y) ∈ [1, 2ρ)× [0, 2k−1) of the equation σ′ ≡ yd ·αp+

(
a+x(y−
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ae)
) · αq (mod N) satisfies that the most significant kh bits ω ∈ [0, 2kh) of y

coincides with ω′ is bounded as:

Pr
[
ω = ω′|σ′] ≤ 3

2kh
.

Remark 3. Concretely, this result means that we must choose ρ larger than kh.

4 Security Proof

The sequence of games presented in this Section and formal justifications for
all transitions between games are formalized in EasyCrypt. However, Lemmas 2
and 3 are stated as axioms of the formalization. Formally proving these lemmas
is outside the scope of this work, as it would first require to formalize at least
those properties of additive characters used in our proof.

The hash functions G and H are modelled as random oracles. For clarity, we
display the initial definition of H on the left in Fig. 4. The initial definition
of G is similar. We assume two global maps h and g are used to build the
random oracles. Our proof works mostly by transforming the random oracle H .
We therefore display the code for H for each transition, only displaying other
oracles when they suffer non-trivial changes.

Game 0. We initially transform both random oracles to keep track of the first
caller to make a particular query. It can be either the adversary (Adv), the
signature oracle (Sig), or the faulty signature oracle (FSig). Calls made by the
experiment when checking the validity of the forgery do not need to tag their
query as they are the last queries made to the random oracles and do not need
to update its state. We also extend the internal state of H with an additional
field for use later in the proof, and currently set to a default value ⊥.

Figure 4. Initial transition: extending state

1: oracle H (m, r)
2: if (m, r) /∈ dom(h) then
3: h[m, r ] ← {0, 1}kh

4: return h[m, r]

1: oracle H0(m, r)
2: if (m,r) /∈ dom(h) then
3: ω ← {0, 1}kh

4: h[m, r ] ← (ω, c,⊥)

5: return π1(h[m, r])

Pr[UF -CMAA,K ,S,F ,V : win] = Pr[Game0 : win]

Games 1 and 2. In Game 1, we anticipate a call to G on the output of H every
time H is called. When H is called by either one of the signing oracles, we
return the result of that call to G as well as the result of the current H query,
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Figure 5. Games 1 and 2: anticipating calls to G and removing signing collisions

1: oracle H1(c,m, r)
2: if (m, r) /∈ dom(h) then
3: ω ← {0, 1}kh

4: h[m, r ] ← (ω, c,⊥)
5: st ← G(c, ω)
6: else
7: ω ← π1(h[m, r ])
8: if c = Adv then
9: st ← ⊥
10: else
11: st ← G(c, ω)

12: return (ω, st)

1: oracle H2(c,m, r)

2: if
(m, r) /∈ dom(h) ∨ c = FSig ∨
(c = Sig ∧ π2(h[m, r ]) = FSig)

then
3: ω ← {0, 1}kh

4: st ← {0, 1}kg

5: if c �= FSig ∨ (m, r) /∈ dom(h)
then

6: h[m, r ] ← (ω, c,⊥)

7: if c �= FSig ∨ ω /∈ dom(g) then
8: g [ω] ← (st⊕ (r || 0kg−k0), c)

9: else
10: ω ← π1(h[m, r ])
11: if c = Adv then
12: st ← ⊥
13: else
14: (ω, st) ← ⊥
15: return (ω, st)

Pr[Game0 : win] ≤ Pr[Game2 : win] + (qH + qS + qF ) ·
(
qS + qF

2k0
+

qG + qH + qS + qF

2kh

)

allowing broad simplifications to the signing oracles. In Game 2, we deal with
collisions on r and ω values in the signing oracles. In later steps of the proof,
we will need the control-flow of the faulty signature oracle to be completely
independent from both r and ω, and we modify the oracle to allow these later
transformations. Fresh queries are treated normally. Non-fresh queries made by
the signing oracles are resampled as fresh if the previous query had been made by
the faulty signature oracle. Non-fresh queries made by the faulty signature oracle
are resampled, but not stored into the state. Game 1 is perfectly indistinguishable
from Game 0, and Game 2 can be distinguished from Game 1 if either i. (lines 2,
5 and 6) the fresh r used in H -queries made by the signing oracles collides with
a previously used r (with probability at most (qS + qF ) · (qH + qS + qF ) · 2−k0);
ii. (lines 4, 7 and 8) or the fresh ω used in G-queries made by the signing oracles
collides with a previously used ω (with probability at most (qH + qS + qF ) · (qG +
qH +qS +qF )·2−kh). Note that the value stored in g[ω] at line 8 in H2 is uniformly
distributed since st is.

Game 3. Given that H now samples both bitstrings that compose the final
padded message, we compute the entire signature in H when called by either
one of the signing oracles. We transform the experiment to sample an integer x ∗

and compute y∗ = x ∗e mod N to serve as one-way challenge. We embed it in
the state when replying to H queries made by the adversary. Everything up to
this point has been set up so that the signing oracles can simply use π3(h[m, r ])
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as the padded message for m with salt r . Game 3 includes this simplification.
We introduce additional notation for clarity in the rest of the proof. Consider
the function:

f(e,N ),y∗,c : σ 	→
⎧⎨⎩y∗ · σe mod N if c = Adv

σe mod N otherwise

For a set X ⊆ Z/NZ, we denote by pim(e,N ),y∗,c(X) the uniform distribution on

the set S =
{
σ ∈ Z/NZ | f(e,N ),y∗,c(σ) ∈ X

}
.

Game 3 is indistinguishable from Game 2 exactly when x ∗ is invertible. There-
fore, the probability that the adversary distinguishes the two games is exactly
p+q−1
p·q . We have p+ q − 1 ≤ 2

k
2+1 and 2k−1 ≤ p · q and we can therefore bound

the probability of this simulation failing by 2−
k
2+2. Since the invertibility of x ∗ is

important in some later steps, we in fact let H compute a response only when x ∗

is invertible. In the inverter, since x ∗ is not public, we instead check the invert-
ibility of y∗, which is equivalent. For simplicity, we omit discussions regarding
this detail in the rest of this section.

Figure 6. Games 3 and 4: Embedding one-way challenge and oracle queries in
F

1: oracle H3(c,m, r)

2: if
(m,r) /∈ dom(h) ∨ c = FSig ∨
(c = Sig ∧ π2(h[m, r ]) = FSig)

then
3: σ ← pim(e,N),y∗,c

([
0..2k−1

))
4: y ← f(e,N),y∗,c(σ)
5: b ||ω || st ← i2osp(y)
6: if c �= FSig ∨ (m, r) /∈ dom(h)

then
7: h[m, r ] ← (ω, c, σ)

8: if c �= FSig ∨ ω /∈ dom(g) then
9: g [ω] ← (st⊕ (r || 0kg−k0), c)

10: else
11: ω ← π1(h[m, r ])
12: if c = Adv then
13: st ← ⊥
14: else
15: (ω, st) ← ⊥
16: return (ω, st)

1: oracle H4(c,m, r)
2: if (m, r) /∈ dom(h)∨c = FSig then
3: σ ← pim(e,N),y∗,c

([
0..2k−1

))
4: y ← f(e,N),y∗,c(σ)
5: b ||ω || st ← i2osp(y)
6: if c �= FSig then
7: h[m, r ] ← (ω, c, σ)
8: g [ω] ← (st⊕ (r || 0kg−k0), c)

9: else
10: ω ← π1(h[m, r ])
11: if c = Adv then
12: st ← ⊥
13: else
14: (ω, st) ← ⊥
15: return (ω, st)

Pr[Game2 : win] ≤ Pr[Game3 : win] + 2−
k
2
+2

Pr[Game3 : win] ≤ Pr[Game4 : win]

+ qH ·qS
2k0

+
qG ·qF ·3
2kh
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Game 4. In this game, we stop keeping track of the random oracle queries made
by the faulty signature oracle. This is an important step towards being able
to apply Lemma 2, which only discusses the statistical distance between two
distributions on σ′, rather than (ω, σ′). Note that, in Coron and Mandal’s proof,
Lemma 2 is applied before this transition, in a context in which its premises
are not fulfilled. By removing data about random oracle queries, we introduce
observable changes in the game’s behaviour whenever the adversary queries H
with an r that was used previously in a faulty signature query, or whenever the
adversary queries G with an ω that was used previously in a faulty signature
query. We bound the probability of the adversary guessing an ω value using
Lemma 3. Since the view of the adversary does not depend on r values sampled by
the faulty signature oracle (see Fig. 7), the probability of the adversary guessing
an r value used in generating a faulty signature is easily bounded.

Game 5. Our main goal at this stage is to show that faulty signatures are in
fact indistinguishable from uniform randomness and can be simulated without
using the random oracles. Once this is done, we will be able to resume the proof
of security following more standard PSS proofs.

We now use Lemma 2 to completely simulate faulty signature oracle queries.
We focus on the faulty signature oracle, inlining and simplifying H knowing that
c = FSig. On the left, we display the simplified faulty signature oracle from
Game 4 for reference. We make use of elementary properties of the statistical

Figure 7. Game 5: sampling faulty signatures

1: oracle F4(m, ε, a)
2: r ← {0, 1}k0

3: σ ← pim(e,N),y∗,c
([
0..2k−1

))
4: y ← σe mod N
5: r ′ ← {0, 1}ρ \0
6: σ′ ← yd ∗ αp + (a + (y − ae)) ∗ αq

7: return i2osp(σ′)

1: oracle F5 (m, ε, a)
2: r ← {0, 1}k0

3: σ′ ← [0..N )
4: return i2osp(σ′)

Pr[Game4 : win] ≤ Pr[Game5 : win] + qF · 2 · κδ · 2
δk−ρ

2

distance and Lemma 2 to bound the probability of distinguishing Games 5 and 6.
Note that sampling σ in pim(e,N ),y∗,c

([
0..2k−1

))
and applying the public RSA

permutation to obtain y is perfectly equivalent to sampling y in
[
0..2k−1

)
. In

the bound, the δ and κδ are as in Lemma 1.

Game 6. With the faulty signature oracle simplified away, we can now focus
on simulating the signature oracle. From now on, the c argument to H can no
longer be FSig. More generally, it is impossible for any entry in h or g to be
tagged with FSig. The signature oracle we have defined at this point is not a
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valid simulator as it does not run in polynomial time. To ensure that it does, we
replace the sampling operation at line 3 in Fig. 6 (right) with the loop displayed
on the left of Fig. 8 to sample σ. The adversary can distinguish the two games
whenever the loop finishes in a state where y does not start with a 0 bit. At

Figure 8. Game 6 and inverter: sampling σ in polynomial time

1: while (!0 ≤ y < 2k−1) ∧ i < k0 do
2: σ ← [0..N )
3: y ← f(e,N),y∗,c(σ)
4: i ← i + 1

1: oracle I(e,N , y∗)
2: (m, s) ← AH7 ,G7 ,S7 ,F7 (e,N )
3: σ ← os2ip(s)
4: y ← σe mod N
5: b ||ω || st ← i2osp(y)
6: r || γ ← st ⊕ g [ω]
7: (ω′,Adv, u) ← h[m, r ]
8: return σ · u−1

Pr[Game5 : win] ≤ Pr[Game6 : win] + qH +qS

2k0

Pr[Game6 : win] ≤
Pr[OW -RSAI : x = x∗]+ 1

2kh
+ qH

2
k
2
−1

each iteration of the loop, the σ sampled is invalid with probability at most 1
2 .

The probability that all iterations produce an invalid σ is therefore bounded by
1

2k0
, since all samples are independent. H7 may now be queried qH + qS times,

allowing us to conclude.

Reduction All the oracles are simulated without using any secret data. We now
focus on building an inverter. The adversary can win in two disjoint cases:

– either the H -query made by the verification algorithm is fresh (this occurs
with probability at most 2−kh),

– or the H -query made by the verification algorithm was previously made by
the adversary. If the query was made by the signature oracle, the forgery
cannot be fresh and the adversary cannot win.

In the latter case, the one-way challenge can then be recovered by the inverter
shown on the right of Fig. 8. The key observation is that, in case of a successful
forgery, we have y = σe mod N (line 4) and y = y∗ · ue mod N (by invariant
on h). By definition of y∗ and the morphism and injectivity properties of RSA,
we therefore have σ = x ∗ · u. We need to also consider the case where a value
u stored in the h map by the adversary is not invertible, which occurs with
probability at most qH · 2−k/2+1.

The final bound is obtained by transitively using the individual transition
bounds.
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Aurélie Bauer, Eliane Jaulmes, Victor Lomné,
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Abstract. Many applications of embedded devices require the gener-
ation of cryptographic secret parameters during the life cycle of the
product. In such an unsafe context, several papers have shown that key
generation algorithms are vulnerable to side-channel attacks. This is in
particular the case of the generation of the secret prime factors in RSA.
Until now, the threat has been demonstrated against naive implemen-
tations whose operations’ flow depends on secret data, and a simple
countermeasure is to avoid such kind of dependency. In this paper, we
propose a new attack that renders this defence strategy ineffective. It is
in particular able to break secure implementations recommended by the
ANSI X9.31 and FIPS 186-4 standards. We analyse its efficiency for vari-
ous realistic attack contexts and we demonstrate its practicality through
experiments against a smart-card implementation. Possible countermea-
sures are eventually proposed, drawing the following main conclusion:
prime generation algorithms should avoid the use of a prime sieve com-
bined with a deterministic process to generate the prime candidates from
a random seed.

1 Introduction

When signing or decrypting with RSA it is nowadays well-known that the mod-
ular exponentiation must be implemented with care to defeat Side-Channel At-
tacks (SCA). The use of the secret exponent indeed induces some vulnerabilities
and a wide number of studies have been dedicated to this specific operation
[4,7,12,20,23,27]. However this is not the unique vulnerable step of RSA cryp-
tosystem implementations. The prime generation algorithm aiming at finding
two large prime factors p and q to build the RSA modulus can also be threat-
ened by SCA. Until recent years, this computation was solely performed during
the device personalisation (when the device is uniquely associated to a device
holder) and, for this reason, SCA was considered to be out-of-scope. This is no
longer the case: the arrival of new security services (mobile payment, e-ticketing,
OTP generations, and so on) has raised the need for devices able to perform key
generations during their life cycle. The RSA key generation has then left the
safe context of production firms for an hostile environment. This assessment has
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been highlighted in several papers [8,16,28] which show that the key generation
security must be taken into account for today open platforms.

Prime Generation Algorithms. A straightforward method to generate a large
prime number is to start from a random value, to perform a provable primal-
ity test, and in case of an invalid answer, to repeat the process with another
random data until a prime is found. This procedure obviously leads to a valid
solution, but also provides very costly prime generations. In fact, provable prime
generations are considered to be less efficient, in time and memory usage, than
probable prime ones [6]. Indeed, using the latter consists in replacing the costly
primality proof of the selected candidate by a series of relatively efficient proba-
bilistic tests [21]. When correctly parametrised, this probabilistic approach pro-
vides a satisfying confidence level in the primality of the generated value. Still
this technique may remain costly, especially for embedded systems, since almost
all probabilistic primality tests are based on non trivial arithmetic operations
over large integer rings. For this reason, probable prime generation algorithms
are often implemented together with a prime sieve [6,21]. That way, each new
prime candidate is first checked for small factors (up to a fixed bound) by suc-
cessive divisibility tests, and can thus be possibly eliminated without having to
go through the probabilistic primality tests.

Whereas the implementations discussed previously enable to check whether
candidates are prime or not at moderate cost, the overall efficiency of the algo-
rithm can still remain poor if no particular attention is paid to the “generation”
phase. In particular, randomly generating each new candidate until a probable
prime is found turns out to be hardly practical. This is especially true when the
access to the random number generator is expensive, which is usually the case
on embedded devices. A more efficient technique consists in calling the random
generator only once and in using the obtained value as a seed to generate a
succession of prime candidates in a deterministic way. Usually the seed is simply
chosen to be odd and incremented by an even constant iteratively [6,5], but any
other kind of deterministic process can be devised. Early studies on the probable
prime generations implemented with a prime sieve and an incremental genera-
tion of candidates [6,5] exhibit efficient optimisations and show that the entropy
of the generated primes is close to the maximum. Therefore, even though recent
work have proposed interesting alternatives [11] or discussed the relevance of
the entropy evaluation [18], the approach with a prime sieve and deterministic
candidates generation turns out to be nowadays the most common procedure
in constrained environments. It is actually recommended by international stan-
dards like ANSI X9.31 [1] and FIPS 186-4 [17].

Attacking the Sieving Process. In [16], Finke et al. observe that using a deter-
ministic process to generate the sequence of candidates from a random seed,
combined with a naive implementation of the prime sieve, is threatened by a
Simple Power Analysis (SPA for short). Roughly, if a side-channel attacker is
able to identify each divisibility test on a leakage trace and if the sieving process
abort as soon as a small factor is found, then a simple equation system can
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be obtained, whose resolution brings information on the generated prime (see
[16] for more details). The type of weakness identified in [16] can potentially be
found in any algorithm processing a prime sieve whose flow of operations is data
dependent (which is for instance the case of naive implementations of the X9.31
standard [1]). To avoid it, a simple (and usually fairly efficient) countermeasure
hence amounts to balance the conditional branches in the implementation. One
way to do so is to apply the prime sieve entirely even if, at some point, the
algorithm highlights a divisibility (in other words, the prime sieve should not be
stopped once a divider is found). It must be observed that this implementation
choice does not only prevent the state-of-the-art attacks but, as discussed in [6],
also leads to a significant efficiency gain.

Results. This paper focuses on the security of the probable prime generation
algorithms discussed previously (with prime sieve and deterministic candidates
generation). For such algorithms, which, to the best of our knowledge, corre-
spond to the most efficient and up-to-date implementations met on embedded
devices, we exhibit an Advanced Side-Channel Analysis on the sieving process
even when the latter is implemented to defeat the state-of-the-art attacks [16].
Contrary to [28], our attack does not target the probable prime tests but the
prime sieve which was believed to be safe if implemented in a regular way. We
show how useful information can be extracted from the divisibility phase and
how this could finally lead, for practical implementations, to the recovery of more
than half bits of information on the prime number generated. Combined with a
well-known lattice reduction technique due to Coppersmith [14,3], we show that
the attack leads to the recovery of a 1024-bit RSA modulus. Moreover it severely
undermines the security of larger moduli. Additionally to the theoretical analy-
sis, we provide experimental results from the analysis of the side-channel leakage
on a real device. The success of these experimentations highlights the practicality
of our attack and, as a side effect, shows that countermeasures against SPA at-
tacks are not sufficient to ensure security. Our work also shows that the use of
a deterministic process to build a sequence of candidates from a random seed
represents a serious weakness. In view of this, the non-deterministic candidates
generation proposed by Fouque and Tibouchi [18] seems to be a good alternative.
As argued by the authors, it would moreover increase the entropy of the gener-
ated probable primes. Another possibility could be to implement the provable
prime generation algorithm proposed recently in [11].

2 On a Standard Prime Generation Implementation

This section aims at describing the design of a standard RSA prime generation
algorithm, such as recommended by the norms ANSI X9.31 [1, Annexes B and
E] and FIPS 186-4 [17, Annex C]. This description is completed with imple-
mentation details that must be considered when embedding such algorithms on
constrained devices. Implementation choices are also made and strengthened by
efficiency rationales. Eventually, the section ends with an implementation of a
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probable prime generation algorithm which is very close to what can be found
in todays’ industry of embedded devices.

2.1 A Prime Generation Algorithm for Constrained Environments

The purpose of probable prime generation algorithms is to return a number which
satisfies a series of probabilistic tests and is indistinguishable from a random
prime. The latter property is ensured by randomly generating the candidates
on which the probabilistic tests are passed. For efficiency reasons however, the
implementations discussed here (and recommended in ANSI X9.31 [1, Annexes
B and E] and FIPS 186-4 [17, Annex C]) do not generate all the candidates at
random but deduce them from a common random seed through a deterministic
process. In the following, we assume that the latter simply consists in adding a
multiple of a constant, but our analysis would hold for any other deterministic
process. Eventually, to spare the use of the costly probabilistic tests, a prime
sieve is applied to directly eliminate candidates with small prime factors. More
details about these two steps are given hereafter.

Probabilistic primality tests. Testing the primality of a candidate is usually done
using Miller-Rabin and Lucas probabilistic tests. The reader can refer to [22] for
their description. Actually, the only important fact to mention is that Miller-
Rabin test performs several dozens of exponentiations of the form at·2

s

mod v,
for a a random number and v the tested candidate1. As v is large, such ex-
ponentiations are very costly and are usually performed thanks to a modular
arithmetic co-processor.

Prime sieve. The purpose of the prime sieve is to reduce the number of Miller-
Rabin’s tests. It precedes them and eliminates the candidates having small fac-
tors. It consists in a divisibility test w.r.t. all primes lower than some bound r.
For efficiency reasons, a classical choice is to select only primes lower than 256
(there are 53 such primes). This choice indeed has both the advantage to limit the
size of the array containing the sieve elements and to get efficient divisions even
for an 8-bit architecture with limited instructions set. By Mertens’ Theorem2

[25], one can prove that choosing r as 256 enables to eliminate around 87.5% of
the tested integers without executing the probabilistic tests. On the other hand
increasing r to 9-bit long primes, “only” allows to exclude an additional 1.4%
of the integers. Together with the efficiency reasons, this poor discrimination
gain explains why the choice r = 256 is sound for prime sieves in constrained
environments.

Summing-up all these steps leads to a full implementation of a standard prime
generation algorithm on constrained environment, see Algorithm 1.

1 In these relations, the parameters s and t satisfy v − 1 = 2s · t and t is odd.
2 The probability that a random integer is not divisible by a number smaller than r
is well approximated by 1/ log(r).
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Algorithm 1. Prime Generation Algorithm (for constrained environments)

Input : A bit-length �, an even constant τ , the set S = {s0, · · · , s52} of all odd primes
lower than 256 (stored in ROM), a number t of Miller-Rabin tests to perform

Output: A probable prime p

/* Generate a seed */
1 Randomly generate an odd �-bit integer v0

/* Prime Sieve */
2 v ← v0
3 s ← s0
4 i = 0
5 while (v mod s �= 0) and (i < 53) do
6 i = i+ 1
7 s ← si

8 if (i �= 53) then
9 v = v + τ

10 goto Step 3

/* Probabilistic primality tests */
11 else
12 i = 0

/* Process t Miller-Rabin’s tests (stop if one fails) */
13 while (Miller-Rabin(v) = ok) and (i < t) do
14 i = i + 1

/* Process 1 Lucas’ testa */
15 if (i = t) and (Lucas(v) = ok) then
16 return v

17 else
18 v = v + τ
19 goto Step 3

a Miller-Rabin’s tests are followed by one Lucas’ test because there is no known com-
posite integer n for which they are both reporting that n is probably prime.

2.2 Algorithm’s Improvement: An Up-to-Date Version

In practice, implementations of Algorithm 1 are often improved further by ex-
ploiting the fact that the sieve elements sj are very small compared to the prime
candidate v. The idea, mentioned in ANSI X9.31 [1] and by Brandt et al. in [6],
is to replace costly modular reductions over 	-bit integers by fast reductions over
8-bit integers3. Indeed, by construction, the reduction v mod s at Step 5 for the
(i+ 1)th prime candidate may indeed be rewritten as v0 + i · τ mod sj , for sj a
prime in the sieve. Written differently, this relation can also be expressed as (v0
mod sj) + i · τ mod sj . As a consequence, one can start by computing all the
remainders r0j = (v0 mod sj) and by storing them in a RAM table R (containing
53 bytes). Then, the prime sieve for the next candidate v1 is simply done by
updating R such that R[j] = R[j] + τ mod sj for any j < 53. After this step,
which only processes 8-bit values as long as τ is small enough4 , R contains all

3 The choice of 8-bit integers here comes from an efficiency argument and is not related
to the architecture of the device (see Section 2.1).

4 If τ = 2, since the greatest sieve element in our implementation is strictly lower than
256− 2, the value R[j] + τ can always be stored in a byte.
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the remainders r1j = v1 mod sj . More generally, this idea can be applied recur-
sively to efficiently deduce the remainders related to the candidate vi from those
related to the previous one vi−1. Eventually, after each update of R, the result
of the prime sieve for a candidate is obtained by checking whether R contains a
null remainder or not.

The efficiency improvement described above leads to replace Steps 2-10 in Al-
gorithm 1 (before the probabilistic tests) by the ones provided by Algorithm 2.

Algorithm 2. Improved Prime Sieve

/* Prime Sieve for v0 */
1 for j = 0 to 52 do
2 R[j] ← v0 mod sj /* costly modular reduction over �-bit integers */
3

/* Prime Sieve for vi with i > 0 */
4 v ← v0
5 while (R contains a null remainder) do
6 v = v + τ
7 for j = 0 to 52 do
8 R[j] ← R[j] + τ mod sj /* efficient modular reduction over 8-bit integers */
9

Remark 1. Usually, reductions at Step 2 of Algorithm 2 are performed by call-
ing the arithmetic coprocessor whereas those at Step 8 are done with standard

CPU instructions4. For instance, in a 8051 architecture the instruction DIV may
be used to compute the remainder.

In addition to its efficiency, Algorithm 2 has a side advantage: the prime sieve
is regular5 which renders Finke et al. ’s attack [16] ineffective. The gain in effi-
ciency and in security explains why an up-to-date implementation of Algorithm 1
must involve the improved prime sieve described in Algorithm 2. For this reason,
our attack in the next section is described against such an implementation. It
must however be mentioned that it can also be applied against a straightforward
implementation of Algorithm 1, in addition to Finke et al. ’s attack.

3 A New Attack

3.1 Core Idea

The attack developed in this section aims at recovering information on a prob-
able prime p generated by Algorithm 1, implemented with the improvements
described in Algorithm 2. For this purpose, let us focus on this algorithm when
the prime sieve is applied to test whether the (i + 1)th candidate vi has small
factors. During this process, the following remainders are computed for every s
in the sieve set S:

ri = vi mod s . (1)

5 Assuming that testing whether the elements of R are non-zero is done with caution.
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Knowing that vi has been generated deterministically from a seed v0 by an
iterative increment of τ , Equation (1) can be rewritten as: ri = v0+ i · τ mod s.
Moreover, if n denotes the number of tested candidates, the probabilistic prime
p returned by Algorithm 1 satisfies the following equation: p = v0 + (n − 1)τ .
Eventually combining the two previous relations shows that the secret prime p
and the remainders ri are linked through the following equation:

ri ≡ p− (n− i− 1) · τ (mod s) . (2)

When the value n is made public, the remainder ri is a function of both the
secret p and a known value (n− i− 1)τ (recalling that τ is public as part of the
algorithm specification). From that point, if we denote by 	i the measured device
activity (e.g. power consumption or electromagnetic emanations) coming from
the manipulation of ri, then an SCA can straightforwardly be defined assuming
that an attacker is able to isolate the trace 	i for all i < n. Indeed, the sample
{	i; i < n} can be compared with the predictions deduced from both the values
{(n− i − 1) · τ ; i < n} and an hypothesis on p mod s. This type of SCA, where
a single algorithm execution is observed, is called horizontal in [2,9]. When n is
large enough, this attack leads to the recovery of p modulo s (i.e. brings log2(s)
bits of information on p).

Eventually, the attack is applied for every prime s in the set sieve S and
all results p mod s are combined through the Chinese Remainder Theorem to
reconstruct p modulo

∏
s∈S s. This leads to the recovery of log2(

∏
s∈S s) bits

of information on p. Of course, this situation corresponds to a perfect attack
scenario where each SCA against p mod s succeeds. In practice, some of them
will likely fail, which reduces the amount of recovered information.

The practical soundness of the assumption that n is known by the adversary
and that he/she is able to isolate the leakage traces 	i (which are prerequisites
for our attack to be applicable) is studied in Section 4.1.

3.2 Full Description

In this section, we denote by rij the remainder corresponding to the division of
the (i+1)th candidate vi by the (j+1)th sieve element sj . Moreover, we use the
notation 	ij to refer to the measured device activity6 during the processing of
rij . Once all the measurements have been obtained, the adversary splits them
into different samples (	ij)i, one for each sieve element sj . Each sample can thus
be viewed as a set of noisy observations of the remainders (rij)i satisfying (2) for
s = sj . Assuming that the prime generation algorithm outputs the nth tested
candidate7, then the size of each sample (	ij)i is n. To sum up, we have the
following relation:

6 Each ij can be viewed as a vector of real values whose size depends on the sampling
rate of the oscilloscope used for the measurements and the manipulation time of rij
by the device.

7 Which means that the candidate vn−1 is the first that has successfully passed all the
primality tests
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	ij ←↩ rij = p− (n− i− 1) · τ mod sj , (3)

where ←↩ denotes a noisy observation. With these different samples (	ij)i in
hand, the adversary is now able to target each sieve element independently.
Namely, for each j, the adversary will try to recover p mod sj by exhaustively
testing all possible values that can be reached by this expression8. The test of
each hypothesis, say h, on p mod sj is simply done by following the classical
outlines of an SCA attack:

– use a leakage model m to deduce a set of predictions {m(h − (n − i −
1)τ mod sj); i < n}. A possible choice for m is the Hamming weight function
HW (as done in Section 3.3) but, if needed, more accurate models can be
built by performing analyses based on Linear Regression [15,24];

– apply an SCA distinguisher Δ (e.g. a correlation coefficient) to compare
the predictions with the measurements and to validate or invalidate the
hypothesis.

In other words, a classical horizontal SCA as in [2,9,10] is performed against each
secret (p mod sj), using the fact that this value is manipulated several times,
combined with a known value of the form (n− i− 1)τ mod sj with i < n. Each
such attack, that will be called partial in the sequel, outputs a most likely can-
didate for (p mod sj). In case of success, it brings log2(sj) bits of information
on p. We sum-up in Algorithm 3 the different steps of the full attack. The size
of the sieve set S is denoted by λ (we remind that it equals 53 in the standard
implementation detailed in Section 2).

Algorithm 3. Attack Against Prime Generation Algorithm
/* Measurements Phase */

1 for i = 0 to n − 1 do
2 for j = 0 to λ − 1 do
3 measure �ij

/* Attack Phase: */
/* for each sieve, perform a partial SCA */

4 for j = 0 to λ − 1 do
/* ... test each possible candidate ... */

5 for h = 1 to sj − 1 do
/* ... by processing predictions ... */

6 for i = 0 to n − 1 do
7 mij = m(h − (n − i − 1)τ mod sj)

/* ... and applying a statistical distinguisher ... */
8 score[h] = Δ((mij)i, (�ij)i)

/* ... then select the most likely candidate ... */
9 candidate[j] = argmaxh(score[h])

/* Apply the Chinese Remainder Theorem (CRT) */
10 p̂ = CRT (candidate[0] mod s0, · · · , candidate[λ − 1] mod sλ−1)

11 return p̂

8 Which excludes 0 since p is prime.
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Note that the attack described in Algorithm 3 could also be adapted to target
straightforward implementations of Algorithm 1. The only difference is that the
adversary will not have the same number of observations for each sieve element.
Indeed, as the prime sieve is stopped each time a divisor is found, the probability
that rij is processed (and thus observed) decreases with respect to j. As we
think that such a straightforward implementation of Algorithm 1 is unlikely to
be implemented in secure devices (because it is not efficient and vulnerable to
Finke et al. ’s attack – see Section 2–), we decided not to detail it in this paper.

3.3 Attack Analysis

In this section we first study, for typical bit-lengths 	 ∈ {256, 512, 1024}, the
number n of prime sieve processings that can be observed by an attacker during
the generation of a probable prime of size 	. Then, we focus on the success rate
of the attack (i.e. its ability to completely recover p) under different hypotheses
on n. For simplicity and because this is a common choice in practice, we choose
to focus on the case τ = 2.

About the number of prime sieve processings. The effectiveness of our attack
strongly depends on the number n of leakage values that can be retrieved for each
sieve element. This value, which is also the number of prime sieve processings,
depends on the seed v0; thus, contrary to what happens in classical SCA, it cannot
be a priori chosen by the adversary9.

On Figure 1, several estimations of the complementary cumulative distribution
function (ccdf) Fn(x) of n, viewed as a random variable, are plotted. Namely,
each curve corresponds to an estimation10 of the probability Fn(x) (in ordinate)
that n is greater than or equal to some value x (in abscissa). The three plot-
ted curves correspond to prime generations for a bit-length 	 equal to 256, 512
and 1024 respectively. In the sequel, we focus on the 512-bit case (even if the
outlines of our approach could also be followed to study the two other cases)
since generating primes of that size is for instance required when constructing a
1024-bit RSA modulus (e.g. for some banking applications) or when generating
strong primes according to the ANSI X9.31 standard [1]. For a 512-bit prime,
the median of the distribution of n as well as the first and third complementary
quartiles11, are respectively equal to 53, 126 and 246. The quartiles Q1, Q2 and
Q3 related to 75%, 50% and 25% are represented by horizontal lines in Figure 1.

Attack Effectiveness. Let us now focus on the ability of our attack to recover
x bits of information on p by combining the results of the partial CPA attacks

9 In classical SCA, the number of observations is chosen and increased until the attack
achieves some success rate.

10 Estimations have been done over 2000 observations of n, namely for 2000 prime
generations.

11 We recall that the median of a random variable X is the value Q2 such that Pr(X ≤
Q2) = 0.5. Similarly, the first (resp. the third) complementary quartile of X is the
value Q1 (resp. Q3) s.t. Pr(X > Q1) = 0.75 (resp. Pr(X > Q3) = 0.25).
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Fig. 1. Cumulative distribution function of n for different prime bit-lengths 

against the remainders p mod sj . We here assume that the attacker is able to
detect when a partial CPA returns a correct result. It may first be noticed that
a correct guess on all these remainders provides 333 bits of information on p
(assuming that S contains the 53 smallest primes). As argued in the next para-
graph, this upper bound12 limits the size of the prime numbers which can be
successfully recovered with our attack. In Figure 2, we plot the probability (in
ordinate) that our attack recovers at least x bits of information on p. As done
for the previous figure, the probabilities have been computed from simulations
in three different contexts depending on whether the number n of leakage values
per CPA equals the first complementary quartile Q1 = 53, the median Q2 = 126
or the third complementary quartile Q3 = 246. Several results are moreover pre-
sented, corresponding to different amounts of noise in the observations. For each
quartile, the success rates have been estimated with 2000 attacks.

Before analysing the simulation results in Figure 2, it remains to define when
our attack is considered to succeed. For this purpose, we recall that the generated
prime p is assumed to be afterwards used to define an RSA modulus. In such
a context, a well-known technique introduced by Coppersmith [13,14] may be
applied to reconstruct p from approximately half of its bits13. This technique
works by translating the problem of recovering the unknown part of p into that
of finding a small root on a bivariate polynomial equation. Such an issue can
then be solved by performing a lattice reduction on a well-chosen basis. In our
context, the number of bits that have to be retrieved to lead to the full recovery
of a prime p with bit-length 512 is 256 = 512/2. We are aware that this bound
is theoretical since it can only be achieved when reducing a lattice of infinite

12 Since the upper bound increases with the number of primes involved in the sieving,
the same holds for the size of the probable primes concerned by our attack.

13 To be more accurate, Coppersmith’s original technique aims at recovering p knowing
the half most (or least) significant bits. In our context, one gets a relation of the
form p ≡ p0 mod

∏
sj∈S sj with a known value p0. This case can be handled using

a slight generalisation of the original method, under the condition that
∏

sj∈S sj is

approximately half the bit length of p (see Corollary 2.2 in [3]).
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dimension. In practice, several additional bits are required for Coppersmith’s
method to work14. Nevertheless, the problem can be circumvented (even if the
exact bound of “256 bits” can never be achieved in practice) at the price of an
exhaustive search on the missing values, thus making the overall complexity of
the attack increase. In our case, since we use Coppersmith’s method as a black-
box, we choose to define a successful attack as recovering 256 bits on p (this
bound thus corresponds to an “ideal” scenario) .

The results are summed up in Figure 2(a). Not surprisingly, the attack works
better and recovers more bits on p when the number of tested candidates n
increases (we indeed have more observations to recover each sensitive remainder).
In the case where there is a lot of noise or few iterations, the expected number
of bits correctly guessed on p drops. These results can be exploited to obtain a
lower bound on the overall success rate (SR for short) of our attack:

– [For σ = 1]: the attack recovers 256 bits of information on p with prob-
ability 1 for n = Q1, Q2 and Q3. In other terms, our attack succeeds for
all the prime generations where n reaches the first quartile, that is for 75%
of the generations. We can thus estimate the lower bound for our success
probability in this case by pσ=1 ≥ 0.75.

14 See [16] for heuristic results with respect to various numbers of retrieved bits.
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– [For σ = 2]: the attack recovers 256 bits of information on p with probability
1 for n = Q2 and Q3 and with probability 0.46 for n = Q1. We can thus
estimate the lower bound for our success probability in this case by pσ=2 ≥
(0.46 + 1 + 1)/4 = 0.615.

– [For σ ≥ 3]: we can estimate similarly the lower bound for our success
probability in the remaining cases by pσ=3 ≥ 0.4975, pσ=4 ≥ 0.27 and pσ=5 ≥
0.175 respectively.

4 Attack Flow in Practice

4.1 Discussion on the Measurements Phase

In this section, we come back to the attack hypotheses made in Section 3 and
we argue about their relevance. Namely, we study the practical soundness of the
assumption that the number of tested candidates n is known by the adversary
and that he/she is able to isolate the leakage traces 	ij defined as in Equation
(3). For this purpose, we consider here an implementation of a 512-bit prime
number generation, computed on a smart-card micro-controller equipped with
an 8-bit CPU and a modular arithmetic co-processor, both running at several
dozens of MHz. This implementation corresponds to an off-the-shelf smart-card.
To simplify the analysis, we directly focus on the case where the attack described
in Section 3 is effective with high probability. For this reason, we developed our
argumentation under the hypothesis that the number of tested candidates n is
at least 250 (which happens with probability 25% – see Figure 1 –).

Let us now evaluate the time required by the platform to process a prime
number generation as specified in the previous paragraph. Thanks to the sieving
pre-processing, a probabilistic primality test (here a sequence of Miller-Rabin
tests) is performed for 1 candidate over 10 in average (see Mertens’ theorem
[25]). Let t be the maximum number of Miller-Rabin tests that must be passed
by a candidate. Observing that each test takes 10ms on the considered platform,
then the full processing time of the algorithm is upper bounded by 250tms. For
instance, when t = 10, which is a reasonable value to ensure the primality of
a number with satisfying probability, the full processing time is 2.5s. Note that
this approximation does not take into account the time spent in the 250 efficient
prime sieves, since this is negligible in comparison to the rest of the algorithm
(see Section 2.2). For this (practical) attack scenario, several issues arise during
the measurements phase (where we denote by i the number of tested candidates):

1. how to record the long side-channel trace corresponding to the full prime num-
ber generation computation, or at least to the i efficient prime sieve tests15;

2. how to recognize and extract the patterns corresponding to the i prime sieve
tests and how to convert them into i smaller side-channel traces;

3. in each small side-channel trace previously created, how to precisely align
the sub-patterns corresponding to the trial divisions (Step 8 in Algorithm 2).

15 Meaning i iterations of the while loop in Algorithm 2.
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Fig. 3. Electro-magnetic radiations measured during a prime number generation com-
putation on a commercial smartcard. Pattern 1 corresponds to the initial costly prime
sieve, whereas patterns 2 to 28 correspond to Miller-Rabin tests.

Fig. 4. Zoom on the two first patterns of Figure 3. Pattern 1 corresponds to the initial
costly prime sieve, whereas pattern 3 corresponds to the first Miller-Rabin test. First
efficient prime sieves (with small integer divisions) are located inside pattern 2.

Solving the first issue depends on the specifications of the oscilloscope used
to record the long side-channel trace. More precisely, it depends on its channel
memory depth, i.e. the number of samples the oscilloscope can record per channel
during one single acquisition. To record 250 iterations with a sampling rate of
100MSamples per second (which is a minimum on such platforms to perform a
CPA), then the channel memory depth must be at least of 250MSamples, which
is available on high-end oscilloscopes. The oscilloscope trigger can moreover be
set-up to skip the recording of the first prime sieve computation (Step 1-3 of
Algorithm 2), as it is not used in our attack. This amounts to skip the step
corresponding to the pattern 1 in Figures 3 and 4.
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Once the long side-channel trace has been acquired, the second issue consists
in recognizing patterns corresponding to the efficient prime sieve computations.
Such patterns are located between those corresponding to probabilistic primal-
ity tests, which have a particular side-channel signature due to the use of the
modular arithmetic co-processor. The Miller-Rabin tests correspond to patterns
2 to 28 on Figure 3, and to pattern 3 on Figure 4. Thanks to this patterns iden-
tification phase, one can then deduce that several prime sieve computations are
located inside Pattern 2 of Figure 4. Once such patterns have been found, clas-
sical automated pattern matching techniques can eventually be used to extract
the other ones in the rest of the long side-channel trace.

Finally, the third issue should be solved thanks to peak extraction techniques
classically used in SCA. This would enable to align the patterns corresponding
to the trial divisions in each small side-channel trace. On the traces we acquired
(Figures 3 and 4), the signal is too noisy for such alignment. In the following
we continue our practical analysis on a toy implementation of the prime sieve
running on a different architecture than that used in this sub-section.

4.2 Experiments on a Toy Implementation

To confirm the analyses conducted in Section 3.3 and to validate our assumptions
in practice, the new attack has been tested against a toy implementation em-
bedded on an 8-bit ATMega128 micro-controller running at 8MHz. For simplicity
reasons, we did not implement the full probabilistic prime generation described
in Algorithm 1 but only 300 iterations of the loop corresponding to steps 5-9
in Algorithm 2 parametrised with a random seed v0. As our attack only targets
the prime sieve and not the probabilistic tests, this choice does not impact the
soundness of the conclusions we are going to draw from the experimentations
reported below.

The electro-magnetic activity of the device during the processing of the 300
prime sieve tests has been measured with a sampling rate of 1GSamples per
second. 300× 53 patterns have then been extracted. These patterns correspond
to the trial divisions of the 300 prime candidates vi = v0 + 2i by the 53 prime
sieve elements sj (Steps 5-9 in Algorithm 2). Afterwards, the attack described
in Algorithm 3 has been performed with the Pearson correlation coefficient as
statistical distinguisher Δ. The overall experiment (including the acquisition
phase) has been repeated 200 times. Following the same approach as in Section
3.3, the effectiveness of our attack has then been studied under the assumption
that the targeted prime value p was known for each experiment. This assumption
makes it possible to decide whether each partial attack on p mod sj succeeded
or not, and hence allowed us to apply the Chinese Remainder Theorem only
with the correct guesses. The results are reported in Figures 5(a) and 5(b).
They correspond to attack scenarios where the number of exploited prime sieve
observations (among the 300 ones) was respectively limited to 10, 50, 250 and
300. Figure 5(b) must be viewed as the experimental equivalent of the simulations
described in Figure 2.
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Fig. 5. Success rates in practice

Even if the experimental success rates are slightly below those obtained for our
attack simulations16 (see Section 3.3 for a theoretical analysis), the general trends
are the same. In particular, our attack succeeds in recovering more than 256 bits
of information with success probability 0.9 as long as the number n of observed
prime sieve tests is at least equal to 250 (which happens with probability 0.25
when the prime length 	 equals 512, see Section 3.3). This not only confirms the
soundness of the analysis in Section 3.3 but also demonstrates the practicality
of our attack.

Let us now focus on a real attack context where the assumption “the target
prime p is known” has been relaxed. In this scenario, the adversary loses his
ability to decide for each partial SCA (against the remainder of p modulo a prime
sieve element) whether it has succeeded or not. Consequently, he cannot select
which remainders to keep for the recombining phase and must hence apply the

16 This can easily be explained by the higher noise encountered during the practical ex-
periments and the fact that the Hamming weight leakage model used in the CPA does
not perfectly fit the real leakage function.



238 A. Bauer et al.

Chinese Remainder Theorem (CRT) on all the partial SCA results (as described
in Step 10 of Algorithm 3). This attack will thus only work if all the retrieved re-
mainders are correct, which occurs with a probability that can be approximated
by the product of the 53 success rates plotted in Figure 5(a). Even for n = 300, it
can be checked that this probability is very small. Fortunately, several strategies
can be applied to significantly improve this success rate.

4.3 Avenues of Improvement

Larger primes generation. Our attack would not work for primes beyond 666 bits,
since the 53 prime sieve elements sj only permit to retrieve a maximum of 333
bits on p. However the analysis can easily be adapted to 1024-bit primes, when
the prime generation algorithm uses a larger sieve set S (requiring a product of
its elements larger than 1024 bits).

Case of RSA modulus. For RSA key generation, the adversary may attack the
two prime factors p and q independently. Then, the public relation N = pq can
be used to compare the remainder hypotheses returned by the partial SCA of
each attack. Such a procedure is thoroughly described in [16]. The attacker can
also gain some information about the secret exponent d through the analysis of
the equation e ·d = k(N− (p+q)+1)+1. When e is small, implying k small too,
one can deduce information about d mod sj , knowing p mod sj and q mod sj .

Key Enumeration Approach. Instead of selecting only the remainder that maxi-
mizes the distinguisher value (as presented in Step 9 of Algorithm 3), one could
choose to record the scores associated to any remainder hypothesis h for any
prime sieve element sj . Then, instead of applying the CRT recombining to only
one 53-tuple (as in Step 10 of Algorithm 3), we can do it for all the 53-tuples of
hypotheses from the most to the least likely, until the correct p is recovered (af-
ter applying Coppersmith technique, it should factor the RSA public modulus).
A straightforward application of this strategy is clearly inefficient if the correct
guess is not reconstructed after few steps. To optimise this phase, it is recom-
mended to use a so-called key-enumeration algorithm (KEA) (see Appendix A
for an efficient algorithm proposed by Veyrat-Charvillon et al. [26]).

Initial Prime Sieve. Additional information may be retrieved during the initial
expensive prime sieve. Such information however is likely to be very different
(in nature) than the information retrieved by the following sieves (since the
operations are probably handled by different part of the hardware) and then
should not be used directly during the CPA attack.

5 Conclusion and Countermeasures Proposal

In this paper, we have described an attack against prime number generation.
Compared to the existing attack of [28], this attack defeats a protected imple-
mentation of the probable prime tests with a regular prime sieve. Our attack
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exploits two features of a prime generation algorithm: the use of a prime sieve
and a deterministic candidates generation. Such algorithms are for example de-
scribed in the well-known norms ANSI X9.31 and FIPS 186-4 [1,17]. We gave an
analysis of the efficiency of our attack and demonstrated its practicality against
a smart-card toy implementation (which confirms our analyses).

Several approaches can be followed to thwart our attack. A first one is to ran-
domly add dummy trial divisions in each prime sieve computation. Another one is
to perform each prime sieve computation in a pseudo-random order. Both coun-
termeasures have the effect to misalign trial divisions, and then to increase the
noise in the measurements. A different approach would be to choose a prime gen-
eration algorithm without the two features required in our attack. For example,
Fouque and Tibouchi [18] propose a prime generation with a non-deterministic
generation of prime candidates. Another recent proposal is the efficient provable
prime generation algorithm of Clavier et al. [11].
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French ANR-12-JS02-0004 ROMAnTIC Project.
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A Key Enumeration Algorithm

The idea developed by the authors of [26] is to produce, one after another, the
16-byte hypotheses on the AES master key. The 8-bit sub-keys of each hypothesis
are returned independently from 16 different SCA attacks and then concatenated
together in order to be tested as the cipher secret key. This set-up is in fact very
similar to ours: instead of 16 bytes, we consider 53 independent secret of different
lengths. From these secret hypotheses, a part of the secret prime is recovered
through CRT recombining and then used to recover the whole secret prime. Sim-
ilarly to the work of Gérard and Standaert in [19], a Bayesian extension can be
computed over the correlation coefficient values for each of the 53 independent
attacks. Hence, to each small prime sj , and each remainder hypothesis h in the
set (Z/sjZ)

� is associated the following probability Pr[h = p mod sj | {	ij}i],
where the set of consumption traces {	ij}i,j is defined as in Equation (3).

Once the latter probability has been computed for any value h and any sj , the
recursive algorithm proposed in [26] can be straightforwardly applied to provide
the list of 53-tuples of remainder hypotheses ordered from the most to the less
likely hypothesis. We do not recall the algorithm here (a detailed description can
be found in [26]).

Further Improvements. For the complete attack to be successful (e.g. factoring
an RSA modulus), it is not necessary to recover all the 53 remainders of p but
only a sufficient number of them s.t. their product gives 256 bits of information
(instead of the 333 bits given by the product of all the 53 first small primes). In
view of this, the attacker goal is no longer to recover all the remainders p mod sj
such that sj in S but a subset of them which brings 256 bits of information. Let
us denote by {S1, ...,Sm} a family of m subsets satisfying the latter property.
The KEA algorithm recalled previously can now be applied to each subset inde-
pendently (taking into account the corresponding CPA attacks). The brute-force
processing then takes simultaneously the m sets of attack results and, at each
step, the most likely hypothesis is chosen among the most likely hypothesis of
each set. The respective KEA instance is afterwards advanced to the next best
solution. Such multi-set approach would definitely improve the attack efficiency.
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Abstract. We demonstrate physical side-channel attacks on a popular
software implementation of RSA and ElGamal, running on laptop com-
puters. Our attacks use novel side channels, based on the observation
that the “ground” electric potential, in many computers, fluctuates in
a computation-dependent way. An attacker can measure this signal by
touching exposed metal on the computer’s chassis with a plain wire, or
even with a bare hand. The signal can also be measured at the remote
end of Ethernet, VGA or USB cables.

Through suitable cryptanalysis and signal processing, we have ex-
tracted 4096-bit RSA keys and 3072-bit ElGamal keys from laptops, via
each of these channels, as well as via power analysis and electromagnetic
probing. Despite the GHz-scale clock rate of the laptops and numerous
noise sources, the full attacks require a few seconds of measurements us-
ing Medium Frequency signals (around 2 MHz), or one hour using Low
Frequency signals (up to 40 kHz).

1 Introduction

1.1 Background

Side-channel attacks that exploit unintentional, abstraction-defying information
leakage from physical computing devices have proven effective in breaking the
security of numerous cryptographic implementations. However, most research
attention has been focused on small devices: smartcards, RFID tags, FPGAs,
microcontrollers, and simple embedded devices. The “PC” class of devices (com-
modity laptop/desktop/server computers) has been studied from the perspective
of side channels measured by resident software (see [13] and subsequent works)
and from peripherals (e.g., [17]).

PCs, however, have received little academic attention with regard to physical
emanations from cryptographic computations, presumably due to three main
barriers. First, PCs have highly complicated system architecture and CPU mi-
cro architecture, with many noise sources and asynchronous events. Fine low-
level events are thus difficult to model and measure. Second, most physical
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side-channel cryptanalysis approaches require the leakage signal to be acquired
at rates well beyond the device’s clock rate; for multi-GHz CPUs, the requi-
site equipment is expensive, and the signals are difficult to probe. Finally, at-
tack scenarios differ: the aforementioned small devices are often deployed into
potentially-malicious hands, where they could be subjected to lengthy or inva-
sive attacks; but for PCs, the typical scenario (short of theft) is where a physical
attacker gains physical proximity for a restricted amount of time, and must
operate surreptitiously.

Recently, a key extraction attack on PCs was demonstrated using the acoustic
side channel, addressing all three barriers: using a chosen-ciphertext attack, the
sound emanations of interest are made very robust, brought down to very low
frequencies (tens or hundreds of kHz), and extended to long durations (hundreds
of milliseconds), making it possible to record the leakage surreptitiously and non-
invasively, by a cellphone microphone or from many meters away [12].

We thus study the question: what other physical, non-invasive, cryptanalytic
side-channel attacks can be effectively conducted on full-blown PC computers?

1.2 Our Results

We demonstrate key extraction of 4096-bit RSA and 3072-bit ElGamal keys from
laptop computers of various models. The attacked software implementation is
GnuPG [2], a popular open source implementation of the OpenPGP standard.
The attacks exploit several side channels, enumerated below:

1. Chassis potential. We identify a new side channel: fluctuations of the
electric potential on the chassis of laptop computers, in reference to the mains
earth ground. This potential can be measured by a simple wire, non-invasively
touching a conductive part of the laptop, and connected to a suitable amplifier
and digitizer. (This, essentially, creates a ground loop through the laptop and
measures its voltage.) The chassis potential, thus measured, is affected by
ongoing computation, and our attacks exploit this for extracting RSA and
ElGamal keys, within a few seconds.

Scenarios : The wire can be fixed in advance where the target laptop will be
placed (e.g., a cluttered desk), or put in contact with the laptop by a passerby.

2. Far end of cable. The chassis potential can also be observed from afar,
through any cable with a conductive shield that is attached to an I/O port on
the laptop. For example, we demonstrated key recovery through a 10-meter
long Ethernet cable, by tapping the cable shield at the remote Ethernet switch
(see Figure 4(a)). Similar observations apply to USB, VGA, HDMI, etc. Since
only the shield potential is used, the attack is oblivious to the data passing
through the cable, and works even if the port is disabled.

Scenarios : While many users are careful about connecting suspicious de-
vices (such as USB sticks) to the physical ports of their machines, they will
routinely connect VGA display cables and Ethernet network cables to their
laptops. However, a simple voltage measurement device, perhaps located in
the cabinet or server room to which the cable leads, could be capturing the
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leakage. This is hard to check, since Ethernet wiring and projectors’ VGA
cables are often hidden out of sight and cannot easily be tracked by the user.

3. Human touch. Surprisingly, the requisite signal can be measured, with
sufficient fidelity, even through a human body. An attacker merely needs to
touch the target with his bare hand, while his body potential is measured.

Scenarios : The attacker positions himself in physical proximity to the tar-
get laptop and touches it with his bare hand or a conducting pen (see Fig-
ures 4(b))–4(c)). Surreptitiously, the attacker carries the requisite equipment
for measuring his body potential relative to some nearby grounded object. In
the non-adaptive attack (see below), a few seconds’ contact will suffice; in the
adaptive attack, 1 key bit can be extracted approximately every 4 seconds.

Note that the above attacks all rely on fluctuations in the PC’s ground (relative
to the mains earth ground). This makes mitigation difficult: the usual method
for preventing voltage fluctuations, using bypass capacitors to shunt stray AC
currents into the device’s ground, does not apply to the device ground itself.

We also revisit two traditional physical side channels, and demonstrate their
applicability to software running on PCs:

4. Electromagnetic (EM). We performed key extraction by measuring the
induced EM emanations, using a near-field probe placed next to the laptop.

Scenarios : Electromagnetic probes are easily hidden in nearby objects. A
glove, containing a concealed probe loop and hovering over the target laptop,
would unveil its key within seconds.

5. Power. Likewise, we extracted keys by measuring the current draw on the
laptop’s power supply. Our attack works even though PCs use complex switch-
ing power supplies, which partially decouple the power source from the CPU
load,1, and moreover employ large capacitors, chokes, and shields for elec-
tromagnetic compatibility (EMC) compliance — all of which attenuate and
disrupt the signals sought in traditional power analysis.

Scenarios : A public charging station can be easily augmented with a current
meter, logger, and transmitter. Even a regular power supply “brick” can be
similarly augmented.

Our attacks require very low bandwidth, well below the laptop CPU’s GHz-scale
clock rate. We use two cryptanalytic approaches, based on known techniques and
adapted to the target software:

Fast, Non-adaptive MF Attack. For both RSA and ElGamal key extraction,
we can exploit signals circa 2MHz (Medium Frequency band), using the “n− 1”
non-adaptive chosen-ciphertext simple-power-analysis attack of Yen et al. [26].
Key extraction then requires a few seconds of measurements.

Slow, Adaptive VLF/LF Attack. For RSA key extraction, we can
exploit signals of about 15–40kHz (Very Low / Low Frequency bands), using

1 In the realm of small devices, such similar decoupling has been proposed as an
intentional countermeasure against power analysis [23].



Get Your Hands Off My Laptop 245

the adaptive chosen-ciphertext attack of [12]. Full 4096-bit RSA key extraction
then takes approximately one hour, but is very robust to low signal-to-noise
ratio.

Our results require careful choice and tuning of the signal acquisition equip-
ment, to attain usable signal-to-noise ratio in the presence of abundant noise,
delicate grounding, and impedance-matching considerations. We report these
choices in detail and describe the requisite signal processing. We also analyze
the code of GnuPG’s mathematical library, showing why the specific chosen
ciphertext creates exploitable, key-dependent leakage in this implementation.

1.3 Vulnerable Software and Hardware

Hardware. We have tested various laptop computers, of different models,
by various vendors. The signal quality varied dramatically, as did the relative
quality between channels, the carrier frequencies of interest, the best placement
of the probes or human hand, and the optimal grounding connection. Thus,
manual calibration and experimentation were required. Generally, instruction-
dependent leakage occurs on most laptops; key extraction is possible on many
laptops, but the requisite signal-to-noise is not always present.

GnuPG. For this case study, we focused on GnuPG version 1.4.15, running
on Windows XP and compiled with the MinGW GCC version 4.6.2. This ver-
sion of GnuPG was the most recent when our research was publicly announced.
Following the practice of responsible disclosure, we worked with the authors of
GnuPG to suggest several countermeasures and verify their effectiveness against
our attacks (including those in [12]; see discussion therein as well as CVE-2013-
4576 [19]). GnuPG 1.4.16, released concurrently with the announcement of our
results, contains these countermeasures.

Chosen Ciphertext Injection. Our key extraction attacks require chosen
ciphertexts (either adaptive or non-adaptive, depending on the attack). As ob-
served in [12], one way to remotely inject such ciphertexts into GnuPG is to send
them as a PGP/MIME-encoded e-mail, to be automatically decrypted by the
Enigmail [9] plugin for the Mozilla Thunderbird e-mail client. In the case of the
non-adaptive attack, the attacker can provide the chosen ciphertext files to the
victim (by any means or guise), and merely needs to conduct the measurement,
for a few seconds, when those files are decrypted.

1.4 Related Work

Simple and differential power analysis attacks were introduced by Kocher et
al. [15], and applied to both symmetric and asymmetric ciphers, implemented
on hardware such as smartcards, microcontrollers and FPGAs (see [4,16,18] and
the references therein).

Clark et al. [6] observed that is it possible to use power analysis to identify,
with high probability, the web pages loaded by a web browser on the target
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(a) different keys (b) different exponents

Fig. 1. Chassis measurement (1.7 sec, 1.9–2.6 MHz) of a Lenovo 3000 N200. (a) Four
GnuPG RSA signatures. The transitions between p and q are marked with yellow
arrows. (b) Seven GnuPG RSA decryptions. In the first 6 cases, exponents (dp and
dq) are both overridden to be the 2048-bit number obtained by repeating the pattern
written to the right. In the last case, the exponent is unaltered. In all cases, the moduli
p and q are the same and the ciphertext is set to n− 1.

machine, by tapping the AC outlet to which the target is connected. Oren and
Shamir [20] observed that the power line voltage on USB ports exhibits a dis-
tinct signature when OpenSSL RSA decryption executes, even when the port is
disabled; this property is shared by our “far end of cable” channel. Schmidt et
al. [22] observed leakage through voltage variations on the I/O pins of embedded
devices. Basic multiplication instructions were shown to have operand-specific
leakage, in simulation [24] and embedded devices [8] (though this was not demon-
strated or exploited on PCs).

The electromagnetic side channel has been studied and exploited for smart-
cards and FPGA’s (e.g., [3, 10, 21]), including for RSA. More recently, Zajic
and Prvulovic [27] observed electromagnetic leakage from laptop and desktop
computers (but did not show cryptographic applications). Cache attacks were
applied to GnuPG’s RSA implementation [25].

2 Computation-Dependent Chassis-Potential Leakage

The electric potential on a laptop computer’s chassis (metal panels, shields and
ports) is ideally equal to that of the mains earth ground potential, but in reality
it fluctuates greatly. Even when the laptop is grounded (via its power supply
or via shielded cables such as Ethernet, USB or VGA), there is non-negligible
impedance between the grounding point(s) and other points in the chassis. Volt-
age, often 10mV RMS or more,2 develops across this impedance, in part due to
currents and electromagnetic fields inside the computer. A natural question is
whether information about the ongoing computation can be learned by measur-
ing the chassis potential.

In this section, we show a very simple (yet already troubling) form of leaked
information: determining which of several randomly-generated secret keys was

2 After filtering out the strong, but cryptanalytically useless, 50 or 60Hz components.
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used by the target machine, for a signing or decryption operation. For brevity, in
the remainder of this section we discuss chassis potential measurements; similar
effects are also present when using the EM side channel.

Figure 1(a) depicts the spectrogram of four GnuPG RSA signing operations,
using different 4096-bit random keys (generated beforehand), on a fixed message.
Each signing operation is preceded by a short CPU sleep (for visual separation).

The different signing keys can be clearly distinguished by their subtly different
spectral signatures (which may itself be of practical interest). Another telling
detail is visible: halfway through each signing operation, a transition appears at
several frequency bands (marked with yellow arrows). This corresponds to the
transition between exponentiation modulo the secret p to exponentiation modulo
the secret q, in the RSA decryption implementation of GnuPG, which is based
on the Chinese Remainder Theorem. We can thus spectrally observe internal,
secret-dependent information within the signing operation.

Next, Figure 1(b) demonstrates seven RSA signing operations using different
secret exponents which can also be easily distinguished. Finally, similar results
are observed for ElGamal decryption, though the exponentiation is shorter and
thus its frequency spectrum can be characterized less accurately.

3 Non-adaptive Attack

We proceed to describe our cryptanalytic attack techniques (whose applicability
will be shown in Section 5). The first technique is a non-adaptive chosen cipher-
text attack using very few traces, following the simple power analysis of RSA
(see the surveys [4,16,18], and the references therein). We begin by reviewing the
high-level modular exponentiation algorithm in GnuPG (Section 3.1), describe
our attack (Section 3.2) exploiting this algorithm, and then analyze its success
by recalling the inner squaring routines used by GnuPG (Section 3.3) and their
behavior under the attack (Section 3.4).

3.1 GnuPG’s Modular Exponentiation Routine

To perform arithmetic on the large integers occurring in RSA and ElGamal,
GnuPG uses an internal mathematical library called MPI (based on GMP [1]).
MPI stores large integers as arrays of limbs, i.e., 32-bit words (on x86).

We now review the modular exponentiation routine of GnuPG (as introduced
in GnuPG v1.4.14), which is used for both RSA and ElGamal. GnuPG uses a
variant of the square-and-multiply modular exponentiation algorithm, processing
the bits of the exponent from the most significant bit to the least significant one.
To mitigate a cache side-channel attack [25], GnuPG now always performs the
multiplication operation in every loop iteration regardless of the exponent’s bits
(but only uses the result as needed). The pseudocode is given in Algorithm 1.
This top-level exponentiation routine suffices for the high-level description of our
attack. For details about GnuPG’s underlying squaring routines, necessary for
understanding the attack’s success, see Sections 3.3 and 3.4.
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Algorithm 1. GnuPG’s modular exponentiation (see function mpi powm in
mpi/mpi-pow.c).

1: procedure modular exponentiation(a, b, p) � returns ab mod p
2: if size in limbs(a) > size in limbs(p) then
3: a ← a mod p

4: m ← 1
5: for i ← 1 to n do
6: m ← m2 mod p � Karatsuba or grade-school squaring
7: t ← m · a mod p � Karatsuba or grade-school multiplication
8: if bi = 1 then � where b = b1 · · · bn
9: m ← t
10: return m

3.2 The Attack Algorithm

Since GnuPG 1.4.15 attempts to avoid correlation between the bits of the expo-
nent and high-level operations (such as multiplication), we use a chosen cipher-
text attack in order to create correlations between these bits and intermediate
values computed inside the low-level operations inside GnuPG’s modular expo-
nentiation routine. Moreover, the chosen ciphertext will have an amplification
effect, whereby numerous recursive calls will be similarly affected, resulting in a
distinct leakage signal over a long time period. This is the key to conducting a
MHz-scale attack on a GHz-scale computation.

Following Yen et al. [26] we choose a ciphertext c such that a ≡ −1 (mod p)
during the execution modular exponentiation. Within GnuPG, this creates
a correlation between the bits of the secret exponent b and the number of zero
limbs of m, as described next. As we will analyze in Sections 3.3 and 3.4, the
number of zero limbs inside m affects the control flow inside the GnuPG basic
squaring routine,thus creating discernible differences in the physical leakage.

Note that, for a ≡ −1 (mod p), the value m during the execution of mod-
ular exponentiation is always either 1 or −1 modulo p. Thus, the value of
m in line 7 does not depend on the bits of b, and is always 1 modulo p (since
−12 ≡ 12 ≡ 1 (mod p)). Consequently, the following correlation holds between
the value of m at the start of the i-th iteration of the loop in line 5 and bi−1.

– bi−1 = 0. In this case the branch on line 8 was not taken; thus, the value ofm
at the start of the i-th iteration of the loop in line 5 is also m = 1 mod p = 1.
Next, since GnuPG’s internal representation does not truncate leading zeros,
it holds that the value m sent to the squaring routine during the i-th iteration
contains many zero limbs.

– bi−1 = 1. In this case the branch on line 8 was taken, so the value of m at
the start of the i-th iteration of the loop in line 5 is m = −1 mod p = p− 1.
Since p is a random large prime, the value m sent to the squaring routine
during the i-th iteration contains very few zero limbs.
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Algorithm 2. GnuPG’s basic squaring code (see function sqr n basecase in
mpi/mpih-mul.c).

1: procedure sqr basecase(a) � returns a2

2: if a1 ≤ 1 then � where a = ak · · · a1

3: if a1 = 1 then
4: p ← a
5: else � ai = 0
6: p ← 0

7: else
8: p ← mul by single limb(a, a1) � p ← a · a1

9: for i ← 2 to n do
10: if ai ≤ 1 then
11: if ai = 1 then � (and if ai = 0 do nothing)
12: p ← add with offset(p, a, i) � p ← p+ a · 232·i
13: else
14: p ← mul and add with offset(p, a, ai, i) � p ← p+ a · ai · 232·i
15: return p

We now proceed to describe the specific ciphertext choices required for our attack
for both the RSA and ElGamal case.

Ciphertext Choice for RSA-CRT. Recall that in the case of RSA decryp-
tion, GnuPG first computes cdp mod p and cdq mod q, and then combines these
via the Chinese Remainder Theorem. By choosing c = n − 1 where n = pq is
the public RSA modulus, the modular reduction in line 3 is always triggered,
causing the value of a in line 5 to be p− 1 (i.e., −1 modulo p as desired).

Ciphertext Choice for ElGamal. For ElGamal encryption, the prime mod-
ulus p is part of the public key, so we directly choose the ciphertext to be p− 1.

3.3 GnuPG’s Squaring Routine

GnuPG’s large-integer squaring routine combines two squaring algorithms: a
basic quadratic-complexity squaring routine, and a variant based on a recursive
Karatsuba multiplication algorithm [14]. The chosen combination of algorithms
is based on the size of the operands, measured in whole limbs. We will first
discuss the basic squaring algorithm and its key-dependent behavior, and then
show how this behavior is preserved by the Karatsuba squaring.

GnuPG’s Basic Squaring Routine. The core side-channel weakness we
exploit in GnuPG’s code lies inside the basic squaring routine. The basic squaring
routine used by GnuPG is a quadratic-complexity “grade school” squaring, with
optimizations for multiplication by limbs equal to 0 or 1, depicted in Algorithm 2.

Note how sqr basecase handles zero limbs of a. When a zero limb of a is
encountered, none of the operations mul by single limb, add with offset
and mul and add with offset are performed and the loop in line 9 continues



250 D. Genkin, I. Pipman, and E. Tromer

to the next limb of a. Our attack exploits this, by causing the number of such
zero limbs to depend on the current bit of the secret exponent, thus affecting
the control flow in lines 3 and 11, and thereby the side-channel emanations.

GnuPG’s Karatsuba Squaring Routine. The basic squaring routine de-
scribed above is invoked via two code paths: directly by the modular exponenti-
ation routine (Section 3.1) when the operand is small, and also as the base-case
by the Karatsuba squaring routine. The latter is a variant of the Karatsuba
multiplication algorithm [14], relying on the following identity:

a2 =

{
(22n + 2n)a2H − 2n(aH − aL)2 + (2n + 1)a2L if aH > aL

(22n + 2n)a2H − 2n(aL − aH)2 + (2n + 1)a2L otherwise
, (1)

where aH, aL are the most and least significant halves of a, respectively.

3.4 Attack Analysis

In this section we analyze the effects of our attack on sqr basecase (Algo-
rithm 2). Recall that in Section 3.2 we created a correlation between the i-th
bit of the secret exponent bi and the number of zero limbs in the operand m
of the squaring routine during iteration i + 1 of the main loop of the modu-
lar exponentiation routine. Concretely, for the case where bi = 1, we have that
m = −1 mod p = p − 1 is a random-looking number containing several thou-
sand bits (2048 bits for the case of RSA and 3072 bits for the case of ElGamal).
Conversely, for the case where bi = 0, we have that m = 1 mod p = 1 and,
since GnuPG does not truncate leading zeros, the representation of m is a large
number (2048 bits for the case of RSA and 3072 bits for ElGamal), all of whose
limbs are 0 (except for the least significant).

The code of GnuPG passes m to the Karatsuba squaring routine. For the
case where bi = 1, since m is a random-looking number, this property of m will
be preserved in all 3 recursive calls (computing the three squaring operations
in Equation 1). Similarly, for bi = 0, we have that m = 1, meaning mH = 0
and mL = 1. Thus, the second case of Equation 1 will always be taken, again
preserving the structure ofm as having mostly zero limbs, in all 3 recursive calls.

When reaching the recursion’s base case, we have the following dependence on
bi. If bi = 0, then the values of the operand of sqr basecase during iteration
i + 1 of the main loop of modular exponentiation (in all branches of the
recursion) will have almost all of their limbs equal to zero. Conversely, if bi = 1,
then the values of the operand of sqr basecase during iteration i + 1 of the
main loop of modular exponentiation in all branches of the recursion will
be random-looking.

Next, recall the effect of zero limbs in the operand on the code of sqr basecase.
Note that the control flow in sqr basecase depends on the number of non-zero
limbs in its operand. The drastic change in the number of zero limbs in the operand
of sqr basecase is detectable by our side-channel measurements. Thus, we are
able to leak the bits of the secret exponent by creating the correlation between
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its bits and the number of zero limbs in the operand of sqr basecase, using our
carefully chosen cipher text.

4 Adaptive Attack

Our other cryptanalytic technique is an adaptive chosen-ciphertext side-channel
attack, which extracts, bit by bit, the prime modulus used during the CRT-based
RSA modular exponentiation routine. Our attack on GnuPG was introduced
in [12] (following [5]) for the GnuPG acoustic side channel. For self-containment,
we give an overview of the attack here. (This attack is not applicable to ElGamal,
since the prime modulus p is public.)

The attack recovers the bits of p = p1 · · · pk iteratively, starting with the
MSB p1. Once we learn all of p, we know the factorization of n. Moreover, after
recovering just the top half of the bits of p, it is possible to use Coppersmith’s
attack [7] to recover the remaining bits.

Ciphertext Choice for RSA. In GnuPG, the MSB is always set, i.e., pk = 1.
Assume that we have already recovered the topmost i−1 bits of p. To extract the
next bit pi, we check the two hypotheses about its value, by requesting decryption
of an adaptively chosen ciphertext gi,0+n, where gi,0 = p1 · · · pi−110 · · · 0 (k bits
in total). Let n = pq be the public RSA modulus. Consider the RSA decryption
of gi,0 + n. Two cases are possible, depending on pi.

– pi = 1. Then gi,0 < p. The ciphertext gi,0 + n is passed as the variable a to
Algorithm 1. Since n = pg we have that gi,0 + n has a larger limb count than
p. This triggers the modular reduction of a in line 3 of Algorithm 1, which
returns gi,0, resulting in a being a k-bit number having mostly zero limbs.
Next, a is passed to the multiplication routine in line 7.

– pi = 0. Then p < gi,0 and as in the previous case, gi,0 + n is passed as
the variable a to Algorithm 1 triggering the modular reduction of a in line 3.
Since gi,0 and p share the same topmost i − 1 bits, we have that gi,0 < 2p,
and the reduction results in a = gi,0− q, which is a (k− i)-bit random-looking
number. This is then passed to the multiplication routine in line 7.

Code Analysis. We now present a high-level analysis of how our bit-by-bit
chosen ciphertext attack affects the code of GnuPG. Using the above described
ciphertexts, the second operand of the multiplication routine during the entire
execution of the main loop of the modular exponentiation routine, will be either
full-size and repetitive or shorter and random-looking (depending on pi).

GnuPG’s uses two algorithms for large integer multiplication: the Karatsuba-
based multiplication algorithm and the grade-school (quadratic time) multipli-
cation algorithm. GnuPG’s variant of Karatsuba recursive multiplication relies
on the identity ab = (22n + 2n)aHbH + 2n(aH − aL)(bL − bH) + (2n + 1)aLbL,
where aH, bH and aL, bL are the most and least significant halves of a and b,
respectively. We thus see that GnuPG’s Karatsuba multiplication preserves the
structure of a as being either random-looking or containing many zero limbs.
That is, if a is random-looking, then aHbH, (aH − aL)(bL − bH) and aLbL are
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random-looking as well. Conversely, if a contains mostly zero limbs, the values
of aHbH, (aH − aL)(bL − bH) and aLbL also contain mostly zero limbs.

Next, when the recursion reaches its base case , GnuPG passes a to the basic
multiplication routine which is implemented similarly to Algorithm 2. In par-
ticular, it includes optimizations for zero limbs similar to lines 3 and 11. Thus,
we are able to leak the bits of p, one bit at a time, by creating a correlation
between the current bit of p and the number of zero limbs in the second operand
of GnuPG’s basic multiplication routine using our chosen ciphertexts.

The above is a high-level description of the adaptive attack. In order to
achieve full RSA key extraction, improvements are required to the basic attack
algorithm. See [12] for details.

5 Empirical Key-Extraction Results

5.1 Chassis-Potential Attack

5.1.1 Setup
As discussed in Section 2, there are computation-dependent fluctuations of the
electric potential on the chassis of laptop computers. We measured the electric
potential of the laptop’s chassis by touching it with the simplest possible probe:
a plain wire, 80 cm long. The wire is pressed against the chassis by hand, or (for
longer attacks) using an alligator clip. The wire’s potential is then measured
through an amplifier, filters, and a digitizer.

Grounding. The attack measures the voltage between the room’s mains earth
ground potential and the target computer’s chassis potential. Put otherwise, we
create a ground loop which includes the laptop chassis and the amplifier, and
then measure the voltage across the amplifier’s input impedance (and thus its
complement: the voltage across the laptop chassis). Thus, correct grounding is
essential to maximizing the signal-to-noise ratio. The measurement is done in
single-ended mode, in reference to the mains earth ground potential, using low-
impedance ground connection to the amplifier and digitizer. The target laptop
is grounded through one of its shielded I/O ports (we used a VGA cable to a
grounded screen, or a USB cable to a grounded printer). If the target laptop’s
grounding is removed, but the laptop is still connected to 3-prong (grounded)
AC-DC power supply, the signal-to-noise ratio typically degrades. With a 2-
prong (ungrounded) power supply and no other ground connections, the signal-
to-noise ratio is very low and our attacks do not work.

Chassis Probe Placement. The chassis of modern laptops, while made
mostly of metal (for EMI shielding), is typically covered with non-conductive
plastic. However, many IO ports, such as USB, Ethernet, VGA and HDMI, typ-
ically have metal shielding which is connected to the chassis or PCB ground,
and thus can be probed by the attacker. Also, metal heatsink fins are often
easily reachable through the exhaust fan grill. Heuristically, the best results are
achieved when the chassis is probed close to the CPU and its associated voltage
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regulator circuitry, and if the laptop’s ground connection is distant from the
probing point.

Chassis Potential or EM? To ascertain that we were indeed measuring
chassis potential rather than stray electromagnetic fields, we broke the direct
galvanic connection between the probe wire and the laptop’s chassis, by inserting
a sheet of paper in-between. This always resulted in severe signal attenuation.

5.1.2 Non-adaptive Chassis-Potential Attack

MF Measurement Equipment. The non-adaptive attack exploits signals in
the Medium Frequency (MF) frequency band, on the order of 2MHz. To measure
these signals, we connected the probe wire to a 16 kHz high-pass filter, followed
by a high-input-impedance low-noise amplifier (Femto HVA-200M-40-F, 40 dB
gain). The amplified signal was then low-pass filtered at 5MHz and digitized at
12 bits and 10Msample/sec (National Instruments PCI 6115).

Analyzing the Signal. The signals presented in Figure 1(b) provide the first
indication as to how the different exponents might be distinguished. For periodic
exponents, the leakage signal spectrum takes the form of small, distinct side lobes
centered around a dominant frequency peak. This indicates that the bits of the
exponents manifest themselves as modulations on a central sinusoidal carrier
wave. Further analysis reveals that the carrier is frequency-modulated, meaning
that its instantaneous frequency changes slightly in accordance with the current
bit of the exponent. Thus, in order to recover these bits, we obtain the dominant
instantaneous frequency as a function of time, by applying FM demodulation
digitally. The signal is first filtered using a 30 kHz band-pass filter centered at
the carrier frequency. Next, the signal is demodulated using a Discrete Hilbert
Transform. Additional filtering is then performed on the demodulated signal, to
suppress high frequency noise and to compensate for a slow frequency drift of
the carrier wave. Figure 2(a) shows an example of a fully demodulated leakage
signal; the correlation with the secret key bits can clearly be seen.

(a) A segment of the demodulated sig-
nal. Note the correlation between the sig-
nal and the secret key bits.

(b) Demodulation of the entire signal.
The interrupts, occurring every 15 ms,
are marked by green arrows.

Fig. 2. Frequency demodulation of the leakage signal during a decryption operation
using a randomly generated 4096-bit RSA key
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Key Extraction. Theoretically, it should be possible to extract the entire
secret key from a single demodulated trace, provided the measurement is robust
and has a high signal-to-noise ratio. However, we observed a periodic inter-
rupt (marked in Figure 2(a)), which disrupted the key extraction. The interrupt
manifests as a large frequency fluctuation in the carrier every 15 milliseconds
(Figure 2(b)), corresponding to the 64Hz timer interrupt frequency on the tar-
get laptop. These interrupts systematically occur at the same time during the
decryption process, and thus disrupt similar bit offsets in repeated decryptions.
Fortunately, the inherent jitter is sufficient so that, over a few measurements,
every bit is (with high probability) undisturbed in some sample. Conversely, jit-
ter creates a difficulty in aligning the multiple traces. We thus break each trace,
post-modulation, into multiple time segments. The segments are then aligned via
correlation, and averaged. This results in an interrupt-free aggregate trace, with
very high SNR. The bits are then extracted using a peak detection algorithm.

Non-adaptive RSA Key Extraction. Applying our non-adaptive attack on
a randomly generated 4096-bit RSA key while measuring the chassis potential of
a Lenovo 3000 N200 laptop during 6 decryption operations, each lasting 0.35 sec,
we have directly extracted 2044 out of 2048 bits of dp thereby extracting the key.
The laptop was powered by a 3-prong AC-DC power supply (Lenovo, 90W, model
42T4428), without additional connections.

Non-adaptive ElGamal Key Extraction. Attacking the exponentiation in
ElGamal decryption, and applying similar cryptanalytic and signal analysis, we
extracted all but 2 of the bits of the secret exponent from a randomly generated
3072-bit ElGamal key by measuring the chassis potential of a Lenovo 3000 N200
laptop during 9 decryption operations, each lasting 0.1 sec

5.1.3 Adaptive Chassis-Potential Attack
We now discuss results obtained using the adaptive attack described in Section 4.
While this attack requires more decryption operations in order to recover the
key, it utilizes lower frequency signals and requires much lower signal-to-noise
ratio than the non-adaptive attack.

VLF/LF Measurement Equipment. The adaptive attack can exploit very
low bandwidth signals, in the VLF and LF frequency bands: in the order of
15–40kHz (depending on the laptop model). To measure these signals, we used
a more compact, higher dynamic range, measurement chain. The probe was
directly connected to a high-input-impedance low-noise amplifier (customized
Brüel&Kjær 5935, usually set to 40 dB gain). The amplified signal was high-
pass filtered at 10 kHz, and digitized at 16 bits and 200Ksample/sec (National
Instruments MyDAQ).

Analyzing the Leakage Signal. Recall that GnuPG’s RSA code performs
modular exponentiation modulo p followed by a modular exponentiation modulo
q. Figure 3(a) shows a typical recording of RSA decryption when the value of
the attacked bit of q is 0, and Figure 3(b) shows a recording of RSA decryption
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(a) attacked bit is qi = 0 (b) attacked bit is qi = 1
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Fig. 3. Chassis measurement of RSA decryption for various values of the attacked bit
executed on a Lenovo ThinkPad T60

(a) Measuring
shield potential
at the far side of
an Ethernet cable
(probed at the
Ethernet switch).

(b) Non-adaptive “human
touch” attack through a metal
pen touching the heatsink fins.
The wristband is connected to
the probe wire.

(c) Adaptive “human touch”
attack by bare hand. The
wristband is connected to the
probe wire.

Fig. 4. “Far end of cable” and “human touch” attacks

when the value of the attacked bit of q is 1. Several effects are shown in the
figures. As in figure 1(a), the transition between p and q is clearly visible. Note,
then, that the signatures of the modular exponentiation using the prime q (the
second exponentiation) are quite different in Figures 3(a) vs. 3(b). This can be
seen more clearly in Figure 3(c), which summarizes the aforementioned spectral
signatures by taking the median, over time, for each. This clear difference is used
to extract the bits of q, as explained in Section 4.

Adaptive RSA Key Extraction. By connecting the VLF/LF measurement
setup to a Lenovo ThinkPad T60, powered by the 3-prong AC-DC power supply
without additional connections,3 we directly extracted the 1024 most significant

3 Grounding the laptop to mains earth, via some port, would improve the signal quality
(see Section 5.1.1); but the adaptive attack is sufficiently robust to not require this.
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bits of the secret prime q of a randomly-generated 4096-bit RSA key in approx-
imately 1 hour. By Coppersmith’s technique, this results in full key extraction.
(Alternately, it is possible to continue the attack and recover remaining bits.)

5.2 “Far End of Cable” Attack

The electric potential on a laptop’s chassis and external ports can measured
from far away. When a cable is plugged into one of the laptop’s IO ports (such
as USB, Ethernet and VGA), the port’s shield typically contacts a plug shield,
which in turn is connected to a conductive cable shield running the length of the
cable. Thus, one can measure the chassis potential from the far side of cables
connected to the aforementioned ports. Ethernet cables, for examples, often span
long distances, across and between building floors. An attacker who gains access
to the far side of the cable (see Figure 4(a)), or taps the shield along the way,
can measure the approximate chassis potential.

The attack does not utilize data transmitted over the cable, and is oblivious
to whether the port is even enabled.

We conducted the attacks by connecting the target laptop, through a 10-
meter long shielded CAT5e Ethernet cable, to an Ethernet switch (EDIMAX
ES-3308P). We attached a plain wire to the cable shield via a clip, on the switch
side (see Figure 4(a)) and measured its potential.

Non-adaptive RSA Key Extraction. Using the MF measurement setup
(see Section 5.1.2), we measured the chassis potential of a Lenovo 3000 N200
laptop through the shield of the Ethernet cable. The laptop was powered by the
3-prong AC-DC power supply, and was also connected via a shielded VGA cable
to a grounded monitor (Dell 2412M). We directly extracted 2042 out of 2048 bits
of dp, by observing the shield’s potential during 5 decryption operations (each
lasting 0.35 sec). Similar results were obtained at the far side of a USB cable.

Non-adaptive ElGamal Key Extraction. Applying a similar attack to El-
Gamal decryption, we extracted all but 3 of the bits of the secret exponent, from
a randomly-generated 3072-bit ElGamal key, by observing the shield’s potential
during 4 decryption operations (each lasting 0.1 sec).

Adaptive RSA Key Extraction. We attacked a Lenovo ThinkPad T60
laptop, through an Ethernetor USB cable, whose shield potential was measured
using the VLF/LF measurement equipment (see Section 5.1.3). The laptop was
powered by the 3-prong AC-DC power supply, without additional connections.
In this setting, we extracted the 1024 most significant bits of the secret prime q
(and thus, by Coppersmith’s technique, full key extraction) in 1 hour.

5.3 “Human Touch” Attack

On many laptops, the chassis potential can be sensed indirectly through a human
body. An attacker can sense the chassis potential by merely touching a conduc-
tive part of the laptop chassis with his hand. This affects the electric potential
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of the attacker’s body (assuming suitable insulation, e.g., nonconductive floor or
shoes). Surreptitiously, the attacker can measure the electric potential induced
on his own body, using a concealed probe, in reference to some nearby conduc-
tive grounded surface in the room. Even this circuitous measurement, through
an ill-characterized, high-impedance path, can suffice for key extraction.

Non-adaptive RSA Key Extraction. Using the MF measurement setup (see
Section 5.1.2), we measured the chassis potential of a Lenovo 3000 N200 laptop
indirectly, though the body of a volunteer (one of the authors). The volunteer
held a paperclip or a metal pen in his hand, and briefly touched it to the laptop’s
heatsink fins, which are easily reachable through the exhaust vent. Concurrently,
the volunteer’s body potential was measured using the MF measurement equip-
ment (see Section 5.1.2), via a probe wire attached to a conductive wristband
on his other wrist (see Figure 4(b)).

The laptop was powered by the 3-prong AC-DC power supply, with no further
connection. Applying our non-adaptive attack and the signal analysis techniques
from Section 5.1.2 on a randomly generated 4096-bit RSA key, we directly ex-
tracted 2042 out of 2048 bits of dp by observing the volunteer’s body potential
(while holding the paperclip against the laptop’s heatsink) during 6 decryption
operations, each lasting 0.35 sec.

Non-adaptive ElGamal Key Extraction. Applying our non-adaptive at-
tack and the signal analysis techniques from Section 5.1.2 on a randomly gen-
erated 3072-bit ElGamal key, we were able to extract all but 3 of the bits of
the secret exponent by observing the volunteer’s body potential (while holding
the paperclip against the laptop’s heatsink) during 16 decryptions, each lasting
0.1 sec.

Adaptive RSA Key Extraction. The adaptive attack, being more robust
(due to relying on lower-frequency, longer-duration signals), succeeded with un-
aided finger touch. A patient volunteer touched the chassis (specifically, VGA
connector shield) of a Lenovo ThinkPad T61 with his fingers. The volunteer’s
body potential was measured using the VLF/LF measurement equipment (see
Section 5.1.3), through the aforementioned wristband, and the laptop was con-
nected as above. On some ThinkPad models, this attack can even be mounted
by simply touching the rubber-coated LCD cover (see Figure 4(c)).

In this setting, we directly extracted the topmost 1024 bits of the prime q of
a randomly generated 4096-bit RSA key from in 1 hour, thereby (via Copper-
smith’s technique) completely extracting the key.

5.4 Electromagnetic (EM) Attack

Next, we studied EM emanations from laptop computers, in the MF band (ap-
proximately 2MHz). We used a near-field magnetic probe (Rohde&Schwarz
7405901, 6 cm diameter, 50Ω). The signal was low-pass filtered at 5MHz and
amplified using a low-noise amplifier (a customized Mini-Circuits ZPUL-30P).
This is digitized at 12 bits and 10Msample/sec (NI PCI 6115).
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EM Probe Placement. The placement of the EM probe greatly influences
the measured signal and noise. We wish to measure EM emanations close to
the CPU’s voltage regular, located on the laptop’s motherboard, yet without
mechanical intrusion. Concretely, the rear-left corner often yields the best signal.

Non-adaptive RSA Key Extraction. Applying our non-adaptive attack to
a 4096-bit RSA key, we directly extracted 2046 out of 2048 bits of dp, by mea-
suring the EM emanations from a Lenovo 3000 N200 laptop during 5 decryption
operations, each lasting about 0.35 sec.

Non-adaptive ElGamal Key Extraction. Using the same experimental
setup and applying our non-adaptive attack to a randomly generated 3072-bit
ElGamal key, we were able to extract all but 3 of the bits of the secret exponent
by measuring the EM emanations from a Lenovo 3000 N200 laptop during 16
decryption operations, each lasting about 0.1 sec.

5.5 Power Analysis Attack

Finally, we revisited the classic power analysis channel, and analyzed the current
draw fluctuations on the power supply of the target laptop in the VLF/LF
frequency bands. Specifically, we placed a 0.5Ω resistor in series with the laptop’s
power supply, on the low (“ground”) supply rail.

Adaptive RSA Key Extraction. We measured the voltage on the resistor us-
ing a National Instruments MyDAQ device though a 150kHz low-pass filter. We
directly extracted the topmost 1024 bits of the prime q of a randomly generated
4096-bit RSA key, from a Lenovo ThinkPad T61, in one hour.

6 Conclusion

While physical side-channel attacks have proven very effective at breaking cryp-
tosystems, most research attention has focused on small and relatively simple
devices. This paper demonstrated that PC systems too are vulnerable, despite
their complexity, noise, and challenging electrical characteristics. Moreover, PCs
can be attacked by mere touch or from afar by almost any wired connection.

Following our observations, several software countermeasures were proposed
and incorporated into GnuPG 1.4.16 and libgcrypt 1.6. While these counter-
measures indeed foil the attacks presented in this paper, the key distinguishing
attack is unaffected and still present in the latest versions of GnuPG; mitigating
it in software, without a large overhead, remains an open problem.

Physical mitigation techniques include Faraday cages (against EM attacks),
insulating enclosures (against chassis and touch attacks), and photoelectric de-
coupling or fiberoptic connections (against “far end of cable” attacks). However,
inexpensive protection of PCs appears difficult, especially for the chassis chan-
nel. The common method for filtering conducted emanations on power supply
lines is to use bypass capacitors to shunt stray AC currents into the ground, but
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this obviously does not apply to the ground line itself. Robust low-impedance
grounding and shielding, with careful attention to current paths, should reduce
voltages across the ground and chassis (at costs in engineering effort and porta-
bility). We conjecture that prudent design of switching power supplies can reduce
computation-dependent leakage without significantly hampering efficiency.
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Abstract. We discuss how to recover RSA secret keys from noisy ana-
log data obtained through physical attacks such as cold boot and side
channel attacks. Many studies have focused on recovering correct secret
keys from noisy binary data. Obtaining noisy binary keys typically in-
volves first observing the analog data and then obtaining the binary data
through quantization process that discards much information pertaining
to the correct keys. In this paper, we propose two algorithms for recov-
ering correct secret keys from noisy analog data, which are generalized
variants of Paterson et al.’s algorithm. Our algorithms fully exploit the
analog information. More precisely, consider observed data which fol-
lows the Gaussian distribution with mean (−1)b and variance σ2 for a
secret key bit b. We propose a polynomial time algorithm based on the
maximum likelihood approach and show that it can recover secret keys
if σ < 1.767. The first algorithm works only if the noise distribution is
explicitly known. The second algorithm does not need to know the ex-
plicit form of the noise distribution. We implement the first algorithm
and verify its effectiveness.

Keywords: RSA, Key-Recovery, Cold Boot Attack, Side Channel
Attack, Maximum Likelihood.

1 Introduction

1.1 Background and Motivation

Side channel attacks are important concerns for security analysis in the both of
public key cryptography and symmetric cryptography. In the typical scenario of
the side channel attacks, an attacker tries to recover the full secret key when he
can measure some kind of leaked information from cryptographic devices. From
the proposal of Differential Power Analysis (DPA) by Kocher et al. [6], many
studies have been intensively made on the side channel attacks.

We focus on the side channel attacks on RSA cryptosystem. In the RSA
cryptosystem [11], a public modulus N is chosen as the product of two distinct
primes p and q. The key-pair (e, d) ∈ Z2 satisfies ed ≡ 1 (mod (p − 1)(q − 1)).
The encryption keys are (N, e) and the decryption keys are (N, d). The PKCS#1
standard [10] specifies that the RSA secret key includes (p, q, d, dp, dq, q

−1 mod p)
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in addition to d, which allows for fast decryption using the Chinese Remainder
Theorem. It is important to analyze its security as well as the original RSA.

Recently, the cold boot attack was proposed by Halderman et al. [3] at
USENIX Security 2008. They demonstrated that DRAM remanence effects make
possible practical, nondestructive attacks that recover a noisy version of secret
keys stored in a computer’s memory. They showed how to reconstruct the full
of secret key from the noisy variants for some encryption schemes: DES, AES,
tweakable encryption modes, and RSA. How can we recover the correct secret key
from a noisy version of the secret key? This is an important question concerning
the cold boot attack situation.

Inspired by cold boot attacks [3], much research has been carried on recovering
an RSA secret key from a noisy version of the secret key. At Crypto 2009,
Heninger and Shacham [5] proposed an algorithm that efficiently recovers secret
keys (p, q, d, dp, dq) given a random fraction of their bits. Concretely, they showed
that if more than 27% of the secret key bits is leaked at random, the full secret key
can be recovered. Conversely, this means that even if 73% of the correct secret
bits is erased, the key can be recover. As opposed to the Heninger-Shacham
algorithm for correcting erasures, Henecka et al. [4] proposed an algorithm for
correcting error bits of secret keys at Crypto 2010. They showed that the secret
key (p, q, d, dp, dq) can be fully recovered if the error probability is less than
0.237. They also showed that the bound for the error probability is given by
0.084 if the associated secret key is (p, q). Paterson et al. proposed an algorithm
correcting error bits that occurs asymmetrically at Asiacrypt 2012 [9]. They
adopted a coding theoretic approach for designing a new algorithm and analyzing
its performance. Sarkar and Maitra [12] revisited the result of [4] and applied
the Henecka et al.’s algorithm to break a Chinese Remainder Theorem type
implementation of RSA with low weight decryption exponents. Kunihiro et al. [7]
proposed an algorithm that generalized the work of [4,5], and which considered
a combined erasure and error setting.

Motivation: Key-Recovery from Noisy Analog Data. The previous works
[4,5,7,9] considered an erasure and/or error setting, where each bit of the secret
key is either erased or flipped. Thus, the noisy version of the secret key is com-
posed of discrete symbols, that is, {0, 1} and the erasure symbol “?”. However,
such discrete data is not always obtained directly and analog data is more natural
as observed data obtained through the actual physical attacks such as the cold
boot and side channel attacks. We further assume that the observed data follows
some fixed probability distributions. It is frequently considered and verified in
the practice of side channel attacks (for details, see [8]). Thus, our leakage model
is more realistic. Our goal is to propose efficient algorithms that can recover an
RSA secret key from noisy analog data.

Paterson et al. [9] concluded that it is an open problem to generalize their
approach to the case where soft information (that is, analog data) about the
secret bits is available. This is the problem we address in this paper.
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1.2 Our Contributions

This paper discusses secret key recovery from a noisy analog data sequence.
In our leakage model, the observed value is output according to some fixed
probability distribution depending on the corresponding correct secret key bit.
Although we cannot directly obtain the true secret key bit, we can observe the
noisy and analog variants of the secret key through a side channel or cold boot
attack. If the noise is sufficiently small, key recovery from the noisy data is fairly
easy in general. However, if the noise is large, the task of recovering the secret
key becomes more difficult. Our challenge is to propose an efficient algorithm
that recovers the RSA secret key even in the presence of large noise. For this
purpose, we adopt a maximum likelihood-based approach.

First, we modify the algorithm of Paterson et al. [9] to adapt an analog data;
while their algorithm takes a (noisy) binary bit sequence as input. For the mod-
ification, we introduce the concept of score; a node with a low score will be
discarded, whereas a node with the highest score will be kept and generate a
subtree of depth t with 2t leaf nodes. The score function is calculated from a
candidate of the secret key in {0, 1}5t and the corresponding observed data in
R5t. The choice of score function is crucial for our modification.

We propose an algorithm whose score function is constructed from the like-
lihood ratio and in which the node with the maximal value is regarded as the
correct node. We then prove that our algorithm recovers the correct secret key
in polynomial time if the noise distribution satisfies a certain condition (Theo-
rem 1). Note that the condition is represented by symmetric capacity. In par-
ticular, under the condition that the noise distribution is Gaussian with mean
(−1)b and variance σ2 for a secret key bit b, we show that we can recover the
secret key if σ < 1.767 (Corollary 2).

The main drawback of the first algorithm is that we need to know the noise
distribution exactly; indeed, without this knowledge it does not work. We also
propose another algorithm that does not require any knowledge of noise distribu-
tion. The score function in the second algorithm is given as a difference between
sums of the observed data when the candidate bits are 0 and that when the
candidate bits are 1. This score is similar to that of differential power analysis
(DPA) [6]. We also prove that the algorithm recovers the correct secret key with
high probability if the noise distribution satisfies the certain condition (Theo-
rems 2). Owing to the lack of knowledge of the noise distribution, the condition
is slightly worse than that in the first algorithm. However, if the noise follows
the Gaussian distribution, the algorithm achieves the same bound as the first
one.

We then verify the effectiveness of our algorithm by numerical experiments in
the case of Gaussian noise. Our experimental results show that the first algorithm
recovers the RSA secret key with significant probability if σ ≤ 1.7, which matches
with theoretically predicted bound.
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2 Preliminaries

This section presents an overview of the methods [4,5,9] using binary trees to
recover the secret key of the RSA cryptosystem. We use similar notations to
those in [4]. For an n-bit sequence x = (xn−1, . . . , x0) ∈ {0, 1}n, we denote the
i-th bit of x by x[i] = xi, where x[0] is the least significant bit of x. Let τ(M)
denote the largest exponent such that 2τ(M)|M . We denote by lnn the natural
logarithm of n to the base e and by logn the logarithm of n to the base 2. We
denote the expectation of random variable X by E[X ].

2.1 Our Problem: RSA Key-Recovery from Analog Observed Data

Our problem is formulated as follows. We denote the correct secret key by sk. For
each bit in sk, a value is observed from the probability distribution depending
on the bit value, which means that the analog data are observed according to
the leakage model. We denote the observed analog data sequence by s̄k. Our
goal is to recover sk from s̄k.

We will give a more detailed explanation. Suppose that the probability dis-
tribution Fx of the observed data is Gaussian with mean (−1)x and variance
σ2 for x ∈ {0, 1}. The SNR is commonly used to evaluate the strength of noise
is defined by (variance of signal)/(variance of noise). In our leakage model, the
variance of the noise is given by σ2 and that of signal is given by 1. Then, the
SNR is given by 1/σ2. A greater SNR means that the signal is stronger and
we can extract information with fewer errors. In this paper, we consider the
standard deviation σ for the strength of the noise.

Consider the case that noise level σ is larger. In this case, key-recovery is
difficult. In fact, if the noise is extremely large, we cannot recover the secret key,
as is discussed in Section 6. Conversely, consider a smaller noise level. In this
case, key recovery is relatively easy. Thus, it is important to make a detailed
analysis for the value σ.

2.2 Recovering the RSA Secret Key Using a Binary Tree

The first half of explanation of this section is almost the same as previous
works [4,5,7,9]. Making this paper self-contained, we give details. We review
the key setting of the RSA cryptosystem [11], particular for the PKCS #1 stan-
dard [10]. Let (N, e) be the RSA public key, where N is an n-bit RSA modulus
and sk = (p, q, d, dp, dq, q

−1 mod p) be the RSA secret key. As in the previous
works, we ignore the last component q−1 mod p in the secret key. The public
and secret keys have the following four equations:

N = pq, ed ≡ 1 (mod (p− 1)(q − 1)), edp ≡ 1 (mod p− 1), edq ≡ 1 (mod q − 1).

There exist integers k, kp and kq such that

N = pq, ed = 1+ k(p− 1)(q− 1), edp = 1+ kp(p− 1), edq = 1+ kq(q− 1). (1)
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Suppose that we know the exact values of k, kp and kq, then there are five
unknowns (p, q, d, dp, dq) in the four equations in Eq. (1).

A small public exponent e is usually used in practical applications [15], so we
suppose that e is small enough such that e = 216 + 1 as is the case in [4,5,7,9].
See [4] for how to compute k, kp and kq.

In the previous methods and our new methods, a secret key sk is recovered
by using a binary-tree-based technique. Here we explain how to recover secret
keys, considering sk = (p, q, d, dp, dq) as an example.

First we discuss the generation of the tree. Since p and q are n/2-bit prime
numbers, there exist at most 2n/2 candidates for each secret key in (p, q, d, dp, dq).

Heninger and Shacham [5] introduced the concept of slice. We define the i-th
bit slice for each bit index i as

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]).

Assume that we have computed a partial solution sk′ = (p′, q′, d′, d′p, d
′
q) up to

slice(i − 1). Heninger and Shacham [5] applied Hensel’s lemma to Eq. (1) and
obtained the following equations

p[i] + q[i] = (N − p′q′)[i] mod 2,

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i + τ(k)] mod 2,

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2,

dq[i+ τ(kq)] + q[i] = (kq(q
′ − 1) + 1− ed′q)[i + τ(kq)] mod 2.

We can easily see that p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], and dq[i+ τ(kq)] are not
independent. Each Hensel lift, therefore, yields exactly two candidate solutions.
Thus, the total number of candidates is given by 2n/2.

Henecka et al.’s algorithm (in short, the HMM algorithm) [4] and Paterson
et al.’s algorithm (in short, the PPS algorithm) [9] perform t Hensel lifts for
some fixed parameter t. For each surviving candidate solution on slice(0) to
slice(it − 1), a tree with depth t and whose 2t leaf nodes represent candidate
solutions on slice(it) to slice((i + 1)t − 1), is generated. This involves 5t new
bits.

For each new node generated, a pruning phase is carried out. A solution is
kept for the next iteration if the Hamming distance between the 5t new bits and
the corresponding noisy variants of the secret key is less than some threshold as
for the HMM algorithm or if the likelihood of the corresponding noisy variants
of the secret key for the 5t new bits is the highest (or in the highest L nodes) of
the 2t (or L2t) nodes as for the PPS algorithm [9].

The main difference between the HMM and PPS algorithms is how to set the
criterion determining whether a certain node is kept or discarded. We adopt a
similar approach to the PPS algorithm [9] rather than the HMM algorithm [4].
In other words, we keep the top L nodes with the highest likelihood rather than
of the nodes with a lower Hamming distance than the fixed threshold.
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3 Maximum Likelihood-Based Approach

3.1 Notation and Settings

We denote by m the number of associated secret keys. For example, m = 5 if
sk = (p, q, d, dp, dq), m = 3 if sk = (p, q, d), and m = 2 if sk = (p, q).

Let x1,a ∈ {0, 1}m, a ∈ {1, 2}, be the a-th candidate of the first slice slice(0).
We write the two candidates of the first (i + 1) slices when the first i slices are
xi,a = (slice(0), · · · , slice(i− 1)) by xi+1,2a−1, xi+1,2a ∈ {0, 1}m(i+1).

For notational simplicity we write the j-th slice by xi,a[j] ∈ {0, 1}m and its
m elements are denoted by xi,a[j][1],xi,a[j][2], · · · ,xi,a[j][m] ∈ {0, 1}. Similarly,
for a secret key sequence xi,a, the observed sequence is denoted by yi ∈ Rmi and
its element corresponding to xi,a[j][k] is denoted by y[j][k] ∈ R. We write the

sequence of j, j+1, · · · , j′-th elements of a vector x by x[j : j′] ∈ {0, 1}m(j′−j+1)

for j′ ≥ j. Therefore we have

xi−1,a = xi,2a−1[1 : i− 1] = xi,2a[1 : i− 1] . (2)

Define Bl(a) = !a/2l". When we regard xi,a as a node at depth i of the binary
tree, the node xi−l,Bl(a) corresponds to the ancestor of xi,a at depth i− l. Thus,
the relation (2) is generalized to

xi−l,Bl(a) = xi,a[1 : i− l] = xi,a′ [1 : i− l] if Bl(a) = Bl(a
′). (3)

We also write xl for the last l elements of a sequence x, that is, we write xl =
x[i− l + 1 : i] for x ∈ {0, 1}mi.

Now we introduce the assumption on the secret key.

Assumption 1

(i) Each xi,a is a realization of a random variable Xi,a which is (marginally)
distributed uniformly over {0, 1}im.

(ii) There exists c ≥ 1 satisfying the following: for any i, l, a, a′ ∈ Z such that
c ≤ l ≤ i and Bl(a) �= Bl(a

′), a pair of two random variables (X l−c
i,a ,X

l−c
i,a′ )

is uniformly distributed over {0, 1}2m(l−c).
(iii) X1

i,2a−1 �= X1
i,2a holds almost surely for any a.

Assumptions (i) and (ii) correspond to weak randomness assumption considered
in [9]. Assumption (iii) asserts that any pair of candidates of the key is not
identical.

3.2 Generalized PPS Algorithm

Let F0 and F1 be probability distributions of an observed symbol when the
correct secret key bits are 0 and 1, respectively. In the following algorithms we
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compare likelihood of each candidate of the secret key. We call a criterion for
choice of candidates score. As the score we use the log-likelihood ratio given by

Ri(x;y) =

i∑
j=1

m∑
k=1

R(x[j][k];y[j][k]) , x ∈ {0, 1}mi, y ∈ Rmi

for a single-letter log-likelihood ratio

R(x; y) = log
dFx

dG
(y) , x ∈ {0, 1}, y ∈ R , (4)

where G is the mixture distribution (F0 + F1)/2 and dFx/dG is the Radon-
Nikodym’s derivative. When F0 and F1 have probability densities f0 and f1,
respectively, (4) is simply rewritten as

R(x; y) = log
fx(y)

g(y)
, x ∈ {0, 1}, y ∈ R , (5)

where g(y) = (f0(y) + f1(y))/2. We use (4) for a definition of a score since
(4) always exists even in the case of discrete noises, which are considered in
preceding researches [4,5,7,9].

Let X ∈ {0, 1} be a random variable uniformly distributed over {0, 1}. We
define Y ∈ R as a random variable which follows distribution FX given X . The
mutual information between X and Y is denoted by

I(X ;Y ) = E[R(X ;Y )] .

Remark 1. I(X ;Y ) is called a symmetric capacity for a channel Fx and is gener-
ally smaller than the channel capacity for asymmetric cases. We show in Theo-
rem 1 that I(X ;Y ), rather than the channel capacity, appears in the asymptotic
bound. This corresponds to the fact that in our problem the distribution of the
input symbol (i.e., the secret key) is fixed to be uniform and cannot be designed
freely.

Now we discuss the following algorithm, which is generalized variant of PPS
algorithm proposed in [9]. Note that the original PPS algorithm deals with only
discrete noises; while the generalized variant can deal with continuous noises.
This algorithm maintains a list Lr, |Lr | ≤ L, of candidates of the first tr bits
of the secret key. We say that the recovery error occurred if the output Ln/2t
does not contain the correct secret key. By abuse of notation each element of Lr
denotes both a subsequence xtr,a and its index a.

Now we bound the error probability of generalized PPS algorithm from above
by the following theorem.

Theorem 1. Assume that

1/m < I(X ;Y ) . (6)
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Algorithm 1. Generalized PPS Algorithm

Input: Public keys (N, e), observed data sequences s̄k
Output: Secret keys sk.
Parameter: t, L ∈ N.
Initialization: Set L0 := {1}.
Loop: For r = 1, 2, · · · , n/2t do the following.

1. Expansion Phase Generate list L′
r of all ancestors with depth t from nodes in

Lr−1, that is,

L′
r :=

⋃
a∈Lr−1

{(a− 1)2t + 1, (a− 1)2t + 2, · · · , a2t} .

2. Pruning Phase If 2tr ≤ L then set Lr := L′
r. Otherwise, set Lr to a subset of

L′
r with size L such that Rrt(xrt,a;yrt) are the largest so that for any a ∈ Lr

and a′ ∈ L′
r \ Lr

Rrt(xrt,a; yrt) ≥ Rrt(xrt,a′ ;yrt) .

Here the tie-breaking rule is arbitrary.

Output of Loop: List of candidates Ln/2t.
Finalization: For each candidate in Ln/2t, check whether the candidate is indeed
a valid secret key with the help of public information.

Then, under generalized PPS algorithm it holds for any index a and parameters
(t, L) that

Pr[Xn/2,a /∈ Ln/2t|Xn/2,a is the correct secret key] ≤ n

2t
ρ1L

−ρ2 . (7)

for some ρ1, ρ2 > 0 which only depend on c, m and Fx. Consequently, the error
probability converges to zero as L→∞ for any t > 0.

The proof of Theorem 1 are given in the full version.
We evaluate the computational cost of generalized PPS algorithm. The costs

of Expansion and Pruning phases in each loop are evaluated by 2L(2t − 1) and
L2t. Since each phase is repeated n/2t times, the whole cost of the Expansion
phase and Pruning phase are given by nL(2t− 1)/t and nL2t/(2t), respectively.

This theorem shows that the error probability is bounded polynomially by L
and t. Here note that the RHS of (7) cannot go to to zero for fixed L since t ≤ n/2
is required, whereas it goes to zero1 for any fixed t as L → ∞. Furthermore,
the complexity grows exponentially in t whereas it is linear in L. From these
observations we can expect that the generalized PPS algorithm performs well
for small t and large L.

1 In the theoretical analysis in [9], it seems to be implicitly assumed that the score
of the first mt(r − 1) bits is discarded at each r-th loop, that is Rmt(X

t
tr,i;y

t
tr) is

considered instead of Rmtr(Xtr,i;ytr). In this case we require t → ∞ to assure that
the error probability approaches zero.
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Remark 2. It is claimed in [9] for the case of binary observations that the error
probability of PPS algorithm goes to zero as t → ∞ for any fixed L oppositely
to the above argument. This gap does not mean that the bound (7) is loose but
comes from an inappropriate argument in [9]. In fact, we can prove that the
error probability never vanishes for any fixed L as shown in Appendix A.

3.3 Implications: Continuous Distributions

Informally, Theorem 1 states that we can recover the secret key with high proba-
bility if I(X ;Y ) > 1/m. The actual values of I(X ;Y ) depends on the distribution
Fx. We evaluate the value of I(X ;Y ) for some continuous distribution Fx which
has density fx(y).

First, we introduce a differential entropy.

Definition 1. The differential entropy h(f) of a probability density function f
is defined as

h(f) = −
∫ ∞

−∞
f(y) log f(y)dy.

We give some properties of the differential entropy [1]. Let f be an arbitrary
probability density with mean μ and variance σ2. Then it is shown in [1, Theorem
8.6.5] that

h(f) ≤ h(N (μ, σ2)) = log
√
2πeσ2 , (8)

where N (μ, σ2) is the density of Gaussian distribution with mean μ and variance
σ2.

The symmetric capacity I(X ;Y ) can be expressed as h(g)− (h(f0)+h(f1))/2
for g(y) = (f0(y) + f1(y))/2 since

I(X ;Y ) =
∑

x∈{0,1}

∫
fx(y)

2
log

fx(y)∑
x′∈{0,1}

fx′ (y)
2

dy =
∑

x∈{0,1}

∫
fx(y)

2
log

fx(y)

g(y)
dy

=
∑

x∈{0,1}

∫
fx(y)

2
log fx(y)dy −

∫
g(y) log g(y)dy = h(g)− h(f0) + h(f1)

2
.

Next, we further assume that the distributions are symmetric: f1(y) =
f0(α − y) for some α. Since the differential entropy is invariant under transla-
tion, we have h(f1) = h(f0) and thus I(X ;Y ) = h(g)−h(f0) if the distributions
are symmetric. A typical example of the symmetric distribution is symmetric
additive noise: the sample can be written as the sum of a deterministic part and
a symmetric random noise part.

Summing up the above discussion, we have the following corollary.

Corollary 1. Assume that Fx has a probability density fx. Then the error
probability of generalized PPS algorithm converges to zero as L→∞ if

h(g)− h(f0) + h(f1)
2

>
1

m
.

Further assume that the f0(y) and f1(y) are symmetric. In this case, the condi-
tion is expressed as h(g)− h(f0) > 1/m.
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Gaussian Distribution. We remind readers of the Gaussian distribution
N (μ, σ2). The density function of this distribution is f(x) = 1√

2πσ2

exp
(
− (x−μ)2

2σ2

)
, where μ and σ2 are the mean and variance of the distribution,

respectively.
The most standard setting of a continuous noise is an additive white Gaussian

noise (AWGN): the density fx of distribution Fx is represented by

fx(y) =
1√
2πσ2

exp

(
− (y − (−1)x)2

2σ2

)
. (9)

Note that the expectation of f0(x) and f1(x) are +1 and −1, respectively. In
this case the score is represented by

Ri(x;y) =

i∑
j=1

m∑
k=1

(−1)x[j][k]y[j][k]
2(ln 2)σ2

−
i∑

j=1

m∑
k=1

(
y[j][k]2 + 1

2(ln 2)σ2
+ log

exp(− (y[j][k]−1)2

2σ2 ) + exp(− (y[j][k]+1)2

2σ2 )

2

)
.

(10)

The symmetric capacity for Fx is given by

I(X ;Y ) = h(g)− h(f0) = h(g)− log
√
2πeσ2 . (11)

It is equivalent to use a score

i∑
j=1

m∑
k=1

(−1)x[j][k]y[j][k] (12)

instead of (10) in generalized PPS algorithm since the factor (2(ln 2)σ2)−1 and
the second term of (10) are common to all candidates xi,a.

The following corollary is straightforward from the computation of I(X ;Y )
for the Gaussian case.

Corollary 2. Assume that fx is the Gaussian distribution given in Eq. (9).
Then the error probability of generalized PPS algorithm converges to zero as
L→∞ if σ < 1.767 when m = 5 and if σ < 1.297 when m = 3 and if σ < 0.979
when m = 2.

Proof. Regarding h(f), we have h(f) = log
√
2πeσ2 from (8). The differential en-

tropy h(g) of the mixture distribution g is not given in explicit form but numeri-
cal calculation shows that h(g)−h(f) = 1/5, 1/3, 1/2 for σ = 1.767, 1.297, 0.979,
respectively. Thus the corollary follows immediately from (11) and Theorem 1.

��
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3.4 Implications: Discrete Distribution

Next, we discuss the discrete distribution cases. As an example, we consider the
binary symmetric error. In the case that Fx is a discrete distribution on {0, 1}
such that {

F0({0}) = F1({1}) = 1− p ,
F0({1}) = F1({0}) = p ,

for some 0 < p < 1/2, we have

Ri(x;y) = mi log(2(1− p)) + dH(x,y) log p

1− p ,x ∈ {0, 1}
mi, y ∈ Rmi , (13)

where dH(x,y) is the Hamming distance between x and y. Note that it is equiv-
alent to use a score dH(x;y) instead of (13) in generalized PPS algorithm since
the factor mi log(p/(1 − p)) and the constant log(2(1 − p)) are common to all
candidates xi,a and do not change the order of scores.

In this case the capacity is given by I(X ;Y ) = 1−h2(p) for the binary entropy
function h2(p) = −p log p− (1− p) log(1− p).

3.5 Discussion: Comparison with Quantization-Based Approach

The simplest algorithm for our key-recovery problem would be a quantization-
based algorithm. Here, we focus on the AWGN setting introduced in Section 3.3.
First, we consider the following simple quantization. If the observed value is
positive, its corresponding bit is converted to 0 and if it is negative, it is converted
to 1. Then, the binary sequence of the secret key with error is obtained by
quantization. The HMM algorithm [4] is applied to the obtained noisy secret
key sequences. A simple calculation shows that we can recover the secret key if
the noise follows the Gaussian distribution and σ < 1.397 when m = 5.

Next, we consider a more clever quantization rule, which uses the “erasure
symbol”. Let D be a positive threshold; then the quantization rule is given as
follows. The corresponding is converted to 0 if x ≥ D; 1 if x < −D; “?” if
−D ≤ x < D. The binary sequence of the secret key with error and erasure
is obtained by quantization. Kunihiro et al.’s algorithm [7] is applied to the
obtained noisy secret key sequences. A simple calculation shows that we can
recover the secret key if the noise follows the Gaussian distribution and σ < 1.533
when m = 5 under optimally chosen D.

As shown in Corollary 2, our proposed algorithm works well if σ < 1.767
when m = 5 and is significantly superior to the quantization-based algorithms.
The reason for this is that generalized PPS algorithm uses all the information of
the observed data whereas the quantization-based algorithms ignore the value
of observed data after quantization and thus suffer from quantization errors. A
consequence is that we can improve the bound of σ.
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4 DPA-Like Algorithm: Unknown Distribution Case

The generalized PPS algorithm works only if the explicit form of Fx is known
since it is needed in the calculation of Rrt(xrt,a;yrt). However, in many actual
attack situations, the explicit form of noise distribution is not known. In this
section, we propose an effective algorithm that works well even if these explicit
forms are unknown.

4.1 DPA-Like Algorithm

Consider the case that we only know the expectation of F0 and F1, which we
assume without loss of generality to be +1 and −1, respectively. In this case it
is natural to use (12) as a score from the viewpoint of DPA analysis [6] instead
of Rmi(x,y) itself. We define DPA function as follows.

DPAmi(x;y) :=
i∑

j=1

m∑
k=1

(−1)x[j][k]y[j][k]. (14)

Note that this score can be calculated without knowledge of the specific form of
the noise distribution. In the case that DPAmi is used as a score, the bound in
Theorem 1 is no more achievable for distributions other than Gaussians but a
similar bound can still be established.

Theorem 2. Assume that Fx has a probability density fx. Under generalized
PPS algorithm with score function (14) the error probability converges to zero
as L→∞ if

1

m
< h(g)− log

√
πe(σ20 + σ21),

where g(y) = (f0(y) + f1(y))/2 and σ2x = Var(fx) is the variance of distribu-
tion fx.

The proof of Theorem 2 is almost the same as that of Theorem 1 and given in
the full version.

Note that I(X ;Y ) can be expressed as h(g) − (h(f0) + h(f1))/2. Thus, in
view of Theorems 1 and 2, information loss of the score (14) can be expressed
as log

√
πe(σ20 + σ

2
1)− (h(f0) + h(f1))/2, which is always nonnegative since

log
√

πe(σ2
0 + σ2

1)−
h(f0) + h(f1)

2
≥ log

√
πe(σ2

0 + σ2
1)−

log
√

2πeσ2
0 + log

√
2πeσ2

1

2

≥ 0 ,

where the first and second inequalities follow from (8) and from the concavity
of the log function, respectively. This loss becomes zero if and only if f0 and f1
are Gaussians with the same variances.

Further assume that f0 and f1 are symmetric. In this case, it holds that
σ21 = σ20 and h(f1) = h(f0). Thus information loss of the score (14) can be
expressed as log

√
2πeσ20 − h(f0) = h(N (0, σ20)) − h(f0), which increases as the

true noise distribution deviates from Gaussian.
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Remark 3. We need not to know the expectation of F0 and F1 in practice. To
proceed the argument in this section it is sufficient to know the intermediate
value of these expectations, that is, the expectation of G = (F0 + F1)/2. Since
it is the expectation of the observed values, we can estimated it accurately by
averaging all the elements of the observation y.

4.2 Connection to DPA

We briefly review DPA. It was proposed as a side channel attack against DES by
Kocher et al. [6] and was then generalized to other common secret key encryption.
It derives the secret key from many physically measured waveforms of power
consumption. They introduced the DPA selection function whose input includes
a guessed secret key. In attacking phase, an attacker guesses the secret key
and calculate the difference between the average of the waveforms of power
consumption for which the value of the DPA selection function is one and it
is zero. If the guess is incorrect, the waveforms are cancelled since they are
uncorrelated. Then, the resulting waveform becomes flat. However, if the guess is
correct, they are correlated and the resulting waveform has spikes. By observing
the difference, we can find the correct key.

We introduce two sets: S1 = {(j, k)|x[j][k] = 1} and S0 = {(j, k)|x[j][k] = 0}.
The function DPA can be transformed as follows:

DPAmi(x;y) =
∑

(j,k)∈S0

y[j][k]−
∑

(j,k)∈S1

y[j][k],

which is similar to the DPA selection function used in DPA [6].
We give an intuitive explanation of how the algorithm works. Without loss

of generality, we assume that E(f0) = +1 and E(f1) = −1. We consider two
cases that the candidate solution is correct and incorrect in the following. First,
assume that the candidate solution is correct. If the bit in the candidate solution
is 0, the observed value follows f0(y); if it is 1, the observed value follows f1(y)
and then the negative of the observed value can be seen to be output according
to f1(−y). The means of both f0(y) and f1(−y) are +1. Hence, the expectation
of Eq. (14) is mi if the candidate solution is correct. Hence, the score calculated
by Eq. (14) is close to mi with high probability. Second, Next, assume that
the candidate solution is incorrect. In this case, the observed value is output
according to the mixture distribution g(y) = (f1(y) + f0(y))/2 which has zero
mean. Hence, the expectation of Eq. (14) is 0 if the the candidate solution is
incorrect and the score calculated by Eq. (14) is close to 0 with high probability.
Thus, if the score is high enough (that is, the score is aroundmi), the estimation
is correct, whereas if the score is low enough (that is, the score is around 0), the
estimation is incorrect and such a node will be discarded. We give a toy example
on the function DPA in Appendix B for a better understanding.

4.3 Connection to Communication Theory

The problem of RSA secret key recovery is strongly related to the communication
theory. Each candidate of the secret key corresponds to a codeword of a message
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and the attacker corresponds to the receiver trying to estimate the message
from the sent codeword distorted by noise. The key estimation after quantization
process in [4,5,7,9] is called a hard-decision decoding and the proposed algorithm
exploiting full information of the observed data is called a soft-decision decoding.

The structure of the secret key characterized by Hensel lift can be regarded
as a convolutional code with infinite constraint length. It is known that Viterbi
algorithm works successfully for convolutional codes with small constraint length
and many algorithms such as Fano algorithm and stack algorithm have been
proposed for codes with large constraint length [13,14]. Thus one can expect that
these algorithms for large constraint length perform well also for the problem of
secret key recovery.

However there also exists a gap between the settings of the secret key recovery
and the communication theory. In the case of message transmission, the noise
ratio is set to be relatively small because the error probability has to be negligibly
small value, say, e.g., 10−8. On the other hand when we consider security of the
secret key, 10% success rate of the recovery is critical and we have to consider
the success probability under large noise ratio. For this gap it is not obvious
whether the above algorithms work successfully for the secret key recovery.

5 Implementation and Experiments

We have implemented generalized PPS algorithm. In our experiments on
1024, 2048-bit RSA, we prepared 100 (or 200 if the success rate is less than
0.1) different tuples of secret keys sk, e.g., sk = (p, q, d, dp, dq). We generated
the Gaussian noisy output sk for each sk. In our experiments, the incorrect
candidate solution is randomly generated based on Assumption 1 with c = 1.

The experimental results for n = 1024 and sk = (p, q, d, dp, dq) are shown in
Figure 1. We set (t, L) = (1, 211), (2, 211), (4, 210), (8, 27), (16, 20), which makes
the computational cost for Pruning phase to be equal: 221.

As can be seen in Figure 1, if σ ≤ 1.3, the success rate for small t (say,
t = 1, 2, 4) is almost 1. Generalized PPS algorithm can succeed to recover the
correct secret key with probability larger than 0.1 for σ ≤ 1.7; while it almost fails
to recover the key for σ ≥ 1.8. This results match with theoretically predicted
bound σ = 1.767. Figure 1 also shows generalized PPS algorithm fails with
high probability if we use a small L, (say L = 1); while the computational cost
is almost the same as the setting (t, L) = (1, 211). This fact is reinforced by
Theorem 3 shown in Appendix A.

Figure 1 suggests that the setting t = 1 is enough for gaining high success
rates. We then present experimental results for t = 1 and n = 1024, 2048 in
Figures 2 and 3. Figures 2 and 3 show that the success rates for any n and σ will
significantly increase if we use a larger list size L. For each bit size n, generalized
PPS algorithm almost always succeed to find the secret key if σ ≤ 1.3. The
generalized PPS algorithm still has a non-zero success rate for σ as large as 1.7.
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Fig. 1. Experiments for sk = (p, q, d, dp, dq), n = 1024

Fig. 2. m = 5, n = 1024 and t = 1 Fig. 3. m = 5, n = 2048 and t = 1

In communication theory, there are many techniques such as stack algo-
rithm [13]. We do not implement such techniques in our experiments. It is possi-
ble to increase the success rate if we implement them together in our algorithm.

6 Concluding Remarks

In this paper, we showed that we can recover the secret key if Eq. (6) holds; the
symmetric capacity I(X ;Y ) is larger than 1/m. As mentioned in [9], the success
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condition for key-recovery from noisy secret keys has a strong connection to
channel capacity. As explained in Remark 1, symmetric capacity is less than
channel capacity for asymmetric distribution cases. Hence, one might wonder
if the condition can be improved. Unfortunately, it is hopeless to improve the
bound since the distribution of input symbol (i.e., the correct secret key) is
fixed to uniform in our problem whereas the input distribution is optimized to
achieve the channel capacity in coding theory. Then, from the coding theoretic
viewpoint, the condition I(X ;Y ) > 1/m is optimal for our problem.

Acknowledgement. The first author was supported by JSPS Grant Number
KAKENHI 25280001.
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A Lower Bound on Error Probability of Generalized PPS
Algorithm

As mentioned in Remark 2, the upper bound (7) on the error probability of PPS
algorithm cannot go to zero for fixed L even though it is claimed in [9] that
the error probability vanishes as t increases for any fixed L. We show in this
appendix that L → ∞ is actually necessary to achieve an arbitrary small error
probability.

Let pe = Pr[R(1 − X ;Y ) > R(X ;Y )] be the single-letter error probability
under decoding X̂ := argmaxx∈{0,1}{R(x;Y )}. Note that pe = 0 is a degraded
case in which each bit X can be recovered from Y without error by the above
decoding rule. We can bound the error probability of PPS algorithm from below
in a simple form by using pe.

Theorem 3. Under generalized PPS algorithm it holds for any index a and
parameters (t, L) that

Pr[Xn/2,a /∈ Ln/2t|Xn/2,a is the correct secret key] ≥ pm(1+logL)
e . (15)

Consequently, the error probability does not go to zero as t→∞ with a fixed L
if pe > 0.

We can easily see that the error probability does not vanish for a fixed L by
the following argument. For simplicity let us consider the case that the correct
secret key is Xn/2,1. Then the candidate Xn/2,2 is identical to the correct key
except for the last m bits. Similarly, Xn/2,3 and Xn/2,4 are identical to the
correct key except for the last 2m bits. Thus, once the last 2m observed symbols
y2
n/2 become very noisy (the probability of this event does not depend on t) then

the likelihood of Xn/2,b for b = 2, 3, 4 exceeds that of the correct key Xn/2,1,
and the recovery error occurs when the list size is L ≤ 3. This argument always
holds when the list size L is fixed and we see that the error probability heavily
depends on L.
Proof of Theorem 3. Recall that lt = �(logL)/t�+1. SinceXn/2,1 ∈ Ln/2t implies
Xn/2,1[1 : tlt] = Xtlt,1 ∈ Llt , we have

Pr[Xn/2,1 /∈ Ln/2t] ≥ Pr [Xtlt,1 /∈ Llt ]

≥ Pr

⎡⎣2tlt∑
a=2

1l [Rtlt(Xtlt,a;Ytlt) > Rtlt(Xtlt,1;Ytlt)] ≥ L
⎤⎦ .
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For l = �logL�+ 1, we have l ≤ tlt and

Pr[Xn/2,1 /∈Ln/2t] ≥ Pr

⎡⎣ 2l∑
a=2

1l [Rtlt(Xtlt,a;Ytlt) > Rtlt(Xtlt,1;Ytlt)] ≥ L
⎤⎦

= Pr

⎡⎣ 2l∑
a=2

1l
[
Rl(X

l
tlt,a;Y

l
tlt) > Rtlt(X

l
tlt,1;Y

l
tlt)

]
≥ L

⎤⎦ (by (3))

≥ Pr

⎡⎣ 2l∑
a=2

1l
[
Rl(X

l
tlt,a;Y

l
tlt) > Rtlt(X

l
tlt,1;Y

l
tlt)

]
= 2l − 1

⎤⎦ . (16)

Nowconsider the case thatR(1−Xtlt,1[j][k];Ytlt [j][k]) > R(Xtlt,1[j][k];Ytlt [j][k])

for all j = tlt− l+1, · · · , tlt and k = 1, · · · ,m. Then Rl(x;Y
l
tlt
) > Rl(X

l
tlt,1

;Y l
tlt
)

for all x �= X l
tlt,1

. As a result, (16) is bounded as

Pr[Xn/2,1 /∈ Ln/2t]

≥ Pr

⎡⎣ tlt⋂
j=tlt−l+1

m⋂
k=1

{R(1−Xtlt,1[j][k];Ytlt [j][k]) > R(Xtlt,1[j][k];Ytlt [j][k])}
⎤⎦

= pml
e ≥ pm(1+logL)

e .

and we complete the proof.

Remark 4. In the theoretical analysis of Peterson et al. [9], they compared scores
between the correct secret key and a subset of L′r with size L randomly chosen
from L′. However, in the actual algorithm all elements of L′r are scanned and
such an analysis based on the random choice does not have validity, which led
to the conclusion contradicting Theorem 3.

B A Toy Example for Generalized PPS Algorithm with
(14)

To better understand the algorithm, we present a toy example. Suppose that
the correct solution is 1100010011 and that we observed the data sequence
as y = (−3,−2,+2,+3,+3,−3,+1,+4,−3,−2). Attackers know the observed
data; but, do not know the correct solution. Assume that we know E(f0) =
3 and E(f1) = −3. Suppose that we have three candidate sequences: x1 =
(1100010011), x2 = (1001110010) and x3 = (0101011001).

The score for x1 = (110001001) is given by DPA(x1;y) = 3+ 2+2+3+3+
3 + 1 + 4 + 3 + 2 = 26. Since the value 26 is close to 3× 10 = 30, the candidate
seems to be correct.

The score for x2 = (1001110010) is given by DPA(x2;y) = 3−2+2−3−3+
3+1+4+3− 2 = 6. The value 6 is close to 0. The score for x3 = (0101011001)
is given by DPA(x3;y) = −3+ 2+ 2− 3 + 3+ 3− 1+ 4− 3+ 2 = 2. The value
2 is close to 0. Thus these candidates seem to be incorrect.
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Abstract. We consider a simple power analysis on an 8-bit software
implementation of the AES key expansion. Assuming that an attacker
is able to observe the Hamming weights of the key bytes generated by
the key expansion, previous works from Mangard and from VanLaven
et al. showed how to exploit this information to recover the key from
unprotected implementations.

Our contribution considers several possible countermeasures that are
commonly used to protect the encryption process andmaywell be adopted
to protect the computation and/or the manipulation of round keys from
this attack.We study two different Boolean masking countermeasures and
present efficient attacks against both of them. We also study a third coun-
termeasure based on the computation of the key expansion in a shuffled
order. We show that it is also possible to attack this countermeasure by
exploiting the side-channel leakage only. As this last attack requires a not
negligible computation effort, we also propose a passive and active com-
bined attack (PACA) where faults injected during the key expansion are
analyzed to derive information that render the side-channel analysis more
efficient. These results put a new light on the (in-)security of implemen-
tations of the key expansion with respect to SPA.

As a side contribution of this paper, we also investigate the open
question whether two different ciphering keys may be undistinguishable
in the sense that they have exactly the same set of expanded key bytes
Hamming weights. We think that this problem is of theoretical interest
as being related to the quality of the diffusion process in the AES key
expansion. We answer positively to this open question by devising a
constructive method that exhibits many examples of such ambiguous
observations.

Keywords: side-channel analysis, simple power analysis, passive and
active combined attacks, AES key expansion.

1 Introduction

Side channel analysis is an effective means to derive secrets stored in a secu-
rity device like a smart card from measurements of a leaking physical signal

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 279–297, 2014.
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such as the execution duration, the power consumption or the electromagnetic
emanation. Since the first publication of a timing attack by Kocher [6] many
side-channel analysis methods have been presented that exploit a large num-
ber of leakage traces by a statistical method: Differential Power Analysis [7],
Correlation Power Analysis [2], Mutual Information Analysis [4] and Template
Analysis [3] are few such well known methods.

Simple Power Analysis (SPA) also permits to infer information in a more di-
rect manner by ”visually” inspecting a single (in the most favorable cases) trace.
Two kinds of information can be retrieved by SPA. At a high level it allows to
recognize different instructions or blocks of instructions that are executed on
the device. This capability is typically exploited either to recover a sequence of
arithmetic operations of a modular exponentiation used in public key cryptog-
raphy, or for a rough reverse engineering and/or a first characterization phase of
an implementation or of the leakage behavior of the device. At a lower level SPA
informs about the values of the operands involved in each elementary instruction
particularly for load and store operations when this data is read from or written
to the bus. The dependency between the value of a data and that of the power
consumption that leaks when it is manipulated has early been studied [11,9,10]
and in the classical models the power consumption is tightly linked either with
the Hamming weight of the data or with the Hamming distance between this
data and the value it replaces on the bus.

In this paper we consider an attacker that is able to infer the Hamming
weights of the data manipulated by targeted instructions of a software AES
implementation on an 8-bit microprocessor. Specifically the targeted data are
the different bytes of the different round keys, while the targeted instructions
may be located either in the AES key expansion process which computes these
round keys, or in the AddRoundKey function which XOR the round keys with
the current state of the encryption process. While the problem of inferring an
AES key from the Hamming weights and the expanded key bytes has first been
mentioned in [1], Mangard [8] was the first to describe such an attack which
has later been improved by VanLaven et al. [13]. While the SPA on the AES
key expansion described in these works only apply on naive unprotected imple-
mentations, we study in this paper to which extent this attack may be adapted
to implementations featuring side-channel countermeasures. We consider three
different scenarios where either a Boolean masking is applied to the round keys
or the order of computation of the expanded key bytes is randomly shuffled.
The masking countermeasure prevents the attacker from obtaining the Ham-
ming weight of actual key bytes, while the shuffling countermeasure prevents
him to precisely know to which key byte an observation is related.

The paper is organized as follows: The problem statement and a background
on the related previous works are presented in Sect. 2. This section also considers
the open problem whether two expanded keys may have the same of Hamming
weights. Section 3 presents our main contribution where we describe attacks
on three countermeasures. In the light of these results we give implementation
recommendations in Sect. 4 while Sect. 5 concludes this work.
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2 Problem Statement and Previous Work

Given a 16-byte ciphering key K, the AES key expansion derives eleven 16-byte
round keys Kr (r = 0, . . . , 10) with K0 = K and where individual bytes of Kr

are denoted kr,i (i = 0, . . . , 15).
The expanded key K = {K0, . . . ,K10} is computed column by column by

means of two types – a linear and a non-linear – of relations:

kr,i = kr−1,i ⊕ kr,i−4 (for i = 4, . . . , 15) (1)

kr,i = kr−1,i ⊕ S(kr−1,12+((i+1) mod 4))⊕ c′r (for i = 0, . . . , 3) (2)

where S is the S-Box substitution and c′r is a round specific constant equal to
{02}r−1 if i = 0 and equal to 0 if i ∈ {1, 2, 3}. We refer the interesting reader to
the AES specifications [12] for further details on the AES ciphering process.

The problem considered in this paper is how to identify the ciphering key K
based on a set {HW(kr,i)}r,i of part or all Hamming weights of the expanded
key bytes.

Mangard [8] was the first to give a solution to this problem. He proposed to
build lists of values of 5-byte key parts which are both compatible with the ob-
served Hamming weights of these bytes, and also compatible with the Hamming
weights of 9 other key bytes (and several other intermediate bytes) that can be
computed from the 5-tuple.

In [13] VanLaven et al. also consider the same problem and give an elegant
analysis of the key byte links which allows them to derive an efficient guess-
compute-and-backtrack algorithm where a sequence of key bytes are successively
guessed in an optimal order that maximizes the number of other bytes that
can be computed and checked with respect to their Hamming weight. Once an
inconsistency with respect to the observations is found the algorithm considers
the next possible value for the current guessed byte and eventually backtracks
one level back in the sequence of key bytes when all values for the current guessed
byte have been considered. Interestingly the last contribution of this work shows
that their algorithm can cope with (slightly) erroneous observation at the price
of a more demanding computational work in the key space exploration process.

Undistinguishable Keys. We study the open question whether there exist key
pairs – or more generally key sets – which are undistinguishable for having the
same Hamming weights signatures1. We are thus concerned by the existence or
non-existence of two different keys K and K ′ such that K and K ′ have exactly
the same 176 Hamming weights.

If the AES key expansion was deriving round keys K1 to K10 with an ideal
random behavior, the probability that there exist two keys having the same
signature would be overwhelming low. Indeed the probability that two random
bytes have same Hamming weight is p = 2−2.348 so that the probability that the

1 By Hamming weights signature of a key K we mean the set of all the Hamming
weights of its expanded key K.
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signatures of two random keys are the same is q = p176 ( 2−413.3. It follows that
the probability that at least one collision of signatures occurs among the whole
key space is about 1− e− q

2 ·22∗128 ( 2−158.3.
While the AES key expansion is far from having a random behavior, it was

considered in [8] that so-called twin keys probably do not exist or should be
very rare2. We show in this paper that this belief is wrong by proposing a
constructive method that can easily generate millions of them. We refer the
reader to Appendix A for the description of this method and just provide here
an example of such key pair:{

K = B3 65 58 9D B4 EB 57 72 1F 51 F7 58 02 0C 00 17

K ′ = F2 65 19 DC B4 EB 57 33 5E 51 F7 19 02 0C 00 56

Note that the existence of twin keys is of theoretical interest as it gives a
new demonstration of the quite non-ideal behavior of the diffusion process of
the AES key expansion. Nevertheless, it has no practical impact on the attacks
considered in this paper since the only consequence is that when attacking a key
belonging to such pair, the attack process ends with two possible keys instead
of a unique one. The correct key can then be identified thanks to a known
plaintext/ciphertext pair.

3 Key Recovery on Protected Implementations

In this section we study three different countermeasures that may be imple-
mented to protect the key expansion function against simple power analysis.

The first two countermeasures are natural ways to apply a Boolean masking
on the expanded key. They make use of 11-byte and 16-byte masks respectively
in order to cope with limited RAM resources and/or small random entropy
generation capacity that usually prevail on embedded devices. The third coun-
termeasure is a columnwise shuffling of the expanded key computation.

3.1 11-byte Entropy Boolean Masking

We consider here that at each execution all round keys are masked by 11 specific
random bytes mr so that the attacker has no longer access to the leakages of
individual bytes kr,i of each Kr but rather to those of masked versions K ′

r =
(k′r,i)i with k

′
r,i = kr,i ⊕mr. Figure 1 depicts the mask pattern that applies on

the expanded key bytes.
The basic attack does not apply directly since the measured Hamming weights

are related to masked bytes that do not verify neither linear nor non-linear links
of the key expansion process.

In order to apply the guess-compute-and-backtrack strategy of the basic at-
tack we now have to make also guesses about the values of the masks of all key

2 The exact sentence of the author was: The high diffusion of the AES key expansion
suggests that there are only very few keys of this kind, if there are such keys at all.
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Fig. 1. Part of the 8-byte masking scheme

bytes involved in the key search. As each extra mask that must be guessed in-
duces a multiplication by 28 of the searched space, we use two tricks to contain
the necessary computing work factor.

The first idea is to exploit some extra information that can be inferred about
the key bytes kr,i by considering measured Hamming weights from multiple
traces. More precisely, consider two bytes x and y masked by the same random
value m. The respective Hamming weights of the masked bytes x′ = x⊕m and
y′ = y ⊕m verify the two following properties:

|HW(x′)−HW(y′)| � HD(x, y) � min(8,HW(x′) + HW(y′)) (3)

HD(x, y) ≡ HW(x′) + HW(y′) (mod 2) (4)

Both equations give information about the Hamming distance between un-
masked values x and y. For example, suppose that x = 30 and y = 121 (i.e.
HD(x, y) = 5). With a first trace for which m = 70, we measure HW(x′) =
HW(30 ⊕ 70) = 3 and HW(y′) = HW(121 ⊕ 70) = 6. From Eq. (3) we infer
that 3 � HD(x, y) � 8, and due to the odd parity given by Eq. (4) we learn
that HD(x, y) ∈ {3, 5, 7}. With a second trace for which m = 24, we measure
HW(x′) = HW(30 ⊕ 24) = 2 and HW(y′) = HW(121 ⊕ 24) = 3. This second
measure allows to further constrain HD(x, y) which now belongs to {3, 5}. By
exploiting more and more traces we can decrease the number of possible can-
didates and ultimately expect to identify the Hamming distance between the
unmasked bytes. Interestingly we notice that the parity equation may be used
to detect erroneous measurements. For example, if the measurements from ten
traces give an odd parity for HW(x′) + HW(y′) eight times and an even parity
only twice, then one may conclude that either HW(x′) or HW(y′) has not been
correctly measured on these two last traces.

In a first phase of the attack, multiple traces are analysed in order to get as
much possible information about the Hamming distance HD(kr,i, kr,i′) of each
couple of bytes belonging to the same round key. Then in a second phase a smart
exploration of the key space is performed based on the Hamming weights mea-
sured from a unique trace, and on the Hamming distances constraints obtained
in the first phase.

The second idea to reduce to computational effort is to limit the process of
guessing and computing key bytes to only two adjacent round keysKr andKr+1.
That way we have to guess only two mask bytes. For each (mr,mr+1) candidate
we perform a key search where we guess successive bytes of Kr and derive the
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values of successive bytes ofKr+1. For example, consider that we start the search
by guessing kr,12 (equivalently we could start at positions 13, 14 or 15). In a first
step we guess kr,3 and compute kr+1,3. In a second step we guess kr,7 and com-
pute kr+1,7. Then we guess kr,11 and compute kr+1,11, and so on. Figure 2 shows
the order in which successive bytes of Kr and Kr+1 are respectively guessed and
computed. As in the basic attack, each time a key byte is guessed or computed we
check the consistency with the measured Hamming weights of its masked values.
A more efficient consistency check consists in verifying that each newly guessed
or computed byte has compatible Hamming distances with all already known key
bytes belonging to the same round key. For example, when kr,11 is guessed in
the third step four constraints on HW(kr,11⊕mr), HD(kr,11, kr,7), HD(kr,11, kr,3)
and HD(kr,11, kr,12) are verified, and when kr+1,11 is computed three checks im-
ply HW(kr+1,11⊕mr+1), HD(kr+1,11, kr+1,7) and HD(kr+1,11, kr+1,3). As we can
see, the more deeper we are in the exploration process, the more opportunities
we have to invalidate wrong guess sequences and backtrack.

Kr Kr+1

0

1 12 23 3

⇒

Kr Kr+1

0

1 12 23 34 4

5 56 67 78 8

9 910 1011 1112 12

13 1314 1415 15 15

Fig. 2. Guess order of the 11-byte masking scheme

We have extensively simulated our attack by generating perfect measurement
sets of Hamming weights. For different numbers T of exploited traces (T ∈
{5, 10, 15, 20, 30}) – this number influences the tightness of the bounds derived
for the Hamming distances – we ran N simulations (N = 1000 in most cases) of
the attack. For each run we picked a key at random, and for each T executions
we computed a masked expanded key based on an execution specific set of masks
(m0, . . . ,m10), from which we derived the set of Hamming weights assumed to
be available to the attacker. Given a round r we computed the sets of possible
Hamming distances between each couple (kr,i, kr,i′) and (kr+1,i, kr+1,i′). Then
we choose one particular trace (actually a set of Hamming weights) among the
T available ones and a starting position of the guess sequence3, and executed
the second phase of the attack (exploration process).

Table 1 shows the simulation results obtained on a classical PC equipped
with an 2.4 MHz I5 core processor and 4 GB of RAM. For each number of
exploited traces we give the average computation time as well as the average

3 Note that an attacker can freely choose both the trace which is exploited for the key
search, the round r from 0 to 9 and the starting position from 12 to 15. We took
this opportunity to select those parameters that minimize the number of possible
values of the starting triplet – i.e. (kr,12, kr,3, kr+1,3) in the example above – that
are compatible with the measured Hamming weights.
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residual entropy of the key (the log2 of the number of compatible keys returned
by the attack). Because of a large variance in the attack computation time, we
choose to limit the exploration with a given timeout. The value of this timeout
as well as the percentage of simulations that terminated within this limit are
also presented. Note that the average figures in the second and third columns
are computed over the set of terminating simulations.

Table 1. Simulation results of the attack on the 11-byte masking countermeasure

Number of Average Average residual Simulation Percentage of Number of
traces (T ) time (s) entropy (bits) timeout (s) terminating runs runs (N)

5 398 5.9 1800 47.0 83
10 40.6 0.66 300 93.4 500
15 10.0 0.29 60 94.7 1000
20 5.9 0.24 60 98.2 1000
30 3.0 0.24 60 100.0 1000

The proposed attack is quite efficient, even for a number of exploited traces
reduced to five. In this case about 45% of runs terminate in less than 30 minutes
and the average entropy of the key set that remains to exhaust is only about
five bits.

Remark 1. From a practical point of view related to the ability for the attacker
to infer Hamming weight from the leakage traces, we notice that in this attack
not all 176 Hamming weights are needed per trace but only 32 ones. Also, the
opportunity that the attacker has to choose which round key he wants to attack
may be exploited to select the portion of the traces where he is the more confident
about the measured Hamming weights.

3.2 16-byte Entropy Boolean Masking

The second countermeasure that we consider consists in masking all bytes of a
round key with a different random byte, while repeating these 16 masks for all
round keys. Precisely, each masked round key is defined as K ′

r = (k′r,i)i with
k′r,i = kr,i ⊕mi (i = 0, . . . , 15). Figure 3 depicts the mask pattern that applies
on the expanded key bytes.

As in the attack on the 11-byte masking scheme, we will first exploit several
traces in order to obtain information on Hamming distances between key bytes
sharing a same mask. We also want to limit to two the number of mask values
that must be simultaneously guessed in the most explosive (less constrained) part
of the key space exploration. It follows from this that the sequence of guesses
should extend horizontally on a same byte position i rather than on a same
round key r.
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Fig. 3. Part of the 16-byte masking scheme

Given a starting position a ∈ {0, 1, 2, 3}, we define the related position b =
12+((a+1) mod 4). For each guess on the couple of masks (ma,mb), we perform
an exploration of the key space as follows. First we guess k0,a. Then repeatedly
for r = 0, . . . , 9 we guess kr,b and derive kr+1,a. As in the attack described in
Sect. 3.1, each newly guessed or computed key byte is checked against available
information about the Hamming weight of its masked value and the Hamming
distances with other already known bytes at the same position. We have now
performed the most demanding part of the exploration since we had to make a
new guess for each byte kr,b. At this point we have a reasonably small number of
compatible key candidates for which we know all key bytes at positions a and b
except k10,b. We now guess k10,b which is quite constrained by the Hamming dis-
tances at position b and so does not increase much the exploration size. Knowing
k10,b, we can now successively compute key bytes at position c = b− 4 backward
from k10,c to k1,c. Note that mc is the only value that we must guess to compute
this line up to k1,c. We terminate the line c by guessing the quite constrained last
byte k0,c. Now, guessing the mask md at position d = c− 4 we can compute in
the same way all the line d from k10,d to k1,d, and terminate the line by guessing
k0,d. We can pursue the same process with one more line at position e = d − 4
and then the next line is located at position f = 12+((b+1) mod 4) and is com-
puted forward from k0,f to k9,f terminating with a guess on k10,f . Successively
we determine all the expanded key, line after line, at positions whose sequence
a, b, c, . . . is presented on Fig. 4.

Interestingly, we can notice a property that stands for the first line a and
which allows to dramatically speed up the attack. For each solution found on

K0
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bcde

f

K1

a

bcde

f

K2

a

bcde

f
. . .

K10

a

bcde

f

Fig. 4. Guess order of the 16-byte masking scheme
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lines a and b by assuming the couple of masks (ma,mb) we would have found
a companion solution with any other value m′

a where all kr,b are the same and
where each kr,a is replaced by kr,a ⊕ (ma ⊕m′

a). As key bytes at position a do
not influence those recovered on the successive lines b, c, d,. . . we do not have to
know the exact value of ma and can fix it arbitrary. At the end of the attack we
are able to compute the correct value of the line a by inferring the error made on
ma based for example on the difference between the assumed value of k10,a and
its exact value which can be computed as k9,p⊕ k10,p where p = a+4. Doing so,
the first part of the exploration, which results in knowing values at positions a
and b, can be done by guessing virtually only one mask byte (mb). A speed-up
factor of 28 is achieved which results in a particularly efficient attack.

Table 2 presents simulation results for this attack in a similar manner than
in Sect. 3.1. Surprisingly, the key recovery in the presence of a 16-byte masking
is much more efficient than with the 11-byte masking despite the higher mask
entropy. For example the key is recovered within 1 second on average when
10 traces are exploited against 40 seconds for the 11-byte masking. Also, it is
possible to use only 3 traces with still small computation time and residual key
entropy in a significant proportion of cases.

Table 2. Simulation results of the attack on the 16-byte masking countermeasure

Number of Average Average residual Simulation Percentage of Number of
traces (T ) time (s) entropy (bits) timeout (s) terminating runs runs (N)

3 77.3 7.3 600 60.7 28
5 25.3 4.2 300 88.5 1000
10 1.09 1.7 60 100.0 1000
15 0.24 0.93 60 100.0 1000
20 0.12 0.55 60 100.0 1000
30 0.07 0.24 60 100.0 1000

3.3 Column-Wise Random Order Countermeasure

The third countermeasure consists in calculating independent bytes in a random
order. Due to the column based structure of the key schedule the four bytes of
each column can be calculated independently. Figure 5 gives an example of a
possible sequence of permutation.

This countermeasure is hiding a part of information. We still assume that
the attacker is able to correctly identify all 176 Hamming weights but for every
column he only obtains a non-ordered set of 4 values. For example, given the
example key represented in Figure 6 where key bytes Hamming weights are
indicated in the corner, the information that an attacker has access to is shown
on Figure 7. The key bytes of each column have been involved in a random order
so that the attacker can only infer non-ordered quadruplets of Hamming weights.
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Fig. 5. Part of an example of effect of random order countermeasure
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Fig. 6. Three first round keys derived from an example key with their corresponding
Hamming weights

Since all 24 permutations on the quadruplet can be considered as valid a pri-
ori4, the computational effort for considering every permutation on each column
makes the key search computationally unfeasible. In order to reduce the explo-
ration cost we use what we call a booking system. During our attack we will
book Hamming weights at fixed positions, either by choice when the byte value
is guessed, or by constraint when it is computed from a key byte relation. Once it
is booked a Hamming weight is no more available in its column until a backtrack
releases it due to a modification of the last guessed byte.

For instance, when we have to guess a value for k1,15 we first guess its Ham-
ming weight among the list {2,3,4,5} of available Hamming weights. If we guess
that HW(k1,15) = 4, then the guess on k1,15 itself ranges over all values having
an Hamming weight equal to 4, and the list of available Hamming weights for
that column is now reduced to {2,3,5}. When another byte of the same column
will be also guessed (or computed) at a deeper step of the exploration process its
Hamming weight will necessarily have to belong to this reduced set. If at some
point a backtrack occurs on k1,15 then the Hamming weight value 4 is released
and will be possibly available for other bytes of this column.

We describe here two versions of this attack, one using information given by
one acquisition, which can take non-negligible time, and faster version which
exploits faulty executions in order to gather more information.

4 Due to possible Hamming weight duplicates, some columns may have a reduced
number of possible permutations.
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Fig. 7. Information gained by the attacker reduces to quadruplets of Hamming weights
of each column

Basic Attack. In a basic version of our attack we follow an equivalent explo-
ration pattern than the one used in [13] for a non-protected implementation. The
only difference is that the guess may have different possible Hamming weights.
As explained above, before guessing a byte value at a current position we have to
guess which un-booked Hamming weight value will be used at this position and
book it while it’s corresponding values are exhausted. When we have guessed
bytes at enough positions to compute key bytes from others we check that the
Hamming weight of the computed values are available for their columns and we
book these Hamming weights also. If the Hamming weight of a computed byte is
not available then this solution is not valid and we backtrack from the previous
guessed byte. Note that if a same Hamming weight value is available n times in
a column it can be booked n times too.

We simulated this attack by considering random keys and corresponding non-
ordered quadruplets for each column. Table 3 presents the number of executions
over 100 runs that ended before a time limit which ranges from 30 minutes to
6 hours. As it can take undefined long time we choose to interrupt a run if it
takes more than 6 hours (27% of cases). Note that the average time for the non-
interrupted executions is about 2 hours, so that average time over all executions
could possibly be quite larger.

Faulting Attack. We describe here a more efficient version of the attack which
uses fault injections in order to significantly reduce the execution time of the
key search.

We assume that the attacker can induce a fault in a random byte of a chosen
column, and we take the example of the first column in the following expla-
nations. The fault model assumes a random modification of the faulted byte
value.

Table 3. Results of non-faulted attack against random order counter-measure

Time Elapsed � 30 min � 1h � 2h � 3h � 4h � 5h � 6h + 6h

# over 100 runs 6 25 41 55 66 71 73 27
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The key observation used in this attack is that a differential induced at some
key byte of the first column propagates following a fixed pattern of active bytes.
For example, if the fault modifies the value of k0,0 then Figure 8 shows the
positions of all active bytes in the first three round keys5. Due to the shuffling
counter-measure, the attacker does not know which of k0,0, k0,1, k0,2 or k0,3 has
been modified by the fault, but what is important is that the vertical relative
positions of the active bytes are fixed (given by the pattern of Figure 8) and
known from the attacker.
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Fig. 8. Part of the pattern induced by a fault on first byte of first column of K0

As in the basic attack described above, the attacker can exploit a non-faulted
execution to infer the reference quadruplets of Hamming weights for each column.

When exploiting a faulted execution, the attacker can compare, for each col-
umn, the possibly modified quadruplet of Hamming weights with the original
one. He is thus able to identify which Hamming weights have been modified and
thus concern active bytes. Let’s consider an example where the faulted byte is
k0,2 which value has been modified from Ox15 to OxB1. This example case is
depicted on Figure 9 where one can see all subsequent active bytes. Note that in
this example, some active bytes (k2,5, k2,9 and k2,13) have been modified while
their Hamming weights remained unchanged.

Due to the shuffling counter-measure, the attacker faces round keys where
each column has been shuffled as shown on Figure 10. Remind that the attacker
does not know neither the byte values nor the active bytes positions (colored in
red on the figure), but only the quadruplets of Hamming weights. Comparing for
example the original ({2,4,6,7} on Figure 7) and faulted ({2,4,4,6} on Figure 10)
quadruplets of column 4, he can infer that 7 is the Hamming weight of the only
active cell in this column. Similarly, he can also infer that the Hamming weight
of the only active cell in the column 7 is 5. Considering column 10, the attacker
infers the partial information that one of the two active bytes Hamming weights
is equal to 1.

Even if the information retrieved about the Hamming weights of the active
bytes of each column is only partial, we can nevertheless exploit them in the
key search algorithm. For example, in the guess-compute-and-backtrack process,
when one guesses that the value of e.g. k1,3 has an Hamming weight of 7 (so that

5 Obviously, the pattern is not limited to the three round keys, it extends on all 11
round keys.
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Fig. 9.Details of fault effect without considering countermeasure Red/darkgrey Active,
green/lightgrey Active but remains unchanged
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Fig. 10. Attacker point of view of faulted execution, underlined values in sets are thoses
detected by the attacker as modified by the fault

k1,3 would be an active byte), then in column 7 the active byte is necessarily
located in the bottom cell also (cf. the active bytes pattern of Figure 8), so that
we know that HW(k1,15) = 5.

As one can see, the principle of the faulting attack is to exploit in the key search
phase information about Hamming weights of active bytes (whose relative verti-
cal positions is fixed) which have been acquired by comparing Hamming weight
quadruplets of faulted executions from original ones. While the detailed explana-
tions are quite intricate, it is though possible to infer more information from suc-
cessive faulty executions to further reduce the execution time of the key search.

We have simulated the faulting attack by exploiting as much information
given by faults as possible. We give in Table 4 average execution times of the
key search phase as a function of the number of exploited faulty executions. Note
that even with only one faulty execution the average attack time is dramatically
reduced from several hours to only 20 minutes.

Table 4. Results of faulted attack against random order counter-measure

fault number time (min)

1 20
5 5
10 3
20 2
30 2
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Remark 2. It is interesting to notice that if the fault did not occur in the first
column then the attack is still possible while possibly less efficient. Indeed the
pattern of active bytes induced by a fault in any column is always a subset of the
pattern induced by a fault in the first column. Consequently this shorter pattern
has the same shape as the pattern starting from the first column and can then
be exploited in the same way but will provide information only for rightmost
columns. This allows to perform this attack even when the attacker do not have
a precise control on the timing of the fault.

4 Recommendations for Secure Implementations

Considering the problem of recovering a key by analysing the Hamming weights
of the key bytes computed during the key expansion process, several counter-
measures are proposed in the seminal contribution [8] among which the Boolean
masking of the key expansion. We showed that two versions of this countermea-
sure with 11 and 16 bytes of mask entropy are not sufficient to prevent the key
recovery when the attacker can precisely infer the Hamming weights. Our at-
tacks on the Boolean masking also apply if the expanded key is computed once
for all and there is no key expansion process computed by the device. In that
case the Hamming weights can still be measured, not while the key bytes are
computed but rather when they are transferred into RAM and/or used in the
AddRoundKey function.

Using an hardware or an 16- or 32-bit AES implementation prevents our at-
tacks which only apply on 8-bit software implementations. On these later devices
we recommend either to implement (if ever possible) a full 176-byte key masking
where all key bytes are masked by independent random values, or to combine
a weaker masking with other countermeasures that reinforce its security. For
example, combining one of the two masking methods considered in this paper
together with the column-wise shuffling should be sufficient to prevent the at-
tacker from obtaining enough exploitable information from the computation of
the round keys itself. As for the manipulation of the key bytes in the encryption
process, the combination of masking and shuffling should also be sufficient with
the advantage here that the entropy of the shuffling is higher in this later case
since all 16 bytes may be shuffled together instead of per chunks of four bytes.
Obviously, on top of these fundamental countermeasures, any means to make it
difficult to find the relevant points of interest on the side-channel trace – e.g.
random delays – or to interpret the leakage in terms of Hamming weight – added
signal noise – would add extra security to the AES implementation.

5 Conclusion

In this paper we have revisited a simple power analysis on the AES key expan-
sion. While previous works only apply on unprotected implementations, we have
considered three different countermeasures and presented efficient attacks in each
scenario. In two Boolean masking cases (11-byte and 16-byte mask entropy) our
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attacks recover the key in a matter of seconds when a few power traces are ex-
ploited. In the case of a column-wise shuffling of the key expansion process, we
have devised an attack which takes several hours on average and proposed an
improved version that takes advantage of extra information provided by fault
analysis so that the computation time is reduced to a few minutes.

Our attacks assume that the attacker is able to obtain correct values of the
Hamming weights of the key bytes. As a future work it may be interesting to
study how more difficult it would be to cope with erroneous observations.
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formed on the CALI computing cluster of university of Limoges, funded by the
Limousin region, XLIM, IPAM and GEIST institutes, as well as the university
of Limoges.

References

1. Biham, E., Shamir, A.: Power Analysis of the Key Scheduling of the AES Candi-
dates. In: Second AES Candidate Conference – AES2, Rome, Italy (1999)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
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A Generating Undistinguishable Keys Pairs

The core idea of our method comes from the observation that given a permu-
tation τ of {0, . . . , 7} and the byte transformation π : b = (b7 . . . b0) 	→ π(b) =
(bτ(7) . . . bτ(0)) we have HW(π(b)) = HW(b). Thus, a sufficient condition for K
and K ′ to form a twin pair is that k′j = π(kj) for all j = 0, . . . , 175. Our goal
is to find K such that defining K ′ by k′0,i = π(k0,i), i = 0, . . . , 15 the sufficient
condition propagates up to (near) the end of the expansion. As π is linear the
sufficient condition propagates well on all linear relations. The only difficult task
is to ensure the propagation of the condition also for non-linear relations. Denot-
ing cr = {02}r−1 the constant involved in the first non-linear relation at round
r = 1, . . . , 10, and assuming that the sufficient conditions hold up to round key
Kr−1, they propagate to Kr provided that:

k′r,0 = π(kr,0)⇔ S(π(kr−1,13))⊕ cr = π(S(kr−1,13))⊕ π(cr) (5)

k′r,1 = π(kr,1)⇔ S(π(kr−1,14)) = π(S(kr−1,14)) (6)

k′r,2 = π(kr,2)⇔ S(π(kr−1,15)) = π(S(kr−1,15)) (7)

k′r,3 = π(kr,3)⇔ S(π(kr−1,12)) = π(S(kr−1,12)) (8)

The first task is to find a suitable bit permutation which maximizes the prob-
ability that these conditions hold by chance. Interestingly the probability that
any condition (6) to (8) holds is as large as about 1

4 when τ permutes only 2 bits6.
This is due to the fact that S(π(x)) = π(S(x)) as soon as π(x) = x and π(y) = y
for y = S(x) where both fixed-point conditions hold with probability 1

2 . Finding
a twin pair only necessitates that all kr−1,i (r = 1, . . . 10 and i = 12, . . . , 15)
belong the following sets:

Ωr = {x : S(π(x)) ⊕ cr = π(S(x)) ⊕ π(cr)} (for i = 13)

Ω = {x : S(π(x)) = π(S(x))} (for i ∈ {12, 14, 15})

It is important that either Ω or Ω1 contains some value x which satisfies the
condition without being a fixed point for π otherwise K ′ would be equal to K.
We have chosen τ which permutes bits 0 and 6. Note that it is the only bit
transposition having a non fixed point for Ω.

The second task is to generate many key candidates which verify by con-
struction as many sufficient conditions as possible. We devised a method that
efficiently generates a large number of candidates that systematically fulfill suf-
ficient conditions for all r � 5. First we make vary the twelve key bytes k1,12+n,
k2,12+n and k3,12+n (n = 0, . . . , 3) which are free except that they must all belong

6 This is also true for condition (5) for a similar reason.
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to their respective relevant Ω, Ω2, Ω3 or Ω4 set. Due to the previous remark the
number of possible choices for these bytes is lower bounded by (256/4)12 = 272.
We also make use of the following relations among the key bytes

k4,12+n = k0,12+n ⊕ S(k3,12+(n+1) mod 4) ⊕ c
′
4 (9)

k0,8+n = k0,12+n ⊕ S(k2,12+(n+1) mod 4) ⊕ c
′
3 ⊕ k3,12+n (10)

k0,4+n = k0,8+n ⊕ S(k1,12+(n+1) mod 4) ⊕ c
′
2 ⊕ k2,12+n ⊕ S(k2,12+(n+1) mod 4) ⊕ c

′
3 ⊕ k3,12+n(11)

k0,0+n = k0,8+n ⊕ S(k0,12+(n+1) mod 4) ⊕ c
′
1 ⊕ k1,12+n ⊕ S(k1,12+(n+1) mod 4) ⊕ c

′
2 ⊕ k2,12+n(12)

where c′r is defined to be cr if n = 0 and 0 otherwise. The proofs of these
relations are provided in Appendix B. Considering equation (9), and knowing
that k3,12...15 have been chosen in their respective Ω set, one can choose values
for k0,12+n that belong to its Ω set such that k4,12+n also belongs to its own Ω
set. For example, given k3,14 ∈ Ω one can find two values k0,13 and k4,13 which
respectively belong to Ω1 and Ω5. There always exists several such choices that
we have tabulated though only one choice was sufficient in our implementation.
Choosing k0,12+n this way ensures that the sufficient conditions will be verified
even for the non-linear relations involved in the computation of K5.

The process to generate the key candidates resumes as follow: choose arbi-
trary value for k1,12+n, k2,12+n and k3,12+n (n = 0, . . . , 3) that belong to their
respective relevant Ω set, then choose values for k0,12+n as explain above, and
terminate the valuation of K = K0 by using equations (10) to (12) succes-
sively. For each such key K we compute K ′ by applying the bit transposition
π to all its bytes. Our construction method ensures that k′r,i = π(kr,i) – and so
HW(k′r,i) = HW(kr,i) – for all r = 0, . . . , 5.

Generating sufficiently many key candidates, one can expect to find one for
which the sufficient conditions propagate by chance over the non-linear relations
up to the end of the expansion.

After having found a first winning key pair – the one given in Sect. 2 – we
explored in its neighborhood and we surprisingly generated many other undistin-
guishable pairs much more easily that it was to find the first one. For example,
keeping the values of k1,13, k1,14, k2,12 and k2,13 involved in the first key pair,
we have been able to generate more than 23 millions of other undistinguishable
key pairs in a few days of computation. This tend to demonstrate that pairs
of keys having same Hamming weight signatures are far from being uniformly
distributed, but we have not studied this behavior in more detail.
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B Proofs of Equations (9) to (12)

B.1 Equation (9)

Proof.

k4,12+n = k4,8+n ⊕ k3,12+n

= k4,4+n ⊕ k3,12+n ⊕ k3,8+n

= k4,0+n ⊕ k3,12+n ⊕ k3,8+n ⊕ k3,4+n

= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k3,12+n ⊕ k3,8+n ⊕ k3,4+n ⊕ k3,0+n

= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k3,4+n ⊕ k3,0+n ⊕ k2,12+n

= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k2,12+n ⊕ k2,4+n

= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k2,8+n ⊕ k2,4+n ⊕ k1,12+n

= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k1,12+n ⊕ k1,8+n

= S(k3,12+(n+1) mod 4)⊕ c′4 ⊕ k0,12+n

��

B.2 Equation (10)

Proof.

k3,12+n = k3,8+n ⊕ k2,12+n

= k3,4+n ⊕ k2,12+n ⊕ k2,8+n

= k3,0+n ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n

= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n ⊕ k2,0+n

= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k2,4+n ⊕ k2,0+n ⊕ k1,12+n

= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k1,12+n ⊕ k1,4+n

= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k1,8+n ⊕ k1,4+n ⊕ k0,12+n

= S(k2,12+(n+1) mod 4)⊕ c′3 ⊕ k0,12+n ⊕ k0,8+n

��

B.3 Equation (11)
Proof.

k3,12+n = k3,8+n ⊕ k2,12+n

= k3,4+n ⊕ k2,12+n ⊕ k2,8+n

= k3,0+n ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n

= S(k2,12+(n+1) mod 4) ⊕ c
′
3 ⊕ k2,12+n ⊕ k2,8+n ⊕ k2,4+n ⊕ k2,0+n

= S(k2,12+(n+1) mod 4) ⊕ c
′
3 ⊕ k2,12+n ⊕ k2,0+n ⊕ k1,8+n

= S(k2,12+(n+1) mod 4) ⊕ c
′
3 ⊕ k2,12+n ⊕ S(k1,12+(n+1) mod 4) ⊕ c

′
2 ⊕ k1,8+n ⊕ k1,0+n

= S(k2,12+(n+1) mod 4) ⊕ c
′
3 ⊕ k2,12+n ⊕ S(k1,12+(n+1) mod 4) ⊕ c

′
2 ⊕ k1,4+n ⊕ k1,0+n ⊕ k0,8+n

= S(k2,12+(n+1) mod 4) ⊕ c
′
3 ⊕ k2,12+n ⊕ S(k1,12+(n+1) mod 4) ⊕ c

′
2 ⊕ k0,8+n ⊕ k0,4+n

��
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B.4 Equation (12)

Proof.

k2,12+n = k2,8+n ⊕ k1,12+n

= k2,4+n ⊕ k1,12+n ⊕ k1,8+n

= k2,0+n ⊕ k1,12+n ⊕ k1,8+n ⊕ k1,4+n

= S(k1,12+(n+1) mod 4) ⊕ c
′
2 ⊕ k1,12+n ⊕ k1,8+n ⊕ k1,4+n ⊕ k1,0+n

= S(k1,12+(n+1) mod 4) ⊕ c
′
2 ⊕ k1,12+n ⊕ k1,0+n ⊕ k0,8+n

= S(k1,12+(n+1) mod 4) ⊕ c
′
2 ⊕ k1,12+n ⊕ S(k0,12+(n+1) mod 4) ⊕ c

′
1 ⊕ k0,8+n ⊕ k0,0+n

��
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Abstract. The research on pairing-based cryptography brought forth
a wide range of protocols interesting for future embedded applications.
One significant obstacle for the widespread deployment of pairing-based
cryptography are its tremendous hardware and software requirements.
In this paper we present three side-channel protected hardware/software
designs for pairing-based cryptography yet small and practically fast:
our plain ARM Cortex-M0+-based design computes a pairing in less
than one second. The utilization of a multiply-accumulate instruction-
set extension or a light-weight drop-in hardware accelerator that is placed
between CPU and data memory improves runtime up to six times. With
a 10.1 kGE large drop-in module and a 49 kGE large platform, our design
is one of the smallest pairing designs available. Its very practical runtime
of 162ms for one pairing on a 254-bit BN curve and its reusability for
other elliptic-curve based crypto systems offer a great solution for every
microprocessor-based embedded application.

Keywords: optimal-ate pairing, elliptic-curve cryptography, embedded
computing, hardware/software co-design.

1 Introduction

The field of pairing-based cryptography has become the key enabler for novel
protocols and algorithms: privacy-aware group-signature schemes [9,22], identity-
based encryption schemes [7,23], and since recently even provable leakage-
resilient protocols [25] rely on pairing operations. The practical advantages of
those protocols motivate their use in the very competitive markets of embedded
microprocessors and smart cards.

The biggest implementation challenges of pairing-based cryptography are
related to its tremendous resource and runtime requirements. Therefore, re-
searchers started to implement optimized pairing operations for desktop comput-
ers [1,6], for smart phones [20,31], and as dedicated hardware modules [16,24].
Cost-sensitive embedded applications however simply do not have the budget
for such powerful application processors or 130-180kGE of dedicated hardware.

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 298–315, 2014.
© International Association for Cryptologic Research 2014



Efficient Pairings and ECC for Embedded Systems 299

For these embedded scenarios, implementations on light-weight RISC proces-
sors have been done. For example, Szczechowiak et al. [33] need 17.9 seconds
for a pairing on an ATmega microprocessor, Gouvêa et al. [18] need 1.9 sec-
onds on an MSP430X microprocessor, and Devegili et al. [15] need 2.5 seconds
on a Philips HiPerSmart™ MIPS microprocessor. Unfortunately, such runtimes
are not very promising for real-world, interactive applications as pairing-based
protocols like group-signature schemes often happen to rely on several pairing
and group operations. The resulting overall runtimes of several seconds would
be considerably too slow. Additionally, it is unclear to which degree timing-
analysis, power-analysis, or fault-analysis attacks have been considered in all
those implementations.

These limitations motivated us to be the first to implement constant-runtime,
side-channel protected optimal-Ate pairings using Barreto-Naehrig (BN) curves
[4] on an ARM Cortex-M0+ [2,3] microprocessor. The respective pairing runtime
of 993ms seems very promising as it is several times faster than related work1,
but might be insufficient for interactive protocols as well. Therefore, it was a
necessity to improve performance by adding dedicated hardware.

In this paper, we present three reusable pairing platforms which offer run-
times of down to 162ms requiring 10.1 kGE of dedicated hardware at most –
significantly less than similarly fast hardware implementations by related work.
Our rigorous hardware/software co-design approach equipped one platform with
a multiply-accumulate instruction-set extension and another platform with a
drop-in accelerator2 [35]. By building a flexible, specially crafted drop-in module
with several novel design ideas, we were able to improve the runtime of pairing
and group operations up to ten times. This concept platform consisting of CPU,
RAM, ROM, and drop-in module consumes merely 49 kGE of hardware in total
with 10.1 kGE of those being spent for the drop-in accelerator. The practicability
of this platform is evaluated for several high-level pairing protocols [7,8,22] – each
operating in significantly less than one second. Its reusability for Elliptic-Curve
Cryptography (ECC) is further verified for secp160r1, secp256r1 [11,29], and
Curve25519 [5], requiring 11.9-36.8ms for a side-channel protected point mul-
tiplication. Those results make the drop-in based platform highly suitable for
embedded computing, smart cards, wireless sensor nodes, near-field communi-
cation, and the Internet of Things.

The paper is structured as follows: Section 2 gives an overview on pairings and
Section 3 covers the implementation aspects of the high-level pairing arithmetic.
In Section 4, the architectural options to build suitable pairing platforms are
presented. The respective platforms are evaluated in Section 5 and compared
with related work in Section 6. The (re-)usability of our drop-in platform is
content of Section 7. A conclusion is finally done in Section 8.

1 Not considering the different underlying microprocessor architectures.
2 Wenger [35] applied the concept to binary-field based elliptic-curve cryptography
while we apply the concept to prime-field based elliptic-curve cryptography.
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2 Background on Pairings

The wide range of cryptographic protocols in pairing-based cryptography is
based on three cyclic order-n groups G1, G2, GT and a bilinear pairing op-
eration. A bilinear pairing e : G1 × G2 → GT accepts an element of the two
additive groups G1 and G2, respectively, maps these to the multiplicative group
GT , and hereby fulfills several properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab ∀P ∈ G1, Q ∈ G2, a, b ∈ Z .
2. Non-degeneracy: ∀P ∈ G1 \ {O} ∃ Q ∈ G2 : e(P,Q) �= 1 .
3. Computability: e(P,Q) can be computed efficiently.

The groups G1, G2 are typically groups over elliptic curves and GT is the sub-
group of a large extension field. However, only certain elliptic curves allow the
definition of G1, G2, GT with an admissible bilinear pairing, e.g., [4,27]. In this
paper, we focus on the pairing-friendly elliptic curves by Barreto and Naehrig
[4] of the form E : y2 = x3 + b with b �= 0 (BN curves). Ate pairings a(Q,P )
based on these curves can be described as follows:

a : G2 ×G1 → GT : E(Fp12 )× E(Fp)→ F∗
p12 . (1)

Note that for G1, G2 and GT to have the same prime order n, G2 and GT need to
be subgroups of E(Fp12) and F∗

p12 , respectively. The BN curves use a parameter
u such that a desired security level is achieved. This allows the computation of
the prime p and the prime group order n in dependence of u:

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1 .

As another benefit, BN curves possess an efficiently computable group homomor-
phism that exploits the curve’s sextic twist E′. Utilization of this homomorphism
allows the compression of the elements in G2, which leads to a more efficient def-
inition of the Ate pairing, namely

a : G2 ×G1 → GT : E′(Fp2)× E(Fp)→ F∗
p12 . (2)

The pairing a itself consists of the evaluation of a rational function fλ,Q and a
final exponentiation that maps all cosets to the same unique representative:

a = fλ,Q(P )
(p12−1)/n.

Owing to the Frobenius homomorphism, the final exponentiation by (p12− 1)/n
can be split into an easy part (p6 − 1)(p2 + 1) and a hard part (p4 − p2 + 1)/n.
The function fλ,Q can in general not be evaluated directly. However, Miller [26]
described an important property of rational functions, namely

fi+j,P = fi,P fj,P
	[i]P,[j]P

ν[i+j]P
.
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Fig. 1. Arithmetic required for pairings over Barreto-Naehrig curves

The property allows the computation of fλ,Q in polynomial time by merely
evaluating vertical (ν) and straight (	) lines in elliptic curve points using a
double-and-add approach. Values of λ with low Hamming weight result in a
particularly fast computation of fλ,Q, the pairing becomes optimal. In this work,
we used the efficient optimal-Ate pairing by Vercauteren [34].

3 High-Level Arithmetic

The computation of bilinear pairings over BN curves requires several layers of
arithmetic. As illustrated in Figure 1, all arithmetic is based on a multi-precision
integer arithmetic layer. On top of that, prime-field arithmetic and a tower of
extension fields are built upon. The elliptic curve groups used as G1 and G2

utilize the prime field and its quadratic extension field, respectively. The largest
extension field Fp12 is used by GT . The pairing computation itself is based on
the groups G1, G2, GT , and their underlying field arithmetic.

Methodology. Our state-of-the-art implementations are based on the tech-
niques used by Beuchat et al. [6] and Devegili et al. [14]. The pairing imple-
mentation uses the fast formulas by Costello et al. [13], the inversion trick by
Aranha et al. [1], a lazy reduction technique in Fp2 [6,31], and a slightly modified
variant of the final exponentiation by Fuentes-Castañeda et al. [17] that requires
less memory (see Appendix A.1). The prime-field inversion using Fermat’s little
theorem is optimized according to Appendix A.2. Since operations in GT and in
the hard part of the final exponentiation take place in the cyclotomic subgroup
of F∗

p12 , dedicated squaring formulas are utilized [19]. The point multiplications
in both elliptic curve groups use Montgomery ladders that are based on fast
formulas [21] in homogeneous projective co-Z coordinates.

Parameters. As this work aims to offer a certain degree of flexibility, both
the 80-bit and the 128-bit security level are supported. The two elliptic curves
BN158 [18] (u = 40 00800023h) and BN254 [30] (u = −40800000 00000001h) of
the form y2 = x3+2 were chosen. Those lead to particularly fast execution times
as the respective constants λ of fλ,Q have low Hamming weights. The extension
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field Fp2 is represented as Fp[i]/(i
2 − β) with β = −1. The extension field Fp12

is built as Fp2 [z]/(z6 − ζ), with ζ = (1 + i) for BN254 and ζ = 1
1+i for BN158.

Implementation Attacks. An important aspect in the implementation of pair-
ings and group arithmetic for embedded applications is the consideration of
side-channel attacks. While scalar factors or exponents are typically the secret
operands for operations in G1,G2 and GT , an elliptic curve point may have to
be protected in the case of pairing operations.

As a countermeasure to timing attacks, all implemented algorithms have con-
stant, data-independent runtime. Therefore, e.g., some fast but vulnerable point
multiplication algorithms are not used. Both the point multiplications in G1, G2

and the exponentiations in GT hence use Montgomery ladders. The implemen-
tation’s countermeasures against first-order Differential Power Analysis (DPA)
attacks comprise Randomized Projective Coordinates (RPC) [12] in both the
pairing computation and the point multiplications in G1 and G2. To detect fault
attacks on data, point multiplications in G1 and G2 include several point verifi-
cations. DPA and fault attacks on exponentiations in GT as well as fault attacks
on pairings were also taken into consideration, but can better be handled on the
protocol layer using randomization.

4 Hardware Architectures

To meet the high requirements of pairing-based cryptography in embedded de-
vices, our goal was to equip a stand-alone microprocessor, designated for em-
bedded applications, with a dedicated hardware unit such that: (i) Pairing
computations are usable within interactive (e.g., authentication) protocols. (ii)
A pre-existing microprocessor platform is modified only minimally. (iii) The
overall hardware requirements, i.e., the costs, are kept small and considerably
below 100 kGE needed in related work [16,24]. (iv) Embedded applications such
as wireless sensor nodes and NFC should be practically feasible.

Figure 2 summarizes potential architectures that can be used to attain such
goals. The straightforward solution (a), a sole off-the-shelf microprocessor, re-
quires minimal hardware-development time, however potentially delivers insuf-
ficient performance. The runtimes desirable for interactive protocols can only
be achieved by either adding powerful, dedicated instructions (b), or by adding
dedicated co-processors. Contrary to a dedicated hardware module (c), a drop-in
module (d) is memoryless and requires neither a Direct Memory Access (DMA)
controller nor a multi-master bus. Wenger [35] showed the advantages of the
drop-in concept in comparison to a dedicated hardware module for binary-field
ECC. However, the applicability of this technique for prime-field based pairings
is still an open question.

Following up the potential architectures, we consecutively evaluate the practi-
cability of a plain microprocessor design (a), a multiply-accumulate instruction-
set extension (b), and a dedicated drop-in module (d).
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Fig. 2. Architectural options for fast and flexible pairing designs

4.1 The Used Microprocessor

The accomplishment of the initially set goals highly depends on the used mi-
croprocessor. As the runtime figures by Szczechowiak et al. [32] and Gouvêa et
al. [18] discourage the use of an 8-bit or 16-bit microprocessor, a 32-bit micro-
processor is preferred as a basis. Moreover, the bottleneck between computation
unit and RAM is less of an issue if 32-bit interfaces are used. We hence decided to
utilize a self-built processor functionally equivalent to the ARM Cortex-M0+ [2],
because the Cortex-M0+ was especially designed for embedded applications and
currently is one of the smallest 32-bit processors in production. The Cortex-M0+
has 16 32-bit general-purpose registers of which 8 are efficiently usable. It comes
with a mixed 16/32-bit Thumb/Thumb-2 instruction set and optionally either
a 32-cycle or single-cycle 32-bit multiplier. In its minimum configuration, ARM
specifies its Cortex-M0+ to require only 12 kGE in a 90 nm process technology.

4.2 The Software Framework

The biggest advantage of an off-the-shelf microprocessor are the vast (open-
source) toolchains. Thus a high-level framework capable of pairing-based cryp-
tography using BN curves was created in C. It provides extension field arithmetic,
elliptic curve operations, and bilinear pairings. The framework focuses on both
good performance and low memory consumption. To achieve the latter, several
optimizations were incorporated into the framework. First, virtually all of the
memory is allocated on the stack. As stack variables are discarded at the end of
each function, stack allocation facilitates the reduction of required memory by
separating code into different functions. Second, allocated memory is reutilized
where possible. Third, memory-optimized algorithms are used, e.g., for the final
exponentiation as in Appendix A.1. Last, compiler optimizations are used to de-
crease the program size. Therefore, the compiler options -ffunction-sections,
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-fdata-sections and the linker options -gc-sections, --specs=nano.specs
are passed to the bare-metal ARM GNU toolchain (version 4.7.4).

The high-level pairing framework is common to all three evaluated platforms.
The main difference between these platforms is the implemented finite-field arith-
metic. While (a) and (b) control the whole finite field arithmetic in software, (d)
relies on finite-state machines to perform additions, subtractions and multipli-
cations in Fp and Fp2 . Nevertheless, all implementation options ensure constant
runtime and consider side-channel attacks.

4.3 Assembly-Optimized Software Implementation (a)

The plain microprocessor platform (a) is based on a Cortex-M0+ with a single-
cycle multiplier. Its hand-crafted assembly routines for optimized prime-field
arithmetic always perform a reduction step to ensure constant runtime. This is
accomplished by storing the reduction result either to the target or a dummy
memory location via masking of the operand addresses. The crucial prime-field
multiplication utilizes an unrolled Separated Product Scanning (SPS) method of
the Montgomery multiplication [28] that is derived from [10]. The SPS variant
is chosen because of the particular Fp2 -multiplication technique [6,31] we use,
which performs the required three multiplications and two reductions separately.
Product scanning can further be efficiently implemented on the processor if three
registers are used as an accumulator, as presented in [36]. The reduction step
for the curve BN254 is further optimized as several multiply-accumulates can be
skipped due to the sparse prime [18].

4.4 Multiply-Accumulate Hardware Extensions (b)

The performance of the prime-field multiplication significantly suffers from the
32× 32→ 32 bit multiplier of the Cortex-M0+, which results in 80% of a pair-
ing’s runtime being spent in Fp multiplications. To improve this, the processor
core is equipped in (b) with a multiply-accumulate extension similar to [36].
It adds the result of a full 32 × 32 → 64 bit multiplication to three accumula-
tion registers in a single cycle. In order to avoid a modification of the compiler
toolchain, the TST instruction, which is not required for prime-field multipli-
cation, is reinterpreted as a multiply-accumulate instruction if a certain bit in
the control register is set. The control register is manipulated accordingly at
the beginning and the end of a prime-field multiplication. Besides accelerated
multiply-accumulate operations, the prime-field multiplication requires less reg-
isters for temporary variables, which we exploit by caching some of the operand
words in the product scanning routine.

4.5 The Drop-in Module (d)

As a consequence of the high-level runtime and area goals, it is of utmost impor-
tance to maximize the utilization of the invested chip hardware. To achieve this,
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Fig. 3. High-level representation of architecture (d) (without program memory). Note
that the sizes of the blocks are not proportional to their respective hardware footprints

a lightweight hardware drop-in accelerator is placed between processor and data
memory. The respective design, which is shown in Figure 3, uses a Cortex-M0+,
but any other processor is equally suitable.

The drop-in module provides unrolled state machines and an appropriate
arithmetic unit for 160-bit and 256-bit Fp multiplication, Fp addition and Fp

subtraction. It further encompasses state machines to control Fp2 addition, Fp2

subtraction, Fp2 multiplication and Fp2 squaring. Several memory-mapped reg-
isters are used to control the drop-in module. A lightweight arbiter is built in
which always gives preference to the CPU when the CPU wants to access the
data memory. In such case, the drop-in module is prepared to stall its operation.

The core element of our drop-in module is a multiply-accumulate unit that is
used to perform a Finely Integrated Product Scanning (FIPS) [10] Montgomery
multiplication. Within this algorithm approximately 2N2 +N , with N =! ld(p)W ",
W -bit integer multiplications are performed that require approximately 4N2 load
operations. Instead of using a dual-port memory, we attain a perfectly utilized
bus and a perfectly utilized multiplier by using a two-cycle multiply-accumulate
unit that is based on a W ×W/2-bit multiplier. This saves 3 kGE for W = 32
in an 130nm process compared to a traditional W ×W -bit multiplier.

A finite-field operation is started by writing three memory pointer registers
(OpA, OpB, and RES) and a control register. As those registers are mapped at
consecutive addresses, the store-multiple instruction (STM) of the Cortex-M0+
can be used to efficiently start an operation. A started finite-field multiplication
is performed using the following hardware components: aW ×W/2 = 32×16-bit
multiplier, a !ld(2N)" + 2W = 68-bit ACCumulator, a W = 32-bit register for
operand A (OpAReg), a 3W/2 = 48-bit register for operand B (OpBReg), and a
W = 32-bit WRITE register. In OpBReg, the top 32 bits are always written by the
bus and the lowest 16 bits are used as an operand of the multiplier. Therefore, a
sequence of shift/rotate operations is necessary to actually multiply the loaded
operands. Table 1 visualizes the dataflow within the drop-in module. For a sin-
gle multiply-accumulate operation five clock cycles are necessary. As the drop-in
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Table 1. Propagation of data within the
pipelined drop-in module

Bus OpBReg OpAReg Mult. Accum.

LD OpB+0

LD OpA+0 WR

LD OpB+0 SH WR

LD OpA+1 WRSH MUL1

LD OpB+1 SH WR MUL2 SHIFT

LD OpA+0 WRSH MUL1

LD OpB+2 SH WR MUL2

ST RES+0 WRSH MUL1

LD OpB+1 SH MUL2 SHIFT

LD OpA+1 WRSH MUL1

LD OpB+0 SH WR MUL2

A[0]B[0]A[4]B[4]

A[0]B[4]

C[0]C[4]C[8]

A[4]B[0]

Fig. 4. 5 × 5-word zig-zag product
scanning multi-precision multiplication
method

module heavily relies on pipelining, practically only two cycles are needed. The
following steps are performed: (i) OpB+i is applied to the bus. (ii) OpB+i is WRitten
to OpBReg and OpA+j is applied to the bus. (iii) OpAReg is WRitten and OpBReg

is SHifted by 16 bits. (iv) The first multiplication cycle (MUL1) multiplies the
lower 16 bits of OpB+i with OpA+j and OpBReg is shifted again. (v) During the
second multiplication cycle (MUL2) the accumulator is optionally SHIFTed. When
shifted, the lowest 32-bit of the accumulator are stored in the WRITE register.
This data is later written to the address RES+i+j, when the bus is not utilized.

As the fully utilized bus needs some free cycles to write the result, we use a zig-
zag product scanning technique (cf. Figure 4) [37]. In this technique, consecutive
columns are traversed in different order, which allows caching of a single operand
from one column to the next. This frees the bus for 2N cycles, which are exactly
the 2N cycles required to store the computed results.

Although the implemented FIPS multiplication is quite complex, the software
running on the CPU is completely independent of the methodology used to per-
form finite-field arithmetic within the drop-in module. However, there are two
implementation guidelines the software has to deal with. First, constant variables
have to be temporarily copied to the data memory when being used. Second,
there are two techniques to wait for the drop-in module to finish. A function
delegating an operation to the drop-in module can either start an operation and
wait for it to finish, or wait for a previously started operation to finish and only
then start a new operation. The latter case is more performant because the CPU
and the drop-in module potentially work in parallel, i.e., the control flow opera-
tions involved in the invocation of the routines that call the drop-in module are
done while the drop-in module is computing. However, temporary variables on
the stack are freed once a function finishes, which requires adding additional
wait statements within the extension-field arithmetic to prevent the drop-in
from accessing reallocated memory locations. Nevertheless, the utilization of the
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Table 2. Performance of various operations on architectures (a), (b), and (d)

Design
Fp G1 G2 GT G1 ×G2

RAM ROM
Add Mul Inv Mul Mul Exp Pairing

[Cycles] [Cycles] [kCycles] [kCycles] [kCycles] [kCycles] [kCycles] [Byte] [Byte]

BN158

Cortex-M0+ 112 1,800 331 4,828 11,775 22,871 17,389 1,856 13,980
MAC 112 361 72 1,129 4,042 10,736 7,828 1,796 11,232
Drop-in 56 161 29 493 1,577 4,322 3,182 1,876 10,364

BN254

Cortex-M0+ 166 3,782 1,122 16,071 38,277 72,459 47,643 2,828 18,116
MAC 166 934 285 4,323 11,449 27,460 17,960 2,836 12,572
Drop-in 75 335 97 1,566 4,858 12,076 7,763 2,880 10,764

drop-in is increased from 77.6% to 85.1% when the function first waits for pre-
vious operations to finish. Similarly, the utilization of the RAM is raised from
75.7% to 80.1% (cf. 34.6% in (b), 17.0% in (a)).

5 Implementation Results

To verify the achievement of the area and performance goals initially set, the
three microprocessor-based platforms (a), (b) and (d) were evaluated with re-
spect to hard- and software. Regarding the overall hardware platforms, runtime,
area, power, and energy consumption are distinctive. Regarding the software
part, the evaluation focuses on the runtimes of the underlying finite-field arith-
metic and the most expensive operations used within protocols: the point mul-
tiplications in G1 and G2, the exponentiation in GT , and the pairing operation.

The results in Table 2 show that the multiply-accumulate extension speeds up
the prime-field multiplications by factors of 4.0-5.03, but leaves the prime-field
additions unaffected. The same speed-ups are observed for prime-field inversions
and point multiplications in G1. However, the impact of the multiply-accumulate
extension on the performance of both pairings and operations in G2, GT is lower
and lies between a factor of 2.1 and 3.3. Considering the performance of the drop-
in module, an even greater speed-up is observed compared to the plain software
implementation. In this case, prime-field multiplications, inversions and point
multiplications in G1 are up to 11.3 times faster, which eventually results in
an up to 6.1 times faster computation of pairings. On average, operations using
BN158 are 3.0 times faster than operations using BN254.

Throughout all implementations, the demand for data memory is kept rela-
tively low, with a maximum of 1,876bytes and 2,880bytes for BN158 and BN254,
respectively. Similarly, the program sizes are kept small, e.g., 18KB for BN254.
Given a typical clock frequency of 48Mhz, the performance results of the point
multiplications in G1, G2, the exponentiation in GT , and the pairing opera-
tion are illustrated in Figure 5. The respective runtimes support our choice of a

3 The implementation for BN158 with multiply-accumulate extension utilizes the FIPS
method and discards lazy reduction in Fp2 [6,31] as it yields better performance.
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Fig. 5. Group operations at 48MHz

32-bit architecture: providing 128-bit security, the drop-in based platform does
pairing computations in highly practical 164ms. The pure embedded software
implementation performs the same computation in 993ms.

While Table 2 focuses on the software part, the most important hardware
characteristics are visualized in Table 3. The runtime is given for a single pairing
computation. Both area and power measurements were determined for an 130nm
low-leakage UMC technology. The area results in a 90 nm UMC technology are
explicitly marked. The designs were synthesized and their power and runtime
evaluated for a clock frequency of 48MHz. Both data and program memory
were realized using RAM and ROM macros of appropriate sizes. The program
memory encompasses all routines required to implement pairing-based protocols,
i.e., pairings, operations in G1, G2, and GT . These platforms are hence ready-
to-use for future applications based on pairings over BN curves.

According to Table 3, BN254 pairing computations with reasonable perfor-
mance are available at the cost of 57.7 kGE in an 130nm process technology.
Switching to the more advanced 90 nm process technology shrinks the design to
49.0 kGE, constituting one of the smallest available hardware designs for pair-
ings with practical relevance. In terms of power consumption, the plain micro-
processor design is, as expected, the most economical. The multiply-accumulate
extension and the drop-in module increase power consumption by 25% and 70%,
respectively. Due to their increased performance, these platforms aremore energy-
efficient though. Their respective demand for energy is 2.1 and 3.5 times lower.

6 Comparison with Related Work

As a consequence of our hardware/software co-design approach, comparison
with related work focuses on two aspects. On the one hand, the pure software
implementation on the Cortex-M0+ is brought into relation to other software
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Table 3. Implementation characteristics for 130 nm and 90 nm process technologies

Platform
Area

RAM ROM CPU Dedicated Total Power Runtime Energy
[kGE] [kGE] [kGE] [kGE] [kGE] [mW] [ms] [mJ]

BN158

Cortex-M0+ 11.4 15.6 18.4 - 45.4 5.92 362 2.14
MAC 11.1 13.8 27.1 - 52.0 7.38 163 1.20
Drop-in 11.4 13.8 17.0a 10.8 52.9 10.25 66 0.68

Drop-in 90nm 10.5 12.0 12.6a 10.1 45.2 - 66 -

BN254

Cortex-M0+ 16.0 19.3 18.4 - 53.7 5.80 993 5.76
MAC 16.0 15.6 27.1 - 58.8 7.33 374 2.74
Drop-in 16.2 13.8 17.0a 10.8 57.7 9.96 162 1.61

Drop-in 90nm 14.3 12.0 12.6a 10.1 49.0 - 162 -

a Bit-serial multiplier.

implementations on low-resource hardware. On the other hand, the resulting
hardware design is compared with other dedicated pairing hardware implemen-
tations.

The comparison of our software implementation with related implementa-
tions of Ate pairings over BN curves providing approximately 128-bit security
is summarized in Table 4. Gouvêa et al. [18] provide highly optimized software
implementations for the 16-bit microcontroller MSP430 and a variant of its suc-
cessor MSP430X, which is equipped with a 32-bit multiplier (MPY32). The
implementation by Devegili et al. [15] is evaluated on a 32-bit Philips HiPerS-
mart™ smart card, which has a SmartMIPS architecture and clearly is a direct
competitor of Cortex-M0+-based smart cards. However, it is unclear to which
extent side-channel resistance is considered by either of them.

As both the MSP430 and the Cortex-M0+ use a 16-bit instruction-set, it is im-
portant to highlight the exceptionally low program and data memory footprint of
our implementations. It is however hard to compare the quality of an implemen-
tation when different frameworks and different microprocessors are involved.

Other pairing implementations for 32-bit ARM processors are limited to the
Cortex-A series, such as in [20]. However, their pairing’s runtime of 9.9ms on
a 1.2GHz Cortex-A9 is as well hardly comparable with our pairing’s runtime

Table 4. Related software implementations of Ate pairings over BN curves

Platform
RAM ROM Runtime Frequ. Runtime
[Byte] [Byte] [kCycles] [MHz] [ms]

Gouvêa [18] MSP430 6,500 36,000 79,440 8 9,930
Devegili [15] Philips HiPerSmart™ <16,000 - 90,462 36 2,513
Gouvêa [18] MSP430X/MPY32 6,500 34,400 47,736 25 1,909
Ours Cortex-M0+ 2,828 18,116 47,643 48 993
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Table 5. Related hardware platforms
(130 nm)

Area
Time

Ded. Total
[kGE] [kGE] [kCycles]

Fan [16] 183 183 593
Kammler [24] 71a 164 5,340
Kammler [24] 67a 145 6,490
Kammler [24] 53a 130 10,816

Ours (Drop-in) 11b 58 7,763

a Core excl. 26 kGE of original RISC
b Drop-in module.
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Fig. 6. Characteristics of related hardware

on the Cortex-M0+ since the multi-core Cortex-A processors provide massively
higher clock frequencies along with a more powerful instruction set.

Regarding related hardware platforms, Table 5 covers hardware implementa-
tions of pairings providing roughly 128-bit security. Fan et al. [16] proposed a
dedicated pairing cryptoprocessor with parallelized, full-precision Fp arithmetic.
Its centerpiece is a hardware implementation of a hybrid modular multiplication
algorithm that performs both polynomial and coefficient reduction. Their area
figures, however, exclude the required RAM. Kammler et al. [24] extended a
5-stage 32-bit RISC core with instructions for Fp arithmetic. Their Application-
Specific Instruction-set Processor (ASIP) uses a Montgomery multiplier struc-
ture that can be synthesized in different configurations and sizes. Unfortunately,
their area figures do not contain the program memory.

In comparison to [16] and [24], our drop-in-based platform is 2.2-3.1 times
smaller with regard to total area consumption. In both [24] and our case the CPU
and the data memory can be reused for other applications. In terms of dedicated
hardware, our drop-in-based platform is 16.6 times smaller than the work of Fan et
al. In exchange, their design is faster and provides the best area-runtime product
according to Figure 6. However, it depends on the application howmuch hardware
area is actually acceptable to be spent on a dedicated pairing accelerator.

7 Re-usability of Our Drop-in Architecture

To emphasize the practicability of our low-area platforms for deploying cryp-
tography to embedded environments, several protocols that are relevant in such
context have been assessed in terms of the performance to expect.
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Table 6. Performance of pairing-based protocols on the drop-in platform

G1 G2 GT G1×G2 BN158 BN254
Mul Mul Exp Pairing [ms] [ms]

Leakage Resilient KEM [25]

Encaps. 0 1 1 0 123 353
Decaps. 2 0 0 2 153 389

Identity-Based Encryption KEM [7,23]

Encaps. 3 0 1 0 121 349
Decaps. 0 0 0 1.5a 99 243

a Ratios and products of pairings are
counted as 1.5 pairing computations.

G1 G2 GT G1×G2 BN158 BN254
Mul Mul Exp Pairing [ms] [ms]

Short Signatures [8]

Sign 1 0 0 0 10 33
Verify 0 2 0 1 132 364

Short Group Signatures [22]

Sign 9 2 0 1.5a 258 739
Verify 9 2 0 3 357 981
Link 0 0 0 3 199 485

Using the Drop-in Module for Pairing-Based Protocols. The short signa-
ture scheme by Boneh et al. [8] is interesting for constrained signature devices as
it aids to reduce communication. As a representative of group signatures, which
help to provide anonymous authentication, the scheme by Hwang et al. [22] was
chosen. To be able to establish a random session key without the necessity of ver-
ifying public keys, the identity-based encryption scheme by Boneh et al. [7] in its
Key Encapsulation Mechanism (KEM) variant was evaluated as it combines good
performance with small parameters. Additionally, the leakage resilient bilinear
ElGamal KEM by Kiltz and Pietrzak [25] is taken into consideration because it
is proven to have bounded side-channel leakage.

The number of computationally expensive operations and the expected overall
runtime of each of the aforementioned protocols are presented in Table 6. The
runtimes are given for the drop-in module based platform. As the figures suggest,
all of the protocols may be performed on the device with user interaction as
response times lie noticeably below one second.

Using the Drop-in Module for ECC. In order to emphasize the re-usability
of our drop-in module based design, we also evaluated the performance of the
standardized curves [11,29] secp160r1 and secp256r1 and the performance of
Curve25519 by Bernstein [5], which many people fancy as replacement curve of
standardized NIST curves. Again, we follow the point multiplication methodol-
ogy from [36], which relies on Montgomery ladders, randomized projective coor-
dinates and multiple point validation checks. All implementations have similar
hardware footprints and require 4.1 kGE (500 bytes) for RAM, 6.2 kGE (3,200
bytes) for ROM, 10.1 kGE for the drop-in module, 12.6 kGE for the Cortex-
M0+, and 33kGE in total (in a 90 nm UMC technology). Point multiplications
for secp160r1, secp256r1, and Curve25519 need 570 kcycles, 1,765kcycles, and
1,110kcycles, respectively. Note that we do not take advantage of the special form
of the underlying primes. However, with runtimes of 11.9-36.8ms (at 48MHz) the
drop-in concept is clearly an enabler of elliptic-curve based interactive protocols.
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8 Conclusion

According to our evaluations of three microprocessor-based hardware designs,
the utilization of a compact 32-bit microprocessor results in notably small pairing
implementations. Requiring merely 45.2-49.0kGE of chip area, we provided one
of the smallest available hardware designs capable of bilinear pairings. The most
prominent platform was however obtained by the construction of a dedicated
drop-in hardware module for prime-field arithmetic. Its low area requirements
and highly practical runtime facilitate pairing-based cryptography in interactive
embedded applications.
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A Optimizations

A.1 Final Exponentiation

The hard part of the final exponentiation by Fuentes-Castañeda et al. [17] yields
fast execution by reducing the number of multiplications and exponentiations in
Fp12 . As a drawback, it requires four large temporary variables in Fp12 . In order
to attain a low-memory implementation, we decreased the number of temporary
variables by adapting their formulas without noticeably degrading performance.
Therefore, we initially set t0 = fp and compute the chain

fu → f2u → f4u → f6u → f6u
2 → f12u

2 → f12u
3

.

Following, a and b are set to a = f6u · f6u2 · f12u3

and b = a · (f2u · f)−1. The
computation of the result, namely

f = f6u
2 · f · fp ,

f = [f · a][b]p[a]p2

[b]p
3

,

requires one more multiplication and one more Frobenius action than originally.
However, the respective implementation in Algorithm 1 requires three temporary
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Algorithm 1. Memory-optimized hard part of the final exponentiation for pair-
ings over BN curves

Input: f ∈ Fp12

Output: fφ12(p)/n ∈ Fp12

1: t0 ← fp

2: b← fu

3: if u < 0 then b← b � Conjugate
4: b← b2

5: a← b2

6: a← a · b
7: b← b · f
8: b← b
9: f ← f · t0

10: t0 ← au

11: if u < 0 then t0 ← t0

12: f ← f · t0
13: a← a · t0
14: t0 ← t20
15: if u < 0 then t0 ← t0
16: a← a · tu0 � Interleaved
17: b← b · a
18: t0 ← bp

19: t0 ← t0 · a
20: t0 ← tp0
21: t0 ← t0 · b
22: t0 ← tp0
23: t0 ← t0 · f
24: f ← t0 · a
25: return f

variables instead of four when the exponentiation and the multiplication on
Line 16 are done simultaneously using a dedicated function. Since variables in
Fp12 are large and RAM is more expensive than ROM, this approach aids to
keep chip area low.

A.2 Prime-Field Inversion

The parameterized prime p(u) facilitates an optimized exponentiation-based
prime-field inversion for positive u that have low Hamming weight. In such cases,
the inverse a−1 ∈ Fp can be expressed as

a−1 mod p = ap−2 mod p = a36u
4+36u3+24u2+6u−1 mod p

= a6u(4u+6u2(1+u)) · a6u−1 mod p .

Precomputation of the constant 6u− 1 and the chain of computations

a6u−1 → a6u → a12u
2 → a24u

2 → a36u
2 → a36u

3 → a36u
4

enables the computation of the inverse as

a−1 mod p = a6u−1 · a24u2 · a36u3 · a36u4

mod p .

Consequently, prime field inversion is done using three fast exponentiations by
u, one exponentiation by 6u−1, five multiplications and two squarings. Since the
exponents are fixed and publicly known, Montgomery ladders are not required
and runtime thus remarkably benefits from the low Hamming weight of u.
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Abstract. This paper introduces constant-time ARMCortex-A8 ECDH
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version of OpenSSL but (2) achieves a security level above 2200 using a
prime above 2400. For comparison, this OpenSSL ECDH option is not
constant-time and has a security level of only 280. The new speeds are
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1 Introduction

This paper introduces new ECDH software for a standard ARM Cortex-A8 CPU.
This software is faster than the fastest ECDH option (secp160r1) in the latest
version of OpenSSL (version 1.0.2-beta1, released 24 February 2014).

This performance bar was already reached in one previous paper, “NEON
crypto” (CHES 2012) by Bernstein and Schwabe [11], implementing Bernstein’s
Curve25519 [2] elliptic curve. The difference is that we now reach the same
performance bar at a much higher security level, implementing a very strong
new “Curve41417” elliptic curve introduced informally by Bernstein and Lange
in [7, page 12] and introduced formally in this paper.

We are not saying that Curve41417 is as fast as Curve25519. We are saying
that it is fast enough for applications and provides a much higher security level
than Curve25519. This paper addresses the scalability challenges that appear at
higher security levels.
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Hyperelliptic-curve DH has also recently reached this performance bar for the
Cortex-A8: the HECDH implementation in [4] is even faster than Curve25519.
However, the performance benefits of hyperelliptic curves are specific to DH,
as admitted in [4], while elliptic curves are easily adapted to other important
applications such as signatures. More importantly, the 128-bit hyperelliptic curve
used in [4] came from a massive computation by Gaudry and Schost in [20],
using more than 1000000 hours of CPU time. Finding a similar curve at a higher
security level would be extraordinarily difficult.

1.1. Karatsuba’s Method in Prime-Field ECC Software. The Cortex-
A8 contains a large integer-multiplication unit that multiplies 32-bit words to
produce 64-bit results. Of course, there are CPUs with even larger multipliers,
and CPUs (and FPGAs) with smaller multipliers, but 32-bit multipliers have
been a popular choice for many years and seem likely to remain in widespread
use in embedded systems for many years to come. We focus on the Cortex-A8
for the same reasons as [11] and [4, Section 5].

The conventional approach in ECC software is to take advantage of 32-bit
multipliers by splitting, e.g., 160-bit prime-field elements into 5 words to be mul-
tiplied, or 256-bit prime-field elements into 8 words to be multiplied. Karatsuba’s
method [29, Theorem 2] is well known to be useful for binary fields, and is occa-
sionally also considered for prime-field ECC software, but is practically always
dismissed as having too much overhead: one Karatsuba level saves 25% of the
integer-multiply instructions, but this is outweighed by the cost of many extra
additions. (Of course, this comparison is biased by the availability of a large
multiplier and relatively little area spent on adders, but this is how mass-market
CPUs have always been designed.)

It should be obvious that scaling to larger and larger input sizes will even-
tually reach a cutoff where one Karatsuba level is useful: the overhead is linear
in the size, while the 25% savings is quadratic in the size. But the conventional
wisdom is that this cutoff is far beyond ECC sizes, so one would not expect that
aiming for high-security ECC would reach this cutoff. The heavily optimized
GMP multiprecision library [22], which includes automated searches for optimal
cutoffs, does not switch over from schoolbook multiplication to one Karatsuba
level on the Cortex-A8 until it reaches 832-bit inputs. A recent RSA performance
analysis by Bos, Montgomery, Shumow, and Zaverucha [15] avoided all use of
Karatsuba’s method even for 1024-bit modular multiplication.

We use two Karatsuba levels. There is a synergy between two design choices
here: (1) we use Karatsuba’s method; (2) we use a radix smaller than the CPU
word size.

The conventional choice for b-bit CPUs is to use radix 2b, minimizing the
number of words that need to be multiplied. See, for example, the recent DH
software from [24], [32], [13], [19], and [16]. However, a corner of the DH liter-
ature uses a smaller radix, with the goal of delaying carries, the same way that
hardware multipliers typically use carry-save adders. See, for example, [11] and
[4].
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This corner of the literature does not seem to have exploited the fact that
Karatsuba’s method benefits heavily from a smaller radix. With radix 2b, the
extra additions in Karatsuba’s method are add-with-carry chains. With a smaller
radix, the extra additions in Karatsuba’s method are independent additions
without carries. Even on CPUs where add-with-carry is as cheap as add, having
independent operations creates tremendous extra flexibility in register allocation,
instruction scheduling, and vectorization.

Conversely, a smaller radix benefits from Karatsuba’s method, especially as
the security level increases. Reducing a radix from, e.g., 232 to 226 means that
instead of w words one now needs (32/26)w words and thus, without Karatsuba’s
method, (32/26)2w2 ≈ 1.5w2 multiplications instead of w2 multiplications; this
means that the benefits of eliminating carries have to be compared to the loss of
0.5w2 multiplications. Karatsuba’s method moves the number of multiplications
down to a smaller scale, improving this tradeoff.

1.2. Choice of Prime and Choice of Curve. The standard NIST elliptic
curves [34] use primes p designed to allow easy computation of x mod p in radix
232. For example, the popular NIST P-256 curve uses p = 2256−2224+2192+296−
1, and at a higher security level NIST P-384 uses p = 2384− 2128− 296+232− 1.

We leave a gap between our radix and 232 to speed up multiplications, as
explained above, but this makes computation of x mod p quite painful for the
NIST primes p. The NIST primes are also suitable for a much smaller radix,
namely 216, but that radix would make our multiplications considerably slower.

The Curve25519 prime, 2255−19, is much less sensitive to the choice of radix,
but our objective is to provide as much security as possible subject to a specified
performance requirement, and in particular more security than Curve25519. An
initial performance estimate indicated that a carefully designed curve of 384 bits
or larger could meet our performance requirement, but we found very few 384-bit
curves in the literature, and all of them have obvious performance problems.

We therefore designed a prime and curve from scratch. This also allowed
us to take advantage of state-of-the-art curve shapes, while meeting stringent
security criteria that are flunked by the NIST curves. See Section 2.

The prime we ended up with, namely p = 2414 − 17, has many attractive
features from a performance perspective. It is extremely close to a power of 2.
The difference 17 has just two bits set, allowing 2414x mod p to be computed
as 16x + x with a single shift-and-add operation. The exponent 414 is divisible
by 9, 18, 23, 46 and the exponent 416 (for 4p) is divisible by 8, 13, 16, 26, 32, 52,
allowing easy choices of integer radix suitable with low overhead for practically
any size of multiplier. A field element is easily transmitted in 32-bit words with
under 1% wasted space (13 · 32 = 416), while still allowing two extra bits for
extensions, such as a bit typically used in encoding a compressed curve point.

For our software we decided to use a slightly harder, but slightly more effi-
cient, non-integer radix, namely 2414/16 = 225.875. We split 414-bit prime-field
elements into 16 words, use one Karatsuba level to reduce 16-word multiplication
to three 8-word multiplications, and use another Karatsuba level to reduce each
8-word multiplication to three 4-word multiplications. See Section 4 for details
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Table 1. Prime-field ECC timings from openssl speed ecdh on two Cortex-A8 de-
vices. Warning: openssl speed ecdh reports “operations per second” as the reciprocal
of average seconds per operation without indicating standard deviation or other sta-
bility metrics. “i.MX515 op/s” column is reported by OpenSSL 1.0.2-beta1 compiled
with gcc 4.4.3 on a Hercules eCafe laptop (h4mx515e) with a 2009 Freescale i.MX515
CPU running at 800MHz. “Sitara op/s” column is reported by OpenSSL 1.0.2-beta1
compiled with gcc 4.7.3 on a BeagleBone Black development board (bblack) with a
2012 TI Sitara XAM3359AZCZ100 CPU running at 1000MHz. The “cycles” columns
translate “op/s” into CPU cycles per operation.

curve i.MX515 op/s cycles Sitara op/s cycles

secp160r1 379.2 ≈2.1 million 468.1 ≈2.1 million
nistp192 274.3 ≈2.9 million 350.9 ≈2.8 million
nistp224 200.4 ≈4.0 million 257.6 ≈3.9 million
nistp256 201.1 ≈4.0 million 258.7 ≈3.9 million
nistp384 60.1 ≈13.3 million 75.9 ≈13.2 million
nistp521 26.9 ≈29.7 million 33.7 ≈29.7 million

of our multiplication strategy, and Section 5 for the extra challenges created by
vectorization.

1.3. Expected Scalability. As a measurement of the conventional scaling of
ECC performance to higher security levels, we compiled OpenSSL 1.0.2-beta1
on two Cortex-A8 devices and ran openssl speed ecdh. The prime-field results
are shown in Table 1. We also checked that (as expected) the prime-field results
were faster than the binary-field results at each security level; the binary-field
results are not shown here. The fastest OpenSSL cycle count was 2.1 million
cycles for secp160r1 (280 security).

The following back-of-the-envelope calculation suggests that moving from 256
bits to 384 bits increases costs by a factor of 1.53 = 3.375: each multiplication
input is longer by a factor of 1.5, increasing the multiplication cost by a factor of
1.52; and the scalar in ECDH is 1.5× longer. The actual ratios between nistp256

and nistp384 in the table are close to this. The slowdown factor for nistp521
is about 7.5, noticeably better than (521/256)3 ≈ 8.4, presumably because of
the simpler prime shape used in P-521. The speedup factor for smaller curves is
considerably worse than this calculation would suggest; presumably this reflects
OpenSSL function-call overheads that become troublesome for smaller integers.

We also checked the eBACS [8] benchmarking site for Cortex-A8 results. The
only results faster than 2.1 million cycles were 0.46 million cycles (i.MX515) and
0.50 million cycles (Sitara) for the Curve25519 (2125 security) implementation
from [11]. The paper [4] reports better speeds, just 0.27 million Cortex-A8 cycles
for HECDH; but scaling HECDH to higher security levels is very difficult, as
mentioned earlier. The paper [14] reports 0.77 million Cortex-A8 cycles for 2103

security using a different type of curve, evidently not competitive.

The same type of back-of-the-envelope calculation suggests that moving from
Curve25519 up to Curve41417 would cost a factor of 4.3, increasing 0.50 million
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Sitara Cortex-A8 cycles to 2.15 million cycles. We do considerably better than
this; see below.

1.4. Performance Results.We tried our Curve41417 software on the same two
Cortex-A8 machines shown in Table 1. On the FreeScale i.MX515 (h4mx515e)
our software uses just 1829903 cycles. On the TI Sitara (bblack) our software
uses just 1964334 cycles. These figures are for a complete scalar-multiplication
operation, including unpacking a point from network format, precomputation,
main computation, final inversion, and converting the result back to network
format. We emphasize that our curve choice has security level above 2200, and
that the software is free of data-dependent branches and data-dependent array
indices.

These speeds are, despite their very high security level, considerably faster
than the 2.1 million cycles for the fastest ECDH in OpenSSL. These speeds are
also considerably faster than the 2.15 million cycles predicted above by extrap-
olation from Curve25519. This paper explains the design and implementation
choices that led to this performance.

As a followup to our initial Curve41417 announcement, Hamburg announced
a similar, slightly larger, curve “Ed448-Goldilocks”. Hamburg’s most recent per-
formance report [25] says 3.6 million Cortex-A9 cycles for Ed448-Goldilocks,
compared to 4.4 million Cortex-A9 cycles for the implementation of NIST P-256
in OpenSSL 1.0.1. There are several reasons that it is difficult to extrapolate
from these results: the Cortex-A9 is not the same as the Cortex-A8; Hamburg’s
Ed448-Goldilocks software is not vectorized; and OpenSSL 1.0.1 was missing
some NIST P-256 speedups that appear in the most recent version of OpenSSL.

1.5. Is High Security Useful? Most papers today consider security levels
between 280 and 2128. The adequacy of 280 is frequently a subject of dispute.
There is general consensus that well-funded attackers and botnets can already
perform 280 operations; most HTTPS web sites have now switched from RSA-
1024 (280 security) to RSA-2048 (2112 security) or 256-bit ECC (2128 security).
On the other hand, there are also many papers continuing to study 280 security
and stating that 280 is ample protection for low-value targets.

The adequacy of 2128 is rarely a subject of dispute. It is easy to see that 2128

is far beyond any computation feasible today. Choosing 2128 is so common in
the current literature that papers studying a 2128 security level rarely bother to
justify this choice.

One can therefore reasonably ask whether there is any reason to go beyond
2128 security, and in particular whether we are accomplishing anything useful
by going beyond 2200 security. We give five answers to this question, in what we
consider to be increasing order of importance.

First, cryptographic primitives need time to be reviewed before they are
standardized and deployed in embedded systems, so designers of cryptographic
primitives today should be considering embedded systems designed at least 10
years from now. Some of those systems will have a lifetime of 30 years, and at
the end of that lifetime could still be encrypting data that—even if recorded
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by an attacker—should remain confidential for another 30 years, i.e., 70 years
from now.

Today’s mass-market GPUs perform approximately 258 floating-point oper-
ations per year per watt. If computation becomes a factor of 10 more efficient
each decade then mass-market chips in 70 years will perform approximately 281

floating-point operations per year per watt. Carrying out a 1-year computation
on the same scale as 2128 floating-point operations will thus require just 247

watts. For comparison, the Earth’s surface receives 256 watts from the Sun.
We do not mean to suggest that typical cryptographic applications should

worry about such large attacks. But we also see value in designing cryptographic
systems that are not broken by such large attacks.

Second, even though many researchers have studied the security of ECC
and expressed confidence in the security of prime-field ECC, there is still the
possibility of an algorithmic breakthrough that considerably reduces the amount
of computation required to break ECC. By moving to a much higher security level
we are providing a security margin against unexpected attack improvements.

For comparison, over the past 18 months the security of small-characteristic
multiplicative-group discrete logarithms has dropped dramatically. A very recent
paper [21] reports 259 security for a system previously thought to provide 2128

security. We do not mean to suggest that this is a threat to prime-field ECC
(there are clear barriers between small characteristic and prime fields, and more
importantly between multiplicative groups and ECC) but it does illustrate the
general principle that attack cost can suddenly drop.

Third, sometimes cryptographic protocols are not as secure as the underlying
cryptographic primitives. Often there is a security proof putting a bound on the
gap, but usually the security proofs are not “tight”. In particular, many ECC
protocols are not guaranteed to provide 2128 security using 256-bit curves, even
assuming the standard security conjectures for ECDLP on those curves. Achiev-
ing a 2128 guarantee requires taking larger curves. We thank an anonymous
referee for pointing out this argument.

Fourth, we suggest that the right question is not how efficiently a particular
security level can be achieved, but rather how much security can be provided
subject to the performance requirements set by the users. Of course, a typical
cryptographic system also relies on block ciphers, hash functions, etc., and if
those are breakable in time 2128 then the attacker does not have to bother
breaking a 414-bit elliptic curve; but AES-256 costs only 40% more than AES-
128, and standard hashes also provide high-security options. It is natural for
research into high-performance ECC to similarly provide high-security options
for users who can afford those options.

The normal reason for users to reject high-security options is not that the
users dislike high security, but rather that the high-security options are too slow.
If a user rejects OpenSSL’s nistp384 in favor of secp160r1, probably the reason
is that the user’s performance budget does not allow 13.3 million cycles, while
it does allow 2.1 million cycles. Unless there are severe bandwidth constraints,



322 D.J. Bernstein, C. Chuengsatiansup, and T. Lange

the user will be happier with Curve41417, which provides much higher security
within the same performance budget.

Fifth, there are at least some users already demanding cryptography beyond
a 2128 security level. For example, NSA’s Suite B allows NIST P-256 for Secret
information, but for Top Secret information it requires NIST P-384, SHA-384,
and AES-256. This project began when Silent Circle requested a non-NIST curve
to replace NIST P-384; we realized that we could design a curve that simultane-
ously provided better performance and better security. Silent Circle is now using
Curve41417 by default.

2 Design of Curve41417

The IEEE standard P1363 [27] and the Brainpool recommendations [17] specify
procedures to generate secure elliptic curves. Research has identified several other
properties a secure curve should satisfy. A recent collection of these properties
is provided by Bernstein and Lange in the “SafeCurves” web site [10].

2.1. Standard Security Criteria. There are several standard criteria on which
all methods cited on [10] agree. The elliptic curve E must be defined over a prime
field Fp or a binary field F2p , for p a prime; its group order must be divisible
by a large prime �; this prime must not match the field characteristic; and the
embedding degree must be large. Over a prime field Fp the embedding degree
is defined as the smallest positive integer k so that � divides pk − 1. Brainpool
requires k ≥ (�− 1)/100, and P1363 imposes a weaker requirement.

For efficiency and security reasons we focus on prime fields, a recommenda-
tion supported by Brainpool and the more recent NIST/NSA documents [35].

2.2. Additional Security Criteria. SafeCurves imposes several further re-
quirements to avoid “conflicts between simplicity, efficiency, and security”. Specif-
ically, it requires curves to support “simple, fast, complete, constant-time” al-
gorithms for single-coordinate single-scalar multiplication and for multi-scalar
multiplication. Montgomery curves [33] meet the single-coordinate single-scalar
requirement; Edwards curves [18], when chosen to be complete [6], meet all of
the requirements. Compared to Weierstrass curves, these curves make it easier
to implement the curve arithmetic correctly: scalar multiplication is a very reg-
ular operation without exceptional cases that require special handling and that
could reveal information about the scalar. The NIST curves do not meet these
requirements.

SafeCurves also requires curves to be twist-secure. Twist-security means that
the order of the twist, namely 2p+ 2−#E(Fp), is nearly prime. This criterion
eliminates security problems caused by single-coordinate single-scalar multiplica-
tion algorithms that do not take extra effort to validate their inputs: for example,
when a curve is given in Montgomery form and only the x-coordinate is trans-
mitted and used, twist-security eliminates the need to check that the incoming
x-coordinate is on the curve.

The NIST curve constants are not explained: in the SafeCurves terminology,
the NIST curve choice is not “rigid”. This has led to speculation about how the
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NIST curves were designed and about whether the NSA has implemented a back
door in the choice of the curves. Our curve is “fully rigid”: the prime and all
curve constants are fully explained here.

2.3. Choice of Prime Field. Our target in designing the new curve was to
generate an elliptic curve at a security level larger than 2192 that meets the
SafeCurves requirements and that supports efficient implementations. To this
aim we start with finding a prime for which field elements can be efficiently
represented and modulo which reductions are efficient. Prime numbers of the
form 2j − c for 12 ·32 < j < 13 ·32 and 0 < c < 32 are rare: the only possibilities
are 2389−21, 2401−31, 2413−21, and 2414−17. We selected p = 2414−17 because
17 is the smallest c in this list; it also has the lowest Hamming weight. Section 4
explains how we perform arithmetic in Fp; this prime also leaves enough space
in the limbs when we represent field elements as 16 words of 32 bits that carries
between the limbs and reductions modulo p can be delayed for long enough to
be useful in the curve arithmetic. The next larger candidate prime would be
2444 − 17 which does not have this feature; our p is already very large for our
security needs.

2.4. Choice of Curve Shape. For efficient and secure arithmetic in Diffie–
Hellman key exchange and digital signature applications we insist on a curve in
Edwards form. Note that each curve in Edwards form is birationally equivalent
to one in Montgomery form, so there is no need to choose one over the other.
The coefficient d in the Edwards curve x2 + y2 = 1 + dx2y2 appears as a factor
in the addition formulas, so choosing d to be small in absolute value is good for
efficiency. For security we chose a complete Edwards curve (d is not a square
in Fp) and insisted on the same level of twist-security as Curve25519—the
cofactors of the curve and its twist are in {4, 8}.
2.5. A Safe Curve. Curve41417 (named after the prime field) is defined as

x2 + y2 = 1 + 3617x2y2 over Fp, p = 2414 − 17.

Its order is 8�, where
� = 2411−3336414086375514252081017769409838517898472720041120858959475.
The order of the twist is also 8 times a prime. The value d = 3617 is the smallest
integer in absolute value meeting the above security requirements.

3 ECC Arithmetic

Our featured application is static Diffie–Hellman in which a user Alice computes
her private key a and her public key PA = aP once and then publishes PA. If
Alice wants to communicate with user Bob she looks up Bob’s public key PB

and computes aPB . This means that the computations use variable base points.
The computations involve the long-term secret key a and need to be protected
against side-channel attacks by attackers sitting on the same device or having a
connection to it. This means in particular that the scalar multiplication should
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run in constant time, independent of the scalar a, and that there should be no
data-dependent branches or table lookups involving a.

We use a windowing method with fixed window width for constant-time
single-scalar multiplication on Curve41417 in Edwards form. Our analysis also
allows good estimates of, e.g., the cost of signature verification using Curve41417.
Another option for single-scalar multiplication is the Montgomery ladder for the
Montgomery form of Curve41417; this is not quite as fast as the Edwards form
but has the advantage of fitting the computation into less SRAM.

3.1. Coordinate Systems. The fastest doubling formulas in the EFD [9] for
curves in Edwards form are in projective coordinates X,Y, Z with x = X/Z, y =
Y/Z for Z �= 0. These take 3M+ 4S per doubling where M and S denote field
multiplication and field squaring respectively. See Appendix A for the formulas
used in this paper.

The fastest addition formulas are in extended coordinates X,Y, Z, T with
x = X/Z, y = Y/Z, and xy = T/Z for Z �= 0. These take 9M+ 1Md. Here Md

is a multiplication by curve constant d; for us d = 3617, which is significantly
smaller than p, so this multiplication Md is cheaper than general multiplications
M. (The curve −x2 + y2 = 1− dx2y2 allows faster additions, saving 1M in each
addition. If −1 were a square in Fp then we could apply an isomorphism to that
curve. However, −1 is not a square in Fp, so that curve is not complete.)

Achieving the best performance requires combining these two coordinate sys-
tems: computing the extra T coordinate for a doubling output that will be used
for addition, and skipping the extra T coordinate for an addition output that
will be used only for doubling. This suggestion was made in [26], the paper
introducing extended coordinates.

3.2. Scalar Multiplication. Constant-time sliding windows are difficult so we
use fixed windows. We analyzed operation counts for signed fixed windows for
window widths w = 4, w = 5, and w = 6, and concluded that w = 5 is optimal.
We therefore precompute 0PB = (0, 1), PB , 2PB , . . . , 16PB and store the results
in a table. We do table lookups in constant time using the same technique as
in, e.g., [5]: we load the entire table into registers and perform the selection via
arithmetic.

Precomputation is done as follows. We double PB to obtain 2PB ; add PB to
obtain 3PB ; double 2PB to obtain 4PB ; add PB to obtain 5PB ; double 3PB to
obtain 6PB ; add PB to obtain 7PB ; and so on through 16PB . We also multiply
each resulting T coordinate by d = 3617, eliminating the multiplications by d in
the main computation.

In total 8 doublings, 7 additions, and 16 multiplications by d are required.
Note that these doublings are followed by additions and thus need one extra
M for the T coordinate in the transition to extended coordinates. Note also
that we have to compute T for PB which costs 1M. For the first doubling,
(X,Y, Z, T ) is (x, y, 1, xy). We save 1S by not having to compute Z2 since Z = 1;
we save another 1S by not having to compute (x + y)2 but using the equality
(x+y)2−x2−y2 = 2xy = 2T ; and we use Z = 1 again for an S−M tradeoff. The
overall cost for the first doubling is 3M+3S while for the rest it is 4M+4S. Note
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that all additions in precomputation are adding PB which has Z = 1. We thus use
mixed addition which saves 1M. This results in the total cost for precomputation
of 1M+ (3M+ 3S) + 7(4M+ 4S) + 7(8M) + 16Md = 88M+ 31S+ 16Md.

The main computation uses a fixed pattern of five doublings followed by one
addition. Four regular doublings in a block of five take 3M+ 4S each. The fifth
doubling in a block requires 1 more M to calculate T for the following addition.
On the other hand, addition does not need to compute T since the following
doubling is in projective coordinates. Furthermore, dT was precomputed for each
T in the table. Therefore the addition takes only 8M. In total the five doublings
and one addition take only 4(3M+ 4S) + (4M+ 4S) + (8M) = 24M+ 20S.

Note that, since the Edwards addition law is complete, no special handling
is required for the neutral element 0PB . An addition when the coefficient of the
scalar happens to be 0 is handled the same way as any other addition.

A scalar between 0 and 2414 − 1 uses 82 signed windows of width 5, after an
initial selection from 0PB , 1PB , . . . , 16PB . The total cost for scalar multiplication
including precomputation is (88M+31S+16Md)+82(24M+20S) = 2056M+
1671S+ 16Md, plus 1 inversion and 2M to convert to X/Z, Y/Z for output.

4 Karatsuba Multiplication

Karatsuba, Toom, and the FFT are polynomial-multiplication methods that
are asymptotically faster than schoolbook multiplication. However, for small
input sizes the speedups are outweighed by the expense of more additions and
subtractions, which in turn require more carries. These effects are particularly
noticeable for polynomials of low degree—or equivalently for integers occupying
just a few words. In software implementations of cryptography we rarely find
integers large enough to justify use of FFT or Toom, and even Karatsuba’s
method is commonly only used in implementations of RSA and not ECC.

In this section we explain how to reduce the cost of carries by working with
multiple levels of redundancy in the representation and thereby delaying carries.
We also introduce “reduced refined Karatsuba”, a new variant of the “refined
Karatsuba” method; this variant eliminates some additions by merging Karat-
suba multiplication with a subsequent modular reduction.

4.1. Redundant Number Representation.We decompose an integer f mod-
ulo 2414 − 17 into 16 integer pieces in radix 2414/16 = 225.875, i.e., we write f as
f0+226f1+252f2+278f3+2104f4+2130f5+2156f6+2182f7+2207f8+2233f9+
2259f10 + 2285f11 + 2311f12 + 2337f13 + 2363f14 + 2389f15. With this decompo-
sition, each limb f0, f1, . . . , f14, f15 is small enough to fit into a 32-bit integer
and to still have space to delay carries occurring when adding these pieces. The
results of the 32-bit-by-32-bit multiplications fit into 64-bit words, and we can
add thousands of them together before causing an overflow.

Note that f7 is multiplied by 2207, not 2208. Having f7 and f15 contain 25 bits
makes f0, . . . , f7 symmetric to f8, . . . , f15, aiding vectorization. We considered
using fewer limbs, but the advantage of saving multiplications is outweighed by
the disadvantages of (1) extra carries and (2) extra vectorization overhead.
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4.2. Two-Level Karatsuba: Decomposition Strategy. As mentioned in
Section 1, we use 2 Karatsuba levels. This fits nicely into the 128-bit Cortex-A8
vector units, and uses less arithmetic than 3 or 1 (or 0) Karatsuba levels.

We start with what Bernstein in [3] calls the “refined Karatsuba identity”

(F0 + tnF1)(G0 + tnG1) = (1− tn)(F0G0 − tnF1G1) + tn(F0 + F1)(G0 +G1).

This uses fewer additions than the original Karatsuba identity from [29].
For the first level of Karatsuba, we split one 16-limb integer f into two 8-limb

integers F0 and F1 with f = F0 + 2207F1 as:

F0 = f0 + 226f1 + 252f2 + 278f3 + 2104f4 + 2130f5 + 2156f6 + 2182f7 ;

F1 = f8 + 226f9 + 252f10 + 278f11 + 2104f12 + 2130f13 + 2156f14 + 2182f15.

We also decompose another integer g similarly to f . Then, we have

fg = (1− 2207)(F0G0 − 2207F1G1) + 2207(F0 + F1)(G0 +G1).

For the second level of Karatsuba, we further split the 8 limbs of F0 (and those
of F1) into two 4-limb integers F00, F01 (and F10, F11) with F0 = F00 + 2104F01

(and F1 = F10 + 2104F11) as:

F00 = f0 + 226f1 + 252f2 + 278f3 ; F01 = f4 + 226f5 + 252f6 + 278f7;

F10 = f8 + 226f9 + 252f10 + 278f11; F11 = f12 + 226f13 + 252f14 + 278f15.

We similarly split G0 and G1 to obtain G00, G01, G10, and G11. Then

F0G0 = (1− 2104)(F00G00 − 2104F01G01) + 2104(F00 + F01)(G00 +G01);

F1G1 = (1− 2104)(F10G10 − 2104F11G11) + 2104(F10 + F11)(G10 +G11).

To compute (F0+F1)(G0+G1) we first compute F0+F1 and G0+G1 without
carries and then apply the same type of decomposition. For example, we split
F0 + F1 into two 4-limb integers, namely F00 + F10 and F01 + F11.

4.3. Lowest-Level Multiplication. On the lowest level we need to multiply
two 4-limb integers; we do this by schoolbook multiplication. For F00G00 this
works as follows:

h0 = f0g0,

h1 = f0g1 + f1g0, h4 = f1g3 + f2g2 + f3g1,

h2 = f0g2 + f1g1 + f2g0, h5 = f2g3 + f3g2,

h3 = f0g3 + f1g2 + f2g1 + f3g0, h6 = f3g3.

We store each input limb fi and gi in a word of 32 bits and use the processor’s
multiplication and addition units to compute each hi. This takes 16 32-bit-by-
32-bit multiplications and 9 64-bit additions. Each of the initial limbs has at
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most 26 bits and each of the hi fits into 64 bits. The values h4, h5, and h6 belong
to the powers 2104, 2130, and 2156, i.e., they are implicitly multiplied by 2104.

4.4. Middle-Level Recombination. After computing the three lowest-level
products F00G00, F01G01 and (F00+F01)(G00+G01), we obtain F0G0 as follows.

Step 1.1: Compute F00G00−2104F01G01. We merge F01G01 to F00G00 at the
2104 boundary using 3 subtractions of 64-bit words. In other words, we align the
5th limb of F00G00 with the 1st limb of F01G01 as shown in the following diagram.
The result is thus 11 limbs long. The top limbs are not actually subtracted from
0; they are tracked as being implicitly negated.

F00G00

F01G01

subtract

Step 1.2: Compute (1 − 2104)(F00G00 − 2104F01G01). This is equivalent to
merging F00G00 − 2104F01G01 to itself at the 2104 boundary. We conduct this
merge similarly to Step 1.1: we align the 5th limb of F00G00 − 2104F01G01 with
the 1st limb and subtract. The following diagram depicts this step. This merge
requires 7 subtractions of 64-bit words, and the result is 15 limbs long.

F00G00 - 2104F01G01

F00G00 - 2104F01G01

subtract

Step 1.3: Compute F0G0. We finish this level of computation by adding
2104(F00 + F01)(G00 + G01) to (1 − 2104)(F00G00 − 2104F01G01). This is done
by merging the former to the latter at the 2104 boundary, i.e., the 5th limb of
the former is aligned with the 1st limb of the latter as shown in the following di-
agram. Note that this merge requires 7 additions of 64-bit words, and the result
remains 15 limbs long.

(1−2104)(F00G00 - 2104F01G01)

(F00+F01)(G00+G01)

subtract

When combining the results we need to pay attention to the 9th through
15th limbs. Those limbs are implicitly multiplied by 2207. However, during the
above computation they appear naturally as multiples of 2208 instead of 2207.
We therefore shift those seven limbs by one bit.

To summarize, the computation of the product F0G0 consists of

• 2× 4 32-bit additions for F00 + F01 and G00 +G01;
• 3× 16 32-bit-by-32-bit-producing-64-bit multiplications for F00G00, F01G01,

and (F00 + F01)(G00 +G01);
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• 3× 9 64-bit additions for computing the hi;
• 1× 3 64-bit subtractions for computing Step 1.1;
• 1× 7 64-bit subtractions for computing Step 1.2;
• 1× 7 64-bit additions for computing Step 1.3;
• 1× 7 64-bit shifts for handling 2207 and 2208.

The total is 8 32-bit additions (counting subtractions as additions), 48 32-bit-
by-32-bit multiplications, 44 64-bit additions, and 7 64-bit shifts.

We compute products F1G1 and (F0+F1)(G0+G1) in the same way as F0G0.
The total cost for these three products is 24 32-bit additions, 144 32-bit-by-32-bit
multiplications, 132 64-bit additions, and 21 64-bit shifts.

4.5. Top-Level Recombination and Reduction. After computing F0G0 etc.,
we compute fg = (1−2207)(F0G0−2207F1G1)+2207(F0+F1)(G0+G1) as follows.
This top-level recombination is immediately followed by a reduction, and we
save some additions by interleaving the reduction into the refined-Karatsuba
computation, a technique that we call “reduced refined Karatsuba”. What is
important here is that we reduce F0G0−2207F1G1 before multiplying by 1−2207.

Step 2.1: Compute F0G0− 2207F1G1. This is similar to Step 1.1 but includes
an extra reduction. The merge of F1G1 to F0G0 is at the 2207 boundary and
uses 7 subtractions of 64-bit words; the 9th limb of F0G0 is aligned with the
1st limb of F1G1. The intermediate result is 23 limbs long. Then we reduce
modulo 2414 − 17: we multiply the 17th through 23rd limbs by 17 (using shifts
and additions) and add to the 1st through 7th limbs. This requires another 7
shifts and 14 additions of 64-bit words. The result is thus only 16 limbs long, as
indicated in the following diagram.

F0G0

F1G1

subtract

reduce

Step 2.2: Compute (1− 2207)(F0G0 − 2207F1G1). This is similar to Step 1.2.
The earlier reduction in Step 2.1 means that Step 2.2 uses only 8 subtractions of
64-bit words. The result is 24 limbs long as shown in the following diagram. We
do not perform an extra reduction here: by keeping this long result of 24 limbs,
we save 8 shifts and 16 additions.

F0G0 - 2207F1G1

F0G0 - 2207F1G1

subtract

Step 2.3: Compute fg. We finish by adding 15-limb 2207(F0+F1)(G0+G1) to
24-limb (1− 2207)(F0G0− 2207F1G1). This is done by merging the former to the
latter at the 2207 boundary: i.e., the 9th limb of (1− 2207)(F0G0 − 2207F1G1) is
aligned with the 1st limb of (F0+F1)(G0+G1). This merge requires 15 additions
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of 64-bit words and results in 24 limbs. We do another reduction similar to Step
2.1 to bring the result back to 16 limbs; this requires another 8 shifts and 16
additions of 64-bit words. The following diagram illustrates this step.

(1-2207)(F0G0-2
207F1G1)

(F0+F1)(G0+G1)

subtract

reduce

To summarize, computing fg from F0G0, F1G1 and (F0+F1)(G0+G1) uses

• 7 64-bit subtractions for computing Step 2.1;
• 7 64-bit shift instructions for reduction in Step 2.1;
• 14 64-bit additions for reduction in Step 2.1;
• 8 64-bit subtractions for computing Step 2.2;
• 15 64-bit additions for computing Step 2.3;
• 8 64-bit shift instructions for reduction in Step 2.3;
• 16 64-bit additions for reduction in Step 2.3.

This sums up to 60 64-bit additions and 15 64-bit shift instructions. There-
fore, the total cost for computing fg is 24 32-bit additions, 144 32-bit-by-32-bit
multiplications, 132 + 60 = 192 64-bit additions, and 21 + 15 = 36 64-bit shifts.

4.6. Principles Behind Reduced Refined Karatsuba. Our elimination of
some additions can be viewed as following the general strategy of reducing inputs
to a multiplication rather than outputs of a multiplication. Specifically, we reduce
F0G0−2207F1G1 before multiplying it by 1−2207; we do not reduce the product
until after adding it to (F0 + F1)(G0 + G1); if fg were being added to other
products then we would similarly delay the reduction until after the addition.
What is new here is seeing the multiplication by 1− tn inside refined Karatsuba
as a useful target of the general strategy, despite the sparsity of 1− tn.

5 Vectorization

The “NEON” vector unit in each Cortex-A8 core can compute a vector of two
64-bit products ac and bd in just 2 cycles given 32-bit inputs a, b, c, d. It can
compute a vector of two 64-bit sums or four 32-bit sums in just 1 cycle. The
latencies of these operations are actually higher, up to 7 cycles, but throughput is
improved by pipelining. Taking advantage of this computational power requires
that at every moment there are 2 or 4 identical computations to perform, and
on top of this enough independent computations to hide latencies.

5.1. Karatsuba Vectorization. Most of the computations in Section 4 are
suitable for vectorization. For example, F01G01 takes f4, f5, f6, f7, g4, g5, g6, g7
as input; F10G10 takes f8, f9, f10, f11, g8, g9, g10, g11. There are no dependencies
between these two identical sets of multiplications. Similar comments apply to
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F00G00 and F11G11; (F00 + F10)(G00 + G10) and (F01 + F11)(G01 + G11); and
(F00+F01)(G00+G01) and (F10+F11)(G10+G11). The remaining multiplication
consists of 16 32-bit products, which we partition into 8 vectorized products
at the cost of some shuffling. Similarly, we vectorize between combining F0G0

and combining F1G1, and at the cost of some shuffling we vectorize within the
computation of (F0+F1)(G0+G1). NEON also supports a multiply-accumulate
instruction, allowing us to eliminate many addition instructions.

5.2. Carry Vectorization. At the end of the Karatsuba computation, reduc-
tion modulo p produces a product of the form

∑7
i=0 mi2

26i+2207
∑7

i=0 mi+82
26i.

We then use a sequence of carries to bring each limb down to 26 (or in some
cases 25) bits. We vectorize between a carry m0 → m1 and a carry m8 → m9,
between a carry m1 → m2 and a carry m9 → m10, etc.

Each carry has very high latency, so we perform four carry chains in parallel.
Specifically, we vectorize between a carry m0 → m1 and a carry m8 → m9, and
in parallel vectorize between a carry m4 → m5 and a carry m12 → m13; we then
vectorize between a carry m1 → m2 and a carry m9 → m10, and in parallel
vectorize between a carry m5 → m6 and a carry m13 → m14; and so on. This
hides almost all latency.

5.3. Performance. See Section 1.4 for our Cortex-A8 performance results.
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A Point Arithmetic Formulas

This appendix presents the formulas that we use for doubling and addition of
curve points. Most of these formulas are taken from the EFD [9]. To simplify the
cost statements we count only field multiplications and squarings, not additions
and subtractions.

A.1 Formulas for Doubling

We use three different formulas for point doubling. The slowest formulas are the
following:

Input: X1, Y1, Z1

Output: X3, Y3, Z3, T3

Cost: 4M+ 4S

A = X2
1 , G = A+B, X3 = EF,

B = Y 2
1 , F = G− C, Y3 = GH,

C = 2Z2
1 , H = A−B, Z3 = FG,

E = (X1 + Y1)
2 −A−B, T3 = EH.

We use these formulas once in each five-doubling window, specifically for the
last doubling before point addition. Each of the other four doublings costs just
3M+ 4S: we save 1M by skipping the computation of T3.

For the first doubling in the precomputation we use the following faster
formulas.
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Input: X1, Y1, T1 where Z1 = 1
Output: X3, Y3, Z3, T3

Cost: 3M+ 3S

A = X2
1 , G = A+B, X3 = EF,

B = Y 2
1 , F = G− 2, Y3 = GH,

E = 2T1, H = A−B, Z3 = G2 − 2G,

T3 = EH.

A.2 Formulas for Addition

All additions in the precomputation use the following formulas. These formulas
save 1M using Z2 = 1.

Input: X1, Y1, Z1, T1, X2, Y2, dT2 where Z2 = 1
Output: X3, Y3, Z3, T3

Cost: 8M

A = X1X2, F = Z1 − C, X3 = EF,

B = Y1Y2, G = Z1 + C, Y3 = GH,

C = T1dT2, H = B −A, Z3 = FG,

E = (X1 + Y1)(X2 + Y2)−A−B, T3 = EH.

All additions in the main computation use the following formulas. These
formulas save 1M by skipping the computation of T3; the next operation is
doubling, which does not use T .

Input: X1, Y1, Z1, T1, X2, Y2, Z2, dT2

Output: X3, Y3, Z3

Cost: 8M

A = X1X2, E = (X1 + Y1)(X2 + Y2)−A−B,

B = Y1Y2, F = D − C, X3 = EF,

C = T1dT2, G = D + C, Y3 = GH,

D = Z1Z2, H = B −A, Z3 = FG.
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Abstract. We show how the cofactorization step, a compute-intensive
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1 Introduction

Today, the asymptotically fastest publicly known integer factorization method
is the number field sieve (NFS, [47,30]). It has been used to set several integer
factorization records, most recently a 768-bit RSA modulus as described in [27].
In the first of its two main steps, pairs of integers called relations are collected.
This is done by iterating a two-stage approach: sieving to collect a large batch
of promising pairs, followed by the identification of the relatively few relations
among them. Sieving requires a lot of memory and is commonly done on CPUs.
The follow-up stage requires little memory and can be parallelized in multiple
ways. It may therefore be cost-effective to offload this follow-up stage to a copro-
cessor. Most previous work in this direction focussed on offloading the elliptic
curve integer factoring (ECM, [31]), which is only part of this follow-up stage. For
graphics processing units (GPUs) this is considered in [7,5,10] and for reconfig-
urable hardware such as field-programmable gate arrays in [54,46,17,14,19,32,59].
To allow the CPUs to keep sieving, thus optimally using their memory, in this pa-
per the possibility is explored to offload the entire follow-up stage to GPUs. We
describe our approach, with a focus on modular and elliptic curve arithmetic, to
do so on the many-core, memory-constrained GPU platform. Our results demon-
strate that GPUs can be used as an efficient high-throughput co-processor for this
application.

Our design strategy exploits the inherent task parallelism of the stage that
follows the actual sieving, namely the fact that collected pairs can be processed
independently in parallel. Because the integers involved are relatively small (at
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most 384 bits for our target number), we have chosen not to parallelize the
integer arithmetic, thereby avoiding performance penalties due to inter-thread
synchronization while maximizing the compute-to-memory-access ratio [5]. We
use a single thread to process a single pair from the input batch, aiming to
maximize the number of pairs processed per second. Because this requires a large
number of registers per thread and potentially reduces the GPU utilization, we
use integer arithmetic algorithms that minimize register usage and apply native
multiply-and-add instructions wherever possible.

For each pair the follow-up stage consists of checking if two integer values,
obtained by evaluating two bivariate integer polynomials at the point determined
by the pair, are both smooth, i.e., divisible by primes up to certain bounds. This
is done sequentially: a first kernel filters the pairs for which the first polynomial
value is smooth, once enough pairs have been collected a second kernel does the
same for the second polynomial value, and pairs that pass both filters correspond
to relations. Each kernel first computes the relevant polynomial value and then
subjects it to a sequence of occasional compositeness tests and factorization
attempts aimed at finding small factors.

We have determined good parameters for two different approaches: to find as
many relations as possible (≈ 99% in a batch) and a faster one to find most rela-
tions (≈ 95% in a batch). The effectiveness of these approaches is demonstrated
by integrating the GPU software with state-of-the-art NFS software [16] tuned
for the factorization of the 768-bit modulus from [27]. A single GTX 580 GPU
can serve between 3 and 10 Intel i7-3770K quad-core CPUs.

Cryptologic applications of GPUs have been considered before: symmetric
cryptography in [33,20,57,21,45,11,18], asymmetric cryptography in [40,55,22]
for RSA and in [55,1,9] for ECC, and enhancing symmetric [8] and asymmet-
ric [7,5,6,10] cryptanalysis.

Our source code will be made available.

2 Preliminaries

The Number Field Sieve. For details on how NFS works, see [30,51]. Its
major steps are polynomial selection, relation collection, and the matrix step.
For this paper, an operational description of relation collection for numbers in
the current range of interest suffices. For those numbers relation collection is
responsible for about 90% of the computational effort.

Here we call an integer B-smooth if there is no prime-power larger than B
that divides it (elsewhere such numbers are called B-powersmooth). Relation col-
lection uses smoothness bounds Br, Ba ∈ Z>0 and polynomials fr(X), fa(X) ∈
Z[X ] such that fr is of degree one, fa is irreducible of (small) degree d > 1, and
fr and fa have a common root modulo the number to be factored. The poly-
nomials fr and fa are commonly referred to as the rational and the algebraic
polynomial, respectively. A relation is a pair of coprime integers (a, b) with b > 0
such that bfr(a/b) is Br-smooth and bdfa(a/b) is Ba-smooth.
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Relations are determined by successively processing relatively large special
primes until sufficiently many relations have been found. A special prime q defines
an index-q sublattice in Z2 of pairs (a, b) such that q divides bfr(a/b)b

dfa(a/b).
Sieving in the sublattice results in a collection of pairs for which bfr(a/b) and
bdfa(a/b) have relatively many small factors. To identify the relations, for all col-
lected pairs the values bfr(a/b) and b

dfa(a/b) are further inspected. This can be
done by first simultaneously resieving the bfr(a/b)-values to remove their small
factors, then doing the same for the bdfa(a/b)-values, after which any cofactors are
dealt with on a pair-by-pair basis. Alternatively, cofactoring can be preceded by a
pair-by-pair search for the small factors in bfr(a/b) and b

dfa(a/b), thus simplifying
the sieving step. The latter approach is adopted here, to offload as much as possi-
ble from the regular CPU cores, including the calculation of the relevant bfr(a/b)-
and bdfa(a/b)-values. The steps involved in this extended (and thus somewhat
misnomered) cofactoring are described in Section 3.

Montgomery Arithmetic. For arithmetic modulo a fixed odd modulus m
Montgomery arithmetic [36] may be used because it avoids trials during the
divisions and allows simple coding. Let r be the machine radix (here r = 232),
let k ∈ Z>0 be minimal such that rk > m, and let μ = −m−1 mod r. The
Montgomery representation of an integer x ∈ Z/mZ is defined as x̃ = xrk mod
m. Given Montgomery representations x̃, ỹ of x, y ∈ Z/mZ, it follows that t̃ such
that t = (x ± y) mod m is calculated as t̃ = (x̃ ± ỹ) mod m, and that s̃ such
that s = xy mod m satisfies s̃ = x̃ỹr−k mod m. This Montgomery product s̃ can
be computed by first calculating the ordinary integer product u = x̃ỹ, and by
next performing Montgomery reduction: modulo m divide u by rk by replacing
k times in succession u by (u + [((u mod r)μ) mod r]m)/r, then s̃ = u − m if
u ≥ m and s̃ = u otherwise. If 0 ≤ x̃, ỹ < m, then the same bound hold for s̃.

Jebelean’s Exact Division. If n is known to be an integer multiple of an odd
integer p, the quotient n

p can be computed using an iteration very similar to

Montgomery reduction: let μ = −p−1 mod r, then v = ((n mod r)(r−μ)) mod r
equals the least significant radix-r block n

p mod r of n
p , after which n is replaced

by (n− vp)/r and the other radix-r blocks of n
p are iteratively computed in the

same way. This is known as Jebelean’s exact division method [24].

3 Cofactoring Steps

This section lists the steps used to identify the relations among a collection of
pairs of integers (a, b) that results from NFS sieving for one or more special
primes. See [26] for related previous work. The notation is as in Section 2.

For all collected pairs (a, b) the values bfr(a/b) and b
dfa(a/b) can be calculated

by observing that bkf(a/b) =
∑k

i=0 fia
ibk−i for f(X) =

∑k
i=0 fiX

i ∈ Z[X ]. The
value z = bkf(a/b) is trivially calculated in k(k−1) multiplications by initializing
z as 0, and by replacing, for i = 0, 1, . . ., k in succession, z by z + fia

ibk−i,
or, at the cost of an additional memory location, in 3k − 1 multiplications by
initializing z = f0 and t = a and by replacing, for i = 1, 2, . . ., k in succession,
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z by zb + fit and, if i < k, t by ta. Even with the most naive approach (as
opposed to asymptotically faster methods), this is a negligible part of the overall
calculation. The resulting values need to be tested for smoothness, with bound
Br for the bfr(a/b)-values and bound Ba for the bdfa(a/b)-values.

For all pairs (a, b) both bfr(a/b) and bdfa(a/b) have relatively many small
factors (because the pairs are collected during NFS sieving). After shifting out
all factors of two, other very small factors may be found using trial division,
somewhat larger ones by Pollard p−1 [48], and the largest ones using ECM [31].
These three methods are further described below. In our experiment (cf. 5.2) it
turned out to be best to skip trial division for bfr(a/b) and let Pollard p− 1 and
ECM take care of the very small factors as well. Based on the findings reported
in [28] or their GPU-incompatibility, other integer factorization methods like
Pollard rho [49] or quadratic sieve [50] are not considered. It is occasionally
useful to make sure that remaining cofactors are composite. An appropriate
compositeness test is therefore described first.

Compositeness Test. Let m − 1 = 2tu for t ∈ Z≥0 and odd u ∈ Z. If for

some a ∈ (Z/mZ)∗ it is the case that au �≡ 1 mod m and au2
i �≡ −1 mod m for

0 ≤ i < t, thenm is composite and a is a witness tom’s compositeness. As shown
in [35,52], for composite m more than 75% of the integers in {1, 2, . . . ,m − 1}
are witnesses to m’s compositeness.

This test is used as follows to process an m-value that is found as an as yet
unfactored part of a polynomial value bfr(a/b) or b

dfa(a/b). If 2 is a witness to
m’s compositeness, then m is subjected to further factoring attempts; if not, the
polynomial value is declared fully factored and the corresponding pair (a, b) is
cast aside if m > Br for m | bfr(a/b) or m > Ba for m | bdfa(a/b). This carries
the risk that a non-prime factor may appear in a supposedly fully factored poly-
nomial value, or that a pair (a, b) is wrongly discarded. With a small probability
to occur, either type of failure is of no concern in our cryptanalytic context.

Trial Division. Given an odd integer n, all its prime factors up to some small
trial division bound are removed using trial division. For each small odd prime p
(possibly tabulated, if memory is available) first π = (−p)−1 mod r is calculated
(per thread, at negligible overhead), with r = 232 as in Section 2. Next, n
is tested for divisibility by p: with u initialized as n and k the least integer
such that u < rk, the integer u is modulo p divided by rk (using Montgomery
reduction, with p and π in the roles of m and μ, respectively). If the resulting
32-bit value u satisfies u mod p ≡ 0, then n is divisible by p and the divisibility
test is repeated with n replaced by n

p (computed using Jebelean’s method).

Pollard p − 1. The prime factors p of n for which p − 1 is B1-smooth can
be found at a cost of O(B1) multiplications modulo n by means of “stage 1”
of Pollard’s p − 1 method [48]: with t = ak mod n, for some a �= ±1 mod n,
a �= 0 mod n and k the product of all prime powers ≤ B1, the product of all
such p divides gcd(t − 1, n). In practice the value a = 2 is used for efficiency
reasons. If the order modulo n of t is at most B2, for some bound B2 > B1,
this can be exploited in “stage 2” [37], thereby allowing in p− 1 one additional
prime factor between B1 and B2. Naively, gcd(t

� − 1, n) could be computed for
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all primes 	 in (B1, B2]. A much faster but memory-consuming method uses the
fast Fourier transform (cf. [39]). On GPUs a baby-step giant-step approach is
more suitable and is used here. It follows from the description below and the
optimizations described in [37].

Elliptic Curve Method. Stage 1 of Pollard’s p− 1 method uses O(B1) multi-
plications modulo n to find prime factors p of n for which the groups (Z/pZ)∗

have B1-smooth order. Thus, p can be found in time mostly linear in the largest
prime factor of p − 1. The elliptic curve method (ECM) for integer factoriza-
tion [31] works analogously but replaces the fixed group (Z/pZ)∗ of order p− 1
by a number of groups with orders behaving like random integers close to p:
given one such group with B1-smooth order, p can be found in O(B1) multipli-
cations and additions modulo n. Trading off the number of groups attempted and
the smoothness bound, finding p can heuristically be argued to take exp((

√
2 +

o(1))(
√
log p log log p)) elementary operations modulo n, where p→∞.

Like Pollard’s p− 1 method, each ECM attempt operates on a group element
and the product k of all prime powers ≤ B1, mimics the “mod p” operations by
doing them “mod n”, and hopes to run into the identity element mod p but not
modn, if not in stage 1 then in stage 2. Where Pollard’s method is based on
arithmetic in the group of integers modulo the composite multiple n of p, ECM
is based on arithmetic with “points” belonging to groups associated with elliptic
curves over prime fields, mimicking those operations by doing them modulo the
composite multiple n of those primes. Because the operations may not be well-
defined, they may fail, thereby revealing a factor of n.

The current best approach to implement ECM, as used here, is “a = −1”
twisted Edwards curves (based on [15,4,23,3]) with extended twisted Edwards
coordinates (improving on Montgomery curves [37] and methods from [58]). Be-
low points are represented as pairs of projective points ((x : z), (y : t)) for
x, z, y, t ∈ Z/nZ, with zero point ((0 : 1), (1 : 1)). Applying the additively writ-
ten “group operation” requires a total of eight multiplications and squarings
in Z/nZ. With initial point P the point kP can thus be calculated in O(B1)
multiplications in Z/nZ, after which the gcd of n and the x-coordinate of kP is
computed. Because the same k is often used, good addition-subtraction chains
can be prepared (cf. [10]): for B1 = 256, the point kP can be computed in 1400
multiplications and 1444 squarings modulo n. Due to the significant memory
reduction this approach is particularly efficient for memory constrained devices
like GPUs. We also select curves for which 16 divides the group order, further en-
hancing the success probability of ECM (cf. [2, Thm. 3.4 and 3.6] and [3]). More
specifically we use “a = −1” twisted Edwards curve (E : −x2 + y2 = 1+ dx2y2)
over Q with d = −((g − 1/g)/2)4 such that d(d+ 1) �= 0 and g ∈ Q \ {±1, 0}.

Related work on stage 1 of ECM for cofactoring on constrained devices can
be found in [54,46,17,14,19,32,59,7,5,10]. Unlike these publications, the GPU-
implementation presented here includes stage 2 of ECM, as it significantly im-
proves the performance of ECM.

ECM Stage 2 on GPUs. The fastest known methods to implement stage 2 of
ECM are FFT-based [12,37,38] and rather memory-hungry, which may explain
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why earlier constrained device ECM-cofactoring work did not consider stage 2.
These methods are also incompatible with the memory restrictions of current
GPUs. Below a baby-step giant-step approach [53] to stage 2 is described that
is suitable for GPUs. Let Q = kP be as above. Similar to the naive approach to
stage 2 of Pollard’s p− 1 method, the points 	Q for the primes 	 in (B1, B2] can
be computed and be compared to the zero point modulo a prime dividing p but
not modulo n. The latter amounts to computing the gcd of n and the product
of the x-coordinates of the points 	Q. With N primes 	, computing all points
requires about 8N multiplications in Z/nZ, assuming a few precomputed small
even multiples of Q. Balancing the computational efforts of the two stages with
B1 = 256 as above, leads to B2 = 2803 (and N = 354).

The baby-step giant step approach from [37] speeds up the calculation at the
cost of more memory, while also exploiting that for Edwards curves and any
point P it is the case that

y(P )

t(P )
=
y(−P )
t(−P ) , (1)

with y(P ) and t(P ) the y- and t-coordinate, respectively, of P .
For a giant-step value w < B1, any 	 as above can be written

as vw ± u where u ∈ U =
{
u ∈ Z : 1 ≤ u ≤ w

2 , gcd(u,w) = 1
}
, and

v ∈ V =
{
v ∈ Z :

⌈
B1

w − 1
2

⌉ ≤ v ≤ ⌊
B2

w + 1
2

⌋}
. Comparing (vw − u)Q

to the zero point modulo p but not modulo n amounts to checking if
gcd(t(uQ)y(vwQ) − t(vwQ)y(uQ), n) �= 1. Because of (1), this compares
(vw + u)Q to the zero point as well. Hence, computation of gcd(m,n) for
m =

∏
v∈V

∏
u∈U (t(uQ)y(vwQ)− t(vwQ)y(uQ)) suffices to check if Q has prime

order in (B1, B2]. Optimal parameters balance the costs of the preparation of

the ϕ(w)
2 tabulated baby-step values (y(uQ) : t(uQ)) (where ϕ is Euler’s totient

function) and on the fly computation of the giant-step values (y(vwQ) : t(vwQ)).
Suboptimal, smaller w-values may be used to reduce storage requirements. For
instance, the choice w = 2 · 3 · 5 · 7 and B2 = 7770 leads to 24 tabulated values
and a total of 2904 multiplications and squarings modulo n, which matches the
computational effort of stage 1 with B1 = 256. Although gcd(u,w) = 1 already
avoids easy composites, the product can be restricted to those u, v for which one

of vw ± u is prime if storage for about B2−B1

w × ϕ(w)
2 bits is available. With w

and tabulated baby-step values as above, this increases B2 to 8925 for a similar
computational effort, but requires about 125 bytes of storage. A more substantial
improvement is to define

yv =
( ∏

ṽ∈V−{v}
t(ṽwQ)

)( ∏
ũ∈U

t(ũQ)
)
y(vwQ)

and
yu =

( ∏
ũ∈U−{u}

t(ũQ)
)( ∏

ṽ∈V

t(ṽwQ)
)
y(uQ),

and to replace m by
∏

v∈V

∏
u∈U (yv − yu). This saves 2|V ||U | of the 3|V ||U |

multiplications in the calculation of m at a cost that is linear in |U | + |V | to
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tabulate the yv and yu values. For instance, it allows usage of B2 = 16 384 at an
effort of 3368 modular multiplications.

4 GPU Implementation Details

In this section we outline our approach to implement the algorithms from Sec-
tion 3 with a focus on the many-core GPU architecture. We used a quad-core
Intel i7-3770K CPU running at 3.5 GHz with 16 GB of memory and an NVIDIA
GeForce GTX 580 GPU, with 512 CUDA cores running at 1544 MHz and 1.5
GB of global memory, as further described below.

4.1 Compute Unified Device Architecture

We focus on theGeForcex-series families forx ∈ {8, 9, 100, 200, 400, 500, 600, 700},
of the NVIDIA GPU architecture with the compute unified device architecture
(CUDA) [42]. Our NVIDIA GeForce GTX 580 GPU belongs to the GeForce 400-
and 500-series ([41]) of the Fermi architecture family. These GPUs support 32 ×
32→ 32-bit multiplication instructions, for both the least and most significant 32
bits of the result.

Each GPU contains a number of streaming multiprocessors (SMs), with each
SM consisting of multiple scalar processor cores (SP). On a Fermi architecture
GPU there are typically about 16 SMs and 32 SPs per SM, but numbers vary per
model. C for CUDA is an extension to the C language that employs the single-
instruction multiple-thread (SIMT) model of massively parallel programming.
The programmer defines kernel functions, which are compiled for and executed
in parallel on the SPs such that each light-weight thread executes the same
instructions but on its own data. A number of threads is grouped into a thread
block which is scheduled on a single SM, the threads of which time-share the SPs.

Threads inside a thread block are executed in groups of 32 called warps. On
Fermi architecture GPUs each SM has two warp schedulers and two instruction
dispatch units. This means that two instructions, from separate warps, can be
scheduled and dispatched at the same time. Switching between warps, filling
the pipeline as much as possible, a high throughput rate can be sustained. The
distinct possibilities of a conditional branch are executed serially by the threads
inside a warp, with threads active only when their branch is executed. Multiple
execution paths within a warp are thus best avoided.

Threads in the same block can communicate via on-chip shared memory and
may synchronize their execution using barriers (a synchronization method which
makes threads wait until all reach a certain point). There is a large but relatively
slow amount of global memory that is accessible to all threads. Fermi architecture
GPUs have an L1-cache for each SM, and a unified L2-cache together with fast
constant (read-only) memory initialized by the CPU.
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4.2 Modular Arithmetic on GPUs

We used the parallel thread execution (PTX) instruction set and inline assembly
wherever possible to simplify (cf. carry-handling) and speed-up (cf. multiply-and-
add) our code; Table 7 in the Appendix lists the arithmetic assembly routines
used. “Warp divergent” code was reduced to a minimum by converting most
branches into straight line code to avoid different execution paths within a warp:
branch-free code that executes both branches and uses a bit-mask to select the
correct value was often found to be more efficient than “if-else” statements.

Practical Performance. Our decision not to use parallel integer arithmetic
dictates the use of algorithms with minimal register usage. For Montgomery
multiplication, the most critical operation, we therefore preferred the plain inter-
leaved schoolbook method to Karatsuba [25]; the CUDA pseudo-code for moduli
of at least 96 bits is given in the full version of this paper [34].

Table 1 compares our results both with the state-of-the-art implementation
from [29] benchmarked on an NVIDIA GTX 480 card (480 cores, 1401Mhz) and
with the ideal peak throughput attainable on our GTX 580 GPU. Compared
to [29] our throughput is up to twice better, especially for smaller (128-bit)
moduli, even after the figures from [29] are scaled by a factor of 512

480 · 15441401 to
account for our larger number of cores (512) and higher frequency (1544 MHz).
For 32	-bit moduli, with 	 ∈ [3, 12] (i.e. moduli ranging from 96 to 384 bits), we
counted the total number of multiplication and multiply-and-add instructions
required by Montgomery multiplication. The throughput of those instructions
on our GPU is 0.5 per clock cycle per core, whereas the throughput of the addi-
tion instructions is 1 per clock cycle per core. Since we use fewer addition than
multiplication instructions, our throughput count considers only the latter. In
our benchmarks we transfer to the GPU two (distinct) operands and a modulus
for each thread, and then compute one million Montgomery multiplications (us-
ing each output as one of the next inputs) before transferring the results back
to the CPU. Our throughput turns out to be very close to the peak value.

4.3 Elliptic Curve Arithmetic on GPUs

When running stage 1 of ECM on memory constrained devices like GPUs, the
large number of precomputed points required for windowing methods cannot be
stored in fast memory. Thus, one is forced to settle for a (much) smaller win-
dow size, thereby reducing the advantage of using twisted Edwards curves. For
example, in [7] windowing is not used at all because, citing [7], “Besides the
base point, we cannot cache any other points”. Memory is also a problem in [5],
where the faster curve arithmetic from Hisil et al. [23] is not used since this
requires storing a fourth coordinate per point. These concerns were the motiva-
tion behind [10], the approach we adopted for stage 1 of ECM (as indicated in
Section 3). For stage 2 we use the baby-step giant-step approach, optimized as
described at the end of Section 3 for B2 ≤ 32768. Using bounds that balance
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Table 1. Benchmark results for the NVIDIA GTX 580 GPU for numbers of Mont-
gomery multiplications and ECM trials per second for various modulus sizes, with the
results from [29] scaled as explained in the text. The estimated peak throughput based
on an instruction count is also included together with the total number of dispatched
threads. ECM used bounds B1 = 256 and B2 = 16384 (for a total of 2844+3368 = 6212
Montgomery multiplications per trial).

Leboeuf [29] this work
Montgomery muls ECM (8192 threads for all sizes)

moduli measured measured peak #threads trials Montgomery muls
bitsize (scaled, 106) (106) (103) measured (106)

96 10119 10135 16384 1078 6697
128 2799 5805 5813 16384 674 4187
160 2261 3760 3764 16384 453 2814
192 1837 2631 2635 16384 309 1920
224 1507 1943 1947 15360 243 1510
256 1212 1493 1497 10240 180 1118
320 828 962 964 10240 107 665
384 600 671 672 9216 86 534

the number of stage 1 and 2 multiplications does not necessarily balance the
GPU running time of the two stages (this varies with the modulus size), but it
is a good starting point for further optimization.

Table 1 lists the resulting performance figures, in terms of thousands of trials
per second for various modulus sizes. Two jobs each consisting of 8192 threads
were launched simultaneously, with each job per thread doing an ECM trial with
the bounds as indicated, and with at the start a unique modulus per thread
transferred to the GPU. The relatively high register usage of ECM reduces the
number of threads that can be launched per SM before running out of registers.
Nevertheless, and despite its large number of modular additions and subtrac-
tions, ECM manages to sustain a high Montgomery multiplication throughput.
Except for the comparison to the work reported in [29], we have not been able
to put our results in further perspective because we did not have access to other
multiplication or ECM results or implementations in a comparable context.

5 Cofactorization on GPUs

This section describes our GPU approach to cofactoring, i.e., recognizing among
the pairs (a, b) resulting from NFS sieving those pairs for which bfr(a/b) is
Br-smooth and bdfa(a/b) is Ba-smooth. Approaches common on regular cores
(resieving followed by sequential processing of the remaining candidates) allow
pair-by-pair optimization with respect to the highest overall yield or yield per
second while exploiting the available memory, but are incompatible with the
memory and SIMT restrictions of current GPUs.
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5.1 Cofactorization Overview

Given our application, where throughput is important but latency almost irrele-
vant, it is a natural choice to process each pair in a single thread, eliminating the
need for inter-thread communication, minimizing synchronization overhead, and
allowing the scheduler to maximize pipelining by interleaving instructions from
different warps. On the negative side, the large memory footprint per thread
reduces the number of simultaneously active threads per SM.

The cofactorization stage is split into two GPU kernel functions that receive
pairs (a, b) as input: the rational kernel outputs pairs for which bfr(a/b) is Br-
smooth to the algebraic kernel that outputs those pairs for which bdfa(a/b) is
Ba-smooth as well. The two kernels have the same code structure: all that dis-
tinguishes them is that the algebraic one usually has to handle larger values and
a higher degree polynomial. To make our implementation flexible with respect to
the polynomial selection, the maximum size of the polynomial values is a kernel
parameter that is fixed at compile time and that can easily be changed together
with the polynomial degree and coefficient size and the size of the inputs.

Kernel Structure. Given a pair (a, b), a kernel-thread first evaluates the rele-
vant polynomial, storing the odd part n of the resulting value along with iden-
tifying information i as a pair (i, n); if applicable the special prime is removed
from n. The value n is then updated in the following sequence of steps, with all
parameters set at run-time using a configuration file. First trial division may be
applied up to a small bound. The resulting pairs (i, n) are regrouped depending
on their radix-232 sizes. The cost of the resulting inter-thread communication
and synchronization is outweighed by the advantage of being able to run size-
specific versions of the other steps. All threads in a warp then grab a pair (i, n)
of the same size and each thread attempts to factor its n-value using Pollard’s
p− 1 method or ECM. If the resulting n is at most the smoothness bound, the
kernel outputs the ith pair (a, b). If n’s compositeness cannot be established or
if n is larger than some user-defined threshold, the ith pair (a, b) is discarded.
Pairs (i, n) with small enough composite n are regrouped and reprocessed.

This approach treats every pair (i, n) in the same group in the same way,
which makes it attractive for GPUs. However, unnecessary computations may be
performed: for instance, if a factoring attempt fails, compositeness does not need
to be reascertained. Avoiding this requires divergent code which, as it turned
out, degrades the performance. Also, factoring attempts may chance upon a
factor larger than the smoothness bound, an event that goes by unnoticed as
only the unfactored part is reported back. We have verified that the CPU easily
discards such mishaps at negligible overhead.

Interaction between CPU and GPU. The CPU uses two programs to in-
teract with the GPU. The first one adds batches of (a, b) pairs produced by
the siever (which may be running on the CPU too) to a FIFO buffer and keeps
track of special primes. The second program controls the GPU by iterating the
following steps (where the roles of the kernels may be reversed and the batch
sizes depend on the GPU memory constraints and the kernel):
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Table 2. Time in seconds to process a single special prime on all cores of a quad-core
Intel i7-3770K CPU

large number of pairs relations sieving cofactoring total % of time spent relations
primes after sieving found time time time on cofactoring per second

3 ≈ 5 · 105 125 25.6 4.0 29.6 13.5 4.22
4 ≈ 106 137 25.9 6.1 32.0 19.1 4.28

Table 3. Parameters choices for cofactoring. Later ECM attempts use larger bounds
in the specified ranges.

desired
algorithm

rational kernel algebraic kernel
yield attempts B1 B2 attempts B1 B2

95%
Pollard p− 1 1 [28, 211] [213, 214] 1 [28, 212] [214, 215]

ECM [5, 10] 28 [212, 213] 10 [28, 29] [212, 215]

99%
Pollard p− 1 1 [210, 212] [213, 215] 1 [28, 211] [213, 214]

ECM [10, 12] [28, 29] [212, 215] [10, 20] [28, 29] [212, 215]

1. copy a batch from the FIFO buffer to the GPU;
2. launch the rational kernel on the GPU;
3. store the pairs output by the rational kernel in an intermediate buffer;
4. if the intermediate buffer does not contain enough pairs, return to Step 1;
5. copy a batch from the intermediate buffer to the GPU;
6. launch the algebraic kernel on the GPU (providing it with the proper special

primes);
7. store the pairs output by the algebraic kernel in a file and return to Step 1.

Exploiting the GPU Memory Hierarchy. GPU performance strongly de-
pends on where intermediate values are stored. We use constant memory for
fixed data precomputed by the CPU and accessed by all threads at the same
time: primes for trial division, polynomial coefficients, and baby-step giant-step
table-indices for the second stages of factoring attempts. To lower register pres-
sure, the fast shared memory per SM acts as a “user-defined cache” for the values
most frequently accessed, such as the moduli n to be factored and the values
−n−1 mod 232. The slower but much larger global memory stores the batch of
(a, b) pairs along with their current n-values. To reduce memory overhead, the
n-values are moved back and forth to shared memory after regrouping.

5.2 Parameter Selection

For our experiments we applied the CPU NFS siever from [16] (obviously, with
multi-threading enabled) to produce relations for the 768-bit number from [27].
Except for the special prime, three so-called large primes (i.e., primes not used
for sieving but bounded by the applicable smoothness bound) are allowed in the
rational polynomial value, whereas on the algebraic side the number of large
primes is limited to three or four. Table 2 lists typical figures obtained when
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Fig. 1. Rational kernel cofactoring run times as a function of the Pollard p− 1 bounds
with desired yield 95%

processing a single special prime in either setting; the percentages are indicative
for NFS factorizations in general. The relatively small amount of time spent by
the CPU on cofactoring suggests various ways to select optimal GPU parameters.
One approach is aiming for as many relations per second as possible. Another
approach is to aim for a certain fixed percentage of the relations among the pairs
produced by NFS sieving, and then to select parameters that minimize the GPU
time (thus maximizing the number of CPUs that can be served by a GPU).
Although in general a fixed percentage cannot be ascertained, it can be done for
experimental runs covering a fixed set of special prime ranges, and the resulting
parameters can be used for production runs covering all special primes. Here we
report on this latter approach in two settings: aiming for all (denoted by “99%”)
or for 95% of all relations.

Experiments. For a fixed set of special prime ranges and both large prime
settings we determined all (a, b) pairs generated by NFS sieving and counted
all relations resulting from those (a, b) pairs. Next, we processed the (a, b) pairs
for either setting using our GPU cofactoring program, while widely varying all
possible choices and aiming for 95% or 99% of all relations. This led to the
observations below. Although other input numbers (than our 768-bit modulus)
may lead to other choices our results are indicative for generic large composites.

We found that the rational kernel should be executed first, that it is best to
skip trial division in the rational kernel, and that a small trial division bound
(say, 200) in the algebraic kernel leads to a slight speed-up compared to not
using algebraic trial division. For all other steps the two kernels behave similarly,
though with somewhat different parameters that also depend on the desired yield
(but not on the large prime setting). The details are listed in Table 3. Not shown
there are the discarding thresholds that slightly decrease with the number of
ECM attempts. Actual run times of the cofactoring steps are given in Table 4.
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Table 4. Approximate timings in seconds of cofactoring steps to process approximately
50 million (a, b) pairs, measured using the CUDA clock64 instruction. The wall clock
time (measured with the unix time utility) includes the kernel launch overhead the
CPU/GPU memory transfer and all CPU book-keeping operations. We measured both
kernels (K): algebraic (a) and rational (r).

# of large desired
K

polynomial trial Pollard
ECM regrouping total

wall
primes yield evaluation division p− 1 clock

3
95%

r 0.05 - 56.42 149.49 5.97 211.94
263

a 0.10 0.36 6.21 39.05 0.44 46.16

99%
r 0.05 - 79.19 213.15 7.75 300.16

367
a 0.10 0.36 10.84 48.93 0.68 60.91

4
95%

r 0.06 - 57.50 122.66 7.22 187.45
324

a 0.18 0.88 15.75 110.75 1.11 128.68

99%
r 0.06 - 57.48 158.49 8.53 224.57

479
a 0.18 0.89 27.47 212.47 1.79 242.80

Rational batches contain 3.5 times more pairs than algebraic ones (because the
algebraic kernel has to handle larger values). For 3 large primes the rational
kernel is called 5 times more often than the algebraic one, for 4 large primes 2.2
times more often.

Varying the bounds of the Pollard p−1 factoring attempt on the rational side
within reasonable ranges does not noticeably affect the yield because almost all
missed prime factors are found by the subsequent ECM attempts. However, early
removal of small primes may reduce the sizes, thus reducing the ECM run time
and, if not too much time is spent on Pollard p − 1, also the overall run time.
This is depicted in Figure 1. Note that in record breaking ECM work the number
of trials is much larger; however, according to [56] the empirically determined
numbers reported in Table 3 are in the theoretically optimal range.

5.3 Performance Results

Table 5 summarizes the results when the same special prime as in Table 2 is
processed, but now with GPU-assistance. The figures clearly show that farm-
ing out cofactoring to a GPU is advantageous from an overall run time point

Table 5. GPU cofactoring for a single special prime. The number of quad-core CPUs
that can be served by a single GPU is given in the second to last column.

large number of pairs desired
seconds

CPU/GPU relations
primes after sieving yield ratio found

3 ≈ 5 · 105 95% 2.6 9.8 132
99% 3.7 6.9 136

4 ≈ 106
95% 6.5 4.0 159
99% 9.6 2.7 165
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Table 6. Processing multiple special primes with desired yield 99%

large special number of pairs
setting

total relations relations
primes primes after sieving seconds found per second

3 100 ≈ 5 · 107 CPU only 2961 12523 4.23
CPU and GPU 2564 13761 5.37

4 50 ≈ 5 · 107 CPU only 1602 6855 4.28
CPU and GPU 1300 8302 6.39

of view and that, depending on the yield desired, a single GPU can keep up
with multiple quad-core CPUs. Remarkably, more relations may be found given
the same collection of (a, b) pairs: with an adequate number of GPUs each spe-
cial prime can be processed faster and produces more relations. Based on more
extensive experiments the overall performance gain measured in “relations per
second” found with and without GPU assistance is 27% in the 3 large primes
case and 50% in the 4 large primes case (cf. Table 6).

Including equipment and power expenses in the analysis is much harder, as il-
lustrated by (unrelated) experiments in [44]. Relative power and purchase costs
vary constantly, and the power consumption of a GPU running CUDA appli-
cations depends on the configuration and the operations performed [13]. For
instance, global memory accesses account for a large fraction of the power con-
sumption and the effect on the power consumption of arithmetic instructions
depends more on their throughput than on their type. We have not carried out
actual power consumption measurements comparing the settings from Table 6.

6 Conclusion

It was shown that modern GPUs can be used to accelerate a compute-intensive
part of the relation collection step of the number field sieve integer factorization
method. Strategies were outlined to perform the entire cofactorization stage on
a GPU. Integration with state-of-the-art lattice siever software indicates that a
performance gain of up to 50% can be expected for the relation collection step
of factorization of numbers in the current range of interest, if a single GPU can
assist a regular multi-core CPU. Because relation collection for such numbers is
responsible for about 90% of the total factoring effort the overall gain may be
close to 45%; we have no experience with other sizes yet.

It is a subject of further research if a speed-up can be obtained using other
types of graphic cards (to which we did not have access). In particular it would
be interesting to explore if and how lower-end CUDA enabled GPUs can still be
used for the present application and if the larger memory of more recent cards
such as the GeForce GTX 780 Ti or GeForce GTX Titan can be exploited. Given
our results we consider it unlikely that it would be advantageous to combine
multiple GPUs using NVIDIA’s scalable link interface.
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54. Šimka, M., Pelzl, J., Kleinjung, T., Franke, J., Priplata, C., Stahlke, C., Dru-
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Appendix

Let r = 232.

Table 7. Pseudo-code notation for CUDA PTX assembly instructions [43] used in our
implementation. Function parameters are 32-bit unsigned integers and the suffixes are
analogous to the actual CUDA PTX suffixes. We denote by f the single-bit carry flag
set by instructions with suffix “.cc”.

Pseudo-code notation Operation Carry flag effect

addc(c, a, b) c ← a+ b+ f mod r
addc.cc(c, a, b) c ← a+ b+ f mod r f ← �(a+ b+ f)/r�

subc(c, a, b) c ← a− b− f mod r
subc.cc(c, a, b) c ← a− b− f mod r f ← �(a− b− f)/r�
mul.lo(c, a, b) c ← a · b mod r
mul.hi(c, a, b) c ← �(a · b)/r�

mad.lo.cc(d, a, b, c) d ← a · b+ c mod r f ← �((a · b) mod r + c)/r�
madc.lo.cc(d, a, b, c) d ← a · b+ c+ f mod r f ← �((a · b) mod r + c+ f)/r�
mad.hi.cc(d, a, b, c) d ← (�(a · b)/r�+ c) mod r f ← �(�(a · b)/r� + c)/r�
madc.hi.cc(d, a, b, c) d ← (�(a · b)/r�+ c+ f) mod r f ← �(�(a · b)/r�+ c+ f)/r�
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Abstract. The recent Bimodal Lattice Signature Scheme (Bliss)
showed that lattice-based constructions have evolved to practical alterna-
tives to RSA or ECC. Besides reasonably small signatures with 5600 bits
for a 128-bit level of security, Bliss enables extremely fast signing and
signature verification in software. However, due to the complex sampling
of Gaussian noise with high precision, it is not clear whether this scheme
can be mapped efficiently to embedded devices. Even though the authors
of Bliss also proposed a new sampling algorithm using Bernoulli vari-
ables this approach is more complex than previous methods using large
precomputed tables. The clear disadvantage of using large tables for high
performance is that they cannot be used on constrained computing en-
vironments, such as FPGAs, with limited memory. In this work we thus
present techniques for an efficient Cumulative Distribution Table (CDT)
based Gaussian sampler on reconfigurable hardware involving Peikert’s
convolution lemma and the Kullback-Leibler divergence. Based on our
enhanced sampler design, we provide a first Bliss architecture for Xil-
inx Spartan-6 FPGAs that integrates fast FFT/NTT-based polynomial
multiplication, sparse multiplication, and a Keccak hash function. Ad-
ditionally, we compare the CDT with the Bernoulli approach and show
that for the particular Bliss-I parameter set the improved CDT ap-
proach is faster with lower area consumption. Our core uses 2,431 slices,
7.5 BRAMs, and 6 DSPs and performs a signing operation in 126 μs on
average. Verification takes even less with 70 μs.

Keywords: Ideal Lattices, Gaussian Sampling, Digital Signatures,
FPGA.

1 Introduction and Motivation

Virtually all currently used digital signature schemes rely either on the factoring
(RSA) or the discrete logarithm problem (DSA/ECDSA). However, with Shor’s
algorithm [39] sufficiently large quantum computers can solve these problems
in polynomial time which potentially puts billions of devices and users at risk.
Although powerful quantum computers will certainly not become available soon,
significant resources are definitely spent by various organizations to boost their
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further development [35]. Also motivated by further advances in classical crypt-
analysis (e.g., [4,5,20]), it is important to investigate potential alternatives now
to have secure constructions and implementations at hand when they are finally
needed.

In this work we deal with such a promising alternative, namely the Bimodal
Lattice Signature Scheme (Bliss) [12], and specifically address implementation
challenges for constrained devices and reconfigurable hardware. First efforts in
this direction were made in 2012 by Güneysu et al. [16] (GLP). Their scheme
was based on work by Lyubashevsky [26] and tuned for practicability and effi-
ciency in embedded systems. This was achieved by a new signature compression
mechanism, a more ”aggressive”, non-standard hardness assumption, and the
decision to use uniform (as in [25]) instead of Gaussian noise to hide the secret
key contained in each signature via rejection sampling. While GLP allows high
performance on low-cost FPGAs [16] and CPUs [17] it later turned out that the
scheme is suboptimal in terms of signature size and its claimed security level
compared to Bliss. The main reason for this is that Gaussian noise, which is
prevalent in almost all lattice-based constructions, allows more efficient, more
secure, and also smaller signatures. However, while other techniques relevant for
lattice-based cryptography, like fast polynomial arithmetic on ideal lattices re-
ceived some attention [1, 32, 36], it is currently not clear how efficient Gaussian
sampling can be done on reconfigurable and embedded hardware for large stan-
dard deviations. Results from electrical engineering (e.g., [19,41]) are not directly
applicable, as they target continuous Gaussians. Applying these algorithms for
the discrete case is not trivial (see, e.g., [8] for a discrete version of the Ziggurat
algorithm). First progress was recently made by Roy et al. [37] based on work
by Galbraith and Dwarakanath [13] providing results for a Gaussian sampler in
lattice-based encryption that requires low resources. We would also like to note
that for lattice-based digital signature schemes large tables in performance op-
timized implementations might imply the impression that Gaussian-noise based
schemes are a suboptimal choice on constrained embedded systems. A recent ex-
ample is a microcontroller implementation of Bliss [7] that requires tables for the
Gaussian sampler of roughly 40 to 50 KB on an ATxmega64A3. Other lattice-
based signatures with explicit reductions to standard lattice problems [14,24,28]
are also inefficient in terms of practical signature and public key sizes (see [3] for
an implementation of [28]). Thus, despite the necessity of improving Gaussian
sampling techniques (which is one contribution of this work) Bliss seems to be
currently the most promising scheme with a signatures length of 5600 bit, equally
large public keys, and 128-bit of equivalent symmetric security. There surely is
some room for theoretical improvement, as suggested by the new compression
ideas developed by Bai and Galbraith [2]; one can hope that all those techniques
can be combined to further improve lattice-based signatures.

Contribution. One contribution of this work are improved techniques for ef-
ficient sampling of Gaussian noise that support parameters required for digital
signature schemes such as Bliss and similar constructions. First, we detail how
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to accelerate the binary search on a cumulative distribution table (CDT) using
a shortcut table of intervals (also known as guide table [9, 11]) and develop an
optimal data structure that saves roughly half of the table space by exploit-
ing the properties of the Kullback-Leibler divergence. Furthermore, we apply a
convolution lemma [29] for discrete Gaussians that results in even smaller ta-
bles of less than 2.1 KB for Bliss-I parameters. Based on these techniques we
provide an implementation of the Bliss-I parameter set on reconfigurable hard-
ware that is tweaked for performance and offers 128-bit of security. For practical
evaluation we compare our improvements for the CDT-based Gaussian sampler
to the Bernoulli approach presented in [12]. Our implementation includes an
FFT/NTT-based polynomial multiplier (contrary to the schoolbook approach
from [16]), more efficient sparse multiplication, and the KECCAK-f [1600] hash
function to provide the full picture of the performance that can be achieved
by employing latest lattice-based signature schemes on reconfigurable hardware.
Our implementation on a Xilinx Spartan-6 FPGA supports up to 7958 signa-
tures per second using 7,491 LUTs, 7,033 flip-flops, 6 DSPs, and 7.5 block RAMs
and outperforms previous work [16] both in time and area.

In order to allow third-party evaluation of our results, source code, test-
benches, and documentation is available on our website1.

2 The Bimodal Lattice Signature Scheme

The most efficient instantiation of the Bliss signature scheme [12] is based on
ideal-lattices [27] and operates on polynomials over the ringRq = Zq[x]/〈xn+1〉.
For quick reference, the Bliss key generation, signing as well as verification
algorithms are given in Figure 1 and implementation relevant parameters as
well as achievable signature and key sizes are listed in Table 1. Note that for the
remainder of this work, we will focus solely on Bliss-I. The Bliss key generation
basically involves uniform sampling of two small and sparse polynomials f ,g,
computation of a certain rejection condition (Nκ(S)), and computation of an
inverse. For signature generation two polynomials y1,y2 of length n are sampled
from a discrete Gaussian distribution with standard deviation σ. Note that the
computation of ay1 can still be performed in the FFT-enabled ring Rq instead
of R2q. The result u is then hashed with the message μ. The output of the
hash function is interpreted as sparse polynomial c. The polynomials y1,2 are
then used to mask the secret key polynomials s1,2 which are multiplied with
the polynomial c and thus ”sign” the hash of the message. In order to prevent
any leakage of information on the secret key, rejection sampling is performed
and signing might restart. Finally, the signature is compressed and (z1, z

†
2, c)

returned. For verification the norms of the signature are first validated, then
the input to the hash function is reconstructed and it is checked whether the
corresponding hash output matches c from the signature.

1 See http://www.sha.rub.de/research/projects/lattice/

http://www.sha.rub.de/research/projects/lattice/
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Algorithm KeyGen()

1. Choose f ,g as uniform polynomials with exactly d1 = 	δ1n
 entries in {±1} and
d2 = 	δ2n
 entries in {±2}

2. S = (s1, s2)
t ← (f , 2g+ 1)t

3. if Nκ(S) ≥ C2 · 5 · (	δ1n
 + 4	δ2n
) · κ then restart
4. aq = (2g + 1)/f mod q (restart if f is not invertible)
5. Return(pk = A, sk = S) where A = (a1 = 2aq , q − 2) mod 2q

Alg. Sign(μ,pk=A,sk=S)

1. y1,y2 ← DZn,σ

2. u = ζ · a1 · y1 + y2 mod 2q
3. c ← H(�u
d mod p, μ)
4. Choose a random bit b
5. z1 ← y1 + (−1)bs1c
6. z2 ← y2 + (−1)bs2c
7. Continue with probability

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉

σ2

))
otherwise restart

8. z†2 ← (�u
d − �u− z2
d) mod p
9. Return (z1, z

†
2, c)

Alg. Verify(μ,pk=A,(z1,z
†
2,c))

1. if ‖(z1|2d · z†2)‖2 > B2 then Reject
2. if ‖(z1|2d · z†2)‖∞ > B∞ then Reject

3. Accept iff c = H
(⌊
ζ · a1 · z1 + ζ · q ·

c
⌉
d
+ z†2 mod p, μ)

Fig. 1. The Bimodal Lattice Signature Scheme [12]

3 Improving Gaussian Sampling for Lattice-Based Digital
Signatures

Target distribution. We recall that the centered discrete Gaussian distribution

DZ,σ is defined by a weight proportional to ρσ(x) = exp(−x2

2σ2 ) for all integers x.
Our goal is to efficiently sample from that distribution for a constant value σ ≈
215.73 as specified in Bliss-I (precisely σ = 254 · σbin where σbin =

√
1/(2 ln 2)

is the parameter of the so-called binary-Gaussian; see [12]). This can easily be
reduced to sampling from a distribution over Z+ proportional to ρ(x) for all
x > 0 and to ρ(0)/2 for x = 0.

Overview. Gaussian sampling using a large cumulative distribution table (CDT)
has been shown to be an efficient strategy for the software implementation of
Bliss given in [12]. In this section, we further enhance CDT-based Gaussian
sampling for use on constrained devices. For simplicity, we explicitly refer to
the parameter set Bliss-I although we remark that our enhancements can be
transferred to any other parameter set as well. To increase performance, we first
analyze and improve the binary search step to reduce the number of compar-
isons (cf. Section 3.1). Secondly, we decrease the size of the precomputed tables.
In Section 3.3 we therefore apply a convolution lemma for discrete Gaussians
adapted from [30] that enables the use of a sampler with much smaller standard
deviation σ′ ≈ σ/11, reducing the table size by a factor 11. In Section 3.4 we
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Table 1. Parameters proposals from [12]

Name of the scheme Bliss-I Bliss-II Bliss-III Bliss-IV

Security 128 bits 128 bits 160 bits 192 bits

(n, q) (512,12289) (512,12289) (512,12289) (512,12289)
Secret key densities δ1, δ2 0.3 , 0 0.3 , 0 0.42 , 0.03 0.45, 0.06

Gaussian std. dev. σ 215.73 107.86 250.54 271.93
Weight of the challenge κ 23 23 30 39
Verif. thresholds B2, B∞ 12872, 2100 11074, 1563 10206,1760 9901, 1613

Repetition rate 1.6 7.4 2.8 5.2
Signature size 5.6kb 5kb 6kb 6.5kb
Secret key size 2kb 2kb 3kb 3kb
Public key size 7kb 7kb 7kb 7kb

finally reduce the size of the precomputed table further by roughly a factor of
two using floating-point representation by introducing an adaptive mantissa size.

For those last two steps we require the “measure of distance”2 for a distribu-
tion, called Kullback-Leibler divergence [10, 23], that offers tighter proofs than
the usual statistical distance (cf. Section 3.2). Kullback-Leibler is a standard
notion in information theory and already played a role in cryptography, mostly
in the context of symmetric cryptanalysis [6, 42].

3.1 Binary Search with Shortcut Intervals

The CDT sampling algorithm uses a table 0 = T [0] ≤ T [i] ≤ · · · ≤ T [S + 1] = 1
to sample from a uniform real r ∈ [0, 1). The output x is the unique index
satisfying T [x] ≤ r < T [x+ 1] and it is obtain via a binary search. Each output
x ∈ {0 . . . S} has a probability T [x+1]− T [x]. For Bliss-I we need a table with
S = 2891 ≈ 13.4σ entries to dismiss only a portion of the tail less than 2−128. As
a result, the naive binary search would require C ∈ [�log2 S�, !log2 S"] = [11, 12]
comparisons on average.

As an improvement we propose to combine the binary search with a hash map
based on the first bits of r to narrow down the search interval in a first step (an
idea that is not exactly new [9, 11], also known as guide tables). For the given
parameters and memory alignment reasons, we choose the first byte of r for this
hash map: the unique v ∈ {0 . . . 255} such that v/256 ≤ r < (v+1)/256. This ta-
ble I of intervals has length 256 and each entry I[v] encodes the smallest interval
(av, bv) such that T [av] ≤ v/256 and T [bv] ≥ (v + 1)/256. With this approach,
the search can be directly reduced to the interval (av, bv). By letting C denote

the number of comparison on average, we have that
∑

v
�log2(bv−av)�

256 ≤ C ≤∑
v

�log2(bv−av)�
256 . For this distribution this would give C ∈ [1.3, 1.7] comparisons

on average.

2 Technically, Kullback-Leibler divergence is not a distance; it is not even symmetric.
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3.2 Preliminaries on the Kullback-Leibler Divergence

We now present the notion of Kullback-Leibler (KL) divergence that is later
used to further reduce the table size. Detailed proofs of following lemmata are
given in the full version [31].

Definition 1 (Kullback-Leibler Divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let S ⊂ Ω be the strict support of P
(P(i) > 0 iff i ∈ S). The Kullback-Leibler divergence, noted DKL of Q from P
is defined as:

DKL(P‖Q) =
∑
i∈S

ln

(P(i)
Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

The Kullback-Leibler divergence shares many useful properties with the more
usual notion of statistical distance. First, it is additive so thatDKL(P0×P1‖Q0×
Q1) = DKL(P0‖Q0)+DKL(P1‖Q1) and, second, non-increasing under any func-
tion DKL(f(P)‖f(Q)) ≤ DKL(P‖Q). An important difference though is that it
is not symmetric. Choosing parameters so that the theoretical distribution Q
is at KL-divergence about 2−128 from the actually sampled distribution P , the
next lemma will let us conclude the following3: if the ideal scheme SQ (i.e. Bliss

with a perfect sampler) has about 128 bits of security, so has the implemented
scheme SP (i.e. Bliss with our imperfect sampler).

Lemma 1 (Bounding Success Probability Variations). Let EP be an al-
gorithm making at most q queries to an oracle sampling from a distribution P
and returning a bit. Let ε ≥ 0, and Q be a distribution such that DKL(P‖Q) ≤ ε.
Let x (resp. y) denote the probability that EP (resp. EQ) outputs 1. Then,
|x− y| ≤√

qε/2.

In certain cases, the KL-divergence can be as small as the square of the sta-
tistical distance. For example, noting Bc the Bernoulli variable that returns 1
with probability c, we have DKL(B 1−ε

2
‖B 1

2
) ≈ ε2/2. In such a case, one re-

quires q = O(1/ε2) samples to distinguish those two distribution with constant
advantage. Hence, we yield higher security using KL-divergence than statisti-
cal distance for which the typical argument would only prove security up to
q = O(1/ε) queries. Intuitively, statistical distance is the sum of absolute errors,
while KL-divergence is about the sum of squared relative errors.

Lemma 2 (Kullback-Leibler divergence for bounded relative error).
Let P and Q be two distributions of same countable support. Assume that for
any i ∈ S, there exists some δ(i) ∈ (0, 1/4) such that we have the relative error
bound |P(i)−Q(i)| ≤ δ(i)P(i). Then

DKL(P‖Q) ≤ 2
∑
i∈S

δ(i)2P(i).
3 Apply the lemma to an attacker with success probability 3/4 against SP and number
of queries < 2127 (amplifying success probability by repeating the attack if neces-
sary), and deduce that it also succeeds against SQ with probability at least 1/4.
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Using floating-point representation, it seems now possible to halve the storage
ensuring a relative precision of 64 bits instead of an absolute precision of 128
bits. Indeed, storing data with slightly more than of relative 64 bits of precision
(that is, mantissa of 64 bits in floating-point format) one can reasonably hope
to obtain relative errors δ(i) ≤ 2−64 resulting in a KL-divergence less than
2−128. We further exploit this idea in Section 3.4. But first, we will also use
KL-divergence to improve the convolution Lemma of Peikert [30] and construct
a sampler using convolutions.

3.3 Reducing Precomputed Data by Gaussian Convolution

Given that x1, x2 are variables from continuous Gaussian distributions with vari-
ances σ21 , σ

2
2 , then their combination x1+cx2 is Gaussian with variance σ21+c

2σ22
for any c. While this is not generally the case for discrete Gaussians, there ex-
ists similar convolution properties under some smoothing condition as proved
in [29, 30]. Yet those lemmata were designed with asymptotic security in mind;
for practical purpose it is in fact possible to improve the O(ε) statistical dis-
tance bound to a O(ε2) KL-divergence bound. We refer to [30] for the formal
definition of the smoothing parameter η; for our purpose it only matters that
ηε(Z) ≤

√
ln(2 + 2/ε)/π and thus our adapted lemma allows to decrease the

smoothing condition by a factor of about
√
2.

Lemma 3 (Adapted from Thm. 3.1 from [30]). Let x1 ← DZ,σ1 , x2 ←
DkZ,σ2 for some positive reals σ1, σ2 and let σ−2

3 = σ−2
1 +σ−2

2 , and σ2 = σ21+σ
2
2.

For any ε ∈ (0, 1/2) if σ1 ≥ ηε(Z)/
√
2π and σ3 ≥ ηε(kZ)/

√
2π, then distribution

P of x1 + x2 verifies

DKL(P‖DZ,σ) ≤ 2
(
1−

(1 + ε
1− ε

)2)2

≈ 32ε2.

Remark. The factor 1/
√
2π in our version of this lemma is due to the fact that

we use the standard deviation σ as the parameter of Gaussians and not the
renormalized parameter s =

√
2πσ often found in the literature.

Proof. The proof is similar to the one of [30], with Λ1 = Z, Λ2 = kZ, c1 = c2 = 0;
but for the last argument of the proof where we replace statistical distance by
KL-divergence. As in [30], we first establish that for any x̄ ∈ Z one has the
following relative error bound

Px←P [x = x̄] ∈
[(1− ε

1 + ε

)2

,
(1 + ε
1− ε

)2
]
· Px←DZ,σ

[x = x̄].

It remains to conclude using Lemma 2.

To exploit this lemma, for Bliss-I we set k = 11, σ′ = σ/
√
1 + k2 ≈ 19.53, and

sample x = x1 + kx
′
2 for x1, x

′
2 ← DZ,σ′ (equivalently k · x′2 = x2 ← DkZ,kσ′).

The smoothness conditions are verified for ε =
√
2−128/32 and ηε(Z) ≤ 3.92.
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Due to usage of the much smaller σ′ instead of σ the size of the precomputation
table reduces by a factor of about k = 11 at the price of sampling twice. However,
the running time does not double in practice since the enhancement based on
the shortcut intervals reduces the number of necessary comparisons to C ∈
[0.22, 0.25] on average. For a majority of first bytes v the interval length bv − av
is reduced to 1 and x is determined without any comparison.

Asymptotics cost. If one considers the asymptotic costs in σ our methods al-
low one to sample using a table size of Θ(

√
σ) rather than Θ(σ) by doubling

the computation time. Actually, for much larger σ one could use O(log σ) sam-
ples of constant standard deviation and thus achieve a table size of O(1) for
computational cost in O(log σ).

3.4 CDT Sampling with Reduced Table Size

We recall that when doing floating-point error analysis, the relative error of a
computed value v is defined as |v − ve|/ve where ve is the exact value that was
meant to be computed. Using the table 0 = T [0] ≤ T [i] ≤ · · · ≤ T [S + 1] = 1,
the output of a CDT sampler follows the distribution P with P(i) = T [i +
1] − T [i]. When applying the results from KL-divergence obtained above, the
relative error of T [i + 1] − T [i] might be significantly larger than the one of
T [i]. This is particularly true for the tail, where T [i] ≈ 1 but P(i) is very small.
Intuitively, we would like the smallest probability to come first in the CDT.
A simple workaround is to reverse the order of the table so that 1 = T [0] ≥
T [i] ≥ · · · ≥ T [S + 1] = 0 with a slight modification of the algorithm so that
P(i) = T [i]−T [i+1]. With this trick, the subtraction only increase the relative
error by a factor roughly σ. Indeed, leaving aside the details relative to discrete
Gaussian, for x ≥ 0 we have∫ ∞

y=x

ρs(y)dy
/
ρs(x) ≤ σ whereas

∫ x

y=0

ρs(y)dy
/
ρs(x) −→

x→∞ +∞.

The left term is an estimation of the relative-error blow-up induced by the sub-
traction with the CDT in the reverse order and the right term the same estima-
tion for the CDT in the natural order. We aim to have a variable precision in
the table T [i] so that δ(i)2P(i) is about constant around 2−128/|S| as suggested
by Lemma 2 while δ(i) denotes the relative error δ(i) = |P(i) −Q(i)|/P(i). As
a trade-off between optimal variable precision and hardware efficiency, we pro-
pose the following data-structure. We define 9 tables M0 . . .M8 of bytes for the
mantissa with respective lengths 	0 ≥ 	1 ≥ · · · ≥ 	8 and another byte table E
for exponents, of length 	0. The value T [i] is defined as

T [i] = 256−E[i] ·
8∑

k=0

256−(k+1) ·Mk[i]

whereMk[i] is defined as 0 when the index is out of bound i ≥ 	k. Thus, the value
of T [i] is stored with p(i) = 9−min{k|	k > i} bytes of precisions. More precisely,
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Smooth line: Value of log2(P(i)) Storage precision of T [i] in bits: 8p(i)
Dashed line: Dashed line:

−8E[i] = 8	log256(
∑

j≥i P(j))
 precision required for naive CDF

Relative error on P(i) in bits: log2 δ(i) Contribution to KL-div: log2(δ(i)
2P(i))

Fig. 2. Data of our optimized CDT sampler for a discrete Gaussian of parameter
σ′ ≈ 19.53

lengths are defined as [	0, . . . , 	8] = [262, 262, 235, 223, 202, 180, 157, 125, 86] so
that we store at least two bytes for each entry up to i < 262, three bytes up to
i < 213 and so forth. Note that no actual computation is involved in constructing
T [i] following the plain CDT algorithm.

For evaluation, we used the closed formula for KL-divergence and measured
DKL(P‖Q) ≤ 2−128. The storage requirements of this table is computed by
2	0 + 	1 + · · ·+ 	8 ≈ 2.1 KB. The straightforward CDF approach requires each
entry up to i < 262 to be stored with 128 + log2 σ bits of precisions and thus
requires a total of at least 4.4 KB. The storage requirements are graphically
depicted by the area under the curves in the top-right quadrant of Figure 2.

4 Implementation on Reconfigurable Hardware

In this section we provide details on our implementation of the Bliss-I signature
scheme on a Xilinx Spartan-6 FPGA. We include the enhancements from the
previous section to achieve a design that is tweaked for high-performance at
moderate resource costs. For details on the implementation of the Bernoulli
sampler proposed in [12] we refer to the full version [31].

4.1 Enhanced CDT Sampling.

Along the lines of the previous section our hardware implementation operates
on bytes in order to use the 1024x8-bit mode of operation of the Spartan-6
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LIFO

Trivium

Trivium
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Buffer
128x8

Trivium
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Table: R

minmax

i

j

Comparator

Address

Exponents
Table: E

RAM: B

Start 
Table: S

0:          0
1:          0
...

1993: 198
1992:  58

11

BinSearch Table: T

1
-1

x1
'

x2
'

x

Fig. 3. Block diagram of the CDT sampler which generates two samples x′
1, x

′
2 of

standard deviation σ′ ≈ 19.53 which are combined to a sample x = x′
1 + 11x′

2 with
standard deviation σ = 215.73. The sampling is performed using binary search on the
size optimized Table T .

block RAMs. The design of our CDT sampler is depicted in Figure 3 and uses
the aforementioned convolution lemma. Thus two samples with σ′ ≈ 19.53 are
combined into a sample with standard deviation σ ≈ 215.73. The BinSearch

component performs a binary search on the table T as described in Section 3.4
for a random byte vector r to find a c such that T [c] ≥ r > T [c+ 1]. It accesses
T byte-wise and thus Tj[i] = Mj−E[i][i] denotes the entry at index i ∈ (0, 261)
and byte j where Tj[i] = 0 when j − E[i] < 0 or i ≥ 	j−E[i]. When a sampling
operation is started in the BinSearch component we set j = 0 and initialize the
pointer registers min and max with the values stored in the reverse interval table
I[r0] where r0 is the first random byte. The reverse interval table is realized
as 256x15-bit single port distributed ROM (6 bits for the minimum and 9 bits
for the maximum). The index of the middle element of the search radius is i =
(min+max)/2. In case Tj[i] > rj we set (min = i, i = (i+max)/2, max = max, j =
0). Otherwise, for Tj [i] < rj we set (i = (min+ i)/2, min = min, max = i, j = 0)
until max−min < 2. In case of Tj[i] = rj we increase j = j+1 and thus compare
the next byte. The actual entries of M0 . . .M8 are consecutively stored in block
memory B and the address is computed as a = S[j − E[i] + i] where we store
the start addresses of each byte group in a small additional LUT-based table
S = [0, 262, 524, 759, 982, 1184, 1364, 1521, 1646]. Some control logic takes care
that all invalid/out of bound requests to S and B return a zero.

For random byte generation we use three instantiations of the Trivium stream
cipher (each Trivium instantiation outputs one bit per clock cycle) to generate a
uniformly random byte every third clock cycle and store spare bits in a LIFO for
later use as sign bits. The random values rj are stored in a 128x8 bit ring buffer
realized as simple dual-port distributed RAM. The idea is that the sampler may
request a large number of random bytes in the worst-case but usually finishes
after one or two comparisons due to the lazy search. As the BinSearch compo-
nent keeps track of the maximum number of accessed random bytes, it allows
the Uniform sampler to refresh only the used max(j) + 1 bytes in the buffer. In
case the buffer is empty, we stop the Gaussian sampler until a sufficient amount
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of randomness becomes available. In order to compute the final sample x we
determine sign bits of two samples x′1, x

′
2 and finally output x = x′1 + 11x′2.

To achieve a high clock frequency, a comparison in the binary search step
could not be performed in one cycle due to the excessive number of tables and
range checks involved. We therefore allow two cycles per search step which are
carefully balanced. For example, we precompute the indices i′ = (min+i)/2 and
i′′ = (max+i)/2 in the cycle prior to a comparison to relax the critical paths. We
further merged the block memory B (port A) and the exponent table E (port B)
into one 18k block memory and optimized the memory alignment accordingly.
Note also that we are still accessing the two ports of the block RAM holding
B and E only every two clock cycles which would enable another sampler to
operate on the same table using time-multiplexing.

4.2 Signing and Verification Architecture

The architecture of our implementation of a high-speed Bliss signing engine
is given in Figure 4. Similar to the GLP design [16] we implemented a two
stage pipeline where the polynomial multiplication a1y1 runs in parallel to the
hashingH(�u"d, μ) and sparse multiplication z1,2 = s1,2c+y1,2

4. For polynomial
multiplication [1,32,36] of a1y1 we rely on a publicly available FFT/NTT-based
polynomial multiplier [33] (PolyMul). The public key a1 is stored already in NTT
format so that only one forward and one backward transform is required. The
multiplier also instantiates either the Bernoulli or the CDT Gaussian sampler
(configurable by a VHDL generic) and an intermediate FIFO for buffering.
When a new triple (a1y1,y1,y2) is available the data is transferred into the block
memories BRAM-U, BRAM-Y1 and BRAM-Y2 and the small polynomial u = ζa1y1+
y2 is computed on-the-fly and stored in BRAM-U for later use. The lower order bits
�u"d mod p of u are saved in the RAM-U. As random oracle we have chosen the
KECCAK-f [1600] hash function for its security and speed in hardware [22, 38].
A configurable hardware implementation5 is provided by the KECCAK project
and the mid-range core is parametrized so that the KECCAK state it split into
16 pieces (Nb = 16). To simplify control logic and padding we just hash multiples
of 1024 bit blocks and rehash in case of a rejection. Storing the state of the hash
function after hashing the message (and before hashing �u"d mod p) would be
possible but is not done due to the state size of KECCAK. After hashing the
ExtractPos component extracts the κ positions of c which are one from the
binary hash output and stores them in the 23x9-bit memory RAM-Pos.

For the computation of s1c and s2cwe then exploited that c has mainly zero co-
efficients and only κ = 23 coefficients set to one. Moreover, only d1 = !δ1n" = 154

4 Another option would be a three stage pipeline with an additional buffer between
the hashing and sparse multiplication. As a tradeoff this would allows to use a slower
and thus more area efficient hash function but also imply a longer delay and require
pipeline flushes in case of an accepted signature.

5 See http://keccak.noekeon.org/mid_range_hw.html for more information on the
core.

http://keccak.noekeon.org/mid_range_hw.html
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coefficients in s1 are ±1 and s2 has d1 entries in ±2 where the first coefficient is
from {−1, 1, 3}.The simplest and, in this case, also best suited algorithm for sparse
polynomialmultiplication is the row- or column-wise schoolbook algorithm.While
row-wise multiplication would benefit from the sparsity of s1,2 and c, more mem-
ory accesses are necessary to add and store inner products. Since memory that has
more than two ports is extremely expensive, this also prevents or at least limits
efficient and configurable parallelization. As a consequence, our implementation
consists of a configurable number of cores (C) which perform column-wise multi-
plication to compute z1 and z2, respectively. Each core stores the secret key (ei-
ther s1 or s2) efficiently in a distributed RAM and accumulates inner products in
a small multiply-accumulate unit (MAC). Positions of c are fed simultaneously into
the cores. Another advantage of our approach is that we can compute the norms
and scalar products for rejection sampling parallel to the sparse multiplication.
In Figure 4 a configuration with C = 2 is shown for simplicity but our experi-
ments show that C = 8 leads to an optimal trade-off between speed and resource
consumption. Our verification engine uses only the PolyMul (without a Gaussian
sampler) and the Hash component and is thus much more lightweight compared
to signing. The polynomial c stored as (unordered) positions is expanded into a
512x1-bit distributed RAM and the input to the hash function is computed in a
pipelined manner when PolyMul outputs a1y1.
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DecoderALU

NTT

R1R0

R4
temp1

R5

Hash
Ram-U

ExtractPos
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Fig. 4. Block diagram of the implemented Bliss-I signing engine

5 Results and Comparison

In this section we discuss our results which were obtained post place-and-route
(PAR) on a Spartan-6 LX25 (speed grade -3) with Xilinx ISE 14.6.

Gaussian Sampling. Detailed results on area consumption and timing of the
CDT and Bernoulli Gaussian sampler designs are given in Table 2. The results
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show that the enhanced CDT sampler consumes less logic resources than the
Bernoulli sampler, as described in the full version [31], at the cost of one 18k
block memory to store the tables E and B. This is a significant improvement in
terms of storage size compared to a naive implementation without the application
of the Kullback-Leibler divergence and Gaussian convolution. A standard CDT
implementation would require at least στλ = 370 kbits (that is about 23 many
18K block Rams) for the defined parameters matching a standard deviation
σ = 215.73, tailcut τ = 13.4 and precision λ = 128.

Regarding randomness consumption the CDT sampler needs on average 21
bits for one sample (using two smaller samples and the convolution theorem)
which are generated by three instantiations of Trivium. The Bernoulli sampler
on the other hand consumes 33 bits on average, generated by two instantia-
tions of Trivium. With respect to the averaged performance, 7.4 and 18.5 cycles
are required by the CDT and the Bernoulli sampler to provide one sample,
respectively.

As a consequence, by combining the convolution lemma and KL-divergence
we were able to maintain the advantage of the CDT, namely high speed and rela-
tive simple implementation, but significantly reduced the memory requirements
(from ≈ 23 18K block RAMs to one 18K block RAM). The convolution lemma
works especially well in combination with the reverse tables as the overall table
sizes shrink and thus the number of comparisons is reduced. Thus, we do not
expect a CTD sampler that samples directly from standard deviation σ to be
significantly faster. Additionally, larger tables would require more complex ad-
dress generation which might lower the achievable clock frequency. The Bernoulli
approach on the other hand does not seem as suitable for an application of the
convolution lemma as the CDT. The reason is that the tables are already very
small and thus a reduction would not significantly reduce the area usage.

Previous implementations of Gaussian sampling for lattice-based public key
encryption can be found in [34, 37]. However, both works target a smaller stan-
dard deviation of σ = 3.3. The work of Roy et al. [37] uses the Knuth-Yao
algorithm (see [13] for more details), is very area-efficient (47 slices on a Virtex-
5), and consumes few randomness but requires 17 clock cycles for one sample.
In [34] Bernoulli sampling is used to optimize simple rejection sampling by using
Bernoulli evaluation instead of computation of exp(). However, without usage
of the binary Gaussian distribution (see [12]) the rejection rate is high and one
sample requires 96 random bits and 144 cycles. This is acceptable for a relatively
slow encryption scheme and possible due to the high output rate (one bit per
cycle) of the used stream cipher but not a suitable architecture for Bliss. The
discrete Ziggurat [8] performs well in software and might also profit from the
techniques introduced in this work but does not seem to be a good target for
a hardware implementation due to its infrequent rejection sampling operations
and its costly requirement on high precision floating point arithmetic.

BLISS Operations. Results for the Bliss signing and verification engine and
sub-modules can be found in Table 2 including averaged cycle counts for
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successfully producing a signature. Note that the final slice, LUT, and FF counts
of the signing engine cannot directly be computed as the sum of the sub modules
due to cross module optimizations, timing optimization, and additional control
logic between modules. One signing attempt takes roughly 10k cycles and on
average 1.6 trials are necessary using the Bliss-I parameter set. To evaluate the
impact of the sampler used in the design, we instantiated two signing engines of
which one employs a CDT sampler and the other one two Bernoulli samplers to
match the speed of the multiplier. For a similar performance of roughly 8,000
signing operations per second, the signing instance based on the Bernoulli sam-
pler has a significantly higher resource consumption (about 470 extra slices).
Due to the two pipeline stages involved, the runtime of both instances is de-
termined by max(Cycles(PolyMul), Cycles(Hash)) + Cycles(SparseMul) where
the rejection sampling in Compression is performed in parallel. Further design
space exploration (e.g., evaluating the impact of a different number of parallel
sparse multiplication operations or a faster configuration of KECCAK) always
identified the PolyMul component as performance bottleneck or did not provide
significant savings in resources for reduced versions. In order to further increase
the clock rate it would of course also be possible to instantiate the Gaussian
sampler in a separate clock domain. The verification runtime is determined by
Cycles(PolyMul)+Cycles(Hash) as no pipelining is used and PolyMul is slightly
faster than for signing as no Gaussian sampling is needed.

Table 2. Performance and resource consumption of the full Bliss-I signing engine
using the CDT sampler or two parallel Bernoulli samplers (Ber) on the Spartan-6
LX25 for a small 1024 bit message

Configuration and Slices/LUT/FF MHz Cycles Operations per
Operation /BRAM/DSP second (output)

Sign-I (CDT, C=8) 2,431/7,491/7,033/7.5/6 129 ≈16,210 ≈7958 (signature)
Sign-I (Ber, C=8) 2,960/9,029/8,562/6.5/8 131 ≈16,210 ≈8,081 (signature)
Ver-I 1,727/5,275/4,488/4.5/3 142 9,835 14,438 (valid/invalid)

CDT sampler 299/928/1,121/1/0 129 ≈7.4 ≈17,432,432 (sample)
Bernoulli sampler 416/1,178/1,183/0/1 138 ≈18.5 ≈7,459,459 (sample)

PolyMul (CDT) 1,138/3,259/3,242/6/1 130 9,429 13,787 (a · y1)
Hash (Nb = 16) 752/2,461/2,134/0/0 149 1,931 77,162 (c)
SparseMul (C = 1) 64/162/125/0/0 274 15,876 17,258 (c · s1,2)
SparseMul (C = 8) 308/918/459/0/0 267 2,436 109,605 (c · s1,2)
SparseMul (C = 16) 628/1847/810/0/0 254 1,476 172,086 (c · s1,2)
Compression 1,230/3,851/3,049/3/0 151 - parallel to SparseMul

Comparison. In comparison with the GLP implementation from [16], the de-
sign of this work achieves higher throughput with a lower number of block RAMs
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and DSPs. The structural advantage of Bliss is a smaller polynomial modulus
(GLP: q = 8383489/Bliss-I: q = 12289), less iterations necessary for a valid
signature (GLP: 7/Bliss-I: 1.6), and a higher security level (GLP: 80 bit/Bliss-

I: 128 bit). Furthermore and contrary to [16], we remark that our implementation
takes the area costs and timings of a hash function (KECCAK) into account. In
summary, our implementation of Bliss is superior to [16] in almost all aspects.

Table 3. Signing or verification speed of comparable signature scheme implemen-
tations. The GLP implementation was measured on a Spartan-6 device, the B-163
ECDSA one on a Cyclone II and the other implementations were done on Virtex-5.

Operation Security Algorithm Resources Ops/s

GLP [sign] [16] 80 GLP 7465 LUT/ 8993 FF/ 931
28 DSP/ 29.5 BRAM18

GLP [ver] [16] 80 GLP 6225 LUT/ 6663 FF/ 998
8 DSP/ 15 BRAM18

ECDSA 80 Full ECDSA; B-163 15,879 LE / 8,472 FF/ 1063/621
[sign/ver] [21] 36 M4K
RSA [sign] [40] 103 RSA-2048; private key 3237 LS/ 17 DSPs 89
ECDSA [sign] [15] 128 Full ECDSA; secp256r1 32299 LUT/FF pairs 139
ECDSA [ver] [15] 128 Full ECDSA; secp256r1 32299 LUT/FF pairs 110

In addition to that Glas et al. [15] report a vehicle-to-X communication accel-
erator based on an ECDSA signature over 256-bit prime fields. With respect to
this, our Bliss implementation shows higher performance at less resource cost.
An ECDSA implementation on a binary curve for an 80-bit security level on an
Altera FPGA is given in [21] and achieves similar speeds and area consumption
compared to our work. Other ECC implementations over 256-bit prime or binary
fields (e.g., such as [18] on a Xilinx Virtex-4) only implement the point multi-
plication operation and not the full ECDSA protocol. Finally, a fast RSA-2048
core was presented for Virtex-5 devices in [40] which requires more logic/DSPs
and provides significantly lower performance (11.2 ms per operation) than our
lattice-based signature instance.
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31. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. IACR Cryptology ePrint Archive, 2014:254 (2014)
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Abstract. In this paper we propose an efficient and compact processor
for a ring-LWE based encryption scheme. We present three optimiza-
tions for the Number Theoretic Transform (NTT) used for polynomial
multiplication: we avoid pre-processing in the negative wrapped convo-
lution by merging it with the main algorithm, we reduce the fixed com-
putation cost of the twiddle factors and propose an advanced memory
access scheme. These optimization techniques reduce both the cycle and
memory requirements. Finally, we also propose an optimization of the
ring-LWE encryption system that reduces the number of NTT operations
from five to four resulting in a 20% speed-up. We use these computa-
tional optimizations along with several architectural optimizations to
design an instruction-set ring-LWE cryptoprocessor. For dimension 256,
our processor performs encryption/decryption operations in 20/9 μs on
a Virtex 6 FPGA and only requires 1349 LUTs, 860 FFs, 1 DSP-MULT
and 2 BRAMs. Similarly for dimension 512, the processor takes 48/21
μs for performing encryption/decryption operations and only requires
1536 LUTs, 953 FFs, 1 DSP-MULT and 3 BRAMs. Our processors are
therefore more than three times smaller than the current state of the art
hardware implementations, whilst running somewhat faster.

Keywords: Lattice-based cryptography, ring-LWE, Polynomial multi-
plication, Number Theoretic Transform, Hardware implementation.

1 Introduction

Lattice-based cryptography is considered a prime candidate for quantum-secure
public key cryptography due to its wide applicability [27] and its security proofs
that are based on worst-case hardness of well known lattice problems. The learn-
ing with errors (LWE) problem [26] and its ring variant known as ring-LWE [17]
have been used as a solid foundation for several cryptographic schemes. The
significant progress in the theory of lattice-based cryptography [19,20,25] has
recently been followed by practical implementations [1,7,9,22,23,28].
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The ring-LWE based cryptosystems operate in a polynomial ring Rq =
Zq[x]/〈f(x)〉, where one typically chooses f(x) = xn + 1 with n a power of
two, and q a prime with q ≡ 1 mod 2n. An implementation thus requires the
basic operations in such a ring Rq, with multiplication taking up the bulk of the
resources both in area and time. An efficient polynomial multiplier architecture
therefore is a pre-requisite for the deployment of ring-LWE based cryptography
in real world systems.

The most important hardware implementations of polynomial multipliers for
the rings Rq are [1,9,22,23]. In [9], a fully parallel butterfly structure is used for
the polynomial multiplier resulting in a huge area consumption. For instance,
even for medium security, their ring-LWE cryptoprocessor does not fit on the
largest FPGA of the Virtex 6 family. In [22], a sequential polynomial multiplier
architecture is designed to use the FPGA resources in an efficient way. The mul-
tiplier uses a dedicated ROM to store all the twiddle factors which are required
during the NTT computation. In [23] the authors integrated the polynomial mul-
tiplier [22] in a complete ring-LWE based encryption system and propose several
system level optimizations such as a better message encoding scheme and com-
pression technique for the ciphertext. The work [1] tries to reduce the area of
the polynomial multiplier by computing the twiddle factors whenever required,
but as we will show, this could be improved substantially by re-arranging the
loops inside the NTT computation. Furthermore, the paper does not include an
implementation of a complete ring-LWE cryptoprocessor.

Our contributions: In this paper we present a complete ring-LWE based en-
cryption processor that uses the Number Theoretic Transform (NTT) algorithm
for polynomial multiplication. The architecture is designed to have small area
and memory requirement, but is also optimized to keep the number of cycles
small. In particular, we make the following contributions:

1. During the NTT computation, the intermediate coefficients are multiplied by
the twiddle factors that are computed using repeated multiplications. In [22]
a pre-computed table (ROM) is used to avoid this fixed computation cost.
The more compact implementation in [1] does not use ROM and computes
the twiddle factors by performing repeated multiplications. In this paper we
reduce the number of multiplications by re-arranging the nested loops in the
NTT computation.

2. The implementations [1,22] use negative wrapped convolution to reduce the
number of evaluations in both the forward and backward NTT computations.
However, the use of the negative wrapped convolution has a pre- and post-
computation overhead. In this paper we basically avoid the pre-computation
which reduces the cost of the forward NTT.

3. The intermediate coefficients are stored in memory (RAM) during the NTT
computation. Access to the RAM is a bottleneck for speeding-up the NTT
computation. In the implementations [1,22], FPGA-RAM slices are placed
in parallel to avoid this bottleneck. In this paper we propose an efficient
memory access scheme which reduces the number of RAM accesses, optimizes
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the number of block RAMs and still achieves maximum utilization of the
computational blocks.

4. The Knuth-Yao sampler [28] is slow due to the costly bit scanning opera-
tion. We reduce the cycle count using fast table lookup operations. We also
optimize the area of the Knuth-Yao [28] sampler by reducing the width of
the ROM. For the standard deviation 3.33 the area-optimized sampler con-
sumes only 32 slices and is thus more compact and faster than the Bernoulli
sampler in [24].

5. The proposed optimization techniques are applied to design a compact ar-
chitecture for the NTT computation. We also implement pipelines in the
architecture targeting high-speed applications. The pipeline technique de-
rives an optimal pipeline depth for the architecture to achieve the fastest
computation time.

6. Finally, we optimize one of the most popular ring-LWE encryption schemes
by reducing the number of NTT computations from five to four, thereby
achieving a nearly 20% reduction in the computation cost.

The above optimizations result in a very compact architecture that is three
times smaller than the current state of the art implementation [23] and even
runs somewhat faster.

The remainder of the paper is organized as follows: In Section 2 we provide a
brief mathematical background on ring-LWE and the NTT. Section 3 contains
our optimization techniques of the NTT and Section 4 presents the actual ar-
chitecture of our optimized NTT algorithm. A pipelined architecture is given
in Section 5. In Section 6, we propose an optimization of an existing ring-LWE
encryption scheme and propose an efficient architecture for the complete ring-
LWE encryption system. Finally, Section 7 reports on the experimental results
of this implementation.

2 Background

In this section we present a brief mathematical overview of the ring-LWE prob-
lem, the encryption scheme we will be optimizing and the NTT.

2.1 The LWE and Ring-LWE Problem

The learning with errors (LWE) problem is a machine learning problem that is
equivalent to worst-case lattice problems as shown by Regev [26] in 2005. Since
then, the LWE problem has become popular as a basis for developing quantum
secure lattice-based cryptosystems.

The LWE problem is parametrized by a dimension n ≥ 1, an integer modulus
q ≥ 2 and an error distribution, typically a discrete Gaussian distribution Xσ

over the integers with deviation σ and mean 0. The probability of sampling an
integer z ∈ Z in the Gaussian distribution Xσ is given by ρσ(z)/ρσ(Z) where

ρσ(z) = exp
(

−z2

2σ2

)
and ρσ(Z) =

∑+∞
z=−∞ ρσ(z). Note that some authors use
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the parameter s =
√
2πσ to define the Gaussian distribution or even denote the

parameter s by σ to add to the confusion.
For a uniformly chosen s ∈ Zn

q , the LWE distribution As,X over Zn
q × Zq

consists of tuples (a, t) where a is chosen uniformly from Zn
q and t = 〈a, s〉 + e

mod q ∈ Zq and e is sampled from the error distribution X . The search version
of the LWE problem asks to find s given a polynomial number of pairs (a, t)
sampled from the LWE distribution As,X . In the decision version of the LWE
problem, the solver needs to distinguish with non-negligible advantage between
a polynomial number of samples drawn from As,X and the same number of
samples drawn from Zn

q × Zq. For hardness proofs of the search and decision
LWE problems, interested readers are referred to [15].

The initial LWE encryption system in [26] is based on matrix operations
which are quite inefficient and result in large key sizes. To achieve computational
efficiency and to reduce the key size, an algebraic variant of the LWE called ring-
LWE [17] uses special structured ideal lattices. Such lattices correspond to ideals
in rings Z[x]/〈f〉, where f is an irreducible polynomial of degree n. For efficiency
reasons, the ring is often taken as Rq = Zq[x]/〈f〉 with f(x) = xn + 1, where
n is a power of two and the prime q is taken as q ≡ 1 mod 2n. The ring-LWE
distribution on Rq × Rq consists of tuples (a, t) with a ∈ Rq chosen uniformly
random and t = as + e ∈ Rq, where s ∈ Rq is a fixed secret element and e
has small coefficients sampled from the discrete Gaussian above. The resulting
distribution on Rq will also be denoted Xσ.

The ring-LWE based encryption scheme that we will use was introduced in
the full version of [17] and uses a global polynomial a ∈ Rq. Key generation,
encryption and decryption are as follows:

1. KeyGen(a) : Choose two polynomials r1, r2 ∈ Rq from Xσ and compute
p = r1 − a · r2 ∈ Rq. The public key is (a, p) and the private key is r2. The
polynomial r1 is simply noise and is no longer required after key generation.

2. Enc(a, p,m) : The message m is first encoded to m̄ ∈ Rq. Three polynomials
e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext then consists of two
polynomials c1 = a · e1 + e2 and c2 = p · e1 + e3 + m̄ ∈ Rq.

3. Dec(c1, c2, r2) : Compute m′ = c1 · r2 + c2 ∈ Rq and recover the original
message m from m′ using a decoder.

One of the simplest encoding functions maps a binary message m to the poly-
nomial m̄ ∈ Rq such that its i-th coefficient is (q − 1)/2 iff the i-th bit of m is 1
and 0 otherwise. The corresponding decoding function then simply reduces the
coefficientsm′

i ofm
′ in the interval (−q/2, q/2] and decodes to 1 when |m′

i| > q/4
and 0 otherwise.

2.2 Parameter Sets

To enable fair comparison with the state of the art [23], we have chosen to
instantiate the cryptoprocessor for the same parameter sets (n, q, s) (recall s =√
2πσ), namely P1 = (256, 7681, 11.32) and P2 = (512, 12289, 12.18). Note that
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the choice of primes is not optimal for fast modular reduction. To estimate the
security level offered by these two parameter sets we follow the security analysis
in [16] and [14] which improves upon [15,29]. Apart from the dimension n, the
hardness of the ring-LWE problem mainly depends on the ratio q/σ, where
clearly the problem becomes easier for larger ratios. Although neither parameter
set was analyzed in [16], parameter set P1 is similar to the set (256, 4093, 8.35)
from [16] which requires 2105 seconds to break, or still over 2128 elementary
operations. For paramater set P2 we expect it to offer a high security level
consistent with AES-256 (following [9]).

We limit the Gaussian sampler in our implementation to 12σ to obtain a neg-
ligible statistical distance (< 2−90) from the true discrete Gaussian distribution.
Although one can normally sample the secret r2 ∈ Rq also from the distribution
Xσ, we restrict r2 to have binary coefficients.

2.3 The Number Theoretic Transform

There are many efficient algorithms in the literature to perform polynomial
multiplication and a survey of fast multiplication algorithms can be found in
[2]. In this section we review the Number Theoretic Transform (NTT) which
corresponds to a Fast Fourier Transform (FTT) where the roots of unity are
taken from a finite ring instead of the complex numbers.

The FFT and NTT. Recall that the n-point FFT (with n = 2k) is an efficient

method to evaluate a polynomial a(x) =
∑n−1

j=0 ajx
j ∈ Z[x] in the n-th roots

of unity ωi
n for i = 0, . . . , n − 1 where ωn denotes a primitive n-th root of

unity. More precisely, on input the coefficients [a0, . . . , an−1] and ωn, the FFT
computes FFT ([aj], ωn) = [a(ω0

n), a(ω
1
n), . . . , a(ω

n−1
n )] in θ(n log n) time. Due

to the orthogonality relations between the n-th roots of unity, we can compute
the inverse FFT simply as 1

nFFT (·, ω−1
n ).

The NTT replaces the complex roots of unity by roots of unity in a finite
ring Zq. Since we require elements of order n, q is chosen to be a prime with
q ≡ 1 mod 2n. Note furthermore that the NTT immediately leads to a fast
multiplication algorithm in the ring Sq = Zq[x]/(x

n − 1): indeed, given two
polynomials a, b ∈ Sq we can easily compute their (reduced) product c = a·b ∈ Sq
by computing

c = NTT−1
ωn

(
NTTωn(a) ∗NTTωn(b)

)
, (1)

where ∗ denotes point-wise multiplication.
The NTT computation is usually described as recursive, but in practice we

use an in-place iterative version taken from [4] that is given in Algorithm 1. For
the inverse NTT, an additional scaling of the resulting coefficients by n−1 is
performed. The factors ω used in line 8 are called the twiddle factors.

Multiplication in Rq. Recall that we will use Rq = Zq[x]/〈f〉 with f = xn+1
and n = 2k. Since f(x)|x2n − 1 we could use the 2n-point NTT to compute
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Algorithm 1: Iterative NTT
Input: Polynomial a(x) ∈ Zq [x] of degree n − 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
begin1

A ← BitReverse(a);2
for m = 2 to n by m = 2m do3

ωm ← ωn/m
n ;4

ω ← 1 ;5
for j = 0 to m/2 − 1 do6

for k = 0 to n − 1 by m do7
t ← ω ·A[k + j + m/2] ;8
u ← A[k + j] ;9
A[k + j] ← u + t ;10
A[k + j + m/2] ← u − t ;11

end12
ω ← ω · ωm ;13

end14

end15

end16

the multiplication in Rq at the expense of three 2n-point NTT computations
and a reduction by trivially embedding the ring Rq into Sq, i.e. expanding the
coefficient vector of a polynomial a ∈ Rq by adding n extra zero coefficients.
However, we can do much better by exploiting the special relation between the
roots of xn + 1 and x2n − 1 using a technique known as the negative wrapped
convolution.

Indeed, using the same evaluation-interpolation strategy used above for the
ordinary NTT, we conclude that we can efficiently multiply two polynomials
a, b ∈ Rq if we can quickly evaluate them in the roots of f . These roots are

simply ω2j+1
2n for j = 0, . . . , n − 1 (since the even exponents give the roots of

xn − 1) and as such can be written as ω2n · ωj
n. These evaluations can thus be

computed efficiently using a classical n-point NTT (instead of a 2n-point NTT)
on the scaled polynomials a′(x) = a(ω2n ·x) and b′(x) = a(ω2n ·x). The point-wise
multiplication gives the evaluations of c(x) = a(x)b(x) mod f(x) in the roots of
f , and the classical inverse n-point NTT thus results in the coefficients of the
scaled polynomial c′(x) = c(ω2n · x). To recover the coefficients ci of c(x), we
therefore simply have to compute ci = c′i · ω−i

2n . Note that the scaling operation
by n−1 can be combined with the multiplications of c′i by ω

−i
2n .

3 Optimization of the NTT Computation

In this section we optimize the NTT and compare with the recent hardware
implementations of polynomial multipliers [1,22,23]. First, the fixed cost involved
in computing the powers of ωn is reduced, then the pre-computation overhead in
the forward negative-wrapped convolution is optimized, and finally an efficient
memory access scheme is proposed that reduces the number of memory accesses
during the NTT and also minimizes the number of block RAMs in the hardware
architecture.
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3.1 Optimizing the Fixed Computation Cost

In line 13 of Algorithm 1 the computation of the twiddle factor ω ← ω · ωm is
performed in the j-loop. This computation can be considered as a fixed cost.
However in [1,22] the j-loop and the k-loop are interchanged, such that ω is
updated in the innermost loop which is much more frequent than in Algorithm 1.
To avoid the computation of the twiddle factors, in [22] all the twiddle factors
are kept in a pre-computed look-up table (ROM) and are accessed whenever
required. As the twiddle factors are not computed on-the-fly, the order of the
two innermost loops does not result in an additional cost. However in [1] a more
compact polynomial multiplier architecture is designed without using any look-
up table and the twiddle factors are simply computed on-the-fly during the NTT
computation. Hence in [1], the interchanged loops cause substantial additional
computational overhead. In this paper our target is to design a very compact
polynomial multiplier. Hence we do not use any look-up table for the twiddle
factors and follow Algorithm 1 to avoid the extra computation of [1].

3.2 Optimizing the Forward NTT Computation Cost

Here we revisit the forward negative-wrapped convolution technique used in
[1,22,23]. Recall that the negative-wrapped convolution corresponds to a classical
n-point NTT on the scaled polynomials a′(x) = a(ω2n · x) and b′(x) = (ω2n · x).
Instead of first pre-computing these scaled polynomials and then performing a
classical NTT, it suffices to note that we can integrate the scaling and the NTT
computation. Indeed, it suffices to change the initialization of the twiddle factors
in line 5 of Algorithm 1: instead of initializing ω to 1, we can simply set ω = ω2m.
The rest of the algorithm remains exactly the same, and no pre-computation is
necessary. Note that this optimization only applies to the NTT itself and not to
the inverse NTT.

3.3 Optimizing the Memory Access Scheme

The NTT computation requires memory to store the input and intermediate
coefficients. When the number of coefficients is large, RAM is most suitable for
hardware implementation [1,22,23]. In the innermost loop (lines 8-to-11) of Al-
gorithm 1, two coefficients A[k+j] and A[k+j+m/2] are first read from memory
and then arithmetic operations (one multiplication, one addition and one sub-
traction) are performed. The new A[k + j] and A[k+ j +m/2] are then written
back to memory. During one iteration of the innermost loop, the arithmetic cir-
cuits are thus used only once, while the memory is read or written twice. This
leads to idle cycles in the arithmetic circuits. The polynomial multiplier in [22]
uses two parallel memory blocks to provide a continuous flow of coefficients to
the arithmetic circuits. However this approach could result in under-utilization
of the RAM blocks if the coefficient size is much smaller than the word size (for
example in the ring-LWE cryptosystem [17]). In the literature there are many
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papers on efficient memory management schemes using segmentation and effi-
cient address generation (see [18]) for the classical FFT algorithm. Another well
known approach is the constant geometry FFT (or NTT) which always main-
tains a constant index difference between the processed coefficients [21]. However
the constant geometry algorithm is not in-place and hence not suitable for re-
source constrained platforms. In [1] memory usage is improved by keeping two
coefficients A[k] and B[k] of the two input polynomials A and B in the same
memory location. We propose a memory access scheme which is designed to
minimize the number of block RAM slices and to achieve maximum utilization
of computational circuits present in the NTT architecture.

Since the two coefficients A[k+ j] and A[k + j +m/2] are processed together
in Algorithm 1, we keep the two coefficients as a pair in one memory location.

Let us analyze two consecutive iterations of the m-loop (line 3 in Algorithm 1)
for m = m1 and m = m2 where m2 = 2m1. In the m1-loop, for some j1 and k1
(maintaining the loop bounds in Algorithm 1) the coefficients (A[k1+ j1], A[k1+
j1 + m1/2]) are processed as a pair. Then k increments to k1 + m1 and the
processed coefficient pair is (A[k1+m1+ j1], A[k1+m1+ j1+m1/2]). Now from
Algorithm 1 we see that the coefficient A[k1 + j1] will again be processed in
the m2-loop with coefficient A[k1 + j1 +m2/2]. Since m2 = 2m1, the coefficient
A[k1 + j1 + m2/2] is the coefficient A[k1 + j1 + m1] which is updated in the
m1-loop for k = k1 + m1. Hence during the m1-loop if we swap the updated
coefficients for k = k1 and k = k1 +m1 and store (A[k1 + j1], A[k1 + j1 +m1])
and (A[k1 + j1 +m1/2], A[k1 + j1 + 3m1/2]) as the coefficient pairs in memory,
then the coefficients in a pair have a difference of m2/2 in their index and thus
are ready for the m2-loop. The operations during the two consecutive iterations
k = k1 and k = k1 +m1 during m = m1 are shown in Algorithm 2 in lines 8-15.
During the operations u1, t1, u2 and t2 are used as temporary storage registers.

A complete description of the efficient memory access scheme is given in Al-
gorithm 2. In this algorithm for all values of m < n, two coefficient pairs are
processed in the innermost loop and a swap of the updated coefficients is per-
formed before writing back to memory. Form = n, no swap operation is required
as this is the final iteration of the m-loop. The coefficient pairs generated by Al-
gorithm 2 can be re-arranged easily for another (say inverse) NTT operation by
performing address-wise bit-reverse-swap operation. Appendix A describes the
memory access scheme using an example.

4 The NTT Processor Organization

In this section we present an architecture for performing the forward and back-
ward NTT using the proposed optimization techniques. Our NTT processor
(Figure 1) consists of three main components: the arithmetic unit, the memory
block and the control-address unit.

The Memory Block is implemented as a simple dual port RAM. To accom-
modate two coefficients, the word size is 2!log q" where q is the prime modulus.
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Algorithm 2: Iterative NTT : Memory Efficient Version
Input: Polynomial a(x) ∈ Zq [x] of degree n − 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
begin1

A ← BitReverse(a); /* Coefficients are stored in the memory as proper pairs */2
for m = 2 to n/2 by m = 2m do3

ωm ← m-th primitiveroot(1) ;4
ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;5
for j = 0 to m/2 − 1 do6

for k = 0 to n/2 − 1 by m do7
(t1, u1) ← (A[k + j + m/2], A[k + j]) /* From MEMORY[k+j] */ ;8
(t2, u2) ← (A[k+m+ j +m/2], A[k+m+ j]) /* MEMORY[k+j+m/2] */ ;9
t1 ← ω · t1 ;10
t2 ← ω · t2 ;11
(A[k + j + m/2], A[k + j]) ← (u1 − t1, u1 + t1) ;12
(A[k + m + j + m/2], A[k + m + j]) ← (u2 − t2, u2 + t2) ;13
MEMORY [k + j] ← (A[k + j + m], A[k + j]) ;14
MEMORY [k + j + m/2] ← (A[k + j + 3m/2], A[k + j + m/2]) ;15

end16
ω ← ω · ωn ;17

end18

end19
m ← n ;20
k ← 0 ;21
ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;22
for j = 0 to m/2 − 1 do23

(t1, u1) ← (A[j + m/2], A[j]) /* From MEMORY[j] */ ;24
t1 ← ω · t1 ;25
(A[j + m/2], A[j]) ← (u1 − t1, u1 + t1) ;26
MEMORY [j] ← (A[j + m/2],A[j]) ;27
ω ← ω · ωm ;28

end29

end30

In FPGAs, a RAM can be implemented as a distributed or as a block RAM.
When the amount of data is large, block RAM is the ideal choice.

The Arithmetic Unit (NTT-ALU) is designed to support Algorithm 2 along
with other operations such as polynomial addition, point-wise multiplication and
rearrangement of the coefficients. This NTT-ALU is interfaced with the memory
block and the control-address unit. The central part of the NTT-ALU consists
of a modular multiplier and addition/subtraction circuits.

Now we describe how the different components of the NTT-ALU are used
during the butterfly steps (excluding the last loop for m = n). First, the memory
location (k + j) is fetched and then the fetched data (t1, u1) is stored in the
input register pair (H1, L1). The same also happens for the memory location
(k + j +m/2) in the next cycle. The multiplier computes ω ·H1 and the result
is added to or subtracted from L1 using the adder and subtracter circuits to
compute (u1 + ωt1) and (u1 − ωt1) respectively. In the next cycle the register
pair (R1, R4) is updated with (u1 − ωt1, u1 + ωt1). Another clock transition
shifts the contents of (R1, R4) to (R2, R5). In this cycle the pair (R1, R4) is
updated with (u2 − ωt2, u2 + ωt2) as the computation involving (u2, t2) from
the location (k + j + m/2) lags by one cycle. Now the memory location (k +
j) is updated with the register pair (R4, R5) containing (u2 + ωt2, u1 + ωt1).
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Fig. 1. Hardware Architecture for NTT

Finally, in the next cycle the memory location (k + j +m/2) is updated with
(u2 − ωt2, u1 − ωt1) using the register pair (R2, R3). The execution of the last
m-loop is similar to the intermediate loops, without any data swap between the
output registers. The register pair (R2, R5) is used for updating the memory
locations. In Figure 1, the additional registers (H2, H3 and L2) and multiplexers
are used for supporting operations such as addition, point-wise multiplication
and rearrangement of polynomials. The Small-ROM block contains the fixed
values ωm, ω2n, their inverses and n

−1. This ROM has depth of order log(n).

The Control-and-Address Unit consists of three counters for m, j and k
in Algorithm 2 and comparators to check the terminal conditions during the
execution of any loop. The read address is computed from m, j and k and then
delayed using registers to generate the write address. The control-and-address
unit also generates the write enable signal for the RAM and the control signals
for the NTT-ALU.

5 Pipelining the NTT Processor

The maximum frequency of the NTT-ALU is determined by the critical path (red
dashed line in Figure 1) that passes through the modular multiplier and the adder
(or subtracter) circuits . To increase the operating frequency of the processor,
we implement efficient pipelines based on the following two observations.
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Observation 1. During the execution of any m-loop in Algorithm 2, the com-
putations (multiplication, addition and subtraction) involving a coefficient pair
have no data dependency on other coefficient pairs. Such a data-flow structure
is suitable for pipeline processing as different computations can be pipelined
without inserting bubbles in the datapath.

Assume that the modular multiplier has dm pipeline stages and that the
output is latched in a buffer. In the (dm + 1)th cycle after the initialisation of
ω · t1, the buffer is updated with the result ω · t1. Now we need to compute
u1 + ω · t1 and u1 − ω · t1 using the adder and subtracter circuits. Hence we
delay the data u1 by dm cycles so that it appears as an input to the adder and
subtracter circuits in the (dm + 1)th cycle. This delay operation is performed
with the help of a shift register L1, . . . , Ldm+1 as shown in Figure 2.

Observation 2. Every increment of j in Algorithm 2 requires a new ω (line
17). If the multiplier has dm pipeline stages, then the register-ω in Figure 1 is
updated with the new value of ω in the (dm+2)th cycle. Since this new ω is used
by the next butterfly operations, the data dependency results in an interruption
in the chain of butterfly operations for dm + 1 cycles. In any m-loop, the total
number of such interruption cycles is (m/2− 1) · (dm + 1).

To reduce the number of interruption cycles, we use a small look-up table
to store a few twiddle factors. Let the look-up table (red dashed rectangle in
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Figure 2) have l registers containing the twiddle factors (ω, . . . ωωl−1
m ). This look-

up table is used to provide the twiddle factors during the butterfly operations
for say j = j′ to j = j′ + l− 1. The next time j increments, new twiddle factors
are required for the butterfly operations. We multiply the look-up table with
ωl
m to compute the next l twiddle factors (ωωl

m, . . . ωω
2l−1
m ). The multiplications

are independent of each other and hence can be processed in a pipeline. The
butterfly operations are resumed after ωωl

m is loaded in the look-up table. Thus
using a small-look-up table of size l we reduce the number of interruption cycles
to (m2l − 1) · (dm + 1). In our architecture we use l = 4; a larger value of l will
reduce the number of interruption cycles, but will cost additional registers.

Optimal Pipeline Strategy for Speed. During the execution of any m-loop
in Algorithm 2, the number of butterfly operations is n/2. In the pipelined NTT-
ALU, the cycle requirement for the n/2 butterfly operations is slightly larger than
n/2 due to an initial overhead. The state machine jumps to the ω calculation
state m

2l − 1 times resulting in (m2l − 1) · (dm + 1) interruption cycles. Hence the
total number of cycles spent in executing any m-loop can be approximated as
shown below:

Cyclesm ≈ n
2
+ (
m

2l
− 1) · (dm + 1)

Let us assume that the delay of the critical path with no pipeline stages is
Dcomb. When the critical path is split in balanced-delay stages using pipelines,
the resulting delay (Ds) can be approximated as Dcomb

(dm+da)
, where dm and da are

the number of pipeline stages in the modular multiplier and the modular adder
(subtracter) respectively. Since the delay of the modular adder is small compared
to the modular multiplier, we have da * dm. Now the computation time for the
m-loop is approximated as

Tm ≈ Dcomb

(dm + da)

[n
2
+ (
m

2l
− 1) · (dm + 1)

] ≈ Ds
n

2
+ Cm .

Here Cm is constant (assuming da * dm) for a fixed value of m. From the above
equation we find that the minimum computation time can be achieved when
Ds is minimum. Hence we pipeline the datapath to achieve minimum Ds. The
DSP based coefficient multiplier is optimally pipelined using the Xilinx IPCore
tool, while the modular reduction block is suitably pipelined by placing registers
between the cascaded adder and subtracter circuits.

6 The Ring-LWE Encryption Scheme

The ring-LWE encryption scheme in [23] optimizes computation cost by keeping
the fixed polynomials in the NTT domain. The message encryption and decryp-
tion operations require three and two NTT computations respectively. In this
paper we reduce the number of NTT operations for decryption from two to one.
The proposed ring-LWE encryption scheme is described below:
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Fig. 3. Ring-LWE Cryptoprocessor

1. KeyGen(a) : Choose a polynomial r1 ∈ Rq from Xσ, choose another poly-
nomial r2 with binary coefficients and then compute p = r1 − a · r2 ∈ Rq.
The NTT is performed on the three polynomials a, p and r2 to generate ã,
p̃ and r̃2. The public key is (ã, p̃) and the private key is r̃2.

2. Enc(ã, p̃,m): The message m is first encoded to m̄ ∈ Rq. Three polynomials
e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext is then computed as:

ẽ1 ← NTT (e1); ẽ2 ← NTT (e2)

(c̃1, c̃2)←
(
ã ∗ ẽ1 + ẽ2; p̃ ∗ ẽ1 +NTT (e3 + m̄)

)
3. Dec(c̃1, c̃2, r̃2) : Compute m′ as m′ = INTT (c̃1 ∗ r̃2 + c̃2) ∈ Rq and recover

the original message m from m′ using a decoder.

The scheme requires both encryption and decryption to use a common primitive
root of unity.

6.1 Hardware Architecture for the Ring-LWE Encryption Scheme

Figure 3 shows a hardware architecture for the ring-LWE encryption system. The
basic building blocks used in the architecture are: the memory file, the arithmetic
unit, the discrete Gaussian sampler and the control-address generation unit. The
arithmetic unit is the NTT-ALU that we described in the previous section. Here
we briefly describe the memory file and the discrete Gaussian sampler.
The Memory File is designed to support the maximum memory requirement
that occurs during the encryption of the message. Six memory blocks M0 to M5

are available in the memory file and are used to store ā, p̄, e1, e2, e3 and m̄
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respectively. The memory blocks have width 2!log q" bits and depth n/2. All six
memory blocks share a common read and a write address and have a common
data-input line, while their data-outputs are selected through a multiplexer.
Any of the memory blocks in the memory file can be chosen for read and write
operation. Due to the common addressing of the memory blocks, the memory
file supports one read and one write operation in every cycle.
The Discrete Gaussian Sampler is based on the compact Knuth-Yao sam-
pler [13] architecture proposed in [28] and have sufficiently large precision and
tail-bound to satisfy a maximum statistical distance of 2−90 to a true discrete
Gaussian distribution for both s = 11.32 and s = 12.18. Though the sampler in
[28] is very compact it is also quite slow due to sequential scanning of the prob-
ability bits. We improve the cycle requirement of the sampler using two look-up
tables. The first lookup table directly maps eight parallel random bits into a
sample value or an intermediate distance in the 8th column of the probability
matrix [28]. A successful look-up operation returns a sample and the sign of
the sample is determined by the 9th random bit. If the first look-up operation
fails, then another lookup is performed in the next 5 columns to get a sample
value or an intermediate distance in the 13th column of the probability ma-
trix. When the second lookup operation fails (probability<0.0016) then bit-scan
based Knuth-Yao random walk [28] is started with the initial distance obtained
from the second lookup operation.
The Cycle Count for the encryption and decryption operations can be min-
imized in the following way. During the encryption operation, first the three
error polynomials e1, e2 and e3 are generated by invoking the discrete Gaussian
sampler 3n times. Next the encoded message m̄ is added to e3 and then three
consecutive forward NTT operations are performed on e1, e2 and (e3 + m̄). Fi-
nally the ciphertext c̃1, c̃2 is obtained using two coefficient-wise multiplications
followed by two polynomial additions and two rearrangement operations. The
decryption operation requires one coefficient-wise multiplication, one polynomial
addition and finally one inverse NTT operation.

During the encryption operation, 3n samples are generated to construct the
three error polynomials. Our fast Knuth-Yao sampler architecture requires 805
and 1644 cycles for the dimensions 256 and 512 respectively on average to gener-
ate the three error polynomials. The polynomial addition and point-wise multi-
plication operations require n cycles each with a small overhead. The consecutive
processing of I forward NTTs share a fixed computation cost fcfwd and require
in total fcfwd + I × n

2 log(n) cycles. Similarly I consecutive inverse NTTs are
processed in fcinv + I× n

2 log(n)+ I×n cycles. One interesting point is that the
fixed cost fcinv is larger than fcfwd as it includes the computation of ωi

2n/N
(Section 2.3) for i = (0 . . . n−1). This observation has been used to optimize the
overall ring-LWE based encryption scheme in Section 6. The additional I × n
cycles during the inverse NTTs are required to multiply the coefficients by the
scaling factors. The rearrangement of polynomial coefficients after an NTT oper-
ation requires less than n cycles. From the above cycle counts for each primitive
operations, we see that the encryption and decryption operations require total
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Table 1. Performance and Comparison

Implementation Parameters Device LUTs/FFs/ Freq Cycles/Time(μs)

Algorithm DSPs/BRAM18 (MHz) Encryption Decryption

Our RLWE (256,7681,11.32) V6LX75T 1349/860/1/2 313 6.3k/20.1 2.8k/9.1

Our RLWE (512,12289,12.18) 1536/953/1/3 278 13.3k/47.9 5.8k/21

RLWE [23] (256,7681,11.32) V6LX75T 4549/3624/1/12 262 6.8k/26.2 4.4k/16.8

RLWE (512,12289,12.18) V6LX75T 5595/4760/1/14 251 13.7k/54.8 8.8k/35.4

RLWE-Enc[24] (256,4096,8.35) S6LX9 317/238/95/1 144 136k/946 -

RLWE-Dec 112/87/32/1 189 - 66k/351

ECC[3] Binary-233 V5LX85T 18097/-/5644/0 156 1.9k/12.3 1.9k/12.3

NTRU[12] NTRU-251 XCV1600E 27292/5160/14352/0 62.3 -/1.54 -/1.41

fcfwd + 3
2n log(n) + 10n and fcinv + n

2 log(n) + 3n cycles respectively along
with additional overhead. Our ring-LWE architecture has the fixed computation
costs fcfwd = 667 and fcinv = 1048 cycles for n = 256; and fcfwd = 1139 and
fcinv = 1959 cycles for n = 512.

7 Experimental Results

We have implemented the proposed ring-LWE cryptosystem on the Xilinx Virtex
6 FPGA for the parameter sets (n, q, s) : (256,7681,11.32) and (512,12289,12.18).
The area and performance results are obtained from the Xilinx ISE12.2 tool
after place and route analysis and are shown in Table 1. In the table we also
compare our results with other reported hardware implementations of the ring-
LWE encryption scheme. The HDL codes of our ring-LWE processors are freely
available and the results can be verified by the research community 1.

Our implementations are both fast and small thanks to the proposed com-
putational optimizations and resource efficient design style. The cycle counts
shown in the table do not include the cycles for data loading or reading oper-
ations. Our Knuth-Yao samplers have less than 2−90 statistical distances from
the corresponding true discrete Gaussian distributions and consume around 164
LUTs and have delay less than 2.5ns (with optimization goal for speed). Such
a small delay makes the sampler suitable for integration in the pipelined ring-
LWE processor under a single clock domain. We use nine parallel true random
bit generators [8,6] to generate the random bits for the sampler. The set of true
random bit generators consumes 378 LUTs and 9 FFs.

The first hardware implementation of the ring-LWE encryption scheme in [9]
uses a heavily parallel architecture to minimize the number of clock cycles for
the NTT computation. Due to the many parallel computational blocks, the ar-
chitecture is very large (0.29 million LUTs and 0.14 million FFs for n = 256)
and does not even fit on the largest FPGA of the Virtex 6 family. Performance
results such as cycle count and frequency are not reported in their paper. The ar-

1 Please contact the first author of the paper for the HDL codes.
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chitecture uses a Gaussian distributed array for sampling of the error coefficients
up to a tail-bound of ±2s.

The implementation in [23] is small and fast due to its resource-efficient design
style. A high operating frequency is achieved using pipelines in the architecture.
The architecture uses a ROM that keeps all the twiddle factors required during
the NTT operation. This approach reduces the fixed computation cost (fc) but
consumes block RAM slices in FPGAs. Additionally, the parallel RAM blocks
in the NTT processor result in a larger memory requirement compared to our
design. The discrete Gaussian sampler is based on the inversion sampling method
[5] and has a maximum statistical distance of 2−22 to a true discrete Gaussian
distribution. Since the inversion sampling requires many random bits to output
a sample value, an AES core is used as a pseudo-random number generator.
The AES core itself consumes an additional 803 LUTs and 341 FFs compared
to our true random number generator. Another reason behind the larger area
consumption of [23] compared to our architecture is due to the fact that the
architecture supports different parameter sets at synthesis time. Our ring-LWE
processor is also designed to achieve scalability for various parameter sets. In
our architecture the control block remains the same; while only the data-width
and the modular reduction block changes for different parameter sets. Hence
our architecture is also configurable by generating the HDL codes for various
parameter sets using a C program.

Although our architecture does not use a dedicated ROM for storing the twid-
dle factors, it still achieves slightly smaller cycle count and faster computation
time compared to [23]. The encryption scheme in [23] computes one forward and
two inverse NTTs; while our encryption scheme computes only forward NTTs
and hence does not require the 4n cycles for the scaling operation. Additionally
our negative convolution method is free from the precomputation that takes n
cycles in [23]. Hence we save 5n cycles in total during the NTT operations in
an encryption operation. Since the fixed computation cost fcfwd is smaller than
5n, we gain in cycle count for the encryption operation. The decryption opera-
tion in our case is trivially faster than [23] as only one NTT is performed. We
also reduce the area and memory requirement significantly compared to [9,23].
This reduction is achieved by our resource-efficient design decisions such as 1)
absence of a dedicated ROM for the twiddle factors, 2) an efficient RAM access
and storage scheme, 3) use of one modular multiplier, 4) use of a smaller and
faster (low-delay) discrete Gaussian sampler, and finally 5) the resource sharing
between different computations.

A very recent paper [24] proposes ring-LWE encryption and decryption ar-
chitectures targeting small area at the cost of performance. The implementation
uses a quadratic-complexity multiplier instead of a complicated NTT based poly-
nomial multiplier. Additionally the special modulus also saves some amount of
area as the modular reduction is free of cost. However if we consider a sim-
ilar quadratic-complexity multiplication based architecture in the dimension
n = 512, then the cycle requirement will be nearly 40 times compared to our
NTT-based ring-LWE processor. Our target was to use FPGA resources more
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efficiently without affecting the performance and to achieve similar speed as
[23]. The paper [24] also designs a compact Bernoulli sampler that consumes 37
slices for the standard deviation 3.33 and is thus smaller in area compared to
the Knuth-Yao sampler in [28]. The Bernoulli sampler requires on average 96
random bits and 144 cycles to output a sample. In the contrast the Knuth-Yao
sampler [28] requires on average 5 random bits and 17 cycles per sample and is
thus faster than the Bernoulli sampler. In this paper we have reduced the area
consumption of the Knuth-Yao sampler [28] by reducing the width of the ROM
and the scan-register from 32 bits to 12 bits and by simplifying the control unit.
These area optimizations do not affect the cycle requirement of the sampler, but
result in an area of only 32 slices for the overall sampler. The area optimized
Knuth-Yao sampler is both smaller and faster compared to the Bernoulli sampler
in [24].

We also compare our results with other cryptosystems such as ECC andNTRU.
The ECCprocessor [3] over the NIST recommended binary fieldGF (2233) requires
12.3 μs to compute one scalar multiplication and is faster than our ring-LWE pro-
cessor. However the ECC processor is designed to achieve high speed and hence
consumes very large area compared to our ring-LWEprocessor.TheNTRUscheme
[12] is much faster than our ring-LWE processor due to its less complicated arith-
metic. However the parameters chosen for the implementation in [12] have security
around 64 bits [11]. Though secure parameter sets for the NTRU based encryption
have been proposed in [10], no hardware implementation for the secure parameter
sets is available in the literature.

8 Conclusion

This paper proposed several optimizations for implementing a ring-LWE based
encryption system. The first set of optimizations improved the NTT by reduc-
ing the computation cost of the twiddle factors, avoiding the pre-computation
during the forward NTT, and deriving an efficient memory access scheme that
increases the utilization of the arithmetic components and the memory blocks.
A further optimization reduced the number of NTTs required in the encryp-
tion scheme from five to four. The proposed optimizations are implemented in
an efficient cryptoprocessor for the ring-LWE encryption system that not only
is three times smaller in area and memory than any other reported implemen-
tations, but also even faster. These features make the architecture suitable for
resource constrained platforms. Furthermore, the paper investigated architec-
tural acceleration to meet the high speed requirement for real-time applications
and proposes an optimal pipeline strategy that results in a very fast computation
time whilst using minimum area and memory. Although the paper focuses on im-
plementation of the ring-LWE based encryption system, we finally remark that
the proposed optimization techniques for the NTT computation are applicable
for other lattice based cryptosystems where similar polynomial multiplications
are performed.
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Appendix A

Table 2 shows the memory contents during the execution of Algorithm 2 for
n = 16. The column-heading represents (m, j, k) during the iterations. The end
loop in line 19 of Algorithm 2 for m = 16 performs no swap and is shown in the
table using � symbol.

Appendix B

Our ring-LWEcryptoprocessor has one instruction-register, one iteration-register,
one read-memory-index-queue and one write-memory-index-queue (Figure 4).
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Table 2. Memory content during the steps in a 16-point NTT

Address Initial (2,0,0) (2,0,6) (4,0,0) (4,0,4) (4,1,4) (8,3,0) (16,7,0)�

0 A1 A0 A2 A0 A2 A0 A4 A0 A4 A0 A4 A0 A8 A0 A8 A0

1 A3 A2 A3 A1 A3 A1 A5 A1 A9 A1 A9 A1

2 A5 A4 A6 A4 A6 A2 A6 A2 A6 A2 A10 A2 A10 A2

3 A7 A6 A7 A5 A7 A3 A11 A3 A11 A3

4 A9 A8 A10 A8 A12 A8 A12 A8 A12 A4 A12 A4

5 A11 A10 A11 A9 A13 A9 A13 A5 A13 A5

6 A13 A12 A14 A12 A14 A10 A14 A10 A14 A6 A14 A6

7 A15 A14 A15 A13 A15 A11 A15 A7 A15 A7

Instruction

Iteration

Memory IndexMemory Index

Read_Memory_Index_Queue Write_Memory_Index_Queue

R
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em
ory_Index
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rite_M

em
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Fig. 4. Instruction Execution Hardware

The read and write memory-index-queues are loaded with the memory indexes.
Since our ring-LWE cryptoprocessor has six memory blocks M0 to M5, the in-
dexes are in the range 0 to 5. The instruction is stored in the Instruction register
and the number (I) of consecutive NTT operations is kept in the Iteration register.
The following instructions are supported by the processor.

1. LOAD : A memory block indexed by WtQ0 is loaded with n coefficients.
Since two coefficients are processed in a cycle, the instruction takes n/2 + ε
cycles.

2. ENCODE-LOAD : A memory block indexed by WtQ0 is loaded with an
encoded message. The input message bits are first encoded using the en-
coder and then loaded in the memory block as proper coefficient-pairs. This
instruction requires n+ ε cycles.

3. GAUSSIAN-LOAD : A memory block indexed by WtQ0 is loaded with n
samples. The cycle count for this operation depends on the standard devia-
tion and n.
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4. FNTT/INTT : Is used to perform inplace forward or inverse NTT. The num-
ber of consecutive NTTs is stored in the iteration-register and the indexes
of the memory blocks are kept in the read-memory-index-queue

5. ADD/CMULT : Two memory blocks indexed by RdQ0 and RdQ1 are added
or coefficient-wise multiplied. The result is stored in the memory block in-
dexed by WtQ0. These two instructions require n+ ε cycles.

6. REARRANGE : Performs rearrangement of coefficient pairs in a memory
block indexed by RdQ0. This instruction requires less than n cycles.

7. READ : The contents of a memory block indexed by RdQ0 are read. This
instruction requires n/2 + ε cycles.
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1 Introduction

Protocols such as SSL/TLS [12,16], the backbone of the Internet, are designed to
provide data confidentiality and authenticity. Often the underlying algorithms
of these protocols realize encryption and authentication separately (e.g., AES
in CBC mode for encryption and HMAC-SHA1 for authentication). Although
this approach leads to relatively easy security analysis, the performance, due to
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two separate algorithms, does not meet demands of modern applications. Hence,
recently, the symmetric crypto community focuses its attention on dedicated au-
thentication encryption schemes, which aim to provide message encryption and
authentication more efficiently. An interest in new efficient and secure solutions
is manifested in the recently launched competition called CAESAR [1].

This paper presents our new design of the authenticated encryption scheme
called ICEPOLE. It is a family of authenticated ciphers with two parameters: key
length (128 or 256 bits) and nonce length (between 0 and 128 bits). Our primary
recommendation is ICEPOLE-128 which uses 128-bit key and 128-bit nonce.
The claimed security level for the primary variant is 128 bits and it is supported
by our extensive cryptanalysis. ICEPOLE is based on the duplex framework
introduced by Bertoni et al. in [8]. At the heart of the duplex framework is a
permutation and the ICEPOLE permutation is our new design. In particular,
inspired by the Keccak non-linear step [7], we introduce a new S-box with good
security properties and low implementation cost.

ICEPOLE is a high-speed hardware-oriented scheme, suitable for high-
throughput network nodes or more generally any environment where specialized
hardware (such as FPGAs or ASICs) can be used to provide high data processing
rates. ICEPOLE-128 is very fast. On the modern FPGA device Virtex 6, a basic
iterative architecture of ICEPOLE reaches 41 Gbits/s, which is over 10 times
faster than the equivalent implementation of AES-128-GCM [23] (one of the
most common standards for authenticated encryption). The throughput-to-area
ratio is also substantially better than AES-128-GCM results.

The paper is organized as follows. ICEPOLE specification is given in Section
2. Our security analysis is presented in Section 3. Next, Section 4 shows hardware
performance on FGPA devices and the comparison with the AES-GCM hardware
implementation. Then, software performance is given in Section 5. Finally, in
Section 6, we describe all the key decisions with motivation and justification
behind them.

2 Specification

Our primary recommended parameter set is: 128-bit key and 128-bit nonce. The
ICEPOLE variant with these recommended parameters is called ICEPOLE-128.
We also define two ICEPOLE variants serving as drop-in replacements for AES-
128-GCM and AES-256-GCM. These variants are ICEPOLE-128a (128-bit key,
96-bit nonce) and ICEPOLE-256a (256-bit key, 96-bit nonce). The following
specification refers to the primary recommendation ICEPOLE-128. A specifica-
tion of ICEPOLE-128a and ICEPOLE-256a is nearly the same and the differ-
ences are described in Appendix D.

2.1 State Organization and Notations

The algorithm works on the 1280-bit state S. The state S is organized as the
two-dimensional array S[4][5] where each element of the array is a 64-bit word.
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When we refer to the particular bit, we introduce the third index: S[x][y][z]. The
mapping between the bits of vector v and those of S[x][y][z] is v[64(x+4y)+z] =
S[x][y][z]. (At some points in the algorithm’s description we xor the state with a
vector so this mapping must be specified.) If the bits of the state share the same
z coordinates, they form a slice. As z ranges from 0 to 63, there are 64 slices in
the state. If the bits of the state share the same x and z coordinates, they form
a row. It is also convenient to introduce a notation which allows referring to the
first n bits of the state. Let S�n� denotes the first n bits of the state, namely
those bits S[x][y][z] for which 64(x+ 4y) + z < n.

We use the following notation:⊕ (bitwise XOR), · (bitwise AND), ¬ (negation).

2.2 Scheme Overview

ICEPOLE-128 encrypts and authenticates a message with a 128-bit key and a
128-bit nonce. There are 3 phases of the algorithm as shown in Figure 2.2.

Fig. 1. General scheme of ICEPOLE encryption and authentication

At the heart of ICEPOLE there is the 1280-bit permutation denoted by P .
Let us first describe this permutation.

2.3 Permutation P

P is an iterated permutation and a number of rounds is a parameter of the per-
mutation. In the presented algorithm the 6- and 12-round variants (denoted by
P6 and P12) are used. Each round R consists of five steps labelled by the Greek
letters: μ (mu), ρ (rho), π (pi), ψ (psi), κ (kappa).

R = κ ◦ ψ ◦ π ◦ ρ ◦ μ

Each step updates the state as follows.

μ:
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In the μ step bits are mixed through the MDS (Maximum Distance Separable)
matrix. Every 20-bit slice is mixed through the matrix given below. Formally,
a column vector (Z0, Z1, Z2, Z3) is multiplied by a constant matrix producing a
vector of four 5-bit words.⎛⎜⎜⎝

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

⎞⎟⎟⎠
⎛⎜⎜⎝
Z0

Z1

Z2

Z3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

⎞⎟⎟⎠

The operations are done in GF (25). Here the multiplication is defined as the
multiplication of binary polynomials modulo the irreducible polynomial x5 +
x2 + 1. There are only three distinct terms in the chosen matrix, namely 18, 2,
1 and they correspond to the polynomials x4 + x, x, and 1, respectively. The μ
step can be efficiently implemented with simple bitwise equations (see Appendix
G).

ρ:

The ρ step is the bitwise rotation applied to each of the twenty 64-bit words of
the state. The bitwise rotation moves bit at position z into position (z + rvalue)
modulo 64. For each word rvalue is different.

S[x][y] := S[x][y] ≪ offsets[x][y] for all (0 ≤ x ≤ 3), (0 ≤ y ≤ 4)

The rotation offsets are given in Appendix A.

π:

π reorders the words in the state. Words are moved from S[x][y] to S[x′][y′] and
the new coordinates (x′, y′) are calculated from the following simple formula.

x′ := (x+ y) mod 4
y′ := (((x + y) mod 4) + y + 1) mod 5

ψ:

In the ψ step the ICEPOLE S-box is applied to each of 256 rows of the state.
The S-box maps a 5-bit input vector (M0,M1, ...,M4) to a 5-bit output vector
(Z0, Z1, ..., Z4). The S-box functionality can be easily described by the following
bitwise equation. Operations on the index k are done modulo 5. The bitwise
AND operator · is omitted for clarity.

for all (0 ≤ k ≤ 4)
Zk =Mk ⊕ (¬Mk+1Mk+2)⊕ (M0M1M2M3M4)⊕ (¬M0¬M1¬M2¬M3¬M4)
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κ:

In κ the 64-bit constant is xored with S[0][0].

S[0][0] := S[0][0] ⊕ constant[numberOfRound]

The constant value for each round is different. The values are given in Appendix B.

2.4 Initialization Phase

First, the state is initialized with the 1280-bit pseudorandom constant. The con-
stant was obtained by applying the Keccak-f[1600] permutation (an underlying
permutation of the SHA-3 standard) to the all-zero vector and truncating the
result to 1280 bits. (The constant is given in Appendix C.)

Once the state is filled with the constant, the 128-bit key K and the 128-bit
nonce are introduced into the state. K0 and K1 denote two 64-bit words of the
key, nonce0 and nonce1 denote two 64-bit words of the nonce.

S[0][0] := S[0][0]⊕K0

S[1][0] := S[1][0]⊕K1

S[2][0] := S[2][0]⊕ nonce0
S[3][0] := S[3][0]⊕ nonce1
Then, the P12 permutation is run on the state S.

S := P12(S)

2.5 Processing Phase

The input data is processed in blocks. First, the associated data blocks σAD
i are

processed and next the plaintext blocks σPi . The plaintext blocks are authenti-
cated and encrypted whereas the associated data blocks are only authenticated.

A block length has to be between 0 (the empty block) and 1024 bits. Each
block is padded to be 1026 bits long and the padding rules are as follows. First,
every block is appended with the frame bit. The frame bit is set to 1 for the
last σAD block and all σPi except the last one. Otherwise the frame bit is set to
0. Once the frame bit is appended, a given block is padded with a simple rule:
append 1 and such a number of 0’s which gives 1026-bit block. Thus the padded
block has at least two padding bits (the frame bit and 1) and maximally 1026
padding bits (in case of the empty block).

In the processing phase the ciphertext blocks ci are produced and the state
is updated.

for all blocks σAD
i {

σAD
i := pad(σAD

i )
S�1026� := S�1026� ⊕ σAD

i
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S := P6(S)
}

for all blocks σPi {
ci = S�l� ⊕ σPi (l is a length of σP

i )

σPi := pad(σPi )
S�1026� := S�1026� ⊕ σPi
S := P6(S)

}

2.6 Tag Generation

When the blocks processing is finished, P6 is run on the state and the 128-bit
authentication tag T is derived. (T0 and T1 denote two 64-bit words of T .)

S := P6(S)
T0 := S[0][0]
T1 := S[1][0]

2.7 Decryption and Verification

Decryption and verification are done basically with the same scheme as for en-
cryption. The only difference is that now the input data are the ciphertext blocks
and the associated data blocks. Figure 2.7 shows the scheme. We stress that the
same permutation P (and not its inverse) is used for decryption and verification.
Once the processing phase is finished, the tag T is generated and verified with
the tag received from the sender. If the tags match, the data is authenticated.

Fig. 2. ICEPOLE decryption
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3 Security Analysis

In 2010, Bertoni et al. introduced the duplex construction [8] which provides the
framework for an authenticated encryption scheme. ICEPOLE is based on this
construction and thus ICEPOLE general security claims are inherited from it.
The duplex construction can be seen as a particular way of using the sponge
construction [6]. Similarly, there are two parameters, namely r (bitrate) and
c (capacity). The sum of these two parameters makes the state size. Different
values for bitrate and capacity give trade-offs between speed and security; a
higher bitrate gives a faster construction at the expense of a lower security. For
ICEPOLE-128, r is 1026 bits and c is 254 bits. In case of ICEPOLE variants
with a 256-bit key, r is 962 bits and c is 318 bits.

In [3], it was proved that the sponge construction is secure against generic
attacks with complexity below 2c/2. However, when a sponge or duplex object
is used in conjunction with a secret key, one can prove more refined bounds
taking into account the data complexity. In [4] Bertoni et al. proved that if the
data complexity is limited to 2a r-bit blocks, the keyed mode withstands generic
attacks with time complexity up to 2c−a calls of the underlying permutation. If
a < c/2, this results in an increase of the security strength from c/2 to c − a.
This comes in handy particularly for 256-key ICEPOLE variants, where we would
like to keep 256 bits of security without expanding the state or introducing any
serious changes in the algorithm’s specification. By limiting the number of blocks
(encrypted under the same key) to 262, ICEPOLE-256 stands up to any attack up
to 2318−62 = 2256 (unless easier generically). For ICEPOLE-128 the limit (rather
purely theoretical) is 2126 blocks and hence the security level is 254− 126 = 128
bits.

In [6] it was shown that the security level can be proven under the assumption
that the underlying permutation P has not any exploitable properties (there are
no structural distinguishers of the permutation). Therefore the security analysis
of ICEPOLE comes down to analysis of the permutation P . Below we give our
cryptanalysis indicating that P is indeed a secure permutation.

A user of ICEPOLE is required to use a nonce. However, in the case of nonce
reuse ICEPOLE provides some intermediate level of robustness. The nonce reuse
leads to leaking XOR of plaintexts (via XOR of ciphertexts) and this cannot be
avoided in our case. The secret key used with the same nonce also leads to
the situation where the adversary can control the XOR differences after the 12-
round initialization. But our cryptanalysis (given below) strongly indicates that
the 6-round permutation P (run at the processing phase) is secure, in particular
against differential and linear cryptanalysis. Therefore we argue that in the case
of nonce reuse the key-recovery attack is not possible.

3.1 Differential Cryptanalysis

Differential cryptanalysis, introduced by Biham and Shamir [9], has become very
powerful technique of modern cryptanalysis. One of the most convincing way of
showing the resistance against differential attacks is to provide a lower bound



ICEPOLE: High-Speed, Hardware-Oriented Authenticated Encryption 399

on the weight of any differential characteristics (also called differential trails or
paths) over a number of rounds. For example, in the AES the structure of the
cipher and its diffusion properties allow to provide such bounds analytically [11].
However for ‘bit-oriented constructions (e.g., Keccak or MD6 hash function) it
is not possible to derive differential characteristics bounds in a very straightfor-
ward and convenient manner. In such cases computer-aided proofs are provided
and for ICEPOLE we take this approach.

Computer Aided Proof
A brute-force strategy to check all possible characteristics (even for a very small
number of rounds) fails. The 1280-bit state is too big, even when exploiting
all possible symmetries. Instead of the plain brute-force we used a SAT-solver.
A SAT solver is an algorithm, which decides whether a given propositional
(Boolean) formula (typically described in the Conjunctive Normal Form) has
a satisfying valuation. Generally, to solve a problem: (1) translate the problem
to SAT (in such a way that a satisfying valuation represents a solution to the
problem); (2) run a favourite SAT solver to find a solution.

First, we focused on the problem of finding the 3-round characteristic with the
minimum number of active S-boxes. The problemwas encoded as a SAT formula in
theConjunctiveNormalFormwith the aid of theCryptLogVer toolkit [18]. Crypto-
MiniSat2 [25] is able to solve it in a few hours on a desktop PC. The solution, that is
the minimum number of active S-boxes for 3 rounds, is 9. Then, we tried to repeat
the experiments for 4 rounds, but the problem was too hard for the SAT-solver.
However, if we slightly change the problem and ask the solver about a particular
number (up to 13) of active S-boxes on the 4-round differential path, the answer is
provided by the solver. For 4 rounds there are no paths with 13 or fewer S-boxes.
Again, checking a higher number of S-boxes turned out to be infeasible.

If a number of active S-boxes is at least 14 (for 4 rounds) and the highest proba-
bility of a difference transition through the S-box is 2−2 (deduced from the differ-
ence distribution table of the S-box, given in Appendix F), then the lowest weight
for 4 rounds is 2−2∗14 = 2−28. So for 12 rounds a weight equals 2−28∗3 = 2−84

and hence data complexity for the attack is 284 plaintexts. Please note that this
is already a much bigger number than the limitation (262) for ICEPOLE-256 on a
number of blocks of plaintexts encrypted under the same key.

We believe that the complexity of differential attack should be much higher
than the lower bound of 284 plaintexts. The first reason for that is the difference
transitions through the S-box with the weight 2−2 happen very rarely. Out of
337 possible difference transitions only 10 (3%) has the weight 2−2. Most of the
transitions (216) has the weight 2−4 and the average weight is 23.4. The second
argument strongly indicating that ICEPOLE is resistant to a differential attack
is our experimental results. These gives some more insight into the difference
propagation in ICEPOLE. Details are presented in Appendix D.

Internal Differentials. The best collision attack against Keccak was obtained
through the technique called internal differentials [13]. While in standard differ-
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ential attacks we consider two different plaintexts, in internal differential attacks
only one plaintext is considered, and the statistical evolution of the differences
between its parts is followed. In the attack against Keccak two properties were
exploited, which led to the successful attack against the round-reduced Kec-
cak. These properties are: very low Hamming weight constants (which helps to
keep the state in the desired symmetry) and the fact that the state is initialized
with the all-zero vector (which allows to construct the initial difference). For
ICEPOLE it is not the case as the state is initialized with the pseudorandom
constant and the round constants have much higher Hamming weight. There-
fore we conclude it is not possible (or heavily limited) to successfully apply the
internal differential technique to our scheme.

3.2 Linear Cryptanalysis

Linear cryptanalysis, formally introduced by Matsui [21], has become another
powerful tool against modern cryptographic primitives. The main idea is to
construct the linear approximation of the algorithm. In many ways this technique
resembles differential cryptanalysis. Tracing the evolution of differences has the
counterpart in tracing linear masks. Usually the complexity of the attack is also
determined by the number of active S-boxes in the trail. One excellent example
of exploiting the duality between these two techniques is the analysis of AES
provided by its designers.

Although the structure of ICEPOLE does not allow for a straightforward
and completely parallel analysis with respect to the two types of attacks, we
think that ICEPOLE (and its permutation P ) should offer very similar security
margin against linear and differential cryptanalysis. First indication of it is the
examination of the linear profile of the S-box. (The complete profile is given in
Appendix H.) The highest bias of the linear approximation of the S-box is 2−2

and on average the bias is lower as the value of 2−2 happens rarely. (Note that
the highest probability of difference transitions in the S-box is also 2−2). The
complexity of the linear attack is not only determined by the S-box properties
but also by a number of active S-boxes on the trail. The μ step brings diffusion to
the algorithm and hence it is the main factor for increasing a number of active S-
boxes. The μ step affects linear and differential trails in the same way. Therefore
we conclude that the complexity of the linear attack against ICEPOLE should
be comparable with differential analysis and after 5-6 rounds the complexity
becomes completely intractable.

3.3 SAT-Based (Logic) Cryptanalysis

We encoded the following problem into SAT: an adversary knows a part of the
input state, a part of the output state and the goal is to retrieve the unknown
part of the input state. For ICEPOLE this problem models two types of attacks.
The first type is the key recovery where an unknown part of the state is a secret
key. The second type of the attack is the state recovery (in the processing phase)
where the attacker tries to recover the unknown capacity part of the state.
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To encode the problem into a SAT instance we used the toolkit presented in
[18]. We obtained a SAT instance describing a single round of P with roughly
6400 variables and 35300 clauses. In attacks we used CryptoMiniSAT2, a gold
medallist from recent SAT competitions [25]. We tried to solve three variants of
the problem where 64-, 80-, and 128-bit part of the input state remains unknown.
For 2 rounds CryptoMiniSAT2 was able to find the solution in a few seconds on a
desktop PC. For 3 rounds only 64-bit variant of the problem was solved (also in a
matter of seconds) and for 4 rounds, with 48-hour time limit, CryptoMiniSAT2
was unable to provide any solution. It looks as the hardness of the problem
grows super exponentially in a number of rounds and this effect has been also
observed in SAT-based attacks on other cryptographic primitives [18,24]. Thus
we conclude that ICEPOLE with the 12-round initialization and the 6-round
processing phase is secure against the SAT-based attack.

3.4 Rotational Cryptanalysis

The technique was formally introduced in [20]. Unlike differential analysis, where
the attacker follows the propagation of the xor differences of two plaintexts
through the cryptographic system, in rotational analysis, the adversary inves-
tigates the propagation of the rotational relations between plaintexts. In [22]
rotational cryptanalysis was applied to Keccak and since there are some similar-
ities between ICEPOLE and Keccak, we take a closer look whether that tech-
nique could be used against ICEPOLE. In the attack on Keccak two properties
were exploited, namely very low Hamming weight constants (which helps keep
the states in the desired rotational relation) and the fact that the state is ini-
tialized with the all-zero vector (which allows to construct the initial rotational
relation). For ICEPOLE it is not the case as the state is initialized with the
pseudorandom constant and the round constants have much higher Hamming
weight. Therefore we conclude it is not possible (or heavily limited) to apply
rotational cryptanalysis to our scheme.

3.5 Techniques Exploiting Low Algebraic Degree

There are several cryptanalytic techniques, which exploit a low algebraic degree.
These are, for example, the cube attack [14] or the zero-sum distinguisher [2]. An
algebraic degree of a single round of P (or its inverse) is 4. Then, after four rounds
the algebraic degree is 256, which stops the mentioned attacks from reaching the
attack complexity lower than the claimed security level 2128. Thus ICEPOLE
with its 12-round initialization is completely secure against techniques exploiting
a low algebraic degree.

4 Hardware Performance

Aproof-of-concept basic iterative architecture of ICEPOLE-128was implemented.
Figure 4 shows an overviewof a datapath design. The presented cryptographic core
is capable of performing encryption and decryption, and contains a full padding
unit.
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Fig. 3. A proof-of-concept single iterative round design for the hardware implementa-
tion of ICEPOLE

AES-GCM is used as a basis of our comparison as it is one of the most widely
accepted standards for authenticated encryption [23]. The same basic iterative
architecture is implemented for a direct comparison. Both implementations use
also the same interface and communication protocol in order to reduce any dis-
crepancies between the two designs. Similar to ICEPOLE, AES-GCM contains
the full padding unit and supports both encryption and decryption within a
single core.

Both cryptographic cores were described using VHDL language and verified
against software generated test vectors using ModelSim. The results were gener-
ated using ATHENa [17] using two high-performance FPGA families from two
major FPGA vendors, Xilinx and Altera. These FPGA families are Xilinx Vir-
tex 6 and Altera Stratix IV, respectively. No dedicated resources, such as Block
RAMs or DSP units, were used in either implementation. The comparison be-
tween ICEPOLE-128 and AES-128-GCM using a basic iterative architecture is
shown in Table 1. The throughput shown in the table is based on the throughput
of long messages.

Table 1. The comparison between ICEPOLE-128 and AES-128-GCM using an itera-
tive architecture

Xilinx Virtex 6 Altera Stratix IV

ICEPOLE-128 AES-128-GCM ratio ICEPOLE-128 AES-128-GCM ratio

throughput (Gbit/s) 41.364 3.539 11.7 38.779 3.612 10.7

area (Slices/ALUT) 1501 940 1.6 4564 4025 1.13

throughput-to-area 27.56 3.76 7.3 8.5 0.9 9.4

With the exception of resource utilization, ICEPOLE-128 consistently out-
performs AES-128-GCM in terms of the throughput and the throughput-to-
area ratio. For Xilinx Virtex 6, with only 60% increases in area, ICEPOLE-128
achieves almost 12 times the speed of AES-128-GCM, and seven times higher
the throughput-to-area ratio. For Altera Stratix IV, due to the unique behaviour
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of Altera Adaptive Look Up Tables (ALUTs), the resource utilization is similar
for both algorithms, with ICEPOLE-128 consuming only 13% more area. At the
same time, ICEPOLE-128 outperforms AES-128-GCM by a factor of 11 in terms
of throughput and a factor of 9 in terms of the throughput-to-area ratio.

We strive to provide the fairest possible comparison with AES-GCM.When we
state that the design used is an ‘iterative architecture’, this means that it takes
10 clock cycles to calculate the AES. Certainly, we selected the multiplier unit
that optimizes the unit to meet that latency. This means that we are performing
a 128-bit × 128-bit multiplication using at least a 128-bit × 16-bit multiplier
to satisfy the 10 clock cycles requirement. For a fair comparison, we selected a
128-bit × 16-bit multiplier because 128-bit × 32-bit or larger multiplier would
increase the area unnecessarily.

As ICEPOLE is inspired by the Keccak permutation, it is natural to ask
whether our new construction offers better performance over the Keccak permu-
tation. The main reason ICEPOLE permutation is faster than Keccak is that
the linear step μ can be implemented in the single layer of LUTs whereas Kec-
cak θ needs 2 layers. Hence both area and throughput for this step would be
to ICEPOLE advantage. Other steps in permutation are basically equivalent in
terms of performance. Our experiments supports this analysis. The experiment
was conducted by wrapping ICEPOLE and Keccak permutations with a shift
register for I/O. Then the same optimization technique used in our paper was
applied to both designs. The improvement in speed is consistent across all device
families with the highest performance gain in Altera as much as 20%.

5 Software Performance

While the primary focus of the ICEPOLE design is hardware performance, the
cipher is also amenable to efficient software implementations. The three steps
that require nontrivial implementations are μ, ρ and ψ. They all can be easily
implemented on platforms supporting 64-bit XORs, logical ANDs and rotations.
We measured that a rather straightforward C implementation compiled for speed
(with no beyond-C optimization efforts like code vectorization using AVX or
intrinsics use) runs for very long messages at about 9 cycles per byte on Intel
Ivy Bridge i5-3320M processor. The same implementation runs at about 8 cpb
on a Haswell (Intel Xeon E3 1275) machine.

We believe there is still room for possible improvements. A better code opti-
mization (e.g., making sure that the compiler uses the andn a, b instruction on
Haswell for ¬A ·B extensively used in the step ψ) could lead to a better perfor-
mance than the reported 8 cycles per byte. Additionally, one could think about
an AVX-based implementation where the whole state is kept in five YMM reg-
isters. Compared to the pure C code this could save time on memory loads and
stores but at the expense of the more complex μ step. For 32-bit platforms, only
rotation performance will scale worse than linearly (compared to the straight-
forward 64-bit version). It is because in such a case the rotations need to be
combined from more than two instructions.
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6 Design Rationale

We have aimed at high-speed, hardware-oriented authenticated encryption
scheme, suitable for high-throughput network nodes or any environment where
specialized hardware (such as FPGAs or ASICs) can be utilized to provide de-
sired high data processing rates. Our main inspiration comes from the duplex
construction with the round-reduced Keccak-f permutation [5]. We have decided
to keep the general framework (namely the duplex construction) and design an
underlying permutation from scratch.

In the Keccak-f permutation, the linear step θ brings most of diffusion to
the algorithm and is roughly two times slower (when considering the FPGA
design) than the non-linear part (a layer of S-boxes). Our general approach to
the design of the permutation P has been to make steps more balanced. We
have wanted to make the linear part simpler (faster) and improve the properties
(diffusion, algebraic degree) of the non-linear part (in comparison to Keccak-
f). The challenge has been that a more complex S-box layer should not nullify
the gain from introducing a lighter linear part. Our second starting idea was to
take into consideration cryptanalysis of Keccak-f and its round-reduced variants.
Those findings have determined some of our decisions for ICEPOLE and its P
permutation.

6.1 Permutation P Steps

Let us first explain design rationale behind the P permutation steps.

μ:

We have aimed at a possibly simple and implementation-friendly linear step.
The step does not have to have an efficient inverse as in the duplex construc-
tion the permutation is calculated only in one way (both for encryption and
decryption). Additionally, we have required that the linear step has very good
diffusion properties. In [19] Junod and Vaudenay presented their research on
building MDS matrix (known for an excellent diffusion property) under the cri-
teria, which perfectly suit our needs, that is an efficient implementation and
neglecting an inverse of the matrix. We have decided to use one of the ‘optimal’
matrices presented in [19].

The μ step also helped determine the size and organization of the state. First,
we tried to keep the same state organization as in Keccak-f[1600] that is 5×5×64.
However the ‘optimal’ 5 × 5 MDS matrix did not give us a clear advantage (in
terms of hardware implementation efficiency) over the linear step presented in
Keccak. Hence we have decided to use the smaller 4 × 4 matrix, which would
operate on four 5-bit vectors. The linear operation based on the chosen matrix
can be implemented in just a single layer of LUTs in the modern FPGA devices.
Consequently, to let our new linear step be applied naturally, the state has been
organized as the two dimensional array 4×5 of 64-bit words, giving the 1280-bit
state.
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ρ:

The ρ step is essential to bring diffusion along z axis in the state. Otherwise
a given bit would only affect bits from its slice (the bits sharing the same z
coordinate). The 20 offsets are calculated from a simple formula i(i+1)/2 modulo
the word length (64 bits in the case of ICEPOLE). This formula is the same as
in the Keccak permutation. A nice feature of this formula is that in the case
of shorter word lengths, each word (or nearly each word) has a distinct offset
value. This might come in handy when one tries to build ICEPOLE variant with
a smaller state, better suited for constrained environments.

π:

The π step reorders the words in the state. We have introduced this step to bring
extra diffusion between the words (which is already provided by μ and ψ). In
hardware, π and ρ are ‘cheap’, their computational cost corresponds to wiring.
The π formula has been chosen for its simplicity.

ψ:

We have aimed at the non-linear step (an S-box), which would have the following
properties: good differential and linear profiles, an algebraic degree higher than 3,
compact boolean circuit (low implementation cost). We have concluded that the
Keccak S-box would not be the best choice mainly for its slow diffusion. Every
bit affects only 3 others whereas we need better diffusion to complement μ.
Secondly, the Keccak S-box algebraic degree is only 2 and for a small number of
rounds techniques exploiting a low algebraic degree might be a threat. Therefore,
ideally, we would like to keep good differential and linear profiles of the Keccak
S-box and increase its diffusion and the algebraic degree. Our idea to achieve
this goal was as follows. If we change the truth table of the Keccak S-box very
little, differential and linear profiles should stay much the same (Though it needs
to be verified.) Hopefully, a small change would improve diffusion and increase
the algebraic degree. In the Keccak S-box the input vector ‘00000’ is mapped
onto ‘00000’ and ‘11111’ onto ‘11111’. If we switch them (‘00000’⇒ ‘11111’ and
‘11111’ ⇒ ‘00000’), this seemingly tiny change gives us all we want. Now every
output bit depends on all 5 input bits (better diffusion then) and the algebraic
degree now equals 4, also the inverse of the new S-box has degree equals 4. The
boolean description is still very compact, the equations are given in Section 2.
As expected the differential and linear profiles remain very the same, keeping
their good properties. The profiles are given in Appendix.

κ:

κ adds the 64-bit round constant and for each round a constant is different.
Without κ all rounds of the permutation P would be equal making it subject
to attacks exploiting symmetry such as slide attacks [10]. The constants used in
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Keccak have very low Hamming weight and this feature was exploited in two
cryptanalytic attacks [13,22] against the round-reduced Keccak. These results
motivated us to introduce constants with much higher Hamming weight. The
constant values are taken as the output of a simple 64-bit maximum-cycle Lin-
ear Feedback Shift Register (LFSR). The polynomial representation of LFSR is
x64 + x63 + x61 + x60 + 1. The LFSR state is initialized with the 64-bit vector
‘0123456789ABCDEF’ (hexadecimal format) and then each cycle generates a
subsequent constant. Thus κ can be implemented as a simple LFSR circuit or a
precomputed look-up table.

Steps order within a Round
μ is the step, which provides the best mixing between the unknown part of the
state (a secret key K) and the remaining part of the state which would be known
to the attacker. Hence we have placed μ as the first step in a round. The order
of other steps is arbitrary.

6.2 ICEPOLE Parameters and Decisions

ICEPOLE works on the 1280-bit state and the reason for that is explained above
in the subsection on the μ step. ICEPOLE-128 (our primary recommendation)
uses the 1024-bit input data block to be more hardware friendly. This value is a
power of 2 and allows a more natural I/O operation in hardware as opposed to
the slightly bigger size of 1088 bits (which could be also a choice). With 6-round
processing phase where a large amount of data must be transferred within a
short period, a non-power-of-2 block size can introduce an inefficiency in data
transmission when the I/O width is large. Furthermore, with the 1024-bit input
data block, a hardware implementation can more efficiently uses its storage,
which can be important where aiming for an extremely small design.

Before P is applied, the state is initialized with the pseudorandom 1280-
bit constant. This decision has been motivated by cryptanalysis on the round-
reduced Keccak where two different techniques [13,22] have exploited the fact
the state is initialized with the all-zero maintaining many different symmetries.

The number of rounds in Initialization is 12. This value is based on our differ-
ential cryptanalysis shown in Section 3. After Initialization an adversary should
not have any control over the differences (when mounting the differential attack).
The experiments indicate that 6 rounds are sufficient and we have doubled this
value to get a solid security margin.

The number of rounds in Processing Phase is 6. This value is based on our
SAT-based cryptanalysis given in Section 3. We were able to recover a small
unknown part of the state for 3 rounds. To get a solid security margin we have
doubled the number of rounds in Processing Phase to 6.

The frame bit (introduced as a part of the padding) is needed for security
analysis of the duplex construction working in the authenticated encryption
mode [6, Section 4.1.5]. The chosen padding rule is the simplest sponge-compliant
padding [6, Definition 2].
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7 Conclusion

We have proposed the dedicated authenticated encryption scheme called ICE-
POLE. It is very fast on the modern hardware platforms and its hardware perfor-
mance is substantially better than the AES-GCM. Our software non-optimized
implementation, running at 8 cycles per byte, is also a promising result. We
performed a security analysis with aid of many cryptanalytic tools and our find-
ings show that ICEPOLE offers solid security margin. Our new permutation P
(combining with the sponge construction [6] or other permutation-based modes)
could become a building block for a new, high-speed cryptographic primitive
such as a hash function or a stream cipher.
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Appendix

A

The rotation offsets used in the ρ step are given below.

offsets[0][0] := 0 offsets[0][1] := 36 offsets[0][2] := 3 offsets[0][3] := 41
offsets[0][4] := 18 offsets[1][0] := 1 offsets[1][1] := 44 offsets[1][2] := 10
offsets[1][3] := 45 offsets[1][4] := 2 offsets[2][0] := 62 offsets[2][1] := 6
offsets[2][2] := 43 offsets[2][3] := 15 offsets[2][4] := 61 offsets[3][0] := 28
offsets[3][1] := 55 offsets[3][2] := 25 offsets[3][3] := 21 offsets[3][4] := 56

http://groups.csail.mit.edu/cis/md6/
http://www.msoos.org/cryptominisat2
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B

The round constants used in the κ step are given below. The values are given in
hexadecimal using the little-endian format.

constant[0] := 0091A2B3C4D5E6F7 constant[1] := 0048D159E26AF37B
constant[2] := 002468ACF13579BD constant[3] := 00123456F89ABCDE
constant[4] := 00091A2BFC4D5E6F constant[5] := 00048D15FE26AF37
constant[6] := 0002468AFF13579B constant[7] := 000123457F89ABCD
constant[8] := 000091A2BFC4D5E6 constant[9] := 000048D1DFE26AF3
constant[10] := 00002468EFF13579 constant[11] := 00001234F7F89ABC

C

At the start of Initialization Phase the 1280-bit state is initialized with the pseu-
dorandom constant. The values are given in hexadecimal using the little-endian
format.

S[0][0] := FF97A42D7F8E6FD4 S[0][1] := 90FEE5A0A44647C4
S[0][2] := 8C5BDA0CD6192E76 S[0][3] := AD30A6F71B19059C
S[0][4] := 30935AB7D08FFC64 S[1][0] := EB5AA93F2317D635
S[1][1] := A9A6E6260D712103 S[1][2] := 81A57C16DBCF555F
S[1][3] := 43B831CD0347C826 S[1][4] := 01F22F1A11A5569F
S[2][0] := 05E5635A21D9AE61 S[2][1] := 64BEFEF28CC970F2
S[2][2] := 613670957BC46611 S[2][3] := B87C5A554FD00ECB
S[2][4] := 8C3EE88A1CCF32C8 S[3][0] := 940C7922AE3A2614
S[3][1] := 1841F924A2C509E4 S[3][2] := 16F53526E70465C2
S[3][3] := 75F644E97F30A13B S[3][4] := EAF1FF7B5CECA249

D

ICEPOLE-128a. We specify ICEPOLE-128a to have a drop-in replacement
for AES-128-GCM run with most common parameters, namely a 96-bit nonce
and a 128-bit tag. The only differences between ICEPOLE-128 (specified above)
and ICEPOLE-128a is that in ICEPOLE-128a a nonce is 96 bits long. The nonce
is padded with 32 zeros and introduced into the state in the same way as for
ICEPOLE-128.

ICEPOLE-256a. We specify ICEPOLE-256a to have a drop-in replacement for
AES-256-GCM run with most common parameters, namely a 96-bit nonce and a
128-bit tag. ICEPOLE-256a encrypts data with a 256-bit key, a 96-bit nonce and
the data is authenticated with a 128-bit tag. The 96-bit nonce is padded with
32 zeros. A 256-bit key consists of four 64-bit words K0 . . .K3 and the padded
nonce consists of two 64-bit words. The key and the nonce are introduced into
the state as follows.
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S[0][0] := S[0][0]⊕K0

S[1][0] := S[1][0]⊕K1

S[2][0] := S[2][0]⊕K2

S[3][0] := S[3][0]⊕K3

S[0][1] := S[0][1]⊕ nonce0
S[1][1] := S[1][1]⊕ nonce1
The data blocks have the length between 0 and 960 bits and the padded

blocks are 962 bits long. For ICEPOLE-256a the number of blocks encrypted
under a single key should be less than 262. All other parameters and steps of the
specification are the same as for ICEPOLE-128.

E

Differential Path Search
We were inspired by the work of Duc et al. [15] where the algorithm for dif-
ferential path search was given for the Keccak permutation. They managed to
provide the best differential paths for the round-reduced variants of the permu-
tation. Our permutation shares some key features with the Keccak permutation
(in particular how the state is organized and ‘bit-oriented’ propagation) and
hence we think that a similar algorithm may be fruitful also for our analysis.

The goal of the algorithm is to derive differential paths by maintaining the
bit difference Hamming weight as low as possible. We note that μ, ρ, π are
all linear mappings (denoted altogether by λ, while ψ acts as the non-linear S-
box. κ (adding round constants) does not affect differential analysis in any way.
Furthermore, ρ and π do not change the number of active bits in a differential
path, but change only bit positions. Hence, μ and ψ are critical when analysing
differential paths. Since ψ is followed by μ in the next round (ignoring κ), we
consider these two mappings together by treating a slice of the state as a unit,
and try to find the potential best mapping of the slice through ψ with the
following rule.

• Given an input difference of the slice find all possible output differences by
looking into the S-box differential profile. Then, among all combinations of
possible output differences, choose a combination which would give the state
the minimum Hamming weight after an application of μ.

It is not possible to check all possible states as the starting points for a differ-
ential path because the state is too big, even if we take advantage of symmetries.
We limit the space of starting points to the states with a single active bit. For
the 20-bit slice there are 20 such cases. For our permutation (as in the case of the
Keccak permutation) a differential path is invariant through position rotation
along the z axis so choosing a particular slice does not matter.

We start our search from b1 point, i.e., the state after the linear mappings
(denoted by λ) in the second round, and compute backwards for one round, and
a few rounds forwards, as shown below.
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a0
λ−1←−−− b0

ψ−1

←−−− a1
λ−1←−−− b1

ψ−−→ a2
λ−−→ b2

ψ−−→ a3
λ−−→ b3 . . .

The forward part is longer than the backward part because the diffusion of
μ−1 is better than for μ, so it will be easier to control the bit differences Ham-
ming weight for several rounds forwards (instead of backwards). Table 2 shows
probabilities of the best paths we found with the aid of the algorithm.

Table 2. Best differential paths results. The third column shows the weights of rounds
for a given path.

rounds total probability products

1 2−2 2−2

2 2−10 2−8 · 2−2

3 2−18.4 2−8.4 · 2−2 · 2−8

4 2−52.8 2−8.8 · 2−2 · 2−8 · 2−34

5 2−186.2 2−10.4 · 2−2 · 2−8 · 2−36 · 2−129.8

6 2−555.3 2−10.4 · 2−2 · 2−8 · 2−36 · 2−129.8 · 2−369

The weight of the 3-round path matches the bound we provided (2−18) very
closely. We investigated up to 6 rounds as the complexity of the attack exploiting
the 5-round path is already completely intractable.

F

G

The μ step changes the S state according to the following equations.
for (z := 0; z < 64; z := z + 1) {
S′[0][4][z] := S[0][3][z]⊕ S[1][4][z]⊕ S[2][4][z]⊕ S[3][4][z]
S′[0][3][z] := S[0][2][z]⊕ S[1][3][z]⊕ S[2][3][z]⊕ S[3][3][z]
S′[0][2][z] := S[0][4][z]⊕ S[0][1][z]⊕ S[1][2][z]⊕ S[2][2][z]⊕ S[3][2][z]
S′[0][1][z] := S[0][0][z]⊕ S[1][1][z]⊕ S[2][1][z]⊕ S[3][1][z]
S′[0][0][z] := S[0][4][z]⊕ S[1][0][z]⊕ S[2][0][z]⊕ S[3][0][z]

S′[1][4][z] := S[0][4][z]⊕ S[1][4][z]⊕ S[2][0][z]⊕ S[3][3][z]
S′[1][3][z] := S[0][3][z]⊕ S[1][3][z]⊕ S[2][4][z]⊕ S[3][2][z]
S′[1][2][z] := S[0][2][z]⊕ S[1][2][z]⊕ S[2][3][z]⊕ S[3][4][z]⊕ S[3][1][z]
S′[1][1][z] := S[0][1][z]⊕ S[1][1][z]⊕ S[2][2][z]⊕ S[2][0][z]⊕ S[3][0][z]
S′[1][0][z] := S[0][0][z]⊕ S[1][0][z]⊕ S[2][1][z]⊕ S[3][4][z]
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Table 3. The difference distribution table of the S-box. Input and output differences
are given in the hexadecimal format. Each element of the table represents the number
of occurrences of the corresponding output difference ΔOUT given the input difference
ΔIN . For clarity ‘-’ denotes 0.

ΔOUT
ΔIN

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

00 32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
01 - 8 - - - - - - - 6 - - - - 2 - - 6 - - - - 2 - - 8 - - - - - -
02 - - 8 6 - - - - - - - - - 2 - - - - 6 8 - - - - - - - - 2 - - -
03 - - 2 4 - - - - - - 4 2 - - - - - - 4 4 2 - - - - - 4 4 - 2 - -
04 - - - - 8 6 6 8 - - - - - - - - - - - - - - - - - 2 2 - - - - -
05 - - - - 4 - 4 - 2 - - - 2 - 4 - - - - 2 - 4 - 2 - - - - - 4 - 4
06 - - - - 2 4 4 4 - 2 - - - - - - - - - - 4 4 2 4 - - - 2 - - - -
07 - - - - 2 - 2 2 - - - - 2 2 2 - 2 - - - 2 2 2 2 - - 2 - 2 2 2 2
08 - - - - - - - - 8 - 6 - 6 - 8 - - - - 2 - 2 - - - - - - - - - -
09 - 4 2 2 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - 2 2 - 4
0a - - - - - - - 2 4 - - 4 4 - - 2 2 - - - - - - - 2 - - 4 4 - - 4
0b - 2 4 - - - - - - - - - - 4 2 - - 6 4 - - - - - - - - - - 4 6 -
0c - - - - - - - - 2 4 4 4 4 2 4 4 - - 2 - - - - 2 - - - - - - - -
0d - - - - 2 - 6 - 4 - 4 - - - - - - - - - - 4 - 4 - 2 - 6 - - - -
0e - 2 - - - - - - 2 2 - 2 2 2 2 2 - - - - - 2 - - 2 2 2 2 2 2 - 2
0f - - - - 2 2 2 - 2 2 2 - - - - - - - - - 4 2 2 2 4 2 2 2 - - - -
10 - - - - - - - 2 - - - 2 - - - - 8 - - - 6 - - - 6 - - - 8 - - -
11 - 2 - - - 4 - - - 4 2 - - 4 - - - 4 - - - 2 - - - 4 - - - 4 2 -
12 - - 4 4 2 - 2 4 - - - - - - - - - - - - - - - - - 2 4 2 - - 4 4
13 - - 2 2 - - 2 2 2 - 2 2 - 2 2 2 - - - 2 - - 2 - - - 2 2 - - 2 2
14 - 2 - - - - - - - - - - - - 2 - 4 2 - - - - 4 4 4 4 - - - - 2 4
15 - 4 - - - - - 2 - 4 - - - - - 6 2 - - - - - 4 - 6 - - - - - 4 -
16 - - 2 6 4 4 - - - - - - - - - - - - - - - - - - - - 4 4 2 6 - -
17 - - 2 2 2 2 - - - - 4 2 4 2 - - - - 2 - 2 - - - - - 2 2 2 2 - -
18 - - - - - 2 - - - - - - - - - 2 2 - 4 - 4 - 4 - 4 - 2 - 4 - 4 -
19 - 2 - 2 2 2 - 2 - - - 2 - 2 - 2 - 2 - 2 - 2 2 2 - 2 - - - 2 - 2
1a - - - - - - - - 2 - - 4 6 - - 4 4 - - 2 4 - - 6 - - - - - - - -
1b - 2 2 - - 4 4 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - - - - - 2 2 -
1c - - 2 - - - - - - - - 2 - - - - 2 2 2 2 - 2 2 2 2 2 2 2 2 - 2 2
1d - 2 - 4 - 2 - 2 - 2 - 2 - - - 2 2 - 4 - 2 - 2 - 2 - 2 - - - 2 -
1e - - - - - - - - 2 4 2 2 2 2 - 2 2 4 2 2 2 2 - 2 - - - - - - - -
1f - 2 2 - 2 - - 2 2 - - 2 - 2 2 - 2 - - 2 - 2 2 - - 2 2 - 2 - - 2

S′[2][4][z] := S[0][4][z]⊕ S[1][3][z]⊕ S[2][4][z]⊕ S[3][0][z]
S′[2][3][z] := S[0][3][z]⊕ S[1][2][z]⊕ S[2][3][z]⊕ S[3][4][z]
S′[2][2][z] := S[0][2][z]⊕ S[1][4][z]⊕ S[1][1][z]⊕ S[2][2][z]⊕ S[3][3][z]
S′[2][1][z] := S[0][1][z]⊕ S[1][0][z]⊕ S[2][1][z]⊕ S[3][2][z]⊕ S[3][0][z]
S′[2][0][z] := S[0][0][z]⊕ S[1][4][z]⊕ S[2][0][z]⊕ S[3][1][z]

S′[3][4][z] := S[0][4][z]⊕ S[1][0][z]⊕ S[2][3][z]⊕ S[3][4][z]
S′[3][3][z] := S[0][3][z]⊕ S[1][4][z]⊕ S[2][2][z]⊕ S[3][3][z]
S′[3][2][z] := S[0][2][z]⊕ S[1][3][z]⊕ S[2][4][z]⊕ S[2][1][z]⊕ S[3][2][z]
S′[3][1][z] := S[0][1][z]⊕ S[1][2][z]⊕ S[1][0][z]⊕ S[2][0][z]⊕ S[3][1][z]
S′[3][0][z] := S[0][0][z]⊕ S[1][1][z]⊕ S[2][4][z]⊕ S[3][0][z]
}
S := S′
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Table 4. The linear profile of the S-box. Input and output masks are given in the
hexadecimal format. Each element in the table is the number of mismatches between the
linear equation represented by the input mask IN and the linear equation represented
by the output mask OUT . Dividing an element value by 16 gives the probability that
the corresponding equations are not equal.

OUT
IN

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

00 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
01 16 10 18 24 18 12 16 14 18 16 16 18 16 22 18 20 18 16 16 18 16 14 18 12 16 18 18 16 18 12 16 14
02 16 18 10 16 18 16 24 18 18 16 12 14 16 18 14 12 18 16 16 18 16 18 18 16 16 18 22 12 18 16 20 14
03 16 24 16 16 16 12 16 20 16 16 12 12 16 20 12 16 16 16 16 16 16 12 16 12 16 16 12 20 16 12 12 16
04 16 18 18 16 10 16 16 18 18 16 16 18 24 18 18 16 18 16 16 18 12 22 14 12 16 18 18 16 14 20 12 14
05 16 8 16 8 16 12 16 20 16 16 16 16 16 20 16 12 16 16 16 16 20 16 12 16 16 16 16 16 20 16 12 16
06 16 16 24 16 16 16 16 16 16 16 12 12 16 16 20 12 16 16 16 16 12 12 12 20 16 16 20 12 12 12 16 16
07 16 10 18 16 18 20 16 22 18 16 12 14 16 14 14 16 18 16 16 18 12 18 22 16 16 18 14 20 14 16 16 22
08 16 18 18 16 18 16 16 18 10 12 16 22 16 14 18 12 18 16 16 18 16 18 18 16 24 14 18 20 18 12 16 14
09 16 16 16 16 16 20 16 20 8 12 16 20 16 16 16 16 16 16 16 16 16 12 16 12 8 20 16 12 16 16 16 16
0a 16 16 8 16 16 16 8 16 16 20 12 16 16 12 20 16 16 16 16 16 16 16 16 16 16 20 20 16 16 12 12 16
0b 16 18 18 8 18 20 16 14 18 20 12 18 16 18 22 20 18 16 16 18 16 14 18 12 16 14 14 16 18 16 20 14
0c 16 16 16 16 24 16 16 16 16 12 16 12 16 12 16 20 16 16 16 16 12 20 12 12 16 12 16 12 20 16 12 16
0d 16 18 18 16 18 20 16 14 18 12 16 14 8 18 18 16 18 16 16 18 20 18 14 16 16 22 18 20 14 20 12 14
0e 16 18 10 16 18 16 16 18 18 12 20 18 16 22 22 16 18 16 16 18 12 14 14 20 16 14 14 16 14 16 16 22
0f 16 16 16 8 16 12 16 12 16 12 20 16 16 16 12 20 16 16 16 16 12 16 20 16 16 20 20 16 12 12 16 16
10 16 18 18 16 18 16 16 18 18 16 16 18 16 18 18 16 10 24 12 14 16 18 22 20 16 18 14 12 18 16 12 14
11 16 16 16 16 16 12 16 12 16 16 16 16 16 12 16 12 24 16 12 20 16 12 20 16 16 16 12 12 16 20 12 16
12 16 16 16 16 16 16 16 16 16 16 20 12 16 16 20 12 8 8 12 20 16 16 20 12 16 16 16 16 16 16 16 16
13 16 18 18 16 18 12 16 14 18 16 12 22 16 14 14 16 10 16 20 22 16 14 14 16 16 18 18 16 18 20 16 22
14 16 16 16 16 8 16 16 16 16 16 16 16 8 16 16 16 16 16 20 20 12 20 16 16 16 16 12 12 20 12 16 16
15 16 18 18 16 18 12 16 22 18 16 16 18 16 14 18 20 18 8 20 14 20 18 18 20 16 18 14 12 14 16 16 14
16 16 18 18 16 18 16 8 18 18 16 20 14 16 18 14 12 18 16 20 14 12 14 18 16 16 18 18 16 22 20 20 14
17 16 16 16 16 16 20 16 12 16 16 12 20 16 20 12 16 16 8 12 12 12 16 16 20 16 16 16 16 20 16 12 16
18 16 16 16 16 16 16 16 16 24 12 16 20 16 12 16 12 16 16 12 12 16 16 12 12 16 20 12 16 16 12 20 16
19 16 18 18 16 18 12 16 14 10 20 16 14 16 18 18 16 18 16 12 14 16 22 14 16 16 22 14 16 18 16 20 22
1a 16 18 18 16 18 16 16 18 18 20 20 18 16 14 14 16 18 16 12 22 16 18 14 20 8 14 18 20 18 12 16 14
1b 16 16 16 16 16 12 16 12 16 12 12 16 16 16 20 12 16 16 20 12 16 20 20 16 8 12 16 20 16 16 16 16
1c 16 18 18 16 10 16 16 18 18 12 16 14 16 14 18 20 18 16 12 14 20 14 18 16 16 14 22 16 22 16 16 22
1d 16 16 16 16 16 12 16 20 16 20 16 20 8 16 16 16 16 16 12 12 12 16 16 12 16 12 20 16 12 20 16 16
1e 16 16 16 16 16 16 8 16 16 12 12 16 16 20 12 16 16 16 12 20 20 20 16 16 16 12 16 12 12 16 20 16
1f 16 18 18 16 18 20 16 14 18 20 20 18 16 18 14 12 18 16 20 14 20 18 18 12 16 14 18 12 14 12 12 22
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Abstract. SPRING is a family of pseudo-random functions that aims to
combine the guarantees of security reductions with good performance on
a variety of platforms. Preliminary software implementations for small-
parameter instantiations of SPRING were proposed at FSE 2014, and
have been demonstrated to reach throughputs within small factors of
those of AES. In this paper, we complement these results and investigate
the hardware design space of these types of primitives.

Our first (pragmatic) contribution is the first FPGA implementation
of SPRING in a counter-like mode. We show that the “rounded product”
operations in our design can be computed efficiently, reaching through-
puts in the hundreds of megabits/second range within only 4% of the re-
sources of a modern (Xilinx Virtex-6) reconfigurable device. Our second
(more prospective) contribution is to discuss the properties of SPRING
hardware implementations for side-channel resistance. We show that a
part of the design can be very efficiently masked (with linear overhead),
while another part implies quadratic overhead due to non-linear opera-
tions (similarly to what is usually observed, e.g., for block ciphers). Yet,
we argue that for this second part of the design, resistance against “sim-
ple power analysis” may be sufficient to obtain concrete implementation
security. We suggest ways to reach this goal very efficiently, via shuffling.
We believe that such hybrid implementations, where each part of the de-
sign is protected with adequate solutions, is a promising topic for further
investigation.

1 Introduction

The quest for secure and efficiently implemented primitives is an ongoing process
in cryptography. In the symmetric setting, recent research has led to the devel-
opment of many standard and lightweight block ciphers. As recently surveyed
during the “Crypto for 2020” workshop, current design approaches have been
quite successful in optimizing these primitives for various performance metrics,
which has led to their deployment in numerous applications [29,31]. Yet, and
although the problem of symmetric encryption may sound solved, at least two
important (apparently unrelated) problems remain open.

First, from a theoretical point-of-view, there is still a large gap between the
formalism used to argue about security in symmetric cryptography (mainly based

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 414–432, 2014.
c© International Association for Cryptologic Research 2014
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on cryptanalysis) and the one in asymmetric cryptography (which widely relies
on security reductions). While we do not wish to make statements about which
approach should currently be privileged and for what application, we believe
that any attempt at closing the gap between these two approaches is interest-
ing, since there seems to be no contradiction between implementation efficiency
and security reductions from well-understood problems. Note that closing such
a gap can naturally benefit both from better security analysis tools for already
deployed constructions (as followed by the recent line of research about key al-
ternating ciphers [2,5,6,17,18]) and from “provably secure” constructions leading
to efficient implementations, as we pursue in this paper.

Secondly, although block ciphers that perform well on various types of plat-
forms are now mainstream, the problem of securing their implementations against
physical (e.g. side-channel) attacks is still quite open. Indeed, the performance
overhead caused by standard countermeasures against such attacks (like mask-
ing [11,14,27,28] or shuffling [15,33]) are still significant, and the physical assump-
tions for these countermeasures to provide the expected security improvements
are sometimes hard to achieve. (See for example the discussions in [8,22,25].)

Interestingly, and despite looking disconnected, these two problems share a num-
ber of (intuitive) similarities, and progresses with respect to one of them could be
a source of improvement for the other one. The main reason for this intuition is
that one of the main elements that makes asymmetric cryptographic primitives
easier to prove by reduction is their more elaborated mathematical structure. But
mathematical structure (in particular, certain types of homomorphisms) is ex-
actly what sometimes makes the protection of asymmetric implementations eas-
ier, at least from a conceptual point of view [7,16]. As a result, one can generally
expect that, as the physical security level of implementations increases, the perfor-
mance gap between symmetric and asymmetric primitives vanishes. Two recent
examples illustrate this hope, namely the masked implementation of the Lapin
protocol in [10] and the leakage-resilient MAC in [23]. Unfortunately, both works
have some limitations. In the first case, the execution of Lapin requires random-
ness that seem difficult to protect against side-channel attacks (and was excluded
from the physical security analysis so far). In the second case, the MAC relies on
quite expensive pairing operations which implies (constant but significant) over-
head that dominate the implementation cost in current technologies.

In this paper, we follow this line of work and investigate the implementa-
tion properties of a recent Pseudo-Random Function (PRF) candidate called
SPRING [3,4]. Based on the “Learning with Rounding” assumption, it enjoys
(i) compared to the pairings in [23], having underlying operations that can be
implemented quite efficiently in software, and (ii) compared to Lapin, the advan-
tages of a being deterministic. Besides, and as a PRF, SPRING also corresponds
to a stronger and more generic primitive (potentially exploitable for encryption,
authentication and hashing). Our contributions are twofold.

We start by describing and evaluating the hardware performance of SPRING
within modern FPGAs. For this purpose, we take advantage of its BCH variant
described at FSE 2014 and exploit a couple of optimizations, that essentially
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turn our architecture into a combination of a subset-sum, some Fast Fourier
Transforms (FFTs), a rounding step and a BCH code. We show that these op-
erations combine nicely and produce overall performance that is sufficient for a
wide range of applications – though still substantially lower than that of AES.

Next, and as part of our motivation relates to physically protected implemen-
tation, we also study the extent to which countermeasures against side-channel
attacks can be efficiently implemented for SPRING, leading to contrasted con-
clusions. First, we show that the subset-sum part of our architecture can be
masked just as efficiently as Lapin (i.e., independently for each share, with lin-
ear overhead). Unfortunately (and quite naturally for a PRF candidate), the rest
of its operations are non-linear with respect to the masking scheme, and imply
more significant overhead. In this context, we investigate two possible solutions.
On the one hand, we estimate the cost of a fully masked implementation, for
which the performance is (asymptotically) similar to that of AES. On the other
hand, we analyze the cost of a hybrid architecture, where only part of the design
is masked and the rest is protected with other means (shuffling, typically). We
informally argue about the relevance of this proposal in two directions. First, we
observe that standard Differential Power Analysis (DPA) is not possible after the
subset-sum operation, because the intermediate computation depends on all the
key bits from this point on (so it cannot be enumerated anymore). Secondly, we
observe that unmasking before the rounding step will be (theoretically) secure
if the leakage function is “rounding” the intermediate values in an appropriate
way. In both cases, these arguments suggest that security against Simple Power
Analysis (SPA) are sufficient for this part of the design, and we evaluate the cost
of a candidate implementation based on this principle.

Overall, our results confirm that SPRING is an interesting family of PRFs for
general applications. We also believe that the hybrid countermeasure strategy,
that we suggest, is a promising alternative to a secure and efficient implementa-
tion, and it leads to interesting open problems. To some extent, it can be viewed
as an instantiation of the fresh re-keying scheme in [24], which also combines a
DPA-secure linear part with a SPA-secure non-linear one (so connections with
such schemes would be interesting to formalize). They also question the fami-
lies of rounding functions that lead to side-channel resistant PRFs with partial
masking, and whether these functions can be implemented physically by a leak-
age function (possibly as an engineering constraint).

The rest of the paper is structured as follows. Section 2 contains the specifica-
tions of SPRING, Section 3 describes its FPGA implementation, and Section 4
discusses its side-channel resistance.

2 SPRING Specifications

2.1 The SPRING Family of Pseudo-random Functions

One of the main constructions in [4] is a class of PRF candidates called SPRING
which is short for “subset-product with rounding over a ring.” Let n be a power
of two, and let R denote the polynomial ring R := Z[X ]/(Xn+1), which is known
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as the 2nth cyclotomic ring.1 For a positive integer q, let Rq denote the quotient
ring:

Rq := R/qR = Zq[X ]/(Xn + 1),

i.e., the ring of polynomials in X with coefficients in Zq , where addition and
multiplication are modulo both Xn + 1 and q. (For ring elements r(X) in R or
Rq, the indeterminate X is usually suppressed.) Let R∗

q denote the multiplicative
group of units (invertible elements) in Rq.

For a positive integer k, the SPRING family is the set of functions Fa,s :

{0, 1}k → {0, 1}m indexed by a unit a ∈ R∗
q and a vector s = (s1, . . . , sk) ∈ (R∗

q)
k

of units. The function is defined as the “rounded subset-product”:

Fs(x1, . . . , xk) := S

(
a ·

k∏
i=1

sxi

i

)
, (1)

where S : Rq → {0, 1}m for some m ≤ n is an appropriate “rounding” function.
For example, BPR considers the floor rounding function that maps each of its
input’s n coefficients to Z2 = {0, 1}, depending on whether the coefficient (in its
canonical form in Z257) is smaller than q/2 or not.

It is proved in [4] that when a and si are drawn from appropriate distributions,
and q is sufficiently large, the above function family is a secure PRF family,
assuming that the “ring learning with errors” (ring-LWE) problem [20] is hard
in Rq.

2.2 Implementation Details: Our Chosen Construction

In the following we describe an optimized FPGA implementation of the SPRING
PRF family based on the parameters suggested in [3]. These parameters offer
high levels of concrete security against known classes of attacks, and lead to
efficient implementations. A discussion and more thorough theoretical analysis
of these parameters can be found in [3]. Note that this choice is just one of
the possible instantiations of the SPRING family. We use it as a case study to
show our hardware implementation and side-channel resistance techniques and
to evaluate performance. We also suggest ways to secure the computation from
leakage of the key by methods of masking (which seem to match the homomor-
phic characteristics in the subset-sum part of the SPRING PRF quite elegantly)
and alternative countermeasures.

Aiming to design practical functions, the SPRING family can be instanti-
ated with relatively small moduli q, rather than the large ones required by the
theoretical security reductions in [4]. This allows following the same basic con-
struction paradigm as in [4], while taking advantage of the fast integer arithmetic
operations. In this paper we follow suit the parameters chosen in [3]:

1 It is the 2nth cyclotomic ring because the complex roots of Xn + 1 are all the 2nth
primitive roots of unity. The BPR functions can be defined over other cyclotomic
rings as well, but in this work we restrict to powers of two for simplicity and efficiency.



418 H. Brenner et al.

n = 128, q = 257, k = 64,

which yields attractive performance, and allows for a comfortable margin of se-
curity. The choice of modulus q = 257 is akin to the one made in SWIFFT, for a
practical instantiation of a theoretically sound lattice-based collision-resistant
hash function [19]. Also as in SWIFFT, our implementations build on Fast
Fourier Transform-like algorithms modulo q = 257.

Choosing an odd modulus q = 257 admits very fast subset-product computa-
tions in R∗

q using Fast Fourier Transform-type techniques (as mentioned above).
However, because q is odd, any rounding function �·" : Rq → R2, applied to in-
dividual coefficients separately, has bias 1/q on each of the output bits. Since q
is rather small, such a bias is easily noticeable. This poses no problem at all if
SPRING is used for authentication schemes. Nevertheless, it clearly renders the
function insecure as a PRF.

To reduce bias, a post-processing step G is implemented by using dual BCH
error-correcting code: S(b1, . . . , bn) = G(�b1, . . . , bn"), where �·" is applied point-
wise. G multiplies the 128-dimensional, 1/q-biased bit vector by the 64 × 128
generator matrix of a binary (extended) BCH error-correcting code with pa-
rameters [n,m, d] = [128, 64, 22], yielding a syndrome with respect to the dual
code. This simple and very fast “deterministic extraction” procedure (proposed
in [1]) reduces the bias exponentially in the distance d = 22 of the code, and
yields a 64-dimensional vector that is 2−145-far from uniform (when applied to a
128-dimensional bit vector of independent 1/q-biased bits). However, this comes
at the cost of outputting m = 64 bits instead of n = 128, as determined by the
rate m/n of the code.

In terms of implementation, generator matrices of BCH codes over GF (2) are
preferable, since the rows of the matrix are cyclic shifts of a single row, which
facilitates fast and simple implementation. Note that n is a power of 2, and
any BCH code over GF (2) is of length 2t − 1 for some integer t. To make the
matrix compatible with an n that is a power of two, the extended-BCH code
can be used. This extended code is obtained in a standard way by appending a
parity bit to the codewords, and it increases the code distance d by one. Finally
note that for these chosen parameters n = 128,m = 64, the BCH code with
parameters [127, 64, 21] and its extension with parameters [128, 64, 22] have the
largest known minimum distance for these specific rates. For more theoretical
details regarding the bias after applying G, we refer the reader to [3].

2.3 Implementation Details: Fast Subset-Product in Rq

The core of the SPRING algorithm is the subset-product calculation expressed
by Equation 1. Direct multiplication of polynomials of degree n is quite expen-
sive, but the computation can be efficient using properties of the carefully chosen
ring R257. Following [3], the Chinese Remainder decomposition of this ring as
Rq
∼= Zn

q given in [19] is used. More precisely, a polynomial in R257 is uniquely
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determined by its evaluation on the n-th primitive roots of unity. Denote this
isomorphism by F :

F : R257 → Zn
257, b 	→ (b(ω2i+1))n−1

i=0 ,

where ω denotes a 2n-th primitive root of unity. In particular, the multiplicative
group of units R∗

q is the set of polynomials whose F coefficients are all non-zero.
This gives the following negacyclic convolution theorem:

F(a · b) = F(a)#F(b) (2)

where · denotes the polynomial product in R257, and # is the point-wise multi-
plication of coefficients in Z257.

Moreover, F and its inverse can be efficiently implemented using an FFT-like
algorithm. More precisely, an FFT of size n over the finite field Z257 evaluates a
polynomial at all the n-th roots of unity: FFT : b 	→ (b(ω2i))n−1

i=0 (we use ω2 as
a primitive n-th root of unity). If we first multiply the coefficient of b by powers
of ω, we have:

b(ω2i+1) = b′(ω2i), where b′i = bi · ωi.

F(b) = FFT(b′),

Finally, the subset-product of SPRING can be written as:

a ·
k∏

i=1

sxi

i = F−1 (F(a)#F(sx1
1 )# · · · # F(sxk

k )) . (3)

The value of the bit xi determines whether polynomial si is involved in the
subset-product multiplication: sxi

i is either si or 1. In practice, indices with
xi = 0 are just removed from the product. Using the convolution theorem,
the polynomial subset-product is computed by multiplying the F evaluations
point-wise and transforming the result back by F−1. The F evaluations can be
computed just once beforehand, and stored instead of the polynomials. Applying
F on the a and si, we obtain these sequences:

F (a0, a1, . . . , an−1) = [A0, A1, . . . , An−1] ,

F (si,0, si,1, . . . , si,n−1) = [Si,0, Si,1, . . . , Si,n−1] , ∀i ∈ {1, . . . , k}.

We can further simplify the implementation by storing only the discrete logs of
the sequences A and Si using a suitable generator element G (we have chosen

G = 3). We denote those sequences as Â and Ŝi, and the exponentiation as E :

[A0, A1, . . . , An−1] = E(Â) =
[
GÂ0 , GÂ1 , . . . , GÂn−1

]
,

[Si,0, Si,1, . . . , Si,n−1] = E(Ŝi) =
[
GŜi,0 , GŜi,1 , . . . , GŜi,n−1

]
, ∀i ∈ {1, . . . , k}.
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Note the entries Aj and Si,j are all non-zero because a and the si’s are units
in R257. If the key is stored in this form, the subset-product in SPRING can be
computed very efficiently:

a ·
k∏

i=1

sxi

i = F−1

(
E
(
Â+

∑
xi=1

Ŝi

))
, (4)

where the addition is a point-wise modulo 256.

2.4 Implementation Details: Counter and Gray-Code Mode

As in [3], we focus on implementing SPRING in a counter-like (CTR) mode.
This mode uses Gray code, which is a simple way of ordering the strings in
{0, 1}k so that successive strings differ in only one position. Then, when running

SPRING in counter mode, we store the value B̂ = Â+
∑

xi=1 Ŝi and we update

this additive state by adding or removing a secret key elements Ŝi. Thus, much
of the work across consecutive evaluations is amortized.

More precisely, B̂ is initialized to zero (the Gray code starts with 0k). For each
iteration, if the next input x′ flips the ith bit of x, then the old subset-product
is updated to B̂′ = B̂ + Ŝi if xi = 0, otherwise B̂′ = B̂ − Ŝi.

2.5 Operations in SPRING

Thanks to those optimizations, the SPRING evaluations in CRT mode are now
reduced to a few simple operations. In the following description, steps 1–3 com-
pute the subset product b := a

∏n
i=1 s

xi

i , and steps 4–5 perform the rounding
function S(b):

1. Update the additive state B̂: B̂ ← B̂ ± Âi, where i is the flipped bit in the
Gray counter

2. Compute the polynomial evaluation of b as B = [GB̂0 , GB̂1 , . . . , GB̂n−1 ]
3. Interpolate the product by computing F−1(B)

– Compute b′ = FFT−1(B)
– Deduce b with bi = b

′
i · ω−i

4. Round the coefficient of b
5. Apply the BCH code

3 FPGA Implementation

In this section we discuss our design choices for unprotected SPRING-BCH (later
just SPRING). We present a SPRING co-processor implementation and report
its area and timing performance.
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KMEM
64x(128x8b)

8x8b 8x8b+

16x9b

Exp2Coef

FFT128 · 
16x9b

REGBCH
16x1b128b

OUT64b

CTRL

IN

64b

Fig. 1. Spring hardware implemenation

3.1 General Architecture

Our implementation is depicted in Fig. 1. All arithmetic operations in SPRING
are computed modulo q = 257 except for the arithmetic operations on expo-
nents which are calculated modulo q− 1 = 256. The secret key polynomial FFT
coefficients Â and Ŝi (in discrete log form) are stored in true dual port memory
KMEM. Each KMEM channel can output 8 exponents (8-bit words) in parallel.

The subset-sum unit (that we detail next) computes addition/subtraction
of two polynomials on 8 exponents in parallel, and the results are stored in
KMEM. Subsequently, 16 exponents are read from KMEM using both channels
and transformed to 9-bit words (representing polynomial evaluations) using table
lookups (denoted by Exp2Coef). Next these data are partially processed by the
FFT unit (that we also detail next) and stored in its internal registers. This
way, in only 8 clock cycles all 128 evaluations are transformed to the polynomial
coefficients and stored in the FFT register. When the FFT128 is completed, the
resulting 9-bit coefficients are rounded point-wise in 16-coefficient chunks. The
floor rounding function replaces each 9 coefficient bits by 1 bit as follows: if a
coefficient value is in the range of 0 to 128 the resulting bit equals 0; if a value
is in the range of 129 to 256 the resulting bit equals 1. In each clock cycle, 16
rounded 1-bit coefficients are stored in the output data register REG. When all
128 bits are present in REG, they are compressed by the BCH unit to output
64 bits.

3.2 Calculation of Subset-Product

We follow the description of Section 2.3 to implement the subset-product as a
subset-sum of exponents, followed by an exponentiation, and the F−1 transform.
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We store the coefficient sequences Â and Ŝi in RAM during FPGA configura-
tion. Thus, only the point-wise subset-sum, exponentiation with G (using lookup
tables) and F−1 operations have to be implemented in hardware. Unlike direct
coefficient representation using 9-bit words, the range of exponents is between 0
and 255, thus the exponents are represented using only 8-bit words. Interestingly,
the subset-sum of such exponents involves reduction by 256 instead of 257, which
is implemented by simply ignoring the most significant bit (carry) generated by
the addition. Moreover, the FFT−1 differs from FFT by multiplication with the
constant n−1 which is included in KMEM’s initialization data. This way, the
FFT−1 unit can be replaced by a more simple FFT unit.

3.3 Fast Fourier Transform

The FFT on 128 coefficients2 in parallel is relatively expensive to implement.
Instead, we decompose such an FFT unit to smaller FFT blocks. The FFT128

decomposition is illustrated in the left side of Fig. 2, where the input sequence
of 128 coefficients is organized in a 2 × 64 (row-major) matrix processed in
16-coefficient chunks. After transposing this matrix, an FFT64 is computed on
both columns. The results of the two FFT64 blocks are multiplied by powers
of a suitable primitive root of unity ω (we have selected ω = 139), i.e. ωi·j for
0 ≤ i < 64 and 0 ≤ j < 2. Note, that first 64 powers (with j = 0) of ω are
equal to 1, thus no multiplication is required. Although, multiplication with ω
powers is part of the FFT128 computation, it is placed inside the FFT64 block
for convenience. Next, an FFT2 is computed on each row. Finally, the column-
major matrix is transposed back to a row-major one and the resulting matrix
represents the result of the FFT128 transform. Note that the transposition steps
are not shown in Fig. 2, because they are either implemented as a wire crossings
(for free in hardware) or they are pre-computed during KMEM initialization.

FFT64. In order to simplify the implementation, an FFT64 block is decom-
posed even further (see Fig. 2), by organizing the 64 input coefficients in an
8 × 8 square matrix. Subsequently, the matrix is transposed (part of KMEM
initialization), FFT8 is computed on all 8 rows sequentially, and the result is
multiplied by powers of a suitable primitive root of unity Ω = ω2 (for ω = 139
we have selected Ω = 1392 mod 257 = 46), i.e. Ωi·j for 0 ≤ i < 8 and 0 ≤ j < 8.
The multiplication results form a new matrix that is stored in the FFT register.
Subsequently, this matrix is transposed and stored back in the register. Eventu-
ally, FFT8 operations (described next) are performed on all 8 rows sequentially.
Their result is multiplied with ω powers (as part of the FFT128 computation)
and stored back in the FFT register.

FFT8. The basic building block of FFT64 is FFT8, which is implemented with
combinatorial logic only. FFT8 is composed of three layers of four FFT2 butter-

2 Actually, the input to FFT−1 is the polynomial evaluations and the output is the
coefficients, but we refer to both as coefficients for simplicity.
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Fig. 2. Decomposition of Fast Fourier Transform operating with 128 coefficients

flies, and multiplications by powers of a root of unity. Each butterfly performs
one addition and one subtraction. The root of unity ω16 = 4 is chosen so that
all those constants are powers of two, and can be implemented as shift, as il-
lustrated in Fig. 2. Although the implementation of addition and subtraction
is straightforward, the multiplication with a constant could be relatively expen-
sive in Z257. However, q = 257 is a Fermat prime number F3 = 22

3

+ 1 = 257,
thus several interesting properties of arithmetic modulo Fermat numbers can be
used to significantly simplify the implementation. Following the description by
H. Nussbaumer [26], we introduced an encoding of each 9-bit coefficient c to C
as follows:

C = (256− c) mod 257. (5)

This encoding reduces multiplications inside FFT8 into simple bit rotations
around the 9-bit word, with complementation of the overflowing bits.

3.4 Cost and Performance Evaluation

We have synthesized our SPRING co-processor using Xilinx ISE 12.4 for Xilinx
Virtex-6 XC6VLX240T FPGAs. The implementation results are summarized in
Table 1. KMEM was organized in two 36 kb true dual-port RAMs. As expected,
FFT128 occupies 76% of the SPRING area. Inside FFT128, two blocks of Ωi·j

constant multipliers and one block of ωi·j constant multipliers utilizes most of
the resources (roughly 69% of the FFT128). Since these blocks are combinato-
rial, they are implemented using lookup tables. The two FFT8 blocks constitute
17% of FFT128. Next, the two FFT registers storing 1152 bits of the FFT
state occupy roughly 9% of the FFT128 unit. This optimization was achieved
using the distributed RAM strategy (only slices are used, no dedicated BRAMs).
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Table 1. Resource usage of the SPRING implementation

Units Slices BRAM(36kb)

KMEM 0 2
Subset-sum 16 0
Exp2Coef 128 0
FFT128 total 1258 0
→ 2x FFT8 210 0
→ 2x FFT REG + transpose 110 0
→ 2x Mult. Ωi·j 496 0
→ 1x Mult. ωi·j 378 0
→ 8x FFT2 64 0
Rounding + REG 32 0
BCH 189 0
Control logic 27 0

SPRING - Total 1650 2

Other SPRING parts are relatively small. In total, SPRING occupies 1650 slices
which is only 4% of the available FPGA resources.

As far as speed performance is concerned, SPRING was designed to operate
without idle states in the Gray counter mode. Computation starts by sequen-
tially reading rows of 16 exponents from KMEM. These row exponents are first
converted to coefficients, each half of them being processed by one of the two
FFT8 blocks, then multiplied with corresponding powers of Ω, and stored in the
two FFT registers. All these operations together are executed in only one clock
cycle. Subsequently, the same operations are performed on the other 7 rows.
Together, all 8 rows are processed in only 8 clock cycles. Next, both FFT regis-
ters are transposed in 12 clock cycles. The new 8 rows are processed by the two
FFT8 blocks, multiplied with corresponding powers of ω and stored back to the
two FFT registers in 8 clock cycles. In the subsequent 8 clock cycles, 8 parallel
FFT2’s are computed on 8 rows. Then, all 9-bit coefficients are rounded to 1-bit
coefficients and stored in the 128-bit register. The SPRING output is finally ob-
tained by post-processing the combinatorial BCH unit on this register data. In
parallel with the last 28 cycles, a new subset-sum is calculated. Since the subset-
sum calculation requires 32 clock cycles, 4 extra clock cycles are necessary. This
way, one SPRING execution with subset-sum pre-calculation requires 40 clock
cycles. Such a result illustrates the usual trade-off between generic software and
specialized hardware. In particular, it outperforms the FSE 2014 software im-
plementation on Intel Core i7 Ivy Bridge (392 clock cycles per one encryption)
by an approximate factor 10.

Besides, the maximum operating clock frequency for the selected FPGA device
was estimated at 91.7 MHz. This seemed to be a good trade-off between speed
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and implementation size3. Assuming this clock frequency and continuous Gray
counter mode operation, 2.3 million encryptions can be carried out in 1 second,
which corresponds to a 140 megabits/second throughput.

For illustration purposes, we reported the performances of SPRING and a cou-
ple of representative algorithms in Table 2. While not directly comparable, they
provide insights about the implementation cost of other recent primitives based
on the Learning with Errors problem (yet, used for different purposes such as
authentication or public-key encryption) and the AES Rijndael (which although
based on totally different assumptions, aims at a similar goal as SPRING, namely
PRP). As expected, the performance gap between our SPRING design and AES
ones is slightly larger than in a software context, essentially because there are
more computation units to implement here. Yet, the cost vs. performance trade-
off obtained (in the hundreds of megabits/second range for a few %’s of the
FPGA resources) is already sufficient for a wide range of applications.

Table 2. Comparison of different algorithms implemented on a Virtex 6 FPGA

Alg. Type Dapath LUT FF BRAM DSP Fmax
1 Cycles

SPRING PRF 128/144b 7292 294 2x 36k 0 91.7 40

Lapin [10] auth. 128b 742 140 6x 36k 0 140.3 1332
Comp-LWE [30] PKE N/A 1879 1142 3x 18k 1 250.0 13287 2

AES-LUT [9] PRP 128b 933 399 10x 18k 0 674.0 11
AES-COMB [9] PRP 128b 2335 535 0 0 218.6 11
AES-COMB [9] PRP 32b 467 976 0 0 315.1 58

1 Maximum frequency is denoted in MHz.
2 Number of clock cycles for encryption only.

4 Towards Side-Channel Resistance

We now move to the second part of our investigation, and discuss two possible
approaches to side-channel resistance for hardware implementations of SPRING.
The first one takes advantage of standard solutions for masking (a.k.a. secret
sharing). As we detail next, it implies more significant overhead for certain parts
of the computation than others. Motivated by this observation, we then suggest
an alternative approach, where only one part of the implementation is masked,
and the other one is shuffled. We show that this alternative is very efficient; we
argue about its relevance and suggest open problems based on it.

3 The clock frequency could indeed be higher if the long combinatorial paths were split
by pipelining. However, this would result in a substantially larger implementation
and latency.
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4.1 Fully Masked Design

In this first subsection, we show how to secure the computation of SPRING from
leakage of key by means of masking. For this purpose, the key is initially split
into random-looking shares that are refreshed before each execution, and the
computation is made on each of the shares separately. We next refer to the parts
of the hardware which handle the computations on specific shares as parties. Let
d denote the number of parties. The main intuition behind masking is that no
information on the original key can be obtained from the computation of less
than d parties.

We start by sketching the different steps of a masked SPRING computation.

1. A synchronization step is required to refresh the key shares that are stored in
discrete-log (of FFT evaluations) format. For this purpose, a usual strategy
is to add a random sharing of zero to the d additive shares stored in memory.

2. The parties compute their subset-sum locally by using only their share, or
they update the subset-sum according to the Gray code counter.

3. The parties change their additive shares of the subset-sum to multiplicative
shares of the corresponding subset-product by locally using the Exp2Coef
lookup table.

4. A second synchronization step converts the parties’ current multiplicative
shares into additive shares of the same value. We refer to this unit as
MM2AM.

5. The parties locally use the FFT unit on their shares of the computation.
6. A last synchronization step is used for the rounding. The parties now have

additive shares of the polynomial subset-product in Equation 1. They com-
pute XOR shares of the rounding bit of the coefficients.

7. The parties apply the (linear) binary BCH transformation on their shares
locally.

8. Finally, the parties now have XOR shares of the SPRING evaluation. These
bits are XORed to obtain the output.

We now describe the whole secure masked computation more extensively.
The process starts with a standard refreshing of the pre-shared key, which is

stored as discrete logs of outputs of the FFT procedure on the polynomials a, s.
As a result, the parties get numbers whose sum modulo 256 corresponds to an
original discrete log in the key. As the first step of the SPRING computation is
merely a subset-sum of the key (or an update of it according to the Gray-code
counter), each of the parties can compute this subset-sum locally and indepen-
dently. This unit for each of the parties is identical to the corresponding one in
the unprotected SPRING implementation. After this computation, each of the
parties has an additive share of the subset-sum (modulo 256).

The next unit in the original computation is the Exp2Coef lookup table.
This table is used for putting the discrete logs in Z256 into the exponent to
get FFT outputs in Z∗

257. We apply exactly the same lookup table locally in
the computation of each of the parties in parallel. After passing the subset-sum
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results in the Exp2Coef lookup table, the parties hold point-wise multiplicative
shares (modulo 257) of the corresponding subset-product.

Following, the original SPRING evaluation performs the FFT unit. Notice
that it is an additively-linear operation, but currently the parties hold multi-
plicative masking shares of the computation. We apply a synchronization step
to convert the multiplicative shares back to additive ones. The unit responsible
for this step is denoted by MM2AM.

For this purpose, we use the technique suggested by Ghodosi et al. in [13].4

This procedure is applied for each entry independently. The MM2AM unit gets
in advance random bits and uses them to generate d2 random-looking numbers
in Z∗

257, such that:
d−1∑
j=0

d−1∏
i=0

αi,j = 1 (mod 257).

This is easily obtained because we achieve a random number in Z∗
257 by adding

1 to an 8-bit random number, and because we can randomize d2 − 1 numbers
and compute r0,0 so the equation holds. For each 0 ≤ i < d, the MM2AM unit
provides party i with the numbers {αi,j}j=0,...d−1 as auxiliary information. This
information is independent from the shares so it can be achieved before the
computation reaches the Exp2Coef step. Once the parties get the multiplicative
shares {mi}i=0,...,d−1 of the subset-product, each party i sends the value mi ·αi,j

to party j. Next, each party j computes the multiplication cj =
∏d−1

i=0 mi · αi,j

(mod 257) as its additive share of the entry. Note that:

d−1∑
j=0

cj =

d−1∑
j=0

(
d−1∏
i=0

mi

)
·
(

d−1∏
i=0

αi,j

)
,

=

(
d−1∏
i=0

mi

)
·
⎛⎝d−1∑

j=0

d−1∏
i=0

αi,j

⎞⎠ ,
=

d−1∏
i=0

mi (mod 257).

Therefore, the parties now have additive masking shares of this step of the
computation. Taking advantage of these additive shares, the implementation
can perform the (linear) FFT units locally and in parallel. They are identical to
the corresponding units in the original unprotected SPRING implementation.

As a result, the parties have additive shares of the polynomial subset-product.
It therefore remains to compute the rounding function. We use a masked round-
ing unit for this purpose, such that its output for each party is a XOR random
share of the actual rounding value. We describe the computation of rounding on

4 Other techniques for share conversion exist. The side-channel literature usually refers
to [12] for such a task, but the algorithms in this reference are quite sequential. We
focus on the approach suggested in [13] which seems easier to parallelize and simpler
in our hardware context.
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a single coefficient. This process is repeated for all n coefficients of the subset-
product. The unit deals in advance random shifts {ti}i=0,...,d−1 ∈ Zd

257 to the
parties. Each party is also provided with a pre-generated random-looking table
TABi ∈ {0, 1}257. For each i ≥ 1 the table is merely a random bit array of size
257. The table of party 0 satisfies:

TAB0[v] =

d−1⊕
i=1

TABi[v]⊕
⌊
v −

d−1∑
i=0

ti

⌉
(mod 257) ∀v ∈ Z257, (6)

where ⊕ is the XOR operator in Z2.
Let vi be the additive share of a single coefficient v kept by party i, as com-

puted by the FFT unit. Party i shares vi+ ti with all the other parties. Next, all
parties compute the sum

∑
(vi + ti) = v +

∑
ti, and use bi = TAB[v +

∑
ti] as

their share of the coefficient’s rounding output. We note that
⊕d−1

i=0 bi is indeed
the rounded bit of v due to generation of the tables described in Equation 6.

Eventually, asBCH is a linear transformation of the rounding output, the parties
compute their shares locally and independently again, using an identical instance
of this unit for each party. As a result, all parties have a XOR-share of the PRF
evaluation.

Implementation and Cost Estimation: The implementation of the fully
masked SPRING is depicted in Fig. 3. It operates with d shares in parallel. Es-
sentially, its datapath is composed of d (modified) datapaths of the unprotected
SPRING, where mask refreshing, mask conversion (MM2AM) andmasked round-
ing are added. Inorder topreserve the same timing as theunprotectedSPRINGver-
sion, randommasks are added to the KMEM outputs on-the-fly and the MM2AM
and masked rounding units are implemented with combinatorial logic.

The cost estimation of these three new units is summarized in Tab. 3. As
can be observed, the impact of mask refreshing is negligible. Moreover, its size
increases linearly with the number of shares. The other two units are more ex-
pensive. For example, in case of a two-share implementation, the mask conver-
sion MM2AM requires 527 slices, whereas masked rounding requires 1321 slices.
Furthermore, the size of MM2AM increases quadratically d. This is caused by a
substantial increase of the number of multiplications performed inside MM2AM.
Interestingly, the masked rounding does not utilize expensive multiplications,
and so its size increases linearly with d.

Note that Tab. 3 illustrates the costs to protect one 8-bit sensitive exponent
or one 9-bit entry (either a polynomial evaluation before the FFT−1 step or a
polynomial coefficient after this step). However, the implementation illustrated
in Fig. 3 operates on 16d exponents/coefficients in parallel. Thus, if implemented,
these units would increase SPRING size substantially (just as generally observed
for masked implementations of block ciphers).

4.2 Partially Masked Design

In view of the previous estimations, it appears that certain parts of the SPRING
design (namely, until the FFT computation) are very easy to mask, while the
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Table 3. Estimated costs ofbasic operations (dependent ond) necessary formask refresh-
ing, d-share multipl. to additive masking conv. and masked rounding of one 9-bit entry.

Basic operations Random Total # of slices
ADD MUL INV MUX2 XOR bits. d = 2 d = 3 d = 4 d = 5

Msk. refresh d− 2 0 0 0 0 8(d− 1) 3 5 6 7
MM2AM[13] d− 2 3d2 − 2d d 0 0 8(d2 − 1) 527 1353 2551 4121
Msk. round 3d− 2 0 0 256d d− 1 266d − 257 1321 1409 1473 1894

Fig. 3. Fully masked implementation Fig. 4. Partially masked implementation

remaining ones imply the usual (quadratic) overhead of non-linear operations. In
this context, an appealing solution from the performance point of view would be
to unmask the implementation just before these non-linear steps, as illustrated
in Fig. 4. Quite naturally, this raises the question whether the partially masked
design becomes insecure at this point. We conclude this paper with two simple
arguments in favor of such a hybrid strategy.

First, observe that the standard DPA attacks (defined in [21]), that are at the
core of most physical security evaluation procedures nowadays, are inherently
limited to the exploitation of the leakages corresponding to operations that can
be predicted (i.e., that depend on an enumerable part of the key). In the case of
SPRING, such operations only appear at the beginning of the encryption, since
diffusion is complete after the subset-sum computation. As a result, it could
be sufficient to protect this part of the implementation against DPA, and the
remaining ones against (single-trace) SPA. (As mentioned in the introduction,
such an idea is reminiscent of fresh re-keying schemes[24].) Interestingly, several
cheaper solutions exist for this purpose.
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For example, shuffling is a usual countermeasure against SPA. In the
case of SPRING, our implementation operates on polynomials of 128 coeffi-
cients/exponents, but only 16 are processed in parallel (one row). Therefore, 8
consecutive calculations (per row) are necessary to process the full 128 coeffi-
cient/exponent state. Since they are computed independently, these operations
can be directly executed according to a random 8-permutation. It represents
a total of 8! = 40320 execution permutations which, combined with the high
(algorithmic) noise of our hardware design, should prevent SPA.

Concretely, the eight entry rows are easily shuffled by being read from KMEM
in a random order. This involves only small changes in the control logic. Hence
its impact on the SPRING implementation size is negligible. The only parts that
need modification are the matrix transpose and FFT-REG inside each FFT64.
However, this modification only increases the size of both by 24 slices. Further-
more, shuffling can be preserved up to the REG unit, where the rows have to be
stored in a correct position. This operation de-shuffles the state for free.

As can be observed, shuffling presents a very powerful cost-efficient countermea-
sure. For this reason, we have decided to implement this approach in the masked
SPRING implementation. Moreover, only the linear part of SPRING (i.e. subset-
sum) is protected by the masking countermeasure. This way, linear increase of the
number of shares is reflected in the linear increase of implementation size.

To conclude, let us also observe that, depending on the leakage function, un-
masking the last part of the design could simply be secure as such. For example,
imagine a leakage function that would “round” the intermediate values, just as
required by the SPRING specifications. Then, having unmasked data after the
FFT computations would not be a problem at all. Quite naturally, actual leak-
age functions do not round as proposed in [3,4]. Yet, they usually compress the
input range to some extent (e.g. with a Hamming weight function). Furthermore,
technology-level countermeasures such as dual-rail logic styles can generally be
used to modify the shape of the leakage functions [32]. As a result, it is an
interesting open problem to find whether there is a common ground for pro-
tected implementation of rounded operations, between theoretical requirements
and practical engineering constraints.

Acknowledgements. This work has been funded in part by the ERC project
280141 (acronym CRASH) and in part by the Belgian Cybercrime Center of Ex-
cellence for Training Research and Education (B-CCENTRE). F.-X. Standaert
is an associate researcher of the Belgian Fund for Scientific Research (FNRS-
F.R.S.). Research supported by the ERC under the EU’s Seventh Framework
Programme (FP/2007-2013) ERC Grant Agreement n. 307952.

References

1. Alberini, G., Rosen, A.: Efficient Rounding Procedures of Biased Samples.
Manuscript (2013)



FPGA Implementations of SPRING 431

2. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
Indifferentiability of Key-Alternating Ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)

3. Banerjee, A., Brenner, H., Leurent, G., Peikert, C., Rosen, A.: SPRING: Fast
Pseudorandom Functions from Rounded Ring Products. In: FSE 2014, London,
UK. LNCS (to appear, March 2014)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 719–737. Springer, Heidelberg (2012)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using
a Small Number of Public Permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

6. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers.
IACR Cryptology ePrint Archive 2013, 222 (2013)

7. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve
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Abstract. In this article, we propose a new comparison metric, the fig-
ure of adversarial merit (FOAM), which combines the inherent security
provided by cryptographic structures and components with their im-
plementation properties. To the best of our knowledge, this is the first
such metric proposed to ensure a fairer comparison of cryptographic de-
signs. We then apply this new metric to meaningful use cases by study-
ing Substitution-Permutation Network permutations that are suited for
hardware implementations, and we provide new results on hardware-
friendly cryptographic building blocks. For practical reasons, we consid-
ered linear and differential attacks and we restricted ourselves to fully
serial and round-based implementations. We explore several design strate-
gies, from the geometry of the internal state to the size of the S-box,
the field size of the diffusion layer or even the irreducible polynomial
defining the finite field. We finally test all possible strategies to provide
designers an exhaustive approach in building hardware-friendly crypto-
graphic primitives (according to area or FOAM metrics), also introduc-
ing a model for predicting the hardware performance of round-based or
serial-based implementations. In particular, we exhibit new diffusion ma-
trices (circulant or serial) that are surprisingly more efficient than the
current best known, such as the ones used in AES, LED and PHOTON.

Keywords: SPN, lightweight cryptography, figure of adversarial merit,
diffusion matrices.

1 Introduction

RFID is a rising technology that is likely to be widely deployed in everyday life,
leading to new security challenges. Significant advances in this area have already
been obtained. In particular, many lightweight block ciphers [8,10,15,19] have re-
cently been proposed, and designing such ciphers is not an easy task as showed
by the numerous candidates that eventually got broken. Moreover, it is interest-
ing to note that in most privacy-preserving RFID protocols proposed [1,16,17]
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a hash function is required, and since a hash function can be easily built from
a block cipher (for example with the Davies-Meyer mode) or a permutation (for
example with the sponge construction [7]), a crucial question for the researchers
is how to design a hardware efficient permutation.

Hardware efficiency can have very different meanings depending on the uti-
lization scenario targeted by the designer. For example, a classical metric is to
estimate the minimum silicon area required by the primitive to perform the
cryptographic operations. This, of course, depends on the parameters of the
function itself (the area is highly dependent on the amount of memory required)
and most lightweight block ciphers have a rather small block size of 64 bits. It
is to be noted that the area is usually not directly linked to the security of a
primitive, as adding extra rounds will have an impact on the throughput of the
implementation, but only a very limited one concerning the area (we assumed
that the function has no weakness that is independent of the number of rounds).
Area and other metrics such as throughput, latency or power dissipation can be
traded-off for one another, making the comparison between different primitives
difficult. In the direction of fairer comparisons of hardware implementations of
cryptographic primitives, Bogdanov et al. [9] introduced the efficiency metric
throughput/area in order to take in account these tradeoffs. However, the possi-
bility of trading off throughput for power was not taken in account and Badel et
al. [2] proposed instead a figure of merit, defined as FOM = throughput/area2.
However, as of today, no metric takes in account the inherent security of a build-
ing block, therefore making it hard to compare for example two diffusion matrices
that have different area footprint and different branch number.

The construction of good diffusion matrices has always been an important re-
search topic in cryptography, equally important as the search for good confusion
functions. The AES [13] for example uses a 4×4 matrix with elements in GF (28).
This matrix is Maximum Distance Separable (MDS), which means that it has
a branch number of 5, optimal for a 4 × 4 matrix. However, this security fea-
ture comes at a cost that computations in GF (28) might not be the best choice
for some hardware purposes, even though special care has been taken by the
designers to choose a circulant matrix instantiated with lightweight coefficients
of low Hamming weight. Recently, Guo et al. [14,15] described a new type of
diffusion matrix, so-called serial, that trades more clock cycles in the execution
for a smaller area. This idea was later extended to the use of linear Feistel-like
structures or Linear Feedback Shift Registers (LFSR) to build the diffusion ma-
trix [18,20]. On the opposite side, PRESENT [8] uses a simple bit permutation
layer, the real diffusion coming in fact directly from the S-box application. The
advantage being that a bit permutation layer is basically free in a hardware im-
plementation. Now, one may ask the following question: what is better when the
goal is to maximize some hardware metric, a very weak diffusion matrix with a
low area footprint, or a strong diffusion matrix but requiring more silicon?

More generally, many different trade-offs exist when building an AES-like
Substitution-Permutation Network (SPN) primitive, such as the general geom-
etry (number of lines and columns), what size of S-box, what type of matrix,
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with what branch number, in what finite field, with which irreducible polyno-
mial, etc. When a cryptographer would like to design a permutation with a
specific hardware efficiency metric in mind, it is not trivial for him to make the
best construction choices directly. Since implementing many different trade-offs
is very time consuming, he will have to rely on his own intuition when picking
the basic building blocks and choosing the general structure of the primitive,
therefore accepting that his final design might not be optimal.

Our Contributions. In this article, we study the problem of designing hard-
ware efficient permutations for lightweight symmetric key cryptography pur-
poses, and we propose new promising diffusion matrices as building blocks. We
first explain in Section 2 the family of functions that we will study, namely AES-
like SPN permutations, and we describe a new generalized diffusion layer (i.e.
the ShiftRows function in AES), that allows a provable optimal diffusion even
for non-square internal state matrices. Then, we introduce in Section 3 a new
metric, the figure of adversarial merit (FOAM), that for the first time takes into
account the inherent security provided by the primitive. We then explain in Sec-
tion 4 the various SPN design tradeoffs that we will consider for our comparisons,
such as the geometry of the SPN, the S-box size, the type of matrix (circulant
or serial), the field size for the diffusion or even the irreducible polynomial. The
goal being that the designer only has to input the type of implementation (round
and/or serial) and the size of the permutation he would like to build, and he
can directly get the SPN structure and its internal components that are the best
suited for him. We study in Section 5 the security of the AES-like SPN permuta-
tions by only taking in account simple linear/differential attacks. In Section 6,
we present formulas for estimating various parts of the ASIC implementations.
We chose to focus our work on designing permutations only since many cryp-
tographic primitives can be built from them. Therefore, we will not cover other
components such as key schedule for a block cipher, or message expansion for
a hash function. Moreover, due to the obviously vast amount of implementa-
tion trade-offs, we restricted ourselves to the two most important cases: fully
serialized and round-based.

Finally, the results obtained by our analysis are given in Section 7, with the
best diffusion matrices and SPN parameters we could find for many different
scenarios. Notably, we show that the diffusion matrices of ciphers such as AES,
LED or PHOTON are not the best possible choices. For example, in the case of
AES encryption, a circulant matrix with coefficients (0x01,0x01,0x04,0x8d) would
have been, surprisingly, a better choice in terms of implementation while keeping
the same MDS security.

2 Generic SPN with Generalized Optimal Diffusion

In this section, we describe the family of AES-like SPN functions. Our scope is
classical, but we propose a new generalized diffusion layer that allows an optimal
diffusion even for non-square internal state matrices.
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2.1 Extended AES-like Permutations

An n-bit AES-like SPN permutation transforms an r × c array of s-bit cells
(n = r×c×s). During one round, each cell is first transformed by an s-bit S-box
(similar to the AES SubBytes operation). Then each r-cell column is transformed
by an r× r diffusion matrix (similar to the AES MixColumns operation), followed
by an optimal diffusion1 which permutes the c cells of each row to provide further
mixing (similar to the AES ShiftRows operation). Finally, an (r×c)-cell constant
is xored to complete a round transformation (in block-cipher design, this phase is
a subkey addition, but we will not consider key-schedules here). In AES, we have
a square array r = c = 4 and cell size s = 8-bit. The diffusion matrix is usually
defined over the finite field GF (2s) because of the s-bit cell size. Sometimes,
we might actually use a smaller subfield of size GF (2i), i divides s, in order to
define the diffusion matrix. This framework captures many known ciphers such
as AES, PRESENT, LED, etc.

A cell is called differentially (resp. linearly) active if its value (resp. mask
value) is non-zero in a differential (resp. linear) attack. The differential branch
number of a diffusion matrix is the minimum number of differentially active
input and output cells (among all non-zero inputs). The notion of linear branch
number is similar, except that we consider the transpose of the diffusion matrix
instead. From this point onwards, we will not distinguish between differential
and linear branch number unless necessary. That is, when we say a matrix has
branch number B, both its differential and linear branch numbers are equal to
B. The maximum branch number for an r by r diffusion matrix is r + 1, and a
matrix which achieves this optimal branch number is called MDS. If the diffusion
matrix has branch number r, then it is called almost-MDS.

2.2 The Generalized Optimal Diffusion

In this section, we generalize the concept of optimal diffusion [13] for non-square
state array. This has been done already when r < c with a security bound
equivalent to the case where r = c (square array) [13]. When r > c and c divides
r, a simple generalization has been proposed in [11] where a 4-round security
bound is proven when the diffusion matrix is MDS. In this section, we propose
a generalized optimal diffusion for the case r > c where c may not divide r and
the diffusion matrix may not be MDS, i.e. for all branch number B ≤ r + 1.

An example of optimal diffusion is the ShiftRows operation of AES which helps
to diffuse the effect of the AES SubBytes and MixColumns operation over 32-bit
to the whole 128-bit block. The AES ShiftRows transforms a 4 × 4 byte-array
by rotating row r to the left by r bytes, for r = 0, 1, 2, 3. Due to ShiftRows,
each byte of an input column is mapped to a different output column. This
is captured by the concept of optimal diffusion (another example is SQUARE

cipher [12]’s ArrayTranspose map).

1 Note that here, without loss of generality, we apply the permutation operations from
right-to-left, i.e. SC (SubCells) is first applied, followed by MC (MixColumn) and then
the optimal diffusion.
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Definition 1. For an r-by-r cell-array, the optimal diffusion map is a cell-
permutation that maps each cell of an input column to a different output column.

However, the optimal diffusion only applies for r × c cell array where r ≤ c.
When r > c, there are not enough output columns c to map each of the r cells
of an input column. Thus, we extend a new concept from [11] called Generalized
Optimal Diffusion (GOD) for r × c cell-array when r > c, which we describe
below2. Our strategy is to distribute the cells of an input column as uniformly
as possible to each output column.

Definition 2. For an r × c cell-array, a generalized optimal diffusion is a cell-
permutation such that looking at any r-cell column:

1. !r/c" input cells are mapped to each of (r mod c) output columns.
2. �r/c� input cells are mapped to each of c− (r mod c) output columns.

Example 1. Consider r = 5, c = 3. For each input column of 5 cells, !5/3" = 2
input cells are mapped to each of (5 mod 3) = 2 columns. �5/3� = 1 input cell
is mapped to 3− (5 mod 3) = 1 column. One example is given by the transform
of the following arrays:⎛

⎜⎜⎜⎜⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

⎞
⎟⎟⎟⎟⎠ maps to

⎛
⎜⎜⎜⎜⎝

a1 b1 c1
a2 b2 c2
c3 a3 b3
c4 a4 b4
b5 c5 a5

⎞
⎟⎟⎟⎟⎠

Theorem 1. Consider a 4-round AES-like SPN as follows (omitting the constant
addition since it has no effect on our reasoning):

GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC ◦ GOD ◦ MC ◦ SC,
where

1. SubCells is a nonlinear substitution layer with r × c s-bit S-boxes acting in
parallel.

2. MixColumns is a layer of c parallel MixColumn transforms each mapping r
cells to r cells with branch number B, i.e. MixColumns(x1, . . . , xc) =
(MixColumn(x1), . . . , MixColumn(xc)), each xi corresponding to a column of
r cells.

3. GOD (generalized optimal diffusion) is as defined above which distributes the
r cells of an input column almost uniformly to c output columns.

Then the number of active S-boxes over 1 and 2 rounds are at least 1 and B
respectively. For 4 rounds it is at least B ×B′ where B′ = max{2;x+ y} and:{

y = min{2× (r mod c)); �B/!r/c"�}
x = !(B − !r/c" × y)/�r/c�"

2 The Generalized Optimal Diffusion (GOD) defined in [11] applies only when r is a
multiple c. Here, we define GOD for any r > c.
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We provide the proof of this theorem in the full version of this paper. We
note that it is tight in the sense that it naturally provides a 4 round path
that corresponds to a “luckiest” scenario for the attacker, which involves the
minimum number of active Super-Sboxes (the (c × s)-bit S-boxes composed of
two SubCells layers surrounding one MixColumns).

Let us look at an application example of Theorem 1 to derive the number
of active S-boxes of an AES-like SPN structure, which cannot be deduced by
the known results of [11,13]. Consider an SPN structure with state size 24-
cell, the diffusion matrices being an 8 × 8 matrix with branch number 7, i.e.
r = 8, c = 3 and B = 7. By Theorem 1, we have y = 2 and x = 1, therefore
B′ = max{2;x + y} = 3 and there are B × B′ = 7 × 3 = 21 active S-boxes
guaranteed over 4 rounds of this 24-cell SPN structure.

3 FOAM: Figure of Adversarial Merit

As explained in the introduction, the various trade-offs inherent in any design of
a cryptographic primitive make a fair and consistent comparison of software and
hardware implementations thereof a challenging task. For hardware implemen-
tations exist a few metrics, like the Area-Time (AT) product, which multiplies
the area in Gate Equivalents (GE) occupied by the design with the number of
clock cycles required (the smaller the number, the more efficient is the design).
Closely related is the hardware efficiency [9], which divides the throughput at
a given frequency by the area (hence the greater the number, the better the
design). In order to also address the area-power trade-off, [2] proposed a new
Figure of Merit (FOM): throughput divided by the area squared. The latter two
metrics are frequency dependent, which can complicate comparisons.

We propose a new metric called Figure of Adversarial Merit (FOAM) in order
to resolve the aforementioned shortcomings. It is defined as

FOAM(x) =
1

S(x)× A2

where S(x) and A are basically equivalent to special definitions of speed and area,
respectively. More precisely, S(x) denotes the speed of the cipher based on the number
of rounds required to achieve a certain security x against some set of attacks (in this
article, we will later restrict ourselves to simple differential/linear attacks). For a round-
based permutation, it is defined as S(x) = p(x)×t where p(x) represents the number of
rounds required to achieve security x, and t the number of clock cycles to perform one
round. Moreover, for SPN-based primitives, we decompose the area requirements A
into six parts: the intermediate state memory cost Cmem, the S-boxes implementation
cost Csbox, the diffusion matrix implementation cost Cdiff , the constant addition Ccst,
the control logic cost Clog, and the IO logic cost Cio:

FOAM(x) =
1

S(x)× A2
=

1

p(x)× t× (Cmem + Csbox + Cdiff + Ccst + Clog + Cio)2

This FOAM metric will be useful to compare different design strategies, differ-
ent building blocks (such as diffusion matrices) with a simple value computation.
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Even better, we would like to roughly compare all these possible design trade-
offs without having the hassle to implement all of them: in Section 6 we present
formulas to estimate these six subparts of the area cost and the number t of
clock cycles required to perform one round. The value p(x) can be deduced by
the number of active S-boxes proven in Theorem 1 and the S-box cryptographic
properties (see Section 5). Note that in the rest of the paper, we consider that
the security aimed by the designer is equal to the permutation size, i.e. we are
aiming at a security of 2n computations (thus p(x) = p(2n)).

4 Trade-Offs Considered

We explain all the various trade-offs we consider when building an AES-like SPN
permutation. The goal being that a designer specifies a permutation bitsize n,
the metric he would like to maximize (area, FOAM), the degree up to which
serial or round-based implementations are important, and he directly obtains
the best parameters to build his permutation.

The S-box. One of the first choice of the designer is the size of the S-box,
and we will consider two possible trade-offs: s = 4 and s = 8. Note that, for
simplicity, we will consider that the S-box chosen has perfect differential and
linear properties relative to its size (one could further extend the trade-offs to
non-optimal but smaller S-boxes, but the search space being very broad we leave
this as an open problem).

The Geometry of the Internal State. When building an AES-like SPN
permutation, one can consider several internal state geometries (the values r
and c). The classical case is a square state, like for AES. However, depending on
the diffusion matrices available, it might be worth considering more line-shaped
or column-shaped designs.

Diffusion Matrix Field Size. The designer can choose the field size 2i in
which the matrix computations will take place. The classical case, like in AES,
being that the field size for the diffusion matrix is the same as the S-box. How-
ever, depending on the diffusion matrices available, it might be worth considering
designs with thinner diffusion layers but repeated several times. For example, in
the case of AES, instead of the MixColumnsmatrix one could use a 4×4 diffusion
matrix on GF (24) applied two times (one time on the 4 MSB and one time on
the 4 LSB of the 8-bit cells in the AES column). Overall, we will cover a scope
from binary matrices (in GF(2)) up to matrices on the same field size as the
S-box (in GF (2s)).

Irreducible Polynomial for the Diffusion Matrix Field. Once the field
size 2i is fixed, the designer can choose the irreducible polynomial defining the
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field. For i = 1 and i = 2 only a single polynomial exists, while for i = 4 at most
3 choices are possible (α4 +α+1, α4+α3+1 and α4+α3+α2+α+1). For the
i = 8 case, many polynomials are possible (this was already observed by [3]),
thus in order to focus the search space we will only consider the irreducible
polynomial used in AES (α8+α4+α3+α+1) and in WHIRLPOOL hash function [5]
(α8 + α4 + α3 + α2 + 1).

Type of Diffusion Matrix. The designer can choose what type of matrix he
will implement, the two main hardware-friendly types being circulant or serial.
In the circulant case, the designer picks r coefficients Z = (Z0, . . . , Zr−1) and
the matrix Z is defined as⎛

⎜⎜⎜⎜⎜⎜⎝

Z0 Z1 Z2 . . . Zr−2 Zr−1

Zr−1 Z0 Z1 . . . Zr−3 Zr−2

Zr−2 Zr−1 Z0 . . . Zr−4 Zr−3

. . . . . . . .

. . . . . . . .
Z1 Z2 Z3 . . . Zr−1 Z0

⎞
⎟⎟⎟⎟⎟⎟⎠

In the serial case, the designer picks r coefficients Z = (Z0, . . . , Zr−1) and the
matrix Z is defined as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . 0 0
0 0 1 0 . . 0 0
0 0 0 1 . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . 0 1
Z0 Z1 Z2 . . . Zr−2 Zr−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

r

The matrix therefore takes r operations to be computed.

Branch Number of the Diffusion Matrix. In general, implementing a
matrix with very good diffusion property will cost more area and/or cycles than
a weak one. For example, the AES matrix has ideal MDS diffusion property,
but certainly requires more area to implement than a simple binary matrix
with weaker properties. Since the former is bigger but stronger and the latter
is smaller and weaker, it is not clear which alternative will lead to the best
FOAM. Therefore, the designer can choose between a wide range of possibilities
concerning the branch number B of the diffusion matrix, fromB = 3 to B = r+1
(MDS).

5 Security Assessment of AES-like Primitives

The FOAM metric takes into account the security of the permutation with re-
gards to simple differential/linear attacks. We would like to evaluate this security
for the AES-like SPN permutations we are considering. Theorem 1 gives us the
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minimal number of active S-boxes for a given number of rounds3, and knowing
the S-box cryptographic properties we can compute the maximum differential
and linear characteristic probabilities of our generic SPN ciphers easily. In other
words, we can easily compute the number of rounds p(x) = p(2n) required to
achieve the aimed security 2n.

As stated before, for simplicity, in the rest of this article we will consider
that the S-boxes have perfect differential and linear properties: for a 4-bit S-box
the maximum differential and linear characteristic probabilities are 2−2 (e.g.
PRESENT S-box), while for a 8-bit S-box the maximum differential and linear
characteristic probabilities are 2−6 (e.g. AES S-box). One can extend the trade-
off by considering other S-boxes, that might require a smaller area, but will have
worse security properties.

Reusing the example from Section 2.2, from Theorem 1, there are at least 21
active S-boxes over 4 rounds of this SPN permutation. Suppose that 8-bit S-boxes
are of maximum differential and linear probabilities 2−6. Then the maximum
differential and linear characteristic probabilities over four rounds are upper-
bounded by (2−6)21 = 2−126.

We are aware that other attacks rather than simple differential/linear might
exist. However, our goal here is not to fully specify a permutation, but to com-
pare many trade-offs and design strategies that will lead to good hardware per-
formances. Therefore, we emphasize that the number of rounds p(x) is not the
number of rounds that should be chosen by a designer. This number should be
carefully chosen after thorough cryptanalysis work on the entire primitive. Yet,
we believe that this simple differential/linear criterion is a quite accurate way
to compare the security of AES-like SPN permutations.

6 Implementations in ASIC

In this section, we introduce some notation before we present formulas to es-
timate serialized and round-based implementations (we restricted ourselves to
these two important practical cases due to the obviously vast amount of imple-
mentation trade-offs). Please note that all estimates have to be seen as lower
bounds, as we use scan flip-flops, and consider neither reset nor I/O require-
ments, which can significantly impact the area count in practice. We argue that
those requirements –though very important in practice– are highly application
specific, and will be the same for any permutation for a given target applica-
tion scenario. Thus for a fair comparison of permutation constructions we will
not consider them. In practice, a higher throughout can be achieved by using
pipelining techniques to reduce the critical path at the cost of additional area.

3 We note that the number of active S-boxes given by Theorem 1 is tight if the number
of rounds is not equal to 3 modulo 4 (even in that case the theorem gives a very
close estimation). This does not mean that the maximum differential and linear
characteristic probabilities computed are tight, since it is unknown how many active
S-boxes can use the maximum differential and linear characteristic probabilities at
the same time (this remains an open problem).
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As this design goal is, again, highly application specific and FOAM is designed
to be frequency independent, we have not considered it in our analysis.

We have estimated all serial architectures with the single optimization goal
of minimal area in mind. In practice, some design decisions will most likely use
another trade-off point more in favor of smaller time and larger area. To reflect
this, we have estimated all round-based architectures optimized for maximum
FOAM.

The table below provides an overview over the hardware building blocks we
used, their notation and typical area requirements for a UMC 180 nm technology.
4

Notation Description GE

DFF 1-input flip-flop 4.67

SFF 2-input flip-flop 6

MUX 2-input multiplexer 2.33

Notation Description GE

XOR 2-input exclusive Or 2.67

SB4 4 x 4 S-box (PRESENT) 22

SB8 8 x 8 S-box (AES) 233

We give in Table 1 the estimates for the various parts of the ASIC implemen-
tations. The details on how these formulas were obtained will be provided in the
full version of this paper.

Table 1. Estimates for various parts of the ASIC implementations. ( i denotes the
exponent for the field GF (2i); ar, ac and ap denote the counters for rows, columns
and rounds respectively; cg and oc denote clock gating and other combinational logic
respectively; b denotes the area requirement for the finite state machine.)

Serial architectures Round-based architectures

Cmem
s · (r − � i

s
�) · SFF + � i

s
�s ·DFF , c = 1

2 · s · r · SFF + s · r · (c− 2) ·DFF , c ≥ 2
s · r · c · SFF

Csbox
SB4 , s = 4
SB8 , s = 8

r · c · SB4 , s = 4
r · c · SB8 , s = 8

Cdiff
A ·XOR , for serial mat.

A ·XOR + (s · r − i) ·DFF + i ·MUX , for circulant mat.
A · r · c · s

i
·XOR

Ccst s ·XOR s · r · c ·XOR

Clog
ar + ap + SFF · 2 + oc , c = 1

ar + ac + ap + b+ cg + oc , c ≥ 2
ap + b

Cio s ·MUX 0

t

r · c+ (c− 1) + ( s
i
· r + 1− � i

s
�) · c , c ≥ 2 serial mat.

r · c+ (c− 1) + (2 · s
i
· r) · c , c ≥ 2 circulant mat.

r · c+ s
i
· r , c = 1 serial mat.

r · c+ (2 · s
i
· r − 1) , c = 1 circulant mat.

1

4 This is just one example for a technology and the area of the building blocks can be
easily adapted for other technologies.
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7 Results and New Diffusion Matrices

In this section we provide the results of our framework, as well as new diffusion
matrices that are very interesting for hardware implementations. As explained in
Section 4, the designer’s input is the permutation bitsize n, the metric he would
like to maximize (area or FOAM), and the degree up to which serial or round-
based implementations are important. To illustrate our method, we focused on
the case where the designer would like to build a 64-bit permutation (which
is a typical state size for a lightweight block cipher). For the implementation
types, we focused on three scenarios: only serial implementation is important,
only round-based implementation is important, serial and round-based imple-
mentations are equally important for the designer. Further, we only considered
encryption.

Before describing our results, we first explain how we found good diffusion
matrices (circulant and serial), which outperform known ones from the AES, LED
ciphers and the PHOTON hash function.

7.1 Lightweight Coefficients

Consider the AES matrix, a circulant matrix with coefficients (0x01, 0x01, 0x02,
0x03) over GF (28) defined by the irreducible polynomial α8 + α4 + α3 + α+ 1.
The matrix appears to be very lightweight due to the low Hamming weight of
its entries. But surprisingly, we found an even lighter circulant matrix over the
same field with coefficients5 (0x01,0x01,0x04,0x8d). We now explain why this is
so.

We first illustrate how to compute the number of XORs required to implement
a multiplication by a finite field element x, by using GF (28) defined by α8 +
α4 + α3 + α + 1 as an example. Let x = x7 · α7 + x6 · α6 + · · ·x1 · α + x0 =
(x7, x6, · · · , x1, x0). For ease of explanation, we employ hexadecimal encoding:
(x7, x6, x5, x4, x3, x2, x1, x0) can be encoded as a tuple of hexadecimal numbers
(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01). Then, the multiplication of
0x04 is represented as:

0x04 · x = (x5, x4, x3 + x7, x2 + x6 + x7, x1 + x6, x0 + x7, x6 + x7, x6)

= (0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40).

We see that the number of XORs required for the multiplication of 0x04 by x is
6. Now we can compute

0x8d · x = (α
7
+ α

3
+ α

2
+ 1) · x

= (0xb1, 0x58, 0x2c, 0x96, 0xfa, 0x4c, 0xa6, 0x62) ⊕ (0x10, 0x88, 0xc4, 0x62, 0xa1, 0xc0, 0x60, 0x20)

⊕(0x20, 0x10, 0x88, 0xc4, 0x42, 0x81, 0xc0, 0x40) ⊕ (0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01)

= (0x01, 0x80, 0x40, 0x20, 0x11, 0x09, 0x04, 0x03)

= (x0, x7, x6, x5, x0 + x4, x0 + x3, x2, x0 + x1)

5 We use the binary representation to represent finite field elements. E.g., 0x8d is
10001101 in binary, which corresponds to the finite field element α7 + α3 + α2 + 1
in GF (28).
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Due to the ’cancellation of XORs ’, we see that multiplication of x by 0x8d
requires only 3 XORs. In a similar fashion, the multiplication of x by 0x02 and
0x03 requires 3 and 11 XORs respectively.

Hence we are able to come up with the XOR count table for any finite field.
Table 2 of Appendix A shows the XOR count for GF (24) defined by α4 +α+1.
The tables for GF (24) and GF (28) defined by different irreducible polynomials
are provided in the full version of this paper.

Now we explain how to use the tables to calculate A the number of XORs
required to implement a row of a matrix. Denote a given row of an r× r matrix
by (x1, x2, · · ·xr) over a finite field GF (2i). Let γj be the XOR count(e.g. Table 2
of Appendix A for i = 4) corresponding to the field element xj . Then A is equal
to (γ1 + · · ·+ γr) + (z − 1) · i, where z is the number of non-zero elements in the
row. We give some examples: row (0x1,0x1,0x4,0x9) uses (0+0+2+1)+3×4 =
15 XORs to implement over GF (24); the AES matrix uses (0+0+3+11)+3× 8
= 38 XORs to implement per row over GF (28). Similarly, the circulant matrix
with coefficients (0x01,0x01,0x04,0x8d) uses 33 XORs to implement per row over
GF (28), and is thus lighter than the AES matrix.

7.2 Subfield Construction

In this section, we describe the subfield construction6 which allows us to outper-
form the AES matrix even more than the optimal matrix found in Section 7.1. As
computed in the previous subsection, the MDS circulant matrix circ(0x1, 0x1,
0x4, 0x9) over GF (24) defined by α4 + α + 1 requires 15 XORs to implement
per row. Using the method of [11, Section 3.3], we can form a circulant MDS
matrix over GF (28) by using two parallel copies of Q = circ(0x1, 0x1, 0x4, 0x9)
over GF (24). The matrix is formed by writing each byte qj as a concatena-
tion of two nibbles qj = (qLj ||qRj ). Then the MDS multiplication is computed

on each half (uL1 , u
L
2 , u

L
3 , u

L
4 ) = Q · (qL1 , qL2 , qL3 , qL4 ) and (uR1 , u

R
2 , u

R
3 , u

R
4 ) = Q ·

(qR1 , q
R
2 , q

R
3 , q

R
4 ) over GF (24). The result is concatenated to form four output

bytes (u1, u2, u3, u4) where uj = (uLj ||uRj ). This matrix needs just 15 × 2 = 30
XORs to implement per row. In comparison, the lightest MDS circulant matrix
circ(0x01,0x01,0x04,0x8d) over GF (28) defined by α8 +α4+α3+α+1 requires
more XORs (33 XORs per row).

Further, we can serialize the above multiplication to do the left half followed
by the right half, in which case only 15 XORs are needed to implement one row
of the MDS matrix over GF (28). Another advantage of subfield construction is
exemplified by the SPN-Hash construction [11]. Instead of finding an 8× 8 serial
MDS matrix over GF (28) exhaustively, two parallel copies of the PHOTON 8 × 8
serial MDS matrix over GF (24) were concatenated to form the 8× 8 serial MDS
matrix over GF (28) for SPN-Hash.

6 This idea of subfield construction was used in the SHA3 submission ECHO [6] and later
in WHIRLWIND [4] and SPN-Hash [11].
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We can generalize this method to form a diffusion matrix with branch number
B over GF (2s) from s/i copies of a diffusion matrix of the same branch number
over a subfield GF (2i), where i divides s.

7.3 Good Matrices

We search for optimal low-weight r× r circulant and serial matrices of different
branch numbers (3 to r + 1) over the finite fields GF (2), GF (22), GF (24) and
GF (28), and list them in Table 3 of Appendix A. Using the construction of
Section 7.2, we can form diffusion matrices to transform nibbles and bytes from
these subfields.

The optimal matrices are found by exhaustively checking the branch number
of all matrices and choosing the one with the least number of XORs according
to the method explained in Section 7.1. To check the branch number of matrix
Q, we concatenate it with the identity matrix Ir to form (Ir |Q), the generating
matrix of the corresponding linear code, and use the MAGMA software to find
the distance7. For branch number B, we check that both Q and its transpose Qt

has branch number B.
The matrices are optimal in the sense that they need minimal number of XORs

to implement. In the events of a tie between two matrices, possibly over different
finite field representations, we just list one of them. For example, the circulant
matrices circ(0x01,0x01,0x04,0x8d) over GF (28) defined by α8+α4+α3+α+1
and circ(0x01,0x01,0x04,0x8e) over GF (28) defined by α8 + α4 + α3 + α2 + 1
both outperforms the AES matrix by using 33 XORs to implement one row, so
we just list the latter. We use “-” when no circulant matrix with branch number
B exists (verified by exhaustive search or coding theory bounds). For example, it
can be verified that 8 × 8 circulant MDS matrix does not exist in the finite field
GF (24). However, we could not find the optimal 8 × 8 circulant MDS matrix
over GF (28). Because the search space is too big to exhaust, we just list the
WHIRLPOOL matrix which is MDS and low weight.

We use “*” to denote that we have not found the serial matrix with branch
number B at this point of time due to the huge search space. For instance, as the
search space is too big to exhaust, we could not find a 8 × 8 serial MDS matrix
over GF (28). In this case, we can employ the method of subfield construction
(described in Section 7.2), i.e. use two parallel copies of the 8 × 8 MDS serial
matrix with last row (0x2,0xd,0x2,0x4,0x3,0xd,0x5,0x2) (refer to second row of
8×8 subtable of Table 3) over GF (24) to obtain the desired matrix over GF (28).

7.4 Application: FOAM Comparison for 64-bit SPN Structures

In this section, we compare the FOAM metric for 64-bit SPN Structures. Table 4
in Appendix A gives the results for a SPN structure based on 4-bit PRESENT S-
box with circulant matrices or serial matrices. Due to space constraints, we will

7 We are aware that better techniques than naive exhaustive search might be used
here. However, such improvements are not the goal of this article and we leave them
as potential future work.
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provide the results for a SPN structure based on 8-bit AES S-box with circulant
matrices or serial matrices in the full version of this paper. The diffusion matrices
are based on the optimal matrices found in Section 7.3. To compute p(264), the
number of rounds to achieve differential/linear probability ≤ 2−64, we use the
fact that the differential/linear probability of the PRESENT S-box is 2−2 and that
of the AES S-box is 2−6. Then we lower bound the number of active S-boxes
by concatenating 4-round bounds with B × B′ active S-boxes from Theorem 1,
2-round bounds with B active S-boxes and 1-round bound which involves only 1
active S-box. We also write down t, the time to compute one round for serialized
implementation (the time t for round based implementation is the constant 1,
so it is not presented).

We compute the FOAM for round-based and serialized implementation based
on the formula found in Section 6. We also present the FOAM for half-half imple-
mentation, where we take the average, i.e. equal weighting, of the round-based
and serialized FOAM. This corresponds to implementations which are good for
both scenarios. However, this represents just one example, as the weighting of
the scenarios is clearly a designer’s choice. The structure with the best area and
FOAMs are in bold.

We see that for designing 64-bit SPN:

1. For minimal area the geometry is the most important criterion, while the
choice of the field of the MDS matrix is of less importance. The geometry
should be chosen, such that c is maximized, and consequently, many internal
columns can be realized with 1-input flip-flops. A serial matrix is favorable
over a circulant matrix and in general smaller fields allow to save a few GE,
but come at a high timing overhead.

2. PRESENT S-box

– When Circulant Matrices are used with PRESENT S-box in Table 4 from
Appendix A, the 4× 4 almost-MDS circulant matrix circ(0x1, 0x1, 0x1,
0x0) over GF (24) gives the best FOAM for round-based, serial and half-
half implementations.

– When Serial Matrices are used with PRESENT S-box in Table 4 from
Appendix A, the 4 × 4 almost-MDS serial matrix with last row (0x1,
0x0, 0x2, 0x1) over GF (24) defined by α4 + α+ 1 gives the best FOAM
for round-based, serial and half-half implementations.

3. AES S-box

– From our results for AES S-box (provided in the full version of the paper),
when Circulant Matrices are used with AES S-box, two parallel copies of
the 4 × 4 MDS matrix circ(0x1, 0x1, 0x4, 0x9) over GF (24) defined by
α4 + α + 1 gives the best FOAM for round-based implementation. The
4 × 4 MDS matrix circ(0x01, 0x01, 0x04, 0x8e) over GF (28) defined
by α8 + α4 + α3 + α2 + 1 gives the best FOAM for serial and half-half
implementations.

– When Serial Matrices are used with AES S-box, two parallel copies of
the 4 × 4 MDS serial matrix with last row (0x2, 0x1, 0x1, 0x4) over
GF (24) defined by α4 + α + 1 gives the best FOAM for round-based
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implementation. The 8× 8 serial matrix (having branch number 6) with
last row (0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x02, 0x00) over GF (28)
defined by α8+α4+α3+α+1 gives the best FOAM for serial and half-half
implementations and is also very competitive for round-based FOAMs.
It is thus a very interesting choice for many different applications.

4. Structures based on PRESENT S-box have higher FOAM for round-based and
half-half implementations than those based on AES S-box. On the other hand,
structures based on AES S-box have higher FOAM for serial implementation
than PRESENT S-box, because they need significantly less rounds.

5. For structures using both types of S-boxes, 4×4 matrices have higher FOAM
than 2× 2 and 8× 8 matrices.

6. Based on the above observations, we do not always go for the matrix with
the best branch number: for PRESENT S-box in Table 4 from Appendix A,
we use almost-MDS 4× 4 matrix which gives better trade-offs and a higher
FOAM than MDS matrix. Moreover, we found that when AES S-box is used
with 8× 8 matrices, we go for the one with branch number 6 instead of the
optimal 9.
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Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480,
pp. 619–627. Springer, Heidelberg (2005)

18. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive Diffusion Layers
for Block Ciphers and Hash Functions. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 385–401. Springer, Heidelberg (2012)

19. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

20. Wu, S., Wang, M., Wu, W.: Recursive Diffusion Layers for (Lightweight) Block
Ciphers and Hash Functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 355–371. Springer, Heidelberg (2013)

A Tables

Table 2. XORs required to implement a multiplication by x over GF (24)

x (hexadecimal representation) 0 1 2 3 4 5 6 7 8 9 a b c d e f

α4 + α + 1 0 0 1 5 2 6 5 9 3 1 8 6 5 3 8 6
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Table 3. Good Circulant Matrices of Size 2 × 2, 4 × 4 and 8 × 8 B denotes the branch
number; The “First Row” and the “Last Row” column (in hexadecimal) represents the
first row of the circulant matrix and the last row of the serial matrix (as described in
Section 4) respectively; A denotes the number of XOR gates needed to implement one
row of the circulant matrix and the last row of the serial matrix respectively.

2 × 2

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

GF (28), α8 + α4 + α3 + α2 + 1 3 1,2 11 1,2 11

GF (24), α4 + α + 1 3 1,2 5 1,2 5

GF (22), α2 + α + 1 3 1,2 3 1,2 3

GF (2) 3 - - - -

4 × 4

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

5 1,1,4,8e 33 1,2,1,4 33

GF (28), α8 + α4 + α3 + α2 + 1 4 1,1,1,0 16 1,0,2,1 19
3 1,0,0,2 11 1,0,0,1 8

5 1,1,4,9 15 2,1,1,4 15

GF (24), α4 + α + 1 4 1,1,1,0 8 1,0,2,1 9
3 1,0,0,2 5 1,0,0,1 4

5 - - - -

GF (22), α2 + α + 1 4 1,1,1,0 4 1,0,2,1 5
3 1,0,0,2 3 1,0,0,1 2

5 - - - -
GF (2) 4 1,1,1,0 2 - -

3 - - 1,0,0,1 1

8 × 8

Finite Field
Circulant matrices Serial matrices

B First Row A Last Row A

9 1,1,4,1,8,5,2,9 105 * *
8 1,0,1,1,2,2,1,8e 57 1,1,2,0,1,8d,2,1 57
7 1,0,0,1,1,1,2,8e 46 1,1,2,1,0,0,1,8d 46

GF (28), α8 + α4 + α3 + α2 + 1 6 1,0,0,0,1,1,1,2 35 1,1,0,0,1,1,2,0 35
5 1,0,0,0,0,1,1,2 27 1,0,0,1,1,1,0,0 24
4 1,0,0,0,0,0,1,1 16 1,0,0,0,0,1,1,0 16
3 1,0,0,0,0,0,0,2 11 1,0,0,0,0,0,1,0 8

9 - - 2,d,2,4,3,d,5,2 50
8 1,0,1,1,2,9,2,1 27 * *
7 1,0,0,1,1,1,2,9 22 1,0,2,1,1,1,2,0 22

GF (24), α4 + α + 1 6 1,0,0,0,1,1,1,2 17 1,1,0,0,1,1,2,0 17
5 1,0,0,0,0,1,1,2 13 1,0,0,1,1,1,0,0 12
4 1,0,0,0,0,0,1,1 8 1,0,0,0,0,1,1,0 8
3 1,0,0,0,0,0,0,2 5 1,0,0,0,0,0,1,0 4

GF (22), α2 + α + 1

9 - 8 - - - -
7 - - 2,1,0,3,1,2,0,1 13
6 1,0,0,0,1,1,1,2 9 1,0,0,1,1,1,0,2 9
5 1,0,0,0,0,1,1,2 7 1,0,0,1,1,1,0,0 6
4 1,0,0,0,0,0,1,1 4 1,0,0,0,0,1,1,0 4
3 1,0,0,0,0,0,0,2 3 1,0,0,0,0,0,1,0 2

GF (2)

9 - 6 - - - -
5 - - 1,0,0,1,1,1,0,0 3
4 1,0,0,0,0,0,1,1 2 1,0,0,0,0,1,1,0 2
3 - - 1,0,0,0,0,0,1,0 1
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Table 4. FOAM for 64-bit SPN based on 4-bit PRESENT S-box and Circulant Matrices
or Serial Matrices

Circulant Matrices

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 55 1156 541 46.76 3.88 25.32

GF (22) 2 8 3 16 87 1199 540 43.48 2.46 22.97

4 4 5 8 1579 652 50.16 5.77 27.96
GF (24) 4 4 4 8 51 1280 633 76.34 6.12 41.23

4 4 3 16 1156 630 46.76 3.09 24.92

GF (22)
4 4 4 8

83
1280 627 76.34 3.83 40.08

4 4 3 16 1199 629 43.48 1.90 22.69

GF (2) 4 4 4 8 147 1280 624 76.34 2.18 39.26

GF (24)

8 2 8 8

49

2091 873 28.58 3.35 15.96
8 2 7 10 1882 864 28.22 2.73 15.48
8 2 6 12 1669 851 29.92 2.35 16.14
8 2 5 14 1498 840 31.83 2.07 16.95
8 2 4 16 1284 827 37.89 1.87 19.88
8 2 3 22 1161 823 33.73 1.37 17.55

GF (22)

8 2 6 12

81

1712 834 28.45 1.48 14.96
8 2 5 14 1541 829 30.09 1.28 15.69
8 2 4 16 1284 821 37.89 1.15 19.52
8 2 3 22 1204 823 31.38 0.83 16.10

GF (2) 8 2 4 16 145 1284 818 37.89 0.64 19.27

Serial Matrices

Finite
r c B p(264) t

Area (GE) Area (GE) FOAM ×10−9 FOAM ×10−9 FOAM ×10−9

Field rd based serial rd based serial half-half

GF (24) 2 8 3 16 39 1156 513 46.76 6.09 26.42

GF (22) 2 8 3 16 63 1199 508 43.48 3.85 23.67

4 4 5 8 1579 586 50.16 10.39 30.27
GF (24) 4 4 4 8 35 1322 570 71.48 10.99 41.23

4 4 3 16 1113 561 50.41 5.66 28.04

GF (22)
4 4 4 8

55
1365 559 67.08 7.26 37.17

4 4 3 16 1113 556 50.41 3.67 27.04

GF (2) 4 4 3 16 87 1113 553 50.41 2.35 26.38

GF (24)

8 2 9 6

33

3074 794 17.64 8.01 12.82
8 2 7 10 1882 724 28.22 5.78 17.00
8 2 6 12 1669 711 29.92 5.00 17.46
8 2 5 14 1455 697 33.73 4.45 19.09
8 2 4 16 1284 687 37.89 4.02 20.95
8 2 3 22 1118 681 36.36 2.97 19.67

8 2 7 10 2053 700 23.72 4.00 13.86
8 2 6 12 1712 689 28.45 3.44 15.94

GF (22) 8 2 5 14 51 1455 681 33.73 3.02 18.37
8 2 4 16 1284 676 37.89 2.68 20.29
8 2 3 22 1118 675 36.36 1.95 19.16

8 2 5 14 1455 673 33.73 1.90 17.81
GF (2) 8 2 4 16 83 1284 671 37.89 1.67 19.78

8 2 3 22 1118 673 36.36 1.21 18.78
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Abstract. Physically unclonable functions (PUFs) exploit the unavoid-
able manufacturing variations of an integrated circuit (IC). Their input-
output behavior serves as a unique IC ‘fingerprint’. Therefore, they have
been envisioned as an IC authentication mechanism, in particular for the
subclass of so-called strong PUFs. The protocol proposals are typically
accompanied with two PUF promises: lightweight and an increased resis-
tance against physical attacks. In this work, we review eight prominent
proposals in chronological order: from the original strong PUF proposal
to the more complicated converse and slender PUF proposals. The nov-
elty of our work is threefold. First, we employ a unified notation and
framework for ease of understanding. Second, we initiate direct compari-
son between protocols, which has been neglected in each of the proposals.
Third, we reveal numerous security and practicality issues. To such an
extent, that we cannot support the use of any proposal in its current
form. All proposals aim to compensate the lack of cryptographic proper-
ties of the strong PUF. However, proper compensation seems to oppose
the lightweight objective.

Keywords: physically unclonable function, entity authentication,
lightweight.

1 Introduction

In this work, we consider a common authentication scenario with two parties: a
low-cost resource-constrained token and a resource-rich server. Practi-
cal instantiations could be the following: RFID, smart cards and a wireless sensor
network. One-way or possibly mutual entity authentication is the objective. The
server has secure computing and storage at its disposal. Providing security is
a major challenge however, given the requirements at the token side. Tokens
typically store a secret key in non-volatile memory (NVM), using a mature tech-
nology such as EEPROM and its successor Flash, battery-backed SRAM or
fuses. Cryptographic primitives import the key and perform an authentication
protocol. Today’s problems are as follows. First, implementing cryptographic

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 451–475, 2014.
c© International Association for Cryptologic Research 2014



452 J. Delvaux et al.

primitives in a resource-constrained manner is rather challenging. Second, an
attacker can gain physical access to the integrated circuit (IC) of a token. NVM
has proven to be vulnerable to physical attacks [22]: the secret is stored per-
manently in a robust electrical manner. Third, most NVM technologies oppose
the low-cost objective. EEPROM/Flash requires floating gate transistors, result-
ing in additional manufacturing steps with respect to a regular CMOS design
flow. Battery-backed SRAM requires a battery. Circuitry to protect the NVM
contents (e.g. a mesh of sensing wires) tends to be expensive.

Physically Unclonable Functions (PUFs) offer a promising alternative.
Essentially, they are binary functions, with their input-output behavior deter-
mined by IC manufacturing variations. Therefore, they can be understood as
a unique IC ‘fingerprint’, analogous to human biometrics. They might alleviate
the aforementioned problems. Many PUFs allow for an implementation which
is both resource-constrained and CMOS compatible. Furthermore, the secret
is hidden in the physical structure of an IC, which is a much less readable
format. Invasive attacks might easily destroy this secret, as an additional ad-
vantage. Several PUF-based protocols have been proposed, in particular for the
subclass of so-called strong PUFs. We review the most prominent proposals:
controlled PUFs [4–6], Öztürk et al. [17], Hammouri et al. [8], logically recon-
figurable PUFs [11], reverse fuzzy extractors (FEs) [24], slender PUFs [16, 20]
and the converse protocol [12]. The novelty of our work is threefold. First, we
employ a unified notation and framework for ease of understanding. Second, we
initiate direct comparison between protocols, which has been neglected in each
of the proposals. Third, we reveal numerous security and practicality issues. To
such an extent, that we cannot support the use of any proposal in its current
form.

The remainder of this paper is organized as follows. Section 2 introduces
notation and preliminaries. Section 3 describes and analyzes the strong PUF
protocols. Section 4 provides an overview of the protocol issues. Section 5 con-
cludes the work. We operate at protocol level, considering PUFs as a black box.
The low-level protocol of Hammouri et al. [8] is therefore largely discussed in
Appendix B, preceded by a discussion of PUF internals in Appendix A.

2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g. c ∈ {0, 1}1×m
.

All vectors are row vectors. Their elements are selected with an index i ≥ 1 be-
tween round brackets, e.g. c(1). The null vector is denoted as 0. Binary matrices
are denoted with a single bold uppercase character, e.g. H. Operations are the
following: addition modulo 2 (XOR), e.g. x ⊕ c, multiplication modulo 2, e.g.
e ·HT , concatenation, e.g. x||c, and bit inversion, e.g. r. Variable assignment
is denoted with an arrow, e.g. d ← d − 1. Functions are printed in italic, with
their input arguments between round brackets, e.g. Hamming weight HW (r)
and Hamming distance HD(r1, r2).
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2.2 Physically Unclonable Functions: Black Box Description

The m-bit input and n-bit output of a PUF are referred to as challenge c and
response r respectively. Unfortunately for cryptographic purposes, the behav-
ior of the challenge-response pairs (CRPs) does not correspond with a random
oracle. First, the response bits are not perfectly reproducible: noise and
various environmental perturbations (supply voltage, temperature, etc.) result in
non-determinism. The reproducibility (error rate) differs per response bit. Sec-
ond, the response bits are non-uniformly distributed: bias and correlations
are present. The latter might enable so-called modeling attacks. One tries to
construct a predictive model of the PUF, given a limited set of training CRPs.
Machine learning algorithms have proven to be successful [21].

PUFs are often subdivided in two classes, according to their number of CRPs.
Weak PUFs offer few CRPs: their total content (2m+n bits) is of main interest.
Architectures typically consist of an array of identically laid-out cells (or units),
each producing one response bit. E.g. the SRAM PUF [9] and the ring oscillator
PUF1 [23] are both very popular. The total bit-content scales roughly linear
with the required IC area. Although there might be some spatial correlation
or a general trend among cells, a predictive model is typically of no concern.
The response bits are mostly employed to generate a secret key, to be stored
in volatile memory, in contrast to NVM. Post-processing logic, typically a fuzzy
extractor (FE) [3], is required to ensure a reproducible and uniformly distributed
key.

Strong PUFs offer an enormous number of CRPs, often scaling exponen-
tially with the required IC area. They might greatly exceed the need for secret
key generation and have been promoted primarily as lightweight authentication
primitives. Architectures are typically able to provide a large challenge (e.g.
m = 128), but only a very small response, mostly n = 1. CRPs are highly corre-
lated, making modeling attacks a major threat. The most famous example is the
arbiter PUF [13], described in appendix A. The definition of strong PUFs has
shifted over the years. The original more specific notion in [7] assumes a large
response space in addition to strong cryptographic properties: resistance against
modeling and tamper evidence. Although more relevant than ever, we stick to
the more practical recent notion.

2.3 Secure Sketch

The non-determinism of a PUF causes the regenerated instance of a response r to
be slightly different: r̃ = r⊕e, with HW (e) small. Secure sketches [3] are a useful
reconstruction tool, as defined by a two-step procedure. First, public helper data
is generated: p = Gen(r). Second, reproduction is performed: r = Rep(r̃,p).
Helper data p unavoidably leaks some information about r, although this en-
tropy loss is supposed to be limited. Despite the rather generic definition, two

1 We consider the most usable read-out modes which avoid correlations, e.g. pairing
neighboring oscillators.
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constructions dominate the implementation landscape, as specified below. Both
the code-offset and syndrome construction employ a binary [n, k, t] block code
C, with t the error-correcting capability. The latter construction requires a linear

block code, as it employs the parity check matrix H ∈ {0, 1}(n−k)×n
. Successful

reconstruction is guaranteed for both constructions, given HW (e) ≤ t. Informa-
tion leakage is limited to n− k bits. The hardware footprint is asymmetric: Gen
is better suited for resource-constrained devices than Rep [24].

co
d
e-
o
ff
se
t Gen Rep

Random w ∈ C w̃ ← r̃ ⊕ p = w ⊕ e
p← r ⊕w Error-correct w̃ to w

r ← p⊕w sy
n
d
ro
m
e Gen Rep

p← r ·HT s← r̃ ·HT ⊕ p = e ·HT

Determine e
r ← r̃ ⊕ e

3 Lightweight Authentication with Strong PUFs

We analyze all strong PUF authentication schemes in chronological order. One
can read the protocol discussions in arbitrary order, although we highly recom-
mend to read Sections 3.1 and 3.2 first. All schemes employ two phases. The
first phase is a one-time enrollment in a secure environment, following IC man-
ufacturing. The server then obtains some information about the PUF, CRPs or
even a predictive model via machine learning, to establish a shared secret. The
destruction of one-time interfaces might permanently restrict the PUF access
afterwards. The second phase is in-the-field deployment, where tokens are vul-
nerable to physical attacks. Token and server then authenticate over an insecure
communication channel. In general: challenge c and response r are required to
be of sufficient length, e.g. m = n = 128, to counteract brute-force attacks and
random guessing.

3.1 Reference

For proper assessment, we define two reference authentication methods.
Reference I employs a token with a secret key k programmed in NVM, as rep-
resented by Figure 1(a). Additional cryptographic logic performs the authen-
tication. For ease of comparison, we opt for a hash function, hereby limiting
ourselves to token authenticity only. The server checks whether a token can
compute a ← Hash(k,n), with n a random nonce. Reference II employs PUF
technology, potentially providing more physical security at a lower manufactur-
ing cost. We employ a weak PUF2 to generate a secret key, as represented by
Figure 1(b). The reproducibility and non-uniformity issue are resolved in a se-
quential manner, using a FE. A secure sketch first ensures reproducibility. Gen
is executed only once during enrollment. Public helper data p is stored by the
server, or alternatively at the token side in insecure (off-chip) NVM. A hash func-
tion performs entropy compression, hereby compensating the non-uniformity of

2 Logic for generating challenges is implicitly present and might be as simple as reading
out the full cell array.
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Fig. 1. Token representation for all protocols and the two references. The following
IC logic is not drawn: expansion of the strong PUF responses, intermediary registers
(volatile) and control. A dashed line represent the interface with the server. One-time
interfaces destructed after enrollment are marked by the symbol ×.



456 J. Delvaux et al.

r, in addition to the entropy loss caused by the helper data. One could generate
a key as k ← Hash(r). We perform an optimization by merging this step with
the authentication hash: a← Hash(r,n).

3.2 Naive Authentication

The most simple authentication method employs an unprotected strong PUF
only [18], as shown in Figure 1(c). Figure 2 represents the corresponding pro-
tocol. The server collects a database of d arbitrary CRPs during enrollment.
We assume the use of a true random number generator (TRNG). A genuine
token should be able to reproduce the response for each challenge in the server
database. Only an approximate match is required, taking PUF non-determinism
into account: Hamming distance threshold ε implements this. To avoid token
impersonation via replay, CRPs are discarded after use, limiting the number of
authentications to d. Choosing e.g. m = 128, an attacker cannot gather and
tabulate all CRPs and clone a token as such. Choosing e.g. n = 128, randomly
guessing r is extremely unlikely to succeed.

(1
×)

A
u
th
.
(d
×)

Token

r̃ ← PUF (c)

c

r̃

Server

〈ci, ri〉 with i ∈ [1 d] and ci
U←− TRNG()

〈c, r〉 ← 〈cd, rd〉
d ← d− 1

Abort if HD(r, r̃) > ε

Fig. 2. Naive authentication protocol. The thick arrow points from verifier to prover.

Modeling Attacks. Strong PUFs are too fragile for unprotected exposure,
as demonstrated by a history of machine learning attacks [21]. A predictive
PUF model would enable token impersonation. So far, no architecture can claim
to be practical, well-validated and robust against modeling. Stated otherwise:
no architecture does satisfy the original strong PUF definition given in [7], as
has been observed by others (e.g. [14]). Two fundamental problems undermine
the optimism for a breakthrough. First, strong PUFs extract their enormous
amount of bits from a limited IC area only, hereby using a limited amount of
circuit elements. A highly correlated structure is the unavoidable consequence.
The arbiter PUF model in appendix A.2 provides some insights in this matter.
Second, the more entangled and diffusing the structure of the PUF, the more
robust against modeling, but the less reproducible the response as it accumulates
more contributions from local noise sources. Appendix A.3 provides some insights
in this matter.
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Limited Response Space. In practice, strong PUFs provide a small response
only, often n = 1. Replicating the PUF circuit is a simple but unfortunately very
expensive solution. The lightweight approach is to evaluate a list of n challenges,
hereby concatenating the response bits. Various methods can be employed to
generate such a list. The server could generate the list, requiring no additional IC
logic, but resulting in a large communication overhead [8]. A small pseudorandom
number generator (PRNG), such as a linear feedback shift register (LFSR),
is often employed [8, 16, 19, 20, 24]. Challenge c is then used as a seed value:
r̃ ← PUF (PRNG(c)). A variety of counter-based solutions can be applied as well
[11]. Most protocol proposals in the remainder of this work suggest a particular
response expansion method. We make abstraction of this, except when there is
a related security problem.

3.3 Controlled PUFs

Controlled PUFs [4–6] provide reinforcement against modeling via a crypto-
graphic hash function (one-way). Two instances, preceding and succeeding the
PUF respectively, are shown in Figure 1(d). Figure 3 represents the correspond-
ing protocol3. The preceding instance eliminates the chosen-challenge advantage
of an attacker. The succeeding instance hides exploitable correlations due to the
PUF structure. The latter hash seems to provide full protection by itself, but
requires the use of a secure sketch: its avalanche effect would trigger on a single
bit flip. CRPs stored by the server are accompanied by helper data.

(1
×)

A
u
th
.
(d
×)

Token

r ← Hash(Rep(PUF (Hash(c)),p),Hash(c))

c, p

r

Server
〈ci, ri,pi〉 with i ∈ [1 d]

and ci
U←− TRNG()

〈c, r′,p〉 ← 〈cd, rd,pd〉
d ← d− 1

Abort if r �= r′

Fig. 3. Authentication with controlled PUFs

Inferior to Reference II. The proposal seems to be inferior to reference II.
First, the PUF is required to have an enormous instead of modest input-output
space. This is inherently more demanding, even if one would extend reference II
with a few challenge bits to enable the use of multiple keys. Second, server storage
requirements scale linearly with the number of authentications, in contrast to
constant-size.

3 Controlled PUFs were proposed in a wider context than CRP-based token authen-
tication only.
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3.4 Öztürk et al.

Öztürk et al. [17] employ two easy-to-model PUFs, as shown in Figure 1(e).
Figure 4 represents the corresponding protocol. The outer PUF is assumed to
possess a large response space, without defining challenge expansion logic how-
ever: it equips the token with CRP behavior. To prevent its modeling by an
attacker, an internal secret x̃ is XORed within the challenge path. A feedback
loop, containing a (repeated) permutation and an inner PUF with a single re-
sponse bit, is employed to update x̃ continuously. During enrollment, the server
has both read and write access to x̃ via a one-time interface. This allows the
server to construct models for either PUF, followed by an initialization of x̃.
The server has to keep track of x̃, which is referred to as synchronization. The
non-determinism of the inner PUF makes this non-trivial. One assumes an ex-
cellent match between the responses of the inner PUF and its model. At most
one bit of x̃ is assumed to be affected, in the seldom case of occurrence. An au-
thentication failure (violation of ε) provides an indication thereof. One proposes
a simple recovery procedure at the server side: bits of x′ are successively flipped
until the authentication succeeds.
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Read/write-secure NVM: x̃(t)

∀i : x̃(t+1)(i) ← PUF I(π
i(x̃(t)))

r̃ ← PUFO(x̃
(t+1) ⊕ c)

c

r̃

Server

Train models P̃UF I and P̃UFO

x̃(1) = x′(1) U←− TRNG()

c
U←− TRNG()

∀i : x′(t+1)(i) ← P̃UF I(π
i(x′(t)))

r′ ← P̃UFO(x
′(t+1) ⊕ c)

Abort if HD(r̃, r′) > ε

Fig. 4. Authentication protocol of Öztürk et al

Issues Regarding x̃. There are several issues related to the use of x̃. First,
it implicates the need for secure reprogrammable NVM, hereby undermining
the advantages of PUFs. Either read or write access would enable an attacker
to model the system, as during enrollment. Second, the synchronization effort
is too optimistic. PUFs and their models typically have a 1 − 10% error rate.
The server faces a continuous synchronization effort, not necessarily limited to
a single error. Third, it enables denial-of-service attacks. An attacker can collect
an (unknown) large number of CRPs, desynchronizing x̃ and x′. Propagation of
errors across authentications makes the recovery effort rapidly infeasible.

Feedback Loop Comments. The permutation has to be chosen carefully.
Repetition is bound to occur, as determined by the order k: πk = π. This
would implicate x̃ to have identical bits, opposing its presumed non-uniformity.
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A simple simulation confirms the significance for 64-bit vectors. The estimated
probability of a randomly chosen permutation to have k ≤ 63 equals ≈ 9%. Fur-
thermore, the need for the inner PUF is questionable. First, its non-determinism
poses a limit on the complexity of the feedback loop, and hence the modeling
resistance of the overall system. Second, the outer PUF and the initialization of
x̃ already induce IC-specific behavior. Using a cryptographic hash function as
feedback would resolve all foregoing comments. The resulting system would then
be remarkably similar to a later proposal: logically reconfigurable PUFs [12].

3.5 Hammouri et al.

Hammouri et al. [8] employ again two strong PUFs, as shown in Figure 1(f). As
before, both PUFs are modeled during enrollment. The outer PUF is an arbiter
PUF. The inner PUF is a custom architecture based on the arbiter PUF. Lin
largely compensates the non-linearity of the outer arbiter PUF. Figure 5 rep-
resents the authentication protocol. The proposal is non-generic, in comparison
with all other protocols: correct functioning strongly depends on internal PUF
details. We consider this a bad practice. Only a brief summary of the issues is
provided here: we refer to Appendix B for the low-level argumentation.
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Abort if HD(r̃, r′) > ε

Fig. 5. Authentication protocol of Hammouri et al

Unusual Inner PUF, Prone to Modeling Deficiencies. The inner PUF
is a rather unusual extension of the arbiter PUF. The ability to construct a
model, under the given procedure, is strongly layout-dependent and hence prone
to deficiencies.

Unusual Modeling Procedure: Contradictive and Overcomplicated.
Reading out x̃, the response of the inner PUF, via a one-time interface would
have made the enrollment easy. This would allow to model both PUFs separately.
However, one designed a rather complicated procedure to model the inner PUF
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via the response of the outer PUF. For this purpose, one did introduce a func-
tion Lin to linearize the outer arbiter PUF. This is rather contradictive as it
degrades the overall modeling resistance. Furthermore, the enrollment might be
problematic for a significant fraction of the fabricated tokens, depending on the
IC-specific behavior of the outer PUF.

Non-functional: Error Propagation. We believe the proposal to be non-
functional: non-determinism of the inner PUF is strongly amplified, leading to a
persistent authentication failure. A minor modification could resolve this issue.

3.6 Logically Reconfigurable PUF

Logically reconfigurable PUFs [11] were proposed in order to make tokens recy-
clable, hereby reducing electronic waste. An internal state x is therefore mixed
into the challenge path, as shown in Figure 1(e). Read access to x is allowed,
although not required. There is no direct write access, although one can per-
form an update: x(t+1) ← Hash(x(t)). Figure 6 represents the authentication
protocol.
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Write-secure NVM: x(t)
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U←− TRNG()

〈c, r〉 ← 〈cd, rd〉
d ← d− 1

Abort if HD(r, r̃) > ε

Fig. 6. Authentication protocol for logically reconfigurable PUFs

Exacting PUF Requirements. The proposal does not aim to prevent PUF
modeling attacks, despite providing forward/backward security proofs with re-
spect to x. Therefore, the practical value of the proposal is rather limited: the
protocol cannot be instantiated due to lack of an appropriate strong PUF.

Issues Related to NVM. The proposal requires reprogrammable write-secure
NVM, which is not free of issues. First, it undermines a main advantages of
PUFs: low-cost manufacturing. Second, it enables denial-of-service attacks. An
attacker can update x one or more times, invalidating the CRP database of
the server. The proposal does not describe an authentication mechanism for the
reconfiguration.
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3.7 Reverse Fuzzy Extractor

The reverse FE proposal [24] provides mutual authentication, in contrast to pre-
vious work. The term ‘reverse’ highlights that Gen and not Rep is implemented
as token hardware, as shown in Figure 1(h). As such, one does benefit of the
lightweight potential of Gen. Figure 7 represents the protocol4. One raises the
concern of repeated helper data exposure: an attacker might collect helper data
{p̃1, p̃2, . . .} for the same challenge c. Therefore, one does recommend the syn-
drome construction, as there is provably no additional leakage with respect to
the traditional n − k entropy loss. One author proposed a modified protocol
in [14]. A reversal of authentication checks is stated to be the main difference,
although there are two other fundamental changes as clarified hereafter.
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r̃ ← PUF (c)
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n
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r̃ ← Rep(r, p̃)

Abort if Hash(n, r̃, p̃) �= a

b ← Hash(a, r̃)

Fig. 7. Reverse FE protocol (token identifier omitted)

PUF Non-determinism. Non-determinism is essential to avoid replay attacks.
For tokens, one does reuse the PUF for this purpose, hereby avoiding the need for
a TRNG. A lower bound for the PUF non-determinism is imposed, in order to
avoid server impersonation. However, this seems to be a very delicate balancing
exercise in practice, opposing more conventional design efforts to stabilize PUFs.
The need for environmental robustness (perturbations of outside temperature,
supply voltage, etc.) magnifies this opposition. An attacker might immerse the
IC in an extremely stable environment, hereby minimizing the PUF error rate.
For genuine use however, one might have to provide correctness despite large
perturbations, corresponding to the maximum error rate. The modified protocol
proposal [14] does not discuss the foregoing contradiction, although its use of a
token TRNG provides a resolution.

PRNG Exploitation. The proof-of-concept implementation expands the 1-
bit response of an arbiter PUF via a PRNG: r̃ ← PUF (LFSR(c)). Due to

4 The use of a token identifier (public, could be stored in insecure NVM) is omitted for
simplicity, as it seems to have no impact on security. The server has been maintained
as protocol initiator.
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code size limitations, r̃ is subdivided in non-overlapping sections: a set of helper
data vectors, of length n − k each, is transferred rather than a single p̃. One
employs 7 sections with k = 21, aiming at a security level of 128 < 7 · 21 bit.
The proposal does not provide an explicit warning to refuse fixed points of the
LFSR, e.g. c = 0. This would have been appropriate in order to avoid a trivial
server impersonation attack. Fixed points will result in either r̃ = 0 or r̃ = 0,
assuming stability for one particular response bit. An attacker could hence then
guess b with success probability 1/2. A token impersonation threat, which is far
less obvious, is described next.

First consider the unrealistic but desired case of a perfectly deterministic PUF.
Consider an arbitrary response section, denoted as r. Helper data leakage can
be understood via an underdetermined system of linear equations H · rT = pT ,
having n − k equations for n unknowns. Consider a challenge c1 leading to an
expanded response r1 =

(
r1 r2 . . . rn

)
. One could easily construct a challenge c2

leading to a response r2 =
(
r2 r3 . . . rn+1

)
, given the use of an LFSR. Repeating

the former mechanism, we can construct challenges c3, c4, . . ., cq, with rq =(
rq rq+1 . . . rq+n−1

)
. An attacker collects all data in a single system of equations:

A · (r1 r2 . . . rq+n−1

)T
=

⎛⎜⎜⎜⎝
p1

T

p2
T

...
pq

T

⎞⎟⎟⎟⎠ with A =

⎛⎜⎜⎜⎝
H 0T . . . 0T

0T H · · · 0T

...
...

. . .
...

0T 0T · · · H

⎞⎟⎟⎟⎠ .
Equation dependencies have to be considered. We performed experiments

where A is transformed to reduced row echelon form (rref ). A distinction be-
tween cyclic and non-cyclic codes seems to be crucial, as illustrated in Figure
8. In the latter case, q can be small and an attacker is quasi able to solve the
system. The persistence of few unknowns is only a minor inconvenience. In the
former case, the number of unknowns remains k. However, a repeated machine
learning attack can be performed instead, for large q, exploiting the introduc-
tion of sections. Arbiter PUFs can be modeled with only a few thousand CRPs,
so consider e.g. q = 10000, including both training and verification data. The
correct combination of unknowns (only 2k = 221 possibilities) would result in
the observable event of a high modeling accuracy.

We now consider a PUF which is not perfectly deterministic. To minimize
this inconvenience, an attacker could ensure the IC’s environment to be very
stable. Code parameters, which are normally chosen in order to maintain robust-
ness against a variety of environmental perturbations (supply voltage, outside
temperature, etc.), become relatively relaxed then. Subsequently, we consider a
transformation H� = T ·H, which selects linear combinations of the rows of H .
The transformation is chosen so that the rows of H� do have a low Hamming
weight, making it feasible to incorporate a limited set of stable bits only. One
could develop a variety of algorithms in order to find a suitable transformation.

Suboptimal. Even with d = 1, the protocol still allows for an unlimited number
of authentications. Token impersonation via replay has already been prevented
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Fig. 8. PRNG exploitation for the reverse fuzzy extractor: illustration for non-cyclic
Hamming and cyclic BCH codes, with [n = 7, k = 4, t = 1] and q = 5. Black and white
represent 0 and 1 respectively.

by the use of nonce n. This observation could result in numerous protocol simpli-
fications, as has been acknowledged in [24]. However, one does not state clearly
that there would a simplification for the PUF as well: the enormous input-output
space is no more required, even a weak PUF could be employed. Despite all the
former, one still promotes the use of d > 1, arguing that it offers an increased
side channel resistance. We argue that this countermeasure might not outweigh
the missed advantages and that there might be numerous more rewarding coun-
termeasures. The modified protocol proposal [14] does not discuss the foregoing
efficiency matter, although it uses d = 1, hereby providing a weak PUF (with
implicit challenge) as an example.

3.8 Slender PUF

The slender PUF proposal [16] includes three countermeasures against modeling,
while avoiding the need for cryptographic primitives, as clear from Figure 1(i).
First, one requires a strong PUF with a high resistance. A model is constructed
during enrollment via auxiliary one-time interfaces. One employs a variant of
the XOR arbiter PUF for this purpose (see appendix A.3). Second, the exposure
of r̃ is limited to random substrings s̃, hereby obfuscating the CRP link. The
corresponding procedure SubCirc treats the bits in a circular manner. Third,
server and token both contribute to the challenge via their respective nonces cS
and cT , counteracting chosen-challenge attacks. Figure 9 represents the protocol.

A protocol extension has been proposed in [20]. One presents a fourth counter-
measure against modeling. Substring s̃ is padded with random bits before trans-

mission, again in a circular manner: SubCirc(s̃P , j)← s̃ with s̃P ∈ {0, 1}1×nP U←−
TRNG() and j ∈ [1 nP ]

U←− TRNG(). Furthermore, the optional establishment
of a session key is introduced, via concatenation of secret indices i and j. A re-
peated execution of the protocol is required to obtain a key of sufficient length.

PRNG Exploitation. The protocol employs a PRNG to expand the PUF
response space: r̃ ← PUF (PRNG(cS , cT )). However, the PRNG construction
of the proof-of-concept implementation might allow for token impersonation:
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(1
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th
.
(∞

)
Token

cT
U←− TRNG()

r̃ ← PUF (cS, cT )

i ∈ [1 n]
U←− TRNG()

s̃ ← SubCirc(r̃, i)

cS

cT , s̃

Server

Train model P̃UF

cS
U←− TRNG()

r′ ← P̃UF (cS , cT )

Abort if ∀i : HD(SubCirc(r′, i), s̃) > ε

Fig. 9. Slender PUF protocol

PRNG(cS , cT ) = LFSR(cS) ⊕ LFSR(cT ). We assume an identical feedback
polynomial for both LFSRs, which is the most intuitive assumption5. A malicious
token might then return cT ← cS , resulting in an expanded list of challenges all
equal to 0. The server’s PUF model outputs either r′ = 0 or r′ = 0. So provided
a substring s̃ = 0 (or s̃P = 0), authentication does succeed with a probability
1/2. Via replay, one could increase the probability to 1. Eavesdropping on a single

genuine protocol execution is required: c
(1)
S , c

(1)
T and s̃(1). The malicious prover

gets authenticated with the following: c
(2)
T ← c

(2)
S ⊕c

(1)
S ⊕c

(1)
P and s̃(2) ← s̃(1).

One can easily replay old sessions keys as well. We stress that careful PRNG
redesign can resolve all of the former.

Exacting PUF Requirements. The PUF requirements are rather exacting
and partly opposing. On one hand, the PUF should be easy-to model, requiring
a highly correlated structure. On the other hand, CRP correlations enable sta-
tistical attacks, due to the lack of cryptographic primitives. Such attacks exploit
the knowledge of a function P (ru = rv) = f(cu, cv) for a certain strong PUF
architecture. CRPs with |P (ru = rv) − 1/2| > 0 are correlated and hence ex-
ploitable. One might be able to retrieve indices i (and j) as such6, circumvent-
ing the SubCirc countermeasure and hence restoring the CRP link. Although
the proposed PUF seems to offer this delicate balance (see Appendix A.4), it

5 The proof-of-concept implementation employs 128-bit LFSRs, with cS and cT as
the initial states, without specifying feedback polynomials. Furthermore, FPGA im-
plementation results (Table III in [16] and Table 8 in [20]) strongly suggest the use
of identical feedback polynomials.

6 The slender PUF protocol has a direct predecessor: the pattern matching key gener-
ator [19], which serves as an alternative for a conventional fuzzy extractor [3]. CRP
correlation attacks are equally dangerous for this construction and might lead to
key-recovery. However, the risk has not been analyzed as thoroughly as in [16]. Fur-
thermore, another statistical attack of fundamentally different nature has recently
been published [2].
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comes at a price: several one-time interfaces7, high response non-determinism
and a limited modeling accuracy. Furthermore, the user’s control regarding the
challenge list should be highly restricted: statistical attacks are very powerful
if an attacker has a (partial) chosen-challenge advantage. The PRNG-TRNG
construction should accomplish this goal.

3.9 Converse Authentication

Figures 1(j) and 10 represent the converse authentication protocol [12]. The
authentication is one-way, in a less conventional setting where tokens verify
the server. The difference vector (XOR) between two responses is denoted as
d. The restriction d �= 0 prevents an attacker from impersonating the server,
choosing {ci = cj ,pi = pj}. Optionally, one can extend the protocol with
the establishment of a session key k ← Hash(ri||rj). The attacker capabilities
are restricted: invasive analysis of the prover IC is assumed to be impossible.
Furthermore, one assumes an eavesdropping attacker, trying to impersonate the
server given a log of genuine authentication transcripts.

(1
×)

A
u
th
.
(∞

)

Token

d �= 0
U←− TRNG()

ri ← Hash(Rep(PUF (ci),pi))

rj ← Hash(Rep(PUF (cj),pj))

Abort if ri ⊕ rj �= d

d

ci, pi,
cj , pj

Server

〈ci,pi, ri〉 with i ∈ [1 d]

and ci
U←− TRNG()

Find i, j such that ri ⊕ rj = d

If none, choose random i, j.

Fig. 10. Converse authentication protocol

Attacker Overly Restricted. The attacker capabilities are unclear and overly
restricted to be practical. First, restricting invasion would automatically extend
to physical attacks in general. Furthermore, this greatly reduces the need for
PUFs, with respect to the traditional approach of storing a key in NVM. It
is also not clear whether an attacker is allowed to freely query the server, as
exploited hereafter. We argue that this should be possible, as the protocol is
initiated by the token.

Scalability Issues. The probability of success for a randomly guessing at-
tacker would be 1/2n, when trying to impersonate the server. In certain sense,

7 Chains are modeled separately via machine learning, before XORing takes place.
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the server faces a similar probability, posing an upper limit on n for practi-
cality reasons. Successful authentication of the server relies on the availability
of a given d within its database. A scalable method to (construct and) search
within a database was not discussed and seems far from obvious. Assume a cum-
bersome trial and error procedure as a search method: a pairwise selection has
a probability of 1/2n to be usable. Memory requirements are mild compared

to the search workload, as there are d(d−1)
2 pairwise selections, although still

enormous in comparison to all other proposals. A database of size d = 225 is
mentioned to be realistic. A major threat for server impersonation is the fol-
lowing. An attacker might query the server and construct a personal database:
〈di, ci1,pi1, ci2,pi2〉. Authentication will succeed, although a session key cannot
be retrieved if present.

Predecessor Issues. Although the protocol is in essence identical to a direct
predecessor [1], it is not described in terms of modifications. Nevertheless, a few
issues have (quietly) been resolved. We observe five modifications. First, Rep
is acknowledged to require helper data. Second, one introduces the restriction
d �= 0. However, this event occurs so seldom that an explicit check could be
regarded as overhead. Third, d is generated by a TRNG instead of a PRNG.
To avoid replay, the latter construction would require secure NVM, hereby un-
dermining the advantages of PUFs. Fourth, the protocol is initiated by a to-
ken instead of the server. Unfortunately, this enables exhaustion of the server
database as described before. Fifth, PUF responses are reinforced by a cryp-
tographic hash function. In its absence, we see a direct opportunity for prover
impersonation in the occasional case that HW (d) < t. Consider an arbitrary
response r = Rep(PUF (c),p). For both secure sketch constructions, an attacker
might be able to produce a given d:

Code-offset construction: r ⊕ d = Rep(PUF (c),p⊕ d).
Syndrome construction: r ⊕ d = Rep(PUF (c),p⊕ d ·HT ).

4 Overview and Discussion

Tables 1 and 2 provide an overview of Section 3. We do not support the use
of any strong PUF proposal in its current form, given the numerous amount of
issues. However, we do not object the use of both weak PUF protocols: reference
II and the modified reverse FE proposal [14]. We now discuss the strong PUF
issues.

Two proposals rely on reprogrammable NVM: Öztürk et al. [17] and
logically reconfigurable PUFs. Their respective assumptions of R/W- and W-
security undermine a major benefit of PUF technology: an increased resistance
against physical attacks. Furthermore, the need for reprogramming undermines
a second potential benefit: low-cost manufacturing, as CMOS-compatible fuses
cannot be used. Finally, updating the NVM state was identified as a denial-of-
service attack for both proposals.
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Table 1. For all protocols: token hardware (left), the authenticity provided (middle)
and the secret stored by the server (right)
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Reference I × × � × × × � � × � × ∞ × × �
Reference II � × × × × � � � × � × ∞ × × �

Naive × � × × × × × × × � × d � × ×
Controlled × � × × × � � � × � × d � × ×

Öztürk et al. × �2 �6 × × × × � � � × ∞ × � ×
Hammouri et al. × �2 × � × × × � � � × ∞ × � ×
Reconfiguration × �3 �6 × × × � × � � × d � × ×

Reverse FE × �4 × × � × � � � � � ∞ � × ×
Slender × �5 × � × × × � � � × ∞ × � ×

Converse × � × � × � � � � × � ∞ � × ×
1 Including response expansion. 4 Non-determinism lower bound.
2 Easy-to-model. 5 Both easy- and hard-to-model.
3 Robust against modeling. 6 Reprogrammable.

Table 2. Issues revealed in this work. Implementation-dependent issues are printed in
italic.

Protocol Issues

Controlled - Inferior to reference II.

Öztürk
et al. [17]

- NVM undermines the advantages of PUFs.
- Synchronization effort is presented too optimistic.
- Denial-of-service attack.
- Choice of permutation requires care: avoid low orders.

Hammouri
et al. [8]

- Unusual inner PUF, prone to modeling deficiencies.
- Non-functional: internal error propagation.
- Unusual modeling procedure: contradictive and
overcomplicated.

Reconfigu-
ration

- Unrealistic PUF requirement: robust against modeling.
- NVM undermines the advantages of PUFs.
- Denial-of-service attack.

Reverse FE
- Exacting PUF requirements to counteract replay attacks.
- PRNG exploitation, leading to token/server impersonation.
- No need for strong PUF.

Slender
PUF

- PRNG exploitation, leading to token impersonation.
- Exacting PUF requirements to counteract statistical attacks.

Converse
- Attacker model too restricted.
- Scalability issues, leading to server impersonation.
- Predecessor issues.
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PUF responses are not perfectly reproducible. Protocols employ two
approaches to overcome this issue: error correction and error tolerance. Unfortu-
nately, two proposals struggle with the latter approach. PUF non-determinism is
greatly underestimated in Öztürk et al. [17]: the protocol synchronization effort
is presented too optimistic. We believe the proposal of Hammouri et al [8]. to be
non-functional because of internal error propagation.

In practice, strong PUFs do have a small output space. There are
various methods to resolve this issue, all imposing a certain efficiency burden.
However, the protocol proposals have very little attention for this topic. Even
though system security is not necessarily unaffected. We specified attacks for the
proof-of-concept implementations of the reverse FE and slender PUF proposal,
both exploiting the challenge expansion PRNG.

In practice, strong PUFs are insecure against modeling. Two proposals
are therefore too demanding: logically reconfigurable PUFs and the slender PUF
protocol. Although the latter offers some countermeasures, there is an opposing
requirement for the PUF to be easy-to-model, leading to a delicate balancing
exercise. In general, proposals not reinforced by a cryptographic hash function
are much more likely to be vulnerable.

Several proposals rely on a secure TRNG. Tampering with its randomness
opens new perspectives for a physical attack. Its use seems unavoidable however
if server authentication is a must, as for the converse protocol, to avoid replay
attacks. The reverse FE proposal extracts its non-determinism from the PUF
instead, which has been identified as a delicate balancing exercise. Two protocols
without server authentication employ their TRNG as a modeling countermea-
sure: Hammouri et al. [8] and the slender PUF protocol.

All proposals aim to provide lightweight entity authentication, which ad-
dresses a highly relevant need. However, in many use cases, there will be accom-
panying security requests: message confidentiality and integrity, privacy, etc. We
did not consider protocol extensibility in this work, although it might be of
interest when designing a new protocol. References I and II, which employ a se-
cret key, might benefit from a huge amount of scientific literature. Like-minded,
the establishment of a session key has been proposed as an extension for the
converse and slender PUF proposals.

5 Conclusion

Various protocols utilize a strong PUF to provide lightweight entity authenti-
cation. We described the most prominent proposals using a unified notation,
hereby creating a first overview and initializing direct comparison as well. We
defined two reference authentication methods, to identify the misuse of PUFs.
Our analysis revealed numerous security and practicality issues. Therefore, we
do not recommend the use of any strong PUF proposal in its current form.
Most proposals aim to compensate the lack of cryptographic properties of the
strong PUF. However, proper compensation seems to be in conflict with the
lightweight objective. More fundamental physical research is required, aiming
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to create a truly strong PUF with great cryptographic properties. If not, we
are inclined to recommend conventional PUF-based key generation as a more
promising alternative. The observations and lessons learned in this work can
facilitate future protocol design.
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A Arbiter PUF

A.1 Architecture

Arbiter PUFs [13] quantify manufacturing variability via the propagation delay of
logic gates and interconnect. The high-level functionality is represented by Figure
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11(a). A rising edge propagates through two paths with identically designed de-
lays, as imposed by layout symmetry. Because of nanoscale manufacturing varia-
tions however, there is a delay differenceΔt between both paths. An arbiter decides
which path ‘wins’ the race (Δt ≶ 0) and generates a response bit r.

1

c(1)
= 1

2

c(2)
= 0

. . .

m

c(m)
= 1

Δt A
r

(a)

A

...

A

A

c(1) c(2) c(m)

+
r

(b)

Fig. 11. Arbiter PUF (a) and its XOR variant (b)

The two paths are constructed from a series of m switching elements. The
latter are typically implemented with a pair of 2-to-1 multiplexers. Challenge
bits determine for each stage whether path segments are crossed or uncrossed.
Each stage has a unique contribution to Δt, depending on its challenge bit.
Challenge vector c determines the time difference Δt and hence the response bit
r. The number of CRPs equals 2m. The response reproducibility differs per CRP:
the smaller |Δt|, the easier to flip side because of various physical perturbations.

A.2 Vulnerability to Modeling Attacks

Arbiter PUFs show additive linear behavior, which makes them vulnerable to
modeling attacks. A decomposition in individual delay elements is given in Fig-
ure 12. Both intra- and inter-switch delays contribute to Δt, as represented by
white and gray/black squares respectively. We incorporate the latter in their
preceding switches, without loss of generality, to facilitate the derivation of a
delay model. In the end, delay elements are important as far as they generate
delay differences between both paths. Therefore, each stage can be described
by two delay parameters only: one for each challenge bit state, as illustrated in
Figure 13. The delay difference at the input of stage i flips in sign for the crossed
configuration and is incremented with δt1i or δt0i for crossed and uncrossed con-
figurations respectively.
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c(1) = 1 c(2) = 0 c(m) = 1

A
r

Fig. 12. Arbiter PUF decomposed in individual delay elements, represented by small
squares which are prone to manufacturing variability. The interconnecting lines have
zero delay.

c(i) = 0

ΔtIN ΔtIN + δt0i

c(i) = 1

ΔtIN −ΔtIN + δt1i

Fig. 13. Delay behavior of an arbiter stage

The impact of a δt on Δt is incremental or decremental for an even and
odd number of subsequent crossed stages respectively. By lumping together the
δt’s of neighboring stages, one can model the whole arbiter PUF with m + 1
independent parameters only (and not 2m). A formal expression for Δt = γτT

is shown below. Vector γ ∈ {±1}1×(m+1) is a transformation of challenge vector
c. Vector τ ∈ R1×(m+1) contains the lumped stage delays. The more linear a
system, the easier to learn its behavior. By using γ instead of c as ML input, a
great deal of non-linearity is avoided. The non-linear threshold operation Δt ≶ 0
remains however. Only 5000 CRPs were demonstrated to be sufficient to model
non-simulated 64-stage arbiter PUFs with an accuracy of about 97% [10].

τ =
1

2

⎛⎜⎜⎜⎜⎜⎝
δt0 δt01 − δt11

δt01 + δt
1
1 + δt02 − δt12

...
δt0m−1 + δt

1
m−1 + δt0m − δt1m

δt0m + δt1m

⎞⎟⎟⎟⎟⎟⎠
T

and γ =
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1− 2(c(1)⊕ . . .⊕ c(m))
1− 2(c(2)⊕ . . .⊕ c(m))

...
1− 2c(m)
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⎞⎟⎟⎟⎟⎟⎠
T

.

A.3 XOR Variant

Several variants of the arbiter PUF increase the resistance against ML. They
introduce various forms of non-linearity for this purpose. We only consider the
XOR variant. The response bits of multiple arbiter chains are XORed to produce
a single response bit, as shown in Figure 11(b). All chains have the same challenge
as input. The more chains, the more resistance against ML: the required number
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of CRPs and the computation time both increase rapidly [21]. However, the
reproducibility of r decreases with the number of chains as well: each additional
chain injects non-determinism into the overall system. A practical limit on the
ML resistance is hence imposed. Modifications to the architecture can improve
former trade-off [15]: e.g. a permutation of the challenge bits across chains, as
employed for the slender PUF protocol [16, 20].

A.4 CRP Correlations: Enabling Statistical Attacks

Machine learning attacks exploit CRP correlations in a implicit manner. Statis-
tical attacks benefit from their explicit exploitation, hereby assuming the knowl-
edge of a function P (r1 = r2) = f (c1, c2). Such functions have already been
determined via simulations [15]. We are the first to derive an analytical model,
as demonstrated for the the arbiter PUF and its XOR variant in Figure 14.
Modified architectures can converge to the ideal curve f = 1/2 more rapidly.
Let N (μ, σ) denote a normal distribution with mean μ and standard deviation
σ. Let φ(x, σ) and Φ(x, σ) denote the probability density function and cumula-
tive distribution function respectively, assuming μ = 0. We assume all δt’s to
have a distribution N (0, σ1), which is a common and well-validated practice in
previous work. Although not fully correct8, we then assume the elements of τ
to have a distribution N (0, 2σ1). We introduce the variable h = HD(γ1,γ2).

PUF P (r1 = r2)

Arbiter f = P (|tSAME | > |tDIFF |) with
tSAME ∼ N (0, 2

√
m− h+ 1σ1)

and tDIFF ∼ N (0, 2
√
hσ1)

= 1− 4
∫ ∞
0

φ(t,
√
m− h+ 1)

Φ(−t,
√
h)dt

2-XOR f 2 + (1− f )2

3-XOR f 3 + 3f (1− f )2
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Fig. 14. Correlations for the arbiter PUF and its XOR variant. Dots represent simula-
tions results. The mathematical model, drawn continuously although of discrete nature,
matches reasonably well. Vertical dashed lines enclose 99% of the data for randomly
chosen challenges. The more chains being XORed, the better one approximates the
ideal behavior f = 1/2, but the larger the response non-determinism.

8 We neglect dependencies within τ and we also ignore the different form of τ (1) and
τ (m+ 1)
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B Hammouri et al. [8]

B.1 Unusual Inner PUF, Prone to Modeling Deficiencies

The inner PUF is a custom architecture based on the arbiter PUF. One proposes
a rather unusual extension of the challenge space. Out of two individual chains,
one aims to construct a single reconfigurable chain. For each stage, one out of
two switching elements is selected, hereby introducing a second challenge s. The
proposal ignores the need to describe the reconfiguration logic: Figure 15 (right)
provides a generic schematic, including both intra- and inter-switch delays. Via
reconfiguration, one aims to provide a large response space. One does evaluate
cI for a fixed list of configurations vectors {s1, s2, . . .}, hereby concatenating
the response bits. The configuration vectors are generated by a PRNG, having
s1 as initial state. Note that one could have provided a large response space with
a regular arbiter PUF as well, given the use of a PRNG.

τ = 1
2

⎛
⎜⎜⎜⎜⎜⎝

δt0 δt01 − δt11
δt01 + δt11 + δt02 − δt12

...
δt0m−1 + δt1m−1 + δt0m − δt1m

δt0m + δt1m

⎞
⎟⎟⎟⎟⎟⎠

T

cI(i) = 1 s(i) = 0

Fig. 15. Reconfigurable stage of the inner PUF

The architecture is required to be easy-to-model: the server has to construct
a model during enrollment. The overall structure is additive, as for a regular
arbiter PUF, and therefore we expect modeling to be feasible. Although one
could have derived a generic (but complicated) delay model, possibly leading
to an efficient modeling method, the authors propose a shortcut. The overall
delay model is supposed to be separable in terms of the individual chains. One
does construct a model τU for the upper chain, applying s = 0. Similar, one
obtains a model τL for the lower chain, applying s = 0. The overall model τ (s)
selects elements from both vectors: τ (i) = s(i)τL(i)+ s(i)τU (i). The variability
of intra-stage delays is being neglected, justified by placing the stages far apart
in the circuit lay-out. An approximating delay model for upper/lower chain is
derived as well, as shown in Figure 15 (left).

Although itmight be possible tomake all the formerworkable (there is no proof-
of-concept implementation), the approach is strongly layout-dependent and prone
to modeling deficiencies. Apart from being area consuming: positioning stages far



Secure Lightweight Entity Authentication with Strong PUFs 475

apart might not be sufficient to justify separability. Intra- and inter-stage varia-
tions originate from CMOS transistors and metal interconnect respectively. We
highly doubt that the former would be per se negligible with respect to the latter.
It is possible though to enhance separability: upsizing transistors of the switches,
inserting minimum-sized inverter chains in between switches, etc. Furthermore,
one should distinguish the metal interconnect before and after the stage selection
logic, as shown in Figure 15 (right). Variability of the latter would undermine the
separability.We stress that all these complications could have been avoided easily,
e.g. by using a regular arbiter PUF.

B.2 Unusual Modeling Procedure: Contradictive and
Overcomplicated

Reading out x̃, the response of the inner PUF, via a one-time interface would have
made the enrollment easy. This would allow to model both PUFs separately. How-
ever, one designed a rather complicated procedure to model the inner PUF via the
response of the outer arbiter PUF. The latter has a single bit response: during au-
thentication, a list of challenges cO/cI is transferred between token and server to
expand its response space. One does introduce a function Lin , compensating the
non-linearity of the arbiter PUF, apart from the final thresholding step:Δt is a lin-
ear functionofLin(x̃).This transformation is relatively simple, as shownbelow.We
note that this is rather contradictive: it degrades the overall modeling resistance.
Fixing cO = 0, one obtains a system r̃← PUFO(Lin(x̃)). Error propagation from
x̃ to r̃ is very limited then. An error in bit x̃(i) would flip the sign of γ(i) only, cor-
responding to h = 1 in Figure 14. During enrollment, one can force the PRNG to
maintain either 0 or 0 as its state, allowing tomodel the upper and lower chain sep-
arately. This requires some sort of destructive interface, similar to our proposal to
read out x̃ directly. Depending on cI , x̃ will be either 0 or 0, apart from potential
noisiness, herebymaximizing h. As a consequence, one can distinguish either case,
as r̃ is very likely to flip. This enables modeling of the inner PUF. Although some
IC samples might be problematic: the pair x̃ = 0/0 occasionally result inΔt ≈ 0,
maintaining r̃ in a noisy state.

Lin(x̃) =

⎛⎜⎜⎜⎜⎜⎝
x̃(1)⊕ x̃(2)
x̃(2)⊕ x̃(3)

...
x̃(m− 1)⊕ x̃(m)

x̃(m)

⎞⎟⎟⎟⎟⎟⎠
T

.

B.3 Non-functional: Error Propagation

We believe the proposal to be non-functional: non-determinism of the inner
PUF is strongly amplified, leading to a persistent authentication failure. The

minimization of h does not hold for the system r̃ ← P̃UFO(Lin(x̃) ⊕ cO), in
the general case that cO �= 0. A single error in x̃ will flip the sign of r̃ with
a probability close to 1/2. This could have been avoided by implementing the
system r̃ ← PUFO(Lin(x̃⊕ cO)) instead.
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Abstract. One part of the original PUF promise was their improved resilience
against physical attack methods, such as cloning, invasive techniques, and ar-
guably also side channels. In recent years, however, a number of effective phys-
ical attacks on PUFs have been developed [17,18,20,8,2]. This paper continues
this line of research, and introduces the first power and timing side channels (SCs)
on PUFs, more specifically on Arbiter PUF variants. Concretely, we attack so-
called XOR Arbiter PUFs and Lightweight PUFs, which prior to our work were
considered the most secure members of the Arbiter PUF family [28,30]. We show
that both architectures can be tackled with polynomial complexity by a combined
SC and machine learning approach.

Our strategy is demonstrated in silicon on FPGAs, where we attack the above
two architectures for up to 16 XORs and 512 bits. For comparison, in earlier
works XOR-based Arbiter PUF designs with only up to 5 or 6 XORs and 64 or
128 bits had been tackled successfully. Designs with 8 XORs and 512 bits had
been explicitly recommended as secure for practical use [28,30].

Together with recent modeling attacks [28,30], our work shows that unless
suitable design countermeasures are put in place, no remaining member of the
Arbiter PUF family resists all currently known attacks. Our work thus motivates
research on countermeasures in Arbiter PUFs, or on the development of entirely
new Strong PUF designs with improved resilience.

Keywords: Physical unclonable functions (PUFs), side-channel attacks, power
side channel, timing side channel, modeling attacks, machine learning, hardware
security.

1 Introduction

One part of the original PUF promise was their improved resilience against many clas-
sical attack forms, in particular physical attacks. This included cloning, invasive tech-
niques, and arguably also side channels (SC). Regarding the latter, recall that Strong
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PUF based identification schemes [22] do not require a standard key that is processed
bit by bit, a fact that arguably led to hopes about improved SC resilience within the
community.

Recent years have put these assumptions to the test, but sometimes with a negative
outcome. Let us start with non-physical attacks: Firstly, machine learning (ML) based
modeling attacks have proven a more efficient threat than originally assumed. When
the first of these attacks were put forward in 2004 [9], it was supposed that they could
be thwarted by adding simple non-linear elements to Arbiter PUF designs, for example
XOR gates or feed-forward loops. However, by improved ML algorithms, Rührmair et
al. in 2010 and 2013 [28,30] also tackled XOR-based Arbiter PUFs up to 64 or 128
bits and 5 XORs, and Feed-Forward Arbiter PUFs up to essentially arbitrary sizes. As
a second, non-physical attack form, PUF protocol attacks have been devised in recent
years. Since they are not in the focus of this work, we refer interested readers to the
literature on this topic [26,25].

Also dedicated physical attacks on PUFs have been devised lately. For example,
the physical unclonability of PUFs, one of their core properties, has been investigated
more closely. It is obvious that complex three-dimensional objects like PUFs cannot be
cloned atom by atom by current fabrication technology. Generating a perfect clone thus
to date is infeasible. However, functional clones are easier to construct, i.e., PUFs that
merely agree with the original in their challenge-response behavior. In a breakthrough
effort, Helfmeier et al. [8] in 2013 were indeed able to functionally clone SRAM PUFs
by tuning the power-up states of SRAM cells. Soon after, invasive attacks on SRAM
PUFs have been presented by Nedospasov et al. [20] in 2013. The authors apply semi-
invasive, single-trace, backside readout of logic states to to obtain the responses of
SRAM PUFs. This compromises any secret keys that would be derived from these re-
sponses.

Around the same time, first side-channel attacks on PUFs have been investigated. In
2011, Merli et al. [17] demonstrated SC attacks on the error correcting (EC) module of
PUFs. Their attack is indirect in the sense that it does not target the PUF itself, but a
specific EC module of the PUF, working only for certain modules. Furthermore, Merli et
al. reported electromagnetic analyses on ring oscillator PUFs in two consecutive works
in 2011 and 2013 [18,19]. Also in 2013, Delvaux et al. [2] exploited the instabilities
of Arbiter PUF responses as side channel, implementing an idea originally suggested
by Rührmair et al. in [28]. While the work of Delvaux et al. is quite fascinating due
to the fact that it does not use any machine learning algorithms, it must be said that
it performs slightly worse than pure machine-learning based modeling without side
channels [28,30,2].

We continue this line of research, and introduce in this paper the first power and
timing side channel attacks on PUFs. Our approach constitutes one of the first phys-
ical attacks on Strong PUFs [24,27,29] that can notably increase attack performance
in comparison with existing, non-physical methods, specifically with pure modeling
attacks [28,30].

In greater detail, we devise power and timing SCs for XOR Arbiter PUFs and
Lightweight PUFs that provide the adversary with information about the cumulative
number of zeros and ones in the outputs of the k parallel Arbiter PUFs before the XOR
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gate. We then adapt existing machine learning (ML) techniques to efficiently exploit this
information. This “hybrid” attack form can tackle XOR Arbiter PUFs and Lightweight
PUFs with a polynomial complexity in their number of XORs, bitlengths, and number of
required CRPs, while pure modeling attacks on these two PUFs have exponential com-
plexity [28,30]. We provide a full proof of concept on FPGAs, attacking XOR Arbiter
PUFs and Lightweight PUFs for up to 16 XORs and 512 bits. Comparably large sizes
of these two PUFs had hence never been realized before in silicon; in earlier works,
already XOR Arbiter PUFs with 8 XORs and 512 bits had been explicitly suggested as
secure [28,30].

Organization of this Paper Section 2 provides the necessary background and methodol-
ogy. Sections 3 and 4 describe the design and implementation of our power and timing
side channels, respectively. Section 5 details our adaptation of logistic regression to in-
corporate SC information. Section 6 lists silicon results on FPGA implementations and
provides an asymptotic peformance analysis. We conclude the paper in Section 7.

2 Background, Methodology, and Definitions

Background on XOR Arbiter PUFs and Lightweight PUFs. Together with SRAM
PUFs, the Arbiter PUF family [7,31] is arguably the best studied PUF design, and also
the most popular implementation of so-called “Strong PUFs” [24,27]. Nevertheless, a
large number of its members have been attacked successfully by so-called modeling
attacks in recent works [28,30]. The currently only remaining Arbiter PUF variants
which partly resist modeling, since they cause exponential modeling efforts (i.e., expo-
nential training times of the ML algorithm), were so-called XOR Arbiter PUFs [9,31]
and Lightweight PUFs [11].

In an XOR Arbiter PUF, k Arbiter PUFs are used in parallel, and the same, multi-bit
challenge is applied to all of them. The final, one-bit response is defined as the XOR of
all the parallel k outputs [9,31]. In a Lightweight PUF [11,28], again k Arbiter PUFs are
used in parallel, but different challenges C1, . . . , Ck are applied to them, all of which
are generated by some “input mapping” from a single, global challenge C (see [11] for
the details of the mapping). The k outputs of the single Arbiter PUFs are used (without
error correction) as input to a postprocessing function, which XORs subsets of them
together in order to produce an m-bit output string (see again [11] for details). From a
machine learning and modeling perspective, the optimal bit security is achieved if all of
the k outputs are XORed to produce a single bit output [28,30]. Therefore earlier works
[28,30] focused exactly on this case and on this special architecture of the Lightweight
PUF, and so do we in this paper. If nothing else, this evaluates the maximally achievable
bit security in a Lightweight PUF architecture. Using the same Lightweight PUF variant
as [28,30] also allows a fair comparison with our results.

FPGA Implementations. We implemented the above XOR Arbiter PUFs and Light-
weight PUFs on Xilinx Spartan-6 FPGAs. In order to balance FPGA routing
asymmetries, a lookup table (LUT) based programmable delay line (PDL) has been
implemented [13,10,15]. This is the standard approach for realizing Arbiter PUFs on
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FPGAs, and ensures a balanced output between zeros and ones in each single Arbiter
PUF. For each CRP, majority voting over five repeated measurements of the response
to the same challenge was performed in order to determine the final response. The chal-
lenges were generated by an n-bit maximal-length linear feedback shift register (LFSR)
with polynomial f = 1+ x1 + x3 + x4 + x64.

Machine Learning Definitions and Computational Resources. Following [28,30], we
use the following definitions throughout the paper: The prediction error ε is the ratio
of incorrect responses of the trained ML algorithm when evaluated on the test set. The
prediction rate is 1− ε. For all ML experiments throughout this paper, each test set con-
sisted of 10,000 randomly chosen CRPs. The termNCRP (or simply “CRPs”) denotes
the number of CRPs employed in an attack, i.e., the size of the training set. We used
an Intel Xeon X5650 processor at 2.67GHz with 48 GB of RAM in all of our ML ex-
periments, having a value of a few thousand Euros. All computation times (= “training
times”) are calculated for one core of one processor of this hardware.

3 Power Side Channels on XOR-Based Arbiter PUFs

3.1 Basic Idea of the Power Side Channel

Currently known pure modeling attacks on XOR-based Arbiter PUFs require training
times of the ML algorithm that are exponential in the number of XORs [28,30]. This
makes it difficult to tackle XOR-based Arbiter PUFs with more than five or six single
parallel Arbiter PUFs, and with bitlengths longer than 128, by pure modeling attacks
[28,30]. XOR-based Arbiter PUF architectures are therefore the currently most secure
designs from the Arbiter PUF family. Our side-channel attacks now take a novel route:
They gain additional information from the physical implementation of XOR-based Ar-
biter PUFs, and use this information to improve the ML computation times (i.e., training
times) from exponential to polynomial.

One straightforward power side channel is to apply power (i.e., current) tracing to
determine the transition from zero to one of the latches (i.e., the arbiter elements) in the
single Arbiter PUFs. The power tracing is based on measuring the amount of current
drawn from the supply voltage during any latch transition to one. We implemented a
first SPICE simulation to validate this approach, and to verify the power consumption
of an arbiter circuit with different loading outputs. Only one latch (i.e., arbiter circuit) is
used in the simulation, but with three different outputs loading scenarios (i.e., floating
output, output connected to one gate, and output connected to four gates). Figure 1 illus-
trates the results, and shows the different amount of current drawn for the three different
output loading scenarios. The reason for having different values for the different load-
ings is that an additional amount of charges is required to charge the capacitance of each
gate. Hence, the amount of drawn charges, which is the integration of the current curve,
is linearly proportional with the number of loading gates. Taking this phenomenon into
consideration, the amount of charges normally drawn in case of a floating load should
be subtracted.

In XOR-based architectures with k parallel single Arbiter PUFs, the current that is
drawn in sum and altogether in principle tells the (cumulative) number of latches that
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Fig. 1. The power tracking side-channel analysis for a latch that had a transition to 1, with dif-
ferent driving loads, in SPICE simulation. The inset is the amount of drawn charges, which is
calculated from the area under each curve. The amount of charges is linearly proportional with
the number of gates. The amount of charges normally drawn for a floating load should be sub-
tracted.

are zero, and the (cumulative) number that are equal to one. Please note, however, that
it does not tell us which of the k parallel Arbiter PUFs had which output. If it did, CRPs
from every single Arbiter PUF could be collected, and every single Arbiter PUF could
be machine learned separately. As this is not possible, a more complicated strategy
is required, in particular a way to exploit the cumulative number of zeros and ones
beneficially in the ML process, as detailed in Section 5. But before we move on to the
details of the ML process, we discuss the exact implementation of the side channels in
this and the next section.

3.2 Practical Implementation of the Power Side Channel

Measurement Noise. To further validate the practicality of our power SC, we had
to move beyond the simplifications of SPICE simulations, most notably the absence
of supply and measurement noise and real process variations. We extracted the power
trace of 30 sub-response patterns from Lightweight PUFs on FPGA (see Figure 2).
However, we found that the 30 power traces are difficult to be differentiated from each
other (as are their power consumptions). In other words, in practical implementations,
a straightforward identification of the desired power side channel information from the
measured power (current) traces appears infeasible.
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Fig. 2. Power trace of 30 different sub-responses, collected from FPGA, illustrating the difficulty
of differentiating them from each other

There are two reasons for this problem:

1. In real silicon Arbiter and Lightweight PUFs, the final XOR function usually con-
sumes no more than 5% silicon resource of the whole design. Thus, it is difficult to
extract the power consumption of XOR function, which consumes much less power
compared with the whole circuits;

2. Unlike a simulated PUF, measuring real silicon PUF circuit is always impacted by
the noise from supply voltage and measurement, which plays a negative role in
extracting the desired power information.

To overcome this problem and maintain the feasibility of our power side channel, we
developed a new, statistical signal processing strategy.

Our main objective is to extract the subtle power consumption of XOR gates and
transform it into a recognizable format, which is correlated with the cumulative number
of one or zero sub-responses. Even though the extra power consumed by active XOR
gates is not directly extractable, it does really affect the whole power consumption.
Thus, it should change the probability distribution functions (PDF) of the measured
power leakage, if it can extract the probability distribution of leaked power informa-
tion, the cumulative of one sub-responses can be inferred. For this purpose, we apply
a “challenge-dependent responses estimation” method to calculate the PDF of every
power trace collection.

The “challenge-dependent responses estimation” is implemented by comparing the
power trace just before and after the generation of response to distinguish subtle changes.
In the experiment, we measure the power trace of a single PUF response for totally m
times, and record all of them in parallel. If denoting the generation time of the ith PUF
responseRi as ti, we can then filter out the two adjacent sections of power trace (length
of which is T before

i and T after
i ) just before and after time ti. Assume that T before

i =
T after
i , then we divide each time slice into n parts with the collected power trace (cur-

rent trace) data. Based on the divided current trace data, we can calculate the power
consumption of each n part before and after the generation of response Ri.
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By denoting power consumption of all the 2 ∗ n parts of the ith PUF response under
the lth measurement (totally m measurements are did as described above, thus, l ∈
(1...m)) as P before

lij and P after
lij respectively (j ∈ (1...n)), two matrices including the

power consumption information of the ith response are obtained as:

M before
i =

⎛⎜⎜⎝
P before
11 P before

12 P before
13 ... P before

1n

P before
21 P before

22 P before
23 ... P before

2n

... ... ... ... ...

P before
m1 P before

m2 P before
m3 ... P before

mn

⎞⎟⎟⎠ (1)

Mafter
i =

⎛⎜⎜⎝
P after
11 P after

12 P after
13 ... P after

1n

P after
21 P after

22 P after
23 ... P after

2n

... ... ... ... ...

P after
m1 P after

m2 P after
m3 ... P after

mn

⎞⎟⎟⎠ (2)

Based on the power trace processing above, we now denote the power information
of a single PUF response with two matrix: M before

i and Mafter
i . Assuming that we

totally collect K response bits, then the power consumption matrix for all responses
can be described as (for brevity, “b” means before and “a” means after):

M before/after =
(
M

b/a
1 M

b/a
2 M

b/a
3 ... M

b/a
K

)
(3)

Due to the existence of environmental and measurement noise, the m parallel seg-
mentations of measured power trace (such as P before

11 , P before
21 ... P before

m1 in Equation
1, and P after

11 , P after
21 ... P after

m1 in Equation 2) consumption would build n PDF re-
spectively. Since we divide power trace slice into 2 parts (before and after), thus totally
2 ∗n PDF are generated for each response. As we discussed, though there is no directly
leaked power information that we can extract for the XOR function, it impacts the prob-
ability distribution of the whole power trace. To convert the PDF information into the
cumulative number of one and zero responses, we applied histograms method to de-
scribe the PDF, and then implement basic calculus computation to get the cumulative
distribution function (CDF):

C
before/after
j (x) =

∑
xj<x

PDF (X = xj) =
∑
xj<x

p(xj)

j ∈ (1..n)

(4)

Based on Equation.4, the original leaked power information can be transformed as
CDF. To filter out the difference between two power trace segments: before and after
time ti, and erase the impact of environmental and measurement noise, we then calcu-
late the mean-squared-error (MSE) following Equation 5:

MSEj = E[(C
before
j (x)− Cafter

j (x)2], j ∈ (1..n) (5)

then, all of the n MSEs are summed up for a final sub-response estimation: Ei, which
reflects and amplifies the impact of active XOR gates on leaked power:

Ei =
n∑

j=1

MSEj, j ∈ (1..n) (6)
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With the proposed “challenge-dependent responses estimation” method, the power trace
of different challenge-dependent responses patterns are transformed into an estimated
value: “Ei”. Thus, we can deduce the pattern of CRPs and integrate them within our
proposed ML attacks.

Determining the Generation time of PUF Response. In the previous paragraph, we
applied the “challenge-dependent responses estimation” method to extract the power
side channel information of active XOR gates, assuming that we know the generation
time of the ith PUF response Ri as ti. However, one additional problem is that in
practice, ti is not a direct known parameter. In this last paragraph, we will now detail
how we overcame this final problem.

If we randomly set a ti random as the generation time of response Ri, the power
information of a certain PUF response Ri can be described as:

Pi = P
before
i noise + P

before
i oc + P before

i XOR + P after
i noise + P

after
i oc + P after

i XOR, (7)

where P b/a
i noise denotes the environmental and measurement noise (as before, “b”

abbreviates before and “a” after ti random here),P b/a
i oc stands for the power consumption

of “other circuitry”, again before and after ti random, while P b/a
i XOR denotes the similar

power information of XOR functional circuitry. Since based on the measurement, we
can roughly tell the range of a PUF response generation time, we would have several
choices of ti random. To determine the exact generation time of each PUF responses,
we move the ti random in the approximate time range, then we will get different power
side channel informative patterns.

Since the PUF circuitry are measured for multiple times, and under the same envi-
ronment, we can assume that for each response, we will have:

P before
i noise ≈ P after

i noise and P
before
i oc ≈ P after

i oc (8)

thus, if we measure the power trace of a single PUF response for multiple times, we
get: ∑

P before
i noise −

∑
P after
i noise ≈ 0 and

∑
P before
i oc −

∑
P after
i oc ≈ 0 (9)

Based on this algorithm, it is clear that only when ti is set as the correct generation
time, the Ei in Equation 6 is maximized.

4 Timing Side Channels on XOR-Based Arbiter PUFs

As with our power side channel, the objective of the timing side channel is providing
additional information about the individual response bits (i.e., PUF output bits) even
though the response bits are XOR’ed together for providing the output. Assume that
k response bits {r1, . . . , rk} are XOR’ed to form a single output bit bout. (Note that
a k-input XOR shall consist of several stages of smaller XOR gates. For the sake of
demonstration, assume that the delay of the response bit ri, denoted by tri follows a
certain order, say tr1 ≤ tr2 · · · ≤ trk−1

≤ trk ). Our timing side-channel approach
is based on a delay measurement circuit, which can be used to characterize the delay
length of different patterns of k response bits {r1, . . . , rk}.
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4.1 Timing Characterization Method

Every ASIC manufactured chip undergoes a set of structural and functional tests which
measure/ evaluate the IC’s physical and logical properties respectively. Measuring the
delay of certain combinational paths in the circuit is a part of standard structural test-
ing. Since the internal combinational paths are typically inaccessible, the timings are
indirectly inferred from the FF outputs using clock sweeping. The FF values can be set
using a testing scan-chain while all the FFs are connected to the global chip clock. The
pertinent chip is referred to as Circuit Under Test (CUT). The frequency of this clock is
swept in a continuous monotonic fashion from a high to low value while the path under
measurement is toggled using the logic at the input FF. When the frequency is higher
than the path delay, the output FF does not have enough time to settle which is called a
“fail”. Once the frequency approaches the path delay, the output FF sets to the correct
value (from the initial reset dictated by the scan chain) which is the “pass” state. The
frequency at which this transition occurs denotes the path delay and this overall testing
method is called pass/fail timing test.

On our FPGA testbed, the pass/fail timing tests have to be implemented by recon-
figuration. We adopt the measurement circuitry from [14,15] that is demonstrated in
Figure 3. Note that because of the timing uncertainty around the FF metastability point,
the toggle between the pass/fail states appears with a certain property. Thus, error den-
sity estimation followed by smoothing methods are used for inferring the exact toggle
point from a set of stochastic measurements.

To estimate the probability of error at a certain clock frequency, an error histogram
accumulator is realized using two counters. The first one is an error counter whose value
increments by one each time an error occurs. The second one counts the clock cycles;
after 2N clock cycles, this counter clears (resets) the error counter and then restarts
again, where N is the binary counters’ size. The error counter value is stored in the
memory one clock cycle before it is reset. Now, the stored number of fails normalized
to N would yield the error probability value for each target frequency.
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Fig. 3. The timing signature extraction circuit

Next, we linearly and continually sweep the input clock frequency: in Tsweep seconds
from fi = 1

2Ti
to ft = 1

2Tt
, where Tt < tp < Ti. For each frequency sweep, a separate

set of registers count the number of clock pulses. We use this counter as an accurate
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timer which records the frequency of the timing errors. This counter value is retrieved
every time the content of the error counter is written into memory. The system described
above can be configured and utilized for extracting the delays of any CUT implemented
on FPGA. We use this adaptation of pass/fail timing test to measure the delay between
the FF storing the challenge input, to the output of the PUF which shall be stored in
an output register. To prevent attacks, this output is measured after XORing the arbiter
values. Note that the scanning for extracting delay values could also be performed in
parallel to reduce the characterization time [14,15].

4.2 Characterization Accuracy

The resolution of the delay measurement, i.e., the measured delay’s accuracy, is a func-
tion of a few factors: (i) the clock noise and skew, (ii) the sweeping frequency resolu-
tion, and (iii) the number of pulses at each frequency. The output of the characterization
circuit is a binary zero/one (pass/fail) value. A real-valued output can be measured by
repeating several (same width) clock pulses to the circuitry and accumulating the num-
ber of ones at the output. The resulting value, when normalized, shows the probability
at which the timing errors occur for each input clock’s pulse width. The more the input
clock pulse is repeated, a higher sampling resolution and accuracy can be achieved.

For now assume that the clock pulse (of width T ) is sent to the CUT for M times.
Because of clock skew and phase noise, the characterization circuitry receives a clock
pulse with width Teff = T + Tj , where Tj is the additive jitter. Suppose that Tj is
a random variable with a zero mean and symmetric distribution around its mean. The
output probability is a continuous and smooth function of Teff ; thus, approximating
the probability by averaging shall be an asymptotically unbiased estimator asM →∞.
Lastly, the minimum measurable timing is a function of the maximum clock speed at
which the FFs can be run (maximum clock frequency). During a linear frequency sweep,
a longer sweep time increases both items (ii) and (iii) and thus the characterization
accuracy.

4.3 Parameter Extraction

Thus far, we have described a system that measures the probability of timing errors
for various clock pulse widths. The error probability can be fully represented by a set
of few parameters; the parameters are directly related to the CUT delay and FF setup
and hold times. It can be shown that the probability of timing errors shall be written
as the sum of shifted Gaussian CDFs [14,15]. The central limit theorem can determine
the Gaussian nature of the error probabilities which can be explained by Equation 10
showing the parameterized error probability function.

fD,Σ(t) = 1 + 0.5

|Σ|−1∑
i=1

−1�i/2�
[
Q(
t− di
σi

)

]
(10)

whereQ(x)= 1√
2π

∫∞
x

exp
(
−u2

2

)
and di+1 > di. To estimate the timing parameters, f

is fit to the set of measured data points (ti,ei), where ei is the error value recorded when
the pulse width is ti.
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4.4 Side Channel Timing Analysis of XOR’ed Outputs

The pass/fail timing measurement above is able to estimate the delay of the overall PUF
path (after XOR’ing). As we sweep the clock, we eventually get to a stable regime, i.e.,
the regime where the overall output does not change any more. However, before getting
to this stable regime, there are clock periods for which only a few XOR inputs (i.e.,
response bits) change. Sweeping the clock frequency could yield the information about
the approximate timing of the XOR inputs: every time one of the inputs to the XOR
network, i.e., an arbiter output, changes, there will be a toggle. Even though it is not
possible to distinguish the response bit that has changed, it is possible to estimate the
number of flipping XOR inputs with a good probability. This number shall be vague if
the timings of two or more response bits coincide. Since the probability of such a co-
incidence is rather low, in most instances clock sweeping shall yield an approximation
of the number of flipped XOR inputs, i.e., the cumulative number of zeros and ones
among the single Arbiter PUF responses r1, . . . , rk.

5 Adapting Machine Learning Algorithms to Side Channel
Information

The question how (and if at all) SC information on the cumulative number of zeros and
ones can be efficiently exploited in PUF modeling turned out to be highly non-trivial.
Eventually, we found a gradient based optimization similar to the logistic regression
(LR) algorithm of [28,30]. The following treatment assumes some familiarity with this
algorithm and with the work in [28,30].

Let ri(C) ∈ {0, 1} be the output of the ith Arbiter PUF within a k-XOR Arbiter PUF
(or within a Lightweight PUF with k parallel Arbiter PUFs) to a challengeC. The side-
channel information then yields the number n of individual Arbiter PUFs with output
one: n =

∑
i ri(C). It lies in contrast to the general setting of binary outputs in LR on

an interval scale. Therefore, instead of optimizing the binary class probabilities [28,30],
we rely on minimizing the squared error between a side-channel model f(w, C) and
the actual outputs n:

l(M,w) =
∑

(C, t)∈M
(f(w, C)− n)2.

The corresponding gradient

∇l(M,w) =
∑

(C, r)∈M
2 (f (w)− n)∇f(w) (11)

is highly similar to the gradient in LR. We again applied the RProp update scheme (as
in [28,30]) to find a solution ŵ with minimal error l.

Assuming the standard linear additive delay model [9,6,28,30], one obtains the fol-
lowing model of the side-channel information:

f(w, C) =
∑
i

Θ(wT
i Φi).
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Note that the model only depends on the direction, but not on the length ‖wi‖ of the
weight vectors. That is, any two solutions wi and αwi, α ∈ R+ are equivalent. There-
fore we might substitute the Heaviside function by the differentiable logistic sigmoid
σ(x) = (1 + e−x)−1 to enable gradient based optimization. This is a reasonable sub-
stitution as lim‖w‖→∞ σ(wTΦ) = Θ(wTΦ) and, as noted above, a valid solution is
unaffected by scaling of w.

As this substitution makes the model differentiable, we obtain the following gradient
to insert in Equation 11:

∇f(wj) = σ(w
T
j Φj)(1 − σ(wT

j Φj))Φj . (12)

This gradient of an individual Arbiter PUF’s weight vector wj depends only on the
value of the weight vector itself, being in strong contrast to the case without side-
channel information [28,30]. The decoupling of individual Arbiter PUF updates thus
drastically simplifies the ML problem, provided that side-channel information is avail-
able.

In addition to the above new regression, we applied a two step optimization method-
ology: First we optimized the PUF model based on the above process and gradient, us-
ing the side-channel information, until a fraction of f = 0.95 percent of the final XOR
Arbiter output was correctly reproduced. Secondly, we further refined and optimized
the model with the “standard” LR algorithm applied in [28,30] for 1000 iterations. This
led to very low error rates around 2% or below. For all experiments, we used hundred
times more CRPs than free parameters in the model, i.e.,

NCRP ≈ 100× bitlength× no. of XORs.

Note that the above equation merely describes a linear CRP consumption in the problem
parameters. This is in stark contrast to the exponentially growing complexities of pure
ML attacks on XOR Arbiter and Lightweight PUFs [28,30].

While our approach in the first step of the above methodology mostly converged
to the global minimum, in a few cases it got stuck (i.e., the performance after 5000
iterations was worse than 5% remaining missclassifications). In this case, we restarted
the algorithm with a different random initialization of w.

6 Results and Asymptotic Performance Analysis

We applied our adapted ML methods (see Section 5) to CRP data and SC information
gathered from FPGAs (see Sections 2, 3, and 4), both for power and timing SCs. The
results are presented in Tables 1 and 2. The attacks perform extremely efficiently, as we
were able to successfully attack XOR Arbiter PUFs and Lightweight PUFs for up to 16
XORs and for bitlengths of up to 512 (timing SCs) and 128 (power SCs). No imple-
mentations of comparable sizes of these two PUFs in silicon had ever been considered
or reported before. Furthermore, pure modeling attacks thus far had only been able to
tackle the two PUFs for up 5 or 6 XORs and bitlength 64 [28,30]. Both facts illustrate
the impact and reach of our new method.

Tables 1 and 2 already indicate that the CRP requirments and computation times
grow very mildly, with the same holding for the prediction errors. In order to quantify
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Table 1. Effectiveness of timing side-channel attacks on the XOR Arbiter PUF and Lightweight
PUF (LW PUF), all carried out on FPGA implementations

No. of Bit CRPs Prediction Rate Training Time Predict. Rate Training Time
XORs Length (×103) XOR Arb. PUF XOR Arb. PUF LW PUF LW PUF

8

64 26 98.5% 2 min 98.5% 1 min
128 51.6 97.5% 12 min 98.2% 9 min
256 103 97.7% 1:35 hrs 97.8% 1:00 hrs
512 205 97.4% 16:50 hrs 97.5% 3:30 hrs

12

64 39 98.1% 16.5 min 98.5% 2 min
128 77.4 97.4% 38.5 min 97.9% 24.1 min
256 154.5 97.1% 3.8 hrs 97.3% 1.75 hrs
512 308 96.92% 56.25 hrs 97.11% 9.55 hrs

16

64 52 98% 37 min 98% 7 min
128 103.2 97.5% 2 hrs 97.5% 51.7 min
256 206 97.3% 15.1 hrs 96.9% 4.8 hrs
512 410 96.5% 102 hrs 96.7% 20.2 hrs

Table 2. Effectiveness of power side-channel attacks on the XOR Arbiter PUF and Lightweight
PUF (LW PUF), all carried out on FPGA implementations

No. of Bit CRPs Prediction Rate Training Time Predict. Rate Training Time
XORs Length (×103) XOR Arb. PUF XOR Arb. PUF LW PUF LW PUF

8
64 26 98.1% 3 min 98.4% 1.25 min

128 51.6 98% 13 min 98.1% 9.25 min

12
64 39 98.3% 11 min 98.2% 3.5 min

128 77.4 97.3% 47 min 97.8% 25 min

16
64 52 98% 38 min 98% 6.5 min

128 103.2 97.5% 2:28 hrs 97.5% 46.5 min

this with yet more data points, we conducted comprehensive ML experiments on sim-
ulated CRPs and simulated SC data. The CRPs were generated by the linear additive
delay model (LADM), similarly as in earlier ML experiments [28,30]. We executed
these simulated attacks on XOR Arbiter PUFs and Lightweight PUFs for 2, 3, . . . , 16
XORs, and with 64, 128, 256 and 512 bits. This means that we treated 2 · 15 · 4 = 120
different architectures in sum, investing hundreds of hours of computation time. The
generated data points are shown in Figure 4, and fully confirm the suspected mild, ac-
tually cubic growth. For those cases where we also had silicon data for comparison (see
Tables 1 and 2), the silicon and the simulated attacks performed very similarly, confirm-
ing both earlier conjectures [6,28,30] on the validity of the additive linear delay model,
as well as the accuracy of our side-channel measurements. The empirically estimated
computational complexity of our attacks is henceO(n3), or, in other words, low-degree
polynomial, in the problem size. Furthermore, as indicated already in Section 5, the
number of used/required CRPs is merely linear in the same parameter.

Two important aspect should not go unnoticed. Firstly, our power side channel is
more noisy than the timing side channel. This had the effect that we could only handle
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Fig. 4. The training times for our ML-algorithm on Lightweight PUFs (LW PUFs) and XOR
Arbiter PUFs on a logarithmic scale. They show that the computational complexity regarding
training times is cubic, i.e., O(x3).

bit lengths of up to 128 by use of the power SC. Improved, less noisy versions seem
possible, but also non-trivial, and are left to future work.

Secondly, in the presence of side-channel information, our ML algorithms perform
slightly faster on Lightweight PUFs than on XOR Arbiter PUF. Without side channels,
the converse effect has been observed [28,30]. Intuitively, the challenge input mapping
of the Lightweight PUF creates a more diverse and stable information basis for the ML
algorithm, which leads to faster convergence. A full, rigorous mathematical analysis of
this effect will be conducted in future work.

7 Summary and Conclusions

In this paper, we introduced and implemented the first power and timing side channels
(SCs) on PUFs, more precisely on XOR Arbiter PUFs and Lightweight PUFs. These
two PUF designs were chosen by us due to their particular relevance: The Arbiter PUF
family is arguably the most studied electrical Strong PUF design, and said two PUFs
are the most secure representatives of this family according to recent work [28,30]. Our
two SCs consisted of (i) power tracing of the arbiter element (i.e., the latch) in Arbiter
PUFs, and (ii) marking different response patterns with corresponding timing signatures.
Both SCs tell us the cumulative number of zeros and ones in the outputs of the k parallel
Arbiter PUFs within XOR-based Arbiter PUF variants, such as the XOR Arbiter PUF
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or the Lightweight PUF. One main obstacle in exploiting the above SCs efficiently was
that the attacker does not learn which of the single Arbiter PUF outputs is zero or one.
This makes the cumulative information worthless at first sight. However, we were able
to devise adapted, tailor-made ML algorithms, which can exploit the information very
efficiently.

We carried out a full silicon proof of concept on FPGAs, attacking the two above
PUFs for up to 16 XORs and bitlengths of 512 bits (by timing SCs) and 128 bits (by
power SCs). Their smaller noise levels made timing SCs the yet more efficient tool,
even though improved future versions of the power side channels seem possible. Inter-
estingly, XOR-based Arbiter PUF variants had never even been implemented (left alone
attacked) for comparable sizes in the literature, since already versions with 8 XORs and
512 bits had been recommended as practically secure against known attacks in earlier
works [28,30]. This may illustrate the relevance and strength of our results. A close
asymptotic analysis on simulated CRP data furthemore showed that our attacks have
only cubic complexity. This is a drastic improvement over the exponential complexity
of state-of-the-art, pure modeling attacks [28,30].

Our methods are the first physical attacks on Strong PUFs, i.e., on PUFs with many
CRPs, that can notably increase attack performance. Overall, they imply that as long as
no suitable design countermeasures are put in place, no currently existing architecture
from the Arbiter PUF family can withstand all known attacks: “Standard” Arbiter PUFs
as well as Feed-Forward Arbiter PUFs have been attacked by pure modeling attacks
with polynomial complexity [28,30]; and XOR-based variants such as the XOR Arbiter
PUF and the Lightweight PUF are susceptible to the methods presented in this paper,
which have polynomial complexity, too.

We did not explicitly deal with design countermeasures in this paper for space rea-
sons. However, one conceivable strategy against power SCs could consist of using two
symmetric, inverted output signals with two latches. This construction could neutral-
ize and balance power consumption, regardless of the PUF’s output. Interestingly, this
could even be used to detect and stabilize output errors in Arbiter PUF variants, even
though we did not follow this route in in this paper. Countermeasure against our tim-
ing SCs would probably have to focus on the construction of an isochronous hardware.
Implementing such strategies is left to future, follow-up works.

We believe that the PUF attacks presented in this and other papers should be interpreted
in a balanced fashion. None of them “kills” the field in its entirety. In our opinion, they
are part of a natural consolidation process in the PUF area, similar to the consolidation
that classical security primitives have undergone already some time ago. The occurence
of this process could be seen as indication that the field is becoming increasingly mature.
One typical byproduct is the insight that certain aspects are not as simple as originally
believed, which may be disappointing at first sight. Overall, however, a sound consolida-
tion will be beneficial to the field, eventually creating more research opportunities than
it destroys. This paper could be seen as one (of many) steps within this process.
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30. Rührmair, U., Sölter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror, G., Schmid-
huber, J., Burleson, W., Devadas, S.: PUF Modeling Attacks on Simulated and Silicon Data.
IEEE Transactions on Information Forensics and Security, IEEE T-IFS (2013)

31. Edward Suh, G.: Physical Unclonable Functions for Device Authentication and Secret Key
Generation. In: DAC 2007, pp. 9–14 (2007)



Physical Characterization of Arbiter PUFs

Shahin Tajik1, Enrico Dietz2, Sven Frohmann2, Jean-Pierre Seifert1,
Dmitry Nedospasov1, Clemens Helfmeier3,
Christian Boit3, and Helmar Dittrich2

1 Security in Telecommunications, Technische Universität Berlin, Germany
{shahin,jpseifert,dmitry}@sec.t-labs.tu-berlin.de

2 Teraherz Spectroscopy, Technische Universität Berlin, Germany
{dietz,sf}@physik.tu-berlin.de

3 Semiconductor Devices, Technische Universität Berlin, Germany
{clemens.helfmeier,christian.boit}@tu-berlin.de

Abstract. As intended by its name, Physically Unclonable Functions
(PUFs) are considered as an ultimate solution to deal with insecure
storage, hardware counterfeiting, and many other security problems.
However, many different successful attacks have already revealed vulner-
abilities of certain digital intrinsic PUFs. Although settling-state-based
PUFs, such as SRAM PUFs, can be physically cloned by semi-invasive
and fully-invasive attacks, successful attacks on timing-based PUFs were
so far limited to modeling attacks. Such modeling requires a large sub-
set of challenge-response-pairs (CRP) to successfully model the targeted
PUF. In order to provide a final security answer, this paper proves that
all arbiter-based (i.e. controlled and XOR-enhanced) PUFs can be com-
pletely and linearly characterized by means of photonic emission analy-
sis. Our experimental setup is capable of measuring every PUF-internal
delay with a resolution of 6 picoseconds. Due to this resolution we in-
deed require only the theoretical minimum number of linear independent
equations (i.e. physical measurements) to directly solve the underlying
inhomogeneous linear system. Moreover, we neither require to know the
actual PUF challenges nor the corresponding PUF responses for our
physical delay extraction. On top of that devastating result, we are also
able to further simplify our setup for easier physical measurement han-
dling. We present our practical results for a real arbiter PUF implemen-
tation on a Complex Programmable Logic Device (CPLD) from Altera
manufactured in a 180 nanometer process.

Keywords: Arbiter PUF, photonic emission analysis, backside, physical
characterization.

1 Introduction

Physically Unclonable Functions (PUFs) offer a promising solution for future
security problems [9]. PUFs can be utilized as the basis for many security ap-
plications, such as encryption [13,29] and hardware fingerprinting [26,33]. Al-
though there are different PUF classifications in the literature regarding their
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characteristics, they can generally be categorized in two distinct classes of PUFs:
settling-state-based PUFs and timing-based PUFs [15]. The former is based on
bistable circuits such as SRAMs, while the latter is based on intrinsic differences
in timing of a set of symmetric circuit paths.

Although unclonability and unpredictability are the main PUF requirements
[3,22], previous work in the literature has shown how different PUFs can be at-
tacked and cloned. Settling-state-based PUFs such as SRAM PUFs can be char-
acterized and cloned physically by semi-invasive and fully invasive attacks [10,20].
Timing-based PUFs such as Arbiter PUFs are vulnerable to machine-learning
attacks, which make it possible to emulate the PUF response [12,24]. How-
ever, machine-learning attacks require a large number of challenge-response pairs
(CRP) to predict the response with high probability. Any non-linearity in the
PUF response can negatively impact the effectiveness of machine-learning tech-
niques [13,32]. As a result substantially more CRPs together with extra side
channel information are required to model the PUF response successfully [16].
However, in a real attack scenario, the intrinsic PUF response may be unavailable
to the attacker [8,14]. Moreover, trying a large set of CRPs may also be infeasible
due to other countermeasures implemented on modern secure devices [23].

This work demonstrates that arbiter PUFs and more generally, timing-based
PUFs can be characterized by high-resolution temporal photonic emission anal-
ysis from the chip’s backside. This approach does not need any readout of PUF
response nor does it require a substantial number of challenges to characterize
the PUF. Our methodology is based on measuring the time difference between
enabling the PUF and photon emission at the output of the last stage. For our
Proof-of-concept (PoC), we have implemented an arbiter PUF on a Complex
Programmable Logic Device (CPLD). The delay between the input of the PUF
and the output of photodetector can be measured with an overall resolution of
approximately 6 picoseconds by a Time-to-Digital Converter (TDC). As a result,
the PUF response is determined by comparing the measured delays on both PUF
chains. Furthermore, in our methodology, the required challenges for the physical
characterization of the PUF increase linearly with PUF length. Finally, based on
a mathematical approach we find the minimum number of necessary challenge
combinations, which are required to characterize the PUF. Using this method-
ology it also possible to characterize controlled PUFs [8], where the challenge is
inaccessible to the attacker. As compared to other characterization techniques,
such as machine learning, this methodology greatly reduces the amount of mea-
surements that are necessary to characterize the intrinsic PUF behavior. The
main contributions of this paper are as follows:

Physical Characterization of Timing-Based PUFs. We present the first
physical characterization attack on timing-based PUFs with the help of photonic
emission analysis. This approach is capable of physically characterizing the in-
trinsic behavior of the circuit by measuring the delays within the circuit with a
high degree of accuracy. In the case of an arbiter PUF this consists of measur-
ing the intrinsic delays of each individual stage of the circuit. As compared to
other heuristic methodologies which require a substantially greater number of
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measurements than individual PUF stages, our methodology requires just two
measurements per PUF stage.

Low-Cost Measurement Setup for Measuring the Delay with the Res-
olution of 6 ps. We introduce an efficient and cost-effective experimental setup
with a substantial temporal resolution. The setup is capable of performing tem-
poral measurements with an approximate time resolution of 6 ps. The time
resolution of the setup allows for the exact characterization of the intrinsic de-
lays of each individual stage of the PUF. Moreover, the setup provides sufficient
time resolution for modern process nodes.

Practical Evaluation against a Proof-of-Concept Arbiter PUF Imple-
mentation. The PoC implementation was realized on a common programmable
logic platform. To extract the device’s intrinsic behavior, we performed dynamic
semi-invasive backside analysis of the photonic emissions of the device. Because
the analysis techniques are semi-invasive the integrity of the device’s intrinsic
response is not changedpre.

Mathematical Approach for Measurement Optimization. In order to
physically characterize the PUF, we propose a measurement technique to min-
imize the number of challenges that are necessary for a PUF characterization.
Furthermore, we provide a mathematical approach for minimizing the effort of
measurement for arbiter PUFs in general. Combined, these techniques greatly
reduce the number of measurements and measurement locations that are neces-
sary for PUF characterization.

The rest of this paper is organized as follows: Section 2 presents background
information on the delay-based PUFs and photonic emission in CMOS technol-
ogy. Moreover, the programmable logic architecture is explained and the related
work is reviewed. In Section 3, the utilized experimental setup is presented. Sec-
tion 4 introduces the mathematical approach for the optimized measurement.
Section 5 demonstrates the practical results, where we were able to measure the
small delay differences. In Section 6, we present additional considerations about
our methodology. Finally in Section 7, we conclude the paper.

2 Background

2.1 Arbiter-Based PUF

Due to manufacturing variations, there are small random delay differences on
symmetrical electrical paths on a chip. The entropy of the delays is sufficient to
ensure a unique PUF response for each individual device instance. Arbiter and
Ring-oscillator PUFs are two examples of timing-based PUFs [15]. Arbiter PUFs
utilize the intrinsic timing differences of two symmetrically designed paths to a
single bit of the response at the output of the circuit [12]. It consists of multiple
connected stages and an arbiter at the end of the chain, see Figure 1. Each stage
consists of two outputs and three inputs, a single bit of the challenge and the
two outputs from the previous stage. The inputs of the first stage are connected
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Fig. 1. Arbiter PUF

to a common enable signal. The outputs of the last stage are connected to a so-
called arbiter, which determines which signal arrived first. Based on this result,
the arbiter generates a single bit known as the response. Although the nominal
delays of direct paths and crossed paths are equal (δia = δid and δib = δic),
due to the intrinsic delays of the circuit, different challenges produce different
results. The differences between two identical device instances will be sufficient
to differentiate the unique responses of the devices.

2.2 Photonic Emission in CMOS

Individual logic gates are implemented on the Complementary Metal Oxide
Semiconductor (CMOS) Integrated Circuits (ICs) by a set of connected p-type
and n-type Metal Oxide Semiconductor (MOS) transistors. In a static state,
where no transistor devices are switching, there is at least one transistor in the
off region between the supplied power (VDD) and ground (GND). Therefore, the
current consumption of the gate is minimal. However, during a switching event a
substantial current passes through the circuit. As a result, the transistors enter
an operating region known as saturation for a short period of time. During satu-
ration, the kinetic energy of accelerated hot carriers can be released via photon
emission [4]. n-type transistors emit significantly more photons as compared to
p-type transistors, due to the higher mobility of electrons than holes. Hence, only
photons emitted by n-type transistor can be observed in general. The emission
rate of the transistors is proportional to the switching frequency of the circuit.
However, raising the supply voltage also increases the amount of photons emitted
by the device exponentially.

Due to multiple interconnect layers on the frontside of modern IC designs, the
optical path is obstructed [23]. Therefore, it is almost impossible to observe pho-
tonic emissions from the frontside. However, photonic emissions can be observed
from the IC backside as well. Although, silicon substrate is highly absorptive for
wavelengths shorter than the bandgap energy, the silicon substrate is transpar-
ent to near infrared (NIR) emissions. Hence, any NIR photons emitted by the
device will pass through the silicon substrate and can be observed from the IC
backside.
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(a) Logical Element (b) Lookup Table

Fig. 2. (a)Architecture of a Logical Element in an Altera MAX V CPLD: A config-
urable 4-input combinatorial circuit (blue). Additionally each LE consists of multiple
control inputs as well as global signals such as clock and enable [2]. (b)The LUT is
realized by multiple multiplexers, which are controlled by the data inputs. The output
of the LUT is loaded from the existing SRAM cells inside the LUT. In our PUF de-
sign, each signal path is connected to one of the LUT’s inputs (input A). The challenge
signal is connected to all other three inputs (B, C and D) in order to limit the routing
only to two paths inside the LUT.

2.3 Programmable Logic Architecture

PUFs can be realized in different types of hardware implementations. Timing-
based PUFs can also be implemented on a programmable logic device, i.e. FP-
GAs and CPLDs. The architecture of modern CPLDs and FPGAs is very similar
and the architectures of any given vendor share many commonalities. The pri-
mary architectural differences of modern CPLDs and FPGAs are logical size, the
complexity of the routing network and the hard macros available to the design.
Moreover, CPLDs generally store the configuration within the same device pack-
age, whereas FPGAs generally require external memory for storing the device
configuration. Programmable logic devices consist of an array of configurable
Logic Elements (LEs), see Figure 2. The configuration determines the logical
behavior of each individual LE. The LEs themselves are commonly realized us-
ing so called Look-Up-Tables (LUTs) in which the output values are stored for
a particular input combination. Combinatorial logic of a particular design can
be entirely realized using LUTs. The Altera Max V architecture utilized in this
work utilizes two 3-input LUTs to realize a 4-input LE, see Figure 2(a). Each
LE also provides an additional configurable register with multiple control inputs
and an output for realizing sequential logic. LEs are organized into groups of ten
which form so called Logical Array Blocks (LABs). In addition to global routing
resources, each LAB provides additional routing to each LE within the LAB.
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2.4 Related Work

In recent years, many different attacks on PUFs have been proposed. Settling-
state based PUFs, such as SRAM PUFs, can be physically cloned by semi-
invasive attacks [10]. The authors of this work demonstrated how SRAM PUF
responses can be characterized by a Focused Ion Beam (FIB) circuit edit. More-
over, SRAM PUFs are also vulnerable to fully-invasive attacks, due to lack of
tamper detection mechanism [20]. It was also shown that timing-based PUFs,
such as Ring-oscillator PUFs, are also vulnerable to semi-invasive electromag-
netic (EM) side channel attacks [18].

However, to this date, arbiter PUFs are only the target of mathematical mod-
eling attacks. Modeling attacks require a subset of CRPs to build a model on
that and predict the PUF response for all possible challenges [12]. One of the
first utilized modeling techniques was linear programming to model the timing-
based PUF [21]. Machine-learning tools such as Logistic Regression (LR) can
also be utilized to model the arbiter PUF successfully [24]. The modeling attacks
becomes more difficult by introducing non-linearities to the PUF delays and re-
sponses. Two example of non-linear PUFs are Feed-forward arbiter PUFs [13]
and XOR-PUFs [32]. However, it has been shown that Feed-forward PUFs are
vulnerable to evolutionary algorithm [25]. Moreover, a modeling attack based
on higher number of CRPs and power side channel information can be applied
successfully to XOR-arbiter PUFs [16]. Other modeling techniques include solv-
ing integer equations utilize the CMOS noise as a side channel information or
environmental changes as a fault injection technique to model the timing-based
PUFs [6,5].

Photonic emission analysis is introduced as a new side channel attack to ana-
lyze security applications on the chip such as cryptographic ciphers [7]. In order
to bypass the multiple interconnect layers on the frontside of the chip, photonic
emission analysis and photonic fault injection attacks can be conducted from
the backside [31,30]. It has been shown that chips, such as microcontrollers, can
be functionally analyzed by their optical emissions during runtime [19]. Sim-
ple Photonic Emission Analysis (SPEA) is another approach that can recover
the full AES secret key by monitoring access to S-Box [28]. Furthermore, the
full AES secret key can be recovered by a similar approach called Differential
Photonic Emission Analysis [11].

3 Experimental Setup

3.1 Measurement Setup

The experimental setup, shown schematically in Figure 3, is an optimized in-
frared microscope equipped with a scientific Si-CCD camera and an InGaAs
avalanche diode as detectors for spatial and temporal analysis [27]. The Si-CCD
is a back illuminated deep depletion type featuring high quantum efficiency in
the NIR region. To minimize dark current it is cooled down to −70 ◦C, which
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Fig. 3. Controlling the DUT with the CB and capturing emitted photons from the
DUT by SI-CCD camera and InGaAs-SPAD

allows long exposure times to accumulate enough photons from the weak hot car-
rier emission. Due to the long integration time of several seconds and the limited
readout speed of the CCD sensor, it is used for spatial analyses only. The tem-
poral analysis of the photonic emission requires a very fast infrared detector.
Therefore a free-running InGaAs avalanche detector in Geiger Mode (SPAD) is
used to detect single photons. Its sensitivity covers a wavelength range between 1
to 1.6 μm with peak quantum efficiency of 20%. Thermoelectrical cooling reduces
the dark count rate below 2 kHz.

The Device under Test (DUT), is controlled by a computer via a control box
(CB), which provides the enable signal for the PUF and a time reference signal
for the time to digital converter (TDC). Photons emitted from the DUT are
collected by the microscope objective (NA = 0.45) and divided into two optical
paths by a short-pass beam splitter (BS). Short-wave photons below 1 μm are
transmitted to the Si-CCD camera while the long-wave photons are reflected onto
the InGaAs-SPAD. This configuration allows capturing images with the CCD
and time resolved measurements with the SPAD simultaneously. An incoming
photon from the DUT causes the avalanche breakdown of the SPAD and the
resulting electrical pulse is registered by the TDC. The FPGA-based TDC time
tags each occurring event with a resolution of 81 picoseconds. This way both
the enable signal of the PUF chain and the detected photons from the chain’s
output transistor are time tagged allowing a direct calculation of the their delay.
Due to jitter in the response time of the SPAD and electrical jitter in the CB
and TDC the overall time uncertainty for a single photonic event is 190 ps
rms. An accumulation of multiple photonic events is used to improve the time
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Fig. 4. Timing difference of two different challenges at the output of last stage. The
time bin width is 81 ps

resolution by calculating the centroid of the Gaussian-like distribution of the
delay time histogram, see Figure 4. This super-resolution technique enhances
the time resolution significantly beyond the 81 ps granularity of the TDC and
allows measurements of very small shifts in the delay time. Experiments showed
that the accuracy of our current setup is limited by drifts in the electronics to
6 ps rms. Apart from the custom made holding of the DUT to a 3-dimensional
moving stage and electronics to control and communicate with the CPLD, the
setup consists of commercially available components. As the focus of the setup
is on time resolved measurements, it can be realized for about 30000 Euros.

3.2 Device under Test

In this work, Altera MAX V CPLD devices (part number 5M80ZT100C5N) were
utilized for the physical experiments [1]. A backside reflectance image of the
CPLD shows the presence of 240 LEs on the device, see Figure 6. However, this
device allows the use of 80 Logic Elements (LE) in total. The device contains
24 Logic Array Blocks (LAB) with 10 LEs each. The non-volatile memory and
additional infrastructure logic is located on the upper half in Figure 6, I/O pads
are clearly visible on the perimeter of the device. The devices were decapsulated
using the Ultratec ASAP-1 mechanical polishing machine exposing the backside.
The bulk silicon material of the devices was thinned down significantly. The
silicon surface was polished to expose a surface suitable for optical imaging.
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Fig. 5. Implementation of arbiter PUF by two independent buffers chains

To further improve the surface quality and optical properties of the devices, an
anti reflective coating (ARC) was applied to the devices. Finally, the devices
were soldered onto a custom printed circuit board (PCB) to allow capturing of
images from the exposed backside of the device while maintaining full electrical
connectivity.

3.3 PUF Implementation on CPLD

One possibility for implementing arbiter PUFs is to utilize digital multiplexers.
In this case, each PUF stage requires two multiplexers. As each multiplexer is
realized by a LUT, two inputs out of four available inputs of LUT are utilized,
see Figure 2(b). Based on don’t-care inputs, the output of multiplexer can be
loaded from different SRAM cells inside the LUT and take different routes to
the output. This fact leads to different propagation delays, and consequently,
delay imbalances for the two PUF routes. Therefore, due to routing constraints
in a LUT of CPLD, we have implemented the stages by two independent LUTs
as in [17], see Figure 5. To validate our concept, the design consists of an 8-
bit arbiter PUF on the CPLD. Each stage is placed manually in an individual
LAB on the CPLD to make the PUF chains symmetric. Due to very little delay
differences between two chains, the arbiter can sample a meta-stable signal.
Moreover, due to asymmetric length of data and clock lines, the delay between
the outputs of the last stage and the inputs of the arbiter cannot be designed
symmetrically. Hence, instead of using an arbiter, we readout the response by
measuring the overall delays of both chains with the help of photonic emission
analysis.

4 Measurement Approach

For completeness we present in this section two approaches to solve the un-
derlying linear system of arbiter PUFs — first, the slightly more elaborate ap-
proach for MUX-based PUFs although it is unnecessary for our PoC imple-
mentation. Second, the related but simpler approach for our delay-based PUF
implementation.
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4.1 Optimized Measurement for Ordinary MUX-Based PUF
Characterization

In a MUX-based arbiter PUF, each stage consists of four different propagation
delays: two direct path delays and two switching path delays, see Figure 1. In
order to completely characterize an n-stage arbiter PUF, all propagation de-
lays of each stage have to be known, hence, 4n delays must be characterized
in total. One conceivable way would be to naively measure all 4 propagation
delays at all n stages individually by moving the optical setup over both inputs
and both outputs of each stage, and simply try both challenge states. However,
this technique would require the movement of the chip and adjusting the focus
for each movement. However, this process could be automated as well, but our
measurement setup lacked this capability. As our setup has a very high spa-
tial resolution, a precise aperture movement would be very time consuming, but
eventually yield the 4n arbiter delays. While practically certainly feasible and
also theoretically optimal, we can do much better in terms of physical measure-
ment efforts. A more intelligent solution will simply try to measure the overall
propagation delays of each PUF chain at the outputs of the very last stage for
sufficiently many selected challenge combinations. As the overall delay at the
outputs of the last stage is the sum of all n delays in each stage, cf. additive
linear model due to [13,13], every measurement has to consider for every chosen
challenge the complete propagation time of two distinct but possible paths —
the upper output (D input to sampling flip-flop) and the lower output (C input
to sampling flip-flop). If we denote by ri the resulting overall time of an individ-
ual challenge measurement, we conclude that we get an inhomogeneous system
of linear equations

C · δ = r

for our 4n unknowns δia , δib , δic , and δid and the challenge matrix C with entries
from {0, 1} which encode the different valid paths through the arbiter chain. We
call a path ci ∈ {0,1}4n valid if its respective challenge setting within C allows
a full signal propagation of length n, i.e., until its very end. By induction the
following is easy to see.

Proposition 1. For an arbiter PUF of length n ≥ 1 let C be the (2n+1)× (4n)
matrix consisting of all valid paths through the respective arbiter chain. Then
rk(C) = 2n+ 2.

Seeing now that we have only 2n+2 linear independent equations in C, we need
to generate the remaining 2(n− 1) linear independent equations to completely
solve our system in another way. Thus, we are forced to consider also partial
valid paths instead of full propagation paths. Let ci ∈ {0,1}4n be a valid path;
for integers 1 ≤ u, v ≤ n a vector of the form

(0, . . . , 0, c4u, c4u+1, c4u+2, c4u+3, . . . , c4v, c4v+1, c4v+2, c4v+3, 0, . . . , 0) ∈ {0,1}4n

will be called a partial valid path.
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Note 1. For a partial valid path we will measure its signal time only from the
inputs of arbiter stage u until its output at stage v and deliberately denote this
partial time simply also by ri.

Including such partial measurements ri (i.e. including measurements within the
arbiter chain) and their corresponding paths ci we also get by induction.

Proposition 2. For an arbiter PUF of length n ≥ 1 and its 2n+ 2 valid paths
(corresponding to the linear independent row vectors) there exist 2(n− 1) appro-
priate partial valid paths such that their combined challenge matrix C has full
rank 4n.

This Proposition implies that we only need 2(n−1) partial measurements which
we classify with respect to u and v into three classes:

1. u = 1 and 1 ≤ v < n: Measurement begins at the inputs of the first stage
and ends in the middle of the chain.

2. 1 < u, v < n: Measurement starts at some inputs in the middle of the chain
and also ends in the middle of the chain.

3. 1 < u ≤ n and v = n: Measurement starts at the inputs in the middle of the
arbiter chain and and ends after the last stage.

In order to keep the previously discussed physical measurement efforts minimal,
it is therefore obvious to generate the missing linear independent equations out
of group 1 or 3 — dependent on varying setup advantages. This completes our
description of an optimized measurement for a classical MUX-based PUF with
n stages.

4.2 Simplified Measurement for Delay-Based PUFs

As we already pointed out in Section 2.1, we have δia = δid , and δib = δic for
their respective buffers. Moreover, as the two paths, i.e., the upper and the lower
path are not crossing at all, in other words they are disjoint, we can consider
them completely separately, see Figure 5. Towards this, let us consider the upper
path and simply denote its n unknown delays by δ1, . . . , δn. I.e., setting the
respective ith challenge bit to 1 adds the delay δi to the overall complete signal
propagation time which will be denoted by rj for the jth measurement from the
first input until the last output — just through all n stages. If we now define
the distinguished variable Δn+1 as the overall complete signal propagation time
for setting all n challenge bits to 0 we get the (already solved) linear system⎛⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝

Δ1

Δ2

...
Δn

Δn+1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
r1
r2
...
rn
rn+1

⎞⎟⎟⎟⎟⎟⎠
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for which we simply require the measurements ri, i = 1, . . . , n + 1. The lower
path can be handled in an analog way, say C′ ·Δ′ = r′. Moreover, using the unit
vectors ei ∈ {0, 1}n+1, i = 1, . . . , n+ 1, we find that we get from

ei ·Δ− en+1 ·Δ = ri − rn+1, and

ei ·Δ′ − en+1 ·Δ′ = r′i − r′n+1

the two individual buffer delays δi and δ′i of stage i incurred by setting the
ith challenge bit to 1. We thus conclude that we need only 2n + 2 “full path”
measurements to completely characterize a delay-based PUF with n stages.

5 Results

We have chosen the challenge 00000000 as the reference challenge for our mea-
surements. In order to measure the effect of each challenge bit, we have tried the
challenge combinations with hamming distance one to see the effect of each chal-
lenge bit individually. The enable signal was switched with a frequency of 4 MHz
and the chip was supplied with 2.2 V. The optical emission of the PUF circuit
reveals the position of each stage, see Figure 6. Moreover, the inputs and out-
put of each stage for measurement can also be found on this emission image. In
case of controlled PUFs, where no electrical access to challenges is available [8],
comparing the optical emission of the PUF stages can also reveal the state of
individual challenge bits. By changing each challenge bit, the emission pattern
of each LE is changed, and therefore, the challenge can be read without any elec-
trical access to it, see Figure 7. Therefore, the equations provided in Section 4
can still be used to characterize the PUF by finding challenges with hamming
distance one from each other. We repeated the measurement 50 million cycles
to capture enough number of photons for analysis. The reference challenge also
has been measured multiple times during our experiments to compare the con-
sistency of measurements. The measurement results of 8 challenge combinations
compared to the reference challenge can be found in Figure 8. Positive timing
difference means that the delay is decreased in comparison to reference challenge
and vice versa. It can be seen that flipping the challenge bit from 0 to 1, makes
in most cases both upper and lower chains faster. Moreover, the timing differ-
ences between both chains can also be found in the table. Based on the overall
delay difference of two chains, the response can be predicted. In this case, if the
timing difference between two chains is positive, the response is 1, otherwise the
response is 0.

According to the measured values, we can predict the behavior of both chains
for all other challenge combinations based on the linear additive model of the
arbiter PUF. To prove the applicability of this model, we predicted theoretically
the overall delay of both chains for a set of arbitrary challenge combinations,
and then measured the timings in practice. For instance, the calculated timing
difference between both chains for the challenge 00000111 is the sum of measured
differences of challenges 00000001, 00000010 and 00000100, which is 195 ps.
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Fig. 6. The backside reflectance image acquired using a laser scan microscope (left).
Inside the framed area, all programmable logic cells are located. The grid corresponds
to the placement of 4 by 6 LABs with additional routing infrastructure in-between.
Within each LAB, 10 LEs are located (only a single LAB is shown containing the
LEs). Optical emission of the 8-bit arbiter PUF on the CPLD (right). Each stage is
realized by two LEs in a LAB in parallel.

Fig. 7. Reading challenge bit from the emission image of each LE

The measured value is 199 ps, with 4 ps deviation from the predicted value.
However, the response can be clearly predicted as logical 1 due to large positive
difference. Another example shows that by applying a set of challenges, such as
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Fig. 8. Measurement results of challenge combinations with hamming distance one (the
8 combinations from the left). Measurement results of set of arbitrary challenge com-
bination (the last 8 combinations from the right). The reference challenge is 00000000.

00100101, the timing difference between two chains will be quite small both in
calculation and measurement. Hence, these combinations can drive the arbiter
into a metastable condition, and the response will not be consistent. It can also
be seen in the results that although the PUF is implemented symmetrically on
the hardware, a set of challenge bits can have much more effect on the delay of the
chain than others. For example, when the second challenge bit is flipped, large
delay difference on the lower chain is observed. As it can be seen in Figure 8,
by applying the challenge 10101010, four challenge bits are flipped from the
reference challenge. Although the flipping effect of 4th, 6th and 8th bits are
comparable to each other, the 2nd bit has much more effect that make the
response prediction much easier. These dominant stages have more influence
on the response than other stages, and make the response prediction easier.
Therefore, finding these stages can potentially turn out a threat for arbiter PUFs.

6 Discussion

In order to obtain spatial orientation of the PUF circuit by the CCD detector,
the chip has to be thinned. Thinning the silicon substrate from the backside of
the chip can destruct the PUF. However, the InGaAs SAPD is still able to detect
photons without thinning the substrate. Therefore, only one IC sample has to be
thinned, if we want to apply the same approach on multiple IC samples. While
our proof of concept implementation utilized a CPLD, the results are directly
applicable to all classes of arbiter PUFs realized in CMOS. All CMOS devices are
vulnerable to photonic emission analysis, as the transistors emit photons during
switching. Therefore, the same measurement methodology can be applied to all
platforms, such as FPGAs or Application Specific Integrated Circuits (ASICs).
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Although our experiment was conducted with an 8-bit arbiter PUF, the same
delay measurement technique can be applied to arbiter PUFs with higher number
of stages. In comparison to machine learning attacks, our methodology requires
far less challenges to predict the response. Furthermore, no response is required
to physically characterize the PUF. Logistic regression classification model re-
quires 2555 and 18050 CRPs for a response prediction rate of 99% for an 64-bit
and 128-bit Arbiter PUF, respectively [24]. Our approach requires only the mea-
surement of 65 challenges for 64-bit and 129 challenges for 128-bit. Moreover,
XOR-arbiter PUFs with 9 parallel 64 and 128 stages are modeled with 200000
and 500000 CRPs, receptively, plus the power side channel information for a
95% response prediction rate [16]. In this case, our methodology requires only
9 × 65 and 9 × 129 challenges for 64-bit and 128-bit arbiter PUF, respectively.
This shows that the number of required challenges in our approach increases only
linearly with the increase of number of stages. Furthermore, having XOR at the
end of multiple chains has no impact on the linearity of our approach. How-
ever, trying the same challenge more than one million times to capture enough
photons by the detector, is the disadvantage of this methodology. Besides, our
attack requires direct physical access to the DUT, while it may not be required
by modeling attacks.

Measuring the effect of each challenge takes approximately 12.5 seconds by
supplying the chip with 2.2 V and enabling the PUF input with 4MHz frequency.
Supplying the chip with 1.8 V, for example, reduces the number of emitted
photons by a factor of 3, and the measurement time increases consequently by
a factor of 3. However, we can increase the frequency to 100MHz to increase the
number of emitted photons and to reduce the measurement time. Furthermore,
immersion objectives or objective lenses with larger numerical aperture can be
utilized to reduce the measurement time for each challenge to under 1s. Our
physical characterization of an arbiter PUF can also find the dominant stages in
the chain. Measuring a set of dominant stages can make the response prediction
much easier. Therefore, this technique can help to improve the PUF behavior
by designing and constructing more balanced routes and stages.

7 Conclusion

In this work, we demonstrated how photonic emission analysis from the backside
of the chip can help us to physically characterize arbiter PUF. The experimen-
tal results with minimum number of measurements have shown that the arbiter
PUF can be effectively characterized. The comparison between our approach and
modeling techniques has shown that our methodology requires far less challenges
than modeling attacks. Furthermore, our technique does not require any PUF
response. Although we carried out our experiments on a CPLD PUF implementa-
tion, the same methodology can be applied to other hardware implementations.
As a result, it is revealed that the timing-based PUFs, specifically arbiter PUFs,
are vulnerable to photonic emission analysis.
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Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Heidelberg (2003)

32. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14. ACM (2007)

33. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

https://eprint.iacr.org/2013/632


Bitline PUF: Building Native

Challenge-Response PUF Capability
into Any SRAM

Daniel E. Holcomb and Kevin Fu

University of Michigan, Ann Arbor MI 48109, USA
{danholcomb,kevinfu}@umich.edu

Abstract. Physical Unclonable Functions (PUFs) are specialized cir-
cuits with applications including key generation and challenge-response
authentication. PUF properties such as low cost and resistance to inva-
sive attacks make PUFs well-suited to embedded devices. Yet, given how
infrequently the specialized capabilities of a PUF may be needed, the
silicon area dedicated to it is largely idle. This inefficient resource usage
is at odds with the cost minimization objective of embedded devices.
Motivated by this inefficiency, we propose the Bitline PUF – a novel
PUF that uses modified wordline drivers together with SRAM circuitry
to enable challenge-response authentication. The number of challenges
that can be applied to the Bitline PUF grows exponentially with the
number of SRAM rows, and these challenges can be applied at any time
without power cycling. This paper presents in detail the workings of the
Bitline PUF, and shows that it achieves high throughput, low latency,
and uniqueness across instances. Circuit simulations indicate that the
Bitline PUF responses have a nominal bit-error-rate (BER) of 0.023 at
1.2 V supply and 27◦C, and that BER does not exceed 0.076 when sup-
ply voltage is varied from 1.1 V to 1.3 V, or when temperature is varied
from 0◦C to 80◦C. Because the Bitline PUF leverages existing SRAM
circuitry, its area overhead is only a single flip-flop and two logic gates
per row of SRAM. The combination of high performance and low cost
makes the Bitline PUF a promising candidate for commercial adoption
and future research.

Keywords: VLSI, SRAM, PUFs, Strong PUFs.

1 Introduction

An emerging alternative to classical cryptography in embedded systems is the
use of physical unclonable functions (PUFs). PUFs use random manufacturing
variations constructively, either to generate cryptographic keys, or to implement
physical hash functions for challenge-response authentication [32]. The secret key
style of PUF is sometimes called a weak PUF, and PUFs capable of challenge-
response hashing are sometimes called strong PUFs [7]. We adopt the weak
versus strong naming convention for this paper, and further clarify that strong
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PUF here denotes a circuit that natively provides physical challenge-response
hashing, to distinguish it from a weak PUF that is used to key a classical hash
function to provide the logical equivalent of a strong PUF.

In this paper we present a novel strong PUF termed the Bitline PUF. The
Bitline PUF leverages the storage cells and support circuitry of SRAM to save
area cost, and achieves high throughput by using individual SRAM columns as
parallel PUFs instances. The main contributions of this paper are as follows:

– We present the first strong PUF that creates responses from contention be-
tween cells in pre-existing circuitry.

– We show that adding a small amount of circuitry to SRAM creates a new
strong PUF based on bitline contention.

– We present in detail the operation of the Bitline PUF and analyze its through-
put, latency.

– We evaluate using circuit simulation the uniqueness, reliability, power con-
sumption, and susceptibility to modeling attacks of the Bitline PUF.

2 Static Random-Access Memory

Static Random-Access Memory (SRAM) is a ubiquitous building block of inte-
grated circuits that is found in caches, register files, and buffers. Single VLSI
circuits commonly contain millions of bits of SRAM storage. Each bit of SRAM
is typically implemented by a single 6-transistor cell (Fig. 1a). An SRAM cell
has two stable states, and in each stable state node A or B is pulled high through
transistor p1 or p2 while the other is pulled low through n1 or n2. The cell is
read and written using complementary bitlines (BL) and (BLB) through two
access transistors n3 and n4. The two access transistors of a cell are controlled
by a single wordline.

The SRAM cells in a memory are arranged in a matrix of rows and columns
(Fig. 1b). SRAM cells in the same column share common bitlines and hence only
one cell per column is accessed at any time. SRAM cells in the same row share
a wordline but have independent bitlines and are therefore read and written in
parallel as data words. Each SRAM column uses support circuitry to read and
write its cells. A cell is written by setting one bitline high and the other low and
then asserting the wordline to transfer the bitline values to the cell.

An evaluation of the Bitline PUF is similar to an SRAM read operation,
and hence a detailed explanation of the SRAM read operation is given here as
background. The support circuitry for a read operation comprises precharge logic
at the top of each column and a sense amplifier at the bottom (Fig. 1c). Fig. 2a
shows the timing of the control signals (PRE,WL, and RE) for a read operation
and shows overlaid bitline waveforms from reading cells with different process
variations. During an SRAM read operation, both bitlines are first charged and
equalized by the precharge circuit at the top of the column. Next, the precharge
signal (PRE) goes high to end the precharge phase and the wordline (WL) for a
single row is asserted. The wordline connects a cell to the precharged bitlines and
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of an SRAM column

Fig. 1. SRAM cells are arranged in a matrix of rows and columns. SRAM rows share
wordlines, and columns share bitlines. Each column uses a precharge circuit and a sense
amplifier to perform read operations. Note that the circuitry used for writing values to
cells is not depicted.

depending on the state of the cell, transistor n1 or n2 will begin to discharge one
of the bitlines through the corresponding access transistor. The discharge rate
of the bitline varies depending on the random variation of the transistor that is
discharging it [8]. A fixed time after the wordline is asserted, a read-enable signal
(RE) is asserted to activate the sense amplifier. The sense amplifier detects the
difference in voltage across the two bitlines and generates from it a digital 0 or
1 value. The digital value in the sense amplifier is the final result of the SRAM
read operation, and can be sent out of the SRAM.

3 System Description of Proposed Bitline PUF

The proposed Bitline PUF is a novel PUF formulation that borrows much of its
circuitry from SRAM. The operation of the Bitline PUF can be viewed as an
attempt to read multiple cells in a column at the same time, creating contention
that is resolved according to process variation. A challenge is applied to the
PUF by pre-loading chosen values into the cells, and choosing the wordlines to
concurrently activate. The PUF response is simply the value that the SRAM
produces from a read operation when the challenge condition is applied. The
Bitline PUF requires additional circuitry to enable the concurrent activation of
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(b) Bitline PUF evaluation

Fig. 2. SRAM read operation and bitline PUF evaluation use the same control signal
timing. The precharge signal (PRE) is asserted to stop charging the bitlines, and the
wordline (WL) is asserted to begin the discharging of the bitline. The read enable
signal (RE) is asserted 2 ns later to activate the sense amplifier that detects the voltage
difference between the two bitlines. The thin lines (BL and BLB) are overlaid plots
of the bitline voltages from 30 different trials; only one bitline discharges in the read
operation, but in the PUF evaluation both bitlines initially discharge and then stabilize
with one high and one low.

multiple wordlines because the capability of activating multiple wordlines has
no use in SRAM’s traditional tasks of reading, writing, and storing data.

Let the challenge applied to a Bitline PUF be C : {c0, c1, . . . , cY−1}, where Y
is the number of rows in the SRAM. Each element ci of the challenge corresponds
to SRAM row i as follows, and we say that any row is active in a challenge if its
corresponding challenge element (ci) is either 0 or 1.

– if ci = 0, then row i is loaded with 0s and WLi is on during evaluation.
– if ci = 1, then row i is loaded with 1s and WLi is on during evaluation.
– if ci = 2, then row i is loaded with 0s and WLi is off during evaluation
– if ci = 3, then row i is loaded with 1s and WLi is off during evaluation

A single SRAM column constitutes a Bitline PUF with a 1-bit response, and
Bitline PUFs are therefore inherently parallel because a challenge is applied con-
currently tomany SRAM columns. Let a 1-bit PUF at column i be denotedPi, and
its response to challenge C be denoted Pi(C). Let an X-column Bitline PUF be
denoted P0:X−1 and its response be P0:X−1(C) = {P0(C), P1(C), . . . , PX−1(C)}.
Note that for simplicity the same challenge is applied to all columns of the SRAM
PUF1. Therefore, a Bitline PUFwith Y rows andX columns has 4Y possible chal-
lenges and 2X possible responses.

1 Different challenges can be applied to different columns provided that the challenges
agree on which rows are active. This can be particularly useful in the case of inactive
rows that retain pre-existing data through a challenge.
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3.1 Challenge-Response Operation

The sequence of events necessary to operate the Bitline PUF is shown in Fig. 3.
The first two phases set up the desired challenge by loading values into SRAM
cells and enabling the appropriate wordlines. The final phase evaluates the PUF
response by reading the value produced when the challenge is applied. The Bit-
line PUF evaluation is destructive with respect to active rows only. It is therefore
possible to use only some rows of SRAM as part of a Bitline PUF evaluation
while others rows are being used as storage. The three phases of operation are
described in the following paragraphs.

Fig. 3. Sequence of operations for evaluating the PUF response to a challenge

Write Values into SRAM Cells. The values loaded into the SRAM cells
of active rows will determine which transistors will ultimately be used to dis-
charge the bitlines during the evaluation of the PUF response. To load a specific
challenge, the cells of each row i are written with the value specified by ci. The
SRAM cells, as in other write operations, are written one row at a time, so the
time to write all Y rows is Y cycles.

Load Wordline Drivers Using Accumulators. The proposed SRAM PUF
requires augmentation to the wordline control circuitry so that multiple word-
lines can be concurrently enabled during PUF evaluation. In a typical SRAM,
an externally supplied log2(Y )-bit address is decoded to select exactly one of the
Y rows for reading; the selected row then uses a clocked driver to set its wordline
high at the appropriate time during the clock cycle. The proposed PUF requires
multiple wordlines to be concurrently enabled, and this can be accomplished
by having at the input of each wordline driver a flip-flop (Fig. 4) that accumu-
lates wordline activation signals. At the start of the second phase of Fig. 3, the
accumulator of every wordline is reset. In each of the subsequent Y cycles, a
log2(Y )-bit select signal sets high the flip-flop of one active wordline. Once all
flip-flops are appropriately loaded, an evaluation signal passes the loaded values
to the wordline drivers, so that multiple wordlines are asserted in the same cycle
during the PUF evaluation. One wordline accumulator per SRAM row is the
only additional circuitry required to create bitline PUFs from an SRAM.

Evaluate Responses. Evaluating the PUF response is identical to an SRAM
read operation, except that multiple wordlines are asserted. For each column,
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Fig. 4. The wordline accumulator circuit enables sequential loading and concurrent
activation of wordlines

the cells at any active row will discharge one of the two complementary bitlines,
and considering that different cells in the column will discharge each bitline, this
causes both bitlines of a column to be discharged during the evaluation. The
discharging of bitlines for a variety of challenges are shown in Fig. 2b. While
both bitlines initially discharge, there is no stable state in which both bitlines
are fully discharged due to the cross-coupled inverters in the active SRAM cells.
Contention thus ensues until a stable state is reached with one bitline charged
and the other fully discharged. Note that the charged bitline in the stable state
does not charge all the way to Vdd, but only charges to Vdd − Vth because it is
being pulled high by SRAM cells through an NMOS access transistor that causes
a voltage drop of Vth. If the bitlines reach a stable state in the time between
the assertion of the wordline and the assertion of the read enable (RE) signal,
then the sense amplifier unambiguously detects the large differential voltage of
±(Vdd − Vth) across the bitlines, and generates a digital output as in a normal
SRAM read operation. This output is the response to the applied challenge.

3.2 Performance

The three phases of Bitline PUF operation (Fig. 3) define its latency and through-
put. All cells are written in Y cycles, all wordline accumulators are loaded in
Y additional cycles, and all X columns are evaluated in parallel during a single
cycle. Therefore, the latency to obtain an X-bit response is 2Y + 1 cycles and
the response throughput is X

2Y +1 . For a 256-column by 256-row SRAM with a
5ns cycle time, this corresponds to a latency of 2.6 μs and a response throughput
of 99.8 Mbps.

4 Methodology

The results in this paper are obtained from circuit simulation using the Ngspice
simulator (Rev 25). On account of the long runtimes of large SPICE simulations,
the columns of the simulated bitline PUFs have only 16 rows, whereas a real
SRAM would typically have hundreds of rows.

4.1 Transistor Models and Sizing

Transistor and interconnect models are from the freely-available Predictive Tech-
nology Model (PTM). More specifically, the transistor models are BSIM4 PTM
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Table 1. Transistor sizes and process variation. The transistor sizes used within SRAM
cells are adopted from Nii et al. [23], and threshold voltage variation depends on tran-
sistor size (Eq. 1).

Sizing Process Variation

W [nm] L [nm]
vth0 [mV] lint [nm]
μ σ μ σ

SRAM cell
n1,n2 200 90 397 13.4 7.5 3
n3,n4 140 90 397 16.0 7.5 3
p1,p2 140 90 -339 16.0 7.5 3

Sense Amp
& Precharge

NMOS 1000 90 397 6.0 7.5 3
PMOS 1000 90 -339 6.0 7.5 3

models for a 90 nm process [29]. Transistor sizes are shown in Tab. 1; the six
transistors in the SRAM cell are sized to match the design of Nii et al. [23], and
the transistors in the sense amplifier and precharge circuits are upsized.

4.2 Bitline Model

To better represent a real design, the 16 SRAM rows simulated are modeled
as being distributed over a typical-length bitline. In this way, the 16 rows can
be considered as existing among many others within a realistic-sized SRAM.
Keeping with the work of Nii et al. [23], we assume for bitline modeling an
SRAM with 520 rows and a cell height of 0.72 μm, for a total length of 374.4 μm
per bitline. According to the PTM interconnect calculator [30], a 374.4 μm
local interconnect in 90 nm technology has a total resistance of 183.04 Ω and
capacitance of 69.67 fC. The resistance and capacitance is distributed such that
the bitlines between each of pair of adjacent rows is implemented by a wire model
with an 11.44 Ω resistance between two capacitors of 2.17 fC each.

4.3 Process Variation

To model process variations from fabrication, random parameter variation is
applied to every transistor of each PUF instance. The transistor parameters
determining threshold voltage and length are replaced by normally distributed
N (μ, σ2) random variables. Table 1 shows the mean and standard deviation for
each such parameter.

Random dopant fluctuation is represented in transistor parameter vth0. The
mean value for threshold voltage is the default value in the transistor model, and
the standard deviation depends on transistor geometry according to Eq. 1 [27];
larger devices have less threshold variation than the small devices in the SRAM
cells. We use a value of 1.8 mV μm for AV T [31].

σV T =
AV T√
WL

(1)
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Variations in effective transistor length are represented by changes to param-
eter lint2. The nominal value of lint is 7.5 nm and its standard deviation is
set to 3 nm based on the observation that effective transistor length has a 3σ
value that is 10% of overall transistor length [1]

4.4 Modeling Noise

Thermal noise is modeled in SPICE by transient random voltage sources. As
represented by small grey circles in Fig. 1a and Fig. 1c, noise sources are added
between the cross-coupled state nodes of SRAM cells [34] and sense amplifiers.
The magnitude of thermal noise at each node depends on the node capacitance
(Eq. 2). The standard deviation of noise for each SRAM cell node is set to 4.5mV,
and for each sense amplifier node is 1.7 mV3.

σNOISE =

√
kBT

C
(2)

5 Evaluation

The simulation methodology explained in the previous section is used for exper-
imental evaluation of the Bitline PUF. Uniqueness of responses, and reliability
with respect to temperature and supply voltage variation are evaluated. Finally,
power consumption and susceptibility to modeling attacks are considered. These
experimental results indicate that the Bitline PUF is promising as a reliable and
unique strong PUF.4

5.1 Unbiased Challenges to Elicit Unique Responses

The mixture of ci values in each challenge can bias PUFs toward producing
0-responses or 1-responses, but ideal challenges should produce either response
with equal probability across a population. From a circuit perspective, ideal
challenges should discharge both bitlines with equal strength to increase the
sensitivity of response to process variations. For a symmetric SRAM cell, where
only variation differentiates n1 and p1 from n2 and p2, the two complementary
bitlines discharge with equal strength when the same number of NMOS transis-
tors (i.e, n1 or n2 of each active cell) are discharging each one. The challenges
that cause this situation are those having an equal number of ci = 0 and ci = 1
values, along with some unspecified mixture of inactive rows with ci = 2 or
ci = 3; challenges satisfying this condition are therefore denoted as “unbiased”.

2 lint, standing for internal length, represents the difference between nominal and
effective transistor length

3 Ngspice source vxx a an dc 0 trrandom (2 100p 0 1.7m 0)
4 All software used in experiments is freely available, and the source code for all
experiments in this paper is provided online at
https://spqr.eecs.umich.edu/papers/Holcomb-bitline-CHES2014.zip

https://spqr.eecs.umich.edu/papers/Holcomb-bitline-CHES2014.zip


518 D.E. Holcomb and K. Fu

The heat map of Fig. 5a confirms that unbiased challenges are the ones most
likely to elicit different responses from different PUF instances. For each of the 64
squares in the plot, 1000 randomly generated challenges with the specified num-
ber of 0s and 1s are created. Each of the challenges is applied to two randomly
selected PUF instances to check whether the responses differ. For the unbiased
challenges, along the diagonal of Fig. 5a, the responses of the two PUFs differ in
roughly half of all trials. For challenges that are slightly biased (i.e. close to the
diagonal), the PUFs sometimes produce differing responses. For challenges that
are highly biased (e.g. at the upper left and bottom right corners of Fig 5a), all
PUF instances produce the same response.

The number of unbiased challenges having exactly k challenge values with
ci = 0 and k with ci = 1 is given by n′k(Y ) (Eq. 3). The number of total
unbiased challenges with any number of ci = 0 and ci = 1 values is given by
n(Y ) (Eq. 4). The number of unbiased challenges is exponential in the number
of rows Y (i.e. the challenge size). Therefore, an adversary cannot hope to mimic
a PUF by simply recording all challenge-response pairs, and must instead resort
to predicting responses using a parametric model [17,33] (see Sec. 5.4).

n′k(Y ) =
(
Y

k

)
∗
(
Y − k
k

)
(3)

n(Y ) =
∑

k=1... Y2

n′k(Y ) (4)
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Fig. 5. Challenges with equal numbers of 0 and 1 values are most likely to produce
different responses across PUF instances. We refer to these challenges as unbiased. The
number of unbiased challenges grows exponentially in the number of SRAM rows; this
is depicted at right where Y is the number of rows and n(Y ) (Eq. 4) is the number
of unbiased challenges. The thin lines at right depict n′

k(Y ) (Eq. 3), the number of
unbiased challenges with exactly k 0s and k 1s, for all values of k.
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5.2 Within-Class and Between-Class Hamming Distances

A single PUF should always respond to the same challenge similarly, and two
PUF instances should never respond to the same unbiased challenges similarly.
For a challenge C, a comparison of two responses from the same PUF is de-
noted “within-class”, and a comparison of responses from two different PUFs
is denoted “between-class.” Hamming distance (Eq. 5) is used to quantify the
similarity of responses in each between-class or within-class comparison. Within-
class distances are a measure of unreliability, and between-class distances are a
measure of uniqueness.

Within-class and between-class Hamming distances are evaluated experimen-
tally on 32-column bitline PUFs. For each of 200 random unbiased challenges, 5
PUF instances are generated and the challenge is applied 6 times to each. Within-
class distances are obtained by comparing the responses of the same PUF to the
same challenge, and between-class distances are obtained by comparing the re-
sponse of different PUFs to the same challenge. The separability of within-class
and between-class Hamming distances (Fig. 6) implies that responses are unique
across Bitline PUF instances. The average within-class Hamming distance is 0.75
for a 32-bit response, and the average between-class distance is 16.01.

HD(P0:X−1, P
′
0:X−1, C) =

∑
i=0...X−1

Pi(C)⊕ P ′
i (C) (5)
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Fig. 6. Within-class and between-class Hamming distances for 32-bit PUF responses.
The separation between the distributions shows uniqueness of instances.

5.3 Sensitivity to Supply Voltage and Temperature Variations

A PUF response should not be highly sensitive to changes in supply voltage or
temperature, as this would restrict its useful application to tightly controlled en-
vironments. PUF responses at the nominal operating conditions of 1.2 V supply
and 27◦C are compared against a variety of temperatures from 0◦C to 80◦C and
supply voltages from 1.1 V to 1.3 V (Fig. 7). For each comparison 10,000 random
PUF instances are created. For each instance, a randomly chosen unbiased chal-
lenge is applied to the PUF at both conditions; the BER is the fraction of these
10,000 trials in which the two responses differ. While changing supply voltage
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Fig. 7. Bit error rate of responses when one is collected at nominal conditions of 1.2 V
and 27◦C, and the second at a different supply voltage or temperature.

or temperature does increase the BER of responses, at all tested conditions the
BER remains less than 0.076.

5.4 Modeling Attacks

The Bitline PUF is susceptible to modeling attacks if the challenge-response pairs
(CRPs) can be observed, and therefore care must be taken to avoid or obfuscate
the CRPs of the Bitline PUF. Otherwise, an adversary can use a parametric
model to predict the PUF response to any challenge [17,33], without needing a
dictionary of all possible challenge response pairs.

We demonstrate a modeling attack on bitline PUFs using support vector ma-
chine (SVM) classification. The task of the SVM classifier is, after training on
some number of observed CRPs, to correctly predict responses to new chal-
lenges. To use SVM classification, each CRP is converted to a pair (x, y) |x ∈
{0, 1}4Y , y ∈ {−1,+1} where Y is the number of rows in the PUF and the num-
ber of values in the challenge. In the pair (x, y), x represents the challenge and
is determined according to Eq. 6, while y represents the response of the PUF to
the challenge. Note that for SVM classification, negative responses are entered
as the value -1 instead of 0.

x4i:4i+3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 0, 0, 0 if ci == 0

0, 1, 0, 0 if ci == 1

0, 0, 1, 0 if ci == 2

0, 0, 0, 1 if ci == 3

(6)

Fig. 8 shows the prediction accuracy of SVM classification using the tool
SVM light [13], applied to three different bitline PUF instances. For each PUF in-
stance, 1000 CRPs are collected and cross-validation is used to examine how the
prediction accuracy varies with the size of the training set. After 500 CRPs are
observed, responses can be predicted with approximately 90% accuracy. While
for clarity only three PUFs are plotted in Fig. 8, these three results are typical
of observed prediction accuracy trends for bitline PUFs.

Parametric models exist for many PUFs including the arbiter PUF [17,33].
Yet, the practical usefulness of PUFs with parametric models is not diminished
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Fig. 8. Modeling attacks are possible if the challenge-response pairs of bitline PUFs
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Fig. 9. While a bitline PUF is metastable, there exists a current path from supply
to ground through active SRAM cells. The average power of a bitline PUF evaluation
therefore exceeds that of an SRAM read operation, and increases with the number of
active cells in a challenge.

because modeling resistance can be assured through obfuscating or preventing
access to the PUF responses [36]. The Bitline PUF is uniquely suited to protec-
tion via access control because it uses ordinary SRAM, and as such can employ
SRAM access protection mechanisms including ARM TrustZone [2].
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5.5 Power Consumption

The power consumption of a bitline PUF evaluation is higher than that of a
standard SRAM read operation. More specifically, a bitline PUF draws signifi-
cant current during metastability when the bitline potentials are approximately
equal. During metastability, all of the cells that are active in the challenge are
drawing current, either through p1 and n2, or else through p2 and n1.

Fig. 9a shows a normal SRAM read operation and its current draw; the
most significant instantaneous currents are consumed when the bitlines are
precharged, and when the sense amplifier turns on. During a bitline PUF evalua-
tion (Fig. 9b), an additional third current spike is observed during metastability.
The power consumed by a bitline PUF evaluation depends on the size of this
current spike. When more cells are active, there is a potential for larger instan-
taneous current and therefore higher power. Fig. 9c shows that average power
increases with the number of rows that are active in a challenge.

6 Related Work

Strong PUFs are marked by the ability to map challenges to responses according
to a function determined by random physical variations. The first such PUF was
based on optical scattering [26], but the practicality of strong PUFs increased
with the invention of silicon PUFs that can be integrated in VLSI circuits. The
first and best-known silicon PUFs are delay-based PUFs [6] including the arbiter
PUF [16] and variants thereof [21,18].

The Bitline PUF shares many similarities with two particular strong PUFs –
the bistable ring PUF [5] and a low power current-based PUF [20]. The similarity
to the bistable ring PUF is the use of controllable electrical contention that
resolves to one of two states according to variation. The similarity to the current-
based PUF is the use of a sense amplifier to detect a differential signal from a
controllable set of variation-sensitive elements; the significant difference is that
the Bitline PUF uses pre-existing variation-sensitive elements (SRAM cells) and
sense amplifiers.

Weak PUFs do not perform challenge-response hashing, but instead func-
tion as physically obfuscated keys. Weak PUFs can either use special purpose
variation-sensitive circuits or clever ways of detecting variations in existing cir-
cuits. Examples of custom-circuit weak PUFs include designs based on variations
in drain currents [19], stabilization of cross-coupled devices [35], stabilization of
cross-coupled devices in the presence of delay variations [22], and the skewed
tendencies of sense amplifiers [3]. Examples of weak PUFs utilizing variations
in existing circuitry include ones based on clock skew [14,37] and random flash
memory latencies [28].

Several prior works have proposed PUFs based on ordinary or slightly mod-
ified SRAM. A common mechanism used by SRAM PUFs is the uniqueness of
power-up state [11,7]. The reliability of SRAM power-up state PUFs can be
enhanced by detecting and using only cells with large mismatch [10], or by elec-
trically biasing cells to reinforce inherent tendencies [4]. Aside from power-up
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state, a PUF can be created from ordinary SRAM using unique minimum data
retention voltage signatures [12] or failure signatures from attempted writes at
low voltages [38]. PUF mechanisms in modified SRAM arrays include unique
signatures based on error locations under varied wordline duty cycles [15], and
the resolution of SRAM cells under a non-standard metastable write [24]. The
significant difference between the Bitline PUF and prior SRAM-based PUFs is
that the Bitline PUF generates responses based on mismatch across the cells
within a column, instead of just mismatch within a single SRAM cell.

7 Future work

As this work is the first to propose the Bitline PUF, there are many interesting
directions that warrant future research. The reliability of Bitline PUF responses
with respect to circuit aging should be considered, as well as its susceptibility
to cloning attacks [25,9]. For SRAM with asymmetric cells or timing mismatch
in the wordline drivers, unbiased challenges may not be those with an equal
number of 0 and 1 values, and future work can consider the problem of finding
challenges to maximize the uniqueness of responses in these cases. Finally, we
will look to fabricate an SRAM with the wordline accumulator circuits that are
required for bitline PUF operation, and use data from this implementation to
further evaluate the Bitline PUF.

8 Conclusion

This work presents a new PUF design termed the Bitline PUF. The Bitline PUF
is a low cost solution that shares most of its circuitry with SRAM, and is created
by adding two logic gates and a flip-flop to the wordline driver of each SRAM
row to enable challenge-response hashing. The Bitline PUF, applied to a SRAM
of typical size, has a response latency of 2.6 μs and response throughput of
99.8 Mbps. Circuit simulation indicates that responses produced by the Bitline
PUF in 90 nm technology have a nominal bit error rate of 0.023, and that the
bit error rate does not exceed 0.076 for any supply voltage between 1.1 V and
1.3 V, or temperature between 0◦C and 80◦C.
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33. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.:
Modeling Attacks on Physical Unclonable Functions. In: CCS 2010: Proceedings
of the 17th ACM Conference on Computer and Communications Security (2010)

34. Seevinck, E., List, F.J., Lohstroh, J.: Static-noise Margin Analysis of MOS SRAM
cells. IEEE Journal of Solid-State Circuits 22(5), 748–754 (1987)

35. Su, Y., Holleman, J., Otis, B.: A 1.6 pj/bit 96% Stable chip-ID Generating Circuit
Using Process Variations. In: International Solid State Circuits Conference, pp.
406–407 (2007)

36. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation. In: DAC 2007: Proceedings of the 44th Annual Design
Automation Conference (2007)

37. Yao, Y., Kim, M., Li, J., Markov, I.L., Koushanfar, F.: ClockPUF: Physical Un-
clonable Functions Based on Clock Networks. In: DATE 2013: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 422–427 (2013)

38. Zheng, Y., Hashemian, M.S., Bhunia, S.: RESP: A Robust Physical Unclonable
Function Retrofitted into Embedded SRAM Array. In: DAC 2013: Proceedings of
the 50th Annual Design Automation Conference (2013)



Embedded Evaluation of Randomness

in Oscillator Based Elementary TRNG

Viktor Fischer1 and David Lubicz2,3

1 Laboratoire Hubert Curien, Université Jean Monnet, Université de Lyon,
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Abstract. Jittery clock signals produced in oscillators, particularly in
ring oscillators are commonly used as a source of randomness in true
random number generators (TRNG). The robustness of the generators,
and hence their security, is closely linked to the entropy of the generated
bit stream, which depends on the size of the jitter. Known jitter size can
be used as an input parameter in a stochastic model for the estimation
of entropy. Good entropy management can guarantee the security of the
generator. We propose a simple precise method for measuring jitter that
can be easily embedded in logic devices. It can be used to calibrate an
oscillator based TRNG and/or for assessment of the entropy rate while
the TRNG is in operation. The method was thoroughly evaluated in
simulations and hardware tests and we show that despite its simplicity
and small area requirements, it enables the jitter to be measured with
an error of less than 5 %.

Keywords: hardware random number generators, ring oscillators, jitter
model, entropy, statistical tests.

1 Introduction

Random numbers play a crucial role in modern cryptography: they are used
as confidential keys, initialization vectors, padding values, and also as random
masks in side-channel attack countermeasures. Since the era of Kerckhoff, cryp-
tographic algorithms have been designed to be secure so that even if their prin-
ciple is known by adversaries, useful information cannot be accessed without
knowledge of the secret key. The security of modern cryptographic systems us-
ing approved cryptographic algorithms is thus based on the confidentiality of the
cryptographic keys generated in random number generators. If the secret key is
compromised, the whole cryptographic system may be compromised.

This is why random number generators have attracted the attention of re-
searchers, especially in last two decades. Nevertheless, designing a good true
random number generator (TRNG) that can be easily implemented in logic de-
vices is still a challenge, mainly because digital integrated circuits offer only a
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limited choice of sources of randomness, such as clock jitter [14], metastability
[19], oscillatory metastability [18], write collisions in dual-port RAMs [7] or ran-
dom initialization of a bi-stable circuit [16]. Furthermore, most of these sources
are very sensitive to variations in environmental conditions. This makes even a
seamlessly good TRNG vulnerable to attacks [12].

Although some published designs were said to be provably secure, it turned
out that they cannot resist some active attacks [2]. Instead of relying on the
robustness of the proposed principles, designers should thus propose efficient,
on-line tests that are capable of rapidly detecting any deviation from normal
behavior. Unfortunately, high quality standard statistical tests [13] are too slow
and too expensive.

The aim of this paper is to provide a simple efficient way to evaluate the source
of randomness directly in the device and to estimate on-line the entropy of the
generated signal in a dedicated and consequently efficient and rapid statistical
test.

Very few methods of the embedded measurement of the clock jitter as a source
of randomness were published up to now. Moreover, they are complex and not
aimed for cryptography [20] or they cannot distinguish the jitter coming from
the thermal noise from that coming from the flicker noise that is known to be
autocorrelated [17].

Our contribution

1. We propose an original, simple, precise method of jitter measurement that
can be implemented inside logic devices.

2. We demonstrate that together with a suitable statistical model (e. g. [1]),
the measured jitter can be used to estimate entropy at the output of the
generator.

3. We show that the proposed entropy estimator can serve as a basis for a
rapid on-line dedicated statistical test, that is perfectly adapted to the gen-
erator’s principle. This approach complies with recent recommendations for
evaluation of TRNGs [10].

Organization of the paper: in Section 2, we discuss basic security requirements
for random number generators in cryptography. In Section 3, we describe an
elementary oscillator-based random number generator and its characteristics.
Section 4 is dedicated to the new randomness evaluation method, which is then
evaluated by simulations in Section 5. In Section 6 we describe the implemen-
tation of the method in hardware. We discuss our results in Section 7 and in
Section 8 we draw some conclusions.

2 Security Requirements on RNGs in Cryptography

Security of a TRNG design must be thoroughly evaluated [5]. Namely, two se-
curity requirements must be fulfilled:
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– The statistical quality of generated numbers guarantees that attacks can only
succeed by using an exhaustive search for the secret.

– Unpredictability means that even knowing the last generator’s output, no
other output can be predicted with non-negligible probability in a forward
or backward direction.

While the statistical quality of the generated numbers is relatively easy to
verify, evaluating unpredictability is not straightforward, since it cannot be mea-
sured or tested. The entropy (and thus unpredictability) can only be estimated
using a stochastic model.

A perfect generator should be robust against environmental fluctuations, aging
and attacks. In practice, perfect and permanent robustness against attacks and
manipulations cannot be reached. Even a generator that is robust to all known
attacks may be vulnerable to new attacks in the future. The only way to ensure
long term resistance against attacks is to execute permanently dedicated on-line
tests able to detect, quickly and reliably, even temporary reduction of the entropy
rate. Embedded tests must be based on existing stochastic model having, as an
input parameter, the size of the physical phenomenon that is used as a source
of entropy (e. g. the clock jitter).

We can conclude that permanent evaluation of the entropy contents of the raw
binary signal, which is the main objective of this paper, will ensure all security
requirements are respected.

3 Elementary Oscillator-Based Random Number
Generator

In this section, we present a structure called an elementary oscillator-based
TRNG (EO TRNG). This structure is useful for several reasons: (1) it is simple
enough so that a comprehensive and relatively simple statistical model can be
created (see [1]); (2) it can be used as a basic building block for almost an entire
class of oscillator-based TRNGs; (3) it can be used as a construction element for
a scalable TRNG.

3.1 Definition of the Elementary Oscillator-Based TRNG

An elementary oscillator-based TRNG is composed of two oscillators, Osci for
i = 1, 2. The output of one oscillator is used to determine the instants of sampling
the output of the second one in a sampling unit, e. g. a synchronous D flip-flop
(see Figure 1). The frequency of the sampling oscillator is divided by KD. The
division factor KD makes it possible to determine the time interval needed to
accumulate the phase jitter to a sufficient extent, to ensure a suitable entropy
rate in the TRNG output bit stream. In the rest of the paper, we suppose that
Osc1 is the oscillator generating the sampled signal and that oscillator Osc2
generates the sampling clock signal.
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Fig. 1. Structure of an oscillator-based elementary TRNG

For i = 1, 2, the output signal of Osci is given by a periodic function of time
t that takes the form

si(t) = f(ωi(t+ ξi(t))), (1)

where f can generally be any real valued function with period 1. In our case,
we suppose that we are dealing with TRNG implementation in logic devices and
therefore for α ∈ [0, 1), we define fα as a specific real valued 1-periodic function
such that fα(x) = 1 for all 0 < x < α and fα(x) = 0 for α < x < 1, and
fα(0) = fα(α) = 1/2. We use fα as a convenient model for the digital clock
signal produced by a clock generator and in particular by a ring oscillator. Note
that the clock edge is not necessarily in the middle of the interval [0, 1), since
oscillators can often have imbalanced half periods. We do not consider amplitude
fluctuations in our model since their contribution to phase jitter is negligible in
clock signal generation as explained in [11, p. 134].

In practice, we accept that the frequencies of both signals si(t), i = 1, 2,
fluctuate. Therefore, ωi is the mean frequency of the signal si(t), (ωi(t+ ξi(t)))
is the phase of the oscillator and the function ξi(t) represents the absolute phase
drift. Similarly, Ti = 1/ωi is the mean period of si(t). The parameter ζ = ω1/ω2
is the relative mean frequency of the elementary TRNG.

As we mainly deal with the relative phase between Osc1 and Osc2, we make
the simplifying assumption that Osc1 is a perfectly stable oscillator and that
all the phase drift of the elementary TRNG comes from Osc2, so that we have
ξ1 = 0 and we would like to characterize the phase jitter ξ2 = ξ.

As shown in [1], the evolution of the phase can be modeled by an ergodic
stationary Markov process Φ(t): for any time t, t0, such that t ≥ t0, the phase
Φ(t) determined by the initial value Φ(t0) = x0 follows a probability distribution
depending only onΔt = t−t0 with mean ξ(t0)+μ(Δt) and variance V (Δt) where
V, μ are real valued functions. In the following, we only consider a realization ξ(t)
of Φ(t) and use the stationarity of the process to compute probabilities, which are
independent of the time of the realization. For instance, as P{Φ(t0 +Δt)− x0 ≤
x|Φ(t0) = x0} is independent of t0, this probability can be computed by taking
the probability over t0 of the realization: Pt0{ξ(t0 +Δt)− ξ(t0) ≤ x}.

As s2(t) = fα(ω2(t+ ξ(t))) where ω2 is the mean frequency of s2, we deduce
that μ(Δt) = ω2Δt. Thus, if the Markov process is Gaussian (i.e. d

dxP{Φ(t) ≤
x|Φ(t0) = x0} is a Gaussian distribution), it is completely determined by V (Δt).
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The random walk component of the phase jitter is produced by noise sources
which affect each transition independently. This component is described by a
Gaussian probability distribution of variance σ20Δt.

Other noise sources, such as the 1/fβ noises, where 0 < β < 2, also con-
tribute to phase jitter. Unfortunately, they are usually autocorrelated. More-
over, because their variance depends quadratically on the jitter accumulation
time interval, after longer accumulation, they dominate the jitter coming from
the thermal noise. For this reason, the accumulation time should be as short as
possible, but long enough to obtain a measurable jitter. In practice, both un-
correlated and correlated noise sources exist and a typical log-log plot of V (Δt)
versus the measurement delay Δt can be used to separate regions with slope 1
and 2 as explained in [8].

4 Randomness Evaluation Method

In this section, we present a kind of Monte Carlo method to recover the prob-
ability density function d

dxP{Φ(t) ≤ x|Φ(t0) = x0} of the jitter accumulated
during time interval Δt from knowledge of an output bit sequence of an ele-
mentary oscillator-based TRNG depicted in Figure 1 with KD = 1 so that the
mean frequency of the sampling signal is ω2. For n ∈ N∗, let (tj)j∈{1,...,n} be the
time sequence and (bj)j∈{1,...,n}) be the output bit sequence corresponding to
the rising edges of Osc2 as depicted in Fig. 2. Recall that the sampled signal is
s1(t) = fα(ω1t) for α ∈ [0, 1) and that by definition tj = jT2 − ξ(tj).

Next, we introduce a notation of ε-uniformity that we use in the remainder
of the paper. It uses the modulo operation on real numbers illustrated in Fig. 2:
for all x ∈ R and T ∈ R, let x mod T = x−max{i ∈ Z|x− iT ≥ 0}T .

Fig. 2. Relation between the sampling process and function fα(·)

Let J be a subset of {1, . . . , n} and ε > 0, we say that the distribution of
samples {(jT2 − ξ(tj)) mod T1}j∈J is ε-uniform if for all [a, b] ⊂ [0, T1], we
have: ∣∣#{j ∈ J |(jT2 − ξ(tj)) mod T1 ∈ [a, b]}

#J
− b− a

T1

∣∣< ε.
In other words, the number of samples in interval [a, b] inside the translated
period T1, over the number of samples in subset J is ε-close to the size of interval
[a, b] over period T1. With this definition, we can state the following fact:
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Fact 1 Let N ∈ N and for i ∈ {1, . . . , n−N+1}, we set Si = {i, . . . , i+N−1}.
Let ε > 0 be such that for all i ∈ {1, . . . , n−N + 1} the distribution of samples
{(jT2 − ξ(tj)) mod T1}j∈Si is ε-uniform. Let N ∈ N be small enough so that
the differences between successive values δ(j) = ξ(tj+M ) − ξ(tj) are negligible
(in other words, the value of δ(j) is almost constant, but sufficiently big) when
j runs across all the elements of Si for a fixed i ∈ {1, . . . , n−N −M + 1}. For
i0 ∈ {1, . . . , n−N −M + 1}, we define

PSi0
{bj �= bj+M} = #{j ∈ Si0 |bj �= bj+M}

#Si0
.

We see that if (MT2 + ξ(ti0)− ξ(ti0+M )) mod T1 ≤ min(αT1, (1− α)T1), then∣∣∣∣PSi0
{bj �= bj+M} −

(
2(MT2 + ξ(ti0 )− ξ(ti0+M ))

T1
mod 1

)∣∣∣∣ < ε,
if (MT2 + ξ(ti0)− ξ(ti0+M )) mod T1 ≥ max(αT1, (1− α)T1), then∣∣∣∣PSi0

{bj �= bj+M}+
(
2(MT2 + ξ(ti0 )− ξ(ti0+M ))

T1
mod 1

)∣∣∣∣ < ε,
otherwise ∣∣PSi0

{bj �= bj+M} − 2min(α, 1− α)∣∣ < ε.
Proof of Fact 1 is given in Appendix A. It can be observed that for given

values M , T1, and T2, the variance of the phase difference between samples at
distance M (of the accumulated jitter we want to measure) is proportional to
the variance of number of different samples in the given set of samples over the
total number of samples in this set.

In the following, we present a very interesting application of Fact 1 that is able
to recover the distribution of the phase jitter accumulated over a given number
M of periods of Osc2. We make M big enough so that the jitter accumulated
duringMT2 is not negligible and N small enough so that the phase jitter can be
considered as almost constant in the time period NT2. Then Fact 1 signifies that
it is possible to recover a good approximation of (2(MT2+ξ(ti0)−ξ(ti0+M ))/T1)
mod 1 or −(2(MT2 + ξ(ti0 ) − ξ(ti0+M ))/T1) mod 1 by computing PSi0

{bj �=
bj+M}. More precisely, if we denote C the set of convergents of the continued
fraction decomposition of T2/T1 (see [9] for the definition of the convergents of
continued fraction decomposition) a careful analysis shows that in Fact 1, we can
take ε = 1/κ where κ = max{q < N |p/q ∈ C }. In practice, we have ε ≈ 1/N . If
we make M small enough so that the standard deviation of the distribution of
the jitter accumulated duringMT2 is small compared to min(αT1, (1−α)T1), the
values of samples (−MT2 − ξ(ti0 ) + ξ(ti0+M ))/T1 mod 1/2 or (MT2 + ξ(ti0)−
ξ(ti0+M ))/T1 mod 1/2 follow the probability density function d

dxP{Φ(MT2) ≤
x|Φ(0) = x0} up to a translation. If we denote V (t) the variance of the probability
distribution P{Φ(t) ≤ x|Φ(0) = x0}, we obtain Algorithm 1 to compute V (MT2).

It can be seen that Altorithm 1 is very simple: for computing the variance,
it is necessary to count K-times, in successive N couples of bits, the number of
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input : The output sequence [b1, . . . , bn] of an elementary TRNG with
KD = 1, K, M and N integers.

output: V0 = 4V/T 2
1 where V is the variance of the jitter accumulated during

MT2.

for i = 0, . . . ,K do
Si ← [Ni+ 1, . . . , Ni+N ];
c[i] = PS(bj �= bj+M );

end

V0 ← 1
K

∑K
i=0 c[i]

2 −
(

1
K

∑K
i=0 c[i]

)2

;

return V0;

Algorithm 1: Algorithm for computing the variance V of the jitter

couples having different bit values. The distance between the two bits in each
couple is M . In practice, K ∼ 10000, N ∼ 100 and M > N , we let M vary
between 200 and 1600.

It should be noted that PSi0
{bj �= bj+M} may not return an approximation of

(2(MT2 + ξ(ti0 ) − ξ(ti0+M ))/T1) mod 1 or (−2(MT2 + ξ(ti0) − ξ(ti0+M ))/T1)
mod 1 if (MT2 + ξ(ti0 ) − ξ(ti0+M )/T1 mod 1 ∈ [min(α, 1 − α),max(α, 1 − α)]
but, as in practice |α − 1/2| is always small, these occurrences are rare and easy
to detect.

5 Evaluation of the Method by Simulations

We evaluated the principle of the jitter measurement by simulations. In order
to maintain coherence with later hardware simulations, we used VHDL package
rng.pkg [15] for generating jittery clock signals. Using this package, we dynam-
ically modified the timing of the two signals by adding a Gaussian jitter with
zero mean and known standard deviation to each generated half period. The
obtained clocks were used to generate a bitstream according to Fig. 1. The ob-
tained bitstream file was then used as an input in mathematical evaluations.
The objective of the simulations was to recover the jitter size that was indeed
introduced to generated clocks, independently from the frequency ratio.

First, the mean clock period of the sampled oscillator Osc1 was T1 = 8 923 ps
and that of the sampling oscillator Osc2 was T2 = 8 803 ps. For i = 1, 2, the
output clock signal of Osci was given by fi = f1/2(1/Ti(t+ξi(t))), where ξi is the

random walk phase drift such that d
dxP{ξi(t+Δt) ≤ x|ξi(t)} follows a Gaussian

distribution of mean 0 and variance σ2cΔt/Ti. It is satisfactorily approximated by
oscillator Osc1 with a fixed period and oscillator Osc2 with a relative jitter ξ(t)
such that d

dxP{ξ(t+Δt) ≤ x|ξ(t)} is a Gaussian distribution GΔt(x) with mean
0 and variance σ2T2

Δt/T1 ( 2σ2cΔt/T1 (see [1, Appendix C] for justification).
For σc = 10 ps, 15 ps, and 20 ps, we generated EO TRNG output bit sequences

using the rng.pkg package. Next, using Algorithm 1, we computed the variance
V (M) of G(MT2) as a function of M and we plotted the graphs of V (M) as a
function of M for three above mentioned sizes of injected jitter (see left panel in
Fig. 3 for σc = 10 ps). Similar results were obtained for different frequency ratios.
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The variance was satisfactorily approximated by a linear function with slope
a. We then compared the size of the injected jitter (σc/T1) with that obtained
from the slope (

√
a/2). The results presented in the right panel in Fig. 3 show

that we were able to recover expected noise parameters with good precision –
the error was less than 5 %.

Note that our simulation does not take the 1/f noises into account, because
there are no generators of such noises generating sufficiently long sequences avail-
able right now. Also note, that global noises need not be included: because of the
use of the differential measurement principle – two ring oscillators implemented
in the same device – impact of the global noise sources is eliminated (see [6] for
more details).

M

Injected 
jitter 

Calculated 
slope 

 
c/T1  

 Error  
percentage 

c a 
10 ps 9.299909 10-6 0.00156 0.00152 2 % 
15 ps 2.03211 10-5 0.00234 0.00225 3 % 
20 ps 2.03211 10-5 0.00312 0.00297 5 % 

Fig. 3. Simulation results, left panel: V (M) as a function of M (jitter with σc = 10 ps
was injected); right panel: error percentage for three sizes of the jitter – 10 ps, 15 ps,
and 20 ps

6 Hardware Implementation of the Embedded Jitter
Measurement

The jitter variance measurement was implemented in hardware according to
Algorithm 1. It is presented in two blocks. The first block (see Fig. 4) computes
K successive values ci = Nc[i] by comparing the output values of the first and
the last stage of an (M +1)-stage shift register and counting unequal bits during
N periods of s2(t).

The lower panel in Fig. 4 shows waveforms for the relative mean frequency
ζ = T2/T1 = 10/7 and given initial phase ξ0. The sampler output features a
repetitive pattern (in bold), depending on ζ and ξ0. Two cases are depicted: in
one, the distance between samples is M = 6 and in the other, M = 3. Since ζ
and ξ0 are constant, the pattern remains the same, but the XOR gate output
differs. In fourteen (N = 14) clock periods T2, we see 12 different bits in the first
case and 8 in the second. According to Fact 1, for jitter-free clocks, these values
will remain constant in all successive blocks of N bits, but in the presence of the
jitter, their variance will be proportional to the variance of the jitter.

A compromise must be found when determining the distance (M) between
samples: for short distances, the accumulated jitter is too small and the precision
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Fig. 4. Structure of the block aimed at counting successive values ci = Nc[i] =
NPS(bj �= bj+M ) and two waveform examples for M = 6 (top panel) and M = 3
(bottom panel)
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Fig. 5. Example of distribution of values c[i] between 0 and 1 (dashed vertical lines),
for different values of M in steps of 50

is thus reduced; for long distances, two phenomena can occur: 1) the proportion
of the flicker noise can become dominant or 2) accumulated jitter can become
too big.

One important fact must be considered: since the relative mean frequency and
phase cannot be controlled (oscillators are free running), the mean number of un-
equal samples can be any value from interval [0, N ], depending on ζ = ω1/ω2 and
distanceM . If the mean value is close to the border values of this interval, some
measurements may fall outside the interval and cause a measurement error (see
curves forM=750 and 800 in Fig. 5). Of course, this error could be corrected by
translating the period T1. However, this would require some additional compu-
tations. It is consequently more practical to ensure that the standard deviation
of the accumulated jitter is much smaller than period T1 and the mean values
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of c[i] are sufficiently far from the interval borders. Distance M , whose values
c[i] do not fulfill the last condition should not be used for variance computation.
The practical setup of the distance M will be discussed later.

The second block computes the relative variance 4V/T 2
1 from K values c[i]

according to Algorithm 1 (see Fig. 6). The implementation of the block is quite
straightforward. It uses two accumulators, two multipliers connected as squaring
units and one subtractor. If the K value is chosen so that it is a power of two,
division by K and K2 can be implemented at no cost by shifting the result
log2K and 2 log2K positions to the right, respectively.

Notice also, that this second computing block is used once per N periods T2
and can thus be easily shared by several EO TRNGs without loss of performance.

Both blocks were implemented in VHDL as parameterized modules depending
on parameters {NDE1, NDE2, M , N , and K}. The two oscillators were imple-
mented as NDE1- and NDE2-element ring oscillators. Parameters M , N , and
K represent the distance between samples, the length of measurement and the
number of measurements, respectively.

clk

Accuci

clk

ci

Mult ci
2

+

new_i

clk

 

clk
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Mult

clk

 

+

ci )2

Control Unit

K2

K
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ci

2

rst rst

rst rst

ena ena

ena ena

clk

Sub
 

+
ena

N2V ci
2 ci )2

 

finished

clk

Fig. 6. Structure of the block aimed at computing variance V0 using K successive values
c[i] = PS(bj �= bj+M )

6.1 Hardware Implementation Results

We tested the jitter measurement method in two different hardware configura-
tions: 1) EO TRNG, jitter measurement and data interface (USB) were imple-
mented in the same device; 2) the EO TRNG core in Fig. 1 was implemented
in one FPGA and the jitter measurement and data interface were implemented
in another. The aim of these two implementations was to observe the impact of
the jitter measurement circuitry on the generator.

The first hardware configuration was implemented using an evaluation board
dedicated to TRNG designs, featuring Altera Cyclone III FPGA and low noise
linear power supplies (because of blind review, we will give the reference for the
card only in the final version of the paper). As mentioned above, the elementary
oscillator based TRNG is negligibly small. Its size is determined essentially by
the number of delay elements of the two ring oscillators.
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The size of the jitter measurement circuitry is determined by parameters M ,
N , and K. Practical experiments showed that the shift register should have
between 200 and 500 stages (we recall that the depth of the shift register is
linked to parameter M , which determines the jitter accumulation time). For
less than 200 stages, the accumulated jitter variance only differed by a few bits
and the precision was not sufficient (see Fig. 7). For bigger register sizes, the
unwanted jitter coming from the correlated flicker noise became non negligible.
According to Fact 1 and the simulation results presented in Section 5, to increase
the precision of the measurement, the value of parameter N (number of samples
used for computing mean values c[i] from Algorithm 1) should be less than
that of M . For this reason, we selected the N value to be around 150 and M
between 250 and 450. For easy division by K, its value was set at 8192. The
value V0 = 4V/T 2

1 was then computed according to Algorithm 1 using 32-bit
arithmetic operations and sent to PC via USB interface for further analysis. In
the given configuration, the EO TRNG including jitter measurement circuitry
occupied 301 logic cells (LEs), maximum 450 memory bits, plus one DSP block
9x9 and four DSP blocks 18x18.

Results of the jitter measurement in the first hardware configuration imple-
mented in Altera Cyclone III FPGA for M varying between 250 and 1200,
N ∼ 120 and K = 8192 are depicted in Fig. 7. The left panel of the figure
shows, that the variance increases linearly for 250 < M < 450. This interval
corresponds to accumulation times, during which the thermal noise dominates.
The right graph in Fig. 7 is a zoom on this zone. From the dependence of the
variance onM (the slope) and the period T1 = 7.81 ns, we were able to compute
the jitter size σ = 5.01 ps per period T1.

Fig. 7. Results of the jitter measurement in hardware

The same measurement method was applied in the second hardware config-
uration, in which EO TRNG was implemented in a separate FPGA and the
jitter measurement circuitry and data interface were implemented in the same
evaluation board as the first configuration described above (Cyclone III FPGA).
Both FPGAs were interconnected via the LVDS (low voltage differential signal-
ing) interface for the transmission of two signals: the reference clock and the EO
TRNG sampler output signal.
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It is important to underline that because the TRNG signal was output after
the sampler, the FPGA input/output circuitry did not have any impact on the
jitter measurement, as is the case when standard jitter measurement methods are
used to measure the jitter of outputs of the two rings using external equipment
(e.g. oscilloscope).

The result of this second experiment was that the jitter standard deviation
was σ = 4.9 ps per period T1 = 7.69 ns. This is a negligible change from the jitter
of 5.01 ps in the previous experiment. This means that the jitter measurement
can be embedded in the same device as the EO TRNG.

7 Discussion on Entropy Management Using Embedded
Jitter Measurement

During the jitter evaluation described in the previous section, we calculated jit-
ter from the slope of the variance depending on M . This method was useful
to determine the interval in which variance depends linearly on the accumu-
lation time. However, for implementation inside the device, this would require
additional circuitry (to compute the slope and variance from the slope) to be
implemented inside the device. Fortunately, knowing that the dependence in the
selected interval is linear, it is sufficient to permanently measure just one point
of the curve, i.e. just one value V0 = 4V/T 2

1 . We measured the jitter at M =
300. The measured standard deviation was σ0 = 2

√
V /T1 = 5.01 ps.

As explained in Sec. 6, for practical reasons, the variance should not be com-
puted for values M , whose mean values c[i] are close to zero or one. These
values are not known in advance since oscillators are free running. If the jit-
ter is sufficiently small compared to the T1 period, which is always true for
small accumulation times, these cases are rare, but unavoidable. For this reason,
the shift register has several outputs around stage 300 and we selected one of
the outputs, for which the computed values c[i] were close to 0.5. This means
the computation of their variance is free of errors.

Knowing the size of the jitter, we were able to manage the EO TRNG entropy:
by entering the known jitter size in the model presented in [1], we computed the
value of frequency divider KD, to ensure that the entropy per bit is higher than
Hmin = 0.997, as required by AIS 31 [10]. The formula is derived from [1] and
it gives KD as an expression of σc, T1, T2 and Hmin.

KD =
− ln

(
π
2

√
(1−Hmin) ln(2)

)
2π2 T2

T1

σ2
c

T 2
1

(2)

For T1 = 8.9 ns, T2 = 8.7 ns, σc = 5.01 ps and Hmin = 0.997, we got KD ≈
430 000.
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In this context, the role of the proposed jitter measurement circuitry is dif-
ferent: the continuous jitter measurement can be used as an on-line test, which
should guarantee that the jitter never falls under the value that was used for
entropy estimation and management (in our case, σ = 5.01 ps per period T1 and
KD = 430 000).

As mentioned above, the jitter measurement circuitry we proposed can be
used in conjunction with a suitable stochastic model as a dedicated statistical
test. In comparison with standard statistical tests, this test is performed closer
to the source of randomness and can thus more accurately and more rapidly
detect incorrect behavior of the generator.

For example, the tests FIPS 140-1 included in the AIS 31 RNG evaluation
methodology require 20 000 input bits. Note that in our case, to obtain 20 000
bits at the generator output, we would need KD = 430000 times more bits at
the sampler output, i.e. at least 8.6 · 109 bits. However, in order to perform
our dedicated test, which is better adapted to the detection of specific TRNG
weaknesses (reduction in the jitter from the thermal noise or locking of the rings
[3]), we only need N ·K bits (around 1 ·106 sampler output bits). The dedicated
test is thus more than 8 600 times faster and still very efficient. Our experiments
showed that FIPS 140-1 tests were far less restrictive – the RNG output passed
these tests for KD as low as 100 000, probably because of the flicker noise.

As an example, we demonstrate the efficiency of the proposed test during a
temperature attack on real hardware in Appendix B.

8 Conclusion

In this paper, we presented an original, simple and precise method of jitter
measurement that can be implemented inside logic devices. We demonstrated
that in conjunction with a suitable statistical model, the measured jitter can
be used to estimate entropy at the output of the generator. We also showed
that the proposed entropy estimator can be used to build a rapid dedicated on-
line statistical test that is perfectly adapted to the generator’s principle. This
approach complies with recent recommendations for TRNG evaluation [10] and
ensures a high level of security by rapidly detecting all deviations from correct
behavior.

Since the EO TRNG is the basic construction element of many oscillator based
TRNGs including those based on self-timed rings [4], the proposed principle can
be widely applied. However, in order to prevent attacks like those described
in [12] and [2] (locking of rings), the jitter needs to be evaluated for all ring
oscillators exploited in the generator. If necessary, the variance computation
circuitry, as well as shift registers and counters of unequal samples, can be shared
by all the rings in time.
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Appendix

A Proof of Fact 1

In this section, we use the following notations: for interval I and t ∈ R, I + t is
the interval {x+ t|x ∈ I}. If I, J are intervals, I+J is the interval ∪t∈JI+ t. We
consider intervals that are invariant under translation by T ∈ R. Thus, if I ⊂ R

is an interval, we let IT = ∪n∈Z(I + nT ). For instance, [0, 1)2 = ∪i∈Z[2i, 2i+ 1).
If I = [x, y] is an interval, by convention, we set I = ∅ if x > y, and we have the
obvious extension for open or semi-open intervals.

Proof. We suppose that α ≤ (1−α), if necessary by changing fα by 1−fα. For j ∈
{1, . . . , n}, we let τj = jT2− ξ(tj) mod T1. By definition, for all j ∈ {1, . . . , n−
M}, bj = fα(ω1(jT2−ξ(tj))) and bj+M = fα(ω1((j+M)T2−ξ(tj+M ))). As fα is
1-periodic, we have bj �= bj+M if and only if the cardinality of the intersection of
the interval [τj , τj+M ]T1 = [0, (MT2+ξ(tj)−ξ(tj+M )) mod T1]T1+((jT2−ξ(tj))
mod T1) with the set {0, αT1} is equal to 1 (see Figure 8).

Fig. 8. Keeping the notations of the proof of Fact 1, we have bj = bj+M = 1 (left) and
bj = 1 �= bj+M = 0 (right)

Let i0 ∈ {1, . . . , n−N −M +1}, using the hypothesis that δ(j) = ξ(tj+M )−
ξ(tj) is almost a constant equal to δ(i0) when j runs across all the values of
{i0, . . . , i0 +N − 1}, we deduce that PSi0

{bj �= bj+M} is given by

P = PX{#(([0, (MT2 + ξ(ti0)− ξ(ti0+M )) mod T1]T1 +X) ∩ {0, αT1}) = 1},
where X is a random variable, which follows the same distribution in the interval
[0, T1] as the sample {(jT2 − ξ(tj)) mod T1}j∈Si0

. Let 	 = (MT2 + ξ(i0) −
ξ(i0 +M)) mod T1. Suppose that 	 ≤ αT1, then the set of x ∈ [0, T1] such that
#([x, x+ 	]T1 ∩{0, αT1}) = 1 is ([−	, 0]T1 ∪ [αT1− 	, αT1]T1)∩ [0, T1]. The size of
the last interval is 2	. The case 	 ≥ (1−α)T1 comes down to the preceding case
by replacing 	 by T1 − 	 and computing the complementary event. We obtain
the size of x ∈ [0, T1] such that #([x, x + 	]T1 ∩ {0, αT1}) = 1 is 2(T1 − 	).
On the other hand, if αT1 ≤ 	 ≤ (1 − α)T1, the set of x ∈ [0, T1] such that
#([x, x+ 	]T1 ∩ {0, αT1}) = 1 is ([−	, αT1− 	]T1 ∪ [0, αT1]T1)∩ [0, T1], the size of
which is 2αT1.

Finally, by assuming that the distribution of X is ε-uniform in the interval
[0, T1], we find that if 	 ≤ αT1 then |P− 2�

T1
| < ε, if 	 ≥ (1−α)T1 then |P−2+ 2�

T1
| <

ε, and otherwise |P − 2α| < ε. This concludes the proof.
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B Experiments on Detection of Attacks Using the
Proposed Dedicated Test

The studied elementary oscillator based TRNG can be attacked by reducing the
jitter, e. g. by decreasing the temperature and thus the thermal noise causing
the jitter. We evaluated reaction of the proposed dedicated test on this attack.

In our experiments, we modified the temperature of the generator and we
observed the size of the measured jitter and compared it with the pre-computed
threshold in the dedicated test. The temperature was rapidly reduced to −20 ◦C
and left to rise back to 21 ◦C. We repeated this cycle several times. The results
of the jitter measurement in one experiment are depicted in Fig. 9.

Fig. 9. Evolution of the temperature attack in time

We see that as expected, the test was able to detect the jitter reduction coming
from the temperature decrease and activate the alarm.
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security is crucial for cryptographic systems. The oscillator-based TRNG has
been widely employed due to its nice properties of elegant structure and high
speed. In oscillator-based TRNGs, a fast oscillator signal is sampled by a slow
one which is generated by another oscillator or an external crystal oscillator, and
the timing jitter in the signals is the entropy (randomness) source.

Randomness evaluation is important for both the design and the use of TRNGs.
In general, there are two methods for randomness evaluation: black-box statisti-
cal tests and white-box stochastic models. The existing statistical tests, such as
FIPS 140-2 [11], NIST 800-22 [16] and Diehard [14] measure the balance and inde-
pendence of random bits through various test items. However, passing these sta-
tistical tests can only be considered as a necessary condition for true randomness
(as deterministic sequences with good statistical properties can also pass these
tests). Therefore, it seems extremely difficult to test the true randomness only
from the outputting sequences of TRNGs. For this reason, it is necessary to eval-
uate TRNGs from stochastic models, which are directly related to the entropy of
TRNGs.

In addition, from the white-box stochastic models, it is feasible to derive the
requirements for the design parameters of TRNGs. In oscillator-based TRNGs,
one of the most important parameters is the sampling interval, which determines
the generation speed of TRNGs. To model oscillator-based TRNGs, Killmann
and Schindler [12] used a common stochastic model, where the flipping times are
independent and identically distributed (i.i.d.), and provided a tight lower bound
for the entropy of the TRNG. Yet, the model is not able to provide a precise
entropy, or the probabilities of outputting certain bit patterns. Using a phase-
oriented approach, Baudet et al. [2] provided a more comprehensive model and
calculated the precise entropy for RO-based TRNGs. The model also allowed for
computing the maximal bias on a short vector and recovering the main stochastic
parameters of a TRNG. Amaki et al. [1] proposed a stochastic behavior model
using Markov state transition matrix to calculate the state probability vector.
Some other related works for TRNG modeling are presented in [15,5,3].

Another issue for modeling the stochastic behavior of RO-based TRNGs is
deterministic perturbations. In general, the perturbations can be generated from
an unstable switching power, or another oscillator inside the chip. They can even
be injected by attackers [13]. The effect of deterministic perturbations has been
discussed in the literature. The process of injecting deterministic perturbations
is simulated in [4], and the authors observe that the engagement of perturbations
makes it easier to pass statistical tests due to the joining of pseudo-randomness.
The improvement of statistical properties was also investigated by the theory
and the experiment in [1]. Baudet et al. [2] presented a differential measurement
method to acquire non-deterministic jitter, and concluded that the deterministic
perturbations do not undermine the randomness of a TRNG by itself, but can
lead to a dangerous overestimation of randomness jitter. In addition, the effect of
deterministic perturbations on the inherent randomness was discussed in [13,7].
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In this paper, by improving the stochastic model in [12], we propose a more pre-
cise and comprehensive stochastic model for evaluating the entropy of oscillator-
based (more precisely, RO-based) TRNGs, and theoretically give the required
parameters for sufficient entropy per bit. In order to verify the theory, we design
a novel jitter measuring circuit by employing an internal measuring method. The
theoretical results are verified with both simulation and practical experiments.
Meanwhile, the consistencies with the previous models are also investigated. Fur-
thermore, we apply the model to analyze and explain the effect of deterministic
perturbations. We demonstrate that the randomness of RO-based TRNGs un-
der deterministic perturbations can be overestimated, and it could be possible to
predict the “random” bits.

In summary, we make the following contributions.

– We propose a new modeling method for stochastic behaviors to evaluate
the entropy of oscillator-based TRNGs, and deduce recommended design
parameters for sufficient entropy.

– We design a novel jitter measuring circuit by employing an internal measur-
ing method to verify the theory, which is crucial and helpful in acquiring the
design parameters of the TRNGs.

– We perform a comprehensive study on the effect of deterministic pertur-
bations, and point out that deterministic perturbations make it possible to
predict the generated random sequences, though the sequences under the
effect are easier to pass statistical tests.

The rest of the paper is organized as follows. In Section 2, we present the
stochastic model for oscillator-based TRNGs. In order to verify the theory, we
design a novel jitter measuring circuit for experimental verification, and discuss
the modeling assumption in Section 3. In Section 4, we verify the theoretical
results and give the requirement of parameters. We analyze the effect of deter-
ministic perturbations in Section 5. In Section 6, we conclude the paper.

2 Stochastic Model

A typical example of oscillator-based TRNG is shown in Figure 1. A stable slow
clock signal samples an unstable fast oscillator signal to generate random bits.
As the sampling interval increases, the jitter of the fast oscillator signal are
accumulating. The foundation of generating random bits is the unpredictability
of the number of fast signal periods (more precisely, half-periods) in the duration
of a single slow signal period.

Definitions. The important notations in oscillator-based TRNGs are shown
in Figure 2, where the half-periods Xk is the time interval between two flop-
ping times. In this paper, we assume that Xk are i.i.d., and the reason is dis-
cussed in Section 3.4. The mean and variance of half-periods are denoted as μ
and σ2, respectively, i.e. μ = E(Xk) and σ2 = Var(Xk). The sampling time
with the equal interval s are represented as s0, s1, ..., si, i.e. si = is. The wait-
ing time Wi denotes the timing distance of si to the following closest edge.
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Fast Oscillator 

Slow Clock

D Q

CLK

Random Bits

Fig. 1. Oscillator-based TRNG

s0  (=0)

X1

W1

Wi

s1 si 

Fig. 2. Definitions of oscillator-based TRNGs

The number of edges within (si−1, si] is denoted by Ri, then the ith sampling
bit Bi is represented as Bi = (Bi−1 +Ri) mod 2.

Note that the operation of adding Ri with Bi−1 can be treated as a type of
post-processing, which is not considered in this paper; the operation causes no
impact on the information entropy, thus we take Bi = Ri mod 2 in the remainder
for convenience.

2.1 Preliminary Analysis of the Stochastic Model

We briefly summarize some important results from [12] on probability calculation
of sampling bits, which is the base of our work.

Let Ri = min{k | Tk > s}, where Tk = X1 +X2 + ...+Xk, meaning Ri is the
first increasing k ensuring that Tk is larger than s. The probability

Prob(Ri = k + 1) = Prob(Tk ≤ s)− Prob(Tk+1 ≤ s). (1)

The distribution of Tk is derived from the central-limit theorem (CLT), so it
is deduced that

Prob(
Tk − kμ
σ
√
k
≤ x)→ Φ(x), k →∞, (2)

where Φ(x) =
∫ x

−∞ e
−t2/2dt/

√
2π denotes the cumulative distribution function

of the standard normal distribution N(0, 1). Then we have

Prob(Ri = k + 1) = Prob(Tk ≤ s)− Prob(Tk+1 ≤ s) (3)

≈ Φ((v − k) · μ

σ
√
k
)− Φ((v − k − 1) · μ

σ
√
k + 1

),



548 Y. Ma et al.

where v = s/μ represents the frequency ratio. Then the probability distribution
of sampling bit Bi is

Prob(Bi = bi) = Prob(Ri mod 2 = bi) (4)

=

∞∑
j=1

Prob(Ri = 2j − bi) for bi ∈ {0, 1}.

2.2 Improved Model for RO-Based TRNGs

In oscillator-based TRNGs, especially in RO-based TRNGs, the amount of jitter
is very small [6], i.e., σ/μ* 1. The possible values of k are restricted in a small
interval zone near the mean v. In addition, as the fast oscillator signal is dozens of
times faster than the slow clock, v is not a small value. Therefore, it is reasonable
to assume that

√
k ≈ √k + 1 ≈ √v.

Setting q = σ
√
v/μ as the quality factor which is used to evaluate the quality

of TRNGs, we have

Prob(Ri = k + 1) ≈ Φ((v − k) · μ

σ
√
k
)− Φ((v − k − 1) · μ

σ
√
k + 1

)

≈ Φ(v − k
q

)− Φ(v − k − 1

q
). (5)

For the probability of Bi = 1, we have

Prob(Bi = 1) =

∞∑
j=1

Prob(Ri = 2j − 1) ≈
∞∑
j=1

(Φ(
v − 2j

q
)− Φ(v − 2j − 1

q
)),

which can be described as the sum of the interleaved column areas below the
normal distribution curve in Figure 3.

1/q

010101010101

r/q

Fig. 3. The probability distribution ofthe sampling bit (Wi = 0)

In Figure 3, Wi is set to 0 for convenience. The area between the normal
distribution curve and x axis (equaling to 1) is divided at 1/q interval, and the
area of each column corresponds to the probability of Ri equaling to each k.
The larger q is, the finer the column is divided, which means that the areas of
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‘0’ and ‘1’ are closer. Another observation is that, besides q, the value of r also
affects the bias of the sampling bit. Variable r is the fractional part of v, i.e.,
r = v mod 1. The dividing position is determined by r/q, as shown in Figure
3. Obviously, when Wi = 0 and r = 0, the areas of probabilities ‘0’ and ‘1’ are
equal regardless of q. The most unbiased case is r = 0.5 when Wi = 0, where the
distance between probabilities ‘0’ and ‘1’ becomes largest compared to the other
cases with the same q. Therefore, a robust TRNG design should have sufficient
entropy even in the worst (most unbiased) case.

The Probability Distribution of the Waiting Time. In consecutive sam-
pling, two adjacent sampling processes are dependent as the waiting time Wi

generated by the ith sampling affects the (i + 1)th one. Referring to renewal
theory, the probability of Wi is

PW (y) = Prob(Wi ≤ y) = 1

μ

∫ y

0

(1 − PX(u))du, (6)

where PX(·) denotes the cumulative distribution function of half-periods Xi.
Furthermore, because σ * μ, PW (y) is approximated to

PW (y) ≈

⎧⎪⎪⎨⎪⎪⎩
1

μ

∫ y

0

1du =
y

μ
, 0 ≤ y ≤ μ;

1, y > μ

(7)

which can be treated as the uniform distribution on the interval [0, μ].

Sampling Process Approximation. Inspired by Equations (5) and (7), we
approximate the consecutive sampling described in Figure 1 to the following
process - a slow signal with jitter sampling a fast stable signal.

– The fast oscillator signal is stable.
– The slow oscillator signal which sampling the fast signal is unstable with

jitter. The periods follow (vμ, vσ2) normal distribution.

Easy to verify that the probability distributions for Ri and Wi under the
model are corresponding with Equations (5) and (7), respectively. Therefore, the
approximated model is equivalent to the original one under the assumption of
small jitter. In fact, the approximated process is also a common type in oscillator-
based TRNGs. The stochastic behavior of the approximated process is easier to
model, so we use it as an improved model to calculate and evaluate the entropy
of TRNGs.

2.3 Entropy Calculation

The improved model for consecutive sampling is described in Figure 4. For nor-
malization, we define W ′

i as the ratio of the Wi to the mean μ. We calculate the
probability of Bi+1 = bi+1 under the condition of W ′

i = w
′
i,
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Fig. 4. The new model for entropy calculation

Prob(bi+1|w′
i) =

+∞∑
i=−∞

(Φ(
2i + 1− ci

q
)− Φ(2i− ci

q
)) (8)

:= Ji+1(w
′
i)

(ci = (v − w′
i − (1− bi+1)) mod 2).

From Figure 4, we have

Prob(W ′
i+1 ≤ x, bi+1|w′

i) =
+∞∑

i=−∞
(Φ(

2i + 1− ci
q

)− Φ(2i− ci + 1− x
q

))

: = Fi+1(x,w
′
i),

which is the area of the shaded part in Figure 4.
By defining Gi(x) := Prob(W ′

i ≤ x|bi, . . . , b1), we have the conditional prob-
ability of sampling bits

Prob(bi+1|bi, . . . , b1) =
∫ 1

0

Ji+1(x)Gi(dx) := K(bi+1). (9)

Due to the uncertainty of the initial sampling position, we assume the distri-
bution of W ′

0 is also uniformed in (0, 1). Therefore,

G1(x) = Prob(W ′
1 ≤ x|b1) =

∫ 1

0

Prob(W ′
1 ≤ x|b1, w′

0)dw
′
0 =

∫ 1

0

F1(x,w
′
0)

J1(w′
0)
dw′

0.

Then, using the property of the Markov process

Prob(bi+1|w′
i, bi, w

′
i−1, ...) = Prob(bi+1|w′

i),

we calculate the following Gi(x):

Gi(x) =

∫ 1

0

Fi(x,w
′
i−1)

K(bi)
Gi−1(dy).
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Then we get the n-bit probability distribution for certain bit patterns

p(b) = Prob(bn, . . . , b1) =

n∏
i=1

K(bi), (10)

and the n-bit entropy

Hn =
∑

b∈{0,1}n

−p(b) log p(b). (11)

3 Experiment Design for Model Verification

In this section, using an internal measuring method we design an improved jitter
measurement circuit to verify the stochastic model. The advantage of the circuit
is that it is able to acquire the approximated quality factor while the sampling
bits are generated, which is useful to verify the stochastic model.

3.1 Dual-Counter Measurement Circuit

The ring oscillator is formed by a set of inverters that are chained into a ring,
while the number of the inverters must be an odd number. A typical RO struc-
ture in FPGAs is shown in Figure 5, where these inverters are implemented by
Look-Up Tables (LUTs) in FPGAs. The ideal period of the oscillator signal is
represented as 2X , where X is the delay of all the RO components, i.e., the
half-period.

And Gate

Reset

Fig. 5. Ring oscillator

In order to measure the jitter more accurately, we improve the internal mea-
surement circuit [18]. In contrast to the only one positive or negative edge
counter used in [18], two voltage-crossing counters are utilized in our measure-
ment method, as shown in Figure 6. Besides improving the sensitivity to jitter
accumulation, this method helps us directly obtain the sampling bits from the
counting results. The counting process is the (delayed) renewal process, so the
variance with the interval of s is represented as s(σ2/μ3) + o(s) = q2 + o(s),
where o(s)→ 0 when s→∞. Therefore, by calculating the standard variance of
the counting results, we can acquire the approximated quality factor q. It should
be noticed that, when the interval is not large enough, q is overestimated, since
o(s) cannot be ignored under the interval.
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Fig. 6. Dual-counter measurement circuit

In the improved measuring method, two counters are employed to measure
the number of positive edges and negative edges in the duration of a single
slow clock period, respectively. Then, the two counter results are added to form
the outputting values. After each count finishes, the counters should be cleared
to start the next count. The clear signal is generated through the clear circuit
which is driven by both the ring oscillator signal and the slow clock. The counting
process of the positive-edge counter with the sampling interval of s is depicted in
Figure 7. Between the two adjacent counts, the clear signal lasts accurately one
period of the oscillator signal by using the clear circuit. If the oscillator frequency
is too high to clear the counters within one cycle, the number becomes two or
three.

Fig. 7. The counting process (positive edge)

Consecutive sampling is adopted in the measurement, and the sampling type
is useful to simplify the counting process, because we just need to do the counting
collection only once for the longer sampling intervals of ms, rather than do m
times. After getting numbers of count results in the duration of s, we can sum the
m non-overlapping results to obtain the number of edges in the duration of ms,
then we can figure out the quality factor under the interval of ms by calculating
the standard variance of these sums. Although the clear mechanism makes all
sums smaller than the real values by m− 1, it has no impact on calculating the
variances of these values.

3.2 Jitter Measurement

We implement the circuit with 3-inverter RO on Xilinx Virtex-5 FPGA. The RO
frequency is about 484 MHz, and the slow clock is a 5 MHz crystal oscillator
signal, and the circuit output is the number of RO edges within the duration of
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s = 200 ns. Having numbers of outputting values in the interval s, we can figure
out the number of edges within the sampling interval ms by m-time accumulat-
ing. For the sampling interval ms, we can calculate the standard deviation σms

of the accumulation results. From the renewal theory under i.i.d. assumption,
σm =

√
ms(σ/μ3/2) =

√
mσ1, s→∞, where σm denotes the standard variance

under the interval of ms.
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(a) Simulation results with white noises
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(b) Practical measuring results in FPGA

Fig. 8. The measuring results with ideal vs. practical noises

The simulation and practical results for the measurement method at logarith-
mic coordinates are shown in Figure 8, whose x-axis is m and y-axis is standard
deviation σm. In Figure 8(a), with m increasing, the slope of the standard de-
viation curve is approaching to 0.5, which is consistent with the theory. As
mentioned, if ms is not large enough, meaning the accumulated jitter is small,
the measuring result is larger than the real value. Fortunately, we observe that
the overhead will be no more than 10% when the measuring standard deviation
is larger than 0.8, so these results are available.

Surprisingly, the practical measuring result is quite different, as shown in
Figure 8(b). We find the existence of deterministic (sinusoidal) perturbations
which make the σm curve form a wavy pattern of rising. In addition, when the
sampling interval ms is large (about m > 50), we also observe the existence
of correlated noise, under which the standard variance increases faster and the
slope becomes larger than 0.5.

3.3 Filtering Deterministic Jitter

Deterministic perturbations make an overhead for the estimation of random
jitter. In order to filter deterministic jitter, a measurement method using dual
oscillators was presented in [8]. The method is based on the fact that the effect of
deterministic perturbations is global. We use a 15-inverter RO signal as the slow
clock to filter the perturbations and measure the random jitter of fast oscillator
signal. In contrast to the clock measuring result, the RO measuring result does
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Fig. 9. RO measuring result

not display an obvious wavy pattern of rising, as shown in Figure 9. Therefore,
we obtain the data Ri without the perturbations, which are the experimental
data base for verifying the theory.

3.4 Discussion for Modeling Assumption

In our stochastic model, we assume that the jitter or the noises are i.i.d., but
the correlation is observed in the experiment when the sampling interval is long.
According to [10], correlated noise (such as 1/f noise) is embodied at low fre-
quency in oscillators, while the noise at high frequency is white (or independent).
The correlated noise was also observed in [19] which suggested that the sampling
frequency should be fast enough to avoid the influence of correlated noise. In our
proposed TRNG model, the focused sampling interval is m < 12 (see Section
4.2) where the accumulated jitter is insufficient or almost sufficient, so the effect
of correlated noise is weak in this region. Therefore, for simplicity, we do not
involve the modeling for correlated noises or jitter in the stochastic model of the
TRNG.

Correlated noise makes the jitter and the counting results have long-term de-
pendence, which also affects sampling bits, so it shall be noted that the effect
of correlated noise (especially mixed with white noise) on sampling bits in RO-
based TRNG is actually an open problem due to the complexity and variety
of correlated noise. As a preliminary analysis, we do not observe the correla-
tion inherited in the sampling bits under correlated noise when accumulated
independent jitter is sufficient (see Figure 10).

4 Entropy Evaluation

In this section, using the formula of entropy calculation, we deduce the require-
ment of RO-based TRNGs parameters for sufficient entropy per bit. The re-
sults are verified by experiments, and the comparison with other work is also
presented.
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4.1 Parameters for Sufficient Entropy

In consecutive sampling, Hn can be derived from Equation (11). The bit-rate
entropy is denoted as H = Hn/n. According to the experimental result in [12],
the threshold value of bit-rate entropy is chosen as 0.9999, i.e.,H should be larger
than 0.9999 to achieve sufficient security. We calculate the bit-rate entropy in
term of q for various r from 0 to 0.5 using Matlab numerical calculation (shown
in Figure 11). The required q values for different r to achieve sufficient entropy
(0.9999) are listed in the second row of Table 1.

In contrast to the example of Wi = 0 in Figure 3, the consecutive sampling
has the worst balance at r = 0, because the waiting time Wi has a uniform
distribution in consecutive sampling. In the case of r = 0, when q is larger than
0.9264, the bit-rate entropy is sufficient. On the contrary, the generator with
r = 0.5 is easiest to acquire sufficient entropy, and the required q is only 0.6511.
Given the parameters σ and μ of the fast oscillator signal , we can figure out the
required sampling interval for sufficient entropy.

Table 1. The required q to achieve sufficient entropy for different r

�������Req. q
r

r=0
r=0.1
(0.9)

r=0.2
(0.8)

r=0.3
(0.7)

)
r=0.4
(0.6)

r=0.5 Remark

Theory 0.9264 0.9209 0.9029 0.8673 0.7895 0.6511 H > 0.9999

Sim. Measured 0.9778 0.9392 0.9198 0.8759 0.7928 0.7002 passing FIPS 140-2

4.2 Experimental Verification

In order to verify the parameter requirement, we use the statistical tests FIPS
140-2 [11] to test the sampling bits, including monobit test, poker test, runs
test and longest run test. We record the required q values for the sampling bits
passing all items of FIPS 140-2, and compare them with the theoretical ones.

Matlab Simulation. We first use Matlab simulation to verify the theoretical
results, as the environment can be ideal as expected. In the simulation, the
half-periods of the fast oscillator signal are set to (1.125, 0.0172) i.i.d. normal
distribution. Using the measuring method under a preset sampling interval, we
can get the counting results, whose standard variance and LSBs can be treated
as q and sampling bits, respectively. With the sampling interval increasing, the
passing point for each r can be observed, as shown in the third row of Table 1. As
we mentioned in Figure 8, the measured q values are a little larger than the real
values when m is small. Therefore, the simulation results approximately match
with the theory in Table 1, especially in the aspect of variation tendency. The
difference between these two results is because that the criteria of the theoretical
entropy and FIPS 140-2 are not completely consistent.
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Fig. 10. Results of measured q and FIPS 140-2 tests in FPGA

Practical Experiment. We also implement the measurement circuit in the
FPGA platform. The measuring and test results are shown in Figure 10, where
the passing rate means the ratio of the number of passed test items to the
number of all items. We observe that the passing point lies in the interval
q ∈ [0.8936, 0.9389], which nearly corresponds with the simulation and theory.
However, it seems infeasible to measure the right r at this point to do a further
verification, since a tiny measuring error will make the measured r totally dif-
ferent in such a high frequency of the fast oscillator signal. In addition, it should
also be noticed that correlated noise makes an overestimation for thermal jit-
ter, especially when m is large. One can employ the method presented in [9] to
measure the thermal noise contribution to the jitter.

4.3 Comparison with Previous Work

For the entropy evaluation of oscillator-based TRNGs, a tight lower bound was
provided in [12], and the bit-rate entropy was calculated in [2] by using a phase-
oriented method. The main results of [12] and [2] are presented as Equations
(12) and (13), respectively.

H(Bi|Bi−1, . . . , B1) ≥ H(Bi|Wi−1) ≈
∫ s

0

H(R(s−u) mod 2)PW (du) (12)

Hn ≈ n− 32(n− 1)

π4 ln(2)
cos2(πr)e−π2q2 (13)

In Equation (12), R(s−u) represents the number of crossing edges in the du-
ration of (s−u), and the variables in Equation (13) have been converted for the
correspondence of definitions.1 Our estimated bit-rate entropy is larger than the
lower bound of [12] as expected, and is almost identical to the result of [2] at
the worse cases (r = 0, 0.1, 0.2), as shown in Figure 11.

1 The quality factor Q defined in [2] equals to q2/4.
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However, there are some inconsistencies in the comparison of our result with
[2] when r ≥ 0.3, especially at r = 0.5. According to Equation (13), Hn ap-
proximately equals to n when r = 0.5, meaning that the bit-rate entropy H
achieves the maximum value 1. That is to say, so long as the sampling interval
s satisfies that (s mod μ)/μ = r = 0.5 in consecutive sampling, the bit-rate
entropy is close to 1 regardless of q. Nonetheless, the conclusion is not confirmed
in both our theory and simulation experiment. In our opinion, r = 0.5 can only
guarantee the balance of sampling bits2, rather than the independence. There-
fore, when r = 0.5 the generated sequences can pass the statistical tests once
the independence of sampling bits is satisfied. That is why the generators with
r = 0.5 are easier to acquire sufficient entropy. Obviously, when q is small, the
correlation of sampling bits cannot be eliminated, thus the n-bit entropy cannot
approximately equal to n. The sampling correlation is further illustrated via the
following independence condition.

4.4 Independence Condition

The sampling correlation is derived from the transfer of the waiting time Wi

which affects the (i+1)th sampling result. Therefore, the independence of sam-
pling bits should satisfy

∀bi ∈ {0, 1},Prob(Wi ≤ x|bi) = Prob(Wi ≤ x) = x

μ
.

For various q values at r = 0, the conditional probability distributions Prob(Wi ≤
x|bi) are shown in Figure 12, where the curves from outside to inside correspond
to the q values from 0.1 to 1 at 0.1 interval. Note that r does not make the con-
ditional distribution become uniform easier, but only affects the cross position
of these probability curves. Therefore, we only present the result of r = 0. When

2 The balance holds only when Wi is uniformly distributed, which just requires a very
small q (about 0.1).
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q is less than 0.5, the probability distribution is non-uniform, meaning that the
correlation still exists. Until q is approximately larger than 0.6, the distribution
becomes uniform and the correlation is almost eliminated, which is consistent
with the calculation results in Table 1. In addition, the experimental result in
the next section also confirms the independence condition.

5 The Effect of Deterministic Perturbations

In this section, we show that the deterministic perturbations make the sam-
pling bits appear to be more “random” and easier to pass statistical tests. More
importantly, we point out that the seemingly random sequence actually has a
vulnerability which makes it possible to predict the sequence.

5.1 The Effect on the Statistical Test

In order to analyze the effect on the statistical test, we carry out the measurement
and FIPS 140-2 statistical tests with deterministic jitter. Under deterministic
perturbations, the TRNG is easier to pass the test, as shown in Figure 13, where
the passing position is m = 9 and the other is m = 11.

It is interesting that the passing rate of RO sampling has an abrupt rise
at m = 7, which is precisely the position of the crest of the perturbations,
meaning that the sampling sequence suddenly becomes more “random”. The
reason is that the deterministic jitter is not completely filtered out by the dual-
oscillator method, since the perturbation effects on the two oscillators cannot be
exactly identical, though they have been placed as close as possible. Moreover,
the observation validates the fact that injecting deterministic jitter does improve
the randomness of outputting sequences. However, note that the deterministic
perturbation in our experiment is slight and balanced. Once the perturbation
becomes strong, it will reduce the amount of inherent independent jitter; once
it becomes biased, it will degrade the quality of sampling bits.
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5.2 The Bound for the Randomness Improvement

Increasing the amplitude makes it easier to pass the statistical tests. However,
when we keep increasing the amplitude more than 0.3μ, the passing position
does not move up any more, as shown in Figure 14. The final position stops at
m = 6, and the current standard deviation caused by random jitter is 0.682,
which is consistent with the independence condition. Therefore, we can infer
that the engagement of deterministic perturbations causes little impact on the
correlation of sampling bits but improves the balance of sampling sequences.
With the deterministic jitter increasing, the sequences can pass the statistical
test when the dependence condition holds.

However, though the balance is achieved for sampling sequences, for each
sampling bit the balance is insufficient, because the jitter accumulation for each
sampling has not been enough. This causes some security problems, such as
predicting the sampling bits.

5.3 Predicting the “Random” Bits

The deterministic perturbation is assumed as sinusoidal signalD(t) = A sin(2πtTD
+

φ0). The half-period after perturbing becomes X ′
i =

∫ Ti+1

Ti
(1 +D(t))dt. we have

the following reasonable physical assumptions for deterministic perturbations
[2]: TD >> μ (slow variations of D(t)) and X ′

i ≈ Xi (small deterministic jitter).
Therefore, it is easy to deduce that the uniform distribution in [0, μ] still approxi-
mately holds for the new waiting time. Furthermore, compared with the sampling
interval s in the model without perturbations, the mean of the new ith interval is
equivalent to s− di to apply the model in Section 2, where di =

∫ si
si−1

D(t)dt. As

we mentioned, it is useful to improve the balance of the whole sequence, however,
the impact is very limited on a given sampling bit, which allows us to predict
the seemingly random bits. The probability of the ith bit equaling to bi can be

derived from the total probability formula Prob(bi) =
∫ 1

0
Prob(bi|wi)PW (du),

where Prob(bi|wi) can be calculated from Equation (8) using the modified sam-
pling interval s− di.
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Therefore, if precisely knowing the mean μ, standard variance σ, and the
behaviors of deterministic jitter, one can precisely compute the probabilities
of sample bits in advance. We perform a prediction simulation, and compare
the predicting probabilities with the practical ones in Figure 15. The practical
probabilities come from the statistics of 1000 simulation samples that can pass
FIPS 140-2. It is shown that the two sets of probabilities are consistent with
each other in most sampling bits. Using the predicting results, one can optimize
brute-force attacks to significantly reduce the breaking complexity. In practical
terms, the more precise parameters of TRNGs one knows, the more effective
attacks one can perform.

Though the TRNG output can pass the statistical tests under the pertur-
bations, with environmental factors (such as supply voltage) changing, the fre-
quency and amplitude of the perturbation might change to the values that no
longer help to improve the “randomness” (e.g. the frequency changes to the mul-
tiples of the sampling frequency). Therefore, one way to guarantee the security
of under-perturbation TRNGs is to keep the entropy sufficiency in each sampling
bit, i.e. the q should be large enough. As di << s, the requirement for q value is
approximately identical to that without deterministic perturbations at the worst
case r = 0.

6 Conclusion and Future Work

In this paper, we propose an improved modeling method for oscillator-based
TRNGs, and deduce the requirement for the parameters of security TRNGs. In
order to verify the theory, we design an improved measuring circuit for acquiring
the TRNG parameters. The measuring circuit can also be integrated into hard-
ware for online tests and inner tests of the TRNGs. Furthermore, we apply the
stochastic model to analyze the TRNGs with deterministic perturbations. We
investigate the positive effect of perturbations on the statistical tests, and also
provide the bound for the randomness improvement. By performing a simulated
attack, we demonstrate that predicting the random bits could be possible. In
future work, we will further analyze the accuracy of the measuring method and
extend our stochastic model to the multiple-RO structures [17], especially for
those injection-locked oscillators.
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Abstract. By shrinking the technology static power consumption of
CMOS circuits is becoming a major concern. In this paper, we present the
first practical results of exploiting static power consumption of FPGA-
based cryptographic devices in order to mount a key-recovery side-channel
attack. The experiments represented here are based on three Xilinx FP-
GAs built on 65 nm, 45 nm, and 28 nm process technologies. By means of
a sophisticated measurement setup and methodology we demonstrate an
exploitable information leakage through static power of the underlying
FPGAs. The current work highlights the feasibility of side-channel anal-
ysis attacks by static power that have been known for years but have not
been performed and investigated in practice yet. This is a starting point
for further research investigations, and may have a significant impact on
the efficiency of DPA countermeasures in the near future.

1 Introduction

After the introduction of execution time [15] in scientific literature as the first
practical side channel to recover the secret key of implementations of crypto-
graphic algorithms, other side-channel analysis approaches have been introduced
one after each other. For example, power consumption [16], electromagnetic em-
anation [2,10,21], acoustic [11], optical emission [9], and temperature [14] are
amongst those which have been brought to the attention of scientific communi-
ties. However, due to their efficiency, low-cost, and simplicity power consumption
and electromagnetic emanation side channels have been widely investigated and
applied in academia as well as in industry more then the others.

During the golden years of side-channel analysis when academia showed inter-
est in the field, researchers have put much effort in exploring and analyzing the
theoretical and practical aspects of side-channel analysis. Not all, but most of the
activities in this area have been done based on the principles of CMOS circuits,
i.e., focusing on the main power consumption factor of the circuits, namely dy-
namic power consumption. Therefore, the attacks and analysis schemes as well
as countermeasure techniques introduced to the community are mainly based
on the dynamic power consumption of the underlying circuit. However, dur-
ing the last years by shrinking the technology the VLSI community reported
the dependency of static power consumption of a CMOS circuit to its internals
(see [13,17]). Moreover, interesting results are shown in [3] and [4], where an

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 562–579, 2014.
c© International Association for Cryptologic Research 2014
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attack using static power is called Leakage Power Analysis (LPA). There even
exist a few works proposing related countermeasures (see [5,27]). This issue,
which has been denoted mainly based on the simulation results, was not taken
as a serious threat by the side-channel community.

The main reason behind disregarding this information leakage source is due to
the very small scale of the signal amplitude (of static power consumption) which
cannot be easily measured in practice by means of the currently available facil-
ities and equipments. Indeed, the belief of the community – which is not much
far away from reality – is that the information available through the dynamic
power consumption channel is much more and much easier to detect compared
to that of the static power.

This article demonstrates the first practical results of a side-channel analysis
using information leakage through static power consumption. All the experi-
ments shown here are based on Xilinx FPGAs. In order to make the analyses
more comprehensive three FPGA families (Virtex-5, Spartan-6, Kintex-7) with
three different process technologies, namely 65 nm, 45 nm, and 28 nm, are con-
sidered in the experiments.

We first illustrate the measurement setup and the methodology used to exploit
the static power of the considered platforms. This includes a couple of engineer-
ing adjustments and tricks which make the desired measurement possible. Our
experiments start with investigation of dependency of static power to the content
of basic elements of FPGA internals, e.g., registers, LUTs, and connections (i.e.,
routings done by the switch boxes). By means of these experiments we elaborate
on a clear dependency between the static power and each of the aforementioned
resources for all the targeted platforms. We extend our experiments toward a
crypto device by evaluating the static power of an exemplary circuit contain-
ing an 8-bit key addition followed by an AES S-box. We demonstrate how to
make use of its static power to recover the 8-bit secret key. One step further,
we examine a masked AES S-box, and show how to apply a second-order attack
through static power consumption. As the final step a complete implementation
of an AES encryption engine equipped with both masking and shuffling is con-
sidered. We demonstrate in which circumstances an attack using static power
can overcome the protection provided by the aforementioned countermeasures.

2 Methodology

Three Side-channel Attack Standard Evaluation Boards (SASEBO) [1]

– SASEBO-GII, with Target FPGA as a Virtex-5 (65 nm),
– SAKURA-G, with Target FPGA as a Spartan-6 (45 nm),
– SAKURA-X, with Target FPGA as a Kintex-7 (28 nm)

are the platforms considered in our experiments. On each board there exists an-
other FPGA (so-called Control) responsible to communicate with Target as well
as with the PC via UART. We have developed a dedicated framework (designs
for both Control and Target) for each of the platforms to fulfill the requirements
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Fig. 1. Procedure of a single measurement of static power consumption

we explain in details below. Target is in contact only with Control, and all its
input signals including the clock signal are provided by Control.

2.1 Communication

The procedure which is followed to measure static power consumption of a design
embedded on Target is depicted by graphics in Fig. 1.

1. The PC opens the UART communication channel and sends data to Control.
Right after that, the PC closes the UART channel.

2. Control communicates with Target and sends the corresponding data. Right
after finishing the desired operations on Target, Control switches off all the
IO pins including the clock of Target.

3. Control issues a trigger signal to the oscilloscope. After that, the static power
consumption of Target can be measured (explained later).

4. The PC opens the UART channel and requests Control to send the result
back.

5. Control switches on the IO signals, drives the Target clock, and fetches the
result of the desired computation done by Target.

6. Control sends the fetched result to the PC via UART, and the PC closes the
UART channel right after the reception.
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Our experiments show that the IO signal values have a significant effect on
the amount of static power consumption. Therefore, as stated in the above pro-
cedure, the output signals of Target as well as of Control which drive the inputs
of Target must be at a constant state (e.g., all at LO) during the measurement.
Further, noise of the UART channel, which is realized by a USB module (FTDI
chip1) on SASEBO platforms, also hugely affects the static power. So, keeping
the UART channel closed during the measurement is inevitable.

2.2 Measurement

The measurement point provided by the SASEBO boards is the heads of a re-
sistor placed in the Vdd path of Target internal core. According to the SASEBO
quick start guides [1], a usual way to measure the voltage drop over this shunt
resistor is to monitor the voltage of the Target Vdd pins. It should be noted
that setting the coupling of the corresponding oscilloscope channel to AC, which
might be beneficial to reduce the measurement noise when measuring dynamic
power, cannot be used in our case. It is because the AC coupling is a kind of a
high-pass filter which stops the DC part of the signal. However, we are interested
to measure the DC shift of the power consumption signal to be able to moni-
tor the static power. Therefore, keeping the DC coupling of the corresponding
oscilloscope channel is a must.

Another issue regarding the measurement is due to the small-scale shunt resis-
tor. The resistor originally embedded on the SASEBO boards is 1Ω for SASEBO-
GII (Virtex-5) and SAKURA-G (Spartan-6) and 10mΩ for SAKURA-X (Kintex-
7). Since we are planing to measure the current passing through this resistor by
monitoring its voltage, the magnitude and type of this resistor significantly af-
fect our measurement accuracy. Therefore, we replaced the shunt resistor of all
the platforms by a certain type 1.0Ω resistor with low temperature coefficient.
So, we use the same shunt resistor in all our experiments. Further, due to the
voltage drop by the shunt resistor we modified the boards2 to supply a certain
voltage thereby driving exactly 1.0V at Target internal core Vdd pins. This way,
Target of all our platforms are supplied by the same voltage magnitude.

We should mention that amplifiers like ZFL-1000LN+ from Mini-Circuits3 or
PA303 from Langer EMV-Technik4, which are common components used for en-
hancing measurement of small-scale dynamic power signals, cannot be equipped
in our setup. That is because these amplifiers have a high-pass filter at their
input removing the DC shift of the incoming signal. The same holds for the am-
plifier originally embedded on SAKURA-G (Spartan-6). Instead, we have used
a LeCroy AP 033 differential probe which includes a ×10 internal amplifier
and does not cause the aforementioned problem. By means of the differential
probe and a LeCroy HRO66Zi WaveRunner 12-bit oscilloscope we monitored

1 Future Technology Devices International Ltd. http://www.ftdichip.com/
2 By adjusting the potentiometer of the corresponding voltage regulator.
3 http://www.minicircuits.com/
4 http://www.langer-emv.de/

http://www.ftdichip.com/
http://www.minicircuits.com/
http://www.langer-emv.de/


566 A. Moradi

the voltage drop by the shunt resistor. Since the differential probes consist in
active components, they usually introduce higher noise to the resulting signal
compared to common coaxial-cable passive probes.

Each measurement is performed by sampling the amplified signal (output of
the differential probe) with the highest vertical accuracy (200μV/div in our
setup), at a sampling rate of 1GS/s and bandwidth limit of 20MHz. A long
trace with a length of 10ms containing 10M sample points is measured, and
its average is computed by the oscilloscope. In contrast to a dynamic power
measurement, where a trace over time is collected, a singular value (the afore-
mentioned averaged value) is the result of a static power measurement. This
procedure (see Fig. 1) can be repeated to collect the magnitude of static power
consumption for different data values.

3 Preliminary Studies

According to the VLSI theory and the simulation results [13,17] leakage current
(directly proportional to static power) of a CMOS gate depends on the content
of its output as well as its inputs. In the following – by means of a couple of case
studies – we try to investigate the effect of the FPGA internals on the amount
of the chip’s leakage current.

3.1 Registers

As the simplest case study we consider the registers as of fundamental elements
available in any FPGA. We first considered Target of SASEBO-GII (Virtex-5)
and made a design consisting of several registers. All registers are configured as
FDCPE, i.e., “D Flip-Flop with Clock Enable and Asynchronous Preset and Clear”
(see [25]). As shown by Fig. 2(a), CE (clock enable) is always ‘1’, and D (register
input) is connected to ‘0’. So, by a positive edge at CLK (clock) the register stores
‘0’. Further, since the register is configured as “with Asynchronous Preset and
Clear”, the register stores ‘1’ by seeing HI level (‘1’) at the PRE (preset) signal.
CLK and PRE of all registers are connected together and are handled by Control.
Therefore, Control can change the content of the registers by handling these two
signals. More precisely, when signals (CLK, PRE) change from (0,0) to (1,0) or
to (0,1) the registers save ‘0’ or ‘1’ respectively. Also changing the signals back
to (0,0) does not alter the registers content. This indeed helps us to switch off
the IO signals without affecting the internals when measuring leakage current as
explained in Section 2.

We have implemented 14 400 instances5 of the above explained register, and
controlled the placement process to place them in desired locations6. An impor-
tant issue is regarding the Q(out) signal of the registers. These signals are not
5 Half of the available registers in Virtex-5 LX50.
6 The placement of the registers does not affect the result of this experiment, but

the manual placement is done to keep its consistency with the next experiments as
explained later.
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Fig. 2. Design of basic elements of the preliminary case studies

connected to anywhere. This gives us the chance to examine only the effect of the
register contents on static power. In order to avoid optimization and trimming
the unconnected resources by the synthesizer tools, we explicitly forced the tools
to keep these signals7 thereby preventing the registers to be trimmed.

In the measurement phase, the leakage current of two cases is to be measured:
i) when all the registers contain ‘0’ and ii) when all the registers contain ‘1’. As
stated before, during both measurements the environmental situation like the
IO signals – of both Target and Control – must be the same, and the difference
between these two cases must only be the content of the registers. We followed the
procedure explained in Section 2 for each case separately to obtain two singular
values as amounts of corresponding leakage current. Repeating this process 1000
times (done in 17 minutes) led to two curves shown by Fig. 3(a).

As shown by the graphics, the dependency of the leakage current to the reg-
isters’ content is clear. Although the leakage currents greatly vary over time,
their difference (of two cases) is relatively constant. We realized that the reason
behind this remarkable variation is temperature inconstancy. The chip temper-
ature as well as room temperature significantly affects the leakage current mea-
surements8. Since the temperature of the equipped differential probe steadily
increases after power up, it also has a huge impact on the measured leakage cur-
rent. In order to diminish these issues we employed a thermobox to isolate the
platform and the differential probe from environmental temperature variations.
This makes the situation better, but does not completely solve the problem.

By repeating the same experiment with the same number of registers on two
other platforms, SAKURA-G (Spartan-6) and SAKURA-X (Kintex-7)9, we ob-
tained the leakage current curves shown by Fig. 3. Dependency between static
power and the registers’ content is obviously shown, but comparing these three
results brings some interesting conclusions:

7 By KEEP and SAVE NET FLAG constraints (see [23]).
8 As an interesting experience, approaching human body (∼ 37◦C) to the FPGA chip

causes the leakage current to rapidly change.
9 FDCPE instances are replaced by FDPE “D Flip-Flop with Clock Enable and Asyn-

chronous Preset” as FDCPE does not exist in Spartan-6 and Kintex-7 libraries (see [24]
and [26]).
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Fig. 3. Measured leakage current of 14 400 registers on all three platforms

– In case of SASEBO-GII (Virtex-5) and SAKURA-G (Spartan-6), when the
content of the registers is ‘1’, the leakage current is higher compared to
when the registers stored ‘0’. This polarity is reversed in case of SAKURA-
X (Kintex-7). Since the underlying FPGAs are from different families with
different technologies, and the details of each process technology are not
publicly available, we cannot comment on this behavior.

– Leakage current of SASEBO-GII (Virtex-5 65 nm) ∼ 300mA is much higher
than that of other platforms with lower process technology. Also it does not
decrease by shrinking the technology as ∼ 30mA for SAKURA-G (Spartan-
6 45 nm) and ∼ 90mA for SAKURA-X (Kintex-7 28 nm). Note that we
supplied all three FPGAs with the same internal core voltage (1.0V).

– Moreover, the part of the leakage current related to the registers’ content
is not higher for smaller process technologies. 307μA, 25μA, and 138μA
respectively for the 65 nm, 45 nm, and 28 nm chips. It means that side-
channel vulnerability of these circuits through static power does not necessar-
ily increase by shrinking the technology. In our experiments, the difference
between leakage current of two cases (registers = ‘1’ or ‘0’) of SASEBO-
GII (Virtex-5 65 nm) is the highest compared to that of the others.

3.2 Connections

The FPGA internal connections are realized by programmable switch boxes
which play an important role regarding the amount of (dynamic) power con-
sumed by a design. The number of switch boxes, which exist in the routing of
a signal, significantly affects its delay as well as the energy consumed when
it toggles. The more switch boxes a signal passes, the higher is its toggles’
power consumption. Accordingly, the amount of leakage current of a switch box,
which is made by CMOS circuits, should be affected by the value of the sig-
nal. In order to examine this issue we have developed the next experiment. As
shown in Fig. 2(b), in the same way as in the last experiment a register is
employed. The output of the register is given to a look-up table (LUT6) whose
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Fig. 4. Measured leakage current of 14 400 registers + connections on all three plat-
forms

output – regardless of its inputs – is always ‘0’. This gives us the opportunity
to exclude the effect of the LUT6 output toggles in our investigations. However,
having the LUT6 in the design is mandatory; otherwise the signal routing (switch
box connection) will not be realized.

In order to limit the number of switch boxes involved in each signal routing,
the register and the connected LUT6 instance are forced to be placed at the
same slice by manual placement. In order to make the connection the register
output must be routed to the CLB10-dedicated switch box and come back to
the same slice to be connected to the LUT6 input (see Fig. 12). It indeed makes
a loop going out of and coming back to the slice11. It also guarantees that only
one switch box is involved in each signal routing. Similar to the last experiment,
we developed a design as Target with 14 400 instances of these elements. The
same placement as that of the last experiment is done here to keep the consis-
tency of the two experiments. Further, we provided appropriate constraints to
avoid trimming the registers and the LUT6 instances since the LUT6 output is
connected to nowhere.

After developing this design on all our platforms we measured the correspond-
ing leakage current 1000 times for each of the cases of the registers’ content. The
results of the measurements are shown by Fig. 4. By comparing the results of
the last and the current experiments on SASEBO-GII (Virtex-5) (Fig. 3(a) and
Fig. 4(a)), it becomes clear that the difference between leakage current of two
cases of the registers’ content is smaller when the connections are added to
the design. It can be concluded that the polarity of the dependency of leak-
age current to the value of the connected signals is the inverse of that to the
registers’ content. The same behavior is seen for the second platform SAKURA-
G (Spartan-6); compare Fig. 3(b) and Fig. 4(b). However, the last platform
SAKURA-X (Kintex-7) behaves differently (see Fig. 3(c) and Fig. 4(c)). Intro-
ducing the connections to the design increases the difference between the mea-
sured leakage currents. It means that the effect of the value of the connected
signals on leakage current has the same polarity as that of the register’s content.
10 Configurable Logic Block: containing two slices in Virtex-5, Spartan-6, and Kintex-7

families. Each slice consists of four LUT6 and at least four registers.
11 Note that an opposite connection which connects a LUT6 output to a register input

at the same slice does not necessarily leave the slice and pass a switch box.
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Fig. 5. Measured leakage current of 14 400 registers + connections + LUTs on all three
platforms

As stated before, since these FPGAs are developed under different technologies,
these observed dissimilar behaviors cannot be easily justified. It is worth to men-
tion that these results stand for a couple of connections made around a slice then
repeated several times for other slices. Based on these results we cannot conclude
about the effect of every connection made by switch boxes in an FPGA.

3.3 Look-Up Tables

As the last experiment with FPGA fundamental elements, we examine the effect
of the look-up table’s (LUT) output value on leakage current. As shown by
Fig. 2(c), compared to the last experiment we only changed the configuration of
the LUT6 to make its output always the same as its first input, i.e., the register
output. In this design when the register output toggles, the value of the routed
signal (connection) as well as the value of the LUT6 output changes. This way,
sum of the effect of all these three elements on leakage current is observed in this
experiment. Repeating the last experiment with the slightly modified designs
(only changing the LUT6 configurations) led to the results shown in Fig. 5.
It should be noted that everything including the number of elements (14 400),
placement, and routing are the same as that of the experiment expressed in
Section 3.2.

Comparing the results of this experiment with that of two previous ones it can
be concluded that the LUT6 output value has a considerable impact on leakage
current in case of SASEBO-GII (Virtex-5). The same influence with a smaller
factor can be seen on the other platforms. The polarity of this dependency –
similar to the previous experiments – is different from one platform to another.

Table 1. Dependency of leakage current to basic FPGA internal elements

Platform FPGA Technology Register Connection LUT
μA % � μA % � μA % �

SASEBO-GII Virtex-5 65 nm 307.20 49 ↑ 50.80 8 ↓ 270.10 43 ↑
SAKURA-G Spartan-6 45 nm 25.30 44 ↑ 9.03 29 ↓ 6.51 27 ↓
SAKURA-X Kintex-7 28 nm 138.70 49 ↓ 120.10 43 ↓ 21.90 8 ↓
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Fig. 6. Design of exemplary circuits

To sum up the result of the experiments expressed so far Table 1 presents the
amount and polarity of dependency of leakage current to the targeted funda-
mental elements on all our three platforms.

3.4 AES S-box

Up to now all the presented case studies were based on many registers, con-
nections, and LUTs having the same value. In order to move toward a crypto
device, and examine whether a side-channel attack is possible we developed the
fourth case study as an 8-bit key XOR followed by an AES S-box. For the S-box
circuit we took the very small design of [7]. A diagram of the circuit is shown
by Fig. 6(a). Two 8-bit registers supply the inputs of the key addition and the
S-box, and one register is responsible to save the S-box output. All the registers
are handled by Control.

As shown in previous experiments, the dominant term affecting leakage cur-
rent is temperature variations. Therefore, to exploit the amount of leakage cur-
rent relevant to the processed data we should continuously measure the leakage
current of a deterministic state of the underlying device, e.g., RESET after power
up. In case of our exemplary AES S-box design, forcing the device to RESET
state is done by handling the CLR signal which causes all three registers to clear
their content. Therefore, to diminish the effect of temperature we followed the
below procedure:

1. Control forces Target to RESET state by setting CLR signal.
2. The procedure of Fig. 1 is followed to measure leakage current as lRESET.
3. data = (plain, key) as input is provided by Control for Target.
4. Again based on the procedure of Fig. 1 leakage current as ldata is measured

when the S-box output is ready to be saved in the register.
5. The amount of leakage current related to data is reported as (ldata−lRESET).

Therefore, for each given data the measurement process should be performed
twice to obtain a singular value as relevant leakage current. Apparently the
delay between these two measurements should be kept as small as possible.
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Fig. 7. CPA attack using HW of the S-box output on leakage current of the design of
Fig. 6(a) implemented on SAKURA-X (Kintex-7), 10 000 measurements

For the rest of the experiments we focus on the third platform SAKURA-
X (Kintex-7). After implementing the aforementioned design on Target, we kept
the 8-bit key constant and performed the procedure explained above 10 000 times
with random 8-bit plain values. This way we obtained 10 000 measurements of
leakage current related to the known plain values. In sum, whole of the mea-
surement process took around 2.5 hours. Similar to when applied on dynamic
power traces, a power analysis attack can now be mounted using the collected
measurements of leakage current. Several techniques like DPA [16], CPA [6],
and MIA [12] can be used to examine whether the selected key value can be
extracted. An obvious difference to when they are applied on dynamic power
traces is the absence of time domain since each measured static power (leakage
current) is a singular value.

We have tried the aforementioned power analysis techniques with different
hypothetical models. The result of a CPA attack with Hamming weight (HW)
model (S-box output) is shown in Fig. 7(a). The efficiency of the attack is obvi-
ous, but it is strongly affected by the placement and routing strategy of Target.
A different placement and routing causes a different number and types of connec-
tions to be used to realize the design. As shown by the presented experiments,
this directly affects the amount of leakage current related to the value of the
connected signals. For example, forcing the S-box output register to be placed
far away from the S-box combinatorial circuit causes the corresponding connec-
tions to be very long passing many switch boxes. This has a huge impact on the
attack (CPA-HW) efficiency as shown in Fig. 7(b). As a short notice, since the
internal connections (signal routings) are amongst the dominant factors affect-
ing leakage current of an FPGA, in contrast to what is reported in [17] for a
simulated ASIC, HW model might be not necessarily a suitable model in case
of FPGAs.

3.5 Masked AES S-box

Now an interesting question is whether a higher-order attack is possible
through static leakage when the implementation is equipped with a masking



Side-Channel Leakage through Static Power 573

0 50 100 150 200  250

−0.01

0

0.01

0.02

Key Candidate

C
or

re
la

tio
n

(a) First Order

0 50 100 150 200  250

−0.01

0

0.01

0.02

Key Candidate

C
or

re
la

tio
n

(b) Second Order

Fig. 8. CPA attack using HW of the S-box output on leakage current of the design of
Fig. 6(b) implemented on SAKURA-X (Kintex-7), 50 000 measurements

countermeasure. So, another exemplary design as shown in Fig. 6(b) is taken
into account. The masked AES S-box is taken from the very compact design
of [8] which realizes first-order Boolean masking. For each given plain value, two
8-bit values m and n as input and output masks are randomly selected. data
as (plain′, key,m, n) is composed and sent to Target by Control, where plain′
denotes plain⊕m (masked input). When the input registers have stored data,
the masked S-box output as S(plain⊕ key)⊕ n is ready to be saved in the out-
put register. Similar to the last experiment, we took SAKURA-X (Kintex-7) as
the platform and performed the leakage current measurements according to the
procedure explained in Section 3.4. During all 50 000 measurements (taken in 12
hours) plain as well as m and n were selected randomly while the key value was
kept constant.

The first-order leakage of the underlying masked S-box design through dy-
namic power is known (see [18]). We have also tried to mount a correlation
collision attack [18] to examine its first-order leakage through leakage current
(see Appendix). Nevertheless, as shown by Fig. 8(a) CPA attacks using com-
mon models (S-box output HW) are ineffective to recover the secret. However,
a second-order attack is expected to be efficient. So, the collected leakage cur-
rent values are made mean free and then squared. Afterwards, the same CPA
attack, indeed a zero-offset second-order attack [22], is performed whose result
is depicted by Fig. 8(b). It clearly shows that the same principles of higher-order
attacks are valid in case of leakage current. The main difference is due to having
only univariate measurements in this case.

4 Realistic Scenario

After performing quite exhaustive preliminary experiments, it is now time to
examine under which conditions a crypto device can be attacked through its
static power. We have developed a full AES-128 encryption engine with a 32-
bit width datapath, where at each clock cycle a column is processed as four
S-boxes or one MixCoulmns. Figure 13 shows an overview of the design, as
can be seen both masking and shuffling are employed. The masking scheme is
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Fig. 9. AES-128 encryption engine, PRNG off, CPA attack results with S-box output
HW model, 100 000 measurements

first-order Boolean, and the underlying masked S-box is the same as the one
used in Section 3.5. The shuffling is realized by randomly selecting the order of
processing the columns (Sel_Col signal). Moreover, during the computation of
SubBytes the four instances of the S-box circuit are randomly assigned to the
given column (Instance Shuffling signal). Within loading the plaintext, key, and
masks the initial masking as well as AddRoundKey are performed. Then, the
SubBytes operation is performed in 4 clock cycles. Afterwards, it takes 4 clock
cycles to finish MixColumns and AddRoundKey at the same time. During this
period the S-box instances are used by KeySchedule. The “Mask Correction” unit
also changes the masks after each MixColumns and prepares the round output to
be again masked by input mask m. Clearly at the “Final Round” MixColumns
is not operated, and the mask of the S-box output is removed after the last
AddRoundKey and before saving them back to the state register.

PRNG Off. The design is implemented on SAKURA-X (Kintex-7), and for the
first try the PRNG which generates random values for input and output masksm
and n as well as for shuffling (Sel_Col and Instance Shuffling) is switched off. As
stated before, for leakage current measurements we require a deterministic state,
e.g., RESET, to continuously measure its relevant leakage current. Since in the
underlying FPGAs the content of the registers after power up is deterministic
(specified as ‘0’ or ‘1’ by the bitstream), we continuously power down and up
the Target FPGA in order to obtain lRESET for each data-dependent leakage
current measurement. After supplying a new data by Control, Target is kept
running till end of the SubBytes operation of the first cipher round, i.e., 4 clock
cycles after starting the encryption. As stated before, at this time instance all
IO signals provided by Control including CLK go LO; then the leakage current
of Target is measured. It should be noted that for each relative leakage current
measurement Target is powered down and up again to obtain a new lRESET. In
this setting we repeated the leakage current measurements 100 000 times when
supplying the inputs by random 128-bit plaintexts and a constant 128-bit key.
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Fig. 10. AES-128 encryption engine, PRNG on, second-order CPA attack results with
S-box output HW model, 1 000 000 measurements

A similar attack as before, CPA by HW of the S-box output, might be able
to recover the secrets. During the attack we noticed that four key bytes can
be detected much easier than the others. When the leakage current is being
measured, one column of the SubBytes result stored in the state registers is
available at the MixColumns circuit’s input. The key bytes related to this column
are discovered easier compared to that of other columns which are only available
at the column-selecting multiplexer. Figure 9 shows the result of the attack
targeting two different key bytes. Indeed, this result shows the same concept as
attack using dynamic power. The leakage solely related to the registers’ content
is not easily detectable, but when they drive a considerably large combinatorial
circuit, e.g., an AES S-box, the data-dependent leakage is much more exploitable.
This is in fact the reason behind the high efficiency of Hamming distance (HD)
model when attacking a hardware design through its dynamic power.

PRNG On. As the last experiment we repeated the previous procedure while
the PRNG is switched on and provides uniformly distributed values. The PRNG
is embedded on Control, seeded by the PC after each power up, and all required
random values are sent to Target before starting the encryption. Therefore, re-
seting Target to obtain lRESET does not affect the distribution of the random
numbers provided by Control. This time we performed 1 000 000 leakage current
measurements which took 10.7 days. As shown in Section 3.5, we can mount a
second-order attack. In this case when the leakage current is measured, a ran-
domly selected column (by Sel_Col) appears at the MixColumns input. There-
fore, all key bytes can be recovered relatively with the same effort. The results
of the second-order CPA with HW model on two key bytes are shown in Fig. 10.
In short, the attack succeeds even when both masking and shuffling are applied.

5 Conclusions

In this work we have presented the first practical results of using static power
to mount a successful side-channel attack. All the results illustrated are based
on three FPGAs and a couple of exemplary circuits. Note that it cannot be
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concluded that any implementation on any FPGA can be broken by means of
its static power. The results we observed and the conclusions we gave may not
hold for another FPGA family or for an ASIC platform. In addition, there are
a couple of important facts which should be noted:

– The main power-consuming components in FPGAs are connections (signal
routings). This is not true for ASIC platforms, and wires should not signifi-
cantly affect the chip leakage current. In this case the registers’ content and
gates’ output should be the main leakage sources.

– Although we have used a specific measurement setup, a dedicated setup to
amplify the DC signals as well as to reduce the noise by low-pass filters
should be developed for further analyses.

– By means of e.g., a climate chamber a constant temperature should be main-
tained during the static power measurements.

– The measurements of static power are more time consuming compared to
that of dynamic power.

– Due to the very small amplitude of the signal as well as high noise, Signal to
Noise Ratio (SNR) in this case is much smaller than that of dynamic power.
Therefore, many measurements are required to mount a successful attack.

– Similar to the case of using dynamic power, knowing the design architecture
of the device under attack in some cases is essential for a successful key-
recover attack. It is more critical to know at which time instance (which
clock cycle) the IO should be off to measure the static power.

The current study shows that the attacks using static power are practical,
but – using the current facilities and known measurement setup – they are still
less efficient than the attacks using dynamic power. Moreover, in case of static
power attacks the adversary model is quite strong as he/she ideally needs to
control the clock signal. So, many other attacks, e.g., fault injection attacks, are
potentially possible.

We should highlight that the results demonstrated here are preliminary, and
there are many more issues to be discovered in practice. If it is confirmed by
practice for ASIC platforms or micro-controllers (of course by a sophisticated
measurement setup) the masking schemes might be in danger. The leakage is
always univariate in case of static power, and the leakage of different shares
of a shared secret are always added and can be seen through the device static
power. Therefore, the designs like [20] as a univariate-resistance approach will
be vulnerable through static power (e.g., using higher-order moments) similar
to only-first-order-resistant approaches like [19].
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Appendix

First-Order Leakage of the Masked S-box

In order to examine the first-order leakage of the masked AES S-box of Fig. 6(b),
we collected two sets of 50 000 leakage current measurements with two different
8-bit key values. Similar to that of [18] we estimated the mean of these two
sets based on the value of plain and obtained two 256-element mean vectors.
Permuting one of the mean vectors based on the guessed Δkey and correlating
with another mean vector led to the result shown by Fig. 11. Indeed it confirms
that the same concept as first-order leakage of the employed masked S-box is
valid in case of leakage current as the attack can recover the linear difference
between two selected key values.
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Fig. 11. Correlation Collision attack on leakage current of the masked AES S-box
design of Fig. 6(b) implemented on SAKURA-X (Kintex-7), (a) using 50 000 measure-
ments, (b) over number of measurements
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Supporting Figures

Fig. 12. Virtex-5 internal architecture, CLB (two slices) and its dedicated switch box
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Abstract. Masking is a popular countermeasure against differential
power analysis (DPA) and other side-channel attacks. When designing
integrated circuits to resist DPA, masking at the logic gate level has the
benefit that it can be implemented without consideration of the high-
level function of the circuit. However, the phenomena of glitches and early
propagation reduce the effectiveness of many gate-level masking schemes.
In this paper we present a new technique for gate-level masking that is
free of glitches and early propagation, yet requires only cell-level “don’t
touch” constraints. Our technique, which we call LUT-Masked Dual-rail
with Precharge Logic (LMDPL), can therefore be implemented in a typ-
ical FPGA or standard cell ASIC design flow. LMDPL does not require
routing constraints, nor sequencing of the evaluation of individual gates
with enables, registers, or latches. We verify our techniques with an AES
implementation on an FPGA. Our implementation shows no significant
leaks in evaluations using up to 200 million traces.

Keywords: DPA, Side-Channel Analysis, Masked Logic, Dual-Rail Pre-
charge Logic, Glitches, Early Propagation, AES, S-box.

1 Introduction

Many devices leak information through side channels such as power consump-
tion or radiated electromagnetic energy. Side channel analysis techniques such
as differential power analysis (DPA) [11] can recover information about secrets
manipulated in a cryptographic device. Given enough measurements, these tech-
niques may enable an attacker to recover a portion, or the entirety, of a secret
key intended to be kept secure within a cryptographic device.

Masking countermeasures [4] seek to prevent DPA attacks by making the
electrical activity in a device independent of secret values being operated upon.
This is done by dividing the secret into multiple shares. The shares can be com-
bined to recover the original secret, but each share is random when considered
individually. Thus, operations may be performed on the shares without leaking
information about the secret. For example, given a secret value k in some group
G, a first-order additive masking uses a mask m chosen randomly from G, and
divides k into the shares m and m + k. Each of these shares is, when considered
individually, independent of k.

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 580–597, 2014.
c© International Association for Cryptologic Research 2014
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Gate-level masking strategies attempt to construct masked versions of the
elemental Boolean functions (AND, OR, etc.). For example, two common masked
versions of a two-input Boolean function f : a, b → q are:

g(a ⊕ ma, b ⊕ mb, ma, mb, mq) = f(a, b) ⊕ mq (1)
h(a ⊕ m, b ⊕ m, m) = f(a, b) ⊕ m (2)

The masked function g uses two independent mask bits for the inputs, and
produces an output masked with a third mask that is independent of the input
masks. The function h uses a common mask bit that is reused for both of the
inputs and the output.

Suppose we can construct a masked gate that can compute Boolean functions
without leaking the unmasked values of the secret data a, b, and q. Then, more
complex functions can be constructed from those masked gates, ideally in the
same manner that any circuit can be constructed out of standard logic gates.
Alternatively, given an implementation of some cryptographic circuit constructed
using standard Boolean gates, the masked gates could perhaps be swapped for
the standard gates to yield a masked implementation of the circuit. Our goal is
to create such a masked gate.

1.1 Previous Work

Masking countermeasures have been studied extensively. We focus here on tech-
niques that are most relevant to hardware implementations. Trichina et al. made
an early proposal for a masked AND gate using four ANDs and four XORs [28].
Subsequent study found that direct implementation of masked operations in
hardware may leak information through extraneous signal transitions known as
glitches, due to the multitude of paths through the circuit [7, 13].

This led to the proposal of masked dual-rail with precharge logic (MDPL) [22].
MDPL avoids glitches through the use of precharged, monotonic, dual-rail logic,
with each signal x encoded as a complementary pair (x, x). The authors observe
that the h version of a masked AND gate can be implemented as:

qm = MAJ(am, bm, m)
qm = MAJ(am, bm, m) (3)

However, it was later shown that MDPL circuits exhibited significant first-order
leakage due to early propagation [12, 21, 26]. Improved MDPL (iMDPL) ad-
dresses early propagation, but requires use of latches to control the moment at
which gates evaluate [21].

In addition to the above issues, MDPL and other maskings of the form h
described in Eq. 2 may not provide adequate resistance against attacks that
examine leakage distributions [6, 8, 24, 29]. Another technique that can be used
to attack protected implementations is the collision-correlation attack [17]. This
is a powerful technique for exploiting complex leakages such as those arising
from incompletely masked combinational logic [14, 15].



582 A.J. Leiserson, M.E. Marson, and M.A. Wachs

The maskings shown in Eqs. 1 and 2 divide a secret into two shares. It is
also possible to utilize more than two shares. Techniques from the field of multi-
party computation may be used to perform computations without ever operating
on all the shares simultaneously, thus ensuring immunity from glitch-related
leakage [23]. However, a memory effect was identified, in which leakages from a
computation can persist in a circuit for a period of time after the computation
occurs. This phenomenon can impact the security of schemes thought to be
immune to univariate attacks [16].

The technique of Prouff and Roche [23] performs shared multiplications in
GF(28). In contrast, threshold implementations instead use bitwise shares. The
product of the values x = x1 + x2 + x3 and y = y1 + y2 + y3 is a collection of
xiyj terms, which can be allocated to output shares such that no single output
share contains sufficent information to leak the secret. Thus, threshold imple-
mentations also address the problem of glitches [2, 18, 19, 20].

Of the foregoing techniques, threshold implementations offer the greatest
promise for strong masking of arbitrary circuits, but doing so still requires in-
sertion of additional registers in some cases. In this work, we offer a strategy for
general gate-level masking that does not require additional registers.

1.2 Roadmap

The paper is organized as follows. First, we briefly describe the idea of path-based
leakage assessment. Next, we introduce LUT-Masked Dual-rail with Precharge
Logic (LMDPL), a masking technique that is leak-free under a path-based leak-
age metric. Finally, we present some experimental results obtained from FPGA
implementations of an LMDPL AES core.

2 Path-Based Leakage Assessment

Many previous countermeasures have been justified with arguments that the set-
tled final values of each circuit node in each clock cycle are independent of secret
data. However, such analyses cannot identify ways in which the transient elec-
trical behavior may correlate with secret data. In practice, designs constructed
without consideration of transient electrical behavior have remained vulnerable
to side-channel attacks.

Most contemporary semiconductor devices are implemented using comple-
mentary metal-oxide-semiconductor (CMOS) or closely related technology. In
CMOS technology, when a logic gate changes state, the parasitic capacitance
at the inputs of downstream gates must be either charged or discharged. Ignor-
ing quasi-static operating conditions such as supply voltage and temperature,
the time it takes to (dis)charge the inputs of downstream gates still depends
on many factors. The factors can include the number of inputs of a gate that
are switching, the transition time (slew rate) at the switching inputs, and the
logic state (voltage) present at non-switching inputs. When considering whether
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the electrical activity is independent of a secret, these effects should be consid-
ered cumulatively for the entire propagation path. For example, in a two-share
scheme, if the output transition of an early gate exhibits a slight delay depend-
ing on the value of one share, and this output propagates to a gate at which
the activity depends on the other share, the combination of these two effects
may make the electrical activity at the downstream gate correlated with the
unmasked secret.

Rise Rise Rise0

Rise 0

Rise

A
B

v0 v1 v2 v3

v4 v5

v6

v0 v1 v2 v3 v4 v5 v6
A r r r 0 r
B 0 r 0

Fig. 1. Two activity images, A and B, for a simple circuit

To investigate whether masked logic styles leak due to this type of electrical
effect, we have developed a technique that we call activity image analysis. Due
to space constraints we include only a brief description of the technique here.
Activity image analysis determines whether electrical activity at upstream and
downstream gates can combine to leak a secret by considering the switching
events at adjacent gates jointly, rather than separately. The idea is illustrated in
Fig. 1. A circuit is leak-free under an activity image metric if, for each activity
image, observation of that image does not correlate with any secret value. This
is a significantly stronger condition than balancing the distribution of final gate
output values.

Activity image analysis is more comprehensive than toggle simulation analy-
sis, which analyzes a single extracted model of propagation time through gates
and wires, and applies to a single combination of operating conditions. Similar
to structural clock domain crossing checks, activity image analysis examines the
logical structure of the circuit and provides an assurance that is robust to tim-
ing variation. We also believe activity images can be helpful in detecting early
propagation, but have no formal proof.

Appendix A shows an activity image analysis of iMDPL. Residual leakage
in an iMDPL implementation due to circuit effects was also examined in [14].
Based on the results we have obtained from activity image analysis, we question
whether mapping a single-rail circuit to a dual-rail circuit (as done e.g. in [5]) is
an effective technique for producing first-order masked implementations.
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3 LUT-Masked Dual Rail Logic

In this section, we introduce LMDPL, explain its usage, and then describe how
we implemented AES using LMDPL.

3.1 The LMDPL Non-linear Gate

It is well-known that linear functions are amenable to being computed on a
shared representation of their argument, while non-linear functions pose substan-
tial difficulty. Consequently, our efforts focused on identifying a way of computing
non-linear functions in masked logic while satisfying the activity image leakage
metric. We arrived at the dual-rail table lookup structure shown in Fig. 2. In
our schematics, wires shown crossing at a right angle are not electrically joined,
whereas wires shown meeting at a tee are electrically joined.

t7 t6 t5 t4 t3 t2 t1 t0

am

am

bm
bm

am

am

bm
bm

qmqm

Fig. 2. LMDPL Non-linear Gate

The LMDPL non-linear gate is intended to be used with a masking in the
form of Eq. 1. Secret inputs a and b are converted to masked representation by
obtaining two random mask values ma and mb, and computing

am = a ⊕ ma

bm = b ⊕ mb (4)

The values ma and mb constitute one share (the “mask share”), and am and
bm constitute the other share (the “masked data share”). In dual-rail logic, each
logical value is represented by a complementary pair of signals, only one of which
may be active at any time. The masked data values am and bm are input in dual-
rail encoding at the left of Fig. 2. The eight ti inputs at the top of the figure
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provide the values of a lookup table. By supplying the appropriate lookup table
corresponding to the desired function f and the mask values ma, mb, and mq,
the LMDPL gate produces a pair of complementary outputs that are a dual-rail
encoding of qm. We will return to the computation of the lookup table values in
Section 3.2. Although the LMDPL non-linear gate may be used to implement an
arbitrary two-input function, more compact alternatives are available for linear
functions.

The structure shown in Fig. 2 is important. If EDA tools are permitted to
freely restructure the logic, the gate will no longer pass a path-based leakage
assessment. Fortunately, it is not difficult to instruct common EDA tools to
preserve certain cell instantiations with a mechanism known as a don’t touch
constraint. Limited restructuring of the gate is acceptable. For example, ASIC
implementations may prefer the NAND/NAND structure obtained by applying
De Morgan’s Law. We suggest some strategies for implementing LMDPL with
common tools in Appendix B

Between each evaluation, the circuit must be precharged by driving both
signals in each masked data pair to zero. Zeros on the four masked data inputs
will propagate to the outputs, hence a precharge applied at the masked data
inputs of a collection of LMDPL gates will propagate to the final outputs. During
the evaluation of the gate, a transition away from zero on an output requires a
non-zero value to have arrived on one of the component signals of each dual-rail
input pair. Thus, the LMDPL gate does not exhibit early propagation.

LMDPL avoids glitches through the use of monotonic gates, in the same man-
ner as the original MDPL. In the course of any evaluation, each of the qm and
qm outputs will transition at most once.

On any evaluation, exactly one of the AND gates in the LMDPL non-linear
gate will produce a rising transition at the output. Even after fixing any or all of
the unmasked data values, each of the eight AND gates has an equal probability
of being the active gate upon each evaluation, depending upon the mask values.
This effect is similar to Baddam et al.’s path switching countermeasure [1].

3.2 Implementing LMDPL

A simple circuit constructed using LMDPL is illustrated in Fig. 3. The circuit
has three inputs, x, y, and z, and one output, w. The top portion of the figure
operates on the mask share, and the bottom portion of the figure operates on the
masked data share. The lookup tables ti for the LMDPL gates are passed from
the mask share to the masked data share through registers. There are two non-
linear gates, so the mask share takes two fresh mask bits from the RNG. Each
of the mask share logic and masked data share logic is constructed by making
modifications to the original circuit. The mask share retains linear elements,
ties the output of each non-linear element to an RNG bit, and instantiates a
“Table Gen” component for each non-linear element. The masked data share
replaces the linear elements with corresponding dual-rail versions, and replaces
the non-linear elements with instances of the LMDPL non-linear gate.
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Fig. 3. A simple circuit using LMDPL

The “Table Gen” components compute the ti values for each non-linear gate
in the manner typical of masked lookup tables. A function f : GF(2) × GF(2) →
GF(2) is assigned to each table generator according to the original circuit. Each
table generator accepts input masks ma and mb and an output mask mq, which
vary for each evaluation, and computes a varying table for each evaluation by
the following formula.

Let m = (mb, ma) and i = (i1, i0) with i0, i1 ∈ {0, 1}. Then,

t4+2i1+i0 = f(i ⊕ m) ⊕ mq = f(i1 ⊕ mb, i0 ⊕ ma) ⊕ mq

t2i1+i0 = t4+2i1+i0 ⊕ 1 (5)

The non-linear function implemented by the LMDPL gate will commonly be a
logical AND: f(a, b) = a · b. The operation of the table generation logic for this
case is shown in Table 1.

3.3 Implementing Linear Functions

Circuits typically also include gates that are linear (or affine) under boolean
masking. When implementing linear gates, it is not necessary to consider the
masking, so LMDPL is compatible with the linear gates from non-masked dual-
rail logic styles such as WDDL [27]. We review briefly how to implement NOT
and XOR gates.

A NOT gate can be implemented without any transistors, simply by swapping
the complementary dual-rail signals. That is, q = NOT(a) is implemented by:

q = a

q = a (6)
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Table 1. Computation of the ti for f(a, b) = a · b

mq mb ma t7 t6 t5 t4 t3 t2 t1 t0
0 0 0 1 0 0 0 0 1 1 1
0 0 1 0 1 0 0 1 0 1 1
0 1 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1 0 0 0
1 0 1 1 0 1 1 0 1 0 0
1 1 0 1 1 0 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 1

XOR gates should be implemented as monotonic logic (i.e., constructed out
of AND and OR gates) to ensure the logic remains glitch-free and to correctly
propagate the precharge state. An XOR gate q = XOR(a,b) can be implemented
as follows:

q = a · b + a · b

q = a · b + a · b (7)

3.4 AES Implementation

To test the effectiveness of LMDPL, we developed an implementation of AES.
The overall architecture of the AES implementation is shown in Fig. 4. The
design computes a complete round transformation in parallel, and thus has 16
S-boxes. We favor simplicity and use a clock-based approach for the precharge,
driving inputs to the LMDPL logic to zero in alternate cycles. Recall that so-
phisticated masking techniques are required only for non-linear operations, and
the only non-linear operation in AES is the GF(28) inversion within SubBytes.
We implement only the inversion in LMDPL, and implement the remainder of
the round transformation (including the linear portions of SubBytes) in ordinary
logic. The sequence of operation is:

0. Initially, the LMDPL inversion logic is precharged.
1. In cycle 1 of a cipher operation, ordinary logic performs AddRoundKey and

converts bytewise to the subfield basis used for inversion. The LMDPL logic
is still precharged.

2. In cycle 2, the LMDPL logic computes bytewise inversion in GF(28).
3. In cycle 3, ordinary logic converts bytewise to the standard AES basis, ap-

plies the SubBytes affine transformation, performs ShiftRows, MixColumns,
and AddRoundKey, and then converts bytewise back to the subfield basis.
Also in cycle 3, the LMDPL logic is precharged.

4. In subsequent even cycles, the LMDPL logic is active.
5. In subsequent odd cycles, the ordinary logic is active, and the LMDPL logic

is precharged.
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Fig. 4. Architecture of the AES implementation

Fig. 4 emphasizes the masked data share logic. The mask share logic (not shown
in detail) mirrors the masked data share logic, with the table generation imple-
mented according to Fig. 3, and without the need for registers surrounding the
GF(28) inversion.

The GF(28) inversion uses the GF(((22)2)2) normal basis identified in [3].
This implementation requires 36 bit-multiplications in GF(2). Some additional
detail on our implementation of the inversion is provided in Appendix B.

The mask share (the ti) would ideally be kept in the Hamming-weight-
balanced 8-bit encoding to minimize leakages usable by second-order attacks.
However, this is quite expensive. At some cost in resistance to second-order at-
tacks, we generate and register only half of the table. The complementary half
is obtained by inversion. In some cases, registers with complementary outputs
could be used.

For purposes of comparison, we synthesized an ASIC version of our LMDPL
AES core using Synopsys Design Compiler 2013.03-SP2. Table 2 compares our
implementation with several others reported in the literature. Note that the
threshold implementations [2, 18] have the advantage that the S-box can be
pipelined, meaning the overall throughput is one S-box evaluation per clock
rather than 1/latency. However, this benefit disappears in fully parallel imple-
mentations, as it is necessary to obtain the previous round’s SubBytes out-
put and apply the remaining transformations of an AES round before the next
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Table 2. Comparison of implementations. Area reported both as count of Virtex 5
LUTs and as NAND2-normalized ASIC area (“Gate Equivalents”). Area does not
include PRNG. LMDPL S-box area includes pre- and post-inversion data registers,
single/dual rail conversion, table generation, table registers, and basis converters im-
plemented in single-rail logic.

Random
bits per
S-box

S-box
latency

Parallel AES Per S-box

LUTs GE LUTs GE
[16] 8 132 21,328 1,387
[18] 48 5 4,244
[2] 44 3 3,003

This work 36 2 8,538 59,311 447 2,825

SubBytes input is ready. Also, note that although it requires fewer random bits
per S-box, the parallel AES presented in this work requires more random bits in
per-clock terms (576/2) compared to the threshold implementations with 8-bit
datapaths (44/3 and 48/5). As was the case for the threshold implementations,
we have provided ASIC area figures for comparison, while presenting evaluation
results from an FPGA.

4 Experimental Results

This section presents assessments of DPA resistance on two designs incorporat-
ing LMDPL. Each design is described in Verilog, and implemented for Xilinx
Virtex-5 FPGA using Synplify Pro 2009.03 and Xilinx ISE 13.2.

4.1 Evaluation Methodology

To evaluate the information leakage in different designs, we used the test vector
leakage assessment (TVLA) methodology proposed by Goodwill et al. [9]. The
TVLA methodology is designed to measure information leakage and provide an
objective score. It specifies test vectors and uses Welch’s t-test to measure the
significance in the difference of means of two distributions. One of the tests in the
methodology is known as the “fixed versus random” (FVR) test. In this test, the
measurements are collected as the device operates repeatedly using fixed input
data and randomly varying input data. (The fixed and random input vectors
are randomly interleaved.) Welch’s t-test is then used to score the differences
between the two sets of measurements. We follow [9] and use |t| < 4.5 as the
criteria for a passing result.

The fixed versus random evaluation technique does not target specific leaks.
Rather, it measures aggregate information leakage at each point in time during
the cryptographic operation. It is extremely powerful and can often find potential
vulnerabilities with fewer traces than needed to identify specific leakages. In
particular, for designs where the parallelism exceeds the portion of the key that
can be guessed by a DPA attack, a leak identified by the FVR test is stronger
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than that which would actually be available to an attacker who cannot guess the
entire key at once. Nevertheless, a failure of the FVR test does represent some
correlation with secret intermediates, and the goal of masking is to eliminate
such correlations.

Another characteristic of the FVR test is that false positives may arise due to
the plaintext and ciphertext being fixed. The dilemma is similar to the need in
conventional DPA attacks to select an intermediate separated from the plaintext
or ciphertext by a non-linear function. We avoided the problem of input and
output leaks by splitting the input into separate mask and masked data shares
prior to transfer to the device under test (DUT), and likewise retrieving mask
and masked data shares from the DUT before combining. We refer to this scheme
as externally applied masking and the more conventional scheme where the DUT
divides the data into shares as internally applied masking.

We also perform a variant of a collision correlation attack [17]. Our simulated
collision correlation (SCC) attack operates by dividing the pool of traces into
two equal-size groups and computing for each group the 256 means correspond-
ing to the possible values of the S-box input. Then, for each of 256 possible
“guesses” of a linear key byte distance, the means in one group are permuted
according to the guess, and the correlation computed between the two sets of
means. The unpermuted case represents the “correct” guess. To select points for
this attack, we used one-way analysis of variance (ANOVA) to identify points
with the strongest dependency on the S-box input value.

Our evaluation setup uses a Sasebo-GII board and a Signatec PX14400A
PCI-E card for data acquisition. The signal is taken from the 1 Ω supply-
side sense resistor on the Sasebo-GII and connected through a Mini-Circuits
BLK-89-S+ DC blocker, a Mini-Circuits BLP-150+ LPF, and a Mini-Circuits
ZFL-1000+ amplifier before driving the input of the Signatec card, which has a
sample rate of 400 MS/s and 14 bits of resolution.

The design operates at 24 MHz. Our evaluation harness performs 2,000 con-
secutive AES operations with data obtained from and stored to buffers on the
FPGA. The design provides a trigger signal concurrent with the start of the first
AES operation. This signal is used as an external trigger for the Signatec card.
To ensure that the 400 MS/s sample rate does not impact the alignment quality
when analyzing our traces, we use a technique similar to that of [10] to achieve
sub-sample alignment resolution.

4.2 Results from a Single S-box Design

Prior to presenting results from the full AES implementation, we present results
from a simplified design. The simplified design maintains the 128-bit parallel
datapath of the full AES implementation, but replaces 15 of the 16 S-boxes with
passthroughs. We chose this approach, rather than a true 8-bit datapath AES,
to focus on leakage from the LMDPL S-box as opposed to leakage from registers.

We first disabled the mask generator and collected waveforms from 10,000
encryptions. For each encryption, we chose with even probability between the
fixed plaintext and a random plaintext. Fig. 5 shows several analyses of these
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Fig. 5. Single S-box design, masking disabled. (a) sample-wise t statistic on 10,000
traces, (b) sample 71 t statistic vs. number of traces, (c) SCC attack using sample 71
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Fig. 6. Single S-box design, masking enabled. (a) average of 100M traces, (b) sample-
wise FVR t statistic, (c) sample-wise 2nd-order FVR t statistic, (d) overlay of 2nd-order
t for each of the 36 S-box non-linear gate outputs, (e) t for each of 256 possible key
guesses, bit 25 sample 92, (f) t for each of 256 possible key guesses, bit 25 sample 99,
(g) first-order SCC using sample 86, and (h) second-order SCC using sample 86.
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traces. A sample-wise plot of the t statistic (a) immediately indicates that the
design is leaking. We selected sample 71, the point in the first round with the
greatest |t| value, for further analysis. For this design, slightly over 300 traces
are needed before the |t| > 4.5 threshold is reached for sample 71 (b). We then
performed a SCC attack at sample 71. For this evaluation, between 1,000 and
1,500 traces are needed before the correct guess becomes dominant (c).

We next enabled the mask generator and collected 100,000,000 traces, again
choosing evenly between a fixed plaintext or a random plaintext for each encryp-
tion. Fig. 6 presents analysis of these traces. With the masking enabled, the t
statistic does not exceed the |t| > 4.5 threshold with 100M traces (b), demon-
strating that the first-order masking is effective. However, the design exhibits
second-order leakage, as can be seen by using the t statistic to compare the
squared residuals between the two groups (c).

We used the 50,000,000 random traces out of the same data set to develop
an attack exploiting the second-order leakage. We sorted the traces based on
the output from each of the 36 non-linear gates in the S-box. The difference in
variance due to the value of a single bit is smaller than the difference that arises
when the entire plaintext is fixed, but it it still detectable. We examined all 36
candidates (d) and selected for the attack the bit and time sample combinations
with the largest |t|. The first candidate, bit 25 at sample 92, does not result in
selection of the correct key guess with 50 million traces (e). The second candidate,
bit 25 at sample 99, does result in the selection of the correct key guess with
50 million traces (f). First- and second-order versions of our SCC attack on this
design were not successful (g,h).
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Fig. 7. Parallel design, masking disabled. (a) sample-wise FVR t statistic on 100,000
traces, (b) sample 441 FVR t statistic vs. number of traces, (c) SCC attack using
sample 71

4.3 Results from a Parallel Design

One possible strategy to improve upon the resistance of the single S-box imple-
mentation would be to incorporate higher-order masking. However, in low-noise
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environments, the security benefit of higher-order masking is limited [25]. With
this in mind, we explored the resistance of an AES-256 implementation perform-
ing SubBytes on the entire round state in parallel.

We again measured the design with masking disabled as a baseline. For the
parallel design we collected 100,000 traces. For each trace, we chose randomly
between the fixed plaintext or a random plaintext. Fig. 7 shows our analysis of
these traces. Fig. 7(a) is a plot of the FVR t statistic versus the sample index, and
as with the corresponding plot for the serial implementation, provides immediate
evidence that the design is leaking. Fig. 7(b) plots the t statistic between the
fixed and random traces at sample 441 (the sample with the largest absolute
t value), and shows that less than 50 traces are needed before the |t| > 4.5
threshold is reached. Finally, Fig. 7(c) shows the results of our SCC attack at
sample 71. The correct key guess becomes dominant after about 10,000 traces.
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Fig. 8. Parallel design, masking enabled. (a) sample-wise FVR t statistic on 200,000,000
traces, (b) sample-wise 2nd-order FVR t statistic on 200,000,000 traces, (c) first-order
SCC attack at sample 87, (d) second-order SCC attack at sample 87, (e) CPA vs.
round1-round2 mask Hamming distance

Finally, we enabled the mask generator in our parallel design and collected
200,000,000 traces. Fig. 8 shows our results. The first-order FVR t has only
marginally exceeded the |t| > 4.5 threshold with 200,000,000 traces. In contrast
with the serial implementation, where the second-order t statistic reached sig-
nificantly larger values than the first-order t, the second-order t for the parallel
implementation reaches only slightly larger values than the first-order t. The
spike at the end of the second-order analysis in Fig. 8(b) is due to the final
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masked output, and mask, being manipulated at the end of the calculation, and
does not represent a leak of sensitive information. We performed the SCC attack
on this design, and it was not successful (c,d).

Fig. 8(e) is shown to demonstrate a technique that we use to investigate the
behavior of our designs and to verify that our data collection is correct. The
masked implementation used for evaluation allows re-seeding of the PRNG with
an externally-supplied per-encryption seed. This allows us to compute the values
of circuit intermediates that are a function of the mask, which would normally
not be predictable by an attacker. The figure shows the correlation between the
current measurement and the Hamming distance between the round one and
round two masks. Because the mask values for successive rounds overwrite each
other in the mask share logic, a strong correlation is expected and is indeed
present. We additionally note that the memory effect [16] is clearly visible here.
The register update occurs at the time of the initial downward spike around
sample 83. A strong correlation exists for around 50 samples (3 clock cycles) after
the register update, and a weak correlation persists throughout the encryption.

5 Conclusion

In this work, we propose the use of a path-based model for the leakage from
combinational circuits. Unlike traditional methods that focus on the settled val-
ues of circuit nodes, activity image analysis considers ways that data-dependent
behavior can accumulate as transitions propagate through combinational logic.

We also present LMDPL, a new technique for gate-level masking. LMDPL
compares competitively or favorably with previous techniques on multiple met-
rics. Furthermore, LMDPL does not require routing constraints, and does not
require that sequential elements or enable signals be used to delay the propaga-
tion of signals through the circuit.
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A Activity Image Analysis Example

Table 3 presents an activity image analysis of iMDPL in tabular form. Each row
describes one activity image. Columns to the left of the double line represent
states observed at the output of each gate in the circuit. The columns to the
right of the double line are labeled with a value x∗ of the secret x = xm ⊕m, and
entries in those columns report the count of observations of that row’s activity
image when x takes the value x∗. In this example there are eight possible inputs
to the circuit, corresponding to the two possible values for each of xm, ym, and
m. Evaluation of a circuit for a given input may exhibit multiple activity images.

We define a circuit to be balanced under the activity image metric if, for
any value x∗ that the secret x may take, the conditional probability that x =
x∗, given that some particular activity image was observed, is the same as the
unconditional probability that x = x∗. In other words, the observation counts in
each row of the table must have the same proportion as the global probabilities
of the associated x∗ values. In the case of iMDPL, Pr{x = 0} = Pr{x = 1} = 0.5,
so the requirement is that the counts in each row be equal. The iMDPL circuit
is not balanced, as the observation counts are different in 6 of the 10 rows. The
same analysis for the LMDPL circuit (omitted for space reasons) shows that it
is balanced under this metric.
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Table 3. iMDPL AND, assuming AND/OR decomposition

a0 = xm · ym a1 = xm ·m a2 = ym ·m qm = a0 + a1 + a2 (8)

xm ym m a0 a1 a2 qm x∗ = 0 x∗ = 1
0 r 0 1 1
r 0 0 1 1
r r 0 0 r r 0 1

0 r 0 0 2
0 r 0 1 1
r 0 0 0 2
r r 0 r 0 r 1 0
r 0 0 1 1
r r r 0 0 r 0 1
r r r r r r r 1 0

B Details on Implementing AES with LMDPL

As discussed in Section 3.1, LMDPL requires the structure of the non-linear gate
be preserved with don’t touch constraints (sometimes called “keep” constraints).
For an ASIC design, library cells implementing the elemental functions may be
instantiated in the HDL description, and a don’t touch attribute applied to the
instantiations. A common and simple way to do this is to use a distinguishing
prefix in the instance names, and use a wildcard pattern to identify for the tool
the cells not to touch. For either an ASIC or an FPGA, the elemental functions
(AND/OR/NAND) used in the gate may be placed in a dedicated module, and
a hierarchy-preserving attribute or directive applied to that module.

For the Virtex 5 FPGA, hierarchy preservation attributes limited the amount
of packing the place and route tools would perform. We obtained better results by
applying net preservation directives to the interface of the modules implementing
the elemental functions, or to the interface of the module implementing the
LMDPL gate. For example, preserving the interface of the dual-rail XOR (a 4-
input, 2-output function) allows it to be packed in a single dual-output LUT.
Similarly, appropriate constraints enable the eight AND gates of the non-linear
gate to be packed pairwise into four dual-output LUTs.

Our AES implementation incorporates an optimized inversion circuit, which
uses functions other than AND for some of the 36 non-linear gates. We created
a Liberty-format library description containing cells of unit area implementing
the XOR and XNOR functions, and cells of ten units area implementing each
of the non-linear two-input boolean functions. We then used Synopsys Design
Compiler to map the normal-basis GF(28) inversion onto this library. The netlist
from Design Compiler contained 37 non-linear gates rather than the expected 36,
however, inspection revealed that two of the non-linear gates could be combined
with minor rearrangement of neighboring XORs to achieve a 36-gate implemen-
tation. This optimized circuit was used as the basis for translation to LMDPL
mask and masked data share implementations.
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Abstract. This work deals with DPA-resistant logic styles, i.e., cell-
level countermeasures against power analysis attacks that are known as
a serious threat to cryptographic devices. Early propagation and imbal-
anced routings are amongst the well-known issues of such countermea-
sures, that – if not considered during the design process – can cause
the underlying cryptographic device to be vulnerable to certain attacks.
Although most of the DPA-resistant logic styles target an ASIC design
process, there are a few attempts to apply them in an FPGA platform.
This is due to the missing freedom in FPGA design tools required to
deal with the aforementioned problems. Our contribution in this work is
to provide solutions for both early propagation and imbalanced routings
considering a modern Xilinx FPGA as the target platform. Foremost,
based on the WDDL concept we design a new FPGA-based logic style
without early propagation in both precharge and evaluation phases. Ad-
ditionally, with respect to the limited routing resources within an FPGA
we develop a customized router to find the best appropriate dual-rail
routes for a given dual-rail circuit. Based on practical experiments on a
Virtex-5 FPGA our evaluations verify the efficiency of each of our pro-
posed approaches. They significantly improve the resistance of the design
compared to cases not benefiting from our schemes.

1 Introduction

Counteracting state-of-the-art power analysis attacks (so called DPA [13]) is a
must for cryptographic devices which may fall into the hands of malicious users,
who can control over the device in a hostile environment. Up to now several DPA
countermeasures at different levels of abstraction have been proposed. Many try
to provide resistance by manipulating the underlying cryptographic algorithm
in order to randomize its intermediate values, i.e., masking at the algorithmic
level, e.g., [24,25]. Some introduce noise, e.g., [7,17] or randomize either the pro-
gram flow or the order of the operations, i.e., shuffling, e.g., [10,17]. A couple
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of other schemes try to solve the problem from scratch, i.e., avoiding the de-
pendency of the power consumption of the circuit to the processed data. These
countermeasures at the cell level, called DPA-resistant logic styles, aim at equal-
izing the power consumption of a cryptographic device regardless of any input,
intermediate, or output value.

After a proper evaluation [30] it was discovered that most of the proposed logic
styles, such as WDDL [32] and MDPL [27], suffer from the early propagation
effect. This phenomena, also called data-dependent time-of-evaluation, refers to
the cases where a gate fires (evaluates) its output at different time instances
depending on the value of its input. It becomes more problematic when several
of such gates are cascaded to realize a combinatorial circuit. So, it causes the
power consumption pattern of the circuit to have a clear dependency to its input
value.

Moreover, most of the known logic styles face a common difficulty, i.e., routing
imbalances. Equal power consumption, which is expected to be achieved by Dual-
Rail Precharge (DRP) logic, needs a proper balance between the capacitances
of each dual-rail signal. Otherwise, transitions of TRUE and FALSE lines of a
dual-rail signal require different amounts of energy, which can be explored by a
DPA attack. Therefore, some place-and-route methods such as [6,33] have been
proposed to diminish the load imbalances of complementary signals in an ASIC
design process. Although iMDPL [26], which solves the early propagation effect
of MDPL, was designed to relax the necessity of balanced routings, still has
exploitable leakages due to imbalanced routing of the dual-rail mask signal [20].

State-of-the-Art. Even though most of the proposed logic styles target an
ASIC platform, at the early stage of their development some have been evaluated
using FPGAs. Since the FPGA design tools miss the flexibility required for
balanced routing, most of the efforts in this direction led to duplication schemes.
They follow the idea of dual-rail concept without precharging the signals. This
indeed leads to making a dual copy of a fully placed-and-routed circuit which –
in theory – should consume the complement amount of energy that the original
counterpart does. However, the problem arising by this scheme is due to non-
dual glitches happening in original and dual part of the circuit, that causes the
design to be vulnerable to the state-of-the-art attacks.

In this direction we can refer to [11], where – in addition to the dual of
the circuit – precharge registers are inserted to the design. As the authors also
showed, their design can be broken because of glitches. In another work [8] a
specific configuration for FPGA Look-Up-Tables (LUT) is used to make the
delay of the gates constant. Two global signals connected to all LUTs are also
used to handle the precharge and evaluation of the gates. After developing the
circuit by this configuration, the dual part of the circuit is inserted to the design.
Unfortunately their design still has glitches when the combinatorial circuit has
two or more logic depth.

As another example we should refer to DWDDL [36] which applies the du-
plication on a circuit realized by a kind of WDDL. There exists other works
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which make use of the duplication on the circuits built by FPGA Block RAMs
(BRAM). For example, the authors of [34] introduced a precharge signal for
each BRAM address in order to provide precharge and evaluation phases in
this context. By certain inappropriate assumptions, e.g., ignoring the leakage
associated to glitches occurring at the LUTs’ output as long as they do not
leave the slice, they developed a design methodology.

In the work of [28] the authors tried to realize WDDL on an Altera Stratix-II
FPGA. They used DES as the target algorithm and have examined two different
place-and-route (PAR) strategies as 1) the TRUE and FALSE signals of each gate
are placed and routed as close as possible, and 2) all TRUE signals are placed close
together (the same for all FALSE signals). The drawbacks of their work are 1) no
attempt to avoid early propagation, and 2) no control over the delay between
the rails of dual-rail signals.

In another work [15] a triple-rail logic has been designed for a Xilinx Spartan-
3 FPGA. In order to avoid early propagation in both precharge and evaluation
phases they utilized a generalized form of Muller C-element (the main element
of asynchronous logic designs [22]). Although the goal of preventing early prop-
agation is fulfilled, the number of toggles happening at internal signals is not
balanced, i.e., they are different depending on the gate inputs’ value. It is be-
cause 6 LUTs are used to build a triple-rail gate, and the toggles of output of
these 6 LUTs are not balanced for all input cases. Therefore, it most likely leads
to different power consumption patterns detectable by a DPA attack.

Other works e.g., BCDL [23] employed a global precharge signal, which must
be connected to all gates. The gates do not evaluate their output till the global
precharge goes e.g., LOW thereby preventing early propagation in both phases.
But at the start of the precharge phase all gates simultaneously precharge their
output leading to a much higher power consumption peak compared to the eval-
uation phase. Based on an Altera Stratix-II FPGA each BCDL gate is realized
by two 5-input LUTs, but they have not taken care about the routing of dual-rail
signals.

In a follow-up work [3] the global precharge of BCDL is removed and following
the WDDL concept each gate is actualized by two 4-input LUTs. The style, which
is called DPL noEE, prevents the early propagation in the evaluation phase, but
nothing is considered to deal with the start of the precharge phase. Similar to
the case of BCDL, a Stratix-II FPGA has been used for practical evaluation of
an AES encryption module under DPL noEE scheme. According to the claims
of the authors, the leakage could be reduced to half while no restrictions have
been put into the placement and routing processes.

Our Contribution. In this work we first re-iterate the definition of early propa-
gation and address the cases in the literature where this concept in the precharge
phase has been mixed with the concept of data-dependent time-of-precharge. As
an example we focus on DPL noEE [3] and demonstrate that preventing early
propagation in the evaluation phase might be not enough to reduce the associ-
ated leakage.
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In the second part of this article we aim at designing a variant of WDDL for
FPGA platforms without early propagation in both phases. With the help of
the asynchronous design concept we achieve an architecture which follows the
WDDL definitions, but its time-of-evaluation as well as its time-of-precharge is
independent of the processed values. More importantly it propagates the evalu-
ation wave (resp. the precharge wave) only when all inputs are evaluated (resp.
precharged).

However, the imbalanced routings caused by uncontrolled FPGA design tools
(placer and router) makes the power consumption of the circuit to be still re-
lated to its input value. Therefore, the next contribution of this article deals
with balanced dual-rail routing in FPGAs. By means of a sophisticated routing
algorithm as well as information we extract about the route delays, we are able
to route the dual-rail signals with minimum imbalances. As a target design and
platform we selected an AES S-box to be realized on a Xilinx Virtex-5 FPGA.
Our experimental results show that both (more) balanced routings and avoiding
early propagation significantly reduce the amount of leakage extractable by a
power analysis attack.

2 WDDL and Early Propagation

Wave Dynamic Differential Logic (WDDL) was developed to avoid the necessity
of a full-custom design tool. Similar to other precharge logic styles every gate
operates in two phases, i.e., precharge and evaluation, which are controlled by
the clock signal. However, as shown by Fig. 1(a) the signals are converted to
dual-rail precharge form prior to the WDDL circuit, and the clock signal is not
routed to the WDDL logic cells. Figure 1(a) shows the concept and the design
of a WDDL AND/NAND gate. These gates can straightforwardly be actualized
by FPGA LUTs, but the concept which is followed by DPL noEE [3] is shown
in Fig. 1(b). The idea is to prevent the evaluation as long as the inputs are not
complete1.

In order to deal with early propagation issue we first assume that though the
delay of different dual rails are not the same, the delay of TRUE and FALSE signals
of each dual rail are the same. In other words,

Delay(At) = Delay(Af) > Delay(Bt) = Delay(Bf).

Figure 2 depicts the timing diagram of three different cases of the inputs for
both WDDL and DPL noEE AND/NAND gates. By comparing cases 1 and 3
(Δte1 vs. Δte3) we can conclude that the start of the evaluation phase of the
WDDL gate depends on its input values. This issue, which is addressed in [30],
is known as data-dependent time-of-evaluation. Examining cases 1 and 2 (Δtp1
vs. Δtp2) also shows the dependency of the start of the precharge phase to the
gate input, which is referred as data-dependent time-of-precharge.

1 Note that here we showed a simplified view of DPL noEE, the authors of [3] consid-
ered both ‘0’ and ‘1’ as the precharge value of the gates in their design.
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The situation for DPL noEE is different as its time-of-evaluation is data in-
dependent. It also instantly goes to the precharge phase once one of its inputs
goes to precharge. Although its time-of-precharge does not depend on its input
value, it fits to the definition of early propagation in precharge phase. We should
refer to [26], where it is stated as “According to our analysis, DRSL does not
completely avoid an early propagation effect in the precharge phase”. From this
perspective DPL noEE and DRSL [5] have the same specification. Both have
data-independent time-of-evaluation and time-of-precharge, and both do not
avoid early propagation in the precharge phase. On the contrary, the precharge
phase of each iMDPL [26] gate starts when all its inputs are in precharge. Here
the question is how critical it is to not avoid early propagation in precharge
phase while it is data independent?

To answer this question we should highlight two points:

– In this setting – considering a combinatorial circuit, e.g., an AES S-box,
made by several gates – the propagation of the precharge wave is faster than
that of the evaluation wave. This results in a difference between the power
consumption patterns of the evaluation and precharge phases as the dynamic
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power consumption peak in the precharge phase is expected to be higher.
The same is observed when a global precharge signal is used as in SABL [31].

– All the statements given above about the data independence of time-of-
evaluation as well as of time-of-precharge are valid as long as the first as-
sumption Delay(At) = Delay(Af) (resp. Delay(Bt) = Delay(Bf)) holds. If
the routings are imbalanced and this assumption is not valid, both time-of-
evaluation and time-of-precharge would be data dependent.

Therefore, in this setting we expect that the leakage in the precharge phase is
more easily detectable compared to that in the evaluation phase since slight rout-
ing imbalances still would exist in practice. We deal with this issue in Section 4
when we demonstrate the corresponding practical results.

2.1 Avoiding Early Propagation in Both Phases

Our goal here is to develop a design similar to DPL noEE but without early
propagation in the precharge phase. So, we consider an asynchronous design
for each WDDL gate. Following standard asynchronous design schemes one can
make the flow table for the desired gate behavior, and realize it using e.g., S-R
approach, where S-R latches are utilized. Figure 3 shows an exemplary design of
our desired WDDL AND gate, which we call Asynchronous WDDL (AWDDL).
Note that this design is only suitable for the FPGA platforms to realize the
gate outputs by LUTs. It cannot be considered as an ASIC solution due to the
unbalanced number of toggles happening on the internal signals. Since we use
a modern Xilinx FPGA as the target platform, every gate is realized by two
hard-coded LUT6 instances, i.e., to provide Zt and Zf . Furthermore, every LUT
output should be routed to its input, i.e., an external loop around every LUT
is essential. Since the 6-input LUTs are the currently biggest LUT available in

2 The mapping of the input and output signals to the LUT6 instances is of highly
importance. Having the Xilinx Libraries Guide for HDL Designs [35] in mind, input
I5 of the LUT6 2 should be connected to ‘1’ thereby utilizing only O6 as the gate
output. The LUT must be configured in a way that O5 always provides ‘0’.
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FPGA architectures, unfortunately our proposed scheme cannot be extended
to consider one more dual-rail mask input signal to realize a kind of iMDPL
cell [26].

With respect to the asynchronous design concept and the S-R latches our
design of AWDDL guarantees no early propagation in both precharge and eval-
uation phases. Due to the lack of space we omit presenting the figures for other
AWDDL gates. However, the formulas for the set and reset signals (S,R) of the
conceptual S-R latch of 2-input gates are listed below. Similar to WDDL, the in-
verted gate is realized by swapping the dual-rail output signals. Below, + stands
for the logical OR operation.

all gates : Rt = Rf = At + Af + Bt + Bf

AND :

{
St = At Bt

Sf = Af Bf + Af Bt + At Bf

OR :

{
St = At Bt + At Bf + Af Bt

Sf = Af Bf

XOR :

{
St = At Bf + Af Bt

Sf = At Bt + Af Bf

We should emphasize that we are aware of the problem of single-rail WDDL
register cells mentioned in [19]. Our contribution focuses on the combinatorial
part of the logic style, and as stated in [19], the master-slave register cells must
be used to prevent the leakage of the registers.

3 Dual-Rail Routing

The problem of dual-rail routing is a challenge to perfectly balance the capac-
itance of both rails of a signal. Otherwise, transitions on these signals need a
different amount of energy, which may make it possible to distinguish on which
rail the transition happens. On the other hand, the capacitive imbalance causes
the delay of the rails to be different. Then, the arrival time of a dual-rail input
signal of a gate depends on its value. Since a gate without early propagation
in both phases, e.g., our AWDDL, fires (resp. precharge) the output when all
input signals arrived (resp. precharged), the time of evaluation (resp. precharge)
of the gate will still depend on its inputs’ value. This propagates through the
whole combinatorial circuit, and makes the power consumption patterns different
depending on the circuit input value.

Before we focus on our dual-rail routing approach, we should emphasize that,
as stated in [32], a WDDL circuit – without an inversion – can be implemented
using a divided approach, where first a network of TRUE signals, i.e., Zt output
of all gates, are placed and routed. Then, the dual of the same network with the
same routing is copied to make the FALSE signals. However, this approach is not
applicable in case of our proposed AWDDL since each TRUE and FALSE part of
every gate requires to have both TRUE and FALSE rails of all input signals. For
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the same reason we cannot make use of the approach presented in [9] because
their scheme is also based on complete separation of TRUE and FALSE networks.
Therefore, we need to develop a mechanism capable of routing dual-rail signals
as balanced as possible. While it is unlikely to achieve a perfectly balanced
routing due to the given structure of the FPGA, it is likely to reduce the leakage
compared to the default routing of the FPGA standard tools. We tried to achieve
this by developing a customized router which is presented hereafter.

3.1 Customized Router

As stated before, our target is a Xilinx Virtex-5 FPGA; therefore, we could
make use of the RapidSmith library [14]. In order to route balanced dual-rails
we implemented a customized local router. It utilizes the Xilinx Design Language
(XDL) and is based on a custom workflow as depicted in Fig. 4. Up to the end of
mapping, the design is processed by the default Xilinx ISE tools. Note that for
the case of Virtex-5 map performs the placement as well. The only modifications
we made up to this step are i) to put all elements requiring balanced routing
into a closed group which is area constrained, ii) to keep the input PIN positions
of the LUTs realizing the AWDDL gates locked, and iii) to put LUTs of each
AWDDL gate into the same slice using the LUTs (A, B) or (C, D) for (Zt,Zf)
respectively.

After mapping, the intermediate file is processed by our customized router.
The first step is to extract all dual-rail connections (source, destination) from
the given data structure. This is done by using a simple naming scheme to detect
corresponding nets within the XDL file. The next step is to find a set of possible
routings for each of the dual-rail connections. To do so, for each possible output
of a LUT (e.g., A and AMUX), all possible exit nodes of the adjacent switch
box are used once to find a possible route. This idea is illustrated in Fig. 5.
The routing itself for each of these candidates uses a maze router with a priority
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queuing, favoring those nodes with the least Manhattan distance. This process
is executed for both connections of a dual-rail to finally make a set of possible
routings for each of the dual-rail connections.

Since extracting the capacitance of each route is not feasible, we had to con-
sider other metrics to give priorities to the different routings. They include:

– the signal delays, extracted using the command line tool fpga edline (due
to the phenomena expressed above),

– the number of switch boxes the signal passes (due to their significant role in
amount of dynamic energy consumption),

– the number of Programmable Interconnect Points (PIP), i.e., internal con-
nections of the switch boxes, and

– the type of the wire, e.g., long, pent, and double.

For each of the routing possibilities, the above mentioned properties are ex-
tracted. Properties not dependent on the delay are easily extracted by their XDL
representation. The delay of each single route must be extracted using a script
file (.scr) that controls fpga edline. An example for a script is given below:



Early Propagation and Imbalanced Routing, How to Diminish in FPGAs 607

open design ncdFileName.ncf pcfFileName.pcf

setattr main edit-mode Read-Only

setattr main auto_load_delays true

select netName

delay

exit

exit3

The result of running this script is a log file (.log) that contains the delay
information of every route within that net. It is therefore required to parse the
log files and extract the only valid delay for the route made (see Fig. 4). Note
that for each single route the corresponding NCD file must be generated. Then,
the above script and process should be run to extract the associated delay.

Here we make the restrictions. Based on the extracted information (as ex-
plained above) we restrict the dual-rail routes based on a threshold for delay of
each route, for the difference between delay of the rails, for the number of switch
boxes each route passes, for the number of PIPs, and etc. As the last step, as
given below, the output is converted into a Boolean satisfiability (SAT) prob-
lem to select a conflict-free routing. If the problem is satisfiable, the conflict-free
setting is put together and written to a new XDL file. All the previously routed
nets are then locked, while the remaining unrouted nets are auto-routed using
fpga edline.

3.2 Representing Routing as SAT

Let n denote the number of dual-rail connections that the router should make.
We first make a collection S = {S1, S2, . . . , Sn}, where Si∈{1,...,n} represents a
set of possible routing candidates {si1, si2, . . . , sini

} for the dual-rail connection i.
Accordingly we define Boolean variables xij indicating whether the dual-route

sij is selected. Clearly, one must select exactly one candidate sij from each set

Si to achieve a complete routing. This requirement can be encoded using the
following formula [12]:

AtLeastOne(Si) =

n∨
j=1

xij ,

AtMostOne(Si) =

n−1∧
j=1

n∧
k=j+1

(¬xij ∨ ¬xik),

ExactlyOne(Si) = AtLeastOne(Si) ∧ AtMostOne(Si).

Therefore, ExactlyOne(Si) = TRUE for ∀ i ∈ {1, . . . , n} are added as clauses to
the SAT.

Another issue is related to the loop which must be made at every LUT. As
stated in Section 2.1, the output of the LUT must be presented as one of its

3 Using the exit command twice is required to properly exit the command-driven mode
in addition to gracefully terminate the tool.
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inputs to realize the internal S-R latch. For simplicity and consistency we tried
to make the same loop at every LUT which is used as AWDDL gate. To achieve
this we define collection S� = {S�1, S�2, . . . , S�l}, where l denotes the number of
possible dual-rail loop routings, and S�i∈{1,...,l} a set of the same dual-rail loop
routing for all AWDDL gates of the design, i.e., {s�i1 , . . . , s�im}, where m stands
for the number of AWDDL gates in the design. Therefore, only one of these sets
amongst collection S� must be selected. Accordingly we define Boolean variables
x�ij due to the selection of the routing s�ij . Moreover, a set of l commander-

variables C = {c1, . . . , cl} are defined indicating the selection of S�1, . . . , S�l.
In order to consider the commander-variables into the SAT, one needs to

include ExactlyOne(C) = TRUE to make sure that only one loop set is selected.
Moreover, the following formula must be also considered to prevent a selection
of a mixture of different loop sets:

AllFalse(S�i) = ci ∨
m∧
j=1

¬x�ij AllTrue(S�i) = ¬ci ∨
m∧
j=1

x�ij .

Therefore, AllFalse(S�i) = TRUE and AllTrue(S�i) = TRUE for ∀ i ∈ {1, . . . , l} are
added to the SAT.

We should emphasize that two slices are connected to the same switch box, and
we use either (A, B) or (C, D) LUTs to realize each AWDDL gate. Since the loop
routing possibilities of these cases are different, we have to consider four different
S� collections (and four different commander-variable set C respectively) to cover
all these cases.

However, the above illustrated expressions do not reflect possible routing con-
flicts yet. The conflicts must also be encoded by doing a pairwise comparison of
all possible routing candidates, and the corresponding clauses must be added to
the SAT. Suppose that xij and xi

′
j′ are corresponding Boolean variables of two

conflicting routings sij and si
′ �=i
j′ . So, ¬xij ∨ ¬xi

′
j′ = TRUE must be added to the

SAT. This should be done for all possible pairwise conflicting routings (extracted
by means of RapidSmith) including those which can be between collections S

and S�. This encoding can be realized in O(n2). It should be noted that if the
SAT solver fails to find a conflict-free solution, the restrictions – explained at
the end of Section 3.1 – to make collections S and S� should be relaxed and the
process should be repeated.

The runtime of the whole process is determined by the slow file conversion
(Xilinx ISE tools) from NCD to XDL and vice-versa. This step needs to be ex-
ecuted for each delay extraction and though being massively parallelized using
16 cores (siblings), still takes around 6 hours for a design including m = 122
AWDDL gates and 8 additional LUTs for the single-to-dual rail conversion,
where n = 606 dual-rail connections should be made. In contrast, SAT encod-
ing typically requires about 20 minutes and solving less than a minute using
CryptoMiniSat 2.9.4 [1].
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4 Practical Investigations

In order to examine the effectiveness of our proposed schemes we made an exem-
plary design which in addition to surrounding and control logics consists in an
AES S-box. We have taken the area-optimized S-box by Canright [4], and man-
ually instantiated all the logic by 2-input AWDDL gates (in sum 122). A block
diagram of the design is shown by Fig. 6(a). The Virtex-5 FPGA (XC5VLX50)
of the side-channel evaluation platform SASEBO-GII [2], on which our target de-
sign is embedded, receives an input byte from the PC (via a controlling FPGA)
and stores it into the input register by controlling eni signal. At a certain clock
cycle, the control logic disables prch signal, and the “to WDDL” conversion unit
(the same scheme shown in the left part of Fig. 1(a)) propagates the dual-rail
input to the AWDDL AES S-box thereby initializing the evaluation phase. In
the next half of the clock cycle the control logic enables prch signal and the
precharge phase is started. In a common WDDL circuit eno should be active at
the start of the precharge phase in order to store the output of the combinato-
rial circuit (here the AES S-box). However, since we aim at evaluating only the
leakage associated to the combinatorial circuit, we must exclude the leakage of
the output register (see [19]). Therefore, the control logic does not enable eno
signal and the register does not store the S-box output4. During these two (eval-
uation and precharge) phases the power consumption of the Virtex-5 FPGA is
measured using a LeCroy WaveRunner HRO66Zi oscilloscope at the sampling
rate of 1GS/s while the design runs at a clock frequency of 3MHz.

At the first step, we defined an area in the target FPGA for the placement
of AWDDL gates, and as stated before we constrained the placer to assign two
LUTs of the same slice to each AWDDL gate. At this stage we did not apply
our customized router and used the default ISE routing tools. For the sake of
similarity and fair comparison, we made also a WDDL and DPL noEE com-
patible version of the fully placed-and-routed AWDDL design. This has been
done by editing the XDL file (of the AWDDL design) and only modifying the

4 In order to check the correct functionality of the circuit, eno signal becomes active
by the control logic in another clock cycle which is not covered by the measured
power traces.
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Fig. 7. Histogram of the delay difference of all dual-rail routes of AWDDL designs

content of the LUTs5. So, the placement and routing of all these three designs
are the same allowing for a fair comparison. As the fourth design we used our
customized router in order to route the AWDDL design while its placement has
not been altered.

In sum we evaluated four design profiles as:

1. WDDL AES S-box routed by ISE,
2. DPL noEE AES S-box, the same placement and routing as profile 1,
3. AWDDL AES S-box, the same placement and routing as profile 1,
4. AWDDL AES S-box, the same placement as profile 1, but routed by our

customized router.

As listed in Section 3.1, we have considered many different criteria to make
routing collections S and S�. The best result is achieved by considering a delay
difference below 60 ps, the realization of identical feedback loops, and by consid-
ering minimum number of switch boxes and PIPs in each route. It should also
be mentioned that we used the same wire type for both rails of a signal and
prohibited to use long wires.

In order to compare the result of our routing with that of ISE, we provided two
histograms illustrating the difference between the delay of each dual-rail signal
in the AWDDL S-box circuit. Although it is not possible to find dual-rail routes
with zero delay difference for all 606 dual-rail connections, the histograms shown
in Fig. 7 indicate the effectiveness of our approach. Nevertheless, it is worth to
mention that the average and the worst delay difference in case of our router are
11.7 ps and 58 ps respectively. These numbers are incomparable to those obtained
by the ISE router as 125 ps and 520 ps respectively.

To evaluate and fairly compare the side-channel leakage of our target designs
we applied the information theoretic (IT) analysis of [29] as it has been used for
the same purpose e.g., in [16]. So, we collected 512, 000 traces for each target
design, i.e., 2000 traces for each S-box input value. By estimating the mean and

5 Although it is possible to realize each WDDL as well as DPL noEE gate by a 5-to-2
LUT, we made the two 6-to-1 LUT version to keep it as similar as the AWDDL one
and to follow the same design architecture given in [3].
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variance of the traces for each S-box input we obtained 256 Gaussian distribu-
tions at each sample point (256 mean traces of the WDDL design are shown by
Fig. 6(b) where evaluation and precharge phases are marked). It allows us to
estimate the probability distribution of the leakages essential in the IT analysis.
Here we should emphasize two points:

– There is no source of randomness in our exemplary designs, and electrical
noise – well modeled by Gaussian [17] – is the only noise source in our
measured traces. Therefore, ignoring the higher statistical moments in prob-
ability estimations – as in Gaussian – does not cause any information loss.

– The AES S-box circuit operates in precharge-evaluation mode, and in con-
trast to a CMOS combinatorial circuit its leakage does not depend on two
consecutive inputs (input transitions). Therefore, our selection of estimating
the probabilities based on the S-box input is a valid choice (the same is given
in [16]).

Performing the IT analysis using the mean and variance traces of each of
our target designs led to the mutual information curves presented by Fig. 8. As
expected, the WDDL design – due to its data-dependent time-of-evaluation and
time-of-precharge – has the highest leakage. Interestingly the DPL noEE and
the AWDDL designs have relatively the same amount of leakage in evaluation
phase as they operate the same in this phase. However, DPL noEE has a higher
leakage in the precharge phase. It indeed confirms our claim in Section 2 that
due to the early propagation of DPL noEE in the precharge phase, in presence
of imbalanced routings its leakage should be more easily detectable compared to
that in the evaluation phase.

A comparison between the result of the AWDDL designs (routed by ISE vs.
routed by our customized router) clearly shows the effectiveness of our developed
router to reduce the information leakage. We should stress again that except the
LUTs’ configuration all details and specification of the first three designs are
the same, that allowed us to fairly compare these logic styles. The same holds
for the two AWDDL designs which only differ in the routing of the AES S-box
circuit.

Independent of the attack strategy, IT analysis captures the amount of in-
formation available to the worst-case adversary. In order to quantify the data
complexity (the number of required traces) of attacks on our target designs, we
performed first-order profiling moments-correlating DPA [21]. Indeed, for each
design profile we used a set of 100, 000 profiling traces to estimate first-order
moments, and made use of them as power models to perform a CPA attack on
another set of 100, 000 traces. The corresponding results are shown by Fig. 9.
Thanks to the metric feature of moments-correlating DPA, we can directly con-
clude the following ratios between the data complexity of the attack on different
profiles:
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Fig. 8. Mutual information curves for all profiles
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– DPL noEE versus WDDL:
(
0.111
0.067

)2
= 2.7,

– AWDDL versus DPL noEE:
(
0.067
0.054

)2
= 1.5,

– AWDDL (custom routing) versus AWDDL:
(
0.054
0.038

)2
= 2.0.

As a side note, though the leakage extractable from our AWDDL design is
mitigated, it is not a perfect solution to prevent a key-recovery attack. There-
fore – as it is well known – DPA-resistant logic styles, e.g., AWDDL, should be
combined with other countermeasure such as algorithmic masking which usually
cannot prevent DPA attacks when implemented in hardware [18].

5 Conclusions

In this work we have shown how to design WDDL gates for FPGA platforms
with independent time-of-evaluation and time-of-precharge. This, achieved by
realizing a latch inside every LUT by means of a feedback loop, could guarantee
the disappearance of early propagation in both evaluation and precharge phases.
Our practical investigations confirm that by using our designed AWDDL style
the level of security improves when compared to classical WDDL or to its main
competitor DPL noEE of [3]. However, routing imbalances still impose a threat
to the security of dual-rail precharge logic. Therefore, as the second contribution
of this work we developed a customized tool to reduce this imbalance by selecting
the most similar routes for the signals of a dual-rail connection. This approach,
whose effectiveness has been demonstrated using our proposed logic style, could
also be applied to similar logic styles or other applications requiring balanced
routes, e.g., TRNGs and PUFs. It is noteworthy to mention that applying our
customized router does not cause any area overhead. In fact, it only changes the
way the routing resources (PIPs) are configured.

The only available source for delay of the signal routes is the ISE tool. There-
fore, the effectiveness of a customized router relies on the conformity of ISE
reports and the underlying FPGA chip. Due to the process variation as well as
publicly unknown architecture of the FPGAs these numbers might be different
from chip to chip or (even slightly) different to reality. Hence, as a future work,
we plan to develop a mechanism to practically examine the differential delay
as well as the power consumption of the dual-rail routings based on the target
FPGA chip, where the design is supposed to be realized.

Acknowledgment. The authors would like to thank Ali Ahari, from Sharif
University of Technology (Tehran, Iran), for useful discussions on routing fea-
tures of RapidSmith.



614 A. Moradi and V. Immler

References

1. CryptoMiniSat. Available as download here,
https://gforge.inria.fr/frs/?group_id=1992

2. Side-channel Attack Standard Evaluation Board (SASEBO). Further information
are available via, http://www.morita-tech.co.jp/SASEBO/en/index.html

3. Bhasin, S., Guilley, S., Flament, F., Selmane, N., Danger, J.-L.: Countering early
evaluation: an approach towards robust dual-rail precharge logic. In: WESS 2010,
p. 6. ACM (2010)

4. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

5. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Re-
duce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 242–254. Springer, Heidelberg (2006)

6. Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The “Backend Duplication”
Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397.
Springer, Heidelberg (2005)
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