
Bisimulations Up-to:

Beyond First-Order Transition Systems

Jean-Marie Madiot1, Damien Pous1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France
2 Università di Bologna, INRIA, Italy

Abstract. The bisimulation proof method can be enhanced by employ-
ing ‘bisimulations up-to’ techniques. A comprehensive theory of such
enhancements has been developed for first-order (i.e., CCS-like) labelled
transition systems (LTSs) and bisimilarity, based on the notion of com-
patible function for fixed-point theory.

We transport this theory onto languages whose bisimilarity and LTS
go beyond those of first-order models. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilar-
ities onto the first-order ones. This allows us to reuse directly the large
corpus of up-to techniques that are available on first-order LTSs. The
only ingredient that has to be manually supplied is the compatibility of
basic up-to techniques that are specific to the new languages. We investi-
gate the method on the π-calculus, the λ-calculus, and a (call-by-value)
λ-calculus with references.

1 Introduction

One of the keys for the success of bisimulation is its associated proof method,
whereby to prove two terms equivalent, one exhibits a relation containing the pair
and one proves it to be a bisimulation. The bisimulation proof method can be
enhanced by employing relations called ‘bisimulations up-to’ [14,19,20]. These
need not be bisimulations; they are simply contained in a bisimulation. Such
techniques have been widely used in languages for mobility such as π-calculus
or higher-order languages such as the λ-calculus, or Ambients (e.g., [23,16,11]).

Several forms of bisimulation enhancements have been introduced: ‘bisim-
ulation up-to bisimilarity’ [17] where the derivatives obtained when playing
bisimulation games can be rewritten using bisimilarity itself; ‘bisimulation up-
to transitivity’ where the derivatives may be rewritten using the up-to relation;
‘bisimulation up-to-context’ [21], where a common context may be removed from
matching derivatives. Further enhancements may exploit the peculiarities of the
definition of bisimilarity on certain classes of languages: e.g., the up-to-injective-
substitution techniques of the π-calculus [7,23], techniques for shrinking or en-
larging the environment in languages with information hiding mechanisms (e.g.,
existential types, encryption and decryption constructs [1,25,24]), frame equiv-
alence in the psi-calculi [18], or higher-order languages [12,10]. Lastly, it is im-
portant to notice that one often wishes to use combinations of up-to techniques.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 93–108, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

94 J.-M. Madiot, D. Pous, and D. Sangiorgi

For instance, up-to context alone does not appear to be very useful; its strength
comes out in association with other techniques, such as up-to bisimilarity or
up-to transitivity.

The main problem with up-to techniques is proving their soundness (i.e. en-
suring that any ‘bisimulation up-to’ is contained in bisimilarity). In particular,
the proofs of complex combinations of techniques can be difficult or, at best,
long and tedious. And if one modifies the language or the up-to technique, the
entire proof has to be redone from scratch. Indeed the soundness of some up-to
techniques is quite fragile, and may break when such variations are made. For
instance, in certain models up-to bisimilarity may fail for weak bisimilarity, and
in certain languages up-to bisimilarity and context may fail even if bisimilarity is
a congruence relation and is strong (treating internal moves as any other move).

This problem has been the motivation for the development of a theory of en-
hancements, summarised in [19]. Expressed in the general fixed-point theory on
complete lattices, this theory has been fully developed for both strong and weak
bisimilarity, in the case of first-order labelled transition systems (LTSs) where
transitions represent pure synchronisations among processes. In this framework,
up-to techniques are represented using compatible functions, whose class enjoys
nice algebraic properties. This allows one to derive complex up-to techniques
algebraically, by composing simpler techniques by means of a few operators.

Only a small part of the theory has been transported onto other forms of tran-
sition systems, on a case by case basis. Transferring the whole theory would be a
substantial and non-trivial effort. Moreover it might have limited applicability,
as this work would probably have to be based on specific shapes for transitions
and bisimilarity (a wide range of variations exist, e.g., in higher-order languages).

Here we explore a different approach to the transport of the theory of bisimu-
lation enhancements onto richer languages. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilarities onto
first-order LTSs and bisimilarity. This allows us to import directly the existing
theory for first-order bisimulation enhancements onto the new languages. Most
importantly, the schema allows us to combine up-to techniques for the richer
languages. The only additional ingredient that has to be provided manually is
the soundness of some up-to techniques that are specific to the new languages.
This typically includes the up-to context techniques, since those contexts are not
first-order.

Our hope is that the method proposed here will make it possible to obtain a
single formalised library about up-to techniques, that can be reused for a wide
range of calculi: currently, all existing formalisations of such techniques in a proof
assistant are specific to a given calculus: π-calculus [5,4], the psi-calculi [18], or
a miniML language [6].

We consider three languages: the π-calculus, the call-by-name λ-calculus, and
an imperative call-by-value λ-calculus. Other calculi like the Higher-Order π-
calculus can be handled in a similar way; we omit the details here for lack of
space. We moreover focus on weak bisimilarity, since its theory is more delicate
than that of strong bisimilarity. When we translate a transition system into a

Bisimulations Up-to: Beyond First-Order Transition Systems 95

first-order one, the grammar for the labels can be complex (e.g. include terms,
labels, or contexts). What makes the system ‘first-order’ is that labels are taken
as syntactic atomic objects, that may only be checked for syntactic equality. Note
that full abstraction of the translation does not imply that the up-to techniques
come for free: further conditions must be ensured. We shall see this with the
π-calculus, where early bisimilarity can be handled but not the late one.

Forms of up-to context have already been derived for the languages we con-
sider in this paper [11,23,22]. The corresponding soundness proofs are difficult
(especially in λ-calculi), and require a mix of induction (on contexts) and coin-
duction (to define bisimulations). Recasting up-to context within the theory
of bisimulation enhancements has several advantages. First, this allows us to
combine this technique with other techniques, directly. Second, substitutivity
(or congruence) of bisimilarity becomes a corollary of the compatibility of the
up-to-context function (in higher-order languages these two kinds of proofs are
usually hard and very similar). And third, this allows us to decompose the up-to
context function into smaller pieces, essentially one for each operator of the lan-
guage, yielding more modular proofs, also allowing, if needed, to rule out those
contexts that do not preserve bisimilarity (e.g., input prefix in the π-calculus).

The translation of the π-calculus LTS into a first-order LTS follows the schema
of abstract machines for the π-calculus (e.g., [26]) in which the issue of the choice
of fresh names is resolved by ordering the names. Various forms of bisimulation
enhancements have appeared in papers on the π-calculus or dialects of it. A
translation of higher-order π-calculi into first-order processes has been proposed
by Koutavas et al [8]. While the shape of our translations of λ-calculi is similar,
our LTSs differ since they are designed to recover the theory of bisimulation
enhancements. In particular, using the LTSs from [8] would lead to technical
problems similar to those discussed in Remark 2. In the λ-calculus, limited forms
of up-to techniques have been developed for applicative bisimilarity, where the
soundness of the up-to context has still open problems [12,11]. More powerful
versions of up-to context exist for forms of bisimilarity on open terms (e.g.,
open bisimilarity or head-normal-form bisimilarity) [13]. Currently, the form of
bisimilarity for closed higher-order terms that allows the richest range of up-to
techniques is environmental bisimilarity [22,9]. However, even in this setting,
the proofs of combinations of up-to techniques are usually long and non-trivial.
Our translation of higher-order terms to first-order terms is designed to recover
environmental bisimilarity.

In Section 6, we show an example of how the wide spectrum of up-to tech-
niques made available via our translations allows us to simplify relations needed
in bisimilarity proofs, facilitating their description and reducing their size.

2 First-Order Bisimulation and Up-to Techniques

A first-order Labelled Transition System, briefly LTS, is a triple (Pr,Act,−→)
where Pr is a non-empty set of states (or processes), Act is the set of actions (or
labels), and −→ ⊆ Pr × Act × Pr is the transition relation. We use P,Q,R to

96 J.-M. Madiot, D. Pous, and D. Sangiorgi

range over the processes of the LTS, and μ to range over the labels in Act, and,

as usual, write P
μ−→ Q when (P, μ,Q) ∈ −→. We assume that Act includes a

special action τ that represents an internal activity of the processes. We derive
bisimulation from the notion of progression between relations.

Definition 1. Suppose R,S are relations on the processes of an LTS. Then R
strongly progresses to S, written R �sp S, if R ⊆ S and if P R Q implies:

– whenever P
μ−→ P ′ there is Q′ s.t. Q

μ−→ Q′ and P ′ S Q′;
– whenever Q

μ−→ Q′ there is P ′ s.t. P
μ−→ P ′ and P ′ S Q′.

A relation R is a strong bisimulation if R �sp R; and strong bisimilarity, ∼,
is the union of all strong bisimulations.

To define weak progression we need weak transitions, defined as usual: first,

P
μ̂−→ P ′ means P

μ−→ P ′ or μ = τ and P = P ′; and
μ̂

=⇒ is =⇒ μ̂−→=⇒ where
=⇒ is the reflexive transitive closure of

τ−→. Weak progression, R �wp S, and
weak bisimilarity, ≈, are obtained from Definition 1 by allowing the processes to

answer using
μ̂

=⇒ rather than
μ−→.

Below we summarise the ingredients of the theory of bisimulation enhance-
ments for first-order LTSs from [19] that will be needed in the sequel. We use
f and g to range over functions on relations over a fixed set of states. Each
such function represents a potential up-to technique; only the sound functions,
however, qualify as up-to techniques:

Definition 2. A function f is sound for ∼ if R �sp f(R) implies R ⊆ ∼, for
all R; similarly, f is sound for ≈ if R �wp f(R) implies R ⊆ ≈, for all R.

Unfortunately, the class of sound functions does not enjoy good algebraic
properties. As a remedy to this, the subset of compatible functions has been
proposed. The concepts in the remainder of the section can be instantiated with
both strong and weak bisimilarities; we thus use p to range over sp or wp.

Definition 3. We write f �p g when R �p S implies f(R) �p g(S) for all
R and S. A monotone function f on relations is p-compatible if f �p f .

In other terms [19], f is p-compatible iff f ◦ p ⊆ p ◦ f where p(S) is the
union of all R such that R �p S and ◦ denotes function composition. Note that
R �p S is equivalent to R ⊆ p(S).
Lemma 1. If f is sp-compatible, then f is sound for ∼; if f is wp-compatible,
then f is sound for ≈.

Simple examples of compatible functions are the identity function and the func-
tion mapping any relation onto bisimilarity (for the strong or weak case, respec-
tively). The class of compatible functions is closed under function composition
and union (where the union ∪F of a set of functions F is the point-wise union
mapping R to

⋃
f∈F f(R)), and thus under omega-iteration (where the omega-

iteration fω of a function f maps R to
⋃

n∈N
fn(R)).

Bisimulations Up-to: Beyond First-Order Transition Systems 97

Other examples of compatible functions are typically contextual closure func-
tions, mapping a relation into its closure w.r.t. a given set of contexts. For such
functions, the following lemma shows that the compatibility of up-to-context
implies substitutivity of (strong or weak) bisimilarity.

Lemma 2. If f is sp-compatible, then f(∼) ⊆ ∼; similarly if f iswp-compatible,
then f(≈) ⊆ ≈.

Certain closure properties for compatible functions however only hold in the
strong case. The main example is the chaining operator �, which implements
relational composition:

f�g (R) � f(R) g(R)

where f(R) g(R) indicates the composition of the two relations f(R) and g(R).
Using chaining we can obtain the compatibility of the function ‘up to transitivity’
mapping any relation R onto its reflexive and transitive closure R�. Another
example of sp-compatible function is ‘up to bisimilarity’ (R
→ ∼R∼).

In contrast, in the weak case bisimulation up to bisimilarity is unsound. This
is a major drawback in up-to techniques for weak bisimilarity, which can be
partially overcome by resorting to the expansion relation � [3]. Expansion is an
asymmetric refinement of weak bisimilarity whereby P � Q holds if P and Q are
bisimilar and, in addition, Q is at least as efficient as P , in the sense that Q is
capable of producing the same activity as P without ever performing more inter-
nal activities (the τ -actions); see [15] for its definition. Up-to-expansion yields a
function (R
→ �R�) that is wp-compatible. As a consequence, the same holds
for the ‘up-to expansion and contexts’ function. More sophisticated up-to tech-
niques can be obtained by carefully adjusting the interplay between visible and
internal transitions, and by taking into account termination hypotheses [19].

Some further compatible functions are the functions sp and wp themselves
(indeed a function f is p-compatible if f ◦ p ⊆ p ◦ f , hence trivially f can be
replaced by p itself). Intuitively, the use of sp and wp as up-to techniques means
that, in a diagram-chasing argument, the two derivatives need not be related;
it is sufficient that the derivatives of such derivatives be related. Accordingly,
we sometimes call functions sp and wp unfolding functions. We will use sp in
the example in Section 6 and wp in Sections 4 and 5, when proving the wp-
compatibility of the up to context techniques.

Last, note that to use a function f in combinations of up-to techniques, it
is actually not necessary that f be p-compatible: for example proving that f
progresses to f ∪ g and g progresses to g is enough, as then f ∪ g would be
compatible. Extending this reasoning allows us to make use of ‘second-order up-
to techniques’ to reason about compatibility of functions. When F is a set of
functions, we say that F is p-compatible up to if for all f in F , it holds that
f �p (g ∪ (∪F))ω for a function g that has already been proven compatible.
(We sometimes say that F is p-compatible up to g, to specify which compatible
function is employed.) Lemma 1 and 2 remain valid when ‘f is compatible’ is
replaced by ‘f ∈ F and F is compatible up to’.

98 J.-M. Madiot, D. Pous, and D. Sangiorgi

Terminology We will simply say that a function is compatible to mean that it
is both sp-compatible and wp-compatible; similarly for compatibility up to. In
languages defined from a grammar, a context C is a term with numbered holes
[·]1, . . . , [·]n, and each hole [·]i can appear any number of times in C.

3 The π-calculus

The syntax and operational semantics of the π-calculus are recalled in [15]. We
consider the early transition system, in which transitions are of the forms

P
ab
−→π P ′ P

ab
−→π P ′ P
a(b)
−→π P ′ .

In the third transition, called bound output transition, name b is a binder for
the free occurrences of b in P ′ and, as such, it is subject to α-conversion. The
definition of bisimilarity takes α-conversion into account. The clause for bound
output of strong early bisimilarity says (fn(Q) indicates the names free in Q):

– if P
a(b)
−→π P ′ and b /∈ fn(Q) then Q

a(b)
−→π Q′ for some Q′ such that P ′ ∼ Q′.

(The complete definition of bisimilarity is recalled in [15]). When translating
the π-calculus semantics to a first-order one, α-conversion and the condition
b /∈ fn(Q) have to be removed. To this end, one has to force an agreement
between two bisimilar process on the choice of the bound names appearing in
transitions. We obtain this by considering named processes (c, P) in which c
is bigger or equal to all names in P . For this to make sense we assume an
enumeration of the names and use ≤ as the underlying order, and c+1 for name
following c in the enumeration; for a set of names N , we also write c ≥ N to
mean c ≥ a for all a ∈ N .

The rules below define the translation of the π-calculus transition system to
a first-order LTS. In the first-order LTS, the grammar for labels is the same as
that of the original LTS; however, for a named process (c, P) the only name that
may be exported in a bound output is c+1; similarly only names that are below
or equal to c+1 may be imported in an input transition. (Indeed, testing for all
fresh names b > c is unnecessary, doing it only for one (b = c + 1) is enough.)
This makes it possible to use the ordinary definition of bisimilarity for first-order
LTS, and thus recover the early bisimilarity on the source terms.

P
τ
−→π P ′

(c, P)
τ−→ (c, P ′)

P
ab
−→π P ′

(c, P)
ab−→ (c, P ′)

b ≤ c
P

ab
−→π P ′

(c, P)
ab−→ (c, P ′)

b ≤ c

P
ab
−→π P ′

(c, P)
ab−→ (b, P ′)

b = c+ 1
P

a(b)
−→π P ′

(c, P)
a(b)−→ (b, P ′)

b = c+ 1

We write π1 for the first-order LTS derived from the above translation of
the π-calculus. Although the labels of the source and target transitions have a

Bisimulations Up-to: Beyond First-Order Transition Systems 99

similar shape, the LTS in π1 is first-order because labels are taken as purely
syntactic objects (without α-conversion). We write ∼e and ≈e for strong and
weak early bisimilarity of the π-calculus.

Theorem 1. Assume c ≥ fn(P) ∪ fn(Q). Then we have: P ∼e Q iff (c, P) ∼
(c,Q), and P ≈e Q iff (c, P) ≈ (c,Q).

The above full abstraction result allows us to import the theory of up-to tech-
niques for first-order LTSs and bisimilarity, both in the strong and the weak case.
We have however to prove the soundness of up-to techniques that are specific to
the π-calculus. Function isub implements ‘up to injective name substitutions’:

isub(R) � {((d, Pσ), (d,Qσ)) s.t. (c, P) R (c,Q), fn(Pσ) ∪ fn(Qσ) ≤ d,
and σ is injective on fn(P) ∪ fn(Q) } .

A subtle drawback is the need of another function manipulating names, str,
allowing us to replace the index c in a named process (c, P) with a lower one:

str(R) � {((d, P), (d,Q)) s.t. (c, P) R (c,Q) and fn(P,Q) ≤ d } .

Lemma 3. The set {isub, str} is compatible up to.

The up-to-context function is decomposed into a set of smaller context func-
tions, called initial [19], one for each operator of the π-calculus. The only excep-
tion to this is the input prefix, since early bisimilarity in the π-calculus is not
preserved by this operator. We write Co, Cν , C!, C|, and C+ for these initial context
functions, respectively returning the closure of a relation under the operators of
output prefix, restriction, replication, parallel composition, and sum.

Definition 4. If R is a relation on π1, we define Co(R), Cν(R), C!(R), C|(R)
and C+(R) by saying that whenever (c, P) R (c,Q),

– (c, ab.P) Co(R) (c, ab.Q), for any a, b with a, b ≤ c,
– (c, νa.P) Cν(R) (c, νa.Q),
– (c, !P) C!(R) (c, !Q);

and, whenever (c, P1) R (c,Q1) and (c, P2) R (c,Q2),

– (c, P1 | Q1) C|(R) (c, P2 | Q2),
– (c, P1 +Q1) C+(R) (c, P2 +Q2).

While bisimilarity in the π-calculus is not preserved by input prefix, a weaker
rule holds (where = can be ∼e or ≈e):

P = Q and P{c/b} = Q{c/b} for each c free in P,Q

a(b).P = a(b).Q
(1)

We define Ci, the function for input prefix, accordingly: we have (d, a(b).P) Ci(R)
(d, a(b).Q) if a ≤ d and (d+ 1, P{c/b}) R (d+ 1, Q{c/b}) for all c ≤ d+ 1.

Theorem 2. The set {Co, Ci, Cν , C!, C|, C+} is sp-compatible up to isub ∪ str.

100 J.-M. Madiot, D. Pous, and D. Sangiorgi

Weak bisimilarity is not preserved by sums, only by guarded sums, whose
function is Cg+ � Cω

+ ◦ (Co ∪ Ci).
Theorem 3. The set {Co, Ci, Cν , C!, C|, Cg+} is wp-compatible up to isub∪str∪b
where b = (R
→ ∼R∼) is ‘up to bisimilarity’.

The compatibility of these functions is not a logical consequence of the up to
context results in the π-calculus; instead we prove them from scratch [15], with
the benefit of having a separate proof for each initial context.

As a byproduct of the compatibility of these initial context functions, and
using Lemma 2, we derive the standard substitutivity properties of strong and
weak early bisimilarity, including the rule (1) for input prefix.

Corollary 1. In the π-calculus, relations ∼e and ≈e are preserved by the op-
erators of output prefix, replication, parallel composition, restriction; ∼e is also
preserved by sum, whereas ≈e is only preserved by guarded sums. Moreover, rule
(1) is valid both for ∼e and ≈e.

Remark 1. Late bisimilarity makes use of transitions P
a(b)
−→π P ′ where b is

bound, the definition of bisimulation containing a quantification over names.
To capture this bisimilarity in a first-order LTS we would need to have two
transitions for the input a(b): one to fire the input a, leaving b uninstantiated, and
another to instantiate b. While such a translation does yield full abstraction for
both strong and weak late bisimilarities, the decomposition of an input transition
into two steps prevents us from obtaining the compatibility of up to context.

4 Call-by-name λ-calculus

To study the applicability of our approach to higher-order languages, we inves-
tigate the pure call-by-name λ-calculus, referred to as ΛN in the sequel.

We use M,N to range over the set Λ of λ-terms, and x, y, z to range over
variables. The standard syntax of λ-terms, and the rules for call-by-name re-
duction, are recalled in [15]. We assume the familiar concepts of free and bound
variables and substitutions, and identify α-convertible terms. The only values
are the λ-abstractions λx.M . In this section and in the following one, results
and definitions are presented on closed terms; extension to open terms is made
using closing abstractions (i.e., abstracting on all free variables). The reduction
relation of ΛN is
−→n, and �=⇒n its reflexive and transitive closure.

As bisimilarity for the λ-calculus we consider environmental bisimilarity [22,9],
which allows a set of up-to techniques richer than Abramsky’s applicative bisim-
ilarity [2], even if the two notions actually coincide, together with contextual
equivalence. Environmental bisimilarity makes a clear distinction between the
tested terms and the environment. An element of an environmental bisimulation
has, in addition to the tested terms M and N , a further component E , the envi-
ronment, which expresses the observer’s current knowledge. When an input from
the observer is required, the arguments supplied are terms that the observer can

Bisimulations Up-to: Beyond First-Order Transition Systems 101

build using the current knowledge; that is, terms obtained by composing the
values in E using the operators of the calculus. An environmental relation is a
set of elements each of which is of the form (E ,M,N) or E , and where M,N
are closed terms and E is a relation on closed values. We use X ,Y to range over
environmental relations. In a triple (E ,M,N) the relation component E is the en-
vironment, and M,N are the tested terms. We write M XE N for (E ,M,N) ∈ X .
We write E� for the closure of E under contexts. We only define the weak version
of the bisimilarity; its strong version is obtained in the expected way.

Definition 5. An environmental relation X is an environmental bisimulation if

1. M XE N implies:
(a) if M
−→n M

′ then N �=⇒n N
′ and M ′ XE N ′;

(b) if M = V then N �=⇒n W and E ∪{(V,W)} ∈ X (V and W are values);
(c) the converse of the above two conditions, on N ;

2. if E ∈ X then for all (λx.P, λx.Q) ∈ E and for all (M,N) ∈ E� it holds that
P{M/x} XE Q{N/x}.

Environmental bisimilarity, ≈env, is the largest environmental bisimulation.

For the translation of environmental bisimilarity to first-order, a few issues
have to be resolved. For instance, an environmental bisimilarity contains both
triples (E ,M,N), and pure environments E , which shows up in the difference
between clauses (1) and (2) of Definition 5. Moreover, the input supplied to
tested terms may be constructed using arbitrary contexts.

We write ΛN1 for the first-order LTS resulting from the translation of ΛN .
The states of ΛN1 are sequences of λ-terms in which only the last one need not
be a value. We use Γ and Δ to range over sequences of values only; thus (Γ,M)
indicates a sequence of λ-values followed by M ; and Γi is the i-th element in Γ .

For an environment E , we write E1 for an ordered projection of the pairs in
E on the first component, and E2 is the corresponding projection on the second
component. In the translation, intuitively, a triple (E ,M,N) of an environmental
bisimulation is split into the two components (E1,M) and (E2, N). Similarly, an
environment E is split into E1 and E2. We write C[Γ] for the term obtained by
replacing each hole [·]i in C with the value Γi. The rules for transitions in ΛN1

are as follows:

M
−→n M
′

(Γ,M)
τ−→ (Γ,M ′)

Γi(C[Γ])
−→n M
′

Γ
i,C−→ (Γ,M ′)

(2)

The first rule says that if M reduces to M ′ in ΛN then M can also reduce
in ΛN1, in any environment. The second rule implements the observations in
clause (2) of Definition 5: in an environment Γ (only containing values), any
component Γi can be tested by supplying, as input, a term obtained by filling
a context C with values from Γ itself. The label of the transition records the
position i and the context chosen. As the rules show, the labels of ΛN1 include
the special label τ , and can also be of the form i, C where i is a integer and C
a context.

102 J.-M. Madiot, D. Pous, and D. Sangiorgi

Theorem 4. M ≈env
E N iff (E1,M) ≈ (E2, N) and E ∈ ≈env iff E1 ≈ E2.

(The theorem also holds for the strong versions of the bisimilarities.) Again,
having established full abstraction with respect to a first-order transition system
and ordinary bisimilarity, we can inherit the theory of bisimulation enhance-
ments. We have however to check up-to techniques that are specific to environ-
mental bisimilarity. A useful such technique is ‘up to environment’, which allows
us to replace an environment with a larger one; w(R) is the smallest relation
that includes R and such that, whenever (V, Γ,M) w(R) (W,Δ,N) then also
(Γ,M) w(R) (Δ,N), where V andW are any values. (Here w stands for ‘weaken-
ing’ as, from Lemmas 2 and 4, if (V, Γ,M) ≈ (W,Δ,N) then (Γ,M) ≈ (Δ,N).)

Lemma 4. Function w is compatible.

Somehow dual to weakening is the strengthening of the environment, in which
a component of an environment can be removed. However this is only possible if
the component removed is ‘redundant’, that is, it can be obtained by gluing other
pieces of the environment within a context; strengthening is captured by the
following str function: (Γ,Cv [Γ],M) str(R) (Δ,Cv[Δ], N) whenever (Γ,M) R
(Δ,N) and Cv is a value context (i.e., the outermost operator is an abstraction).
We derive the compatibility up to of str in Theorem 5.

For up-to context, we need to distinguish between arbitrary contexts and eval-
uation contexts. There are indeed substitutivity properties, and corresponding
up-to techniques, that only hold for the latter contexts. A hole [·]i of a context
C is in a redex position if the context obtained by filling all the holes but [·]i
with values is an evaluation context. Below C ranges over arbitrary contexts,
whereas E ranges over contexts whose first hole is in redex position.

C(R) �
{
((Γ,C[Γ]), (Δ,C[Δ])) s.t.Γ R Δ

}

Ce(R) �
{
((Γ,E[M,Γ]), (Δ,E[N,Δ])) s.t. (Γ,M) R (Δ,N)

}

Theorem 5. The set {str, C, Ce} is sp-compatible up to the identity function,
and wp-compatible up to wp ∪ e where e � (R
→ �R�) is ‘up to expansion’.

For the proof, we establish the progression property separately for each func-
tion in {str, C, Ce}, using simple diagram-chasing arguments (together with in-
duction on the structure of a context). Once more, the compatibility of the up
to context functions entails also the substitutivity properties of environmental
bisimilarity. In [22] the two aspects (substitutivity and up-to context) had to be
proved separately, with similar proofs. Moreover the two cases of contexts (arbi-
trary contexts and evaluation contexts) had to be considered at the same time,
within the same proof. Here, in contrast, the machinery of compatible function
allows us to split the proof into two simpler proofs.

Remark 2. A transition system ensuring full abstraction as in Theorem 4 does
not guarantee the compatibility of the up-to techniques specific to the language

Bisimulations Up-to: Beyond First-Order Transition Systems 103

M ::= x | MM | ν�M | V V ::= λx.M | set� | get� E ::= [·] | EV | ME

(s; (λx.M)V) �−→R (s;M{V/x})
� /∈ dom(s)

(s; ν�M) �−→R (s[� �→ I];M)

� ∈ dom(s)

(s; get�V) �−→R (s; s[�])

� ∈ dom(s)

(s; set�V) �−→R (s[� �→ V]; I)

(s;M) �−→R (s′;M ′)

(s;E[M]) �−→R (s′;E[M ′])

Fig. 1. The imperative λ-calculus

in consideration. For instance, a simpler and maybe more natural alternative to
the second transition in (2) is the following one:

Γ
i,C−→ (Γ, Γi(C[Γ]))

(3)

With this rule, full abstraction holds, but up-to context is unsound: for any Γ
and Δ, the singleton relation {(Γ,Δ)} is a bisimulation up to C: indeed, using
rule (3), the derivatives of the pair Γ,Δ are of the shape Γi(C[Γ]), Δi(C[Δ]), and
they can be discarded immediately, up to the context [·]iC. If up-to context were
sound then we would deduce that any two terms are bisimilar. (The rule in (2)
prevents such a behaviour since it ensures that the tested values are ‘consumed’
immediately.)

5 Imperative call-by-value λ-calculus

In this section we study the addition of imperative features (higher-order ref-
erences, that we call locations), to a call-by-value λ-calculus. It is known that
finding powerful reasoning techniques for imperative higher-order languages is
a hard problem. The language, ΛR, is a simplified variant of that in [10,22].
The syntax of terms, values, and evaluation contexts, as well as the reduction
semantics are given in Figure 1. A λ-term M is run in a store: a partial function
from locations to closed values, whose domain includes all free locations of both
M and its own co-domain. We use letters s, t to range over stores. New store
locations may be created using the operator ν�M ; the content of a store loca-
tion � may be rewritten using set�V , or read using get�V (the former instruction
returns a value, namely the identity I � λx.x, and the argument of the latter
one is ignored). We denote the reflexive and transitive closure of
−→R by �=⇒R.

Note that in contrast with the languages in [10,22], locations are not directly
first-class values; the expressive power is however the same: a first-class location
� can always be encoded as the pair (get�, set�).

104 J.-M. Madiot, D. Pous, and D. Sangiorgi

We present the first-order LTS for ΛR, and then we relate the resulting
strong and weak bisimilarities directly with contextual equivalence (the reference
equivalence in λ-calculi). Alternatively, we could have related the first-order
bisimilarities to the environmental bisimilarities of ΛR, and then inferred the
correspondence with contextual equivalence from known results about environ-
mental bisimilarity, as we did for ΛN .

We write (s;M) ↓ when M is a value; and (s;M) ⇓ if (s;M) �=⇒R↓. For
the definition of contextual equivalence, we distinguish the cases of values and
of arbitrary terms, because they have different substitutivity properties: values
can be tested in arbitrary contexts, while arbitrary terms must be tested only
in evaluation contexts. As in [22], we consider contexts that do not contain free
locations (they can contain bound locations). We refer to [22] for more details
on these aspects.

Definition 6. – For values V , W , we write (s;V) ≡ (t;W) when (s;C[V])⇓
iff (t;C[W])⇓, for all location-free context C.

– For terms M and N , we write (s;M) ≡ (t;N) when (s;E[M])⇓ iff (t;E[N])⇓,
for all location-free evaluation context E.

We now define ΛR1, the first-order LTS for ΛR. The states and the transitions
for ΛR1 are similar to those for the pure λ-calculus of Section 4, with the addition
of a component for the store. The two transitions (2) of call-by-name λ-calculus
become:

(s;M) �−→R (s′;M ′)

(s;Γ,M)
τ−→ (s′;Γ,M ′)

Γ ′ = Γ, getset(r)
(
s � r[Γ ′];Γi(C[Γ ′])

) �−→R (s′;M ′)

(s;Γ)
i,C,cod(r)−−−−−−−→ (s′;Γ ′,M ′)

The first rule is the analogous of the first rule in (2). The important differences
are on the second rule. First, since we are call-by-value, C now ranges over
Cv, the set of value contexts (i.e., contexts of the form λx.C′) without free
locations. Moreover, since we are now imperative, in a transition we must permit
the creation of new locations, and a term supplied by the environment should be
allowed to use them. In the rule, the new store is represented by r (whose domain
has to be disjoint from that of s). Correspondingly, to allow manipulation of
these locations from the observer, for each new location � we make set� and get�
available, as an extension of the environment; in the rule, these are collectively
written getset(r), and Γ ′ is the extended environment. Finally, we must initialise
the new store, using terms that are created out of the extended environment
Γ ′; that is, each new location � is initialised with a term D�[Γ

′] (for D� ∈
Cv). Moreover, the contexts D� chosen must be made visible in the label of the
transition. To take care of these aspects, we view r as a store context, a tuple of
assignments �
→ D�. Thus the initialisation of the new locations is written r[Γ ′];
and, denoting by cod(r) the tuple of the contexts D� in r, we add cod(r) to the
label of the transition. Note also that, although C and D� are location-free, their
holes may be instantiated with terms involving the set� and get� operators, and
these allow manipulation of the store.

Bisimulations Up-to: Beyond First-Order Transition Systems 105

Once more, on the (strong and weak) bisimilarities that are derived from this
first-order LTS we can import the theory of compatible functions and bisimula-
tion enhancements. Concerning additional up-to functions, specific to ΛR, the
functions w, str, C and Ce are adapted from Section 4 in the expected manner—
contexts Cv, C and E must be location-free. A further function for ΛR is store,
which manipulates the store by removing locations that do not appear elsewhere
(akin to garbage collection); thus, store(R) is the set of all pairs

((s � r[Γ ′];Γ ′,M), (t � r[Δ′];Δ′, N))

such that (s;Γ,M) R (t;Δ,N), and with Γ ′ = Γ, getset(r) andΔ′ = Δ, getset(r).

Lemma 5. The set {w, str, Ce, store, C} is sp-compatible up to the identity func-
tion and is wp-compatible up to wp ∪ e.

The techniques C and Ce allow substitutivity under location-free contexts,
from which we can derive the soundness part of Theorem 6.

Theorem 6. (s;M) ≡ (t;N) iff (s;M) ≈ (t;N).

Proof (sketch). Soundness (⇐) follows from congruence by Ce (Lemmas 5 and 2)
and completeness (⇒) is obtained by standard means. See [15] for details.

Note that substitutivity of bisimilarity is restricted either to values (C), or to
evaluation contexts (Ce). The following lemma provides a sufficient condition for
a given law between arbitrary terms to be preserved by arbitrary contexts.

Lemma 6. Let � be any of the relations ∼,≈, and �. Suppose L, R are ΛR
terms with (s;Γ,L) � (s;Γ,R) for all environments Γ and stores s. Then also
(s;Γ,C[L]) � (s;Γ,C[R]), for any store s, environment Γ and context C.

Proof (sketch). We first prove a simplified result in which C is an evaluation
context, using techniques Ce and store. We then exploit this partial result together
with up-to expansion to derive the general result. See [15] for more details.

We use this lemma at various places in the example we cover in Section 6. For
instance we use it to replace a term N1 � (λx.E[x])M (with E an evaluation
context) withN2 � E[M], under an arbitrary context. Such a property is delicate
to prove, even for closed terms, because the evaluation ofM could involve reading
from a location of the store that itself could contain occurrences of N1 and N2.

6 An Example

We conclude by discussing an example from [10]. It consists in proving a law
between terms of ΛR extended with integers, operators for integer addition and
subtraction, and a conditional—those constructs are straightforward to accom-
modate in the presented framework. For readability, we also use the standard
notation for store assignment, dereferencing and sequence: (� := M) � set�M ,
!� � get�I, and M ;N � (λx.N)M where x does not appear in N . The two terms
are the following ones:

106 J.-M. Madiot, D. Pous, and D. Sangiorgi

– M � λg.ν� � := 0; g(incr�); if !� mod 2 = 0 then I else Ω
– N � λg.g(F); I,

where incr� � λz.� := !� + 2, and F � λz.I. Intuitively, those two terms are
weakly bisimilar because the location bound by � in the first term will always
contain an even number.

This example is also considered in [22] where it is however modified to fit
the up-to techniques considered in that paper. The latter are less powerful than
those available here thanks to the theory of up-to techniques for first-order LTSs
(e.g., up to expansion is not considered in [22]—its addition to environmental
bisimulations is non-trivial, having stores and environments as parameters).

We consider two proofs of the example. In comparison with the proof in [22]:
(i) we handle the original example from [10], and (ii) the availability of a broader
set of up-to techniques and the possibility of freely combining them allows us to
work with smaller relations. In the first proof we work up to the store (through
the function store) and up to expansion—two techniques that are not available in
[22]. In the second proof we exploit the up-to-transitivity technique of Section 2,
which is only sound for strong bisimilarity, to further reduce the size of the
relation we work with.

First proof. We first employ Lemma 6 to reach a variant similar to that of [22]:
we make a ‘thunk’ out of the test in M , and we make N look similar. More
precisely, let test� � λz.if !� mod 2 = 0 then I else Ω, we first prove that

– M ≈ M ′ � λg.ν� � := 0; g(incr�); test�I, and
– N ≈ N ′ � λg.g(F);FI.

It then suffices to prove that M ′ ≈ N ′, which we do using the following relation:

R �
{(

s,M ′, (incr�, test�)�∈�̃

)
,
(∅, N ′, (F, F)�∈�̃

)
s.t. ∀� ∈ �̃, s(�) is even

}
.

The initial pair of terms is generalised by adding any number of private locations,
since M ′ can use itself to create more of them. Relation R is a weak bisimulation
up to store, C and expansion. More details can be found in [15].

Second proof. Here we also preprocess the terms using Lemma 6, to add a few
artificial internal steps to N , so that we can carry out the reminder of the
proof using strong bisimilarity, which enjoys more up-to techniques than weak
bisimilarity:

– M ≈ M ′ � λg.ν� � := 0; g(incr�); test�I,
– N ≈ N ′′ � λg.I; I; g(incr0); test0I.

where incr0 and test0 just return I on any input, taking the same number of
internal steps as incr� and test�. We show that M ′ ∼ N ′′ by proving that the
following relation R is a strong bisimulation up to unfolding, store, weakening,
strengthening, transitivity and context (a technique unsound in the weak case):

S � {(M ′, N ′′)} ∪ {(�
→ 2n, incr�, test�) , (∅, incr0, test0) s.t. n ∈ N}

Bisimulations Up-to: Beyond First-Order Transition Systems 107

This relation uses a single location; there is one pair for each integer that can
be stored in the location. In the diagram-chasing arguments for S, essentially a
pair of derivatives is proved to be related under the function

sp ◦ sp ◦ star ◦ (str ∪ store ∪ C ∪ w)ω

where star : R
→ R� is the reflexive-transitive closure function. (Again, we refer
to [15] for more details.)

The difference between the relation R in the first proof and the proofs in
[10,22] is that R only requires locations that appear free in the tested terms; in
contrast, the relations in [10,22] need to be closed under all possible extensions
of the store, including extensions in which related locations are mapped onto
arbitrary context-closures of related values. We avoid this thanks to the up-to
store function. The reason why, both in [10,22] and in the first proof above,
several locations have to be considered is that, with bisimulations akin to envi-
ronmental bisimulation, the input for a function is built using the values that
occur in the candidate relation. In our example, this means that the input for
a function can be a context-closure of M and N ; hence uses of the input may
cause several evaluations of M and N , each of which generates a new location.
In this respect, it is surprising that our second proof avoids multiple allocations
(the candidate relation S only mentions one location). This is due to the massive
combination of up-to techniques whereby, whenever a new location is created, a
double application of up to context (the ‘double’ is obtained from up-to transi-
tivity) together with some administrative work (given by the other techniques)
allows us to absorb the location.

Acknowledgement. The authors acknowledge support from the ANR projects
2010-BLAN-0305 PiCoq and 12IS02001 PACE.

References

1. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. In:
Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 12–26. Springer, Heidelberg
(1998)

2. Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in
Functional Programming, pp. 65–116. Addison-Wesley (1989)

3. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Infor-
matica 29, 737–760 (1992)

4. Chaudhuri, K., Cimini, M., Miller, D.: Formalization of the bisimulation-up-to
technique and its meta theory. Draft (2014)

5. Hirschkoff, D.: A full formalisation of pi-calculus theory in the calculus of con-
structions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275,
pp. 153–169. Springer, Heidelberg (1997)

6. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: POPL, pp. 193–206. ACM (2013)

108 J.-M. Madiot, D. Pous, and D. Sangiorgi

7. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: LICS,
pp. 56–66 (1999)

8. Koutavas, V., Hennessy, M.: First-order reasoning for higher-order concurrency.
Computer Languages, Systems & Structures 38(3), 242–277 (2012)

9. Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimula-
tion. Electr. Notes Theor. Comput. Sci. 276, 215–235 (2011)

10. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: POPL 2006, pp. 141–152. ACM (2006)

11. Lassen, S.B.: Relational reasoning about contexts. In: Higher-order Operational
Techniques in Semantics, pp. 91–135. Cambridge University Press (1998)

12. Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus (1998)

13. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimula-
tion up to context. Electr. Notes Theor. Comput. Sci. 20, 346–374 (1999)

14. Lenisa, M.: Themes in Final Semantics. Ph.D. thesis, Universitá di Pisa (1998)
15. Madiot, J.-M., Pous, D., Sangiorgi, D.: Web appendix to this paper,

http://hal.inria.fr/hal-00990859

16. Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6),
961–1023 (2005)

17. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
18. Pohjola, J.Å., Parrow, J.: Bisimulation up-to techniques for psi-calculi. Draft (2014)
19. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Ad-

vanced Topics in Bisimulation and Coinduction. Cambridge University Press (2012)
20. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde

Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)

21. Sangiorgi, D.: On the bisimulation proof method. J. of MSCS 8, 447–479 (1998)
22. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-

order languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)
23. Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes. Cambridge

University Press (2001)
24. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theor. Comput.

Sci. 375(1-3), 169–192 (2007)
25. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. J. ACM

54(5) (2007)
26. Turner, N.D.: The polymorphic pi-calculus: Theory and Implementation. PhD

thesis, Department of Computer Science, University of Edinburgh (1996)

http://hal.inria.fr/hal-00990859

	Bisimulations Up-to:Beyond First-Order Transition Systems
	1 Introduction
	2 First-Order Bisimulation and Up-to Techniques
	3 Theπ-calculus
	4 Call-by-name λ-calculus
	5 Imperative call-by-value λ-calculus
	6 An Example
	References

