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Abstract. Graph transformation systems (GTSs) can be seen as well-
structured transition systems (WSTSs), thus obtaining decidability
results for certain classes of GTSs. In earlier work it was shown that
well-structuredness can be obtained using the minor ordering as a well-
quasi-order. In this paper we extend this idea to obtain a general frame-
work in which several types of GTSs can be seen as (restricted) WSTSs.
We instantiate this framework with the subgraph ordering and the in-
duced subgraph ordering and apply it to analyse a simple access rights
management system.

1 Introduction

Well-structured transition systems [2,9] are one of the main sources for decidabil-
ity results for infinite-state systems. They equip a state space with a quasi-order,
which must be a well-quasi-order (wqo) and a simulation relation for the transi-
tion relation. If a system can be seen as a WSTS, one can decide the coverability
problem, i.e., the problem of verifying whether, from a given initial state, one
can reach a state that covers a final state, i.e., is larger than the final state with
respect to the chosen order. Often, these given final states, and all larger states,
are considered to be error states and one can hence check whether an error state
is reachable. Large classes of infinite-state systems are well-structured, for in-
stance (unbounded) Petri nets and certain lossy systems. For these classes of
systems the theory provides a generic backwards reachability algorithm.

A natural specification language for concurrent, distributed systems with a
variable topology are graph transformation systems [19] and they usually gener-
ate infinite state spaces. In those systems states are represented by graphs and
state changes by (local) transformation rules, consisting of a left-hand and a
right-hand side graph. In [11] it was shown how lossy GTSs with edge contrac-
tion rules can be viewed as WSTSs with the graph minor ordering [17,18] and
the theory was applied to verify a leader election protocol and a termination
detection protocol [4]. The technique works for arbitrary (hyper-)graphs, i.e.
the state space is not restricted to certain types of graphs. On the other hand,
in order to obtain well-structuredness, we can only allow certain rule sets, for
instance one has to require an edge contraction rule for each edge label.
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In order to make the framework more flexible we now consider other wqos,
different from the minor ordering: the subgraph ordering and the induced sub-
graph ordering. The subgraph ordering and a corresponding WSTS were already
studied in [3], but without the backwards search algorithm. Furthermore, we al-
ready mentioned the decidability result in the case of the subgraph ordering in
[4], but did not treat it in detail and did not consider it as an instance of a
general framework.

In contrast to the minor ordering, the subgraph ordering is not a wqo on
the set of all graphs, but only on those graphs where the length of undirected
paths is bounded [6]. This results in a trade-off: while the stricter order allows
us to consider all possible sets of graph transformation rules in order to obtain a
decision procedure, we have to make sure to consider a system where only graphs
satisfying this restriction are reachable. Even if this condition is not satisfied, the
procedure can yield useful partial coverability results. Also, it often terminates
without excluding graphs not satisfying the restriction (this is also the case for
our running example), producing exact results. We make these considerations
precise by introducing Q-restricted WSTSs, where the order need only be a wqo
on Q. In general, one wants Q to be as large as possible to obtain stronger
statements.

It turns out that the results of [11] can be transferred to this new setting.
Apart from the minor ordering and the subgraph ordering, there are various
other wqos that could be used [8], leading to different classes of systems and
different notions of coverability. In order to avoid redoing the proofs for every
case, we here introduce a general framework which works for the case where
the partial order can be represented by graph morphisms, which is applicable
to several important cases. Especially, we state conditions required to perform
the backwards search. We show that the case of the minor ordering can be seen
as a special instance of this general framework and show that the subgraph
and the induced subgraph orderings are also compatible. Finally we present an
implementation and give runtime results. For the proofs we refer the reader to
the extended version of this paper [15].

2 Preliminaries

2.1 Well-Structured Transition Systems

We define an extension to the notion of WSTS as introduced in [2,9], a general
framework for decidability results for infinite-state systems, based on well-quasi-
orders.

Definition 1 (Well-quasi-order and upward closure). A quasi-order ≤
(over a setX) is a well-quasi-order (wqo) if for any infinite sequence x0, x1, x2, . . .
of elements of X, there exist indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that x ≤ y and x ∈ I implies
y ∈ I. For a subset Y ⊆ X, we define its upward closure ↑Y = {x ∈ X | ∃y ∈
Y : y ≤ x}. Then, a basis of an upward-closed set I is a set IB such that I = ↑IB.
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A downward-closed set, downward closure and a basis of a downward-closed set
can be defined analogously.

The definition of wqos gives rise to properties which are important for the
correctness and termination of the backwards search algorithm presented later.

Lemma 1. Let ≤ be a wqo, then the following two statements hold:

1. Any upward-closed set I has a finite basis.
2. For any infinite, increasing sequence of upward-closed sets I0 ⊆ I1 ⊆ I2 ⊆ . . .

there exists an index k ∈ N such that Ii = Ii+1 for all i ≥ k.

A Q-restricted WSTS is a transition system, equipped with a quasi-order,
such that the quasi-order is a (weak) simulation relation on all states and a wqo
on a restricted set of states Q.

Definition 2 (Q-restricted well-structured transition system). Let S be
a set of states and let Q be a downward closed subset of S, where membership is
decidable. A Q-restricted well-structured transition system (Q-restricted WSTS)
is a transition system T = (S,⇒,≤), where the following conditions hold:

Ordering: ≤ is a quasi-order on S and a wqo on Q.
Compatibility: For all s1 ≤ t1 and a transition s1 ⇒

s2, there exists a sequence t1 ⇒∗ t2 of transitions
such that s2 ≤ t2.

t1 t2

s1 s2
≤ ≤

*

The presented Q-restricted WSTS are a generalization of WSTS and are iden-
tical to the classical definition, whenQ = S. We will show how well-known results
for WSTS can be transfered to Q-restricted WSTS. ForQ-restricted WSTS there
are two coverability problems of interest. The (general) coverability problem is
to decide, given two states s, t ∈ S, whether there is a sequence of transitions
s ⇒ s1 ⇒ . . . ⇒ sn such that t ≤ sn. The restricted coverability problem is
to decide whether there is such a sequence for two s, t ∈ Q with si ∈ Q for
1 ≤ i ≤ n. Both problems are undecidable in the general case (as a result of [4]
and Proposition 5) but we will show that the well-known backward search for
classical WSTS can be put to good use.

Given a set I ⊆ S of states we denote by Pred(I) the set of direct prede-
cessors of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I : s ⇒ s′}. Additionally, we use
PredQ(I) to denote the restriction PredQ(I) = Pred(I) ∩ Q. Furthermore, we
define Pred∗(I) as the set of all predecessors (in S) which can reach some state
of I with an arbitrary number of transitions. To obtain decidability results, the
sets of predecessors must be computable, i.e. a so-called effective pred-basis must
exist.

Definition 3 (Effective pred-basis). A Q-restricted WSTS has an effective
pred-basis if there exists an algorithm accepting any state s ∈ S and returning
pb(s), a finite basis of ↑Pred(↑{s}). It has an effective Q-pred-basis if there
exists an algorithm accepting any state q ∈ Q and returning pbQ(q), a finite
basis of ↑PredQ(↑{q}).
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Whenever there exists an effective pred-basis, there also exists an effective
Q-pred-basis, since we can use the downward closure of Q to prove pbQ(q) =
pb(q) ∩Q.

Let (S,⇒,≤) be a Q-restricted WSTS with an effective pred-basis and let
I ⊆ S be an upward-closed set of states with finite basis IB. To solve the general
coverability problem we compute the sequence I0, I1, I2 . . . where I0 = IB and
In+1 = In ∪ pb(In). If the sequence ↑I0 ⊆ ↑I1 ⊆ ↑I2 ⊆ . . . becomes stationary,
i.e. there is an m with ↑Im = ↑Im+1, then ↑Im = ↑Pred∗(I) and a state of I is
coverable from a state s if and only if there exists an s′ ∈ Im with s′ ≤ s. If ≤
is a wqo on S, by Lemma 1 every upward-closed set is finitely representable and
every sequence becomes stationary. However, in general the sequence might not
become stationary if Q �= S, in which case the problem becomes semi-decidable,
since termination is no longer guaranteed (although correctness is).

The restricted coverability problem can be solved in a similar way, if an ef-
fective Q-pred-basis exists. Let IQ ⊆ S be an upward closed set of states with
finite basis IQB ⊆ Q. We compute the sequence IQ0 , I

Q
1 , I

Q
2 , . . . with IQ0 = IQB

and IQn+1 = IQn ∪ pbQ(I
Q
n ). Contrary to the general coverability problem, the se-

quence ↑IQ0 ∩Q ⊆ ↑IQ1 ∩Q ⊆ ↑IQ2 ∩Q ⊆ . . . is guaranteed to become stationary

according to Lemma 1. Let again m be the first index with ↑IQm = ↑IQm+1, and
set ⇒Q = (⇒ ∩ Q × Q). We obtain the following result, of which the classical
decidability result of [9] is a special case.

Theorem 1 (Coverability problems). Let T = (S,⇒,≤) be a Q-restricted
WSTS with a decidable order ≤.

(i) If T has an effective pred-basis and S = Q, the general and restricted
coverability problems coincide and both are decidable.

(ii) If T has an effective Q-pred-basis, the restricted coverability problem is
decidable if Q is closed under reachability.

(iii) If T has an effective Q-pred-basis and IQm is the limit as described above,
then: if s ∈ ↑IQm, then s covers a state of IQ in ⇒ (general coverability).
If s /∈ ↑IQm, then s does not cover a state of IQ in ⇒Q (no restricted
coverability).

(iv) If T has an effective pred-basis and the sequence In becomes stationary for
n = m, then: a state s covers a state of I if and only if s ∈ ↑Im.

Thus, if T is a Q-restricted WSTS and the “error states” can be represented
as an upward-closed set I, then the reachability of an error state of I can be
determined as described above, depending on which of the cases of Theorem 1
applies. Note that it is not always necessary to compute the limits Im or IQm,

since ↑Ii ⊆ ↑Im (and ↑IQi ⊆ ↑IQm) for any i ∈ N0. Hence, if s ∈ ↑Ii (or s ∈ ↑IQi )
for some i, then we already know that s covers a state of I (or of IQ) in ⇒.

2.2 Graph Transformation Systems

In the following we define the basics of hypergraphs and GTSs as a special form
of transition systems where the states are hypergraphs and the rewriting rules
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are hypergraph morphisms. We prefer hypergraphs over directed or undirected
graphs since they are more convenient for system modelling.

Definition 4 (Hypergraph). Let Λ be a finite sets of edge labels and ar : Λ→
N a function that assigns an arity to each label. A (Λ-)hypergraph is a tuple
(VG, EG, cG, l

E
G) where VG is a finite set of nodes, EG is a finite set of edges,

cG : EG → V ∗
G is an (ordered) connection function and lEG : EG → Λ is an edge

labelling function. We require that |cG(e)| = ar (lEG(e)) for each edge e ∈ EG.
An edge e is called incident to a node v (and vice versa) if v occurs in cG(e).

From now on we will often call hypergraphs simply graphs. An (elemen-
tary) undirected path of length n in a hypergraph is an alternating sequence
v0, e1, v1, . . . , vn−1, en, vn of nodes and edges such that for every index 1 ≤ i ≤ n
both nodes vi−1 and vi are incident to ei and the undirected path contains all
nodes and edges at most once. Note that there is no established notion of di-
rected paths for hypergraphs, but our definition gives rise to undirected paths
in the setting of directed graphs (which are a special form of hypergraphs).

Definition 5 (Partial hypergraph morphism). Let G, G′ be (Λ-)hyper-
graphs. A partial hypergraph morphism (or simply morphism) ϕ : G ⇀ G′ con-
sists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that
for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e))
whenever ϕE(e) is defined. Furthermore if a morphism is defined on an edge, it
must be defined on all nodes incident to it. Total morphisms are denoted by an
arrow of the form →.

For simplicity we will drop the subscripts and write ϕ instead of ϕV and ϕE .
We call two graphs G1, G2 isomorphic if there exists a total bijective morphism
ϕ : G1 → G2.

Graph rewriting relies on the notion of pushouts. It is known that pushouts
of partial graph morphisms always exist and are unique up to isomorphism.
Intuitively, for morphisms ϕ : G0 ⇀ G1, ψ : G0 ⇀ G2, the pushout is obtained
by gluing the two graphs G1, G2 over the common interface G0 and by deleting
all elements which are undefined under ϕ or ψ (for a formal definition see [19]).

We will take pushouts mainly in the situation described in Definition 6 below,
where r (the rule) is partial and connects the left-hand side L and the right-hand
side R. It is applied to a graph G via a total match m. In order to ensure that
the resulting morphism m′ (the co-match of the right-hand side in the resulting
graph) is also total, we have to require a match m to be conflict-free wrt. r, i.e.,
if there are two elements x, y of L with m(x) = m(y) either r(x), r(y) are both
defined or both undefined. Here we consider a graph rewriting approach called
the single-pushout approach (SPO) [7], since it relies on one pushout square, and
restrict to conflict-free matches.

Definition 6 (Graph rewriting). A rewriting rule is a partial morphism
r : L ⇀ R, where L is called left-hand and R right-hand side. A match (of r) is
a total morphism m : L → G, conflict-free wrt. r. Given a rule and a match, a
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rewriting step or rule application is given by a pushout diagram as shown below,
resulting in the graph H.

A graph transformation system (GTS) is a finite set of rules R.
Given a fixed set of graphs G, a graph transition system on G gen-
erated by a graph transformation system R is represented by a tu-
ple (G,⇒) where G is the set of states and G ⇒ G′ if and only if
G,G′ ∈ G and G can be rewritten to G′ using a rule of R.

L R

G H

r

m m′

Later we will have to apply rules backwards, which means that it is necessary
to compute so-called pushout complements, i.e., given r and m′ above, we want
to obtain G (such that m is total and conflict-free). How this computation can
be performed in general is described in [10]. Note that pushout complements are
not unique and possibly do not exist for arbitrary morphisms. For two partial
morphisms the number of pushout complements may be infinite.

∅ ⇒
U

(a) Add a new user

1

U2

⇒ 1

U2 O

R/W

(b) Add a new object

U/O

⇒ ∅
(c) Delete user or ob-
ject

1

2

3

U4

U5

O 6
R/W

⇒
1

2

3

U4

U5

O 6

R/W

(d) Trade access rights with other user

1 2

U3 O 4

R/W ⇒ 1 2

U3 O 4

(e) Delete read or write access

1 2

U3 O 4

⇒ 1 2

U3 O 4

R

(f) Obtain read access to object

1 2

U3 O 4

W ⇒ 1 2

U3 O 4

R

(g) Downgrade write to read access

Fig. 1. A GTS modelling a multi-user system

Example 1. To illustrate graph rewriting we model a multi-user system as a
GTS (see Figure 1) inspired by [13]. A graph contains user nodes, indicated by
unary U -edges, and object nodes, indicated by unary O-edges. Users can have
read (R) or write (W ) access rights regarding objects indicated by a (directed)
edge. Note that binary edges are depicted by arrows, the numbers describe the
rule morphisms and labels of the form R/W represent two rules, one with R-
edges and one with W -edges.

The users and objects can be manipulated by rules for adding new users
(Fig. 1a), adding new objects with read or write access associated with a user
(Fig. 1b) and deleting users or objects (Fig. 1c). Both read and write access can
be traded between users (Fig. 1d) or dropped (Fig. 1e). Additionally users can
downgrade their write access to a read access (Fig. 1g) and obtain read access
of arbitrary objects (Fig. 1f).



A General Framework for Well-Structured Graph Transformation Systems 473

U

U

O
W

W

Fig. 2. An undesired
state in the multi-
user system

U

U

O

O

W

W

⇐
Rule 1d

U

U

O

O

W

R

W

⇒
Rule 1f

U

U

O

OW

W

Fig. 3. Example of two rule applications

In a multi-user system there can be arbitrary many users with read access to
an object, but at most one user may have write access. This means especially
that any configuration of the system containing the graph depicted in Figure 2
is erroneous.

An application of the Rules 1d and 1f is shown in Figure 3. In general, nodes and
edges onwhich the rulemorphism r is undefined are deleted and nodes and edges of
the right-hand side are added if they have no preimage under r. In the case of non-
injective rule morphisms, nodes or edges with the same image are merged. Finally,
node deletion results in the deletion of all incident edges (which would otherwise
be left dangling). For instance, if Rule 1c is applied, all read/write access edges
attached to the single deleted node will be deleted as well.

3 GTS as WSTS: A General Framework

In this section we state some sufficient conditions such that the coverability
problems for Q-restricted well-structured GTS can be solved in the sense of
Theorem 1 (in the following we use Q to emphasize that Q is a set of graphs). We
will also give an appropriate backward algorithm. The basic idea is to represent
the wqo by a given class of morphisms.

Definition 7 (Representable by morphisms). Let  be a quasi-order that
satisfies G1  G2, G2  G1 for two graphs G1, G2 if and only if G1, G2 are
isomorphic, i.e.,  is anti-symmetric up to isomorphism.

We call  representable by morphisms if there is a class of (partial) mor-
phisms M� such that for two graphs G,G′ it holds that G′  G if and only if
there is a morphism (μ : G G′) ∈ M�. Furthermore, for (μ1 : G1 G2), (μ2 :
G2 G3) ∈ M� it holds that μ2 ◦ μ1 ∈ M�, i.e., M� is closed under compo-
sition. We call such morphisms μ order morphisms.

The intuition behind an order morphism is the following: whenever there is
an order morphism from G to G′, we usually assume that G′ is the smaller graph
that can be obtained from G by some form of node deletion, edge deletion or
edge contraction. For any graphs G (which represent all larger graphs) we can
now compose rules and order morphisms to simulate a co-match of a rule to some
graph larger than G. However, for this construction to yield correct results, the
order morphisms have to satisfy the following two properties.
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Definition 8 (Pushout preservation). We say that a set of
order morphisms M� is preserved by total pushouts if the fol-
lowing holds: if (μ : G0 G1) ∈ M� is an order morphism and
g : G0 → G2 is total, then the morphism μ′ in the pushout dia-
gram on the right is an order morphism of M�.

G0 G1

G2 G3

μ

g g′

μ′

The next property is needed to ensure that every graph G, which is rewritten
to a graphH larger than S, is represented by a graph G′ obtained by a backward
rewriting step from S, i.e. the backward step need not be applied to H .

Definition 9 (Pushout closure). Let m : L → G be total and conflict-free
wrt. r : L ⇀ R. A set of order morphisms is called pushout closed if the following
holds: if the diagram below on the left is a pushout and μ : H S an order
morphism, then there exist graphs R′ and G′ and order morphisms μR : R R′,
μG : G G′, such that:

1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms μG ◦ m : L → G′ and n : R′ → S are total and μG ◦ m is

conflict-free wrt. r.

L R

G H

S

r

m m′
r′

μ

L R R′

G H

SG′

r μR

m m′

n
r′

μG

s

μ

We now present a generic backward algorithm for (partially) solving both cov-
erability problems. The procedure has two variants, which both require a GTS,
an order and a set of final graphs to generate a set of minimal representatives of
graphs covering a final graph. The first variant computes the sequence IQn and
restricts the set of graphs to ensure termination. It can be used for cases (i), (ii)
and (iii) of Theorem 1, while the second variant computes In (without restric-
tion) and can be used for cases (i) and (iv).

Procedure 1 (Computation of the (Q-)pred-basis).
Input: A set R of graph transformation rules, a quasi-order  on all graphs
which is a wqo on a downward-closed set Q and a finite set of final graphs F ,
satisfying:

– The transition system generated by the rule set R is a Q-restricted WSTS
with respect to the order .

– The order  is representable by a class of morphisms M� (Definition 7) and
this class satisfies Definitions 8 and 9.

– Variant 1. The set of minimal pushout complements restricted to Q with
respect to  is computable, for all pairs of rules and co-matches (it is auto-
matically finite).
Variant 2. The set of minimal pushout complements with respect to  is
finite and computable, for all pairs of rules and co-matches.
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Preparation: Generate a new rule set R′ from R in the following way: for every
rule (r : L ⇀ R) ∈ R and every order morphism μ : R R add the rule μ ◦ r to
R′. (Note that it is sufficient to take a representative R for each of the finitely
many isomorphism classes, resulting in a finite set R′.) Start with the working
set W = F and apply the first backward step.
Backward Step: Perform backward steps until the sequence of working sets W
becomes stationary. The following substeps are performed in one backward step
for each rule (r : L ⇀ R) ∈ R′:

1. For a graph G ∈ W compute all total morphisms m′ : R → G (co-matches
of R in G).

2. Variant 1. For each such morphism m′ calculate the set Gpoc of minimal
pushout complement objects of m′ with rule r, which are also elements of Q.
Variant 2. Same as Variant 1, but calculate all minimal pushout comple-
ments, without the restriction to Q.

3. Add all remaining graphs in Gpoc to W and minimize W by removing all
graphs G′ for which there is a graph G′′ ∈ W with G′ �= G′′ and G′′  G′.

Result: The resulting set W contains minimal representatives of graphs from
which a final state is coverable (cf. Theorem 1).

The reason for composing rule morphisms with order morphisms when doing
the backwards step is the following: the graph G, for which we perform the step,
might not contain a right-hand side R in its entirety. However, G can represent
graphs that do contain R and hence we have to compute the effect of applying
the rule backwards to all graphs represented by G. Instead of enumerating all
these graphs (which are infinitely many), we simulate this effect by looking
for matches of right-hand sides modulo order morphisms. We show that the
procedure is correct by proving the following lemma.

Proposition 1. Let pb1() and pb2() be a single backward step of Procedure 1
for Variant 1 and 2 respectively. For each graph S, pb1(S) is an effective Q-
pred-basis and pb2(S) is an effective pred-basis.

4 Well-Quasi Orders for Graph Transformation Systems

4.1 Minor Ordering

We first instantiate the general framework with the minor ordering, which was
already considered in [11]. The minor ordering is a well-known order on graphs,
which is defined as follows: a graph G is a minor of G′ whenever G can be
obtained from G′ by a series of node deletions, edge deletions and edge con-
tractions, i.e. deleting an edge and merging its incident nodes according to an
arbitrary partition. Robertson and Seymour showed in a seminal result that the
minor ordering is a wqo on the set of all graphs [17], even for hypergraphs [18],
thus case (i) of Theorem 1 applies. In [11,12] we showed that the conditions for
WSTS are satisfied for a restricted set of GTS by introducing minor morphisms
and proving a result analogous to Proposition 1, but only for this specific case.
The resulting algorithm is a special case of both variants of Procedure 1.
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Proposition 2 ([11]). The coverability problem is decidable for every GTS if
the minor ordering is used and the rule set contains edge contraction rules for
each edge label.

4.2 Subgraph Ordering

In this paper we will show that the subgraph ordering and the induced subgraph
ordering satisfy the conditions of Procedure 1 for a restricted set of graphs and
are therefore also compatible with our framework. For the subgraph ordering we
already stated a related result (but for injective instead of conflict-free matches)
in [4], but did not yet instantiate a general framework.

Definition 10 (Subgraph). Let G1, G2 be graphs. G1 is a subgraph of G2

(written G1 ⊆ G2) if G1 can be obtained from G2 by a sequence of deletions
of edges and isolated nodes. We call a partial morphism μ : G S a subgraph
morphism if and only if it is injective on all elements on which it is defined and
surjective.

It can be shown that the subgraph ordering is representable by subgraph
morphisms, which satisfy the necessary properties. Using a result from Ding [6]
we can show that the set Gk of hypergraphs where the length of every undirected
path is bounded by k, is well-quasi-ordered by the subgraph relation. A similar
result was shown by Meyer for depth-bounded systems in [16]. Note that we
bound undirected path lengths instead of directed path lengths. For the class of
graphs with bounded directed paths there exists a sequence of graphs violating
the wqo property (a sequence of circles of increasing length, where the edge
directions alternate along the circle).

Since every GTS satisfies the compatibility condition of Definition 2 naturally,
we obtain the following result.

Proposition 3 (WSTS wrt. the subgraph ordering). Let k be a natural
number. Every graph transformation system forms a Gk-restricted WSTS with
the subgraph ordering.

The set of minimal pushout complements (not just restricted to Gk) is always
finite and can be computed as in the minor case.

Proposition 4. Every Gk-restricted well-structured GTS with the subgraph or-
der has an effective pred-basis and the (decidability) results of Theorem 1 apply.

By a simple reduction from the reachability problem for two counter machines,
we can show that the restricted coverability problem is undecidable in the general
case. Although we cannot directly simulate the zero test, i.e. negative application
conditions are not possible, we can make sure that the rules simulating the zero
test are applied correctly if and only if the bound k was not exceeded.

Proposition 5. Let k > 2 be anatural number.The restricted coverability problem
for Gk-restricted well-structured GTS with the subgraph ordering is undecidable.
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Example 2. Now assume that an error graph is given and that a graph exhibits
an error if and only if it contains the error graph as a subgraph. Then we can
use Proposition 4 to calculate all graphs which lead to some error configuration.

For instance, let a multi-user system as described in Example 1 be given.
Normally we have to choose a bound on the undirected path length to guarantee
termination, but in this example Variant 2 of Procedure 1 terminates and we can
solve coverability on the unrestricted transition system (see Theorem 1(iv)). The
graph in Figure 2 represents the error in the system and by applying Procedure 1
we obtain a set of four graphs (one of which is the error graph itself), fully
characterizing all predecessor graphs. We can observe that the error can only be
reached from graphs already containing two W -edges going to a single object
node. Hence, the error is not produced by the given rule set if we start with the
empty graph and thus the system is correct.

Interestingly the backward search finds the leftmost graph below due to the
depicted sequence of rule applications, which leads directly to the error graph.
Thus, the error can occur even if a single user has two write access rights to an
object, because of access right trading.

U O
W

W ⇒
Rule 1a

U

U

O
W

W ⇒
Rule 1d

U

U

O

W

W

The other two graphs computed are shown below and represent states with
”broken” structure (a node cannot be a user and an object). The left graph
for instance can be rewritten to a graph larger than the left graph above, by a
non-injective match of the rule in Figure 1d mapping both nodes 2 and 3 to the
right node.

U U

O

W

W

U

O

WW

4.3 Induced Subgraph Ordering

As for the subgraph ordering in Section 4.2 our backward algorithm can also be
applied to the induced subgraph ordering, where a graph G is considered as an
induced subgraph of G′ if every edge in G′ connecting only nodes also present
in G, is contained in G as well. Unfortunately, this ordering is not a wqo even
when bounding the longest undirected path in a graph, such that we also have
to bound the multiplicity of edges between two nodes. Note that this restriction
is implicitly done in [6] since Ding uses simple graphs.

Furthermore, since we do not know whether the induced subgraph ordering
can be extended to a wqo on (a class of) hypergraphs, we here use only di-
rected graphs, where each edge is connected to a sequence of exactly two nodes.
For many applications directed graphs are sufficient for modelling, also for our
examples, since unary hyperedges can simply be represented by loops.
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At first, this order seems unnecessary, since it is stricter than the subgraph
ordering and is a wqo on a more restricted set of graphs. On the other hand, it
allows us to specify error graphs more precisely, since a graph G ∈ F does not
represent graphs with additional edges between nodes of G. Furthermore one
could equip the rules with a limited form of negative application conditions, still
retaining the compatibility condition of Definition 2.

Definition 11 (Induced subgraph). Let G1, G2 be graphs. G1 is an induced
subgraph of G2 (written G1 � G2) if G1 can be obtained from G2 by deleting a
subset of the nodes and all incident edges. We call a partial morphism μ : G�→S
an induced subgraph morphism if and only if it is injective for all elements on
which is defined, surjective, and if it is undefined on an edge e, it is undefined
on at least one node incident to e.

Proposition 6 (WSTS wrt. the induced subgraph ordering). Let n, k be
natural numbers and let Gn,k be a set of directed, edge-labelled graphs, where the
longest undirected path is bounded by n and every two nodes are connected by
at most k parallel edges with the same label (bounded edge multiplicity). Every
GTS forms a Gn,k-restricted WSTS with the induced subgraph ordering.

Proposition 7. Every Gn,k-restricted well-structured GTS with the induced sub-
graph order has an effective Gn,k-pred-basis and the (decidability) results of The-
orem 1 apply.

The computation of minimal pushout complements in this case is considerably
more complex, since extra edges have to be added, but we also obtain additional
expressiveness. In general GTS with negative application conditions do not sat-
isfy the compatibility condition with respect to the subgraph relation, but we
show in the following example, that it may still be satisfied with respect to the
induced subgraph relation.

Example 3. Let the following simple rule be given, where the negative applica-
tion condition is indicated by the dashed edge, i.e. the rule is applicable if and
only if there is a matching only for the solid part of the left-hand side and this
matching cannot be extended to match also the dashed part.

1 2 3

A

4

A

5

A

⇒

1 2 3

A

4

A

5

A

Applied to a graph containing only A-edges, this rule calculates the transitive
closure and will terminate at some point. This GTS satisfies the compatibility
condition wrt. the induced subgraph ordering, since for instance a directed path
of length two (the left-hand side) does not represent graphs where there is an
edge from the first to the last node of the graph. Therefore we can use the
induced subgraph ordering and our procedure to show that a graph containing
two parallel A-edges can only be reached from graphs already containing two
parallel A-edges.
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The principle described in the example can be extended to all negative ap-
plication conditions which forbid the existence of edges but not of nodes. This
is the case, because if there is no edge between two nodes of a graph, there is
also no edge between these two nodes in any larger graph. Hence if there is no
mapping from the negative application condition into the smaller graph, there
can also be none into the larger graph. Graphs violating the negative applica-
tion condition are simply not represented by the smaller graph. Hence, all graph
transformation rules with such negative application conditions satisfy the com-
patibility condition wrt. the induced subgraph ordering. The backward step has
to be modified in this case by dropping all obtained graphs which do not satisfy
one of the negative application conditions.

4.4 Implementation

We implemented Procedure 1 with support for the minor ordering as well as
the subgraph ordering in the tool Uncover. The tool is written in C++ and
designed in a modular way for easy extension with further orders. The sole
optimization currently implemented is the omission of all rules that are also
order morphisms. It can be shown that the backward application of such rules
produces only graphs which are already represented.

Table 1 shows the runtime results of different case studies, namely a leader
election protocol and a termination detection protocol (in an incorrect as well as
a correct version), using the minor ordering, and the access rights management
protocol described in Figure 1 as well as a public-private server protocol, using
the subgraph order. It shows for each case the restricted graph set Q, the variant
of the procedure used (for the minor ordering they coincide), the runtime and
the number of minimal graphs representing all predecessors of error graphs.

Table 1. Runtime result for different case studies

case study wqo graph set Q variant time #(error graphs)

Leader election minor all graphs 1 / 2 3s 38

Termination detection (faulty) minor all graphs 1 / 2 7s 69

Termination detection (correct) minor all graphs 1 / 2 2s 101

Rights management subgraph all graphs 2 1s 4

Public-private server (l = 5) subgraph path ≤ 5 1 1s 14

Public-private server (l = 6) subgraph path ≤ 6 1 16s 16

5 Conclusion

We have presented a general framework for viewing GTSs as restricted WSTSs.
We showed that the work in [11] for the minor ordering can be seen as an instance
of this framework and we presented two additional instantiations, based on the
subgraph ordering and the induced subgraph ordering. Furthermore we presented
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the management of read and write access rights as an example and discussed
our implementation with very encouraging runtime results.

Currently we are working on an extension of the presented framework with
rules, which can uniformly change the entire neighbourhood of nodes. In this
case the computed set of predecessor graphs will be an over-approximation.
More extensions are possible (possibly introducing over-approximations) and we
especially plan to further investigate the integration of rules with negative ap-
plication conditions as for the induced subgraph ordering. In [14] we introduced
an extension with negative application conditions for the minor ordering, but
still, the interplay of the well-quasi-order and conditions has to be better under-
stood. Naturally, we plan to look for additional orders, for instance the induced
minor and topological minor orderings [8] in order to see whether they can be
integrated into this framework and to study application scenarios.

Related work. Related to our work is [3], where the authors use the subgraph or-
dering and a forward search to prove fair termination for depth-bounded systems.
In [1] another wqo for well-structuring graph rewriting is considered, however
only for graphs where every node has out-degree 1. It would be interesting to
see whether this wqo can be integrated into our general framework. The work
in [5] uses the induced subgraph ordering to verify broadcast protocols. There
the rules are different from our setting: a left-hand side consists of a node and
its entire neighbourhood of arbitrary size. Finally [20] uses a backwards search
on graph patterns in order to verify an ad-hoc routing protocol, but not in the
setting of WSTSs.

Acknowledgements. We would like to thank Roland Meyer, for giving us the
idea to consider the subgraph ordering on graphs, and Giorgio Delzanno for
several interesting discussions on wqos and WSTSs.
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