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Preface

This volume contains the 26 contributed papers and the abstracts of the two
invited lectures presented at the 8th IFIP Theoretical Computer Science (TCS-
2014), held in Rome, during September 1–3, 2014. The two invited speakers were
Giuseppe Italiano and Jane Hillston.

Previous TCS conferences took place in Amsterdam 2012, Brisbane 2010,
Milan 2008, Santiago 2006, Tolouse 2004, Montreal 2002, and Sendai 2000.

TCS-2014 consisted of two tracks, with separate Program Committees, which
dealt with:

- Track A: Algorithms, Complexity, and Models of Computation
- Track B: Logic, Semantics, Specification, and Verification

The Program Committees for track A and track B are listed in the next
section.

Track A selected 12 out of 38 submissions and track B selected 14 out of 35
submissions.

IFIP TCS 2014 was co-located with CONCUR 2014. We would like to thank
the general chairs of the whole event, Daniele Gorla and Rossella Petreschi,
as well as the members of the TCS Steering Committee, Giorgio Ausiello, Jos
Baeten, and Jacques Sakarovitch for their help and support.

July 2014 Josep Diaz
Ivan Lanese

Davide Sangiorgi
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Geraud Senizergues Université Bordeaux, France
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Romashchenko, Andrei
Saarela, Aleksi
Say, A.C. Cem
Segev, Danny
Vocca, Paola
Yamazaki, Koichi



Organization

Program Committee from Track B
Logic, Semantics, Specification and Verification

Jos Baeten Eindhoven University of Technology,
The Netherlands

Lars Birkedal Aarhus University, Denmark
Andrei Bulatov Simon Fraser University, Canada
James Cheney University of Edinburgh, UK
Ugo Dal Lago University of Bologna/Inria, Italy
Josée Desharnais Université Laval, Canada
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Strong Bridges and Strong Articulation Points

of Directed Graphs

Giuseppe F. Italiano

Dipartimento di Ingegneria Civile e Ingegneria Informatica

Università di Roma “Tor Vergata”, Roma, Italy

Abstract. Given a directed graph G, an edge is a strong bridge if its
removal increases the number of strongly connected components of G.
Similarly, a vertex is a strong articulation point if its removal increases
the number of strongly connected components of G. Strong articulation
points and strong bridges are related to the notion of 2-vertex and 2-edge
connectivity of directed graphs, which surprisingly seems to have been
overlooked in the past. In this talk, we survey some very recent work in
this area, both from the theoretical and the practical viewpoint.



The Benefits of Sometimes Not Being Discrete

Jane Hillston

LFCS, School of Informatics, University of Edinburgh
jane.hillston@ed.ac.uk

http://www.quanticol.eu

Abstract. Discrete representations of systems are usual in theoretical
computer science and they have many benefits. Unfortunately they also
suffer from the problem of state space explosion, sometimes termed the
curse of dimensionality. In the area of quantitative modelling, high-level
formal modelling formalisms such as stochastic Petri nets and stochastic
process algebras have eased the construction of underlying Markovian
models. But the combination of improved model construction techniques
and the increasing scale and complexity of the systems being developed
have exacerbated the problem of state space explosion.

In recent years, research has shown that there are cases in which we
can reap the benefits of discrete representation during system description
but then gain from more efficient analysis by approximating the discrete
system by a continuous one. When the system under consideration can
be presented as a population model and the populations involved are
known to be large, then a good approximation of the discrete behaviour
can be achieved through a continuous or fluid approximation whereby
the discrete Markov chain is replaced by a set of ordinary differential
equations. Moreover, this model is scale-free in the sense that the com-
putational effort to solve it remains the same even as the populations
involved grow larger.

This paper will motivate this approach, explaining the theoretical
foundations and their practical benefits.
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Zero-Suppressed Binary Decision Diagrams

Resilient to Index Faults�

Anna Bernasconi1 and Valentina Ciriani2

1 Dipartimento di Informatica, Università di Pisa, Italy
anna.bernasconi@unipi.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
valentina.ciriani@unimi.it

Abstract. This paper discusses the error resilience of Zero-Suppressed
Binary Decision Diagrams (ZDDs), which are a particular family of Or-
dered Binary Decision Diagrams used for representing and manipulating
combination sets. More precisely, we design a new ZDD canonical form,
called index-resilient reduced ZDD, such that a faulty index can be recon-
structed in time O(k), where k is the number of nodes with a corrupted
index.

1 Introduction

Algorithms and data structures resilient to memory faults [11–13] are able to
perform the tasks they were designed for, even in the presence of unreliable or
corrupted information. The design of resilient algorithms and data structures is
a fundamental issue, as fast, large, and cheap memories in computer platforms
are characterized by non-negligible error rates [14].

Several error models have been proposed for designing resilient data struc-
tures [22]. A fault model in which any error is detectable via an error message
when the program tries to reach the faulty object is proposed in [2]. The au-
thors assume that an error denies access to an entire node of the structure. A
model with higher granularity, called faulty-RAM, is presented in [9, 10, 13]. In
faulty-RAM an adversary can corrupt any memory word and it is impossible
to determine a priori if a memory area is corrupted or not. Such a scenario is
realistic since an error can be induced by an external source, perhaps tempo-
rary, which can change any memory location that can not be discovered a priori.
Moreover, faulty-RAM model has an extreme granularity: any memory location
(from a single bit, the single data, or an entire structure) can be affected by a
fault. Another interesting error model is the single-component model described
in [22], which focuses on single attributes of an item at a time and assumes that
each error affects one component of one node of the storage structure, e.g., a
pointer, a count, an identifier field.

� This work was supported in part by the Italian Ministry of Education, University, and
Research (MIUR) under PRIN 2012C4E3KT national research project AMANDA
Algorithmics for MAssive and Networked DAta.

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 1–12, 2014.
c© IFIP International Federation for Information Processing 2014



2 A. Bernasconi and V. Ciriani

The purpose of this paper is to discuss the error resilience of a data struc-
ture called Zero-Suppressed Binary Decision Diagrams (ZDDs) [17], that are a
particular type of Ordered Binary Decision Diagrams (OBDDs). OBDDs are a
fundamental family of data structures for Boolean function representation and
manipulation [5]. They have been originally studied for circuit design and formal
verification. Recently, the area of application of OBDDs has widened including
representation and manipulation of combination sets in different research fields
as data mining [17–19], bioinformatics [20, 21, 23], data protection [6]. The grow-
ing interest in these data structures is evidenced by the fact that in 2009 Knuth
dedicated the first fascicle in the volume 4 of “The Art of Computer Program-
ming” to OBDDs [15].

OBDDs are DAG representations of Boolean functions, where each internal
node N is labeled by a Boolean variable xi and has exactly two outgoing edges:
0-edge and 1-edge. Terminal nodes (leaves) are labeled 0 or 1. OBDDs can be
constructed by applying some reduction rules to a Binary Decision Tree, and
depending on the set of reduction rules, different representations can be derived.
For example, Figures 1(b), 1(c), and 1(d) are different decision diagrams, derived
by the decision tree in Figure 1(a), representing the same Boolean function. In
particular, Reduced OBDDs (ROBDDs) [5] are typically used for the representa-
tion of general Boolean functions, while Zero-Suppressed BDDs (ZDDs) are used
for representing family of subsets of combination sets [15, 17]. Indeed, ZDDs
can be used to describe and manipulate solutions to combinatorial problems as,
in this framework, they are much more compact than ROBDDs. For instance,
the family of subsets {{x1, x2}, {x3, x4}, {x1}} of the set {x1, x2, . . . , x10} needs
a ROBDD representation with 10 variables, while the ZDD representation uses
only the four variables included in the subsets.

Security aspects of implementation techniques of ROBDDs have been dis-
cussed in [7], and an error resilient version has been proposed in [3, 4]. In this
paper we study error resilience of ZDDs. We exploit the single-component error
model and we assume that errors are reported when the program tries to use
the fault component of a node. We consider, as component of a node N in a
ZDD, the index i of the variable xi associated to the node. In particular, we
design a ZDD, called index-resilient reduced ZDD, such that a faulty index can
be reconstruct in time O(k), where k is the number of nodes with a corrupted
index. Moreover, the proposed index-resilient ZDD is a canonical form.

The paper is organized as follows. Preliminaries on OBDDs and ZDDs are
described in Section 2. In Section 3 we discuss the error resilience of the standard
ZDD structure, and in Section 4 we introduce and study index-resilient ZDDs.
Section 5 concludes the paper.

2 OBDDs and Zero-Suppressed BDDs

A Binary Decision Tree (BDT) on a set of Boolean variables {x0, x1, . . . xn−1}
is a rooted binary tree, where each non-terminal (internal) node N is labeled by
a Boolean variable xi and has exactly two outgoing edges: 0-edge and 1-edge.
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(a) BDT

(b) QR-BDD (m-rule) (c) ROBDD (m-rule
and r-rule)

(d) ZDD (m-rule and
z-rule)

Fig. 1. Example of transformations of a BDT using the reduction rules

Terminal nodes (leaves) are labeled 0 or 1 (e.g., see Figure 1(a) where dashed,
rep., solid, lines represent 0-edges, resp., 1-edges). Without loss of generality, we
can assume that each node containing the variable xi (with 0 ≤ i ≤ n− 1) lyes
on the i-th level of the tree. Thus, the variable x0 is the root of the BDT and
the leaves are on level n (see for example the BDT in Figure 1(a)).

BDTs are typically used to represent completely specified Boolean functions
(i.e., any function f : {0, 1}n → {0, 1}). The leaves represent the constants
0 and 1 and the root represents the entire Boolean function f . The value of
f on the input x0, . . . , xn−1 is found by following the path indicated in the
BDT by the values of x0, . . . , xn−1 on the edges: the value of f(x0, . . . , xn−1) is
the label of the reached leaf. For example, the BDT in Figure 1(a) represents
the Boolean function f : {0, 1}3 → {0, 1} such that f(0, 0, 0) = 0, f(0, 0, 1) =
1, . . . , f(1, 1, 1) = 0.

In order to give a more compact description of Boolean functions, a BDT
can be compressed in an acyclic graph (called BDD) that represents the same
function. In particular, a Binary Decision Diagram (BDD) on a set of Boolean
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variables X = {x0, x1, . . . xn−1} is a rooted, connected direct acyclic graph,
where each non-terminal (internal) node N is labeled by a Boolean variable xi,
and has exactly two outgoing edges, 0-edge and 1-edge, pointing to two nodes
called 0-child and 1-child of node N , respectively. Terminal nodes (leaves) are
labeled 0 or 1. A 0-parent (resp., 1-parent) of a node N is a node M such
that N is a 0-child (resp, 1-child) of M . For instance, the decision diagrams in
Figures 1(b), 1(c), and 1(d) are examples of BDDs.

A BDD is ordered (OBDD) if there exists a total order < over the set X of
variables such that if an internal node is labeled by xi, and its 0-child and 1-child
have labels xi0 and xi1 , respectively, then xi < xi0 and xi < xi1 . Hereafter we
will consider ordered BDDs only.

In order to obtain an OBDD starting from a BDT we can apply several re-
duction rules:

– m-rule: (or merge rule) if M and N are two distinct nodes that are roots
of isomorphic subgraphs, then N is deleted, and all the incoming edges of N
are redirected to M (N and M are called mergeable);

– r-rule: (or redundant rule) a node N that has both edges pointing to the
same node M is deleted and all its incoming edges are redirected to M (N
is called redundant node or r-node);

– z-rule: (or zero-suppress rule) a node N that has the 1-edge pointing to the
constant leaf 0 is deleted and all its incoming edges are redirected to the
subgraph pointed by the 0-edge (N is called z-node).

A zr-node is a redundant z-node, i.e., is a node with both edges pointing to the
constant leaf 0.

There are different reduced BDD forms that derive from the use of one or two
reduction rules:

– QR-BDD: (Quasi-Reduced BDD) [16] is the OBDD derived from a BDT re-
peatedly applying the m-rule until it is no longer applicable (see Figure 1(b));

– ROBDD: (Reduced Ordered BDD) [1, 5, 8, 15] is the OBDD derived from
a BDT repeatedly applying the m-rule and r-rule until they are no longer
applicable (see Figure 1(c));

– ZDD: (Zero-suppressed BDD) [15, 17] is the OBDD derived from a BDT
repeatedly applying the m-rule and z-rule until they are no longer applicable
(see Figure 1(d)).

QR-BDDs, ROBDDs and ZDDs are canonical forms. In particular, given a
function f and a variable ordering <, there is exactly one QR-BDD, one OBDD,
and one ZDD with variable ordering < that represent f . Thus, once we have
fixed the variable ordering, we can compute the QR-BDD, the ROBDD and
the ZDD starting from a BDT repeatedly applying the corresponding reduction
rules in any order. Moreover, it is possible to first build a QR-BDD (applying
the m-rule) and then transform it in a ROBDD (resp., ZDD) using the r-rule
(resp., z-rule) on it. In fact, starting from a QR-BDD, the r-rule and the z-
rule cannot create new mergeable nodes (as shown in [4] for the r-rule, and in
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Section 4 for the z-rule). The interpretation of a QR-BDD as a Boolean function
is equivalent to the interpretation of a BDT since the m-rule simply merges
isomorphic subgraphs resulting in an OBDD that has all the paths from the
root to the leaves containing all the variables in X . For ROBDDs and ZDDs we
have to give a correct interpretation of possibly missing nodes (in a path), which
have been deleted using the r-rule or the z-rule. In particular, a missing variable
in a path of a ROBDD means that the variable can have any value (0 or 1). For
example, in Figure 1(c), the path “x0 0-edge x2 1-edge 1”, where x1 is missing,
represents two possible input values (i.e., 001, 011) on which the function takes
the value 1. On the other hand, the interpretation of a missing variable xi in a
path of a ZDD means that if xi = 1 the function outputs 0, otherwise (i.e., if
xi = 0) the function outputs the value obtained following the path. For example,
in Figure 1(d), the path “x0 1-edge x1 1-edge 1”, where x2 is missing, means
that f(1, 1, 1) = 0 and f(1, 1, 0) = 1.

3 Index Reconstruction Cost

In this section we discuss error resilient indexes in ZDDs, we analyze the cost
of the reconstruction of a corrupted index, and study the impact of the ZDD
reduction rules on this cost. This study gives us the knowledge to describe in
Section 4 a new index resilient version of ZDDs.

Monitoring the work on error resilient OBDDs [3, 4], we give some definitions
useful to describe error resilient ZDDs. Without loss of generality, let us assume
that the chosen variable ordering is x0 < x1 < . . . < xn−1, so that the index of
a variable in a node is the level of the node in the corresponding ZDD. In order
to facilitate the index reconstruction of a faulty node N we define the range of
indexes that contains the original index of the node. Let N be an internal node
in a ZDD Z, the node range IN = [iP +1, iC − 1] is the range containing all the
possible levels for N in Z, where iP is the maximum index of N ’s parents in Z,
and iC is the minimum index of its children, where the leaves have “index” n,
and if N is the root, i.e., N has no parent, iP = −1.

Obviously, by definition of ZDD, the index of node N belongs to its range IN .
Thus, in presence of an error in the index i of N we have a lower and an upper
bound for the reconstruction of i given by iP + 1 and iC − 1, respectively. In
particular, if iP + 1 = iC − 1, then i is iC − 1.

Let us now examine which characteristics make a ZDD more suitable to the
reconstruction of a corrupted index. To this aim, we introduce a metric to mea-
sure the cost of the reconstruction of a corrupted index of a ZDD node in the
worst case. The index reconstruction cost C(N) of the faulty index i in the node
N is given by the number of indexes that are candidate to be the correct one in
N .

If we consider the case of one fault only in node N , we have that C(N) is at
most |IN |. In particular, C(N) = |IN | whenever there is no additional knowledge
on the structure of the ZDD. In the rest of this section, we therefore assume
that C(N) = |IN |. Instead, in Section 4 we will study ZDDs with a particular
structure implying that C(N) ≤ |IN |.
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In the best case, for each node N of a ZDD we have that C(N) is 1, meaning
that any index can be reconstructed in constant time (considering one single error).
This condition is obviously satisfied by BDTs. In fact, in a BDT, all paths from the
root to the terminal nodes contain exactly n nodes, where n is the number of input
variables. Thus, for each nodeN , C(N) = |IN | = 1. It is interesting to notice that
the optimal cost C(N) = 1 can also be reached by reduced ZDDs.

Recalling that a reduced ZDD can be constructed from a BDT by iteratively
applying the reduction rules (m-rule and z-rule) and noticing that a BDT has
optimal cost, we can study how the node range can increase using the two re-
duction rules.

We first consider the merge rule, i.e., the rule that is also used for the reduction
of OBDDs. In the OBDD context, Theorem 1 in [3] shows that this rule does
not increase the index reconstruction cost of the nodes. In fact, the merge of
isomorphic subgraphs does not change the node range of the involved nodes. In
other words, each node N in a QR-BDDs is such that C(N) = |IN | = 1.

On the other hand, the second reduction rule (z-rule), that distinguishes ZDDs
from OBDDs, can increase the index reconstruction costs. For example, consider
the ZDD in Figure 1(d), that can be obtained applying the z-rule to the QR-
BDD in Figure 1(b). While each node of the QR-BDD has cost 1, node x1 on
the right of the ZDD has cost 2, since its range is increased by the z-rule. We
finally note that not always the z-rule increases the node cost.

4 Index-Resilient Reduced ZDDs

The analysis of the previous section shows that, while the merge rule never
increases the overall index reconstruction cost, the application of the z-rule could
increase it. In this section, we describe a new reduced ZDD model where we
maintain some z-nodes in the diagram, in order to guarantee a constant index
reconstruction cost for each node. In particular we will define a ZDD, called
index-resilient reduced ZDD, satisfying the following properties:

1. the index reconstruction cost of each node N is C(N) = 1;
2. in presence of k nodes with a corrupted index in an index-resilient ZDD, the

cost needed to reconstruct a faulty index is O(k);
3. starting from a QR-BDD, the construction of the corresponding index-

resilient reduced ZDD is linear in time;
4. the index-resilient reduced ZDD is canonical.

Due to space limitations, formal proofs are omitted and will be discussed in the
extended version of this paper.

We note that, since the z-rule can increase the index reconstruction cost, we
could decide not to apply this rule during the reduction of a ZDD. In this way,
we only use the m-rule and obtain a QR-BDD that has a cost C(N) = 1 for each
node N . Recall that an important property of QR-BDD is that each node at
level i has all parents at level i− 1 and all children on level i+1. QR-BDDs are
still a compact representation and could represent a convenient and canonical
trade-off between memory saving, reduction time and error reconstruction time.
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However, the use of the z-rule does not always increase the index reconstruc-
tion cost. In other words, it is still possible to delete some z-nodes in a QR-BDD
guaranteeing that, in the final OBDD, the index reconstruction cost of each node
N is still C(N) = 1. Most importantly, as we will show in this section, it is pos-
sible to apply the z-rule to some z-nodes, and derive a canonical OBDD, more
compact than a quasi-reduced one, and with a cost C(N) = 1 for each node N .
We will call these OBDDs index-resilient ZDDs.

Definition 1 (Index-Resilient ZDD). An Index-Resilient ZDD is an OBDD
obtained from a QR-BDD applying several times, possibly never, the z-rule guar-
anteeing that each internal node N on level i has at least one child on level i+1,
for any level of the OBDD.

In particular, a QR-BDD is an index-resilient ZDD where each node on level
i has all parents on level i− 1 and all children on level i+ 1.

Observe that the index reconstruction cost for any nodeN in an index-resilient
ZDD is C(N) = 1, since the variable index of a node N is directly given by
i = min{i0, i1} − 1, where i0 and i1 are the indexes of the 0- and 1-child of N .
Note that, for any internal node N in a ZDD, the number of children of N is 2,
but the number of parents of N can be O(m), where m is the total number of
nodes in the ZDD, and, in the worst case, m ∈ Θ(2n/n) [16]. Note also that for
the reconstruction of the index of N we do not need to know the indexes of its
parents (whose number can be exponential in the number of variables), but only
the indexes of its children. In fact, as shown below, we can define a structure
where any node containing a variable xi must have at least one child containing
the variable xi+1.

To compute a compact index-resilient ZDD, we start from a QR-BDD deleting
some z-nodes while preserving the index-resilient property. For this purpose we
first observe that in a QR-BDD there are at most one zr-node and one non-
redundant z-node. These nodes are on level n−1. See, for example, the QR-BDD
depicted in Figure 1(b).

We first consider the zr-node Nzr, if existing, in the QR-BDD. We can note
that the removal of Nzr can generate new z-nodes, i.e., the 1-parents of Nzr (see
Proposition 1). In particular, if Nzr has an r-node parent M , the removal of
Nzr transforms M in a zr-node but the ZDD is not index-resilient since M is at
level n − 2 and has both children (the 0 constant) at level n. If we remove the
zr-node M , we can generate again new z-nodes and one possible zr-node that
has reconstruction cost greater than 1. We can, therefore, consider the entire
chain of r-nodes that ends with a zr-node defined as follows:

Definition 2 (zr-chain). A zr-chain in an index-resilient ZDD is a chain C =
N1, N2, . . . , Nk (with k ≥ 1) of nodes such that:

1. N1 has no redundant parents,
2. Ni, with i ∈ [1, . . . , k − 1], is an r-node and its unique child is Ni+1,
3. Nk is a zr-node.

The node N1 is called head of the chain, and the leaf 0 is the child of the chain.
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(a) A zr-chain (b) Two z-chains

Fig. 2. Examples of zr-chain and z-chains. The value PC(N) is depicted over each node
N in the z-chains. The z-chain on the left is removable.

When k = 1 the chain corresponds to the zr-node N1. As already observed, the
deletion of a zr-chain generates new z-nodes in the obtained index-resilient ZDD:

Proposition 1. Let C be a zr-chain in an index-resilient ZDD Z. If C is re-
moved from Z, then any node in Z that is a 1-parent of a node in C becomes a
z-node.

For example, consider the QR-BDD in Figure 2(a) that contains a zr-chain of
three nodes. The removal of the zr-chain will produce two new z-nodes (the
nodes with indexes x2 that are not part of the chain).

If we remove the entire zr-chain, the resulting OBDD is still an index-resilient
ZDD, as proved in the following proposition. Moreover, in a QR-BDD the zr-
chain is unique and, once deleted, the resulting index-resilient ZDD does not
contain a new zr-chain.

Proposition 2. Let B be a QR-BDD containing a zr-chain C. We have that:

1. C is the unique zr-chain in B,
2. the OBDD B′ derived by deleting C from B is an index-resilient ZDD,
3. B′ does not contain any zr-chain,
4. B′ does not contain any mergeable node.

We can observe that, after the deletion of a zr-chain in a QR-BDD, each
node N at level i in the resulting index-resilient ZDD has both children at level
i + 1, or one child at level n (the 0 leaf) and a child at level i + 1. Moreover,
at level n − 1 there exists at most one single z-node (i.e., the node that have
the terminal 0 as 1-child and the terminal 1 as 0-child). The index-resilient ZDD
obtained after the deletion of the zr-chain, can still contain z-nodes that can be
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removable. In order to efficiently test whether we can delete a z-node N , we first
need the following parameter that counts the number of parents of N whose
index reconstruction cost is affected by the deletion of N .

Definition 3 (PC). Let N be a z-node in an index-resilient ZDD resulting by
the deletion of the zr-chain from a QR-BDD. PC(N) is the number of parents
P of N satisfying at least one of the following properties:

1. Both children of P are z-nodes (possibly, the same z-node if P is redundant)
and N is the 1-child of P ;

2. P has another child N ′ �= N on a level strictly greater than i+1, where i is
the level of P (i.e., N ′ is the terminal node 0).

Note that if N is the root, then PC(N) = 0. We can observe that Definition 3
derives from the fact that the cost C(P ) = 1, of a node P at level i, is not
increased by the deletion of its z-node child N if P has the other child N ′ �= N ,
on level i + 1 and N ′ cannot be removed. The child N ′ is not removed in two
possible cases: 1) N ′ is not a z-node; 2) N ′ is a z-node (like N) but is the
1-child of P . This second criterion is an arbitrary choice due to the necessity
of deleting one of the two z-nodes that are children of P while maintaining
the index reconstruction cost and the canonicity of the representation. More
precisely, when a node P has two children that are z-nodes, one of them can
be removed without increasing the cost of P . In this paper we always remove
the 0-child of P in order to guarantee that the resulting index-resilient ZDD is
canonical (see Theorem 2). The choice of removing the 1-children is similar.

For example, see the index-resilient ZDD in Figure 2(b). Each z-node N in
the figure has a value that corresponds to PC(N). We note that PC(N) can be
efficiently computed with a simple visit of a index-resilient ZDD obtained after
the deletion of the zr-chain from the QR-BDD.

When the QR-OBDD is constructed, the zr-chain (if existing) deleted, and PC

is computed, we can define chains of z-nodes (z-chains) and we can characterize
the z-chains that can be removed, maintaining equal to 1 the index reconstruction
cost of each remaining node. We therefore introduce the concept of removable
z-chain.

Definition 4 (Removable z-chain). A removable z- chain in an index-resilient
ZDD, which does not contain zr-chains, is a chain C = N1, N2, . . . , Nk (with
k ≥ 1) of z-nodes such that:

1. Ni, with i ∈ [2, . . . , k], is the 0-child of Ni−1,
2. PC(N1) = 0,
3. ∀i ∈ [2, . . . , k] , PC(Ni) = 1,
4. if M is a z-node then PC(M) > 1, where M is the the 0-child of Nk.

The node N1 is called head of the chain, and M is called child of the chain.

The second requirement states that the head of the chain N1 can be removed
without affecting the reconstruction cost of its parents, as detailed in Proposi-
tion 4. Note that this requirement implies that all parents of N1 are not z-nodes
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or r-nodes. The third requirement states that any other node Ni (1 < i ≤ k)
of the chain affects only the reconstruction cost of its parent in the chain. The
last requirement guarantees that the removable z-chain is maximal. When the
chain is composed by a single z-node node N , we have that N is removable
when PC(N) = 0. Consider, for example, see the index-resilient ZDD in Fig-
ure 2(b). While, the z-chain on the left is removable, the z-chain on the left is
not removable since the first node N1 has PC(N1) = 1.

In an index-resilient ZDD there are no “crossing” z-chains, i.e., a node cannot
be part of two different z-chains. This is a direct consequence of the following
property.

Proposition 3. In an index-resilient ZDDs there are no nodes with two or more
z-nodes as parents.

The following proposition shows that the deletion of all removable z-chains in
an index-resilient ZDD Z does not change the overall index reconstruction cost,
i.e., after the removal of the chains, each internal node on level i still has at least
a child on level i+ 1, for any level i in Z.

Proposition 4. Let C = N1, N2, . . . , Nk, k ≥ 1, be a removable z-chain in an
index-resilient ZDD, which does not contain a zr-chain. The OBDD resulting
from the deletion of C is still an index-resilient ZDD.

Observe that once removable z-chains have been deleted, we are left with an
index-resilient ZDD that can still contain some z-nodes: those that do not form
a removable chains.

We can now propose a new OBDD reduction algorithm that, starting from
a QR-BDD, deletes first the zr-chain and then all the removable z-chains. The
following Theorem 1 shows that the deletion of removable z-chains does not
construct new removable z-chains. Therefore, after the removal of the zr-chain,
we can detect (and than delete) all the removable chains at the same time.

The reduction algorithm is based on a constant number of visits starting from
a quasi-reduced OBDD. The first visit is a breadth first search used to detect and
remove the zr-chain, if exists. Another visit is used to compute the parameter
PC for each z-node; then with a breadth first visit, all removable z-chains are
identified and their nodes are removed with a final visit of the OBDD, executed
by a simple recursive depth first visit that deletes from the OBDD all nodes
identified as removable.

The correctness of the new reduction algorithm is proved in the following
theorem.

Theorem 1. Let B be a quasi-reduced OBDD. The reduction algorithm com-
putes an index-resilient ZDD Z equivalent to B that contains neither removable
z-chains nor a zr-chain.

The cost of the algorithm is linear in the size of the quasi-reduced OBDD in
input, as it consists in a constant number of visits of the data structure.

We now formally introduce the concept of Index-Resilient Reduced ZDD.
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Definition 5 (Index-Resilient Reduced ZDD). An index-resilient ZDD is
reduced if it contains neither a zr-chain nor removable z-chains.

Theorem 2. Let Z be an index-resilient reduced ZDD obtained with the reduc-
tion algorithm. Then

1. for each node N in Z, C(N) = 1;
2. Z does not contain mergeable nodes;
3. Z is canonical, i.e., given a function f and a variable ordering <, Z is the

only index-resilient reduced ZDD with variable ordering < that represents f .

The index reconstruction cost remains limited even in presence of more than
one error on the indexes, as stated and proved in the following theorem, that
shows a result similar to the one obtained for OBDDs in [4].

Theorem 3. The reconstruction cost of a node N on level i in an index-resilient
reduced ZDD Z affected by k errors on the indexes is O(min(k, 2n−i)).

Finally observe that, even if in our analysis we have implicitly assumed that
a ZDD is constructed correctly, and that memory faults occur when the data
structure is in use, this assumption can be completely removed for index-resilient
reduced ZDDs. Indeed, their construction starts from a binary decision tree that
is transformed into a QR-BDD, and in both models each node has all children
on the level immediately below. Moreover, during the execution of the reduction
algorithm, we always guarantee that each node has at least one child on the level
below, thus a faulty index can be immediately detected and restored.

5 Conclusion

This paper has proposed a new ZDD canonical form that is resilient to errors in
indexes. This form can be derived in linear time starting from a quasi-reduced
OBDD. Future work on this subject includes the analysis of error in edges.
Indeed, this problem is part of the more general problem of designing an error
resilient DAG structure. Furthermore, it could be interesting to design error
resilient algorithms for standard operations on ZDDs, like union, intersection,
and set difference.
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Abstract. Graphs are often used to model risk management in various systems.
Particularly, Caskurlu et al. in [6] have considered a system which essentially
represents a tripartite graph. The goal in this model is to reduce the risk in the
system below a predefined risk threshold level. It can be shown that the main
goal in this risk management system can be formulated as a Partial Vertex Cover
problem on bipartite graphs. It is well-known that the vertex cover problem is in
P on bipartite graphs; however, the computational complexity of the partial vertex
cover problem on bipartite graphs is open. In this paper, we show that the partial
vertex cover problem is NP-hard on bipartite graphs. Then, we show that the
budgeted maximum coverage problem (a problem related to partial vertex cover
problem) admits an 8

9
-approximation algorithm in the class of bipartite graphs,

which matches the integrality gap of a natural LP relaxation.
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1 Introduction

Covering problems arise often in practice. A mobile phone service provider should en-
sure that its base stations cover the signals transmitted from the phones of its customers.
A chain market such as Walmart should ensure that it has a store close to its customers.
The applications of the covering problems are not limited to corporations to sell a ser-
vice to customers. The Air Force on a no-fly zone mission or border patrol officers
trying to secure borders are to solve some form of a covering problem.

� This research has been supported in part by the Air Force of Scientific Research through
Award FA9550-12-1-0199.

�� This work is done when the author was at West Virginia University. The author was supported
by the National Science Foundation through Awards CNS-0849735 and CCF-0827397.

��� Sandia National Laboratories is a multi-program laboratory managed and operated by San-
dia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energys National Nuclear Security Administration under contract DE-AC04-
94AL85000.

† The author is supported by the National Science Foundation through Award CCF-1305054.

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 13–26, 2014.
c© IFIP International Federation for Information Processing 2014



14 B. Caskurlu et al.

In many real life situations the corporations or the government is constrained in
the resources it can allocate for the covering mission. The constraints may be hard
constraints such as a government agency to operate within its approved budget, or profit
dictated soft constraints such as a mobile phone service provider may decide not to
cover a rural area since the revenues will not match the covering costs. Therefore, the
goal in many real life situation can be cast as covering the domain as much as possible
for a given fixed amount of resources to be allocated.

There is merit in studying partial covering problems both due to their wide applica-
bility in a large range of applications and their theoretical importance as being natural
generalizations of classical covering problems. In this paper, we study the partial vertex
cover (PVC) problem and the related budgeted maximum coverage problem on bipar-
tite graphs. Though it is well-known that the vertex cover problem is polynomial-time
solvable on bipartite graphs, the computational complexity of partial vertex cover when
restricted to bipartite graphs (PVCB) remained open. In parallel to this, let us note that
approximation algorithms for this problem are known, with the best approximation al-
gorithm in the literature offering an approximation ratio of (43 + ε) [19].

The contributions of this paper are as follows:

(i) The partial vertex cover and budgeted maximum coverage problems are NP-hard
on bipartite graphs.

(ii) The (weighted) budgeted maximum coverage problem on bipartite graphs admits
an 8

9 -approximation algorithm, matching the integrality gap of the natural linear
programming relaxation.

The rest of this paper is organized as follows: Section 2 presents a formal definition
of the main problems that are considered in the paper. We present a concrete application
to motivate the PVCB problem in Section 3. The related work is presented in Section
4. The computational complexity of the PVCB problem is established in Section 5. In
Section 6, we present an 8

9 -approximation algorithm for the budgeted maximum cover-
age problem on bipartite graphs; note that this problem is computationally identical to
the PVCB problem. We conclude and point out several research directions in Section 7.

2 Statement of Problems

IfG = 〈V,E〉 is a graph, and u is a vertex, e is an edge ofG, respectively, then we will
say that u covers e in G, if u is incident to e, that is, u is one of the end-vertices of e.
For a set V ′ ⊆ V , let EV ′ denote the set of edges of G that are covered by vertices of
V ′.

In the classical vertex cover (VC) problem, we are given an undirected graph G =
〈V,E〉, where V is the vertex set with |V | = n, E is the edge set with |E| = m. The
goal is to find a minimum cardinality subset V ′ ⊂ V , such that EV ′ = E.

In this paper we will consider the partial vertex cover (PVC) problem restricted to
bipartite graphs.

Definition 1. Given an integer t, and an undirected bipartite graph G = 〈V,E〉. The
PVCB problem is defined as finding a minimum cardinality subset S ⊂ V such that
|ES | ≥ t.
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It is trivial to observe that the PVC problem is a generalization of the VC problem.
We will also consider the budgeted maximum coverage problem, and the following its
extension.

Definition 2. Given an integer k, and undirected bipartite graph G = 〈V,E,w〉, and
w : E → Z denoting a weighting function from the set of edges to the set of posi-
tive integers. The EBMCB problem is defined as finding a subset S ⊂ V with |S| ≤ k
maximizing

∑
e:e∈ES

w(e).

Definition 3. Given an integer k, and undirected bipartite graph G = 〈V,E〉 with V
denoting the set of vertices, E denoting the set of edges. The BMCB problem is defined
as finding a subset S ⊂ V with |S| ≤ k maximizing the number of covered edges.

The PVC and the BMC problems are equivalent from the perspective of exact solu-
tion. This follows from the observation that one can simply swap the budget constraint
with objective and reverse the optimization direction. On the other hand, let us observe
that the two problems are likely to be different from the perspective of approximate
solution. The BMC problem for sets (not necessarily for graphs) admits a (1 − 1

e )-
approximation algorithm [15], where e = 2.718...., and it is known that there exists a
constant γ > 0, such that Set Cover problem admits no γ · logn approximation [8],
under the assumption that NP has no quasi-polynomial time algorithms.

3 Motivation

The number of attacks faced by an ordinary device that has an access to Internet remains
quite high, which means that it is unreasonable to expect a manual response to an attack.
A good example of a system for which an automated response is needed are devices that
have an operating system. One of the approaches to handle the situation, is to dynami-
cally control the device’s vulnerability to threats and limit undesirable consequences as
much as possible.

In order to protect a system, one needs to minimize the risk it faces. It is reasonable to
assume that the risk depends on three factors, which are threats and their probabilities
of occurrence, the existing weaknesses of the system, and the consequences that the
system experiences after a successful attack.

While threats are not under the control of the device, the other two can be handled by
it. Here it is implicitly assumed that the device can be protected by decreasing its func-
tionality. This implies that our main goal is becoming to minimize the tension between
functionality and security. In great contrast with the approach of statically configuring a
system, one can dynamically monitor the risk level, and allow users to have maximum
functionality where the level of risk is assumed to be on a predefined level.

In [6], the risk of a computational system is modeled as a flow between the first and
last partitions in a tripartite graph, where the vertices of the three partitions represent
threats to the system, vulnerabilities of the system, and the assets of the system as shown
in Figure 1.

In the risk management model given in [6], the goal is to reduce the risk in the system
(flow between the first and last partitions) below a predefined risk threshold level by
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T V A

Fig. 1. Risk in a computational system can be modeled in terms of its constituent components.
The threats, weaknesses (corresponding to specific vulnerabilities), and assets form three disjoint
sets, named as T, V , and A respectively. An edge between vertices represents a contribution to
the system risk. The system’s risk is the total flow between the first and third sets.

either restricting the permissions of the users, or encapsulating the system assets. These
two strategies correspond to deleting minimum number of vertices from the second
and the third partitions of the tripartite graph so that the flow between the first and the
third partitions are reduced below the predefined threshold level. The equivalence of
this risk management system and the partial vertex cover problem on bipartite graphs is
established in [6].

From the point of view of risk management the important instances of the problem
correspond to the cases when the graph modeling the system has a bounded degree, or
has a relatively predictable structure (such as being a tree). This paper focuses on the
problem when the graphs are arbitrary bipartite graphs.

4 Related Work

The vertex cover (VC) problem is one of the classical NP-complete problems listed
by Karp [13]. There are several polynomial-time approximation algorithms for the VC
problem within a factor of 2, and the best-known approximation algorithm for the VC

problem has an approximation factor of
(
2− θ

(
1√
logn

))
[12]. The VC problem is

known to be APX-complete [21]. Moreover, it cannot be approximated to within a
factor of 1.3606 unless P = NP [7], and not within any constant factor smaller than 2,
unless the unique games conjecture is false [14].

Since the PVC problem subsumes the VC problem for t = m, all the hardness results
given above for the VC problem directly apply to the PVC problem. The PVC problem
and the partial variants of similar graph problems have been extensively studied for more
than a decade [4], [18], [16], [17], [3]. Particularly, there are an O(n · logn+m)-time
2-approximation algorithm [20], that is based on the method of primal-dual, a combina-
torial 2-approximation algorithm [3], and some (2−o(1))-approximation algorithms [2],
[5], [9], [11]. Let us also note that in [19] for each ε > 0 an approximation algorithm with
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performance ratio (43 + ε) for WPVCB is presented. Moreover, a 3
4 -approximation al-

gorithm for the weighted budgeted maximum coverage problem is general graphs given
in [1].

Although the VC problem and the PVC problem have almost matching approxi-
mation ratios and inapproximability results, the PVC problem is in some sense more
difficult than the VC problem. For instance, the PVC problem is W[1]-complete while
the VC problem is fixed parameter tractable [10].

5 Computational Complexity of the PVCB Problem

In this section we prove Theorem 1, which shows that the PVCB problem is NP-hard.
This also establishes the hardness of the weighted versions of the PVCB and the BMCB
problems.

Theorem 1. The PVCB problem is NP-hard.

Proof. We will prove Theorem 1 by giving a Karp reduction from the CLIQUE
problem. Recall that in the CLIQUE problem, we are given an undirected graph
G′ = 〈V ′, E′〉, and an integer k, and the goal is to find whether there exists a complete
subgraph of G′ with k vertices. Assume we are given an arbitrary undirected graph
G′ = 〈V ′, E′〉, where n′ andm′ denote |V ′| and |E′| respectively, and an integer k. We
construct a corresponding bipartite graphG = 〈V1 ∪ V2, E〉 as explained below.

For every vertex v′i ∈ V ′, G has a corresponding vertex vi ∈ V1. For every edge
e′ ∈ E′, there is a corresponding edge block in G. The term edge block refers to two
vertices and an edge in between. So, for each edge e′ ∈ E′, G has two corresponding
vertices e1 ∈ V2 and e2 ∈ V1 and the edge (e1, e2). In order to capture the incidence
matrix of G′, for each edge e′ = (v′i, v

′
j) of G′, G has 2 additional edges (vi, e1) and

(vj , e1). Let n andm denote the number of vertices and edges ofG, respectively. Notice
that the bipartite graph G has n′ + 2 ·m′ vertices and 3 ·m edges. More precisely, we
have n = n′ + 2 ·m′, andm = 3 ·m′. We use the term left vertex of an edge block for
the vertex of the edge block that belongs to V2. The other vertex of the edge block that
belongs to V1, is referred to as the right vertex of the edge block throughout the paper.

In Figure 2, we are given a simple undirected graph G′ on the left that consists of 2
vertices v′1 and v′2 and an edge e′ = (v′1, v′2) in between. The figure has the correspond-
ing bipartite graphG on the right. The vertices v1 and v2 of G correspond to 2 vertices
of G′. The 2 vertices e1 and e2 of G and the edge e in between is the corresponding
edge block of the edge e′ of G′. The 2 edges (v1, e1) and (v2, e1) of G capture the
incidence matrix of G′.

We will prove Theorem 1 by showing that solving the CLIQUE problem on G′ re-
duces to solving the PVCB problem onGwith t = m− k·(k−1)

2 . In the rest of the paper,

without loss of generality, we will assume that m′ > k·(k−1)
2 , and k ≥ 5. Notice that

these assumptions do not violate the soundness of the proof since the CLIQUE problem
is still NP-hard after these assumptions on the input. We precisely will show the fol-
lowing: there is a complete subgraph of k vertices on G′ if and only if there is a subset
of k +m′ − k·(k−1)

2 vertices V ′′ of G such that the number of edges that are covered

by V ′′ is at least m− k·(k−1)
2 .
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An undirected graph G′ and corresponding bipartite graph G

v1

e1 e2

v2

v′1 v′2
e′

Fig. 2. Construction of the corresponding bipartite graph G for a given undirected graph G′

Without loss of generality we can assume that V ′′ does not contain the right vertex
of any of the edge blocks of G, since the right vertex of an edge block is incident to
only one edge and that edge can be covered by the left vertex of the edge block as
well. Therefore, without loss of generality, we can assume that all the vertices of V ′′

are the vertices that correspond to the vertices of G′, or the left vertices of the edge
blocks. Since the number of edges that are to be covered by V ′′ is at least m− k·(k−1)

2 ,

the number of edges that are not covered by V ′′ is at most k·(k−1)
2 . Therefore, V ′′ has

to contain the left vertices of at least m′ − k·(k−1)
2 edge blocks. We will complete the

proof of Theorem 1 by proving Lemma 1, which maps the yes instances of the CLIQUE
problem to the yes instances of the PVCB problem, and Lemma 2, which maps the no
instances of the CLIQUE problem to the no instances of the PVCB problem.

Lemma 1. If there exists a complete subgraph of k vertices on G′, then there exists a
subset V ′′ of vertices of G such that |V ′′| = k +m′ − k·(k−1)

2 , and V ′′ covers at least

m− k·(k−1)
2 edges of G.

Proof. Assume that G′ has a complete subgraph of k vertices and let V ′′ be composed
of the following k + m′ − k·(k−1)

2 vertices of G. For every vertex of the complete
subgraph ofG′, let the corresponding vertex ofG be in V ′′. Notice that there are exactly
k such vertices. The complete subgraph of this k vertices has k·(k−1)

2 edges in G′.
Therefore, there are m′ − k·(k−1)

2 edges of G′ that are not in the complete subgraph

of k vertices in G′. For each of these m′ − k·(k−1)
2 edges of G′, let the left vertex of

the corresponding edge block in G be contained in V ′′. Notice that there are exactly
m′ − k·(k−1)

2 such vertices in V ′′. So, |V ′′| = k +m′ − k·(k−1)
2 as desired.

All we need to prove is that V ′′ covers at least m− k·(k−1)
2 edges of G. Let us first

consider the edges of G that capture the incidence relation of the edges of G′. Recall
that for every edge e′ = (v′i, v

′
j) of G′, there are 2 edges in G to capture the incidence

relation of e′, namely (vi, e1) and (vj , e2). So, in total there are 2 ·m′ such edges in G.

The k · (k−1) edges ofG that capture the incidence relation of the k·(k−1)
2 edges of the

complete subgraph of G′ are covered by the k vertices of V ′′ that correspond to the k
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vertices ofG′. The remaining 2 ·m′− k · (k− 1) edges ofG, that capture the incidence
relation of the m′ − k·(k−1)

2 edges ofG′ that are not part of the complete subgraph, are

covered by the left vertices of them′− k·(k−1)
2 edge blocks in V ′′. Therefore, all 2 ·m′

edges ofG that capture the incidence relation of them′ edges ofG′ are covered by V ′′.
Recall that there are m′ additional edges in G. These edges are the edges of the m′

edge blocks. The left vertices of them′ − k·(k−1)
2 edge blocks that are contained in V ′′

cover m′ − k·(k−1)
2 of those edges. Therefore, there are only k·(k−1)

2 edges of G that

are not covered by V ′′. So, V ′′ coversm− k·(k−1)
2 edges as stated by Lemma 1. �

Lemma 2. If G′ does not have a complete subgraph of k vertices, then no subset V ′′

of vertices of G such that |V ′′| = k +m′ − k·(k−1)
2 covers at least m− k·(k−1)

2 edges
of G.

Proof. Assume G′ does not have a complete subgraph of k vertices. For the purpose
of contradiction, assume that there is a subset V ′′ of vertices of G such that |V ′′| =
k +m′ − k·(k−1)

2 , and V ′′ covers at least m− k·(k−1)
2 edges of G.

Since V ′′ covers at least m − k·(k−1)
2 edges of G and m′ > k·(k−1)

2 , V ′′ covers at

least m′ − k·(k−1)
2 edges of the edge blocks. Therefore, V ′′ contains the left vertices of

at leastm′− k·(k−1)
2 edge blocks. Since |V ′′| = k+m′− k·(k−1)

2 , V ′′ contains at most
k vertices of G that correspond to the vertices of G′.

First consider the case where V ′′ contains exactly k vertices of G that correspond to
the vertices ofG′, and exactlym′− k·(k−1)

2 left vertices of edge blocks. Since there are

only m′ − k·(k−1)
2 left vertices of edge blocks, V ′′ does not cover k·(k−1)

2 edges of the

edge blocks. Since V ′′ covers at least m − k·(k−1)
2 in total, V ′′ covers all the edges of

G that capture the incidence relation of all the edges of G′. Since G′ does not have a
complete subgraph of k vertices, the k vertices of G that correspond to the vertices of
G′ cover both of the edges that capture the incidence relation of k·(k−1)

2 − α edges of

G′ for some 1 ≤ α < k·(k−1)
2 . Since V ′′ covers all 2 ·m′ edges of G that capture the

incidence relation of the edges ofG′, V ′′ contains the left vertices of all the edge blocks
ofG that correspond to the m′ − k·(k−1)

2 +α edges ofG′. This is a contradiction since

we assumed that V ′′ contains exactlym− k·(k−1)
2 left vertices of edge blocks.

Therefore, V ′′ contains exactly k − l vertices of G that correspond to some k − l
vertices of G′, and exactly m′ − k·(k−1)

2 + l left vertices of edge blocks for some
0 < l < k. Recall that the incidence relation of each edge ofG′ is captured by 2 edges
in G. Notice that the subgraph formed by this k − l vertices of G′ contains at most
(k−l)·(k−l−1)

2 edges ofG′. Therefore, the corresponding k− l vertices of V ′′ cover both

of the incidence edges of at most (k−l)·(k−l−1)
2 edges ofG′. In other words, at least one

incidence edge ofm′− (k−l)·(k−l−1)
2 edges ofG′ is not covered the k− l vertices ofG

that correspond to some k − l vertices of V ′′. Since we already have k·(k−1)
2 − l edges

of edge blocks left uncovered, the left vertices of the edge blocks in V ′′ has to cover
an incidence edge for at least m′ − (k−l)·(k−l−1)

2 − l edges of G′. This is not possible
since the left vertex of each edge block in G covers the corresponding incidence edges
of exactly one edge ofG′, andm′− (k−l)·(k−l−1)

2 − l > m′− k·(k−1)
2 + l for k ≥ 5. �
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6 An 8
9

-Approximation Algorithm for the EBMCB Problem

The edge-weighted budgeted maximum coverage problem in general graphs is known
to be NP-hard, and the result from the previous section shows that this the case for
bipartite graphs as well. Thus a natural question is the approximability of the problem.
Ageev and Sviridenko [1] give a 3

4 -approximation for general graphs via the pipage
rounding technique. We present an 8

9 -approximation for bipartite graphs and show that
this matches the integrality gap of the LP-relaxation. We note that our techniques can
also be extended to general graphs to give an alternate LP-based 3

4 -approximation.
We employ the following linear programming relaxation for the problem on a bipar-

tite graph G = (V = VL ∪ VR, E), where VL and VR are the independent sets. For a
set S ⊆ V , we let SL = S ∩ VL and SR = S ∩ VR.

max
∑
e∈E

w(e) · ze

xu + xv ≥ zuv, for all uv ∈ E (1)∑
u∈V

xu ≤ k (2)

0 ≤ xu ≤ 1, for all u ∈ V (3)

ze ≤ 1, for all e ∈ E , (4)

where we assume that w(e) ≥ 0 for all e ∈ E. This assumption allows us to omit
the usual non negativity constraint on each ze. This omission will slightly simplify our
analysis and presentation.

Our results exploit the structure of extreme points of the above polyhedron. Consider
a feasible solution (x, z) for the above linear program. We say an edge uv is slack (with
respect to (x, z)) if,

(i) xu + xv > zuv, or
(ii) zuv < 1.

If an edge is not slack, we call it tight. The following lemma shows that extreme points
are well-structured. For an extreme point (x̂, ẑ), let V̂ = {u ∈ V | 0 < x̂u < 1} be the
set of vertices with fractional x̂ value, and let Ĝ = (V̂ , Ê) be the graph induced by V̂ .

Lemma 3. The tight edges induce a single connected component in Ĝ, spanning all its
vertices.

Proof. Suppose, for the moment, that there is a vertex set J ⊆ V̂ such that all edges
e ∈ Ê with exactly one endpoint in J are slack. Note that every edge uv ∈ E with
exactly one endpoint in V̂ is slack. To see this, suppose x̂u ∈ {0, 1} and x̂v ∈ (0, 1); if
x̂u = 0, condition (ii) is satisfied, and otherwise condition (i) is satisfied since zuv ≤ 1.
Thus we actually have that any edge in E with exactly one endpoint in J is slack.

Now we will show that we may perturb the x̂ values for vertices in J such that all
constraints, except possibly (2), remain satisfied. We will add a value ε �= 0 to x̂u for
each vertex u ∈ JL, and we will subtract ε from each x̂ value for vertices in JR. This
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modified solution continues to satisfy (1) for each edge with both endpoints in J . We
observed above that edges in E with exactly one endpoint in J are slack.

Suppose we have such a slack edge uv with u ∈ J and v /∈ J . Let δ ∈ {ε,−ε}
represent the perturbation added to x̂u. If uv satisfies (i), then (1) is satisfied for uv by
selecting ε of small enough magnitude so that δ ≤ x̂u+ x̂v− ẑuv , where the right-hand
side is positive as desired. If uv satisfies (ii), then we add δ to zuv as well. This ensures
that (1) is satisfied for uv, and we may select ε of small enough magnitude to satisfy (4);
this does not affect the feasibility of any other constraint, even those for other edges.

In addition to the above constraints on the selection of ε, we may select ε of small
enough magnitude to satisfy (3), since vertices in J have fractional x̂ value. Let the
components of the vector ε ∈ RV ×E correspond to the perturbation described above.
We have indeed shown that (x̂, ẑ) + ε is feasible for all constraints except possibly (2);
however, we have also shown that we may select ε so that (x̂, ẑ)−ε is feasible for these
constraints as well. These two solutions average to (x̂, ẑ), and since ε �= 0 they are
distinct. In fact if we have |JL| = |JR|, then observe that both of these solutions satisfy
(2) as well and are feasible, contradicting the assumption that (x̂, ẑ) is an extreme point.

To finish the proof, suppose we have two disjoint vertex sets S, T ⊆ V̂ akin to J from
above; specifically, any edge in E with exactly one endpoint in some S or T is slack.
We may independently select εS �= 0 and εT �= 0 for S and T , respectively, so that the
only potentially violated constraint is (2). From above, we may assume |SL| �= |SR|
and |TL| �= |TR|. Thus, in order to satisfy (2), we need only choose εS and εT so that:

εS · (|SL| − |SR|) + εT · (|TL| − |TR|) = 0 ,

which can be done so that εS and εT have arbitrarily small magnitude as required.
Thus (x̂, ẑ) is a convex combination of the feasible solutions (x̂, ẑ) ± (εS + εT ) — a
contradiction.

If the tight edges induced more than one connected component in Ĝ (possibly one
with just an isolated vertex), then two of these components could play the role of S and
T above, which cannot exist. �

We will use this lemma to show the structure of fractional entries in an extreme point
solution (x̂, ẑ). As above let V̂ correspond to the vertices with fractional x̂ value. Let
V̂0 and V̂1 correspond to vertices with x̂ value 0 and 1, respectively.

Theorem 2. The fractional entries of x̂ take one of two values, α or 1 − α, for some
α ∈ (0, 1). Moreover,

min{|V̂L|, |V̂R|}+ |V̂1| ≤ k .

Proof. By the above lemma, there is a tree consisting of tight edges spanning the ver-
tices in V̂ . By the definition of a tight edge uv, we have that x̂u+x̂v = ẑuv and ẑuv = 1.
Select a root r for this tree and suppose x̂r = α. Now the first claim of the theorem
follows, since it is apparent that vertices with odd distance to r must have x̂ value 1−α
and those with even distance to r have value α.

Suppose that the vertices in V̂L have value α. Then the budget constraint, (2) be-
comes:

α · |V̂L|+ (1− α) · |V̂R|+ |V̂1| ≤ k ,

from which the second claim follows. �
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One consequence of Theorem 2 is that V̂1 together with the smaller of V̂L and V̂R
is a feasible solution. Now, let us compose two feasible solutions that will help us in
designing the approximation algorithm. Let A be the set of edges between V̂L and V̂R.
Let BL be the set of edges with one endpoint in V̂L and one endpoint in V̂0, and let BR

be defined analogously. Note that we will always select the vertices in V̂1 and ignore
the edges with at least one endpoint in V̂1 below. For the sake of exposition, suppose
|V̂L| ≤ |V̂R| and that each vertex in V̂L has x̂ value α (hence those in V̂R have value
1− α).

1. Select V̂L and augment this by greedily selecting an additional k − |V̂L| vertices
from V̂R with largest coverage. This solution has coverage at leastw(A)+w(BL)+
k−|V̂L|
|V̂R| · w(BR).

2. Greedily select k vertices from V̂R with largest coverage. This solution has cover-
age at least
k

|V̂R| · (w(A) + w(BR)).

The above are derived by applying the following lemma. For a vertex v ∈ V let
w(v) =

∑
e∈δ(v) w(e), where δ(v) denotes the set of edges ofG, that are incident to v.

As with edge sets, for a set S ⊆ V , let w(S) =
∑

u∈S w(u).

Lemma 4. Let S ⊆ V be an independent set of vertices. The t vertices in S with largest
coverage have a collective coverage of at least t · w(S)

|S| .

Proof. Let T ⊆ S be the t vertices in S with largest coverage. Suppose, for the sake
of contradiction, that w(T ) < t · w(S)

|S| . Then some vertex in T has coverage less than
w(S)
|S| . Therefore by choice of T , every vertex in S − T has coverage less than w(S)

|S| .

This implies that w(S) = w(T )+w(S−T ) < t · w(S)
|S| +(|S| − t) · w(S)

|S| = w(S). �

Applying the lemma with S = V̂R and t = k−|V̂L| and t = k yield the bounds from
(1) and (2), respectively. As in the proof of Theorem 2, the budget constraint (2) from
the LP (ignoring V̂1) yields k ≥ α · |V̂L| + (1 − α) · |V̂R|. Substituting this bound for
k into the above coverage bounds yield the following lower bounds on the respective
coverage obtained by our two solutions:

1. W1 = w(A) + w(BL) + (1− α) · β · w(BR), and
2. W2 = (1 − α · β) · (w(A) + w(BR)),

where β = 1 − |V̂L|
|V̂R| . Note that we may assume that β ∈ (0, 1). If β = 0 then |V̂L| =

|V̂R| ≤ k, and the set with better coverage is optimal. If β = 1 then V̂L = ∅, hence
BL = ∅. Since our extreme point solution x̂ is not integral, we have α ∈ (0, 1), hence
the edge setA = ∅ as well. The coverage of Solution (2) in this case is (1−α)·(w(A)+
w(BR)) = w(A) + αw(BL) + (1 − α) · w(BR) ≥ OPT .

We have shown that we can achieve a coverage of max{W1,W2}. All we need is to
show that the left-side of the inequality given below, an upper bound on the performance
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of our algorithm, is at most 9
8 . In order to prove this, consider a nonlinear program that

seeks to maximize the ratio,

w + α · wL + (1 − α) · wR

max{W1,W2}
≥ OPT

max{W1,W2}
.

The program has variables w, wL, and wR which correspond to values for w(A),
w(BL), and w(BR) respectively. Similarly there is a variable m corresponding to
max{W1,W2}.

ρ = max
w + α · wL + (1− α) · wR

m
w + wL + (1 − α) · β · wR ≤ m

(1− α · β) · (w + wR) ≤ m
w,wL, wR ≥ 0

α, β ∈ (0, 1) .

The program finds a worst-case setting of the parameters for our algorithm, and the
optimal value ρ is an upper bound on the worst-case performance of our algorithm. We
simplify the program a bit by letting x = w

m , y = wL

m , and z = wR

m .

ρ = max(x+ α · y + (1− α) · z)
x+ y + (1− α) · β · z ≤ 1

(1− α · β) · (x + z) ≤ 1

x, y, z ≥ 0

α, β ∈ (0, 1) .

For any fixed values of α and β, we consider the above program as a linear program,
whose target function depends on α and β: ρ = ρ(α, β). Now, in order to simplify our
analysis, we drop the non-negativity constraints on x and z, obtaining an upper bound
on ρ(α, β).

ρ(α, β) ≤ max(x+ α · y + (1− α) · z)
x+ y + (1− α) · β · z ≤ 1

(1− α · β) · x+ (1− α · β) · z ≤ 1

y ≥ 0 .

Note that the above LP is feasible and bounded for α, β ∈ (0, 1), since the first con-
straint implies an upper bound of 1

β on the objective function. Hence, we may assume
without loss of generality that we seek an extreme-point solution, in which case all three
constraints must be tight since we have three variables. Thus y = 0, and we may solve
the following linear system to obtain x and z in terms of α and β:

x+ (1− α) · β · z = 1

(1− α · β) · x+ (1− α · β) · z = 1 .
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Taking into account these values, the objective function becomes,

f(α, β) = x+ α · y + (1− α) · z
= (1− α) · (x+ z) + α · x

=
(1− α) · [1− (1− α) · β] + α · (1− β)

(1− α · β) · [1− (1− α) · β] .

Thus we obtain an upper bound on our worst-case approximation ratio by maximizing
this quantity with respect to α and β:

ρ = max
α,β∈[0,1]

ρ(α, β) ≤ max
α,β∈[0,1]

f(α, β) .

Maximizing f(α, β) is equivalent to maximizing

g(α, β) = 1− 1

f(α, β)
=

α · (1− α) · β · (1 − β)
(1− α) · [1− (1− α) · β] + α · (1− β) .

Maximizing g(α, β) is equivalent to minimizing

h(α, β) =
1

g(α, β)
=

1

1− β +
1

α · (1− α) · β .

In minimizing h(α, β) for any fixed value of β ∈ (0, 1), we see that α = 1
2 , and

some elementary calculus yields that h(12 , β) is minimized over β ∈ (0, 1) at β = 2
3 .

Evaluating f at these worst-case values of α = 1
2 and β = 2

3 yields ρ ≤ 9
8 .

Remark 1. It is natural to wonder whether the 8
9 -approximation factor in the above

algorithm can be improved. It turns out that the integrality gap of the linear program
[22] that we considered is 8

9 . It is an indication that using this linear program alone, one
cannot improve the approximation factor. In order to see this, consider the tree from
figure 3, and let the vertex budget k = 2. Observe that in this tree with two vertices
one can cover four edges. However, the linear program corresponding to this tree has a
fractional solution (x̂, ẑ) whose cost is 9

2 . In order to construct such a solution, for each
vertex u let x̂u = 1

2 , if u is not a leaf, and is zero, otherwise. For each edge e let ẑe = 1
2 ,

if e is incident to a leaf, and is one, otherwise. It is not hard to see that this fractional
solution is a feasible solution, and its cost is 9

2 , which implies that the integrality gap of
our linear program is 4

9
2

= 8
9 .

Fig. 3. An example showing that the integrality gap is 8
9
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7 Conclusion

In this paper, we studied the partial vertex cover, the budgeted maximum coverage
problems and their weighted analogues on bipartite graphs. We proved that the PVCB
problem is NP-hard. Then we presented an 8

9 -approximation algorithm for the EBMCB
problem, which is computationally identical to the PVCB problem.

From our perspective, the following lines of research appear promising:

– Determining whether the PVCB problem is APX-hard or not.
– Obtaining an α-approximation algorithm for the PVCB problem where α ≤ 4

3 .
– Considering the main problems in the class of bounded-degree graphs.
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Perfect Pipelining for Streaming Large File
in Peer-to-Peer Networks

Fei Chen and Xiaowei Wu

The University of Hong Kong

Abstract. We study the efficiency of large file streaming in a peer-to-
peer network in which a large file is cut into many pieces of equal size,
and initially all pieces are known only by one source node. We analyze
the number of rounds required, called the finishing time, for all nodes in
the network to collect all pieces in the default order.

Based on the basic PUSH-PULL protocol, we design the Constant
Out-degree Protocol (COP). At the beginning of the protocol, each node
selects a constant number of neighbors, with only whom communication
will be initiated. We focus our analysis on the performance of COP on
preferential attachment graphs, which are believed to model peer-to-peer
networks well. We show that a tight bound of Θ(B + log n) rounds can
be achieved with high probability for streaming B pieces in preferen-
tial attachment graphs with n nodes. Moreover, we show that there is
a dichotomy in the results depending on how neighbors are contacted
in each round; specifically, when each node avoids repeating initiation
with neighbors in the previous M ≥ 2 rounds, then the finishing time is
improved to Θ(B + log n

log log n
) with high probability.

For lower bounds, we show that there is a class of regular graphs
in which perfect pipelining is impossible for any PUSH-PULL protocols
using random neighbor selection.

1 Introduction

The problem of information disseminating in a distributed network has been
extensively studied. It is assumed that this information, usually called a rumor,
was known by only one node in a large connected network. The goal is to dis-
seminate this rumor to all nodes in the network, with bounded bandwidth and
number of communications. Many protocols have been proposed based on vari-
ous network topologies [7,14,15]. Among these protocols, distributed algorithms
have gained more attention since each node does not require global information
about the network.

A gossip based protocol was first introduced by Demers et al. [7] for main-
taining replicated databases. In this protocol, each node is only allowed to com-
municate with its own neighbors in each round. A similar distributed protocol
called PUSH-PULL protocol was introduced later. In this protocol, each node
initiates communication with one of its neighbors per round; the node pushes
the rumor to the neighbor if it is informed of the rumor, or pulls the rumor from

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 27–38, 2014.
c© IFIP International Federation for Information Processing 2014
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the neighbor if the neighbor is informed. A common performance measure of
protocols is the number of rounds required to have all nodes informed, which is
called the finishing time.

We consider the rumor spreading problem when the rumor is not a tiny piece
of information, but a large file which can not be transmitted from one node to
another in one round. In this case, we divide the file into B small pieces so that
each piece can be transmitted in one round. This problem can also be considered
as the multiple-rumor version of the rumor spreading problem with streaming
requirement. We analyse the finishing time for all nodes in the network to collect
all B pieces in the correct order. For instance, in peer-to-peer video streaming,
a node needs to receive earlier portions first and the next portion needs to
arrive before all currently received portions have been played. We consider two
properties of a protocol that are important for streaming multiple pieces: perfect
pipelining and ordered pieces transmission, which we explain below.

1.1 Our Contribution and Results

We study the large file streaming problem in which B ordered pieces of infor-
mation known to one source node are to be spread in a graph with n nodes. We
consider protocols that have the following properties.

1. Loosely speaking, a (randomized) protocol for multiple pieces spreading
achieves perfect pipelining on G(V,E) if the following holds: if the finishing
time for spreading one piece is T (with high probability), then the finishing
time for spreading B pieces is O(B + T ) (with high probability) in G.

2. A protocol employs ordered pieces transmission if the pieces are transmitted
and received in the correct order.

Our results and contribution are summarized as follows.

Achieving perfect pipelining with COP. In Section 4, we modify the basic
PUSH-PULL protocol and design the Constant Out-degree Protocol (COP). At
the beginning of the protocol, each node selects a constant number of neighbors,
with only whom communications will be initiated.

We show that using COP, steaming B pieces in preferential attachment graphs
requires O(B + logn) rounds, which achieves perfect pipelining. We also prove
a tight lower bound Ω(B + logn) for the finishing time. As considered by Doerr
et al. [8], if each node does not repeat neighbor initiation from the previous 2
rounds, COP can achieve finishing time O(B+ logn

log log n ), which is also tight. This
theoretical gap in the finishing time between the two cases suggests that after the
random neighbor selection phase to identify out-going neighbors, deterministic
round-robin for the pieces streaming phase is optimal.

We briefly outline our technical contributions. According to Arthur and Pani-
grahy [1], spreading B pieces in a graph with diameter d and maximum degree D
using random PUSH requires O(D(B +max{d, logn})) rounds with high proba-
bility (w.h.p.), no matter how the pieces are chosen for transmission. For prefer-
ential attachment graphs, the resulting upper bound O(

√
n(B + log n)) is loose
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because the maximum degree is as large as Ω(
√
n). However, the large degree

nodes are crucial for single piece spreading [8] since they are highly connected.
To overcome this technical hurdle, our protocol (COP) is based on the following
two observations: (1) for single piece spreading, even if each node is “active” for
only a constant number of rounds, w.h.p., the piece can still reach all nodes
via paths of length O( logn

log logn ); (2) we can direct the edges to achieve constant
out-degree, even when the underlying undirected graph has a high maximum
degree; this allows us to achieve the same result as in [1] if we use both PUSH
and PULL.

Implication on the Performance of Streaming. We show that our protocol
achieves tight upper bound Θ(B + logn) when the ordered pieces transmission
is adopted. In this case, all nodes will receive all pieces of the file in the correct
order and perfect pipelining is achieved. As far as we know, this is the first time
perfect pipelining is proved for streaming large file in peer-to-peer network.

Impossibility of Perfect Pipelining in Some Cases. In Section 3 we con-
sider the basic PUSH-PULL protocol for streaming B pieces in complete graphs.
Unfortunately, perfect pipelining cannot be achieved with this simple protocol.
In Section 5, we give a lower bound for the finishing time in a particular class
of D-regular graphs, called Necklace Graphs. We show that spreading B pieces
under any PUSH-PULL protocol in which communication partners are chosen
uniformly at random in each round (no matter how those pieces are selected for
transmission) in Necklace Graph requires Ω(D(B + d)) rounds, where d is the
diameter, for any ω(1) ≤ D ≤ o(n).

1.2 Related Work

The single piece (usually called a rumor) spreading problem has been extensively
studied. Using the PUSH-PULL protocol, the finishing time (also called stopping
time) is Θ(log n) for both complete graphs [16,13] and random graphs [9,10].
Rumor spreading in preferential attachment graphs (PA-graphs) was also studied
and two tight upper bounds O(log n) and O( logn

log logn ) for different protocols were
shown by Doerr et al. [8]. Given a graph with conductance φ, an O(φ−1 logn)
upper bound was proved by Giakkoupis [11], which is tight. For rumor spreading
in general graphs, Censor-Hillel et al. [4] gave an algorithm which constructs
subgraphs along with the rumor spreading process and showed that the finishing
time is at most O(d+poly logn), where d is the diameter of the underlying graph,
with no dependence on the conductance.

Although observed by experiments [5] and extensively applied on the Internet,
the high efficiency of multiple-rumor spreading is hardly analyzed. Deb et al. [6]
presented a protocol based on random linear network coding and showed that in
the complete graph spreading B = Θ(n) rumors requires at most O(n) rounds,
which is asymptotically optimal. Also using network coding, Haeupler [12] gave a
protocol that achieves perfect pipelining in many other graphs. In their protocol,
communicationpartners exchangea randomlinear combinationof rumors and they
show that after receiving enough combinations, all rumors can be decoded locally.
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Given a graph with diameter d = Ω(log n) and maximum out-degree D, an
O(D(B + d)) upper bound on the finishing time was proved by Arthur and
Panigrahy [1] for spreading B rumors with PUSH. Since Ω(B + d) is a trivial
lower bound, this upper bound is tight when D is a constant. This result actually
inspired the construction of our protocol COP, which attempts to find a subgraph
that has constant out-degree and small diameter in the first step.

2 Preliminaries

Consider a graph G with n nodes and B pieces indexed by {1, 2, . . . , B}; for
streaming application, we assume that smaller index means higher priority.
Throughout this paper we suppose that initially a single source node u0 ∈ V has
all B pieces while other nodes have no pieces. We say a node is waiting if it has
no pieces, downloading if it has at least one piece, and finished if it has all the
pieces. We use log to denote the logarithm with base 2.

Pieces are transmitted in a round-by-round manner. During a round of the
pieces streaming process, we say there is a piece transmission between two nodes
if some piece is transmitted from one node to the other. The finishing time is
the number of rounds required until all nodes in the graph become finished.
The Basic PUSH-PULL Protocol. For each node u ∈ V and integer t ≥ 1,
let put be the current downloading position of u at time t. Note that pu0 = B if
u = u0, and pu0 = 0 otherwise. In each round each node independently selects a
neighbor uniformly at random, and initiates communication with that neighbor.
In round t ≥ 1, for an instance of communication initiated by u between u and
v, the transmission follows the following rules.

1. If put−1 = pvt−1, then no transmission is made;
2. If pvt−1 > put−1, then node u pulls from node v the piece with index put−1 +1;
3. If pvt−1 < put−1, then node u pushes to node v the piece with index pvt−1 + 1.

Note that each node initiates communication with exactly one neighbor in
each round and at most one piece is transmitted. Also note that all B pieces are
initiated by the source node at the beginning and hence each node in the graph
will receive all the pieces in the fixed order 1, 2, . . . , B.

In Section 3, we show that the basic PUSH-PULL protocol cannot achieve per-
fectpipelining on the complete graph; inSection4,wemodify thebasicPUSH-PULL
protocol and design the Constant Out-degree Protocol, which achieves
perfect pipelining for directed randomgraphs andpreferential attachment graphs.

3 Low Efficiency of Basic PUSH-PULL

To motivate why we consider COP, we analyze the performance of the basic
PUSH-PULL protocol on complete graph Kn with source node u0 having all B
pieces. We show that perfect pipelining can not be achieved since (on average)
each node has to wait for Ω(log n) rounds to get the next piece.
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Theorem 1. The finishing time for streaming B pieces from one source node in
a complete graph with n nodes using the basic PUSH-PULL protocol is Ω(B logn)
with probability 1− exp(−Θ(B)).

Note that by experiments, Theorem 1 is not true if the pieces are spread
randomly. We conjecture that the finishing time for spreading B pieces with
random pieces selection is O(B + logn). The proof of Theorem 1 is included
in the full version. Intuitively, when all nodes in the graph are waiting for the
same piece, the efficiency is low since most of the communications are useless.
However, if we can guarantee that at least a constant fraction of communications
are useful, then after O(B) rounds, all nodes will become finished. Following this
idea, we define in Section 4 a protocol that constructs a constant maximum out-
degree subgraph before applying the basic PUSH-PULL protocol. We show that
in several cases, the subgraph constructed by our protocol has small diameter
and using basic PUSH-PULL protocol, perfect pipelining can be achieved.

4 Constant Out-Degree Protocol

Constant Out-degree Protocol. Let D be a fixed constant parameter used
in the protocol. Suppose we are given an input graph with one source node.
(1) Out-going Edge Selection Phase. A directed subgraph H is formed,
where each node u chooses independently its outgoing edges and outgoing neigh-
bors, with only whom node u will initiate communications in the next phase. We
consider all input graphs as multi-graphs. Each node u chooses min{D, deg(u)}
(out-going) edges incident to u uniformly at random without replacement. The
chosen edges are the outgoing edges and the incident nodes (excluding u) are
the outgoing neighbors of u in H .
(2) Pieces Streaming Phase. In each round, each node chooses one of its sam-
pled outgoing edges uniformly at random to initiate communication. In round
t ≥ 1, for an instance of communication initiated by u between nodes u and v,
the transmission follows as the basic PUSH-PULL protocol.

In other words, we construct a directed subgraph H and apply the basic
PUSH-PULL protocol to H , where the directions of initiation coincide with the
directions of edges. Since the only difference between COP and the basic PUSH-
PULL protocol is an extra neighbor selection process, we know that if perfect
pipelining can be achieved in the (random) subgraphH using basic PUSH-PULL,
then perfect pipelining is achieved by COP in the input graph. We show in this
section that perfect pipelining can be achieved by applying COP to stream multi-
ple pieces in directed random graphs and preferential attachment graphs. Unless
otherwise specified, the diameter of a graph refers to that of the underlying
induced undirected graph.

Deterministic Rumor Spreading Phase. Suppose we consider the case that
after the random subgraphH is constructed in the first phase each node initiates
communication with its outgoing neighbors in a round-robin way. Recall that
since the out-degree of the subgraph H is at most D, there is communication
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between two neighboring nodes at most every D rounds. It follows that if the
diameter of H is at most d, all nodes will become finished after D(B+d) rounds.

Fact 1. Given any input graph with n nodes, if the underlying undirected graph
of the subgraph constructed by COP with constant parameter D has diameter d
and each node contacts its neighbors in a round-robin way, then for all B ≥ 1,
the finishing time for streaming B pieces starting from one source node u0 in the
input graph using COP with parameter D is at most D(B + d) = O(B + d).

Note that Fact 1 holds with probability 1 since it is deterministic. If the
diameter of the graph is Ω(logn), the random neighbor chosen process achieves
a similar upper bound w.h.p.. We use the following fact [1, Proposition 4.1] on
streaming multiple pieces along a path.

Fact 2 (Streaming Multiple Pieces on a Path). Suppose there exists a path
P (v0, vs) = {v0, v1, . . . , vs} of length s between two nodes v0 and vs such that in each
round, communication between any twoadjacent nodes vi and vi+1 is performedwith
probability at least p independently for each pair of adjacent nodes. Assume only v0
has all B pieces and all other nodes are waiting. Then if s′ ≥ s, with probability
1− 2 exp(− s′

2 ), node vs will become finished after 4(B+4s′)
p rounds.

The fact above implies that by using COP protocol, perfect pipelining can be
achieved in any graph if the subgraph H constructed has a small diameter d.

Theorem 2. Suppose the subgraph constructed by COP has diameter d, then
for all B ≥ 1, the finishing time for streaming B pieces starting from one source
node u0 is at most O(B +max{d, logn}) with probability 1−O( 1

n ).

Proof. We denote the subgraph constructed by COP with constant parameter
D by H , which has diameter d. Hence for any node v, there exists a path P =
(u0, u1, . . . , us−1, us = v) in the undirected graph induced by H between u0 and
v, where s ≤ d is the length of the path.

Hence, in the directed graph H , for any i = {0, 1, . . . , s − 1}, there is a
directed edge between nodes ui and ui+1. Since both nodes ui and ui+1 have
out-degree at most D, which is a constant, communication between ui and ui+1

will be performed with probability at least 1
D in each round. However, if there

exists two directed edges (ui, ui+1) and (ui, ui−1) that start at ui, then the
communications between ui and ui+1, ui and ui−1 are not independent (only one
of them can happen in each round). To make the communications independent,
we define phases such that each phase consist of two rounds. In each phase,
for each i = {1, . . . , s − 1}, we assume that the communication between ui
and ui+1 is invalid in the first round and the communication between ui and
ui−1 is invalid in the second round. Note that the assumption will only make
the downloading process slower. Under this assumption, we know that for each
i = {0, 1, . . . , s− 1}, in each phase, communication between ui and ui+1 will be
performed with probability at least 1

D , independently.
Hence, for each node v in H , there is a path of length s ≤ d between u0

and v such that in each phase, communications between any two adjacent nodes
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will be performed with probability at least 1
D , independently for each pair of

adjacent nodes. Hence by Fact 2, if s′ ≥ s, with probability 1 − 2 exp(− s′
2 ),

node v will become finished after 4D(B + 4s′) phases. If s ≥ 4 logn, then set
s′ = s and node v will become finished after 4D(B + 4s) = O(B + d) phases
with probability 1 − O( 1

n2 ). If s < 4 logn, then set s′ = 4 logn and node v will
become finished after 4D(B + 16 logn) = O(B + logn) phases with probability
1 − O( 1

n2 ). Therefore, with probability 1 − O( 1
n2 ), node v will become finished

after O(B +max{d, logn}) phases, which means O(B +max{d, logn}) rounds.
A union bound on n− 1 nodes in H yields the result.

By Theorem 2, we know that the finishing time of COP is highly related to
the diameter d of the subgraph constructed in the first step. If d = Ω(log n),
then using round-robin in the pieces streaming phase has the same bound as
random neighbor selection. However, as we shall later see, the PA-graphs have
diameter O( logn

log logn ) w.h.p., and indeed we show that there is a dichotomy in
the finishing times between deterministic and random pieces streaming phases.
COP on Directed Random Graphs. We apply COP with D = 8 to stream
B pieces in directed random graphs Gn,p with p ≥ 6 logn

n . Observe that the
neighbor selection phase actually constructs a random D-out-degree subgraph.
For space reasons, we show in our full version that a random D-out-degree graph
induces an expander with diameter O(log n). Hence the following theorem follows
immediately; its proof is also presented in the full version.

Theorem 3 (Finishing Time of COP in Gn,p). For all B ≥ 1, the finishing
time for streaming B pieces starting from one source node in directed random
graphs Gn,p with n nodes and p ≥ 6 logn

n using the constant out-degree protocol
with D = 8 is at most O(B + logn) with probability 1−O( 1

n ).

The intuition behind the proof can be summarized as follows.

1. When p ≥ 6 log n
n , the random subgraph construction can be equivalently

modelled as in complete graph.
2. For any node u, the number of nodes reachable from u grows exponentially

as the distance increases.
3. For any two nodes u and v, if both of them have many reachable nodes within

a distance of O(log n), then it is very likely that there exists a common node
w that is reachable from both u and v by paths with length O(log n).

Next we consider the finishing time of multiple-piece streaming in Preferential
Attachment graphs (PA-graphs). The notion of preferential attachment graphs
was first introduced by Barabási and Albert [2], and they have been used to
model social and peer-to-peer networks. In this work, we follow the formal defi-
nition by Bollobás et al. [3]. Let Gn

m be a PA-graph. We denote by degG(v) the
degree of a vertex v in Gn

m.

Definition 1 (Preferential Attachment Graphs). Let m ≥ 2 be a fixed
constant parameter. The random graph Gn

m is an undirected graph on the vertex
set V := {1, . . . , n} inductively defined as follows.
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1. G1
m consists of a single vertex with m self-loops.

2. For all n > 1, Gn
m is built from Gn−1

m by adding the new node n together
with m edges e1n = {n, v1}, . . . , emn = {n, vm},inserted one after the other in
this order. Let Gn

m,i−1 denote the graph right before the edge ein is added.
Let Mi =

∑
v∈V degGn

m,i−1
(v) be the sum of the degrees of all the nodes in

Gn
m,i−1. The endpoint vi is selected randomly such that vi = u with probability

degGn
m,i−1

(u)

Mi+1 , except for n that is selected with probability
degGn

m,i−1
(n)+1

Mi+1 .

It can be easily seen that for m = 1 the graph is disconnected w.h.p.; so we
focus on the case m ≥ 3. For each node i and k ∈ [m], let τi,k be the node chosen
by i in the k-th rounds after i is added to Gn

m. We call the first node added
to Gn

m node v1. Bollobás et al. [3] introduced an equivalent way of generating
Gn

m that is more accessible. In that model, each node i is assigned a random
variable ωi ∈ (0, 1) following some distribution and edges are added to node i
with probability proportional to ωi. The formal definition of the new model is
given in [3]. Under this equivalent model, a node i is called useful if ωi ≥ log2 n

n
and non-useful otherwise.

We apply COP with D = 3 to stream B pieces in PA-graph and show that the
finishing time in a PA-graph is at most O(B+ logn). Note that the PA-graph is
a multi-graph and the outgoing neighbors of a node is a multiset in the subgraph
constructed by COP.

Theorem 4 (Finishing Time of COP In PA-graphs). For all B ≥ 1, the
finishing time for streaming B pieces starting from any source node in a PA-graph
Gn

m using the constant out-degree protocol with D = 3 is at most O(B + logn)
with probability 1− o(1).

Communication Initiation without Repeat. In each round of the down-
loading process, each node initiates communication uniformly at random with
an outgoing neighbor that is not initiated with in the last min{M,degG(u)− 1}
rounds; for a multi-set of outgoing neighbors, multiplicities are respected. For
D = 3 and M = 2, this is equivalent to round-robin neighbor selection.

Lemma 1. [8, Lemma 5.8] There exists a property P of Gn
m that holds with

probability 1 − o(1) such that conditioning on P, with probability at least 1 −
n−Ω(n), using only PUSH on Gn

m (avoiding repeated neighbor initiation from the
previous M ≥ 2 rounds), a piece initiated at a node u reaches a useful node in
O(log logn) rounds.

Lemma 2. [8, Lemma 5.11] If each node v in Gn
m receives an independent ran-

dom variable xv such that xv = 1 with constant probability p and xv = 0 other-
wise, then with probability 1 − o(1), for each useful node u, there exists a path
of length O( logn

log log n ) between u and node v1 such that every second node v in the
path has degree m, its two neighbors in the path are τv,1 and τv,2 and has xv = 1.

Note that all xv’s are independent and the randomness of xv comes from the
behavior of node v. In the rest of the section, we assume the PA-graph Gn

m under
consideration has the properties stated above.
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4.1 Upper Bound for the Stopping Time

First, it is obvious that each node in Gn
m has degG(u) ≥ m ≥ 3 and the out-

degree of each node in H is min{D, degG(u)} = 3, for the case D = 3. A node
v in H is called a fast node if degG(v) = m and it chooses both τv,1 and τv,2 as
its outgoing neighbors in H .

In Lemma 3, we show that for each non-useful node v, there is at least one
useful node u that can be reached from v by a directed path of length O(log logn).
In Lemma 4, we show that all useful nodes are connected to node v1 by paths of
length O( logn

log logn ) inH and every second node in the paths is fast. We include the
proof of Lemma 4 in our full version. These two lemmas imply that the diameter
of H is at most O( logn

log logn ). Given a node u and an integer k, we denote by Hu
k

the set of nodes that can be reached by a directed path of length at most k in
the subgraph H .

Lemma 3 (Useful Node in O(log logn)-Neighborhood). With probability
1− o(1), for each non-useful node u, at least one useful node will be included in
Hu

K for some K = O(log logn) following the constant out-degree protocol.

Proof. We shall use Lemma 1 [8, Lemma 5.8] to prove this result. We condition
on the same property P on Gn

m as in Lemma 1. In the proof of [8, Lemma 5.8],
the authors consider a restricted version of PUSH strategy on Gn

m with one piece
starting at a fixed node u ∈ V . We show that there is a correspondence between
their restricted piece streaming process and our outgoing neighbor selection pro-
cess. Note that in the proof of [8, Lemma 5.8], the authors assume that each
node performs only PUSH and each node is active for only 3 rounds after it start
downloading. With the memory property, this means the node contacts three
random distinct neighbors in those 3 rounds (if the node has degree at least
3); this corresponds to the selection of D = 3 outgoing neighbors uniformly at
random in COP.

Hence, the single rumor spreading process in [8, Lemma 5.8] can be coupled
with our outgoing neighbor selection phase such that if a node v becomes down-
loading after 3K rounds in [8, Lemma 5.8], then there is a path from u to v of
length K such that the next node in the path is an outgoing neighbor of the
previous node selected by COP. With this coupling argument, we know that
conditioning on property P , with probability 1 − n−Ω(n), a useful node will be
included in Hu

K for some K = O(log logn). By union bound on all nodes in V ,
the conditional probability that this holds for all Hu

K ’s is at least 1−n−Ω(n) · n.
Since property P holds with probability at least 1− o(1), our result follows.

Lemma 4 (Distances Between Useful Nodes). With probability 1 − o(1),
for each useful node u, there exists a path of length O( log n

log logn ) between u and 1
such that every second node in the path is fast.

Proof of Theorem 4: By Lemma 3 and 4, we know that with probability
1 − o(1), each non-useful node can reach a useful node by a path of length at
mostO(log logn) and all useful nodes are connected to node v1 by paths of length
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at most O( logn
log logn ) in H , which implies that the underlying undirected graph of

H has diameter at most O(log logn) +O( logn
log logn ) = O( logn

log logn ). By Theorem 2,
the finishing time of streaming B pieces in a PA-graph Gn

m using COP with
D = 3 is at most O(B + log n) with probability 1− o(1)−O( 1

n ) = 1− o(1). �

4.2 Lower Bound for the Stopping Time

We have shown that streaming B pieces in a PA-graph Gn
m using COP with

D = 3 requires at most O(B + logn) rounds. However, the PA-graph and the
subgraph H of the PA-graph have diameter O( log n

log logn ), which is o(log n). Note
that by Fact 2, each node v will become finished after O(B + logn

log logn ) with
probability 1−exp(− logn

log logn ). However, since the failure probability is ω( 1n ) and
there are n nodes, we cannot use union bound to show that w.h.p., all nodes
will be finished after O(B + logn

log log n ) rounds. Indeed, we show that the finishing
time of streaming B pieces in a PA-graph Gn

m using COP with D = 3 needs
Ω(B + logn) rounds, which implies that the upper bound we have proved in
the last section is tight and perfect pipelining is achieved. More specifically, we
prove the following result.

Theorem 5 (Lower Bound For COP in PA-Graphs). With probability
1− o(1), COP with any constant parameter D needs Ω(B + logn) rounds to get
all nodes in a PA-graph Gn

m finished.

Proof. It is obvious that if the protocol needs Ω(log n) rounds to spread 1 piece
to all nodes in Gn

m, then Ω(B+ logn) rounds are required for the same protocol
to stream B pieces to all nodes in Gn

m. Hence, we only consider the case when
B = 1 in the following proof.

By the proof of [8, Theorem 3.3], we know that with probability 1 − o(1),
there are Ω(n) edges in Gn

m whose incident nodes are of degree at most m + c,
where c is a constant. We call those edges links and let L ⊆ E be the collection
of links, where |L| = Ω(n). Note that for any two edges e1 and e2 in L, e1 and e2
may have common endpoints or the endpoints of e1 and e2 may have common
neighbors. To avoid this and make the proof simpler, we remove one of those
two edges if such a situation happens. Let L̃ be the collection of links after the
removals. Since each endpoint of a link is of degree at most m+ c, we conclude
that |L̃| ≥ 1

(m+c−1)2+1 |L| = Ω(n) (to keep one edge, at most (m+ c− 1)2 edges
will be deleted). Note that any two links in L̃ have no common endpoint and
the endpoints of any two edges have no common neighbor.

Fix one link in L̃, denoted by (u, v), u will choose v as an outgoing neighbor
with probability at least D

m+c and v will choose u as an outgoing neighbor also
with probability at least D

m+c , independently in COP. Hence for each of those
links, with constant probability, the two endpoints of the link will choose each
other as outgoing neighbor in the protocol, independently for all links in L̃. If
that happens, we call the link preserved in H . By Chernoff bound, we know that
with probability 1− exp(−Ω(n)), there are Ω(n) preserved links.
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Fix one pair of nodes (u, v) that are connected by a preserved link, in each
round, if the two nodes are waiting, then with probability at least ( 1

D )2(1 −
1
D )2(D−1) = δ, they will remain waiting. Note that δ is a constant. The proba-
bility that (u, v) remains waiting for logn

2 ln δ−1 is therefore at least n−
1
2 . Since each

of those pairs are disjoint and the choices of communications are made indepen-
dently, the probability that none of the Ω(n) pairs remains waiting after logn

2 ln δ−1

is at most (1− n− 1
2 )Ω(n) ≤ exp(−n− 1

2Ω(n)) ≤ exp(−Ω(n
1
2 )). Hence with prob-

ability 1 − o(1) − exp(−Ω(n)) − exp(−Ω(n
1
2 )) = 1− o(1), COP needs Ω(log n)

rounds to spread one piece to all nodes in Gn
m and Ω(B+logn) rounds to stream

B pieces to all nodes in Gn
m using COP with any constant parameter D.

4.3 Improving the Upper Bound

It is established by Doerr et al. [8] that if each node in Gn
m avoid repeated

neighbor initiation from the previous M ≥ 2 rounds, the upper bound of the
finishing time of spreading one piece in Gn

m can be improved to O( logn
log logn ),

which is tight up to a constant factor. Note that with M = 2 and D = 3, the
pieces streaming phase of COP is the same as round-robin and by Fact 1, the
next theorem follows immediately.

Theorem 6. For all B ≥ 1, the finishing time for streaming B pieces starting
from any source node in a PA-graph Gn

m using COP with round-robin pieces
streaming phase is at most O(B + logn

log log n ) with probability 1− o(1).

5 Lower Bound

In Section 4 we show that perfect pipelining can be achieved using protocols
based on the basic PUSH-PULL protocol when streaming multiple pieces in di-
rected random graphs and preferential attachment graphs. In this section we give
a class of D-regular graphs, where ω(1) ≤ D ≤ o(n), with diameter d and show
that perfect pipelining is impossible in those regular graphs for any protocols in
which communication partners are chosen uniformly at random in each round.
We show that streaming B pieces from one source node in those regular graphs
requires at least Ω(D(B+d)) rounds, no matter how the pieces are chosen to be
transmitted. We denote those protocols by PUSH-PULL based protocols. Note
that by the upper bound proved by [1], our lower bound is actually tight.

The Necklace Graph. A D-regular necklace graph N(V,E) with n nodes
consists of � := n

D+1 units U1, U2, . . . , U�. Each unit Ui for i ∈ [�] contains D+1
nodes, numbered by 1, 2, . . . , D + 1. Within a unit Ui, there is an edge between
each pair of nodes except the pair {1, D+ 1}. That is, the subgraph of N(V,E)
induced by nodes in Ui is KD+1\1, D + 1. For each i ∈ {1, 2, . . . , �− 1}, the two
units Ui and Ui+1 are connected via an edge between node D+1 of Ui and node
1 of Ui+1. Units U� and U1 are connected via an edge between node D + 1 of
U�+1 and node 1 of U1.
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Theorem 7 (Lower Bound for PUSH-PULL). Let D be an integer such that
ω(1) ≤ D ≤ o(n). Let N(V,E) be a D-regular necklace graph with |V | = n
and diameter d. Then for all B ≥ 1, the finishing time for streaming B pieces
starting from one source node in N(V,E) using any PUSH-PULL based protocol
is at least Ω(D(B + d)) with probability at least 1− o(1).

For space reasons, we put its proof in the full version. Theorem 7 indicates
that perfect pipelining is impossible when streaming multiple pieces in necklace
graphs using any PUSH-PULL based protocol.
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Abstract. In this work we address a game theoretic variant of the short-
est path problem, in which two decision makers (agents/players) move
together along the edges of a graph from a given starting vertex to a
given destination. The two players take turns in deciding in each vertex
which edge to traverse next. The decider in each vertex also has to pay
the cost of the chosen edge. We want to determine the path where each
player minimizes its costs taking into account that also the other player
acts in a selfish and rational way. Such a solution is a subgame perfect
equilibrium and can be determined by backward induction in the game
tree of the associated finite game in extensive form.

We show that finding such a path is PSPACE-complete even for bi-
partite graphs both for the directed and the undirected version of the
game. On the other hand, we can give polynomial time algorithms for di-
rected acyclic graphs and for cactus graphs in the undirected case. The
latter is based on a decomposition of the graph into components and
their resolution by a number of fairly involved dynamic programming
arrays.

Keywords: shortest path problem, game theory, computational com-
plexity, cactus graph.

1 Introduction

We are given a directed graph G = (V,A) with vertex set V and arc set A
with positive costs c(u, v) for each arc (u, v) ∈ A and two designated vertices
s, t ∈ V . The aim of Shortest Path Game is to find a directed path from s
to t in the following setting: The game is played by two players (or agents) A
and B who start in s and always move together along arcs of the graph. In each
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vertex the players take turns to select the next vertex to be visited among all
neighboring vertices of the current vertex with player A taking the first decision
in s. The player deciding in the current vertex also has to pay the cost of the
chosen arc. Each player wants to minimize the total arc costs it has to pay. The
game continues until the players reach the destination vertex t.Later, we will
also consider the same problem on an undirected graph G = (V,E) with edge
set E which is quite different in several aspects.

To avoid that the players get stuck at some point, we restrict the players
in every decision to choose an arc (or edge, in the undirected case) which still
permits a feasible path from the current vertex to the destination t.

(R1) No player can select an arc which does not permit a path to vertex t.
In classical game theory the above scenario can be seen as a finite game in

extensive form. All feasible decisions for the players can be represented in a game
tree, where each node corresponds to the decision of a certain player in a vertex
of the graph G.

The standard procedure to determine equilibria in a game tree is backward
induction (see (Osborne, 2004, ch. 5)). This means that for each node in the
game tree, whose child nodes are all leaves, the associated player can reach a
decision by simply choosing the best of all child nodes w.r.t. their allocated total
cost, i.e. the cost of the corresponding path in G attributed to the current player.
Then these leaf nodes can be deleted and the pair of costs of the chosen leaf is
moved to its parent node. In this way, we can move upwards in the game tree
towards the root and settle all decisions along the way.

This backward induction procedure implies a strategy for each player, i.e. a
rule specifying for each node of the game tree associated with this player which
arc to select in the corresponding vertex of G. Always choose the arc according
to the result of backward induction. Such a strategy for both players is a Nash
equilibrium and also a so-called subgame perfect equilibrium (a slightly stronger
property), since the decisions made in the underlying backward induction pro-
cedure are also optimal for every subtree.1

The outcome, if both players follow this strategy, is a unique path from s to
t in G corresponding to the unique subgame perfect equilibrium (SPE) which
we will call spe-path. A spe-path for Shortest Path Game is the particular
solution in the game tree with minimal cost for both selfish players under the
assumption that they have complete and perfect information of the game and
know that the opponent will also strive for its own selfish optimal value.

Clearly, such a spe-path path can be computed in exponential time by explor-
ing the full game tree. It it is the main goal of this paper to study the complexity

1 In order to guarantee a unique solution of such a game and thus a specific subgame
perfect Nash equilibrium, we have to define a tie-breaking rule. We will use the
“optimistic case”, where in case of indifference a player chooses the option with
lowest possible cost for the other player. If both players have the same cost, the
corresponding paths in the graph are completely equivalent. Assigning arbitrary but
fixed numbers to each vertex in the beginning, e.g. 1, . . . , n, we choose the path to
a vertex with lowest vertex number.
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status of finding this spe-path. In particular, we want to establish the hardness
of computation for general graphs and identify special graph classes where a
spe-path can be found in polynomial time.

Note that in general game theory one considers only outcomes of strategies
and their payoffs, i.e. costs of paths from s to t in our scenario. In this paper we
will consider in each node of the game tree the cost for each player for moving
from the corresponding vertex v of G towards t, since the cost of the path from s
to v does not influence the decision in v. This allows us to solve identical subtrees
that appear in multiple places of the game tree only once and use the resulting
subpath of the spe-path on all positions.

Consider the following example: The spe-path is determined by backward
induction and represented by ordered pairs of cost values (x, y) meaning that
the decider in a given vertex has to pay a total value of x whereas the follower
has to pay a value of y.
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In this setting finding the spe-path for the two players is not an optimization
problem as dealt with in combinatorial optimization but rather the identification
of two sequences of decisions for the two players fulfilling a certain property in
the game tree.

Note that there is a conceptual problem in this finite game model. There may
occur cases where the game is infinite as illustrated by the following example.
Player B has to decide in vertex v whether to pay the cost M � 2 or enter the
cycle of length 3. In the latter case, the players move along the cycle and then A
has to decide in v with the same two options as before for player B. In order to
avoid paying M both players may choose to enter the cycle whenever it is their
turn to decide in v leading to an infinite game.

� �
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Since there is no concept in game theory to construct an equilibrium for an
infinite game in extensive form (only bargaining models such as the Rubinstein
bargaining game are well studied, cf. (Osborne, 2004, ch. 16)) we have to impose
reasonable conditions to guarantee finiteness of the game. An obvious restriction
would be to rule out any cycle by requiring that each vertexmay be visited at most
once. Indeed, a cycle of even length can not be seen as a reasonable choice for any
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player since it only increases the total cost of both players. Thus, a spe-path in a
finite game will never contain a cycle of even length. However, in the above exam-
ple it would be perfectly reasonable forB to enter the cycle of odd length and thus
switch the role of the decider in v. Therefore, a second visit of a vertex may well
make sense. However, if also A enters the cycle in the next visit of v, two rounds
through the odd cycle constitute a cycle of even length which we rejected before.
Based on these arguments we will impose the following restriction:

(R2) The players can not select an arc which implies necessarily a cycle of
even length.

Note that (R2) implies that an odd cycle may be part of the solution path,
but it may not be traversed twice since this would constitute a cycle of even
length. In the remainder of the paper we use “cycle” for any closed walk, also if
vertices are visited multiple times. It also follows that each player can decide in
each vertex at most once and any arc can be used at most once by each agent.

1.1 Related Literature

A closely related game is known as Geography (see Schaefer (1978)). It is
played on a directed graph with no costs. Starting from a designated vertex
s ∈ V , the two players move together and take turns in selecting the next
vertex. The objective of the game is quite different from Shortest Path Game,
namely, the game ends as soon as the players get stuck in a vertex and the player
who has no arc left for moving on loses the game. Moreover, there is a further
restriction that in Geography each arc may be used at most once.

Schaefer (1978) already showed PSPACE-completeness of Geography.
Lichtenstein and Sipser (1980) proved that the variant Vertex Geography,
where each vertex cannot be visited more than once, is PSPACE-complete for
planar bipartite graphs of bounded degree. This was done as an intermediate
step for showing that Go is PSPACE-complete. Fraenkel and Simonson (1993)
gave polynomial time algorithms for Geography and Vertex Geography

when played on directed acyclic graphs. In Fraenkel et al. (1993) it was proved
that also the undirected variant of Geography is PSPACE-complete. However,
if restricted to bipartite graphs they provided a polynomial time algorithm by
using linear algebraic methods on the bipartite adjacency matrix of the under-
lying graph. Note that this result is in contrast to the PSPACE-completeness
result of Section 3 for Shortest Path Game on bipartite undirected graphs.
Bodlaender (1993) showed that directed Vertex Geography is linear time
solvable on graphs of bounded treewidth. For directed Geography such a re-
sult was shown under the additional restriction that the degree of every vertex
is bounded by a constant - the unrestricted variant however is still open.

Recently, the spe-path of Shortest Path Game was used in Darmann et al.
(2013) as a criterion for sharing the cost of the shortest path (in the classical
sense) between two players. A different variant of two players taking turns in the
decision on a combinatorial optimization problem and each of them optimizing
its own objective function was recently considered for the Subset Sum problem
by Darmann et al. (2014).
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1.2 Our Contribution

We introduce the concept of spe-path resulting from backward induction in a
game tree with full information, where two players pursue the optimization of
their own objective functions in a purely rational way. Thus, a solution concept
for the underlying game is determined which incorporates in every step all antic-
ipated decisions of future steps. The main question we ask in this work concerns
the complexity status of computing such a spe-path, if the game consists in the
joint exploration of a path from a source to a sink. We believe that questions
of this type could be an interesting topic also for other problems on graphs and
beyond.

We can show in Section 2.1 that for directed graphs Shortest Path Game

is PSPACE-complete even for bipartite graphs, while for acyclic directed graphs
a linear time algorithm is given in Section 2.2. These results are in line with
results from the literature for the related game Geography.

On the other hand, for undirected graphs we can show in Section 3 that again
Shortest Path Game is PSPACE-complete even for bipartite graphs by a
fairly complicated reduction from Quantified 3-Sat while the related prob-
lem Geography is polynomially solvable on undirected bipartite graphs. This
surprising difference shows that finding paths with minimal costs can lead to
dramatically harder problems than paths concerned only with reachability.

In Section 4 we give a fairly involved algorithm to determine the spe-path on
undirected cactus graphs in polynomial time. It is based on several dynamic pro-
gramming arrays and a partitioning of the graph into components. Using an ad-
vanced auxiliary data structure, its running time can be bounded by O(n log n).

2 Spe-Paths for Shortest Path Game on Directed
Graphs

The following decision problem basically asks whether the unique subgame per-
fect equilibrium remains below given cost bounds CA and CB.

Shortest Path Game DEC:
Given a weighted graph G and two positive values CA, CB , does the spe-path in
the above game tree yield costs c(A) ≤ CA and c(B) ≤ CB ?

2.1 PSPACE-completeness

The PSPACE-completeness of Shortest Path Game on general graphs can be
shown by constructing an instance of Shortest Path Game, such that the
spe-path decides the winner of Vertex Geography. In fact, we can give an
even stronger result with little additional effort.
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Theorem 1. Shortest Path Game DEC is PSPACE-complete even for bi-
partite directed graphs.

Proof. Inclusion in PSPACE can be shown easily by considering that the height
of the game tree is bounded by 2|A|. Hence, we can determine the spe-path
in polynomial space by exploring the game tree in a DFS-way. In every node
currently under consideration we have to keep a list of decisions (i.e. neighboring
vertices in the graph) still remaining to be explored and the cost of the currently
preferred subpath among all the options starting in this node that were already
explored. By the DFS-processing there are at most 2|A| nodes on the path from
the root to the current node for which this information has to be kept.

We provide a simple reduction from Vertex Geography, which is known
to be PSPACE-complete for planar bipartite directed graphs where the in-degree
and the out-degree of a vertex is bounded by two and the degree is bounded
by three (Lichtenstein and Sipser (1980)). For a given instance of Vertex Ge-

ography we construct an instance of Shortest Path Game, such that the
spe-path decides the winner of Vertex Geography: Given the planar bipartite
directed graph G = (V,A) of Vertex Geography with starting vertex s, we
can two-color the vertices of V because G is bipartite. For the two-coloring, we
use the colors red and green and color the vertices such that s is a green vertex.
We create a new graph H for Shortest Path Game DEC as follows: First
we assign a cost ε to every arc e ∈ E. Then we introduce a new vertex t which
we color red, and an arc of weight M � 0 from each green vertex to t. Next,
introduce a green vertex z and an arc of weight M � 0 from each red vertex
to z. Finally, introduce an arc of cost ε from z to t. The constants CA and CB

are set to CA = 2 ε and CB =M . This means that a “yes”-instance corresponds
to player A winning Vertex Geography. It is not hard to see that H is a
bipartite directed graph. Note that since the constructed graph is bipartite the
rule of Vertex Geography saying that each arc can be used at most once is
equivalent to (R2) in Shortest Path Game.

Whenever a player gets stuck in a vertex playing Vertex Geography, it
would be possible to continue the path inH towards t (possibly via z) by choosing
the arc of costM . On the other hand, both players will avoid to use such a costly
arc as long as possible and only one such arc will be chosen. Thus, the spe-path
for Shortest Path Game will incur ≤ 2 ε cost to one player and exactly
cost M to the other player, who is thereby identified as the loser of Vertex

Geography. This follows from the fact that if both players follow the spe-path,
they can anticipate the loser. If it is A, then this player will immediately go from
s to t. If it is player B, then A will choose an arc with cost ε, then B will go to
z paying M , and A from z to t at cost ε. �
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Note that the result of Theorem 1 also follows from Theorem 3 be replacing
each edge in the undirected graph by two directed arcs. However, we believe that
the connection to Geography established in the above proof is interesting in
its own right.

2.2 Directed Acyclic Graphs

If the underlying graph G is acyclic we can devise a strongly polynomial time
dynamic programming algorithm. It is related to a dynamic programming scheme
for the longest path problem in acyclic directed graphs. For each vertex v ∈ V
we define S(v) := {u | (v, u) ∈ A} as the set of successors of v. Then we define
the following two dynamic programming arrays for each vertex v:
d1(v): minimal cost to go from v to t for the player deciding at v.

d2(v): minimal cost to go from v to t for the player not deciding at v.
The two arrays are initialized as follows:

d1(t) = d2(t) = 0, d1(v) = d2(v) =∞ for all v ∈ V, v �= t.

Algorithm 1. Optimal strategies of the shortest path game on acyclic graphs
1: repeat
2: find v ∈ V with d1(v) = ∞ such that d1(u) �= ∞ for all u ∈ S(v)
3: let u′ := argmin{c(v, u) + d2(u) | u ∈ S(v)}
4: d1(v) := c(v, u′) + d2(u

′)
5: d2(v) := d1(u

′)
6: until d1(s) �= ∞

Starting from the destination vertex t and moving backwards in the graph we
iteratively compute the values of di(v). Note that each such entry is computed
only once and never updated later. In each iteration of the repeat-loop one entry
d1(v) is reduced from ∞ for some vertex v ∈ V . Thus the algorithm terminates
after |V | − 1 iterations, but we have to show that in each iteration a vertex v
is found in line 2. Assume otherwise: If no vertex v remains with d1(v) = ∞,
then also d1(s) �=∞ and we would have stopped the algorithm before. If for all
vertices v ∈ V with d1(v) = ∞ there exists a vertex u ∈ S(v) with d1(u) = ∞,
then we could apply the same argument to u. Thus, also u has a successor us
with d1(us) =∞. Iterating this argument we can build a path from v to u and
to us and so on. By construction, this path never ends, because otherwise the
last vertex of the path would fulfill the conditions of line 2. But this means that
the path is a cycle in contradiction to the assumption that G is acyclic. Taking a
closer look at the running time details we can state with same additional effort:

Theorem 2. The spe-path of Shortest Path Game on acyclic directed graphs
can be computed in O(|A|) time.
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3 Spe-Paths for Shortest Path Game on Undirected
Graphs

We will provide a reduction from Quantified 3-Sat which is known to be
PSPACE-complete (Stockmeyer and Meyer (1973)).

Definition (Quantified 3-Sat):

GIVEN: Set X = {x1, . . . , xn} of variables and a quantified Boolean
formula F = (∃x1)(∀x2)(∃x3) . . . (∀xn)φ(x1, . . . , xn) where φ is a propo-
sitional formula over X in 3-CNF (i.e., in conjunctive normal form with
exactly three literals per clause).
QUESTION: Is F true?

Let C1, . . . , Cm denote the clauses that make up φ, i.e., φ(x1, . . . , xn) = C1∧C2∧
. . . Cm, where each Ci, 1 ≤ i ≤ m, contains exactly three literals. Quantified

3-Sat can be interpreted as the following game (cf. Fraenkel and Goldschmidt
(1987)): There are two players (the existential- and the universal-player) mov-
ing alternately, starting with the existential-player. The i-th move consists of
assigning a truth value (“true” or “false”) to variable xi. After n moves, the
existential-player wins if and only if the produced assignment makes φ true.

3.1 PSPACE-completeness

The following result shows a notable difference between Shortest Path Game

and Geography, since Fraenkel et al. (1993) showed that Geography is poly-
nomially solvable on undirected bipartite graphs (while PSPACE-complete on
general undirected graphs).

Theorem 3. Shortest Path Game DEC on undirected graphs is PSPACE-
complete, even for bipartite graphs.

Proof. Inclusion in PSPACE follows from a similar argument as in the proof of
Theorem 1. Given an instance Q of Quantified 3-Sat we construct an instance
S of Shortest Path Game by creating an undirected graph G = (V,E) as
follows. The vertices are 2-colored (using the colors red and green) to show that
G is bipartite. To construct G, we introduce (see the figure below):

– green vertices d, p, r, red vertices w, q, t
– edges {p, q}, {r, t}, {w, d} and {d, t}
– for each clause Cj , a green vertex cj
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– for each even i, 2 ≤ i ≤ n, an “octagon”, i.e.,

• red vertices vi,0, vi,2, vi,4, vi,6
• green vertices vi,1, vi,3, vi,5, vi,7
• edges {vi,�, vi,�+1}, 0 ≤ � ≤ 6, and edge {vi,7, vi,0}

– for each odd i, 1 ≤ i ≤ n, a “hexagon”, i.e.,

• green vertices vi,0, vi,2, vi,4
• red vertices vi,1, vi,3, vi,5
• edges {vi,�, vi,�+1}, 0 ≤ � ≤ 4, and edge {vi,5, vi,0}

In order to connect these parts, we introduce:

– for each even i, 2 ≤ i ≤ n
• a green vertex ui
• edges {vi−1,3, ui}, {ui, vi,0} and the edges {vi,2, r}, {vi,6, r}
• edge {vi,4, vi+1,0}, where vn+1,0 := p

• for each clause Cj , the edge {vi,2, cj} if xi ∈ Cj and {vi,6, cj} if x̄i ∈ Cj

– for each odd i, 1 ≤ i ≤ n
• the edges {vi,1, r}, {vi,5, r}
• for each clause Cj , the edge {vi,1, cj} if xi ∈ Cj and {vi,5, cj} if x̄i ∈ Cj

– for each j, 1 ≤ j ≤ m,

• edges {q, cj} and {w, cj}

Abusing notation, for 1 ≤ i ≤ n, let xi := {vi,0, vi,1}, and x̄i := {vi,0, vi,5} if i
is odd resp. x̄i := {vi,0, vi,7} if i is even. I.e., we identify a literal with an edge of
the some label. For illustration, in the figure below we assume C1 = (x̄1∨x̄2∨x3)
and C2 = (x̄1 ∨ x̄3 ∨ x̄n).

Finally, we define the edge costs.2 We start with the edges emanating from
vertex w: The cost of edge {w, d} is c{w, d} = 0, all other edges emanating
from w have cost 3. The edge {r, t} has cost c({r, t}) = 0, while each other edge
emanating from r has cost 1.5. The edge {vn,4, p} has cost c({vn,4, p}) = 0.1. For
each 1 ≤ j ≤ m, the edges emanating from vertex cj which do not correspond
to {cj , w} or {cj , q} have cost 2. The remaining edges have zero cost.

Note that from the fact that each edge connects a green with a red vertex, it
immediately follows that G is a bipartite graph. Now, in S the players A,B try
to find a path from s to t in the graph G, each one aiming at minimizing her
own total cost.

Claim. Q is a “yes”-instance of Quantified 3-Sat⇔ Instance S of Shortest
Path Game ends with A having to carry zero cost.

Proof of Claim. omitted.

2 In the introduction edge costs were defined to be strictly positive. For simplicity we
use zero costs in this proof, but these could be easily replaced by some small ε > 0.
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4 Shortest Path Game on Undirected Cactus Graphs

In this section we will show that a cactus graph still allows a polynomial solution
of Shortest Path Game. This is mainly due to a decomposition structure
which allows to solve components of the graph to optimality independently from
the solution in the remaining graph.

A cactus graph is a graph where each edge is contained in at most one simple
cycle. Equivalently, any two simple cycles have at most one vertex in common.
Considering Shortest Path Game, it is easy to see that the union of all simple
paths from s to t constitutes a unique sequence of edges (which are bridges of
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Fig. 1. Graph G with connection strip G′ (in black) and branches G \G′ (in red)

the graph) and simple cycles which defines a subgraph G′, i.e. the connection
strip between s and t. All other vertices of the graph are “dead end streets”, i.e.
edges and cycles branching off from G′ (see Figure 1). In the spe-path vertices
in G \ G′ could be included only to change the role of the decision maker in
a vertex of G′. Clearly, any such deviation from G′ must be a cycle rooted in
some vertex of G′. Moreover, by (R2) only cycles (not necessarily simple) of odd
length might be traversed in this way. This structural property gives rise to a
preprocessing step where all vertices in G \G′ are contracted into a swap option
in a vertex v ∈ G′ with cost (swd(v), swf (v)) meaning that if the path of the
two players reaches a certain vertex v ∈ G′, the current decider has the option
to switch roles (by entering an odd cycle in G \G′ rooted in v) at cost of swd(v)
for himself (the decider) and swf (v) for the other player (the follower).

Our algorithm will first compute these swap costs by recursively traversing
the components of G\G′ in Section 4.1. Then, in the second step, the spe-path in
G′ is computed by moving backwards from t towards s in Section 4.2. Because
of the space restriction, we will only describe the contraction of branches in
algorithmic detail to give the reader a flavor of the required computation. The
main part of the algorithm is sketched only briefly. Its details are quite involved
and follow in some sense the technique described in Section 4.1.

4.1 Contraction of the Branches

Consider a cycle C(v0) which is connected to the remaining graph only via v0 and
all other vertices of C(v0) have degree 2, i.e. all other edges and cycles incident to
these vertices were contracted into swap options before. For simplicity of notation
we refer to vertices by their index number and assume that C(v0) = C(0) consists
of a sequence of vertices 0, 1, 2, . . . , k − 1, k, 0.

There are four possibilities how to use the cycle for a swap: The players could
enter the cycle by the edge (0, 1) and go around the full length of the cycle
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(possibly using additional swaps in vertices of the cycle) (see left figure below).
Or after edge (0, 1) the players could move up to some vertex � ∈ {1, 2, . . . , k},
turn around by utilizing a swap option in � and go back to 0 (see right figure
below). In the latter case, the players can not use any additional swaps in vertices
1, . . . , � − 1 (resp. k, k − 1, . . . , � + 1) since in that case the swap vertex would
be visited three times in violation of (R2). Thus, we have to distinguish in each
vertex whether such a turn around is still possible or whether it is ruled but by
a swap in a previously visited vertex of the cycle.
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These two configurations can also be used in a laterally reversed way moving
on the cycle in the different direction starting with the edge (0, k) which yields
four cases in total.

Let D ∈ {A,B} be the decision maker in 0. We use a generic notation for
dynamic programming arrays, where d±P (i) denotes the cost of a certain path
starting in vertex i and ending in a fixed specified vertex, with subscript P ∈
{d, f}, where P = d signifies that the cost occurs for the player deciding in i
and P = f refers to the cost of the follower. Superscript ± ∈ {+,−} shows that
the decider in i is equal to D if ± = +, or whether the other player decides in i,
i.e. ± = −. We use cost � if a path is infeasible.

Following this system we use:
tc±P (i) : minimal cost to move from i back to 0, if a turn around is still possible.
rc±P (i) : minimal cost to move from i back to 0, if no turn around is possible and
the path has to go around the cycle, i.e. visit vertices i + 1, i+ 2, . . . , k, 0, with
possible swaps on the way. If one player decides to turn around at some vertex
i, the cost of the path back towards vertex 0 is completely determined since no
choices remain open. The corresponding costs are independent from D and will
be recorded as pathP (i) in analogy to above.

Now we can state the appropriate update recursion for the case where D
chooses (0, 1) as a first edge. We go backwards along this path and settle the
minimal costs for vertices k, k− 1, . . . , 1. The case where D moves into the other
direction of the cycle is completely analogous and the final swap costs sw(v0)
are given by the cheaper alternative.

The decision tree in any vertex i is depicted in Figure 2.

1. move on along the cycle to vertex i + 1:
rc+d (i) := c(i, i+ 1) + rc−f (i+ 1), rc+f (i) = rc−d (i+ 1)

rc−d (k) := c(i, i+ 1) + rc+f (i+ 1), rc−f (i) = rc+d (i+ 1)
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player A

A moves to i+ 1 swap in i

player BCase 1.

B moves to i+ 1 B turns and

returns to 0

Case 2b.

Case 2a.

Fig. 2. Decision tree for player A deciding in vertex i

tc+d (i) := c(i, i+ 1) + tc−f (i+ 1), tc+f (i) = tc−d (i+ 1)

tc−d (k) := c(i, i+ 1) + tc+f (i + 1), tc−f (i) = tc+d (i+ 1)
2. make a swap (if available): Then the other player has (at most) two possi-

bilities and chooses the one with the lower cost between 2a. and 2b. (or the
only feasible choice), which implies the cost for the decider in i.

2a. move on to vertex i+ 1:
rc+f (i) = swf (i) + c(i, i+ 1) + rc+f (i+ 1), rc+d (i) := swd(i) + rc+d (i+ 1)

rc−f (i) = swf (i) + c(i, i+ 1) + rc−f (i + 1), rc−d (i) := swd(i) + rc−d (i + 1)

tc+f (i) := swf (i) + c(i, i+ 1) + rc+f (i+ 1), tc+d (i) := swd(i) + rc+d (i + 1)

tc−f (i) := swf (i) + c(i, i+ 1) + rc−f (i+ 1), tc−d (i) := swd(i) + rc−d (i+ 1).
2b. turn around (if possible): Since the decider at the end of the return path in

vertex 0 must be different from D, the feasibility of a turn around depends
on the number of edges between 0 and i.
If i is even:
tc+d (i) := swd(i) + pathf (i), tc

+
f (i) := swf (i) + pathd(i)

tc−d (i) := �, tc
−
f (i) := �

If i is odd:
tc+d (i) := �, tc

+
f (i) := �

tc−d (i) := swd(i) + pathf (i), tc
−
f (i) := swf (i) + pathd(i)

Now the decider in vertex i can anticipate the potential decision of the other
player in case 2., since the other player will choose the better outcome between
cases 2a. and 2b. Hence, the decision maker in vertex i chooses the minimum
between case 1. and case 2. independently for all four dynamic programming
entries. This immediately implies the cost for the other player.

It remains to discuss the initialization of the arrays for i = k, i.e. the last
vertex in the cycle and thus the first vertex considered in the recursion. To avoid
the repetition of all three cases implied by a possible swap at vertex k, we add two
artificial vertices k+1 and k+2 and three artificial edges (k, k+1), (k+1, k+2)
and (k+2, 0) replacing the previous edge (k, 0). We set c(k, k+1) = c(k, 0) and
the other two artificial edges have cost 0. It is easy to see that this extension of
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the cycle does not change anything. Now we can start the recursive computation
at vertex k + 2 which has no swap option. We get:
rc+d (k + 2) := c(k + 2, 0), rc+f (k + 2) = 0, rc−d (k + 2) := �, rc−f (k + 2) = �

tc+d (k + 2) := c(k + 2, 0), tc+f (k + 2) = 0, tc−d (k + 2) := �, tc−f (k + 2) = �

4.2 Main Part of the Algorithm

In the main part of the algorithm we determine the spe-path from s to t along the
connection strip G′ after contracting the reminder of the graph into swap options
in G′. We traverse the connection strip backwards starting in t and moving up
towards s. In the following we will focus on the computation of a spe-path for
one cycle of this sequence. Each such cycle has two designated vertices which all
paths from s to t have to traverse, an “upper vertex” v0 through which every
path starting in s enters the cycle, and a “lower vertex” v� through which all
paths connecting the cycle with t have to leave the cycle.

If the decider in 0 takes the edge (0, 1) there are two main possibilities for
the path from 0 to � (the alternative case starting with edge (0, k) is completely
symmetric and the decider will finally take the better of the two options).

Case (i): The two players may move along the vertices 0, 1, . . . , �, possibly
with a few swaps on the way. After reaching �, they may either exit the cycle
or continue to � + 1, . . . , x, make a forward swap in x and return back via x −
1, x−2, . . . back to � and finally exit the cycle (see left figure below). As a special
variant, they players may also never swap in some vertex x but go back to 0 thus
traversing the full cycle and then taking the path 0, 1, . . . , � a second time.

Case (ii): As a second, more complicated possibility, the two players may also
move along vertices 0, 1, . . . , j, j < �, and then utilize a swap in j and return to
0. Then they are forced to move on from 0 to k, k−1, . . . , �. After reaching � they
may either exit the cycle directly or they may also continue to �− 1, �− 2, . . . , y
with y > j, make a backward swap in y and return via y + 1, . . . , � where they
finally exit the cycle (see right figure below).
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To determine the spe-path in G′ we move backwards through the cycle starting
with the decision in v� and going back up to v0. In each vertex j we consider the
possibilities of moving on to j +1 or taking a swap and anticipating the further
moves of the other player. To do so, the cost of potential paths from j to v�
after a swap have to be computed beforehand in auxiliary arrays in the spirit of
Section 4.1. In Case (ii) this turns out to be fairly complicated since the costs of
the path from the current vertex j back up to v0 and on to k, k−1, etc., downto
v� with a possible backward swap have to be taken into account. Note that the
turning point y of a backward swap is limited by j. Thus, we have to compute
the cost of a backward swap for all bounds j.

In the initialization of all paths leading to v� we also have to take the spe-path
from v� to t into account which was computed before. The correct combination of
solutions of two adjacent cycles contains another subtle detail, since the joining
vertex v� of the upper cycle can be traversed at most twice and thus only certain
combinations are feasible.

While the main procedure can be done in linear time over all vertices of a
cycle, the auxiliary array to compute the backward swap would be quadratic
in a straightforward implementation. However, we can do better by utilizing an
advanced data structure and thus reach the following statement:

Theorem 4. The spe-path of Shortest Path Game on undirected cactus
graphs can be computed in O(n log n) time.
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Abstract. We consider the online scheduling of unit length jobs with
two models of commitment. In immediate notification, the acceptance of
a job must be decided as soon as it is released. In immediate decision, the
actual time slot allocated to the job must also be fixed at the job’s arrival
as well. Failure to honour a commitment will result in a penalty. The non-
commitment version has been extensively studied. In this paper we give
algorithms and lower bounds for the two models of commitment. For
immediate decision, we give an O(m(1 + ρ)1/m)-competitive algorithm
where m is the number of machines and ρ is the penalty factor, and
when m is large we give an O(log(1 + ρ)) upper bound. This is matched
by a lower bound of Ω(log ρ) on the competitive ratio. For immediate
notification we give a lower bound of Ω(log ρ/ log log ρ). We also give
some better bounds when m = 1 or when ρ is small. Finally we give
considerations to the case of separate arrival and start times.

1 Introduction

The Model. The basic setting of our problem is as follows: there is a set of jobs,
where each job j is specified by a triple (r(j), d(j), w(j)) representing its release
time, deadline and weight respectively. Each job has length 1 and all release
times and deadlines are integers; also, time is discrete and is divided into time
slots of unit length. A slot is defined as a tuple (i, t) which is a combination of a
machine i and a time step [t, t+ 1). Thus, each job will fit into a slot and there
will be no interruption while a job is being executed.

Jobs arrive online, so a job is only known to the algorithm upon its release
time, at which point all information about the job is known. All jobs arriving at
the same time step is known to the algorithm at the same time. The objective of
the algorithm is to schedule these jobs onm identical machines so as to maximize
the profit, i.e. the total weight of jobs completed before their deadlines. This is
known as the unit job scheduling problem in the literature.

As the algorithms are online, they do not have knowledge of future information
and have to make scheduling decisions based on what is known. This inevitably
leads to suboptimal algorithms, and the standard way to analyze such online
algorithms is competitive analysis. An algorithm (for a maximization problem)
is R-competitive if the value returned by the algorithm is always at least 1/R
times the value returned by an offline optimal algorithm, for any input instance.

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 54–65, 2014.
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In this paper we will use OPT to denote the offline optimal algorithm, and ONL
to denote the online algorithm in question. Also, we use OPT (i, t) to denote the
job scheduled by OPT at slot (i, t); similar definition holds for ONL(i, t).

In the above setting, whether a job will be completed on time is only known
until its deadline is reached. The algorithm is not required to announce upfront
whether it intends to complete the job. In many application areas where customer
service is crucial, it is important to let the customers (users supplying the jobs)
know as early as possible whether (or when) the job will be completed. Ideally
this should be made known immediately, at the same time the job is presented;
if the job is rejected the customer can then find another company to fulfill the
job, and not be left in a situation where he/she only finds out that the job is
not completed at the last minute (and therefore is too late to do anything about
it). Such ‘commitment’ in job scheduling can be modelled in a number of ways,
two of which we consider in this paper:

Immediate Notification (IMM NOTIF): When a job is released, the algo-
rithm has to decide immediately whether to accept the job. An accepted job
must be completed before its deadline. A job not accepted is gone forever.
This model was introduced in [14].

Immediate Decision (IMM DEC): In addition to IMM NOTIF, here
the exact time to execute an accepted job, and also the machine to exe-
cute the job (if there are more than one machine) must also be announced
at the same time that the job is accepted, and this cannot be changed later.
This model was introduced in [9].

While it would be ideal to always keep to one’s commitments, unfortunately
it is not uncommon for (for example) online shopping or delivery companies to
delay or miss orders altogether. In our model, an accepted job can be evicted1

later, but such eviction incurs a penalty that is proportional to the weight of
the job evicted. This is in addition to losing the weight of the job. A job once
evicted is gone and will not come back. In the case of IMM DEC, reallocating
an accepted job to a different slot is not allowed, even after paying penalties,
so the job is gone forever. The objective of the algorithm is then to maximize
the total weight of all completed jobs, minus the sum of all penalties incurred.
Observe that OPT does not pay penalties as clearly it can decide in advance
whether to accept a job and when to schedule it, and to announce it upfront,
without damaging its profit.

We use ρ to denote the penalty factor, where ρ ≥ 0, and the penalty of evicting
a job j of weight w(j) is then equal to ρw(j). There are several motivations of
studying such a penalty model. Incorporating a penalty factor allows us to study
quantitatively the cost of breaking a commitment. It may be tempting to suggest
that ρ should be at most 1, so that the penalty is at most the value of the job, and
it may well be true in practice. While we do study small ρ values, we also allow ρ

1 We use the term ‘eviction’ rather than ‘preemption’ to distinguish with the case
where a job is interrupted in the middle of its execution (which will not happen in
our setting.)
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to grow arbitrarily large and then study how the competitive ratio depends on ρ;
this is because when ρ→∞ it models the situation when eviction is not allowed,
which was the case in earlier works. A finite but large ρ models an intermediate
situation where it is very costly but not impossible to break a commitment. This
penalty model also allows the study of scheduling weighted jobs, to model the
different importance of jobs; in nonpreemptive models like [8] allowing weighted
jobs would lead to trivial bad results.

The idea of giving penalties for not processing jobs is not new; for example
there are a lot of work on scheduling with rejection (see e.g. [19] for a survey).
Also, there are many works in management science and operations research
concerning quoted lead time, i.e. it is the supplier, on receiving a demand, who
quote a time when the order will be met, and typically the profit received is
a non-increasing function of this quoted lead time; see e.g. [16]. Most of these
were not studied with competitive analysis, but [17] studied a model where the
profit decreases by a fixed amount per unit of added time (this is the penalty)
but commitment is not breakable (called 100% reliable).

The need of immediate commitment and revocation penalties can also be
found in mechanism design in auctions. In [6] an auction problem for unit sized
time slots is considered. The auction must be truthful, i.e. players are incentivized
to bid their true values. Existing algorithms for unit job scheduling [18] already
satisfy this property, but [6] considered an additional requirement of promptness,
which can be guaranteed by restricting the algorithm to allocate a job to a
fixed time slot on its arrival and not change afterwards (although the job can
be removed later); it is therefore identical to the immediate decision problem
(although there is no penalty so ρ = 0.)

Additionally, banner advertisement auctions were studied in [1] and [7] where
request acceptance decisions must be made immediately but it is possible to
‘buy back’ or ‘bump’ an accepted request by paying a penalty; the papers ex-
plained the motivations for the need for immediate commitment and penalties.
In Section 4 we discuss in more detail how this relates to our problem with a
separation of arrival and starting times.

Previous Results. The online scheduling of unit length jobs (without any com-
mitment or penalty) has been a very active area of scheduling research in the
past ten years or so. It originated from a problem in buffer management [18]
but it soon attracted a lot more attention. We refer readers to the survey [13]
for a comprehensive literature review of the area. Here we list only the latest
results. For a single machine, the current best deterministic algorithm is 1.828-
competitive [11], and the lower bound is 1.618 [15,5,20]. The randomized upper
and lower bounds are respectively 1.582 and 1.25 [4,5]. For multiple machines
the upper and lower bounds are (1− ( m

m+1 )
m)−1 and 1.25 respectively [4].

This unit job scheduling problem with IMM DEC or IMM NOTIF has not
been studied before, but there are other existing work on scheduling with com-
mitment (but not penalty), where a committed job must always be completed.
Goldwasser and Kerbikov [14] considered IMM NOTIF where jobs have unequal
lengths and the objective is to maximize the total length of completed jobs.
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They showed that in many cases there are algorithms with competitive ratios
that are not worse than their non-commitment counterparts. Ding et al. [8] con-
sidered IMM DEC with equal length (but non-unit length) and unweighted jobs
(i.e. the objective is to maximize the number of completed jobs), and gave an
algorithm with a competitive ratio that tends to e/(e − 1) ≈ 1.58 when m is
large. A e/(e − 1) lower bound (again for large m) from [10] shows that this
algorithm is optimal; in fact the lower bound holds even for unit length jobs. In
[2] an immediate dispatch model was proposed, in which the machine allocated
for an accepted job must be announced upfront but the machine is free to move
these jobs around. In [3] an online scheduling problem with commitment (IMM
NOTIF) was studied where the penalty is equal to the length of the unfinished
part of the job, with application in the charging of electric vehicles.

Allowing a penalty factor with commitment was considered in [12], where
it studied longer (non-unit length) jobs and also addressed a related problem
of preemption penalty. They considered two cases where (i) jobs have different
lengths but their values are proportional to their lengths, or (ii) jobs have equal
lengths but arbitrary weights. Several algorithms with competitive ratios de-
pending on the penalty factor ρ were given. As already mentioned, commitment
with penalty also arises in auctions; [1] and [7] gave algorithms but the items to
be auctioned do not spread over a time period (even though the requests do.)

Our Results. In this paper we consider a setting similar to [12] but with unit
length jobs. This may look like a simpler problem, but it allows us to remove any
consideration of interruption due to job arrival in the middle of job execution
and thus study purely the effect of commitment on the scheduling algorithms’
performance. As we will shortly see, this allows sublinear (in ρ) competitive
ratios which have not yet been achieved in the longer job case.

For IMM DEC we give an upper bound of O(m(1 + ρ)1/m), and a lower
bound of Ω(log ρ) (that applies to any number of machines). Note that when
m = Θ(log ρ) the bounds asymptotically match. When m > log ρ we modify
the algorithm so that the competitive ratio remains O(log ρ). In the case of one
machine we give Θ(ρ) bounds. For IMM NOTIF, we give an Ω(log ρ/ log log ρ)
lower bound on the competitive ratio for any number of machines. For small
values of ρ and for a single machine, we give another lower bound. Table 1
summarizes the results. Finally we tighten the bound for IMM NOTIF if arrival
times and starting times are separate. Because of space constraints some proofs
are omitted.

2 Immediate Decision

2.1 Upper Bound

The algorithm maintains a provisional schedule S to record which slot a pending
job is scheduled to be executed. Each time a job is accepted, it will be provi-
sionally assigned a slot in S. For each machine i and time step t on or after the
current time, S(i, t) denotes the job that is provisionally assigned to slot (i, t)
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Table 1. Some typical values of the upper bounds (UB) and lower bounds (LB) on
the competitive ratios

m 1 large

ρ 0 0.1 0.2 0.5 1 1.5 2 large large

IMM DEC UB 2 3.727 4.760 6 8 10 12 O(ρ) O(log ρ)

IMM DEC LB 2 2 2 2 2 2.5 3 Ω(ρ) Ω(log ρ)

IMM NOTIF UB 2 3.117 3.727 5.236 7.464 9.583 11.657 O(ρ) O(log ρ)

IMM NOTIF LB 1.618 1.691 1.766 2 2 2 2 Ω(log ρ/ log log ρ)

in S. If no job is assigned to a slot, we imagine that a null job with weight 0 is
assigned there.

A simple algorithm would be to accept a job j if it is ‘sufficiently heavy’:

Algorithm 1. Let β = 2(1 + ρ) if ρ > (
√
2 − 1)/2, and β = 1 + ρ +

√
ρ2 + ρ

otherwise. At every time step t, the algorithm runs an admission procedure
to update S, and then simply executes the jobs S(i, t), 1 ≤ i ≤ m. The
admission procedure considers each new job j arriving in that time step in
turn (the order in which they are considered does not matter). It finds the
slot (i, u) before d(j) with the minimum w(S(i, u)). Let k be the job in this
slot, i.e., k = S(i, u). If w(j) > βw(k), accept j in slot (i, u) and k is evicted.
As this is IMM DEC, k is lost. Otherwise j is rejected.

Theorem 1. Algorithm 1 is min(4(1 + ρ), 4ρ + 2 + 4
√
ρ2 + ρ)-competitive for

any m.

The competitive ratio of Algorithm 1 grows linearly with ρ. In fact we can
give a better algorithm if m > 1. The key idea is to make sure that for all jobs
committed to the same time step, their weights should differ ‘substantially.’

Algorithm 2. Let β = (2ρ+2)1/m. For each t, let S′(i, t), 1 ≤ i ≤ m, be the jobs
of S(i, t) sorted in decreasing order of job weights, i.e., S′(i, t) denotes the i-th
largest-weight job scheduled to run at time step t in the current provisional
schedule. (As already noted, if there are fewer than m such jobs, we assume
the provisional schedule is filled with weight-0 jobs.) The algorithmmaintains
the property that w(S′(i, t)) ≥ βw(S′(i+ 1, t)) for all i and t.

Only the admission procedure is changed from Algorithm 1. For each
new job j arriving at this time step t (again the order is not important),
the algorithm tries to find a time u ≥ t such that u < d(j) and w(j) ≥
βw(S′(1, u)), i.e., j is heavy enough relative to the heaviest job committed
to time u. If there are more than one such u, choose anyone. Evict the
lightest job at that time step, S′(m,u), replacing it with j. The job S′(m,u)
is called the job evicted by j. As this is IMM DEC, this evicted job is lost
forever and will not be considered again. If no such u exists, reject j. Note
that after the eviction, j becomes the new S′(1, u), the old S′(1, u) becomes
the new S′(2, u) and so on. This is only for notational convenience; the
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jobs stay at the same machines and do not actually move. The property
w(S′(i, u)) ≥ βw(S′(i+ 1, u)) is maintained.

Theorem 2. Algorithm 2 is O(m(1 + ρ)1/m)-competitive.

Proof. For brevity, let xi(t) = w(OPT (i, t)) and yi(t) = w(S′(i, t)) at the end
of the execution. Note that at the end of the execution, S is actually the final
schedule and so yi(t) represents w(ONL(i, t)) but in sorted order of weights.

We map each job OPT (i, t) to a time step of ONL. If OPT (i, t) is completed
in ONL as well, we map it to the time step at which it appears in ONL.
Otherwise, it is either rejected immediately or is evicted later on. If it is rejected
on its arrival, then at the time of its arrival, S′(1, t) must be a job with weight
larger than xi(t)/β. Furthermore, observe that for any slot, the weight of the
job in it can only increase during the course of execution of the algorithm. Thus,
y1(t) must also be at least xi(t)/β. We map OPT (i, t) to time step t. Finally, if
OPT (i, t) is evicted in ONL, we associate it with the job that evicts it. If this
job is in turn evicted later, the association is transferred to the new evicting job.
Thus each evicted job is associated with, possibly via a chain of evictions, a job
completed by ONL. Job OPT (i, t) is then mapped to the time step where it is
executed in ONL.

Consider a time step t. We bound the total weight of jobs mapped to t. All the
OPT (i, t) may be rejected byONL and thus mapped to t. All theONL(i, t) may
be completed by OPT and will be mapped here. Moreover all jobs transitively
evicted by ONL(i, t) may also be mapped here. Note that whenever a job j1
evicts another job j2, it must be that w(j1) ≥ βmw(j2) because this j2 must be
the lightest job S′(m,u) in its time step u and w(j1) ≥ βw(S′(1, u)) ≥ . . . ≥
βmw(S′(m,u)). Thus, the total weight of evicted jobs associated with a job of
weight yi(t) is at most yi(t)/β

m + yi(t)/β
2m + · · · < yi(t)/(β

m − 1). These jobs
are all mapped to t. No other jobs are mapped to t. At time t, ONL gets a
profit of

∑m
i=1 yi(t), but as each of the jobs may have evicted a chain of other

jobs, there is a penalty of at most ρyi(t)(1/β
m+1/β2m+ . . .) < ρyi(t)/(β

m− 1)
associated with a job with weight yi(t). The ratio of mapped OPT job weights
to ONL job weights, minus penalties, in this time step is therefore at most∑m

i=1 xi(t) +
∑m

i=1 yi(t) +
∑m

i=1
yi(t)
βm−1∑m

i=1 yi(t)−
∑m

i=1
yi(t)ρ
βm−1

≤
mβy1(t) +

∑m
i=1 yi(t)

βm

βm−1∑m
i=1 yi(t)(1 −

ρ
βm−1 )

≤ m(β(βm − 1) + βm)y1(t)

y1(t)(βm − 1− ρ) =
m((2ρ+ 2)1/m(2ρ+ 1) + 2ρ+ 2)

ρ+ 1

< 2m(2ρ+ 2)1/m + 2m

where we used the fact that 0 ≤ yi(t) ≤ y1(t). �

Observe that the competitive ratio O(m(1 + ρ)1/m) decreases with increasing
m, from O(ρ) when m = 1, to O(log(1 + ρ)) when m = ln(2 + 2ρ) (noting that
x1/ ln x = e for any x). But the competitive ratio then increases with increasingm.
This is due to the fact that the algorithm effectively uses only one slot ‘seriously’
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in each time step. In fact, for example, if m jobs of the same weight and of tight
deadline2 arrives, the algorithm will only schedule one of them, which clearly
makes it not better than m-competitive.

For large m, we can modify the algorithm to retain the O(log(1+ρ)) compet-
itive ratio. For convenience, assume m′ = ln(2 + 2ρ) is an integer and that m is
a multiple of m′. We partition the m machines into m/m′ bands, each with m′

machines. Each band then effectively runs the algorithm indpendently. Within
each band, the machines maintain a provisional schedule with the property that
w(S′(i, t)) ≥ βw(S′(i+1, t)) for all i and t, where β = (2ρ+2)1/m

′
. When a new

job j arrives, it tries to get accepted by testing if w(j) ≥ βw(S′(1, u)) for some
u and some band, and evict S′(m′, u) if so. Job j is only rejected if it cannot
be accepted in any band. (If more than one band can accept the job, choose
anyone.)

Theorem 3. The modified Algorithm 2 is O(log(1 + ρ))-competitive.

Proof. Suppose the bands are numbered 1, 2, . . . and yzi (t) denotes w(S′(i, t))
for band z. The scheme that we use to map jobs in OPT to time steps in ONL
remain the same as in Theorem 2. In this case, if the job OPT (i, t) is rejected
on arrival, then for each band, S′(1, t) must contain a job of weight larger than
xi(t)/β. We group every m′ such jobs and associate them with a yz1(t) of a
band. Also, if a job j1 evicts another job j2 then w(j1) ≥ βm′

w(j2). Similar to
Theorem 2 the competitive ratio is then

∑m
i=1 xi(t) +

∑
z

∑m′

i=1 y
z
i (t) +

∑
z

∑m′

i=1 y
z
i (t)

βm′

βm′−1∑
z

∑m′
i=1 y

z
i (t)(1 −

ρ

βm′−1
)

≤
m′∑

z βy
z
1(t) +

∑
zm

′yz1(t)
βm′

βm′−1∑
z y

z
1(t)(1 − ρ

βm′−1
)

=
m′(β(βm′ − 1) + βm′

)

(βm′ − 1− ρ)

=
m′((2ρ+ 2)1/m

′
(2ρ+ 1) + 2ρ+ 2)

ρ+ 1
< m′(2(2ρ+ 2)1/m

′
+ 2)

which is O(log(1 + ρ)) as (2ρ+ 2)1/m
′
= (2ρ+ 2)1/ ln(2ρ+2) = e. �

2.2 Lower Bounds

Next we prove a lower bound of Ω(log ρ) for any number of machines. The bound
only works for large ρ. For large number of machines (m = Ω(log ρ)) it follows
from Theorem 3 that the bound is optimal.

Theorem 4. Any deterministic algorithm has competitive ratio Ω(log ρ) for the
immediate decision model with m machines.

2 We call a job j tight if d(j) = r(j) + 1, i.e. it must be scheduled immediately.
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Proof. Define a sequence of integers Di as follows: D1 = D for a large D, and
Di = 2(Di+1 + 1) for i > 1. The D is chosen in such a way that D1, D2, . . . , Dj

are all integers for some sufficiently large j. Note that if the Di’s are large then
all Di/Di+1 are very close to (but above) 2. Moreover, observe that 2+Di+1 =
1 +Di/2 and hence (2 +Di+1)2

i−1 = (1 +Di/2)2
i−1 = (2 +Di)2

i−2 = . . . =
(2 +D2)2

0 = 1 +D1/2 for all i.
Suppose ONL is R-competitive. The adversary construction consists of a

large number of rounds. In the construction, the minimum job weight is 1 and
we will make sure the maximum job weight W is less than ρ, so that there is no
point in evicting a job to accept another job because even if we evict a minimum
weight job to accept a maximum weight one, this will still result in reduced total
profit of the schedule. Then without loss of generality we can assume that no
eviction takes place.

Let I1 = [0, 1 +D1). Round 1 begins at time t1 = 0, when m(1 +D1) jobs of
deadline 1 + D1 and weight 1 arrives. Suppose ONL accepts x1 of these jobs.
As OPT can accept all jobs, for ONL to be R-competitive it must be that
x1 ≥ m(1+D1)/R. At most m of these accepted jobs can be scheduled in [0, 1).
Each of the remaining x1−m accepted jobs is committed to either [1, 2+D2) or
[2+D2, 1+D1), both of length 1+D2. One of them is the denser interval, i.e. the
one that contains at least (x1−m)/2 accepted jobs. Let I2 = [t2, t2+D2+1) be
this denser interval, where t2 ∈ {1, 2+D2}. As ONL obeys immediate decision,
the location of I2 is known.

Then Round 2 begins at t2, when m(D2 + 1) jobs of deadline t2 + D2 + 1
and weight 2 arrives. Clearly they can only be scheduled in I2. Suppose ONL
accepts x2 of these jobs. OPT can always fill slots in I2 with weight-2 jobs,
and fill slots in I1 − I2 with weight-1 jobs. Thus, OPT can get a profit of
m(2+D2)+2m(1+D2). So in order forONL to be R-competitive, it must be that
x1+2x2 ≥ m(4+3D2)/R. There are now at least (x1−m)/2+x2−m accepted
jobs in the interval [t2+1, t2+D2+1), and we can again divide it into two halves,
with one of them being denser, i.e. containing at least half of the accepted jobs.
Let I3 = [t3, t3+D3+1) be this denser interval, with t3 ∈ {t2+1, t2+D3+2}. In
this denser interval, there are at least (x1−m)/4+(x2−m)/2 accepted jobs. We
then proceed to the next round where jobs will arrive into this denser interval.

In general, just after round i−1 finishes, ONL has accepted xj jobs of weight
2j−1, for j = 1, 2, . . . , i−1. At least (x1−m)/2i−1+(x2−m)/2i−2+ . . .+(xi−1−
m)/2 jobs are in an interval Ii = [ti, ti + Di + 1). In round i, m(Di + 1) new
jobs, each of weight 2i−1, arrives at time ti with deadline ti +Di +1. OPT can
fill all the slots in Ii with the new weight-2i−1 jobs, fill all slots in in Ii−1 − Ii
with weight-2i−2 jobs, and so on, and fill all slots in I1 − I2 with weight-1 jobs.
OPT therefore gets a profit of

m(2 +D2) +m(2 +D3)(2) + . . .+m(2 +Di)2
i−2 +m(1 +Di)2

i−1

= m((2 +D2) + 2(2 +D3) + . . .+ 2i−2(2 +Di) + 2i−1(2 +Di)− 2i−1)

= m((i+ 1)(1 +D/2)− 2i−1) (since (2 +Dj+1)2
j−1 = 1 +D/2 for any j)

> m((i+ 1)D/2− 2i−1)
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So ifONL accepts xi of these new jobs, it must be that x1+2x2+. . .+2i−1xi ≥
(m/R)((i+1)D/2−2i−1). Now, the interval [ti+1, ti+Di+1) can be partitioned
into two halves, and one of them will contain at least (x1−m)/2i+...+(xi−m)/2
accepted jobs. Let Ii+1 = [ti+1, ti+1+Di+1+1), where ti+1 ∈ {ti+1, ti+2+Di+1},
be this denser interval. Proceed to the next round.

If after some round i we have x1/2
i+x2/2

i−1+...+xi/2−m > mD/2i, i.e. x1+
2x2+ ...+2i−1xi > m(D+2i), then as mD/2i > mDi+1 and 1/2i+1/2i−1+ ...+
1/2 < 1, this would imply (x1−m)/2i+(x2−m)/2i−1+...+(xi−m)/2 > mDi+1,
which means there would not have been enough timeslots to accept all these jobs
for it to stay R-competitive, so ONL loses. We show that this must happen after
some finite number of rounds. In fact, we already have the constraints that for
all i, x1 +2x2 + ...+2i−1xi ≥ (m/R)((i+1)D/2− 2i−1), so all we need to prove
is that there exists a finite i such that (m/R)((i + 1)D/2− 2i−1) > m(D + 2i).
This inequality is true if and only if i > 2R(1 + 2i/D) + 2i/D− 1. Note that we
can choose D � 2i, so the right hand side in the expression above is at most
2R(1 + ε) + ε − 1 for some arbitrarily small ε > 0. So when i = 2R, i.e. after
2R rounds, ONL must lose. By choosing R = log ρ/2, we have W = 2i−1 =
22R−1 < ρ, so indeed W < ρ as stated. �

For one machine, the following shows that the O(ρ) upper bound in Theorem 1
is asymptotically optimal.

Theorem 5. No deterministic algorithm has a competitive ratio better than
max(ρ+ 1, 2) in the immediate decision model with one machine.

3 Immediate Notification

3.1 Upper Bound

Clearly, the algorithm for immediate decision can also be applied in the immedi-
ate notification model. Here we give a similar algorithm that utilizes the ability
to reschedule accepted jobs and give a slightly smaller competitive ratio (which
is more significant when m = 1 and ρ is small). Again we maintain a provi-
sional schedule S (even though in IMM NOTIF the algorithm is not required to
announce this information upfront), and define S′ similarly.

Algorithm 3. Let β = (2ρ + 1)1/m. We again maintain the property that
S′(i, u) ≥ βS′(i + 1, u). For each newly arriving job j arriving at time t,
run the following admission procedure:

– Step 1. Find the earliest time u, where u < d(j), such that w(S′(1, u)) ≤
w(j)/β. If no such u exists then reject j. Otherwise, remove the job
k = S′(m,u), i.e. the smallest-weight job committed to time u, accept j,
and assign the slot vacated by k to j. Note that now j becomes the new
S′(1, u). If k is a null job, the procedure finishes. Otherwise we say that
k is displaced by j, and we proceed to Step 2.
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– Step 2. Find the earliest time u such that u<d(k) and w(k)>w(S′(1, u)).
If no such u exists then k is evicted and the procedure finishes. Otherwise
remove the job k′ = S′(1, u) from S, replace it with k, and then this k′

becomes the new k and Step 2 is repeated.

Intuitively, after k is removed in Step 1, it tries to reinsert itself back into S
by following a similar procedure, except that this time β effectively becomes 1
and that we only uses S′(1, u), i.e. the heaviest jobs, not the lightest ones. At
the end of this chain of displacements, there may eventually be a job that will
not find a place in S. We call it the job evicted by j. Note that when we refer to
evicted jobs, it is the last job in a chain of displaced jobs, not the job directly
displaced by j’s insertion.

We show that this algorithm is also O(m(1 + ρ)1/m)-competitive with β =
(2ρ + 1)1/m; however for m = 1 and ρ small it gives some improvement over
Algorithm 1; see Table 1.

Theorem 6. Algorithm 3 is O(m(1 + ρ)1/m)-competitive with β = (2ρ+1)1/m.

When m = 1, the competitive ratio becomes (2ρ + 2 + 2
√
ρ2 + 2ρ) with β =

1 + ρ+
√
ρ2 + 2ρ.

In a way similar to Theorem 3 the algorithm can be modified to retain the
O(log(1 + ρ))-competitiveness when m is large.

3.2 Lower Bounds

We first consider the case of a single machine. The 1.618 lower bound in [15,5,20]
for the no-commitment, no-penalty model carries over here. The following the-
orem gives a stronger lower bound for ρ > 0.

Theorem 7. In the immediate notification model with one machine, no de-
terministic algorithm can give a competitive ratio better than min((1 + ρ +√
(1 + ρ)2 + 4)/2, 2).

The above theorem cannot give any lower bound larger than 2 even if ρ is
large. The next theorem gives a lower bound that increases with ρ. It only works
for large ρ, but it works for any number of machines.

Theorem 8. Any deterministic algorithm has competitive ratio Ω(log ρ/log log ρ)
for the immediate notification model with m machines.

4 Separate Arrival and Start Times

Finally, we consider a situation when the arrival time and the earliest allowed
start time of a job is not necessarily the same; for example, an order is placed
at a certain time but the delivery should only take place during a certain time
window that does not begin immediately. There are other situations where this
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may be useful; see e.g. [1,7] where it is even assumed that all job arrivals are
completed before execution takes place, i.e. they are separate processes.

Formally, a job is represented by a release time r(j), its earliest possible start
time s(j), its deadline d(j), and its weight w(j), where r(j) ≤ s(j) < d(j). All
of the algorithms in this paper can be straightforwardly adapted to this model
with the same competitive ratio and essentially identical proof, which we omit.
At first sight it might appear this model is easier as it gives ‘advance notice’
of jobs for the online algorithm. However, it turns out that in this model we
can prove tighter (in fact, optimal) lower bounds. The separation of arrival and
starting times allows job sequences to behave like the ‘online-list’ model (where
jobs arriving in the same time step are presented to the online algorithm one
by one, the next only after the previous has been dealt with), in contrast to
the ‘online-time’ model where all jobs arriving at the same time are presented
together. (For a discussion of these models see e.g. [19].) In the case with penalties
the online-list model is disadvantageous to the online algorithm.

In IMM NOTIF there is a gap between the upper bound O(log ρ) and the
lower bound Ω(log ρ/ log log ρ). If we separate arrival and start times however
we can close this gap by giving a matching lower bound:

Theorem 9. For the immediate mnotification model with separate arrival and
starting times, any deterministic online algorithm is Ω(log ρ)-competitive.

Note that in [1] the case where items for auction are considered. In the case
where the constraints are represented by a uniform matroid of rank m, it can be
interpreted as a special case of our scheduling problem where all jobs have the
same s(j) and d(j) = s(j)+1, all arrivals are well before s(j) and jobs arrive one
by one. The items correspond to the m slots offered by m machines in a single
time step. They give matching upper and lower bounds of 1+2ρ+2

√
ρ(1 + ρ) =

Θ(ρ) when m = 1. Our results here (Theorems 2 and 9) can be seen as results
for m > 1.
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Abstract. This article introduces the lazy matroid problem, which
captures the goal of saving time or money in certain task selection sce-
narios. We are given a budget B and a matroid M with weights on its
elements. The problem consists in finding an independent set F of mini-
mum weight. In addition, F is feasible if its augmentation with any new
element x implies that either F + x exceeds B or F + x is dependent.
Our first result is a polynomial time approximation scheme for this NP-
hard problem which generalizes a recently studied version of the lazy

bureaucrat problem. We next study the approximability of a more
general setting called lazy staff matroid. In this generalization, every
element of M has a multidimensional weight. We show that approxi-
mating this generalization is much harder than for the lazy matroid

problem since it includes the independent dominating set problem.

Keywords: approximation algorithms, matroids, independent
dominating set.

1 Introduction

Imagine that the Minister of Public Works has to select some projects to fund,
among a pool of proposed ones. She has a certain budget that she can spend on
these projects and she wants to select projects in such a way that as much money
as possible are saved (remain unused), yet not enough for any left-out project.
This is in fact a ‘reincarnation’ of the Lazy Bureaucrat Problem [1–5] in
which a lazy worker wants to select a set of tasks of minimum total duration in
such a way that his remaining working time does not suffice to add any task.
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Assume further that the Minister has to deal with additional constraints, e.g.
if the country is divided into regions and there is a maximum number of projects
that should be allocated per region. Such constraints can often be described by
a matroid on the set of tasks: for example, the above case can be described by
a partition matroid. To address such scenarios, we define a generalization of the
Lazy Bureaucrat Problem, which we call Lazy Matroid: given a weighted
matroid of tasks (S,F) and a budget B, we want to select a set of tasks S′ ⊆ S
such that adding every left-out task to S′ would violate either the budget B or
the matroid constraint (or both); the goal is to minimize the weight of S′.

Another situation that can be well described by the Lazy Matroid prob-
lem concerns a network design problem: one wants to connect several parts of
a network by, say, optical fibers, without exceeding a given cost budget, and
respecting two constraints: it is not allowed to create cycles (this is considered
unnecessary spending) and it is not acceptable to avoid establishing a connec-
tion between unconnected components, if the remaining budget suffices. It is
reasonable to assume that the network manager would like to spend as little
as possible, without violating the constraints. This is an instance of the Lazy

Matroid Problem on graphic matroids.

Our Contribution. In this work we formally define and study the Lazy Ma-

troid problem, which is NP-hard, since so is the Lazy Bureaucrat Prob-

lem; the latter is a special case of the former as pointed out above. Our first
result is a PTAS for Lazy Matroid. The proposed algorithm involves care-
ful employment of two well known greedy algorithms for weighted matroids,
in conjunction with appropriately designed matroid contraction and restriction
operations.

We next consider a more general setting, in which each task has to be carried
out by several workers, who collectively wish to minimize their total work load;
we call this variant Lazy Staff Matroid. In the Public Works scenario, this
would correspond to projects associated with multiple weights, each representing
an estimation of the project’s negative impact in some domain of increased
importance: environment, cultural heritage, unemployment, to name a few; then,
one might want to bound the total impact of selected projects in each of the
considered domains.

In contrast to the one-worker case, we show that Lazy Staff Matroid is
highly inapproximable. We do this by reduction from the independent dominat-
ing set problem (ISDS in short). Along the way, we obtain some new (to the
best of our knowledge) inapproximability results for ISDS on regular graphs.
We finally present a 2m-approximation algorithm for Lazy Staff Matroid on
free matroids. Some proofs are omitted due to space limitation.

Related Work. To the best of our knowledge, this is the first study on the
matroidal version of the Lazy Bureaucrat scheduling problem; the latter was
defined by Arkin, Bender, Mitchell and Skiena [6, 1] under various optimization
objectives. In fact, Lazy Matroid is a generalization of Lazy Bureaucrat
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with common arrivals and deadlines, which was shown to admit an FPTAS in [2];
note that in the common arrivals case the two most studied objectives, namely
makespan and time-spent coincide. The (weak) NP-hardness of this case was
shown by Gai and Zhang [7, 3].

Earlier results on Lazy Bureaucrat include approximations for the com-
mon deadline case: first a tight 2-approximation algorithm working under both
objectives was given by Esfahbod, Ghodsi and Sharifi [8] and later two PTAS ’s,
one for each objective, were presented in [7, 3].

Note that the Lazy Bureaucrat with common arrivals and deadlines is a
knapsack-like problem with an inverted objective function since one tries to
minimize the total value of the solution. Camerini and Vercellis have studied
a matroidal version of the knapsack with its classical objective function of
maximizing the total value of the solution [9].

Coming to the Lazy Staff Matroid problem, we show in Section 5 that
it includes well-known problems as special cases, most notably the independent
dominating set problem (ISDS). ISDS is not approximable within n1−ε for any
ε > 0 on graphs of n vertices [10] (unless P = NP). In addition, it is NP-hard
to approximate ISDS in graphs of degree at most 3 within a factor 681

680 [11].
Regarding regular graphs no approximability hardness results for ISDS can be
found in the literature, up to our best knowledge.

2 Basic Notions on Matroids

This section comprises basic notions on matroids, see [12, 13] for more details.
We use the shorthand notation X + x := X ∪ {x} and X − y := X \ {y}. A
matroidM = (X, F) is a finite set of elements X and a collection F of subsets
of X satisfying the following properties: (i) ∅ ∈ F ; (ii) if F2 ⊆ F1 and F1 ∈ F
then F2 ∈ F ; (iii) for every F1, F2 ∈ F where |F1| < |F2|, ∃ e ∈ F2\F1 such
that F1 + e ∈ F .

The elements of F and 2X \F are called independent sets and dependent sets,
respectively. The bases of a matroid are its inclusion-wise maximal independent
sets. All bases of a matroidM have the same cardinality r(M), defined as the
rank ofM.

In the presence of a weight function w : X → R, we use the shorthand notation
w(X ′) =

∑
x∈X′ w(x) for all X ′ ⊆ X . A matroid (X,F) where each element e

has a weight w(e) is a weighted matroid; it is denoted by (X,F , w).
Given (X,F , w), a classical optimization problem consists in computing a base

of minimum weight. This problem is solved by Min-Greedy (see Algorithm 1).
Computing a base of maximum weight can be done with a similar algorithm
called Max-Greedy (the elements ofM are scanned by non-increasing weight);
the output of Max-Greedy(M) is denoted by max−Gr(M).

The time complexity of matroid algorithms depends on the difficulty of test-
ing if a set F belongs to F . We deliberately neglect this test when the time
complexity of an algorithm is provided. Thus, Algorithm 1 runs in polynomial
time.
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Given a matroidM = (X, F) and Y ⊆ X , the restriction ofM to Y , denoted
by M|Y , is the structure (Y,F ′) where F ′ = {Z ⊆ Y : Z ∈ F}. If Y ∈ F , the
contraction of M by Y , denoted by M/Y , is the structure (X \ Y, F ′) where
F ′ = {F ⊆ X \ Y : F ∪ Y ∈ F}. It is well known that bothM|Y andM/Y are
matroids.

Next Theorem is satisfied by any matroidM.

Theorem 1. [14] Let B and B′ be bases and let x ∈ B −B′. Then there exists
y ∈ B′ −B such that both B − x+ y and B′ − y + x are bases of M.

Matroids are known to model several structures in combinatorial optimiza-
tion. For instance, the free matroid is defined on a set X , each subset F ⊆ X is
independent and the unique base is X . A second example is the graphic matroid
which is defined on the set of edges of a graph G, the independent sets are the
forests of G (subsets of edges without cycles). A base of the graphic matroid
is a spanning tree if the graph G is connected. A third example is the parti-
tion matroid; this matroid is defined on a set X partitioned into k disjoint sets
X1, . . . , Xk for k ≥ 1. Given k integers bi ≥ 0 (i = 1, ..., k), the independent sets
are all the sets F ⊆ X satisfying |F ∩Xi| ≤ bi for all i = 1, . . . , k.

Algorithm 1. Min-Greedy

Data: a weighted matroid M = (X, F , w)
1 Rename X = {x1, · · · , xn} such that w(xi) ≤ w(xi+1), i ≤ n− 1
2 Gr(M) ← ∅
3 for i = 1 to n do
4 if Gr(M) ∪ {xi} ∈ F then
5 Gr(M) ← Gr(M) ∪ {xi}

6 return Gr(M)

Note that Min-Greedy and Max-Greedy can also be used to complete an
independent set F ∈ F into a base. Instead of starting with the empty set as in
step 2 of the algorithms, we begin with F . Thus, the completion of F with min-

greedy and max-greedy provides a base of minimum and maximum weight,
respectively, within the set of bases which contain F .

3 Problem Definition and Properties

Lazy Matroid Problem

Input: a weighted matroidM = (X,F , w), where w is a positive weight function
w : X → R+ and a positive bound B.
Output: F ∈ F with w(F ) ≤ B and s.t. ∀x ∈ X \F, F +x ∈ F ⇒ w(F +x) > B.
Objective: minimize w(F ).
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Note that a feasible solution to Lazy Matroid Problem must satisfy a
constraint of maximality which counterbalances the fact that the weight of a
solution must be minimized. This constraint refers to the busy requirement of
the Lazy Bureaucrat Problem [1].

In what follows, all solution sets will be assumed to be sorted in non decreas-
ing order of weight, unless otherwise stated. For t ≤ n, Xt = {x1, . . . , xt} is the
restriction of X to the t smallest elements andMt is the restriction ofM to Xt.
It is well known thatMt remains a matroid.

Let OPT (M, B) = {xπ(1), . . . , xπ(p)} be an optimal solution to the Lazy

Matroid Problem on instance (M, B). We will omit (M, B) when the context
is clear ; p = |OPT |. For t ≤ p, OPTt = {xπ(1), . . . , xπ(t)} is the restriction of
OPT to the t smallest elements.
Gr(M) is the solution returned by the greedy algorithm Min-Greedy with

weighted matroidM, see Algorithm 1. It is well known that Gr(M) is a base of
M and has a minimum weight among all bases ofM. Actually more generally,
if Grt(M) denotes the restriction of Gr(M) to the t first elements taken by
Min-Greedy, then Grt(M) has a minimum weight among all independent sets
ofM with size exactly t. Finally max−Gr(M) is a base of maximum weight of
M and it is returned by Max-Greedy algorithm.

Lazy Greedy is an adaptation ofGreedy for the Lazy Matroid Problem

and it is described in Algorithm 2.

Algorithm 2. Lazy Greedy

Data: a weighted matroid M = (X, F , w) and a bound B
1 Rename X = {x1, · · · , xn} such that w(xi) ≤ w(xi+1), i ≤ n− 1
2 LazyGr(M, B) ← ∅
3 for i = 1 to n do
4 if LazyGr(M,B) ∪ {xi} ∈ F and w(LazyGr(M, B)) ≤ B then
5 LazyGr(M,B) ← LazyGr(M, B) ∪ {xi}

6 return LazyGr(M,B)

On free matroids, Lazy Greedy coincides with the shortest job first schedul-
ing policy introduced in [8] for the common deadline case of the Lazy Bu-

reaucrat Problem and provides, in the worst case, a 2-approximation [8].
As proved in [2], a slight modification of this greedy algorithm gives a 4/3-
approximation for Lazy Bureaucrat Problem in linear time.

Note that LazyGr(M, B) is a feasible solution to the Lazy Matroid Prob-

lem, but it does not guarantee any constant approximation ratio.
Now, we give some properties on Lazy Greedy which will be useful later. We

will suppose that LazyGr(M, B) = {xf(1), . . . , xf(s)} is the solution returned
by Lazy Greedy; s = |LazyGr(M, B)|. Note that we have LazyGr(M, B) =
Grs(M) under the previous notations.
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Lemma 1. Let k ≥ 1 be an integer. If w(OPT ) ≥ B k
k+1 then Lazy Greedy

is a k+1
k -approximation.

Lemma 2. For any instance (M, B), we have s ≥ p.
Actually, the case s = p is polynomially solvable by Lazy Greedy. Hence-

forth, we focus on the case s > p.

4 A PTAS

Let us give an overview of the PTAS. Given k in input, the algorithm consists
in testing every possible subset of at most k elements. Each of these sets that
satisfies the feasibility constraint of the lazy matroid problem is stored in a
set denoted by Sol. If the optimum uses at most k elements then it must belong
to Sol. Otherwise, one tries to guess A∗ = {xgA∗ (1), . . . , xgA∗ (k)}, the k elements
of OPT with largest weight. ThenM is contracted by A∗ and restricted to the
elements of X whose weight does not exceed the weight of the lightest element
of A∗. This matroid is denoted byMA∗

. max-greedy is run onMA∗
in order

to get a set {xhA∗ (1), . . . , xhA∗ (sA∗ )} of sA
∗
elements. Then sA

∗
+ 1 sets F0, F1,

. . .FsA∗ are constructed as follows. For t ∈ {0, 1, . . . , sA∗}, min-greedy is run
to complete {xhA∗ (sA∗−t+1), . . . , xhA∗ (sA∗ )} into a base Ft of MA∗

. Every set
Ft+A

∗ that satisfies the feasibility constraint of the lazy matroid problem on
(M, B) is added to Sol. Finally, the solution of minimum weight stored in Sol
is returned. The algorithm, formally described in Algorithm 3, is shown to be
k+1
k -approximate.
Note that Sol �= ∅ because PTAS-Lazy contains at least the Lazy Greedy

solution on initial instance (M, B). Indeed, when A′ denotes the set of the
k heaviest elements of LazyGr(M, B), we have A′ + UA′

0 + Gr(MA′,0) =
LazyGr(M, B) for iteration t = 0.

Let us fix an integer k ≥ 1 and let us prove that PTAS-Lazy (Algorithm
3) with input k is a k+1

k -approximation. Let APX be the solution returned
by PTAS-Lazy on input (M, B, k). Let OPT = {xπ(1), . . . , xπ(p)} be an op-
timal solution satisfying π(1) < . . . < π(p) and |OPT | = p. If |OPT | ≤ k
then OPT ∈ Sol and the algorithm is 1-approximate. Suppose from now on
that p = |OPT | > k. Let A∗ be the k heaviest elements of OPT , i.e. A∗ =
{xπ(p−k+1), . . . , xπ(p)}. Following the notations of Algorithm 3, we can also de-

fine A∗ as {xgA∗ (1), . . . , xgA∗ (k)}. Let MA∗
denote (XgA∗ (1)−1,FA∗

, w) where

FA∗
is the restriction of F to the subsets of XgA∗ (1)−1 = {x1, . . . , xgA∗ (1)−1}.

Lemma 3. If w(OPT ) < B k
k+1 then OPT −A∗ is a base of MA∗

.

For t = 0, . . . , sA
∗
, let Ft be a base ofMA∗

defined as Ft = UA∗
t ∪Gr(MA∗,t).

Following Algorithm 3, UA∗
t consists of the t heaviest elements of max−Gr(MA∗

)
whereas Gr(MA∗,t) is obtained by running min-greedy onMA∗,t.

Note that FsA∗ = max−Gr(MA∗
) and F0 = Gr(MA∗

). Moreover, by a prop-
erty ofMin-Greedy, we know that for any t, Ft is a base ofMA∗

with minimum
weight among the bases ofMA∗

containing UA∗
t (note that UA∗

0 = ∅).
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Algorithm 3. PTAS-Lazy

Data: a weighted matroid M = (X, F , w), a bound B and an integer k ≥ 1
1 Rename X = {x1, · · · , xn} such that w(xi) ≤ w(xi+1), i ≤ n− 1
2 for all A ⊆ X of size at most k do
3 if A is a feasible solution to the lazy matroid problem for instance (M,B)

then
4 Sol ← Sol + A

5 for all A = {xgA(1), . . . , xgA(k)} ⊆ X and A /∈ Sol with |A| = k, w(A) < B and

gA(1) < · · · < gA(k) do
6 Let MA be the matroid restricted to XgA(1)−1 and contracted to A

7 Compute max−Gr(MA) = {xhA(1), . . . , xhA(sA)}, a maximum weight base

of MA where hA(1) < . . . < hA(sA)
8 for t = 0 to sA = |max−Gr(MA)| do
9 Let UA

t be the t heaviest elements of max−Gr(MA)

10 For t ≥ 1, let MA,t = MhA(sA−t)|UA
t be MA restricted to XhA(sA−t)

and contracted to UA
t ; for t = 0, let MA,0 = MA and UA

0 = ∅
11 if A+ UA

t +Gr(MA,t) is a feasible solution to the lazy matroid

problem on instance (M, B) then
12 Sol ← Sol +

(
A+ UA

t +Gr(MA,t)
)

13 return the best solution within Sol

Lemma 4. If w(OPT ) < B k
k+1 then either F0 + A∗ is an optimal solution to

the lazy matroid problem on (M, B), or there exists t > 1 such that w(Ft) ≥
w(OPT −A∗) and w(Ft−1) < w(OPT −A∗).

Since both Ft and Ft−1 are bases of MA∗
, we can use Theorem 1 with

xhA∗ (sA∗−t+1) ∈ Ft \ Ft−1 to state that there must be a ∈ Ft−1 \ Ft such that

U := Ft−1 + xhA∗ (sA∗−t+1) − a is also a base ofMA∗
.

Lemma 5. If w(OPT ) < B k
k+1 then Ft +A

∗ is a k+1
k -approximate solution to

the Lazy Matroid problem on (M, B).

Proof. Both Ft and U contain UA∗
t and they are both bases ofMA∗

. Since Ft is
a base ofMA∗

with minimum weight among the bases ofMA∗
containing UA∗

t ,
we get that w(Ft) ≤ w(U). Since neither Ft nor U contains A∗, we deduce that

w(Ft +A∗) ≤ w(U +A∗) (1)

We can also see that w(U) ≤ w(Ft−1) +w(xhA∗ (sA∗−t+1)) < w(OPT −A∗) +
1
kw(OPT ). The first inequality follows from the definition of U . The second
inequality is due to w(Ft−1) < w(OPT − A∗) (Lemma 4) and the fact that
∀x ∈ XgA∗ (1)−1, kw(x) ≤ w(A∗) ≤ w(OPT ). Hence,

w(U +A∗) ≤ w(OPT ) + 1

k
w(OPT ) (2)
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Using Inequalities (1) and (2), we obtain w(Ft) ≤ k+1
k w(OPT ) < B because

w(OPT ) < B k
k+1 by hypothesis.

It remains to show that Ft + A∗ is a feasible solution to the lazy matroid

problem. By contradiction, suppose there exists a ∈ X \XgA∗(1)−1 (because Ft is

a base ofMA∗
) such that Ft+A

∗+a ∈ F and w(Ft+A
∗)+w(a) ≤ B. Note that

|Ft+A
∗+a| > |OPT | because |Ft| = |OPT−A∗|) and ∀x ∈ Ft+a, w(a) ≥ w(x).

Therefore there exists b ∈ (Ft + A∗ + a) − OPT such that OPT + b ∈ F and
w(OPT + b) ≤ w(Ft) + w(a) ≤ B, contradicting the feasibility of OPT . �

Theorem 2. PTAS-Lazy with input k is a polynomial k+1
k -approximation for

Lazy Matroid Problem on (M, B) where M = (X,F , w). The time com-
plexity is O(|X |k+2).

Proof. Let APX be the solution returned by PTAS-Lazy with input k and sup-
pose |OPT | > k (otherwise w(APX) = w(OPT )). By construction, w(APX) ≤
B because it contains at least one solution (the one returned by lazy greedy).
If w(OPT ) ≥ B k

k+1 then w(APX) ≤ k+1
k w(OPT ). If w(OPT ) < B k

k+1 then

w(APX) ≤ w(Ft +A
∗) ≤ k+1

k w(OPT ) by using both Ft+A
∗ ∈ Sol and Lemma

5. In any case, we get the expected result. �

5 The Lazy Staff Matroid Problem

Lazy Staff Matroid Problem

Input: an m-weighted matroidM = (X,F , w), where w : X → Rm
+ is a positive

weight function on m dimensions (wi(x) denotes the i-th component of w(x))
and a positive bound B.
Output: F ∈ F with wi(F ) ≤ B for every i ∈ {1, . . . ,m} and s.t. ∀x ∈ X \
F, F + x ∈ F ⇒ wi(F + x) > B for some i ∈ {1, . . . ,m}.
Objective: minimize

∑m
i=1 wi(F ).

For example, dealing with free matroids, a staff is composed ofm lazy bureau-
crats who have to execute some given jobs. A job is a vector of m non negative
integers. Each coordinate k of a job corresponds to the time that worker k would
spend for doing his part. In a feasible solution, i.e. a subset of jobs, the constraint
of maximality imposes that every additional job would exceed the working time
of at least one worker.

The lazy staff matroid problem is a generalization of the lazy matroid

problem; the latter corresponds to the case m = 1. The lazy staff matroid

problem is much harder than the lazy matroid problem.
For instance, it is not difficult to see that the restriction of this problem to

binary inputs (i.e., B,wi(x) ∈ {0, 1}) already contains the minimum maximal
matching. Given a graph G = (V,E) with n vertices and m edges, instance of
minimum maximal matching, we consider the free matroid on E,M = (E, 2E)
and we set B = 1. There are n mappings wv for v ∈ V described by: wv(e) = 1
if v is incident to e in G and wv(e) = 0 otherwise. Since, any Lazy Staff solution
corresponds to a maximal matching in G and vice versa, the result follows.
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We will prove that the lazy staff matroid problem contains the indepen-
dent dominating set problem (ISDS) in regular graphs. This latter problem is
also known as minimum maximal independent set. Given a graph G = (V,E),
we want to find S ⊂ V which is independent (no two vertices in S are joined
by an edge) and dominating (every vertex of V \ S is adjacent to some vertex
of S) of minimum size. ISDS is one of the hardest, well-known, NP-hard graph
problems. In [10], it is shown that this problem is not approximable within n1−ε

for any ε > 0 on graphs of n vertices (assuming P �= NP). In addition, it is NP-
hard to approximate ISDS in graphs of degree at most 3 within a factor 681

680
while a 2-approximation algorithm exists [11]. Up to our best efforts, we were
not able to find in the literature any complexity results dealing with regular
graphs, but some results can be deduced from existing ones.

Lemma 6. ISDS is APX-complete in cubic graphs and it is not constant ap-
proximable in regular graphs, unless P = NP.

Proof. For the first part of the lemma, we prove that the reduction given in [15,
Theorem 13] for the NP-completeness of ISDS is actually an L-reduction [16].

First, we start from the dominating set problem (DS) which is known to be
APX-complete in cubic graphs [17]. Given a cubic graph G = (V,E) with n
vertices and m edges, instance of DS, we obtain a cubic graph H = (V ′, E′)
by replacing each edge e = [u, v] ∈ E by a gadget H(e). This transformation is
illustrated in Figure 1 and we are going to show that it is an L-reduction.
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a[u,v] b[u,v] a[v,u]

b[v,u]

u v

Fig. 1. Local replacement of [u, v] by H([u, v]) where four new vertices are added

Let D∗ be an optimal dominating set of G and let ds(G) denote its size.
One can build an independent dominating set ID of H based on D∗ as follows.
Begin with ID = ∅. If v ∈ D∗ then add v to ID. For every edge [u, v] do: if
D∗∩{u, v} = ∅ then add b[u,v] to ID; if D∗∩{u, v} = {u} then add a[v,u] to ID;
if D∗ ∩ {u, v} = {u, v} then add b[u,v] to ID. Thus, an independent dominating
set ID for H is obtained and its size is ds(G) +m. Let isds(H) denote the size
of an optimal independent dominating set of H . We have:

isds(H) ≤ ds(G) +m (3)

Since G is cubic, we know that m = 3n/2 and ds(G) ≥ n
4 (a node can cover

four nodes: itself and its three neighbors). From inequality (3), we get that

isds(H) ≤ ds(G) + 3n

2
≤ 7ds(G)
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From any independent dominating set ID of H with value apx(H), we can
polynomially obtain a dominating set D of G with value apx(G) satisfying

apx(G) ≤ apx(H)−m (4)

Inequality (4) is obtained as follows. For any edge [u, v] ∈ E, we first observe
that we can always suppose that |ID ∩ {a[u,v], a[v,u], b[u,v], b[v,u]}| = 1. Indeed
|ID∩{a[u,v], a[v,u], b[u,v], b[v,u]}| �= 0 otherwise b[u,v] and b[v,u] are not dominated;
|ID ∩ {a[u,v], a[v,u], b[u,v], b[v,u]}| < 3 otherwise ID is not independent. It can be
|ID∩{a[u,v], a[v,u], b[u,v], b[v,u]}| = 2 only when ID∩{a[u,v], a[v,u], b[u,v], b[v,u]} =
{a[u,v], a[v,u]} and one can modify ID in order to reduce its size. Let E′′ :=
{[u, v] ∈ E : ID∩{a[u,v], a[v,u], b[u,v], b[v,u]} = {a[u,v], a[v,u]}}. Proceed as follows
until E′′ = ∅:

– take a vertex s ∈ V endpoint of at least one edge of E′′;
– denote byEs the edges [s, t] ∈ E\E′′ such that ID∩{a[s,t], a[t,s], b[s,t], b[t,s]} =
{a[s,t]};

– ID ← ID + s;
– for every [s, t] ∈ E′′, do ID ← ID − a[s,t];
– for every [s, t] ∈ Es, do ID ← ID − a[s,t] + b[s,t];
– update E′′ by deleting all edges incident to s.

The modification is such that ID remains an independent dominating set with
no greater size and |ID ∩ {a[u,v], a[v,u], b[u,v], b[v,u]}| = 1 for any edge [u, v] ∈ E.
Moreover D = ID \ {a[u,v], a[v,u], b[u,v], b[v,u] : [u, v] ∈ E} is a dominating set
of G.

Hence, using inequalities (3) and (4) we deduce that apx(G) − ds(G) ≤
apx(H) − isds(H). In conclusion, the reduction is an L-reduction from DS in
cubic graphs to ISDS in cubic graphs. Since the former is APX-complete [17],
we obtain that the latter is (also) APX-complete. This implies that no PTAS
for ISDS in cubic graphs exists unless P = NP.

For the second part of the lemma, we use the self improvement of ISDS based
on the graph composition as it is done for the independent set problem, see for
instance Theorem 6.12, page 146, of [18].

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the composition G1[G2]
is the graph that has vertex set V1 × V2 and edge set {[(u1, u2), (v1, v2)] :
either [u1, v1] ∈ E1 or u1 = v1 and [u2, v2] ∈ E2}.
Given a regular graph G = (V,E) on n vertices and degree Δ(G), its compo-

sition with itself, that is G[G], is denoted by G′′ = (V ′′, E′′)
It is not difficult to see that G′′ is also a regular graph of degree Δ(G′′) =

(n+ 1)Δ(G) and we have:

isds(G′′) = isds2(G) (5)

Moreover, from any independent dominating set IDS(G′′) of G′′ with value
apx(G′′), we can polynomially find an independent dominating set IDS(G) of
G of value apx(G) such that:
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apx2(G) ≤ apx(G′′) (6)

Let D1 = {u ∈ V : (u, v) ∈ IDS(G′′) for some v ∈ V } and for u ∈ D1,
Du

2 = {v ∈ V : (u, v) ∈ IDS(G′′)}. It is easy to check that D1 and Du
2 for

u ∈ D1 are independent dominating sets of G. Thus, if IDS(G) is the set of
smallest cardinality in {D1} ∪ {Du

2 : u ∈ D1} then apx(G′′) =
∑

u∈D1
|Du

2 | ≥
|IDS(G)|2 = apx2(G).

In conclusion, any constant approximation of ISDS allows us to obtain a
polynomial-time approximation scheme which is a contradiction with the first
claim. �

Theorem 3. Unless P = NP, the Lazy Staff matroid Problem is not con-
stant approximable even for the free matroid and binary weights (i.e., B,wi(x) ∈
{0, 1}).

Proof. We propose an approximation-preserving reduction from the independent
dominating set problem in regular graphs. Let G = (V,E) be a regular graph of
degree Δ(G), with n vertices and m edges, instance of ISDS. LetM = (V, 2V )
be a free matroid on V and let B = 1. There are m mappings we for e ∈ E
described by: we(v) = 1 if v is incident to e in G and we(v) = 0 otherwise.

Clearly, S ⊆ V is a lazy solution iff S is an independent dominating set of G.
Moreover,

∑
e∈E we(S) = Δ(G)|S|. Thus, using Lemma 6, the result follows. �

Using the proof of Theorem 3, we can deduce that any approximation ratio
of Lazy Staff matroid Problem might depend on parameter m.

Let us now study the generalization of Lazy Greedy in the context of
the Lazy Staff matroid Problem with the free matroid. Let Lazy Staff

Greedy be the algorithm which first renames the elements by non-decreasing
sum of their coordinates (ties are broken arbitrarily). At the beginning I = ∅
and there is a pointer t on the first element. While t ≤ n, if I ∪ {t} is a feasible
Lazy Staff solution, then I ← I ∪ {t}, t← t+ 1.

Lemma 7. Lazy Staff Greedy is 2m-approximate on free matroids.

Proof. Let OPT be the value of an optimal solution while APX denotes the
value of the solution returned by Lazy Staff Greedy. Suppose OPT ≥ B

2 .
Since Lazy Staff Greedy returns a feasible solution, we get that APX ≤
mB ≤ 2mOPT .

Now suppose OPT < B
2 . It follows that for every element of the optimum,

the sum of its coordinates is at most OPT < B/2. Moreover, every element
whose sum of its coordinates is at most B/2 must be in the optimum (by the
maximality constraint). Hence Lazy Staff Greedy builds the optimum by
taking all elements whose sum of its coordinates is at most B/2.

Consider the instance with 3 elements whose weights are (B2 + ε, 0, · · · , 0),
(B2 + ε, ε, 0, · · · , 0) and (B2 − ε,B, · · · , B). Lazy Staff Greedy returns a solu-
tion which contains elements 1 and 3 while the optimum consists of the second
element. The ratio is mB/(B/2 + 2ε) which tends to 2m as ε tends to 0. �
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11. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206, 1264–1275 (2008)

12. Oxley, J.G.: Matroid Theory. Oxford University Press (1992)
13. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,

Heidelberg (2003)
14. Brualdi, R.: Comments on bases in different structures. Bull. Austral. Math. Soc. 1,

161–167 (1969)
15. Manlove, D.F.: On the algorithmic complexity of twelve covering and independence

parameters of graphs. Discrete Applied Mathematics 91, 155–175 (1999)
16. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-

ity classes (extended abstract). In: Simon, J. (ed.) STOC, pp. 229–234. ACM (1988)
17. Alimonti, P., Kann, V.: Some apx-completeness results for cubic graphs. Theor.

Comput. Sci. 237, 123–134 (2000)
18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman (1979)



Treewidth Computation and Kernelization

in the Parallel External Memory Model

Riko Jacob1, Tobias Lieber1, and Matthias Mnich2

1 Institute for Theoretical Computer Science, ETH Zürich, Switzerland
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Abstract. We present a randomized algorithm which computes, for any
fixed k, a tree decomposition of width at most k of any input graph. We
analyze it in the parallel external memory (PEM) model that measures
efficiency by counting the number of cache misses on a multi-CPU private
cache shared memory machine. Our algorithm has sorting complexity,
which we prove to be optimal for a large parameter range.

We use this algorithm as part of a PEM-efficient kernelization algo-
rithm. Kernelization is a technique for preprocessing instances of size n
of NP-hard problems with a structural parameter κ by compressing them
efficiently to a kernel, an equivalent instance of size at most g(κ). An op-
timal solution to the original instance can then be recovered efficiently
from an optimal solution to the kernel. Our main results here is an adap-
tion of the linear-time randomized protrusion replacement algorithm by
Fomin et al. (FOCS 2012). In particular, we obtain efficient random-
ized parallel algorithms to compute linear kernels in the PEM model
for all separable contraction-bidimensional problems with finite integer
index (FII) on apex minor-free graphs, and for all treewidth-bounding
graph problems with FII on topological minor-free graphs.

1 Introduction

Many practically relevant computational problems are NP-hard. Many decision
problems on graphs become efficiently solvable in the RAM model if the input
graph has bounded treewidth. By now, there is the linear time algorithm to
compute a tree decomposition [1], working in the classical RAM model. This
algorithm has been adapted to the PRAM model [2] and to serial models that
take the caches of the memory hierarchy into account [3]. Here, we present an
adaption of the algorithm that is simultaneously parallel and cache efficient, as
modeled by the PEM model, which is defined in Section 1.1.

Another common technique for solving NP-hard problems is pruning easy
parts of an instance in a preprocessing step. In the field of parameterized com-
plexity this is formalized as kernelization. It is known that every decidable fixed-
parameter tractable problem Π for a parameter κ admits a kernelization, which
is an algorithm that in polynomial time reduces any instance of Π of size n to
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c© IFIP International Federation for Information Processing 2014



Treewidth Computation and Kernelization in the PEM Model 79

an equivalent instance (the kernel) of size g(κ) for some computable function g.
Here, equivalent means that the original instance is a “yes”-instance if and only
if the kernel is. For example for the vertex cover problem, Nemhauser and
Trotter have shown that any graph G on n vertices can be kernelized efficiently
into a graph G′ on at most 2κ vertices, where κ denotes the size of a minimum
vertex cover of G [4]. Recent meta-results show that large classes of combinato-
rial optimization problems admit kernels of linear size on planar graphs [5], and,
more generally, classes of graphs excluding a fixed minor [6,7]. On the other
hand, not every fixed-parameter tractable problem admits a polynomial sized
kernel, unless the polynomial hierarchy collapses to the third level [5,8].

The classical view on kernelization in the RAM model is to solve an instance I
of a hard problem Π in two phases: the first phase, kernelization, transforms in
polynomial time the instance I of size n into a kernel I ′ whose size g(κ) depends
solely on the structural parameter κ. The second phase solves the problem Π
on the kernel I ′ in time f(g(κ)) for some function f , which is often at least
exponential due to a brute force algorithm. Thus, this leads in total to a running
time of O (p(n) + f(g(κ))) to decide I in the RAM model.

Given the abundance of practically relevant NP-hard problems where input in-
stances are large, it would be nice to have this approach efficiently implemented.
Recently, efficient kernelization algorithms have been proposed, for example by
Hagerup [9] and van Bevern et al. [10], where linear time RAM algorithms are
presented. Further, meta-results by Fomin et al. provide randomized linear-time
kernelizations for many combinatorial optimization problems on graph classes
excluding a fixed minor [6]. There are some reservations against the practicabil-
ity of the algorithms implied by these meta-results, namely very large constant
factors hidden in the O-notation, and some difficulties in actually creating cer-
tain constant sized structures.

To obtain efficient algorithms on modern computers, parallelism and hier-
archical memories have to be exploited. Such a parallel and memory efficient
implementation is frequently possible for the second phase of kernelization. On
the other hand, due to the exponential work that is done, this only moderately
extends the size of I ′, which can be handled. We show that the randomized
kernelization algorithms of Fomin et al. can be efficiently implemented in the
PEM model, i.e., in parallel and taking the memory hierarchy into account.
While this algorithm does not improve the large constant factors in the runtime,
it shows that there are no fundamental obstacles when implementing this kind
of algorithm in the PEM model. We expected that concrete algorithms for the
problems covered by the meta-results can also be implemented efficiently in the
PEM model.

1.1 Model of Computation: The Parallel External Memory Model

For using modern computers optimally, two architectural features require spe-
cial consideration: parallelism and the memory hierarchy. To capture these two
fundamental features, the parallel external memory (PEM) model was intro-
duced [11]. It is based on the external memory (EM) model which captures
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cache efficiency of algorithms [12]. The EM model extends the RAM model by a
cache, located between CPU and memory (see Figure 1a). The cache can store
up to M elements, on which the CPU can perform any computations for free.
The conceptually infinite (external) memory is partitioned in blocks, each hold-
ing up to B elements. A block can be transferred as a unit by an input/output
operation (I/O) between the cache and the memory. The memory initially holds
the input of size n in the first �n/B� blocks.

· · ·
B

Cache
M

CPU (Shared)
Memory

read write

(a) The EM Model

· · ·

CPU 1 CPU 2 CPU P· · ·

(b) The PEM Model

Fig. 1. The Sequential and the Parallel EM Model for M = 12 and B = 3

The PEMmodel (see Figure 1b) is a parallel extension of the EMmodel. It has
P CPUs which all have their own (private) cache of size M . In one parallel I/O
each processor can perform one I/O operation for moving data between its cache
and the shared memory. Similar to the PRAM model, this requires a policy for
simultaneous access to the same block. Here, we work with the CREW policy
that allows concurrent read but disallows concurrent write. The complexity of
an algorithm in the PEM model is the number of parallel I/Os it performs. An
algorithm is called PEM-efficient if its complexity is matched by a lower bound
for the problem in the PEM model.

The easiest non-trivial task in the (P)EM model is that of permuting: given a
permutation π, create from the input (x1, . . . , xn) the output (xπ(1), . . . , xπ(n)).
While in the (P)RAM model the complexity of permuting is the same as for
scanning the input, Θ(n/P ), in the (P)EM model it is not. For many settings of
the parameters, the optimal solution in the PEM model for permuting is to sort
in sortP (n) = Θ( n

PB logM
B

n
B ) parallel I/Os, where log x equals max{1, logx}.

In the PRAM model one important goal is to obtain work optimal algorithms
for a maximal number of processors. For the PEM model, one strives similarly
to use as many processors as possible, while still using the optimal number
of parallel I/Os. We define a PEM-efficient kernelization for a parameterized
problem Π as an algorithm A that computes for any instance x of size n with
parameter κ a kernel (x′, κ′), and A is PEM-efficient. In our case this means A
executes with O (sortP (n)) parallel I/Os.

1.2 Related Work

A tree decomposition of a graph G is a tree T and for each node i of T there is a
bag Bi of vertices of G such that (i) for each vertex v of G there is at least one
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bag containing v; (ii) for each edge e of G there is at least one bag containing
both its endpoints; and (iii) for each v of G, the set {i | v ∈ Bi} induces a
subtree of T . The width of a tree decomposition is defined as the maximum bag
size minus one. The treewidth of G, denoted by tw(G), is the minimum width
over all tree decompositions of G.

There are several fixed-parameter algorithms to compute the treewidth of a
graph in different computational models. The most important to this paper are
the following: Bodlaender and Kloks introduced in 1993 the first linear time al-
gorithm to efficiently compute a tree decomposition of fixed width k of a graphG
in the RAM model [13]. Later Bodlaender and Hagerup introduced a work op-
timal algorithm for the PRAM model for up to p ≤ n

log2 n
processors [2]. An

I/O efficient algorithm for computing the treewidth in the EM model has been
presented by Maheshwari and Zeh [3].

Recently numerous problems have been shown to admit linear kernels on
generalizations of planar graphs, including graphs of bounded genus, and graphs
of bounded maximum degree [6,7]. The results are briefly summarized:

Throughout the paper, let H denote a fixed graph and let GH be the graph
class that excludes H as a minor. For any class GH , where H is an apex graph
(so H \ {v} is planar for some vertex v), we deal with essentially all problems Π
that are “contraction-bidimensional”. Roughly speaking, a parameterized prob-
lem Π is contraction-bidimensional if contracting an edge cannot increase the
objective value κ, and on square grids the objective value grows proportionally
with the size of the vertex set of the grid.

Lemma 1 ([14]). On any class of graphs excluding a fixed apex graph as a
minor, all separable contraction-bidimensional problems with finite integer index,
parameterized by solution size κ admit kernels of size O (κ).

Graph classes excluding a fixed graph H as a minor can be generalized to
classes excluding H as a topological minor. A graph problem Π , parameterized
by κ is called treewidth-bounding if all “yes”-instances (G, κ) of Π admit an
O (κ)-sized set S ⊆ V (G) such that the graph G \ S has constant treewidth.

Lemma 2 ([7]). On any class of graphs excluding a fixed graph as a topological
minor, all treewidth-bounding graph problems with finite integer index, parame-
terized by solution size κ have a kernels of size O (κ).

Recently, Hagerup [9] and van Bevern et al. [10] argued that not only the
size g(κ) of the produced kernel, but also lowering the running time of the
kernelization algorithm is an important research direction. Another strong case
for designing kernels that are as efficient as possible is made by Komusiewicz
and Niedermeier [15].

Neither of the approaches considers kernelization in a context of parallel I/O
algorithms, but only in the classical RAM model. Thus the approach of designing
PEM-efficient algorithms for kernelization is completely new.

Most proofs are omitted due to space limitations and will be published in a
full version of this paper.
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1.3 Our Contributions

Our first contribution is for every fixed k ∈ N a randomized PEM-efficient al-
gorithm which for a given graph G computes a tree decomposition of width at
most k, or decides that the treewidth of G is larger than k. Our algorithm is
based on the treewidth algorithm for the PRAM model [2] and the treewidth
algorithm for the EM model [3]. While the first algorithm yields a framework for
load balancing in treewidth computations, the latter yields an EM efficient imple-
mentation of the dynamic programming approach of Bodlaender and Kloks [1].
The combination yields a rather technical implementation of the load balancing
part of Bodlaender and Hagerup, and a parallelized version of the algorithm of
Maheshwari and Zeh. The fundamental building block for our algorithm, which
is given in Section 2, is list ranking. Furthermore, the fundamental data struc-
ture flippable DAG for the EM model, introduced by Maheshwari and Zeh [3],
is replaced by a simpler construction as it appears to be hardly parallelizable.

Theorem 3. For every k, t ∈ N, the expected number of parallel I/Os needed to
compute a tree decomposition of width at most k, if such exists, for a graph G
of size n in the CREW PEM model with P ≤ n/(B2 logB logn log(t) n) and
M = BO(1) is O (sortP (n)).

Throughout this paper, t is a fixed constant which can be chosen arbitrary,
influencing only the constant in the sortP (n) term. Furthermore, it is defined

log(1) x = log x and log(k) x = log log(k−1) x.
Observe that the bound on the I/O complexity is tight for a wide range of

the number of processors, which is shown in Section 5.
Our second contribution is a PEM-efficient implementation of the randomized

fast protrusion replacer of Fomin et al. [6]. Their fast protrusion replacer works
by replacing large protrusions, which are subgraphs of small treewidth and small
attachment to the rest of the input graph, by smaller, constant-sizedprotrusions. It
canbe used to provide efficient randomized kernelization algorithms for the (linear)
kernels mentioned in Lemma 1 and Lemma 2. Using our PEM-efficient algorithm
for computing the treewidth of a graph we argue in Section 3 that this protrusion
replacer can be implemented efficiently in the PEMmodel. Using the randomized
fast protrusion replacer, in Section 4 the following theorem is shown.

Theorem 4. The expected number of parallel I/Os to compute a linear kernel
for each of the problems of Lemma 1 and Lemma 2 is O (sortP (n)) in the CREW

PEM model with P ≤ n/(B2 logB log2 n log(t) n) and M = BO(1).

By Lemma 1, PEM-efficient kernelizations to linear kernels exist, among
others, for Dominating Set, Connected Dominating Set, and Induced

Matching on all classes of apex-minor free graphs. Furthermore, by Lemma 2
there exist PEM-efficient parallel randomized kernelizations on H-topological-
minor free graphs for, among others, Chordal Vertex Deletion, Interval
Vertex Deletion, Treewidth-w Vertex Deletion, and Edge Dominat-

ing Set. Moreover, the Width-b Vertex Deletion problem admits a linear
kernel in the PEM model on H-topological minor-free graphs, where the width
measure is either treewidth, branchwidth, rankwidth, or cliquewidth.
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2 Computing Tree Decompositions in the PEM Model

In this section we present for every k a randomized PEM-efficient algorithm to
decide the Treewidth-k problem. More precisely, for every k the algorithm
computes a tree decomposition of a graph G of width k if there exists one.

We briefly state the I/O-complexities of the most important algorithmic prob-
lems in the PEM model. Sorting n records can be done by a multi-way merge
sort with sortP (n) = Θ( n

PB logd
n
B ) parallel I/Os for d = max{2,min{ n

PB ,
M
B }},

and P ≤ n
B [16]. The problem of ranking a list of size n is fundamental in

the (P)EM model and implies an efficient algorithm for the prefix sums prob-
lem [17,18,19]. Both can be solved with listRankP (n) = sortP (n) parallel I/Os if
P ≤ n

B2 logB log(t) n
, and M = BO(1) [19].

Note that we assume in this paper that all graphs are given by edge lists and
each undirected edge {u, v} is represented by two directed edges (u, v) and (v, u).

2.1 A Framework for Parallel Treewidth Computation

Most tree decomposition algorithms follow a recursive approach [1,2,3]: by re-
cursive application of a reduction rule, the input graph G is reduced to constant
size for which a tree decomposition of width k can be given easily. By revoking a
round of the application of the reduction rules, a tree decomposition is obtained
which is only slightly too large. By using dynamic programming the width of
this tree decomposition can be reduced to k, again. Our algorithm follows the
approach presented by Bodlaender and Hagerup [2] for dealing with the load
balancing in the PRAM model. Its pseudo code, which also indicates a load
balancing step, is presented in Algorithm 1.

In the following, for the three methods, reduce, treeDecompostionOfAtMost,
and balance, the most important properties and implementation details are pre-
sented. They are presented in detail in the full version of this paper. Note that the
correctness for all these algorithms follows directly from the original works [2,3].

Algorithm 1. Computing a Tree Decomposition in a parallel Model

1 G0 ← G
2 r ← d · log n
3 for 1 ≤ i ≤ r do
4 Gi ← reduce(Gi−1)

5 Tr ← treeDecompostionOfAtMost(Gr, k)
6 for r ≥ j ≥ 1 do
7 Tj−1 ← Tj ∪ (Gj−1 \Gj) // revoking changes of reduce round j
8 Tj−1 ← balance(Tj−1)
9 Tj−1 ← treeDecompostionOfAtMost(Tj−1, k)

10 return T0
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The reduce Method: It was first presented by Bodlaender and Hagerup [2]. One
call (in round i) to the reduce method decreases the size of the input graph by
a constant fraction 1

d ≥
1
8k by identifying disjoint pairs of vertices, so called ac-

quainted twins. Therefore, after d · log n rounds, the resulting graph has constant
size and thus a tree decomposition of constant width can be computed by brute
force. Furthermore, revoking the vertex identifications of round i increases the
width of the tree decomposition Ti for Gi+1 by at most k + 1.

The implementation is mostly a straight forward, but technical and careful,
implementation of the PRAM algorithm in the PEM model. It uses rounds
of local operations, and information exchange, implemented by scanning and
sorting. For finding vertices which can be identified in parallel a conflict graph of
bounded degree, which represents if acquainted twins can be reduced in parallel,
is computed. A fractional independent set (FIS) in the conflict graph then yields
the vertices which are reduced in parallel. For computing a FIS of the conflict
graph we observe that the PRAM algorithm of Dadoun and Kirkpatrick [20] can
be implemented efficiently in the PEM model.

Balancing a Tree Decomposition: The method balance obtains from an arbi-
trary tree decomposition T = (T ,B) of a graph G of width k′ a tree decomposi-
tion Tb = (T ′, B′) of width at most � = 7k′. The most important property of Tb
is that T ′ is balanced , meaning it is suited for processing computations on its
nodes in a bottom up manner with at most O (listRankP (n)) parallel I/Os. To
this end, a contraction tree T ′ of T is computed. Based on the randomized algo-
rithm for computing an independent set of Vishkin [21] an algorithm to compute
a T ′ can be obtained with at most O (listRankP (n)) parallel I/Os. Finally, the
bags for Tb can be computed in a bottom-up manner on the vertices of T ′.

The implementation of the balance method is a simplified version of the
algorithm of Bodlaender and Hagerup [2], yielding � = 7k′, instead of � = 3k′.
However this affects only constants hidden in the asymptotic notation.

Computing a Tree Decomposition of Width k: Bodlaender and Hagerup [2] use
in their PRAM algorithm the algorithm of Bodlaender and Kloks [1] to compute
from a tree decomposition of width � for G, a tree decomposition of width k
for a graph G. This is possible since the dynamic programming approach [1] is
straight forward parallelizable.

Similar to their approach, in our algorithm, a modification of the algorithm
for the EM model [3] is used to implement treeDecompostionOfAtMost. For
efficient parallelization, the algorithm obtains a balanced tree decomposition of
width � for a graph of size n.

Large parts of the algorithm of Maheshwari and Zeh can be reused, since
it heavily uses scanning, sorting and prefix sum computations. The most chal-
lenging part is to return an actual tree decomposition, and not a corresponding
implicit (intermediate) representation. Their data structure ”Flippable DAG”,
which represents a DAG such that its entire edge set can be flipped (implicitly)
with one I/O, is used in this process fundamentally. Precisely, their procedure
to extract from a flippable DAG an explicit DAG uses time forward processing
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(TFP) [17]. Since it is not clear how TFP can be implemented efficiently in the
PEM model we observe the following: in the case of computing a tree decompo-
sition it is possible to store instead of one flippable DAG data structure a DAG
and its ”flip” explicitly. Therefore treeDecompostionOfAtMost does not rely on
TFP anymore and can be implemented PEM-efficiently.

Analysis: The I/O-complexity of the three methods sketched in this section,
reduce, balance, and treeDecompostionOfAtMost, are dominated asymptot-
ically by sorting or list ranking. The methods are applied in the loops of
Algorithm 1 repeatedly to different sizes of inputs, which geometrically decrease
(respectively increase) from the initial input size n to constant size. Thus, the
number of available processors increases relatively to the input size and the
runtimes sortP (n) and listRankP (n) are not applicable anymore due to their pro-
cessor bounds. The I/O complexity of list ranking equals the I/O complexity of
sorting in a large parameter range but when applied with many processors (in
relation to the input size) it dominates sorting. A detailed analysis yields the
following term to capture the complexities of all loops:

O
(

logn−(log(PB2 log(t) n)−1)∑
j=0

sortP
( n
dj

)
+

logB∑
�=0

B logB log(t) n logM
B

n

B
+

log(PB log(t) n)∑
m=0

(
B log(t) n+ logB logM

B

n

B

))

The first sum can be bound by O (sortP (n)) since the input sizes are ge-
ometrically decreasing. The last sums can be bound by O (sortP (n)) due to

the restrictions on P ≤ n/(B2 logB log n log(t) n) and M = BO(1), as stated by
Theorem 3. This yields in total O (sortP (n)) parallel I/Os for computing a tree
decomposition. Note that improvements of the parameter range would directly
imply improvements on the parameter range of this algorithm.

Furthermore, observe that the bound on P is compared to the list ranking
bound decreased by another logn factor. This seems natural, since the PRAM
algorithm [2] requires P ≤ n

log2 n
, opposed to P ≤ n

log n for sorting or list ranking

in the PRAM model.

3 Replacing Protrusions

Let G be a graph, and X ⊆ V (G), then ∂G(X) is defined as the set of vertices
in X having a neighbor in V \ X . Furthermore X is a r-protrusion of G if
|∂G(X)| ≤ r and tw(G[X ]) ≤ r.

In this section we present PEM-efficient implementations of the (random-
ized) large protrusion finder, and the protrusion replacer of Fomin et al. [6].
Both, protrusion finder and protrusion replacer, are be applied to n-vertex

graphs G from classes G(top)H , for some fixed graphH . Thus, all handled graphsG
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have E(G) = O(|V (G)|) edges, and our implementations run with
O (sortP (|E(G)|))) = O (sortP (n)) parallel I/Os.

There is only one reduction rule which is applied repeatedly on the input
graph G to reduce its size. This rule was introduced by Fomin et al. [14]:

If G has a τ-protrusion X, then X is replaced by a constant sized
graph Y ∈ RΠ,τ , which is equivalent to X with respect to a relation ≡Π,τ .

(�)

An instance (G, κ) is called reduced if the reduction rule cannot be applied
anymore to it. By [7, Lemma 1] for any parameterized problem Π which has
finite integer index (FII) in a graph class G there exists for every fixed τ ∈ N
such a finite set RΠ,τ of representatives for the problem Π restricted to the
graph class G. The safety of the reduction rule (�) is proven in [7, p. 620].

Since RΠ,τ depends on τ , our kernelization algorithm (as well as the known
polynomial-time kernelizations of [7,6]) is non-uniform in κ. On the other hand,
in the following we may assume that RΠ,τ is known explicitly to the algorithms.

By definition, RΠ,τ is finite for every fixed τ and for every Π which has FII.
Thus, the protrusion limit of Π restricted to a graph class G is well-defined as
ρΠ,G(τ) = maxG∈RΠ,τ |V (G)| [7].

The key result to be proven in this section is a PEM-efficient implementation
of the reduction rule (�). To this end, a randomized PEM-efficient protrusion
finder yielding a set P of protrusions, and a PEM-efficient protrusion replacer,
replacing constant sized protrusions, is presented. Since not all protrusions of P
are of constant size, in Lemma 7, a PEM-efficient algorithm for replacing pro-
trusions of unbound size, by constant sized protrusions, is presented.

3.1 PEM-Efficient Protrusion Finder

The protrusion finder is an algorithm that finds τ -protrusions such that every
τ -protrusion X has size at least ρΠ,G(2τ). The complexity of our PEM-efficient
protrusion finder is the following:

Lemma 5. The randomized fast protrusion finder of Fomin et al. [6], for a
input graph G of size n, can be implemented in the CREW PEM model with
P ≤ n/(B2 logB logn log(t) n) and M = BO(1) taking an expected number of
O (sortP (n)) parallel I/Os. It yields a set P of τ-protrusions such that for ev-
ery X ∈ P holds |X | > ρΠ,G(2τ).

The proof of Lemma 5 is given in the full version of this paper. The algorithm is
a straight forward implementation of the algorithm of Fomin et al. with special
considerations on load balancing, using the connected components algorithm
for graphs which are sparse under contraction of Arge et al. [19] and our new
algorithm for tree decompositions (Section 2).

3.2 PEM-Efficient Protrusion Replacer

In this section, based on the ideas of Bodlaender et al. [22], a PEM-efficient
algorithm is given for replacing all τ -protrusions in parallel.
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We first deduct an algorithm to replace constant sized τ -protrusions. For this
task, there is a constant time algorithm ([23, Lemma 5]) in the RAM model.
A trivial simulation of this algorithm requires not more than O (1) I/Os, which
yields the following lemma:

Corollary 6. Let H be a graph and let Π be a parameterized graph problem

with finite integer index in G(top)H . If for τ ∈ N the set RΠ,τ of representatives
of ≡Π,τ is given, then for any τ-protrusion Y of size at most c one can decide
with O(1) I/Os which representative G′ ∈ RΠ,τ satisfies G′≡Π,τG[Y ], where the
hidden constants depend only on τ and c.

Recall that the protrusion finder of Fomin et al. finds a collection P of τ -
protrusions X of size |X | > ρΠ,G(2τ). Since Corollary 6 can handle only pro-
trusions of constant size, a PEM-efficient implementation of an algorithm [6] is
presented, which replaces protrusions which are larger than 2ρΠ,G(2τ) by smaller
(2τ + 1)-protrusions.

Since RΠ,τ exists for a problem Π for all τ , the resulting protrusions can then
be replaced by Corollary 6.

Lemma 7. Let τ ∈ N and let Π be a graph problem with finite integer index on
a graph class G. Given for a graph G ∈ G, of size n, a set of τ-protrusions P,
the expected number of parallel I/Os to find for all X ∈ P with |X | > ρΠ,G(2τ),
a (2τ + 1)-protrusion Y ⊆ X satisfying ρΠ,G(2τ) < |Y | < 2ρΠ,G(2τ) is sortP (n)

in the CREW PEM model with P ≤ n/(B2 logB logn log(t) n) and M = BO(1).

The algorithm of Fomin et al. [24] used for Lemma 7 can be implemented by
evaluating a tree expression evaluation on the nodes of a tree decomposition.

4 Applying the Protrusion Replacer

The randomized fast protrusion replacer of Fomin et al. [6], respectively its
PEM-efficient implementation, does not yield a kernelization yet. By Fomin et
al. [24, Theorem 10] one application, transforming G into G′, reduces, with high
probability, the size ofG by at least a constant fraction r > 0. Thus, for obtaining
a linear kernel it has to be applied O (logn) times. We restate Theorem 4 and
prove it.

Theorem 4. The expected number of parallel I/Os to compute a linear kernel
for each of the problems of Lemma 1 and Lemma 2 is O (sortP (n)) in the CREW

PEM model with P ≤ n/(B2 logB log2 n log(t) n) and M = BO(1).

Proof. The value τ of the randomized fast protrusion replacer is chosen depend-
ing on κ as described by Fomin et al. [6] and Kim et al. [7], respectively.

Using the I/O complexities given by Lemma 5, Lemma 7, and Corollary 6 the
complexity of the algorithm is split up in a term when the number of processors
is bigger than the processor bound of Lemma 5 and a term capturing the part
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in which the lemma does not provide optimal bounds for the remaining graphs
of size at most x = PB2 logB logn log(t) n:

log n
x−1∑

i=0

sortP
( n
ri

)
+

logn∑
j=log n

x

sortP (x) ≤ O (sortP (n)) + sortP (x) logn

The second term is in O (sortP (n)), since
x

PB logn is in O
(

n
PB

)
by the pro-

cessor bound P ≤ n/(B2 logB log2 n log(t) n). Since the sorting terms are geo-
metrically decreasing, the first term is in O (sortP (n)), yielding the theorem. �

5 A Permuting Lower Bound

To show a lower bound in the PEM model, we need a standard indivisibility
assumption [12]. More precisely, we assume that the node-identifiers that are
used to describe the edges of the graph are atomic [25].

A well known problem to which many computational problems can be reduced
to is the Proximate Neighbors problem [17]. The input of the Proximate

Neighbors problem are 2n atoms representing x1, . . . , xn, yπ(1), . . . , yπ(n). For
solving the problem, a program which may be perfectly adapted to the permu-
tation π, has to move the pair xi, yi into the same main memory at some time
(and compare them on some CPU). Chiang et al. [17] have shown a permuting
lower bound on the number of I/Os needed to solve this task in the EM model.
Despite the absence of a speed up theorem [16] the lower bound can be extended
to the PEM model [25].

Hence, for reasonably big B, this justifies sorting for solving the proximate
neighbors problem. Based on this result the following lower bound can be ob-
tained easily:

Theorem 5. Every randomized algorithm that can decide if a connected planar
input graph is a tree must use Ω (min{n/P, sortP (n)}) parallel I/Os.

A connected graph G is a tree if and only if G has a tree-decomposition of
width 1. This yields a lower bound of Ω (min{n/P, sortP (n)}) parallel I/Os for
tree decomposition algorithms. Similarly, the problem Treewidth-1 Vertex

Deletion on a planar graph, for the special case that there is no vertex dele-
tion necessary has the same bound. This problem is covered by Lemma 1 and
Lemma 2. Thus, we have matching upper and lower bounds for a large parameter
range of Theorem 3 and Theorem 4.
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Abstract. Polyadic Higher-Order Fixpoint Logic (PHFL) is a modal
fixpoint logic obtained as the merger of Higher-Order Fixpoint Logic
(HFL) and the Polyadic μ-Calculus. Polyadicity enables formulas to
make assertions about tuples of states rather than states only. Like
HFL, PHFL has the ability to formalise properties using higher-order
functions. We consider PHFL in the setting of descriptive complexity
theory: its fragment using no functions of higher-order is exactly the
Polyadic μ-Calculus, and it is known from Otto’s Theorem that it cap-
tures the bisimulation-invariant fragment of PTIME. We extend this and
give capturing results for the bisimulation-invariant fragments of EXP-
TIME, PSPACE, and NLOGSPACE.

1 Introduction

Higher-Order Fixpoint Logic. Higher-Order Fixpoint Logic (HFL) [1] is a
modal logic obtained by combining the modal μ-calculus [2] and the simply typed
λ-calculus. The modal μ-calculus is found in HFL as formulas only using the base
type, and consequently they denote predicates over the states of a transition
system. HFL formulas of higher types which are formed using λ-abstraction for
example denote predicate transformers, predicate transformer transformers and
so on which can be defined recursively by means of least and greatest fixpoints.

It is known that model-checking formulas with recursive predicate transform-
ers of order at most k is k-EXPTIME complete [3]. On the other hand, its expres-
siveness is poorly understood and natural questions like a capturing automaton
model, a capturing game semantics, the existence of an alternation hierarchy, or
the role of fixpoints in a guarded fragment have not been addressed sufficiently
yet. This work provides a first step towards the understanding of the expressive-
ness of higher-order recursive definitions in terms of descriptive complexity.

Descriptive (Bisimulation-Invariant) Complexity. Descriptive complexity
studies characterisations of classes of decision problems through means of formal
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descriptions of such problems, for instance through logical formulas. A logic
defines a class of decision problems, namely the membership problem for the
class of models of each of the logic’s formulas.

One of the main aims of descriptive complexity theory is to provide character-
isations of complexity classes in terms of logics, for instance Fagin’s Theorem [4]
stating that NP consists of exactly those problems which can be described by a
formula of existential Second-Order Logic (�SO). Thus, �SO captures NP.

The benefit of such capturing results are the characterisations of complexity
classes without reference to a particular machine model or typical ressource
bounds in terms of time and space consumption.

Many characterisations of known complexity classes in terms of logics have
been found since: Second-Order Logic (SO) captures the polynomial time hi-
erarchy PH [5], PSPACE is captured by SO enriched with a transitive closure
operator [6] or, equivalently, First-Order Logic with an operator to define par-
tial fixpoints [7], and so on. P has yet to be captured by a logic; it is known,
though, that First-Order Logic with a least fixpoint operator captures P over the
class of totally ordered structures [8, 9]. For a more detailed picture of results
known in the area of descriptive complexity theory we refer to the respective
literature [10, 11].

Another interesting result in a similar style is Otto’s Theorem [12] about the
polyadic μ-calculus [12,13]. The polyadic μ-calculus is a variant of the (monadic)
μ-calculus where formulas denote predicates of any arity as opposed to just
monadic ones. The polyadic μ-calculus, like the monadic one, cannot distin-
guish between bisimilar structures; thus, it can only define bisimulation-invariant
graph problems [14, 15]. Moreover, model-checking algorithms for the polyadic
μ-calculus are slightly similar to the ones for the monadic μ-calculus, and in
particular all problems expressed in the modal μ-calculus can be decided in P.
Otto’s Theorem states the converse of these: if a problem p is in the class P��
of problems that are both bisimulation-invariant and decidable in P, then p can
be expressed by a formula of the polyadic modal μ-calculus. In other words, the
polyadic modal μ-calculus captures P��.

Contributions. Here we address the question of the expressiveness of higher-
order fixpoints in HFL by extending Otto’s Theorem to higher orders. We define
PHFL, the polyadic version of HFL and we turn our attention to the first-order
fragment PHFL�1� of PHFL. Here, the term order refers to the typing order of
functions used in the formulas. Thus, the fragment PHFL�0� of order 0 contains
no proper functions, and it is equal to the polyadic μ-calculus. Note that there is
a difference with the term order used in predicate logics: the polyadic μ-calculus
is in fact a fragment of second-order predicate logic. The two interpretations of
the term order are closely related: the fragment of formulas with functions of
typing order at most k can be seen as a fragment of order �k�2� predicate logic.
We simply prefer to use the typing order for the indexing of fragments because
then the lowest fragment is PHFL�0� instead of PHFL�2�.



92 M. Lange and E. Lozes

Our first contribution is to show that PHFL�1� captures the complexity class
EXPTIME��. We then turn our attention to tail-recursive functions. It is well-
known that such functions are usually more space efficient than arbitrary recur-
sive functions. Our second contribution is to give a formal account of this fact:
we show that the fragment PHFL�1, tail� of order-1 tail-recursive functions cap-
tures PSPACE��. We also develop the idea of tail-recursiveness for the polyadic
μ-calculus, i.e. the fragment without proper functions, and obtain a fragment
PHFL�0, tail� that captures NLOGSPACE�� on structures equipped with a pre-
order which induces a total order on the equivalence classes w.r.t. bisimilarity.
This pre-order is to NLOGSPACE�� and PHFL�0, tail� what a total order is to
P and FO�LFP�: it enables the definition of iterations via fixpoint operators.
Interestingly, the cut-off point marking the apparent need for such an order
in the bisimulation-invariant complexity hierarchy lies below that in the non-
bismulation-invariant world, namely between NLOGSPACE�� and P�� rather
than between P and NP.

Related Work. While this paper has taken the approach of characterising
complexity classes classes by typing and syntactic restrictions, descriptive com-
plexity theory predominantly has characterised complexity classes in terms of
fixpoint combinators (like TC, LFP, or PFP), with the notable exception of
characterisations based on Horn and Krom clauses [16].

In a different setting, higher-order grammars have been a topic intensively
studied in the 80s that has recently revived in the context of verification of
higher-order programs. A problem still open is whether languages defined by
such grammars are context sensitive, or in other words if they belong to the
complexity class NLINSPACE (non-deterministic linear space). Recent progresses
on this problem have been achieved by Kobayashi et al [17], who showed that
this is at least the case up to order 2 for tree languages and order 3 for word
languages. Beside the fact that this line of research does not target a capturing
result, the most significant difference with our work is that we consider a polyadic
μ-calculus, or in different words, an automaton model that uses multiple tapes,
whereas collapsible pushdown automata (the automaton model for higher-order
grammars) only work with one tape.

Implicit complexity is another line of research that aims at ensuring the com-
plexity of the execution of higher-order programs through typing. Our work
here is not concerned with the time complexity of performing β-reductions or the
space needed to represent the reduced terms but in the complexity of the queries
defined by the formulas we consider (which are invariant under β-reduction).

Outline. In section 2 we recall Otto’s Theorem that states that the polyadic
μ-calculus captures P��. In section 3, we introduce the higher-order polyadic
μ-calculus. Section 4 establishes that order 1 captures EXPTIME��. Section 5
studies the tail-recursive fragment and establishes that there, order 1 captures
PSPACE�� and order 0 NLOGSPACE��. Due to space constraints, some details
are missing and can be found in a longer version [18].
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2 Background

Labeled Transition Systems, Bisimulation, and Queries. A labeled tran-
sition system (LTS) is a tuple M 	 �Q,Σ, P,Δ, v�, where Q 	 
q, r, . . . � is a set
of states, Σ 	 
a, b, . . . � is a finite set of actions, P 	 
p, . . . � is a finite set of
propositions, Δ � QΣQ is the set of labeled transitions, and v : P � 2Q is
a valuation that associates to every proposition a set of states. We write q1

a
� q2

for �q1, a, q2� � Δ and q �� p for q � v�p�.
A binary relation R � Q2 is a bisimulation if it is a symmetric relation, and

for every pair of states �q1, q2� � R, it holds that (1) for all a � Σ, for all q�1 � Q,
if q1

a
� q�1, then there is q�2 � Q such that q2

a
� q�2 and q�1 R q

�
2, and (2) for all

p � P , if q1 �� p, then q2 �� p. Two states q1, q2 are bisimilar, written q1 � q2, if
there is a bisimulation that contains the pair �q1, q2�.

We assume a fixed encoding of a finite LTS M 	 �Q,Σ, P,Δ, v� as a word
wM such that �wM� is linear in �Q� � �P �� �Δ� (for instance, using a sparse matrix
representation). An r-adic query Q is a set of tuples �M, q1, . . . , qr� where M
is an LTS and q1, . . . , qr are states of M. A query Q is said to belong to a
complexity class C if the language of encodings of Q is in C. A query Q is said to
be bisimulation-invariant if for every two tuples �M, q� and �M�, q�� such that
qi � q

�
i for all i, �M, q� � Q if and only if �M�, q�� � Q.

Example 1. Let Q be the binary query consisting of tuples �M, q, q�� such that
q � q�. Since bisimilarity can be decided in P, this query is in P. Moreover, since
bisimilarity is a transitive relation, this query is bisimulation-invariant.

The Polyadic μ-calculus. A formula of the (monadic) modal μ-calculus is
often interpreted as a game played by two players (sometimes called Prover and
Refuter) that alternatively move a single pebble along the transitions of an LTS.
The polyadic μ-calculus is basically a multi-pebble version of this game: d � 1
pebbles are disposed on the states of a LTS, and for every modality �a�i (respec-
tively �a�i), Prover (respectively Refuter) has to move the i-th pebble along an
a-transition. Moreover, formulas can use the modality 
i�j�, that corresponds,
in the game interpretation, to moving the i-th pebble to the same place as the
j-th pebble.

Let Var 	 
X,Y, Z, . . .� be some fixed set of variables. Formulas of the polyadic
μ-calculus Lωμ are given by the following grammar

Φ, Ψ ::	 � � pi � Φ� Ψ � �Φ � �a�iΦ � 
i�j�Φ � X � μX.Φ

where i 	 �i1, . . . , in� and j 	 �j1, . . . , jn� are equal-length tuples of natural
numbers. As usual, we only consider formulas in which every bound variable
occurs underneath an even number of negations counting from its μ-binder. We
also use standard notations for derived logical connectives, namely �, �, �,
and �a�i for conjunction, implication, equivalence, and necessity respectively.
A formula is d-adic if in each subformula pi, �a�jΦ, and 
i�j�Φ the indices
i, j, i1, . . . , in, j1, . . . , jn are in 
1, . . . , d�.
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The semantics of a d-adic formula Φ is a set �Φ�dM of d-tuples of states (see [12],
and also Section 3). The r-adic query Qr

Φ associated to a closed d-adic formula
Φ is the set of tuples �M, q1, . . . , qr� such that there is s � �Φ�dM with qi 	 si for
all i 	 1, . . . ,min�r, d�.

Example 2. A standard example of a 2-adic formula is Φ� :	

νX.
�
a�Σ

�a�1�a�2X � �a�2�a�1X �
�
p�P

p1 � p2

which denotes the set of pairs �q1, q2� such that q1 � q2. Thus, Φ� defines
bisimilarity [12, 13], and Q2

Φ is the same query as in Example 1.

Theorem 1 (Otto [12]). Let Q be an r-adic query. The following two are
equivalent. (1) Q is bisimulation-invariant and in P; (2) Q 	 Qr

Φ for some
Φ � Lωμ .

As a consequence of Otto’s Theorem, we get for example that trace equivalence
is not expressible in the polyadic modal μ-calculus (unless P 	 PSPACE), because
of the PSPACE-completeness of trace equivalence [19].

3 A Polyadic Higher-Order Fixpoint Logic

In this section, we introduce the polyadic higher-order fixpoint logic, a logic
that extends the polyadic modal μ-calculus with higher-order fixpoints à la
Viswanathan and Viswanathan [1]. In Viswanathans’ logic, order-0 formulas de-
note predicates, order-1 formulas denote predicate transformers, i.e. functions
mapping predicates to predicates, and so on for higher orders. For instance,
�λF. λX. F �F X�� �λY. �a�Y � � is equivalent to the formula �a��a��.
Moreover, the least fixpoint combinator can be applied to monotone predicate
transformers of any order. For instance, the formula

�
μG. λF. λX. �F X� � �G �λZ. F �F Z�� X�

�
�λY. �a�Y � �

is equivalent to the infinitary disjunction
�

n�0�a�
2n�.

Formally, formulas Φ, Ψ, . . . , types τ, σ, . . . and variances v of the polyadic
higher-order fixpoint logic (PHFL�ω�) are defined by the grammar

v ::	 � � � � 0 σ, τ ::	 � � σv � τ
Φ, Ψ ::	 � � pi � Φ� Ψ � �Φ � �a�iΦ � 
i�j�Φ � X � λXv,τ .Φ � Φ Ψ � μXτ .Φ

where X,Y, . . . range over a finite set of variables, and i, j range over the set
N of natural numbers. We use standard notations like Φ � Ψ , �a�iΦ, νX

τ .Φ, or
Φ � Ψ for dual and derived connectives. The maximal arity ma�τ� of a type τ
is defined by induction on τ : ma��� 	 1, and ma�τ1 � τ2 � � � � � τn � �� 	
max�
n� � 
ma�τi� � i 	 1, . . . , n��. The order ord�τ� of a type τ is defined by
induction on τ : ord��� 	 0, and ord�σ � τ� 	 max�1�ord�σ�, ord�τ��. The order



Capturing Bisimulation-Invariant Complexity Classes with HFL 95

Γ � � : � Γ � pi : �
Γ � Φ : �

Γ � �a�iΦ : �

Γ � Φ : �

Γ � �i�j�Φ : �

�Γ � Φ : τ

Γ � �Φ : τ

Γ � Φ : τ Γ � Ψ : τ

Γ � Φ	 Ψ : τ

v 
 ��, 0�

Γ , Xv : τ � X : τ

Γ,Xv : σ � Φ : τ

Γ � λXv,σ. Φ : σv � τ

Γ,X� : τ � Φ : τ

Γ � μXτ . Φ : τ

Γ � Φ : σ� � τ Γ � Ψ : σ

Γ � Φ Ψ : τ

Γ � Φ : σ� � τ �Γ � Ψ : σ

Γ � Φ Ψ : τ

Γ � Φ : σ0 � τ Γ � Ψ : σ �Γ � Ψ : σ

Γ � Φ Ψ : τ

Fig. 1. The type system of PHFLω�. The type environment �Γ is the one in which
every assumption Xv : τ is replaced with X�v : τ

of a formula Φ is max
ord�τ� � μXτ .Ψ is a subformula of Φ�. We write PHFL�k�
for the set of formulas where recursive predicates are annotated with types of
order at most k. In particular, PHFL�0� is the polyadic modal μ-calculus Lωμ .
On the other hand, the 1-adic fragment of PHFL�ω� is exactly Viswanathans’
Higher-Order Modal Fixpoint Logic.

Given a set A and a bolean algebra B, the set of functions f : A � B is
again a boolean algebra (for instance, ��A�Bf��x� 	 �B�f�x��). A function
f : A � B has variance � if it is monotone, � if �A�Bf is monotone, and 0
in any case. We associate to every type τ the boolean algebra Dτ as follows: (1)
D� is the set P�Qd� of all d-adic predicates, and (2) if τ 	 σv � σ�, then Dτ is
the set of functions f : Dσ � Dσ� that have variance v.

A term λXv,τ .Φ denotes a function that expects an argument of type τ and
has variance v in this argument. A type judgement is a judgement of the form
Xv1,τ1

1 , . . . , Xvn,τn
n  Φ : τ . We say that a type judgement is derivable if it admits

a derivation tree according to the rules of Figure 1.
A formula Φ is well-typed if  Φ : τ is derivable for some τ . In the remainder,

we always implicitly assume that we are working with well-typed formulas and
sometimes omit the type annotations.

The semantics of a well-typed formula Φ of type τ is a predicate or function
living in Dτ that we are now about to define. The interpretation �Γ � of a type
environment is the set of maps ρ that send each variableXv : τ � Γ to ρ�X� � Dτ .
We write ρ�X !� X � for the map ρ� that is equal to ρ except for ρ��X� 	 X .
The interpretation �Γ  Φ : τ� is a map from �Γ � to Dτ defined by induction on
Φ as explained of Figure 2 (remember that D� 	 P�Qd� is the set of all d-adic
predicates).

Proposition 1. For every formula Φ of ground type, for all d � 1, the query
Qd

Φ is bisimulation-invariant.

Proposition 1 can be proved for instance by extending Viswanathans’ proof
of the bisimulation-invariance of Higher-Order Fixpoint Logic [1] to polyadic
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�Γ � � : ��ρ��Qd

�Γ � �a�iΦ : ��ρ���q 
 Qd � �q� 
 �Γ � Φ : ��. q
a,i
� q��

�Γ � Φ	 Ψ : τ�ρ���Γ � Φ : τ�ρ� �τ �Γ � Ψ : τ�ρ�
�Γ � �Φ : τ�ρ���τ ��Γ � � Φ : τ�ρ�

�Γ � �i�j�Φ : ��ρ����i�j�q� � q 
 �Γ � Φ : ��ρ��
�Γ,X : τ � X : τ�ρ��ρX�

�Γ � μXτ .Φ�ρ��LFP �Γ � λX�,τ . Φ�ρ�
�Γ � λXv,σ. Φ : σv � τ�ρ��X �� �Γ,Xv : σ � Φ : τ�ρ�X �� X ��

�Γ � Φ Ψ : τ�ρ���Γ � Φ : σv � τ�ρ��Γ � Ψ : σ�ρ��

where q
a,i
� q� stands for qi

a
� q�i and qj � q�j for all j � i.

Fig. 2. Semantics of PHFLω�

formulas. Furthermore, using fixpoint unfolding and β-reduction it is also possi-
ble to see that over every set of structures, PHFL�ω� is equivalent to infinitary
polyadic modal logic, i.e. one with arbitrary disjuncts and conjuncts and no
fixpoint quantifiers, no λ-abstraction and no formula application.

Example 3. Let Φ :	
�
νF.λX, Y.X � Y �

�
a�Σ

F �a�1X �a�2Y
�
� �. Then Φ can

be unfolded to

F � � 	 � � � �
�

a�Σ F �a�1� �a�2�
	

�
a�Σ �a�1� � �a�2� �

�
b�Σ F �ba�1� �ba�2�

	
�

w�Σ� �w�1� � �w�2�,

where �w�i stands for �w1�i�w2�i . . . �wn�i. Thus, Φ denotes those pairs �q1, q2�
for which q1 and q2 have exactly the same traces, i.e Φ defines trace equivalence.

4 Capturing EXPTIME�
�

The aim of this section is to show that the first-order fragment of PHFL, i.e.
PHFL�1� captures the class of bisimulation-invariant queries which can be eval-
uated in deterministic exponential time. For one part of this result we show the
stronger statement that queries of order k can be evaluated in k-fold exponential
time.

Theorem 2. Let r, k � 1, and Φ � PHFL�k�. Then the query Qr
Φ is in k-

EXPTIME.

The proof essentially follows the same ideas as in the case of the (1-adic) Higher-
Order Fixpoint Logic [3] (see [18] for details).

Theorem 2 shows in particular that all queries expressible in PHFL�1� are in
EXPTIME��. We now consider the converse implication and aim at a proof of
the following: if a query is in EXPTIME��, then it can be expressed by a PHFL�1�
formula. A direct, but tedious proof would encode the run of an EXPTIME Turing
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machine by a query. A more elegant proof can be obtained by making use of
Immerman’s characterisation of EXPTIME queries over structures [6] as those
that are expressible in second-order logic with least fixed points (SO�LFP�). The
proof then proceeds in two steps: first, we transfer Immerman’s result to the
logic SO�LFP��� defined over labeled transition systems, and second we show
how to encode SO�LFP��� into PHFL�1�.

The first step is relatively easy with the main problem simply being a correct
definition of the semantics of SO�LFP��� over LTS. We define the formulas of
SO�LFP� (resp. SO�LFP���) as the ones derivable from the grammar

Φ, Ψ ::	 p�x� � a�x, y� � Φ� Ψ � �Φ � �x.Ψ �

�X.Ψ � LFP�F,X , Φ��Y ��x� � X�x� � F �X��x�

The semantics of SO�LFP� on labeled graphs is as expected (see for instance [6]).
Now, in order to define the semantics of SO�LFP��� over LTS, we just need to
map every LTS to a labeled graph and interpret the formula over this graph
with the SO�LFP� semantics.

We call a tuple �M, q1, . . . , qr� reduced if all states of M are reachable from
at least one qi, and if � coincides with equality. To every tuple �M, q�, we
associate the reduced tuple RED�M, q� obtained by quotienting with respect to
� and pruning all states that cannot be reached from at least one qi. We say
that a tuple �M, q� satisfies a formula Φ of SO�LFP��� if the graph RED�M, q�
satisfies Φ in the graph semantics.

Lemma 1. A query Q is in EXPTIME�� iff if it is definable in SO�LFP���.

We refer to [18] for a detailed proof of this result, and now move to the
more challenging part, namely the encoding of SO�LFP��� into PHFL�1�. For
every SO�LFP��� formula Φ with free second-order variables X1, . . . , Xn, we
define a PHFL�1� formula Ψ with the same free (order 0) variables, so that
the least fixpoint in SO�LFP��� is naturally represented by a least fixpoint in
PHFL�1�. First-order variables of SO�LFP��� are encoded differently. Without
loss of generality, we may assume an enumeration x1, . . . , xr, xr�1, . . . xd of all
variables of the SO�LFP� formula, such that x1, . . . , xr are the free variables and
xr�1, . . . , xd are the quantified ones. We thus code p�xi� and a�xi, xj� as pi and
�a�i
1, 2 " i, j�Φ� respectively, where Φ� is the formula that defines �. For
i # r, we define the macro �iΦ :	

�r
j�1
i�j�μX.Φ�

�
a�Σ�a�iX, where Φ is

an arbitrary PHFL�1� formula in which X does not occur. Then �iΦ defines the
set of all tuples for which Φ holds once the i-th component has been replaced
by some state reachable from one of the states denoted by x1, . . . , xr. Due to
the bisimulation-invariant semantics of SO�LFP���, this is enough to encode a
first-order quantification.

We are thus left with the encoding of second-order quantifiers. There is no
obvious way of adapting the same idea we used for first-order quantifiers, and
our encoding of second-order quantifiers is significantly trickier.

Let us first recall that it is possible to define a 2-adic formula Φ� that defines
a transitive relation � such that � $ �	 % and � � �	 &; we refer to Otto’s
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work [12] where this formula is the crux of the proof that the polyadic μ-calculus
captures P��. Let M be a reduced LTS, so that � defines a total order on states,
and let �lex denote the lexicographic extension of � over Qd.

Lemma 2. There is a predicate transformer �dec� such that for every formula
Φ, �dec� Φ denotes the upward closure of Φ with respect to �lex.

The construction of �dec� is rather straightforward (see [18]).

Lemma 3. Consider the predicate transformer

next :	 λX. ��X ���dec��X� � �X � �dec��X�.

Then, for any predicate X � P�Qd�, there is i � 0 such that nexti�%� 	 X .

Proof. Consider the bijection f : P�Qd� � 
0, . . . , 2	Q	
d

�1� defined by associat-
ing to every predicate X � P�Qd� the integer f�X � whose binary representation
b1b2 . . . b	Q	d is such that the ith bit bi is equal to 1 if and only if the i-th element

q of Qd with respect to �lex is in X .
Our claim is that next maps every predicate X to the predicate Y such that

f�Y� 	 1� f�X � modulo 2	Q	
d

. Indeed, the ith bit in Y is 1 if either it is also 1
in X and a lower bit is 0 in X , or it is 0 in X but all lower bits are 1 in X . '(

Let Φ be a PHFL�1� formula not containing the variable H , and let formula
�X.Φ be defined as

�
μH.λX.Φ � H �next X�

�
). Then, thanks to Lemma 3,

�X.Φ encodes a second-order existential quantification.

Lemma 4. Let r � 1. For every formula Φ of SO�LFP���, there is a formula Ψ
of PHFL�1� such that Qr

Φ 	 Qr
Ψ .

Theorem 3. PHFL�1� captures EXPTIME�� over labeled transition systems.

Proof. Lemmas 1 and 4 prove that every EXPTIME�� query is expressible in
PHFL�1�. By Theorem 2 and Proposition 1, we know that PHFL�1� cannot ex-
press more than that. '(

5 Tail Recursion and PSPACE�
�

Tail-recursive functions are functions that are never called recursively in inter-
mediate steps of their body, either for evaluating a condition on branching, or for
evaluating an argument of a function call. By analogy, we define tail-recursive
formulas as the ones that can be seen as non-deterministic tail-recursive func-
tions.

We assume from now on that the logical connective � is primitive in the
syntax (and not just the dual of �). Without loss of generality, we restrict our
attention to formulas in which every variable is bound at most once. We say
that a formula μX.Φ is a tail-recursive definition if no subformula of Φ is of the
form either Φ� Ψ , or �Ψ , or Ψ � Φ�, with X occuring free in Ψ (see Figure 3 for
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Ȳ � tailpi, X̄�
X 
 X̄ � Ȳ

Ȳ � tailX, X̄�

Ȳ � tailΦ,��

Ȳ � tail�Φ, X̄�

Ȳ � tailΦ, X̄�

Ȳ � tail�i�j�Φ, X̄�

Ȳ � tailΦ, X̄� Ȳ � tailΨ, X̄�

Ȳ � tailΦ	 Ψ, X̄�

Ȳ � tailΦ, X̄�

Ȳ � tail�a�iΦ, X̄�

Ȳ � tailΦ,�� Ȳ � tailΨ, X̄�

Ȳ � tailΦ� Ψ, X̄�

Ȳ � tailΦ,��

Ȳ � tail�a�iΦ, X̄�

Ȳ � tailΦ, X̄� Ȳ � tailΨ,��

Ȳ � tailΦ Ψ, X̄�

Ȳ � �Z� � tailΦ, X̄�

Ȳ � tailλZv,τ .Φ, X̄�

Ȳ � tailΦ, X̄ � �Z��

Ȳ � tailμZτ .Φ, X̄�

Fig. 3. A closed formula Φ is tail-recursive if � � tailΦ,�� is derivable

an inductive definition). Observe that we therefore do not treat both sides of a
conjunction symmetrically. A formula is tail recursive if every recursive definition
is tail-recursive. We write PHFL�i, tail� for the set of tail-recursive formulas of
PHFL�i�.

Example 4. The formula �μF.λX.�F �a�1X� � �X � �a�2�F X�� �μY.Y � is tail-
recursive. On the other hand, the formula μX.�a�1X is not tail-recursive because
X occurs underneath �a�1 (see Figure 3). The formula μF.λX.�F X� � �F �F X��
is not tail-recursive either, for two different reasons: on the one hand F occurs
on the left side of �, and on the other hand F occurs in the argument F X of
F .

Theorem 4. Let r # 0 and Φ � PHFL�1, tail�. Then Qr
Φ is in PSPACE.

Proof. The proof of this result is slightly more complicated than for Theorem 2.
To achieve EXPTIME, a global model-checking algorithm that closely follows the
semantics of PHFL�1� is enough. However, such an algorithm needs to represent
functions denoted by predicate transformer in extension, which requires expo-
nential space. If we want a model-checking algorithm running in PSPACE, we
need to avoid representing functions in extension.

For a PHFL�1, tail� formula Φ, let the recursion depth rd�Φ� of Φ be inductively
defined as follows: rd�pi� 	 rd�X� 	 0, rd�Φ1 � Φ2� 	 max�rd�Φ1�, rd�Φ2��,
rd�Φ1 � Φ2� 	 max�rd�Φ2�, 1 � rd�Φ1��, rd�Φ1 Φ2� 	 max�rd�Φ1, 1 � rd�Φ2��,
rd��a�iΦ� 	 rd�λX.Φ� 	 rd�μX.Φ� 	 rd�Φ�, and rd��Φ� 	 1� rd�Φ�.

If π is a list X1, . . . ,Xn of elements of P�Qd�, we write hd�π� for X1 and tl�π�
for X2, . . . ,Xn, and X :: π for the list π� with hd�π�� 	 X and tl�π�� 	 π. For
simplicity, we assume without loss of generality that we work with formulas such
that every variable is bound at most once. We call a variable recursive if it is
bound by a μ. For a function c : Var � N we write c�X++� for the function
defined by c�X++��X� 	 1� c�X� and c�X++��Y � 	 c�Y � for all Y * X .
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For a tuple q � Qd, a PHFL�1, tail� formula Φ, a list π � P�Qd�
, a function
ρ : Var � P�Qd� and a function c : Var � N, let check�q, Φ, π, ρ, c� be the
non-deterministic recursive procedure defined as follows:

– if Φ is an atomic formula, return true if q � �Φ��ρ�, false otherwise;
– if Φ 	 
i�j�Ψ , return check�
i�j��q�, Ψ, π, ρ, c�;
– if Φ 	 X and X is not a recursive variable, return true if q � ρ�X�, false

otherwise;
– if Φ 	 X for a recursive variable X with fpX 	 μXτ .Ψ , let N :	 �Q�d if
X is order 0, otherwise X is a l-ary predicate transformer for some l # 0,

and we set N :	 �Q�ld � 2l	Q	
d

; if c�X� 	 N , return false, otherwise return
check�q, Ψ, π, ρ, c�X++��;

– if Φ 	 �Ψ , return �check�q, Ψ, π, ρ, c�;
– if Φ 	 Φ1 � Φ2, guess i � 
1, 2� and return check�q, Φi,X , π, ρ, c�;
– if Φ 	 �a�iΨ , guess s such that q

a,i
� s and return check�s, Ψ, π, ρ, c�;

– if Φ 	 Ψ1 Ψ2, compute first the set of tuples X :	 
r � check�r, Ψ2, π, ρ, c� 	
true�, then return check�Ψ1,X :: π, ρ, c�;

– if Φ 	 Φ1 � Φ2, return false if check�q, Φ1, π, ρ, c� 	 false, otherwise return
check�q, Φ2, π, ρ, c�;

– if Φ 	 λX.Ψ , return check�Ψ, tl�π�, ρ�X !� hd�π��, c�;
– if Φ 	 μXτ .Φ�, return check�q, Φ�, π, ρ, c�X !� 0��.

Consider a fixed d-adic formula Φ with l variables and recursion depth rd�Φ� 	 k,
and an LTS M with n states. Encoding sets as bit vectors and integers in binary,
ρ, π and c require O�ndl� space, whereas encoding q requires O�d � logn�. More-
over, if we avoid to stack the calling context at every tail recursive call (recursive
calls of the form return check�. . . �), then the height of the stack of calling con-
texts is bounded by the recursion depth k of the formula. So check�q, Φ, π, ρ, c�
requires overall space O�k �ndl�. As a consequence, for a fixed parameter formula
Φ, the procedure works in NPSPACE, and by Savitch’s theorem we get that Qr

Φ

is in PSPACE. '(

We are now interested in the proof of the converse of Theorem 4. In order
to establish that PHFL�1, tail� captures PSPACE��, we again pick a logic that
captures PSPACE over graphs, transfer this result to transition systems, and
encode this logic in PHFL�1, tail�. The logic we consider is first-order logic with
partial fixpoints (FO�PFP�) introduced by Abiteboul and Vianu [7]. The partial
fixpoint PFP�f� of a predicate transformer f : P�Qd� � P�Qd� is the predicate
defined as follows: if there is some i � 0 for which f i�%� 	 f i�1�%�, then
PFP�f� :	 f i�%�; otherwise PFP�f� :	 %. We only detail the encoding of this
partial fixpoint combinator in PHFL�1, tail�, since the rest of the proof does not
significantly differ from the proofs of Lemmas 1 and 4 (see [18] for details).

Let +iΦ denote the formula ��i�Φ, where �iΦ is the formula we introduced for
encoding first-order quantifiers. For a PHFL�1, tail� formula Φ with a free variable
X , let Ψ :	

�
μF.λX.�X �+1 . . .+d�X � Φ�� � F Φ

�
). It can be checked that

Ψ is tail-recursive and order 1, and that it defines the partial fixpoint of λX.Φ.
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Theorem 5. PHFL�1, tail� captures PSPACE�� over labeled transition systems.

Next we consider tail-recursive formulas of order 0. The same algorithm that
we used in the proof of Theorem 4 has a better space complexity for formulas
of PHFL�0�.

Theorem 6. For all r � 0, for every formula Φ of PHFL�0, tail�, Qr
Φ is in

NLOGSPACE.

Proof. Consider again the procedure check�q, Φ, π, ρ, c� for local model-checking
introduced in the proof of Theorem 4. When Φ is in PHFL�0, tail�, all variables
are recursive, so the parameters ρ and π are useless, and for every recursive
variable X , the counter c�X� remains smaller than �Q�d, so c can be represented
in logarithmic space. Since q can also be represented in logarithmic space, and
the height of the stack of recursive calls is bounded by the constant rd�Φ�, check
is a non-deterministic logarithmic space procedure. '(

In order to capture NLOGSPACE��, we consider the logic FO�TC� whose syn-
tax is defined as follows

Φ ::	 p�xi� � a�xi, xj� � xi � xj � Φ� Ψ � �Φ � �xi.Φ � X�x̄� � �TC Φ��x,y�.

A formula Φ of FO�TC� is d-adic if for every first-order variable xi occurring in
Φ the index i is smaller than 2d. The semantics of a d-adic formula is then a
binary relation R � Q2d, with �TC Φ� being the reflexive transitive closure of
�Φ�. As before, let FO�TC��� be the syntactically same logic which is interpreted
over reduced LTS only. Bisimulation is still definable in FO�TC� because of the
preorder �. Since bisimulation � is P-complete [21], FO�TC��� is very unlikely
to capture NLOGSPACE�� over all transition systems. The way to go around
this problem is to assume that the preorder � is given as part of the model.

We call totally ordered LTS a tuple M 	 �Q,�, Σ, P,Δ, v� where � is a
preoder over Q such that � � � 	 &. Observe that for a totally ordered LTS
M, �M, q� is reduced if and only if � is a total order, and all states are reachable
from one of the q root states, so the query containing all reduced �M, q� is in
NLOGSPACE over totally ordered LTS. Now, using the same arguments as in
Lemma 1, we get that FO�TC��� captures NLOGSPACE�� over totally ordered
LTS.

We call PHFL�0,�, tail� the set of formulas Φ�Φ��X� such that Φ is in
PHFL�0, tail�. It follows from Theorem 6 that all queries over totally ordered
LTS that are definable in PHFL�0,�, tail� are in NLOGSPACE��.

Theorem 7. PHFL�0,�, tail� captures NLOGSPACE�� over totally ordered LTS.

Proof. We need to show that for every r # 0 and every formula Φ of FO�TC�,
there is a PHFL�0,�, tail� formula Ψ such that Qr

Φ 	 Qr
Ψ over totally ordered

LTS. For any FO formula Φ and its already defined translation tr�Φ� into a
PHFL�0,�, tail� formula, consider the formulas

Ψ0:	
d�

i�1


�1, 2���i, i� d���Φ� � 
�2, 1���i, i� d��Φ�
Ψ :	
s�

�
μX.Ψ0 � �2d�1 . . . �3d

�
�
s1�tr�Φ�� � 
s2�X

��
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EXPTIME

PSPACE

NP coNP
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NLOGSPACE
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P��
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FO�PFP�

FO�LFP�

FO�TC�

� PHFL�1�

� PHFL�1, tail�

� PHFL�0�

� PHFL�0, tail�

Fig. 4. Capturing bisimulation-invariant complexity classes, compared to their non-
bisimulation-invariant counterparts. Below dotted lines, structures are assumed to be
equipped with a total order (resp. a bisimulation-invariant preorder).

where s :	 
1, . . . , 2d�i1, . . . , id, j1, . . . , jd�, 
s1� :	 
1, . . . , d�2d � 1, 3d� and

s2� :	 
d � 1, . . . , 2d�2d � 1, 3d�. Then Ψ is equivalent to �TC Φ��x,y� with
x 	 xi1 , . . . , xid and y 	 xj1 , . . . , xjd . Moreover, as tr�Φ� is closed and tail-
recursive, so is Ψ . So any formula of FO�TC� with a single application of the
transitive closure has an equivalent in PHFL�0,�, tail�; since FO�TC� formulas
have a normal form with a single application of the transitive closure [10], this
proves the result. '(

6 Conclusion and Further Work

The results obtained here are presented in Fig. 4 and compared to those results
in the descriptive complexity of the non-bisimulation-invariant world which are
being used to obtain the results of this paper.

Besides the obvious question of characterisations for NP�� and coNP��,
bisimulation-invariant complexity classes beyond EXPTIME also remain to be
captured. We believe that k�EXPTIME�� is captured by PHFL�k� for k # 1 and
k�EXPSPACE�� is captured by PHFL�k�1, tail� for k # 2. In order to establish
such results, we may want to look for other logical characterisations of these
complexity classes and encode them in PHFL�ω) as we did here. Although we
can think about natural candidates for such logical characterisations we could
not find suitable references in the literature and the generalisation of our results
to higher orders and higher complexity classes is therefore deferred to future
work.
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Abstract. Sensitivity, block sensitivity, and certificate complexity are
complexity measures for Boolean functions. In this paper, we prove that
these three complexity measures are equal to each other if a Boolean
function is a unate function or a read-once function. We also prove

√
n

tight lower bounds for the three complexity measures of read-once func-
tions. As an application of our results, the decision tree complexity of
unate functions and read-once functions is upper bounded by the square
of the sensitivity of the function.

1 Introduction

Sensitivity, block sensitivity, and certificate complexity of a Boolean function
f , denoted by s(f), bs(f) and C(f), respectively, are complexity measures for
Boolean functions, and related to other complexity measures including the time
complexity of CREW PRAMs and decision tree complexity. A long-standing
open problem for these measures is whether or not block sensitivity can be
polynomially upper bounded by sensitivity:

bs(f) ≤ poly(s(f))?

Although many efforts have been devoted to the open problem as we see later,
it is still open. On the other hand, if a function f is a monotone function, it is
known that s(f) = bs(f) = C(f) [8]. Our main motivation of this paper is to
seek other Boolean function classes such that s(f) = bs(f) = C(f).

In this paper, we prove that s(f) = bs(f) = C(f) for unate functions, which
are generalized functions of monotone functions, and for read-once functions over
the Boolean operators ∧, ∨ and ⊕. We also prove that

√
n ≤ s(f) (= bs(f) =

C(f)) for read-once functions which have n input variables, and the lower bound
is tight.

Related Works
Rubinstein [9] exhibited a Boolean function f which has bs(f) = 1

2s(f)
2. The

result has been improved [10,2], although the best known gap is still quadratic.
Kenyon and Kutin [7] have proved that bs(f) ≤ e√

2π
es(f)

√
s(f). The upper

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 104–110, 2014.
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bound has been improved to bs(f) ≤ 2s(f)−1s(f) by Ambainis et al. [1]. Survey
papers [4,5] include more background for this topic. On the average version of
the sensitivity, Impagliazzo and Kabanets [6] have given the tight bound on the
average sensitivity of read-once de Morgan formulas.

2 Preliminaries

2.1 Sensitivity, Block Sensitivity, and Certificate Complexity

Let f : {0, 1}n → {0, 1} be a Boolean function. For an input x = (x1, x2, . . . , xn)
of f and S ⊆ [n] = {1, 2, . . . , n}, let xS denotes the input obtained from x by
flipping all the bits xi such that i ∈ S. We abbreviate x{i} to xi. Sensitivity,
block sensitivity, and certificate complexity are defined as follows, respectively.

Definition 1. The sensitivity of f on x, denoted by s(f, x), is the number
of indices i such that f(x) �= f(xi). The sensitivity of f , denoted by s(f),
is maxx s(f, x). For z ∈ {0, 1}, the z-sensitivity of f , denoted by sz(f), is
maxx∈f−1(z) s(f, x).

Definition 2. The block sensitivity of f on x, denoted by bs(f, x), is the max-
imum number of disjoint subsets B1, B2, . . . , Bb of [n] such that f(x) �= f(xBi)
for all i. The block sensitivity of f , denoted by bs(f), is maxx bs(f, x). For
z ∈ {0, 1}, the z-block sensitivity of f , denoted by bsz(f), is maxx∈f−1(z) bs(f, x).

Definition 3. A certificate of f on x is a subset S ⊆ [n] such that f(y) = f(x)
whenever yi = xi for all i ∈ S. The size of a certificate is |S|.

The certificate complexity of f on x, denoted by C(f, x), is the size of a
smallest certificate of f on x. The certificate complexity of f , denoted by C(f),
is maxxC(f, x). For z ∈ {0, 1}, the z-certificate complexity of f , denoted by
Cz(f), is maxx∈f−1(z) C(f, x).

We can easily show the following relation between s(f), bs(f) and C(f).

Proposition 1. For any Boolean function f ,

s(f) ≤ bs(f) ≤ C(f).

Proof. By the definitions of s(f) and bs(f), s(f) ≤ bs(f). For all x, since a
certificate on x have to contain indices of at least one variable of each sensitive
block, bs(f, x) ≤ C(f, x). Thus, bs(f) ≤ C(f). �

Let xi, yi ∈ {0, 1} for 1 ≤ i ≤ n. A Boolean function is called monotone if
f(x1, x2, . . . , xn) ≤ f(y1, y2, . . . , yn) whenever xi ≤ yi for all 1 ≤ i ≤ n. Nisan [8]
showed the following proposition for monotone functions.

Proposition 2 ([8]). If f is a monotone function, then

s(f) = bs(f) = C(f).
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2.2 Unate Functions and Read-Once Functions

A Boolean function f : {0, 1}n → {0, 1} is positive unate in xi, 1 ≤ i ≤ n, if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all xj , j �= i, and is negative unate in xi if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

≥ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all xj , j �= i. A function f is called unate if f is positive or negative unate
in all xi for 1 ≤ i ≤ n. Monotone functions are a special case of unate functions
such that a function is positive unate in all input variables.

A Boolean formula is a rooted binary tree in which each internal node is
labeled by the Boolean operators ∧, ∨, or ⊕ and each leaf is labeled by a Boolean
variable or its negation. A Boolean formula computes a Boolean function in a
natural way. A Boolean formula is called read-once if every variable appears
exactly once. A read-once Boolean function is a Boolean function that can be
represented by a read-once Boolean formula. Notice that we define read-once
Boolean functions based on Boolean formulas which have the Boolean operator
⊕.

3 Unate Functions

In this section, we prove the following theorem.

Theorem 1. If f is a unate function, then

s(f) = bs(f) = C(f).

s(f), bs(f) and C(f) of a Boolean function f are not changed even if some
input variables of f are flipped. More precisely, the following lemma holds.

Lemma 1. Let f(x) be a Boolean function, and let S ⊆ [n]. For any S, if g(y)
is defined as f(yS), then,

s(f) = s(g), bs(f) = bs(g), C(f) = C(g).

Proof. It is obvious by the definitions of s(f), bs(f) and C(f). �
Proof (of Theorem 1). Let S = {i|f is negative unate in xi, 1 ≤ i ≤ n}. We
define g(y) as f(yS), then g(y) is monotone. By Lemma 1,

s(f) = s(g), bs(f) = bs(g), C(f) = C(g).

By Proposition 2,
s(g) = bs(g) = C(g).

Hence,
s(f) = bs(f) = C(f).

�
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4 Read-Once Functions

In this section, we prove that s(f) = bs(f) = C(f) for any read-once Boolean
function (Theorem 2), and prove that

√
n ≤ s(f) (Corollary 1) and the

√
n lower

bound is tight.

4.1 Lemma

Consider a read-once Boolean formula F representing a read-once Boolean func-
tion. In F , two subformulas which are connected to a same node have no common
input variables, since every variable appears exactly once in a read-once Boolean
formula. This fact enables us to analyze the sensitivity and certificate complexity
of functions computed at each node in F .

Lemma 2. Let f1 and f2 be Boolean functions such that f1 and f2 have no
common input variables, and f1 and f2 are not constant functions.

If f = f1 ∧ f2, then

s0(f) = max{s0(f1), s0(f2)},
C0(f) = max{C0(f1), C0(f2)},
s1(f) = s1(f1) + s1(f2),

C1(f) = C1(f1) + C1(f2).

If f = f1 ∨ f2, then

s0(f) = s0(f1) + s0(f2),

C0(f) = C0(f1) + C0(f2),

s1(f) = max{s1(f1), s1(f2)},
C1(f) = max{C1(f1), C1(f2)}.

If f = f1 ⊕ f2, then

s0(f) = max{s0(f1) + s0(f2), s1(f1) + s1(f2)},
C0(f) = max{C0(f1) + C0(f2), C1(f1) + C1(f2)},
s1(f) = max{s0(f1) + s1(f2), s1(f1) + s0(f2)},
C1(f) = max{C0(f1) + C1(f2), C1(f1) + C0(f2)}.

Proof. Assume that f = f1 ∧ f2. We consider that s0(f) = max{s0(f1), s0(f2)}.
If s0(f1) ≥ s0(f2), we can assign input variables of f2 so that f2 = 1, and
independently we can assign input variables of f1. Thus, we can confirm that
s0(f) = max{s0(f1), s0(f2)}.

Similarly, we can confirm all equations by the definitions of sensitivity and
certificate complexity. �
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4.2 Equality

Lemma 2 immediately gives the following lemma.

Lemma 3. Let f1 and f2 be Boolean functions such that f1 and f2 have no
common input variables, and f1 and f2 are not constant functions. If

f = f1 ∧ f2, f = f1 ∨ f2, or f = f1 ⊕ f2,

and

s0(f1) = C0(f1), s1(f1) = C1(f1),

s0(f2) = C0(f2), s1(f2) = C1(f2),

then

s0(f) = C0(f), s1(f) = C1(f).

Now, we prove the following theorem.

Theorem 2. If f is a read-once Boolean function, then

s(f) = bs(f) = C(f).

Proof. Since s(f) ≤ bs(f) ≤ C(f) for any Boolean function f by Proposition 1,
we only need to prove s(f) = C(f).

Let n be the number of input variables of f . We use induction on n and prove
s0(f) = C0(f) and s1(f) = C1(f).

Base: n = 1. Then, f = x1 or f = ¬x1, and s0(f) = s1(f) = 1 and C0(f) =
C1(f) = 1. Thus, s0(f) = C0(f) and s1(f) = C1(f).

Induction Step: Suppose s0(f
′) = C0(f

′) and s1(f ′) = C1(f
′) for every Boolean

function f ′ such that the number of input variables of f ′ is less than n.
Let F be a read-once Boolean formula which computes f . Recall that we define

Boolean formulas as rooted binary trees. Let f1 and f2 are Boolean functions
computed by subformulas which are connected to the root node of F . Then,
f = f1 ∧ f2, f = f1 ∨ f2, or f = f1 ⊕ f2, and the number of input variables
of f1 and f2 is less than n, respectively. By the supposition, s0(f1) = C0(f1),
s1(f1) = C1(f1), s0(f2) = C0(f2) and s1(f2) = C1(f2). Thus, by Lemma 3,
s0(f) = C0(f) and s1(f) = C1(f), which mean s(f) = C(f). �

4.3 Lower Bound

Lemma 2 also gives a lower bound for the sensitivity of read-once functions.

Theorem 3. If f is a read-once Boolean function of n input variables, then

n ≤ s0(f)s1(f).
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Proof. We use induction on n.

Base: n = 1. Then, f = x1 or f = ¬x1, and s0(f)s1(f) = 1. Thus, n ≤
s0(f)s1(f).

Induction Step: Suppose n′ ≤ s0(f
′)s1(f ′) for every Boolean function f ′ such

that the number of input variables of f ′, denoted by n′, is less than n.
Let F be a read-once Boolean formula which computes f . Recall that we define

Boolean formulas as rooted binary trees. Let f1 and f2 are Boolean functions
computed by subformulas which are connected to the root node of F , and let
n1 and n2 are the number of input variables of f1 and f2, respectively. Then,
f = f1 ∧ f2, f = f1 ∨ f2, or f = f1 ⊕ f2, and n1 < n, n2 < n, and n1 + n2 = n.
By the supposition, n1 ≤ s0(f1)s1(f1) and n2 ≤ s0(f2)s1(f2).

If f = f1 ∧ f2, then, by Lemma 2,

s0(f)s1(f) = max{s0(f1), s0(f2)}s1(f1) + max{s0(f1), s0(f2)}s1(f2)
≥ s0(f1)s1(f1) + s0(f2)s1(f2)

≥ n1 + n2 = n.

Similarly, we can prove that n ≤ s0(f)s1(f) also for the cases that f = f1 ∨ f2
and f = f1 ⊕ f2. �

Recall that s(f) = max{s0(f), s1(f)}.

Corollary 1. If f is a read-once Boolean function of n input variables, then

√
n ≤ s(f).

The lower bounds in Theorem 3 and Corollary 1 are tight, since we can easily
confirm that the following read-once Boolean function f has s0(f) = n/m and
s1(f) = m. (We assume that m is a positive integer such that n/m becomes an
integer.)

f =

n/m∨
i=1

m∧
j=1

xm(i−1)+j .

5 Concluding Remarks

In this paper, we investigated the sensitivity, block sensitivity, and certificate
complexity of unate functions and read-once functions. As the conclusion of this
paper, we show an application of our results to decision tree complexity.

Let D(f) denote the decision tree complexity of f , i.e., the depth of an optimal
decision tree that computes f . Beals et al. [3] prove

Theorem 4 ([3]). For any Boolean function f ,

D(f) ≤ C1(f)bs(f).
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Recall that we proved that s(f) = bs(f) = C(f) for any unate function f
(Theorem 1) and for any read-once function f (Theorem 2), and C1(f) ≤ C(f)
by the definition. Thus, we obtain the following corollary.

Corollary 2. If f is a unate function or a read-once function, then

D(f) ≤ s(f)2.

Although Corollary 2 is meaningful for unate functions, we have to be atten-
tive for read-once functions, since we can easily see that D(f) = n for every
read-once function. Thus, Corollary 2 is an alternating proof of Corollary 1
rather than an upper bound of D(f). Notice that the alternating proof depends
on Theorem 4 and cannot prove Theorem 3.
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Abstract. We use monadic second-order logic to define two-dimensional
subshifts, or sets of colorings of the infinite plane. We present a natu-
ral family of quantifier alternation hierarchies, and show that they all
collapse to the third level. In particular, this solves an open problem of
[Jeandel & Theyssier 2013]. The results are in stark contrast with picture
languages, where such hierarchies are usually infinite.

Keywords: subshift, MSO logic, quantifier alternation.

1 Introduction

A two-dimensional subshift is a set of colorings of the infinite plane with finitely
many colors. Concrete examples are given by sets of Wang tiles, or squares with
colored edges, introduced by Wang in [13]. The associated tiling system consists
of all tilings of the plane where overlapping edges have the same color. The
initial motivation for Wang tiles was to use a possible algorithm for the infinite
tiling problem to recognize tautologies in first-order logic. The tiling problem
was proved undecidable by Berger [2], and more undecidability results for tiling
systems followed. More recently, strong connections between multidimensional
subshifts and computability theory have been found. For example, it was shown
in [3], [1] that every vertically constant co-RE subshift can be implemented as a
letter-to-letter projection of a tiling system. The topological entropies of tiling
systems were characterized in [4] as the right recursively enumerable nonnegative
reals. It seems that every conceivable behavior occurs in the class of (projections
of) tiling systems, if there is no obvious geometric or computational obstruction.

In this article, we follow the approach of [5,6] and define two-dimensional
subshifts by monadic second-order (MSO) logical formulas. We show that cer-
tain hierarchies obtained by counting quantifier alternations are finite, solving
an open problem posed in [6]. Classes of finite structures defined by MSO for-
mulas have been studied extensively. Examples include finite words, trees, grids
and graphs; see [8] and references therein. For words and trees, MSO formulas
define exactly the regular languages, and the quantifier alternation hierarchy col-
lapses to the second level. On the other hand, the analogous hierarchy of picture
languages was shown to be infinite in [9] and strict in [11]. Although subshifts

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 111–122, 2014.
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behave more like sets of words or trees than picture languages in this sense, the
reasons are different: MSO-definable languages are regular because the geometry
is so simple, while the subshift hierarchy collapses since we can simulate arbitrary
computation already on the third level. The concept of constructing subshifts
by quantifying over infinite configurations has also been studied in [7] under the
name of multi-choice shift spaces, and in [12] under the more general framework
of quantifier extensions. Both formalisms are subsumed by MSO logic.

2 Preliminary Definitions

2.1 Patterns and Subshifts

Fix a finite alphabet A. A pattern is a map P : D → A from an arbitrary domain
D = D(P ) ⊂ Z2 to A. A pattern with domain Z2 is a configuration, and the set

AZ
2

of all configurations is the full shift over A. The set of finite patterns over
A is denoted by A∗∗, and those with domain D ⊂ Z2 by AD. The restriction of
a pattern P to a smaller domain E ⊂ D(P ) is denoted P |E . A pattern P occurs
at v ∈ Z2 in another pattern Q, if we have v +w ∈ D(Q) and Qv+w = Pw for
all w ∈ D(P ). We denote P � Q if P occurs in Q at some coordinate. For a set
of patterns X, we denote P � X if P occurs in some element of X.

A set of finite patterns F ⊂ A∗∗ defines a subshift as the set of configurations
XF = {x ∈ AZ

2 | ∀P ∈ F : P �� x} where no pattern of F occurs. If F is finite,

then XF is of finite type, or SFT. The language of a subshift X ⊂ AZ
2

is B(X) =
{P ∈ A∗∗ | P � X}. For a finite D ⊂ Z2, we denote BD(X) = B(X) ∩ AD. For

v ∈ Z2, we denote by σv : AZ
2 → AZ

2

the shift by v, defined by σv(x)w = xw+v

for all x ∈ AZ
2

and w ∈ Z2. Subshift are invariant under the shift maps.
A block map is a function f : X→ Y between two subshifts X ⊂ AZ

2

and Y ⊂
BZ

2

defined by a finite neighborhood D ⊂ Z2 and a local function F : BD(X)→ B
which is applied to every coordinate synchronously: f(x)v = F (x|D+v) for all
x ∈ X and v ∈ Z2. The image of an SFT under a block map is a sofic shift.

Example 1. Let A = {0, 1}, and let F ⊂ A∗∗ be the set of patterns where 1

occurs twice. Then XF ⊂ AZ
2

is the set of configurations containing at most one
letter 1. This subshift is sometimes called the sunny side up shift, and it is sofic.

A famous example of an SFT is the two-dimensional golden mean shift on the
same alphabet, defined by the forbidden patterns 1 1 and 1

1 . In its configurations,
no two letters 1 can be adjacent, but there are no other restrictions.

2.2 Logical Formulas

We continue the line of research of [5,6], and define subshifts by monadic second-
order (MSO) formulas. We now introduce the terminology used in these articles,
and then expand upon it. A structure is a tuple M = (U, τ), where U is an un-
derlying set, and τ a signature consisting of functions f : Un → U and relations
r ⊂ Un of different arities n ∈ N. A configuration x ∈ AZ

2

defines a structure
Mx = (Z2, τA), whose signature τA contains the following objects:
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– Four unary functions, named North, South, East and West, and called adja-
cency functions in this article. They are interpreted in the structure Mx as
NorthMx((a, b)) = (a, b+1), EastMx((a, b)) = (a+1, b) and so on for a, b ∈ Z.

– For each symbol a ∈ A, a unary symbol predicate Pa. It is interpreted as
PMx
a (v) for v ∈ Z2 being true if and only if xv = a.

The MSO formulas that we use are defined with the signature τA as follows.

– A term (of depth k ∈ N) is a chain of k nested applications of the adjacency
functions to a first-order variable.

– An atomic formula is either t = t′ or P (t), where t and t′ are terms and P
is either a symbol predicate or a second-order variable.

– A formula is either an atomic formula, or an application of a logical connec-
tive (∧,∨,¬, . . .) or first- or second-order quantification to other formulas.

The radius of a formula is the maximal depth of a term in it. First-order variables
(usually denoted n1, . . . ,n�) hold elements of Z2, and second-order variables hold
subsets of Z2. Formulas without second-order variables are first-order.

Let φ be a closed MSO formula, and let D ⊂ Z2. A configuration x ∈ AZ
2

is
a D-model for φ, denoted x |=D φ, if φ is true in the structure Mx when the
quantification of the first-order variables in φ is restricted to D. If D = Z2, then
we denote x |= φ and say that x models φ. We define a set of configurations

Xφ = {x ∈ AZ
2 | x |= φ}, which is always shift-invariant, but may not be a

subshift. A subshift is MSO-definable if it equals Xφ for some MSO formula φ.
As we find it more intuitive to quantify over configurations than subsets of

Z2, and we later wish to quantify over the configurations of specific subshifts,
we introduce the following definitions.

– The notations ∀X [X] and ∃X [X] (read for all (or exists) X in X) define a
new configuration variable X , which represents a configuration of a subshift
X ⊂ BZ

2

over a new alphabet B.

– ForX [X] quantified as above, b ∈ B and a term t, the notationXt = b defines
an atomic formula that is true if and only if the configuration represented
by X has the letter b at the coordinate represented by t.

MSO formulas with configuration variables instead of ordinary second-order vari-
ables are called extended MSO formulas, and the relation |= is extended to them.
We state without proof that if the subshifts occurring in an extended MSO for-
mula φ are MSO-definable, then so is Xφ. Conversely, we can convert an MSO
formula to an extended MSO formula by replacing every second-order variable
with a configuration variable over the binary full shift. Unless stated otherwise,
by second-order variables (usually denoted X1, . . . , Xn) we mean configuration
variables, and by MSO formulas we mean extended MSO formulas.

Example 2. The two-dimensional golden mean shift is defined by the formula

∀n
(
P1(n) =⇒

(
P0(North(n)) ∧ P0(East(n))

))
.



114 I. Törmä

Also, the sunny side up shift is defined by the formula

∀m∀n
(
P1(n) =⇒ (P0(m) ∨m = n)

)
.

Another way to define the sunny side up shift is to use a second-order quantifier:

∃U∀n
(
U(n)⇐⇒

(
U(North(n)) ∧ U(West(n))

))
∧
(
P1(n) =⇒

(
U(n) ∧ ¬U(South(n)) ∧ ¬U(East(n))

))
.

We can produce an equivalent extended MSO formula, as per the above remark:

∃X [{0, 1}Z2

]∀n
(
Xn = 1⇐⇒ (XNorth(n) = 1 ∧XWest(n) = 1)

)
∧
(
P1(n) =⇒ (Xn = 1 ∧XSouth(n) = 0 ∧XEast(n) = 0)

)
.

2.3 Computability Theory

We recall the arithmetical hierarchy, a classical reference for which is [10]. A first-
order arithmetical formula over N is Π0

0 (equivalently, Σ0
0), if it only contains

bounded quantifiers (of the form ∀n ≤ k or ∃n ≤ k). The formula is Π0
k+1 (Σ

0
k+1)

if it is of the form ∀n1 · · · ∀n�φ (∃n1 · · · ∃n�φ) where φ is Σ0
k (Π0

k , respectively).
Every such formula is equivalent to aΠ0

k or Σ0
k one, and if it defines a subset of N,

that set is given the same classification. Completeness and hardness in the classes
are defined using Turing reductions. For all k ∈ N, the classΔ0

k+1 = Π0
k+1∩Σ0

k+1

contains exactly the languages decidable by Turing machines with Π0
k oracles.

Also, Σ0
1 is the class of recursively enumerable subsets of N.

When classifying subsets of countable sets other than N, we assume they are
in some natural and computable bijection with N. For example, a co-recursively
enumerable set of finite patterns is Π0

1 . A subshift X is given the same classifi-
cation as its language B(X). If X is Π0

k for some k ∈ N, then it can be defined by
a Σ0

k set of forbidden patterns (the complement of B(X)), and a subshift defined
by such a set is always Π0

k+1. In particular, SFTs and sofic shifts are Π0
1 .

Remark 1. We use several hierarchies of subshifts obtained by counting quanti-
fier alternations in different kinds of formulas, and the notation for them can be
confusing. In general, classes defined by computability conditions (the arithmeti-
cal hierarchy) are denoted by Π and Σ, while classes defined by MSO formulas
via the modeling relation are denoted by Π̄ and Σ̄.

3 Hierarchies of MSO-Definable Subshifts

In this section, we recall the definition of a hierarchy of subshift classes defined
in [5,6], and then generalize it. We also state some general lemmas.

Definition 1. Let C be a class of subshifts. An MSO formula ψ is over C with
universal first-order quantifiers, or C-u-MSO for short, if it is of the form

ψ = Q1X1[X1]Q2X2[X2] · · ·QnXn[Xn]∀n1 · · · ∀n�φ,
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where each Qi is a quantifier, Xi ∈ C, and φ is quantifier-free. If there are k
quantifier alternations and Q1 is the existential quantifier ∃, then ψ is called
Σ̄k[C], and if Q1 is ∀, then ψ is Π̄k[C]. The set Xψ is given the same classifica-

tion. If C is the singleton class containing only the binary full shift {0, 1}Z2

, then
ψ is called u-MSO, and we denote Σ̄k[C] = Σ̄k and Π̄k[C] = Π̄k. The classes
Σ̄k and Π̄k for k ∈ N form the u-MSO hierarchy.

In [6], the u-MSO hierarchy was denoted by the letter C, but we use the
longer name for clarity. In the rest of this article, C denotes an arbitrary class of
subshifts, unless otherwise noted. We proceed with the following result, stated
for u-MSO formulas in [6]. We omit the proof, as it is essentially the same.

Theorem 1 (Generalization of Theorem 13 of [6]). Let φ be a C-u-MSO

formula over an alphabet A. Then for all x ∈ AZ
2

, we have x |= φ if and only if
x |=D φ for every finite domain D ⊂ Z2.

Corollary 1. Every C-u-MSO formula φ over an alphabet A defines a subshift.

Proof. Let r ∈ N be the radius of φ. By Theorem 1, we have Xφ = XF , where

F = {x|D+[−r,r]2 | D ⊂ Z2 finite, x ∈ AZ
2

, x �|=D φ}. �

Corollary 2. For all k, n ∈ N, we have Π̄n[Π
0
k ] ⊂ Π0

k+1. In particular, the
u-MSO hierarchy only contains Π0

1 subshifts.

Proof. Let φ = ∀X1[X1]∃X2[X2] . . .QnXn[Xn]ψ be a Π̄n[Π
0
k ] formula, where

each Xi ⊂ AZ
2

i is a Π0
k subshift and ψ is first-order. Then the product subshift∏n

i=1 Xi is also Π
0
k . Let P ∈ A∗∗ be a finite pattern. Theorem 1, together with a

basic compactness argument, implies that P ∈ B(Xφ) holds if and only if for all

finite domains D(P ) ⊂ D ⊂ Z2, there exists a configuration x ∈ AZ
2

such that
x|D(P ) = P and x |=D φ. For a fixed D, denote this condition by CP (D).

We show that deciding CP (D) for given pattern P and domain D is Δ0
k+1.

Denote E = D+[−r, r]2, where r ∈ N is the radius of φ, and let L = BE(
∏n

i=1 Xi).

For a configuration x ∈ AZ
2

, the condition x |=D φ only depends on the finite
pattern x|E ∈ AE , and is computable from it and the set L. Thus CP (D) is
equivalent to the existence of a pattern Q ∈ AE such that x|E = Q implies

x |=D φ for all x ∈ AZ
2

. Moreover, this can be decided by the oracle Turing
machine that computes L using a Π0

k oracle, and then goes through the finite
set AE , searching for such a Q. Thus the condition CP (D) is Δ0

k+1, which implies
that deciding P ∈ B(Xφ) is Π

0
k+1. �

Finally, if the final second-order quantifier of a u-MSO formula is universal, it
can be dropped. This does not hold for C-u-MSO formulas in general. We omit
the proof, as it is essentially the same as that of [6, Lemma 7].

Lemma 1. If k ≥ 1 is odd, then Π̄k = Π̄k−1, and if it is even, then Σ̄k = Σ̄k−1.

Example 3. Define the mirror shift M ⊂ {0, 1,#}Z2

by the forbidden patterns
a
# and #

a for a �= #, every pattern {0 !→ #, (n, 0) !→ #}, and every pattern
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a

b

c

Fig. 1. A pattern of X in Example 3, containing its entire alphabet

{(−n, 0) !→ a,0 !→ #, (n, 0) !→ b} for n ∈ N and a �= b. A ‘typical’ configuration
of M contains one infinite column of #-symbols, whose left and right sides are
mirror images of each other. It is well-known that M is not sofic. We show that it
can be implemented by an SFT-u-MSO formula ψ = ∀X [X]∀n1∀n2∀n3φ in the
class Π̄1[SFT]. This also shows that Lemma 1 fails outside the u-MSO hierarchy.

Let X be the SFT whose alphabet is seen in Figure 1, defined by the obvious
2× 2 forbidden patterns. Define the formula φ as φ1 ∧ (φ2 =⇒ φ3), where

φ1 = P#(n2)⇐⇒ P#(North(n2))

φ2 = Xn1
= a ∧Xn2

= b ∧Xn3
= c ∧ P#(n2)

φ3 = ¬P#(n1) ∧ ¬P#(n3) ∧ (P0(n1)⇐⇒ P0(n3))

It is easy to see that the subshift Xψ is exactly M, with ψ defined as above.

4 The u-MSO Hierarchy

The u-MSO hierarchy is a quite natural hierarchy of MSO-definable subshifts.
Namely, the lack of existential first-order quantification makes it easy to prove
that every u-MSO formula defines a subshift, and quantifier alternations give
rise to interesting hierarchies in many contexts. The following is already known.

Theorem 2 ([6]). The class of subshifts defined by formulas of the form ∀nφ,
where φ is first-order, is exactly the class of SFTs. The class Π̄0 = Σ̄0 consists
of the threshold counting shifts, which are obtained from subshifts of the form
{x ∈ AZ

2 | P occurs in x at most n times} for P ∈ A∗∗ and n ∈ N using finite
unions and intersections. Finally, the class Σ̄1 consists of exactly the sofic shifts.

We show that the hierarchy collapses to the third level, which consists of
exactly the Π0

1 subshifts. This gives negative answers to the questions posed in
[6] of whether the hierarchy is infinite, and whether it only contains sofic shifts.

Theorem 3. For all n ≥ 2 we have Π0
1 = Π̄n.

Proof. As we have Π̄n ⊂ Π0
1 by Corollary 2, and clearly Π̄n ⊂ Π̄n+1 also holds,

it suffices to proveΠ0
1 ⊂ Π̄2. Let thus X ⊂ AZ

2

be aΠ0
1 subshift. We construct an

MSO formula of the form φ = ∀Y [BZ
2

]∃Z[CZ
2

]∀nψ(n, Y, Z) such that Xφ = X.
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The main idea is the following. We use the universally quantified configura-
tion Y to specify a finite square R ⊂ Z2 and a word w ∈ A∗, which may or may
not encode the pattern xR of a configuration x ∈ AZ

2

. The existentially quan-
tified Z enforces that either w does not correctly encode xR, of that it encodes
some pattern of B(X). As R and w are arbitrary and universally quantified, this
guarantees x ∈ X. The main difficulty is that Y comes from a full shift, so we
have no control over it; there may be infinitely many squares, or none at all.

First, we define an auxiliary SFT Y ⊂ BZ
2

, whose configurations contain the
aforementioned squares. The alphabet B consists of the tiles seen in Figure 2,
where every wi ranges over A, and it is defined by the set FY of 2× 2 forbidden
patterns where some colors or lines of neighboring tiles do not match. A configu-
ration of Y contains at most one maximal pattern colored with the lightest gray
in Figure 2, and if it is finite, its domain is a square. We call this domain the
input square, and the word w ∈ A∗ that lies above it is called the input word.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Fig. 2. A pattern of Y. In this example, the input word w ∈ A∗ is of length 10.

We now define another SFT S, this time on the alphabet A × B × C. The
alphabet C is more complex than B, and we specify it in the course of the
construction. The idea is to simulate a computation in the third layer to ensure
that if the second layer contains a valid configuration of Y and the input word
encodes the contents of the input square in the first layer, then that square
pattern is in B(X). We also need to ensure that a valid configuration exists even
if the encoding is incorrect, or if second layer is not in Y. For this, every locally
valid square pattern of Y containing an input square will be covered by another
square pattern in the third layer, inside which we perform the computations. We
will force this pattern to be infinite if the second layer is a configuration of Y.

Now, we describe a configuration (x, y, z) ∈ S. The coordinates of every 2× 2
rectangle R ⊂ Z2 with y|R ∈ FY are called defects. A non-defect coordinate

v ∈ Z2 such that yv = is called a seed. Denote C = C1 ∪ C2, where C1 is
the set of tiles depicted in Figure 3 (a). Their adjacency rules in S are analogous
to those of Y. The rules of S also force the set of seeds to coincide with the
coordinates v ∈ Z2 such that zv = . These coordinates are the southwest
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a)
C2

b)

D D

D D

D D

D D

D D

D D

D D

Fig. 3. The alphabet C (a) and a pattern of the third layer of S (b), with the elements
of C2 represented by the featureless light gray tiles. The dashed line represents the
border of an input square on the second layer. Defects are marked with a small D.

corners of computation squares in z, whose square shape is again enforced by
a diagonal signal. The southwest half of a computation square is colored with
letters of C2. See Figure 3 (b) for an example of a computation square.

A computation square may not contain defects or coordinates v ∈ Z2 such

that yv = except on its north or east border, and conversely, one of the
borders will contain a defect. This is enforced by a signal emitted from the
northwest corner of the square (the dotted line in Figure 3 (b)), which travels
along the north and east borders, and disappears when it encounters a defect.

We now describe the set C2, and for that, let M be a Turing machine with
input alphabet Σ = A × (A ∪ {0, 1,#}) and two initial states q1 and q2. This
machine is simulated on the southwest halves of the computation squares in a
standard way, and we will fix its functionality later. The alphabet C2 is shown in
Figure 4. Note that the colors and lines in C2 are disjoint from those in C1, even
though the figures suggest otherwise. The idea is to initialize the machine M
with either the input word (if it correctly encodes the input square), or a proof
that the encoding is incorrect, in the form of one incorrectly encoded symbol.

The white squares and circles of C2 must be placed on the letters of the input
word w ∈ A∗ of the computation square, the square on the leftmost letter and
circles on the rest. The A-letters of these tiles must match the letters of w, and
the second component is 1 if the tile lies on the corner of the input square, 0 if
not, b ∈ A in the presence of a vertical signal, and # in the presence of a diagonal
signal. Such signals are sent by a white diamond tile (called a candidate error),
which can only be placed on the interior tiles of the input square, and whose
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a

a0, q0

a

ac s

s

b

b

b

b
s, q

t

r

s

s, q

q q

B, q

s

s, q

q

s, q

t

r a

ab

b

a

a#

Fig. 4. The sub-alphabet C2. The letters a and b range over A, c can be 0 or 1, the
letter s over the tape alphabet of M , the letter q0 can be either of the initial states
q1 and q2, and in the first (fourth) tile on the top row we require that the machine M
writes t ∈ Σ on the tape, switches to state r and steps to the left (right, respectively)
when reading the letter s ∈ Σ in state q.

letter must match the letter on the first layer x. Other tiles of C2 simulate the
machine M , which can never halt in a valid configuration. See Figure 5 for a
visualization. We also require that for a pattern c2

c1 to be valid, where ci ∈ Ci

for i ∈ {1, 2}, the tile c2 should have a gray south border with no lines. Other
adjacency rules between tiles of C1 and C2 are explained by Figure 3 (a).

We now describe the machine M . Note first that from an input u ∈ Σ∗ one
can deduce the input word w ∈ A∗, the height h ∈ N of the input square, and the
positions and contents of all candidate errors. Now, when started in the state q1,
the machine checks that there are no candidate errors at all, that |w| = h2, and
that the square pattern P ∈ Ah×h, defined by P(i,j) = wih+j for all i, j ∈ [0, h−1],
is in B(X). If all this holds, M runs forever (the check for P ∈ B(X) can indeed
take infinitely many steps). When started in q2, the machine checks that there
is exactly one candidate error at some position (i, j) ∈ [0, h − 1]2 of the input
square containing some letter b ∈ A, and that one of |w| �= h2 or wih+j �= b
holds. If this is the case, M enters an infinite loop, and halts otherwise.

The definition of S is now complete, and it can be realized using a set F of
forbidden patterns of size 3× 3. We define the quantifier-free formula ψ(n, Y, Z)
as ¬

∨
P∈F ψP , where ψP states that the pattern P occurs at the coordinate

n. This is easily doable using the adjacency functions, color predicates and the
variables Y and Z. If we fix some values y ∈ BZ

2

and z ∈ CZ
2

for the variables Y
and Z, then x |= ∀nψ(n, y, z) holds for a given x ∈ AZ

2

if and only if (x, y, z) ∈ S.

Let x ∈ AZ
2

be arbitrary. We need to show that x |= φ holds if and only if
x ∈ X. Suppose first that x models φ, and let v ∈ Z2 and h ≥ 1. Let y ∈ Y be a
configuration whose input square has interiorD = v+[0, h−1]2, and whose input

word correctly encodes the pattern x|D. By assumption, there exists z ∈ CZ
2

such that (x, y, z) ∈ S, so that the southwest neighbor of v is the southwest corner
of a computation square in z, which is necessarily infinite, since no defects occur
in y. In this square, M runs forever, and it cannot be initialized in the state q2
as the encoding of the input square is correct. Thus its computation proves that
x|D ∈ B(X). Since D was an arbitrary square domain, we have x ∈ X.
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Fig. 5. An infinite computation square with an input word of length 11 and a single
candidate error

Suppose then x ∈ X, and let y ∈ BZ
2

be arbitrary. We construct a configura-
tion z ∈ CZ

2

such that (x, y, z) ∈ S, which proves x |= φ. First, let S ⊂ Z2 be
the set of seeds in y, and for each s ∈ S, let �(s) ∈ N∪{∞} be the height of the
maximal square D(s) = s+ [0, �(s)− 1]2 whose interior contains no defects. We
claim that D(s) ∩D(r) = ∅ holds for all s �= r ∈ S. Suppose the contrary, and
let v ∈ D(s)∩D(r) be lexicographically minimal. Then v is on the south border
of D(s) and the west border of D(r) (or vice versa). Since these borders contain
no defects, yv is a south border tile and a west border tile, a contradiction.

Now, we can define every D(s) to be a computation square in z. If it con-
tains an input square and an associated input word which correctly encodes
its contents, we initialize the simulated machine M in the state q1. Then the
computation does not halt, since the input square contains a pattern of B(X).
Otherwise, we initialize M in the state q2, and choose a single candidate error
from the input square such that it does not halt, and thus produces no forbidden
patterns. Then (x, y, z) ∈ S, completing the proof. �

We have now characterized every level of the u-MSO hierarchy. The first level
Π̄0 = Σ̄0 contains the threshold counting shifts and equals Π̄1 by Lemma 1, the
class Σ̄1 = Σ̄2 contains the sofic shifts, and the other levels coincide with Π0

1 .
The quantifier alternation hierarchy of MSO-definable picture languages was

shown to be strict in [11]. It is slightly different from the u-MSO hierarchy, as ex-
istential first-order quantification is allowed. However, in the case of pictures we
know the following. Any MSO formula QL∃nQRφ, where QL and QR are strings
of quantifiers, is equivalent to a formula of the form QL∃XQR∀nψ, where φ and
ψ are quantifier-free. See [8, Section 4.3] for more details. Thus the analogue of
the u-MSO hierarchy for picture languages is infinite. The proof of the result of
[11] relies on the fact that one can simulate computation within the pictures,
and the maximal time complexity depends on the number of alternations. In the
case of infinite configurations, this argument naturally falls apart.



Subshifts, MSO Logic, and Collapsing Hierarchies 121

Finally, Theorem 3 has the following corollary (which was also proved in [6]).

Corollary 3. Every Π0
1 subshift is MSO-definable.

5 Other C-u-MSO Hierarchies

Next, we generalize Theorem 3 to hierarchies of Π0
k -u-MSO formulas. The con-

struction is similar to the above but easier, since we can restrict the values of
the variable Y to lie in a geometrically well-behaved subshift.

Theorem 4. For all k ≥ 1 and n ≥ 2 we have Π0
k+1 = Π̄n[Π

0
k ]. Furthermore,

Π0
2 = Π̄n[SFT] for all n ≥ 2.

Proof (sketch). As in Theorem 3, it suffices to show that for a given Π0
k+1 sub-

shift X ⊂ AZ
2

, there is a Π̄2[Π
0
k ] formula φ = ∀Y [Y]∃Z[Z]∀nψ such that Xφ = X.

In our construction, Y ⊂ BZ
2

is a Π0
k subshift and Z = CZ

2

is a full shift.

For a square pattern P ∈ Ah×h, define the word w(P ) ∈ Ah2

by wih+j = P(i,j)

for all i, j ∈ [0, h− 1]. Let R ⊂ A∗ × N be a Π0
k predicate such that the set

F = {P ∈ Ah×h | h ∈ N, ∃n ∈ N : R(w(P ), n)}

satisfies XF = X. As in Theorem 3, configurations of Y may contain one input
square with an associated input word. This time, the input word is of the form
w#n for some w ∈ A∗, n ∈ N and a new symbol #. As Y is Π0

k , we can enforce
that R(w, n) holds, so that w does not encode any square pattern of X. This can
be enforced by SFT rules if k = 1: a simulated Turing machine checks R(w, n)
by running forever if it holds. As before, the existential layer Z enforces that w
does not correctly encode the contents of the input square in the first layer.

Let x ∈ X and y ∈ Y be arbitrary. If y has a finite input square D ∈ Z2 and
input word w#n, then w ∈ A∗ cannot correctly encode the pattern x|D ∈ B(X),
and thus a valid choice for the variable Z exists. Degenerate cases of y (with,
say, an infinite input square) are handled as in Theorem 3. Thus we have x |= φ.
Next, suppose that x /∈ X, so there is a square domain D ⊂ Z2 with x|D /∈ B(X).
Construct y ∈ Y such that the input square has domain D, the word w ∈ A∗

correctly encodes x|D, and the number n ∈ N of #-symbols is such that R(w, n)
holds. For this value of Y , no valid choice for Z exists, and thus x �|= φ. �

Corollary 3, Theorem 4 and a simple induction argument show the following.

Corollary 4. For every k ∈ N, every Π0
k subshift is MSO-definable.

However, note that the converse does not hold, since one can construct an
MSO-formula defining a subshift whose language is not Π0

k for any k ∈ N.

Acknowledgments. I am thankful to Emmanuel Jeandel for introducing me
to [5,6] and the open problems therein, and to Ville Salo for many fruitful dis-
cussions.
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Fast Nondeterministic Matrix Multiplication

via Derandomization of Freivalds’ Algorithm�
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Abstract. We design two nondeterministic algorithms for matrix mul-
tiplication. Both algorithms are based on derandomization of Freivalds’
algorithm for verification of matrix products. The first algorithm works
with real numbers and its time complexity on Real RAMs is O(n2 log n).
The second one is of the same complexity, works with integer matrices on
a unit cost RAM with numbers whose size is proportional to the size of
the largest entry in the underlying matrices. Our algorithms bring new
ideas into the design of matrix multiplication algorithms and open new
avenues for their further development. The results pose exciting ques-
tions concerning the relation of the complexity of deterministic versus
nondeterministic algorithms for matrix multiplication, and complexity
of integer versus real matrices multiplication.

1 Introduction

Matrix multiplication probably is one of the most closely watched areas of algo-
rithm design. A great attention is paid even to minor advancements in this field.
Undoubtedly, this is because of the immense practical importance of the prob-
lem backed by its deep algorithmic beauty. Matrix multiplication has attracted
considerable attention for more than four decades and the challenge is whether
or not matrix multiplication can be done in quadratic time. The origin of this
conjecture lies back in the late nineteen sixties when Volker Strassen discovered
an algorithm for matrix multiplication of complexity O(n2.807) [23] (in terms
of the number of arithmetical operations). This has been an unexpected and
significant improvement over the classical algorithm of complexity O(n3). Since
then the search for matrix multiplication algorithms of complexity O(n2+ω), for
0 ≤ ω < 1, has started and over the years it has proceeded through several
incremental improvements of the ω exponent. The best current upper bound
achieves the algorithm by Vasilevska Williams from 2011 with ω = 0.3729.

The increased interest in matrix multiplication algorithms came about in the
same time as the increased interest in randomized algorithms. Randomization
has become a subject of systematic investigation as a “cheap” tool for solution
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of problems for which no efficient deterministic algorithms have been known.
Could randomization also help in matrix multiplication?

Perhaps this was the motivation of Rusins Freivalds who in 1977 designed
a randomized algorithm with a bounded error probability for verifying matrix
multiplication in quadratic randomized time [10], [11]. This algorithm has be-
come one of the first algorithms showing the advantage of randomized algorithm
over the deterministic ones also in a domain related to matrix multiplication and
no wonder that Freivalds’ algorithm has become a standard textbook example
illustrating the power of randomized computations over the deterministic ones
(cf. [7],[17]). At the same time this result has indicated that for a task related
to matrix multiplication, viz. its verification, a quadratic time bound can be
achieved.

The idea of Freivalds’ algorithm is as follows. In order to verify whether AB =
C for any three matrices A, B and C of real numbers of size n × n, Freivalds’
algorithm chooses a specific (column) vector x of length n and compares the
product ABx with the product Cx. Both products can be computed using
O(n2) arithmetical operations (the former product thanks to the associativity of
the matrix products: (AB)x = A(Bx)). The entries of vector x are uniformly
chosen from the set {0, 1}. It can be shown that if AB �= C, then the Freivalds
algorithm returns a wrong answer with the probability at most 1/2 (cf. [7]).
The probability of error can be reduced to 1/2k by performing k independent
iterations of the algorithm.

Similarly as in the case of matrix multiplication algorithms research effort
aiming at the performance improvement of Freivalds’ algorithm has followed.
The goal was to diminish the amount of randomness in this algorithm (cf. [18],
[14]). This has culminated by the recent result of Korec and Wiedermann [15]
showing that integer matrix product verification can entirely be derandomized.
For real matrices only one random real number is needed in order to verify the
correctness of matrix product with probability one. Both verification algorithms
run in quadratic time w.r.t. the number of arithmetic operations. The determin-
istic algorithm for integer matrix verification has straightforwardly lead to the
design of a nondeterministic algorithm for computing the product of two integer
matrices in quadratic time, answering thus positively the conjecture concern-
ing the complexity of matrix product, albeit only for integer matrices and for
non-deterministic algorithms.

In order to completely understand the development sketched above one also
has to pay attention to the underlying models of computation. The standard
computational model for matrix product is by arithmetic circuits (aka straight
line programs) over some field F. The inputs to the circuit are the entries of
the two matrices and the output from the circuit are the entries of the resulting
matrix product. All entries are elements of F. In the circuit’s gates arithmetic
operations with the field elements are allowed.

For verification of matrix products a stronger computational model is used. It
is a probabilistic model allowing random moves and in addition to the standard
arithmetic operations also comparisons between the elements of the field. For the
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case of integer matrices an appropriate underlying model is probabilistic unit-
cost RAM (cf [1]). When one wants to take into account the size of integers
manipulated during a computation the log-cost RAM model should be used. For
the case of real matrices, the so-called Real RAM (aka BSS machine [4]) model
is used. Essentially, Real RAM is a Random Access Machine with registers that
can store arbitrary real numbers and that can compute rational functions over
reals at unit cost.

Quantum algorithms for matrix product verification and matrix multiplication
have been considered, too (cf. [8], [16]).

Finally, in [15] for computing the product of integer matrices in quadratic
time a nondeterministic model has been used. Bringing nondeterminism into the
matrix multiplication means a further shift along the scale of the computational
power of the underlying computational devices. As we shall see later the depar-
ture from the standard models of arithmetical circuits towards more powerful
models of computations is not a purposeless move serving for circumventing the
existing obstacles by using more powerful tools. Rather, such a proceeding allows
approaching the problem from an other end. It might help in the development
of a theoretical background for the development of more practical methods.

The present paper fits into the line of research efforts sketched above. Namely,
it investigates the benefits that can be gained from considering nondeterministic
algorithms in the context of matrix multiplication. It is based on the previous
paper [15] in which the framework for the present approach has been established.
It solves some problems that have remained open in the previous paper. Progress
along these lines has been enabled by using a new fast deterministic criterion suit-
able for verification of matrix products over infinite and finite fields. Specifically,
the paper brings an efficient algorithm for the nondeterministic multiplications
(or deterministic verification of products) of matrices with real entries. On a
Real RAM this task can be done deterministically using O(n2 logn) arithmeti-
cal operations. When compared to the probabilistic algorithm for the latter task
from [15], the factor of ∼ logn seems to be a penalization for derandomization
of the Freivalds’ algorithm. Next, an algorithm of similar complexity is designed
for multiplication of integer matrices using modular arithmetic. Its advantage
over the quadratic-time algorithm for the same task designed in [15] is that the
new algorithm does not compute with large numbers; the size of all numbers
in this algorithm is bounded by the size of the largest entry in the underlying
matrices.

The contribution of the present paper does not merely lie in the design of
the previous algorithms which establish new upper bounds on the complexity of
matrix multiplication on the non-deterministic models of computations. What
is perhaps more important is that these algorithms make use of algebraic tech-
niques that so far have not been often considered in the matrix multiplication
research. Among other things these techniques include elements of the theory of
Vandermonde matrices, properties of polynomial roots, multipoint polynomial
evaluation, primality certificates, fast Fourier transform and number theoretic
transform. It is hoped that the insight gained by the use of such techniques will



126 J. Wiedermann

help to understand better the nature of matrix multiplication algorithms and
eventually bring a further progress to the underlying field.

Our results raise a number of interesting questions to which we presently do
not know the answers. For instance, is multiplication of integer matrices eas-
ier than multiplication of real matrices, under the unit cost model? So far we
do not know an algorithm for nondeterministic multiplication of real matrices of
quadratic complexity, albeit such an algorithm for integer matrices in known. By
the way, the existence of the latter algorithm implies that any proof for super-
quadratic lower bound for integer matrix multiplication must be constructed
so as not to hold for nondeterministic computations or must take into account
the size of integers stored in the RAM registers. Nevertheless, perhaps the most
important question arising from our research is the question, whether nondeter-
minism helps in matrix multiplication. A positive answer would be a surprise
since it would put matrix multiplication among the problems that separate de-
terminism from nondeterminism. In any case, our results seem to strengthen the
hope that there exist substantially better deterministic algorithms for matrix
multiplication than those known today.

The structure of the paper is as follows. In Section 2 those results from the
predecessor paper [15] are briefly reviewed that will be used in the elaboration
of the new results presented here. Especially, Lemma 1 is presented here that
forms the starting point of all subsequent considerations, inclusively of a nonde-
terministic Algorithm 1 for multiplication of integer matrices in quadratic time
on a unit cost RAM (with no bounds on the size of RAM registers). In Section
3 it is shown that ideas from Algorithm 1 cannot be straightforwardly used for
multiplication of real matrices. To that end a corollary of Lemma 1 is proved
serving as a new criterion enabling efficient verification of the product of real
matrices. This results into the design of a nondeterministic Algorithm 2 for mul-
tiplication of real matrices on Real RAM in time O(n2 logn). In Section 4 we
return to the problem of multiplication of integer matrices using only registers
of bounded-size. This is achieved by using modular arithmetic over a properly
selected finite field. The resulting Algorithm 3 is of complexity O(n2 logn) on
a unit-cost RAM and computes with registers whose size is proportional to the
size of the largest entry in the underlying integer matrices. In order to achieve
their complexity as stated here both Algorithm 2 and Algorithm 3 make use
of an appropriate version of the fast Fourier transform tuned to the underly-
ing number field. Section 5 contains an overview of the results presented in this
paper, open problems and conclusions.

2 Preliminaries

The key to all results in this paper is the following lemma from [15] which
is related to the theory of Vandermonde matrices. Here, we recall this lemma
inclusively of its proof because we will refer to it in our further considerations:

Lemma 1. If D �= 0 is a real matrix of size n× n then there are at most n− 1
real numbers r such that D(1, r, r2, . . . , rn−1)T = 0
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Proof: Since D = {di,j} �= 0 at least one row of D is non-zero. In the resulting
matrix-vector product there is one algebraic equation in indeterminate r of de-
gree less than n corresponding to this non-zero row. If j is the index of this row
then the respective equation is of form

∑n−1
i=1 di,jx

i = 0 and for some i, di,j �= 0.
This equation has at most n− 1 real roots. �

Based on the previous lemma a simple probabilistic algorithm of quadratic
time complexity for verifying the product of two matrices has been designed in
[15]. We sketch the respective algorithm since it will be the basis of our further
improvements.

To verify AB = C, we pick a “random” real number r, create vector x =
(1, r, r2, . . . , rn−1)T and compute Y = A(Bx)−Cx.

If Y = 0 then AB = C with probability 1 (because among all reals there are
at most n− 1 “bad” numbers r causing (AB−C)x = 0 even if AB �= C).

If Y �= 0 then AB �= C “for sure”.
Obviously, Y can be computed in O(n2) operations if matrix-vector products

are computed first.
The probabilistic step in this algorithm could be eliminated if we could deter-

ministically choose r in such a way that (AB−C)x = 0 if and only if AB = C.
That is, if D = AB−C = {di,j,}, such an r cannot be a root of any polynomial
of form Pi(r) =

∑n
j=1 di,jx

j−1 = 0 for i = 1, 2, . . . , n. Such an r can be found
using the so-called Cauchy’s bound ([9], p. 122, or the textbook [13], p. 82):

Theorem 1. Let P (x) = akx
k + ak−1x

k−1 + . . . + a1x + a0 be a polynomial
with real coefficients. If x is a real root of P (x) = 0 then |x| < 1 + A/|ak|, with
A = maxk−1

i=0 {|ai|}.

One can see that in order to upper-bound the magnitude of the roots we have
to know coefficient ak and the maximum of the absolute value of all coefficients in
a polynomial. In our case, k = n in the previous theorem, di,j =

∑n
j=1 ai,jbj,i −

ci,j and Pi(r) =
∑n

j=1 di,jr
j−1 = 0 for i = 1, 2, . . . , n.

Let cmax = max{|ai,j|, |bi,j |, |ci,j |}. Then the maximal coefficient in any poly-
nomial — the value of A — can be upper-bounded by nc2max + cmax. Further,
for integer matrices, and only for integer matrices, for any i, the absolute value
of the leading coefficient in front of the highest power of r in Pi(r) can be lower-
bounded by 1 since the leading coefficient must be an integer.

Then, from Cauchy’s bound it follows that for any i the absolute values of
the roots of polynomial Pi(r) with integer coefficients are upper-bounded by
α = nc2max + cmax + 1.

Thus, choosing r ≥ α in the previous proposition will guarantee that Pi(r) �= 0
and hence Dx = 0 can only hold for D = 0. From these considerations a de-
terministic algorithm of quadratic complexity for integer matrix multiplication
verification and nondeterministic algorithm for integer matrix multiplication fol-
low easily (cf. [15]). Here we will only give the algorithm for nondeterministic
matrix multiplication that will be the subject of our further improvements (cf.
Algorithm 1).
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Algorithm 1:
A non-deterministic integer matrix multiplication algorithm:

1. Input non-zero integer matrices A and B;
2. Guess matrix C �= 0 with the absolute values of entries bounded by r = α;
3. Compute vector x = (1, r, r2, . . . , rn−1)T ;
4. If A(Bx) = Cx then output C.

In [15] it is shown that Algorithm 1 can be generalized to the case of matrices
of rational numbers given as numerator and denominator pairs.

Note that the seemingly similar idea of guessing C and its subsequent proba-
bilistic verification à la Freivalds cannot work since through the error margin of
the respective algorithm, however small, matrices C can come through for which
AB �= C. Thus, getting rid of probabilistic features of a verification algorithm
for matrix multiplication turns out to be a crucial ingredient for the success of
our nondeterministic algorithm.

3 Non-deterministic Multiplication of Real Matrices

Can we adjust Algorithm 1 to also work with real matrices? Unfortunately, no.
What will not go through for reals is the upper bound on the magnitude of
the maximal root for a class of polynomials with real coefficients depending on
matricesA,B andC. Namely, although we can estimate the size of A in Cauchy’s
bound, we cannot get a lower bound on ak whose value can be arbitrary close to
0. This will make the value of A/ak arbitrarily large and subsequently we cannot
get a bound on |x|. Thus, it appears that we cannot easily find number r such
that AB = C if and only if ABx = Cx for x = (1, r, r2, . . . , rn−1)T .

Nevertheless, from Lemma 1 it follows that no matter how we pick n distinct
real numbers r1, r2, . . . , rn, among them there will be at least one number rj
that is not a root of the respective polynomial. Such an rj will certify AB �= C
if and only if ABxj �= Cxj for xj = (1, rj , r

2
j , . . . , r

n−1
j )T . This suggests a

possible strategy for a verification algorithm. For j = 1, 2, . . . , n we test whether
ABxj = Cxj . If the equality will be confirmed for all j then AB = C. Otherwise
AB �= C.

Thanks to a special form of vectors xj it is promising to realize that the
product Bxj for all j = 1, 2 . . . , n can be computed faster than in cubic time.
Namely, we can reorganize the computation of Bxj for j = 1, 2, . . . , n in such a
way that we compute the value of each polynomial defined by each row of B, at
points x1,x2, . . . ,xn.

Let P (i, x) =
∑n

j=1 bi,jx
j−1 be the polynomial corresponding to the product

of the i-th row of matrix B with vector x = (1, x, x2, . . . , xn−1)T . Then for each
i we have to compute P (i, x) in n different points x = r1, r2, . . . , rn. This is a
typical task of multipoint polynomial evaluation that for any set of points can
be solved by divide-and-conquer method. This leads to complexity of O(n log2 n)
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operations per one row of B (i.e., per one i) — cf. [1], [5], [6]. When the points
are selected to be the roots of unity fast Fourier transform can be used (cf. [1]).
This method saves one factor of logn in the resulting complexity estimate. In a
similar way we can compute Cxi.

Unfortunately, for computing the next product A(Bxi) the advantage of a
specific form of vector Bxi is lost and this seems to lead again to an algorithm of
cubic complexity. Fortunately, a slightly more complicated verification criterion
based on the following corollary of Lemma 1 solves the problem:

Corollary 1. Let D be a real matrix of size n×n, let ri for i = 1, 2, . . . , 2n− 1
be 2n− 1 different reals numbers, let xi = (1, ri, r

2
i , . . . , r

n−1
i )T .

Then D = 0 if and only if for all i = 1, 2, . . . , 2n− 1, xT
i Dxi = 0.

Proof: The left-to-right implication is obvious. For the proof of the reverse
direction suppose that under the assumptions of the corollary D �= 0. Then at
least one element of D would be non-zero. In the vector-matrix-vector product
xT
i Dxi this element will give rise to a polynomial in indeterminate ri of degree

at most 2n− 2. This polynomial has at most 2n− 2 real roots and therefore it
cannot turn to zero in 2n− 1 distinct real numbers. This is a contradiction and
therefore D = 0. �

Translating back to our context of matrix multiplication the previous corollary
implies a strategy for a verification algorithm. For i = 1, 2, . . . , 2n − 1, we test
whether (xT

i A)(Bxi) = xT
i (Cxi). If this test fails for some i then AB �= C.

Otherwise AB = C (cf. Algorithm 2). The advantage of the above mentioned
criterion is that for computing xT

i A, Bxi, and Cxi, respectively, again fast
multipoint polynomial evaluation algorithms can be used. This time, however,
we must evaluate the respective polynomials in 2n− 1 different points, but this
does not change the asymptotic complexity of the evaluation task.

Algorithm 2:
A non-deterministic real matrix multiplication algorithm:

1. Input real matrices A �= 0 and B �= 0;
2. Guess matrix C �= 0;
3. if (for i = 1, 2, . . . , 2n−1 and xi = (1, i, i2, . . . , in−1)T , (xT

i A)(Bxi) = xT
i (Cxi)),

then output(C)

Therefore, all the necessary vector-matrix or matrix-vector products can be
computed in time O(n2 log2 n) arithmetic operations, or even inO(n2 logn) using
fast Fourier transform. Hence the entire verification can be done within the same
arithmetic complexity.

Theorem 2. For a Real RAM there exists a non-deterministic algorithm for
computing matrix product of real matrices using O(n2 log n) arithmetical opera-
tions.
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For bounded coefficient arithmetic circuits over the real or complex numbers
Raz [22] proved a lower bound of orderΩ(n2 logn). This bound does not apply to
our case since we are using a different computational model than Raz — namely
the model where nondeterministic computations with arbitrary large reals and
equality tests are allowed.

4 Non-deterministic Multiplication of Integer Matrices
Using Modular Arithmetic

Algorithm 1 from Section 2 has one serious drawback: it computes with very
large integers since the largest entry in vector x is as high as (2n − 1)n−1. In
matrix D = AB −C this entry can subsequently be multiplied by α, where α,
defined in Section 2, denotes the bound on the maximal value of coefficient of
matrices A, B, and C. That is, the bit representation of such an entry requires
O(n log n+ logα) = O(n logn) bits for a sufficiently large n. Hence, for such n
the size of this entry is dominated by the term O(n log n) rather than by the
size of the maximal possible coefficient in matrix D. Fortunately, this situation
can be remedied by using modular arithmetic.

However, one must be careful when trying to adjust the basic Algorithm 1 from
Section 2 to modular arithmetic. The first problem arises because, as it appears,
in finite fields no analogue of Cauchy’s bound is known. This is probably due to
the fact that finite fields cannot be ordered. A number that is not a root of a
polynomial in the ring Z of integers may become a root of the same polynomial
in a finite field Zp, for some p prime. For instance, in Z polynomial x2 + 1 has
no real roots. The same polynomial in Z5 has two roots: 2 and 3. Thus, we must
use a different criterion than that from Lemma 1 for identifying a zero matrix.

It appears that we can design a criterion similar to that used for the case of
real numbers (cf. Corollary 1). This is possible since a polynomial of degree n
has at most n roots in any finite field. The criterion from Corollary 1 can be
adjusted to the case of finite fields thanks to the following lemma:

Lemma 2. Let D be an integer matrix of size n × n with max{|di,j |} ≤ δ. Let
Z be the ring of integers and let Zp be a finite field of integers mod p, for some
prime p > max{δ, 2n− 1}. Let further ri for i = 1, 2, . . . , 2n− 1, ri < p be 2n− 1
different integers and let xi = (1, ri, r

2
i , . . . , r

n−1
i )T .

Then D = 0 (in Z) if and only if for all i = 1, 2, . . . , 2n − 1, xT
i Dxi ≡ 0

(mod p) (in Zp).

Proof: The left-to-right implication is obvious. For the proof of the reverse
direction suppose that under the assumptions of the lemma D �= 0. Thanks to
this and the choice of p at least one element di,j of D must be non-zero mod p:
di,j �≡ 0 (mod p). This means that D �≡ 0 (mod p). In the vector-matrix-vector
product (xT

i Dxi) mod p this element will give rise to a non-zero polynomial in
indeterminate ri of degree at most 2n− 2. This polynomial has at most 2n− 2
roots in Zp and therefore it cannot turn to zero in 2n − 1 distinct numbers ri
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mod p = ri. This, however, implies that it cannot hold xT
i Dxi ≡ 0 (mod p) for

all i = 1, 2, . . . , 2n− 1. This is a contradiction. �

This Lemma opens the way for designing an algorithm using modular arith-
metic for integer matrix multiplication similar to Algorithm 2 from Section 3.

In order to do so we have to choose a field of a suitable characteristic p.We will
want to keep p relatively small, with p ≥ α. While avoiding computations with
numbers above p, thanks to the definition of α such a choice of p will preserve
the value of entries of matrices A, B, and C when considered in Z. However,
one must be careful with this idea since in arithmetic (mod p) each element
(except zero) has two representations: one positive and one negative: for any a
with −p < a < p, a ≡ a − p (mod p). Therefore, when guessing the values of
matrix C the correct values (with a correct sign) — i.e., those from Z — must
be guessed because these are the values that would eventually be output. This
is because, as we shall see, the correctness check is performed in arithmetic
(mod p) (as suggested by Lemma 2) through which both the positive and the
negative representation of the same non-zero number could pass. This could be
prevented once we knew what would be the sign of each entry in C = {ci,j}.
In general, it appears that for arbitrary matrices A and B the sign of each ci,j
cannot be determined without actually computing it. Nevertheless, for special
matrices this can be done. E.g., when all entries of A and B are positive, so will
be the entries of C. This motivates the following definition.

A matrix A with all entries non-negative (non-positive) will be called a non-
negative (non-positive) matrix. A matrix A that is either non-negative or non-
positive will be called an equisigned matrix. Observe that thanks to the definition
of matrix product in which rows are multiplied by columns the product of two
equisigned matrices is again an equisigned matrix.

For any real matrix A = {ai,j}, A+ is a matrix defined as A+ = {a+i,j},
with a+i,j = ai,j if ai,j > 0 and a+i,j = 0 if ai,j ≤ 0. Matrix A− consisting of

non-positive entries of matrix A is defined similarly. Obviously, A+ and A− are
equisigned matrices and any non-equisigned matrix A can be uniquely written
as A = A+ +A−. The following lemma is nearly obvious:

Lemma 3. Let A, B and C be three matrices of real numbers of size n×n. Then
AB = C if and only if A+B+ +A−B− = C+ and A+B− +A−B+ = C−.

It follows that instead of multiplying two general matrices A and B it is
enough to add four products of equisigned matrices. Note that by this we have
solved the problem of a possible dual representation of entries in matrix C in
modular arithmetic. In an equisigned matrix all elements are either non-negative
or non-positive. Therefore, in the sequel, w.l.o.g. we will only consider multipli-
cation of equisigned matrices.

Now, let us return to the problem of computing the product of integer matrices
using arithmetic (mod p).

The question remains how to find a suitable p efficiently, i.e., in a way that
would not deteriorate the (nearly) quadratic algebraic complexity of the verifica-
tion algorithm. To that end we use the Bertrand’s postulate stating that for any
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integer k > 1, there is a prime number p such that k < p < 2k (cf. [21]). Since
we are aiming at a nondeterministic algorithm a suitable prime p will be guessed
and subsequently tested for primality. An appropriate test for our purpose is
the check devised by Pratt in 1975 [19] that can be nondeterministically realized
with the help of O(log2 p) modular multiplication on a unit-cost RAM.

The resulting Algorithm 3 mirroring Algorithm 2 is given below. This algo-
rithm is based on Lemma 2 in which we put D = AB−C. In order to determine
p we need to estimate δ from Lemma 2, i.e., to bound the absolute values of D.

Clearly, the maximal values in C are bounded by β = n(max{|ai,j |, |bi,j |})2
and hence the maximal absolute value in matrix D is at most δ = 2β. Thus,
choosing p > max{δ, 2n− 1} will do.

Algorithms 3:
A log-cost efficient non-deterministic multiplication algorithm for equi-
signed integer matrices:

1. Input two non-zero equisigned matrices A and B;
2. Guess the equisigned matrix C �= 0 with the absolute values of its entries bounded

by β;
3. Check, whether the signs of elements of C correspond to the signs of the input

equisigned matrices;
4. Compute α := max{2β, 2n− 1};
5. Guess p : α < p < 2α and using Pratt’s algorithm verify that p is a prime;
6. For i = 1, 2, . . . , 2n− 1 compute vectors xi = (1, i, i2 mod p, . . . , in−1 mod p)T ;
7. Using multipoint polynomial evaluation in arithmetic mod p deterministically

verify whether (for i = 1, 2, . . . , 2n− 1, (xT
i A)(Bxi) = xT

i (Cxi));
if YES then Output C.

As in the case of the previous algorithm the number of operation (mod p)
of this algorithm is O(n2log2n). Its correctness follows from several facts. After
Step 2, there exist many computational paths (one for each guess of C) in the
computation, but the verification in Step 7 selects exactly one of them satisfying
(xT

i A)(Bxi) ≡ xT
i (Cxi) (mod p) for all i. Note that by choosing ri = i for

i = 1, 2, . . . , 2n− 1 the values of ris are all different and therefore by Lemma 2
in which we put D = AB − C the latter verification is equivalent to verifying
AB = C. Because the equisigned matrices were considered in Steps 1 and 2
matrix C verified and produced in Step 7 has the correct values (and signs).
Obviously, since all computation is done (mod p) the size of all RAM registers
is bounded by O(log p) = O(logα).

Theorem 3. For a unit-cost RAM there exists a non-deterministic integer ma-
trix multiplication algorithm using O(n2 log2 n) modular arithmetical operations
with operands proportional to the size of the largest entry in all involved matrices.

Consider now the complexity of the previous computation under the logarith-
mic cost. LetM(q) be the complexity of multiplying q-bit numbers on a log-cost
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RAM. The best known upper bound M(q) = log q 2Θ(log∗ q) is due to Fürer
[12] and De, Saha, Kurur and Saptharishi [2]. When measured in bit operations,
O(log3 p 2Θ(log∗ q)) steps suffice to check a proof of p′s primality in Step 4.

Since p : α < p < 2α is the largest number occurring in the computation, the
bit complexity of Step 6 and 7 is O(n2 log2 nM(log p)). For sufficiently large n
the latter value dominates the complexity of the entire algorithm.

Similarly as in the case of computing with real numbers we can select the
interpolation points used in multipoint polynomial evaluation (in Step 7) care-
fully in order to exploit a variant of fast Fourier transform also in the case of a
finite field. Such transform is called number theoretic transform (NTT). Here an
additional problem arises — namely the fact that not every finite field possesses
an n-th root of unity. There exists numerous literature devoted to the optimal
selection of parameters n (number of points), p and m (the size of the base field
which must be of form pm for p prime and m a natural number) of NTT (cf.
[20] or [1]). The basic results here are that a logarithmic factor in the number
of arithmetic operations can be saved, indeed, when compared with the general
case of multipoint polynomial evaluation over arbitrary set of points. We will not
follow this line any further because it is not directly related to the complexity
of matrix products.

Theorem 4. For a log-cost RAM there exists a non-deterministic integer matrix
multiplication algorithm using O(n2 lognM(log p)) bit operations.

Obviously, this algorithm can be implemented on the standard non-
deterministic model of Turing machines with a similar efficiency, too. This is to
be compared to the bit complexity of the best known deterministic algorithms
which is of order O(nωM(log p), for some ω : 2 < ω < 3. For any ω > 2 the
latter expression is asymptotically worse than our estimation from the previous
theorem.

5 Conclusion

We have presented two nondeterministic algorithms for matrix multiplication.
Both algorithms make use of a derandomized version of Freivalds’ algorithm for
verification of matrix products. The first algorithm deals with real numbers and
on a Real RAM is of time complexity O(n2 logn). The second one computes with
integers and on a unit-cost RAM is also of complexity O(n2 logn).Moreover, the
latter algorithm computes with numbers whose size is bounded by the maximal
number occurring within the matrices. The respective complexity bounds hold
when variants of fast Fourier transform are used for the multipoint polynomial
evaluation used by both algorithms. With respect to their complexity both al-
gorithms are the fastest known sequential algorithms for computing the product
of integer and real matrices, respectively.

Of course, due to their nondeterministic nature our algorithms are more of a
theoretical than of a practical value. Nevertheless, both of them can be used for
deterministic matrix multiplication verification.
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But there are more lessons to be taken from our results. First, for the case
of integer matrices, they show that any lower bound for matrix multiplication
which would be greater than our quadratic upper bound must avoid proof tech-
niques that work both for deterministic and nondeterministic computations. For
integer matrices such a lower bound must probably be dependent on the size of
matrix entries since Algorithm 1 is of quadratic complexity (i.e., it is optimal).
Second, our results pose interesting questions that we cannot answer at present:
is there an intrinsic difference between the complexity of integer and real matri-
ces multiplication (cf. Algorithm 1 vs. Algorithm 2)? Does matrix multiplication
belong among problems that separate determinism from nondeterminism, i.e.,
does the use of nondeterminism in matrix multiplication help? Last but not
least, it is interesting to observe that in order to prove our results we have used,
in addition to nondeterminism, more powerful tools from computational algebra
than those usually used in the design of fast “classical” matrix multiplication
algorithms: comparisons, theory of Vandermonde matrices, properties of polyno-
mial roots, primality certificate, modular arithmetic, and fast Fourier transform.
Could it be the case that the use of such techniques is the key to the design of
fast deterministic matrix multiplication algorithms?

We believe that our results have brought a further insight into the nature
of matrix multiplication. They strengthen the hope that perhaps deterministic
algorithms for matrix product of a similar complexity will be found.
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Not All Multi-Valued Partial CFL Functions

Are Refined by Single-Valued Functions
(Extended Abstract)

Tomoyuki Yamakami
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3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. We give an answer to a fundamental question, raised by Kon-
stantinidis, Santean, and Yu [Acta Inform. 43 (2007) 395–417], of whether
all multi-valued partial CFL functions can be refined by single-valued
partial CFL functions. We negatively solve this question by presenting a
special multi-valued partial CFL function as an example function and by
proving that no refinement of this particular function becomes a single-
valued partial CFL function. This contrasts an early result of Kobayashi
[Inform. Control 15 (1969) 95–109] that multi-valued partial NFA func-
tions are always refined by single-valued NFA functions. Our example
function turns out to be unambiguously 2-valued, and thus we obtain a
stronger separation result, in which no refinement of unambiguously 2-
valued partial CFL functions can be single-valued. Our proof consists of
manipulations and close analyses of underlying one-way one-head nonde-
terministic pushdown automata equipped with write-only output tapes.

Keywords: multi-valued partial function, CFL function, NFA function,
refinement, pushdown automaton, context-free language, stack history.

1 Resolving a Fundamental Question

Since early days of automata and formal language theory, multi-valued partial
functions,� which are also known as transductions, computed by various types
of automata equipped with supplemental write-only output tapes have been
investigated extensively. Among them, we intend to spotlight CFL functions
(also known as algebraic transductions), which are computed by one-way one-
head nondeterministic pushdown automata (succinctly abbreviated as npda’s)
with write-only output tapes. These functions naturally inherit certain distinctive
traits from context-free languages; however, their behaviors are in essence quite
different from the behaviors of the language counterparts. Intriguing properties
of those functions have been addressed in the past literature (e.g., [1–3, 6, 14]).

When the number of output values is restricted to at most one, we ob-
tain single-valued functions. Concerning a relationship between multi-valued and
single-valued partial functions, multi-valued partial functions in general cannot

� We often call those multi-valued partial functions just “functions.”
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be single-valued; therefore, it is more appropriate to ask a question of whether
multi-valued partial functions can be refined by single-valued partial functions,
where “refinement” refers to a certain natural restriction on the outcomes of
multi-valued functions. To be more precise, we say that a function g is a refine-
ment of another function f [7] (which was also called “uniformization” [6]) if and
only if (i) f and g have the same domain and (ii) for every input x in the domain
of f , all output values of g on x are also output values of f on the same input x.
When g is particularly single-valued, g acts as a “selecting” function that picks
exactly one value from a set of output values of f on x. This refinement notion
is known to play a significant role in language recognition. In a polynomial-time
setting, for instance, if we can effectively find an accepting computation path of
any polynomial-time nondeterministic Turing machine, then every multi-valued
partial NP function (computed by a certain polynomial-time nondeterministic
Turing machine) has a refinement in the form of single-valued NP function. The
“no-refinement” claim therefore leads to a negative answer to the long-standing
P =?NP question.

We intend to discuss the same refinement question regarding CFL functions.
In this line of research, the first important step was taken by Kobayashi [5] in
1969. He gave an affirmative answer to the refinement question for multi-valued
partial NFA functions, which are computed by one-way one-head nondetermin-
istic finite automata (or nfa’s, in short) with write-only output tapes; namely,
multi-valued partial NFA functions can be refined by certain single-valued partial
NFA functions. Konstantinidis, Santean, and Yu [6] discussed the same question
for CFL functions. They managed to obtain a partial affirmative answer but left
the whole question open, probably due to a technical limitation of their algebraic
treatments of CFL functions.

This paper is focused on CFL functions whose output values are particularly
produced by npda’s running in linear time�� (that is, all computation paths ter-
minate in time O(n), where n is the size of input) with write-only output tapes.
By adopting succinct notations from [12], we express as CFLMV a collection of
all such CFL functions and we also write CFLSV for a collection of all single-
valued functions in CFLMV. As a concrete example of our CFL function, let us
consider f defined by setting f(1n#x) to be a set of all substrings of x of length
between 1 and n exactly when 1 ≤ n ≤ |x|. This function f is a multi-valued
partial CFL function and the following function g is an obvious refinement of f :
let g(1n#x) consist only of the first symbol of x whenever 1 ≤ n ≤ |x|. Notice
that g belongs to CFLSV.

Given two classes F and G of multi-valued partial functions, the notation
F "ref G means that every function in F can be refined by a certain function
in G. Using these notations, the aforementioned refinement question regarding
CFL functions can be neatly rephrased as follows.

�� This linear time-bound ensures that every CFL function produces only at most an
exponential number of output values and it therefore becomes an NP function. This
fact naturally extends a well-known containment of CFL ⊆ NP.
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Question 1. Is it true that CFLMV "ref CFLSV?

Various expansions of CFLMV are possible. Yamakami [14], for instance, in-
troduced a hierarchy {ΣCFL

k MV, ΠCFL
k MV | k ≥ 1} of multi-valued partial

functions built upon CFL functions by applying Turing relativization and a
complementation operation. Its single-valued version is customarily denoted by
{ΣCFL

k SV, ΠCFL
k SV | k ≥ 1}. Our focal question, Question 1, can be further

generalized to the following.

Question 2. Does ΣCFL
k MV "ref Σ

CFL
k SV hold for each index k ≥ 1?

Yamakami [14] also shed partial light on this general question when k ≥ 3.
He showed that, for every index k ≥ 3, ΣCFL

k−1 = ΣCFL
k implies ΣCFL

k MV "ref

ΣCFL
k SV, where ΣCFL

k is the kth level of the CFL hierarchy [13], which is a natu-
ral analogue of the well-known polynomial(-time) hierarchy. Since the collapse of
the CFL hierarchy is closely related to that of the polynomial hierarchy, an an-
swer to Question 2 (when k ≥ 3) could be quite difficult to obtain. Nevertheless,
the remaining cases of k = 1, 2 have been left unsolved.

In this paper, without relying on any unproven assumptions, we solve Question
2 negatively when k = 1; therefore, our result completely settles Question 1.
Our solution actually gives an essentially stronger statement than what we have
discussed so far. To clarify this point, we first introduce a function class CFL2V
as a collection of all functions f in CFLMV satisfying the condition that the
number of output values of f on each input should be at most 2.

Theorem 3. CFL2V �"ref CFLSV.

Since CFLSV ⊆ CFL2V ⊆ CFLMV holds, Theorem 3 clearly leads to a nega-
tive answer to Question 1. The proof of the theorem is essentially a manifestation
of the following intuition: an npda relying on limited functionality of its memory
device cannot simulate two independent computation paths simultaneously.

Instead of providing a detailed proof for Theorem 3, we wish to present a
simple and clear argument to demonstrate a slightly stronger result regarding
a subclass of CFL2V. To explain such a subclass, we first address that even if a
function f is single-valued, its underlying npda may have numerous computation
paths producing the same value of f on each input. Let us call an npda N with a
write-only output tape unambiguous if, for every input x and any output value y,
N has exactly one accepting computation path producing y. Let UCFL2V denote
a class of all 2-valued partial functions computed in linear time by unambiguous
npda’s with output tapes. Succinctly, those functions are called unambiguously
2-valued. Obviously, UCFL2V ⊆ CFL2V holds.

Throughout this paper, we wish to show the following stronger separation
result (than Theorem 3), which is referred to as the “main theorem.”

Theorem 4 (Main Theorem). UCFL2V �"ref CFLSV.

Following a brief explanation of key notions and notations in Section 2, we
give in Section 3 the proof of Theorem 4, completing the proof of Theorem 3 as
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well. Our proof starts in Sections 3.1 with a presentation of our example function
h3, a member of UCFL2V. The proof then proceeds, by contradiction, with an
assumption that a certain refinement, say, g of h3 belongs to CFLSV. In Section
3.2, the proof requires an introduction of “colored” automaton—a new type of
automaton having no output tape—which simulates an npda equipped with an
output tape that computes g. To lead to the desired contradiction, the proof
further exploits special properties of such a colored automaton by analyzing the
behaviors of its stack history (i.e., time transitions of stack contents) generated
by this colored automaton. The detailed analysis is presented in Sections 3.3–3.6.
All proofs omitted here will appear in a forthcoming complete paper.

2 Preliminaries

We wish to explain key notions and notations necessary to read through the rest
of this paper.

Let N denote a set of all nonnegative integers and define N+ = N−{0}. Given
a number n ∈ N+, the notation [n] expresses an integer set {1, 2, 3, . . . , n}. An
alphabet is a finite nonempty set of “symbols” or “letters.” Given alphabet Σ,
a string over Σ is a finite series of symbols taken from Σ and |x| denotes the
length (or size) of string x. We use λ for the empty string. A language over Σ
is a subset of Σ∗, where Σ∗ is a set of all strings over Σ. Given two strings x
and y over the same alphabet, x " y indicates that x is a substring of y; namely,
for certain two strings u and v, y equals uxv. Moreover, given a string x and an
index i ∈ [|x|], the notation (x)i expresses a unique substring made up only of
the first i symbols of x. Clearly, (x)i " x holds. The notation |C| for finite set
A refers to its cardinality.

Let us consider multi-valued partial functions, each of which maps elements
of a given set to subsets of another set. Slightly different from a conventional
notation (e.g., [7, 8]), we write f : A→ P(B) for two sets A and B to refer to a
multi-valued partial function that takes an element in A as input and produces
a certain number of elements in B, where P(A) denotes the power set of A. In
particular, when f(x) = Ø, we briefly say that f(x) is undefined. The domain
of f , denoted by dom(f), is the set {x ∈ A | f(x) is not undefined }. Given a
constant k ∈ N+, f is k-valued if |f(x)| ≤ k holds for every input x in A. For two
multi-valued partial functions f, g : A → P(B), we say that g is a refinement
of f (or f is refined by g), denoted f "ref g, if (i) dom(f) = dom(g) and (ii)
g(x) ⊆ f(x) (set inclusion) holds for every x ∈ dom(f). For any function classes
F and G, the succinct notation F "ref G means that every function in F has a
certain refinement in G.

Our mechanical model of computation is a one-way one-head nondeterministic
pushdown automaton (or an npda, in short) with/without a write-only output
tape, allowing λ-moves (or λ-transitions). We use an infinite input tape, which
holds two special endmarkers: the left endmarker |c and the right endmarker
$. In addition, we use a semi-infinite output tape on which its tape head is
initially positioned at the first (i.e., the leftmost) tape cell and moves in one
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direction to the right unless it stays still. Formally, an npda M with an output
tape is a tuple (Q,Σ, {|c, $}, Γ, Θ, δ, q0, Z0, Qacc, Qrej) with a finite set Q of inner
states, an input alphabet Σ, a stack alphabet Γ , an output alphabet Θ, the
initial state q0 ∈ Q, the bottom marker Z0 ∈ Γ , a set Qacc (resp., Qrej) of
accepting (resp., rejecting) states with Qhalt ⊆ Q, and a transition function
δ : (Q−Qhalt)× (Σ̌ ∪{λ})×Γ → P(Q×Γ ∗× (Θ∪{λ})), where Σ̌ = Σ ∪{|c, $}
and Qhalt = Qacc ∪ Qrej . We demand that M should neither remove Z0 nor
replace it with any other symbol at any step of its computation. Furthermore,
the output tape is write-only; namely, whenever M writes a non-blank symbol
on this tape, its tape head must move to the right. It is important to recognize
two types of λ-move. When δ is applied to (q, λ, γ), M modifies the current
contents of its stack and its output tape while neither scanning input symbols
nor moving its input-tape head. When (p, w, λ) ∈ δ(q, σ, γ) holds, M neither
moves its output-tape head nor writes any non-blank symbol onto the output
tape.

Whenever we need to discuss an npda having no output tape, we automatically
drop “Θ” as well as “Θ ∪ {λ}” from the above definition of M and δ. As stated
in Section 1, we consider only npda’s whose computation paths are all terminate
within O(n) steps, where n refers to any input size, and this particular condition
concerning the termination of computation is conventionally called the termina-
tion condition [13]. Throughout this paper, all npda’s are implicitly assumed to
satisfy this termination condition.

In general, an output (outcome or output string) of M along a given com-
putation path refers to a string over Θ written down on the output tape when
the path terminates. Such an output is classified as being valid (or legitimate) if
the corresponding computation path is an accepting computation path (i.e., M
enters an accepting state along this path). We say that an npda M with an
output tape computes function f if, on every input x, M produces exactly all
the strings in f(x) as valid outputs; namely, for every pair x, y, y ∈ f(x) if and
only if y is a valid outcome of M on input x. Notice that an npda can generally
produce more than one valid output strings, its computed function inherently
becomes multi-valued. Because invalid outputs produced byM are all discarded
from our arguments in the subsequent sections, we will refer to valid outputs as
just “outputs” unless otherwise stated.

The notation CFLMV (resp., CFLkV for a fixed k ∈ N+) stands for a class of
multi-valued (resp., k-valued) partial functions that can be computed by npda’s
with write-only output tapes in linear time. When k = 1, we customarily write
CFLSV instead of CFL1V. In addition, we define UCFLkV as a collection of all
functions f in CFLkV for which a certain npda with an output tape computes f
with the extra condition (called the unambiguous computation condition) that,
for every input x and every value y ∈ f(x), there exists exactly one accepting
computation path producing y on input x. It then follows that UCFLkV ⊆
CFLkV ⊆ CFLMV. Since any function producing exactly k + 1 values cannot
be in CFLkV by definition, CFLkV �= CFL(k + 1)V holds; thus, in particular,
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we obtain CFLSV �= CFLMV. Notice that this inequality does not directly lead
to the desired conclusion CFLMV �"ref CFLSV.

To describe behaviors of an npda’s stack, we closely follow terminology from
[10, 11]. A stack content is formally a series zmzm−1 · · · z1z0 of stack symbols
sequentially stored into a stack in such a way that z0 is the bottom marker Z0

and zm is a symbol at the top of the stack. We sometimes refer to a stack content
obtained just after the tape head scans and moves off the ith cell of the input
tape as a stack content at the ith position.

3 Proof of the Main Theorem

Our ultimate goal is to solve negatively a question that was posed in [6] and
reformulated in [14] as in the form of Question 1. In what follows, we will present
an example function, called h3, which belongs to UCFL2V, and then give an
explanation of why no refinement of this function is found in CFLSV, resulting
in the main theorem, namely, UCFL2V �"ref CFLSV.

3.1 An Example Function

Our example function h3 is a natural extension of a well-recognized deterministic
context-free language {x#xR | x ∈ {0, 1}∗} (marked even-length palindromes),
where # is a distinguished symbol not in {0, 1}. Let us define two supporting lan-
guages L = {x1#x2#x3 | x1, x2, x3 ∈ {0, 1}∗} and L3 = {w | w = x1#x2#x3 ∈
L, ∃(i, j) ∈ I3 [xRi = xj ]}, where I3 = {(i, j) | i, j ∈ N+, 1 ≤ i < j ≤ 3}. We then
introduce the desired function h3 by setting h3(w) = {0i1j | (i, j) ∈ I3, xRi = xj}
if w = x1#x2#x3 ∈ L, and h3(w) = Ø if w is not in L. It thus follows that
L3 = {w ∈ L | h3(w) �= Ø}. Now, let us claim the following assertion.

Proposition 1. The above function h3 is in UCFL2V.

Proof. Obviously, h3 is 2-valued. Let us consider the following npdaM equipped
with a write-only output tape. On any input w, M checks whether w is of the
form x1#x2#x3 in L by moving its input-tape head from left to right by counting
the number of # in w. At the same time, M nondeterministically chooses a pair
(i, j) ∈ I3, writes 0i1j onto its output tape, stores xi into a stack, and then checks
whether xRi matches xj by retrieving xi in reverse from the stack. If xRi = xj
holds, then M enters an accepting state; otherwise, it enters a rejecting state.
It follows by this definition that, for each choice of (i, j) in I3, there is at most
one accepting computation path producing 0i1j. It is not difficult to show that
M computes h3. Therefore, h3 belongs to UCFL2V.

To complete the proof of the main theorem, it suffices to verify the following
proposition regarding the existence of refinements of the function h3.

Proposition 2. The function h3 has no refinement in CFLSV.



142 T. Yamakami

3.2 Colored Automata

Our proof of Proposition 2 proceeds by contradiction. To lead to the desired
contradiction, we first assume that h3 has a refinement, say, g in CFLSV. Since
g is single-valued, we rather write g(x) = y instead of g(x) = {y} for x ∈ dom(f).
Take an npda N computing g with a write-only output tape. LetN have the form
(Q,Σ, {|c, $}, Γ, Θ, δ, q0, Z0, Qacc, Qrej) with δ : (Q −Qhalt) × (Σ̌ ∪ {λ})× Γ →
P(Q× Γ ∗ × (Θ ∪ {λ})), where Σ = Θ = {0, 1}.

Unfortunately, we find it difficult to directly analyze the moves of an output-
tape head. To overcome this difficulty, we then try to modify N into a new
variant of npda having no output tape, say, M . As seen later, this modification
is possible because g’s output values are limited to strings of constant lengths.
Now, let us introduce this new machine, dubbed as “colored” automaton, which
has no output tapes but uses “colored” stack symbols. Using a finite set C
of “colors,” a colored automaton M = (Q′, Σ, {|c, $}, Γ ′, C, δ′, q′0, Z0, Q

′
acc, Q

′
rej)

partitions its stack alphabet Γ ′, except for the bottom marker, into sets {Γξ}ξ∈C ;
namely,

⋃
ξ∈C Γξ = Γ − {Z0} and Γξ ∩ Γξ′ = Ø for any distinct pair ξ, ξ′ ∈ C.

We define a color of stack symbol γ to be ξ in C if γ is in Γ ′
ξ (= Γξ ∪ {Z0}).

Notice that Z0 has all colors. Given a color ξ ∈ C, we call a computation path
of M a ξ-computation path if all configurations along this computation path use
only stack symbols in color ξ. An output of M on input x is composed of all
colors ξ in C for which there is an accepting ξ-computation path of M on x.

Lemma 1. There exists a colored automaton M that computes g.

Proof Sketch. Recalling the set I3, we introduce a set Ī3 = {0i1j | (i, j) ∈ I3}
and another set Īpart3 composed of all substrings of any strings in Ī3. Recall the
given npda N with a write-only output tape. Now, we want to define a new
colored automata M = (Q′, Σ, {|c, $}, Γ ′, Ī3, δ′, q′0, Z0, Q

′
acc, Q

′
rej) that simulates

N as follows. Roughly speaking, on any input x, M first guesses (i.e., nonde-
terministically chooses) an output string t of g(x). Whenever N pushes u, M
pushes its corresponding color-t symbol u(t) into a stack. Further along this com-
putation path, M keeps using only color-t stack symbols. Instead of having an
output tape, M remembers the currently produced string on N ’s output tape.
Whenever N enters an accepting state with an output string that matches the
firstly guessed string t of M , M also enters an appropriate accepting state. In
other cases, M rejects the input. �

To simplify notation in our argument, we describe the colored automaton
M guaranteed by Lemma 1 as (Q,Σ, {|c, $}, Γ, I3, δ, q0, Z0, Qacc, Qrej). It is also
useful to restrict the “shape” of M . A colored automaton M is said to be in an
ideal shape if M satisfies all of the following six conditions.

1. There are only one accepting state qacc and one rejecting state qrej . More-
over, the set Q of inner states equals {q0, q, qacc, qrej}. The machine M is in
state q during its computation except for the initial and final configurations.

2. The input-tape head of M always moves.
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3. The machine M never aborts its computation; that is, δ is a total function
(i.e., δ(q, σ, γ) �= Ø holds for any (q, σ, γ) ∈ (Q−Qhalt)× Σ̌ × Γ ).

4. Every stack operation either modifies a single top stack symbol or pushes
extra one symbol onto the top of the stack after (possibly) altering the then-
top symbol; that is, δ’s range is P(Q× (Γ ∪ Γ 2)× (Θ ∪ {λ})).

5. The stack never becomes empty (excluding the bottom marker Z0) at any
step of the computation except for the initial and the final configurations.
In addition, at the first step of reading |c, M must push a stack symbol
onto Z0 and this stack symbol determines the stack color in the rest of its
computation path. After reading $, M ’s stack becomes empty.

6. The machine never enters any halting state before scanning the endmarker.

It is well-known that, for any context-free language L, there always exists an
npda (with no output tape) in an ideal shape that recognizes L (see, e.g., [4]).
Similarly, we can assert the following statement for colored automata.

Lemma 2. Given any colored automaton, there is always another colored au-
tomaton in an ideal shape that produces the same set of output values.

In the rest of this paper, we fix a colored automaton in an ideal shape, guar-
anteed by Lemma 2, which computes g correctly.

Hereafter, let us focus on inputs of the form x#xR#y for x, y ∈ {0, 1}∗. For
any x ∈ {0, 1}∗, we abbreviate the set {y ∈ {0, 1}|x| | y �∈ {x, xR}} as Hx. Given

n ∈ N+, D
(n)
(i,j) denotes a set of all strings x ∈ {0, 1}n for which there exists an

accepting (i, j)-computation path of M on input x#xR#x. Obviously, it holds

that D
(n)
(1,2) ∪D

(n)
(2,3) = {0, 1}n. It therefore holds, for every length n, that either

|D(n)
(1,2)| ≥ 2n/2 or |D(n)

(2,3)| ≥ 2n/2. We will discuss the case of |D(n)
(2,3)| ≥ 2n/2 in

Section 3.3 and the case of |D(n)
(1,2)| ≥ 2n/2 in Section 3.6.

3.3 Case 1: D(2,3) Is Large

Let us consider the first case where the inequality |D(n)
(2,3)| ≥ 2n/2 holds for

infinitely many lengths n ∈ N. Take an arbitrary number n ∈ N that is signifi-

cantly larger than 3|Q|+|Σ|+|Γ | and also satisfies |D(n)
(2,3)| ≥ 2n/2. We fix such a

number n throughout our proof and we thus tend to drop script “n” whenever
its omission is clear from the context; for instance, we often write D(2,3) instead

of D
(n)
(2,3).

By the property of the colored automatonM computing g, it follows that, for
any pair x, y ∈ {0, 1}n, if y /∈ {x, xR}, then there always exists a certain accept-
ing (1, 2)-computation path on input x#xR#y; however, there is no accepting
(1, 2)-computation path on input x#xR#x for every x in D(2,3). In addition,
no accepting (1, 2)-computation path exists on input x#z#y if z �= xR. Since
there could be a large number of accepting (1, 2)-computation paths of M on
x#xR#y, we need to choose one of them arbitrarily and take a close look at this
particular path.
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For convenience, let PATHn denote a set of all possible accepting (1, 2)-
computation paths of M on inputs of the form x#xR#y for certain strings
x, y ∈ {0, 1}n. We arbitrarily fix a partial assignment π : D(1,2) × {0, 1}n →
PATHn that, for any element (x, y), if y ∈ Hx, then π picks an accepting (1, 2)-
computation path ofM on input x#xR#y; otherwise, let π(x, y) be undefined for
simplicity. For brevity, we abbreviate π(x, y) as px,y. Note that px,y is uniquely
determined from (x, y) whenever π(x, y) is defined.

Given an accepting (1, 2)-computation path px,y of M on input x#xR#y,

the notation γ
(x)
i,y denotes a stack content obtained by M just after reading off

the first i symbols of x#xR#y along this particular path px,y. Furthermore, we

abbreviate as γ
(x)
y the stack content γ

(x)

|x#xR#|,y, which is produced just after

reading x#xR# of the input x#xR#y. Note that, for each x ∈ D(2,3) and any
y ∈ Hx, along an accepting (1, 2)-computation path px,y on input x#xR#y, M

produces unique stack contents γ
(x)
|x#|,y and γ

(x)
y .

In Sections 3.4–3.5, we plan to evaluate how many strings in D(2,3) satisfy
each of the following conditions.

1. Strings x in D(2,3) that make γ
(x)
y small in size for all y ∈ Hx.

2. Strings x in D(2,3) that make γ
(x)
y relatively large in size for certain strings

y ∈ Hx.

Proposition 3 gives a lower bound of the number of strings in (1), whereas
Propositions 4 and 5 provide lower bounds for (2). Those bounds, moreover,
guarantee the existence of a string that satisfies both conditions, clearly leading
to the desired contradiction.

3.4 Fundamental Properties of a Stack History

In the following series of lemmas and propositions, we will explore fundamental
properties of a stack history of M along computation path px,y on input of the
form x#xR#y. Those properties are essential in proving the main theorem.

Lemma 3. Fix x, y ∈ {0, 1}n. For any accepting (1, 2)-computation path px,y of
M on input x#xR#y, there is no pair (i1, i2) of positions such that |x| < i1 <

i2 ≤ |x#xR#| and γ(x)i1,y
= γ

(x)
i2,y

. Moreover, the same statement is true when
1 ≤ i1 < i2 ≤ |x|.

Lemma 3 can be generalized as follows.

Lemma 4. Let x1, x2, y1, y2 ∈ {0, 1}n, i1, i2 ∈ N with 1 ≤ i1, i2 ≤ |x1#xR1 #|.
Assume that one of the following conditions holds: (i) i1 �= i2, (ii) 1 ≤ i1 = i2 ≤
|x1#| and (x1)i1 �= (x2)i2 , and (iii) (x1)|x1#| = (x2)|x1#|, |x1#| < i1 = i2 ≤
|x1#xR1 #|, and (x1)i1 �= (x2)i2 . It then holds that γ

(x1)
i1,y1

�= γ
(x2)
i2,y2

.

Now, we start estimating the lower bound of the number of strings x in D(2,3)

for which their corresponding stack contents γ
(x)
y are small in size for an arbitrary

string y in Hx. More specifically, we will verify the following statement.
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Proposition 3. There exist two constants d1, d2 ∈ N+, independent of (n, x, y),

such that |{x ∈ D(2,3) | ∀y ∈ Hx [|γ(x)y | < d1]}| ≥ |D(2,3)| − d2.

Hereafter, we will aim at proving Proposition 3.
Given two strings u, v ∈ (Γ(1,2))

∗ and a string z ∈ {0, 1}∗, we say that M
transforms u to v while reading z (along computation (sub)path p) if M behaves
as follows along this subpath p: for a certain w, (i) M starts in state q with uZ0

in stack, scanning the leftmost input symbol of z, (ii) M then reads z, with no
endmarkers, from the input tape, (iii) after reading off z,M enters the same state
q with vwZ0 in stack, and (iv) M does not scan wZ0. The notation TFM (τ, σ)
expresses a set of all strings of the form z#z′ for z, z′ ∈ {0, 1}∗ such that M
transforms τ to σ while reading z#z′.

Lemma 5. Given any pair (u, v), there is at most one string x′ such that x′ is
a substring of a certain string x in D(2,3) and M transforms u to v while reading
x′ along a subpath of px,y for a certain y ∈ {0, 1}n.

Next, we will show a key lemma, necessary to prove Proposition 3. Given
a pair (x, y), we define MSCx,y (minimal stack contents) to be a collection
of all stack contents γ satisfying the following: there exists a position � with

|x#| ≤ � ≤ |x#xR#| such that (i) γ = γ
(x)
�,y and (ii) |γ| ≤ |γ(x)�′,y| holds for any

�′ satisfying |x#| ≤ �′ ≤ |x#xR#|. Condition (ii) indicates that the size of γ is
minimum. Note that, when y ∈ Hx, MSCx,y cannot be empty. In addition, by

Lemma 4, all elements in {γ(x)i,y | 1 ≤ i ≤ |x#xR#|} are mutually distinct.

Lemma 6. There exists a constant d > 0, independent of (n, x, y), that satisfies

the following statement. Let x ∈ {0, 1}n, y ∈ Hx, and γ
(x)
�,y ∈MSCx,y. Moreover,

let x = rz, xR = zRsr′, � = |x#zRs|, γ(x)|r|,y = τvZ0, and γ
(x)
�,y = σvZ0 for an

appropriate tuple (r, r′, z, s, σ, τ, u, v). If � �= |x#| and z#zRs ∈ TFM (τ, σ), then

|γ(x)y | ≤ d holds. Moreover, when n is sufficiently large, � �= |x#| holds.

Assuming that Lemma 6 is true, we can prove Proposition 3 in the following

manner. Since MSCx,y is non-empty, take an element γ
(x)
�,y from MSCx,y with

|x#| ≤ � ≤ |x#xR#|. By the size-minimality of γ
(x)
�,y , there exists an appropriate

tuple (r, r′, z, s, σ, τ, u, v) that satisfies

(*) x = rz, xR = zRsr′, � = |x#zRs|, γ(x)y = uvZ0, γ
(x)
|r|,y = τvZ0, γ

(x)
�,y = σvZ0,

and z#zRs ∈ TFM (τ, σ).

By the second part of Lemma 6, except for a certain constant number of x’s,
it always holds that � �= |x#|. The first part of Lemma 6 provides the desired

constant d1 that upper-bounds |γ(x)y |. We therefore obtain the proposition.

To complete the proof of Proposition 3, we still need to verify Lemma 6. This
lemma follows from Lemmas 7 and 8. In the first lemma, we want to show that
the size of s in (*) is bounded from above by a certain absolute constant.
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Lemma 7. There exists a constant d1 > 0, independent of (n, x, y), satisfying

the following statement. Let x ∈ {0, 1}n, y ∈ Hx, and γ
(x)
�,y ∈MSCx,y. Moreover,

let x = rz, xR = zRsr′, � = |x#zRs|, γ(x)|r|,y = τvZ0, and γ
(x)
�,y = σvZ0. If

� �= |x#| and z#zRs ∈ TFM (τ, σ), then |s| ≤ d1 holds.

Proof. Let x = rz, xR = zRsr′, � = |x#zRs|, γ(x)|r|,y = τvZ0, and γ
(x)
�,y = σvZ0.

Since � �= |x#|, it follows that z �= λ. Assume that γ
(x)
�,y ∈MSCx,y and z#zRs ∈

TFM (τ, σ). We first claim that s can be uniquely determined from (τ, σ).

Claim. Let z1 ∈ {0, 1}+ and s1 ∈ {0, 1}∗. If z1#zR1 s1 ∈ TFM (τ, σ), then s = s1.

Let us show this claim. Toward a contradiction, we assume that s �= s1.
Assume that M has an accepting (1, 2)-computation path p1 while reading
rz#zRsr′. Replace a portion of this path associated with z#zRs by a subpath
corresponding to z1#z

R
1 s1. We then obtain a new accepting (1, 2)-computation

path on rz1#z
R
1 s1r

′. However, we obtain (rz1)
R = zR1 r

R = z1sr
′ �= zR1 s1r

′ be-
cause s �= s1. This means that there is no accepting (1, 2)-computation path on
rz1#z

R
1 s1r

′, a contradiction. Therefore, the claim is true.
The above claim helps us define a map from (τ, σ) to s. Thus, the number of

all possible strings s is at most |Γ ′
(1,2)|2. This implies that |s| is upper-bounded

by an appropriately chosen constant, independent of (n, x, y). �

In the second lemma, we want to show that the size of r′ in (*) is also upper-
bounded by a certain absolute constant.

Lemma 8. There exists a constant d2 > 0, independent of (n, x, y), that satisfies

the following statement. Let x ∈ {0, 1}n, y ∈ Hx, and γ
(x)
�,y ∈MSCx,y. Moreover,

let x = rz, xR = zRsr′, y = r′′z′, � = |x#zRs|, �′ = |x#xR#r′′|, γ(x)|r|,y = τvZ0,

γ
(x)
�,y = σvZ0, and γ

(x)
�′,y = vZ0. If r

′#r′′ ∈ TFM (σ, λ), then |r′| ≤ d2 holds.

Finally, we will prove Lemma 6 with the help of Lemmas 7 and 8.

Proof of Lemma 6. Let x = rz and xR = zRsr′. Let γ
(x)
y = uvZ0 and

γ
(x)
� = σvZ0 with � = |x#zRs|. Assume that M transforms σ to u while reading
r′. We first claim that � �= |x#|. Assume that � = |x#|. This implies that
z = s = λ. Hence, xR = r′. By Lemma 8, we obtain |r′| ≤ d2. However, x must
be sufficiently large in size, a contradiction. Therefore, � �= |x#| holds.

Lemma 7 yields an appropriate constant d1 such that |s| ≤ d1. Lemma 8
also shows that |r′| is upper-bounded by a certain constant, say, d2. Since |r| =
|sr′| = |s|+ |r′| by definition, |r| is bounded from above by d1+d2. Let σ0 be the
stack symbol pushed into the stack at the first step ofM . SinceM transforms σ0
to τv while reading r and the stack increases by at most one, it follows that |v|
(and therefore |uvZ0|) is upper-bounded by an appropriately chosen constant.
�

In the subsequent argument, the notation Ex expresses a collection of all stack

contents γ
(x)
y at the |x#xR#|-th position (i.e., just after reading off x#xR#)
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along any accepting (1, 2)-computation path px,y ofM on input x#xR#y for an
arbitrary string y ∈ Hx. Since π is fixed, it holds that 1 ≤ |Ex| ≤ 2|x| − 2.

Before proceeding further, we want to prove a useful lemma.

Lemma 9. Let x1, x2, y ∈ {0, 1}n. If x2 ∈ D(2,3) and x1 �= x2, then there is no

position i such that |x1| ≤ i ≤ |x1#xR1 #| and γ
(x1)
i,x2

= γ
(x2)
i,y .

Proof. Assume that such a position i actually exists. We then swap between
substrings x1#(xR1 )j and x2#(xR2 )j , where j = |x1#xR1 #| − i, and we then ob-
tain another accepting (1, 2)-computation path on input x2#(xR2 )j(x

R
1 )n−j#x2.

(Case 1) If (xR2 )j(x
R
1 )n−j �= xR2 , then such an accepting path cannot be a (1, 2)-

computation path, a contradiction. (Case 2) If (xR2 )j(x
R
1 )n−j = xR2 , then the

obtained accepting (1, 2)-computation path on x2#x
R
2 #x2 must be a rejecting

path by the choice of x2 ∈ D(2,3), a contradiction. �

3.5 Size of Stack Contents

Notice that |Ex| ≥ 1 holds for all x ∈ D(2,3). Prior to a discussion on this general
case, we intend to consider a special case, which exemplifies an essence of our
proof, where |Ex| = 1 holds for any x ∈ D(2,3).

I) Special Case of |Ex| = 1. Since the choice of y ∈ Hx is irrelevant, it is

possible to drop subscript “y” and express γ
(x)
i,y , γ

(x)
y , and ux,y, as γ

(x)
i , γ(x), and

ux, respectively. To lead to the desired contradiction, let us examine two stack

contents, γ
(x)
|x#| and γ

(x).

Proposition 4. Given any number ε ≥ 0, it holds that |{x ∈ D(2,3) | ∃y ∈
Hx [|γ(x)y | ≥ (n− 2− ε)/ log |Γ ′

(1,2)|]}| ≥ |D(2,3)|(1− 2−ε).

To prove Proposition 4, let us consider two stack contents γ
(x1)
x2 and γ

(x2)
x1 for

any distinct pair x1, x2 ∈ D(2,3). Lemma 9 implies that γ
(x1)
x2 �= γ

(x2)
x1 . We thus

obtain the following.

Lemma 10. For every distinct pair x1, x2 ∈ D(2,3), it holds that γ(x1) �= γ(x2).

Recall the set Γ ′
(1,2) = Γ(1,2) ∪ {Z0}. Given a number d ∈ N+, we further

define Ad = {x ∈ D(2,3) | ∃y ∈ Hx [|γ(x)y | ≥ d]}.

Lemma 11. For any constant d ∈ N+, it holds that |Ad| ≥ |D(2,3)| − 2|Γ ′
(1,2)|d.

Proof. Let Bd = {x ∈ D(2,3) | ∀y ∈ Hx [|γ(x)y | < d]}. Notice that Bd coincides

with {x ∈ D(2,3) | |γ(x)| < d}. It holds that γ(x) belongs to (Γ ′
(1,2))

m for a

certain number m with m ≤ d − 1. Consider a mapping h from x to γ(x). The
function h is 1-to-1 on the domain Bd of h by Lemma 10. Hence, it follows that
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|Bd|/2 ≤
∑d−1

j=1 |Γ ′
(1,2)|j = |Γ ′

(1,2)|d. We conclude that, since D(2,3) = Ad ∪ Bd,

|Ad| = |D(2,3)| − |Bd| ≥ |D(2,3)| − 2|Γ ′
(2,3)|d, as requested. �

With the help of Lemma 11, Proposition 4 can be easily proven as follows.

Proof of Proposition 4. For simplicity, write d for (n − 2 − ε)/ log |Γ ′
(1,2)|,

which equals log|Γ ′
(1,2)

| 2n−2−ε. It suffices to show that |Ad| ≥ |D(2,3)|(1 − 2−ε).

By Lemma 11, we obtain |Ad| ≥ |D(2,3)| − 2|Γ ′
(1,2)|d ≥ |D(2,3)|(1− 2−ε). �

To complete the proof for the special case, let x = rz, xR = zRsr′, γ(x) =

uvZ0, and γ
(x)
� = σvZ0 with � = |x#zRs|. Assume that M transforms σ to

u while reading r′. Proposition 3 shows that, for most of x’s, |uvZ0| is upper-
bounded by a certain constant, independent of (n, x, y). However, by setting,
e.g., ε = 98, Proposition 4 implies that |uvZ0| ≥ (n − 100)/ log |Γ ′

(1,2)| for at
least the two-thirds of x’s in D(2,3). Since n is sufficiently large, we obtain a
clear contradiction.

II) General Case of |Ex| ≥ 1. We have already shown how to deal with the
case where |Ex| = 1 holds for all x ∈ D(2,3). Now, let us discuss a general case
where |Ex| ≥ 1 holds for any x ∈ D(2,3). Our goal is to show the following
statement, which replaces Proposition 4.

Proposition 5. There are at least half of x’s in D(2,3) such that, for a certain
stack content τ ∈ Ex, τ contains at least log|Γ | n/2 symbols.

We start with the following lemma regarding Ex’s, which can be seen as a
generalization of Lemma 10.

Lemma 12. Let x1, x2 ∈ D(2,3). If x2 ∈ Hx1 , then Ex1 �= Ex2 .

Proof. Assume to the contrary that Ex1 = Ex2 holds for two particular elements
x1, x2 ∈ D(2,3) satisfying x2 ∈ Hx1 . Take a stack content τ ∈ Ex1 satisfying τ =

γ
(x1)
x2 for a certain accepting (1, 2)-computation path px1,x2 ofM on x1#x

R
1 #x2.

Since Ex1 = Ex2 , there exists another y in Hx2 that satisfies τ = γ
(x2)
y along an

appropriate accepting (1, 2)-computation path px2,y on x2#x
R
2 #y. By swapping

two parts of the above computation paths px1,x2 and px2,y properly, we then
obtain another accepting (1, 2)-computation path ofM on x2#x

R
2 #x2 satisfying

τ = γ
(x2)
x2 . This is an obvious contradiction against the choice of x2 ∈ D(2,3). �

Write Un for {x ∈ D(2,3) | |Ex| > n/2} and consider two separate cases.

Case 1: Assume that |Un| ≥ |D(2,3)|1/2. By taking an arbitrary x ∈ Un, we want
to claim that a certain stack content τ ∈ Ex must be made up of more than
log|Γ | n/2 symbols. For this purpose, let us assume otherwise. Since any τ in Ex

has at most log|Γ | n/2 symbols, there must be at most n/2 different elements in
Ex. This implies that x /∈ Un, a contradiction against the choice of x. Hence, we
obtain |τ | > log|Γ | n/2, as stated in Proposition 5.
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Case 2: Next, we assume that |Un| < |D(2,3)|1/2. We first prove the following
combinatorial lemma.

Lemma 13. Let n ∈ N+ be sufficiently large and let X,Y satisfy X ⊆ Y . Let A
be an X × Y matrix whose entries are taken from Θ∗, where Θ is an alphabet.
Assume that (i) |X | ≥ 2n−2 and |Y | = 2n, (ii) for any (x, y) ∈ X×Y , A(x,y) = λ
iff y ∈ {x, xR}, and (iii) for any x, y ∈ X, if A(x,y) �= λ, then A(x,y) �= A(y,z)

for any z ∈ Y . Then, the set X̃ = {x ∈ X | ∃y ∈ Y [|A(x,y)| ≥ log|Θ| log|Θ| n ]}
has cardinality at least |X |/2.

Proof. Let us assume that the premise of the lemma is satisfied. For convenience,
we define X ′ = {x ∈ X | maxy∈Y {|A(x,y)|} < log|Θ| log|Θ| n}, which satisfies

X = X̃ ∪ X ′. To show that |X̃| ≥ |X |/2, we assume to the contrary that
|X̃| < |X |/2. This implies that |X ′| = |X | − |X̃| > |X | − |X |/2 = |X |/2 ≥ 2n−3

since |X | ≥ 2n−2. Let E′
x = {A(x,y) | y ∈ Y } for every x ∈ X . Analogously to

Lemma 12, it holds that E′
x1
�= E′

x2
for every distinct pair x1, x2 ∈ X .

Let x ∈ X ′. Since |A(x,y)| < log|Θ| log|Θ| n for all y ∈ Y , the total number

of strings A(x,y) in E′
x is upper-bounded by |Θ|log|Θ| log|Θ| n = log|Θ| n; that is,

|E′
x| ≤ log|Θ| n. For convenience, let E =

⋃
x∈X′ E′

x and set α = |E|. Notice
that α ≥ 2. Hereafter, we want to claim that α ≥ 2(n−3)/(2 log|Θ| n). Toward a
contradiction, we assume that α < 2(n−3)/(2 log|Θ| n). Now, let us estimate the
upper bound of |X ′|. Note that there are |X ′| different E′

x’s in E and that E′
x is

a subset of E of cardinality at most log|Θ| n. It follows that |X ′| does not exceed
the total number of E ’s nonempty subsets of size at most log|Θ| n. We then

conclude that |X ′| ≤
∑log|Θ| n

i=1 ( α
i ) ≤ (log|Θ| n) · αlog|Θ| n ≤ α2 log|Θ| n ≤ 2n−3,

where the second inequality comes from i < n/2 and ( α
i) ≤ αi/i!. This is a clear

contradiction against |X ′| ≥ 2n−3. Therefore, we obtain α ≥ 2(n−3)/(2 log|Θ| n).
However, this contradicts the bound of |E| ≤ log|Θ| n. �

Let us return to the proof of Proposition 5. To apply Lemma 13, we simply set

X to be D(2,3), Y to be {0, 1}n, and A(x,y) to be γ̃
(x)
( y), where γ̃

(x)
y is obtained

from γ
(x)
y by simply deleting Z0. It is not difficult to show that the obtained

triplet (A,X, Y ) satisfies Conditions (i)–(iii) of the lemma. The lemma ensures

that there are at least half of x’s in D(2,3) satisfying |γ(x)y | ≥ log|Θ| log|Θ| n for a
certain string y ∈ {0, 1}n.

Nonetheless, Proposition 3 indicates that |γ(x)y | ≤ d1 for all y ∈ Hx. We then
obtain a contradiction, as requested, and therefore this closes Case 1.

3.6 Case 2: D(1,2) Is Large

We have already proven Case 1 in Sections 3.3–3.5. To complete the proof of
Proposition 2, however, we still need to examine the remaining case where {n ∈
N+ | |D(2,3)| ≥ 2n/2} is a finite set; in other words, |D(1,2)| > 2n/2 holds for
all but finitely many n. Recall from Section 3.2 the introduction of our colored
automaton M = (Q,Σ, {|c, $}, Γ, I3, δ, q0, Z0, Qacc, Qrej) with Qacc = {qacc} and
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Qrej = {qrej} that computes g. Before starting the intended proof, we present
a general lemma regarding inputs in reverse form.

Lemma 14. There exists a colored automaton MR that satisfies the following:
M accepts x1#x2#x3 along an accepting (i, j)-computation path if and only if
MR accepts xR3 #x

R
2 #x

R
1 along an accepting (4− j, 4− i)-computation path.

Let us return to our proof for the case of |D(1,2)| > 2n/2. Note that, by
running M on inputs of the form x#y#z for x, y, z ∈ {0, 1}n, we then obtain
|D(1,2)| > 2n/2. We consider a counterpart of D(1,2), denoted by DR

(2,3), which is

obtained by running MR instead of M . Lemma 14 implies that |DR
(2,3)| > 2n/2.

Apply to DR
(2,3) an argument used for Case 1. This is an obvious contradiction.

We have therefore completed the proof of Proposition 2.
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1 Introduction

Context. Early work on the study of complexity classes by means of program-
ming languages has been carried out by Neil Jones [10,11], in particular using
functional programming. The interest of these investigations is twofold: from the
computational complexity point of view, they provide new characterizations of
complexity classes, which abstract away from machine models; from the pro-
gramming language point of view, they are a way to analyze the impact on
complexity of various programming features (higher-order types, recursive def-
initions, read/write operations). This fits more generally in the research line
of implicit computational complexity (ICC), whose goal is to study complexity
classes without relying on explicit bounds on resources but instead by consider-
ing restrictions on programming languages and calculi. Seminal research in this
direction has been carried out in the fields of recursion theory [4,13], λ-calculus
[15] and linear logic [9]. These contributions usually exhibit a new specific lan-
guage or logic for each complexity class, for instance PTIME, PSPACE, LOGSPACE:
let us call monovalent the characterizations of this kind. We think however that
the field would benefit from some more uniform presentations, which would con-
sist in both a general language and a family of static criteria on programs of this
language, each of which characterizing a particular complexity class. We call
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such a setting a polyvalent characterization; we believe that this approach is
more promising for providing insights on the relationships between complexity
classes. Polyvalent characterizations of this nature have been given in [11,14],
but their criteria used for reaching point (2) referred to the construction steps
of the programs. Here we are interested in defining a polyvalent characterization
where (2) is expressed by means of the program’s type in a dedicated system.

Stratification and Linear Logic. An ubiquitous notion in implicit complexity is
that of stratification, by which we informally designate here the fact of organiz-
ing computation into distinct strata. This intuition underlies several systems:
ramified and safe recursion [13,4], in which data is organized into strata; strat-
ified comprehension [14], where strata are used for quantification; variants of
linear logic [9] where programs are divided into strata thanks to a modality.
More recently stratification of data has been related fruitfully to type systems
for non-interference [18].

The linear logic approach to ICC is based on the proofs-as-programs corre-
spondence. This logic indeed provides a powerful system to analyse the duplica-
tion and sharing of arguments in functional computation: this is made possible
by a specific logical connective for the duplication of arguments, the ! modality.
As in functional computation the reuse of an argument can cause a complexity
explosion, the idea is to use weak versions of ! to characterize complexity classes.
This intuition is illustrated by elementary linear logic (ELL) [9,8], a simple vari-
ant of linear logic which provides a monovalent characterisation of elementary
complexity, that is to say computation in time bounded by a tower of exponen-
tials of fixed height. Other variants of linear logic provide characterizations of
PTIME, but they use either a more complicated language [9] or a more specific
programming discipline [12].

Contribution and Comparison. In [2] a polyvalent characterization in ELL proof-

nets of the complexity classes k-EXP = ∪i∈NDTIME(2
ni

k ) for all k ≥ 0 has been
obtained. However this approach has some shortcomings:

1. The complexity soundness proof uses a partly semantic argument ([2] Lemma
3 p. 10) and so it does not provide a syntactic way to evaluate the programs
with the given complexity bound.

2. The characterization is given for classes of predicates, and not for classes of
functions. Moreover it is not so clear how to extend this result to functions
because of the semantic argument mentioned above.

3. The language of proof-nets is not as standard and widespread as say that of
λ-calculus.

In the present work, we wish to establish an analogous polyvalent characteri-
zation in the setting of λ-calculus, with a stronger complexity soundness result
based on a concrete evaluation procedure. We think this could provide a more
solid basis to explore other characterizations of this kind.

In particular we define the λ!-calculus, a variant of λ-calculus with explicit
stratifications, which allows both to recover the results of [2] and to character-
ize also the function complexity classes k-FEXP, by two distinct hierarchies of
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types. In fact, the characterization obtained through a standard representation
of data-types like in [2] does not account for some closure properties of the func-
tion classes k-FEXP, in particular composition, so we propose a new, maybe less
natural, representation in order to grasp these properties. Our language makes
it easier to define such non-standard representation.

Technical Approach. One could expect that the results of [2] might be extended
to λ!-calculus by considering a translation of terms into proof-nets. However
it is not so straightforward: term reduction cannot be directly simulated by
the evaluation procedure in [2], because (i) it follows a specific cut-elimination
strategy and (ii) ultimately it uses a semantic argument. For this reason we
give here a direct proof of the result in λ!-calculus, which requires defining new
measures on terms and is not a mere adaptation of the proof-net argument.

Related Works. The first results on ELL [9,8] as well as later works [19,6] have
been carried out in the setting of proof-nets. Other syntaxes have then been
explored. First, specific term calculi corresponding to the related system LLL

and to ELL have been proposed [22,17,16]. Alternatively [5] used standard λ-
calculus with a type system derived from ELL. The λ!-calculus we use here has
a syntax similar to e.g. [21,7], and our type system is inspired by [5].

Outline. In the following we first introduce the λ!-calculus as an untyped cal-
culus, delineate a notion of well-formed terms and study the complexity of the
reduction of these terms (Sect. 2). We then define a type system inspired by ELL

and exhibit two families of types corresponding respectively to the hierarchies
k-EXP and k-FEXP for k ≥ 0 (Sect. 3). Finally we introduce a second characteriza-
tion of this hierarchy, based on a non-standard data-type (Sect. 4). A conclusion
follows.

A version of this work with a technical appendix containing detailed proofs is
available as [3].

2 The λ!-Calculus

2.1 Terms and Reduction

We use a calculus, λ!-calculus, which adds to ordinary λ-calculus a ! modality
and distinguishes two notions of λ-abstraction:

M, N ::= x | λx.M | λ!x.M | MN |!M

where x ranges over a countable set of term variables Var. The usual notions of
free variables is extended with FV(λ!x.M) = FV(M) \ {x}, FV(!M) = FV(M). As
usual, terms are considered modulo renaming of bound variables, and = denotes
the syntactic equality modulo this renaming.
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Contexts. We consider the class of (one hole) contexts generated by the following
grammar:

C ::= � | λx.C | λ!x.C | CM | MC |!C
As usual, capture of variables may occur. The occurrence of a term N in M is

a context C such that M = C[N]; in practice we simply write N for the occurrence
if there is no ambiguity and call it a subterm of M.

Depth. The depth of the occurrence C in M, denoted by δ(C, M), is the number
of ! modalities surrounding the hole of C in M.

Moreover, the depth δ(M) of a term M is the maximal nesting of ! in M.

Example 1. M =!((λx.x) !!y !y). Then δ(!((λx.x) !!� !y), M) = 3 and
δ(!((λx.x) !!y !�), M) = 2; moreover, δ(M) = 3.

Dynamics. The reduction → is the contextual closure of the following rules:

(λx.M)N −→ M[N/x] (β-rule) (λ!x.M)!N −→ M[N/x] (!-rule)

where [N/x] denotes the capture free substitution of x by N, whose definition is
the obvious extension of the corresponding one for λ-calculus. Observe that a
term such as (λ!x.M)P is a redex only if P =!N for some N; the intuition behind
these two kinds of redexes is that the abstraction λ expects an input at depth
0, while λ! expects an input at depth 1.

A subterm at depth i in M is an occurrence C in M such that δ(C, M) = i; we

denote by →i the reduction of a redex occurring at depth i. As usual,
∗→ (

∗→i)
denotes the reflexive and transitive closure of → (→i). We say that a term is
in i-normal form if it does not have any redex at depth less than or equal to i;
then M is in normal form iff it is in δ(M)-normal form. We denote as nf i the set
of terms in i-normal form.

We have a confluence property, whose proof is adapted from [20], taking into
account the notion of depth:

Proposition 1.

(i) Let M ∈ nf i and M→j M
′, with j ≥ i+ 1, then M′ ∈ nf i.

(ii) [Confluence at fixed depth] Let M→i P and M→i Q, then there is a term N

such that P
∗→i N and Q

∗→i N.
(iii) [Confluence] Let M→ P and M→ Q, then there is a term N such that P

∗→ N

and Q
∗→ N.

We consider a specific subclass of terms, inspired by elementary linear logic
(ELL) [9,17]:

Definition 1 (Well-formed Term). A term M is well-formed (w.f.) if and only
if, for any subterm N of M which is an abstraction, we have:

1. if N = λx.P, then x occurs at most once and at depth 0 in P;
2. if N = λ!x.P, then x can only occur at depth 1 in P.



Characterizing Polynomial and Exponential Complexity Classes 155

Example 2. λf.λx.f(fx), the standard representation of the Church integer 2,
is not w.f.; its w.f. counterpart is λ!f.!(λx.f(fx)).

The motivation behind such definition is that the depth of subterms in a
w.f. term does not change during reduction: if an abstraction expects an input
at depth 0 (resp. 1), which is the case of λ (resp. λ!), then the substitutions
occur at depth 0 (resp. 1), as each occurrence of its bound variable is at depth
0 (resp. 1).

The class of w.f. terms is preserved by reduction and their depth does not
increase during reduction:

Lemma 1. If M is w.f. and M→ M′, then M′ is w.f., and δ(M′) ≤ δ(M).

From now on, we assume that all terms are well formed.

Sizes. In order to study the reduction, it is useful to examine the size of M at
depth i, denoted by |M|i, defined as follows:

– If M = x, then |x|0 = 1 and |x|i = 0 for i ≥ 1;
– If M = λx.N or M = λ!x.N, then |M|0 = |N|0 + 1 and |M|i = |N|i for i ≥ 1;
– If M = NP, then |M|0 = |N|0 + |P|0 + 1 and |M|i = |N|i + |P|i for i ≥ 1;
– If M =!N, then |M|0 = 0 and |M|i+1 = |N|i for i ≥ 0;

Let δ(M) = d; then |M|i+ =
∑d

j=i |M|j and the size of M is |M| =
∑d

i=0 |M|i. The
definition is extended to contexts, where |�|i = 0 for i ≥ 0. We consider how
the size of a term changes during reduction:

Lemma 2. If M→i M
′, then |M′|i ≤ |M|i − 1, and |M′|j = |M|j for j < i.

Strategy. The fact that by Prop. 1.(i) reducing a redex does not create any re-
dex at strictly lower depth suggests considering the following, non-deterministic,
level-by-level reduction strategy: if the term is not in normal form reduce (non
deterministically) a redex at depth i, where i ≥ 0 is the minimal depth such that
M �∈ nf i. A level-by-level reduction sequence is a reduction sequence following
the level-by-level strategy. We say that a reduction sequence is maximal if either
it is infinite, or if it finishes with a normal term.

Proposition 2. Any reduction of a term by the level-by-level strategy termi-
nates.

It follows that a maximal level-by-level reduction sequence of a term M has
the shape shown in (1), where �i denotes one reduction step according to the
level-by-level strategy, performed at depth i. We call round i the subsequence of
�i starting from M1i . Note that, for all i and j > i, M1j ∈ nf i. We simply write
� when we do not refer to a particular depth.

M10 �0 ...�0 M
n0
0 = M11 �1 ...�1 M

n1
1 = ... = M1δ �δ ...�δ M

nδ

δ (1)

In a particular case, namely in Lemma 3, we use a deterministic version of
the level-by-level strategy, called leftmost-by-level, which proceeds at every level
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from left to right, taking into account the shape of the different redexes in our
calculus. That is to say, it chooses at every step the leftmost subterm of the
shape MN, where M is an abstraction, and, in case it is already a redex it reduces
it, in case it is of the shape (λ!x.P)N, where N �=!Q, for some Q, then it looks for
the next redex in N. This corresponds to using the call-by-name discipline for
β-redexes and the call-by-value for !-redexes [20].

M =⇒ N denotes that N is obtained from M by performing one reduction step
according to the leftmost-by-level strategy. All the notations for→ are extended
to � and =⇒ in a straightforward way.

2.2 Representation of Functions

In order to represent functions, we first need to encode data. For booleans we
can use the familiar encoding true = λx.λy.x and false = λx.λy.y. For tally
integers, the usual encoding of Church integers does not give w.f. terms; instead,
we use the following encodings for Church integers and Church binary words:

n ∈ N, n = λ!f.!(λx.f (f ...(f x)...))
w ∈ {0, 1}�, w = 〈i1, ..., in〉, w = λ!f0.λ

!f1.!(λx.fi1 (fi2 ...(fin x)...))

By abuse of notation we also denote by 1 the term λ!f.!f . Observe that the
terms encoding booleans are of depth 0, while those representing Church integers
and Church binary words are of depth 1. We denote the length of a word w ∈
{0, 1}� by length(w).

We represent computation on a binary word by considering applications of
the form P!w, with a ! modality on the argument, because the program should
be able to duplicate its input. Concerning the form of the result, since we want
to allow computation at arbitrary depth, we require the output to be of the form
!kD, where k ∈ N and D is one of the data representations above.

We thus say that a function f : {0, 1}� → {true, false} is represented by a
term (program) P if P is a closed normal term and there exists k ∈ N such that,

for any w ∈ {0, 1}� and D = f(w) ∈ {true, false} we have: P!w
∗→!kD. This

definition can be adapted to functions with other domains and codomains.

2.3 Complexity of Reduction

We study the complexity of the reduction of terms of the form P!w. Actually it is
useful to analyze the complexity of the reduction of such terms to their k-normal
form, i.e. by reducing until depth k, for k ∈ N. We define the notation 2ni in the
following way: 2x0 = x and 2xi+1 = 22

x
i .

Proposition 3. Given a program P, for any k ≥ 2, there exists a polynomial q

such that, for any w ∈ {0, 1}�, P!w ∗� M1k ∈ nfk−1 in at most 2
q(n)
k−2 steps, and

|M1k| ≤ 2
q(n)
k−2 , where n = length(w). In particular, in the case where k = 2 we

have a polynomial bound q(n).
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In the rest of this section we prove Prop. 3.
Let M = P!w and consider a level-by-level reduction sequence of M, using the

notations of (1). By Lemma 2 we know that the number of steps at depth i is
bounded by |M1i | and that there are (d+ 1) rounds. In order to bound the total
number of steps it is thus sufficient to bound |M1i | by means of |M|:

Lemma 3 (Size-Growth). If M
∗

=⇒i M
′ by c reduction steps, then |M′| ≤ |M| ·

(|M|+ 1)c (0 ≤ i ≤ δ(M)).

Proof (Prop. 3). We proceed by induction on k ≥ 2. We assume that P is of the
form λ!y.Q (otherwise P!w is already a normal form).

– Case k = 2:
We consider a level-by-level reduction sequence of P!w. We need to examine
reduction at depths 0 and 1. At depth 0 we have (λ!y.Q)!w → Q[w/y] = M11.
Observe that M11 ∈ nf0 because the occurrences of y in Q are at depth 1;
denote by b the number of occurrences of y in Q, which does not depend
on n.

Since |Q[w/y]|1 ≤ |Q|1+b·|w|0 and |w|0 = 2 (by definition of the encoding),
we have that |M11|1 = |Q[w/y]|1 ≤ |Q|1 +2b. Let c be |Q|1+2b, which does not
depend on n: then, by Lemma 2, the number of steps at depth 1 is bounded
by c. This proves the first part of the statement.

Let M12 ∈ nf1 be the term obtained after reduction at depth 1. By Prop.

1.(ii) we have that M11
∗

=⇒1 M12 and by Lemma 2 this reduction is done in c′

steps, where c′ ≤ |M11|1 ≤ c, so by Lemma 3 we have that |M12| ≤ |M11|·(|M11|+1)c.
Moreover |M11| ≤ |Q| + b|w|, so it is polynomial in n, and the statement is
proved for k = 2.

– Assume the property holds for k and let us prove it for k + 1.

By assumption M reduces to M1k in at most 2
q(n)
k−2 steps and |M1k| ≤ 2

q(n)
k−2 . Let

M1k
∗�k M1k+1 ∈ nfk. By Lemma 2 this reduction sequence has at most |M1k|k

steps, and |M1k|k ≤ |M1k| ≤ 2
q(n)
k−2 . So on the whole M reduces to M1k+1 in at most

2 · 2q(n)k−2 ≤ 2
2q(n)
k−2 steps. Moreover by Prop. 1.(ii) we have that M1k

∗
=⇒ M1k+1

and by Lemma 2 and Lemma 3 we get

|M1k+1| ≤ |M1k| · (|M1k|+ 1)2
q(n)
k−2 ≤ 2

q(n)
k−2 · (2

2q(n)
k−2 )2

q(n)
k−2 ≤ 2

q(n)
k−2 · 2

2
3q(n)
k−2 ≤ 2

q′(n)
k−1

for some polynomial q′(n).

Approximations. From Prop. 3 we can easily derive a 2
q(n)
k−2 bound on the number

of steps of the reduction of P!w not only to its (k − 1)-normal form, but also to
its k-normal form M1k+1. Unfortunately this does not yield directly a time bound

O(2
q(n)
k−2) for the simulation of this reduction on a Turing machine, because during

round k the size of the term at depth k + 1 could grow exponentially. However
if we are only interested in the result at depth k, the subterms at depth k + 1
are actually irrelevant. For this reason we introduce a notion of approximation,



158 P. Baillot, E. De Benedetti, and S. Ronchi Della Rocca

inspired by the semantics of stratified coherence spaces [1], which allows us to
compute up to a certain depth k, while ignoring what happens at depth k + 1.

We extend the calculus with a constant ∗; its sizes | ∗ |i are defined as for

variables. If M is a term and i ∈ N, we define its i-th approximation M
i
by: !M

0
=

!∗, !M
i+1

=! M
i
, xi = x, and for all other constructions (·)i acts as identity,

e.g. MN
i
= M

i
N
i
.

So M
i
is obtained by replacing in M all subterms at depth i + 1 by ∗. For

instance we have w0 = λ!f0.λ
!f1.!∗ and wi+1 = w for i ≥ 0.

Lemma 4. (i) Let M→j M
′: if j ≤ i then M

i →j M′
i
, otherwise M

i
= M′

i
.

(ii) Let M
i →i M′

i
: then |M′i| < |Mi|.

Proposition 4. Given a program P, for any k ≥ 2, there exists a polynomial q

such that for any w ∈ {0, 1}�, the reduction of P!w
k
to its k-normal form can be

computed in time O(2
q(n)
k−2) on a Turing machine, where n = length(w).

Proof. Observe that P!w
k
= P

k
!w. By Prop. 3 and Lemma 4.(i), it reduces to

its (k − 1)-normal form M1k
k
in O(2

q(n)
k−2) steps and with intermediary terms of

size O(2
q(n)
k−2 ). Now by Lemma 4.(ii) the reduction of M1k

k
at depth k is done

in O(2
q(n)
k−2) steps and with intermediary terms of size O(2

q(n)
k−2). We can then

conclude by using the fact that one reduction step in a term M can be simulated
in time p(|M|) on a Turing machine, for a suitably chosen polynomial p.

3 Type System

We introduce a type assignment system for λ!-calculus, based on ELL, such that
all typed terms are also w.f. and the previous results are preserved.

The set T of types are generated by the grammar

A ::= a | S (linear types)
S ::= σ � σ | ∀a.S | μa.S (strict linear types)
σ ::= A |!σ (types)

where a ranges over a countable set of type variables. Observe that we consider
both polymorphic types (∀a.S) and type fixpoints (μa.S); the restriction of both
abstractions to act on strict linear types is necessary for the subject reduction
property.

A basis is a partial function from variables to types, with finite domain; given
two bases Γ1 and Γ2, let Γ1#Γ2 iff dom(Γ1) ∩ dom(Γ2) = ∅. Following the work
of [5], we consider three different bases Γ | Δ | Θ, called respectively the linear,
modal and parking basis, such that Γ#Δ, Γ#Θ and Δ#Θ. The premises in Γ
assign to variables linear types, while the premises in Δ assign modal types.

The typing system proves statements of the shape Γ | Δ | Θ $ M : σ, and
derivations are denoted by Π,Σ. The rules are given in Table 1. Observe that,
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Table 1. Derivation rules

Γ, x : A | Δ | Θ � x : A
(AxL)

Γ | Δ | x : σ,Θ � x : σ
(AxP )

Γ, x : A | Δ | Θ � M : τ

Γ | Δ | Θ � λx.M : A � τ
(� IL)

Γ | Δ, x :!σ | Θ � M : τ

Γ | Δ | Θ � λ!x.M :!σ � τ
(� II)

Γ1 | Δ | Θ � M : σ � τ Γ2 | Δ | Θ � N : σ Γ1#Γ2

Γ1, Γ2 | Δ | Θ � MN : τ
(� E)

∅ | ∅ | Θ′ � M : σ

Γ |!Θ′, Δ | Θ �!M :!σ
(!)

Γ | Δ | Θ � M : S a �∈ FTV(Γ ) ∪ FTV(Δ) ∪ FTV(Θ)

Γ | Δ | Θ � M : ∀a.S (∀I) Γ | Δ | Θ � M : ∀a.S
Γ | Δ | Θ � M : S[σ/a]

(∀E)

Γ | Δ | Θ � M : S[μa.S/a]

Γ | Δ | Θ � M : μa.S
(μI)

Γ | Δ | Θ � M : μa.S

Γ | Δ | Θ � M : S[μa.S/a]
(μE)

in rule (� E), M and N share variables in the modal and parking basis, but their
linear bases must be disjoint. Note also that there is no axiom rule for variables
in the modal basis, so the only way to introduce a variable in this basis is the (!)
rule, moving variables from the parking to the modal basis. Finally, observe that
there is no abstraction rule for variables in the parking basis: indeed parking
variables only have a ”temporary” status, awaiting to be moved to the modal
basis.

We say that a term M is well-typed iff there is a derivation Π�Γ | Δ | ∅ $ M : σ
for some Γ,Δ, σ: indeed parking variables are only considered as an intermediary
status before becoming modal variables. When all three bases are empty we
denote the derivation by Π � $ M : σ. The main difference w.r.t. the type system
of [5] is the (!) rule: here we allow only the parking context to be non-empty,
in order to ensure that typable terms are well formed: it is the key to obtain a

2
poly(n)
k complexity bound for a specific k depending on the type, instead of just

an elementary bound.
Both the type and depth of a term are preserved during reduction:

Theorem 1 (Subject Reduction). Γ | Δ | Θ $ M : σ and M → M′ imply
Γ | Δ | Θ $ M′ : σ.

Proposition 5. If a term is well-typed, then it is also well-formed.

The proof comes easily from the following proposition:

Proposition 6 (Variables Depth). Let Γ | Δ | Θ $ M : σ. Then:

– if x ∈ dom(Γ ) ∪ dom(Θ), then x can only occur at depth 0 in M;
– if x ∈ dom(Δ), then x can only occur at depth 1 in M.
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3.1 Datatypes

In section 2.2 we introduced w.f. terms encoding data, for which we now define
the following types, adapted from system F, representing respectively booleans,
Church tally integers and Church binary words:

B = ∀a.a � a � a N = ∀a.!(a � a) �!(a � a)

W = ∀a.!(a � a) �!(a � a) �!(a � a)

We also use Scott binary words, defined inductively as

ε̂
def
= λf0.λf1.λx.x 0̂w

def
= λf0.λf1.λx.f0ŵ 1̂w

def
= λf0.λf1.λx.f1ŵ

having type WS
def
= μb.∀a.(b � a) � (b � a) � (a � a).

The following properties ensure that, given a datatype, every derivation hav-
ing such type reduces to a term having the desired shape:

Proposition 7. (i) If $ M :!kB for k ≥ 0 and M ∈ nfk, then either M =!ktrue
or M =!kfalse.

(ii) If $ M :!kWS for k ≥ 0 and M ∈ nfk, then M =!kŵ for some ŵ.

3.2 Complexity Soundness and Completeness

We are interested in giving a precise account of the hierarchy of classes charac-
terized by this typed λ!-calculus. Denote by FDTIME(F (n)) and by DTIME(F (n))
respectively the class of functions and the class of predicates on binary words
computable on a deterministic Turing machine in time O(F (n)); the complexity
classes we are interested in, for k ≥ 0, are:

k-EXP = ∪i∈NDTIME(2
ni

k ) and k-FEXP = ∪i∈NFDTIME(2
ni

k ).

In particular, observe that PTIME = ∪i∈NDTIME(n
i) = 0-EXP and FPTIME =

∪i∈NFDTIME(n
i) = 0-FEXP.

Soundness. Let F(σ) denote the set of closed terms representing functions, to
which type σ can be assigned: we prove that F(!W �!k+2B) ⊆ k-EXP and
F(!W �!k+2WS) ⊆ k-FEXP.
Theorem 2 (Soundness). Let $ P :!W �!k+2B where P is a program, and let

$ w : W where length(w) = n; then the reduction P!w
∗→!k+2D can be computed

in time 2
p(n)
k , where D is either true or false and p is a polynomial.

Proof. Recall that a program P is a typed closed term in normal form: we denote

by M′ the normal form of P!w. By Prop. 4 we know that P!w
k+2

can be reduced to

a term N in nfk+2 in time O(2
p(n)
k ) on a Turing machine, where n = length(w).

Moreover by Lemma 4.(i) and Prop. 1.(iii) we have that M′
k+2

= N. Now, as P!w
has type !k+2B, by Theorem 1 the term M′ is a closed term of type !k+2B and,

by Prop. 7.(i), it is equal to !k+2true or !k+2false. Then N = M′
k+2

= M′, so P!w

can be computed in time O(2
p(n)
k ).
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Complexity soundness can be proved for functions by a similar proof, in which
Prop. 7.(ii) is used in order to read the output as a Scott word:

Theorem 3. Let $ P :!W �!k+2WS where P is a program, and let $ w : W
where length(w) = n; then the reduction P!w

∗→!k+2ŵ′ can be computed in time

2
p(n)
k , where p is a polynomial.

Completeness. We proved that F(!W �!k+2B) ⊆ k-EXP and F(!W �!k+2WS) ⊆
k-FEXP; now we want to strengthen this result by examining the converse inclu-
sions. To do so we simulate k-EXP time bounded Turing machines, by an iteration,
so as to prove the following results:

Theorem 4 (Extensional Completeness).

– Let f be a binary predicate in k-EXP, for any k ≥ 0; then there is a term M

representing f such that $ M :!W �!k+2B.
– Let g be a function on binary words in k-FEXP, for k ≥ 0; then there is a

term M representing g such that $ M :!W �!k+2WS.

Note that this characterization, for k = 0, does not account for the fact that
FPTIME is closed by composition: indeed, programs of type !W �!k+2WS cannot
be composed, since we do not have any coercion from WS to W. For this reason,
we explore an alternative characterization.

4 Refining Types for an Alternative Characterization

Our aim is to take a pair 〈n,w〉 to represent the word w′ such that:

w′ =

{
w if length(w) ≤ n,
the prefix of w of length n otherwise.

For this reason, we introduce a new data-type using the connective ⊗ defined

by σ⊗τ def
= ∀a.((σ � τ � a) � a) on types and the corresponding constructions

on terms:

M1 ⊗ M2
def
= λx.xM1M2

λ(x1 ⊗ x2).M
def
= λx.(xλy1y2.λz.zy1y2)λx1x2.M

λ!(x1 ⊗ x2).M
def
= λx.(xλ!y1y2.λz.z!y1!y2)λ

!x1x2.M

Note that we cannot define the abstraction in the usual way, i.e. λ(x1⊗ x2).M
def
=

λx.x(λx1.λx2.M), otherwise we could not type pairs in a uniform way; moreover,
when applied to a pair, this term reduces to the usual one.

The associated reduction rules (λ(x1 ⊗ x2).N)(M1 ⊗ M2)→ N[M1/x1, M2/x2] and
(λ!(x1 ⊗ x2).N)(!M1⊗!M2)→ N[M1/x1, M2/x2] are derivable.

We represent a pair 〈n,w〉 through a term !n⊗!2ŵ of type !N⊗!2WS , i.e. a
combined data-type containing a Church integer !n and a Scott word !2ŵ: in
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practice, n is meant to represent the length of a list, whose content is described
by ŵ. In order to mantain this invariant, when computing on elements !n⊗!2ŵ
of this data-type, the property that the length of w is inferior or equal to n is
preserved.

As before, we need to be able to extract the result, in this case a pair:

Proposition 8. If $ M :!kN⊗!k+1WS for k ≥ 0 and M ∈ nfk+1, then there exists
m ∈ N and w ∈ {0, 1}� such that M =!km⊗!k+1ŵ.

Then we are able to prove both soundness and completeness results:

Theorem 5. Let $ P : (!N⊗!2WS) � (!k+1N⊗!k+2WS) where P is a program,
then for any m and ŵ the reduction of P(!m⊗!2ŵ) to its normal form can be

computed in time 2
p(n)
k , where p is a polynomial and n = m+ length(w).

Theorem 6. Let f be a function on binary words in k-FEXP, for k ≥ 0; then
there is a term M representing f such that $ M : (!N⊗!2WS) � (!k+1N⊗!k+2WS).

Observe that we are able to compose two terms having type (!N⊗!2WS) �
(!N⊗!2WS), so to illustrate the fact that FPTIME is closed by composition; more-
over, if f ∈ FPTIME and g ∈ k-FEXP, then we can compose terms representing
them, which shows that g ◦ f ∈ k-FEXP.

While the previous characterization of k-FEXP in Section 3.2 offers the ad-
vantage of simplicity, because it uses classical data-types (Church and Scott
binary words), this second characterization offers a better account of the closure
properties of these complexity classes, at the price of a slightly more involved
representation of words.

5 Conclusions

We have shown how the concept of !-stratification coming from linear logic can
be fruitfully employed in λ-calculus and characterize the hierarchies k-EXP and
k-FEXP, including the classes PTIME and FPTIME. A nice aspect of our system
with respect to former polyvalent characterizations [11,14] is that the complex-
ity bound can be deduced by looking only at the interface of the program (its
type) without refering to the constructions steps. In our proofs we have care-
fully distinguished the respective roles played by syntactic ingredients (well-
formedness) and typing ingredients. This has allowed us to illustrate how types
can provide two different characterizations of the class k-FEXP, based on the use
of different data-types. We believe that the separation between syntactic and
typing arguments can facilitate the possible future usage of our calculus with
other type systems. As future work it would be challenging to investigate if sim-
ilar characterizations could be obtained for other hierarchies, like possibly space
hierarchies.
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2 Université de Toulouse / IRIT, France

Abstract. We tackle the problem of partial correctness of programs
processing structures defined as graphs. We introduce a kernel imperative
programming language endowed with atomic actions that participate in
the transformation of graph structures and provide a decidable logic for
reasoning about these transformations in a Hoare-style calculus. The
logic for reasoning about the transformations (baptized SROIQσ) is
an extension of the Description Logic (DL) SROIQ, and the graph
structures manipulated by the programs are models of this logic. The
programming language is non-standard in that it has an instruction set
targeted at graph manipulations (such as insertion and deletion of arcs),
and its conditional statements (in loops and selections) are SROIQσ

formulas. The main challenge solved in this paper is to show that the
resulting proof problems are decidable.

Keywords: Description Logic, Graph Transformation, Programming
Language Semantics, Tableau Calculus.

1 Introduction

1.1 Problem Statement and Contribution

The work presented here has arisen out of the authors’ effort to prove proper-
ties about graph transformations. These transformations are ubiquitous, among
others, in traditional imperative programs that modify pointer structures. The
obstacle to satisfactory solutions in this area is that traditional programming
languages are too expressive and interesting problems often need to be stated in
non-decidable logics.

In this paper, we focus on a class of decidable Description Logics (DLs). The
spectrum of DLs [1] is well explored, there are numerous application areas, such
as capturing the static semantics of modeling languages (in the style of UML)
or graph database schemas (in the style of RDF).

To be effective, the transformation is defined in a programming language.
We propose an imperative language annotated with pre- and postconditions and
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loop invariants. Peculiarities of the language are conditions in if and while state-
ments that are Boolean queries, and a non-deterministic assignment statement.
The language constructs are restricted to structural transformations and have
been chosen carefully so that the resulting program verification problem becomes
decidable.

Here, program verification means a priori verification: Given a program with
its pre- and postcondition, can we ascertain that every input structure satisfy-
ing the precondition is transformed into a structure satisfying the postcondition?
This is in contrast to a posteriori verification where satisfaction of the postcon-
dition is checked individually for each graph, once the transformation has been
performed. The latter has the disadvantage that the verification has to be done
for each single instance (whereas our verification ensures correctness once and
for all), and the approach becomes impractical for very large structures.

Technically speaking, we present a programming language, a logic and a
Hoare-style program calculus relating them. We only consider partial correct-
ness, i.e. correctness of a program under the condition that it terminates. We
establish that the program calculus is sound wrt. the programming language
semantics (if a pre-post-relation is established by the calculus, a graph is trans-
formed as required).

The program calculus is related to, but has to be distinguished from a logic
calculus which is used for establishing the validity of the correctness conditions
extracted with the aid of the program calculus. We show that, for the fragment
of correctness conditions, there is a logic calculus that is sound, complete and
terminates.

Outline of the paper. After an introductory example in Sect. 1.2 and a review
of related work in Sect. 1.3, we define the logical framework used for expressing
program properties and conditions in statements (Sect. 2), before presenting
the syntax and semantics of the programming language (Sect. 3). We then turn
to more technical issues: intuitively, the extraction of weakest preconditions in
Sect. 4 takes a program and its correctness condition and derives a formula
whose validity ensures correctness. In Sect. 5, we show how to prove that such
formulae are valid.

1.2 Example of Program

To get an intuition of the kind of transformation we are aiming at, let’s consider
the ontology Friend of a friend (FOAF)1. It is used to describe persons, their
activities and their relationships with other people and objects. Its components
are individuals, sets of individuals (called concepts here) and binary relations on
individuals (called roles here).

The program whose correctness we want to prove modifies a graph represent-
ing this ontology. It is shown in Fig. 2. We consider the problem of moving a
researcher R to a laboratory L. As the Friend of a friend ontology is much too

1 The website of the project can be found at www.foaf-project.org

www.foaf-project.org
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big to be efficiently reproduced in an introduction, we adapt it to our needs, as
shown in Fig. 1.

onto := Researcher ⊆ Agent ∧ Lab ⊆ Agent ∧ Distinguished ⊆ Agent

∧ Topic interest :: Agent × Thing

∧ Topic :: Document × Thing

∧ Publication :: Researcher × Document

∧ Member :: Lab × Agent

Fig. 1. An ontology example

The concept Researcher is used to represent researchers, the concept Lab
represents laboratories, Agent is the concept of those that can “act”, Thing

is the representation of topic and finally Distinguished singles out those that
have received a distinction. The role Topic interest is used to represent the
topics of interest of an agent while Topic represents the subjects of a document.
The role Publication links a person to her publications. The roleMember lists
the members of a group.

The ontology provides the formal definition of the relationships between con-
cepts and roles. It states, for instance, that Researchers are Agents and that
the role Member relates Labs with their own Agents.

The precondition of the program stipulates (see Fig. 2) that the ontology
is respected before starting the program, that L is a Lab, and that R is a
Researcher.

The if statement then checks if the researcher is listed as being a member of
a laboratory. If it is the case, we select that laboratory PL and we remove the
researcher from their roster. If, in addition, there is no researcher left with a
distinction, PL loses its Distinguished quality.

Now that the researcher is available, we add the fact that he is a member of
L. In case R was Distinguished, L becomes Distinguished. L may well have
been Distinguished before the arrival of R but that is not relevant.

The while loop adds all the topics that R has written articles about to the
subjects that interest L. This is done by going through the set of Things that
are not a topic of interest for the laboratory (¬(L Topic interest t)) but that
are the topic of a publication by R (R : Ex Publication (Ex Topic {t})). While
this set is not empty, we select one of its elements and we add it to the topics of
interest of L. The size of the set thus decreases, which is encouraging but of no
great importance as our framework does not check termination. The invariant
of the loop is the same as the precondition.

The postcondition states that the ontology structure is satisfied again, that L
is still a Lab, that R is still a person, that all the subjects of the publications
of R are topics of interests of L, that R is now a member of L and that if
R is distinguished so is L.
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vars R, L, To, PL;
concepts Researcher, Lab, Document, Agent, Thing, Distinguished;
roles Topic interest, Topic, Publication, Member;

pre : onto ∧ R : Researcher ∧ L : Lab;

if ∃ l. l Member R then {
select PL with PL Member R;
delR (PL Member R);
if PL : All Member (¬ Distinguished) then {
delC (PL : Distinguished)

};
};
addR(L Member R);
if R : Distinguished then {
addC(L : Distinguished)

};
while (∃ t. ¬(L Topic interest t) ∧ R : Ex Publication (Ex Topic {t})) {
inv : onto ∧ R : Researcher ∧ L : Lab
select To
with ¬(L Topic interest To) ∧ R : Ex Publication (Ex Topic {To});

addR(L Topic interest To)
};

post : onto ∧ R : Researcher ∧ L : Lab
∧ R : All Publication (All Topic (Ex Topic interest− {L}))
∧ L Member R
∧ R : Distinguished ⇒ L : Distinguished;

Fig. 2. An example program

A small graph illustrating the transformation is shown in Fig. 3. A distin-
guished researcher R which belongs to lab LB moves to lab L. The arrow re-
lating R to LB is removed and a new one relating R to L is added. Moreover,
LB no longer is distinguished. New arrows are created relating L to the topics
of interest of R, say T0 and T1.

1.3 Related Work

Reasoning about graph transformations in full generality is hard [9]. A first
step towards the verification of programs operating on graphs has been made
in [7] where the authors follow Dijkstra’s approach to program verification by
constructing the weakest preconditions for so-called high-level programs. Pre-
and post-conditions are expressed as nested graph conditions. These conditions
have also been used recently in [12] where a Hoare-style program verification on
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Fig. 3. Resulting transformation

graph programs has been proposed. Unfortunately the verification problem in
these two proposals is undecidable in general.

Some decidable logics for graph transductions are known, such as MSO [6], but
these are descriptive, applicable to a limited number of graphs and often do not
match with an algorithmic notion of transformation. Some implementations of
verification environments for pointer manipulating programs exist [11], but they
often impose severe restrictions on the kind of graphs that can be manipulated,
such as having a clearly identified spanning tree.

In [4], the authors investigated the static verification of the evolution of graph
databases where integrity constraints are expressed in a description logic called
ALCHOIQbr. This work is very close to our proposal. However, the authors did
consider only programs consisting of finite sequences of atomic actions. These
actions may compute the union or the difference of roles and concepts. Their
verification procedure is based on a transformation TR [4, Definition 5] which
mimics the computation of weakest preconditions in Hoare’s like calculi.

Work on Knowledge Bases (KB) updates [10] seems to approach the problem
from the opposite direction: Add facts to a KB and transform the KB at the
same time such that certain formulas remain satisfied. In our approach, the
modification of the KB is exclusively specified by the program.

The present paper is a follow-up of a previous one by the authors [5] working
on a simpler description logic (ALCQ) and a simpler programming language.
In order to obtain decidable verification conditions, the logic SROIQσ requires
more subtle restrictions on the form of assertions occurring in programs. The
decision procedure (a tableau algorithm) differs from the one presented in [5].

2 The Logic SROIQσ

In this section, we introduce a new description logic we call SROIQσ. It is
an extension of the description logic SROIQ [8] augmented with a notion of
substitution. We show that the satisfiability problem in SROIQσ is decidable.
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The decision procedure is intended to be as general as possible and to be adapt-
able to a wide variety of logics of the description logic family, under certain
assumptions.

We start by some basic definitions.

Definition 1 (Concept and role names; nominals). Let C be a set of con-
cept names including a subset N of nominals, R a set of role names in-
cluding the universal role U and I a set of individuals. The set of roles is R ∪
{R−|R ∈ R}, where a role R− is called the inverse role of R.

Example 1. In our example, C = {Researcher, Lab, Agent, Thing, Distin-

guished, R, L, PL, To}, N = { R, L, PL, To} and R = {Topic interest,
Topic, Publication, Member, U}.

As usual, an interpretation I = (ΔI , .I) consists of a set ΔI , called the
domain of I, and a valuation .I which associates with every concept name C
a subset CI ⊆ ΔI , which is a singleton for each nominal, with each role name R
a binary relation RI ⊆ ΔI×ΔI , with the universal role U the universal relation
ΔI ×ΔI and with each individual name a an element aI ∈ ΔI . The technical
definition of interpretations could be consulted in e.g. [8,3].

The considered logic allows one to provide so-called role axioms. A role axiom
can either be a role inclusion axiom or a role assertion. We will deal with the
role inclusion axioms first. For that, we need to define an ordering on roles.

Definition 2. A strict partial order ≺ on a set A is an irreflexive and transitive
relation on A. A strict partial order ≺ on the set of roles is called a regular
order if ≺ satisfies, additionally, S ≺ R⇔ S− ≺ R for all roles R and S.

Definition 3. A role inclusion axiom is an expression of the form w ⊆ R
where w is a finite string of roles not containing the universal role U and R is
a role name, with R �=U . A role hierarchy Rh is a finite set of role inclusion
axioms. A role inclusion axiom w ⊆ R is ≺-regular if R is a role name and w
is defined by the following grammar:
w = RR R− S1 . . . Sn RS1 . . . Sn S1 . . . SnR with Si ≺ R for all 1 ≤ i ≤ n.
Finally, a role hierarchy Rh is regular if there exists a regular order ≺ such that
each role inclusion axiom in Rh is ≺-regular. An interpretation satisfies a role
inclusion axiom w ⊆ R if the interpretation of w is included in the interpretation
of R. An interpretation is a model of a role hierarchy Rh if it satisfies all role
inclusion axioms in Rh.

Example 2. Let us consider the roles Brother and Sibling with their intuitive
meanings, it seems correct that Brother ⊆ Sibling.

The second possible kind of role axiom is the role assertion.

Definition 4 (Role assertions). For role names R,S, we call the assertions
Ref(R) (role reflexivity), Irr(R) (role irreflexivity), Sym(R) (role symmetry),
Asy(R) (role asymmetry), Tra(R) (role transitivity) and Dis(R,S) (role disjunc-
tion) role assertions.
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Example 3. To keep with the roles previously defined, Sym(Sibling) and
Tra(Sibling) are a correct set of role assertions.

One can observe that some of the role assertions (namely transitivity and
symmetry) are simply a rewriting of some role axioms: Sym(R) is equivalent
to R− ⊆ R, and Tra(R) is equivalent to RR ⊆ R. For these reasons, we will
henceforth only consider role assertions without Sym and Tra.

Finally, when introducing complex concepts, we will need simple roles to avoid
undecidability. Intuitively, a simple role is a role that does not appear as the
right-hand side of a role inclusion axiom whose left-hand side is a string composed
of at least two roles.

Definition 5 (Simple role). Given a role hierarchy Rh and a set of role as-
sertions Ra, a simple role is inductively defined as either a role name that does
not occur in the right-hand side of any role inclusion axiom, or R− for R simple,
or the right-hand side of a role inclusion axiom w ⊆ R where w is a simple role.
Ra is called simple if all roles appearing in role assertions are simple.

Starting from now, the only role hierarchies that we consider are regular and
the only sets of role assertions that we consider are finite and simple.

Definition 6 (Concept). A concept is defined as:

C ::= ⊥ c ¬ C C  D C � D (≥ n S C) (< n S C) Ex R C All R C

{o} Ex S Self C subst
where c is a concept name, R is a role, S is a simple role, o is a nominal, C, D
are concepts and subst is a substitution.

Intuitively, ¬C stands for the complement of C with respect to the domain
of interpretation. C  D (respectively C � D) stands for the intersection
(respectively the union) of concepts. (≥ n S C) (respectively (< n S C)) stands
for the set of elements related via role S to at least n (respectively at most n-1 )
distinct individuals of concept C. Ex R C stands for the set of elements related
via role R to at least one individual of concept C and All R C stands for the
set of elements related via role R only to elements of concept C. {o} stands for
the singleton associated to nominal o. Ex S Self stands for the set of elements
related to themselves via role S. C subst stands for the set of elements of C
updated according to the substitution subst. Missing definitions can be found
in [3].

Substitutions, that appear in the last constructor, allow one to modify roles
and concepts by adding or removing individuals. Substitutions, being the differ-
ence between SROIQσ and SROIQ, are defined next. As will be shown later
on, the computation of weakest preconditions and verification conditions may
generate substitutions of the following form.

Definition 7 (Substitution). Given a concept name c and a role name R, a
substitution is:
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subst ::= ε (empty substitution)
| [RS] (role substitution)
| [CS] (concept substitution)

A role substitution is defined as follows:
RS ::= R− (i, j) (deletion of relation instance)

| R+ (i, j) (insertion of relation instance)
while a concept substitution is defined as follows:

CS ::= c− i (deletion of a concept instance)
| c+ i (insertion of a concept instance)

Example 4. All elements of C are examples of concepts. Another example of
concept is All Member ¬Distinguished. It can be translated into “none of
the members is distinguished”.

Theorem 1. If Φ0 is a concept and Rh is a regular role hierarchy and Ra is a
finite simple set of role assertions, the satisfiability of Rh∧Ra ∧Φ0 is decidable.

The proof of Theorem 1 can be found in [3].
In the following, we introduce the notions of assertions and conditions used

in the rest of the paper.

Definition 8 (Assertion). An assertion is defined as either:

assert ::= i : C i R j i (¬ R) j i = j i �= j role axiom ¬ assert assert ∧
assert assert ∨ assert All U C Ex U C ∀ i.assert ∃ i.assert assert subst
where C is a concept, role axiom is either a role inclusion axiom or a role as-
sertion, i, j are individuals, R is a role, U is the universal role defined previously
and subst is a substitution.

Example 5. Assertions without substitutions are the building blocks of ontolo-
gies. Our simplified example of FOAF (cf. Fig. 1) contains two main kinds of
assertions. The first deals with the hierarchy of concepts and the second one
with the concepts of the elements linked by a role.

Among others, Researcher ⊆ Agent is a short way of writing the assertion
All U ¬Researcher �Agent which can be translated into “researchers are
agents”.

In the next definition, we introduce the notion of conditions, which is used in
Sect. 3 in while-loops, if-statements and select-statements.

Definition 9 (Condition). A condition is an assertion without role axioms
and without quantification on individuals, that is no sub-expression of the form
∀ i.assert or ∃ i.assert.

3 Programming Language

3.1 Syntax

In this section, we introduce the programming language for performing transfor-
mations (see the example of Fig. 2). The programming language is an imperative
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language manipulating relational structures. Its distinctive features are condi-
tions (in conditional statements and loops) in the sense of Sect. 2. These formulas
can be understood as Boolean queries on a database. The language also has a
non-deterministic assignment statement allowing to select an element satisfying
a condition. This corresponds to a database query retrieving an element satisfy-
ing a condition. Traditional types (numbers, inductive types) are not provided
in the language.

In this paper, we only consider a core language with traditional control flow
constructs, but without procedures. The language has primitives for adding an
individual element to a concept, or for removing it. Similarly, there are primi-
tives for the insertion or removal of edges. Thus, it is only possible to modify a
relational structure, but not to allocate or deallocate objects, in a strict sense.

The abstract syntax of statements is defined by:
stmt ::= Skip (empty stmt)

| addC(i : c) (insert element)
| delC(i : c) (delete element)
| addR(i R j) (insert edge)
| delR(i R j) (delete edge)
| select i with cond (assignment)
| stmt ; stmt (sequence)
| if cond then { stmt } else { stmt }
| while cond { inv: assert stmt}

The non-terminals cond and assert corresponds, respectively, to conditions (de-
fined in Def 9) and assertions (defined in Def 8). i and j stand for individuals, c
stands for a concept name and R stands for a role name. There are two variants
of insertion and deletion operations (for individuals and a concept name (addC
and delC) and for two individuals and a relation name (addR and delR)).

A program is a statement embedded in declarations of variables, concepts and
roles and a pre- and a postcondition.

prog ::= vars
−→
i ; concepts −→c ; roles −→R;

pre: assert; stmt; post: assert;

3.2 Semantics

The semantics is a big-step semantics describing how a state evolves during the
execution of a statement. The state is a relational structure, and the state space
is just the type of interpretations. In accordance with traditional notation in
semantics, we use the symbol σ to denote a state. We may therefore write σ(b)
to evaluate the condition b in state σ.

The rules have the form (s, σ) ⇒ σ′ expressing that executing statement s
in state σ produces a new state σ′. The rules of the semantics are given below.
Beware that we overload logical symbols such as ∃, ∧ and ¬ for use in the
meta-syntax and as constructors of assert.

The rules of the traditional control constructs are standard, apart from the
fact that we do not use expressions as conditions. The invariant in the while-loop
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(Skip, σ) ⇒ σ
(Skip)

(s1, σ) ⇒ σ′′ (s2, σ′′) ⇒ σ′

(s1;s2, σ) ⇒ σ′ (Seq)

σ′ = σ[σ(c):=σ(c)∪{σ(i)}]

(addC(i : c), σ) ⇒ σ′ (AddC)
σ′ = σ[σ(c):=σ(c)∩{σ(i)}]

(delC(i : c), σ) ⇒ σ′ (DelC)

σ′ = σ[σ(R):=σ(R)∪{σ(i1),σ(i2)}]

(addR(i1 R i2), σ) ⇒ σ′ (AddR)
σ′ = σ[σ(R):=σ(R)∩{σ(i1),σ(i2)}]

(delR(i1 R i2), σ) ⇒ σ′ (DelR)

σ(b) (s1, σ) ⇒ σ′

(if b then s1 else s2, σ) ⇒ σ′ (IfT )
¬σ(b) (s2, σ) ⇒ σ′

(if b then s1 else s2, σ) ⇒ σ′ (IfF )

∃vi.(σ′ = σ[v:=vi] ∧ σ′(b))
(select v with b, σ) ⇒ σ′ (SelAssT )

¬σ(b)
(while b inv :f s, σ) ⇒ σ

(WF )

σ(b) (s, σ) ⇒ σ′′ (while b inv :f ; s, σ′′) ⇒ σ′

(while b inv :f ; s, σ) ⇒ σ′ (WT )

Fig. 4. Big-step semantics rules

is without operational significance. It is only used for calculating weakest pre-
conditions (Sect. 4).

For lack of space, we do not detail all the rules here as they are quite intuitive.
We roughly explain rules addC and select:

– addC(i : c) adds a node to a concept. Adding an already existing element has
no effect (i.e. , is not perceived as an error). [σ(c) := σ(c) ∪ {σ(i)}] modifies
the interpretation for c to include the element that i denotes.

σ′ = σ[c:=σ(c)∪{σ(i)}]

(addC(i : c), σ)⇒ σ′
(AddC)

– select i with b selects an element vi from the semantic domain that satis-
fies condition b (note that i typically occurs in b), and assigns it to i. The
subsequent statements are then executed with i bound to vi. For example,
select a with a : A ∧ (aRd) selects an element which is an instance of
concept A and is R-related to a given element referred to by d, and assigns
it to a. More formally, we pick an instance vi ∈ Δ, check whether the condi-
tion b would be satisfied under this choice, and if this is the case, keep this
assignment:

∃vi.(σ′ = σ[i:=vi] ∧ σ′(b))
(select i with b, σ)⇒ σ′

(SelAssT )

Note that the semantics blocks (i.e. , there is no successor state) in case no
instance satisfying the condition exists.
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4 Verification Conditions

4.1 Generating Verification Conditions

We follow the standard approach for verifying that a program satisfies its spec-
ification: If the program has precondition pre, statement s and postcondition
post, we compute the weakest precondition wp(s, post) and then show that it is
implied by the precondition. Using the terminology of Sect. 1.1, this section is
thus concerned with a program calculus.

The definition of wp is given in Fig. 5. Let us insist on one point: in traditional
expositions of Hoare calculi, substitution is a meta-operation which syntactically
replaces a symbol by an expression. This works as long as the syntax of the logic
is closed under meta-substitutions, which is not the case we consider. For exam-
ple, a replacement of R by R− (v1, v2) in (< n R C) would yield a syntactically
ill-formed concept expression. This motivates our introduction of explicit sub-
stitutions as a constructor.

wp(Skip, Q) = Q
wp(addC(i : c) Q) = Q[c := c+ i]
wp(delC(i : c), Q) = Q[c := c− i]
wp(addR(i1 R i2), Q) = Q[R := R + (i1, i2)]
wp(delR(i1 R i2), Q) = Q[R := R − (i1, i2)]
wp(select i with b, Q) = ∀i.(b −→ Q)
wp(s1; s2, Q) = wp(s1, wp(s2, Q))
wp(if b then s1 else s2, Q) = (b → wp(s1, Q)) ∧ (¬b → wp(s2, Q)))
wp(while b inv :f s, Q) = f

Fig. 5. Weakest preconditions

Also, our while-loops are supposed to be annotated with invariants. Whether
these invariants necessarily have to be supplied by the human end-user or whether

vc(Skip, Q) = �
vc(add(i : c), Q) = �
vc(delete(i : c), Q) = �
vc(add(i1 R i2), Q) = �
vc(delete(i1 R i2), Q) = �
vc(select i with b, Q) = �
vc(s1; s2, Q) = vc(s1, wp(s2, Q)) ∧ vc(s2, Q)
vc(if b then s1 else s2, Q) = vc(s1, Q) ∧ vc(s2, Q)
vc(while b inv :f s, Q) = (f ∧ ¬b −→ Q)

∧(f ∧ b −→ wp(s, f)) ∧ vc(s, f)

Fig. 6. Verification conditions
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they could be inferred automatically in a pre-processing step is not subject of con-
cern here. In any case, program verification also has to ascertain that the given
loop annotation has the desired properties of an invariant: being preserved during
execution of the loop body, and ensuring the postcondition when the loop ter-
minates. Recursively collecting these verification conditions is done by function
vc(s, post) for a statement s and postcondition post (Fig. 6).

4.2 Correctness

The two aforementioned criteria are used to define the correctness condition of
a program prog with precondition pre, statement s and postcondition post:

correct(pre, s, post) =def vc(s, post) ∧ (pre −→ wp(s, post))

We now have the necessary notions to state the soundness of our program
calculus:

Theorem 2 (Soundness). Let prog be a program with precondition pre, state-
ment s and postcondition. post If correct(pre, s, post) is valid, then for all
states σ and σ′, if (s, σ)⇒ σ′, then σ(pre) implies σ′(post).

The proof of this theorem is straightforward and is done by induction on the
structure of the statements.

5 Proving Verification Conditions

Let us recapitulate the development so far: In Sect. 3, we have presented a
programming language annotated with formulas specifying the correctness of
programs. In Sect. 4, we have given a program calculus (embodied by function
correct) that takes an annotated program, removes all computational contents
and returns a formula, say Φ. For sake of decidability of the verification program,
we focus in this section on assertions which generate a particular formula Φ we
call essentially universally quantified.

Definition 10 (Essentially quantified). We say that an assertion Φ is
essentially universally quantified (respectively essentially existentially
quantified) if the occurrences of ∀ in Φ are only below an even (respectively
odd) number of negations and the occurrences of ∃ in Φ are only below an odd
(respectively even) number of negations.

Lemma 1 (Universally quantified).

1. Let Q be essentially universally quantified. Assume that the invariants in
statement s do not include negated role axioms. Then wp(s,Q) and vc(s,Q)
are essentially universally quantified.

2. If pre (respectively post) is essentially existentially (respectively universally)
quantified and the invariants in statement s do not include negated role ax-
ioms , then correct(pre, s, post) is essentially universally quantified and
does not contain substitutions over negated role axioms.
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We now discuss briefly a decision procedure for verifying the validity of es-
sentially universally quantified formulae. For more details see [2].

Actually, what we have to do is to prove that we can apply Theorem 1 to
prove the validity of correct(pre, s, post) whenever it is essentially universally
quantified.

The first thing to do is to make sure that substitutions only affect the basic
components of the assertion (such as role axioms and concepts). This can be
done by pushing substitutions by using the following rules.

– (¬ assert) subst� ¬ (assert subst)
– (assert1 ∧ assert2) subst� (assert1 subst) ∧ (assert2 subst)
– (assert1 ∨ assert2) subst� (assert1 subst) ∨ (assert2 subst)
– (∀i. assert) subst� ∀i. (assert subst)
– (∃i. assert) subst� ∃i. (assert subst)

It happens that the formulae generated by correct, after pushing the substi-
tutions, may include substitutions over role axioms as well as quantifiers which
prevent the direct use of Theorem 1. To overcome this drawback we actually
show that we can get rid of those substitutions by means of a set of trans-
formation rules. Unfortunately, there is not enough room here to give all the
transformations. We give below two examples of such rules. The first rule shows
how to get rid of a particular substitution [R := R + (i1, i2)] when applied to
the role axiom Asym(R). The second rule shows how to get rid of a particular
substitution [R := R− (i1, i2)] when applied to the role axiom s1 . . . snR ⊆ R.

– Asym(R)[R := R + (i1, i2)] � i2 ¬R i1 ∧ Asym(R) that is R will be asym-
metric after adding the edge (v1, v2) to R if R was asymmetric before and
(i2, i1) is not already part of R.

– (s1 . . . snR ⊆ R)[R := R − (i1, i2)] � ∀x.∀y.∀z.x : All s1 . . .All sn ¬{y} ∨
y (¬r) z ∨ (x = i1 ∧ z = i2) ∨ x R z. That can be rewritten as
∀x.∀y.∀z. (x : Ex s1 . . . Ex sn {y} ∧ y R z ∧ (x �= i1 ∨ z �= i2)) =⇒ x R z
that is s1 . . . snR ⊆ R after removing (i1, i2) from R if for each couple (x, z)
different from (i1, i2), for each element y such that there is a path s1 . . . sn
from x to y and y R z, then x R z.

Lemma 2. For every essentially universally quantified formula not containing
substitutions over negated role axioms, there is an equivalent universally quan-
tified formula without substitutions on role axioms.

Now that substitutions only occur over concepts, we get a formula Φ1which
is essentially universally quantified. The last step before using Theorem 1 con-
sists in eliminating the quantifiers of Φ1. The rough lines of the procedure for
determining whether Φ1is valid are spelled out in the following.

1. Convert Φ1to an equivalent prenex normal form p, which will consist of a
prefix of universal quantifiers, and a quantifier-free body: ∀x1 . . . xn.b

2. p is valid iff its universal closure ucl(p) (universal abstraction over all free
variables of p) is.
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3. Show the validity of ucl(p) by showing the unsatisfiability of ¬ucl(p).
4. ¬ucl(p) has the form ¬∀v1 . . . vk, x1 . . . xn.b. Pull negation inside the univer-

sal quantifier prefix, remove the resulting existential quantifier prefix, and
show unsatisfiability of ¬b by using Theorem 1.

Computation of prenex normal forms is standard. Care has to be taken to
avoid capture of free variables, by renaming bound variables. Free variables are
defined as usual; the free variables of a substitution f [R := R− (i1, i2)] are those
of f and in addition i1 and i2 (similarly for edge insertion). We illustrate the
problem with the following statement prg:
select a with a : A; select b with b R a;
select a with a ¬R b; addR(b R a)

Assume the post-condition is Asym(R), we obtain wp(prg,Q) =
∀a.a : A −→ ∀b.(b R a) −→ ∀a.(a ¬R b) −→ Asym(R)[R := R + (b, a)].
Removing the substitution yields
wp(prg,Q) = ∀a.a : A −→ ∀b.(b R a) −→ ∀a.(a ¬R b) −→ (a ¬R b ∧ Asym(R))
whose prenex normal form
∀a1, b, a2. (a1 : A −→ (b R a1) −→ (a2 ¬R b) −→ (a2 ¬R b ∧ Asym(R)))
contains more logical variables than prg contains program variables.

After removing the quantifiers and taking the negation, we obtain
¬(a1 : A −→ (b R a1) −→ (a2 ¬R b) −→ (a2 ¬R b ∧ Asym(R))) an assertion
without substitutions over role axioms and without quantifiers on individuals
whose unsatisfiability is equivalent to the validity of correct. This assertion fits
the conditions of Theorem 1 and thus the validity of correct is decidable.

6 Conclusions

This paper proposes a language for rewriting graphs, and methods for reasoning
about the correctness of these programs, by means of a Hoare-style calculus.
DL formulas are directly integrated into the statements of the programming
language. The verification conditions extracted from these programs have been
shown to be decidable.

The work described here is still not entirely finished, and the following points
indicate directions for future investigations:

– We are in the process of coding the theory in the Isabelle proof assistant.
Most proofs concerning the elimination of substitutions and the tableau al-
gorithm still have to be done. The purpose is to obtain a framework that
will allow us to experiment more easily with variations of the logic.

– We have currently focused on the logic SROIQσ, which is one of the most
expressive description logics. It might be interesting to consider less expres-
sive logics which offer more space for optimizations. The process described
in Sect. 5 is rather generic, but it remains to be seen which other DLs can
be accommodated.

– In a similar vein, it would be interesting to implement a transformation
engine on the basis of the language described here, also with the purpose of
evaluating the practical expressiveness of the language on larger examples.
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Abstract. We introduce two techniques for proving termination of graph
transformation systems. We do not fix a single initial graph, but consider
arbitrary initial graphs (uniform termination), but also certain sets of ini-
tial graphs (non-uniform termination). The first technique, which can also
be used to show non-uniform termination, uses a weighted type graph to
assign weights to graphs. The second technique reduces uniform termina-
tion of graph transformation systems of a specific form to uniform termi-
nation of cycle rewriting, a variant of string rewriting.

1 Introduction

Termination, the absence of infinite computations, is a property that is required
in many applications, in particular in model transformation, algorithms and pro-
tocol specifications. Many of these applications, such as graphical model trans-
formation (for example, of uml models) and algorithms that manipulate data
structures on the heap, are naturally modeled by graph transformation systems.
This paper is concerned with the termination of such graph transformation sys-
tems. In particular we study the following question: given a set of graph trans-
formation rules, and possibly an infinite set of potential initial graphs, does a
transformation sequence of infinite length from one of the initial graphs exist?
This problem is undecidable in general [9], but it is still important to develop
semi-decision procedures that correctly decide as many instances as possible (and
output “unknown” in the others).

Although termination is a basic notion of any computational formalism, it has
not received a lot of attention in the graph transformation community; the focus
is on reachability problems – the question whether a graph with some required or
unwanted property is reachable from an initial graph. However, some prior work
on the topic exists, mostly applied to model transformation [2,6,10]. Similar to
[3] we follow a more general approach. We consider graph transformation from
a theoretical point of view. This has the disadvantage of making results harder
to obtain, but the advantage of being more broadly applicable.

The paper is organized as follows. In Sect. 2 we recapitulate definitions and fix
notation. The heart of the paper is formed by Sect. 3, in which we introduce the

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 179–194, 2014.
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weighted type graph technique for proving termination of graph transformation
systems. We define the technique, consider special cases and investigate its limits;
finally we give a detailed example that demonstrates its strengths. In Sect. 4 we
show that termination of graph transformation systems of a specific kind can
be reduced to termination of cycle rewriting, which is a form of rewriting that
is related to string rewriting. This clarifies the relation to string rewriting and
provides us with an additional method for graphs. Finally, we briefly present an
implementation of the techniques of this paper in Sect. 5, compare with related
work in Sect. 6 and give pointers for further research in Sect. 7. A full version of
this paper with proofs and additional details can be downloaded from the first
author’s website.

2 Preliminaries

We first introduce graphs, morphisms, and graph transformation, in particular
the double pushout approach [5]. We use edge-labeled, directed graphs.

Definition 1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled graph
is a tuple G = 〈V,E, src, tgt , lab〉, where V is a set of nodes, E is a set of edges,
src, tgt : E → V assign to each edge a source and a target, and lab : E → Λ is a
labeling function.

As a notational convention, we will denote, for a given graphG, its components
by VG, EG, srcG, tgtG and labG, unless otherwise indicated. The size of a graph
G, written |G|, is the number of nodes and edges it contains, that is |G| =
|VG|+ |EG|.

Definition 2 (Graph morphism). Let G,G′ be two Λ-labeled graphs. A graph
morphism ϕ : G → G′ consists of two functions ϕV : VG → VG′ and ϕE : EG →
EG′ , such that for each edge e ∈ EG it holds that srcG′(ϕE(e)) = ϕV (srcG(e)),
tgtG′(ϕE(e)) = ϕV (tgtG(e)) and labG′(ϕE(e)) = labG(e).

We will often drop the subscripts V,E and simply write ϕ instead of ϕV , ϕE .

Definition 3 (Graph transformation). A graph transformation rule ρ con-
sists of two injective morphisms L �ϕL− I −ϕR� R, consisting of the left-hand
side L, the right-hand side R and the interface I.

A match of a left-hand side in a graph G is an injective morphism m : L→ G.
Given a rule ρ and a match m : L → G, a graph H is the result of applying

the rule at the match, written G⇒m,ρ H (or G⇒ρ H if
m is arbitrary or clear from the context), if there exists
a graph C and injective morphisms such that the two
squares in the diagram on the right are pushouts in the
category of graphs and graph morphisms.

L I R

G C H

ϕL ϕR

m (po) (po)

A graph transformation system R is a set of graph transformation rules. For a
graph transformation system R, ⇒R is the rewriting relation on graphs induced
by those rules.
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The above formal definition of a graph transformation step can be algorith-
mically described as follows. Let a rule ρ = L �ϕL− I −ϕR� R and a match
m : L→ G be given. The rule can be applied to the match if for every edge e of
G which is not in the image of m it holds, for v ∈ {src(e), tgt(e)}, that v has a
pre-image in I (under m ◦ ϕL) if v has a pre-image in L (under m). In this case
we say that the dangling edge condition is satisfied. If the rule is applicable, all
images of elements in L, whose preimages are not in the interface I, are removed
from G. This gives us the “context” graph C. Furthermore the elements of R
that do not have a preimage in I are added and connected with the remaining
elements, as specified by the interface. This results in the graph H . The dangling
edge condition ensures that nodes can only be deleted if all incident edges are
deleted.

Example 1. We take as label set Λ = {a, c}. Consider the following graph trans-
formation rule:

1 2

a a

1 2 1 2

a a
c

ϕL ϕR

The numbers represent which nodes are mapped to each other. The following is
a legal transformation step using the above rule:

a a

a
a

c

⇒
a a

c

a
a

c

There is no step replacing the aa-pattern at the bottom, because the middle
node, although deleted by the rule, is incident to a c-edge not in the pattern (the
dangling edge condition is not satisfied, that is, edges would be left dangling).

A graph is discrete when it does not contain any edges. A well-known result
from double-pushout graph transformation is that we can restrict to rules with
discrete interfaces without affecting the expressive power of the formalism: for
each rule with non-discrete interface a rule with discrete interface exists which
induces the same rewrite relation. As examples we will only use rules with dis-
crete interfaces, although the results of Sect. 3 are also applicable to graph
transformation systems that contain rules with non-discrete interfaces.

Let L be a set of graphs. We say that a set of rules R is L-terminating if each
reduction sequence G0 ⇒R G1 ⇒R G2 ⇒R · · · with G0 ∈ L is finite. The set
of rules R is uniformly terminating or simply terminating if it is G-terminating,
where G is the set of all graphs.

We will specify sets of graphs, in this setting called graph languages, by so-
called type graphs.1 A type graph is just a graph T . The graph language accepted
by T , written L(T ), is the set of all graphs from which there exists a morphism

1 In the literature, for example [4], typing morphisms are often considered as an intrin-
sic part of graph and rule definitions. We consider untyped graphs and rules, and
use type graphs merely as a means to describe graph languages.
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into T , that is: L(T ) = {G | there exists a morphism ϕ : G→ T}. A type graph
T is closed under a set of rules R, if for each rule L �ϕL− I −ϕR� R ∈ R and
morphism tL : L→ T , there exists a morphism tR : R→ T such that (tL ◦ϕL) =
(tR ◦ϕR). A type graph T being closed under a set of rules R ensures that L(T )
is closed under R-reachability, that is, it ensures that if G⇒R H and G ∈ L(T ),
then also H ∈ L(T ).

3 Termination Analysis via Weighted Type Graphs

In this section, we present a termination argument based on weighted type
graphs. The technique is inspired by the semantic labeling technique for proving
termination of term rewrite systems [11], where the algebra is replaced by type
graphs.

3.1 Weighted Type Graphs

We assume a set W of weights with a binary operation ⊕ and a well-founded
partial order < such that the following holds: for a, b, c ∈ W we have that (i)
a < b ⇐⇒ a ⊕ c < b ⊕ c, and (ii) a = b ⇐⇒ a ⊕ c = b ⊕ c. Note that from
these two conditions it follows that (iii) a ≤ b ⇐⇒ a⊕ c ≤ b⊕ c.

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t
(po)

Furthermore, for a given graph T , called the type graph,
we have a weight function w that assigns a weight from W
to every morphism ϕ : G → T . This weight function must
be stable under pushouts in the following sense: given a
pushout of injective morphisms as shown on the right and
an arrow t : G → T from the pushout object G into the
type graph, we have that w(t) ⊕ w(t ◦ ϕ1 ◦ ψ1) = w(t ◦ ϕ1) ⊕ w(t ◦ ϕ2). (Note
that ϕ1 ◦ ψ1 = ϕ2 ◦ ψ2.)

The intuiton behind stability under pushouts is the following. A pushout can
be seen as an operation which glues together two graphs over a common interface.
Above, the graphs G1 and G2 are glued together over the common interface G0.
The weight of morphisms from the G to T should be obtained by adding together
the weights of the corresponding morphisms from G1 and G2 to T . However, in
w(t ◦ ϕ1)⊕ w(t ◦ ϕ2) the common interface is counted twice, so we have to add
w(t ◦ ϕ1 ◦ ψ1) to the left-hand side to balance the equation.

Although the termination argument will be stated for weight functions of this
form in general, the specific type of weight function we will use in examples and
in Sect. 3.4 will be so-called linear weight functions, which are defined as follows.
Weights are natural numbers with summation and order<. Let d : (VT∪ET )→ N
be a function which assigns a weight to each node and edge of the type graph T .
The linear weight function wd for d assigns to a morphism ϕ : G→ T the weight
wd(ϕ) =

∑
x∈(VG∪EG) d(ϕ(x)).

Proposition 1. Let T be a type graph and d : (VT ∪ET )→ N a function assign-
ing a weight to all nodes and edges of T . The linear weight function wd as defined
above is a well-defined weight function, that is, it is stable under pushouts.
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Now termination analysis works as follows.

Definition 4. Let T be a type graph and w a weight function for T .

(i) A rule ρ = L�ϕL− I −ϕR�R is tropically decreasing with respect to T and
w if for each morphism tL : L→ T (where tL is not necessarily injective),
there exists a morphism tR : R → T such that (tL ◦ ϕL) = (tR ◦ ϕR) and
w(tL) > w(tR). A rule ρ is tropically non-increasing if the same condition
applies, except that w(tL) ≥ w(tR).

(ii) A rule ρ = L�ϕL− I −ϕR�R is arctically decreasing with respect to T and
w if for each morphism tR : R→ T (where tR is not necessarily injective),
there exists a morphism tL : L → T such that (tL ◦ ϕL) = (tR ◦ ϕR) and
w(tL) > w(tR). A rule ρ is arctically non-increasing if the same condition
applies, except that w(tL) ≥ w(tR).

Note that in the definition above the morphisms into type graphs are not
necessarily injective, although the morphisms used in rules and matches are.
This is intended, because only for subgraphs T ′ of the typegraph T (or graphs
isomorphic to such a subgraph) there exists an injective morphism from T ′ to
T , and restricting to the subgraphs of T is clearly undesired.

The names tropical and arctic stem from string rewriting, where analogous
termination arguments use tropical and arctic semi-rings as evaluation algebras;
see for example [8].

Theorem 1. Let L be a set of graphs and let R be a graph transformation
system. Furthermore, let T be a type graph which is closed under R, such that
L ⊆ L(T ), and let w be a weight function of T .

Finally, let R′ ⊆ R be such that one of the following conditions holds:

– all rules of R′ are tropically decreasing with respect to T and w, and all rules
of R \R′ are tropically non-increasing with respect to T and w; or

– all rules of R′ are arctically decreasing with respect to T and w, and all rules
of R \R′ are arctically non-increasing with respect to T and w.

Then R is L-terminating if and only if R \R′ is L-terminating.

The above theorem allows to “remove” rules from a graph transformation
system, concluding termination of the complete system from termination of a
subset of the rules (this is called relative termination in the literature). In the
case that R = R′ termination follows directly. Otherwise, a new termination
argument for the simpler system is sought. Thus, we obtain iterative termination
proofs (see Sect. 3.5 for an example of such an iterative proof).

Example 2. See the graph transformation system from Ex. 1. This system is
terminating because of the dangling edge condition, because the number of nodes
without a c-loop strictly decreases in each transformation step. Now, we want
to use the type graph argument to prove this. Since there is only one rule, it is
sufficient to show that it is decreasing with respect to some type graph T and
some weight function.
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We take the type graph and weight function d displayed on
the right. The superscripts of the edge labels denote the d-value
of the edge, while d(v) = 0 for all nodes v. Because of the “flower
structure” on the left node, every graph consisting of a- and c-
labeled edges can be mapped into this type graph, so we can
show uniform termination.

1 2

a0

c0

a1

a1

a2

We arctically evaluate the rule with respect to the given type graph. There are
a number of morphisms from the right-hand side into the type graph. For each
of them a corresponding morphism of greater weight from the left-hand side into
the type graph, which agrees on the interface nodes, can be found. For example,
one possibility is to map nodes 1 and 2 of the right-hand side of the rule to
node 2 of the type graph and the middle node of the right-hand side to node 1
of the type graph; the edges are mapped accordingly (weight: 2). A compatible
morphism from the left-hand side to the type graph maps all nodes to node 2 of
the type graph (weight: 4). Thus, the system terminates by Theorem 1.

Example 3. Let Λ = {D,X}. Consider the graph transformation system which
consists of the rule depicted below on the left. This graph transformation system
is not uniformly terminating, as is witnessed by the step displayed on the right,
the target of which contains its source as a subgraph:

1

2 3

D
X

1

2 3

1

2 3

D
X

D

X

X ⇒ D

X

X

S = D

X

D

T = D1

X1

D0

X0

D1 D0

It is L(S)-terminating, however, where S is
given on the right. This follows by considering the
weighted type graph T , where the weights of the
edges are again given by the superscripts. For each
morphism from the left-hand side into T , a smaller
morphism from the right-hand side into T , which
agrees on the interface nodes, can be found, so the
rule is tropically decreasing. Since T contains S as a subgraph and is closed
under the transformation rule, the transformation system is L(S)-terminating
by Theorem 1.

3.2 Special Case: Node and Edge Counting

A simple (but weak) termination argument for graph transformation (previously
considered in, among others, [1,2]) is the counting of nodes and edges. We con-
sider a somewhat more general variant, weighted node and edge counting.

Let d : Λ → N be a function which maps each label to a weight. Then a
graph G can be assigned a weight by taking the sum of the weights of all labels
occurrences in it: w(G) =

∑
e∈EG

d(�G(e)). If for each production L ← I → R
it holds that w(L) > w(R), then the graph transformation system terminates.

This termination argument is a special case of the weighted type graph argu-
ment. As type graph we take the “flower” graph FΛ = 〈{v}, Λ, s, t, �〉 with for
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each A ∈ Λ: s(A) = v, t(A) = v and �(A) = A. Now we can use the linear weight
function wd, as defined before Prop. 1. This works with both the tropical and
the arctic variant of the weighted type graph termination argument.

With an even simpler argument in the same style we can view node counting
as a special case of the weighted type graph approach.

3.3 Special Case: Match-Bounds

In [3] a method for proving termination of graph transformation systems based on
the match-bounds approach for string rewrite systems [7] was introduced. Here,
we briefly recapitulate the termination argument of this paper and show that it
can be considered as a special case of the weighted type graph approach.

The idea of match-bounds is to annotate the edges with a “creation
height”, which is a measure of how many previous transformation steps were
responsible for creating the edge. In particular, when an occurrence of a left-hand
side is replaced by a right-hand side, the new edges are annotated with a creation
height which is equal to the smallest creation height of the left-hand side plus one.
Now, the termination argument is as follows: if there exists a type graph (with
annotated edges) which is closed under the annotated graph transformation
system, then the original graph transformation system is terminating. See [3]
for more details and formal definitions and proofs.

Example 4. Consider the graph transformation consisting of the following rule:

ρ =
1 2

a a

1 2 1 2

a b aϕL ϕR

This rule is replaced by the infinitely many annotated rules of the following form,
wherem = min(p, q)+1. The superscripts denote the creation height annotations
of the edges.

ρp,q =
1 2

ap aq

1 2 1 2

am bm amϕL ϕR

The following is an annotated transformation sequence of this system:

a0 a0 a0 a0 ⇒ a1 b1 a1 a0 a0

⇒ a1 b1 a1 a1 b1 a1

⇒ a1 b1 a2 b2 a2 b1 a1

The following is a type graph which is closed under the annotated system:

a0

b0
a1

b1

a1

a1

a2

b2

a2

So, by the match-bounds technique, we conclude that the system is terminating.
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The match-bounds approach is a special case of the type graph approach, in
particular of the tropical variant. The annotated type graph plays the role of
the type graph by which graphs are assigned weights. Consider an annotated
type graph T with maximum annotation c (in Ex. 4 above, c = 2). Let T ′

be the graph which is equal to T , except that the annotations are removed
from the labels. As weights we take strings of natural numbers of length c + 1,
lexicographically ordered. A morphism ϕ : G → T ′ is now assigned a weight
as follows: w(ϕ) = n0 . . . nc, where ni is the number of edges in G which are
mapped to an edge of T which has annotation i. Analogously to Prop. 1 we can
show that this weight function is stable under pushouts and thus well-defined.
By construction, all rules are decreasing with respect to this type graph.

3.4 Derivational Complexity

In this subsection we consider the type graph method with linear weight func-
tions.

First, we show that transformation sequences of graph transformation systems
which can be proved to be terminating with a single application of the type graph
technique are linearly bounded (with respect to the size of the initial graph).
Because we restrict to linear weight functions, this result is not very surprising.

Secondly, however, we show by example that graph transformation systems
that can be proven terminating by a repeated application of the type graph
technique may even have transformation sequences of exponential length.

Proposition 2. Let T be a type graph and d : (VT ∪ET )→ N a weight function.
Furthermore, let R be graph transformation system such that all rules r ∈ R are
decreasing with respect to T and w. Then there exists a c ∈ N such that for each
R-reduction sequence G = G0 ⇒R G1 ⇒R · · · it holds that |G| ≤ c · |G0|.

Although proving termination by a single type graph implies a linear reduc-
tion bound, by repeating the type graph argument we can show termination
of systems with even exponential reduction bounds, as the following example
shows:

Example 5. Consider the following graph transformation system, adapted from
cycle rewriting [12], which consists of the following graph transformation rules:

ρ1 =
1 2

0 L

1 2 1 2

L 1 1

ρ2 =
1 2

R 1

1 2 1 2

0 R

ρ3 =
1 2

B L

1 2 1 2

R

ρ4 =
1 2

R B

1 2 1 2

L B
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This graph transformation system has exponential derivational complexity: start-
ing from a string graph of the form BnR1B the string graph of the form L12

n

B
is reachable in exponentially many steps.

We can show that this graph transformation system
terminates. First, ρ3 can be removed by counting B’s, then
ρ4 by counting R’s – as shown in Sect. 3.2, label counting
is an instance of the type graph technique. For ρ1 and ρ2,
which indeed by itself have a linear derivational complexity,
we construct the type graph on the right (using tropical
evaluation).

01

12

L0

R0

L0

10
10

Note that, although the example derives from a similar example in cycle rewrit-
ing, the termination proof is stronger, since it shows uniform termination for all
possible start graphs.

3.5 Detailed Example: Ad-hoc Routing Protocol

We conclude the paper by demonstrating the weighted type graph technique on
a simple ad-hoc routing protocol in a dynamically changing network. A message
(M) traverses a network of servers (S), routers (R) and directed connections (C)
between them. The message can only be sent to unvisited (U) nodes. In addition,
rules which modify the network’s layout are active. The graph transformation
system which models the protocol consists of the following rules:

send-message =
1 2

C
M U

1 2 1 2

C
M

add-router =
1 2

C
S S

1 2 1 2

C C
S

R U
S

connect-isolated =
1

S U

1 1

C
S U

Note that, due to the dangling edge condition, the connect-isolated rule cannot
be applied to patterns where the right node is connected to any other nodes; in
fact this condition ensures termination in this case.

T1 = M0

S0

R0

C0

U0

S1

U1

T2 =

M0S0

R0

C1 U0

C0

C0

R0

U0

The fact that this system is uniformly ter-
minating can be shown using a sequence of
weighted type graph arguments. First, we arcti-
cally evaluate the rules with respect to T1 (again,
the superscripts denote the weights of the edges).
For connect-isolated, the right-hand side can only
be mapped to the flower structure on the left
node (weight 0), while for the left-hand side
the nodes with the S- and the U -loop can be
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matched to the right node (weight 2). For the other rules, both the left-hand
side and the right-hand side can only be mapped to the flower, so all morphisms
have weight 0. Thus, connect-isolated can be removed.

Now, we tropically evaluate send-message and add-router with respect to T2.
In both cases, the left-hand side can only be mapped to the flower structure on
the left node (weight: 1). But for add-router, a compatible morphism from the
right-hand side to T2 can be found which maps the middle node to the right
node of T2 (weight: 0). Thus, add-router can be removed.

Finally, the system consisting of only send-message is terminating because the
number of U -edges strictly decreases in each step.

4 Termination Analysis via Cycle Rewriting

In this section we consider graph transformation systems of a specific string-like
form, and show that termination of such systems reduces to termination of cycle
rewriting [12], which is a variant of string rewriting.

The result of this section has both theoretical and practical relevance. From a
theoretical point of view, it shows that graph transformation shares some charac-
teristics (with respect to termination) with a string-based rewriting formalism,
which motivates considering cycle rewriting as a step between graph transfor-
mation and term rewriting. In fact, [12] uses an approach similar to the type
graph method for proving termination of cycle rewrite systems. For cycle rewrite
systems finding termination arguments is easier because of the more restricted
format.

From a practical point of view it is useful for proving termination of actual
graph transformation systems. Although graph transformation systems which
consist only of string-like rules are rare “in the wild”, such rules do occur quite
often. We can try to use the weighted type graph method to first remove the non-
string-like rules from the system, and then, when only string-like rules are left,
apply the easier (faster) techniques for cycle rewriting to finish the termination
proof.

4.1 Cycle Rewriting with Graph Transformation Systems

Cycle rewriting, introduced in [12], is a variant of string rewriting where strings
are considered modulo cyclic shift. Let Σ be an alphabet (that is, a finite set
of symbols). Fur u, v ∈ Σ∗, we write u ∼ v if there are u1, u2 ∈ Σ∗ such that
u = u1u2 and v = u2u1. A cycle rewrite rule is a pair 〈�, r〉 of strings, written
�→ r, and a cycle rewrite system is a finite set R of cycle rewrite rules. A string
s rewrites to a string t (written s ⇒R t) if there are a rule � → r ∈ R and
s′, t′, x, y ∈ Σ∗ such that s ∼ s′, t ∼ t′, s′ = x�y and t′ = xry.

First, we have to encode cycle rewrite systems as graph transformation sys-
tems. The natural way to do this is to represent a string by a “string graph”,
a graph consisting of a single path, and a cycle by a “cycle graph”, a graph
consisting of a single cycle.
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Letw = a1 · · · an (where ai ∈ Σ for 1 ≤ i ≤ n) be a string.We define path(w) =
〈V,E, src, tgt , lab〉, where V = {v0, . . . , vn}, E = {e1, . . . , en}, src(ek) = vk−1,
tgt(ek) = vk and lab(ek) = ak for 1 ≤ k ≤ n.

Furthermore, we define cycle(w)=〈V,E, src, tgt , lab〉, where V = {v1, . . . , vn},
E = {e1, . . . , en}, src(e1) = vn, tgt(e1) = v1, lab(e1) = a1, and src(ek) = vk−1,
tgt(ek) = vk and lab(ek) = ak for 2 ≤ k ≤ n.

To encode a cycle rewrite rule, it is natural to encode the left-hand side and
the right-hand side with a string graph, and associate via the interface the left-
most node and right-most node of the left-hand side with left-most node and
right-most node of the right-hand side, respectively. Still, there are two natural
choices of what to do with the middle nodes of the left-hand side. Either they
are deleted (have no corresponding node in the right-hand side) or they are kept
(for each middle node we add an isolated node to the right-hand side). First, we
show that under the first encoding termination is preserved. Then, we extend
the result to the second encoding by showing that in this case the isolated nodes
can be removed from the right-hand side without affecting termination.

Let ρ = �→ r be a cycle rewrite rule. We define graph(ρ) = L�ϕL− I −ϕR�R,
where L = path(�) and R = path(r); I = 〈{u1, u2},∅,∅,∅,∅〉; ϕL(u1) = v0 and
ϕL(u2) = v|�|; and ϕR(u1) = v0 and ϕR(u2) = v|r|.

For a cycle rewrite system R, graph(R) consists of the graph transformation
rules corresponding to its rules: graph(R) = {graph(ρ) | ρ ∈ R}.

Example 6. Let the rule aa → aba be given. The corresponding graph transfor-
mation rule is:

ρ = v0
1

v1 v2
2

a a u1

1

u2

2

v0
1

v1 v2 v3
2

a b aϕL ϕR

Above, the white labels inside the nodes are the names given to the nodes in
the definitions above, while the numbers below represent the morphisms ϕL and
ϕR.

Termination of graph transformation systems of this specific form can now be
reduced to termination of cycle rewriting – which, because of the more restricted
form, is in some cases slightly easier. Techniques for proving termination of cycle
rewrite systems were developed in [12]. Note that here we consider uniform
termination: the rules in graph(R) are applied to arbitrary graphs, not only
to cycles. Hence, proving such a result is non-trivial since we have to derive
termination on all graphs from the fact that the rules terminate on all possible
cycles.

Theorem 2. Let R be a cycle rewrite system. R is terminating if and only if
graph(R) is terminating.

Since termination of cycle rewriting is undecidable (proved in [12]; basically
it is a consequence of the undecidability of termination of string rewriting), we
obtain an alternative proof of the following result (previously proved in [9]) as
a small bonus:
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Corollary 1. Uniform termination of graph transformation systems is undecid-
able.

4.2 Removing Isolated Nodes from the Right-Hand Side

Above, we mentioned two different encodings for string rewrite rules: either the
middle nodes are deleted or they are maintained by adding corresponding iso-
lated nodes to the left-hand side. (In fact, we can make this choice independently
for each middle node.) Which of the encodings we adopt is significant, as the
following example shows.

Example 7. Consider the rule ρ of Ex. 6 and the following rule ρ′:

ρ′ =
1 2 3

a a

1 2 3 1 3 2

a b aϕL ϕR

The rules ρ and ρ′, although similar, generate a different transformation relation,
even if we ignore isolated nodes. The following transformation step is possible
with ρ′:

1 2 3

a a
c

⇒ρ′
1 3 2

a b a
c

Because of the dangling edge condition, there are no ρ-steps at all from the
source of the above step.

It turns out that, for a class of graph transformation systems which includes
“string-like” systems, isolated nodes can be removed from the right-hand sides
without affecting termination of the system.

Let ρ = L �ϕL− I −ϕR� R be a graph transformation rule with a discrete
interface I. The graph transformation rule deiso(ρ) is obtained by removing
from R all isolated nodes, removing from I all nodes which are mapped by ϕR

to an isolated node, and restricting ϕL and ϕR to the new smaller I. For a graph
transformation system R, deiso(R) = {deiso(ρ) | ρ ∈ R}.

Proposition 3. Let R be a graph transformation system and C a cycle rewrite
system. If deiso(R) = graph(C), then R is terminating if and only if C is termi-
nating.

Example 8. Consider the graph transformation systemR consisting of the rule ρ′

of Ex. 7. The graph transformation system deiso(R) is (isomorphic to) the graph
transformation system of Ex. 6 (consisting of ρ), which is graph(aa→ aba). Since
{aa→ aba} is a terminating cycle rewrite system (see [12]), R is terminating by
Prop. 3.

5 Implementation

A prototype Java-based tool, called Grez, has been written, which im-
plements, among others, the termination techniques presented in this



Termination Analysis for Graph Transformation Systems 191

paper. The tool may be downloaded from the following web page:
www.ti.inf.uni-due.de/research/tools/grez.

The tool concurrently runs a number of algorithms. Each of the algorithms
tries to prove uniform termination of a graph transformation system. As soon
as one of the algorithms successfully finds a termination proof, all algorithms
are interrupted and the proof is reported to the user. If the found termination
proof is relative, that is, termination of a smaller system must still be proved,
this procedure is repeated.

The key algorithms implemented in the tool are:

– Weighted type graphs. For all weighted type graphs with a user-specified
number of nodes and a user-specified maximum weight it is checked whether
they prove the graph transformation system terminating.

– Cycle rewriting. If the graph transformation system is of the correct form, it
is translated into a cycle rewrite system. Then, the tool torpacyc, developed
in the context of [12], is run as an external program to prove termination.

– Node counting. It is checked whether all left-hand sides have more nodes
than the corresponding right-hand side.

– Label counting. For all one- and two-element subsets of the labels, and for
the set of all labels, it is checked that all left-hand sides have more edges
labeled with such a label than the corresponding right-hand side.

– Match bounds. The algorithm of [3] is implemented. Additionally, nodes are
optionally merged according to two rules: target-merging: if a node of the
type graph has two outgoing edges with the same label, the target nodes of
the edges are merged; and source-merging: if a node of the type graph has
two incoming edges with the same label, the source nodes of the edges are
merged.

Note that the last three techniques are subsumed by the weighted type graph
technique. However, specialized algorithms make them often substantially faster
than the type graph technique.

We ran the tool on the (uniformly terminating) examples of this paper, using
a Linux workstation with a 2.67 Mhz, 4-core cpu. To be better able to compare
run times, we only enabled the weighted type graphs algorithm (using linear
weight functions and both tropical and arctic evaluation). Note that with a
single running algorithm the tool is essentially single-threaded. The parameters
we used were: generate weighted type graphs with at most two nodes and a
maximum weight of 1 (that is: 0 or 1). The run times are listed in Table 1.
Note that the ad-hoc routing protocol takes significantly longer than the other
examples; this is due to the larger number of labels and thus larger number of
type graphs that the exhaustive algorithm needs to generate. It is a direction for
further research to develop better heuristical algorithms to find suitable weighted
type graphs.

www.ti.inf.uni-due.de/research/tools/grez
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Table 1. Run times (in seconds) of running the weighted type graph finder of Grez on
various examples of the paper (average of 5 tries)

Example Run time (s)

Adding c-loop (Ex. 2) 0.20
graph(aa → aba) (Ex. 4 and Ex. 6) 0.15
Exponential transformation complexity (Ex. 5) 0.93
Ad-hoc routing protocol (Sec. 3.5) 144.8

6 Related Work

As mentioned in the introduction, various other works concern themselves with
termination of graph transformation, more specifically, of graph transformation
as a model transformation formalism.

The paper [2] considers high-level replacement units (hlru), which are trans-
formation systems with external control expressions. The paper introduces a
general framework for proving termination of such hlrus, but the only concrete
termination criteria considered are node and edge counting, which are subsumed
by the weighted type graph method of this paper (see Sect. 3.2).

In [6] layered graph transformation systems are considered, which are graph
transformation systems where interleaving creation and deletion of edges with
the same label is prohibited and creation of nodes is bounded. The paper shows
such graph transformation systems are terminating.

The paper [10] simulates a graph transformation system by a Petri-net. Thus,
the presence of edges with certain labels and the causal relationships between
them are modeled, but no other structural properties of the graph. The paper
uses typed graph transformation systems; thus, a type graph is used but, unlike
in our weighted type graph method, it is fixed by the graph transformation
system.

Finally, [3] was one of the inspirations for this paper. As shown in Sect. 3.3,
its termination argument is subsumed by the weighted type graph technique.

7 Conclusion and Further Research

We introduced the weighted type graph technique for proving termination of
graph transformation systems in the double pushout approach. The technique
uses type graphs to assign weights to graphs that strictly decrease in each graph
transformation step. It is simple and elegant and supports both uniform and non-
uniform termination. Two simpler techniques, weighted edge and node counting
(Sect. 3.2) and match bounds (Sect. 3.3) are subsumed by the technique.

Secondly, we showed that uniform termination of graph transformation sys-
tems of a specific form can be reduced to uniform termination of cycle rewriting,
a form of rewriting related to string rewriting. This makes it possible to use the
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stronger termination algorithms of cycle rewriting for graph transformation sys-
tems. As a bonus, it provides an alternative proof of the undecidability of the
termination problem of graph transformation systems.

Although all theorems have been stated and proved for (binary) multigraphs,
a generalization to hypergraphs would be trivial. On the other hand, transferring
the results to other graph transformation formalisms is harder. For example, in
the single pushout approach, the graph transformation system corresponding to
the one of Ex. 1 is non-terminating, so the result of Ex. 2 (in which it is proved
that this system is terminating) shows that the weighted type graph technique
cannot be transferred one-to-one to single pushout graph transformation. It is
left as future research to find similar arguments for the single pushout approach
and other formalisms.

Another direction for further research is to allow for graph transformation
systems with negative application conditions or more general application condi-
tions. Note, however, that the implicit negative application condition of double
pushout graph transformation, the dangling edge condition, can in some cases
already be handled (see Ex. 2).

Finally, for interesting real-world applications, it would be interesting to gen-
eralize the technique to more expressive methods of specifying the initial graph
languages, so that we can, for example, restrict to trees or rings of arbitrary size
(both graph languages cannot be expressed by a type graph).
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Abstract. In this paper we study two-way min-plus automata. We
prove that two-way distance automata are equivalent to one-way dis-
tance automata. In the second part of the paper we show that, with
general min-plus semirings, it is decidable whether every accepted word
has a weight different from −∞ and that, in contrast, it is undecidable
whether there exists a word accepted with a weight different from −∞.

1 Introduction

Min-plus automata have attracted much attention for three decades. N-min-plus
is one of the simplest extensions of the Boolean semiring and min-plus automata
are therefore a very natural extension of automata with various applications in
natural language processing or optimization. They are indeed very powerful tools
and take part in some very important results like star height.

We study here two-way min-plus automata. When the weights are non
negative, we extend the classical result [8,7] that states that a two-way finite
automaton is equivalent to a one-way finite automaton.

In the second part, we show that in general some words may be accepted in
some two-way automata by a family of runs whose the infimum over weights
is −∞. In this case, the behaviour of the automata may be not rational. We
prove that the existence of such accepted words is decidable. In contrast, we
prove that given a Z-min-plus automaton, it is undecidable whether there exists
a word accepted with a finite weight.

2 Tropical Two-Way Automata

2.1 Automata and Runs

An alphabet is a finite set of letters; for every alphabet A, we assume that there
exist two fresh symbols $ and * that are marks at the beginning and the end of
the tapes of automata. We denote A�	 the alphabet A ∪ {$,*}. For every word
w in A, w�	 is the word in A�	 equal to $ w *.

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 195–206, 2014.
c© IFIP International Federation for Information Processing 2014
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Tropical automata are instances of automata weighted by a semiring. For
every additive submonoid K of R, we can define the min-plus semiring K =
(K∪{∞},min,+). For instance, from N, Z and R+, we can respectively define the
min-plus semirings N , Z and R+. Notice that in a K-automaton, only weights
in K appear (∞ is an algebraic way to specify the absence of transition).

In the sequel, we call distance automaton every min-plus automaton with non
negative weights. Hence, N -automata and R+-automata are distance automata.

In some applications, the semiring P = ([0; 1],max, ·) is used (the weight of a
path is in this case the product of the probabilities of the path and the weight of
a word is the weight of the run on this word with the highest probability). The
application x !−→ − log x is actually an isomorphism from P onto R+. Every
result on distance automata is therefore valid for P-automata.

One-way and two-way K-automata share a part of their definition. A K-
automaton is a tuple A = (Q,A,E, I, T ) where Q is a finite set of state, A
is a finite alphabet, and I and T are partial functions from Q to K. The support
of I, I, is the set of initial states of A, and the support of T , T , is the set of final
states of A.

The definition of transitions differ. In a two-way K-automaton, E is a partial
function from Q× (A�	 × {−1,+1})×Q into K and the support of E, E, is the
set of transitions of A. Moreover, the intersection of E and Q× ({$}×{−1}∪{*
} × {1})×Q must be empty.

Let t be a transition in E; if t = (p, a, d, q), we denote σ(t) = p, τ(t) = q,
λ(t) = a, δ(t) = d. On figures, the value of δ is represented by a left (-1) or right

(+1) arrow. For instance, if t = (p, a,−1, q) and Et = k, we draw p
a,←|k−−−−−→ q.

In a one-way K-automaton, E is a partial function from Q × A × Q into K,
and the support of E, E, is the set of transitions of A.

Let t be a transition in E; if t = (p, a, q), we denote σ(t) = p, τ(t) = q,
λ(t) = a.

Definition 1. Let w = w1 . . . wn be a word of A∗, we set w0 = $ and wn+1 = *.
A configuration of A on w is a pair (t, i) where i is in [0;n + 1] and t is a
transition of A with λ(t) = wi. A computation (or run) ρ of A on w is a finite
sequence of configurations ((t1, i1), . . . , (tk, ik)) such that :

– i1 = 1, ik = n, δ(t1) = δ(tk) = 1, σ(t1) is in I and τ(tk) is in T ;
– for every j in [0; k − 1], σ(tj+1) = τ(tj) and ij+1 = ij + δ(tj).

Example 1. Let A1 be the two-way N -automaton of Figure 1. The automaton
checks by a left-right reading the parity of the length of each subsequence of
repetitions of ′a′s; if it is odd, a right-left reading computes the length of the
block; otherwise the automaton goes to the next block of ′a′s.

A run of theN -automatonA1 over the word abaaba is represented on Figure 2.
The weight of this run is equal to 2, since there are two odd subsequences of ′a′s
in the string, and each id of length 1.

The weight of such a computation, denoted by |ρ|, is I(σ(t1))+
∑k

j=1 E(tj)+
T (τ(tk)). The weight of w in A, denoted by 〈|A|, w〉, is the infimum of the weights
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p q r

b,→| 0

a,→| 0

a,→| 0

�,←| 0
b,←| 0

a,←| 1

b,→| 0
�,→| 0

Fig. 1. The two-way N -automaton A1

� a b a a b a �

p, 1 q, 2

r, 1r, 0

q, 1 p, 2 p, 3 q, 4 p, 5 p, 6 q, 7

r, 6r, 5

q, 6 p, 7

→ |0
← |0

← |1
→ |0

→ |0 → |0 → |0 → |0 → |0 → |0
← |0

← |1
→ |0

→ |0

Fig. 2. A run of A1 over the word abaaba

of all the runs with label w in A. Notice that there may be an infinite number of
computations with the same label w; in this case the infimum may not belong to
K; actually, K can always be embedded into the semiring (R∪{−∞,∞},min,+)
(with −∞+∞ =∞) where the infimum of every family is always defined.

2.2 δ-normalization

Definition 2. Let A be a two-way K-automaton.
If, for each state p of A, every outgoing transition from p has the same direction,
then A is δ-local.
If A is δ-local and, for each state p of A, every transition arriving at p has the
same direction, then A is δ-normalized.

If A is a δ-local automaton, for every state p in Q, we set δO(p) = δ(t), where
t is any transition outgoing from p; if it is normalized, we also set δI(p) = δ(t),
where t is any transition incoming to p.

The following proposition is proved in [2].
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Proposition 1. For every two-way K-automaton, there exists an equivalent δ-
local two-way K-automaton.

To make a two-way automaton A δ-local, a covering of A is built: every state
p with outgoing transitions with different directions is split into two states p+
and p− that have the same incoming transitions as p, transitions outgoing from
p+ (resp. p−) are the transitions outgoing from p with direction +1 (resp. −1).

The dual construction consists in splitting the states to separate incoming
transitions with different directions. Applied to a δ-local two-way automaton, it
results in a δ-normalized automaton.

Example 2. Figure 3 shows the conversion of a two-way automaton into a δ-local
automaton, and then into a δ-normalized automaton.

p

a,→| −1

a,←| 1

p+

p
−

a,→| −1

a,←| 1

a,→| −1
a,←| 1

p+,+

p+,−
p
−,+

p
−,−

a,→| −1

a,←| 1

a,→| −1

a,→| −1

a,←| 1

a,←| 1

a,→| −1

a,←| 1

Fig. 3. The two steps of the δ-normalization

Example 3. The automaton A1 of Figure 1 is not δ-normalized: in states q and r,
there are outgoing transitions with direction −1 and others with direction +1.
The automaton A′

1 of Figure 4 is a δ-normalized equivalent automaton.

2.3 The Slice Automaton

The slice automaton is a one-way automaton that (non-deterministicly) emulates
the runs of a two-way automaton. On a given run, for each position of the input,
the slice of the run is the vector made of the states visited at this position. Every
state of the slice automaton is such a vector and there is a transition between
two states if the corresponding slices can successively appear in a run of the
two-way automaton.

We give here the formal definition of the slices. A more complete description
of the slice automaton is given in [2].

Definition 3. Let A = (Q,A,E, I, T ) be a two-way K-automaton and let w =
w1 . . . wk be a word. Let ρ = ((p0, i0), . . . (tn, in)) be a run over w, and j in
[1; k + 1]. Let h be the subsequence of all pairs (pk, ik) such that (ik, ik+1) =
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p

q
−

q+

r
−

r+

b,→| 0
a,→| 0

a,→| 0

a,→| 0

�,←| 0
b,←| 0

�,←| 0
b,←| 0

a,←| 1

a,←| 1

b,→| 0
�,→| 0

b,→| 0
�,→| 0

Fig. 4. The δ-normalized two-way N -automaton A′
1

(j, j + 1) or (ik−1, ik) = (j, j − 1). The j-th slice of ρ is the vector s(j) of states
obtained by the projection of the first component of each pair of h.
The signature S(ρ) of ρ is the sequence of its slices.

The slices we define here are not exactly the crossing sequences defined in [8].

Example 4. The vector

[
q
r
p

]
is the second (and the seventh) slice of the run of

Figure 2. The signature of this run is:(
p
r
q
,
q
r
p
, p, q, p,

p
r
q
,
q
r
p

)
. (1)

Let A = (Q,A,E, I, T ) be a δ-local two-way K-automaton. In order to define
a one-way K-automaton from slices we consider the set X of subvectors of slices,
that are vectors in Q∗ with an odd length; let Y be the vectors in Q∗ with an
even length.

We define inductively two partial functions θ : X × A × X → K and η :
Y ×A× Y → K by:

η(ε, a, ε) = 0K,

∀p, q ∈ Q, δO(p) = 1⇒ ∀u, v ∈ Y, θ(pu, a, qv) = E(p, a, 1, q) + η(u, a, v),

η(u, a, pqv) = E(p, a, 1, q) + η(u, a, v),

δO(p) = −1⇒ ∀u, v ∈ X, θ(pqu, a, v) = E(p, a,−1, q) + θ(u, a, v),

η(qu, a, pv) = E(p, a,−1, q) + θ(u, a, yv).

(2)

Since A is δ-local, if θ is defined on a triple (u, a, v), it is uniquely defined.
For every vector pu in X , pu is initial if p is in I and (ε,$, u) is in η; in this

case, we set I(pu) = I(p) + η(ε,$, u). Likewise, every vector up in X is final if
p is in T and (u,*, ε) is in η; in this case, we set T (up) = η(u,*, ε) + T (p).
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Definition 4. With the above notations, the slice automaton of the two-way
K-automaton A = (Q,A,E, I, T ) is the infinite one-way K-automaton C =
(X,A, θ, I, T ).

3 Two-Way Distance Automata

In two-way automata, in the same computation, there may be two steps where
the automaton is in the same state and reads the same letter of the input. In
this case we say that the computation contains an unmoving circuit.

Definition 5. Let ρ = ((t1, i1), . . . , (tk, ik)) be a run. If there exists m,n in
[1, k], with m < n such that im = in and σ(tm) = σ(tn), then we say that
((tm, im), . . . , (tn−1, in−1)) is an unmoving circuit of ρ. If ρ does not contain
any unmoving circuit, it is reduced.

If a run contains unmoving circuits, they can all be removed with a finite
number of iterations since the removing of such a circuit leads to a shorter run.

Lemma 1. If a two-way K-automaton admits a run ρ which is not reduced, it
admits a reduced run with the same label.

Lemma 2. Let A be a two-way distance automaton on an alphabet A. For each
w in A∗, 〈|A|, w〉 is the weight of a reduced run of w.

Proof. By contradiction, let us suppose that, for a word w, there is no reduced
run in A labeled by w with a minimal weight. Then let ρ = ((t1, i1), . . . , (tl, il)) be
one of the shortest non reduced run labeled by w with a minimal weight. Since it
is not reduced, then there exist j and k, with j < k, such that ij = ik and σ(tj) =
σ(tk). Then there exists a run ρ′ = ((t1, i1), . . . , (tj−1, ij−1), (tk, ik), . . . , (tl, il))
labeled by w with |ρ′| ≤ |ρ| which is a contradiction. �

By Lemma 2 to simulate a two-way distance automaton by a one-way au-
tomaton, we only need to simulate reduced runs.

Actually, if a run of a two-way automaton contains an unmoving circuit, the
signature of this run contains a vector where two entries with an index with the
same parity are equals. In [2], we prove that the restriction of the slice automaton
of A to states labelled by vectors that do not contain this kind of entry results in
a finite one-way automaton where every computation corresponds to a reduced
computation of A with the same weight and that every reduced computation of
A has a representative in this finite one-way automaton.

Example 5. From the δ-normalization of A1, we can build an equivalent one-way
N -automaton.

Finally, by Lemma 2,

Proposition 2. Every two-way distance automaton is equivalent to a one-way
distance automaton.



Tropical Two-Way Automata 201

p q+
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p
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−

q+

q+
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−

p

q
−

r
−

p

b | 0

a | 0

a | 0

b | 0

a | 1

a | 1

a | 1

a | 1
a | 1

b | 0

Fig. 5. A one-way N -automaton equivalent to A1

4 Two-Way Min-plus Automata

In this part, we study two-way automata on min-plus semirings based on non
postive submonoids of R. In this case, a word may label an infinite number of
paths with an increasingly smaller weight.

We say that a two-way min-plus automaton is valid if the weight of every
accepted word is finite. We address the problem of deciding whether a two-way
min-plus automaton is valid.

p q

a,→ | − 1
b,→ |1

a,← |0
b,← |0

�,← |0

�,→ |0

i

sp

q

a,→ | − 1
b,→ |1

a,→ | − 1
b,→ |1

a,← |0
b,← |0

a,← |0
b,← |0

�,← |0

�,← |0

�,→ |0

�,→ |0

Fig. 6. The two-way Z-automata A2 and A′
2

Example 6. Let A2 be the two-way Z-automaton of Figure 6 (left). Every time
this automaton reads a word from left to right it computes the difference between
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the number of ’b’s and the number of ’a’s. Since for each accepted word, there can
be an unbounded number of left-right reading, if there are more ’a’s than ’b’s, the
weight of runs is not lowerly bounded. Thus, the behaviour of this automaton is
only defined for words where the number of ’a’s is at most equal to the number
of ’b’s.

The automaton A′
2 of Figure 6 (right) is the δ-normalization of A2.

This example shows the following fact.

Proposition 3. There exist two-way min-plus automata such that the language
of words accepted with a finite weight is not rational (or regular).

Theorem 1. It is decidable whether a two-way min-plus automaton is valid.

To prove this theorem, we need to consider another restriction of the slice
automaton. Unlike the case of distance automata where we want that unmoving
circuits do not appear at all, we want here to detect when unmoving circuits
appear, but we want to deal with a finite automaton. So, we allow that each
unmoving circuit appears at most once.

To this purpose, we consider the slices that belong to W =
⋃

kWk with Wk

defined for all k in N as follows :

Wk = {v ∈ Q2k+1|∀p ∈ Q, ∀s ∈ [0; 1], |{i | vi = p and i mod 2 = s}| � 2}. (3)

We consider the restriction of the slice automaton to W .

Proposition 4. Let A be a two-way K-automaton and let C be the restriction
of the slice automaton of A to W . If A accepts a run that contains an unmoving
circuit with a negative weight, then there exists a run in A that contains an
unmoving circuit with a negative weight and that is mapped into C.
Proof. Assume that there exist runs of A that contain at least one unmoving
circuit with a negative weight. We chose ρ among these runs with a minimal
number of transitions. Let q be the end of the unmoving circuit with negative
weight and let q1 and q2 be the both occurences of q. If ρ is not mapped into C,
there exists a state p that appears (at least) three times in a slice v1 of ρ (let p1,
p2 and p3 be these three occurences); p is the end of two consecutive unmoving
circuits.
Different cases occur. If one of the two consecutive unmoving circuits has a
negative weight, the other one can be removed to simplify the run. (This case
may occur if p = q.)
Likewise, if one of the two consecutive unmoving circuits does not intersect the
unmoving circuit with negative weight, it can be removed.
The only case that remains is when the run ρ can be decomposed as:

→ i
w1|k1−−−−−→ p1

w2|k2−−−−−→ q1
w3|k3−−−−−→ p2

w4|k4−−−−−→ q2
w5|k5−−−−−→ p3

w6|k6−−−−−→ t→ . (4)

In this case we have k3 + k4 < 0 and the shorter run

→ i
w1|k1−−−−−→ p1 = p2

w4|k4−−−−−→ q2 = q1
w3|k3−−−−−→ p2 = p3

w6|k6−−−−−→ t→ (5)

contains an unmoving circuit with a negative weight. �



Tropical Two-Way Automata 203

In the automaton C, every run that meets a state in W \ V does contain an
unmoving circuit. The problem is to detect whether such an unmoving circuit
has a negative weight. The solution consists in comparing the weight of this run
with the weight of the run without the unmoving circuit. To this purpose, we
define an automaton which is a kind of square of the automaton C (cf. [1]): it
compares paths of C that differ by unmoving circuits.

We consider first the set X = {(x, y, z) ∈ (Q∗)3 | xz, xyz ∈ W}. An element
(x, y, z) in X is special if y1 = z1. From the function θ, we define the (partial)
function θ̃ : X ×A×X −→ K as

θ̃((x, y, z), a, (t, u, v)) = θ(xyz, a, tuv)− θ(xz, a, tv), (6)

for every triple ((x, y, z), a, (t, u, v)) that fulfils one of the three following condi-
tions:

(x, a, t), (y, a, u) and (z, a, v) ∈ θ;
(xy1, a, t), (y

−1
1 yz1, a, u) and (z−1

1 z, a, v) ∈ θ, y1 = z1 and δI(y1) = −1;
(x, a, tu1), (y, a, u

−1
1 uv1) and (z, a, v−1

1 v) ∈ θ, u1 = v1 and δI(u1) = 1.

(7)

w ∈ W w′ ∈ W

w7

w6

w5

w4

w3

w2

w1

w′7

w′6

w′5

w′4

w′3

w′2

w′1x

y

z

t

u

v

(xy1, a, t), (y1
−1yz1, a, u)

and (z1
−1z, a, v) ∈ θ, y1 = z1
and δI(y1) = −1

w ∈ W w′ ∈ W

w7

w6

w5

w4

w3

w2

w1

w′7

w′6

w′5

w′4

w′3

w′2

w′1

x

y

z

t

u

v

(x, a, tu1), (y, a, u1
−1uv1)

and (z, a, v1
−1v) ∈ θ, u1 = v1

and δI(u1) = 1

Fig. 7. A valid run over the word w = w1 . . . wk

Let X0 = {(x, y, z) ∈ X | y = 1}. We define on X the relation (x, y, z) ≡
(x′, y′, z′) if and only if y = y′ = 1 and xz = x′z′. In the quotient X̃ of X by
≡, every element which is not in X0 is the only element of its class, while the
quotient of X0 is isomorphic to W . Moreover, this equivalence is compliant with
the definition of θ̃. Let P = (X̃, A, θ̃, J, U) be a one-way automaton defined as
follows. The transition function is θ̃; every transition that corresponds to one of
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the two last lines of (7) is called a special transition. We set J(x, y, z) = θ
(0,$, xyz) − θ(0,$, xz) if x is non empty or if x is empty and y1 = z1 (special
initial state). Likewise, U(x, y, z) = θ(xyz,*, 0)− θ(xz,*, 0) if z is non empty or
if z is empty and x1 = y1 (special final state).

Every computation in the automaton P that meets one (and only one) special
transition (or special initial or final state) corresponds to two computations in
the slice automaton. Each state of the first computation is obtained from every
state (x, y, z) of the computation in P by concatenating x, y and z, while each
state of the second computation is given by the concatenation of x and z. This
two computations correspond to two runs in A, one with an unmoving circuit,
the second one where the unmoving circuit has been removed.

Example 7. From the automaton A′
2 of Figure 6 (right), we can build the au-

tomaton P2 of Figure 8. The states in X0 are labelled by one vector, and the
other ones by three vectors. The special transitions and special initial states are
red (there is no special final state). Each run in this automaton that contains a
special transition (or initial state) corresponds two runs in A′

2, one with an un-
moving circuit, the other one without this circuit. Such a pair of paths in A′

2 may
correspond to several paths in P2, depending where the path with the unmoving

circuit is cut. For instance, consider the path
(
i,
s
i ,
)

a,−1−−−−→
(
,
i
q , i
)

a,−1−−−−→(
,
p
q , i
)
; it corresponds to the path of Figure 9 and to the cut between the two

red states. The weight of the path with the unmoving circuit is −4, without the
unmoving circuit, it is −2; the difference is −2 which is equal to the weight of
the path in P2.

i

a, b

p
s
i

i,
s
i , i,

q
i ,

,
i
s , i

,
i
q , i

,
p
q , i

i
s
i

i
q
i

p
q
i

,
p
s ,

p
s
i

p,
s
p ,

s
i

a,−1
b, 1

a,−1
b, 1

a,−1
b, 1

a,−1
b, 1

a,−1
b, 1

a,−1
b, 1

a, 0
b, 0

a, 0
b, 0

a, 0
b, 0

a, 0
b, 0

a,−1
b, 1

a,−1
b, 1

Fig. 8. The one-way automaton P2

Proposition 5. Let A be a two-way min-plus automaton and let P be the au-
tomaton built above. If A accepts a run that contains an unmoving circuit with
a negative weight, then there is a run in P that meets one special transition (or
special initial/final state) with a negative weight.
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� a a �

i i p

qqs

i i

i

i

→ | − 1 → | − 1
← |0

← |0← |0
→ |0

→ | − 1 → | − 1

Fig. 9. A path in the automaton A2 with a negative unmoving circuit

This property can be checked on the automaton P in polynomial time (see
for instance [5]), and this implies Theorem 1.

If the two-way automaton is not valid, it could be interesting to compute
an effective description of the language on which the behaviour is defined. By
Proposition 3 this language must be non rational; worst, it is undecidable to
know whether it is empty.

Theorem 2. Let A be a two-way Z-automaton. It is undecidable whether there
exists a word w accepted by A with a finite weight.

Proof. In [4], it is prove that it is undecidable, given a one-way Z-automaton B =
(Q,A,E, I, T ), to know whether there exists a word w whose weight in B is non
negative. Let r be an element which is not in Q and let A = (Q∪{r}, A, F, I, T )
be the two-way Z-automaton defined as follow:

F ={p a,→|k−−−−−→ q | p a|k−−−→ q ∈ E}

={p 	,←|k−−−−−→ r | p ∈ T , T (p) = k}

={r �,→|k−−−−−→ p | p ∈ I, I(p) = k}

={r a,←|0−−−−−→ r | a ∈ A}

(8)

For every word w in A, every computation on w is any sequence of computations
on w in B. Therefore, the weight of a word w in A is defined if and only if it
has no computation with a negative weight in B, that is if its weight in B is non
negative. �

5 Conclusion

The problem tackled in this paper raises a more general problem on two-way
automata. Actually, since the number of computations for a given input can be
infinite, a proper definition of the behaviour of a weighted automaton must be
forged. It meets some works on the behaviour of one-way weighted automata
with ε-transitions (cf. [3,6]).
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The last part of the paper also introduces some open questions. Despite the
fact that the emptiness of the domain of a tropical two-way automaton is unde-
cidable, is it possible to give a usable characterization of this domain?
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Abstract. This paper is concerned with the verification of finite Markov
chains against parametrized LTL (pLTL) formulas. In pLTL, the until-
modality is equipped with a bound that contains variables; e.g., ♦�x ϕ
asserts that ϕ holds within x time steps, where x is a variable on natural
numbers. The central problem studied in this paper is to determine the
set of parameter valuations V≺p(ϕ) for which the probability to satisfy
pLTL-formula ϕ in a Markov chain meets a given threshold ≺ p, where
≺ is a comparison on reals and p a probability. As for pLTL determin-
ing the emptiness of V>0(ϕ) is undecidable, we consider several logic
fragments. We consider parametric reachability properties, a sub-logic
of pLTL restricted to next and ♦�x, parametric Büchi properties and
finally, a maximal subclass of pLTL for which emptiness of V>0(ϕ) is
decidable.

1 Introduction

Verifying a finite Markov chain (MC, for short) M against an LTL-formula ϕ
amounts to determining the probability that M satisfies ϕ, i.e., the likelihood
of the set of infinite paths of M satisfying ϕ. Vardi [1] considered the qualita-
tive version of this problem, that is, does M almost surely satisfy ϕ, or with
positive probability. Together with Wolper, he showed that the qualitative LTL
model-checking problem for MCs is PSPACE-complete. The quantitative veri-
fication problem – what is the probability of satisfying ϕ? – has been treated
by Courcoubetis and Yannakakis [2]. An alternative algorithm that has a time
complexity which is polynomial in the size of the MC and exponential in |ϕ| is
by Couvreur et al. [3]. Recently, practical improvements have been obtained by
Chatterjee et al. for verifying the LTL(F,G)-fragment on MCs using generalized
deterministic Rabin automata [4].

This paper considers the verification of MCs against parametric LTL formulas.
In parametric LTL [5] (pLTL, for short), temporal operators can be subscripted
by a variable ranging over the natural numbers. The formula ♦�x a means that
in at most x steps a occurs, and �♦�y a means that at every index a occurs
within y steps. Note that x and y are variables whose value is not fixed in ad-
vance. The central question is now to determine the values of x and y such that
the probability of a given MC satisfying the pLTL-formula ϕ meets a certain
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threshold p. This is referred to as the valuation set V≺p(ϕ) for comparison op-
erator ≺. This problem has both a qualitative (threshold > 0 and = 1) and a
quantitative variant (0 < p < 1).

The main results of this paper are as follows. Just as for the setting with
Kripke structures [5], it is shown that checking the emptiness of V>0(ϕ) in gen-
eral is undecidable. We therefore resort to fragments of pLTL. We show that
determining V�p(♦�x a) can be done by searching in a range defined by the
precision of the input, whereas polynomial time graph algorithms suffice for its
qualitative variant. The same applies to formulas of the form �♦�x a. We pro-
vide necessary and sufficient criteria for checking the emptiness of V>0(ϕ) (and
V=1(ϕ)) for the fragments pLTL(F,X) and pLTL♦, and prove that checking these
criteria are NP-complete and PSPACE-complete, respectively. We also define a
representation of these sets and provide algorithms to construct them.

Related work. The verification of parametric probabilistic models in which cer-
tain transition probabilities are given as parameters (or functions thereof) has
recently received considerable attention. Most of these works are focused on pa-
rameter synthesis: for which parameter instances does a given (LTL or PCTL)
formula hold? To mention a few, Han et al. [6] considered this problem for timed
reachability in continuous-time MCs, Hahn et al. [7] and Pugelli et al. [8] for
Markov decision processes (MDPs), and Benedikt et al. [9] for ω-regular prop-
erties of interval MCs. Hahn et al. [10] provide an algorithm for computing the
rational function expressing the probability of reaching a given set of states in
a parametric (reward) MDP based on exploiting regular expressions as initially
proposed by Daws [11]. Other related work includes the synthesis of loop invari-
ants for parametric probabilistic programs [12]. To the best of our knowledge,
verifying parametric properties on MCs has not been considered so far. The
closest related works are on combining two-variable FO with LTL for MDPs by
Benedikt et al. [13] and the computation of quantiles by Ummels and Baier [14].

Organization of the paper. Section 2 presents pLTL and MCs and a first un-
decidability result. Section 3 considers parametric reachability. Section 4 treats
the fragment pLTL(F,X) and Section 5 parametric Büchi properties. Section 6
treats the bounded always-free fragment of pLTL. Section 7 concludes the paper.
Full version of the paper can be found in the archive.

2 Preliminaries

Parametric LTL. Parametric LTL extends propositional LTL with bounded tem-
poral modalities, for which the bound is either a constant or a variable. Let Var
be a finite set of variables ranged over by x, y, and AP be a finite set of propo-
sitions ranged over by a and b. Let c ∈ IN. Parametric LTL formulas adhere to
the following syntax:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | © ϕ | ϕUϕ | ♦≺x ϕ | ♦≺c ϕ
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where ≺∈ {=,�, <,>,� }. A pLTL structure is a triple (w, i, v ) where w ∈ Σω

with Σ = 2AP is an infinite word over sets of propositions, i ∈ IN is an index, and
v : Var → IN is a variable valuation. Analogously, we consider a valuation v as
a vector in Nd, where d for pLTL formula ϕ is the number of variables occurring
in ϕ. E.g. for d = 1, the valuation is just a number v. We compare valuations v
and v ′ as v � v ′ iff v(x) � v ′(x) for all x. Let w[i] denote the i-th element of w.
The satisfaction relation |= is defined by structural induction over ϕ as follows:

(w, i, v ) |= a iff a ∈ w[i]
(w, i, v ) |= ¬ϕ iff (w, i, v ) �|= ϕ
(w, i, v ) |= ϕ1 ∧ ϕ2 iff (w, i, v ) |= ϕ1 and (w, i, v ) |= ϕ2

(w, i, v ) |= ♦≺x ϕ iff (w, j, v ) |= ϕ for some j ≺ v(x)+i.

For the sake of brevity, we have omitted the semantics of the standard LTL
modalities. As usual, ϕ1 Rϕ2 ≡ ¬(¬ϕ1 U¬ϕ2), ♦ϕ ≡ trueUϕ and �ϕ ≡ ¬♦¬ϕ.
The language of ϕ is defined by L(ϕ) = {(w, v ) | (w, 0, v ) |= ϕ}. Alur et al. [5]
have shown that other modalities such as U�x, ♦>x, �>x, U>x, R�x and R>x,
can all be encoded in our syntax. For instance, the following equivalences hold:

♦>x ϕ ≡ ��x ♦© ϕ, �>x ϕ ≡ ♦�x �© ϕ,
ϕU�x ψ ≡ (ϕUψ) ∧ ♦�x ψ, ϕU>x ψ ≡ ��x (ϕ ∧ © (ϕUψ))

(1)

In the remainder of this paper, we focus on bounded always and eventualities
where all bounds are upper bounds. We abbreviate ♦�x by ♦x and do similar
for the other modalities. For valuation v and pLTL-formula ϕ, let v (ϕ) denote
the LTL formula obtained from ϕ by replacing variable x by its valuation v (x);
e.g., v (♦x ϕ) equals ♦v(x) v (ϕ).

Markov chains. A discrete-time Markov chain M is a quadruple (S,P, s0, L)
where S is a finite set of states with m = |S|, P : S × S → [0, 1] is a stochastic
matrix, s0 ∈ S an initial state, and L : S → 2AP a state-labeling function. P(u, v)
denotes the one-step probability of moving from state u to v. A trajectory (or
path) of a Markov chain (MC, for short) M is a sequence { si }i�0 such that
P(si, si+1) > 0 for all i � 0. A trajectory π = s0s1s2 . . . induces the trace
trace(π) = L(s0)L(s1)L(s2) . . .. Let Paths(M) denote the set of paths of MCM .
A path π satisfies the pLTL-formula ϕ under the valuation v , denoted π |= v (ϕ),
whenever (trace(π), 0, v ) |= ϕ (or equivalently, (trace(π), v ) ∈ L(ϕ)). A finite
path (or path fragment) satisfies a formula under a valuation if any infinite
extension of it also satisfies the formula. Let Pr be the probability measure on
sets of paths, defined by a standard cylinder construction [1]. The probability of
satisfying ϕ byM under valuation v is given by Pr{ π ∈ Paths(M) | π |= v(ϕ) },
generally abbreviated as Pr(M |= v (ϕ)).

Valuation set. The central problem addressed in this paper is to determine the
valuation set of a pLTL formula ϕ. Let M be an MC, p ∈ [0, 1] a probability
bound, and ≺∈ {=,�, <,>,� }. Then we are interested in determining:

V≺p(ϕ) = { v | Pr(M |= v (ϕ)) ≺ p },
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i.e., the set of valuations under which the probability of satisfying ϕ meets the
bound ≺ p. In particular, we will focus on the decidability and complexity of the
emptiness problem for V≺p(ϕ), i.e., the decision problem whether V≺p(ϕ) = ∅
or not, on algorithms (if any) determining the set V≺p(ϕ), and on the size of the
minimal representation of V≺p(ϕ). In the qualitative setting, the bound ≺ p is
either > 0, or = 1.

Proposition 1. For ϕ ∈ pLTL, the problem if V>0(ϕ) = ∅ is undecidable.

Proof. The proof is based on [5, Th. 4.1], see the archived version for
details. 	

It follows that deciding whether V=1(ϕ) = ∅ is undecidable, as V>0(ϕ) = ∅ iff
V=1(¬ϕ) �= ∅. As a combination of ♦�x and ��x modalities can encode U=x,
e.g.,

¬a ∧© (¬aU=x a) ≡ © (¬aU�x a) ∧ (¬aU>x a),

we will restrict ourselves to fragments of pLTL where each formula is in negative
normal form and the only parametrized operator is ♦�x ϕ. We refer to this
fragment as pLTL♦:

ϕ ::= a | ¬a | ϕ∧ϕ | ϕ∨ϕ | ©ϕ | ϕUϕ | ϕRϕ | �ϕ | ♦�x ϕ | ♦�c ϕ | ��c ϕ. (2)

We show it is a sub-logic of pLTL for which the emptiness problem for V>0(ϕ)
is decidable. The logic has a favourable monotonicity property, i.e.,

Remark 1. For every pLTL♦-formula ϕ, infinite word w and valuations v , v ′,
v � v ′ implies (w, v ) |= ϕ =⇒ (w, v ′) |= ϕ.

Here (w, v ) |= ϕ is s shorthand for (w, 0, v) |= ϕ. We start off with briefly consid-
ering (only) parametric eventualities and then consider the sub-logic pLTL(F,X)
restricted to next and ♦x. Later on, we also consider parametric Büchi formulas,
and finally, pLTL♦.

3 Parametric Reachability

In this section, we consider pLTL-formulas of the form ♦x a for proposition a,
or equivalently, ♦x T for the set of target states T = { s ∈ S | a ∈ L(s) }. We
consider bounds of the form � p with 0 < p < 1. The valuation set of interest
is thus V�p(♦x a). Let μi be the probability of reaching T within i steps; the
sequence {μi} is ascending. There can be two cases: (a) the sequence reaches a
constant value in m steps (m being the size of Markov chain) or (b) the sequence
monotonically increases and converges to μ∞. This makes the emptiness problem
for V�p(♦x a) decidable. In the first case, we check μm � p. In the second case,
emptiness is decidable in time polynomial in m, by determining μ∞ = Pr(♦a)
which can be done by solving a system of linear equations with at most m
variables. Then, V�p(♦x a) �= ∅ iff p < μ∞.
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Assume in the sequel that T is non-empty. Let minV�p(♦x a) = n0. The
valuation set can thus be represented by n0 (this gives a minimal representation
of the set). Membership queries, i.e., does n ∈ V�p(♦x a), then simply boil down
to checking whether n0 � n, which can be done in constant time (modulo the
size of n0). The only catch is that n0 can be very large if p is close to μ∞. A
simple example elucidates this fact.

Example 1. Consider the MC M with S = { s0, t }, L(t) = { a }, L(s0) = ∅,
P(s0, s0) = 1

2 = P(s0, t) and P(t, t) = 1. Then Pr(M |= ♦n a) = 1 −
(
1
2

)n
. It

follows that min V�p(♦x a) goes to infinity when p approaches one.

The following bound on n0 can nonetheless be provided. This bound allows for
obtaining the minimum value n0 by a binary search.

Proposition 2. For MC M , minV�p(♦xa) � logγ(1−(1−γ)pb ), where 0 < γ <
1 and b > 0.

Proof. Collapse all a-states into a single state t and make it absorbing (i.e.,
replace all outgoing transitions by a self-loop with probability one). Let t be the
only bottom strongly connected component (BSCC) of M (other BSCCs can be
safely ignored). Let {1, . . . ,m} be the states of the modified MC M , with the
initial state s0 and the target state t represented by 1 and m, respectively. Let
Q be the (m−1) × (m−1) transition matrix of the modified MC without the
state t. That is, Q(i, j) = P(i, j) iff j �= m where P is the transition probability
matrix of M . We have the following observation:

1. Let the coefficient of ergodicity τ(Q) of Q defined as

τ(Q) = 1−min
i,j

(∑
k

min{Q(i, k),Q(j, k)}
)
.

As Q is sub-stochastic and no row of Q is zero, it follows 0 < τ(Q) < 1.
2. Let vector rT = (r1, . . . , rm−1) with ri = P(i,m), rmax be the maximum

element in r and iT be (1, 0, . . . , 0). The probability of reaching the state m
from the state 1 in at most n+1 steps is the probability of being in some
state i < m within n steps and taking the next transition to m:

μn+1 =

n+1∑
j=0

iTQjr �
n+1∑
j=0

τ(Q)jrmax.

Let τ(Q) = γ and rmax = b. The integer n0 is the smallest integer such that

μn0 � p, which implies that b·1−γn0

1−γ � p. This yields n0 � logγ(1− (1− γ)pb ). 	

As in the non-parametric setting, it follows that (for finite MCs) the valuation
sets V>0(♦x a) and V=1(♦x a) can be determined by a graph analysis, i.e. no
inspection of the transition probabilities is necessary for qualitative parametric
reachability properties.

Proposition 3. The problem V>0(♦x a) = ∅ is NL-complete.
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Proof. The problem is the same as reachability in directed graphs. 	

Proposition 4. The sets V>0(♦x a) and V=1(♦x a) can be determined in poly-
nomial time by a graph analysis of MC M .

Proof. Collapse all the a-states into a target state t and make t absorbing. If
V>0(♦x a) is non-empty, it suffices to determine minV>0(♦x a) which equals the
length of a shortest path from s0 to t. To determine whether V=1(♦x a) is empty
or not, we proceed as follows. If a cycle without t is reachable from s0, then no
finite n exists for which the probability of reaching t within n steps equals one.
Thus, V=1(♦x a) = ∅. If this is not the case, then the graph of M is a DAG
(apart from the self-loop at t), and min V=1(♦x a) equals the length of a longest
path from s0 to t. 	

4 The Fragment pLTL(F,X)

This section considers the fragment pLTL(F,X) which is defined by:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | © ϕ | ♦ϕ | ♦�x ϕ | ♦�c ϕ

Our first result is a necessary and sufficient condition for the emptiness of V>0(ϕ).

Theorem 1. For ϕ ∈ pLTL(F,X) and MCM withm states, V>0(ϕ) �= ∅ iff v̄ ∈
V>0(ϕ) with v̄(x) = m·|ϕ|.

Proof. Let ϕ be a pLTL(F,X)-formula and assume V>0(ϕ) �= ∅. By monotonicity,
it suffices to prove that v ∈ V>0(ϕ) with v �� v̄ implies v̄ ∈ V>0(ϕ). The proof
proceeds in a number of steps. (1) We show that it suffices to consider formulas
without disjunction. (2) We show that if path fragment π[0..l] |= ϕ̄, (where
LTL(F,X)-formula ϕ̄ is obtained from ϕ by omitting all parameters from ϕ)
then π[0..l] |= v l(ϕ) with v l(x) = l for every x. (3) We construct a deterministic
Büchi automaton (DBA) Aϕ̄ for ϕ̄ such that its initial and final state are at
most |ϕ̄| transitions apart. (4) We show that reachability of a final state in the
product of MC M and DBA Aϕ̄ implies the existence of a finite path in M of
length at most m·|ϕ| satisfying ϕ̄.

1. As disjunction distributes over ∧,©©©,♦, and ♦x, each formula can be written
in disjunctive normal form. Let ϕ ≡ ϕ1∨. . .∨ϕk, where each ϕi is disjunction-
free. Evidently, |ϕi| � |ϕ|. Assume v ∈ V>0(ϕ). Then, v ∈ V>0(ϕi) for some
0 < i � k. Assuming the theorem holds for ϕi (this will be proven below),
v̄ i ∈ V>0(ϕi) with v̄ i(x) = |ϕi|·m. Since v̄ � v̄ i, it follows by monotonicity
that v̄ ∈ V>0(ϕi), and hence, v̄ ∈ V>0(ϕ). It thus suffices in the remainder
of the proof to consider disjunction-free formulas.

2. For pLTL(F,X)-formula ϕ, let ϕ̄ be the LTL(F,X)-formula obtained from
ϕ by replacing all occurrences of ♦x by ♦, e.g., for ϕ = ♦x(a ∧ ♦yb), ϕ̄ =
♦(a ∧♦b). We claim that π[0...l] |= ϕ̄ implies π[0...l] |= v l(ϕ) with v l(x) = l
for all x. This is proven by induction on the structure of ϕ. The base cases
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a and ¬a are obvious. For the induction step, conjunctions,©ϕ and ♦ϕ are
straightforward. It remains to consider ♦x ϕ. Assume π[0...l] |= ♦ ϕ̄. Thus,
for some i � l, π[i...l] |= ϕ̄. By induction hypothesis, π[i...] |= v il(ϕ) with
v il(y) = l−i for each variable y in ϕ. Thus, π[0..l] |= v l(♦x ϕ) with v l(x) = l
and for all y in ϕ, v l(y) = l.

3. We provide a DBA Aϕ̄ = 〈Q,Σ, δ, q0, F 〉 with Σ = 2AP for each LTL(F,X)-
formula ϕ̄ using the construction from [15]. We first treat ϕ̄ = a and ϕ̄ = ♦a.
As every LTL(F,X)-formula can be obtained from ♦(a∧ϕ), ϕ1∧ϕ2 and©ϕ,
we then treat these inductive cases. (Negations are treated similarly.) For
ϕ̄ = a, Aa = 〈{ q0, q1 }, Σ, δ, q0, { q1 }〉 with δ(q0, a) = q1 and δ(q1, true) = q1.
For ϕ̄ = ♦a , the DBA A♦a = 〈{ q0, q1 }, Σ, δ, q0, { q1 }〉, where δ(q0, a) = q1,
δ(q0,¬a) = q0 and δ(q1, true) = q1. This completes the base cases. For the
three inductive cases, the DBA is constructed as follows.

(a) Let Aϕ̄ = 〈Q,Σ, δ, q0, F 〉. A♦(a∧ϕ̄) = 〈Q ∪ { q′0 }, Σ, δ′, q′0, F 〉 where q′0 is
fresh, δ′(q, ·) = δ(q, ·) if q ∈ Q, δ′(q′0, a) = δ(q0, a), and δ

′(q′0,¬a) = q′0.
(b) For ϕ̄1 ∧ ϕ̄2, the DBA is a standard synchronous product of the DBA

for ϕ̄1 and ϕ̄2.
(c) Let Aϕ̄ = 〈Q,Σ, δ, q0, F 〉. A©ϕ̄ = 〈Q ∪ { q′0 }, Σ, δ′, q′0, F 〉 where q′0 is

fresh, δ′(q′0, a) = q0 for all a ∈ Σ and δ′(q, a) = δ(q, a) for every q ∈ Q.
A few remarks are in order. The resulting DBA have a single final state.
In addition, the DBA enjoy the property that the reflexive and transitive
closure of the transition relation is a partial order [15]. Formally, q , q′ iff
q′ ∈ δ∗(q, w) for some w ∈ Σω. The diameter of Aϕ̄ is the length of a longest
simple path from the initial to the final state. This implies that the diameter
of A♦(a∧ϕ̄) and A©ϕ̄ is n+1 where n is this diameter of Aϕ̄, and the diameter
of Aϕ̄1∧ϕ̄2 is n1 + n2 where ni is the diameter of Aϕ̄i , i ∈ { 1, 2 }.

4. Let ϕ ≡ ϕ1 ∨ . . . ∨ ϕk, where each ϕi is disjunction-free, with DBA Aϕ̄i .
Evidently, V>0(ϕ) �= ∅ iff V>0(ϕi) �= ∅ for some disjunct ϕi. Consider the
product of MC M and DBA Aϕ̄i , denoted M ⊗ Aϕ̄i ; see, e.g., [16, Def.
10.50]. By construction, M ⊗ Aϕ̄i is partially ordered and has diameter at
most m·|ϕi|. We have that Pr(M |= ϕ̄i) > 0 iff an accepting state in M ⊗
Aϕ̄i is reachable. Thus, there exists a finite path π[0..m·|ϕi|] in M with
π[0..m·|ϕi|] |= ϕ̄, or, π[0..m·|ϕ|] |= v̄ (ϕ). This concludes the proof.

M ⊗ Aϕ̄i can also be used to show that, if we have a valuation v such that
v(x) > m·|ϕ| and for all other variables y �= x, v (x) � m·|ϕ| and v ∈ V>0(ϕ)
then v ′ ∈ V>0(ϕ), where v ′(x) = m·|ϕ| and for y �= x, v ′(y) = v(y). The
argument proceeds as induction on ϕ̄i. 	

The above Theorem 1 leads to the following proposition.

Proposition 5. For ϕ ∈ pLTL(F,X), deciding if V>0(ϕ) = ∅ is NP-complete.

For almost sure properties, a similar approach as for V>0(ϕ) suffices.

Theorem 2.For ϕ ∈ pLTL(F,X) and MC M with m states, V=1(ϕ) �= ∅ iff v̄ ∈
V=1(ϕ̄) with v̄(x) = m·|ϕ|.
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Proof. Consider the direction from left to right. The argument goes along similar
lines as the proof of Theorem 1. We build the DBA Aϕ̄ for ϕ̄ and take the cross
product with Markov chain M . There are m·|ϕ| state in the cross product. If
Pr(M |= v̄ (ϕ)) < 1 then there is some cycle in the cross product that does not
contain the final state. Thus, V=1(ϕ) is empty. 	

Theorem 1 suggests that minV>0(ϕ) lies in the hyper-cube H = { 0, . . . , N }d,
where N = m·|ϕ|. A possible way to find minV>0(ϕ) is to apply the bisection
method in d-dimensions. We recursively choose a middle point of the cube, say
v ∈ H —in the first iteration v (x) = N/2— and divide H in 2d equally sized
hypercubes. If v ∈ V>0(ϕ), then the hypercube whose points exceed v is dis-
carded, else the cube whose points are below v is discarded. The asymptotic
time-complexity of this procedure is given by the recurrence relation:

T (k) = (2d − 1) · T (k·2−d) + F (3)

where k is the number of points in the hypercube and F is the complexity of
checking v ∈ V>0(ϕ) where |v | � N . Section 6 presents an algorithm working
in O(m·Nd·2|ϕ|) for a somewhat more expressive logic. From (3), this yields a
complexity of O(m·Nd·2|ϕ|· logN). The size of a set of minimal points can be
exponential in the number of variables, as shown below.

Proposition 6. |minV>0(ϕ)| � (N ·d)d−1.

r b

r b

r b

r b g

x1 x2 x3

5 10 14
5 9 15
5 8 16
5 7 17

4 11 15
4 10 16
4 9 17
4 8 18

x1 x2 x3

3 10 16
3 11 17
3 10 18
3 9 19

2 13 17
2 12 18
2 11 19
2 10 20

Fig. 1. MC and minV>0(ϕ) for pLTL(F,X)-formula ϕ = ♦x1 r ∧ ♦x2 b ∧ ♦x3 g

Example 2. There exist MCs for which |minV>0(ϕ)| grows exponentially in d,
the number of parameters in ϕ, whereas the numberm of states in the MC grows
linearly in d. For instance, consider the MC M in Fig. 1 and ϕ = ♦x1 r ∧♦x2 b∧
♦x3 g, i.e., d=3. We have |minV>0(ϕ)| = 42 as indicated in the table.

We conclude this section by briefly considering the membership query: does
v ∈ V>0(ϕ) for pLTL(F,X)-formula ϕ with d parameters? Checking membership
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of a valuation v ∈ V>0(ϕ) boils down to deciding whether there exists a v ′ ∈
minV>0(ϕ) such that v � v ′. A representation of minV>0(ϕ) facilitating an
efficient membership test can be obtained by putting all elements in this set in
lexicographical order. This involves sorting over all d coordinates. A membership
query then amounts to a recursive binary search over d dimensions. This yields:

Proposition 7. For pLTL(F,X)-formula ϕ, v ∈ V>0(ϕ)? takes O(d· logN ·d)
time, provided a representation of minV>0(ϕ) is given.

5 Qualitative Parametric Büchi

In this section, we consider pLTL-formulas of the form ϕ = �♦x a, for proposi-
tion a. We are interested in V>0(ϕ), i.e., does the set of infinite paths visiting
a-states that are maximally x apart infinitely often, have a positive measure? Let
MC M = (S,P, s0, L). A bottom strongly-connected component (BSCC) B ⊆ S
of M is a set of mutually reachable states with no edge leaving B. For BSCC B,
let na,B = max{ |π| | ∀i � |π|, π[i] ∈ B ∧ a /∈ L(π[i]) }.
Proposition 8. Let B be a BSCC and s ∈ B. Then, ∀n ∈ N, n > na,B ⇔
Pr(s |= �♦n a) = 1 and n � na,B ⇔ Pr(s |= �♦n a) = 0.

Proof. If n > na,B, then each path π from any state s ∈ B will have at least one
a-state in finite path fragment π[i, . . . , i+n] for all i. Hence, Pr(s |= �♦n a) = 1.
If n � na,B, then there exists a finite path fragment ρ of B, such that, for
all i � n, a /∈ L(ρ[i]). Consider an infinite path π starting from any arbitrary
s ∈ B. As s ∈ B, π will almost surely infinitely often visit the initial state of ρ.
Therefore, by [16, Th.10.25], π will almost surely visit every finite path fragment
starting in that state, in particular ρ. Path π thus almost surely refutes �♦n a,
i.e. Pr(s |= �♦n a) = 0. 	
For any BSCC B and �♦x a, na,B < ∞ iff every cycle in B has at least one
a-state. Hence, na,B can be obtained by analysing the digraph of B (in O(m2),
the number of edges). BSCC B is called accepting for �♦x a if na,B < ∞ and
B is reachable from the initial state s0. Note that this may differ from being an
accepting BSCC for �♦a. Evidently, V>0(���♦x a) �= ∅ iff na,B <∞. This result
can be extended to generalized Büchi formula ϕ = �♦x1 a1 ∧ . . . ∧ �♦xd

ad, by
checking nai,B <∞ for each ai.

As a next problem, we determine minV>0(�♦x a). For the sake of simplicity,
let MS M have a single accepting BSCC B. For states s and t in MC M , let
d(s, t) be the distance from s to t in the graph ofM . (Recall, the distance between
state s and t is the length of the shortest path from s to t.) For BSCC B, let
da,B(s) = mint∈B,a∈L(t) d(s, t), i.e., the minimal distance from s to an a-state in
B. Let the proposition aB hold in state s iff s ∈ B and a ∈ L(s). Let Ga = (V,E)
be the digraph defined as follows: V contains all a-states of M and the initial
state s0 and (s, s′) ∈ E iff there is path from s to s′ inM . Let c be a cost function
defined on a finite path s0 . . . sn in graph Ga as: c(s0 . . . sn) = maxi d(si, si+1),
(d is defined on the graph of M). Using these auxiliary notions we obtain the
following characterization for min V>0(�♦x a):
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Theorem 3. minV>0(�♦x a)=n0 where n0=max

(
na,B, min

π=s0...sn,sn|=aB

c(π)

)
if na,B < da,B(s0) and n0 = na,B otherwise.

Proof. We show for n � n0, Pr(�♦n a) > 0, and for n < n0, Pr(�♦n a) = 0.
Distinguish:

1. na,B � da,B(s0). Then, from s0 an a-state in B can be reached within na,B
steps, i.e., Pr(s0 |= ♦na,B aB) > 0. For this aB-state, s, say, by Proposition 8
it follows Pr(s |= �♦na,B a) = 1. Together this yields Pr(s0 |= �♦n a) > 0
for each n � na,B = n0. For n < n0 = na,B, it follows by Proposition 8 that
Pr(s |= �♦n a) = 0 for every aB-state s. Thus, Pr(s0 |= �♦n a) = 0.

2. na,B < da,B(s0). As B is accepting, da,B(s0) �= ∞. Consider a simple path
π from s0 to an a-state in B. Let c(π) be the maximal distance between two
consecutive a-states along this path. Then it follows Pr(s0 |= �♦k a) > 0
where k = max(c(π), na,B). By taking the minimum cmin over all simple
paths between s0 and B, it follows Pr(s0 |= �♦n a) > 0 for each n �
n0 = max(na,B, cmin) with cmin = minπ∈Paths(s0,♦aB) c(π). For n < n0,
distinguish between n0 = na,B and n0 = cmin. In the former case, it follows
(as in the first case) by Proposition 8 that Pr(s0 |= �♦n a) = 0 for all
n � n0. Consider now n0 = cmin � na,B. Let n < n0. By contra-position.
Assume Pr(s0 |= �♦n a) > 0. Let π = s0 . . . s1,a . . . s2,a . . . . . . sk,a be a finite
path fragment in M where si,a |= a and sk,a is the first a-state along π
which belongs to B. Then, by definition of the digraph Ga, the sequence
π = s0s1,as2,a . . . sk,a is a path in Ga satisfying c(si,a, si+1,a) � n for all
0 � k < n. But then cmin � n. Contradiction. 	

If MC M has more than one accepting BSCC, say {B1, . . . , Bk } with k > 1,
then n0 = mini n0,Bi , where n0,Bi for 0 < i � k is obtained as in Theorem 3.

Proposition 9. The sets V>0(�♦x a) and V=1(�♦x a) can be determined in
polynomial time by a graph analysis of MC M .

Determining min V�p(�♦x a) for arbitrary p reduces to reachability of accepting
BSCCs. In a similar way as for parametric reachability (cf. Section 3), this can
be done searching. For generalized Büchi formula ϕ = �♦xi ai ∧ . . . ∧ �♦xd

ad
and BSCC B, naiB is at most m. Thus, min V>0(ϕ) ∈ { 0, . . . ,m·d }d and can be
found by the bisection method, similar to the procedure described in Section 4.

6 The Fragment pLTL♦

This section is concerned with the logical fragment pLTL♦, as defined in (2):

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | © ϕ | ϕUϕ | ϕRϕ | �ϕ | ♦�x ϕ.
1

We will focus on the emptiness problem: is V>0(ϕ) = ∅. The decision problem
whether V=1(ϕ) is very similar. Similar as for pLTL(F,X), we obtain necessary
and sufficient criteria for both cases. The proofs for these criteria depend on an
algorithm that checks whether v ∈ V>0(ϕ). This algorithm is presented first.

1 The modalities ♦�c and ��c can be removed with only quadratic blow up.
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Automata constructions. Let ϕ be a pLTL♦-formula, and v a variable valuation.
W.l.o.g. we assume that each variable occurs once in ϕ. We will extend the
classical automaton-based approach for LTL by constructing a nondeterministic
Büchi automaton for ϕ that is amenable to treat the variables occurring in ϕ.
To that end, inspired by [17], we proceed in a number of steps:

1. Construct an automaton Gϕ for ϕ, independent from the valuation v , with
two types of acceptance sets, one for treating until and release-modalities
(as standard for LTL [18]), and one for treating the parameter constraints.

2. Establish how for a given valuation v , a Büchi automaton Bϕ(v) can be
obtained from Gϕ such that for infinite word w, (w, v ) ∈ L(ϕ) iff w is an
accepting run of Bϕ(v).

3. Exploit the technique advocated by Couvreur et al. [3] to verify MC M
versus Bϕ(v ).

We start with constructing Gϕ. Like for the LTL-approach, the first step is to
consider consistent sets of sub-formulas of ϕ. Let cl(ϕ) be the set of all sub-
formulas of ϕ. Set H ⊆ cl(ϕ) is consistent, when:

– a ∈ H iff ¬a �∈ H ,
– ϕ1∧ϕ2 ∈ H iff ϕ1 ∈ H and ϕ2 ∈ H ,
– ϕ1 ∨ ϕ2 ∈ H iff ϕ1 ∈ H or ϕ2 ∈ H ,

– ϕ2 ∈ H implies ϕ1 Uϕ2 ∈ H ,
– ϕ1, ϕ2 ∈ H implies ϕ1 Rϕ2 ∈ H ,
– ϕ1 ∈ H implies ♦x ϕ1 ∈ H .

We are now in a position to define Gϕ, an automaton with two acceptance sets.
For ϕ ∈ pLTL♦, let Gϕ = (Q, 2AP , Q0, δ,AccB,AccP ) where

– Q is the set of all consistent sub-sets of cl(ϕ) and Q0 = {H ∈ Q | ϕ ∈ H }.
– (H, a,H ′) ∈ δ, where a ∈ 2AP whenever:

• H ∩ AP = { a },
• ©ϕ1 ∈ H ⇐⇒ ϕ1 ∈ H ′,
• ϕ1 Uϕ2 ∈ H ⇐⇒ ϕ2 ∈ H or (ϕ1 ∈ H and ϕ1 Uϕ2 ∈ H ′),
• ϕ1 Rϕ2 ∈ H ⇐⇒ ϕ2 ∈ H and (ϕ1 ∈ H or ϕ1 Rϕ2 ∈ H ′),
• ♦x ϕ1 ∈ H ⇐⇒ ϕ1 ∈ H or ♦x ϕ1 ∈ H ′,

– (generalized) Büchi acceptance AccB and parametric acceptance AccP :

• AccB = {Fϕ′ | ϕ′ ∈ cl(ϕ) ∧ (ϕ′ = ϕ1 Uϕ2 ∨ ϕ′ = ϕ1 Rϕ2) } where
∗ Fϕ′ = {H | ϕ′ ∈ H ⇒ ϕ2 ∈ H } if ϕ′ = ϕ1 Uϕ2, and
∗ Fϕ′ = {H | ϕ2 ∈ H ⇒ ϕ′ ∈ H } if ϕ′ = ϕ1 Rϕ2,

• AccP = {Fxi |♦xi ϕi ∈ cl(ϕ) } with Fxi = {H |♦xi ϕi ∈ H ⇒ ϕi ∈ H }.

A run ρ ∈ Qω of Gϕ is accepting under valuation v if it visits each set in
AccB infinitely often and each Fxi ∈ AccP in every infix of length v (xi). L(Gϕ)
contains all pairs (w, v ) such that there is an accepting run of w under the

valuation v . Gϕ is unambiguous if q
a−→ q′ and q a−→ q′′ implies L(q′)∩ L(q′′) = ∅,

where L(q) is the language starting from the state q.

Proposition 10 ([17]). For ϕ ∈ pLTL♦, the automaton Gϕ is unambiguous
and L(Gϕ) = L(ϕ).
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The automaton Gϕ can be constructed in O(2|ϕ|). Apart from the parametric
acceptance condition, Gϕ behaves as a generalized Büchi automaton (GNBA)
with accepting set AccB = {F1, . . . , Fk }. In order to obtain a non-deterministic
automaton, we first apply a similar transformation as for GNBA to NBA [16].
We convertGϕ to Uϕ = (Q′, 2AP, Q′

0, δ
′,Acc′B,Acc

′
P ) whereQ

′ = Q×{ 1, . . . , k },
Q′

0 = Q0×{ 1 }. If (q, a, q′) ∈ δ, then ((q, i), a, (q′, i′)) ∈ δ′ with i=i′ if q �∈ Fi else
i′ = (i mod k)+1. AccB = F1 × { 1 } and Acc′P = {F ′

xi
| Fxi ∈ AccP }, where

F ′
xi

= Fxi × { 1, . . . , k }. Note that the construction preserves unambiguity and

the size of Uϕ is in O(|ϕ|·2|ϕ|).
For a given valuation v , Uϕ can be converted into an NBA Bϕ(v ). This is

done as follows. Let Uϕ = (Q′, 2AP , Q′
0, δ

′,Acc′B ,Acc
′
P ) and v a valuation of ϕ

with d parameters. Then Bϕ(v ) = (Q′′, 2AP , Q′′
0 , δ

′′,Acc) with:

– Q′′ ⊆ Q′ × {0, . . . , v(x1)} × . . .× {0, . . . , v (xd)},
– ((q,n), a, (q′,n′)) ∈ δ′′ if (q, a, q′) ∈ δ′ and for all xi:

• if q′ ∈ F ′
xi

and n(xi) < v(xi) then n′(xi) = 0,

• if q′ /∈ F ′
xi

and n(xi) < v(xi) then n′(xi) = n(xi) + 1.

– Q′′
0 = Q′

0 × 0d and Acc = Acc′B × {0, . . . , v (x1)} × . . .× {0, . . . , v(xd)}.

It follows that Bϕ(v ) is unambiguous for any valuation v . Furthermore, every
run of Bϕ(v) is either finite or satisfies the parametric acceptance condition for
valuation v . Thus we have:

Proposition 11. An infinite word w ∈ L(Bϕ(v)) if and only if (w, v) ∈ L(ϕ).

The size of Bϕ(v ) is in O(cv ·|ϕ|·2|ϕ|) where cv =
∏

xi
(v (xi) + 1).

As a next step, we exploit the fact that Bϕ(v ) is unambiguous, and apply
the technique by Couvreur et al. [3] for verifying MC M against Bϕ(v). Let
M ⊗Bϕ(v ) be the synchronous product ofM and Bϕ(v ) [16], Π1 the projection
to M and Π2 the projection to Bϕ(v). Let L(s, q) = { π ∈ Paths(s) | trace(π) ∈
L(q) } and Pr(s, q) = Pr(L(s, q)). Let Pr(M ⊗ Bϕ(v )) =

∑
q0∈Q0

Pr(s0, q0). As
Bϕ(v) is unambiguous, we have for any (s, q):

Pr(s, q) =
∑

(t,q′)∈δ(s,q)

P(s, t) · Pr(t, q′),

where δ is the transition relation of M ⊗ Bϕ(v) and P(s, t) is the one-step
transition probability from s to t in MC M . A (maximal) strongly connected
component (SCC, for short) C ⊆ S is complete if for any s ∈ Π1(C) :

Paths(s) =
⋃

(s,q)∈C

LC(s, q)

where LC(s, q) restricts runs to C (runs only visits states from C). The SCC
C is accepting if Acc ∩Π2(C) �= ∅ (where Acc is the set of accepting states in
Bϕ(v)).
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Proposition 12 ([3]). Let C be a complete and accepting SCC in M ⊗Bϕ(v).
Then for all s ∈ Π1(C):

Pr

( ⋃
(s,q)∈C

LC(s, q)
)

= 1.

Moreover, since Bϕ(v) is unambiguous, Pr(M ⊗Bϕ(v)) > 0 implies there exists
a reachable, complete and accepting SCC.

Finding complete and accepting SCC in M ⊗ Bϕ(v ) is done by standard
graph analysis. Altogether, v ∈ V>0(ϕ) is decided in O(m·cv ·|ϕ|·2|ϕ|). The space
complexity is polynomial in the size of the input (including the valuation), as
M⊗Bϕ(v ) can be stored in O(logm+ |ϕ|+log cv ) bits. In the sequel, we exploit
these results to obtain a necessary and sufficient criterion for the emptiness of
V>0(ϕ) for ϕ in pLTL♦.

Theorem 4.For ϕ ∈ pLTL♦, V>0(ϕ) �= ∅ iff v̄ ∈ V>0(ϕ) s.t. v̄(x) = m·|ϕ|·2|ϕ|.

Proof. Consider the direction from left to right. The only non-trivial case is
when there exists a valuation v �� v̄ such that v ∈ V>0(ϕ) implies v̄ ∈ V>0(ϕ).
In the model checking algorithm described above, we first construct Gϕ, and
then Uϕ with a single Büchi accepting set Acc′B and d parametric accepting
sets F ′

xi
, one for each variable xi in ϕ. For the sake of clarity, assume d = 1,

i.e., we consider valuation v. The explanation extends to the general case in a
straightforward manner. For valuation v, consider M ⊗ Bϕ(v). We show that,
for r < v, Pr(M ⊗ Bϕ(v)) > 0 implies Pr(M ⊗ Bϕ(r)) > 0, where r = m·|Uϕ|,
which is in O(m·|ϕ|·2|ϕ|).

Note that every cycle in M ⊗ Bϕ(r) contains a state (s, q, i) with i = 0.
Moreover, the graph of M ⊗Bϕ(r) is a sub-graph of M ⊗Bϕ(v). We now prove
that, if a (maximal) SCC C of M ⊗ Bϕ(r) is not complete (or accepting) then
any SCC C′ of M ⊗ Bϕ(v) containing C is also not complete (or accepting,
respectively).

(a) Suppose C is not complete. Then there exists a finite path σ = s s1 . . . sk of
M , such that from any q, with (s, q, 0) ∈ C, the run ρ = (s, q, 0)(s1, q1, 1) . . . (sj ,
qj , j) leads to a deadlock state. This can have two causes: either (sj , qj , j) has
no successor for any j. Then, C′ is not complete. Or, the path ρ terminates
in (sj , qj , j) where j = r. This means, for all (s′, q′, j+1) ∈ δ(sj , qj , j) in C′,
q′ �∈ Fx. As the length of ρ exceeds r, there are states in the run whose first
and second component appear multiple times. Thus, we can find another path
σ′ (possibly longer than σ) for C′ which goes through states where the first and
the second component of some of its states are repeated sufficiently many times
to have a run (s, q, 0)(s1, q1, 1) . . . (sj , qj , v) which is a deadlock state. Thus, C′

is not complete.
(b) Suppose C′ is accepting. Then there exists (s′, q′, i′) with q′ ∈ Acc. Since

C′ is an SCC and C ⊆ C′, there is a path from (s, q, 0) ∈ C to (s′, q′, i′). If the
length of the path is less than r, then we are done. If i′ > r, then some (s′′, q′′)
pair in the path must be repeated. Thus, we can find another path of length less
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than r to a state (s′, q′, i), where i � r. Therefore, C is accepting. The rest of
the proof follows from Proposition 12. 	

For almost sure properties, a similar approach as for V>0(ϕ) suffices.

Theorem 5.For ϕ ∈ pLTL♦, V=1(ϕ) �= ∅ iff v̄ ∈ V=1(ϕ̄) with v̄(x) = m·|ϕ|·2|ϕ|.

Let NϕM = m·|ϕ|·2|ϕ|. Note that cv̄ equals (NϕM )d. Thus, we have:

Proposition 13. For ϕ ∈ pLTL♦, deciding if V>0(ϕ) = ∅ is PSPACE-complete.

Proof. Theorem 4 gives an algorithm in PSPACE, as M ⊗Bϕ(v̄ ) can be stored
in O(logm + |ϕ| + d logNϕM ) bits. PSPACE hardness follows trivially, as for
LTL formula ϕ and MC M , deciding Pr(M |= ϕ) > 0 (which is known to be a
PSPACE complete problem) is the same as checking the emptiness of V>0(ϕ). 	

Just as for pLTL(F,X), we can use the bisection method to find minV>0(ϕ).
The search procedure invokes the model checking algorithm multiple times. We
can reuse the space each time we check Pr(M |= v (ϕ)) > 0. Hence, minV>0(ϕ)
can be found in polynomial space. The time complexity of finding min V>0(ϕ) is
O(m·(NϕM )d·2|ϕ|· logNϕM ). Membership can also be similarly solved.

Proposition 14. For pLTL♦-formula ϕ, v ∈ V>0(ϕ)? takes O(d· log NϕM

d ) time,
provided a representation of V>0(ϕ) is given.

7 Concluding Remarks

This paper considered the verification of finite MCs against parametric LTL.
We obtained several results on the emptiness problem for qualitative verification
problems, including necessary and sufficient conditions as well as some complex-
ity results. Future work consists of devising more efficient algorithms for the
quantitative verification problems, and lifting the results to extended temporal
logics [19] and stochastic games, possibly exploiting [17].

Acknowledgement. This work was partially supported by the EU FP7 projects
MoVeS and Sensation, the EU Marie Curie project MEALS and the Excellence
initiative of the German federal government.
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Abstract. The interplay between process behaviour and spatial aspects
of computation has become more and more relevant in Computer Sci-
ence, especially in the field of collective adaptive systems, but also, more
generally, when dealing with systems distributed in physical space. Tra-
ditional verification techniques are well suited to analyse the temporal
evolution of programs; properties of space are typically not explicitly
taken into account. We propose a methodology to verify properties de-
pending upon physical space. We define an appropriate logic, stemming
from the tradition of topological interpretations of modal logics, dating
back to earlier logicians such as Tarski, where modalities describe neigh-
bourhood. We lift the topological definitions to a more general setting,
also encompassing discrete, graph-based structures. We further extend
the framework with a spatial until operator, and define an efficient model
checking procedure, implemented in a proof-of-concept tool.

1 Introduction

Much attention has been devoted in Computer Science to formal verification of
process behaviour. Several techniques, such as run-time monitoring and model-
checking, are based on a formal understanding of system requirements through
modal logics. Such logics typically have a temporal flavour, describing the flow of
events along time, and are interpreted in various kinds of transition structures.

Recently, aspects of computation related to the distribution of systems in
physical space have become more relevant. An example is provided by so called
collective adaptive systems1, typically composed of a large number of interact-
ing objects. Their global behaviour critically depends on interactions which are
often local in nature. Locality immediately poses issues of spatial distribution of
objects. Abstraction from spatial distribution may sometimes provide insights
in the system behaviour, but this is not always the case. For example, consider a
bike (or car) sharing system having several parking stations, and featuring twice
as many parking slots as there are vehicles in the system. Ignoring the spatial
dimension, on average, the probability to find completely full or empty parking
stations at an arbitrary station is very low; however, this kind of analysis may
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600708), IT MIUR CINA and PAR FAS 2007-2013 Regione Toscana TRACE-IT.
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be misleading, as in practice some stations are much more popular than oth-
ers, often depending on nearby points of interest. This leads to quite different
probabilities to find stations completely full or empty, depending on the spatial
properties of the examined location. In such situations, it is important to be able
to predicate over spatial aspects, and eventually find methods to certify that a
given formal model of space satisfies specific requirements in this respect. In
Logics, there is quite an amount of literature focused on so called spatial logics,
that is, a spatial interpretation of modal logics. Dating back to early logicians
such as Tarski, modalities may be interpreted using the concept of neighbourhood
in a topological space. The field of spatial logics is well developed in terms of de-
scriptive languages and computability/complexity aspects. However, the frontier
of current research does not yet address verification problems, and in particular,
discrete models are still a relatively unexplored field.

In this paper, we extend the topological semantics of modal logics to clo-
sure spaces. As we shall discuss in the paper, this choice is motivated by the
need to use non-idempotent closure operators. A closure space (also called Čech
closure space or preclosure space in the literature), is a generalisation of a stan-
dard topological space, where idempotence of closure is not required. By this,
graphs and topological spaces are treated uniformly, letting the topological and
graph-theoretical notions of neighbourhood coincide. We also provide a spa-
tial interpretation of the until operator, which is fundamental in the classical
temporal setting, arriving at the definition of a logic which is able to describe
unbounded areas of space. Intuitively, the spatial until operator describes a situ-
ation in which it is not possible to “escape” an area of points satisfying a certain
property, unless by passing through at least one point that satisfies another
given formula. To formalise this intuition, we provide a characterising theorem
that relates infinite paths in a closure space and until formulas. We introduce a
model-checking procedure that is linear in the size of the considered space. A
prototype implementation of a spatial model-checker has been made available;
the tool is able to interpret spatial logics on digital images, providing graphical
understanding of the meaning of formulas, and an immediate form of counterex-
ample visualisation.2

Related work. We use the terminology spatial logics in the “topological” sense;
the reader should be warned that in Computer Science literature, spatial logics
typically describe situations in which modal operators are interpreted syntac-
tically, against the structure of agents in a process calculus (see [8,6] for some
classical examples). The object of discussion in this research line are operators
that quantify e.g., over the parallel sub-components of a system, or the hidden
resources of an agent. Furthermore, logics for graphs have been studied in the
context of databases and process calculi (see [7,15], and references), even though
the relationship with physical space is often not made explicit, if considered at
all. The influence of space on agents interaction is also considered in the litera-
ture on process calculi using named locations [11].

2 Due to lack of space all the proofs are omitted and can be found in [10].
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Variants of spatial logics have also been proposed for the symbolic representa-
tion of the contents of images, and, combined with temporal logics, for sequences
of images [12]. The approach is based on a discretisation of the space of the im-
ages in rectangular regions and the orthogonal projection of objects and regions
onto Cartesian coordinate axes such that their possible intersections can be anal-
ysed from different perspectives. It involves two spatial until operators defined
on such projections considering spatial shifts of regions along the positive, re-
spectively negative, direction of the coordinate axes and it is very different from
the topological spatial logic approach.

A successful attempt to bring topology and digital imaging together is repre-
sented by the field of digital topology [22,25]. In spite of its name, this area studies
digital images using models inspired by topological spaces, but neither general-
ising nor specialising these structures. Rather recently, closure spaces have been
proposed as an alternative foundation of digital imaging by various authors,
especially Smyth and Webster [23] and Galton [17]; we continue that research
line, enhancing it with a logical perspective. Kovalevsky [19] studied alternative
axioms for topological spaces in order to recover well-behaved notions of neigh-
bourhood. In the terminology of closure spaces, the outcome is that one may
impose closure operators on top of a topology, that do not coincide with topo-
logical closure. The idea of interpreting the until operator in a topological space
is briefly discussed in the work by Aiello and van Benthem [1,24]. We start from
their definition, discuss its limitations, and provide a more fine-grained operator,
which is interpreted in closure spaces, and has therefore also an interpretation
in topological spaces. In the specific setting of complex and collective adaptive
systems, techniques for efficient approximation have been developed in the form
of mean-field / fluid-flow analysis (see [5] for a tutorial introduction). Recently
(see e.g., [9]), the importance of spatial aspects has been recognised and stud-
ied in this context. In this work, we aim at paving the way for the inclusion of
spatial logics, and their verification procedures, in the framework of mean-field
and fluid-flow analysis of collective adaptive systems.

2 Closure Spaces

In this work, we use closure spaces to define basic concepts of space. Below, we
recall several definitions, most of which are explained in [17].

Definition 1. A closure space is a pair (X, C) where X is a set, and the closure
operator C : 2X → 2X assigns to each subset of X its closure, obeying to the
following laws, for all A,B ⊆ X:

1. C(∅) = ∅;
2. A ⊆ C(A);
3. C(A ∪B) = C(A) ∪ C(B).

As a matter of notation, in the following, for (X, C) a closure space, and A ⊆ X ,
we let A = X \A be the complement of A in X .



Specifying and Verifying Properties of Space 225

Definition 2. Let (X, C) be a closure space, for each A ⊆ X:

1. the interior I(A) of A is the set C(A);
2. A is a neighbourhood of x ∈ X if and only if x ∈ I(A);
3. A is closed if A = C(A) while it is open if A = I(A).

Lemma 1. Let (X, C) be a closure space, the following properties hold:

1. A ⊆ X is open if and only if A is closed;
2. closure and interior are monotone operators over the inclusion order, that

is: A ⊆ B =⇒ C(A) ⊆ C(B) and I(A) ⊆ I(B)
3. Finite intersections and arbitrary unions of open sets are open.

Closure spaces are a generalisation of topological spaces. The axioms defining
a closure space are also part of the definition of a Kuratowski closure space,
which is one of the possible alternative definitions of a topological space. More
precisely, a closure space is Kuratowski, therefore a topological space, whenever
closure is idempotent, that is, C(C(A)) = C(A). We omit the details for space
reasons (see e.g., [17] for more information).

Next, we introduce the topological notion of boundary, which also applies to
closure spaces, and two of its variants, namely the interior and closure boundary
(the latter is sometimes called frontier).

Definition 3. In a closure space (X, C), the boundary of A ⊆ X is defined
as B(A) = C(A) \ I(A). The interior boundary is B−(A) = A \ I(A), and the
closure boundary is B+(A) = C(A) \A.

Proposition 1. The following equations hold in a closure space:

B(A) = B+(A) ∪ B−(A) (1)

B+(A) ∩ B−(A) = ∅ (2)

B(A) = B(A) (3)

B+(A) = B−(A) (4)

B+(A) = B(A) ∩A (5)

B−(A) = B(A) ∩A (6)

B(A) = C(A) ∩ C(A) (7)

3 Quasi-Discrete Closure Spaces

In this section we see how a closure space may be derived starting from a binary
relation, that is, a graph. The following comes from [17].

Definition 4. Consider a set X and a relation R ⊆ X ×X. A closure operator
is obtained from R as CR(A) = A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}.
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Remark 1. One could also change Definition 4 so that CR(A) = A ∪ {x ∈ X |
∃a ∈ A.(x, a) ∈ R}, which actually is the definition of [17]. This does not affect
the theory presented in the paper. Indeed, one obtains the same results by re-
placing R with R−1 in statements of theorems that explicitly use R, and are not
invariant under such change. By our choice, closure represents the “least possible
enlargement” of a set of nodes.

Proposition 2. The pair (X, CR) is a closure space.

Closure operators obtained by Definition 4 are not necessarily idempotent.
Lemma 11 in [17] provides a necessary and sufficient condition, that we rephrase
below. We let R= denote the reflexive closure of R (that is, the least relation
that includes R and is reflexive).

Lemma 2. CR is idempotent if and only if R= is transitive.

Note that, when R is transitive, so is R=, thus CR is idempotent. The vice-
versa is not true, e.g., when (x, y) ∈ R, (y, x) ∈ R, but (x, x) /∈ R.

Remark 2. In topology, open sets play a fundamental role. However, the situa-
tion is different in closure spaces derived from a relation R. For example, in the
case of a closure space derived from a connected symmetric relation, the only
open sets are the whole space, and the empty set.

Proposition 3. Given R ⊆ X ×X, in the space (X, CR), we have:

I(A) = {x ∈ A | ¬∃a ∈ A.(a, x) ∈ R} (8)

B−(A) = {x ∈ A | ∃a ∈ A.(a, x) ∈ R} (9)

B+(A) = {x ∈ A | ∃a ∈ A.(a, x) ∈ R} (10)

We note in passing that [16] provides an alternative definition of boundaries for
closure spaces obtained from Definition 4, and proves that it coincides with the
topological definition (our Definition 3). Closure spaces derived from a relation
can be characterised as quasi-discrete spaces (see also Lemma 9 of [17] and the
subsequent statements).

Definition 5. A closure space is quasi-discrete if and only if one of the follow-
ing equivalent conditions holds: i) each x ∈ X has a minimal neighbourhood3

Nx; ii) for each A ⊆ X, C(A) =
⋃

a∈A C({a}).

Theorem 1. (Theorem 1 in [17]) A closure space (X, C) is quasi-discrete if and
only if there is a relation R ⊆ X ×X such that C = CR.

3 A minimal neighbourhood of x is a set that is a neighbourhood of x (Definition 2 (2))
and is included in all other neighbourhoods of x.
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Y Y R

Y Y R B B

R R B G G B

B G G B

B B

Fig. 1. A graph inducing a quasi-discrete closure space

Example 1. Every graph induces a quasi-discrete closure space. For instance, we
can consider the (undirected) graph depicted in Figure 1. Let R be the (symmet-
ric) binary relation induced by the graph edges, and let Y and G denote the set
of yellow and green nodes, respectively. The closure CR(Y ) consists of all yellow
and red nodes, while the closure CR(G) contains all green and blue nodes. The
interior I(Y ) of Y contains a single node, i.e. the one located at the bottom-left
in Figure 1. On the contrary, the interior I(G) of G is empty. Indeed, we have
that B(G) = C(G), while B−(G) = G and B+(G) consists of the blue nodes.

4 A Spatial Logic for Closure Spaces

In this section we present a spatial logic that can be used to express properties of
closure spaces. The logic features two spatial operators : a “one step” modality,
turning closure into a logical operator, and a binary until operator, which is
interpreted spatially. Before introducing the complete framework, we first discuss
the design of an until operator φUψ.

The spatial logical operator U is interpreted on points of a closure space. The
basic idea is that point x satisfies φUψ whenever it is included in an area A
satisfying φ, and there is “no way out” from A unless passing through an area
B that satisfies ψ. For instance, if we consider the model of Figure 1, yellow
nodes satisfy yellow U red while green nodes satisfy green U blue. To turn this
intuition into a mathematical definition, one should clarify the meaning of the
words area, included, passing, in the context of closure spaces.

In order to formally define our logic, and the until operator in particular, we
first need to introduce the notion of model, providing a context of evaluation
for the satisfaction relation, as in M, x |= φUψ. From now on, fix a (finite or
countable) set P of proposition letters.

Definition 6. A closure model is a pairM = ((X, C),V) consisting of a closure
space (X, C) and a valuation V : P → 2X , assigning to each proposition letter
the set of points where the proposition holds.
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When (X, C) is a topological space (that is, C is idempotent), we call M a
topological model, in line with [24], and [1], where the topological until operator
is presented. We recall it below.

Definition 7. The topological until operator UT is interpreted in a topological
model M as M, x |= φUTψ ⇐⇒ ∃A open .x ∈ A ∧ ∀y ∈ A.M, y |= φ ∧ ∀z ∈
B(A).M, z |= ψ.

The intuition behind this definition is that one seeks for an area A (which,
topologically speaking, could sensibly be an open set) where φ holds, and that
is completely surrounded by points where ψ holds. Unfortunately, Definition 7
cannot be translated directly to closure spaces, even if all the used topological
notions have a counterpart in the more general setting of closure spaces. Open
sets in closure spaces are often too coarse (see Remark 2). For this reason, we
can modify Definition 7 by not requiring A to be an open set. However, the
usage of B in Definition 7 is not satisfactory either. By Proposition 1 we have
B(A) = B+(A) ∪ B−(A), where B−(A) is included in A while B+(A) is in A.
For instance, when B is used in Definition 7, we have that the green nodes in
Figure 1 do not satisfy green UT blue. Indeed, as we remarked in Example 1,
the boundary of the set G of green nodes coincide with the closure of G that
contains both green and blue nodes.

A more satisfactory definition can be obtained by letting B+ play the same
role as B in Definition 7 and not requiring A to be an open set. We shall in fact
require that φ is satisfied by all the points of A, and that in B+(A), ψ holds.
This allows us to ensure that there are no “gaps” between the region satisfying
φ and that satisfying ψ.

4.1 Syntax and Semantics of SLCS

We can now define SLCS: a Spatial Logic for Closure Spaces. The logic features
boolean operators, a “one step” modality, turning closure into a logical operator,
and a spatially interpreted until operator. More precisely, as we shall see, the
SLCS formula φUψ requires φ to hold at least on one point. The operator is
similar to a weak until in temporal logics terminology, as there may be no point
satisfying ψ, if φ holds everywhere.

Definition 8. The syntax of SLCS is defined by the following grammar, where
p ranges over P :

Φ ::= p | � | ¬Φ | Φ ∧ Φ | ♦Φ | ΦUΦ

Here, � denotes true, ¬ is negation, ∧ is conjunction, ♦ is the closure operator,
and U is the until operator. Closure (and interior, see Figure 2) operators come
from the tradition of topological spatial logics [24].
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⊥ 
 ¬� φ ∨ ψ 
 ¬(¬φ ∧ ¬ψ) �φ 
 ¬(♦¬φ)
∂φ 
 (♦φ) ∧ (¬�φ) ∂−φ 
 φ ∧ (¬�φ) ∂+φ 
 (♦φ) ∧ (¬φ)
φRψ 
 ¬((¬ψ)U(¬φ)) Gφ 
 φU⊥ Fφ 
 ¬G(¬φ)

Fig. 2. SLCS derivable operators

Definition 9. Satisfaction M, x |= φ of formula φ at point x in model M =
((X, C),V) is defined, by induction on terms, as follows:

M, x |= p ⇐⇒ x ∈ V(p)
M, x |= � ⇐⇒ true
M, x |= ¬φ ⇐⇒ M, x �|= φ
M, x |= φ ∧ ψ ⇐⇒ M, x |= φ and M, x |= ψ
M, x |= ♦φ ⇐⇒ x ∈ C({y ∈ X|M, y |= φ})
M, x |= φUψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y |= φ∧

∧∀z ∈ B+(A).M, z |= ψ

In Figure 2, we present some derived operators. Besides standard logical con-
nectives, the logic can express the interior (�φ), the boundary (∂φ), the interior
boundary (∂−φ) and the closure boundary (∂+φ) of the set of points satisfying
formula φ. Moreover, by appropriately using the until operator, operators con-
cerning reachability (φRψ), global satisfaction (Gφ) and possible satisfaction
(Fφ) can be derived.

To clarify the expressive power of U and operators derived from it we provide
Theorem 2 and Theorem 3, giving a formal meaning to the idea of “way out” of
φ, and providing an interpretation of U in terms of paths.

Definition 10. A closure-continuous function f : (X1, C1)→ (X2, C2) is a func-
tion f : X1 → X2 such that, for all A ⊆ X1, f(C1(A)) ⊆ C2(f(A)).

Definition 11. Consider a closure space (X, C), and the quasi-discrete space
(N, CSucc), where (n,m) ∈ Succ ⇐⇒ m = n+ 1. A (countable) path in (X, C)
is a closure-continuous function p : (N, CSucc) → (X, C). We call p a path from
x, and write p : x�∞, when p(0) = x. We write y ∈ p whenever there is l ∈ N

such that p(l) = y. We write p : x
A�
y
∞ when p is a path from x, and there is l

with p(l) = y and for all l′ ≤ l.p(l′) ∈ A.

Theorem 2. IfM, x |= φUψ, then for each p : x�∞ and l, ifM, p(l) |= ¬φ,
there is k ∈ {1, . . . , l} such that M, p(k) |= ψ.

Theorem 2 can be strengthened to a necessary and sufficient condition in the
case of models based on quasi-discrete spaces. First, we establish that paths in
a quasi-discrete space are also paths in its underlying graph.

Lemma 3. Given path p in a quasi-discrete space (X, CR), for all i ∈ N with
p(i) �= p(i + 1), we have (p(i), p(i + 1)) ∈ R, i.e., the image of p is a (graph
theoretical, infinite) path in the graph of R. Conversely, each path in the graph
of R uniquely determines a path in the sense of Definition 11.
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Function Sat(M, φ)
Input: Quasi-discrete closure model M = ((X, C),V), SLCS formula φ
Output: Set of points {x ∈ X | M, x |= φ}
Match φ

case � : return X
case p : return V(p)
case ¬ψ :

let P = Sat(M, ψ) in
return X \ P

case ψ ∧ ξ :
let P = Sat(M, ψ) in
let Q = Sat(M, ξ) in
return P ∩Q

case ♦ψ :
let P = Sat(M, ψ) in
return C(P )

case ψ Uξ : return CheckUntil (M,ψ, ξ)

Algorithm 1. Decision procedure for the model checking problem

Theorem 3. In a quasi-discrete closure model M,M, x |= φUψ if and only if
M, x |= φ, and for each path p : x � ∞ and l ∈ N, if M, p(l) |= ¬φ, there is

k ∈ {1, . . . , l} such that M, p(k) |= ψ.

Remark 3. Directly from Theorem 3 and from the definitions in Figure 2 we
have also that in a quasi-discrete closure modelM:

1. M, x |= φRψ iff. there is p : x�∞ and k ∈ N such thatM, p(k) |= ψ and

for each j ∈ {1, . . . , k} M, p(j) |= φ;
2. M, x |= Gφ iff. for each p : x�∞ and i ∈ N,M, p(i) |= φ;

3. M, x |= Fφ iff. there is p : x�∞ and i ∈ N such thatM, p(i) |= φ.

Note that, a point x satisfies φRψ if and only if either ψ is satisfied by x
or there exists a sequence of points after x, all satisfying φ, leading to a point
satisfying both ψ and φ. In the second case, it is not required that x satisfies φ.

5 Model Checking SLCS Formulas

In this section we present a model checking algorithm for SLCS, which is
a variant of standard CTL model checking [3]. Function Sat, presented in
Algorithm 1, takes as input a finite quasi-discrete modelM = ((X, CR),V) and
an SLCS formula φ, and returns the set of all points in X satisfying φ. The
function is inductively defined on the structure of φ and, following a bottom-up
approach, computes the resulting set via an appropriate combination of the re-
cursive invocations of Sat on the sub-formulas of φ. When φ is �, p, ¬ψ or ψ∧ξ,
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Function CheckUntil (M,ψ, ξ)
let V = Sat(M, ψ) in
let Q = Sat(M, ξ) in
var T := B+(V ∪Q)
while T �= ∅ do

T ′ := ∅
for x ∈ T do

N := pre(x)∩ V
V := V \N
T ′ := T ′ ∪ (N \Q)

T := T ′;
return V

Algorithm 2. Checking until formulas in a quasi-discrete closure space

definition of Sat(M, φ) is as expected. To compute the set of points satisfying
♦ψ, the closure operator C of the space is applied to the set of points satisfying
ψ.

When φ is of the form ψ Uξ, function Sat relies on the function CheckUntil

defined in Algorithm 2. This function takes as parameters a modelM and two
SLCS formulas ψ and ξ and computes the set of points inM satisfying ψ Uξ by
removing from V = Sat(M, ψ) all the bad points. A point is bad if there exists
a path passing through it, that leads to a point satisfying ¬ψ without passing
through a point satisfying ξ. Let Q = Sat(M, ξ) be the set of points in M
satisfying ξ. To identify the bad points in V the function CheckUntil performs
a backward search from T = B+(V ∪Q). Note that any path exiting from V ∪Q has
to pass through points in T . Moreover, the latter only contains points that satisfy
neither ψ nor ξ. Until T is empty, function CheckUntil first picks an element x
in T and then removes from V the set of (bad) points N that can reach x in one
step. To compute the set N we use the function pre(x) = {y ∈ X | (y, x) ∈ R}.4
At the end of each iteration the set T is updated by considering the set of new
discovered bad points.

Lemma 4. Let X a finite set and R ⊆ X × X. For any finite quasi-discrete
modelM = ((X, CR),V) and SLCS formula φ with k operators, Sat terminates
in O(k · (|X |+ |R|)) steps.

Theorem 4. For any finite quasi-discrete closure model M = ((X, C),V) and
SLCS formula φ, x ∈ Sat(M, φ) if and only if M, x |= φ.

6 A Model Checker for Spatial Logics

The algorithm described in Section 5 is available as a proof-of-concept tool5.
The tool, implemented using the functional language OCaml, contains a generic

4 Function pre can be pre-computed when the relation R is loaded from the input.
5 Web site: http://www.github.com/vincenzoml/slcs.

http://www.github.com/vincenzoml/slcs
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Fig. 3. A maze Fig. 4. Model checker output

Let reach(a,b) = !( (!b) U (!a) );

Let reachThrough(a,b) = a & reach((a|b),b);

Let toExit = reachThrough(["white"],["green"]);

Let fromStartToExit = toExit & reachThrough(["white"],["blue"]);

Let startCanExit = reachThrough(["blue"],fromStartToExit);

Paint "yellow" toExit;

Paint "orange" fromStartToExit;

Paint "red" startCanExit;

Fig. 5. Input to the model checker

implementation of a global model-checker using closure spaces, parametrised by
the type of models.

An example of the tool usage is to approximately identify regions of interest
on a digital picture (e.g., a map, or a medical image), using spatial formulas. In
this case, digital pictures are treated as quasi-discrete models in the plane Z×Z.
The language of propositions is extended to simple formulas dealing with colour
ranges, in order to cope with images where there are different shades of certain
colours.

In Figure 3 we show a digital picture of a maze. The green area is the exit.
The blue areas are start points. The input of the tool is shown in Figure 5, where
the Paint command is used to invoke the global model checker and colour points
satisfying a given formula. Three formulas, making use of the until operator, are
used to identify interesting areas. The output of the tool is in Figure 4. The
colour red denotes start points from which the exit can be reached. Orange and
yellow indicate the two regions through which the exit can be reached, including
and excluding a start point, respectively.
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Fig. 6. Input: the map of a town Fig. 7. Output of the tool

In Figure 6 we show a digital image6 depicting a portion of the map of Pisa,
featuring a red circle which denotes a train station. Streets of different impor-
tance are painted with different colors in the map. The model checker is used to
identify the area surrounding the station which is delimited by main streets, and
the delimiting main streets. The output of the tool is shown in Figure 7, where
the station area is coloured in orange, the surrounding main streets are red, and
other main streets are in green. We omit the source code of the model checking
session for space reasons (see the source code of the tool). As a mere hint on how
practical it is to use a model checker for image analysis, the execution time on
our test image, consisting of about 250000 pixels, is in the order of ten seconds
on a standard laptop equipped with a 2Ghz processor.

7 Conclusions and Future Work

In this paper, we have presented a methodology to verify properties that depend
upon space. We have defined an appropriate logic, stemming from the tradition of
topological interpretations of modal logics, dating back to earlier logicians such
as Tarski, where modalities describe neighbourhood. The topological definitions
have been lifted to a more general setting, also encompassing discrete, graph-
based structures. The proposed framework has been extended with a spatial
variant of the until operator, and we have also defined an efficient model checking
procedure, which is implemented in a proof-of-concept tool.

As future work, we first of all plan to merge the results presented in this
paper with temporal reasoning. This integration can be done in more than one
way. It is not difficult to consider “snapshot” models consisting of a temporal
model (e.g., a Kripke frame) where each state is in turn a closure model, and
atomic formulas of the temporal fragment are replaced by spatial formulas. The
various possible combinations of temporal and spatial operators, in linear and
branching time, are examined for the case of topological models and basic modal

6 c©OpenStreetMap contributors – http://www.openstreetmap.org/copyright.

http://www.openstreetmap.org/copyright
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formulas in [18]. Snapshot models may be susceptible to state-space explosion
problems as spatial formulas could need to be recomputed at every state. On
the other hand, one might be able to exploit the fact that changes of space over
time are incremental and local in nature. Promising ideas are presented both
in [17], where principles of “continuous change” are proposed in the setting of
closure spaces, and in [20] where spatio-temporal models are generated by locally-
scoped update functions, in order to describe dynamic systems. In the setting
of collective adaptive systems, it will be certainly needed to extend the basic
framework we presented with metric aspects (e.g., distance-bounded variants of
the until operator), and probabilistic aspects, using atomic formulas that are
probability distributions. A thorough investigation of these issues will be the
object of future research.

A challenge in spatial and spatio-temporal reasoning is posed by recursive
spatial formulas, a la μ-calculus, especially on infinite structures with relatively
straightforward generating functions (think of fractals, or fluid flow analysis of
continuous structures). Such infinite structures could be described by topologi-
cally enhanced variants of ω-automata. Classes of automata exist living in spe-
cific topological structures; an example is given by nominal automata (see e.g.,
[4,14,21]), that can be defined using presheaf toposes [13]. This standpoint could
be enhanced with notions of neighbourhood coming from closure spaces, with
the aim of developing a unifying theory of languages and automata describing
space, graphs, and process calculi with resources.
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Abstract. Primal infon logic was proposed by Gurevich and Neeman as
an efficient yet expressive logic for policy and trust management. It is a
propositional multimodal subintuitionistic logic decidable in linear time.
However in that logic the principle of the replacement of equivalents
fails. For example, (x ∧ y) → z does not entail (y ∧ x) → z, and simi-
larly w → ((x ∧ y) ∧ z) does not entail w → (x ∧ (y ∧ z)). Imposing the
full principle of the replacement of equivalents leads to an NP-hard logic
according to a recent result of Beklemishev and Prokhorov. In this paper
we suggest a way to regain the part of this principle restricted to con-
junction: We introduce a version of propositional primal logic that treats
conjunctions as sets, and show that the derivation problem for this logic
can be decided in linear expected time and quadratic worst-case time.

1 Introduction

Propositional infon logic is a version of propositional multimodal intuitionistic
logic [7]. It is applicable for policy and trust management but the derivability
problem for propositional infon logic is PSpace-complete. Nevertheless, an ex-
pressive fragment of this logic, called propositional primal infon logic (PIL, in
short), is decidable in linear time [7]. PIL is far below propositional infon logic
in the time-complexity hierarchy. A natural problem arises how to extend the
expressive power (and usefulness) of PIL keeping the logic feasible. In this paper,
we present substantial progress toward this goal.

One of the main limitations of PIL is that it does not satisfy the principle
of replacement of equivalents, that allows us to substitute a formula with an
equivalent one in any context. For example, the formulas x ∧ y and y ∧ x are
equivalent in PIL (i.e., each one is derivable from the other). However, (x ∧ y)→
z and (y ∧ x) → z are not. In general, replacing a variable occurring in some
formula with x∧ y is not the same as replacing it with y ∧x. A similar situation
occurs, e.g., with formulas of the form (x ∧ y) ∧w and x ∧ (y ∧ w).

Imposing the full principle of replacement of equivalents on PIL makes it
NP-hard [2]. Nevertheless, in this paper, we present an extension of PIL, called
SPIL, that overcomes this limitation for conjunction. The idea behind SPIL is
to treat conjunctions as sets of conjuncts (the ‘S’ in SPIL alludes to the word
“set”). In other words any two conjunctions are viewed equivalent if the sets

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 236–249, 2014.
c© IFIP International Federation for Information Processing 2014
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(not multisets!) of their conjuncts are the same, and the reasoning is done mod-
ulo this equivalence. For example, this equivalence relation identifies formulas
(x ∧ y)→ z and (y ∧ x)→ z.

This paper is organized as follows. First, we recall the syntax of PIL (Sec-
tion 2). Then we define SPIL (Section 3), and we prove the local formula prop-
erty for its Hilbertian calculus: any derivation of a formula X from a set Ω of
formulas can be modified so that it uses only a small set of “local formulas”
computable from Ω ∪ {X}. In Section 3.1 we present a Kripke-style semantics
for SPIL. Finally, in Section 4, we present an efficient algorithm for the multi-
derivability problem for SPIL. An implementation of the algorithm is available
at http://dkal.codeplex.com/ (in the context of Distributed Knowledge Au-
thorization Language [3]).

Related work. We refer the reader to detailed related work sections: subsec-
tion 1.1 in the article [1] on propositional primal logic with disjunction, and
section 6 in the article [5] on extensions of PIL with transitivity of implication.
In addition, we note that proof systems in which derivations are performed mod-
ulo an equational theory between propositions were studied earlier in different
contexts (see, e.g., [6]).

2 Preliminaries

We start with describing PIL (propositional primal infon logic), originally pre-
sented in [7]. We presume a set of propositional variables {v1, v2, . . .}, a set
of principal constants {p1, p2, . . .} and a constant � (used to denote an item
of information that is known to all principals). The formulas of PIL are built
from the propositional variables and � using the binary connectives ∧,∨,→,
and unary connectives of the form “q:” (called: quotations) where q ranges over
principal constants. The intended meaning of a formula q:x is that: the principal
q said x. The size sz(x) of a formula x is taken to be the number of connectives
occurring in x. For any sequence of principal constants q1, q2, . . . , qk, we call the
string q = q1 : q2 : . . . qk : a quotation prefix (where ε, the empty sequence, is a
quotation prefix as well).

(�)
q�

q x q y
(∧i)

q (x ∧ y)
q (x ∧ y)

(∧e) q x
q (x ∧ y)

q y

q x
(∨i)

q (x ∨ y)

q y

q (x ∨ y)

q y
(→i)

q (x → y)
q x q (x → y)

(→e) q y

Fig. 1. Calculus for PIL. q ranges over quotation prefixes and x, y over formulas.

Figure 1 provides a Hilbertian calculus defining PIL. For a set of formulas Γ
(called hypotheses), a derivation D of a formula x from Γ in PIL is a finite tree

http://dkal.codeplex.com/
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such that each node u is labeled with a formula D(u). The root is labeled with
x and leaves are labeled with (instances of) axioms or formulas in Γ . If a node
u has children u1, u2, . . . , un, then D(u1), . . . ,D(un) / D(u) is an instance of an
inference rule. The size of the derivation is the number of nodes in this tree.

Given two sets of formulas Γ and Δ, the problem of deciding which formulas
in Δ are derivable from Γ in PIL is called the multi-derivability problem for PIL.
This problem is decidable in linear time [4,7].

3 The Logic SPIL

We present an extension of PIL that we call SPIL. The letter ‘S’ alludes to the
word “set” and reflects our intention to treat conjunctions as sets of conjuncts.
To define SPIL we use an auxiliary notion of abstract formulas.

Definition 1. An equivalence relation ∼ between formulas is defined as follows:
x ∼ y if x and y are related according to the reflexive transitive symmetric closure
of the rewriting relation induced by the following term rewriting system:1

– (x1 ∧ x2) −→ (x2 ∧ x1)
– ((x1 ∧ x2) ∧ x3) −→ (x1 ∧ (x2 ∧ x3))
– (x1 ∧ x1) −→ x1

– (x1 ∧ �) −→ x1

– q:(x1 ∧ x2) −→ (q:x1) ∧ (q:x2)
– q:� −→ �

Roughly speaking, we have x ∼ y if x and y are the same formulas modulo the
following properties of ∧: commutativity, associativity, idempotence, contraction
of the identity element �, as well as the distributivity of quotations over ∧.

Example 1. The formula (v1 → p1:((p1:v1) ∧ v2)) is equivalent to
(((v1 ∧ v1) ∧�)→ (p1:v2 ∧ (p1:p1:v1))).

Definition 2. Abstract formulas are equivalence classes of formulas under ∼.
The size sz(X) of an abstract formula X is defined as min{sz(x) | x ∈ X}.

We use X,Y, ... as metavariables for abstract formulas. The equivalence class
of a formula x under ∼ is denoted by [x]. Since abstract formulas play a dominant
role in SPIL, we will refer to them simply as formulas, where true (non-abstract)
formulas will be called concrete formulas. We define several operations on for-
mulas.

Definition 3. For two formulas X,Y and connective ∗ ∈ {→,∨},
X ∗ Y := [x ∗ y] for some x ∈ X and y ∈ Y . Similarly, for a formula X and
a quotation prefix q, qX := [q x] for some x ∈ X .

Definition 4.

– A formula X is called conjunctive if X = [�] or X = [x ∧ y] for concrete
formulas x, y satisfying x �∼ y, x �∼ � and y �∼ �.

1 Recall that rewriting rules of a term rewriting system may be applied under any
context, and not necessarily on the topmost level.
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– A finite set of non-conjunctive formulas with at least two elements is called
a conjunction set.

– For a conjunction set S,
∧
S := [(· · · ((x1 ∧ x2) ∧ x3) . . .) ∧ xn] for some

concrete formulas x1, . . . ,xn such that S = {[x1], . . . ,[xn]}.

It is easy to see that these operations are well-defined. In particular, the
choices of concrete formulas is immaterial. Note that we use conjunction sets
rather than multisets, and that, by definition, conjunction sets contain at least
two members.

Proposition 1.
∧
S is conjunctive for every conjunction set S.

The next proposition allows us to use inductive definitions and prove claims
by induction on size of formulas.

Proposition 2. Every formula X is either non-conjunctive and exactly one of
the following holds:

– sz(X) = 0 and X = [v] for a unique propositional variable v.
– X = Y ∗ Z for unique formulas Y and Z and ∗ ∈ {→,∨}. In this case

sz(X) = sz(Y ) + sz(Z) + 1.
– X = q:Y for unique principal constant q and formula Y . In this case sz(X) =

sz(Y ) + 1, and Y is non-conjunctive.

or else X is conjunctive and either sz(X) = 0 and X = [�], or X =
∧
S for a

unique conjunction set S. In the latter case, sz(Y ) < sz(X) for every Y ∈ S.

(�̃)
[�]

X1 X2 . . . Xn
(∧̃i) where S = {X1, . . . ,Xn} and n ≥ 2∧

S

∧
S

(∧̃e) where X ∈ S
X

qX
(∨̃i)

q (X ∨ Y )

q Y

q (X ∨ Y )

q Y
(→̃i)

q (X → Y )

qX q (X → Y )
(→̃e)

q Y

Fig. 2. Calculus for SPIL. q ranges over quotation prefixes, X, Y over formulas, and
S over conjunction sets.

SPIL is defined via the Hilbertian calculus given in Figure 2. The definitions
of a derivation and its size are naturally adopted to this Hilbertian calculus. Note
that derivations now consist of abstract formulas. We write Ω $ X to denote that
the abstract formula X has a derivation from the set Ω of abstract formulas in
SPIL.

Definition 5. The consequence relation $ between concrete formulas in SPIL
is given by: Γ $ x if {[y] | y ∈ Γ} $ [x].
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Note that the language of the concrete formulas is that of PIL. Abstract
formulas are used only for defining this consequence relation.

Theorem 1. If Γ entails x in PIL, then it does so in SPIL as well.

Next, we show that SPIL enjoys a locality property similar to that of PIL,
which allows one to confine derivations of X from Ω to those built from a certain
small set of formulas computable from X and Ω. This property is essential for
the correctness of the decision algorithm for SPIL.

Definition 6. The set of formulas that are local to a formula X is inductively
defined by: (a) X is local to X ; (b) If q (Y ∗ Z) is local to X (for ∗ ∈ {→,∨}
and quotation prefix q) then so are q Y and q Z; and (c) If

∧
S is local to X

(for conjunction set S) then so is every Y ∈ S. A formula is local to a set Ω of
formulas if it is local to some X ∈ Ω.

Definition 7. A derivation of a formula X from a set Ω of formulas is called
local if all node formulas of the derivation are local to Ω ∪ {X}.

Theorem 2. Any shortest derivation of X from Ω in SPIL is local.

The following definition will be useful in the sequel.

Definition 8. A quotation prefix q is local to a formula X if some formula of
the form q Y is local to X . A quotation prefix is local to a set Ω of formulas if
it is local to some X ∈ Ω.

3.1 Semantics

We adapt the semantics for PIL presented in [4,7] to SPIL.

Definition 9. A Kripke model is any structure M whose vocabulary com-
prises of (i) binary relations Sq where q ranges over the principal constants
and (ii) unary relations VX where X ranges over non-conjunctive formulas. The
elements of (the universe of) M are called worlds.

Definition 10. Given a Kripke model M , we define when a world w satisfies a
formula X , symbolically w � X , by induction on sz(X), distinguishing the cases
according to Proposition 2:

1. X = [�]: w � X for every w.
2. X = [v] (where v is a propositional variable): w � X if w ∈ V[v].
3. X = Y → Z: w � X if w � Z or (w � Y and w ∈ VX).
4. X = Y ∨ Z: w � X if w � Y or w � Z or w ∈ VX .
5. X = q:Y (for non-conjunctive formula Y ): w � X if w′ � Y for all w′ with
wSqw

′.
6. X =

∧
S: w � X if w � Y for all Y ∈ S.

A world w satisfies a set Ω of formulas if it satisfies every X ∈ Ω.
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Theorem 3 (Soundness and Completeness). Let Γ be a set of concrete
formulas and x a concrete formula. Γ $ x if and only if, for every Kripke model
and world w, w � [x] whenever w satisfies {[y] | y ∈ Γ}.
Remark 1. One of our referees wondered whether the full principle of replace-
ment of equivalents holds in SPIL. It does not. Intuitively the reason is that,
while SPIL generously enriches the algebra of conjunction, it imposes only mild
restrictions on implication. Here is a example showing that the full principle of
replacement of equivalents fails: (x ∧ y) → z �$ (x ∧ (x → y)) → z while x ∧ y
and x ∧ (x→ y) are interderivable. This can be easily verified using our Kripke
semantics.

4 A Decision Algorithm

In this section we present an efficient decision algorithm for the the multi-
derivability problem for SPIL.

Definition 11. The multi-derivability problem for SPIL is defined as follows.
Given two sequences of concrete formulas, called concrete hypotheses and con-
crete queries respectively, decide which concrete queries are derivable from the
concrete hypotheses in SPIL, and print them.

Theorem 4. There is a randomized algorithm that solves the multi-derivability
problem for SPIL in expected linear time and worst-case quadratic time.

Note that in “expected linear time” the average is taken for internal random
choices during the execution, while assuming any input. We employ the same
standard computation model of analysis of algorithms used in [4], according to
which the registers are of size O(log n) where n is the size of the input, and the
basic register operations are constant time. We also presume a function Random
that generates �log(n)� random bits in constant time.

The rest of this paper is devoted to prove Theorem 4. The algorithm has two
main stages. First, we construct a data structure that succinctly represents the
input (Sections 4.1 and 4.2). Then, we use this data structure to compute the
derivable concrete queries (Section 4.3).

4.1 Input Parse Dag and Local Prefixes Dictionary

We refer to the abstract formulas that correspond to the concrete hypotheses
simply as hypotheses, and similarly to these of the concrete queries as queries. A
formula (quotation prefix) is called a local input formula (local prefix) if it is local
to the set of hypotheses or the set of queries (see Definitions 6 and 8). The input
is represented in a directed acyclic graph (dag, for short) data structure.2 We
assume that each node u is uniquely identified by a constant-size key, denoted by
Key(u) (e.g., its memory address), stores the keys of its children in a list Ch(u),
and of its parents in a corresponding list Pa(u). To handle quotation prefixes,
we will use of the following auxiliary data structure:

2 By graph we actually mean multigraph, where parallel edges are allowed.
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Definition 12. A local prefixes dictionary for a given input is a data structure
that assigns a unique constant-size key Key(q) to every local input quotation
prefix q. Given such a key k, we will denote by Prf(k) the quotation prefix q
such that Key(q) = k.

Note that the trie of local prefixes as defined in [4] is a particular implemen-
tation of a local prefixes dictionary, where Key(q) is taken to be the memory
address of the trie node that corresponds to q. Given a local prefixes dictionary,
our dag data structures are defined as follows.

Definition 13. A parse dag is a rooted dag in which every node u is decorated
with two additional (constant-size) fields: Label(u) and PrfKey(u). Its root r has
two children denoted by rh and rq, where Label(r) = Label(rh) = Label(rq) =
nil and PrfKey(r) = PrfKey(rh) = PrfKey(rq) = Key(ε). All other nodes are
called regular nodes. For each regular node u, Label(u) is �,→,∨,∧ or a proposi-
tional variable, and PrfKey(u) holds a key of some local input quotation prefix,
such that:

1. If Label(u) is � or a propositional variable, then Ch(u) is empty.
2. If Label(u) is → or ∨, then Ch(u) contains exactly two keys.
3. If Label(u) is ∧, then Ch(u) contains at least one key.
4. If u is a child of v, then Prf(PrfKey(v)) is a prefix of Prf(PrfKey(u)).

Each node in a parse dag naturally represents a (concrete and abstract) for-
mula. Formally, this relation is defined as follows.

Notation 5. For a regular node u, we denote Prf(PrfKey(u)) by Prf(u).

Notation 6. Given two quotation prefixes q and p, we denote by p\q the quo-
tation prefix r, such that pr = q, or ε if such r does not exist.

Definition 14. The complete concrete formula of a regular node u with respect
to a quotation prefix q is denoted by F(u, q), and defined by:

1. If u has no children, then F(u, q) = (q\Prf(u))Label(u).
2. If Label(u) = ∗ for ∗ ∈ {→,∨}, then F(u, q) is (q\Prf(u))

(F(u1,Prf(u)) ∗F(u2,Prf(u))) where u1 and u2 are the first and second chil-
dren of u (respectively).

3. If Label(u) = ∧, then F(u, q) is (q\Prf(u))((· · · (F(u1,Prf(u)) ∧ F(u2,
Prf(u))) . . .) ∧ F(uk,Prf(u))) where ul, . . . ,uk are u’s children in the order
they occur in Ch(u).

The complete concrete formula of a regular node u is denoted by F(u) and defined
to be F(u, ε). The complete (abstract) formula of a regular node u is denoted by
F̃(u) and defined to be [F(u)].

Definition 15. Aparse dag for input x1, . . . ,xk $ y1, . . . ,ym is any parse dag that
satisfies the following conditions: (1) {F̃(u) | Key(u) ∈ Ch(rh)} = {[x1], . . . ,[xk]};
(2) {F̃(u) | Key(u) ∈ Ch(rq)} = {[y1], . . . ,[ym]}; and (3) Every child u of rq is dec-

orated with a list Inputs(u) of all yi’s that satisfy yi ∈ F̃(u).
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Note that the input parse tree as defined in [4] (ignoring the edge labels) is
also an input parse dag. For the next stage, we should ensure that there are no
two different nodes that represent the same formula. Thus we are interested in
a compressed input parse dag, as defined next.

Definition 16. A node u in a parse dag D is unique if F̃(u′) �= F̃(u) for any
u′ �= u. D is called compressed if its nodes are all unique, and Label(u) is not ∧
or � whenever u is a child of a node labeled with ∧.

Proposition 3. Consider a compressed input parse dag. For every local input
formula X, there is exactly one regular node u such that F̃(u) = X.

Theorem 7. There is a randomized algorithm with expected linear time and
worst-case quadratic time complexities, that constructs a local prefixes dictionary
and a compressed input parse dag for a given input.

4.2 Construction of a Compressed Input Parse Dag

This section is devoted to prove Theorem 7. To facilitate the exposition and
the analysis, we will present this algorithm as a composition of sub-algorithms.
Initially, we construct (in linear time) a local prefixes dictionary and an initial
(uncompressed) input parse dag (in the form of a trie of local prefixes and an
input parse tree) exactly as done in [4]. It remains to modify the parse tree into a
compressed parse dag. First, we reformat the tree as detailed in Algorithm 4.1.
Roughly speaking, this step accounts for the associativity of conjunction. Its
time complexity is O (N), where N denotes the number of leaves in the initial
parse tree.

Algorithm 4.1. Initial reformatting

1: Traverse the initial parse dag in depth-first manner. Suppose that u, the node
currently visited, is labeled with ∧ or �, and that its parent v is labeled with ∧.
In that case, for each child w of u, make w a child of v, and delete u from the dag.
If v is left with no children, set its label to �.

Time complexity: O (N)

Next, we “compress” the resulting tree into a dag. This process requires several
additional data structures and fields:

1. A work list C of length N , initialized with (the keys of) all leaf nodes.
2. Two auxiliary arrays A and HT (Hash Table) of length M = 2�log2(N)�.

The entries of A are node keys, while those of HT are lists of keys. Initially
A[i] = −1 and HT [i] = ∅ for all i < M .

3. Numeric fields Counter(u) and Hash(u) for each node u, initialized with 0
and a random number < M (respectively).
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The compression works iteratively using the work list C. In each iteration, the
nodes in C are made unique. Initially, C includes all leaf nodes. When a node u is
removed from C, it increments the counter in its parent v. If Counter(v) reaches
|Ch(v)| (the length of the list Ch(v)), v is added to C for the next iteration.
Thus, the following invariant is preserved:

Invariant 8. Children of nodes in C are all unique, and each node in C or
ancestor of a node in C has a unique parent node.

Compression of the Leaves. Before the first iteration, the work list C includes
all leaf nodes. They are compressed using a plagiarism checker:

Definition 17. An element aj in an array L = (a0, . . . , ak−1) is original if
ai �= aj for any i < j. If ai is original, i ≤ j and ai = aj then ai is the original
of aj . A plagiarism checker for the array L is an array B of length k such that
every aB[j] is the original of aj .

Theorem 9. There is an algorithm that, given an array L of d-tuples of natural
numbers < M and an array A of length M initialized with (−1)’s, computes the
plagiarism checker B for L and re-initializes the array A with (−1)’s (so it can
be reused to compute future plagiarism checkers). This algorithm takes O (|L|d)
time.

The plagiarism checker is computed on an array L that includes the extended
labels of the leaf nodes. For each node u in C, the extended label of u, denoted
by EL(u), is a constant-size tuple that satisfies the following property: for every
two nodes u1 and u2 in C, EL(u1) = EL(u2) iff F̃(u1) = F̃(u2). For a leaf node u,
the extended label EL(u) is taken to be the ordered pair (PrfKey(u),Label(u))
if Label(u) is a propositional variable, or just � if Label(u) = �. It is easy to
see that this definition of EL(u) guarantees the required property for the (leaf)
nodes in C. From this observation, Algorithm 4.2 for compression of the leaves
follows. Note that computing the extended label of a leaf takes constant time.
Thus computing L and U takes O (N) time. Since extended labels have constant
length, the plagiarism checker can be computed in O (N) time as well.

Compression of Internal Nodes. After applying Algorithm 4.2 in the first
iteration, all leaf nodes are unique. In addition, Algorithm 4.2 prepares it
for the next iteration, so it includes all nodes whose children are all unique.
In fact, the next iteration also applies Algorithm 4.2, with a different defi-
nition of the extended labels. We refer to the nodes of C whose label is →
or ∨ as binary nodes, and to these whose label is ∧ as set nodes. The ex-
tended label for the binary nodes is simple, as we can take EL(u) of a bi-
nary node u in C with first child v and second child w to be the ordered tuple
(PrfKey(u),Label(u),Key(v),Key(w)).

Proposition 4. For two binary nodes u1 and u2 in C, EL(u1) = EL(u2) iff
F̃(u1) = F̃(u2).
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Algorithm 4.2. Compression of the nodes in the work list

1: Copy the work list C to an array U , and set C ← ∅.
2: Compute an array L with corresponding extended labels, i.e. L[i] = EL(U [i]).
3: Compute the plagiarism checker B of L. � Theorem 9
4: For i from 0 to |U | − 1
5: Let u and w be the nodes with keys U [i] and U [B [i]] (respectively).
6: Let v be the parent of u.
7: If i �= B [i] then
8: Remove u from the parse dag.
9: If v = rq, append Inputs(u) to Inputs(w).
10: Replace U [i] in Ch(v) by U [B [i]].
11: Increment Counter(v).
12: If v is regular and Counter(v) = |Ch(v)| then add v to the work list C.

Time complexity: O (|C|)

The compression of the set nodes, however, is more involved, and requires
some preprocessing to account for the idempotence of ∧, and to compute the
extended labels of the set nodes. Several additional notations are used in this
preprocessing stage:

– NC denotes the sum
∑
|Ch(u)| for all set nodes in C.

– For each set node u in C, CH(u) = {w | w is a child of u }.

The preprocessing for the set nodes consists of two steps. First, we reformat the
parse dag, by removing duplicate children of set nodes, as well as contracting
set nodes that are left with only one child (this may add new binary nodes to
C). Algorithm 4.3 provides the technical details. Intuitively, this step accounts
for the idempotence of ∧.

Algorithm 4.3. Reformatting of set nodes in C

1: For each set node u of in C
2: Copy Ch(u) to an array U .
3: Compute the plagiarism checker B of Ch(u). � Theorem 9
4: Ch(u) ← ∅.
5: For i from 0 to |B|
6: If B [i] = i, then append U [i] to Ch(u).
7: If |Ch(u)| = 1 then
8: Let v be u’s parent and w be u’s child.
9: Remove u from parse dag and replace it with w in Ch(v).
10: If v = rq, append Inputs(u) to Inputs(w)
11: Increment Counter(v).
12: If v is regular and Counter(v) = |Ch(v)|, add v to the work list C.

Time complexity: O(NC).

Next, we compute the extended labels for the set nodes. This step involves a
hash table, where the hash function assigns to each node u the initially chosen
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random number Hash(u). Note that (∧,Ch(u)) cannot serve as an extended label
(since two set nodes with different permutations of the same list of children would
have diffrent extended labels).

Compute Extended Labels. We assume that each set node u is decorated with
an additional field called set label and denoted by SL(u). For each set node u in
C, SL(u) is initialized with Hash(u1)⊕ · · · ⊕Hash(uk), where u1, . . . ,uk are the
children of u whose keys are listed in Ch(u), and ⊕ is the bitwise XOR operation
(between binary representations of numbers). The computation of SL(u) takes
O(|Ch(u)|) time for each node u. Hence the computation for all set nodes in C
takes O(NC) time. Note that for two set nodes u and v with CH(u) = CH(v),
we have SL(u) = SL(v); the converse, however, is “almost always” true as the
following lemma shows.

Lemma 1. For every two set nodes, P (SL(u) = SL(v)) is 1 if CH(u) = CH(v),
and 1/M otherwise.

It follows that SL cannot serve as an extended label for the set nodes. To
generate the extended labels EL, we use a hash table for detecting and fix-
ing collisions in SL. This is described in Algorithm 4.4. We explain the time
complexity for this computation. Let u1, u2, . . . ,u|C| be the set nodes in C and
suppose that the loop in line 1 process them in that order. For i < j ≤ |C|,
let Xij be a random variable which takes value 1, if EL (ui) = (∧,Key(ui))
and SL(ui) = SL(uj); and 0, otherwise. Let T be the random variable that
gives the time complexity for this computation. T is the sum over j of the
time needed to compute EL(uj). To compute EL(uj) we check the nodes in

the entry HT [SL(uj)]. The length of HT [SL(uj)] is
∑j−1

i=1 Xij and each com-
parison (the check if CH(u) = CH(v)) takes O(|Ch(uj)|) time. Therefore,

T =
∑|C|

j=1

(
O(|Ch(uj)|) ·

∑j−1
i=1 Xij

)
. In the worst-case, for any two set nodes

u and v we have SL(u) = SL(v) but CH(u) �= CH(v). This yields an execu-
tion time of O (|C| ·NC). To see that E(T ) = O (NC), it suffices to show that∑j−1

i=1 E(Xij) is constant. Now, E (Xij) = P (Xij = 1) ≤ P (SL (ui) = SL (uj)),
and by Lemma 1 we obtain that E (Xij) ≤ 1 if CH(ui) = CH(uj), and
E (Xij) ≤ 1/M otherwise. Algorithm 4.4 stores at most one set node ui with

CH(ui) = CH(uj) in HT [SL(uj)]. Hence,
∑j−1

i=1 E(Xij) ≤ 1+ j−2
M ≤ 1+ N

M ≤ 2.

Compression of Internal Nodes. Equipped with extended labels for all nodes in
the work list C, we apply the compression for these nodes. Since each two nodes
u1 and u2 in C have F̃(u1) = F̃(u2) iff EL(u1) = EL(u2), we can compress the
nodes in C exactly as we did for the leaves using Algorithm 4.2. This algorithm
also prepares C for the next iteration.

This concludes the computation of a compressed parse dag from the parse
tree. Algorithm 4.5 gives a summary of this construction. To see the time com-
plexity of Algorithm 4.5, note that the inner step of the loop takes expected time
proportional to the number of nodes in C plus the number of their children. Since
every node is added to C exactly one time, summing this over all iterations we
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Algorithm 4.4. Computing extended labels for set nodes

1: For each set node u in C
2: If CH(u) = CH(v) for some v ∈ HT [SL(u)] then
3: EL(u) ← (∧,Key(v)).
4: Else
5: EL(u) ← (∧,Key(u)).
6: Append u to HT [SL(u)].
7: For each set node u in C, set HT [SL(u)] ← ∅.
Expected time complexity: O (NC)
Time complexity (worst-case): O (|C| ·NC)

get expected time proportional to the number of nodes. In a similar way, we get
O(N2) time in the worst-case for the inner loop. The complexities of all other
steps were explained above. Finally, note that N (the number of leaves in the
initial input tree) is clearly less than the length of the input.

Algorithm 4.5. Construction of a compressed parse dag

1: Construct a parse tree and a local prefixes dictionary
2: Perform initial reformatting of the parse tree. � Algorithm 4.1
3: Construct a work list C initialized with a list of the (keys of) leaf nodes, field

Counter(u) for each node u initialized with 0, arrays A = (−1,−1, . . . ,−1) and
HT = (∅, ∅, . . . , ∅) of length M , and a field Hash(u) for each node u initialized
with a random number < M .

4: Compress the nodes in C. � Algorithm 4.2
5: While C is not empty
6: Reformat the set nodes. � Algorithm 4.3
7: Compute a set label SL(u) for every set node u.
8: Compute an extended label EL(u) for every set node u. � Algorithm 4.4
9: Compress the nodes in C. � Algorithm 4.2

Expected time complexity: O (N)
Worst time complexity: O

(
N2

)

4.3 Deriving Local Formulas

The second stage of algorithm computes all derivable queries. This is done sim-
ilarly to the corresponding stage for PIL [4]. First, we traverse the parse dag
and decorate each regular node u with a boolean flag Der(u). It is initialized
to 0, unless Label(u) = � or u represents a hypothesis (u is a child of rh) in
which case Der(u) is initialized to 1. Der(u) = 0 indicates that F̃(u) has not
been derived from the hypotheses yet, and in this case we say that u is raw.
Der(u) = 1 indicates that F̃(u) has been derived from the hypotheses, and u
is called pending. We also construct a pending queue, that contains all pending
nodes. To make pending a node u means to insert u to the pending queue and
set Der(u) = 1. The following invariant holds throughout the execution of the
algorithm.
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Invariant 10. Whenever a node u becomes pending, the formula F̃(u) is deriv-
able from the hypotheses in SPIL.

To apply a rule R to u means to make pending every raw node w for
which there are pending nodes v1, v2, . . . , vk, such that u ∈ {v1, v2, . . . , vk} and
F̃(v1), . . . ,F̃(vk) / F̃(w) is an instance of the rule R. The algorithm repeatedly
takes a node u from the pending queue, applies as many rules to it as possible
and then removes u from the pending queue. The algorithm terminates when
the pending queue is empty. We explain how to apply each rule R to a node u,
and show (for several cases) that these applications preserve Invariant 10. Note
that an additional numeric field Counter(u) (initialized to 0) is used for each
node u labeled with ∧.

(∧̃e) If Label(u) = ∧, then make pending every raw child of u.
Justification: Let u1, . . . ,uk be the children of u in the order they ap-
pear in Ch(u). Then F̃(u) = [Prf(u)((· · · (F(u1,Prf(u)) ∧ F(u2,Prf(u)) . . .) ∧
F(uk,Prf(u)))]. Since u is pending, F̃(u) is derivable. This entails that
F̃(ui) = [Prf(u)(F(ui,Prf(u))] is derivable as well. To see this, note that
q xi is derivable from q ((· · · (x1 ∧ x2) . . .) ∧ xk) in PIL for every concrete
formulas x1, . . . ,xk, quotation prefix q, and 1 ≤ i ≤ k. By Theorem 1, we
have that F̃(u) $ F̃(ui).

(∧̃i) For every raw parent w of u labeled with ∧, increment Counter(w) and
make w pending if it exceeds the number of children of w.
Justification: Let u1, . . . ,uk be the children of w in the order they appear
in Ch(w). Then F̃(w) = [Prf(w)((· · · (F(u1,Prf(w)) ∧ F(u2,Prf(w)) . . .) ∧
F(uk,Prf(w)))]. If Counter(w) was incremented k times, then each F̃(ui) =
[Prf(w)(F(ui,Prf(w))] is derivable. This entails that F̃(w) is derivable as well
(again using Theorem 1, since q ((· · · (x1 ∧ x2) . . .) ∧ xk) is derivable from
q x1, . . . ,q xk in PIL for every concrete formulas x1, . . . ,xk and quotation
prefix q).

(∨̃i) Make pending every raw parent w of u labeled with ∨.
(→̃i) For every raw parent w of u such that Label(w) is → and u is the second

child of w, make w pending.
(→̃e) F̃(u) can be used as the left or the right premise of (→̃e). Accordingly, we

have two substeps: (1) For every pending parent w of u, such that Label(w)
is → and u is the first child of w, make the second child of w pending if it is
raw; (2) If Label(u) is → and the first child u1 of u is pending, then make
pending the second child u2 of u if it is raw.

When the pending queue is empty, the algorithm prints a list of the derivable
concrete queries. To do so, walk through the nodes u1, . . . , um that represent
queries (i.e. the children of the node rq). If Der(ui) = 1 then print the strings in
Inputs(ui). Since separate concrete queries are separate segments of the input,
the printing process takes linear time.

Theorem 11. The decision algorithm for SPIL is sound and complete, and it
works in expected linear time and quadratic time in the worst-case.
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Abstract. Proof theory for a logic with categorical semantics can be
developed by the following methodology: define a sound and complete
display calculus for an extension of the logic with additional adjunctions;
translate this calculus to a shallow inference nested sequent calculus;
translate this calculus to a deep inference nested sequent calculus; then
prove this final calculus is sound with respect to the original logic. This
complex chain of translations between the different calculi require proofs
that are technically intricate and involve a large number of cases, and
hence are ideal candidates for formalisation. We present a formalisation
of this methodology in the case of Full Intuitionistic Linear Logic (FILL),
which is multiplicative intuitionistic linear logic extended with par.

1 Introduction

Belnap’s Display Calculus [1] is a powerful modular approach to structural proof
theory. Display calculi are often easy to design for a given logic [9] and enjoy a
generic algorithm for cut-elimination. However they usually require the logic to
be expanded with new structural connectives, raising the question of conserva-
tivity, and hence soundness, with respect to the original logic. They also do not
enjoy a genuine subformula property and hence are ill-suited to backwards proof
search. Various authors [4,15,10,11,14,5] have addressed these shortcomings by
using some variation of nested sequent calculus with deep inference [13]. Such
deep nested calculi employ a syntax similar to display calculi, but lack their ease
of design and generic cut-elimination algorithm. Conversely, deep nested calculi
can be designed to have a genuine subformula property, and a “separation prop-
erty” that trivially yields conservativity results [10,11,5]. Since display calculi
and deep nested calculi can have contrasting strengths, it is useful to provide
sequent calculi in both styles for a given logic. The crux of such a development
is the proof of equivalence between the display and deep nested calculi.

Proving the equivalence of display and deep nested calculi is technically intri-
cate and can involve the verification of hundreds of cases. Such proofs proceed
via an intermediate calculus, a shallow inference nested sequent calculus, and
it is the proof of the equivalence of shallow and deep calculi that is the most

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 250–264, 2014.
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demanding, requiring that every possible interaction of shallow and deep proof
rules be covered. We hence have a fruitful proof theoretic methodology which
cries out both for mechanised proof checking to increase confidence in its results,
and for the use of automated tactics to reduce the drudgery of attaining them.
We describe such a formalisation for Full Intuitionistic Linear Logic (FILL) [12],
following our earlier work on display and deep nested calculi for this logic [5].

Schellinx [16] considered the standard multiple-conclusioned sequent calculus
for intuitionistic logic (where the right-implication rule is restricted to prevent
collapse to classical logic) without weakening and contraction, and showed that
it does not enjoy cut-elimination. Hyland and de Paiva [12] gave this logic (with
cut) the name Full Intuitionistic Linear Logic, and defined categorical semantics
for it, giving several natural examples of categories exhibiting the required struc-
ture. They further claimed to have found a cut-free sequent calculus for FILL,
in which term-assignments on formulae are put to novel use to block unsound
applications of right-implication, via a freeness check on abstracted variables.
Reasoning about freeness in the presence of binders is a well known source of
subtle error, and a major topic of formalisation research (e.g. [19]). Indeed Bier-
man [2] found a counter-example to Hyland and de Paiva’s cut-elimination proof
exploiting a binding-related error, and presented two solutions using even more
complex type-annotations, one due to Bellin. Braüner and de Paiva [3] subse-
quently suggested a cut-free calculus relying on annotations on sequents, rather
than formulae. Two previous claims in the literature to annotation-free sequent
calculi for FILL were erroneous, as discussed in [5].

Our recent contribution [5] to this rather vexed history was to show that an-
notations are not necessary; we gave a sound and complete display calculus for
FILL and showed how it can be compiled into two equivalent nested sequent cal-
culi, one with shallow inference and the other with deep inference. In particular
the deep calculus is cut-free complete for FILL, enjoys the sub-formula prop-
erty, and supports terminating backward proof-search, from which we obtained
the NP-completeness of the validity problem for FILL. The derivation of these
results, given in more detail in [6], is unavoidably highly technical, and given its
difficulty and the history of FILL outlined above we sought to formalise our re-
sults in the proof assistant Isabelle/HOL. The completed formalisation presented
in this paper finally establishes the correctness of a sequent calculus for this logic.
In fact an initial attempt to prove the soundness of our calculus was found to
be flawed only when we tried to formalise it (see below for more details), so this
development has been an invaluable part of even our ‘pen-and-paper’ work.

We now outline our proof stategy [5] as formalised in this paper. FILL has the
usual relation between multiplicative conjunction ⊗ and implication �, where
→ denotes an arrow in a category (see §3):

(A⊗B)→ C iff (B ⊗A)→ C iff A→ (B � C) (1)

The display property, which underlies the generic cut-elimination algorithm of
display calculi, requires the introduction of new structural connectives, so it is
clarifying to regard a display calculus as defining a larger logic with new logical
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connectives. In this case we have a multipicative exclusion −<, defined with
respect to multiplicative disjunction (or par) ` in a manner dual to (1):

C → (A`B) iff C → (B `A) iff (C −< B)→ A (2)

In §2 and §3, we extend the syntax of FILL with −< and extend the semantics
of FILL to obtain Bi-Intuitionistic Linear Logic (BiILL). In §4 we give a display
calculus BiILLdc which is easily seen to be sound and complete for BiILL and
hence complete for the sublogic FILL. The soundness of BiILLdc for FILL corre-
sponds to the conservativity of BiILL over FILL. We first attempted to prove the
soundness result directly via a rewriting strategy which removed occurrences of
exclusion from a BiILLdc-derivation of a FILL-formula to give an exclusion-free
BiILLdc-derivation of the same FILL-formula. This rewriting strategy turned
out to be flawed, as it may not always terminate. Instead, we define two nested
sequent calculi for BiILL: BiILLsn with shallow inference in §5, and BiILLdn

with deep inference in §6. The equivalence of BiILLsn and BiILLdn, established
as Thm. 4 in §6, is the technical highlight of the formalisation, with 616 cases
verified. Thm. 5 in §7 shows that because of a separation property, BiILLdn

easily specialises to a deep nested calculus FILLdn with no trace of exclusion.
Thm. 6 then shows that the calculus FILLdn is sound for FILL, thereby proving
conservativity of BiILL over FILL. §8 concludes.

Our methodology is summarised below, where a solid arrow indicates that
every valid formula in the source is also valid in the target, and a dashed arrow
represents the same notion restricted to FILL formulae only:

FILL-category
Def. 1 �� BiILL-category �� Thm. 2 �� BiILLdc��

Thm. 3
��

FILLdn

Thm. 6

��

BiILLdn
Thm. 5

��� � � � � � � � � BiILLsn��
Thm. 4

��

We used Isabelle/HOL 2005 so that we could rework the cut-elimination proofs
from our previous work on formalising cut elimination for display calculi [7].
As discussed in §5, one problem we found was the lack of support for nested
datatypes involving multisets. The Isabelle/HOL theory files for our formalisa-
tion are at: http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/fill

2 Formulae, Sequents and Derivations

We explain briefly the data structures we use to encode formulae, structures,
sequents and derivations. The language of formulae for BiILL is defined using
the grammar below where p denotes a propositional variable:

A ::= p | I | ⊥ | A⊗A | A`A | A� A | A−<A

A FILL formula is just a BiILL formula without any occurrences of −<.
BiILL formulae are defined formally in Isabelle as follows. We let the type

variable ’s be (Isabelle) strings.

http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/fill
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datatype ’s pformula =

Btimes pformula pformula ("_ &&& _" [68,68] 67)

| Bplus pformula pformula ("_ +++ _" [66,66] 65)

| Blolli pformula pformula ("_ --o _" [64,64] 63)

| Bexcl pformula pformula ("_ --< _" [64,64] 63)

| Btrue ("T") | Bfalse("F") | FV string | PP string

Here the binary constructors correspond to, respectively, ⊗, `, � and −<, the
unary constructors Btrue and Bfalse encode the units I and ⊥ respectively,
the constructor PP is used to encode propositional variables, and FV is used to
encode “scheme variables”; we shall come back to these shortly.

We define the immediate (proper) subformula relation, ipsubfml.

ipsubfml :: "(’a pformula * ’a pformula) set"

inductive "ipsubfml" (* proper immediate subformula relation *)

intrs ips_and1 "(P, P &&& Q) : ipsubfml" (etc)

A BiILL-sequent is a pair Xa $ Xs of an antecedent and a succedent structure,
defined respectively as follows:

Xa ::= A | Φ | Xa, Xa | Xa < Xs Xs ::= A | Φ | Xs, Xs | Xa > Xs

where Φ is a structural constant. A FILL-sequent is a BiILL-sequent containing
no occurrence of < or −<. The relation between formulae and structures will be
made precise in the next section.

Structures are represented by the datatype below:

datatype ’s pstructr = Comma (’s pstructr) (’s pstructr)

| Gt (’s pstructr) (’s pstructr) | Lt (’s pstructr) (’s pstructr)

| Phi | Structform (’s pformula) | SV ’s

where Comma, Gt, Lt and Phi correspond to the structural connectives ‘,’, >, <
and Φ. The operator Structform casts a formula into a structure. The construc-
tor SV represents scheme variables for structures. Since we must reason about
arbitrary derivations, we have to allow derivations to contain structure variables
and reason about their instantiations. We do not encode explicitly the notion
of antecedent/succeedent structures in the data type; these notions are enforced
via separate predicates when needed (see e.g. §5).

Sequents and rules of the calculus are represented by

datatype ’a sequent = Sequent ’a ’a

types ’a psc = "’a list * ’a" (* single step inference *)

types ’a rule = ’a sequent psc

The premises of a rule are represented using a list of sequents while the conclusion
is a single sequent. Thus (prems, concl)means a rule with premises prems and
conclusion concl. We write $X |- $Y to denote (Sequent X Y).

We now briefly describe the functions we used to encode derivability. A fuller
account is given in [8]. This framework is general in that a rule merely consists of
“premises” and a “conclusion”, and is independent of whether the things derived
are formulae or sequents, but we will refer to them as formulae.
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consts derl, adm :: "’a psc set => ’a psc set"

derrec :: "’a psc set => ’a set => ’a set"

dersl :: "’a psc set => (’a list * ’a list) set"

dersrec :: "’a psc set => ’a set => ’a list set"

An inference rule (ps, c) : ’a psc is a list of premises ps and a conclusion
c. Then, derl rls is the set of rules derivable from the rule set rls, and derrec

rls prems is the set of formulae derivable using rules rls from the set prems of
premises. These were defined as inductive sets, using auxiliary functions dersl
and dersrec, which concern the derivability of all members of a list. So to say
(ps, c) ∈ derl rls reflects the shape of a derivation tree: ps is a list of exactly
the premises used, in the correct order, whereas c ∈ derrec rls prems holds
even for any set of premises prems containing those required.

Since we use cut-admissibility for Display Calculi, and also some rules of
BiILLsn are admissible (not derivable) in BiILLdn (see Theorem 4), we we need
to formalise the notion that a rule of one system is admissible in another sys-
tem: (ps, c) is admissible iff: if all premises in ps are derivable, then c is derivable:

(ps, c) ∈ adm rls ⇐⇒ (set ps ⊆ derrec rls ⇒ c ∈ derrec rls)

3 Formalising Categorial Semantics

Definition 1. A FILL-category is a category equipped with

– a symmetric monoidal closed structure (⊗, I,�)
– a symmetric monoidal structure (`,⊥)
– a natural family of weak distributivity arrows A⊗ (B`C)→ (A⊗B)`C.

A BiILL-category is a FILL-category where the ` bifunctor has a co-closure −<,
so there is a natural isomorphism between arrows A→ B `C and A−<B → C.

To interpret BiILL sequents in the category semantics, we use the following
translation from (antecedent/succeedent) structures to formulae:

A Φ X, Y X > Y X < Y
τa A I τa(X)⊗ τa(Y ) τa(X)−<τs(Y )
τs A ⊥ τs(X)` τs(Y ) τa(X) � τs(Y )

Definition 2. A FILL- (resp. BiILL-) sequent X $ Y is satisfied by a FILL-
(resp. BiILL-) category if, given any valuation of its propositional variables as
objects, there exists an arrow I → τa(X) � τs(Y ). It is FILL- (resp. BiILL-)
valid if it is satisfied by all such categories.

To establish validity it suffices to show a hom-set is non-empty inthe free FILL-
(resp. BiILL-) categories. We sketch the definitions of these below, omitting the
equations that hold between arrows in these categories.



From Display Calculi to Deep Nested Sequent Calculi 255

Category: A
id �� A A

f ′◦f �� A′′

Symmetric Monoidal: A♥B
f♥g �� A′♥C (A♥B)♥C

α �� A♥(B♥C)
α−1

��

K♥A
λ �� A

λ−1

�� A♥K
ρ �� A

ρ−1

�� A♥B
γ �� B♥A

Closed:

A � B
A�g �� A � C (A � B)⊗ A

ε �� B A
η �� B � A⊗B

Weak Distributivity: A⊗ (A′ ` A′′)
ω �� (A⊗ A′)` A′′

Co-Closed:

A−<B
f−<B �� A′−<B A`B−<A

ε �� B A
η �� B ` (A−<B)

Fig. 1. Arrows of the free BiILL-category

Definition 3. The free FILL- (resp. BiILL-) category has FILL- (resp. BiILL)
formulae as objects, and, given objects A,A,A′′, B, C and arrows f : A→ A′, f ′ :
A′ → A′′, g : B → C, and (♥,K) ∈ {(⊗, I), (`,⊥)}, has arrows as in Fig. 1,
where the co-closure arrows exist in the free BiILL-category only.

Def. 3 can also be written as a deducibility relation between formulae where
we use the turnstile $ to assert the existence of an arrow, without specifying how
it is constructed. For example, the rules below capture the definition of ‘closed’
above, in which the finer details of the construction A� g are elided:

B $ C
A� B $ A� C (A� B)⊗A $ B A $ B � (A⊗B)

We formalise this deducibility relation using the sequents of the previous
section, but with only a formula (not a more complex structure) on each side.
Then the identity arrow and composition of arrows become the usual identity
and cut rules. As another example, the “closure” rules above are encoded as:

lolli_monoR == (["B" |- "C"], "A" --o "B" |- "A" --o "C")

lolliD == ([], ("A" --o "B") &&& "A" |- "B")

lolliI == ([], "A" |- "B" --o ("A" &&& "B"))

Our encoding is faithful because each arrow required by Def. 3 is encoded as
one such rule giving the rules biill cat rules with subset fill cat rules.

4 Formalising Display Calculi

Our formalisation of the display calculus BiILLdc is very similar to that in [7], so
we shall not give full details here. The display system BiILLdc is given in Fig. 2,
where double-lined inference rules are invertible.
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Cut and identity:

(id) p � p
X � A A � Y(cut)

X � Y
Logical rules:

Φ � X(I �)
I � X

(⊥ �) ⊥ � Φ (� I) Φ � I
X � Φ(� ⊥)
X � ⊥

A,B � X
(⊗ �)

A⊗B � X

X � A Y � B(� ⊗)
X, Y � A⊗B

A � X B � Y(` �)
A`B � X,Y

X � A,B
(� `)

X � A`B

X � A B � Y(��)
A � B � X > Y

X � A > B
(��)

X � A � B

A < B � X
(−< �)

A−<B � X
X � A B � Y(� −<)
X < Y � A−<B

Structural rules:

X � Y > Z
(rp)

X,Y � Z

X, Y � Z
(rp)

Y � X > Z

X < Y � Z
(drp)

X � Y,Z

X � Y,Z
(drp)

X < Z � Y

X,Φ � Y
(Φ �)

X � Y

X � Φ, Y
(� Φ)

X � Y

X, Y � Z
(Com �)

Y,X � Z

X � Y,Z
(� Com)

X � Z, Y

W, (X,Y ) � Z
(Ass �)

(W,X), Y � Z

W � (X,Y ), Z
(� Ass)

W � X, (Y,Z)

W, (X < Y ) � Z
(Grnb �)

(W,X) < Y � Z

W � (X > Y ), Z
(� Grnb)

W � X > (Y,Z)

Fig. 2. Display calculus BiILLdc for BiILL

As in our previous formalisation [7], structure variables like X are encoded as
$"X" and formula variables like A are encoded as "A". The quotes are necessary
since we handle substitutions explicitly rather than via Isabelle variables [7]. For
example, the cut rule is encoded as:

cutr == ([($"X" |- "A"), ("A" |- $"Y")], ($"X" |- $"Y"))

To prove the cut-admissibility result we largely reuse the code we used to
prove cut-admissibility for the display calculus for relation algebras [7]. Belnap [1]
gave eight conditions, C1-C8, which guarantee cut-elimination for a given display
calculus. Previous work has shown that all except C8 are trivial or can be checked
automatically [7]. The proof that a connective satisfies Belnap’s C8 condition has
to be coded in part individually for each connective, but, even so, we were able
to reuse most of our previous code. Each display logic rule of BiILLdc is encoded
as shown above for cut, giving the set of rules named biilldc, and its strict
subset biilldc_cf which excludes the cut rule.

Given a set S of encoded rules, the set rulefs S is the (infinite) set of sub-
stitutional instances of members of S. From our previous work [8], the rule (ps,
c) with list of premise (sequents) ps and conclusion (sequent) c is an admissible
rule of S if the following holds, where colon is set-membership ∈:
(?ps : dersrec ?rls {} --> ?c : derrec ?rls {}) ==> (?ps, ?c) : adm ?rls
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Cut and identity: p ⇒ p id
S ⇒ U , A A,V ⇒ T

S ,V ⇒ U , T cut

Structural rules:

S ⇒ T , T ′

(S ⇒ T ) ⇒ T ′ drp1

S ,T ⇒ T ′

S ⇒ (T ⇒ T ′)
rp1

(S ⇒ S ′), T ⇒ T ′

(S ,T ⇒ S ′) ⇒ T ′ gl

(S ⇒ T ) ⇒ T ′

S ⇒ T , T ′ drp2
S ⇒ (T ⇒ T ′)

S ,T ⇒ T ′ rp2
S ⇒ (S ′ ⇒ T ′), T
S ⇒ (S ′ ⇒ T ′, T )

gr

Logical rules:
⊥ ⇒ · ⊥l

S ⇒ T
S ⇒ T ,⊥ ⊥r

S ⇒ T
S , I ⇒ T Il · ⇒ I

Ir

S ,A,B ⇒ T
S ,A⊗B ⇒ T ⊗l

S ⇒ A,T S ′ ⇒ B, T ′

S ,S ′ ⇒ A⊗B, T , T ′ ⊗r

S ,A ⇒ T S ′, B ⇒ T ′

S ,S ′, A`B ⇒ T , T ′ `l
S ⇒ A,B, T
S ⇒ A`B, T `r

S ⇒ A, T S ′, B ⇒ T ′

S ,S ′, A � B ⇒ T , T ′ �l
S ⇒ T , (A ⇒ B)

S ⇒ T , A � B
�r

S , (A ⇒ B) ⇒ T
S ,A−<B ⇒ T −<l

S ⇒ A, T S ′, B ⇒ T ′

S ,S ′ ⇒ A−<B, T , T ′ −<r

Fig. 3. The shallow inference system BiILLsn

We then proved cut-admissibility as below, where colon now simply states the
name of the theorem. The formal proof reuses the work described in [7].

Theorem 1 (Cut-Admissibility). From cut-free BiILLdc-derivations of X $
A and A $ Y we can obtain a cut-free BiILLdc-derivation of X $ Y .

dc_cut_adm : "rulefs {cutr} <= adm (rulefs biilldc_cf)"

We can now gain our first result linking proof theory and semantics. In the fol-
lowing, (?A |- ?B) is a sequent with arbitrary formulae on each side. Arbitrary
structures would appear as ($?A |- $?B) [7].

Theorem 2. BiILLdc is sound and cut-free complete for BiILL-validity (where
the appellation cf captures cut-free).

dc_cat_equiv_cf : "((?A |- ?B) : derrec (rulefs biilldc_cf) {}) =

((?A |- ?B) : derrec (rulefs biill_cat_rules) {})"

5 Shallow Nested Sequent Calculi

In [5] nested sequents are defined as below, where Ai and Bj are formulae:

S T ::= S1, . . . , Sk, A1, . . . , Am ⇒ B1, . . . , Bn, T1, . . . , Tl
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We use Γ and Δ for multisets of formulae and use P , Q, S, T , X , Y , etc., for
nested sequents, and S, X , etc., for multisets of nested sequents and formulae.
The empty multiset is · (‘dot’). A nested sequent is essentially a display structure,
but with the associativity and commutativity of the comma structural connective
implicit in the use of multisets. The sequent arrow ⇒ overloads both > and <,
depending on whether it occurs in an antecedent or a succeedent position in
the sequent. This overloading simplifies the presentation of the nested sequent
rules [5]. The shallow inference system BiILLsn for BiILL is given in Fig. 3.

The most faithful encoding of a nested sequent would be one that uses multi-
sets as a datatype, which is supported by recent versions of Isabelle [18]. However
due to incompatibilities between versions of Isabelle we have been constrained
to use an older version of Isabelle to allow us to reuse proofs for display calculi
developed in that version [7]. Our definition of nested sequents is thus as below:

datatype nested = NComma nested nested | Nseq nested nested

| NPhi | NStructform formula | NSV string

In our definition, NSeq is the nested sequent turnstile⇒, NComma is the comma
of nested sequent calculi and NPhi is its unit. As for display calculi, we allow =>

instead of Nseq and ,,, instead of NComma. In our Isabelle formalisation, BiILLsn

rules are prefixed by sn, e.g., the rp rule is named sn rp. The entire set of rules
is called biillsn and its cut-free subset is biillsn cf (see file N Rls.thy). As
with the display calculus, we define a function nrulefs to generate the (infinite)
set of all substitution instances of a given rule.

We defined a relation ms deep equiv of multiset-equivalence, under which
any two Isabelle nested sequents are equivalent if they would be the same if
a collection of Isabelle nested sequents, separated by commas, were considered
as a multiset. This includes where the difference between two Isabelle nested
sequents occurs at any depth. Its definition relies on a function ms of ns for
“multiset of Isabelle nested sequent” which turns (eg) the Isabelle nested sequent
(S, T ), U into the multiset {# S, T, U #}, and a relation ms ms deep equiv,
which expresses equivalence of multisets of Isabelle nested sequents.

To prove BiILLdc and BiILLsn equivalent, we define translation functions

consts nested_to_str :: "bool => nested => structr"

nested_to_seq :: "nested => structr sequent"

seq_to_nested :: "structr sequent => nested"

str_to_nested :: "structr => nested"

where the translation from a nested sequent to a display calculus structure de-
pends on whether it is in an antecedent or succedent position.

The first two of these functions convert a nested sequent to a display cal-
culus sequent or structure by converting ‘⇒’ to ‘$’ (for nested to seq), to ‘>’
(for nested to str True), or to ‘<’ (for nested to str False), and converting
comma to comma. The latter two convert ‘$’, ‘>’, and ‘<’ to ‘⇒’.

For example nested to seq takes (A⇒ B)⇒ (C ⇒ D) to A < B $ C > D,
and seq to nested does the reverse.

Considering the set of display calculus sequents with < and > only in an-
tecedent and succedent positions respectively (expressed as seq LtGtOK), and the
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set of nested sequents, then we have mutually inverse bijections nested to seq
and seq to nested between these sets. We can express this by:

nest_seq_equiv : "(seq_LtGtOK ?seq & seq_to_nested ?seq = ?nes) =

((EX a s. ?nes = ($a => $s)) & nested_to_seq ?nes = ?seq)"

The proof systems BiILLdc and BiILLsn are very similar; their structural rules
are the same (modulo some notational variance). The only difference is that
BiILLdc requires that logical rules be applied only to a ‘displayed’ formula, i.e.
the principal formula must appear in isolation either on the left or on the right
of the turnstile. Their equivalence is not surprising, so we state their equivalence
here and refer the reader to the proof scripts for details.

Theorem 3. The display sequent A $ B is cut-free BiILLdc-derivable iff the
nested sequent A ⇒ B is cut-free BiILLsn-derivable, and I $ A is cut-free
BiILLdc-derivable iff the nested sequent · ⇒ A is cut-free BiILLsn-derivable.

dc_sn_equiv_alt = "((?A |- ?B) : derrec (rulefs biilldc_cf) {}) =

((?A => ?B) : derrec (nrulefs biillsn_cf) {})"

dc_sn_equiv : "((T |- ?A) : derrec (rulefs biilldc_cf) {}) =

(($NPhi => ?A) : derrec (nrulefs biillsn_cf) {})"

6 Deep Nested Sequent Calculi

Deep inference rules for nested sequents are applied in a context, i.e., a nested
sequent with a hole [ ]. We use several notions of contexts in our formalisation.
The first two accept a set of nested sequent rules and return a set of nested
sequent rules while the third accepts and returns a set of Isabelle nested sequents

ctxt :: "nested psc set => nested psc set"

dctxt :: "nested psc set => nested psc set"

hctxt :: "nested set => nested set"

For example, if ([P ], C) ∈ R, where [P ] is a singleton list (rather than a context)
containing one premise, then ([X [P ]], X [C]) ∈ ctxt R is also a single premise
rule. Likewise, if C ∈ R and X [ ] is a hollow context then X [C] ∈ hctxt R.

Some of the proofs involving ctxt were easier using a related definition dctxt

where X [S ⇒ T ] means adding nested sequents to S or to T , rather than to
S ⇒ T . For example, if ([P1 ⇒ P2], (C1 ⇒ C2)) ∈ dctxt R, then ([P1, X ⇒
P2], (C1, X ⇒ C2)) ∈ dctxt R. Similarly, if ([P1 ⇒ P2], (C1 ⇒ C2)) ∈ dctxt R
then ([(P1 ⇒ P2)⇒ X ], ((C1 ⇒ C2)⇒ X)) ∈ dctxt R

The nested sequent system BiILLdn is given in Fig. 4. Notice that it lacks the
structural rules. The zero-premise rules require that certain sequents or contexts
are hollow, i.e., contain no occurrences of formulae. The branching rules require
operations to merge contexts and nested sequents, which are explained below.

The merge set X1 •X2 of two sequents X1 and X2 is defined as:

X1 •X2 = { (Γ1, Γ2, Y1, . . . , Ym ⇒ Δ1, Δ2, Z1, . . . , Zn) |
X1 = (Γ1, P1, . . . , Pm ⇒ Δ1, Q1, . . . , Qn) and
X2 = (Γ2, S1, . . . , Sm ⇒ Δ2, T1, . . . , Tn) and
Yi ∈ Pi • Si for 1 ≤ i ≤ m and Zj ∈ Qj • Tj for 1 ≤ j ≤ n }
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Propagation rules:

X[S ⇒ (A,S ′ ⇒ T ′), T ]

X[S , A ⇒ (S ′ ⇒ T ′), T ]
pl1

X[(S ⇒ T , A),S ′ ⇒ T ′]

X[(S ⇒ T ),S ′ ⇒ A, T ′]
pr1

X[S , A, (S ′ ⇒ T ′) ⇒ T ]

X[S , (S ′, A ⇒ T ′) ⇒ T ]
pl2

X[S ⇒ T , A, (S ′ ⇒ T ′)]

X[S ⇒ T , (S ′ ⇒ T ′, A)]
pr2

Identity and logical rules: In branching rules, X[ ] ∈ X1[ ] • X2[ ], S ∈ S1 • S2 and
T ∈ T1 • T2.

X[ ], U and V are hollow.

X[U , p ⇒ p,V] idd
X[ ], U and V are hollow.

X[⊥,U ⇒ V] ⊥d
l

X[S ⇒ T ]

X[S ⇒ T ,⊥]
⊥d

r

X[S ⇒ T ]

X[S , I ⇒ T ]
Idl

X[ ], U and V are hollow.

X[U ⇒ I,V] Idr

X[S , A,B ⇒ T ]

X[S , A⊗B ⇒ T ]
⊗d

l

X1[S1 ⇒ A, T1] X2[S2 ⇒ B, T2]

X[S ⇒ A⊗B, T ]
⊗d

r

X1[S1 ⇒ A, T1] X2[S2, B ⇒ T2]

X[S ,A � B ⇒ T ]
�d

l

X[S ⇒ T , (A ⇒ B)]

X[S ⇒ T , A � B]
�d

r

X1[S1, A ⇒ T1] X2[S2, B ⇒ T2]

X[S ,A`B ⇒ T ]
`d

l

X[S ⇒ A,B, T ]

X[S ⇒ A`B, T ]
`d

r

X[S , (A ⇒ B) ⇒ T ]

X[S , A−<B ⇒ T ]
−<d

l

X1[S1 ⇒ A, T1] X2[S2, B ⇒ T2]

X[S ⇒ A−<B, T ]
−<d

r

Fig. 4. The deep inference system BiILLdn

The merge set X1[ ] • X2[ ] of two contexts X1[ ] and X2[ ] is defined in
Figure 5. If X [ ] = X1[ ]•X2[ ] we say X1[ ] and X2[ ] are a partition of X [ ]. We
extend the notion of a merge set between multisets of formulae and sequents as
follows. Given X = Γ ∪ {X1, . . . , Xn} and Y = Δ∪ {Y1, . . . , Yn} their merge set
contains all multisets of the form: Γ ∪Δ ∪ {Z1, . . . , Zn} where Zi ∈ Xi • Yi.

In Isabelle we defined merged sequents using triples, so in effect (X1, X2, X) ∈
rmerge means X is a sequent in X1 • X2. This is easier to define than in the
paper where multisets are used, because we require simply that each structural
atom (formula or structure variable) in X is replaced by Φ in exactly one of X1

or X2. That is, each atom has to go in one partition or the other. Likewise, to
express the idea of X1[ ] •X2[ ] we define (X1, X2, X) ∈ rmerge1(Y1, Y2, Y ) to
be similar except that at one spot X contains Y , where Xi contains Yi.

We illustrate here some key steps in the formalisation of the equivalence be-
tween BiILLsn and BiILLdn. We show only the translation from shallow nested
sequent proofs to deep nested sequent proofs, which is the more difficult part of
the equivalence. The key lemma here is that the rules rpi, drpi, gl and gr, which
are in BiILLsn but not in the deep calculus BiILLdn, are admissible in BiILLdn.
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If X1[ ] = [ ] and X2[ ] = [ ] then X1[ ] •X2[ ] = {[ ]}
If X1[ ] = (Γ1, Y1[ ], P1, . . . , Pm ⇒ Δ1, Q1, . . . , Qn) and

X2[ ] = (Γ2, Y2[ ], S1, . . . , Sm ⇒ Δ2, T1, . . . , Tn) then
X1[ ] •X2[ ] = { (Γ1, Γ2, Y [ ], U1, . . . , Um ⇒ Δ1,Δ2, V1, . . . , Vn) |

Y [ ] ∈ Y1[ ] • Y2[ ] and Ui ∈ Pi • Si for 1 ≤ i ≤ m and
Vj ∈ Qj • Tj for 1 ≤ j ≤ n }

If X1[ ] = (Γ1, P1, . . . , Pm ⇒ Δ1, Y1[ ], Q1, . . . , Qn) and
X2[ ] = (Γ2, S1, . . . , Sm ⇒ Δ2, Y2[ ], T1, . . . , Tn) then

X1[ ] •X2[ ] = { (Γ1, Γ2, U1, . . . , Um ⇒ Δ1,Δ2, Y [ ], V1, . . . , Vn) |
Y [ ] ∈ Y1[ ] • Y2[ ] and Ui ∈ Pi • Si for 1 ≤ i ≤ m and
Vj ∈ Qj • Tj for 1 ≤ j ≤ n }

Fig. 5. Merging of contexts

Lemma 1. The rules drp1, rp1, drp2, rp2, gl, and gr permute up over all logical
rules of BiILLdn.

This is the permutation lemma, that (in general) where one of the shallow rules
in question follows a rule of BiILLdn in a derivation, then the derivation can be
re-ordered so that the shallow rule precedes the deep rule. We illustrate here
a step in the proof of this permutation lemma, i.e., when permuting structural
rules over a single-premise logical rule. We proved theorems of the following form

p_irp_anda : "?c = ($?ca => $?cs) -->

([?p], ?c) : ctxt (nrulefs {sn_anda}) -->

(?c, ?c’) : ms_deep_equiv --> ([?c’], ?d’) : nrulefs {invert sn_rp} -->

(EX p’ q q’ d. (?p, p’) : ms_deep_equiv &

([p’], q) : nrulefs {invert sn_rp} & (q, q’) : ms_deep_equiv &

([q’], d) : dctxt (nrulefs {sn_anda}) & (d, ?d’) : ms_deep_equiv)"

That is, where a structural rule, e.g., rp1, appears below a deep logical rule
in a derivation, the derivation steps may be permuted so that the logical rule
follows the other rule. It may be noted that this result uses dctxt, not ctxt,
in the conclusion. This made semi-automatic proof easier; the lemmas for all
the logical rules concerned (6 of them) for all the structural rules involved (6 of
them) were done using just three separate sets of tactics.

The proofs of the permutation lemma involved a large number of cases, be-
cause a sequent expression such as X [S ⇒ T ] can match a given sequent Z in
numerous ways, for two reasons:

– for multisets S and T , there can be multiple ways to achieve (S, . . .) ∈
ms deep equiv

– the size of context X [ ] is arbitrary, so S ⇒ T can match any part of Z.

The attempted proof encounters many obviously impossible cases such as a for-
mula matching S ⇒ T . After these are eliminated, we counted the cases where a
goal (such as the conclusion of p rp anda) is actually solved. These cases num-
bered 616, which shows the value of automating the process as much as possible.
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Theorem 4. All rules cut-free derivable in BiILLsn are (cut-free) admissible in
BiILLdn.

sn_dn_der : "derl (nrulefs biillsn_cf) <= adm biilldn"

A sequent is cut-free provable (derivable from the empty set of assumption se-
quents) in BiILLsn iff it is provable BiILLdn.

sn_dn_equiv : "(?r : derrec (nrulefs biillsn_cf) {}) =

(?r : derrec biilldn {})"

The formula A is cut-free provable in the display calculus iff it is (cut-free)
provable in BiILLdn.

dc_dn_equiv : "((T |- ?A) : derrec (rulefs biilldc_cf) {}) =

(($NPhi => ?A) : derrec biilldn {})"

7 Soundness of the Deep Nested Calculus FILLdn

Definition 4. A nested sequent is a nested FILL-sequent if it has no nesting
of sequents on the left of ⇒, and no occurrences of −<.

BiILLdn enjoys the separation property that rule applications with FILL-
sequents as their conclusions may only have FILL-sequents as their premises;
note that the display calculus BiILLdc obviously lacks this property, given (drp).
We hence define FILLdn as the proof system obtained from BiILLdn by restricting
to FILL-sequents and removing the unnecessary rules pr1, pl2, −<d

l and −<d
r .

Our goal here is to show that FILLdn is sound with respect to FILL categories.
The formula translation of τs (see §3) can be adapted straightforwardly to

map (nested) FILL-sequents to FILL-formulae. Such a sequent S is FILL-valid
if there is an arrow I → τs(S) in the free FILL-category.

In our formalisation, we in fact defined the rules filldn of FILLdn without
requiring the sequents involved to be FILL-sequents. We then defined a corre-
sponding set sfilldn of rules, requiring that the sequents are FILL-sequents.

Theorem 5. A BiILLdn-derivation of a FILLdn-sequent is a FILLdn-derivation.

dn_der_biill_sfill : "[| ?c : derrec biilldn ?ps;

ALL U. (U, ntau True ?c) : ipsubfml^* --> U ~: excl_fmls |] ==>

?c : derrec sfilldn ?ps"

The soundness proof consists of a series of lemmas showing that the rules of
FILLdn preserves validity going downward (from premises to conclusion). We
illustrate one particularly challenging lemma that involves context merging.

Lemma 2. Take X [ ] ∈ X1[ ]•X2[ ] and T ∈ T1 •T2. Then the following arrows
exist in the free FILL-category for all A,B, Γ1 and Γ2:

(a) τs(X1[Γ1 ⇒ A, T1])⊗ τs(X2[Γ2 ⇒ B, T2]) → τs(X [Γ1, Γ2 ⇒ A⊗B, T ]);
(b) τs(X1[Γ1 ⇒ A, T1])⊗ τs(X2[Γ2, B ⇒ T2]) → τs(X [Γ1, Γ2, A� B ⇒ T ]);
(c) τs(X1[Γ1, A⇒ T1])⊗ τs(X2[Γ2, B ⇒ T2]) → τs(X [Γ1, Γ2, A`B ⇒ T ]);
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This lemma corresponds to soundness of branching logical rules of FILLdn. We
proved the inductive part (involving the contexts Xi and X) once, in the form
of fill rmerge1 der nseq. Then we proved the base case (without Xi and X)
for each connective, resulting in three theorems lem27s, of which one is shown.

fill_rmerge1_der_nseq : "[| (?Ta, ?Tb, ?Tc) : rmerge1 (?A, ?B, ?C);

?prems = {ntau True ?A &&& ntau True ?B |- ntau True ?C};

(?W, ntau False ?C) : ipsubfml^* & ?W : excl_fmls;

ALL U. (U, ntau True ?Tc) : ipsubfml^* --> U ~: excl_fmls |] ==>

(ntau True ?Ta &&& ntau True ?Tb |- ntau True ?Tc) :

derrec (rulefs fill_cat_rules) ?prems"

lem27s (first one) :

"[| (?A, ?B, ?C) : dn_ands; (?Ta, ?Tb, ?Tc) : rmerge1 (?A, ?B, ?C);

ALL U. (U, ntau True ?Tc) : ipsubfml^* --> U ~: excl_fmls |] ==>

(ntau True ?Ta &&& ntau True ?Tb |- ntau True ?Tc) :

derrec (rulefs fill_cat_rules) {}"

Theorem 6. For every rule of FILLdn, if the premises are FILL-valid then so
is the conclusion.

filldn_rules_valid : "[| (?ps, ?c) : filldn;

ALL U. (U, ntau True ?c) : ipsubfml^* --> U ~: excl_fmls |] ==>

(T |- ntau True ?c) : derrec (rulefs fill_cat_rules)

((%p. T |- ntau True p) ‘ set ?ps)"

Theorem 7. A formula is FILL-valid iff it is FILLdn-provable, and BiILL is
conservative over FILL.

8 Conclusion and Future Work

Finding a cut-free sequent calculus for FILL has been a notoriously difficult
problem, as we have reviewed in our introduction, and involved candidate proof
systems that turned out to be incomplete. Our formalisation finally establishes
convincingly that our deep nested calculus FILLdn is both sound and complete
for FILL. Apart from our FILLdn, all other existing proof calculi for FILL still
require complex annotations to ensure cut-elimination.

The formalisation and verification described here was a significant task: it was
the major activity for an experienced Isabelle user (Dawson) for about seven
months, not including some months more working on the proof which ultimately
was found to be flawed (see §1). and not counting the proof of Thm 1, reused
from [7]. The most difficult single part of it was the proof of Lemma 1, discussed
in §6. The difficulty in defining a nested sequent datatype containing multisets of
nested sequents (see §5) was also significant. The value of the formal verification
is clear since it led us to find the flaw in the previous attempt at a proof.

Taking a broader perspective, we have shown a detailed formalisation of a
methodology for deriving a deep nested sequent calculus for a logic from its
categorical semantics via a display calculus and a shallow nested sequent calculus
for a natural extension containing additional connectives. For future work, we
plan to apply this same formalised methodology to derive deep nested sequent
calculi for a wide range of logics [4,15,10,11,17,14]. A difference between these
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logics and FILL is the use of “additive” context splitting in branching rules,
where contexts are duplicated across premises. In the presence of contraction
rules, our multiplicative context splitting can simulate such additive splitting,
just as in the traditional sequent calculus. That is, one can apply contraction to
duplicate every formula occurrence in the context before splitting them. Thus
we think a similar formalisation effort for, say, nested sequent calculi for modal
logics [11], would benefit significantly from our current formalisation.
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8. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied
to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 263–277. Springer, Heidelberg (2010)
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Abstract. The Chomsky hierarchy plays a prominent role in the foundations of
theoretical computer science relating classes of formal languages of primary im-
portance. In this paper we use recent developments on coalgebraic and monad-
based semantics to obtain a generic notion of a T-automaton, where T is a monad,
which allows the uniform study of various notions of machines (e.g. finite state
machines, multi-stack machines, Turing machines, weighted automata). We use
the generalized powerset construction to define a generic (trace) semantics for
T-automata, and we show by numerous examples that it correctly instantiates for
some known classes of machines/languages captured by the Chomsky hierarchy.
Moreover, our approach provides new generic techniques for studying expressiv-
ity power of various machine-based models.

1 Introduction

In recent decades much interest has been drawn to studying generic abstraction devices
not only formally generalizing various computation models and tools, but also identify-
ing core principles and reasoning patterns behind them. An example of this kind is given
by the notion of computational monad [21], which made an impact both on the theory
of programming (as an organization tool for denotational semantics [10, 23]) and on the
practice (e.g. being implemented as a programming language feature of Haskell [1] and
F# [32]). Another example is given by the theory of coalgebras [26], which provides a
uniform framework for concurrency theory and observational semantics of systems.

In this paper, we use previous work on monads and coalgebras to give a combined
(bialgebraic) perspective of the classical automata theory as well as of some less stan-
dard models such as weighted automata. This does not only provide a unifying frame-
work to study various computational models but also suggests new perspectives for
proving expressivity bounds for various kinds of machines in a generic way.

We base our framework on the notion of a T-automaton, i.e. a coalgebra of the form

m : X → B × (TX)A,

where T is the functor part of a monad T, which we understand as a mathematical ab-
straction of a computational effect (in the sense of [21]) happening in conjunction with

� An extended version of our paper containing all proofs is avaiblable at
http://arxiv.org/abs/1401.5277.

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 265–280, 2014.
© IFIP International Federation for Information Processing 2014
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state transitions of the automaton;A is the set of inputs; andB is the set of outputs. Ac-
cording to this view, e.g. nondeterminism is the underlying effect of nondeterministic
finite state machines. Analogously, we show that certain (nondeterministic) transforma-
tions of the pushdown store form the underlying effect of pushdown automata, etc. By
instantiating the operational analysis of computational effects from [23] to our setting
we arrive at syntactic fixpoint expressions representingT-automata and prove a Kleene-
style theorem for them, thus generalizing previous work of the third author [30].

A crucial ingredient of our framework is the generalized powerset construction [31],
which serves as a coalgebraic counterpart of classical Rabin-Scott determinization algo-
rithm [25]. It allows us to define trace semantics of T-automata and fixpoint expressions
denoting their behavior.

We give a formal argument indicating that it is unlikely to capture languages beyond
NTIME(n) using coalgebraic (trace) semantics in a straightforward way (i.e., in our
case, using the generalized powerset construction) — the phenomenon known before
as a property of real-time machines [4]. The requirement to be real-time is an inher-
ent coalgebraic phenomenon of reactivity (or productivity), which restricts the class
of behaviors that can be modeled. This led us to formulate a more general observa-
tional semantics, that allows us to take into account internal (or silent τ -)transitions
coalgebraically. The latter furthermore enabled us to capture recursively enumerable
languages by a special instance of T-automata called tape automata and that are very
similar to Turing machines. Capturing any kind of Turing complete formalism by coal-
gebras has been a long standing open problem, to which the present paper provides an
answer. This results brings us closer to having a coalgebraic Chomsky hierarchy and a
new abstract understanding of computability theory.

Related Work. We build on previous work on coalgebraic modelling and monad-
based semantics. Most of the applications of coalgebra to automata and formal lan-
guages however addressed rational models (e.g. rational streams, regular languages)
from which we note [27] (regular languages and finite automata), [15] (bialgebraic view
of Kleene algebra and regular expressions), [30, 20, 22, 3] (coalgebraic regular expres-
sions). More recently, some further generalizations were proposed. In recent work [34]
a coalgebraic model of context-free grammars is given, without however an analogous
treatment of push-down automata. In [13] some initial results onT-automata over stacks
by the first author were presented, which the present work extends considerably.

2 Preliminaries: Deterministic Moore Automata, Coalgebraicaly

In this section we recall the main definitions and existing results on coalgebraic mod-
elling of state machines. This material, as well as the material of the following sections,
uses the language of category theory, hence we assume readers to be familiar with basic
notions. We use Set as the main underlying category throughout. Further abstraction
from Set to a more general category, while possible (and often quite straightforward),
will not be pursued in this paper. The central notion in this paper is that of an F -
coalgebra is a pair (X, f : X → FX) where F is an endofunctor on Set called tran-
sition type, X is a set called the state space and f is a map called transition structure.
We shall occasionally identify a coalgebra with its state space if no confusion arises.
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Coalgebras of a fixed transition type F form a category whose morphisms are maps
of the state spaces commuting with the transition structure: h : X → Y is a coalgebra
morphism from (X, f : X → FX) to (Y, g : Y → FY ) iff g ◦ h = Fh ◦ f . A final
object of this category (if it exists) plays a particularly important role and is called
final coalgebra. We denote the final F -coalgebra by (νF, ι : νF → FνF ), and write
f̂ : X → νF for the unique homomorphism from (X, f) to (νF, ι).

Our core example is the standard formalization of Moore automata as coalgebras [26].
For the rest of the paper we fix a finite set A of actions and a set B of outputs. We call
the functor L = B × (--)A the language functor (over A, B). The coalgebras for L are
given by a set X of states with a transition structure on X given by maps

o : X → B and ∂a : X → X, (a ∈ A)

where the left-hand map, called the observation map, represents an output function
(e.g. an acceptance predicate if B = 2) and the right-hand maps, called a-derivatives,
are the next state functions indexed by input actions from A. Finite L-coalgebras are
hence precisely classical Moore automata. It is straightforward to extend a-derivatives
to w-derivatives with w ∈ A∗ by induction: ∂ε(x) = x; ∂aw(x) = ∂a(∂w(x)).

The final L-coalgebra νL always exists and is carried by the set of all formal power
series BA∗

. The transition structure is given by o(σ) = σ(ε) and ∂a(σ) = λw.σ(aw)
for every formal power series σ : A∗ → B. The unique homorphism from an L-
coalgebra X to the BA∗

assigns to every state x0 ∈ X a formal power series that we
regard as the (trace) semantics of X with x0 as an initial state. Specifically, if B = 2
then finite L-coalgebras are deterministic automata and BA∗ ∼= P(A∗) is the set of
formal languages on A and the trace semantics assigns to every state of a given finite
deterministic automaton the language accepted by that state.

Definition 2.1 (Trace Semantics, Trace Equivalence). Given an L-coalgebra (X, f)
and x ∈ X , we write �−�X : X → BA∗

for the unique L-coalgebra morphism.
For every x ∈ X we call �x�X the trace semantics of x (w.r.t. X). Trace equivalence
identifies exactly those x and y for which �x�X = �y�Y (for possibly distinct coalgebras
X and Y ); this is denoted by x ∼ y.

The following result easily follows by definition (see e.g. [27, Theorem 9.1]).

Proposition 2.2. Given x ∈ X and y ∈ Y where X and Y are L-coalgebras, x ∼ y
iff for any w ∈ A∗, o(∂w(x)) = o(∂w(y)).

It is well-known that Moore automata, i.e. finite L-coalgebras, can be characterized in
terms of the formal power series occurring as their trace semantics (see e.g. [27]).

Definition 2.3 (Regular Power Series). We call a formal power series σ regular if the
set {∂w(σ) | w ∈ A∗} is finite.

The following result is a rephrasing of a classical result on Moore automata (see e.g. Ei-
lenberg [9]).

Proposition 2.4. A formal power series is accepted by a Moore automaton if and only
if it is regular.
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Remark 2.5. Formal power series are usually considered when B = k is a semiring,
in which case one usually also speaks of rational formal power series as behaviours of
finite weighted automata over k (see e.g. [8]). Our notion of regular formal power se-
ries (Definition 2.3) generally disagrees with the latter one (unlessB is finite) and is in
conceptual agreement with such notions as ‘regular events’ and ‘regular trees’ [12, 7].
Regular formal power series as the semantics of precisely the finite L-coalgebras are a
special instance of a general coalgebraic phenomenon [2, 20]. Let F be any finitary end-
ofunctor on Set. Define the set $F to be the union of images of all finite F -coalgebras
(X, f : X → FX) under the final morphism f̂ : X → νF . Then $F is a subcoalgebra
of νF with an isomorphic transition structure map called the rational fixpoint of F . It
is (up to isomorphism) uniquely determined by either of the two following universal
properties: (1) as an F -coalgebra it is the final locally finite coalgebra and (2) as an
F -algebra it is the initial iterative algebra. We refer to [2] for more details.

The characteristic property of regular formal power series can be used as a definitional
principle. In fact, given a regular power series σ and assuming that A = {a1, . . . , an},
we can view {σ1, . . . , σk} = {∂w(σ) | w ∈ A∗} as the solution of a system of recursive
equations of the form

σi = a1.σi1 � · · · � an.σin � ci, i = 1, . . . , k, (2.1)

which should be read as follows: for all 1 ≤ i, j ≤ k, ∂aj (σi) = σij and σi(ε) = ci.
Here we introduce � as a notation allowing us to syntactically glue together the infor-
mation about the “head” of a regular formal series and all its derivatives. Reading the
σ1, . . . , σk as recursion variables, the system (2.1) uniquely determines the correspond-
ing regular power series: for every i it defines σi(ε) as ci and for w = au it reduces
calculation of σi(w) to calculation of some σj(u) — this induction is obviously well-
founded.

Any recursive equation (2.1) can be compactly written as

σi = μσi. (a1.σi1 � · · · � an.σin � ci) (2.2)

where μ is the fixpoint operator binding the occurrences of σi in the right term. One
can successively eliminate all the σi except σ using the equations (2.2) as assignments
and thus obtain a “solution” σ = t of (2.1) in σ where t is a closed term given by the
following grammar:

γ ::= μX. (a1.δ � · · · � an.δ � B) δ ::= X | γ (2.3)

Here X refers to an infinite stock of variables. Equation σ = t is then nothing but a
condensed representation of system (2.1) and as such it uniquely defines σ. On the other
hand, expressions of the form (2.3) suggest a far reaching generalization of classical
regular expressions and the fact that they capture exactly regular power series together
with Proposition 2.4 can be viewed as a coalgebraic reformulation of Kleene’s theorem.
This view has been advanced recently (in a rather more general form) in [30, 22] and is
of crucial importance for the present work.

Proposition 2.4 in conjunction with the presentation of regular formal power series
as expressions (2.3) suggest that every expression gives rise to a finite L-coalgebra
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generated by it, whose state space consists of expressions. This is indeed true and can
be viewed as a coalgebraic counterpart of the classical Brzozowski’s theorem for regular
expressions [5]. Given an expression e = μx. (a1.e1 � · · ·an.en � c), let

o(e) = c and ∂ai(e) = ei[e/x]. (2.4)

Proposition 2.6. Let e be a closed expression (2.3). Then the set {∂w(e) | w ∈ A∗}
forms a finite L-coalgebra under the transition structure (2.4).

3 Monads and Algebraic Theories

In the previous section we have presented a coalgebraic picture of deterministic Moore
automata, essentially capturing the Type-3 level of Chomsky hierarchy (modulo the
generalization from languages to power series). In order to deal with other levels we
introduce (finitary) monads and algebraic theories as a critical ingredient of our for-
malization, thus building on top of the recent previous work [17, 31].

In this work we find it easiest to work with monads in the form of Kleisli triples.

Definition 3.1 (Kleisli Triple). A Kleisli triple (T, η, --†) consists of an object assign-
ment T sending sets to sets, a family of maps ηX : X → TX and an operator, called
Kleisli lifting, sending any f : X → TY to f † : TX → TY . These data are subject to
the following axioms: η† = id, f †η = f and (f †g)† = f †g†.

It is well-known that the definition of a monad as a Kleisli triple is equivalent to the
usual definition of a monad T as an endofunctor T equipped with natural transforma-
tions η : Id → T (unit) and μ : T 2 → T (multiplication). A T-algebra is given by a
set X and a map f : TX → X satisfying standard coherence conditions: fηX = idX

and μXTf = fμX , and a morphism of T-algebras is just a morphism of algebras
for the functor T (see [19]). The category of T-algebras and their morphisms is called
Eilenberg-Moore category of T and is denoted by SetT.

In what follows we occasionally use Haskell-style do-notation: for any p ∈ TX and
q : X → TY we write do x ← p; q(x) to denote q†(p) ∈ TY ; and p ∈ T (X × Y )
we write do〈x, y〉 ← p; q(x, y). This notation allows for a more convenient point-full
reasoning with Kleisli morphisms, effectively avoiding potential tedious calculations
due to strength. A monad T is finitary if the underlying functor T is finitary, i.e., T
preserves filtered colimits. Informally, T being finitary means that T is determined by
its action on finite sets. In addition, finitary monads admit an equivalent presentation in
terms of (finitary) algebraic theories.

Definition 3.2 (Algebraic Theory). An algebraic signature Σ consists of operation
symbols f , each of which comes together with its arity n, which is a nonnegative integer
— we denote this by f : n→ 1. Symbols of zero arity are also called constants. Terms
over Σ are constructed from operations and variables in the usual way. An algebraic
theory over Σ is given by a set of term equations closed under under inference of the
standard equational logic. As usual, an algebraic theory arises as the deductive closure
of a set of its axioms.
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Example 3.3 (Monads, Algebraic Theories). Standard examples of computationally
relevant monads include (cf. [21]):

– The finite and unbounded powerset monads Pω and P . Only the first one is finitary
and corresponds to the algebraic theory of join-semilattices with bottom.
– The store monad over a store S. The functorial part given as X !→ (X × S)S .
Typically, S is the set of maps L → V from locations L to values V . A function f :
X → (Y ×S)S represents a computation that takes a value in X and, depending on the
current contents of the store S returns a value in Y and a new store content. As shown
in [24], if V is finite then the corresponding store monad can be captured by an algebraic
theory over operations {lookupl : V → 1}l∈L and {updatel,v : 1→ 1}l∈L,v∈V .
– The continuation monad. Given any setR, the assignmentX !→ (RX → R) yields a
monad under the following definitions: η(x)=λf. f(x) and f†(k)=λc. k(λx. f(x)(c)).
This monad is known to be non-finitary, unless R = 1.

The following class of examples is especially relevant for the coalgebraic modelling of
state-based systems.

Example 3.4 (Semimodule Monad, Semimodule Theory). Given a semiring R, the
semimodule monad TR assigns to a set X the free left R-semimodule 〈X〉R over X .
Explicitly, 〈X〉R consists of all formal linear combinations of the form

r1 · x1 + · · ·+ rn · xn (ri ∈ R, xi ∈ X). (3.1)

Equivalently, the elements of 〈X〉R are maps f : X → R with finite support (i.e. with
|{x ∈ X | f(x) �= 0}| < ω). The assignment X !→ 〈X〉R extends to a monad, which
we call the (free) semimodule monad: ηX sends any x ∈ X to 1 · x and σ†(p) applies
the substitution σ : X → 〈Y 〉R to p ∈ 〈X〉R and renormalizes the result as expected.

The semimodule monad corresponds to the algebraic theory of R-semimodules. Ex-
plicitly, we have a constant /0 : 0 → 1, a binary operation + : 2 → 1, and every r ∈ R
gives rise to a unary operation r̄ : 1 → 1. Terms of the theory are then build over
these operations and modulo the laws of commutative monoids for + and /0, plus the
following ones of a (left) action of R on a monoid:

r̄(x+ y) = r̄(x) + r̄(y) r̄(/0) = /0

r̄(x) + s̄(x) = r + s(x) 0̄(x) = /0

r̄(s̄(x)) = r · s(x) 1̄(x) = x

It can be shown that any term can by normalized to the form r̄1(x1)+ · · ·+ r̄n(xn) and
the latter coherently represents the element (3.1) of 〈X〉R, which allows us to identify
them. Some notable instances of the semimodule monad TR for semiringsR of interest
are the following:

– If R is the Boolean semiring {0, 1} then TR is (isomorphic to) the finite powerset
monad Pω.
– If R is the semiring of natural numbers then TR is the multiset monad: the elements
of 〈X〉R are in bijective correspondence with finite multisets over X .
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– If R is the interval [0,+∞) then TR is the monad of finite valuations used for
modelling probabilistic computations [33].

Finally, the following example is critical for modelling the push-down store.

Example 3.5 (Stack Monad, Stack Theory). Given a finite set of stack symbols Γ ,
the stack monad (over Γ ) is the submonad T of the store monad (--×Γ ∗)Γ

∗
for which

the elements 〈r, t〉 of TX ⊆ (X × Γ ∗)Γ
∗

satisfy the following restriction: there exists
k depending on r, t such that for every w ∈ Γ k and u ∈ Γ ∗, r(wu) = r(w) and
t(wu) = t(w)u. Intuitively, a function f : X → TY (cf. Example 3.3) has to compute
its output in Y and result stack in Γ ∗ using only a portion of the stack of a predeclared
size k that does not depend on the current content of the stack.

The stack theory w.r.t. Γ = {γ1, . . . , γn} consists of operations pop : n+ 1 → 1
and pushi : 1→ 1 (1 ≤ i ≤ n). The intuition behind these operations is as follows (in
each case the variables under an operation represent continuations, i.e. computations
that will be performed once the operation has completed its task, cf. [23]):

– pop(x1, . . . , xn, y) proceeds with y if the stack is empty; otherwise it removes the
top element of it and proceeds with xi where γi ∈ Γ is the removed stack element.
– pushi(x) adds γi ∈ Γ on top of the stack and proceeds with x.

These operations are subject to the following axioms:

pushi(pop(x1, . . . , xn, y)) = xi

pop(push1(x), . . . , pushn(x), x) = x

pop(x1, . . . , xn, pop(y1, . . . , yn, z)) = pop(x1, . . . , xn, z)

As shown in [13] the stack theory is precisely the algebraic theory of the stack monad.

Finally we introduce a monad and the corresponding theory underlying the tape of
a Turing machine. We introduce the following notation: given an integer i ∈ Z, a
nonnegative integer k and a map σ : Z → Γ , we write σ =i±k σ

′ (σ =i±k σ′) if
σ(j) = σ′(j) for all j such that |i− j| ≤ k (|i− j| > k).

Definition 3.6 (Tape Monad, Tape Theory). Let Γ be a finite set of tape symbols.
The tape monad (over Γ ) is the submonad T of the store monad (--×Z × ΓZ)Z×ΓZ

for which TX consists of exactly those maps 〈r, z, t〉 : Z × ΓZ → (X × Z × ΓZ),
which satisfy restriction: there is k ≥ 0 such that for any i, j ∈ Z and σ, σ′ : Z→ Γ if
σ =i±k σ

′ then

t(i, σ) =i±k t(i, σ
′), r(i, σ) = r(i, σ′), |z(i, σ)− i| ≤ k,

t(i, σ) =i±k σ, z(i, σ) = z(i, σ′), t(i, σ+j) = t(i + j, σ)+j ,

r(i, σ+j) = r(i + j, σ), z(i, σ+j) = z(i+ j, σ) − j.

where σ+j denotes σ ◦ (λi. i+ j). The tape signature w.r.t. Γ = {γ1, . . . , γn} consists
of the operations read : n → 1, writei : n → 1 (1 ≤ i ≤ n), lmove : 1 → 1,
rmove : 1→ 1, which we interpret over any TX as follows:

�read�(p1, . . . , pn)(z, σ) = pσ(z)(z, σ) �lmove�(p)(z, σ) = p(z − 1, σ)

�writei�(p)(z, σ) = p(z, σ[z !→ γi]) �rmove�(p)(z, σ) = p(z + 1, σ)
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where σ[z !→ γ] overwrites σ with the assignment z !→ γ, that is: σ[z !→ γ](z) = γ and
σ[z !→ γ](z′) = σ(z′) for z′ �= z. The tape theory w.r.t. Γ consist of all those equations
p = q in the tape signature, which are valid over every TX .

In contrast to the stack theory the tape theory is given indirectly. We leave the question
of finding an appropriate complete axiomatization of the tape theory for future work.
Meanwhile, we report the following surprising result:

Theorem 3.7. The tape theory is not finitely axiomatizable.

Proof (Sketch). It is easy to verify that for any i, j, k the following identity

writei(lmove
k(writej(rmove

k(x)))) = lmovek(writej(rmove
k(writei(x))))

belongs to the tape theory. The left-hand term represents a computation that first writes
γi at the current head position then moves k steps to the left, writes γj and finally moves
k steps back to the right; the left-hand computation does the same in a different order.
It is then possible for any finite set A of identities to construct a model that does not
satisfy the above identity for a suitable k depending on the size of A. �

4 Reactive T-algebras and T-automata

As in Section 2 we consider a finite set of actionsA. We first consider T-algebras which
are equipped with a transition structure similar to that of Moore automata but which,
in addition, preserves the algebraic structure. Such a transition structure extends a T-
algebra with dynamic behaviour (making it into a coalgebra) and hence we call such
structures reactive T-algebras.

Definition 4.1 (ReactiveT-algebra). LetB andX be T-algebras. ThenX is a reactive
T-algebra ifX is an L-coalgebra for which ∂a : X → X and o : X → B are T-algebra
morphisms.

Observe that the functorLX = B×XA lifts to SetT; in fact, eachLX can be equipped
with the pointwise T-algebra structure. Thus, reactive T-algebras are simply coalgebras
for this lifting of L to SetT.

Given a T-algebra B, the set of all formal power series BA∗
being the final L-

coalgebra can be viewed as a reactive T-algebra with the pointwise T-algebra struc-
ture, for which ∂a and o are easily seen to be T-algebra morphisms. Since any reactive
T-algebra is an L-coalgebra, reactive T-algebras inherit the general coalgebraic theory
from Section 2. In particular, we use for reactive T-algebras the same notions of trace
semantics and trace equivalence as for L-coalgebras.

Definition 4.2 (T-automaton). Suppose, B is finitely generated, i.e. there is a finite
set B0 of generators and a surjection TB0 → B underlying a T-algebra morphism. A
T-automaton m is given by a triple of maps

om : X → B, tm : A×X → TX, am : TB → B, ()

where am is a T-algebra and X is finite. The first two maps in () can be aggregated
into a coalgebra transition structure, which we write as m : X → B × (TX)A slightly
abusing the notation.
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A simple nontrivial example of a T-automaton is given by nondeterministic finite state
machines (NFSM) by taking B = {0, 1}, T = Pω and am (s ⊆ {0, 1}) = 1 iff 1 ∈ s.

In order to introduce the trace semantics of a T-automaton it suffices to convert it
into a reactive T-algebra, for the trace semantics of the latter is settled by Definition 2.1.
This conversion is called the generalized powerset construction [25] as it generalizes
the classical Rabin and Scott NFSM determinization [31]. Observe that LTX is a T-
algebra, since TX is the free T-algebra on X and L lifts to SetT. Therefore, given a
T-automaton (), m : X → B × (TX)A there exists a unique T-algebra morphism
m � : TX → B × (TX)A such that m �η = m . This m � is a reactive T-algebra on TX .
Therefore, we define the trace semantics of () as follows: �x�m = �η(x)�TX .

Note that the generalized powerset construction does not reduce a T-automaton to a
Moore automaton over TX as TX need not be finite, although when it is the case, e.g.
T = Pω, the semantics of a T-automaton falls within regular power series, which is
precisely the reason why the languages recognized by deterministic and nondeterminis-
tic FSM coincide. Surprisingly, all T-automata with a finite B have the same property,
which is a corollary of Theorem 7.1 we prove in Section 7.

Proposition 4.3. For every T-automaton () with finite B and x ∈ X , �x�m : A∗ →
B is regular.

We are now ready to introduce fixpoint expressions for T-automata similar to (2.3).

Definition 4.4 (Reactive Expressions). Let Σ be an algebraic signature and let B0 be
a finite set. Reactive expressions w.r.t. these data are closed terms δ defined according
to the following grammar:

δ ::= x | γ | f(δ, . . . , δ) (x ∈ X, f ∈ Σ)

γ ::= μx. (a1.δ � · · · � an.δ � β) (x ∈ X)

β ::= b | f(β, . . . , β) (b ∈ B0)

where we assume A = {a1, . . . , an} and an infinite collection of variablesX .

Let T be a finitary monad, corresponding to an algebraic theory E over the signature
Σ and let B be a finitely generated T-algebra over a finite set of generators B0. Let
us denote by EΣ,B0 the set of all reactive expressions over Σ and B0. We define a
reactive T-coalgebra structure on EΣ,B0 . First, notice that EΣ,B0 is obviously a Σ-
algebra. Then we introduce the L-coalgebra structure on EΣ,B0 as follows: first notice
that expressions b according to the β-clause in Definition 4.4 are just Σ-terms on the
generators fromB0; for everyΣ-term t in n variables let tB : Bn → B denote the map
evaluating t in B and define

o(f(e1, · · · , en)) = fB(o(e1), . . . , o(en)),

∂ai(f(e1, · · · , en)) = f(∂ai(e1), . . . , ∂ai(en)),

o(μx. (a1.e1 � · · · � an.en � b)) = tB(b1, . . . , bk),

∂ai(μx. (a1.e1 � · · · � an.en � b)) = ei[μx. (a1.e1 � · · · � an.en � b)/x],

where b = t(b1, . . . , bk) with b1, . . . , bk ∈ B0.
We call on Definition 2.1 to endow EΣ,B0 with the trace semantics �−� : EΣ,B0 →

BA∗
and with the trace equivalence relation ∼.
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⎧⎪⎨
⎪⎩

q0 = a.q0 � b.q1 � ⊥
q1 = a.∅ � b.(q0+q2) � ⊥
q2 = a.q0 � b.∅ � �

q0start q1 q2

b

a

b
b

a

q0 = μx. (a.x � b.μy. (a.∅ � b.(x+μz. (a.x � b.∅ � �)) � ⊥) � ⊥)

Fig. 1. A Pω-automaton over A = {a, b}, B = {�,⊥} as a system of recursive definitions (left);
as a nondeterministic FSM (right); as a reactive expression (bottom)

Theorem 4.5. The quotient EΣ,B0/∼ is a reactive T-algebra whose L-coalgebra part
is inherited from EΣ,B0 and whose T-algebra part is a quotient of theΣ-algebra struc-
ture on EΣ,B0 .

The following theorem is the main result of this section — a Kleene type theorem. Like
its classical counterpart it allows to convert T-automata to closed expressions and vice
versa.

Theorem 4.6 (Kleene Theorem). For any expression e ∈ EΣ,B0 there is a correspond-
ing T-automaton () and x ∈ X such that �e� = �x�m ; and conversely for any T-au-
tomaton () and x ∈ X there is an expression e ∈ EΣ,B0 such that �e� = �x�m .

Fig. 1 depicts a simple instance of the general correspondence established by Theo-
rem 4.6 in the particular standard case of nondeterministic FSM.

5 T-automata: Examples

As indicated above, a nondeterministic FSM is a specific case of a T-automaton under
B = 2 and T = Pω. More generally, we have the following definition.

Definition 5.1 (Weighted T-automata). Weighted T-automaton is a T-automaton ()
with T being the semimodule monad for the semiring R (see Example 3.4).

Let R be the underlying semiring of a semimodule monad T. Besides R = B = 2
in which case we obtain nondeterministic FSMs, we obtain standard weighted au-
tomata [8] under R = B = N (B is the free T-algebra finitely generated by {1}).

Weighted T-automata can be further generalized as follows. We call a monad ad-
ditive (cf. [6]) if the corresponding algebraic theory supports operations + : 2 → 1
and /0 : 0 → 1 subject to the axioms of commutative monoids. We call a T-automaton
additive if T is additive. Additive automata allow for a more relaxed syntax of reactive
expressions. Specifically, we define additive reactive expressions as closed guarded ex-
pressions over an additive theory given by the grammar

γ ::= b | x | μx. γ | a.γ | f(γ, . . . , γ), (5.1)

where guardedness means that for any subterm of the form μx. e (the recursive call of)
x is guarded in e, which is defined by induction over e as follows: x is guarded in b, in
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any variable x′ �= x, in any μx. e′ and in any a.e′; and x is guarded in f(e1, . . . , en)
whenever x is guarded in each of the ei.

Given a reactive expression we obtain an additive reactive expression by replacing
recursively each � with +. Conversely, any additive reactive expression can be trans-
formed to a reactive one. The latter transformation is inverse to the former modulo
∼. We now give one example of an additive T-automaton, which is not a weighted
T-automaton.

Example 5.2 (SegalaT-automata). (Simple) Segala systems [28, 29] are systems com-
bining probability and nondeterminism and are essentially coalgebras of transition type
P(D × A) ∼= (PD)A where D is a probability distribution functor. Although PD is
not a monad, as elaborated in [16], it can be modelled by a monad T whose functorial
part is the composition CM of two functors given as follows: for any X , MX are fi-
nite valuations overX (see Example 3.4); for any semimodule U , C(U) consists of all
subsets of U , which are convex and nonempty. Convexity of a set S here means that a
convex combination p1 · ξ1 + · · · + pn · ξn, i.e.

∑
i pi = 1, belongs to S once ξi ∈ S

for any i. Segala T-automata generalize non-deterministic automata by replacing the
powerset functor P with CM . Concretely, in the generic definition () we take B = 2
and T defined as above.

A radically different kind of examples is offered by submonads of the store monad.
A prominent instance of such is the stack monad (Example 3.5), which we use for
modelling push-down automata.

Definition 5.3 (Stack T-automaton). Stack T-automaton is a T-automaton () for
which T is the stack monad over Γ ; B is the set of predicates over Γ ∗ consisting of all
those p ∈ 2Γ

∗
for each of which there is k such that p(wu) = p(w) whenever |w| ≥ k;

am : TB → B is given by evaluation; it restricts the morphism evΓ
∗
: (2Γ

∗×Γ ∗)Γ
∗ →

2Γ
∗
, where ev : 2Γ

∗ × Γ ∗ → 2 is the evaluation morphism: am (r, t)(s) = r(s)(t(s)).

Intuitively, om : X → B ⊆ 2Γ
∗

models the acceptance condition by final states and
the stack content. As B obeys essentially the same constraints as TX , scanning an
unbounded portion of the stack by om is disallowed.

Theorem 5.4. Let m be a stack T-automaton. Then for any x0 ∈ X and any γ0 ∈
Γ ,
{
w ∈ A∗ |

�
x0

�
m (w)(γ0)

}
is a real-time deterministic context-free language. The

converse is also true: for any real-time deterministic context-free language L ⊆ A∗

there exists a stack T-automaton () such that L can be represented as the above
formal language with some x0 ∈ X , γ0 ∈ Γ .

As we shall see later, it is not difficult to obtain an analogous characterization of context-
free languages for which the “real-time” clause is dropped (essentially because for
push-down automata the restriction of being real-time is vacuous). However, as we
shall see in the next section (Theorem 6.5), this restriction, being somewhat inherent
for coalgebraic models, presents an actual boundary for capturing by T-automata for-
mal languages beyond the context-free ones.
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6 Monad Tensors for Store and Nondeterminism

Tensor products of monads (resp. algebraic theories) have been introduced by Freyd [11]
in the context of universal algebra. Later, computational relevance of this operation has
been demonstrated by Hyland et al. [14]. Here, we use tensors of monads as a tool for
studying T-automata.

Definition 6.1 (Tensor). Let E1 and E2 be two algebraic theories. Then the tensor prod-
uct E = E1 ⊗ E2 is the algebraic theory, whose equations are obtained by joining the
equations of E1 and E2 and adding for any f : n → 1 of E1 and any g : m → 1 of E2
the following axiom

f(g(x11, . . . , x
1
m), . . . , g(xn1 , . . . , x

n
m)) = g(f(x11, . . . , x

n
1 ), . . . , f(x

1
m, . . . , x

n
m))

called the tensor laws. Given two finitary monads T1 and T2, their tensor product arises
from the algebraic theory ET1 ⊗ ET2 .

Intuitively, tensor product of two monads captures a noninterfering combination of the
corresponding computational effects. In the present work we shall use two kinds of
tensor products: (1) tensors with submonads of the store monad and (2) tensors with
semimodule monads.

It has been shown in [14] that tensoring with the store monad is equivalent to the
application of the store monad transformer sending any monad T to the store monad
transform TS whose functorial part is given by TSX = T (X × S)S . Here we establish
a similar result about the stack monad (Example 3.5).

Proposition 6.2. Let S be the stack monad over Γ . Then for any finitary T, S⊗T is the
submonadR of the store monad transform of T with Γ ∗ as the store, for which p : Γ ∗ →
T (X × Γ ∗) is in RX iff there exists m such that p(su) = do〈x, s′〉 ← p(s); η〈x, s′u〉
whenever |s| ≥ m; and the monad structure is inherited from the monad transform.

One can thus combine two stacks by computing the tensor square of the stack monad.
Specifically, the resulting monad T has maps 〈r, t1, t2〉 : Γ ∗ × Γ ∗ → X × Γ ∗ × Γ ∗ as
inhabitants of TX . This allows one to defineT-stack automata over two and more stacks
analogously to the one-stack case from Definition 5.3. Before we do this formally in
Definition 6.4 we discuss the perspectives of forming tensors with semimodule monads.

Proposition 6.3 (Freyd [11]). Tensor product of any finitary monad with a semimodule
monad is isomorphic to some semimodule monad.

Proposition 6.3 in conjunction with Proposition 6.2 offer two perspectives on machines
with memory and nondeterminism. E.g. we shall consider the tensor product of Pω

with the stack monad to model push-down automata. As Proposition 6.2 indicates, this
monad embeds into the monad with functorial part TX = Pω(X×Γ ∗)Γ

∗
. On the other

hand, by Proposition 6.3, this tensor product is equivalent to a semimodule monad.

Definition 6.4 (Multi-stack Nondeterministic T-automaton). A Multi-stack nonde-
terministic T-automaton is a T-automaton () for which T is the tensor of m copies
of the stack monad and Pω; B is the set of m-ary predicates over Γ ∗ consisting of all
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those p ∈ 2Γ
∗×···×Γ∗

for each of which there is a k such that if for any i, |wi| ≥ k
then p(w1u1, . . . , wmum) = p(w1 . . . , wm); and for any s ∈ (Γ ∗)m, f : (Γ ∗)m →
Pω(B×(Γ ∗)m) ∈ TB we have am (f)(s) iff ∃s′ ∈ (Γ ∗)m. ∃p ∈ B. f(s)(p, s′)∧p(s′).

We now obtain the following result.

Theorem 6.5. For any m let Lm be the following class of all languages{
w ∈ A∗ |

�
x0

�
m (w)(γ0, . . . , γ0)

}
with m ranging over nondeterministic multistack

T-automata withm stacks, x0 ranging over the state space of m and γ0 ranging over Γ .
Then L1 contains exactly context-free languages; for all m > 2, Lm contains exactly
nondeterministic linear time languages, i.e. Lm = NTIME(n); and L2 sits properly
between L1 and L3.

Theorem 6.5 shows, on the one hand, that the coalgebraic formalization of nondetermin-
istic pushdown automata as nondeterministic T-automata over one stack is adequate in
the sense that it recognizes the same class of languages. On the other hand, it indicates
the boundaries of the present model: it seems unlikely to capture languages beyond
NTIME(n) (e.g. all recursive ones) by a computationally feasible class of T-automata.
This is not surprising in view of the early work on (quasi-)real-time recognizable lan-
guages [4], which underlies the proof of Theorem 6.5. We return to this issue in Sec-
tion 7 where we provide an extension of the present semantics that allows us to capture
language classes up to recursively enumerable ones.

We conclude this section with an easy corollary of Theorem 6.5 and Proposition 2.2
contrasting the results in [20, 3].

Corollary 6.6. Trace equivalence of T-automata is Π0
1 -complete.

7 CPS-transforms of T-automata and r.e.-languages

Theorem 6.5 suggests that the present trace semantics is unlikely to produce languages
beyond NTIME(n) under a computationally convincing choice of the components
of (). The approach suggested by the classical formal language theory is to replaceA
with the set Aτ = A ∪ {τ}, where τ is a new unobservable action, but use the formal
power series A∗ → B as the semantic domain instead of A∗

τ → B. The new observa-
tional semantics is supposed to be obtainable from the standard one by “eliminating”
the unobservable action.

Before we proceed, we introduce an important reformulation of our standard trace
equivalence, which is of independent interest. Let a : TB → B be a T-algebra. We
denote by TB the continuation monad with TBX = BX → B. We can map T to TB

by sending any p : TX to κX(p) = λf. (a · Tf(p)) ∈ TBX . This κ : T → TB is
a monad morphism; in fact, it is well known that for any monad T on a category with
powers there is a bijective correspondence between Eilenberg-Moore algebras onB and
monad morphisms from T to TB (see e.g. Kock [18, Theorem 3.2]).
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Now, given a T-automaton (), we define a TB-automaton1 m∗ : X → B ×
(TBX)A by om∗ = om , tm∗ = κXt

m , am∗ = λt. t(id) where it is easy to see that
am∗ : TBB → B is a T-algebra. We call this automaton the CPS-transform2 of ().

Theorem 7.1. The trace semantics of a T-automaton and of its CPS-transform agree;
more precisely, for every T-automaton () and state x ∈ X we have:

�
x
�

m =
�
x
�

m∗
.

This theorem implies Proposition 4.3 announced previously in Section 4. Indeed, if B
in () is finite then, by definition, TBX is also finite. Thus, the generalized powerset
construction performed on the CPS-transform m∗ yields a Moore automaton, and hence
we obtain the desired result from Proposition 2.4.

We now proceed with the definition of the new semantics.

Definition 7.2 (ω-additive T-automata). A T-automaton () is ω-additive if B (be-
sides being T-algebra) is an algebra for the countably supported multiset monad.

In other words, for () to be ω-additive B needs to be a commutative monoid with
infinite summation. We call such a monoid ω-additive.

Lemma 7.3. If B is an ω-additive monoid and a T-algebra then for anyX , TBX is an
ω-additive monoid.

Theω-additive monoid structure on TBX allows us to define for any givenT-automaton
over the alphabet Aτ a TB-automaton over A. To this end, we first form the CPS-
transform of the given T-automaton and then use infinite summation to get rid of un-
observable actions τ : given a T-automaton m : X → B × (TX)Aτ , we construct
mv : X → B × (TBX)A with amv = am∗ = λt. t(id) and with tmv , omv defined as

tmv (x0, a) =

∞∑
i=1

do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); t
m∗(xi−1, a),

omv (x0) = om∗(x0) +
∞∑
i=1

(
do x1 ← tm∗(x0, τ); . . . ; t

m∗(xi−1, τ)
)
(om∗).

We define the observational trace semantics for m to be the trace semantics for mv.

Definition 7.4. Given a T-automaton () over input alphabet Aτ , let
�
x
�τ

m =
�
x
�

mv
.

We proceed to define the class of T-automata corresponding to classical Turing ma-
chines, for which the introduced observational trace semantics yields precisely all re-
cursively enumerable languages.

Definition 7.5 (Tape T-automaton). A tape automaton is a T-automaton () for
which T is the tape monad over Γ ; B is the set of predicates over Z × ΓZ consist-
ing of all those p ∈ 2Z×ΓZ

for each of which there is a k such that p(i, σ) = p(i, σ′)
and p(i, σ+j) = p(i + j, σ) if σ =i±k σ

′; and am : TB → B is given by evaluation as
in Definition 5.3.

1 We abuse terminology here since TB is not finitary.
2 CPS = continuation-passing style; we chose the name because the construction is reminiscent

of tranforming a functional program into CPS.
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It can be shown that tape T-automata over Aτ are equivalent to deterministic 2-tape
Turing machines with input alphabet A, where the first tape is a special read-only and
right-only tape holding the input word at the beginning of a computation. Thus, we
obtain that tape automata represent all the recursively enumerable languages.

Theorem 7.6. For every tape automaton m over Aτ , Γ with |Γ | ≥ 2 containing a
special blank symbol �, and every state x ∈ X the following language is recursively
enumerable: {w ∈ A∗ | �x�τm (w)(0, σ�) = 1}, where σ� is the constant function on�. Conversely, every recursively enumerable language can be represented in this way.

8 Conclusions and Future Work

In this paper, we have presented the first steps towards a coalgebraic Chomsky hier-
archy. We have given a coalgebraic account of machines, languages and expressions
and presented several results of our theory including a generic Kleene-style theorem
(Theorem 4.6). We have also given the first treatment of Turing machines in a coal-
gebraic setting: the observational trace semantics of tape automata yields precisely the
recursively enumerable languages.

There are several possible directions for future work. We plan to derive a sound cal-
culus of reactive expressions extending [3] and explore the boundaries for completeness
(by Corollary 6.6 completeness is only possible for specific choices of T); capture fur-
ther language and complexity classes, such as the context-sensitive languages. Captur-
ing various classes of machines under the umbrella of coalgebra results in standard tools
such as bisimulation proof methods becoming available for those classes of machines
and their language semantics. Hence, further investigations into such proof principles
are of interest.
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Abstract. We present a (co)algebraic treatment of iteration-free dy-
namic modal logics such as Propositional Dynamic Logic (PDL) and
Game Logic (GL), both without star. The main observation is that
the program/game constructs of PDL/GL arise from monad structure,
and the axioms of these logics correspond to certain compatibilty re-
quirements between the modalities and this monad structure. Our main
contribution is a general soundness and strong completeness result for
PDL-like logics for T -coalgebras where T is a monad and the ”program”
constructs are given by sequential composition, test, and pointwise ex-
tensions of operations of T .

1 Introduction

Modal logics are a much used formalism in automated verification thanks to the
good balance between their expressive power and their computational properties.
Recently, it has been shown that modal logics can be developed in the general
framework of coalgebra [4,18], and that the expressiveness and complexity results
for Kripke semantics hold more generally across many types of structures [29,30].

In this paper, we aim to develop a coalgebraic framework for dynamic modal
logics such as Propositional Dynamic Logic (PDL) [5,12] and Game Logic
(GL) [25,26]. In PDL, modalities are indexed by programs whose semantics is
given by relations, and program constructs are interpreted by relation algebra.
Similarly, in GL, modalities are indexed by games whose semantics is given by
monotonic neighbourhood functions.

Our framework for coalgebraic dynamic modal logic builds on the basic obser-
vation that in PDL and GL programs/games are interpreted as maps of the form
X → TX where T is a monad. For PDL, T is the covariant powerset monad,
and for GL, T is the monotonic neighbourhood monad (both are described in
detail later). Such maps can be viewed as arrows in the Kleisli category of the
monad T which yields semantics of sequential composition as Kleisli compo-
sition. Alternatively, a map X → TX can be viewed as a T -coalgebra which
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leads to a (coalgebraic) modal logic of T -computations. Other constructs, such
as choice (∪) and dual (d) in GL, are interpreted by algebraic structure on the
set (TX)X = {X → TX} which arises pointwise from algebraic structure on
TX . We formalise such constructs using natural operations on functors. We also
note that PDL and GL are usually interpreted over so-called standard mod-
els, in which the program/game constructs have a certain intended meaning. In
our general framework this leads to the notion of a standard model relative to
some algebraic structure θ on T . In the current paper, we include tests, but not
iteration which will require more assumptions on the monad.

Our main contributions are: (i) a method for associating rank-1 axioms to
natural operations, (ii) a method for axiomatising tests, and (iii) strong com-
pleteness for the ensuing dynamic modal logic.

The rest of the paper is organised as follows. In Section 2 we recall the basics of
PDL and GL, and of coalgebraic modal logic and monads. In Section 3, we intro-
duce our general framework for coalgebraic dynamic modal logic. In Section 4,
we show how to obtain axioms for sequential composition and natural opera-
tions, and provide sufficient conditions for their soundness. In Sections 5 and 6,
we prove our strong completeness result which builds on the generic strong com-
pleteness result in [31] by showing that a quasi-canonical model can be modified
to validate also the non-rank-1 sequential composition axioms. Finally, in Sec-
tion 7 we conclude and discuss related work. The proofs can be found in the
technical report [10].

2 Preliminaries

2.1 PDL and GL

We briefly recall the basics of the two dynamic modal logics that form our guiding
examples. See the references given for more detail and background information.

Propositional Dynamic Logic (PDL) [5,12] is a modal logic for reasoning
about program correctness. Modalities are indexed by programs, and a formula
[α]ϕ should be read as “after all halting executions of program α, ϕ holds”. PDL
programs are built inductively from a set Prog0 of atomic programs using the
operations of sequential composition (;), choice (∪) and iteration (∗). Moreover, a
formula ϕ can be turned into a programϕ? by the test operation ?. The semantics
of PDL is given by multi-modal Kripke models that contain a relationRα for each
program α. These models are generally assumed to be standard which means
that relations for complex programs are defined inductively via composition,
union and reflexive, transitive closure of relations over some given interpretation
of atomic programs, and a test program ϕ? is interpreted by restricting the
identity relation to the states that satisfy ϕ. As a deductive system, PDL is the
least normal multi-modal logic that contains the axioms:

[α;β]ϕ↔ [α][β]ϕ [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ [ψ?]ϕ↔ (ψ → ϕ)
ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ ϕ ∧ [α](ϕ→ [α]ϕ)→ [α∗]ϕ (1)
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for all programs α, β and all formulas ψ, ϕ. It is well known that PDL is (weakly)
complete with respect to the class of standard PDL models. Strong completeness
fails due to the presence of ∗ which makes PDL non-compact.

Game Logic (GL) [25,26] is a modal logic for reasoning about strategic
ability in determined 2-player games. Here, a modal formula [γ]ϕ should be read
as “player 1 has a strategy in the game γ to ensure an outcome where ϕ holds”.
The modal language of GL is obtained by extending the program operations
of PDL with the game operation dual (d) which corresponds to a role switch
of the two players. Game Logic semantics is given by multi-modal monotone
neighbourhood models [3,8,9]. We refer to [25,26] for the details. As a deductive
system, GL is defined to be the least monotone multi-modal logic containing the
following axioms:

[γ; δ]ϕ↔ [γ][δ]ϕ [γ ∪ δ]ϕ↔ [γ]ϕ ∨ [δ]ϕ [ψ?]ϕ↔ (ψ ∧ ϕ)
ϕ ∨ [γ][γ∗]ϕ→ [γ∗]ϕ ϕ ∨ [γ]ϕ→ ψ

[γ∗]ϕ→ ψ
[γd]ϕ↔ ¬[γ]¬ϕ (2)

Both iteration-free GL and dual-free GL are known to be complete for standard
GL models (restricted to the appropriate fragment), however, completeness of
GL with both ∗ and d remains an open question. One indication of why com-
pleteness for full GL is difficult is that GL can be viewed as a fragment of the
modal μ-calculus that spans all levels of the alternation hierarchy [2,26].

2.2 Coalgebraic Modal Logic

Coalgebraic modal logic [4,18] is a general framework which encompasses many
known modal logics such as normal, classical, graded and probabiliistic modal
logic. The uniform treatment of these is achieved by viewing the corresponding
semantic structures as coalgebras for a functor T [28]. In the present paper, we
only consider coalgebras for functors on Set, the category of sets and functions.
Let T be a Set-(endo)functor. A T -coalgebra is a map ξ : X → TX , and a T -
coalgebra morphism from ξ : X → TX to ξ′ : X ′ → TX ′ is a map f : X → X ′

such that ξ′ ◦ f = Tf ◦ ξ. T -coalgebras and their morphisms form a category
Coalg(T ).

We follow the notation from [31] in defining syntax and semantics of coalge-
braic modal logic. A modal signature Λ consists of a collection of modal opera-
tors with associated arities. Given a modal signature Λ and a countable set P
of atomic propositions, the set F(Λ) of Λ-formulas is generated by the following
grammar:

ϕ ::= p ∈ P | ⊥ | ¬ϕ | ϕ ∧ ϕ | �λ(ϕ1, . . . , ϕn)

where �λ ∈ Λ is n-ary. For any set X , Prop(X) denotes the set of all propo-
sitional formulas over X , and Λ(X) = {�λ(x1, . . . , xn) | x1, . . . , xn ∈ X,�λ ∈
Λ is n-ary}.

Modal formulas will be interpreted in coalgebras. We use the approach to
coalgebraic modal logic in which modalities are interpreted via predicate liftings.
First, we denote by Q : Set → Setop the contravariant powerset functor which
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maps a set X to its powerset, and a function f to its inverse image map. An n-
ary predicate lifting for T is a natural transformation λ : Qn ⇒ Q◦T . A (Λ, T )-
model M consists of a T -coalgebra ξ : X → TX , a valuation V : P → P(X)
of atomic propositions, and an n-ary predicate lifting for each n-ary modality
in Λ. For formulas ϕ ∈ F(Λ) the truth set [[ϕ]]M is defined in the expected
manner for the atomic propositions and Boolean connectives, and for modal
formulas, [[�λ(ϕ1, . . . , ϕn)]]

M = ξ−1(λX([[ϕ1]]
M, . . . , [[ϕn]]

M)). The map ξ−1 ◦
λX : P(X)n → P(X) is the n-ary predicate transformer associated with ξ and
λ. In the remainder of this paper, we will only consider unary modalities and
unary predicate liftings.

Example 1. The following well known instances of coalgebraic modal logic will
be of central interest to the paper. See e.g. [28,29,31] for many other examples.

(i) Coalgebras for the covariant powerset functor P : Set → Set are Kripke
frames, and P-coalgebra morphisms are bounded morphisms. The Kripke box
modality is interpreted via the predicate lifting λ�X(U) = {V ∈ P(X) | V ⊆ U}.

(ii) The neighbourhood functor N = QopQ : Set → Set is the composition
of Q with its dual Qop. N maps a set X to P(P(X)), and function f to the
double-inverse-image map N (f) = (f−1)−1. An N -coalgebra ν : X → N (X) is
known in modal logic as a neighbourhood frame, and N -coalgebra morphisms
as bounded neighbourhood morphisms [3,11]. The neighbourhood modality is
interpreted via the predicate lifting given by λX(U) = {N ∈ N (X) | U ∈ N}.
In this paper we will refer to N -coalgebras as neighbourhood functions.

(iii) The monotone neighborhood functor M : Set → Set is the subfunctor of
N which maps a set X to the set of upwards closed neighbourhood collections
H ⊆ P(X), i.e., M(X) = {H ∈ P(P(X)) | ∀U ⊆ V ⊆ X : U ∈ H ⇒ V ∈ H},
and for a function f , M(f) is obtained by restricting N (f) to upwards closed
neighbourhood collections. Similarly, for the predicate lifting that interprets the
monotonic neighbourhood modality. M-coalgebras are known in modal logic
as monotonic neighbourhood frames [3,8,9]. We will refer to M-coalgebras as
monotonic neighbourhood functions. The name “monotonic” refers to the up-
wards closure, and will be explained further in the next remark.

Remark 2. Neighbourhood functions and (unary) predicate transformers are
essentially the same mathematical objects. This basic correspondence arises
from the adjunction of the contravariant powerset functor Q : Set → Setop

with its dual: Q : Set → Setop * Qop : Setop → Set. Hence, for all sets
X and Y there is a bijection Set(X,QopY ) ∼= Set(Y,QX) given by expo-

nential transpose f(x)(y) = �f(y)(x). Taking Y = QX , we get a bijection
Set(X,QopQX) ∼= Set(QX,QX) between neighbourhood functions and pred-
icate transformers given by U ∈ ν(x) iff x ∈ �ν(U) for all x ∈ X and U ⊆ Y .
Note that �ν : Q(X) → Q(X) is a monotonic map (w.r.t. set-inclusion) if and
only if ν : X →M(X) ⊆ QopQ(X) is a monotonic neighbourhood function.

The Set-monad arising from the above adjunction is the neighbourhoodmonad
N = QopQ (cf. Example 3(2) below) and it will play a central role in what
follows.
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2.3 Monads

Monads will be used in two different ways. One is related to the view that monads
model computational effects [24]. The other is related to their role as abstract
algebraic theories [22].

We briefly recall the basic definition. A monad on Set is a triple T = (T, η, μ)
where T is an Set-functor, and η : Id⇒ T (unit) and μ : T 2 ⇒ T (multiplication)
are natural transformations that satisfy the following coherence laws: μ ◦ ηT =
μ ◦ Tη = idT and μ ◦ μT = μ ◦ Tμ. Due to lack of space, we cannot provide
much background on monads. We refer to [21] for the basic definitions of Kleisli
category, Eilenberg-Moore algebra (EM-algebra), and monad morphism.

Monads are used to capture computational effects such as I/O and state by
viewing (functional) programs as arrows in the Kleisli category [24]. Here, we
consider state-based computing rather than functional programming. This means
that we generally view programs as functions X → TX where X is the state-
space of the computation. However, the fact that such functions are also Kleisli
maps is, of course, essential for the definition of sequential composition. We write
∗ for composition in K�(T ).

In order to give semantics to test operations, we need TX to contain an
element that represents an aborted computation. We will say that a monad T
is pointed1 if for each set X , TX contains a distinguished element ⊥TX (or just
⊥), and for all maps f : X → Y , Tf(⊥) = ⊥.
Example 3. Let X be an arbitrary set. For U ⊆ X , we denote by ↑{U} the
up-set of {U} in the poset N (X), i.e., ↑{U} = {N ∈ N (X) | U ∈ N}.
1. The covariant power set functor P is a monad with unit ηX(x) = {x} and

multiplication μX({Ui | i ∈ I}) =
�

i∈I Ui. Arrows in K�(P) are relations,
and ∗ is just relation composition. For a set X , P(X) is the free join-
semilattice with bottom on X , and P is pointed by taking ⊥ = ∅ ∈ P(X).

2. The neighbourhood functor N is a monad with

ηX(x) = {U ⊆ X |x ∈ U} μX(W ) = {U ⊆ X | ↑{U} ∈ W}.
Also N is pointed by taking ⊥ = ∅ ∈ N (X). An arrow X → NY in
K�(N ) is essentially a predicate transformer QY → QX using the isomor-
phism via transpose (cf. Remark 2) which translates Kleisli composition of
N into (function) composition of predicate transformers. In particular, for
all ν1, ν2 : X → NX , all x ∈ X and U ⊆ X ,

U ∈ (ν2 ∗ ν1)(x) ⇐⇒ x ∈ �ν1(�ν2(U)) (3)

3. The functorM is also a pointed monad. The unit η and multiplication μ are
obtained by restricting the ones for N , and ⊥ = ∅. For a set X , M(X) is
the free completely distributive lattice on X , cf. [23] (see also [16, 3.8,4.8]).

4. The functor L = 1 + Id is the “lift monad” (where 1 = {∗}). The unit
ηX : X → 1 +X is inclusion. The multiplication μX maps x ∈ 1 + (1 +X)
to x iff x ∈ X , and otherwise to ∗. L is pointed by taking ⊥ = ∗ ∈ LX .

1 Our notion of pointed monad is equivalent to requiring a natural transformation
1 ⇒ T where 1 is the constant Set-functor that maps every set to the singleton set.
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3 Dynamic Coalgebraic Modal Logic

Our goal is to generalise the situation of PDL and GL to dynamic modal logics
for other monads T . For the pointwise operations it seems at first that the natural
operations are those coming from EM-algebras of T. For example, PDL choice
∪ is interpreted via the join-semilattice structure on P(X). Similarly, the game
operations choice and dual are interpreted via the lattice structure on M(X).
While it is known that all set monads have a presentation in terms of operations
and equations (cf. [20]), such a canonical presentation might be a proper class —
a property that is not desirable for the design of a clear and concise programming
language. As no “small” canonical choice of pointwise operations seems to be
given, we generalise pointwise operations such as choice and dual using the
notion of a natural operation and natural algebra.

Definition 4. Let T : C → Set be a functor, a natural n-ary operation on T is
a natural transformation θ : T n ⇒ T . More generally, given a signature functor
Σ : Set→ Set, a naturalΣ-algebra on T is a natural transformation θ : ΣT ⇒ T .

Example 5. 1. All Boolean operations are natural on Qop. The reason is that
the inverse-image map of a function preserves all of those.

2. For similar reasons, all Boolean operations on neighbourhood collections,
such as e.g. N ∪K for N,K ∈ NX , are natural on N . The neighbourhood-
wise Boolean operations such as e.g. N �K = {U ∩ V | U ∈ N, V ∈ K} are
not natural on N .

3. Union and intersection are natural on M (complement does not preserve
monotonicity).

4. The dual operation defined for all N ∈ NX and U ⊆ X by U ∈ Nd iff
X \ U /∈ N is natural on N (andM).

5. The only Boolean operation that is natural on P is union, because the direct
image of a function preserves unions, but not intersections or complements.

6. Apart from identity, the lift monad has only one (rather boring) operation
nil where nilX(t) = ∗ for all t ∈ LX .

A natural n-ary operation θ : T n ⇒ T induces for each set X a pointwise op-
eration θXX on Set(X,TX) = (TX)X in the expected manner. By cotupling, a
natural Σ-algebra θ : ΣT ⇒ T induces a pointwise Σ-algebra θXX on (TX)X . For
n-ary σ ∈ Σ, we denote the σ-component of θXX by (θσ)

X
X : (TX)n → TX .

Just as the syntax and semantics of PDL and GL is defined relative to a
particular set of program/game operations, so is our notion of dynamic syntax
and semantics. For the syntax, however, one only needs to fix a signature.

Definition 6 (Dynamic syntax). Given a signature functor Σ, a set of
atomic actions A0 and a countable set P of atomic propositions, we define the
set F(P,A0, Σ) of dynamic formulas and the set A = A(P,A0, Σ) of complex
actions by mutual induction:

F(P,A0, Σ) 0 ϕ ::= p ∈ P | ⊥ | ¬ϕ | ϕ ∧ ϕ | [α]ϕ
A(P,A0, Σ) 0 α ::= a ∈ A0 | α;α | σ(α1, . . . , αn) | ϕ?

where σ ∈ Σ is n-ary.
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For the semantics, we first note that the multi-modal structures of PDL and
GL easily generalise to a coalgebra X → (TX)A for the “labelled functor” TA.
A TA-coalgebra will be called standard relative to some choice of natural algebra
on T .

Definition 7 (Standard). Let θ : ΣT ⇒ T be a natural Σ-algebra on a monad
T, and let δ : ΣA→ A be given by restricting action formation to Σ-operations.
A coalgebra ξ : X → (TX)A is called θ-standard if the transpose �ξ : A→ (TX)X

is a Σ-algebra morphism, i.e.,

�ξ ◦ δ = θXX ◦Σ�ξ (4)

We say that ξ is ;-standard if for all α, β ∈ A, �ξ(α;β) = �ξ(α) ∗ �ξ(β).
We now define the notion of a dynamic model relative to a choice of natural

algebra θ : ΣT ⇒ T .

Definition 8 (Dynamic semantics). Let T = (T, η, μ) be a pointed monad,
and θ : ΣT ⇒ T a natural Σ-algebra on T . A (P,A0, θ)-dynamic T-model is

a triple M = (ξ0, λ, V ) where �ξ0 : A0 → (TX)X is an interpretation of atomic
actions in (TX)X, λ : Q ⇒ Q◦T is a unary predicate lifting for T , and V : P →
P(X) is a valuation. We define the truth set [[ϕ]]M of dynamic formulas and the

semantics �ξ : A→ (TX)X of complex actions in M by mutual induction:

[[p]]M = V (p), [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M, [[¬ϕ]]M = X \ [[ϕ]]M,
[[[α]ϕ]]M = (�ξ(α)−1 ◦ λX)([[ϕ]]M),�ξ(σ(α1, . . . , σn)) = (θσ)

X
X(�ξ(α1), . . . , �ξ(αn)) where σ ∈ Σ is n-ary,�ξ(α;β) = �ξ(α) ∗ �ξ(β) (Kleisli composition),�ξ(ϕ?)(x) = ηX(x) if x ∈ [[ϕ]]M, ⊥TX otherwise.

We will sometimes refer to the induced �ξ, and its transpose ξ : X → (TX)A,
simply as a θ-dynamic T-model.

Note that, by definition, a θ-dynamic T-model ξ : X → (TX)A is both θ-standard
and ;-standard.

Remark 9. If we would not include tests, then we could drop the requirement of
T being pointed, and define a T-dynamic (P,A0, θ)-structure to be a coalgebra
ξ : X → (TX)A whose transpose is the unique Σ∪{; }-algebra morphism induced

by �ξ0 : A0 → (TX)X and the Σ ∪ {; }-algebra structure on (TX)X given by θ
and Kleisli composition.

4 Soundness

In this section we give a general method for finding axioms for (P,A0, θ)-dynamic
T-models. In order for these axioms to be sound, it will be necessary to require
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the predicate lifting λ : Q ⇒ Q ◦ T to interact well with monad structure and
pointwise structure.

We start with sequential composition. Not surprisingly, ;-standard models are
captured by the axiom [α;β]p↔ [α][β]p, for all α, β ∈ A.

Lemma 10. Let ξ : X → (TX)A be ;-standard. If �λ : T → QopQ is a monad
morphism, then the axiom [α;β]p↔ [α][β]p is valid in M.

Remark 11. As noted in e.g. [17], giving a monad morphism T ⇒ QopQ is the
same as giving an Eilenberg-Moore algebra T 2 → 2. The view of modalities
as EM-algebras for T was already suggested in [24], and more recently in [13].
The correspondence (via the Yoneda lemma) between unary predicate liftings
and subsets of T 2 was observed in [29]. Moreover, it is easy to verify that λ
corresponds to an EM-algebra iff its Boolean dual ¬λ¬ does.

Example 12. (i) The Kripke diamond λ�X(U) = {V ∈ P(X) | U ∩ V �= ∅} corre-
sponds (via Yoneda) to the free P-algebra PP(1)→ P(1), hence the transpose
of λ� and of its dual, the Kripke box λ�, are both monad morphisms. (ii) The

transpose of the monotonic λ is the natural inclusion �λ :M ⇒ N and hence a
monad morphism. (iii) In [13], the EM-algebras L2→ 2 for the lift monad were
shown to correspond to λtl (total correctness) and λpl (partial correctness) where

t ∈ λtlX(U) iff t ∈ U and t ∈ λplX(U) iff t = ∗ or t ∈ U .

Finding axioms for pointwise operations from natural algebras requires a bit
more work. We will use the observation that an operation σ : (NX)n → NX
on neighbourhood functions is isomorphic to an operation σ = ψ−1 ◦ σ ◦ ψn

on predicate transformers via the bijection ψ : QXQX → (QopQX)X given in
Remark 2. In particular, if χ : Nn ⇒ N is a natural operation on N with
pointwise lifting χX

X : ((NX)X)n ⇒ (NX)X to neighbourhood functions for any
set X , then χX

X = ψ−1 ◦ χX
X ◦ ψn is concretely given by

x ∈ χX
X(m1, . . . ,mn)(U) ⇐⇒ U ∈ χX

X(ψ(m1), . . . , ψ(mn))(x) (5)

for all m1, . . . ,mn ∈ QXQX , x ∈ X and U ⊆ X .

Example 13. The operation on predicate transformers corresponding to the dual
operation d : N ⇒ N is d(m)(U) = X \m(X \ U). The operations on predicate
transformers corresponding to Boolean operations on N are (m1∪m2)(U) =
m1(U) ∪m2(U), (¬m)(U) = X \m(U) and so on.

The axioms for pointwise operations turn operations on labels into operations
on predicate transformers. Using the above correspondence, we find the axioms
via representations of natural operations on N . For all χ : Nn ⇒ N and all
α1, . . . , αn ∈ A, we will define a rank-1 formula ϕ(χ, , α1, . . . , αn, p). We start
by showing how to do so for unary operations. Let χ : N ⇒ N be a unary
natural operation on N = QopQ. We have the following correspondence via the
adjunction Q * Qop from Remark 2:

χX : QopQX → QopQX ∈ Set
�χX : QQopQX → QX ∈ Setop



Strong Completeness for Iteration-Free Coalgebraic Dynamic Logics 289

Therefore χ corresponds uniquely to (a predicate lifting) �χ = λχ : Q ⇒ QQopQ,
and by the Yoneda lemma to an element χ̆ = �χ2(id2) = �χ2({1}) ∈ QQopQ(2).
Note that QQopQ(2) is the free Boolean algebra on four generators that can be
identified with the elements of Q(2) = {∅, {0}, {1}, 2}. Consider the following
four natural operations on QopQ and their Yoneda correspondents:

operation χX : NX → NX,N ∈ NX,U ⊆ X χ̆ : QQopQ(2), N ∈ QopQ(2)
id U ∈ iX(N) ⇐⇒ U ∈ N N ∈ ı̆ ⇐⇒ {1} ∈ N
compl. U ∈ cX(N) ⇐⇒ X \ U ∈ N N ∈ c̆ ⇐⇒ {0} ∈ N
zero U ∈ zX(N) ⇐⇒ ∅ ∈ N N ∈ z̆ ⇐⇒ ∅ ∈ N
top U ∈ tX(N) ⇐⇒ X ∈ N N ∈ t̆ ⇐⇒ 2 ∈ N

Since ı̆, c̆, z̆, t̆ generate all of QQopQ(2) it follows that for every unary natural
operation χ : QopQ⇒ QopQ the correspondent χ̆ is a Boolean combination over
ı̆, c̆, z̆, t̆.

For an n-ary χ : Nn ⇒ N , we get as Yoneda correspondent χ̆ ∈ Q(N (2)n) ∼=
N (n · Q(2)) where n · Q(2) is the n-fold coproduct of Q(2). N (n · Q(2)) is the
free Boolean algebra over n · Q(2), and hence any n-ary natural operation on N
corresponds to a Boolean expression over n copies of the generators ı̆, c̆, z̆, t̆. For
example, the binary union χ = ∪ has correspondent χ̆ = ı̆1 ∨ ı̆2, i.e., (N,K) ∈ χ̆
iff N ∈ ı̆1 or K ∈ ı̆2. This leads to the following definition.

Definition 14. Let {ı̆j , c̆j, z̆j , t̆j | j = 1, . . . , n} be the generators of N (n ·Q(2)).
For χ : Nn ⇒ N we define ϕ(χ̆, α1, . . . , αn, p) inductively as follows:

– ϕ(̆ıj , α1, . . . , αn, p) = [αj ]p for all j = 1, . . . , n.
– ϕ(c̆j , α1, . . . , αn, p) = [αj ]¬p for all j = 1, . . . , n.
– ϕ(z̆j , α1, . . . , αn, p) = [αj ]⊥ for all j = 1, . . . , n.
– ϕ(t̆j , α1, . . . , αn, p) = [αj ]� for all j = 1, . . . , n.
– ϕ(¬χ̆, α1, . . . , αn, p) = ¬ϕ(χ, α1, . . . , αn, p).

– ϕ(χ̆ ∧ δ̆, α1, . . . , αn, p) = ϕ(χ, α1, . . . , αn, p) ∧ ϕ(δ, α1, . . . , αn, p).

For example, the dual operation on N is d̆ = ¬c̆ and we have ϕ(d̆, α, p) =

¬ϕ(c̆, α, p) = ¬[α]¬p. Similarly, for d̆1 ∧ ¬t̆2, we get ϕ(d̆1 ∧ ¬t̆2, α1, α2, p) =
(¬[α1]¬p) ∧ ¬([α2]�).

The following theorem says that whenever λ transforms θ-structure on T -
coalgebras into χ-structure on neighbourhood functions, for some natural χ,
then the rank-1 axioms associated with χ are sound on θ-standard coalgebras.

Theorem 15. Let θ : T n ⇒ T be a natural operation on T , and let ξ : X →
(TX)A be a θ-standard TA-coalgebra. Let λ : Q ⇒ Q ◦ T be a predicate lifting
for T . If there is a natural operation χ : Nn ⇒ N such that

�λ ◦ θ = χ ◦ �λn (6)

then for all α1, . . . , αn ∈ A, the θ-axiom [θ(α1, . . . , αn)]p↔ ϕ(χ̆, α1, . . . , αn, p) is
valid in ξ (where θ denotes the syntax/term constructor associated with θ). The
above statement generalises to natural Σ-algebras θ : ΣT ⇒ T by considering the
axioms for the components θσ and χσ for σ ∈ Σ.
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Example 16. Using Theorem 15 we find that

(i) The PDL axiom [α ∪ β]p ↔ [α]p ∧ [β]p is valid because �λ� : P ⇒ N
transforms unions into intersections, i.e., �λ�X(U1∪U2) = �λ�X(U1)∩�λ�X(U2). That
is, we can apply Theorem 15 with θ = ∪ : P2 ⇒ P and χ = ∩ : N 2 ⇒ N .

(ii) The axiom [α ∪ β]p↔ [α]p ∨ [β]p is valid in standard GL-models because
the transpose of the predicate lifting λX(U) = {N ∈ MX | U ∈ N} for the

monotonic modality is the natural inclusion �λ :M ⇒ N , i.e., θ = χ = ∪.
Similarly, for the dual axiom [αd]p↔ ¬[α]¬p.

(iii) For the lift monad we find that λtl turns nil into χnil where χnil ,X(N) = ∅
for all N ∈ NX . Hence, we have the axiom [nil ]p↔ ⊥. Dually, λpl turns nil into
χall where χall,X(N) = P(X) and we get the axiom [nil ]p↔ �.

5 Completeness

In this section we will prove a generic strong completeness result for our family
of coalgebraic dynamic logics.

Our completeness proof makes use of results from coalgebraic modal logic.
Therefore we need to recall some terminology: A modal logic L = (Λ,Ax,Fr)
consists of a modal signature Λ, a collection Ax ⊆ Prop(Λ(Prop(P ))) of rank-1
axioms, and a collection Fr ⊆ F(Λ) of frame conditions. For a formula ϕ ∈ F(Λ),
we write $L ϕ if ϕ can be derived from Ax ∪ Fr using propositional reasoning,
uniform substitution and the congruence rule: from ϕ1 ↔ ϕ1, . . . , ϕn ↔ ψn

infer �λ(ϕ1, . . . , ϕn) ↔ �λ(ψ1, . . . , ψn) for any n-ary �λ ∈ Λ. A formula ϕ ∈
Prop(Λ(P(X))) is one-step derivable, denoted $1L, if ϕ is propositionally entailed
by the set {ψτ | τ : P → P(X), ψ ∈ Ax}. A set Φ ⊆ Prop(Λ(P(X))) is called
one-step L-consistent if there are no formulas ϕ1, . . . , ϕn ∈ Φ such that $1L
¬(ϕ1∧· · ·∧ϕn). Let T be a Set-functor and assume a predicate lifting λ is given
for each �λ ∈ Λ. For a formula ϕ ∈ Prop(Λ(P(X))) the one-step semantics
[[ϕ]]

1
⊆ TX is defined by putting [[�λ(U1, . . . , Un)]]1 = λX(U1, . . . , Un) and by

inductively extending this definition to Boolean combinations of boxed formulas.
We say that L is separating if t ∈ TX is uniquely determined by the set {Φ ∈
Λ(P(X)) | t ∈ [[Φ]]

1
}. Finally, L is called one-step sound if for any one-step

derivable formula ϕ ∈ Prop(Λ(P(X))) we have [[ϕ]]
1
= TX , i.e., if any such

formula ϕ is one-step valid. L is called strongly one-step complete over finite sets
if for every finite set X and every one-step consistent set Φ ⊆ Prop(Λ(P(X))) is
one-step satisfiable.

Throughout the section we assume the following are given: a pointed monad T
on Set, a single, unary predicate lifting λ : Q ⇒ Q◦T for T whose transpose �λ is
a monad morphism, a countable set P of atomic propositions, a set A0 of atomic
actions, and θ : ΣT ⇒ T , a natural Σ-algebra on T . To ensure soundness, we
also assume that there is a natural algebra χ : ΣN ⇒ N such that �λ◦θ = χ◦�λn
(cf. Theorem 15). We let Λ = {[α] | α ∈ A(P,A0, Σ)}.

Let us now clarify which logics we are considering. Firstly, we assume we
have a separating, one-step sound and strongly one-step complete rank-1 ax-
iomatisation Ax(T,�) over T -coalgebras in the basic modal language F({�}).
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The “underlying” logic ({λ},Ax(T,�), ∅) will be denoted by Lb. Given an action
α ∈ A, we denote by Ax(T,�)α the set of rank-1 axioms over the labelled modal
language F({[α] | α ∈ A}) obtained by replacing all ocurrences of � by [α], and
we let Ax(T,�)A =

�
α∈AAx(T,�)α be all labelled instances of rank-1 axioms

in Ax(T,�).

Definition 17 (Dynamic logic). We define

Ax = Ax(T,�)A ∪ {ϕ(σ, α1, . . . , αn, p) | σ ∈ Σ,αi ∈ A}
Fr = {[α;β]p↔ [α][β]p | α, β ∈ A(P,A0, Σ), p ∈ P}
L(θ) = (Λ,Ax, ∅),
L(θ, ; ) = (Λ,Ax,Fr).

We refer to L(θ) and L(θ, ; ) as (P,A0, θ)-dynamic logics.

We are now going to prove completeness of both L(θ) and L(θ, ; ) with respect
to θ-standard and θ, ;-standard models, respectively. In order to facilitate our
proof we show that θ-standard models can be characterised as those models that
are based on TA

st -coalgebras for a suitable subfunctor TA
st of TA. This is done

using the following definition of θ-standard that can be seen as a “point-wise”
version of Definition 7.

Definition 18. We say a function f : A→ TX is θ-standard if f is a Σ-algebra
morphism (from δ : ΣA→ A to θX : ΣTX → TX where δ is as in Def. 7):

f ◦ δ = θX ◦Σf (7)

Furthermore we let TA
stX = {f : A → TX | f is θ-standard}. It is easy to

check that TA
st can be extended to a subfunctor of TA.

Lemma 19. A coalgebra ξ : X → (TX)A is θ-standard iff ξ is a TA
st -coalgebra.

Let us now start with our completeness proof. We are first going to check that
L(θ) is one-step sound over θ-standard models.

Proposition 20. The logic L(θ) is one-step sound for TA
st .

Proposition 21. The logic L(θ) is strongly one-step complete for TA
st .

The property of a functor preserving inverse limits of surjective ω-cochains
is from [31] is one of the main conditions for the existence of quasi-canonical
models in Proposition 24 below.2 Please consult loc.cit. for the definition.

Proposition 22. If T weakly preserves inverse limits of surjective ω-cochains,
then so does the functor TA

st .

Using the results from [31], Propositions 21 and 22 imply that L(θ) is sound and
strongly complete with respect to TA

st -coalgebras. This is achieved by proving
the existence of so-called quasi-canonical models.

2 The condition in [31] is motivated by a stronger condition used in [19, Thm. 9.4].
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Definition 23. A quasi-canoncial TA
st -model for a dynamic modal logic L =

(Λ,Ax,Fr) is a TA
st -model (S, ξ : S → TA

stS, V ) that satisfies all axioms Ax and
frame conditions Fr and such that

– S is the set of maximal L-consistent sets of formulas,
– V (p) = {Δ ∈ S | p ∈ Δ} and
– for all Γ ∈ S, α ∈ A and all formulas ϕ we have:

ξ(Γ )(α) ∈ λ(ϕ̂) iff [α]ϕ ∈ Γ, where ϕ̂ = {Γ ∈ S | ϕ ∈ Γ}.

Proposition 24. The logic L(θ) has a quasi-canonical model. Consequently,
L(θ) is sound and strongly complete with respect to the class of all θ-standard
models.

Next, we prove that L(θ, ; ) is complete with respect to all θ, ;-standard dy-
namic models. Therefore we need to ensure that the frame is well-behaved re-
garding action composition. (Tests will be discussed in section 6.) In other words,
we want to ensure the validity of the sequential composition axioms on the quasi-
canonical frame. From a coalgebraic perspective this is a non-trivial task as one
cannot deal with axioms of rank greater than 1 in a generic coalgebraic way.
In particular, we cannot assume that a quasi-canonical model is ;-standard, but
we now describe how we can modify a quasi-canonical model into an equivalent
;-standard quasi-canonical model.

Definition 25. Let (X, ξ, V ) be a TA
st -model. We say two elements t and t′ of

TX are equivalent with respect to boxed atoms (notation: t ∼� t′) if for all
formulas ϕ we have

t ∈ λX
�
[[ϕ]](X,ξ,V )

�
iff t′ ∈ λX

�
[[ϕ]](X,ξ,V )

�
.

The next lemma can easily be proven by structual induction on the formula.

Lemma 26. Let (X, ξ, V ) be a TA
st -model and let ∼� be its associated boxed

atom equivalence. If ξ′ : X → TA
stX is a coalgebra structure such that for all

x ∈ X and all α ∈ A we have ξ(x)(α) ∼� ξ
′(x)(α), then for all formulas ϕ we

have [[ϕ]](X,ξ,V ) = [[ϕ]](X,ξ′,V ).

We are ready to prove the main result of this section.

Theorem 27. The logic L(θ, ; ) is sound and strongly complete with respect to
all TA

st -models that are based on a ;-standard TA
st -coalgebra.

6 Tests

We will now incorporate axioms for tests into our axiomatisation of L(θ, ; ) and
prove soundness and completeness with respect to dynamic models.

When choosing the axioms for tests there are two obvious choices, depending
on our choice of underlying modality. This can be best seen at the example
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T = P : Taking the Kripke � as basic modality, the axiom for tests will be
[ψ?]ϕ↔ ψ∧ϕ. Taking the Kripke �, the axiom for tests will be [ψ?]ϕ↔ ψ → ϕ.

In order to obtain an axiomatisation that is generic in the functor and cho-
sen modality, we need a definition for when a modal operator is “box-like” or
“diamond”-like. Apart from Def. 8 (semantics of tests), this is the only time we
need that the monad is pointed, cf. Remark 9.

Definition 28. Let λ be a predicate lifting for a pointed set monad T. We say
λ is “box-like” if for all sets X and all U ⊆ X we have that the distinguished
element ⊥∈ TX is in the λ-lifting of U , i.e., ⊥∈ λX(U). Likewise we call λ
“diamond-like” if for all sets X and all U ⊆ X we have ⊥�∈ λX(U).

Any modality for a pointed monad falls into one of the above categories: For
example, the (monotonic) neighbourhood modality is diamond-like.

Lemma 29. Let λ be a predicate lifting for a pointed set monad T. Then λ is
either box-like or diamond-like.

This allows us to add test axioms to L(θ, ; ).

Definition 30. If λ is box-like, then we define the dynamic logic L(θ, ; , ?) by
adding the frame condition [?ψ]p ↔ (ψ → p) to Fr in L(θ, ; ). If λ is diamond-
like, then we define L(θ, ; , ?) by adding the frame condition [?ψ]p ↔ (ψ ∧ p) to
Fr in L(θ, ; ).

Our soundness and completeness results relative to θ, ;-regular models can
now be extended to L(θ, ; , ?) relative to the dynamic semantics.

Theorem 31. The logic L(θ, ; , ?) is sound and strongly complete with respect
to the dynamic semantics (cf. Def. 8).

As special instances we obtain the following results (of which (i) and (ii) were
already known, but to our knowledge item (iii) is a modest new addition).

Corollary 32. (i) Iteration-free PDL is sound and strongly complete with re-
spect to ∪-dynamic P-models. (ii) Iteration-free Game Logic is sound and
strongly complete with respect to ∪,d-dynamic M-models. (iii) Let Ll =
(λtl,Ax, ∅) be the “underlying logic” for the lift monad L where Ax = {�(p∧q)↔
�p ∧ �q,�(¬p) ↔ �� ∧ ¬�p}. Then the dynamic logic Ll(∅, ; , ?) (over Ll) is
sound and strongly complete with respect to dynamic L-models.

7 Discussion and Conclusion

We have presented a framework for iteration-free coalgebraic dynamic modal
logic where programs are modelled as T -coalgebras for a monad T , and program
constructs are modelled via natural operations on T . We have proved a generic
strong completeness result relative to a chosen set θ of natural operations. We
note that our notion of natural operation is more general than the notion of
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algebraic operation [27] which is used in the context of computational effects.
For example, it can be checked that dual is not an algebraic operation for M.
We also note that the fact that intersection is not natural on P can be seen as
an explanation of why PDL with intersection is difficult to axiomatise [1].

We leave it as future work to incorporate iteration into our framwork. From
PDL we know that dynamic modal logics with iteration cannot be strongly
complete (due to non-compactness). Moreover, the fact that the completeness of
GL remains an open problem tells us that a general weak completeness theorem
is highly non-trivial. In any case, we will need to assume that the monad in
question is order-enriched, perhaps along the lines of [13,6].

We note that our notion of pointed monad is weaker than requiring that the
Kleisli category is enriched over the categoy of pointed sets, or over pointed
CPOs. For example, it can be checked that the Kleisli category of the pointed
monadM has neither form of enrichment.

A limitation of our framework is that it is unsuitable for designing dynamic
modal logics for probabilistic or weighted systems. For probabilistic systems
that are coalgebras for the distribution monad Dω, there is no monad morphism
Dω ⇒ N , since there is no EM-algebraDω2→ 2, as 2 = {0, 1} is not closed under
convex sums. Similarly, for the weighted semiring monad Sω(X) = {f : X → S |
f has finite support } (where S is a semiring), 2 is not closed under S-linear
combinations if e.g., S = N. Dynamic logics for such quantitative systems seem
to require a multi-valued setting where the truth object is T (1) (instead of 2).

Such a multi-valued approach to weakest preconditions for non-deterministic,
probabilistic and quantum computation has recently been investigated in a cat-
egorical setting via so-called state-and-effect-triangles [14,15], see also [13,6].
Weakest preconditions are closely related to dynamic modal logic, e.g., the
weakest precondition for ϕ with respect to program α is expressed in PDL as
[α]ϕ. Also in [13,15], as in our Lemma 10, it is noted that weakest precondi-
tions/predicate liftings must be monad morphisms in order to obtain composi-
tionality for sequential composition. An important difference with our work is
that [13,15] focus on semantics, and no syntax or axiomatisation is investigated.
We would like to investigate further the connections between our work and the
multi-valued predicate transformer approach of [13,15].

Acknowledgements. We thank Bart Jacobs, Alexander Kurz and Yde Venema
for helpful discussions, and the anonymous referees for their useful comments.
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Abstract. We define two non-idempotent intersection type systems for
the linear substitution calculus, a calculus with partial substitutions act-
ing at a distance that is a computational interpretation of linear logic
proof-nets. The calculus naturally express linear-head reduction, a notion
of evaluation of proof nets that is strongly related to abstract machines.
We show that our first (resp. second) quantitave type system character-
izes linear-head, head and weak (resp. strong) normalizing sets of terms.
All such characterizations are given by means of combinatorial argu-
ments, i.e. there is a measure based on type derivations which decreases
with respect to each reduction relation considered in the paper.

1 Introduction

It is quite difficult to reason about programs by only taking into account their
syntax, so that many different semantic approaches were proposed to analyze
them in a more abstract way. One typical tool to analyze relevant aspects of
programs is the use of type systems. In particular, intersection types allow to
characterize head/weakly/strongly normalizing terms, i.e. a term t is typable in
an intersection type system iff t is head/weakly/strongly normalizing; quantita-
tive information about the behaviour of programs can also be obtained if the
intersection types enjoy non-idempotence.

Intersection Types (IT): Simply typed terms are strongly normalizing (cf. [7])
but the converse does not hold, e.g. the term t := λx.xx. Intersection Types [15]
extend the simply typed discipline with a finitary notion of polymorphism, listing
type usage, that exactly captures the set of strongly normalizing terms. This is
done by introducing a new constructor of types ∧ together with a corresponding
set of typing rules. For instance, the previous term t is typable with ((σ →
σ)∧σ)→ σ so that the first (resp. second) occurrence of the variable x is typed
with σ → σ (resp. σ). Typically, intersection types are idempotent, i.e. σ∧σ = σ.
Moreover, the intersection constructor is usually commutative and associative.
Intersection types in their full generality provide a characterization of various
properties of terms: models of the λ-calculus [8], characterization of head [17]
as well as weakly [13,17] and strongly normalizing terms [33].

Non-Idempotent Intersection Types: The use of non-idempotent types
[11] gives rise to resource aware semantics, which is suitable for computational
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complexity since it allows to extract quantitative information about reduction
sequences. Indeed, the inequality σ ∧ σ �= σ can be read as the fact that two
different uses of the variable x are not isomorphic to a single use. Relationship
with Linear Logic [24] and Relevant Logic [23,18] provides an insight on the
information refinement aspect of non-idempotent intersection types. The rela-
tion between the size of a non-idempotent intersection typing derivation and
the head/weak-normalization execution time of λ-terms by means of abstract
machines was established by D. de Carvalho [21]. Non-idempotence is also used
in [9,20] to reason about the longest derivation of strongly β-normalizing terms
in the λ-calculus by means of combinatorial arguments.

Calculi with Explicit Substitutions (ES) and Intersection Types: Cal-
culi with ES refine the λ-calculus by decomposing β-reduction into small steps
in order to specify different evaluation strategies implemented by abstract ma-
chines. In traditional calculi with ES [1], the operational semantics specifies the
propagation of ES through the structure of the term until they reach a variable
occurrence, on which they finally substitute or get garbage collected. But calculi
with ES can also be interpreted in Linear Logic [22,28,26,5] by implementing
another kind of operational semantics: their dynamics is defined using contexts
(i.e. terms with holes) that allows the ES to act directly at a distance on single
variable occurrences, with no need to commute with any other constructor in
between. In other words, the propagation of substitutions is not performed by
structural induction on terms, since they are only consumed according to the
multiplicity of the variables.

Idempotent intersection type systems were used to characterize strongly nor-
malizing terms of calculi with ES [34,27] while non-idempotence is used in [10]
to prove the exact relationship between typing derivations and the number of
steps of the longest reduction sequence of strongly-normalizing terms in the λs-
calculus [26] and in the λlxr-calculus [28]. No study about linear-head, head
and weak normalizing is provided in those works. Moreover, the systems are not
syntax-directed, i.e. not all the typing derivations of t end with the same typing
rule. As a consequence, the formal developments of proofs require a generation
lemma which guarantees the existence of some typing derivations having a par-
ticular shape. This drawback makes the development of proofs more involved.

Contribution: This paper focuses on functional programs specified – via the
Curry-Howard isomorphism – by intuitionistic logic, in natural deduction style.
The operational semantics implements resource control by means of reduction
rules describing the behaviour of explicit operators for erasure and duplication.
The term language is the linear substitution calculus [3], called here M-calculus,
and obtained from Milner’s calculus [36] and the structural λ-calculus [5].

Partial substitution allows to express linear-head reduction [19,35], a notion of
evaluation of proof nets that is strongly related to significant aspects of computer
science [32,2,4]. Linear-head reduction cannot be expressed as a simple strategy
of the λ-calculus, where substitution acts on all free occurrences of a variable at
once; this is probably one of the reasons why there are so few works investigating
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it. In this paper we use logical systems to reason about different notions of
normalization of terms, including those obtained with linear-head reduction.

More precisely, the quantitative semantics of programs used in this paper is
given by two non-idempotent intersection type systems. The first one, based
on [21], allows a characterization of linear-head, head and weakly normalizing
terms. While full logical characterizations of head/weakly β-normalizing λ-terms
were already given in the literature, the use of a logical/type system to directly
characterize linear-head normalization in calculi with ES is new. The second
system, another main contributions of this paper, gives a characterization of
strongly normalizing terms.

Our type systems use multiset notation and are syntax-directed so that no
generation lemmas are needed, thus making the development of proofs much
more direct. Moreover, the type systems for strong normalization make use of
a special notion of witness derivation for the arguments (of applications and
explicit substitutions) which makes them particularly natural. All the charac-
terizations in the paper are given by means of simple combinatorial arguments,
i.e. there is a measure that can be associated to each typing derivation which
is decreasing with respect to the different reduction relations considered in the
paper.

Structure of the Paper: Sec. 2 presents the syntax and semantics of the
M-calculus and both typing systems. Sec. 3 presents the Linear-Head, Head
and Weak-Normalization characterizations while Sec. 4 presents the Strong-
Normalization characterization. We then conclude in Sec. 5.

2 The Linear Substitution Calculus

We first describe the syntax and the operational semantics of the M-calculus,
including some particular notions of rewriting such as linear-head reduction. We
then introduce a notion of type and two different type systems that play a central
role in the first part of the paper.

Syntax: Given a countable infinite set of symbols x, y, z, . . ., three different
syntactic categories for terms (TM) and contexts (CM) are defined by the following
grammars:

(terms) t, u, v ::= x | tt | λx.t | t[x/t]
(term contexts) C ::= � | λx.C | C t | t C | C[x/t] | t[x/C]
(list contexts) L ::= � | L[x/t]

A term x is called a variable, tu an application, λx.t an abstraction and
t[x/u] a closure where [x/u] is an explicit substitution. We write tt1 . . . tn
for (. . . (tt1) . . . tn). The notions of free and bound variables are defined as
usual, in particular, fv(t[x/u]) := fv(t) \ {x} ∪ fv(u), fv(λx.t) := fv(t) \ {x},
bv(t[x/u]) := bv(t)∪{x}∪ bv(u) and bv(λx.t) := bv(t)∪{x}. We work with the
standard notion of α-conversion i.e. renaming of bound variables for abstractions
and substitutions. We write C[t] (resp. L[t]) for the term obtained by replacing
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the hole of C (resp. L) by the term t. We write C[[u]] or L[[u]] when the free
variables of u are not captured by the context, i.e. there are no abstractions or
explicit substitutions in the context that binds the free variables of u. The set
of positions of t, written pos(t), is the finite language over {0, 1} inductively
defined as follows: ε ∈ pos(t) for every t; 0p ∈ pos(λx.t) if p ∈ pos(t); 0p ∈
pos(tu) (resp. pos(t[x/u])) if p ∈ pos(t); 1p ∈ pos(tu) (resp. pos(t[x/u])) if
p ∈ pos(u). The subterm of t at position p is written t|p and defined as
expected. The term u has an occurrence in t iff there is p ∈ pos(t) such
that t|p = u. We write |t|x to denote the number of free occurrences of the
variable x in the term t. All these notions are extended to contexts as expected.

Operational Semantics: The M-calculus is given by the set of terms TM and
the reduction relation →dB∪c∪w, the union of →dB, →c, and →w, denoted
by →M, which are, respectively, the closure by term contexts C of the following
rewriting rules:

L[λx.t]u !→dB L[t[x/u]]
C[[x]][x/u] !→c C[[u]][x/u]
t[x/u] !→w t if |t|x = 0

The names dB, c and w stand for distant Beta, contraction and weakening,
respectively. Rule !→dB (resp. !→c) comes from the structural λ-calculus [5] (resp.
Milner’s calculus [36]), while !→w belongs to both calculi. By α-conversion we
can assume in the rule dB that x may only be free in t and no variable in the
domain of L, defined as expected, has free occurrences in the term u. The pushed
out list context L in rule dB can be obtained by using an equivalence related to
Regnier’s σ-equivalence [38]: L[λx.t]u ∼σ L[(λx.t)u]→dB L[t[x/u]]. We will come
back on this equivalence in Sec. 4.

The reflexive-transitive (resp. transitive) closure of →M is denoted by →∗
M

(resp. →+
M ). Given t∈TM, t is in M-normal form, written t∈M-nf, if there is

no t′ s.t. t →M t
′; and t has an M-nf iff there is t′∈M-nf such that t →∗

M t
′.

Moreover, t is weakly M-normalizing, written t∈WN (M), iff t has an M-nf,
t is strongly M-normalizing or M-terminating, written t∈SN (M), if there is
no infinite M-reduction sequence starting at t. Every M-term is (c, w)-strongly
normalizing [29].

The notion of redex occurrence in this calculus is more subtle than the one in
standard rewriting because one unique term may give rise to different reduction
steps at the root, e.g. (xu)[x/u] c← (xx)[x/u] →c (ux)[x/u]. Thus, given p ∈
pos(t), p is said to be a dB-redex occurrence of t if t|p = L[λx.t]u, p is a
w-redex occurrence of t if t|p = v[x/u] with |v|x = 0, and p is a c-redex
occurrence of t if p = p1p2, t|p1 = C[[x]][x/u] and C|p2 = �. For example 000
and 001 are both c-redex occurrences of the term λz.(xx)[x/u].

The M-calculus enjoys good properties required for calculi with ES (including
simulation of β-reduction, preservation of strong normalization, confluence on
terms and metaterms and full composition) [29]. It was recently used in different
investigations of computer science [4,2,3].
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The reduction relation →M can be refined in different ways, where the
(reflexive-)transitive closures and normal-forms are defined as expected. The
non-erasing reduction relation →M\w is given by →dB∪c, and plays a key role in
the characterization of strongly normalizing terms in Sec. 4. Another key sub-
relation studied in this paper is linear-head reduction [19,35], a strategy related
to abstract machines [19] and linear logic [24]. To introduce this notion, we first
define the set of linear-head contexts that are generated by the following
grammar:

LH ::= � | λx.LH | LHt | LH[x/t]

Linear-head M-reduction, written →LHM, is the closure under linear-head con-
texts of the rewriting rules {!→dB, !→c|LH}, where !→c|LH is the following variation
of the rewriting rule !→c:

LH[[x]]x[x/u] !→c|LH LH[[u]][x/u]

Indeed, the leftmost (i.e. head) occurrence of the variable x in LH[[x]] is substi-
tuted by u and this partial (i.e. linear) substitution is only performed on that
head occurrence. The notion of c|LH-redex occurrence is defined as for the c-
rule. A term t is linear-head M-normalizing, written t ∈ LHN (M), iff t has an
LHM-nf. For example, if t0 := λx.xy and t1 := x[y/z](II), where I := λw.w, then
t0 ∈ M-nf, and so also t0 ∈ LHM-nf, while t1 �∈ M-nf but t1 ∈ LHM-nf.

Types: We denote finite multisets by brackets, so that [ ] denotes the empty
multiset; [a, a, b] denotes a multiset having two occurrences of the element a and
one occurrence of b. We use + for multiset union. Given a countable infinite set
of base types α, β, γ, . . . we consider types and multiset types defined by the
following grammars:

(types) τ, σ, ρ ::= α | M→τ
(multiset types) M ::= [τi]i∈I where I is a finite set

Observe that our types are strict [16,6], i.e. the type on the right hand side of
a functional type is never a multiset. They also make use of usual notations for
multisets, as in [21], so that [σ, σ, τ ] must be understood as σ ∧ σ ∧ τ , where
the symbol ∧ is defined to enjoy commutative and associative axioms. When
∧ verifies the axiom σ ∧ σ = σ, the underlying type system is idempotent,
otherwise, like in this paper, it is non-idempotent.

Type assignments, written Γ,Δ, are functions from variables to multiset
types, assigning the empty multiset to all but a finite set of the variables. The
domain of Γ is given by dom(Γ ) := {x | Γ (x) �= [ ]}. The intersection of
type assignments, written Γ +Δ, is defined by (Γ +Δ)(x) := Γ (x) +Δ(x),
where the symbol + denotes multiset union. As a consequence dom(Γ + Δ) =
dom(Γ )∪dom(Δ). When dom(Γ ) and dom(Γ ) are disjoint we write Γ ;Δ instead of
Γ +Δ. We write Γ \\ x for the assignement (Γ \\ x)(x) = [ ] and (Γ \\ x)(y) = Γ (y)
if y �= x.
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x:[τ ] � x:τ
(ax)

x:[σi]i∈I ;Γ � t:τ (Δi � u:σi)i∈I

Γ +i∈I Δi � t[x/u]:τ
(cutHW)

Γ � t:τ

Γ \\x � λx.t:Γ (x)→τ
(→ i)

Γ � t:[σi]i∈I →τ (Δi � u:σi)i∈I

Γ +i∈I Δi � tu:τ
(→ eHW)

Fig. 1. The Type System HW for the M-Calculus

Typing Rules {(ax), (→ i)} plus

x:[σi]i∈I ;Γ � t:τ (Δi � u:σi)i∈I∪{w}
Γ +i∈I∪{w} Δj � t[x/u]:τ

(cutS)

Γ � t:[σi]i∈I →τ (Δi � u:σi)i∈I∪{w}
Γ +i∈I∪{w} Δi � tu:τ

(→ eS)

Fig. 2. The Type System S for the M-Calculus

The Type Systems: Type judgments have the form Γ $ t:τ , where Γ is a
type assignment, t is a term and τ is a type. The type systems HW , after Head-
Weak, and S, after Strong, for the M-calculus are given respectively in Fig. 1
and 2. A (typing) derivation in system X is a tree obtained by applying the
(inductive) typing rules of system X . The notation Γ $X t:τ means there is a
derivation of the judgment Γ $ t:τ in system X . The term t is typable in system
X , or X-typable, iff there are Γ and τ s.t. Γ $X t:τ . We use the capital Greek
letters Φ, Ψ, . . . to name type derivations, e.g. we write Φ � Γ $X t:τ . The size
of a type derivation Φ is a positive natural number sz(Φ) defined as expected.

The rules (ax), (→ i) and (→ eHW) in system HW come from a relational
semantics for linear logic [21]. Remark in particular that the axiom is relevant
(so there is no weakening) and the rules for application and substitution are
multiplicative, both characteristics are related to the resource aware semantics.
A particular case of rule (→ eHW) is when I = ∅: the subterm u occuring in
the typed term tu turns out to be untyped. Thus for example, from the deriva-
tion x:[σ] $HW λy.x:[ ]→ σ we can construct x:[σ] $HW (λy.x)Ω:σ, where Ω
is the non-terminating term (λz.zz)(λz.zz). This is precisely the reason why
rules (→ eS) and (cutS) in Fig. 2, the system which characterizes strongly-
normalizing terms, always asks a witness typing derivation for the arguments
of applications and substitutions. Indeed, if I = ∅, then the argument u will be
typed with the witness derivation Δw $ u:σw, whatever the type σw is. This
witness derivation for u is essential to guarantee strong-normalization of u (and
thus of tu and t[x/u]). When I �= ∅ the rules (→ eS) and (cutS) also require a
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witness derivation for u, whose use is necessary in order to deal with the c-rule
when |C[[x]]|x = 1 (see discussion after Lem. 4). Last, remark that an alternative
definition of rules (→ eS) and (cutS) given by adding I �= ∅ to rules (→ eHW)
and (cutHW), respectively, would not be complete: terms like x[y/z] or (λy.x)z
become untypable.

Given Φ � Γ $HW t:σ, not every free variable of t necessarily appears in the
domain of Γ , this is for example the case in x:[σ] $HW (λy.x)z:σ. More precisely,
the systems enjoy the following (weak/strong) relevance properties, that can be
easily shown by induction on derivations.

Lemma 1. If Φ�Γ $HW t:σ then dom(Γ ) ⊆ fv(t). If Φ�Γ $S t:σ, then dom(Γ ) =
fv(t).

In contrast to other intersection type systems for ES in the literature, the typing
rules of our systems are syntax oriented, so that generation lemmas are not
needed to distinguish particular syntactical forms of derivations.

3 About Linear-Head, Head and Weak M-Normalization

We show in this section two main results. The first one (Sec. 3.1) characterizes
linear-head and head M-normalizing terms by means of HW-typability. This re-
sult generalizes to calculi with ES the well-known logical characterization of head
β-normalizing λ-terms [17,21]. The HW-type system is known to type also some
non weakly M-normalizing terms: for instance, if Ω is any non-terminating term,
then x:[ ]→σ $HW xΩ:σ. We then characterize the set of weakly M-normalizing
terms, our second result (Sec. 3.2), by restricting the HW-typing derivations to
some particular ones. But first, let us develop some key technical tools.

To understand which are the redex occurrences actually constrained by the
type system, let us consider a derivation Φ�Γ $HW t:τ . A position p ∈ pos(t) is
a typed occurrence of Φ if either p = ε, or p = ip′ (i = 0, 1) and p′ ∈ pos(t|i) is
a typed occurrence of some of their corresponding subderivations of Φ. A redex
occurrence of t which is also a typed occurrence of Φ is a redex T-occurrence
of t in Φ. Thus for example, given the following derivations Φ and Φ′, we have
that ε, 0, 1 and 10 are T-occurrences in Φ and Φ′, while 11 is a T-occurrence in
Φ but not in Φ′.

Φ �

x:[[τ, τ ]→τ ] � x:[τ, τ ]→τ
y:[[ ]→τ ] � y:[ ]→τ

y:[[ ]→τ ] � yz:τ

y:[[τ ]→τ ] � y:[τ ]→τ z:[τ ] � z:τ

y:[[τ ]→τ ], z:[τ ] � yz:τ

x:[[τ, τ ]→τ ], y:[[ ]→τ, [τ ]→τ ], z:[τ ] � x(yz):τ

Φ′ �
x:[[τ, τ ]→τ ] � x:[τ, τ ]→τ

y:[[ ]→τ ] � y:[ ]→τ

y:[[ ]→τ ] � yz:τ

y:[[ ]→τ ] � y:[ ]→τ

y:[[ ]→τ ] � yz:τ

x:[[τ, τ ]→τ ], y:[[ ]→τ, [ ]→τ ] � x(yz):τ
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The notion of T-occurrence plays a key role in the Subject Reduction (SR)
lemma, which is based on a subtle partial substitution lemma, a refinement of
the standard substitution lemma used in the λ-calculus.

Lemma 2 (SR I). Let Φ � Γ $HW t:τ . If t →M t
′ reduces a (dB, c, w)-redex

T-occurrence of t in Φ then Φ′ � Γ $HW t′:τ and sz(Φ) > sz(Φ′).

As an example, consider Φ′′ � y:[[ ]→ [ ]→τ ] $HW (xxx)[x/y]:τ . Then the
(typed) reduction step (xxx)[x/y] →c (yxx)[x/y] decreases the measure of
Φ′′ but thereafter (yxx)[x/y] →c (yyx)[x/y] →c (yyy)[x/y] are not decreasing
reduction steps since they act on untyped occurrences.

As a corollary, termination holds for any strategy reducing only redexes
T-occurrences, an important key point used in Sec. 3.1 and 3.2.

Corollary 1. If Φ�Γ $HW t:τ , then any M-reduction sequence contracting only
(dB, c, w)-redex T-occurrences is finite.

Types of terms can also be recovered by means of Subject Expansion (SE), a
property which will be particularly useful in Sec. 3.1 and 3.2.

Lemma 3 (SE I). If Γ $HW t′:τ and t→M t
′ then Γ $HW t:τ .

3.1 Linear-Head and Head M-Normalization

Linear-head reduction [19,35] comes from a fine notion of evaluation for
proof nets [25]. It is a particular reduction strategy of the M-calculus al-
though it is not a strategy of β-reduction. In contrast to head-reduction
for λ-calculus the reduction relation →LHM for M-terms is non-deterministic:
y[y/w][x/z] LHM← (λx.y[y/w])z →LHM (λx.w[y/w])z. This behaviour is however
safe since →LHM has the diamond property [7].

Another remarkable property of linear-head reduction is that the hole of the
contexts LH cannot be duplicated nor erased. This is related to a recent result [3]
stating that linear-head reduction is standard for the M-calculus, exactly as left-
to-right reduction is standard for the λ-calculus.

We now refine a known result in the λ-calculus which characterizes head-
normalizing terms by means of intersection types, either idempotent [17,8]1 or
non-idempotent [21]. Indeed, the set of linear-head M-normalizing terms coincides
with the set of HW-typable terms.

Lemma 4. If Φ�Γ $HW t:τ and t has no (dB, c|LH)-redexes T-occurrences in Φ,
then t ∈ LHM-nf.

It is worth noticing that Lem. 4 does not hold for head-nfs. Indeed, the term
(yxx)[x/y] in the example just after Lem. 2 does not have any redex T-occurrence
(the only two c-redexes occurrences are untyped), and is not a head-nf. This
emphasizes the fact that linear-head reduction is more pertinent for calculi with
ES than head reduction. We conclude by

1 Although idempotency was not explicity mentioned in [17], a remark on pp. 55 points
out the meaninglessness of duplication of types in a sequence.
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Theorem 1. Let t ∈ TM. Then t ∈ LHN (M) iff t is HW-typable.

Proof. Let t ∈ LHN (M). We proceed by induction on the length of the linear-
head M-normalizing reduction using Lem. 3 (see [30] for details).

Let t be HW-typable. By Cor. 1 the strategy consisting in the contraction of
(dB, c|LH)-redex T-occurrences terminates in a term t′ without such redexes. The
term t′ is typable by Lem. 2 and t′ is a LHM-nf by Lem. 4. Thus, t ∈ LHN (M).

We can finally characterize head-normalization. A term t is head-
normalizing, written t ∈ HN (M), iff t M-reduces to a term of the form
λx1 . . . xn.yu1 . . . um for some n ≥ 0,m ≥ 0.

Theorem 2. Let t ∈ TM. Then t ∈ HN (M) iff t is HW-typable.

Proof. For the if implication we have HN (M) ⊆ LHN (M) so we conclude by
Thm. 1. Otherwise, tHW-typable implies by Thm. 1 that t→∗

M t
′, where t′ ∈ LHM-

nf. The (terminating) reduction relation→(c,w) on t
′ gives a term of the required

form.

3.2 Weak M-Normalization

In this section we use the type system HW to characterize weakly M-normalizing
terms, a result that extends the well-known characterization [17] of weakly β-
normalizing in the λ-calculus. As in [17,13], HW-typability alone does not suffice
to characterize weak M-normalizing terms (see an example at the beginning of
Sec. 3). The type [ ] plays a similar rôle to the universal ω type in [17,13], although
it is restricted to occur only in the domain type of a function that accepts any
kind of argument. We then restrict the allowed typing derivations in order to
recover such a characterization. Indeed, the set of positive (resp. negative)
subtypes of a type is the smallest set satisfying the following conditions (cf.[13]).

– A ∈ P(A).
– A ∈ P([σi]i∈I) if ∃i A ∈ P(σi); A ∈ N ([σi]i∈I) if ∃i A ∈ N (σi).
– A ∈ P(M→τ) if A ∈ N (M) or A ∈ P(τ); A ∈ N (M→τ) if A ∈ P(M) or
A ∈ N (τ).

– A ∈ P(Γ ) if ∃ y ∈ dom(Γ ) s.t. A ∈ N (Γ (y)); A ∈ N (Γ ) if ∃ y ∈ dom(Γ ) s.t.
A ∈ P(Γ (y)).

– A ∈ P(〈Γ, τ〉) if A ∈ P(Γ ) or A ∈ P(τ); A ∈ N (〈Γ, τ〉) if A ∈ N (Γ ) or
A ∈ N (τ).

As an example, [ ] ∈ P([ ]), so that [ ] ∈ N ([ ]→ σ), [ ] ∈ P(x:[[ ]→ σ]) and
[ ] ∈ P(〈x:[[ ]→σ], σ〉).

Lemma 5. Let Φ � Γ $HW t:τ s.t. [ ] /∈ P(〈Γ, τ〉). If t has no (dB, c, w)-redex
T-occurrences in Φ, then t ∈ M-nf.

Theorem 3. Let t ∈ TM. Then, t ∈ WN (M) iff Γ $HW t:τ and [ ] /∈ P(〈Γ, τ〉).
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Proof. If t ∈ WN (M), we proceed by induction on the length of the M-normalizing
reduction sequence using Lem. 3 (see in [30] for details).

Suppose Γ $HW t:τ and [ ] /∈ P(〈Γ, τ〉). By Cor. 1 the strategy of contracting
only redex T-occurrences terminates in a term t′ without such redexes. The
term t′ is typable by Lem. 2 and then t′ turns out to be a M-nf by Lem. 5. Thus,
t ∈ WN (M).

4 About Strong M-Normalization

In this section we show the third main result of the paper which is a charac-
terization of the set of strongly M-normalizing terms by means of S-typability.
The proof is done in several steps. The first key point is the characterization of
the set of strongly M\w-normalizing terms (instead of M-normalizing terms). For
that, SR and SE lemmas for the S-type system are needed, and an inductive
characterization of the set SN (M\w) turns out to be helpful to obtain them.
The second key point is the equivalence between strongly M and M\w-normalizing
terms. While the inclusion SN (M) ⊆ SN (M\w) is straightforward, the fact that
every w-reduction step can be postponed w.r.t. any M\w-step (Lem. 11) turns out
to be crucial to show SN (M\w) ⊆ SN (M).

We first introduce the graphical equivalence ∼ on M-terms, given by the
contextual, transitive, symmetric and reflexive closure of the following three
axioms2

t[x/u][y/v] ≈CS t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)
(λy.t)[x/u] ≈σ1 λy.t[x/u] if y /∈ fv(u)
(tv)[x/u] ≈σ2 t[x/u]v if x /∈ fv(v)

This equivalence, related to Regnier’s σ-equivalence [38] on λ-terms (resp. σ-
equivalence on terms with ES [5]), preserves types, a property used to perform
some safe transformations of terms in order to inductively define the set SN (M\w)
(cf. clause (E)). Note that, for any t ∈ TM, we have that the set {t′ | t →M\w t′}
is finite. Therefore, for any t ∈ SN (M\w), the depth of t can be defined as the
maximal length of M\w-reduction sequences starting at t, denoted by ηM\w(t).

Lemma 6 (Invariance for ∼). Let t, t′∈TM s.t. t ∼ t′. Then, 1) ηM\w(t) =
ηM\w(t′). 2) If Φ � Γ $S t:τ , then Φ′ � Γ $S t′:τ . Moreover, sz(Φ)=sz(Φ′).

In contrast to systemHW , whose typing measure sz() is only decreasing w.r.t.
reduction of redex typed occurrences, the system S enjoys a stronger subject
reduction property, guaranteeing that every reduction decreases the measure
sz() of terms (whose redexes are all typed now).

Lemma 7 (SR II). Let Φ�Γ $S t:τ . If t→M\w t′ then Φ′�Γ $S t′:τ and sz(Φ) >
sz(Φ′).

2 Eventhough only σ2 will be used later to give an inductive definition of SN (M), the
equivalence is presented as a whole.
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Notice that the previous lemma does not hold if the witness derivation in
the rules (→ eS) and (cutS) in Fig. 2 is only required for the case I = ∅. For
example, given x[x/y] →c y[x/y] and their respective typing derivations Φ and
Φ′, one would have sz(Φ) = sz(Φy) + 2 = 2 · sz(Φy) + 1 = sz(Φ′). One can even
have sz(Φ)<sz(Φ′) if y is replaced by an arbitrary bigger term. Notice that an
erasing step v[x/u]→w v also decreases sz( ) but the type assignment for u may
change w.r.t. that of v[x/u].

Lemma 8 (SE II). Let Γ $S t′:τ . If t→M\w t′ then Γ $S t:τ .

Notice that expansion does not hold for→w-reduction. For example x : [σ] $S
x:σ and x[y/Ω]→w x, but x : [σ] �$S x[y/Ω]:σ.

These technical tools are now used to prove that SN (M\w) coincides exactly
with the set of S-typable terms. To close the picture, i.e. to show that also
SN (M) coincides with the set of S-typable terms, we establish an equivalence
between SN (M) and SN (M\w). This is done constructively thanks to the use
of an inductive definition for SN (M\w). Indeed, the inductive set of M\w-
strongly-normalizing terms is the smallest subset of TM that satisfies the
following properties:

(V ) If t1, . . . , tn ∈ ISN (M\w), then xt1 . . . tn ∈ ISN (M\w).
(L) If t ∈ ISN (M\w), then λx.t ∈ ISN (M\w).
(W ) If t, s ∈ ISN (M\w) and |t|x = 0, then t[x/s] ∈ ISN (M\w).
(B) If u[x/v]t1, . . . , tn ∈ ISN (M\w), then (λx.u)vt1, . . . , tn ∈ ISN (M\w).
(C) If C[[u]][x/u] ∈ ISN (M\w), then C[[x]][x/u] ∈ ISN (M\w).
(E) If (tu)[x/s] ∈ ISN (M\w) and |u|x = 0, then t[x/s]u ∈ ISN (M\w).

Note the use of the σ2-axiom in the last clause of the definition. It is not sur-
prising that ISN (M\w) turns out to be equivalent to SN (M\w), a property which
considerably simplifies the proof of Lemma 10.

Lemma 9. SN (M\w) = ISN (M\w)

Proof. Given o ∈ SN (M\w), we show o ∈ ISN (M\w) by induction on 〈ηM\w(o), |o|〉.
The converse uses induction on the definition of ISN (M\w).

Lemma 10. Let t ∈ TM. If t ∈ SN (M\w) then t is S-typable.

Proof. Use the equality SN (M\w) =L. 9 ISN (M\w) to reason by induction on
t ∈ ISN (M\w). The proof also uses Lem. 6 and 8 (see [30] for details).

In order to infer SN (M\w) ⊆ SN (M), the following postponement property is
crucial.

Lemma 11 (Postponement). Let v∈TM. If v→+
w→M\wv′ then v→M\w→+

w v
′.

Proof. We first show by cases v →w→M\w v′ implies v →M\w→+
w v′. Then, the

statement holds by induction on the number of w-steps from v.
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Lemma 12 (From M\w to M). Let t∈TM. If t∈SN (M\w), then t∈SN (M).

Proof. We show that any reduction sequence ρ : t→M . . . is finite by induction on
the pair 〈t, n〉, where n is the maximal number such that ρ can be decomposed as
ρ : t→n

w t
′ →M\w t′′ → . . . (this is well-defined since →w is trivially terminating).

We compare the pair 〈t, n〉 using →M\w for the first component (this is well-
founded since t ∈ SN (M\w) by hyp.) and the standard order on natural numbers
for the second one. When the reduction sequence starts with at least one w-step
we conclude by Lem. 11. All the other cases are straightforward.

We conclude this section with the third main theorem for M-calculus:

Theorem 4. Let t ∈ TM. Then t is S-typable iff t ∈ SN (M).

Proof. Let Φ � Γ $S t:τ . Assume t /∈ SN (M\w) so that ∃∞ sequence t = t0 →M\w
t1 →M\w t2 →M\w · · · . By Lem. 7 Φi � Γ $ ti:τ for every i, and ∃∞ sequence
sz(Φ0) > sz(Φ1) > sz(Φ2) > . . ., which leads to a contradiction. Therefore,
t ∈ SN (M\w) ⊆Lem. 12 SN (M).

For the converse, t ∈ SN (M) ⊆ SN (M\w) because →M\w⊆→M. We conclude by
Lem. 10.

A corollary of this result is that M-calculus enjoys the (IE) Property [26],
namely, if t{x/u} and u are in SN (M), then t[x/u] is also in SN (M). Indeed,
Thm. 4 gives t{x/u} and u typable, then Lem. 30 in [30] gives the exact premises
to type t[x/u], which belongs to SN (M) by Thm. 4.

5 Conclusion

This paper studies quantitative types for the linear substitution calculus for
which we characterized linear-head, head, weak and strongly normalizing sets
of terms. In particular, the correspondence between head β-normalization for
λ-terms and linear-head M-normalization for terms with ES can now be obtained
by means of an indirect logical reasoning (i.e. the HW-system), in contrast to
the operational result given in [4].

The type systems are given by simple formalisms: intersection is represented
by multisets, the typing rules are syntax-oriented and no subtyping relation is
used. Similar ideas can be applied [30] in the framework of intuitionistic se-
quent style, giving rise to a reformulation of Herbelin’s calculus which is in-
teresting in its own. The HW-system also enjoys the inhabitation property for
λ-calculus [12], which is a proper sub-calculus of the linear substitution calculus.

Our strong normalization characterization implies that the number of steps
of the longest reduction sequences of terminating M-terms is bounded by the the
size of typing derivations. But despite the use of quantitative types, we did not
give an exact upper bound, as done for example in [9,20]. This remains as future
work.

Although type inference is undecidable for any system characterizing termi-
nation properties, semi-decidable restrictions are expected to hold. Principal
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typing is a property (cf. [21]) which allows to obtain partial typing inference
algorithms [40,39,31] and exact bounds for termination (cf.[10]). Moreover, rele-
vance in the sense of [18] is a key property to obtain principal typings. Therefore
semi-decidable typing inference algorithms are also expected to hold for our two
non-idempotent type systems.

Neergard et al. [37] proved that type inference and execution of typed pro-
grams are in different (resp. the same) classes of complexity in the idempo-
tent (resp. non-idempotent) case. However, the system introduced by Carlier et
al. [14] allows to relax the notion of type linearity. An interesting challenge would
be relax the notion of linear types in order to gain expressivity while staying in
a different class.

Last but not least, the inhabitation problem for idempotent intersection types
in the λ-calculus is known to be undecidable [41], while the problem was recently
shown to be decidable in the non-idempotent case [12]. An interesting question
concerns the inhabitation problems for our non-idempotent type systems.
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Abstract. Coalgebra offers a general framework for modelling different types
of state-based systems. Our aim is to present generic algorithms to decide be-
havioural equivalence for coalgebras which generalize partition refinement. The
underlying idea of the algorithms is to work on the final chain and to factor out
redundant information. If the algorithm terminates, the result of the construction
is a representative of the given coalgebra that is not necessarily unique and that
allows to precisely answer questions about behavioural equivalence. We apply
the algorithm to weighted automata over semirings in order to obtain a procedure
for checking language equivalence for a large number of semirings.

1 Introduction

Coalgebra [Rut00] offers a unifying theory in which we can model and reason about
various types of transition systems and automata. Given a category C and an endofunc-
tor F : C → C, an F -coalgebra is an arrow α : X → FX . In the case of Set, X can
be seen as the set of states of the transition system, F represents the branching type
and α is the transition function. Depending on the choice ofX we can specify different
kinds of systems: for instance, the (finite) powerset functor FX = Pfin(X) specifies
non-deterministic branching, whereas the functor FX = XA describes labels. Such
functors can be combined to construct more complex types of transition systems.

Coalgebra comes equipped with a canonical notion of behavioural equivalence
[Sta09]. We believe that an important contribution of coalgebra should be the provision of
generic algorithms for checking behavioural equivalence, independent of the type of tran-
sition system. Such generic algorithms would be useful for two reasons: for classifying
and comparing existing algorithms and for obtaining prototype algorithms (that might be
further optimized) when studying a new class of systems. One example of such generic
methods that have recently been studied are up-to techniques [RBB+14,BPPR14].

Here we are interested in generic algorithms for checking behavioural equivalence,
akin to minimization or partition refinement techniques. A rather general account for
such minimization techniques has been presented in [ABH+12], by using factorization
structures and factoring the arrows into the final chain. For coalgebras overSet this boils
down to classical partition refinement, encompassing minimization of deterministic au-
tomata [HU79] or the computation of bisimulation equivalence classes for probabilistic
transition systems [LS89,Bai96]. In [ABH+12] we have also shown how to handle some
coalgebras in categories different fromSet, especially in Kleisli categories, which allow
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to specify side-effects and hence trace equivalence (where non-determinism is abstracted
away as a side-effect).

However, some examples do not fall into this framework, most notably weighted
automata over semirings, for which the underlying category does not possess suitable
factorization structures. We found that a different notion of factorization can be used
to capture behavioural equivalence. Furthermore it is unnecessary to look for a unique
minimization or canonical representative, rather it is sufficient to compute some repre-
sentative coalgebra and use it to precisely answer questions about behavioural equiva-
lence. For weighted automata over semirings this yields an algorithm that we did not
find in the literature as such. For probabilistic automata there is a related procedure for
checking language equivalence [KMO+11], for fields a method is discussed in [Bor09]
and a result for rings, based on results by Schützenberger, is given in [DK13]. The
notion of coalgebra homomorphism is related to conjugacy described in [BLS06].

We will present a generic algorithm, based on the notion of equivalence classes of
arrows. We will compare this algorithm to the algorithm of [ABH+12] that uses factor-
ization structures [AHS90]. An important special case that we will discuss in detail and
with many examples is the setting of weighted automata.

2 Preliminaries

We presuppose basic knowledge of category theory. We assume the reader is familiar
with the notions of categories and functors. We are considering coalgebras in categories
possibly different from Set. However, in order to be able to speak about behavioural
equivalence of states, we need to restrict to concrete categories, i.e. categories C with a
faithful functor U : C→ Set, called concretization functor.

A coalgebra is an arrowα : X → FX where the endofunctorF describes the branch-
ing type of the system under consideration, X plays the role of the set of states and α
specifies transitions.

Definition 2.1 (Coalgebra). Let F : C → C be an endofunctor on a category C. An
F -coalgebra is a pair (X,α : X → FX), whereX is an object of C and α is an arrow
in C. Given two F -coalgebras (X,α), (Y, β), a coalgebra homomorphism from (X,α)
to (Y, β) is a C-arrow f : X → Y , so that Ff ◦ α = β ◦ f .

Coalgebra homomorphisms can be considered as structure-preserving maps between
coalgebras, they correspond to functional bisimulations.

Definition 2.2 (Behavioural Equivalence). Let (C, U) be a concrete category and
(X,α : X → FX) be an F -coalgebra. We call the elements x ∈ UX the states of
(X,α). Two states x, y ∈ UX are behaviourally equivalent (x ∼ y) if and only if there
exists an F -coalgebra (Y, β) and a coalgebra-homomorphism f : (X,α) → (Y, β)
such that Uf(x) = Uf(y).

We will now introduce some relations on objects and arrows.

Definition 2.3 (Relations on Objects and Arrows). Let X,Y be two objects of a cat-
egory C. We write X ≤ Y whenever there is an arrow f : X → Y . Furthermore we
write X ≡ Y wheneverX ≤ Y , Y ≤ X .



Generic Partition Refinement Algorithms 313

Let a : X → A, b : X → B be two arrows in C with the same domain. We write
a ≤X b whenever there exists an arrow d : A → B with d ◦ a = b. Similarly we write
a ≡X b.

If the objects of a category formed a set, ≤ would be a preorder (or quasi-order) and
≡ would be an equivalence relation. That is, reflexivity, transitivity and symmetry hold
(for ≡). Note that if a category has a final object 1, then X ≤ 1 holds for any other
object X . Furthermore if f : X → 1 is an arrow into the final object, we have that
g ≤X f for any other arrow g : X → Y .

Proposition 2.4. Let X,Y be objects of a category C and let a : X → A, b : X → B
be arrows in C. Furthermore letF : C→ C be an endofunctor. Then (i)X ≤ Y implies
FX ≤ FY , (ii) a ≤X b implies Fa ≤FX Fb, (iii) a ≤X b implies a ◦ c ≤Y b ◦ c for
any arrow c : Y → X .

Example 2.5. Let f : X → A, g : X → B where X �= ∅ be two functions in Set. It
holds that f ≡X g if and only if both functions induce the same partition onX , i.e., for
all x, y ∈ X it holds that f(x) = f(y) ⇐⇒ g(x) = g(y). Similarly f ≤X g means
for all x, y ∈ X that f(x) = f(y)⇒ g(x) = g(y).

Hence if a ≡X b holds for two arrows a : X → A, b : X → B in a concrete category
(C, U), we can conclude that Ua, Ub induce the same partition on UX .

The notion of equivalent arrows is connected to the notion of split-mono. An arrow
m : X → Y is called split-mono if it has a left inverse, i.e., if there exists an arrow
m← : Y → X such that m← ◦ m = idX . Now, assume two arrows a : X → Y ,
b : X → Z are equivalent (a ≡X b). Then there is an arrow m : Y → Z and an arrow
m← : Z → Y such that m ◦ a = b and m← ◦ b = a. Then, m← ◦m ◦ a = a, hence m
behaves like a split-mono, relative to a. More concretely, split-monos m : X → Y are
exactly the arrows that are equivalent to idX .

In Section 4 we will show that equivalence on arrows boils down to a very natural
notion in the setting of weighted automata: the fact that two sets of vectors (with entries
from a semiring) generate the same semimodule.

Finally, we need the notion of factorization structures [AHS90].

Definition 2.6 (Factorization Structures). LetC be a category and let E ,M be classes
of morphisms in C. The pair (E ,M) is called a factorization structure for C whenever

– E andM are closed under composition with isos.
– C has (E ,M)-factorizations of morphisms, i.e., each morphism f of C has a fac-

torization f = m ◦ e with e ∈ E andm ∈M.
– C has the unique (E ,M)-diagonalization property: for each commutative square
g ◦ e = m ◦ f with e ∈ E and m ∈ M there exists a unique diagonal, i.e., a
morphism d such that d ◦ e = f andm ◦ d = g.

3 Generic Algorithms

For our algorithms we assume in the following that the category under consideration
has a final object 1. Before introducing the algorithms, based on the construction of the
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final chain [AK95], we will first discuss how behavioural equivalence can be expressed
as a post-fixpoint using the terminology of the previous section.

Proposition 3.1. Let F be an endofunctor on a concrete category (C, U) and let α :
X → FX be a coalgebra on C. Furthermore let f : X → Y be an arrow. It holds that
f ≤X Ff ◦ α (f is a post-fixpoint) if and only if there exists a coalgebra β : Y → FY
such that f is a coalgebra homomorphism from (X,α) to (Y, β).

For every such post-fixpoint f we have that x, y ∈ UX and Uf(x) = Uf(y) implies
x ∼ y. If, in addition, it holds for every other post-fixpoint g : X → Z that g ≤X f (f
is the largest post-fixpoint), we can conclude that f induces behavioural equivalence,
i.e., Uf(x) = Uf(y) ⇐⇒ x ∼ y.

Proof. The first statement is almost trivial, since f ≤X Ff ◦ α means the existence of
an arrow β : X → FX with β ◦ f = Ff ◦ α, which is exactly the condition that β is a
coalgebra homomorphism. Hence, by definition of behavioural equivalence, Uf(x) =
Uf(y) implies x ∼ y. It is left to show that x ∼ y implies Uf(x) = Uf(y) if f is
the largest fixpoint. Since x ∼ y, there must be some coalgebra γ : Z → FZ and a
coalgebra homomorphism g : X → Z such that γ ◦ g = Fg ◦ α and Ug(x) = Ug(y).
This implies that g ≤X Fg ◦α and hence g ≤X f . Finally, we obtain Uf(x) = Uf(y).

�

In Set one can imagine the largest fixpoint f : X → Y as a function that maps
every state into its equivalence class. We will now discuss three algorithms that expect
a coalgebra α as input and yield, if they terminate, a coalgebra homomorphism (from α
to some target coalgebra) that induces behavioural equivalence.

Algorithm 3.2 (Final Chain Algorithm A). Let F be an endofunctor on a concrete
category (C, U) and let α : X → FX be a coalgebra in C. We define the following
algorithm.

Step 0: Take the (unique) arrow dA0 : X → 1.
Step i+ 1: Compute dAi+1 = FdAi ◦ α : X → F i+11.

If there exists an arrow β : F i1→ F i+11 such that β ◦ dAi = dAi+1, i.e., if dAi ≤X

dAi+1, the algorithm terminates and returns dAi and (F i1, β) as its result.

Algorithm A is well-known iteration along the final chain, however, to our knowledge,
the termination condition is new.

X

. . .F11 Fn1 Fn+11

dA0 dA1 dAn dAn+1 = FdAn ◦ α

! F ! Fn−1! Fn!

β

The algorithm is easy to analyse using the terminology introduced earlier. Specifi-
cally, it yields a sequence of arrows dA0 ≥X dA1 ≥X dA2 ≥X . . . that approximates
behavioural equivalence from above. It terminates whenever this sequence becomes sta-
tionary, i.e., dAn ≡X dAn+1.
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Lemma 3.3. Let g : X → Z be any post-fixpoint, i.e. g ≤X Fg ◦ α, then for all dAi
obtained in Algorithm A we have dAi ≥X g.

Proof. Clearly dA0 ≥X g, because dA0 is the arrow into the final object of the category.
By induction, using Proposition 2.4, we can show that dAi ≥X g implies dAi+1 = FdAi ◦
α ≥X Fg ◦ α ≥X g. �

Proposition 3.4. If Algorithm A terminates in step n, its result dAn induces behavioural
equivalence, i.e. x, y ∈ UX are behaviourally equivalent (x ∼ y) if and only if
UdAn (x) = UdAn (y).

Proof. First, dA0 ≥X dA1 since dA0 is an arrow into the final object. Since ≤X is pre-
served by functors and by right composition with arrows, we obtain by induction, using
Proposition 2.4, that dAi ≥X dAi+1. The termination condition says that dAn ≤X dAn+1 =
FdAn ◦ α. In order to conclude with Theorem 3.1 that the resulting arrow dAn induces
behavioural equivalence, we have to show that it is the largest post-fixpoint. Assume
another post-fixpoint g : X → Z with g ≤X Fg ◦ α. Then, Theorem 3.3 shows that
dAn ≥X g and thus dAn is the largest post-fixpoint. �

Furthermore whenever dAn ≡X dAn+1 we have that dAn ≡X dAm for every m ≥ n.
Hence every arrow dAm obtained at a later step induces behavioural equivalence as well.
We can show that dAn is equivalent to the arrow into the final coalgebra (if it exists).

Lemma 3.5. Let (Z, κ) be the final coalgebra, i.e., a coalgebra into which there exists a
unique coalgebra homomorphism from every other coalgebra. Take a coalgebra (X,α)
and the unique homomorphism f : (X,α) → (Z, κ) and assume that Algorithm A ter-
minates in step n. Then f ≡X dAn .

Note that after each step of the algorithm, it is permissible to replace dAi with any
representative eAi of the equivalence class of dAi , i.e., any eAi with dAi ≡X eAi . This
holds because dAi ≡X eAi implies dAi+1 = FdAi ◦ α ≡X FeAi ◦ α and checking the
termination condition dAn ≤X dAn+1 can instead be done for any representatives of
dAn , d

A
n+1. This gives rise to the following algorithm:

Algorithm 3.6 (Final Chain Algorithm B). Let F be an endofunctor on a concrete
category (C, U) and let α : X → FX be a coalgebra in C. Morover, let R, the class
of representatives, be a class of arrows of C such that for any arrow d in C we have an
arrow e ∈ R that is equivalent to d, i.e. d ≡X e. We define the following algorithm:

Step 0: Take the (unique) arrow dB0 : X → 1.
Step i+ 1: Find a representative eBi ∈ R, for dBi , i.e. factor dBi = mB

i ◦ eBi such that
(eBi : X → Yi) ∈ R, mB

i : Yi → FYi−1. Determine dBi+1 = FeBi ◦ α : X → FYi.
If there exists an arrow γ : Yi → FYi such that γ ◦ eBi = dBi+1, i.e., dBi+1 ≥X eBi ,
the algorithm terminates and returns eBi and (Yi, γ) as its result.

Choosing good and compact representatives can substantially mitigate state space
explosion. Hence, Algorithm B is an optimization of Algorithm A that (potentially)
reduces the number of computations needed in every step. Moreover, Algorithm B ter-
minates in exactly as many steps as Algorithm A (if it terminates).
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Proposition 3.7. Algorithm B terminates in n steps if and only if Algorithm A termi-
nates in n steps. Furthermore two states x, y ∈ UX are behaviourally equivalent
(x ∼ y) if and only if UeBn (x) = UeBn (y).

Termination for Algorithm B is independent of the choice of the representatives eBi .

In [ABH+12] an algorithm similar to ours is being discussed. The algorithm also
works on the final chain and uses a factorization system to trim the intermediate results
with the aim of finding a so-called minimization, i.e., a unique and minimal representa-
tive of the given coalgebra α. We we will discuss a variation of said algorithm.

Algorithm 3.8 (Final Chain Algorithm C). Let F be an endofunctor on a concrete
category (C, U) and let α : X → FX be a coalgebra in C. Morover, let (E ,M) be
a factorization structure such that U mapsM-morphisms to injections. We define the
following algorithm:

Step 0: Take the (unique) arrow dC0 : X → 1.
Step i+ 1: Factor dCi = mC

i ◦eCi via the factorization structure, i.e. (eCi : X → Yi) ∈
E , (mC

i : Yi → FYi−1) ∈M. Determine dCi+1 = FeCi ◦ α : X → FYi.
If there exists an arrow δ : Yi → FYi such that δ ◦ eCi = dCi+1, the algorithm
terminates and returns eCi and (Yi, δ) as its result.

Remark 3.9. Note that for Algorithms A and B we have to assume that the preorders
are decidable, for Algorithms B and C we have to assume that the factorizations are
computable. Naturally, in concrete applications, one has to choose a suitable class of
representatives and a strategy for factoring. For the case of weighted automata we will
discuss how such a strategy looks like (see Section 4).

If a category has a suitable factorization structure that ensures compact intermedi-
ate results, Algorithm C might terminate faster than Algorithm B. However, not every
category has a suitable factorization structure (see our examples in Section 4), which
drove us to investigate alternatives such as Algorithms A and B introduced earlier. For
the trivial factorization structure where E is the class of all arrows andM are just the
isomorphisms, we obtain the unoptimized Algorithm A. Algorithm C is a variation of
the algorithm in [ABH+12] with a relaxed (but correct) termination condition: in the
earlier version the algorithm terminated only if one of the mC

i was an isomorphism.
Under certain conditions, stated below, Algorithm C terminates in the same number

of steps as Algorithm B.

Proposition 3.10. Let F be an endofunctor on a concrete category (C, U) and let α :
X → FX be a coalgebra in C. Moreover, let (E ,M) be a factorization structure
for C.

1. Assume that F preserves M-arrows. If Algorithm A terminates in n steps, then
Algorithm C terminates in n steps as well.

2. If Algorithm C terminates in n steps and for each arrow dAi , i = 0, . . . , n there
exists an arrow ei ∈ E with ei ≡X dAi (i.e., there is an arrow from E in all relevant
equivalence classes), then Algorithm B terminates in n steps as well.
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Furthermore two states x, y ∈ UX are behaviourally equivalent (x ∼ y) if and only if
UeCn (x) = UeCn (y).

In Set every equivalence class of arrows, except the equivalence classes of ≡∅,
contains a surjection. Hence if we choose surjections and injections as a factorization
structure in Set, we obtain exactly the same termination behaviour as the other two
algorithms, provided that the state set is not empty. In this case, a suitable class R
of representatives for Algorithm B would also be the surjections. This yields classical
partition refinement algorithms.

Termination: The algorithm terminates whenever ≡X has only finitely many equiva-
lence classes. In Set this is the case for finite sets X . However, there are other cate-
gories where this condition holds for certain objectsX : in Vect, the category of vector
spaces and linear maps,≡X is of finite index, wheneverX is a finite-dimensional vector
space.

Note that it is not sufficient to iterate until the partition induced by Udi is not refined
from one step to the next. We will discuss weighted automata in the next section and the
tropical semiring provides an example where behavioural equivalence is undecidable,
but all steps of Algorithm B are computable and the partition induced by Udi can only
be refined finitely often, rendering this criterion invalid.

4 Weighted Automata

We will show that we can apply our approach to weighted automata with weights taken
from a semiring. Weighted automata [DKV09] are a versatile tool to specify and anal-
yse systems equipped with quantitative information. They are a generalization of non-
deterministic automata (NFA), but instead of just accepting or rejecting words over a
given alphabet, weighted automata assign values taken from a semiring to words.

Coalgebraic treatment for weighted automata was already discussed in [BMS13],
but for different categories. Here, we follow the ideas of [HJS07], which shows how to
obtain trace or language equivalence by working in a Kleisli category.

We mainly consider Algorithm B. The algorithm will not terminate for every pos-
sible choice of the semiring (for example it is known that language equivalence is un-
decidable for tropical semirings). However, we will characterize the cases for which it
terminates.

Definition 4.1 (Semiring). Let S be a set. A semiring is a tuple S = (S,+, ·, 0, 1),
where 0 ∈ S, 1 ∈ S and 1 �= 0, (S,+, 0) is a commutative monoid, (S, ·, 1) is a
monoid, 0 ·a = a · 0 = 0 for all a ∈ S and the distributive laws (a+ b) · c = a · c+ b · c
and c · (a + b) = c · a + c · b hold for all a, b, c ∈ S. We will in the sequel identify S
with the set S it is defined on.

Hence a semiring is a ring that need not have additive inverses. All rings and therefore
all fields are semirings. Whenever we are talking about a semiring throughout this paper,
we assume S is a decidable set and the operations⊕ and⊗ can be computed effectively.
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Example 4.2. The semiring S = (N ∪ {∞},min,+,∞, 0), where S-addition is the
minimum and S-multiplication is addition, is called the tropical semiring.

Take a partially ordered set (L,≤) such that for a, b ∈ L we have a supremum a � b
and an infimum a b. If L is a distributive lattice and we have top and bottom elements
�, ⊥, we obtain a semiring (L,�,,⊥,�).

The usual notions of linear algebra (vector spaces, matrices, linear maps) can be
extended from fields to semirings.

Definition 4.3 (Semimodule, Matrix). Let X be an index set, let S be a semiring and
let SX the set of all functions s : X → S. Then SX is a semimodule, i.e., a set closed
under pointwise addition and multiplication with a constant. Every subset of SX closed
under these operations is called a subsemimodule of SX .

An X × Y -matrix a with weights over S is given by a function a : X × Y → S, i.e.,
it is an element of SX×Y , each row x ∈ X there are only finitely many entries different
from 0. We can multiply an X × Y -matrix a and a Y × Z-matrix b in the usual way,
obtaining an X × Z-matrix a · b.

By ax : Y → S, where x ∈ X , we denote the i-th row of a, i.e., ax(y) = a(x, y).
Similarly, for a generating set G ⊆ SY of vectors we denote by 〈G〉 the subsemi-

module spanned by G, i.e., the set that contains all linear combinations of vectors of
G. Given an X × Y -matrix we denote by 〈a〉 ⊆ SY the subsemimodule of SY that is
spanned by the rows of a, i.e., 〈a〉 = 〈{ax | x ∈ X}〉.

Since matrices are arrows in the category, we represent them by lower case letters.

Definition 4.4 (Category of Matrices, Linear Maps). We consider a category M(S)
of S-matrices where objects are sets and an arrow a : Y → X is an X × Y -matrix
a as defined above. Arrow composition is performed by matrix multiplication, i.e., for
a : X → Y , b : Y → Z we have b ◦ a = b · a. The identity arrow idX : X → X is the
X ×X unit matrix.

There exists a concretization functor U where UX = SX and for a : X → Y Ua :
UX → UY is the linear map from SX to SY represented by the matrix a, i.e., Ua(x) =
a · x for all x ∈ SX . (Note that x is considered as a vector and the multiplication of a
matrix with a vector is defined as usual.)

If the semiring is a field, there exists a factorization structure which factors every
matrix into a matrix of full row rank and a matrix of full column rank. This factorization
is unique up-to isomorphism. However, for generic semirings, semimodule theory does
not provide a similarly elegant notion of basis as in vector spaces, and such unique
factorizations are not possible in general. Hence Algorithm C is usually not applicable.

We can now define weighted automata in a coalgebraic notation. Note that, different
from the weighted automata in [DKV09], our automata do not have initial states, as it is
customary in coalgebra, and hence no initial weights, but only final weights. However,
for language equivalence we can easily simulate initial weights by adding a new state
to the automaton with edges going to each state of the automaton, carrying the initial
weights of these states and labelled with some (new) symbol.

Definition 4.5 (Weighted Automaton). Let M(S) be the category defined above. Let
A be a finite set of alphabet symbols. We define an endofunctor F : M(S)→M(S) as
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follows: on objects1 FX = A×X + 1 for a set X . For an arrow f : Y → X we have
Ff : A× Y + 1→ A×X + 1 where Ff((a, x), (a, y)) = f(x, y) for a ∈ A, x ∈ X ,
y ∈ Y , Ff(•, •) = 1 and Ff(c, d) = 0 for all remaining c ∈ A×X+1, d ∈ A×Y +1.

A weighted automaton is an F -coalgebra, i.e., an arrow α : X → FX in the cate-
gory M(S) or, alternatively, an FX ×X-matrix with entries taken from S.

For a weighted automaton α, α(•, x) denotes the final weight of state x ∈ X and
α((a, y), x) denotes the weight of the a-transition from x to y. We are mainly interested
in weighted automata where the state set X is finite.

Definition 4.6 (Language of a Weighted Automaton). Let (X,α) be a weighted au-
tomaton over alphabet A, a semiring S and a finite state set X . The language Lα :
A∗ → SX of α is recursively defined as

– Lα(ε)(x) = α(•, x)
– Lα(aw)(x) =

∑
x′∈X α((a, x

′), x) · Lα(w)(x
′) for a ∈ A, w ∈ A∗

We will call Lα(w)(x) the weight that state x assigns to the word w.

Remark 4.7. Note that the language of a weighted automaton need not be defined if X
is not finite, because coalgebras in M(S) need not be finitely branching and therefore
computing the language of a state may depend on computing an infinite sum.

It can be shown that two states x, y ∈ X of a finite weighted automaton (X,α) are
behaviourally equivalent in the coalgebraic sense (x ∼ y) if and only if they assign the
same weight to all words, i.e. Lα(w)(x) = Lα(w)(y) for all w ∈ A∗.

Proposition 4.8. Let (X,α : X → FX), where X is a finite set, be a weighted au-
tomaton over the finite alphabet A and the semiring S. Then, two states x, y ∈ X are
language equivalent if and only if they are behaviourally equivalent.

Due to the change of category (from Set to M(S)) we obtain language equivalence
instead of a notion of bisimilarity. Note that M(S) could also be considered as a Kleisli
category over the semiring monad (see also [HJS07] which explains the effects that the
implicit branching or side-effects of the monad have on behavioural equivalence).

From now onwards we consider only finite index sets. We will study the category
M(S) and show what the preorder on arrows (see Definition 2.3) means in this setting.

Proposition 4.9. Let a : X → Y , b : X → Z be two arrows in M(S), i.e., a is a Y ×X-
matrix and b is a Z ×X-matrix. It holds that a ≤X b ⇐⇒ 〈a〉 ⊆ 〈b〉. That is, two
matrices a, b are ordered if and only if the subsemimodule spanned by a is included in
the subsemimodule spanned by b. Hence also a ≡X b ⇐⇒ 〈a〉 = 〈b〉.

We will now describe how to choose representatives in this category. Given an arrow
a : X → Y , i.e., a Y ×X-matrix, choose any set of vectorsG ⊆ SX that generates 〈a〉,
i.e., 〈a〉 = 〈G〉, and take any matrix a′ withG as row vectors. Then a ≡X a′ and a′ can
be taken as a representative of a.

1 Here X+Y denotes the disjoint union of two sets X,Y and 1 stands for the singleton set {•}.



320 B. König and S. Küpper

Finding such a set G of generators that is minimal in size will be quite difficult for a
general semiring, since semimodules do not have a notion of basis as elegant as vector
spaces. However, for our optimization purposes, it is enough to make a′ reasonably
small. This can be done by going through the row vectors of a in any order, eliminating
every vector that can be written as a linear combination of the remaining row vectors.
We will use this strategy to determine representatives in R for Algorithm B, which are
those matrices where no further eliminations are possible.

Definition 4.10 (Class of Representatives). We defineR as the class of all matrices a
that do not contain a row that is a linear combination of the other rows of a.

Our algorithm need not terminate though. Termination depends on the semiring and
possibly on the automaton we investigate. It was already shown that language equiva-
lence is not decidable for weighted automata with weights over the tropical semiring
as shown in [Kro92,ABK11]. To state a termination condition, we define the following
generating sets for a given weighted automaton (X,α): Sn = {Lα(w) | w ∈ A∗, |w| ≤
n} and S∗ = {Lα(w) | w ∈ A∗} =

⋃∞
n=0 S

n. It can be shown that S∗ ⊆ SX is finitely
generated if and only if there exists an index n such that 〈Sn〉 = 〈S∗〉. (Note that 〈S∗〉
consists of all linear combinations of vectors of S∗. Hence if it has a finite generator
set G, the vectors of G can again be composed of finitely many vectors of S∗. And
these must be contained in some Sn.) We will show that Algorithm B terminates when-
ever 〈S∗〉 is finitely generated (see also [DK13,BMS13]). We start with the following
lemma:

Lemma 4.11. Let di : X → F i1, i ∈ N0 be the sequence of arrows resp. matrices
generated by the Algorithm A, where 1 (the final object) is the empty set. Hence F i1
contains tuples of the form (a1, a2, . . . , ai−1, •), where aj ∈ A. We will identify such a
tuple with the word w = a1a2 . . . ai−1. Then, for an index i ∈ N0 and a word w with
|w| < i, we have (di)w = Lα(w). This means that 〈di+1〉 = 〈Si〉.

Theorem 4.12. If 〈S∗〉 for a weighted automaton (X,α) is finitely generated, Algo-
rithm B terminates.

Proof. From Theorem 4.11 it follows that 〈dAi+1〉 = 〈Si〉. Since 〈S∗〉 is finitely gen-
erated, there must be an index n with 〈Sn〉 = 〈Sn+1〉, hence 〈dAn+1〉 = 〈dAn+2〉.
Theorem 4.9 then implies that dAn+1 ≡X dAn+2 and hence dAn+1 ≤X dAn+2, which is
exactly the termination condition. Note that this is not impaired when we consider rep-
resentatives ei in Algorithm B, since eBn+1 ≤X eBn+2 holds as well. In fact, a represen-
tative eBi generates the same subsemimodule as dAi . �

If S is a field, we basically obtain the algorithm for fields from [Bor09,ABH+12].
Note that for fields, minimal generating sets of semimodules, i.e. bases for vector spaces,
always have the same size, so each intermediate result will be of the smallest size pos-
sible. Using a result by Droste and Kuske, [DK13], we can see that the algorithm also
terminates for skew-fields, so structures that are almost fields, but where multiplication
need not be commutative. In both cases, for a finite set X there are only |X | differ-
ent non-isomorphic semimodules, i.e., vector spaces. Thus any increasing chain has to
become stationary and we can guarantee termination.
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If S is a finite semiring, the algorithm terminates since there are only finitely many
different row vectors of a fixed dimension |X |. If S is a distributive complete lattice
or any other commutative idempotent semiring, the algorithm will terminate as well
(because from the, obviously, finitely many weights contained in a finite automaton,
only finitely many elements of S can be obtained via meet and join and thus there are
again only finitely many different row vectors of a fixed dimension).

Note that termination does not necessarily imply decidability of language equiva-
lence. For this it is also necessary to be able to decide whether two matrices are equiv-
alent, i.e., whether a vector is generated by a given set of generators. This need not be
decidable in general, but it is decidable in all the cases above.

We now consider several examples.

Example 4.13. We use as a semiring the complete distributive lattice L = {�,⊥, a, b}
where ⊥ ≤ a ≤ �, ⊥ ≤ b ≤ � and consider the labelled transition system (X,α),
X = {A,B,C,D} with weights over L and labels from A = {x} represented by the
transition matrix and automaton (transitions with weight ⊥ are omitted):

α =

A B C D
(x,A)
(x,B)
(x,C)
(x,D)
•

⎛⎜⎜⎜⎜⎝
⊥ ⊥ ⊥ ⊥
a ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥
⊥ ⊥ � ⊥
a � a a

⎞⎟⎟⎟⎟⎠
A B

C D

x, aa �

x,�a a

We apply Algorithm B. Below ei denotes the chosen representative inR.

– We start with d0 = e0, a 0× 4-matrix
– Fe0 =

(
⊥ ⊥ ⊥ ⊥ �

)
, d1 = Fe0 · α =

(
a � a a

)
. This is inR, so e1 = d1.

– Fe1 =

(
a � a a ⊥
⊥ ⊥ ⊥ ⊥ �

)
, d2 = Fe1 · α =

(
a ⊥ a ⊥
a � a a

)
. This is inR, so e2 = d2.

– Fe2 =

⎛⎝ a ⊥ a ⊥ ⊥
a � a a ⊥
⊥ ⊥ ⊥ ⊥ �

⎞⎠ , d3 = Fe2 · α =

⎛⎝⊥ ⊥ ⊥ ⊥a ⊥ a ⊥
a � a a

⎞⎠.

This is not inR, we can for example see that the first row equals⊥ times the second
plus ⊥ times the third row. So we factorize:

d3 = γ · e3 =

⎛⎝⊥ ⊥� ⊥
⊥ �

⎞⎠ ·(a ⊥ a ⊥
a � a a

)
Now e3 = e2 and we can stop our computation.

The resulting automaton is a two-state automaton, where the states will be called E,F .
Looking at e3 we can see that the states A and C ofX are equivalent, since their columns
coincide (in fact, both accept ε and x with weight a). States B and D on the other hand
are not equivalent to any other state. We see that e2 : X → Y , where Y = {E,F},
is a coalgebra homomorphism from (X,α) to (Y, γ). The coalgebra (Y, γ) can be con-
sidered as a minimal representative of (X,α). The following diagram depicts automata
(X,α) and (Y, γ) where the coalgebra homomorphism e2 is drawn with dashed lines.
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A

B

C

D

E

F

x, a

a

a

a

�
�

x,�

a

a

a

a
a

x,�

�

γ =

E F
(x,E)
(x, F )
•

⎛⎝⊥ ⊥� ⊥
⊥ �

⎞⎠

We can also see that our method of factoring is not unique, because in γ we could
have chosen γ((x,E), E) = b (and all other entries as before). In this case, there would
be an x, b-loop on state E in the diagram above. Since all dashed arrows going into E
carry weight a and a  b = ⊥, this loop would not have any effect and the equivalence
one obtains is the same.

In the next example, we will investigate the tropical semiring (cf. Theorem 4.2). We
will write ⊕ and ⊗ for the S-addition respectively the S-multiplication to avoid con-
fusion. Language equivalence is in general undecidable, hence the algorithm will not
terminate in general.

Example 4.14. Consider the (rather simple) transition system over the one-letter alpha-
bet {a}, given by the matrix α:

A B
(a,A)
(a,B)
•

⎛⎝ 1 ∞
∞ 0
1 0

⎞⎠ A B

a,∞

a, 1

1

a,∞

a, 0

0

Applying Algorithm B to α, we obtain the following (intermediate) results:

– d0 = e0 is the 0× 2-matrix
– Fe0 =

(
∞∞ 0

)
, d1 = Fe0 · α =

(
1 0
)
= e1

– d2 =

(
2 0
1 0

)
∈ R, so we choose e2 = d2.

– d3 =

⎛⎝3 0
2 0
1 0

⎞⎠ /∈ R, because we can obtain the second row as a linear combination

of the first and the third row: 1 ⊗
(
1 0
)
⊕ 0 ⊗

(
3 0
)
=
(
2 1
)
⊕
(
3 0
)
=
(
2 0
)

However, we cannot obtain the first row via linear combination of the other two
rows, so the algorithm cannot stop in the third iteration.

So we can choose:m3 =

⎛⎝ 0 ∞
0 1
∞ 0

⎞⎠ and e3 =

(
3 0
1 0

)
– From now on, each step is analogous to the third step, we obtain ei =

(
i 0
1 0

)
in

each iteration i, but we will never reach a di+1 such that di+1 ≡X ei.

Algorithm B therefore does not terminate for α. However, since the two states are al-
ready separated from the first step onwards, we can at least conclude that they are not be-
haviourally equivalent. There are other example automata over this semiring for which
Algorithm B does terminate.
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5 Conclusion

Related Work: Our work is closely related to [ABH+12] which uses factorization struc-
tures in order to obtain generic algorithms for partition refinement. However, the algo-
rithm in [ABH+12] could not handle general weighted automata over semirings, due to
the absence of suitable factorization structures.

[Sta09] also discusses several coalgebraic methods to check behavioural equivalence,
however the paper focusses more on the relation-based view with fixpoint iteration to
obtain bisimulations. Staton compares with the final chain and can prove that whenever
the arrow F i! in the final chain is a mono, then the relation refinement sequence con-
verges at the latest. In our examples, the algorithm usually terminates earlier, since we
only need a relative inverse β of F i! wrt. dAi .

For weighted automata, we are only aware of minimization algorithms for determin-
istic automata that do not work in the non-deterministic case. These algorithms are
based on the idea of redistributing the weights of transitions in a canonical way and ap-
plying the minimization algorithm for deterministic automata (without weights) to the
resulting automaton, where label and weight of each transition form a new transition
label in the deterministic weight-free automaton. Mohri’s algorithm [Moh97,Moh09]
is based on weight pushing, and is applicable whenever S is zero-sum-free and weakly
divisible. Eisner’s algorithm [Eis03] works whenever S has multiplicative inverses. He
remarks that his variation of weight pushing can also be applied to some semirings that
do not have inverses, if they can be extended to ones that do have inverses. However,
then, the minimal automaton might carry weights outside of S.

Kiefer et al. [KMO+11] have investigated optimizations for the case of weighted
automata with weights over the field R, with applications to probabilistic automata.
Their algorithm is a probabilistic optimization of an algorithm that enumerates words of
length at most n, where n is the number of states, and their weights. Instead of checking
every such word they use probabilistic methods to determine which words to check. As
far as we know this method can not easily be generalized to arbitrary semirings.

Language equivalence is not decidable for every semiring. For instance, it was shown
that language equivalence is undecidable for the tropical semiring [Kro92,ABK11].

Droste and Kuske [DK13] describe when equivalence of two weighted automata is
decidable, based on earlier results by Schützenberger. Their decidability result is close
to our own, only they work with weighted automata with initial weights. They show
that whenever S is a ring such that every subsemimodule generated by an automaton is
finitely generated, language equivalence is decidable. While their notation, using linear
presentations, is different from ours and they concentrate only on rings, the underly-
ing ideas are related (cf. Section 4 where we show termination if the subsemimodule
generated by an automaton is finitely generated).

In [BLS06], which uses results for rational power series presented in [BR88], it is
shown that for subsemirings of a field (such as Z or N) weighted language equivalence
is decidable. The paper uses the notion of conjugacy, which is strongly related to the
notion of coalgebra homomorphism.

Ésik and Maletti have investigated proper semirings in [ÉM10] and have proven
that language equivalence for weighted automata is decidable whenever the correspond-
ing semiring is proper and effectively presentable. Furthermore they investigated
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Noetherian semirings, i.e. semirings where every subsemimodule of a finitely generated
S-semimodule is finitely generated. However, they do not give a concrete algorithm.

Bonsangue, Milius and Silva [BMS13] have also investigated language equivalence
of weighted automata in a coalgebraic setting, however they use Eilenberg-Moore in-
stead of Kleisli categories. They present an axiomatization of weighted automata and
give a set of sound and complete equational laws axiomatizing language equivalence.

Recently, in [UH14], Urabe and Hasuo studied simulation and language inclusion
for weighted automata, were the coalgebraic theory provides the basis for an efficient
implementation.

We did not find our procedure for checking language equivalence for weighted au-
tomata in the literature, but it may not be too surprising, given the related work. How-
ever, we believe that our contribution goes beyond providing a procedure for weighted
automata: we give a uniform presentation of generic algorithms that can be applied to
various kinds of transition systems. Furthermore we attempted to bridge the gap be-
tween coalgebraic methods and methods for weighted automata.

Future Work: For future work we plan to further investigate the issue of termination:
are there more general criteria which guarantee termination for our algorithms? For
this we will need a suitable notion of “finiteness” in a general categorical setting, for
instance the notion of finitely generated or locally presentable [AR94].

Furthermore, when working with equivalence classes of arrows, it is necessary to
find good representatives, in order to discard redundant information and make the rep-
resentation more compact.

So far we have studied coalgebras over Set and weighted automata in this set-
ting. Furthermore our theory also applies to other examples in [ABH+12] such as
non-deterministic automata and conditional transition systems. Naturally, we plan to
investigate additional case studies.

In [FMT05], a procedure similar to our algorithm is used to minimize HD-automata.
We plan to check whether this algorithm is an instance of our Algorithm B.

Acknowledgements. We would like to thank Alexandra Silva, Filippo Bonchi and Mar-
cello Bonsangue for several interesting discussions on this topic.
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Abstract. In this paper, we show that the formulæ of Boolean BI cannot
distinguish between some of the different notions of separation algebra
found in the literature: partial commutative monoids, either cancellative
or not, with a single unit or not, all define the same notion of validity.
We obtain this result by the careful study of the specific properties of the
counter-models that are generated by tableaux proof-search in Boolean BI.

1 Introduction

Separation logic [18] is a well established logical formalism for reasoning about
heaps of memory and programs that manipulate them. The purely proposi-
tional part of the logic is usually given by Boolean BI (also denoted BBI) which
is a particular bunched logic obtained by freely combining the Boolean connec-
tives of classical propositional logic with those of multiplicative intuitionistic
linear logic [11]. Provability in BBI is defined by a Hilbert system [17] and cor-
responds to validity in the class of non-deterministic (or relational) monoids [8].
Restricting that class to e.g. partial monoids gives another notion of validity [14]
for which the Hilbert system is not complete anymore.

Separation logic is defined by a particular kind of partial monoids built for
instance from memory heaps that are composed by disjoint union; see [3,13,15]
for a survey of the different models either abstract or concrete that are usually
considered in the literature. These models verify some additional properties
that may be invalid in non-deterministic models or even in partial monoidal
models. Some of these properties are the foundation of separation algebras [5,6,7].
For instance, the existence of multiple units for the composition of heaps, or the
property that the composition of heaps is a cancellative operation, the main focus
of this paper. This last property does not hold in an arbitrary partial monoid.

Let us discuss some motivations behind the study of these specific proper-
ties of separation algebras. Abstract separation logics and variants of BBI are
usually undecidable [3,2,14,15]. But still, being able to prove statements ex-
pressed in BBI is required in the framework of Hoare logic. Hence the idea is
to try narrowing down the logic and the separation model through the logical
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or proof-theoretical representations of the specific properties of separation al-
gebras. We notice the lively interest in proof-search for relational BBI [1,10,16],
partial monoidal BBI [12,13] and propositional abstract separation logic [9].

In [4], Brotherston and Villard show that cancellativity cannot be axioma-
tized within BBI: no formula of BBI is able to distinguish cancellative from
non-cancellative monoids. Let us note that even though an axiomatization is
proposed in some hybrid extension of BBI [4], proof-search in such extensions
of BBI is a largely unexplored track of research. In the current paper, we show
the stronger result that any BBI formula that is valid in partial and cancellative
models is also valid in any partial model: validity of BBI formulæ is the very
same predicate if you add cancellativity as a requirement for your models.

In [9], Hóu et al. present a labelled sequent calculus for proof-search in propo-
sitional abstract separation logic extending their work on relational BBI [10] by
introducing model specific proof-rules, in particular one for partiality and one
for cancellativity. A noticeable consequence of our result is that their rule for
cancellativity is redundant when searching for proofs of BBI-formulæ: one may
find shorter proofs using that rule but it does not reinforce provability. As an-
other consequence, extending the older labelled tableaux calculus for partial
monoidal BBI of Larchey-Wendling and Galmiche [13] to cover cancellativity
is trivial: simply do nothing. The difficulty does not lie in the extension of the
system but in the proof of the redundancy of cancellativity.

The results obtained in this paper emphasize the importance of the strong
completeness theorem for partial monoidal BBI [12] from which they derive. The
counter-models generated by the labelled tableaux proof-search calculus con-
tain information about the logic itself that, when carefully extracted, can be
used to obtain completeness for additional properties of abstract models.

Let us give an overview of the paper. In Section 2, we recall the syntax and
Kripke semantics of Boolean BI and we present non-deterministic monoids which
are the models of BBI, and some sub-classes of monoids related to separation
algebras and abstract separation logic models, e.g. cancellative monoids. In Sec-
tion 3, we study the links between single unit and multi-unit monoids and give a
quick semantic overview of why they are equivalent w.r.t. BBI validity. In Sec-
tion 4, we define the notion of partial monoidal equivalence (or PME for short) to
syntactically represent partial monoids with a single unit. We define basic and
simple PMEs which are the monoids that are generated by labelled tableaux
proof-search [12]. In Section 5, we use the strong completeness result for sim-
ple PMEs to derive an equivalence theorem for some separation algebras. It
is based on our core result: basic/simple PMEs are cancellative and have invertible
squares. We discuss the proof of this result in the following sections. In Section 6,
we introduce the notion of invertibility in the context of PMEs. In Section 7, we
argue that even though basic PMEs are defined inductively, it is not possible to
give a direct inductive proof of cancellativity or of the invertibility of squares
for basic PMEs. In Section 8, we show that basic PMEs can be transformed into
primary PMEs and that primary PMEs are cancellative with invertible squares.
Omitted proofs can be found in the appendices.
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2 Boolean BI and Its Non-deterministic Kripke Semantics

In this section, we introduce a “compact” syntax for BBI: conjunction ∧ and
negation ¬ are the only Boolean connectives.1 Then, we present the Kripke se-
mantics of BBI based on the notion of non-deterministic monoid.

Definition 1. The formulæ of BBI are freely built using logical variables in Var, the
logical constant I, the unary connective ¬ or binary connectives in {∗, −∗, ∧}. The
formal grammar is F ::= v | I | ¬F | F ∧ F | F ∗ F | F −∗ F with v ∈ Var.

We introduce the semantic foundations of BBI. Let us consider a set M .2 We
denote by P(M) the power-set of M , i.e. its set of subsets. A binary function
◦ : M × M −→ P(M) is naturally extended to a binary operator on P(M) by
X◦Y =

⋃{x◦y | x ∈ X, y ∈ Y } for any subsets X, Y of M . Using this extension,
we can view an element m of M as the singleton set {m} and derive equations
like m ◦ X = {m} ◦ X , a ◦ b = {a} ◦ {b} or ∅ ◦ X = ∅.

Definition 2. A non-deterministic monoid (ND-monoid for short) is a triple M =
(M, ◦, U) where U ⊆ M is the set of units and ◦ : M×M−→P(M) is a composition
for which the axioms of (neutrality) ∀x ∈ M x ◦ U = {x}, (commutativity) ∀x, y ∈
M x ◦ y = y ◦ x, and (associativity)3 ∀x, y, z ∈ M (x ◦ y) ◦ z = x ◦ (y ◦ z) hold.

The extension of ◦ to P(M) thus induces a (usual) commutative monoidal
structure with unit U on P(M). The term non-deterministic was introduced in [8]
in order to emphasize the fact that the composition a ◦ b may yield not only one
but an arbitrary number of results including the possible incompatibility of a
and b in which case a ◦ b = ∅. Notice that M is called a BBI-model in [4].

Given M = (M, ◦, U) and an interpretation δ : Var −→ P(M) of variables, we
define the Kripke forcing relation by induction on the structure of formulæ:

M, x �δ v iff x ∈ δ(v) M, x �δ I iff x ∈ U M, x �δ ¬A iff M, x �δ A

M, x �δ A ∧ B iff M, x �δ A and M, x �δ B
M, x �δ A ∗ B iff ∃a, b, x ∈ a ◦ b and M, a �δ A and M, b �δ B

M, x �δ A −∗ B iff ∀a, b, (b ∈ x ◦ a and M, a �δ A) ⇒ M, b �δ B

Definition 3 (BBI-validity, Counter-Models). A formula F of BBI is valid in
M = (M, ◦, U) if for any interpretation δ : Var −→ P(M) the relation M, m �δ F
holds for any m ∈ M . A counter-model of the formula F is given by a ND-monoid
M, an interpretation δ : Var−→P(M), and an element m ∈ M such that M, m �δ F .

In some papers, you might find BBI defined by non-deterministic monoidal
Kripke semantics [1,4,8,10], in other papers it is defined by partial determin-
istic monoidal Kripke semantics [12,13] and generally separation logic models
are particular instances of partial (deterministic) monoids [3,4,9]. See [13] for a
general discussion about these issues.

1 The other Boolean connectives can be obtained by De Morgan’s laws.
2 The case M = ∅ is allowed but arguably not very interesting in the case of BBI.
3 Associativity should be understood using the extension of ◦ to P(M).
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BBIPD

BBIPD+SU

BBIPD+CA

BBIPD+SU+CABBIND BBIPD+IU BBIPD+DI

Fig. 1. Inclusions between BBI-validity in some sub-classes of ND-monoids

Definition 4. For any ND-monoid (M, ◦, U), we name some properties as follows:
(PD) Partial deterministic ∀x, y, a, b {x, y} ⊆ a ◦ b ⇒ x = y
(SU) Single unit ∃u U = {u}
(CA) Cancellativity ∀k, a, b (k ◦ a) ∩ (k ◦ b) = ∅ ⇒ a = b
(IU) Indivisible units ∀x, y x ◦ y ∩ U = ∅ ⇒ x ∈ U
(DI) Disjointness ∀x x ◦ x = ∅ ⇒ x ∈ U

These properties allow us to consider sub-classes of the full class of ND-
monoids. Other properties like divisibility or cross-split are considered as well
in [4] but in this paper, we focus on the properties of Definition 4.

We denote by ND the full class of non-deterministic monoids. We identify
the property X with the sub-class X ⊆ ND of monoids which satisfy property
X . If X and Y are two properties, we read X + Y as the sub-class of monoids of
ND that satisfy the conjunction of X and Y . This is the meaning of the equation
X + Y = X ∩ Y which might look strange at first. As an example, PD + SU +
CA + IU is both the conjunction of those four properties and the sub-class of
cancellative partial deterministic monoids with a single and indivisible unit.

Proposition 1. The two strict inclusions DI � IU and PD + DI � PD + IU hold.

The sub-class HM of heap monoids verifies all the properties of Definition 4.
However, it is not defined by a property but it is described by the concrete
models of Separation Logic [15].

Various notions of separation algebra can be found in the literature: for
instance the “original” notion of separation algebra is defined in [5] as the
elements of the sub-class PD+SU+CA; in the “views” framework of [6], a sep-
aration algebra is an element of sub-class PD; while it is of sub-class PD + CA
in [7]. To finish, in [13], though not called separation algebra, a BBI-model is an
element of sub-class PD + SU.

In general the sub-classes of ND define different notions of validity on the
formulæ of BBI [14]. However, it was proved recently that theses properties are
not axiomatizable in BBI [4], with the exception of IU.4 We define a notation to
express the relations between those potentially different notions of validity.

Definition 5 (BBIX ). For any sub-class X ⊆ ND, we denote by BBIX the set of
formulæ of BBI which are valid in any ND-monoid of the sub-class X .

4 In [4], I → (A ∗ B) → A is used as a BBI-axiom for IU but we favor ¬(I ∧ (¬I ∗ ¬I)).
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Obviously, if the inclusion X ⊆ Y holds between the sub-classes X and Y
of ND-monoids then inclusion BBIY ⊆ BBIX holds between the sets of valid
formulæ. The sets BBIX are usually not recursive (at least for the sub-classes
we consider here) because of the undecidability of BBI [3,2,14,15]. The identity
BBIX = BBIY implies for instance that a semi-decision algorithm for validity
(of formulæ) in sub-class X can be replaced by some semi-decision algorithm
for validity in sub-class Y . It also “suggests” that there might exist some kind of
relation (like a map [4] or a bisimulation [15]) between the models of sub-class
X and those of sub-class Y .5

To the best of our knowledge, the graph of Figure 1 summarizes what was
known about the inclusion relations between the formulæ valid in the previ-
ously mentioned sub-classes of ND-monoids, the single arrow → represent-
ing strict inclusion, the double arrow ⇒ representing non-strict inclusion. In
fact, besides trivial inclusion results derived from the obvious inclusions of
sub-classes of monoids, not very much was known except the strict inclusion
BBIND � BBIPD proved6 in [14] and the strict inclusions BBIND � BBIIU and
BBIPD � BBIPD+IU which are trivial consequences of the stronger result that IU
can be axiomatized in BBI. Beware that PD cannot be axiomatized in BBI [4].

The left gray box in Figure 1 is the main motivation behind the current pa-
per. It contains the four different definitions of separation algebras mentioned
earlier: PD, PD + SU, PD + CA and PD + SU + CA. In this paper, we show that
these four sub-classes of ND-monoids define the same set of valid formulæ, i.e.
the double arrows are in fact identities. To obtain these results, we first give a
simple proof that BBIPD+SU ⊆ BBIPD in Section 3, and then a much more in-
volved proof that BBIPD+SU+CA ⊆ BBIPD+SU in the latest sections of the paper.
This proof is based on a careful study of the properties of the counter-models
generated by proof-search, which are complete for BBIPD+SU [12].

The right gray box in Figure 1 is a secondary focus of our paper. We prove
the identities BBIPD+IU = BBIPD+DI = BBIPD+SU+CA+IU+DI by exploiting the
fact that the counter-models generated by proof-search which satisfy property
IU also satisfy property DI.

3 Single Units in Non-deterministic Monoids

We give a quick overview of the relations between the multi-unit semantics and
the single unit semantics. We recall that they define the same notion of valid-
ity for BBI and we give a model-theoretic account of this equivalence. Sound-
ness/completeness for the single unit semantics w.r.t. the Hilbert proof system
for BBI were already established in [8].7

Definition 6 (The unit of x). Let (M, ◦, U) be a ND-monoid. For any x ∈ M , there
exists a unique ux ∈ U such that x ◦ ux = {x}. It is called the unit of x.

5 Relation from which a constructive proof of BBIX = BBIY could be derived.
6 In fact only BBISU � BBIPD+SU is proved in [14] but the same argument will do.
7 The same proof works for the more general multi-unit semantics, as assumed for in-

stance in Theorem 2.5 of [4]. Hence the identity BBIND = BBISU was known since [8].
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Definition 7 (Slice Monoid at x). Let M = (M, ◦, U) be a ND-monoid and let
x ∈ M . Then the triple Mx = (Mx, ◦′, {ux}) is a ND-monoid of sub-class SU where
Mx = {k ∈ M | uk = ux} and ◦′ is the restriction of ◦ to Mx which is defined on
Mx × Mx by u ◦′ v = u ◦ v. The triple Mx is called the slice monoid at x.

Lemma 1. Let M = (M, ◦, U) be a ND-monoid, δ : Var −→ P(M) and x ∈ M .
Let us consider Mx, the slice monoid at x and let δ′ : Var −→ P(Mx) be defined by
δ′(z) = δ(z) ∩ Mx for any z ∈ Mx. For any formula F of BBI and any z ∈ Mx, we
have M, z �δ F iff Mx, z �δ′ F .

Theorem 1. If K ⊆ ND is a sub-class of ND-monoids closed under slicing, then
BBIK = BBIK+SU holds. In particular, BBIND = BBISU and BBIPD = BBIPD+SU.

Remark: the property SU cannot be axiomatized in BBI [4]. The identity
BBIND = BBISU gives another proof argument for this result.

4 Partial Monoidal Equivalences

We recall the framework of labels and constraints that is used to syntactically
represent partial monoids of sub-class PD + SU which form the semantic ba-
sis of partial monoidal Boolean BI. The section is a short reminder of the the-
ory developed in [13] where a labelled tableaux system is introduced and its
soundness w.r.t. the sub-class PD + SU is established. Moreover, the (strong)
completeness of this tableaux system is proved in [12] and this crucial (albeit
non-constructive) result is restated here as Theorem 2.

4.1 Words, Constraints, PMEs and the Sub-class PD + SU

Let L� be the set of finite multisets of letters of the alphabet L. We call the ele-
ments of L� words; they do not account for the order of letters. The composition
of words is denoted multiplicatively8 and the empty word is denoted ε. Hence
(L�, ·, ε) is the (usual) commutative monoid freely generated by L.

We view the alphabet L or any of its subsets X ⊆ L as a subset X � L�, i.e.
we assume letters as one-letter words. We denote x ≺ y when x is a sub-word of
y (i.e. ∃k, xk = y). If x ≺ y, the unique k such that xk = y is denoted y/x and
we have y = x(y/x). The carrier alphabet of a word m is Am = {c ∈ L | c ≺ m}.

A constraint is an ordered pair of words in L� × L� denoted m −·····− n. A binary
relation R ⊆ L� × L� between words of L� is a set of constraints, hence x R y is
a shortcut for x −·····− y ∈ R. The language of a binary relation R ⊆ L� × L� denoted
LR is defined by LR = {x ∈ L� | ∃m, n ∈ L� s.t. xm R n or m R xn}. The carrier
alphabet of R is AR =

⋃{Am ∪ An | m R n}.
A word m ∈ L� is said to be defined in R if m ∈ LR and is undefined in R

otherwise. A letter c ∈ L is new to R if c ∈ AR. The language LR is downward
closed w.r.t. the sub-word order ≺. The inclusion LR ⊆ A�

R and the identity

8 The additive notation + would conflict with the −·····− sign later used for constraints.
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AR = LR ∩ L hold. If R1 and R2 are two relations such that R1 ⊆ R2 then the
inclusions AR1 ⊆ AR2 and LR1 ⊆ LR2 hold. Let us define the particular sets of
constraints/relations we are interested in.

Definition 8 (PME). A partial monoidal equivalence (PME for short) over the
alphabet L is a binary relation ∼ ⊆ L�×L� which is closed under the rules 〈ε, s, c, d, t〉:

ε −·····− ε
〈ε〉 x −·····− y

y −·····− x
〈s〉 ky −·····− ky x −·····− y

kx −·····− ky
〈c〉 xy −·····− xy

x −·····− x
〈d〉 x −·····− y y −·····− z

x −·····− z
〈t〉

Proposition 2. Any PME ∼ is also closed under the (derived) rules 〈pl, pr, el, er〉:
kx −·····− y

x −·····− x
〈pl〉

x −·····− ky

y −·····− y
〈pr〉 x −·····− y yk −·····− m

xk −·····− m
〈el〉

x −·····− y m −·····− yk

m −·····− xk
〈er〉

and the identities L∼ = {x ∈ L� | x ∼ x} and A∼ = {c ∈ L | c ∼ c} hold.

See [13] for a proof of Proposition 2. These derived rules will be more suitable
for proving properties of PMEs throughout this paper. Rule 〈pl〉 (resp. 〈pr〉) is
a left (resp. right) projection rule. Rules 〈el〉 and 〈er〉 express the possibility to
exchange related sub-words inside the PME ∼, either on the left or on the right.

Definition 9. A PME is cancellative (resp. has indivisible units, resp. has dis-
jointness) if it is closed under rule 〈ca〉 (resp. rule 〈iu〉, resp. rule 〈di〉).9

kx −·····− ky

x −·····− y
〈ca〉 ε −·····− xy

ε −·····− x
〈iu〉 xx −·····− xx

ε −·····− x
〈di〉

Let us see how the rules 〈ca〉, 〈iu〉 and 〈di〉 relate to sub-classes CA, IU and
DI. Let ∼ be a PME over L. The relation ∼ is a partial equivalence on L� by
rules 〈s〉 and 〈t〉. The partial equivalence class of a word x is [x] = {y | x ∼ y}.
The partial quotient L�/∼ is the set of non-empty classes L�/∼ = {[x] | x ∼ x}.
We define a non-deterministic composition on L�/∼ by [z] ∈ [x] • [y] iff z ∼ xy.

Proposition 3. The triple M∼ = (L�/∼, •, {[ε]}) is a ND-monoid of sub-class PD +
SU. M∼ is of sub-class CA (resp. sub-class IU, resp. sub-class DI) if and only if ∼ is
closed under rule 〈ca〉 (resp. rule 〈iu〉, resp. rule 〈di〉).

4.2 Generated PME, Basic PME Extensions and Simple PMEs

Defined by closure under some deduction rules, the class of PMEs over an al-
phabet L is thus closed under arbitrary intersections. Let C be a set of con-
straints over the alphabet L. The PME generated by C is the least PME containing
C. It is either denoted by ∼C or C and the notations m ∼C n and m −·····− n ∈ C are
synonymous. The operator C �→ C is a closure operator on sets of constraints,
i.e. it is extensive (C ⊆ C), monotonic (C ⊆ D implies C ⊆ D) and idempotent
(C ⊆ C). The identity AC = AC holds (see [13] Proposition 3.16) but the identity
LC = LC does not hold in general, only the inclusion LC ⊆ LC holds.

9 Not every PME is cancellative; e.g. ∼ = {ε−·····−ε, x−·····−x, y−·····−y, k−·····−k, kx−·····−kx, ky−·····−ky, kx−·····−
ky, ky −·····− kx} is a non-cancellative PME over L = {x, y, k}.
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Proposition 4 (Compactness). Let C be a set of constraints over the alphabet L and
m, n ∈ L� be s.t. m ∼C n holds. There exists a finite subset Cf ⊆ C such that m ∼Cf

n.

This compactness property (proved in [13] Proposition 3.17) is not related to
the particular nature of rules defining PMEs but solely to the fact that the
rules 〈ε, s, c, d, t〉 only have a finite number of premises.

Definition 10 (PME Extension). Let ∼ be a PME and C be a set of constraints, both
over L. We denote by ∼ + C = (∼ ∪ C) the extension of ∼ by the constraints of C.

The extension ∼+C is the least PME containing both ∼ and C. Let ∼ be a PME
and C1, C2 be two sets of constraints. The identities (∼+C1)+C2 = (∼+C2)+C1 =
∼ + (C1 ∪ C2) hold. Moreover, for any m, n ∈ L�, the relation m ∼ n holds if and
only if the identity ∼ + {m −·····− n} = ∼ holds.

We single out PME extensions of the forms ∼ + {ab −·····− m}, ∼ + {am −·····− b} or
∼ + {ε −·····− m} where m is defined in ∼ and a = b are two letters new to ∼. These
extensions are generated by proof-search in the tableau method for BBI [12].

Definition 11 (Basic Extension). Given a PME ∼ over the alphabet L, a constraint
is basic w.r.t. ∼ when it is of one of the three forms ab −·····− m, am −·····− b or ε −·····− m with
m ∼ m and a = b ∈ L\A∼. When x −·····− y is basic w.r.t. ∼, we say that ∼ + {x −·····− y} is
a basic extension of the PME ∼.

Let k ∈ N ∪ {∞} and (xi −·····− yi)i<k be a sequence of constraints. Let Cp =
{xi −·····− yi | i < p} for p < k. We suppose that each extension ∼Cp + {xp −·····− yp} is
basic for any p < k. If k < ∞ (resp. k = ∞) then the sequence (xi −·····− yi)i<k is
called basic (resp. simple). The empty sequence of constraints is basic.

Definition 12. A basic (resp. simple) PME is of the form ∼C where C = {xi −·····− yi |
i < k} and (xi −·····− yi)i<k is a basic (resp. simple) sequence of constraints.

Any basic PME is simple: indeed, by rule 〈ε〉 we have ∼+{ε−·····−ε} = ∼ for any
PME ∼. Thus, using case ε −·····− m of Definition 11 with m = ε, we can complete
any basic sequence into a simple sequence by looping on ε −·····− ε. The converse
does not hold: simple PMEs with infinite alphabets are not basic.

Remark: we point out that in the set of constraints C, the order of appearance
of constraints does not impact the closure ∼C . However, in a basic (or simple)
sequence of constraints, the order is important because the newness of letters
depends on the previous constraints in the sequence. Moreover, to prove that a
PME is not basic, it is not sufficient to show that the sequence that defines it is
not basic: maybe there exists another defining sequence which is basic.

5 Equivalence Results for Some Separation Algebras

In this section, we show our main result: many of the different classes of sep-
aration algebra found in the literature (see discussion of Section 2) cannot be
distinguished by any formula of Boolean BI. This is a stronger result than the
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impossibility to axiomatize those classes in BBI [4]. Our result relies in an es-
sential way on the (non-constructive) strong completeness theorem for partial
monoidal BBI [12].10 “Strong” means that BBIPD+SU is complete for the specific
monoids that are generated by tableaux proof-search, i.e. simple PMEs.

Theorem 2 (Strong Completeness for Partial Monoidal BBI). Let F be a BBI-
formula that is invalid in some partial deterministic monoid with single unit, i.e. F ∈
BBIPD+SU. There exists a countable alphabet L, a simple PME ∼ over L, a valuation
δ : Var −→ P(L�/∼) and a letter a ∈ L such that a ∼ a and M∼, [a] �δ F .

We will exploit the following properties of simple PMEs to derive our equiv-
alence results for some separation algebras / abstract separation logics.

Theorem 3. Simple PMEs are closed under rule 〈ca〉. Simple PMEs which are closed
under rule 〈iu〉 are also closed under rule 〈di〉.

Theorem 3 is the core result of the current paper. In Section 6, we introduce
the tools used in its proof. In Section 7, we show that this proof cannot be done
by direct induction on the sequence of constraints. In Section 8, we develop
the argumentation using a detour via primary PMEs. The result is formally
obtained as a conjunction of Corollaries 2 and 3.

Theorem 4. The following notions of separation algebras found in the literature col-
lapse to the same validity on BBI formulæ. Formally, we have the identities:

(a) BBIPD = BBIPD+SU = BBIPD+CA = BBIPD+SU+CA;
(b) BBIPD+IU = BBIPD+DI = BBIPD+SU+CA+IU+DI.

Proof. Let Q and K be the two following sub-classes Q = PD + SU + CA and
K = Q + IU + DI of ND-monoids. For (a), we prove the inclusions BBIQ ⊆
BBIPD+SU ⊆ BBIPD ⊆ BBIPD+CA ⊆ BBIQ. We have BBIPD ⊆ BBIPD+CA ⊆
BBIQ by sub-class inclusion in ND-monoids. By Theorem 1, we have BBIPD =
BBIPD+SU. Hence, to obtain (a), it is sufficient to prove BBIQ ⊆ BBIPD+SU.
For (b), we show the inclusions BBIK ⊆ BBIPD+IU ⊆ BBIPD+DI ⊆ BBIK . Since
we have K ⊆ PD + DI, the inclusion BBIPD+DI ⊆ BBIK is immediate. Then
the inclusion BBIPD+IU ⊆ BBIPD+DI is a direct consequence of Proposition 1.
Hence, to obtain (b), it is sufficient to prove BBIK ⊆ BBIPD+IU.

Let us prove the contrapositive of the inclusion BBIQ ⊆ BBIPD+SU. Let us
consider F ∈ BBIPD+SU and let us show F ∈ BBIQ. By Theorem 2, we obtain
a simple PME ∼, a valuation δ : Var −→ P(L�/∼) and a letter a ∈ L such that
a ∼ a and M∼, [a] �δ F . By Theorem 3, the simple PME ∼ is closed under
rule 〈ca〉 and thus, by Propositions 3, the partial quotient monoid M∼ belongs
to the sub-class PD + SU + CA. We deduce F ∈ BBIQ.

Before we prove the inclusion BBIK ⊆ BBIPD+IU, let us make a remark on
the formula U = ¬(¬I∗ ¬I) and the scheme (I∧U) −∗ (·). Let M = (M, ◦, {e}) be
a ND-monoid of sub-class SU and let δ : Var−→P(M). Then we have M, e �δ U

10 The proof in Coq is available at http://www.loria.fr/~larchey/BBI.

http://www.loria.fr/~larchey/BBI
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if and only if M is of sub-class IU. Let F be a BBI-formula. Then for any x ∈ M ,
we have M, x �δ (I ∧ U) −∗ F if and only if M is of sub-class IU and M, x �δ F .

Let us now prove the contrapositive of the inclusion BBIK ⊆ BBIPD+IU. Let
us consider a formula F such that F ∈ BBIPD+IU and let us show F ∈ BBIK .
Let us first establish (I ∧ U) −∗ F ∈ BBIPD+SU. Since the sub-class PD + IU is
closed under slicing, by Theorem 1 we have F ∈ BBIPD+SU+IU. Hence there
exists a counter-model M of F in sub-class PD + SU + IU. From the previous
remark on U, we deduce that M is also a counter-model of (I ∧ U) −∗ F . As M
also belongs to sub-class PD + SU, we deduce (I ∧ U) −∗ F ∈ BBIPD+SU.

We apply Theorem 2 and we obtain a counter-model of (I ∧ U) −∗ F of the
form M∼ where ∼ is a simple PME. Since M∼ is of subclass SU, we deduce
that M∼ is of subclass IU and M∼ is a counter-model of F (see previous remark
on U). Hence M∼ is of sub-class PD + SU + IU. Thus by Proposition 3, ∼ is
closed under rule 〈iu〉. Hence by Theorem 3, the simple PME ∼ is closed under
rules 〈ca〉 and 〈di〉. By Proposition 3, M∼ is a counter-model of F of sub-class
PD + SU + CA + IU + DI and we conclude F ∈ BBIK .

Remark: unlike IU, DI is not axiomatizable in BBI [4] thus we cannot have
BBIDI = BBIIU. Hence the strict inclusion BBIIU � BBIDI by Proposition 1. Let
us now discuss and develop the proof of Theorem 3, our core result.

6 Invertibility, Group-PMEs and Squares

In this section, we study the properties of the extension ∼ + {ε −·····− m} and how
they impact invertible letters/words. We introduce the notion of group-PME.

Definition 13. A group-PME over L is a PME ∼ such that A∼ = I∼ where I∼ =
{c ∈ L | ε ∼ cβ holds for some β ∈ L�} is the set of invertible letters of ∼.

The operator ∼ �→ I∼ is monotonic. By rule 〈pr〉, the inclusion I∼ ⊆ A∼
holds for any PME. We may write IC for I∼C ; this should not lead to any ambi-
guity. We introduce a set of derived rules related to invertible words (in I�

∼) and
we analyze the relations between ∼ and invertible words. Appart from the let-
ter α which serves as a parameter for (primary) extensions, we ease the reading
by denoting invertible words with greek letters β, γ, ... in place of x, y, ...

Definition 14 (Squares and Invertible Squares). We say that a word α ∈ L� is
square-free if ∀c ∈ L, cc ≺ α. We say that the PME ∼ be over L has invertible
squares if ∀c ∈ L, cc ∼ cc ⇒ c ∈ I∼ (i.e. any squarable letter is invertible).

Proposition 5. Let ∼ be a PME over L. If ∼ has invertible squares then for any word
k ∈ L�, if kk ∼ kk holds then k ∈ I�

∼ holds.

Proposition 6. PMEs are closed under rules 〈εc, i↑, ic, is, i←, i→〉:
ε −·····− γ ε −·····− β

ε −·····− γβ
〈εc〉 x −·····− y ε −·····− γβ

γx −·····− γy
〈ic〉

x −·····− βy ε −·····− γβ

γx −·····− y
〈i←〉

ε −·····− γβ ε −·····− γβ′

β −·····− β′ 〈i↑〉 γx −·····− γy ε −·····− γβ

x −·····− y
〈is〉 γx −·····− y ε −·····− γβ

x −·····− βy
〈i→〉
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ε

k x y a b c

kx ∼0 ab ac ∼0 ky

C0 = {kx −·····− ab, ky −·····− ac}

ε

k x y

a ∼1 kx ∼1 ky

C1 = C0 ∪ {ε −·····− b, ε −·····− c}

ε y y2 yn

a ∼2 k ∼2 · · · ∼2 kyn ∼2 · · ·

· · · · · ·

C2 = C1 ∪ {ε −·····− x}

Fig. 2. The partial equivalence classes of ∼0 = C0, ∼1 = C1 and ∼2 = C2

Proposition 7. Let ∼ be a PME over L and x, y ∈ L� and γ ∈ I�
∼. We have: (a)

x ∈ I�∼ iff ∃β ε ∼ xβ; (b) x ∼ y iff γx ∼ γy; (c) the inclusion I�∼ ⊆ L∼ holds; (d) if
x ∼ y then x ∈ I�

∼ ⇔ y ∈ I�
∼.

In any group-PME ∼, every defined letter is invertible and from Proposi-
tion 7 (c), we obtain the identity L∼ = I�

∼.11 Proposition 8 makes explicit a
sufficient condition under which extensions do not change invertible letters: no
new invertible letter appears in ∼ + {x −·····− y} unless either x ∈ I�∼ or y ∈ I�∼.

Proposition 8. Let ∼ be a PME and C be a set of constraints such that for any x−·····−y ∈
C the identity {x, y} ∩ I�∼ = ∅ holds. Then the identity I∼+C = I∼ holds.

7 No Direct Inductive Proof of Cancellativity for Basic PMEs

We argue that it is not possible to prove cancellativity of basic PMEs by a di-
rect induction on the length of the sequence defining them. This justifies the
involved development that lies ahead. We present an example where the exten-
sions ∼ + {ε −·····− m} break cancellativity and introduce non-invertible squares.12

Let k, x, y, a, b, c ∈ L be six different letters. Let us consider the following
PME ∼0 = ∼C0 where C0 = {kx −·····− ab, ky −·····− ac}. In Figure 2, we represent the
corresponding set of partial equivalence classes of ∼0. It is left to the reader
to check that these are indeed the partial equivalence classes of the closure of
C0: we have L�/∼0 = {[ε], [k], [x], [y], [a], [b], [c], [kx], [ky]} with [α] = {α} for
α ∈ {ε, k, x, y, a, b, c} and [kx] = {kx, ab} and [ky] = {ky, ac}. We check that
∼0 is cancellative and has invertible squares (it contains no square except ε).

Now we consider the extension C1 = C0∪{ε−·····−b, ε−·····−c} and ∼1 = ∼0+{ε−·····−b, ε−·····−
c}. Let us denote E = b�c� = {bicj | i, j ∈ N}. Then L�/∼1 = {[ε], [k], [x], [y], [a]}
where [α] = αE for α ∈ {ε, k, x, y} and [a] = (a | kx | ky)E. The PME ∼1 is not
cancellative anymore. Indeed, kx ∼1 ky but x �1 y. Hence we have an example

11 In that case, ∼ is a congruence over I�
∼ and the quotient I�

∼/∼ is an Abelian group.
12 i.e. some kk with kk ∼ kk and k 	∈ I�

∼; see Definition 14.
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that shows that the extension ∼ + {ε −·····− m} does not preserve cancellativity. But
still ∼1 has invertible squares; check that I∼1 = {b, c}.

Finally we consider the extension C2 = C1 ∪ {ε −·····− x} and ∼2 = ∼1 + {ε −·····− x}.
Let us denote E = b�c�x�. Then L�/∼2 = {[yn] | n � 0} ∪ {[a]} with [yn] = ynE
and [a] = (a | k)y�E. Like ∼1, the PME ∼2 is not cancellative. Moreover it has
squares like y2 where y is not an invertible letter; check I∼2 = {b, c, x}. Hence
∼2 contains non-invertible squares.

We see that the extension ∼ + {ε −·····− m} preserves neither cancellativity nor
the invertibility of squares. Therefore it is not possible to show that basic PMEs
have these properties by direct induction on the basic sequence.

8 Basic PMEs are Primary Extensions of Group-PMEs

We define the notion of primary extension and use the equations in Lemma 3 to
show that cancellativity and invertible squares are preserved by primary exten-
sions. We then prove that basic PMEs are primary extensions of group-PMEs.

Definition 15 (Primary PME). Let ∼ be a PME over L and α, m ∈ L� be two words
such that m ∼ m, α = ε, A∼ ∩ Aα = ∅ and α is square-free. A type-1 extension of
∼ is of the form ∼ + {α −·····− m}; A type-2 extension of ∼ is of the form ∼ + {αm −·····−b}
with b ∈ L\(A∼ ∪ Aα). A primary extension of ∼ is a type-1 or a type-2 extension
of ∼. The class of primary PMEs is the least class containing group-PMEs and closed
under primary extensions.

We show that the properties of “cancellativity” and “invertible squares” hold
for group-PMEs and are preserved by primary extensions.

Lemma 2. Every group-PME is cancellative and has invertible squares.

Lemma 3. Let ∼ be a PME over L and m, α ∈ L� be such that m ∼ m, α = ε and
Aα ∩ A∼ = ∅. Then the two following identities hold:

∼ + {α −·····− m} = {δαux −·····− δαvy | ∃i, mux ∼ mvy, mi+ux ∼ mi+vy and δ ≺ αi}
∼ + {αm −·····− αm} = ∼ ∪ {δx −·····− δy | x ∼ y, ε = δ ≺ α and ∃q xq ∼ m}

Moreover, if ∼ is cancellative then both ∼ + {α −·····− m} and ∼ + {αm −·····− αm} are
cancellative; and if ∼ has invertible squares and α is square-free then both ∼+{α−·····−m}
and ∼ + {αm −·····− αm} have invertible squares.

Corollary 1. Primary PMEs are cancellative and have invertible squares.

The proof of Lemma 3 is long/technical but not too difficult (once you have
the equations). We now prove our core result: basic PMEs are primary PMEs;
in particular, they are cancellative and have invertible squares.

Theorem 5. Basic PMEs are primary PMEs.
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Proof. Let us consider a basic PME ∼. By Definition 12, there exists a basic
sequence of constraints (xi −·····− yi)i<k such that ∼ = ∼H, with k < ∞ and
H = {x0 −·····−y0, . . . , xk−1 −·····−yk−1}. For any q � k, we denote Hq = {xi−·····−yi | i < q}.
The extension ∼Hq +{xq −·····− yq} is basic for any q < k. We recall the notation
I∼ = IH for the set of invertible letters of ∼ = ∼H.

From xi −·····− yi ∈ H, we deduce xi ∼ yi and by Proposition 7 (d), we have
xi ∈ I�

∼ iff yi ∈ I�
∼ for any i < k. Hence we obtain a partition [0, k[ = C � D

with C = {i < k | {xi, yi} ⊆ I�∼} and D = {i < k | {xi, yi} ∩ I�∼ = ∅}. Let us
denote C = {xi −·····− yi | i ∈ C} and D = {xi −·····− yi | i ∈ D}.

Let us enumerate D = {σ0 < · · · < σd−1} in strictly increasing order with
d = card(D) � k and σ : [0, d[ −→ [0, k[. For q � d, let us denote Dq = {σi | i <
q}. We show the inclusion [0, σq[ ⊆ C ∪ Dq : indeed, let us consider j < σq and
let us prove j ∈ C ∪ Dq . From σq < k, we deduce j ∈ [0, k[ = C � D. In case
j ∈ C, we have finished. In case j ∈ D = {σ0 < · · · < σd−1}, then j = σr for
some r < d. If q � r then σq � σr = j which contradicts j < σq . Hence we must
have r < q and we conclude j = σr ∈ Dq. Let us denote Dq = {xσi −·····−yσi | i < q}
for q � d. From Dq ⊆ [0, σq[ we derive Dq ⊆ Hσq .

Let us prove the identities AC = IC = I∼. Since H = C ∪ D, we get ∼H =
∼C +D. Moreover, every constraint of D is of the form x−·····−y with {x, y}∩I�

∼ = ∅.
As IC ⊆ IH = I∼ we deduce {x, y} ∩ I�

C = ∅ for every constraint x −·····− y ∈ D.
Thus, by Proposition 8, we have I∼C+D = I∼C and thus IC = I∼C = I∼C+D =
I∼H = I∼. Also, for any x −·····− y ∈ C we have {x, y} ⊆ I�

∼ and thus AC ⊆ I∼. We
conclude AC = IC = I∼. In particular, ∼C is a group-PME.

Let us define Eq = C ∪ Dq for q � d. As C ⊆ Eq ⊆ Ed = C ∪ Dd = C ∪ D = H,
we deduce I∼ = IC ⊆ IEq ⊆ IH = I∼ and thus IEq = I∼ for any q � d. Let
us establish the inclusions Hσq ⊆ Eq and AEq \AHσq

⊆ I∼. The first inclusion
follows from [0, σq[ ⊆ C ∪ Dq and the definitions of Hσq and Eq . For the second
inclusion, starting with Dq ⊆ Hσq we derive Eq = C ∪ Dq ⊆ C ∪ Hσq and thus
AEq ⊆ AC ∪ AHσq

= I∼ ∪ AHσq
. Hence the inclusion AEq \AHσq

⊆ I∼.

Let us show by induction on q � d that ∼Eq is a primary PME. First the
ground case. We have D0 = ∅ and thus the identity ∼E0 = ∼C holds. As a con-
sequence, ∼E0 is a group-PME and thus is a primary PME. Then the induction
step. We assume that ∼Eq is a primary PME and we show that ∼Eq+1 = ∼Eq +
{xσq −·····−yσq } is also a primary PME. For this aim, we show that ∼Eq +{xσq −·····−yσq } is
identical to a primary extension of ∼Eq . We remind that the constraint xσq −·····−yσq

is basic w.r.t. ∼Hσq
. We proceed by case analysis on that fact (see Definition 11):

– if xσq −·····− yσq = ab −·····− m with m ∼Hσq
m and a = b ∈ L\AHσq

. From Hσq ⊆ Eq

we deduce m ∼Eq m. We establish the relation {a, b} � AEq : if {a, b} ⊆ AEq

holds then we have {a, b} ⊆ AEq\AHσq
⊆ I∼ and as a consequence ab ∈ I�

∼.
But from σq ∈ D, we get ab = xσq ∈ I�

∼ which leads to a contradiction.
In case {a, b} ∩ AEq = ∅ then Aab ∩ AEq = ∅, ab = ε is square-free and

m ∼Eq m. Hence, ∼Eq + {ab −·····− m} is a type-1 primary extension of ∼Eq .
In case a ∈ AEq and b ∈ AEq then a ∈ AEq \ AHσq

⊆ I∼ = IEq and
hence we have ε ∼Eq aβ for some β. The identity ∼Eq + {ab −·····− m} = ∼Eq +
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{b −·····− mβ} holds by direct application of rules 〈i←〉 and 〈i→〉. We verify that
∼Eq + {b −·····− mβ} is a type-1 primary extension of ∼Eq : b = ε is square-free,
Ab ∩AEq = ∅, mβ ∼Eq mβ (because m ∼Eq m, ε ∼Eq aβ and rule 〈ic〉). Hence
∼Eq + {ab −·····− m} is identical to a type-1 primary extension of ∼Eq .

The case b ∈ AEq and a ∈ AEq can be treated in a symmetric way. In any
of these three cases, we have proved that the PME ∼Eq + {ab −·····− m} can be
expressed as a type-1 primary extension of ∼Eq ;

– if xσq −·····− yσq = am −·····− b with m ∼Hσq
m and a = b ∈ L\AHσq

. From σq ∈ D,
we have b = yσq ∈ I�

∼ and thus b ∈ I∼. From the inclusion Hσq ⊆ Eq,
we deduce m ∼Eq m. We further have b ∈ AEq (otherwise we would have
b ∈ AEq \ AHσq

⊆ I∼ contradicting b ∈ I∼). We consider the two cases
a ∈ AEq and a ∈ AEq .

In case a ∈ AEq then we check that ∼Eq + {am −·····− b} is a type-2 primary
extension: a = ε is square-free, Aa ∩ AEq = ∅, m ∼Eq m and b ∈ AEq ∪ Aa.

In case a ∈ AEq then a ∈ AEq \AHσq
⊆ I∼ = IEq . Hence there exists β

such that ε ∼Eq aβ. The identity ∼Eq + {am −·····− b} = ∼Eq + {b −·····− am} holds
by rule 〈s〉. Let us check that ∼Eq + {b −·····− am} is a type-1 primary extension
of ∼Eq : b = ε is square-free and Ab ∩ AEq = ∅ holds. am ∼Eq am is the last
remaining condition, obtained from m ∼Eq m and ε ∼Eq aβ using rule 〈ic〉.

In any of these two cases, we have proved that the PME ∼Eq + {am −·····− b}
can be expressed as a type-1 or as type-2 primary extension of ∼Eq ;

– if xσq −·····− yσq = ε −·····− m with m ∼Hσq
m. Then we have xσq = ε ∈ I�∼ which

directly contradicts {xσq , yσq } ∩ I�
∼ = ∅. Hence this case is not possible.

Hence, by induction on q � d, the PME ∼Eq is primary. In particular ∼Ed
=

∼H = ∼ is a primary PME.

Corollary 2. Basic and simple PMEs are cancellative and have invertible squares.

Corollary 3. Simple PMEs closed under rule 〈iu〉 are also closed under rule 〈di〉.

9 Conclusion

In this paper, we prove that validity in Boolean BI does not distinguish between
some of the different notions of separation algebras commonly found in the
literature. This result is obtained by an in-depth examination of the syntactic
properties of basic/simple PMEs which are the counter-models that are gener-
ated by tableaux proof-search. We show that these models are cancellative and
that the only squares they allow are composed of invertible letters using a de-
tour via the notion of primary PME. From the cancellativity of simple PMEs and
the strong completeness theorem, we derive equivalence results for cancellative
partial monoids. We relate indivisibility of units to the disjointness property.

We propose some perspectives. First, we could investigate more properties
of basic/simple PMEs to enrich the graph of known relations between the
family (BBIX)X . In particular, we expect a full characterization of basic PMEs
that could lead to finer properties of simple PMEs. Another track of research
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would be to find a constructive proof of the results of this paper. There is little
hope to succeed by using the strong completeness which is inescapably non-
constructive; but we could for instance approach the problem by eliminating
the cancellativity rule in the proofs of the sequent calculus [9]. Another way to
tackle the problem would be to design bisimulations or at least Kripke seman-
tics preserving relations between cancellative and non-cancellative models.
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Abstract. The inhabitation problem for intersection types is known to
be undecidable. We study the problem in the case of non-idempotent
intersection, and we prove decidability through a sound and complete
algorithm. We then consider the inhabitation problem for an extended
system typing the λ-calculus with pairs, and we prove the decidability
in this case too. The extended system is interesting in its own, since it
allows to characterize solvable terms in the λ-calculus with pairs.

1 Introduction

Intersection types have been presented in the literature in many variants. His-
torically, one of the first versions is the one characterizing solvable terms, that
we call system C, shown in Fig. 1 [6,15]. Intersection enjoys associativity, com-
mutativity, and in particular idempotency (A ∧ A = A). Given a type A and a
typing environment Γ , the problem of deciding whether there exists a term t

such that Γ $ t : A is provable, is known in the literature both as emptiness
problem and as inhabitation problem. The inhabitation problem for system C has
been proved to be undecidable by Urzyczyn [21]. Van Bakel [23] simplified the
system, using strict types, where intersection is not allowed on the right side of
the arrow; his system S is presented on the left part of Fig. 2, where intersec-
tion is naturally represented through set formation, and the universal type ω
by the empty set. The right part of the figure presents the relevant version of
S, Sr, a system being relevant if and only if, in its provable judgments, typing
environments only contain the consumed premises. The systems C, S and Sr are
equivalent with respect to the typability power (neglecting the universal type
ω). Urzyczyn’s proof of undecidability of the inhabitation problem for system
C can be easily adapted to system S. Moreover, the inhabitation problem for C
seems to reduce to that for Sr, proving that the latter is undecidable too [22], so
that relevance has nothing to do with the hardness of the inhabitation problem.

In this paper we consider the type assignment systemM, which is a variant
of Sr, where idempotency of intersection has been removed, and we prove that
its inhabitation is decidable, by exploiting the fact that in this case types keep
track faithfully of the different uses of variables in terms. SystemM characterizes
terms having head normal form, so we design a sound and complete algorithm,
that, given a typing environment Γ and a type σ, builds a set of approximate

J. Diaz et al.(Eds.): TCS 2014, LNCS 8705, pp. 341–354, 2014.
c© IFIP International Federation for Information Processing 2014
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x : A ∈ Γ

Γ � x : A
(var)

Γ � t : ω
(ω)

Γ, x : A � t : B

Γ � λx.t : A → B
(→ I)

Γ � t : A → B Γ � u : A

Γ � tu : B
(→ E)

Γ � t : A Γ � t : B

Γ � t : A ∧ B
(∧I) Γ � t : A1 ∧ A2

Γ � t : Ai (i = 1, 2)
(∧E)

Types: A ::= α | ω | A → A | A ∧ A Typing environments: Γ ::= ∅ | Γ, x : A x �∈ dom(Γ )

Fig. 1. System C

x : A ∈ Γ σ ∈ A

Γ � x : σ
(var)

x : {σ} � x : σ
(varr)

Γ, x : A � t : τ

Γ � λx.t : A → τ
(→ I)

Γ, x : A � t : τ

Γ � λx.t : A → τ
(→ I)

Γ � t :{σi}i∈I → τ (Γ � u : σi)i∈I

Γ � tu : τ
(→E)

Γ � t :{σi}i∈I → τ (Δi � u : σi)i∈I

Γ ∪i∈I Δi � tu : τ
(→Er)

Types: Typing environments:
σ ::= a | A → σ (strict types) Γ ::= ∅ | Γ, x : A x �∈ dom(Γ )
A ::= ∅ | {σ} | A ∪ A (set types) (Γ ∪Δ)(x) = Γ (x) ∪Δ(x)

Fig. 2. Systems S and Sr

normal forms from which all and only the head normal forms t such that Γ $ t :
σ can be generated. Then we extend the system, and consequently the language,
in order to consider pairs and projections. We obtain a new system P which
characterizes the (suitably defined) solvability in the extended calculus Λπ, and
we prove that inhabitation is decidable also for this extension.

In the last years, growing interest has been devoted to non idempotent inter-
section types, since they allow to reason about quantitative properties of terms,
both from a syntactical and a semantic point of view. In fact, system M is
not new: it is the well known system R of De Carvalho [5], and it is an in-
stance of the class of the essential λ-models defined in [20], which supplies a
logical description of the strongly linear relational λ-models. Some other type
assignment systems with non-idempotent intersection have been studied in the
literature, for various purposes: to compute a bound for the normalization time
of terms [7]), to supply new characterizations of strong normalization [3,12], to
study type inference [14,17], to study linearity [13], to characterize solvability
in the resource λ-calculus [19,18]. Moreover intersection without idempotency,
commutativity nor associativity, has been used to study the game semantics of
a typed λ-calculus [8]. A unified model-theoretic approach covering both the
relevant and non-relevant cases, and unveiling the relations between them, is
presented in [9]. Returning to the inhabitation problem, various restrictions of
the classical intersection types system have been shown to have decidable in-
habitation [16,4]. The approach is substantially different from that used in this
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work, since in all cases intersection is idempotent, and the decidability is ob-
tained by restricting the use of rules (∧I) and (∧E), so that the corresponding
type assignment does not characterize interesting classes of terms, anymore.

2 The Type Assignment System M
In this section we consider a relevant type system for the λ-calculus having
strict intersection types that enjoy associativity and commutativity, but not
idempotency. In order to emphasize this last property we represent intersections
as multisets of types.

We recall that terms and contexts of the λ-calculus are generated by the
following grammars, respectively:

t, u, v ::= x | λx.t | tu C ::= � | λx.C | Ct | tC

Given a context C and a term t, C[t] denotes the term obtained by replacing the
unique occurrence of � in C by t, allowing the capture of free variables of t. The
β-reduction is given by the rule (λx.t)u →β t{u/x} where t{u/x} denotes the
capture free replacement of x by u in t.

Let us recall the notion of head-normal forms (hnf), which is the syntactical
counter part of the well known notion of solvability for the λ-calculus. A λ-term
is in hnf if it is generated by the following grammar J , it has hnf if it β-reduces
to a hnf.

J ::= λx.J | K K ::= x | Kt

Definition 1

1. The set TM of types is defined by the following grammar:

σ, τ, ρ ::= α | A→ τ (types)
A ::= [σi]i∈I (multiset types)

where α ranges over a countable set of base types and I is a finite, possibly
empty, set of indices.

2. Typing environements, or simply environments, written Γ,Δ, are functions
from variables to multiset types, assigning the empty multiset to almost all
the variables. The domain of Γ , written dom(Γ ), is the set of variables whose
image is different from [ ].

3. A typing judgement is a triple of the form Γ $ t : A. The type system M
is given in Fig. 3. If Π is derivation with conclusion Γ $ t : σ we write
Π � Γ $ t : σ, and call t the subject of Π. The measure of a derivation
Π, written meas(Π), is the number of rule applications in Π. By abuse
of notation, Γ $ t : σ also denotes the existence of some derivation with
conclusion Γ $ t : σ.

4. A derivation Π is a left-subtree of a derivation Σ if either Π = Σ or Π�Δ $
u : σ is the major premise of Σ′ �Δ+i∈I Δi $ uv : τ and Σ′ is a left-subtree
of Σ.
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Given {Γi}i∈I , +i∈IΓi is the environment mapping x to 1i∈IΓi(x), where 1
denotes multiset union, where the resulting environment is the one having empty
domain for I = ∅. The notations Γ +Δ and Γ +i∈I Δi are just particular cases
of the previous one. Γ \ x is the environment assigning [ ] to x, and acting as Γ
otherwise; x1 : A1, . . . , xn : An is the environment assigning Ai to xi, for 1 ≤ i ≤ n,
and [ ] to any other variable.

x : [ρ] � x : ρ
(var)

Γ � t : ρ

Γ \ x � λx.t : Γ (x) → ρ
(→ I)

Γ � t : [σi]i∈I → ρ (Δi � u : σi)i∈I

Γ +i∈I Δi � tu : ρ
(→ E)

Fig. 3. The type assignment system M for the λ-calculus

Rule (→ E) enables the typability of non strongly normalizing terms, when
I = ∅. For example x : [[ ] → α] $ x((λy.yy)(λy.yy)) : α , where the outermost
application is typed neglecting its unsolvable argument. This feature is shared
by all the intersection type systems characterizing solvability. The same holds
for the fundamental subject reduction property: if Π � Γ $ t : σ and t →β u,
then Π ′ � Γ $ u : σ. What is peculiar to M is the fact that the size of Π ′ is
strictly smaller than that of Π , whenever the reduction t →β u takes place in
an occurrence of t which is typed in Π . This property, stated in Thm. 1.1 below,
allows for an original, combinatorial proof of the fact that typed terms do have
hnf.

Definition 2

– The set o(t) of occurrences of t is the set of contexts C such that there exists
a term u verifying C[u] = t, u being the subterm of t at the occurrence C.

– Given Π � Γ $ t : σ, the set to(Π) ⊆ o(t) of typed occurrences of t in Π is
defined by induction on meas(Π) as follows:

• to(Π) = {�} if Π is an istance of the axiom.
• to(Π) = {�} ∪ {λx.C | C ∈ to(Π ′)} if the subject of Π is λx.t and Π ′

is the subderivation of Π typing t.
• to(Π) = {�} ∪ {Cu | C ∈ to(Π ′)} ∪ (

⋃
i∈I{tC | C ∈ to(Π ′

i)}) if the
subject of Π is tu, Π ′ is the subderivation of Π typing t, and Π ′

i, for
i ∈ I, are the sub-derivations of Π typing u.

– Given Π �Γ $ t : σ, we say that t is in Π-normal form if for all C ∈ to(Π),
the subterm of t at the occurrence C is not a redex.
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Theorem 1

1. (Subject reduction) Π � Γ $ t : σ and t →β u imply Π ′ � Γ $ σ where
meas(Π ′) ≤ meas(Π). Moreover, if the reduced redex is typed in Π, then
meas(Π ′) < meas(Π).

2. (Characterization) Γ $ t : σ if and only if t has hnf.

Proof. For 1 see [20] and for 2 see [5].

3 Inhabitation for System M
The system M allows to type a term without giving types to all its subterms
through the rule (→ E) in case I = ∅. So in order to reconstruct the subject
of a derivation we need a notation for these untyped subterms. We will use the
standard notion of approximate normal form [1], which can be defined through
the following grammar:

a, b, c ::= Ω | N N ::= λx.N | L L ::= x | La

Approximate normal forms are ordered by the smallest contextual order ≤
such that Ω ≤ a, for all a. We write a ≤ t when the term t is obtained from a

by replacing all the occurrences of Ω by terms.
Let A(t) = {a | ∃u t →∗

β u and a ≤ u} be the set of approximants of the
λ-term t, and let

∨
denote the least upper bound w.r.t. ≤. We write ↑i∈I ai

to denote that
∨
{ai}i∈I does exist. It is easy to check that, for every t and

a1, . . .an ∈ A(t), ↑i∈{1,...,n} ai. An approximate normal form a is a head subterm
of b if either b = a or b = cc′ and a is a head subterm of c. System M gives
types to approximate normal forms, by simply assuming that no type can be
assigned to the constant Ω. It is easy to check that, if Γ $ a : σ and a ≤ b (resp.
a ≤ t) then Γ $ b : σ (resp. Γ $ t : σ). Given Π � Γ $ t : τ , where t is in
Π-normal form, we denote by A(Π) the minimal approximant b of t such that
Π � Γ $ b : τ . Formally,

Definition 3. Given Π�Γ $ t : σ, where t is in Π-normal form, A(Π) ∈ A(t)
is defined by induction on meas(Π) as follows:

– If Π � Γ $ x : ρ, then A(Π) = x.
– If Π � Γ $ λx.t : A → ρ follows from Π ′ � Γ, x : A $ t : ρ, then A(Π) =
λx.A(Π ′), t being in Π ′-normal form.

– If Π � Γ = Γ ′ +i∈I Δi $ tu : ρ follows from Π ′ � Γ $ t : [σi]i∈I → ρ and
(Π ′

i �Δi $ u : σi)i∈I , then A(Π) = A(Π ′)(
∨

i∈I A(Π ′
i)) (remark that t is in

Π ′-normal form, u if in Π ′
i-normal form, for all i ∈ I, and that ↑i∈I A(Π ′

i),
since A(Π ′

i) ∈ A(u), for all i ∈ I).
Remark that, in the final item of the definition above, the approximate normal
form corresponding to the case I = ∅ is A(Π ′)Ω.

A simple induction on meas(Π) allows to show the following:

Proposition 1. If Π � Γ $ t : σ and t is in Π-normal form, then Π � Γ $
A(Π) : σ.
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3.1 The Inhabitation Algorithm

The inhabitation rules are given in Fig. 4. The algorithm, given an environment
Γ and a type σ, builds the set T(Γ, σ) containing all the approximate normal
forms a such that there exists a derivation Π � Γ $ a : σ, with a = A(Π), then
stops. The algorithm uses two auxiliary predicates, namely TI(Γ, [σi]i∈I) and
HΔa (Γ, σ) � τ . The set TI(Γ, [σi]i∈I) contains all the approximate normal forms
a =

∨
i∈I ai such that Γ = +i∈IΓi, ai ∈ T(Γi, σi) for all i ∈ I, and ↑i∈I ai.

Finally, HΔa (Γ, σ) � τ contains all the approximate normal forms b such that a is
a head subterm of b, and such that if a ∈ T(Δ,σ) then b ∈ T(Γ +Δ, τ).

a ∈ T(Γ + (x : A), τ ) x /∈ dom(Γ )

λx.a ∈ T(Γ, A → τ )
(Abs)

(ai ∈ T(Γi, σi))i∈I ↑i∈I ai∨
i∈I

ai ∈ TI(+i∈IΓi, [σi]i∈I)
(Union)

a ∈ H
x:[σ]
x (Γ, σ) � τ

a ∈ T(Γ + (x : [σ]), τ )
(Head)

σ = τ

a ∈ H
Δ
a (∅, σ) � τ

(Final)

Γ = Γ0 + Γ1 b ∈ TI(Γ0, A) a ∈ H
Δ+Γ0
cb (Γ1, σ) � τ

a ∈ H
Δ
c (Γ, A → σ) � τ

(Prefix)

Fig. 4. The inhabitation algorithm for the λ-calculus

Notice the particular case I = ∅ in (Union), which gives Ω ∈ TI(∅, [ ]), where
∅ denotes the environement having empty domain. The algorithm is not an
obvious extension of the classical inhabitation algorithm for simple types [2,10].
In particular, when restricted to simple types, it reconstructs all the normal
forms inhabiting a given type, while the original algorithm reconstructs just the
long η-normal forms. This is achieved thanks to a non deterministic behaviour,
illustrated in the Example 1.1 below.

Example 1

1. Let Γ = ∅ and σ = [[α] → α] → [α] → α. Given input (Γ, σ), the algorithm
can have the following two behaviours:

(1) Choosing the sequence of rules: (Abs), (Abs), (Head), (Prefix), (Final)
the final approximant is λxy.xy;

(2) Choosing the sequence of rules: (Abs), (Head), (Final) the final approxi-
mant is λx.x.

2. Let Γ = ∅ and σ = [[] → α] → α. Given input (Γ, σ), by the sequence of
rules: (Abs), (Head), (Prefix), ((Union), (Final)) we obtain λx.xΩ.
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Definition 4. In order to show that the inhabitation algorithm terminates, we
define a measure on types and environments, as follows:

#(α) = 1 #([σi]i∈I) =
∑

i∈I #(σi) + 1
#(A→ ρ) = #(A) + #(ρ) + 1 #(Γ ) =

∑
x∈dom(Γ ) #(Γ (x))

The measure is then be extended to the judgements of the algorithm:
#(T(Γ, ρ)) = #(HΔb (Γ, ρ) � τ) = #(Γ ) + #(ρ)
#(TI(Γ, A)) = #(Γ ) + #(A)

Lemma 1 (Termination). The inhabitation algorithm terminates.

Proof Hint. To each call C ∈ {T( , ), TI( , ), H ( , ) � } of the algorithm, we
associate a tree TC as follows: nodes are labeled with elements of C. A node n′

is a son of n iff there exists some instance of a rule having n as conclusion and
n′ as premise. Thus, all possible runs of C are encoded in the tree TC , which
is finitely branching. Moreover, it is easy to see that the measure #() strictly
decreases along the branches of TC , so that every branch has finite depth. Hence,
TC is finite by König’s Lemma, i.e. the algorithm terminates.

Soundness and completeness of the inhabitation algorithm follow from the
following Lemma, relating typings of approximate normal forms in system M
and runs of the algorithm:

Lemma 2. a ∈ T(Γ, σ) ⇔ ∃Π � Γ $ a : σ such that a = A(Π).

Proof. (⇒): We prove the following statements, by induction on the rules in
Fig. 4:

a) a ∈ T(Γ, σ) ⇒ ∃Π � Γ $ a : σ such that a = A(Π).
b) a ∈ TI(+i∈IΓi, [σi]i∈I) ⇒ ∃(Πi � Γi $ ai : σi)i∈I such that ai = A(Πi), for

i ∈ I, ↑i∈I ai and a =
∨

i∈I ai.
c) a ∈ HΔb (Γ, σ) � τ ⇒ there exists a function F associating to each derivation
Σ � Δ $ b : σ such that b = A(Σ), a derivation Π � Γ +Δ $ a : τ such that
a = A(Π).

If λx.a ∈ T(Γ, A → τ) follows from a ∈ T(Γ + (x : A), τ) by (Abs), then we
conclude by the i.h.(a) and by an application of (→ I).

If
∨

i∈I ai ∈ TI(+i∈IΓi, [σi]i∈I) follows from (ai ∈ T(Γi, σi))i∈I and ↑i∈I ai by
(Union), then by i.h.(a), there exist (Πi � Γi $ ai : σi)i∈I such that for all i ∈ I,
ai = A(Πi), and we are done.

If a ∈ T(Γ + (x : [σ]), τ) follows from a ∈ H
x:[σ]
x (Γ, σ) � τ by (Head), then the

i. h. (c) provides a function associating to each derivation Σ � x : [σ] $ x : σ a
derivation Π �Γ + x : [σ] $ a : τ such that a = A(Π), since x = A(Σ). Applying
this function to the unique derivation of x : [σ] $ x : σ, we get the suitable typing
of a.

If a ∈ HΔa (∅, σ) � τ follows from σ = τ by (Final), then the identity function
satisfies the requirements of (c).
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Finally, if a ∈ HΔc (Γ0 + Γ1, A → σ) � τ follows from b ∈ TI(Γ0, A) and a ∈
HΔ+Γ0
cb (Γ1, σ) � τ by (Prefix), then we have to provide a function F associating

to each derivation Σ � Δ $ c : A → σ such that c = A(Σ), a derivation Π �
Δ + Γ0 + Γ1 $ a : τ such that a = A(Π). To begin with, the i.h.(b) applied to
b ∈ TI(Γ0, A) provides a family of derivations (Πi � Γ

i
0 $ bi : σi)i∈I such that

bi = A(Πi), Γ0 = +i∈IΓ
i
0, A = [σi]i∈I , ↑i∈I bi and b =

∨
i∈I bi. Rule (→ E)

with premises Σ and {Πi}i∈I , gives a type derivation Π ′ � Δ + Γ0 $ cb : σ,
such that cb = A(Π ′). Then, the i.h.(c) applied to a ∈ HΔ+Γ0

cb (Γ1, σ)�τ provides
a function F ′ such that F ′(Π ′) � Δ + Γ0 + Γ1 $ a : τ and a = A(F ′(Π ′)).To
conclude, we set F (Σ) = F ′(Π ′).

(⇐): We prove the following statements, by induction on the definition of
A(Π) (Def. 3):

1. Given Σ � Δ $ b : τ and Π � Γ $ a : σ, if b = A(Σ) and a = A(Π) are
L-approximate normal forms, and Σ is a left-subtree of Π , then there exists
Γ ′ s.t. Γ = Γ ′ +Δ and HΔ+Γ ′

a (Θ, σ) � ρ ⊆ HΔb (Θ + Γ ′, τ) � ρ.
2. Π � Γ $ a : σ and a = A(Π) imply a ∈ T(Γ, σ).

1. If a = x, then Π is an instance of the axiom (var); Σ being a left subtree

of Π , we get Σ = Π , b = x, Γ ′ = ∅, σ = τ and the inclusion HΔ+Γ ′
b (Θ, σ) � ρ ⊆

HΔa (Θ + Γ ′, τ) � ρ holds trivially.
If a = ca′, c being a L-approximate normal form, then the last rule of Π is

an instance of (→ E), with premises Π ′ � Γ ′′ $ c : [σi]i∈I → σ and (Πi � Γi $ a′ :
σi)i∈I , so that Γ = Γ ′′+i∈I Γi; moreover Σ�Δ $ b : τ is also a left-subtree of Π ′.
We have in this case a′ =

∨
i∈I A(Πi), where by the i.h.(2), A(Πi) ∈ T(Γi, σi).

Then H
Δ+Γ ′′+i∈IΓi

ca′ (Θ, σ) � ρ ⊆(Prefix) H
Δ+Γ ′′
c (Θ +i∈I Γi, [σi]i∈I → σ) � ρ ⊆i.h.(1)

HΔb (Θ + Γ ′′ +i∈I Γi, σ) � ρ.
2. If a is a L-approximate normal form, then ∃τ s.t. Γ = Γ0+(x : [τ ]) and the

type derivation x : [τ ] $ x : τ is a left subtree of Γ0 + (x : [τ ]) $ a : σ. Then we

have a ∈(Final) HΓa (∅, σ) � σ ⊆Point(1) H
x:[τ ]
x (Γ0, τ) � σ ⊆(Head) T(Γ0 + {x : [τ ]}, σ).

Otherwise, a = λx.a′, and we conclude by the i.h.(2) on a′.

Theorem 2 (Soundness and Completeness)

1. If a ∈ T(Γ, σ) then, for all t such that a ≤ t, Γ $ t : σ.
2. If Π �Γ $ t : σ then there exists Π ′ �Γ $ t′ : σ such that t′ is in Π ′-normal

form, and A(Π ′) ∈ T(Γ, σ).

Proof. Soundness follows from Lem. 2 (⇒) and the remark that, if Γ $ a : σ
and a ≤ t, then Γ $ t : σ. Completeness follows from Thm. 1.1, ensuring that
given Π � Γ $ t : σ, there exists Π ′ � Γ $ t′ : σ such that t′ is in Π ′-normal
form, then from Prop. 1 and Lem. 2 (⇐).

4 Adding Pairs and Projections

The language Λπ is an extension of λ-calculus with pairs and projections. Its
terms and contexts are defined by the following grammars:
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t, u, v ::= x | λx.t | tu | π1t | π2t | 〈t, u〉
C ::= � | λx.C | Ct | tC | π1C | π2C | 〈t, C〉 | 〈C, t〉

The reduction relation, also denoted by →, is the contextual closure of the
following rules:

(λx.t)u →β t{u/x} π1〈t, u〉 →π t π2〈t, u〉 →π u

As usual, →∗ denotes the reflexive-transitive closure of →. We write t and
π (resp. tn and πn) to denote a possibly empty sequence (resp. a sequence of
length n) of terms and projections, respectively.
Λπ inherits from the λ-calculus important properties, such as confluence. Solv-

ability is defined as usual, but pairs are solvable independently from their con-
tent, since we want to consider them as lazy data structures:

Definition 5

1. A head context is a context of the shape: (λx.�)t;
2. A term t is solvable if and only if there is a head context C such that C[t]→∗

u, where u is either a pair 〈u1, u2〉 or the identity I.

We will prove that solvability can be syntactically characterized by the notion
of hnf, defined by the following grammar:

J ::= λx.J | 〈t, t〉 | P P ::= x | Pt | π1P | π2P

The head variable of a term in P is defined by: x is the head variable of x and
x is the head variable of ut (resp. πiu, i = 1, 2) if x is the head variable of u. A
term has hnf if it reduces to a hnf.

We will prove now that if a term has hnf then it is solvable. The converse will
be proved through a suitable type assignment system, which will be introduced
in the next subsection.

Lemma 3. It t has hnf then it is solvable.

Proof. Let us define, for every sequence of projections π and every term t, the
term Pπ(t) such that πPπ(t) →∗ t. If π is the empty sequence, Pπ(t) = t, if
π = π′π1 (resp. π′π2), then Pπ(t) = 〈Pπ′(t), I〉 (resp. 〈I, Pπ′(t)〉). Moreover, let
Π and J be two lists of same lenght, the first containing sequences of projections
and the second one natural numbers. The term ∇(Π, J) is defined inductively
as follows:
if Π and J are empty, then ∇(Π, J) = I else if Π = π :: Π ′ and J = j :: J ′ then
∇(Π, J) = Pπ(λyj .∇(Π ′, J ′)).
Now we prove that, if t has a P-hnf and x is its head variable, then for all Π, J
there exists a term Ot

∇(Π,J) such that t{Ot
∇(Π,J)/x} →∗ ∇(Π, J). If t = xtn,

then Ot
∇(Π,J) = λyn.∇(Π, J).

If t = πutn, then O
t
∇(Π,J) = Ou

∇(π::Π,n::J). In fact, πutn{Ou
∇(π::Π,n::J)/x}

→∗ π(u{Ou
∇(π::Π,n::J)/x})t′n →∗

(i.h.) π∇(π :: Π,n :: J)t′n which reduces to

πPπ(λyn.∇(Π, J))t′n →∗ ∇(Π, J), where t′n = tn{Ou
∇(Pπ ::Π,n::J)/x}. Now, to

show the statement of the lemma we proceed by cases.
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If t ∈ P , then let x be the head of t and let C = (λx.�)Ot
∇(ε,ε). By the

previous point we have C[t] = (λx.t)Ot
∇(ε,ε) → t{Ot

∇(ε,ε)/x} →∗ ∇(ε, ε) = I.

If t = λyn.〈u, v〉, then let C = �In. Then C[t] →∗ 〈u, v〉. If t = λyn.u, where
u ∈ P , then let x be the head of u. If x /∈ yn, we let C = (λx.�)Ou

∇(ε,ε)In.

Then C[t] →∗ (λyn.u{Ou
∇(ε,ε)/x})In →∗ (λyn.I)In →∗ I. If x = yi, we

let C = (�)Ii−1O
u
∇(ε,ε)In−i. Then C[t] →∗ u{Ou

∇(ε,ε)/x}{In−1/yn−1} →∗

I{In−1/yn−1} = I.

4.1 The Type Assignment System P
We now present the system P , an extension of system M which assigns types
to Λπ-terms in such a way that typability coincides with solvability.

Definition 6

1. The set T P of types is extended using the following grammar:

σ, τ, ρ ::= ω× | α | A→ τ | ×1(τ) | ×2(τ) (types)
A ::= [σi]i∈I (multiset types)

where ω× is a type constant.
2. A typing judgement is a triple of the form Γ $ t : A, where Γ is a typing

environment defined as in Def. 1. The type system P is obtained by adding
to the systemM the rules given in Fig. 5.

3. The definition of left-subtree of a derivation Σ is as Def. 1.4, with the the
following additional cases:
– a derivation Π � Δ $ t : σ is a left subtree of a derivation Σ if Π is

the premise of Σ′ � Δ $ 〈t, u〉 : ×1(σ) and Σ′ is a left subtree of Σ (and
similarly for the case ×2(σ)).

– a derivation Π � Δ $ t : ×i(σ) is a left subtree of a derivation Σ if Π
is the premise of Σ′ � Δ $ πi(t) : σ and Σ′ is a left subtree of Σ, for
i = 1, 2.

The constant ω× is a universal type for pairs, making all pairs typable. The
system is relevant, and it enjoys both subject reduction (in a weighted version)
and subject expansion. The notions of occurrences and typed occurrences are
extended as expected from those of Def. 2.

� 〈t, u〉 : ω×
(emptypair)

Γ � t : σ

Γ � 〈t, u〉 : ×1(σ)
(pair1)

Γ � u : τ

Γ � 〈t, u〉 : ×2(τ )
(pair2)

Γ � t : ×1(σ)

Γ � π1t : σ
(proj1)

Γ � t : ×2(σ)

Γ � π2t : σ
(proj2)

Fig. 5. Typing rules for pairs in P
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Lemma 4

1. (Subject reduction) Π � Γ $ t : σ and t → u imply Π ′ � Γ $ u : σ
where meas(Π ′) ≤ meas(Π). In particular, if the reduced redex is typed,
then meas(Π ′) < meas(Π).

2. (Subject expansion) Γ $ u : σ and t→ u imply Γ → t : σ.

Lemma 5. Let Π � Γ $ t : σ. Then t has hnf.

Proof. By induction on meas(Π) using Lem. 4.1.

The solvability characterization is proved in the next theorem.

Theorem 3. The following statements are equivalent: (1) t is solvable; (2) t

has hnf; (3) t is typable in system P.

Proof. 2⇒ 1 holds by Lem. 3 and 3⇒ 2 holds by Lem. 5. We now show 1⇒ 3: t
solvable implies, by definition, the existence of a context C such that C = (λx.�)v
and either C[t]→∗ I or C[t]→∗ 〈u1, u2〉, for some u1, u2. Both I and 〈u1, u2〉 can
be typed, so C[t] is typed, by Lem. 4.2. Note that C[t] = (λx.t)v, so for typing
C[t] we need to type t.

5 Inhabitation for System P
We extend approximate normal forms (cf. Sec. 3) as follows:

a, b, c ::= Ω | N N ::= λx.N | 〈a, a〉 | L L ::= x | La | πiL

The order relation ≤ and the sets A(t) are defined as in the case of the pure
λ-calculus. The type assignment system P for the Λπ-calculus is extended to
approximate normal forms, assuming as before that no type can be assigned to
the constant Ω. Given Π �Γ $ t : τ , where t is in hnf, we extend the definition
of minimal approximant of t.

Definition 7. Given Π�Γ $ t : σ, where t is in Π-normal form, A(Π) ∈ A(t)
is defined by extending Def. 3 with the the following additional cases:

– If Π� $ 〈t, u〉 : ω×, then A(Π) = 〈Ω,Ω〉.
– If Π � Γ $ 〈t1, t2〉 : ×i(τ) follows from Πi � Γ $ ti : τ , then i = 1 implies
A(Π) = 〈A(Π1), Ω〉 and i = 2 implies A(Π) = 〈Ω,A(Π2)〉.

– If Π � Γ $ πit : τ follows from Π ′ � Γ $ t : ×i(τ), then A(Π) = πiA(Π ′).

5.1 The Inhabitation Algorithm

The algorithm in Fig. 4 is extended with the additional rules in Fig 6.

Example 2. Let Γ = ∅ and τ = ×1([α] → α) and σ = [τ ] → τ . Then given the
input (Γ, σ), the algorithm can have the following two behaviours:

Choosing the sequence of rules: (Abs), (Prod1), (Abs), (Head), (Proj),
(Prefix), (Final) the final approximant is λy.〈λx.π1yx, Ω〉;

Choosing the sequence of rules: (Abs), (Head), (Final) the final approximant
is λy.y;
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a ∈ H
Δ
πi(b)

(Γ, σ) � τ

a ∈ H
Δ
b (Γ,×i(σ)) � τ

(Proj)
〈Ω,Ω〉 ∈ T(∅, ω×)

(Pair)

a ∈ T(Γ, τ )

〈a, Ω〉 ∈ T(Γ,×1(τ ))
(Prod1)

a ∈ T(Γ, τ )

〈Ω,a〉 ∈ T(Γ,×2(τ ))
(Prod2)

Fig. 6. The inhabitation algorithm for the λ-calculus with products

To show that the inhabitation algorithm terminates, we extend the measure
given in Sec. 2 by adding #(ω×) = 1 and #(×i(τ)) = #(τ) + 1. Termination
and soundness hold, and the extension is straightforward.

Lemma 6 (Termination). The inhabitation algorithm terminates.

Proof. As for Lem. 1, using the extended measure above.

Lemma 7. a ∈ T(Γ, σ) ⇔ ∃Π � Γ $ a : σ such that a = A(Π).

Proof. We follow the proof of Lem. 2, with the suitable additional cases:
(⇒): Let a ∈ HΔb (Γ,×i(σ)) � τ follow from a ∈ HΔπi(b)

(Γ, σ) � τ by (Proj).

Suppose Δ $ b : ×i(σ) (i = 1, 2). Then Δ $ πi(b) : σ. By the i.h. (c) we get
Π � Γ +Δ $ a : τ , where a = A(Π) and we are done.

If 〈Ω,Ω〉 ∈ T(∅, ω×) follows by (Pair); then Π� $ 〈Ω,Ω〉 : ω×, and 〈Ω,Ω〉 =
A(Π).

If 〈a, Ω〉 ∈ T(Γ,×1(τ)) follows from a ∈ T(Γ, τ) by (Prod1), then by the i.h.
(a) Γ $ a : τ . Then by (pair1), ∃Π � Γ $ 〈a, Ω〉 : ×1(τ), and we are done, since
〈a, Ω〉 = A(Π). Analougsly for (Prod2).

(⇐): 1. Let a = πia
′ (i = 1, 2). By construction Π ends by an application of

the rule (proji) with premiseΠ ′�Γ $ a′ : ×i(σ), where by definition a′ = A(Π ′).
Moreover,Σ�Δ $ b : τ is also a left-subtree ofΠ ′ and A(Π) = πia

′ by definition,

thus HΔ+Γ ′
πia′ (Θ, σ) � π ⊆(Proj) H

Δ+Γ ′
a′ (Θ,×i(σ)) � π ⊆i.h.(1) H

Δ
b (Θ + Γ ′, τ) � π.

2. If a is a pair then there are three cases to consider. If Π � $ a : ω×, then
a = 〈Ω,Ω〉 ∈(Pair) T(∅, ω×). If Π � Γ $ a : ×1(τ) follows from Π ′ � Γ $ a′ : τ
by (proj1), then a = 〈a′, Ω〉. We have a′ ∈i.h.(2) T(Γ, τ), so that a ∈(Prod1)
T(Γ,×1(τ)). The case Π � Γ $ a : ×2(τ) is similar.

Theorem 4 (Soundness and Completeness)

1. If a ∈ T(Γ, σ) then, for all t such that a ≤ t, Γ $ t : σ.

2. If Π �Γ $ t : σ then there exists Π ′ �Γ $ t′ : σ such that t′ is in Π ′-normal
form, and A(Π ′) ∈ T(Γ, σ).

Proof. As in the proof of Thm. 2, but using Lem. 7 (⇒) for soundness, Thm. 4.1
and Lem. 7 (⇐) for completeness.
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6 Conclusion

We proved that the inhabitation problem is decidable for the types systemsM
and P , based on non-idempotent intersection types, and characterizing solvabil-
ity for the λ-calculus and for its extension with pairs and projections, that we
call Λπ, respectively. To the best of our knowledge, solvability in Λπ had not been
studied before. Our result is a first step towards the study of further extensions
of Λπ, including patterns [11].

In fact, the logical characterization of solvability is related to the inhabitation
problem of the underlying type system. While this relation is implicit for the
λ-calculus, it can become crucial for extensions lacking a syntactical characteri-
zation of solvability.

Concerning denotational models, it is well known that system M induces a
relational model of Λ. We aim to complete the picture studying the semantics
of Λπ through the system P .
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Goré, Rajeev 250
Gourvès, Laurent 66
Gurevich, Yuri 236

Hansen, Helle Hvid 281

Jacob, Riko 78

Katoen, Joost-Pieter 207
Kesner, Delia 296, 341
König, Barbara 179, 311
Kupke, Clemens 281
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