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Abstract. In this paper, we present a system that enables a user to work with a 
virtual 3D information space on and above a tabletop by combining head-
coupled perspective interaction with a mobile paper projection. The mobile pa-
per projection acts as a physical pinhole into the virtual 3D scene. The proposed 
system is expected to be used for architectural tasks. As it is a work-in-progress 
study, we describe about the current status of the system and issues to be inves-
tigated in our future work. 
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1 Introduction  

Interaction with virtual 3D models via tabletop surfaces has been investigated and 
improved by a number of researchers. One major achievement has been the extension 
of their interaction space from a 2D surface (touch-based interaction) to a 3D space 
above the surface via intuitive and natural interactions. Extending a tabletop platform 
to the third dimension should be applicable to many areas, including medicine, educa-
tion, entertainment, and so on. The system proposed in this paper is expected to be 
used in the field of architecture design.  

An architect develops an idea for a 3D building and presents it to his/her clients. Be-
fore presenting the idea, several steps are usually required, such as drawing roughly-
sketched blueprints, creating and editing 3D models using CAD software, and building 
physical architectural models1. Much money, time and efforts need to be spent for build-
ing architectural models. However, they often have to be modified or even completely 
rebuilt because of demands from the clients. An architectural model can be used for a 
range of purposes: to compare its size with surrounding objects, get an idea of how it 
                                                           
* Currently with IBM Japan. 
1 Personal communications with students in the Department of Architecture, University of 

Tokyo. 
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looks from different angles, exhibit it to stakeholders, confirm light and shadow effects, 
and examine its texture design. Our proposed system is aimed to effectively achieve 
these various purposes. Two main contributions of this paper are: (1) manipulation 
techniques for 3D models to be used in architecture design tasks; (2) the integration of 
3D visualization, 3D interaction, mobile projection and tabletop systems.  

After describing previous research related to this work, we present an overview of 
our system and its design ideas. Details of the implementation and application scena-
rios are then described. Finally, we discuss how the system will be extended for col-
laborative work in our future work.  

2 Related Work  

2.1 Interaction above a Surface  

A 3D object usually has six degrees of freedom (DOF), whereas a multi-touch inter-
face supports only three-DOF manipulations, namely 2D translation on the surface 
and rotation about the normal vector on the surface. Therefore, multi-touch interaction 
is not well suited to manipulating 3D objects, which is why the input space for inter-
faces has been extended recently from a 2D surface to a space above the surface. Hil-
liges [4] proposes a tabletop system that enables a user to pick up 3D objects based on 
physics simulations in a 3D scene. The system recognizes a user’s hand gesture with a 
finger-and-thumb circle by processing an IR image. When the user forms the circle 
with fingers above the surface, the system recognizes it as a ‘pickup’ gesture, enabl-
ing the user to pick up a 3D object. Wilson et al. [11] presents an interactive tabletop 
system that uses a depth camera to build a height map on the table surface. The height 
map is used in a driving simulation game that enables players to drive a virtual car 
over real objects placed on the table. Objects on the surface are captured and recon-
structed by the depth camera. The cars and reconstructed 3D objects are controlled by 
a physics engine, enabling players to build a driving course by folding paper on the 
surface. In DepthTouch [3], a user can interact with a virtual object with both hands in 
the 3D space in front of a screen to a multi-touch interface. This work supports head 
tracking, which enables the user to obtain an immersive experience and to interact in 
more intuitive manners. By using several calibrated projectors and a depth camera, 
LightSpace [12] enables several users to interact with digital material, such as pic-
tures, in a large space that includes desks and walls. To enable users to feel immersed 
in a 3D world, some interactions involve a head-coupled perspective display that 
renders images on one or more 2D displays with a perspective corrected for the user’s 
view. The idea is based on fish tank virtual reality (FTVR) [10].  

Holodesk [5] and Miragetable [2] combine FTVR techniques with 3D interaction. 
Holodesk is an interactive system combining an optical see-through display and a 
Kinect camera [1] to create the illusion that users are directly interacting with 3D 
objects under the screen. In contrast, Miragetable uses a curved projection screen to 
create a seamless projection on the table surface and the wall. The interaction tech-
niques in both systems are based on 3D reconstruction, user’s hand tracking and phys-
ics simulation.  
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2.2 Paper Interfaces  

A handheld paper projection screen is a natural and useful interactive interface, and 
thus has been investigated so far. The mobile projection screen using a paper makes 
cross-sectional images of projected 3D objects available to a user. Paper Windows [6] 
presents a prototype windowing environment that simulates the use of digital paper 
displays. By projecting windows on physical paper with tracking marker, the user can 
see information, such as web pages or pictures. This work is inspired and motivated 
through natural manipulations that papers afford and supports a number of interaction 
methods, which include hold, collocate, collate, flip, rub, staple, point and two-hand 
pointing. Furthermore, uses can interact with the paper using pens, fingers or other 
objects by tracking them. Paperlens [8] presents an interactive interface, which uses a 
handheld paper described as a ‘magic lens.’ An IR camera and a projector are hung 
over the user’s head. The IR camera tracks the paper in its 6 DOF and IR-reflecting 
markers are glued to the corners of the rectangular PaperLens to enable detection of 
the paper’s exact rotation and orientation. PaperLens is extended to Tangible Win-
dows [8], which enables to use a paper either as a physical pinhole into a virtual 3D 
world or as a physical container for part of that world. FlexPad [9] uses Kinect depth 
data and conducts real-time projection onto 3D deformable surfaces such as an office 
paper. It can identify hand occlusion based on reflectivity differences from surface 
materials. 

 

Fig. 1. An overview of the proposed system 

3 System Overview  

Figure 1 shows an overview of the proposed system. Its tabletop screen shows a 3D 
model that a user wants to edit or manipulate and its paper screen shows visual or 
textual information related the projected 3D model on the surface, such as a cross-
sectional image or a wire-frame rendering. Each projection provides a user with a 
correct-perspective view from his/her viewpoint, which is called the head-coupled 
perspective [10].  
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The proposed system also supports several interaction techniques that help the user 
in conducting his/her tasks effectively. Kinect [1] is used to detect a user’s head posi-
tion and capture depth data representing the distance to physical objects such as a 
user’s head or a paper for projection.  

By moving the paper, the user can change projected information on its surface, 
which works as a physical pinhole into a virtual 3D world. Note that the user does not 
need to wear any devices, such as a head-mounted display or tracking markers. Also, 
the paper does not require any specific tracking marker - the user can use any hard 
paper for a physical pinhole window in our system. The proposed system works in the 
following way: First, all coordinates are unified into one real-world coordinate system 
by the checkerboard calibration proposed in [13]. After the calibration, 3D models are 
imported into or created in a 3D scene. Then, Kinect obtains the user’s head position 
and depth data of a paper represented as point clouds, which are transformed from the 
Kinect coordinate system to the real-world coordinate system. Two Kinect cameras, 
one directed to the tabletop screen and the other to the paper screen are used and syn-
chronized. When the paper, or the user’s head position changes, a correct-perspective 
image projected on the paper surface is updated immediately. A type of paper projec-
tion, such as a cross-sectional image or a wire frame, is chosen by the user depending 
on a task that he/she is involved.  
 

 

Fig. 2. System configuration: the Kinect acquires the user's current head position and two pro-
jectors are used, for the paper projection and the tabletop projection 
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These techniques are very useful for architectural tasks. Architects often need to 
investigate cross-sectional images on arbitrary planes from a variety of viewpoints. 
However, it is difficult to define plane equations and viewpoints in 3D CAD software. 
With the proposed system, the user can specify a plane equation and a viewpoint easi-
ly and naturally. As the paper has no specific devices attached, such as tracking IR 
markers, any size and shape of paper for the mobile pinhole window is available. A 
plane equation of the paper is calculated using its depth data, namely the distances 
between the paper surface and the Kinect camera. A bounding box is set in advance, 
enabling the Kinect to ignore areas outside the box, and obtain depth information 
about the real objects inside the bounding box. Then, the plane equation of the paper 
is fixed by applying the least square method to point clouds inside the bounding box. 
To eliminate the user’s hand and specify the equation more precisely, points whose 
distance from the result of the least-squares method exceeds a threshold are eliminat-
ed, and the remaining points are processed by the least-squares method again. After 
iterating this process several times (twice or three times are usually sufficient), we 
obtain an accurate paper equation. Besides, to avoid overlapping display on the table-
top projection from the paper projection, the region outside the projection of the paper 
should be black. We prepared a binary image to project exclusively on the object’s 
surface inside the bounding box (see Figure 4, (b)) and then, we subtract the black 
part in the binary image from the paper projection (see Figure 4).   
 

 

Fig. 4. (a):a paper projection before computing (b):a binary image of the objects above the 
surface (c):a result image by subtract (b) from (a) 

4.4 Interaction Using Mobile Paper  

A couple of interaction techniques using the mobile paper have been implemented at 
the moment. When a user conducting architecture design tasks uses the paper to ob-
tain additional information, he/she performs manipulations to a 3D model so that the 
paper projection shows its detailed information. Figure 5 shows example interaction 
techniques implemented in this system (’pick up’ and ’release’). These techniques 
enable the user to manipulate a 3D model such as rotation and translation by tilting 
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