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Abstract. Self-stabilization algorithms are very important in designing
fault-tolerant distributed systems. In this paper we consider Herman’s
self-stabilization algorithm and study its expected self-stabilization time.
McIver and Morgan have conjectured the optimal upper bound being
0.148N2 , where N denotes the number of processors. We present an
elementary proof showing a bound of 0.167N2 , a sharp improvement
compared with the best known bound 0.521N2 . Our proof is inspired by
McIver and Morgan’s approach: we find a nearly optimal closed form of
the expected stabilization time for any initial configuration, and apply
the Lagrange multipliers method to give an upper bound of it.

1 Introduction

In [2], Dijkstra proposed the influential notion of self-stabilization algorithms
for designing fault-tolerant distributed systems. A distributed system is self-
stabilizable if it will always reach legitimate configurations, no matter where the
system starts. The system thus can recover from any transient error such as local
corrupted states. The concept has many applications in the network protocol,
and thus received much attention. See for example [14,3] for surveys on this
topic.

Dijkstra assumed that all participating processors are identical except for
a single processor which is necessary for breaking the symmetry. It is already
shown by Dijkstra in 1974 that no deterministic scheduler exists which guaran-
tees self-stabilization if all processors are identical. On the other side, Herman
proposed a randomized program in [7] to break the symmetry: he proposed a
self-stabilizing mutual exclusion algorithm, today known as Herman’s algorithm,
which stabilizes within finite steps with probability 1.

The protocol is designed for a token ring of N , N is odd, synchronous proces-
sors. Each processor may or may not have a token, and in a legitimate configu-
ration only a single token exists. For any finite N , the protocol can be viewed as
a finite state Markov chain with a single bottom strongly connected component
(SCC) consisting of all legitimate configurations. So a legitimate configuration
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is reached with probability 1, regardless of the initial configuration. Hence, Her-
man’s protocol is self-stabilizing.

Another important performance measure in designing self-stabilization proto-
cols is the stabilization time which is the expected time until a legitimate config-
uration is reached. In Herman’s original work [7], an upper bound O(N2�logN�)
for stabilization time has been established, while in 2005, several groups of re-
searchers [6,12,13] gave an upper bound of O(N2), independently. Moreover,
McIver and Morgan [12] proved that the stabilization time is actually Θ(N2),
meaning that the lower bound and upper bound coincide. They also provided a
precise expected stabilization time for configurations with exactly three tokens.

One may expect that the story should end here from the viewpoint of com-
plexity theory, as we already have the asymptotically tight bound for the sta-
bilization time. However, McIver and Morgan [12] conjectured that the optimal
upper bound for general configurations is 4

27N
2 ≈ 0.148N2, which is obtained

by equidistant three token configurations. This conjecture, simple and elegant,
is indeed very difficult to prove. In recent years, it has attracted much attention
to improve the bound towards this conjecture: Kiefer et al. [9] proved a bound
of 0.64N2, and the authors of this paper further improved it to 0.521N2 [5], by
simply exploiting the precise solution for the three token configurations derived
in [12].

In this paper, we follow this research line by proving an upper bound of 1
6N

2,
approximately 0.167N2, for arbitrary configurations. Our bound is very close to
the conjectured optimal bound, with a gap of 0.019N2. It is worth noting that
our approach is completely elementary: for each initial configuration, we found
a closed-form upper bound for the expected stabilization time, inspired by the
three token formula given by McIver and Morgan. This bound is a function of the
gap vector of the initial configuration, thus a multivariate function. Our result
then follows by obtaining the maximum of the upper bounds over all initial
configurations, using the Lagrange multipliers method.

Note that systems of interacting and annihilating particles, either on a circle or
on a line, are heavily studied in areas including physics, combinatorics and neural
networks [11]. Most of them focus on exploring the precise solutions, for example
Balding [1] gives generating functions for the number of remaining particles at
time t, and this results is transferred in [9] to Herman’s setting. However, such
expressions are in general very complex and difficult to analyze, see [1,4,9]. In
contrast, our proof in this paper exploits mostly elementary concepts, and it is
much simpler than previous techniques for analyzing Herman’s algorithm [6,9].
Because of this, we are optimistic that our approach might provide alternative
ways to improve worst-case analysis of such particle systems.

Related Work. In [9], an asynchronous variant of Herman’s protocol is studied
as well. Recently, [8] has studied the distribution of the self-stabilization time
and shown that for an arbitrary t the probability of stabilization within time t
is minimized under this configuration with M = 3. On the practical side, using
the probabilistic model checker PRISM [10], McIver and Morgan’s conjecture is
validated for all rings with the size N ≤ 21 that can be exhaustively analyzed.
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2 Preliminaries z0
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Fig. 1. A configuration with M =
5, N = 25

We assume to have N processors numbered
from 0 to N − 1, clockwise, with N odd, or-
ganized in a ring topology. Each processor
may or may not have a token. A configura-
tion with 0 < M ≤ N tokens, M is odd, is
a strictly increasing mapping z : {0, . . . ,M −
1} → {0, . . . , N − 1} such that z(0) < · · · <
z(M − 1). For all i ∈ {0, . . . ,M − 1}, the pro-
cessor z(i) has a token. We fix the ring size N
throughout this paper.

Herman’s protocol [7] works as follows: in
each time step, each processor with a token
either passes its token to its clockwise neighbor with probability 1

2 , or keeps
it with probability 1

2 . If a processor keeps its token and receives another one
from its counterclockwise neighbor, then both of those tokens are annihilated.
We refer to configurations with only one token as legitimate configurations. The
protocol can also be viewed as a finite state Markov chain. It is easy to see that
in this Markov chain there is a single bottom SCC consisting of all legitimate
configurations. Thus this SCC is reached with probability 1, regardless of the
initial configuration. It implies then that Herman’s protocol is self-stabilizing.

Let SM be the set of configurations with the number of tokens not exceeding
M . Let PM : SM × SM → [0, 1] be the probabilistic transition matrix between
configurations in SM , and EM : SM → [0,∞) the function of expected stabiliza-
tion time. The following lemma from [12], slightly modified with respect to our
notations, is crucial for our discussion.

Lemma 1. [12, Lemma 5] Let M ≥ 1 and v : SM → [0,∞) be a mapping such
that v(z) = 0 whenever z ∈ S1 is a legitimate configuration. Suppose (PM ·v)(z) ≤
v(z)−1 for any non-legitimate configuration z, where PM ·v is the mapping from
SM to [0,∞) such that

(PM · v)(z) =
∑

y∈SM

PM (z, y)v(y).

Then EM (z) ≤ v(z) for all z ∈ SM .

Employing Lemma 1, McIver and Morgan were able to find a closed form for
EM when M = 3. To present their result, we need a further definition.

Definition 1 (Gap Vector). Let M ≥ 3 and z ∈ SM\SM−2, i.e., it has exactly
M tokens. We define the associated gap vector w = 〈w0, w1, . . . , wM−1〉 of z,
where wi is the gap between the tokens z(i− 1) and z(i) defined by wi := z(i)−
z(i − 1) for i = 1, . . . ,M − 1, and w0 = N −∑M−1

i=1 wi. We denote by GM ,
M ≥ 3, the set of gap vectors corresponding to configurations from SM , and set
G1 = {〈N〉}.
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Obviously, configurations with the same gap vector have the same expected
stabilization time. In other words, the value EM (z) depends only on the gap
vector w associated with z.

Lemma 2. [12, Lemma 7] For any z ∈ S3, let w = 〈w0, w1, w2〉 be the gap
vector of z. Then E3(z) = 4w0w1w2/N.

In this paper, we will further dig the potential of Lemma 1 to give a (nearly
optimal) bound on EM for the general case M ≥ 3.

3 Our Main Result

To simplify notations, we sometimes extend gap vectors, which have finite di-
mension, to infinite ones by appending 0 entries. That is, we let wi = 0 for all
i ≥ M if w is a gap vector of dimension M . The following definition is crucial.

Definition 2. Let G =
⋃N

M=1,M is odd GM and F : G → [0,∞) be a mapping
defined by

F (〈w0, w1, · · · , wM−1〉) =
∞∑

i=0

wi ·
⎡

⎣
∞∑

j=0

wi+2j+1 ·
( ∞∑

k=0

wi+2j+2k+2

)⎤

⎦ . (1)

With this definition, we can now state the main result of this paper.

Theorem 1. For any z ∈ SM with the associated gap vector w,

EM (z) ≤ 4

N
F (w). (2)

We can further apply the Lagrange multipliers method to compute the max-
imal value of EM (z) for each M ≤ N , which provides a better upper bound
1
6N

2 = 0.167N2, over the previous known bound 0.521N2 [5], of the expected
self-stabilization time for arbitrary initial configurations (cf. Theorem 2).

The proof of Theorem 1 will be presented in the next section. But first, we
apply it for some small values of M .

– M = 3. Then F (〈w0, w1, w2〉) = w0w1w2, and Eqn.(2) agrees with the precise
bound in Lemma 2.

– M = 5. Then F (w) equals the sum of all the products of three neighboring
gaps :

F (〈w0, w1, w2, w3, w4〉) = w0w1w2 + w1w2w3 + w2w3w4 + w3w4w0 + w4w0w1

(3)

– M = 7. In this case, F (w) is already involved. It contains the sum of all the
products of three neighboring gaps, and in addition it contains products of
gaps of the form wiwi+3wi+4. Here if we assume all arithmetic operations
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over the index set {0, . . . ,M − 1} are understood as modulo 7, then it can
be written as:

F (〈w0, w1, w2, w3, w4, w5, w6〉) =
6∑

i=0

wiwi+1wi+2 +

6∑

i=0

wiwi+3wi+4 .

– The explicit expressions for M > 7 are even more involved. It is still the
sum of some products of three (not necessarily neighboring) gaps, but the
pattern becomes more and more complicated. For example, products of
the form wiwi+N

3
wi+ 2N

3
will be needed for those N which are multiples

of 3.

To prove the main theorem, we first need to introduce some notation.

Definition 3. For any configuration z ∈ SM , we denote by O(z) the bag of
next-step configurations obtained from z; that is, O(z) = {y ∈ SM : PM (z, y) >
0}. Let Og(z) be the bag of gap vectors for O(z); that is

Og(z) = {w : w is the gap vector for some y ∈ O(z)}.
Here by bag we mean a multiset where an element can appear more than once.
For simplicity, we use the set notation {·} to denote bags as well.

Actually, Og(z) is almost an ordinary set except that the gap vector associated
to z occurs twice, one corresponding to the case where all tokens move, and the
other where no token moves.

Note that in our setting, for each z ∈ SM\SM−2, M ≥ 3, and y ∈ O(z), the
probability PM (z, y) is always 1

2M
. Let F g

M be the function obtained by compos-
ing F with the gap function, restricting on the set of M -token configurations;
that is, for any z ∈ SM\SM−2, F

g
M (z) = F (w) where w is the gap vector of z.

Then

(PM · 4

N
F g
M )(z) =

4

2MN

∑

y∈O(z)

F g
M (y) =

4

2MN

∑

v∈Og(z)

F (v).

The proof of our main theorem will exploit the definition of F to derive a closed
form for the sum

∑
v∈Og(z)

F (v), which is the most challenging part.With that we
will be able to show

(PM · 4

N
F g
M )(z) ≤ 4

N
F g
M (z)− 1

for all non-legitimate configuration z, and themain theorem follows fromLemma1.

4 Proof of the Main Theorem

4.1 The 5-Token Case

To illustrate our basic ideas, let us first consider the case of 5 tokens. The function
F is given in Eqn.(3), which has obviously the following properties:



A Nearly Optimal Upper Bound for the Self-Stabilization Time 347

– F is rotationally symmetric, i.e., F (〈w0, . . . , w4〉) = F (〈w1, w2, w3, w4, w0〉).
– F is in harmony for smaller M < 5, i.e., assuming w1 = 0,

F (〈w0, w1, w2, w3, w4〉) = F (〈w0 + w2, w3, w4〉).

Thus, we can freely use the 5-token formula for all 3-token configurations as
well, and we will not distinguish a 5-dimensional integer vector with some
of the elements being 0 with the 3-token or 1-token configuration it really
represents.

These two properties will be extended for arbitraryM , and they will be exploited
to prove our main theorem.

We define the one-step gap increment vectors for a 5-token configuration as
follows.

1. Let Δ1 = 〈1,−1, 0, 0, 0〉, which corresponds to the first token passing while
the others remaining. Obviously, the cases where a single token passes while
the others remain can be obtained by applying Peri to ΔT

1 , where i ∈
{0, 1, 2, 3, 4} and

Per =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟⎟⎟⎟⎠

is the basic cyclic permutation matrix.
2. LetΔ2,1 = 〈1, 0,−1, 0, 0〉, corresponding to the first two tokens passing while

the others remaining, and Δ2,2 = 〈1,−1, 1,−1, 0〉, corresponding to the first
and the third tokens passing while the others remaining. Other cases where
exactly 2 tokens passing can be obtained by applying the cyclic permutation
matrices to either Δ2,1 or Δ2,2.

3. LetΔ0 = 〈0, 0, 0, 0, 0〉, corresponding to the case that no token, or all, moves.

Observe that the case of exactly 3 tokens passing is equivalent to exactly 2
passing, but in the opposite direction. Similar correspondence holds for exactly
1 or 4 tokens passing. Thus all the possible outcomes of a single step starting
from a non-legitimate configuration z ∈ S5 with the gap vector w = (w0, · · · , w4)
constitute the set

Og(z) = {w ±Δ0, w ± PeriΔT
1 , w ± PeriΔT

2,1, w ± PeriΔT
2,2 : i = 0, 1, 2, 3, 4}

where each element occurs with probability 1/32 (here we recall Og(z) is a bag,
and w+Δ0 = w−Δ0). Since F (v) is in harmony, in case some gaps in v ∈ Og(z)
are equal to 0, which corresponds to a 3 or 1 token configuration, we can still
use the 5-token formula.

To calculate the value
∑

v∈Og(z)
F (v), we let

�i
1 := F (w + PeriΔT

1 ) + F (w − PeriΔT
1 )
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for i = 0, 1, 2, 3, 4, and �i
2,1 and �i

2,2 be defined similarly. Note that

(w0 + 1)(w1 − 1)w2 + (w0 − 1)(w1 + 1)w2 = 2w0w1w2 − 2w2.

We have �0
1 = 2F (w)−2w2−2w4. Moreover, as F (w) is rotationally symmetric,

and
∑4

i=0 wi = N , we derive
∑4

i=0 �i
1 = 10F (w) − 4N . In a similar way, we

have �0
2,1 = 2F (w) − 2w1 and

∑4
i=0 �i

2,1 = 10F (w)− 2N . The case for Δ2,2 is
slightly complicated: the sum �0

2,2 can be first simplified to

(w1 − 1)(w2 + 1)(w0 + w3) + (w2 + 1)(w3 − 1)w4 + (w3 − 1)w4(w0 + 1)

+ w4(w0 + 1)(w1 − 1) + w4(w0 − 1)(w1 + 1)

(w1 + 1)(w2 − 1)(w0 + w3) + (w2 − 1)(w3 + 1)w4 + (w3 + 1)w4(w0 − 1)

Thus �0
2,2 = 2F (w) − 2(w0 + w3) − 6w4, and

∑4
i=0 �i

2,2 = 10F (w) − 10N .
Finally, noting F (w + Δ0) = F (w − Δ0) = F (w), we have

∑
v∈Og(z)

F (v) =

32F (w)− 16N . Thus

(P5 · 4

N
F g
5 )(z) =

4

32N
(32F (w)− 16N) =

4

N
F (w) − 2 ≤ 4

N
F g
5 (z)− 1,

and Lemma 1 implies E5(z) ≤ 4
N · F g

5 (z). Using Lagrange multipliers method
(cf. Theorem 2), we have then E5(z) ≤ 4

N · 1
25N

3 = 4
25N

2 = 0.16N2.

4.2 Properties of the Function F

For M = 5, we have seen that F is rotationally symmetric and in harmony for
smaller values of M . Below we generalize these two properties for arbitrary M .

Lemma 3. [Rotational Symmetricity] The function F is rotationally symmet-
ric. That is, for any odd number M ≥ 3,

F (〈w0, w1, · · · , wM−1〉) = F (〈w1, · · · , wM−1, w0〉).
Proof. Let w = 〈w0, w1, · · · , wM−1〉 and w′ = 〈w1, w2, · · · , wM−1, w0〉. We need
to prove F (w) = F (w′). Note that by Eqn.(1),

F (w) =
M−3∑

i=0

wi

∞∑

j=0

wi+2j+1

∞∑

k=0

wi+2j+2k+2

=

M−3∑

i=0

wi

�(M−3−i)/2�∑

j=0

wi+2j+1

�(M−3−i−2j)/2�∑

k=0

wi+2j+2k+2 .

The proof idea is to divide the sum above into two parts, for even and odd index
i, respectively. Then we can see the relation of F (w) and F (w′) by shifting the
indices. For this purpose, we denote by

Σ1(w) :=

(M−3)/2∑

n=1

w2n−1

(M−3−2n)/2∑

j=0

w2n+2j

(M−3−2n−2j)/2∑

k=0

w2n+2j+2k+1 (4)

Σ2(w) :=

(M−3)/2∑

n=0

w2n

(M−3−2n)/2∑

j=0

w2n+2j+1

(M−3−2n−2j)/2∑

k=0

w2n+2j+2k+2. (5)
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Then F (w) = Σ1(w) + Σ2(w). Note that M − 1 is an even number, and w′
i

equals wi+1 if i < M − 1, and equals w0 if i = M − 1. For the gap vector w′, we
calculate that

Σ1(w
′) =

(M−3)/2∑

n=1

w2n

(M−3−2n)/2∑

j=0

w2n+2j+1

(M−3−2n−2j)/2∑

k=0

w2n+2j+2k+2

= Σ2(w) − w0

(M−3)/2∑

j=0

w2j+1

(M−3−2j)/2∑

k=0

w2j+2k+2.

The most involved part is the sum Σ2(w
′). Note k = (M−3−2n−2j)/2 implies

w′
2n+2j+2k+2 = w′

M−1. Isolating the term of w′
M−1 from the last part of Σ2(w

′),
we derive:

Σ2(w
′) =

(M−5)/2∑

n=0

w′
2n

(M−5−2n)/2∑

j=0

w′
2n+2j+1

(M−5−2n−2j)/2∑

k=0

w′
2n+2j+2k+2

+

(M−3)/2∑

n=0

w′
2n

(M−3−2n)/2∑

j=0

w′
2n+2j+1 · w′

M−1.

Some subtle simplifications have been used above: the case n = (M−3)/2 implies
(M − 3− 2n)/2 = 0 and (M − 3− 2n− 2j)/2 = 0 as well, thus the corresponding
term w′

M−3w
′
M−2w

′
M−1 appears in the sum in the last line. Similar with the case

j = (M − 3− 2n)/2. Now we can further rewrite Σ2(w
′) by:

Σ2(w
′) =

(M−3)/2∑

n=1

w2n−1

(M−3−2n)/2∑

j=0

w2n+2j

(M−3−2n−2j)/2∑

k=0

w2n+2j+2k+1

+ w0

(M−3)/2∑

n=0

w2n+1

(M−3−2n)/2∑

j=0

w2n+2j+2

= Σ1(w) + w0

(M−3)/2∑

j=0

w2j+1

(M−3−2j)/2∑

k=0

w2j+2k+2.

Thus we have F (w′) = Σ1(w
′) +Σ2(w

′) = Σ1(w) +Σ2(w) = F (w). �
Remark 1. We could also define the function F in Definition 2 in a rotationally
symmetric way directly by, say, letting the arithmetic operations over indices be
modulo M . This would save our efforts to prove Lemma 3. However, we decided
to adopt the current definition for the following two reasons:

1. This definition makes the proof of Lemma 4 easier to follow;
2. The generating set C(M) of the gap increment vectors in the next section

is constructed inductively (Proposition 1), which is in harmony with the
current definition of F , and makes the proof of the main theorem easy to
follow as well.
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The following lemma shows that the definition of F is in harmony for arbitraryM .

Lemma 4. For any odd number M ≥ 3, if w1 = 0 then

F (〈w0, w1, w2, · · · , wM−1〉) = F (〈w0 + w2, w3, · · · , wM−1〉).
Proof. The equality is obtained by directly expanding both sides according to
Eqn.(1), by noting that w1 = 0:

F (〈w0, w1, w2, · · · , wM−1〉) =
∞∑

i=0

wi ·
⎡

⎣
∞∑

j=0

wi+2j+1 ·
( ∞∑

k=0

wi+2j+2k+2

)⎤

⎦

= w0 ·
⎡

⎣
∞∑

j=0

w2j+1 ·
( ∞∑

k=0

w2j+2k+2

)⎤

⎦+ w2 ·
⎡

⎣
∞∑

j=0

w2j+3 ·
( ∞∑

k=0

w2j+2k+4

)⎤

⎦

+

∞∑

i=3

wi ·
⎡

⎣
∞∑

j=0

wi+2j+1 ·
( ∞∑

k=0

wi+2j+2k+2

)⎤

⎦

= (w0 + w2) ·
⎡

⎣
∞∑

j=0

w2j+3 ·
( ∞∑

k=0

w2j+2k+4

)⎤

⎦

+

∞∑

i=3

wi ·
⎡

⎣
∞∑

j=0

wi+2j+1 ·
( ∞∑

k=0

wi+2j+2k+2

)⎤

⎦

= F (〈w0 + w2, w3, · · · , wM−1〉).
�

As the function F is rotationally symmetric, the above lemma indeed shows that
any 0 entry in the gap vectors can be absorbed, without affecting the value of
the F function.

4.3 Gap Increment Vector

In this section, we characterize the vectors in Og(z) with the help of gap incre-
ment vectors.

Definition 4 (Gap Increment Vector). Let z be a configuration with w its
associated gap vector. The vectors Δ := w′−w, where w′ ∈ Og(z), are called the
gap increment vector for z.

Moreover, as seen in the 5-token case, the set of gap increment vectors consists
of pairs of symmetric ones:

Lemma 5. For any gap increment vector Δ for z, both w +Δ and w −Δ are
in Og(z).



A Nearly Optimal Upper Bound for the Self-Stabilization Time 351

Proof. By definition, w′ := w+Δ ∈ Og(z). The gap vector w′ is obtained from w
by moving a set A of tokens forward. By symmetry, the vector w−Δ is obtained
if all tokens in A stay, but other tokens move forward. �

Let C(M) be a subset of gap increment vectors for M tokens such that for
each non-legitimate z ∈ SM\SM−2,

Og(z) = {w ±Δ : Δ ∈ C(M)}.

Without loss of generality, we assume every vector in C(M) has the first entry
being either 0 or 1. We would like to construct C(M) in an inductive way.

When M = 1, obviously C(M) = {〈0〉}. Let z ∈ SM\SM−2 be a configuration
with M ≥ 3 tokens, and w = 〈w0, w1, · · · , wM−1〉 the associated gap vector. We
first ignore the first two tokens and consider the M − 2 token configuration z′

with gap vector w′ = 〈w0 + w1 + w2, w3, · · · , wM−1〉. For each v′ ∈ Og(z
′) with

v′ = w′ +Δ′ and Δ′ ∈ C(M − 2), we need to consider two cases:

1. v′0 = w′
0. That is, the first gap of w′ does not change. Come back to the

original vector w. There are four gap vectors v ∈ Og(z) corresponding to
this case: (i) vi = wi for each i = 0, 1, 2; (ii) v0 = w0, v1 = w1 + 1, and
v2 = w2 − 1; (iii) v0 = w0 + 1, v1 = w1 − 1, and v2 = w2; (iv) v0 = w0 + 1,
v1 = w1, and v2 = w2 − 1. That is, corresponding to each increment vector
Δ′ ∈ C(M − 2) with Δ′

0 = 0, there are four increment vectors Δ ∈ C(M)
obtained from Δ′ by replacing Δ′

0 with the three-element vectors 〈0, 0, 0〉,
〈0, 1,−1〉, 〈1,−1, 0〉, and 〈1, 0,−1〉, respectively.

2. v′0 = w′
0+1. That is, the first gap of w′ increases by 1. Similar to the first case,

we have for each increment vector Δ′ ∈ C(M − 2) with Δ′
0 = 1, there are

four increment vectors Δ ∈ C(M) obtained from Δ′ by replacing Δ′
0 by the

three-element vectors 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1,−1, 1〉, and 〈1, 0, 0〉, respectively.

The items 1 and 2 above actually give us an inductive way to construct C(M),
M ≥ 3, from C(M − 2):

Proposition 1. Let C(M) be defined above. Then C(1) = {〈0〉}, and for any
odd number M ≥ 3,

C(M) = A�C0(M − 2) ∪B�C1(M − 2)

where the operation � means the element-wise concatenation of vectors,

Ci(M − 2) = {〈Δ1, . . . , ΔM−3〉 : 〈i,Δ1, . . . , ΔM−3〉 ∈ C(M − 2)}

for i = 0, 1, and

A := {〈0, 0, 0〉, 〈0, 1,−1〉, 〈1,−1, 0〉, 〈1, 0,−1〉}
B := {〈0, 0, 1〉, 〈0, 1, 0〉, 〈1,−1, 1〉, 〈1, 0, 0〉}.
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For example, applying the above proposition, we have C(3) = A, and C(5) is
the union of the following two sets:

A�C0(3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈0, 0, 0, 0, 0〉,
〈0, 1, −1, 0, 0〉,
〈1, −1, 0, 0, 0〉,
〈1, 0, −1, 0, 0〉,
〈0, 0, 0, 1, −1〉,
〈0, 1, −1, 1, −1〉,
〈1, −1, 0, 1, −1〉,
〈1, 0, −1, 1, −1〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; B�C1(3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈0, 0, 1, −1, 0〉,
〈0, 1, 0, −1, 0〉,
〈1, −1, 1, −1, 0〉,
〈1, 0, 0, −1, 0〉,
〈0, 0, 1, 0, −1〉,
〈0, 1, 0, 0, −1〉,
〈1, −1, 1, 0, −1〉,
〈1, 0, 0, 0, −1〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Obviously, the cardinality of C(M) is 2M−1.

4.4 Properties of Gap Increment Vectors

As for the gap vectors, in the following, when the index exceeds M−1, we always
assume 0 entries for the gap increment vectors. That is, we let wi = 0 and Δi = 0
for all i ≥ M if w = (w0, · · · , wM−1) and Δ = (Δ0, · · · , ΔM−1). The following
two lemmas state properties about sums of increment vectors, that will be used
to simplify the sum

∑
v∈Og(z)

F (v) later.

Lemma 6. For any odd number M ≥ 3,

∑

Δ∈C(M)

Δ1

∞∑

k=0

Δ2k+2 = −2M−3. (6)

Proof. The lemma is proved by dividing the sum according to the recursive def-
inition of the gap increment vector. Precisely,

∑
Δ∈C(M) Δ1

∑∞
k=0 Δ2k+2 equals

∑

Δ′∈C0(M−2)

1 ·
( ∞∑

k=0

Δ′
2k+1 − 1

)
+

∑

Δ′∈C0(M−2)

(−1) ·
∞∑

k=0

Δ′
2k+1

+
∑

Δ′∈C1(M−2)

(−1) ·
( ∞∑

k=0

Δ′
2k+1 + 1

)
+

∑

Δ′∈C1(M−2)

∞∑

k=0

Δ′
2k+1

= −|C0(M − 2)| − |C1(M − 2)|
= −|C(M − 2)| = −2M−3.

�
Lemma 7. For any odd number M ≥ 1,

∑

Δ∈C(M)

∞∑

j=0

∞∑

k=0

Δ2j+1Δ2j+2k+2 = −(M − 1)2M−4. (7)
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Proof. Let T (M) be the LHS of Eqn.(7).We prove by induction that T (M) =
−(M − 1)2M−4. The result is obvious for M = 1. Suppose now that Eqn.(7)
holds for M − 2, M ≥ 3. Then we have from Lemma 6 that

T (M) =
∑

Δ∈C(M)

Δ1

∞∑

k=0

Δ2k+2 +
∑

Δ∈C(M)

∞∑

j=1

∞∑

k=0

Δ2j+1Δ2j+2k+2

= −2M−3 + 4 ·
∑

Δ∈C(M−2)

∞∑

j=0

∞∑

k=0

Δ2j+1Δ2j+2k+2

= −2M−3 − 4(M − 3)2M−6 = −(M − 1)2M−4.

�

4.5 Proof of the Main Theorem

We are now ready to prove the main theorem. First we give a closed form for
the sum

∑
v∈Og(z)

F (v).

Lemma 8. For any non-legitimate configuration z ∈ SM\SM−2 with gap vector
w, ∑

v∈Og(z)

F (v) = 2MF (w)− (M − 1)2M−3N.

Proof. First note that

∑

v∈Og(z)

F (v) =
∑

Δ∈C(M)

[F (w +Δ) + F (w −Δ)]

=
∑

Δ∈C(M)

M−3∑

i=0

∞∑

j=0

∞∑

k=0

[(wi +Δi)(wi+2j+1 +Δi+2j+1)(wi+2j+2k+2 +Δi+2j+2k+2)

+ (wi −Δi)(wi+2j+1 −Δi+2j+1)(wi+2j+2k+2 −Δi+2j+2k+2)].

On the other hand, a simple calculation shows that for any a, b, c and x, y, z,

(a+ x)(b + y)(c+ z) + (a− x)(b − y)(c− z) = 2abc+ 2xyc+ 2xzb+ 2yza

Thus we have

∑

v∈Og(z)

F (v) =
∑

Δ∈C(M)

2F (w) +

M−1∑

i=0

Awiwi

where Awi is the coefficient of wi. Using Lemma 7 we compute the coefficient
Aw0 of w0 as

Aw0 =
∑

Δ∈C(M)

2 ·
∞∑

j=0

∞∑

k=0

Δ2j+1Δ2j+2k+2 = −(M − 1)2M−3.
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As the function F is rotationally symmetric, we derive that

∑

v∈Og(z)

F (v) =
∑

Δ∈C(M)

2F (w)− (M − 1)2M−3
M−1∑

i=0

wi

= 2MF (w) − (M − 1)2M−3N.

�

Proof of the Main Theorem. From Lemma 8, we have that for any non-legitimate
configuration z ∈ SM\SM−2 with gap vector w,

(PM · 4

N
F g
M )(z) =

4

2MN

∑

v∈Og(z)

F (v) =
4

N
F (w) − M − 1

2
≤ 4

N
F g
M (z)− 1.

(8)

Thus, Lemma 1 implies that EM (z) ≤ 4
N F g

M (z) = 4
N F (w). �

5 A Nearly Optimal Upper Bound

In our main theorem, we derived an upper bound for the stabilization time
EM (z), which is given in terms of the function F (w). Furthermore, using the
method of Lagrange multipliers, we can derive a nearly optimal upper bound
which is independent of the initial configurations.

Theorem 2. 1. For all N and odd number 3 ≤ M ≤ N , we have

max
z∈SM

EM (z) ≤ N2

6
·
(
1− 1

M2

)
.

2. For all N and for all initial configurations, we have ET ≤ 1
6N

2.

Proof. Item 2 is direct from Item 1. For Item 1, it suffices to show that for any
z ∈ SM with gap vector w,

F (w) ≤ u(M) :=
N3

24
·
(
1− 1

M2

)
.

First, we use the method of Lagrange multipliers to find the critical point of
F (w) with the constraints wi ≥ 0 for each i, and

∑M−1
i=0 wi = N . Here we do

not require values of wi being integers any more; they can be any nonnegative
real numbers. Let

f(w) = F (w) + λ

(
M−1∑

i=0

wi −N

)
.
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We calculate the gradient equations for w0 and w2 as

∂f

∂w0
=

∞∑

j=0

w2j+1

∞∑

k=0

w2j+2k+2 + λ

∂f

∂w2
=

∞∑

j=0

w2j+3

∞∑

k=0

w2j+2k+4 + w0w1 + w1

∞∑

k=0

w2k+3 + λ.

By letting ∂f
∂w0

= ∂f
∂w2

= 0 and noting that
∑M−1

i=0 wi = N , we derive directly:

w2 + w4 + · · ·+ wM−1 =
N − w1

2
(9)

w1 + w3 + · · ·+ wM−2 =
N + w1

2
− w0. (10)

Since F is rotationally symmetric, we can derive from Eqn.(10) that

w2 + w4 + · · ·+ wM−1 =
N + w2

2
− w1. (11)

Thus w1 = w2 from Eqs.(9) and (11). By the rotational symmetry of F again,
we have w0 = w1 = · · · = wM−1 = N/M . Denote by w∗ this (unique) critical

point. Then F (w∗) = u(M) = N3

24 · (1− 1
M2

)
from Eqs.(4) and (5).

On the other hand, note that F (w) is a continous multivariate function and

R(M) := {w ∈ RM | wi ≥ 0,
M−1∑

i=0

wi = N}

is a compact set. It follows that F (w) has a global maximum in R(M). For
any w′ ∈ R(M) which achieves this global maximum, if w′ is an interior point
of R(M), then it must be a critical point. Thus w∗ = w′, and as a result,
F (w∗) = u(M) is the global maximum of F (w) in R(M) (and so in G(M)).
Then the theorem follows.

We now argue that w′ is indeed an interior point of R(M). Otherwise, w′

must have some zero elements. By deleting all zero elements from w′, we get a
vector w′′ which lies in the interior of R(M ′) for some M ′ < M . Thus F (w′′) =
F (w′) is the global maximum of F (w) in R(M ′), so w′′ is a critical point, and
F (w′′) = u(M ′). From the fact that u(M) is a strictly increasing function, we
have

F (w′) = F (w′′) = u(M ′) < u(M),

contraditing the assumption that w′ achieves the global maximum of F in R(M).
�

6 Conclusion and Future Work

It is conjectured that 4
27N

2 is the tight upper bound of Herman’s self-stabilization
algorithm. Our paper provides a bound 1

6N
2, which is very close to the conjec-

tured bound. This gap, which is approximately 0.019N2, arises from the strict
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inequality in Eqn.(8) for M ≥ 5. To make the inequality tighter, and derive a
better bound is one of our further works. Our technique takes large advantage
of the uniform distribution of the next-step configurations. This is not true for
the asynchronous variant of Herman’s protocol [9], as well as for the asymmetric
case for token passing. The generalization to these cases will be our future work.

Finally, as Herman’s protocol is very similar to systems of interacting and
annihilating particles proposed and studied in physics, combinatorics, and neural
networks, we are also interested in exploiting the possibility of extending our
elementary methodology for Herman’s protocol to providing approximate upper
bound for the worst-case analysis of such particle systems.
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