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Abstract

Toll-like receptors (TLRs) are cellular sensors designed to recognize molecular

danger signals associated with exogenous or endogenous threats. Their activa-

tion leads to initiation of the host’s immune responses in order to remove or

contain the danger. However, one of the most effective methods of defense

against invading pathogens and parasites is itch. The perception of itch elicits the

rapid defensive action to scratch, which can remove the offending pathogen or

parasite before infection can occur. Recent findings show that TLRs such as

TLR3, TLR4, and TLR7 are expressed in a subset of pruriceptive/nociceptive

neurons in the dorsal root and trigeminal ganglion providing a direct link

between TLR activation and itch. Activation of neuronal TLRs can initiate

itch sensation by coupling with ion channels. Furthermore, TLRs are expressed

in skin cells and glial cells in the spinal cord to regulate inflammation and

neuroinflammation in chronic itch. Thus, identification of the role of TLRs in
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neurons, skin cells, and glial cells may provide new targets for the treatment of

chronic itch, a common clinical problem associated with skin diseases, systemic

diseases, and metabolic disorders, for which current treatments are far from

sufficient.
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Abbreviations

5HT Serotonin

BDNF Brain-derived neurotrophic factor

CCL2 Chemokine ligand 2 (MCP-1)

CGRP Calcitonin gene-related peptide

CNS Central nervous system

COX-2 Cyclooxygenase 2

CXCL Chemokine (C-X-C motif) ligand

DAMPs Danger-associated molecular patterns

DRG Dorsal root ganglia

dsRNA Double-stranded RNA

ERK Extracellular signal-regulated kinase

ET-1 Endothelin-1

GRP Gastrin-releasing peptide

GRPR Gastrin-releasing peptide receptor

IL-1β Interleukin-1beta

IRAKs IL-1R-associated kinases

IRFs Interferon regulatory factors

JNK c-Jun N-terminal kinase

LPS Lipopolysaccharide

LTP Long-term potentiation

MAPK Mitogen-activated protein kinase

MCP-1 Monocyte chemoattractant protein 1 (CCL2)

miRNA Microribonucleic acid

mRNA Messenger ribonucleic acid

NF-kB Nuclear factor-kappa B

NGF Nerve growth factor

NO Nitric oxide

Nppb Natriuretic polypeptide b

PAMPs Pathogen-associated molecular patterns

PAR2 Protease-activated receptor 2

PGE2 Prostaglandin E2

Poly I:C Polyinosinic:polycytidylic acid

RIP-1 Receptor-interacting protein 1
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sEPSCs Spontaneous excitatory postsynaptic currents

ssRNA Single-stranded RNA

TIR Toll–interleukin-1 receptor

TLRs Toll-like receptors

TNF-α Tumor necrosis factor alpha

TRAF6 Tumor necrosis factor receptor-associated factor 6

TRPV1 Transient receptor potential vanilloid subtype 1

1 Introduction to Toll-Like Receptors

Toll-like receptors (TLRs) are pattern recognition receptors that are involved in the

initiation of the innate immune response. Firstly, they recognize molecular patterns

that are broadly shared by exogenous pathogens but that are distinguishable from

host molecules. These are collectively referred to as pathogen-associated molecular

patterns (PAMPs). Secondly, a subset of TLRs also recognize endogenous danger-

associated molecular patterns (DAMPs) released in response to cellular stress or

tissue injury. Thus, TLRs play a key role in initiating the immune responses to both

foreign and endogenous threats.

When microbes were first recognized as the cause of infectious diseases, it was

immediately clear that organisms must be capable of identifying when infected in

order to initiate an immune response. Over a century ago, Richard Pfeiffer discov-

ered “endotoxins” now known as lipopolysaccharide (LPS) which is produced by

most Gram-negative bacteria (Westphal et al. 1978). Administration of LPS alone

could provoke fever and shock in experimental animals. Additional molecules such

as lipopeptides, flagellin, and unmethylated DNA could also provoke host immune

responses; however, their receptors remained elusive.

The Toll receptor was first identified in Drosophila melanogaster and was

reported for its role in dorsal–ventral patterning in the development (Anderson

et al. 1985a, b). In 1996, Hoffmann and colleagues found that Toll also participated

in the fly’s immune response to fungal infection (Lemaitre et al. 1996), and in 1997

Charles Janeway and Ruslan Medzhitov showed that activation of human Toll-like

receptor 4 (TLR4) could promote an adaptive immune response (Medzhitov

et al. 1997). Beutler and colleagues demonstrated that mice that could not respond

to LPS had mutations that abolished the function of TLR4 and proved that TLR4

was in fact the receptor for LPS (Poltorak et al. 1998). Notably, Drs. Beutler and

Hoffman were awarded the Nobel Prize in Medicine or Physiology for their pioneer

work on TLRs in 2011. To date, 10 (TLR 1–10) and 12 (TLR 1–9; TLR 11–13)

functional TLRs have been identified in human and mouse, respectively (Kawai and

Akira 2010).
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1.1 Structure

TLRs are type I transmembrane proteins comprised of an ectodomain responsible

for detecting PAMPs or DAMPs, a transmembrane region consisting of a single

α-helix, and a cytosolic Toll–interleukin-1 receptor (TIR) domain that activates

downstream signaling pathways (Kawai and Akira 2010). The extracellular domain

binds either directly to ligands or to cofactors that can modulate their sensitivity to

their natural ligand. In the case of TLR4, recognition of LPS requires the presence

of MD-2, while cofactors CD14 and LPS-binding protein facilitate the presentation

of LPS to MD-2. Upon stimulation, most TLRs form homodimers; however, some

TLRs such as TLR1–TLR2 and TLR2–TLR6 also form heterodimers, each with a

different ligand specificity (Triantafilou et al. 2007; Oosting et al. 2011).

Structurally, TLRs may be classified into two groups. The first has structural

transitions that divide the proteins into three subdomains: N terminal, central, and C

terminal (Jin et al. 2007; Kim et al. 2007; Kang et al. 2009; Kang and Lee 2011).

The ligand-binding pockets of TLR1, TLR2, and TLR6 are located close to the

transition site between N terminal and central (Jin et al. 2007; Kang et al. 2009;

Kang and Lee 2011), and the MD-2-binding pocket of TLR4 is located between the

transition from central to C terminal (Kim et al. 2007). The second group has a

single-domain configuration such as TLR3 (Choe et al. 2005; Bell et al. 2006).

While the structures of TLR5, TLR7, TLR8, TLR9, and TLR10 have not yet been

reported, sequence analysis suggests that the first four should belong to the single-

domain group, while TLR10 should belong to the three-domain group (Kang and

Lee 2011). These structural observations agree with functional analyses that have

demonstrated that the three-domain TLRs interact with lipid-containing molecules

such as LPS and lipoproteins. Accordingly, all three-domain TLRs (1, 2, 6, and 10)

are expressed on the cell membrane for the detection of microbial membrane

components. Conversely, the single-domain TLRs interact with hydrophilic

ligands, such as vial or endogenous nucleic acids, and are expressed intracellularly

on endosomes and the endoplasmic reticulum (TLR3, TLR7/TLR8, and TLR9).

However, some TLRs (TLR3 and TLR7) are localized both on membrane and in

intracellular compartments (Akira et al. 2006) (Table 1).

1.2 Ligands

Each type of TLR detects distinct molecular patterns specific to pathogenic threats

to the organism such as viruses, bacteria, mycobacteria, fungi, and parasites. For

example, TLR4 recognizes LPS (Poltorak et al. 1998; Shimazu et al. 1999), a

component of Gram-negative bacterial cell membranes; TLR5 detects flagellin, a

protein in bacterial flagella (Hayashi et al. 2001); and TLR11 senses profilin-like

protein (Yarovinsky et al. 2005). TLR2 heterodimers bind to specific lipopeptides,

another component of bacterial cell membranes. The ligand specificity of TLR2 is

modulated by its heterodimeric partner. The TLR1–TLR2 complex binds to triacyl

lipopeptides with only a weak affinity for diacyl lipopeptides, while the TLR2–
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TLR6 complex interacts with diacyl lipopeptides but not to triacyl lipopeptides

(Takeuchi et al. 2001, 2002; Alexopoulou et al. 2002; Yamamoto et al. 2002; Jin

et al. 2007; Kang et al. 2009). TLR3 senses double-stranded RNAs and TLR7/

TLR8 single-stranded RNAs, present in retroviruses and viruses, respectively

(Alexopoulou et al. 2001; Diebold et al. 2004; Heil et al. 2004; Town

et al. 2006). TLR9 senses unmethylated CpG DNA (Hemmi et al. 2000; Krieg

2002). Importantly, TLRs also recognize endogenous markers of cell necrosis and

tissue injury, termed DAMPs. Activation of TLRs by DAMPs induces sterile

Table 1 Subcellular localization and ligands of TLRs

TLR

Subcellular

localization

Exogenous

ligands

Origin of

exogenous ligand

Endogenous

ligands

TLR1/

TLR2

Cell surface Triacyl

lipopeptides

Bacteria, viruses Unknown

(Pam3CSK4)

TLR2/

TLR6

Cell surface Diacyl

lipopeptides PGN

Bacteria, viruses HSP-60, HSP-70,

HSP-90

LTA HMGB1

Zymosan

TLR3 Intracellular dsRNA Viruses mRNA

Cell surface Poly I:C Stathmin

TLR4 Cell surface LPS Bacteria, viruses HSP-22, HSP-60,

HSP-70

Lipid A

derivatives

HMGB1,

fibronectin

Defensin

2, oxLDL

Tenascin C

TLR5 Cell surface Flagellin Bacteria Unknown

TLR7 Intracellular ssRNA

Imidazoquinoline

Bacteria, viruses Self-RNA

Cell surface Loxoribine MicroRNA

Bropirimine

TLR8 Intracellular ssRNA Viruses Self-RNA

Imidazoquinoline MicroRNA

TLR9 Intracellular Unmethylated

CpG DNA

Bacteria, viruses,

protozoa

Self-DNA

CpG ODNs HMGB1

TLR10 Intracellular Unknown Unknown Unknown

TLR11 Cell surface Uropathogenic

bacteria

Bacteria Unknown

Profilin-like

molecules

Protozoa

CpG ONDs CpG-containing oligodeoxynucleotides, dsRNA double-stranded RNA, LPS lipopoly-

saccharide, LTA lipoteichoic acid, n.d., oxLDL oxidized low-density lipoprotein, PGN peptidogly-

can, poly I:C polyinosinic-polycytidylic acid, ssRNA single-stranded RNA
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inflammatory responses (Okamura et al. 2001; Biragyn et al. 2002; Vabulas

et al. 2002; Kariko et al. 2004; Jiang et al. 2005; Tian et al. 2007; Imai

et al. 2008; Midwood et al. 2009; West et al. 2010). Thus, TLRs can recognize

both pathogen invasion through their recognition of PAMPs and tissue injury

through their recognition of endogenous DAMPs (summarized in Table 1).

1.3 Signaling Pathways

Activation of TLR signaling leads to a tightly regulated intracellular signaling

pathway that initiates the production and secretion of proinflammatory mediators.

The intracellular signaling domains of TLRs have a high sequence similarity with

the interleukin-1 receptor and are termed Toll/IL-1R (TIR) homology domains.

Signaling adaptor proteins MyD88, TRIF, and TRAM also contain TIR domains

and interact with the TIR domains of the TLR receptors through heterotypic TIR–

TIR interactions (Watters et al. 2007; Kenny and O’Neill 2008). TRIF and TRAM

are also referred to as TICAM-1 and TICAM-2, respectively. All TLRs, with the

exception of TLR3, signal through MyD88. TLR3 signals through a TRIF-

dependent pathway discussed later. TLR4 is also capable of signaling in a

MyD88-independent manner by recruiting TRAM (Yamamoto et al. 2003).

TLR1/TLR2, TLR4, and TLR6 recruit the additional adapter protein TIRAP

(Akira and Takeda 2004). Upon activation of the MyD88-dependent pathway,

MyD88 recruits the IL-1R-associated kinases (IRAKs), which interact with tumor

necrosis factor receptor-associated factor 6 (TRAF6), leading to the phosphoryla-

tion and degradation of the inhibitor of nuclear factor-κB (NF-kB) IκB. Degrada-
tion of IκB releases NF-κB which translocates to promote transcription of

proinflammatory genes. The MyD88-dependent pathway also activates the

mitogen-activated protein kinase (MAPK) signaling pathways, such as p38, and

c-Jun N-terminal kinase (JNK), leading to the activation of AP-1 and interferon

regulatory factors (IRFs) (see Fig. 1).

TLR3 signals through a TRIF-dependent pathway which activates two signaling

pathways. First, TRIF recruits TRAF3 to activate IRF3 and IRF7 and initiate the

production of type I interferons (e.g., IFN-α/IFN-β), which are the first line of

defense produced by the innate immune system. Second, TRIF interacts with

receptor-interacting protein 1 (RIP-1) and TRAF6 to activate NF-κB and/or

MAPK pathways (Fig. 1). This is involved in the late-phase induction of

proinflammatory genes.

The signaling molecules that comprise each TLR signaling pathway are also

subject to a high degree of regulation through physical interactions, conformational

changes, phosphorylation, ubiquitination, and proteasome-mediated degradation

(Carpenter and O’Neill 2009). Some miRNAs are capable of regulating TLR

signaling through targeting the 30 untranslated regions of mRNAs encoding

components of the TLR signaling system (O’Neill et al. 2011). Activation of

TLR signaling produces a wide array of proinflammatory mediators, such as

cytokines, chemokines, and reactive oxygen/nitrogen intermediates including nitric
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oxide (Takeda and Akira 2004). Upregulated activity of TLR signaling may

promote chronic itch (Liu and Ji 2013).

2 Introduction to Itch

Itch, or pruritus, is defined as an unpleasant sensation that elicits the desire or reflex

to scratch. While acute itch is an adaptive mechanism to warn an organism of

potential chemical or parasitic danger (Ikoma et al. 2006), chronic itch is a common

clinical problem associated with skin diseases (Reich and Szepietowski 2007;

Bieber 2008), liver and kidney diseases (Cassano et al. 2010; Kremer et al. 2010),

and metabolism disorders (Yamaoka et al. 2010). Additionally, itching itself leads

to scratching which can cause inflammation, skin degradation, and secondary

infection.

While some itch-sensing circuitry may overlap with existing nociceptive

circuits, there are features that have recently been shown that are specific to itch.

Itch sensation arises from MrgprA3+ fibers, derived from a specific subset of

primary sensory neurons that reside in the skin, but not in deeper tissues, muscles,

organs, or bones where itch sensation does not occur (Han et al. 2013). Their cell

bodies are located in the dorsal root ganglia (DRG) or trigeminal ganglia, while

Fig. 1 Conventional signaling of TLRs. Activation of extracellular TLRs (e.g., TLR4) and

intracellular TLRs (e.g., TLR3 and TLR7) initiates canonical TRIF- and MYD88-dependent

signaling pathways resulting in the transcription of proinflammatory genes. Specifically, the

activation of the transcriptional factors IRF3/IRF7 and NF-κB induces the production of inflam-

matory mediators such as cytokines (e.g., IL-1β, interferons), chemokines (e.g., CCL2), PGE2 via

the enzyme cyclooxygenase 2 (COX-2), and NO via the enzyme inducible nitric oxide synthase

(iNOS). These inflammatory mediators act in concert to initiate the host’s innate immune response
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their peripheral terminals, free nerve endings, reach to the stratum granulosum of

the epidermis, and their central projections terminate in the superficial horn of the

spinal cord. Itch-specific neurons terminate in lamina I–II and release glutamate as

well as gastrin-releasing peptide (GRP), a neuropeptide known to elicit itch sensa-

tion via activation of GRP receptors (GRPRs) on superficial dorsal horn neurons

(Sun and Chen 2007; Liu et al. 2009; Sun et al. 2009). A major source of GRP in the

spinal cord may arise from interneurons (Alemi et al. 2013; Mishra and Hoon

2013). In addition, the neuropeptide natriuretic polypeptide b (Nppb) and substance

P are also implicated in spinal cord itch transmission (Akiyama and Carstens 2013;

Mishra and Hoon 2013). In the dorsal horn, itch signals can be processed and

modulated before ascending to the brain where activation of specific brain regions

then results in the perception of itch. Notably, in acute conditions, pain can suppress

itch sensation via spinal cord inhibitory neurons (Liu et al. 2010b; Ross et al. 2010;

Liu and Ji 2013).

The most characterized mediator of itch is histamine. The released histamine

from local mast cells binds to H1/H4 receptors on nerve terminals (Shim and Oh

2008) which is followed by activation of PLCbeta3 and transient receptor potential

vanilloid subtype 1 (TRPV1) (Han et al. 2006; Imamachi et al. 2009). TRPV1-

positive C-fibers are required for both histamine-dependent and histamine-

independent itch (Imamachi et al. 2009). Histamine-independent itch can be

induced by the activation of transient receptor potential cation channel,

subfamily A, member 1 (TRPA1), chloroquine (an antimalarial drug and MrgprA3

agonist), BAM8–22 (an endogenous MrgprC11 agonist), and oxidative stress (Liu

et al. 2009; Wilson et al. 2011; Liu and Ji 2012), respectively.

3 Control of Itch by Peripheral TLRs

The skin is the body’s largest organ and first line of defense against microbial and

parasitic invaders. The skin expresses every type of known TLR receptor; however,

each cell type has a unique expression pattern and distinct contribution to the skin’s

immune response (Ermertcan et al. 2011). In particular, two TLR-expressing cell

type keratinocytes and mast cells have been implicated in chronic itch (Ikoma

et al. 2006) (see Fig. 2).

Epidermal keratinocytes express TLRs 1–6, 9, and 10, which are upregulated in

pruritic skin diseases, such as psoriasis and atopic dermatitis (Baker et al. 2003;

Ermertcan et al. 2011). Mast cells, predominantly in the dermis, express TLRs 1–7

and 9 and play a key role in IgE-mediated allergic inflammation. Activation of these

TLRs results in the synthesis and release of cytokines and chemokines to recruit

immune cells from the circulation and mount an adaptive immune response. In

particular, keratinocytes and mast cells are the major sources of nerve growth factor

(NGF) (Ikoma et al. 2006). Intradermal administration of NGF enhances itch

sensation in humans (Rukwied et al. 2013), and NGF is upregulated in dry skin

models of itch in mice (Tominaga et al. 2007). Of interest, this increase is

suppressed in Tlr3 knockout animals (Liu et al. 2012). Therefore, TLR3-mediated
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release of NGF from skin cells may contribute to peripheral sensitization in chronic

itch conditions.

While TLRs have mainly been studied on immune cells, we have recently

demonstrated the expression of TLR3 and TLR7 on a subset of primary sensory

neurons that are responsible for itch. Single-cell Real-time PCR (RT-PCR) and

immunohistochemistry demonstrated that TLR7 is expressed in small TRPV1-

expressing DRG neurons (Liu et al. 2010a, 2012) and is completely colocalized

with MrgprA3+. TLR3 partially colocalizes with TLR7 and is also expressed in

TRPV1-positive DRG neurons as shown by in situ hybridization, immunocyto-

chemistry, single-cell RT-PCR, and electrophysiology (Liu et al. 2012).

TLR7 responds to synthetic ligands such as imidazoquinoline derivatives [e.g.,

imiquimod and resiquimod (R848)] and guanine analogs (e.g., loxoribine) (Hemmi

et al. 2002). Intradermal injection of these synthetic compounds produces

Fig. 2 Involvement of peripherally expressed TLRs in itch sensation via different mechanisms.

Cells residing in the skin such as keratinocytes and mast cells express TLRs. Their activation by

exogenous ligands (PAMP) and endogenous ligands (DAMP) results in the release of multiple

pruritogens including NGF, ET-1, 5HT, tryptase, and histamine, all of which can activate

G protein coupled receptors (GPCRs) or TrkA receptor (in the case of NGF) on pruriceptive

neuronal terminals to increase neuronal excitation and trigger itch sensation. TLRs such as TLR3

and TLR7 are also expressed by pruriceptor terminals, which can be activated by DAMP such as

double-strand and single-strand RNAs. Activation of TLR3 and TLR7 elicits rapid inward currents

and action potentials, due to the direct coupling with ion channels in pruriceptors, leading to

increased neuronal excitation and itch sensation. A second late-phase response to the activation of

TLRs may also involve the increased transcription of proinflammatory mediators which can

maintain neuronal hyperexcitability in chronic itch conditions
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scratching behavior in wild-type mice, which is reduced in Tlr7�/� mice,

suggesting that these responses are, at least partially, TLR7 dependent (Liu

et al. 2010a). Tlr7�/� mice also show a significant reduction of scratching behavior

in response to non-histaminergic pruritogens such as chloroquine, endothelin-1

(ET-1), and SLIGRL-NH2, an agonist of protease-activated receptor 2 (PAR2)

(Liu et al. 2010a). Interestingly, Tlr7�/� mice exhibited normal thermal and

mechanical pain sensitivity. These findings show that TLR7 may serve an important

role as a non-histaminergic itch receptor.

Activation of TLR7 in immune cells initiates signaling cascades leading to a

variety of transcriptional changes to promote inflammation. However, in small

DRG neurons, application of TLR7 agonists elicits rapid inward currents and action

potentials, which are abolished in Tlr7�/� knockout mice (Liu et al. 2010a). This

immediate increase in neuronal excitability suggests that TLR7 may be coupled to

ion channel activation in primary sensory neurons. Our recent study shows that

TLR7 is functionally coupled to TRPA1 but not TRPV1 (Park et al. 2014).

TLR3 responds to dsRNA as well as its synthetic analog, polyinosinic–

polycytidylic acid (poly I:C), in which one strand of RNA is replaced by a polymer

of inosinic acid. Activation of TLR3 by its ligands poly I:C or purified total RNAs

also elicits rapid inward currents and the generation of action potentials from DRG

neurons in wild-type but not Tlr3�/� mice (Liu et al. 2012). Furthermore, intrader-

mal application of poly I:C produced dose-dependent scratching behavior in wild-

type mice which was abolished in Tlr3�/� mice (Liu et al. 2012). Similar to TLR7,

TLR3 also seems to serve as an itch receptor/co-receptor on pruriceptive neurons.

In contrast to Tlr7�/� mice, which showed a partial reduction in histamine-

independent itch, Tlr3�/� mice displayed significant reductions in both histamine-

dependent and histamine-independent itch (Liu et al. 2012). Knockdown of TLR3

by intrathecal injection of Tlr3 antisense oligonucleotides significantly reduced

TLR3 expression in the DRG and reduced both histamine-dependent and

histamine-independent itch in wild-type mice (Liu et al. 2012). This corroborates

the results found using Tlr3 knockout animals.

TLR3 and TLR7 expression by primary sensory neurons seems to serve as itch

receptors to detect foreign pathogens and endogenous ligands (e.g., ds- and ssRNA,

respectively), leading to a rapid defensive response: scratching. As neuronal exci-

tation occurs within minutes of agonist application, the neuronal signaling pathway

must have a distinct component from the traditional TLR signaling pathway in

immune cells; however, the details remain to be determined. We postulate that

TLR3 and TLR7 are expressed on the cell surface and are coupled to unidentified

ion channels capable of inducing inward currents and action potentials (see Fig. 2).

Of note, it was also demonstrated that the activation of TLRs, including TLR3,

TLR7, and TLR9, in DRG neurons by their respective ligands may indirectly

influence the excitability of DRG neurons by inducing the expression of

proinflammatory mediators such as prostaglandin E2 (PGE2), calcitonin gene-

related peptide (CGRP), and interleukin-1beta (IL-1β) (Qi et al. 2011) (see Table 2).
Thus, TLRs expressed by DRG neurons may regulate neuronal excitability by both

transcriptional and non-transcriptional mechanisms.
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4 Control of Itch by Central TLRs

While both TLRs play a role in eliciting itch sensation from peripheral stimuli, only

TLR3 was found to play a critical role in spinal synaptic transmission and the

central sensitization underlying itch processing in the spinal cord (Liu et al. 2012).

Tlr3�/� mice displayed decreased spontaneous excitatory postsynaptic currents

(sEPSCs) in spinal lamina II neurons, while activation of TLR3 by poly I:C resulted

in an increase in sEPSCs in wild-type animals (Liu et al. 2012). Furthermore,

knockout of Tlr3 abolished spinal long-term potentiation (LTP) following tetanic

stimulation of the sciatic nerve (Liu et al. 2012). In contrast, both sEPSC activity

and LTP remained intact in Tlr7�/� mice (Liu et al. 2012). Given the important

role of spinal synaptic plasticity in itch hypersensitivity (Ross et al. 2010),

impairments in central sensitization are likely to contribute to the profound itch

deficit in Tlr3�/� mice.

Within the spinal cord, glial cells also express TLRs. Microglia, the resident

immune cell of the central nervous system (CNS), express almost all known

members of the TLR family, while astrocyte expression of TLRs is limited (Farina

et al. 2007) (see Table 2). Similar to the activation of TLRs on peripheral immune

cells, the activation of TLRs on glia results in the production and secretion of

proinflammatory mediators including cytokines (e.g., TNF-α), chemokines [e.g.,

chemokine ligand 2 (CCL2)], and enzymes [e.g., cyclooxygenase 2 (COX-2)], as

well as other inflammatory mediators (e.g., prostaglandins) (Basbaum et al. 2009;

Table 2 Distribution of TLRs in the spinal cord and DRG

TLR

Cellular

localization

Adapter

proteins

Signaling

pathway Response

TLR2 Microglia MyD88 NF-kB TNF-α, IL-1β, BDNF,
PGE2, NO

TLR3 Microglia TRIF p38 TNF-α, IL-1β, BDNF,
PGE2, NO

Astrocyte TRIF NF-kB IL-1β, CCL2, CXCL1,
CXCL10JNK

DRG neurons Unknown ion channel

coupling

Increased excitation

Primary

afferents

Unknown ion channel

coupling

Increased excitation

TLR4 Microglia MyD88 NF-kB TNF-α, IL-1β, BDNF,
PGE2, NOERK

p38

Astrocyte MyD88 NF-kB IL-1β, CCL2, CXCL1,
CXCL10ERK

JNK

TLR7 DRG neurons MyD88 Ion channel

coupling

Increased excitation
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van Noort and Bsibsi 2009; Lehnardt 2010; Nicotra et al. 2011). While these

mediators are known to generate central sensitization and pain hypersensitivity,

their role in chronic itch is unknown.

5 Clinical Significance and Future Perspectives

Chronic itch is a common and significant clinical problem. Chronic itch may

involve the entire skin or be localized to a specific area or dermatome. It is more

common in women than in men (Ständer et al. 2013), and its incidence increases

with age (Weisshaar and Dalgard 2009; Ständer et al. 2010). It can be broadly

categorized into four major etiologies: dermatologic causes (e.g., atopic eczema,

psoriasis, or scabies), systemic causes (e.g., liver and kidney disease or metabolism

disorders), neuropathic causes (such as spinal nerve impingement), and psycho-

genic causes (Yosipovitch and Bernhard 2013). However, regardless of the cause, it

is associated with a marked reduction in the quality of life. In fact, a recent study

showed that chronic itch was as debilitating as chronic pain (Kini et al. 2011).

Clinically, the current treatments for chronic itch are far from sufficient

(Yosipovitch and Bernhard 2013); however, targeting TLRs may offer new therapy

options for treating debilitating itch-related problems.

TLRs are emerging as important players in the regulation of acute and chronic

itch. They are expressed by many components of the itch signaling pathway

including the cells of the skin, resident and infiltrating immune cells, peripheral

and central neurons, as well as central glia. However, the precise contribution of

TLR signaling in each cell type remains to be determined. Additionally, our work

has raised the exciting possibility that TLR-mediated neuronal excitation occurs in

a non-transcriptional manner. Again, much work remains to be done in order to

elucidate the details of this pathway. These distinctions may provide targets for

developing new therapies that block the detrimental effects of persistent unregu-

lated TLR signaling, while leaving their beneficial effects intact.
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