Paolo Baldan

Daniele Gorla (Eds.)

ARCoSS

CONCUR 2014 -
Concurrency Theory

25th International Conference, CONCUR 2014
Rome, Italy, September 2-5, 2014
Proceedings

LNCS 8704

B —

Lecture Notes in Computer Science 8704

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA

Alfred Kobsa, USA Friedemann Mattern, Switzerland
John C. Mitchell, USA Moni Naor, Israel

Oscar Nierstrasz, Switzerland C. Pandu Rangan, India
Bernhard Steffen, Germany Doug Tygar, USA

Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Paolo Baldan Daniele Gorla (Eds.)

CONCUR 2014 -
Concurrency Theory

25th International Conference, CONCUR 2014
Rome, Italy, September 2-5, 2014
Proceedings

@ Springer

Volume Editors

Paolo Baldan

University of Padova
Department of Mathematics
Via Trieste, 63

35121 Padova, Italy

E-mail: baldan @math.unipd.it

Daniele Gorla

University of Rome "La Sapienza"
Department of Computer Science
Via Salaria, 113

00198 Rome, Italy

E-mail: gorla@di.uniromal.it

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-662-44583-9 e-ISBN 978-3-662-44584-6
DOI 10.1007/978-3-662-44584-6

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946233

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 25th Conference on Concurrency
Theory (CONCUR 2014), held in Rome, at the University of Rome “La Sapienza”
and organized by University of Rome “La Sapienza” and the University of
Padova. The purpose of the CONCUR conference is to bring together researchers,
developers and students in order to advance the theory of concurrency and
promote its applications. The principal topics include basic models of concur-
rency such as abstract machines, domain theoretic models, game theoretic mod-
els, categorical models, process algebras, graph transformation systems, coalge-
braic models and Petri nets; logics for concurrency such as modal logics, prob-
abilistic and stochastic logics, temporal logics, and resource logics; models of
specialized systems such as biology-inspired systems, circuits, hybrid systems,
mobile and collaborative systems, multi-core processors, probabilistic systems,
real-time systems, service-oriented computing, and synchronous systems; ver-
ification and analysis techniques for concurrent systems such as abstract in-
terpretation, atomicity checking, model checking, race detection, pre-order and
equivalence checking, run-time verification, state-space exploration, static anal-
ysis, synthesis, testing, theorem proving, and type systems; related programing
models such as distributed, component-based, object-oriented, web services and
security issues in concurrent systems. This was the 25th edition of CONCUR.
To mark this special occasion, the conference program included an invited pre-
sentation by Tony Hoare on the history of the theory of concurrency, the way
it intertwines with the origin and development of the CONCUR conferences
and the future perspectives in the field of concurrency theory. The conference
program was further greatly enhanced by the enlightening invited talks by

Javier Esparza (Technische Universitat Miinchen, Germany)
— Jane Hillston (University of Edinburgh, UK),

— Catuscia Palamidessi (Inria Saclay and LIX, France),

Vasco Vasconcelos (Universidade de Lisboa, Portugal).

This edition of the conference attracted 124 submissions. We wish to thank
all the authors for their interest in CONCUR 2014. After careful discussions,
the Program Committee selected 35 papers for presentation at the conference.
Each submission was refereed by at least three reviewers, who delivered detailed
and insightful comments and suggestions. The conference chairs warmly thank
all the members of the Program Committee and all the referees for their hard
and professional work, as well as for the friendly and constructive discussions.
We would also like to thank the authors for having done their best to revise their
papers taking into account the comments and suggestions by the referees.

VI Preface

The conference this year was co-located with two other conferences: TGC
2014 (9th International Symposium on Trustworthy Global Computing) and
IFIP-TCS (8th International IFIP Conference on Theoretical Computer Sci-
ence). Additionally, CONCUR 2014 included the following satellite workshops:

— EXPRESS/SOS (Combined 21st International Workshop on Expressiveness
in Concurrency and 11th Workshop on Structured Operational Semantics),
organized by Johannes Borgstrom and Silvia Crafa;

— YR-CONCUR (5th Young Researchers Workshop on Concurrency Theory),
organized by Matteo Cimini;

— BEAT (3rd International Workshop on Behavioural Types), organized by
Simon Gay, on behalf of COST Action IC1201 (BETTY);

— FOCLASA (13th International Workshop on the Foundations of Coordina-
tion Languages and Self-Adaptation), organized by Javier Cdmara and José
Proenga;

— PV 2014 (Workshop on Parameterized Verification), organized by Giorgio
Delzanno and Parosh A. Abdulla;

— TRENDS (Trends in Concurrency Theory), organized by Ilaria Castellani
and Mohammad Mousavi, under the auspices of IFIP WG 1.8.

We would like to thank all the people who contributed to the success of
CONCUR 2014, in particular the workshop organization chair Silvia Crafa, the
Organizing Committee and the administrative staff. Furthermore, we thank the
University of Rome “La Sapienza” and the Department of Mathematics of the
University of Padova for their financial support. We are also grateful to Andrei
Voronkov for his excellent EasyChair conference management system, which was
extremely helpful for the electronic submission of papers, the Program Commit-
tee discussions and the production of the proceedings.

June 2014 Paolo Baldan
Daniele Gorla

Program Committee

Luca Aceto

Christel Baier

Paolo Baldan

Luis Caires

David de Frutos Escrig
Stéphanie Delaune
Wan Fokkink

Yuxi Fu

Fabio Gadducci
Daniele Gorla
Rachid Guerraoui
Joshua Guttman
Keijo Heljanko
Bartek Klin

K. Narayan Kumar
Antonin Kucera
Barbara Konig
Radu Mardare
Andrzej Murawski
Madhusudan Parthasarathy
Anna Philippou
Shaz Qadeer
Arend Rensink
Peter Selinger
Alwen Tiu
Daniele Varacca
Bjorn Victor
James Worrell

Additional Reviewers

Abbes, Samy

Almagor, Shaull

Aman Pohjola, Johannes
Aminof, Benjamin
André, Etienne

Organization

University of Reykjavik, Iceland

TU Dresden, Germany

University of Padova, Italy
Universidade Nova Lisboa, Portugal
Universidad Complutense Madrid, Spain
ENS Cachan, France

Vrije Universiteit Amsterdam and CWI, The
Netherlands

Shanghai Jiaotong University, China
University of Pisa, Italy

University of Rome “La Sapienza”, Italy
EPFL Zurich, Switzerland

Worcester Polytechnic Institute, USA

Aalto University, Finland

University of Warsaw, Poland

Chennai Mathematical Institute, India
Masaryk University, Czech Republic
University of Duisburg-Essen, Germany
Aalborg University, Denmark

University of Warwick, UK

University of Illinois, USA

University of Cyprus, Cyprus

Microsoft Research, USA

University of Twente, The Netherlands
Dalhousie University, Canada

Nanyang Technological University, Singapore
Paris Diderot, France

Uppsala University, Sweden

Oxford University, UK

Arcaini, Paolo

Atig, Mohamed Faouzi
Bacci, Giorgio

Bacci, Giovanni

Baez, John

VIII Organization

Bakhshi, Rena
Barbanera, Franco
Barbosa, Luis
Barnat, Jiri
Bartoletti, Massimo
Basilico, Nicola
Basu, Samik
Bengtson, Jesper
Bergenthum, Robin
Bernardi, Giovanni
Bernardo, Marco
Berwanger, Dietmar
Bloem, Roderick
Blom, Stefan

Bollig, Benedikt
Boker, Udi

Bono, Viviana
Bonsangue, Marcello
Borgstrom, Johannes
Bortolussi, Luca
Brazdil, Tomas
Brenguier, Romain
Burckhardt, Sebastian
Caillaud, Benoit
Capecchi, Sara
Carbone, Marco
Cassel, Sofia

Cassez, Franck
Chen, Taolue
Ciancia, Vincenzo
Cimini, Matteo
Czerwinski, Wojciech
Delahaye, Benoit
Della Monica, Dario
Delzanno, Giorgio
Demangeon, Romain
Deng, Yuxin
Dinsdale-Young, Thomas
Dodds, Mike
Donaldson, Alastair
Doyen, Laurent
Emmi, Michael
Enea, Constantin
Escobar, Santiago
Faella, Marco

Feng, Xinyu
Ferreira, Carla
Filiot, Emmanuel
Forejt, Vojtech
Fossati, Luca
Fabregas, Ignacio
Gastin, Paul
Gebler, Daniel
Ghica, Dan

Giunti, Marco
Gogacz, Tomasz
Gregorio-Rodriguez, Carlos
Guenot, Nicolas
Goller, Stefan
Haase, Christoph
Hague, Matthew
Hawblitzel, Chris
He, Chaodong
Heckel, Reiko
Heindel, Tobias
Hendriks, Dimitri
Hildebrandt, Thomas
Hofman, Piotr
Horn, Florian
Horsman, Clare
Hunter, Paul
Jancar, Petr
Jansen, David N.
Jurdzinski, Marcin
Kakutani, Yoshihiko
Kerstan, Henning
Kiefer, Stefan
Klein, Joachim
Klueppelholz, Sascha
Knowles, Kenneth
Korenciak, Lubos
Kouzapas, Dimitrios
Kraehmann, Daniel
Krcal, Jan
Kretinsky, Jan
Krivine, Jean
Kahkonen, Kari
Kiipper, Sebastian
Laarman, Alfons
Lanese, Ivan

Laneve, Cosimo
Lange, Martin
Langerak, Rom

Lazic, Ranko

Le, Duy-Khanh

Lin, Anthony

Lin, Anthony Widjaja
Lodaya, Kamal

Long, Huan

Malkis, Alexander
Markey, Nicolas
Marti-Oliet, Narciso
Martins, Francisco
Mazza, Damiano
Mclver, Annabelle
Mcneile, Ashley
Melatti, Igor

Miculan, Marino

Mio, Matteo

Mio, Matteo

Montesi, Fabrizio
Mousavi, Mohammadreza
Mukhopadhyay, Partha
Mukund, Madhavan
Moller, Bernhard
Namjoshi, Kedar
Neatherway, Robin
Nigam, Vivek
Norman, Gethin
Novotny, Petr
Obdrzalek, Jan
Orejas, Fernando
Ortega-Mallén, Yolanda
Ouaknine, Joel
Ouederni, Meriem
Padovani, Luca
Palomino, Miguel
Parlato, Gennaro
Parthasarathy, Madhusudan
Perdrix, Simon
Perevoshchikov, Vitaly
Perez, Jorge A.

Peron, Adriano
Piazza, Carla

Popeea, Corneliu

Organization

Praveen, M.
Preoteasa, Viorel
Pérez, Jorge A.

Qiu, Daowen

Quaas, Karin
Ramanujam, R.
Randour, Mickael
Rehak, Vojtech
Riveros, Cristian
Rodriguez, Cesar
Rodriguez, Ismael
Romero-Hernandez, David
Rosa-Velardo, Fernando
Rubin, Sasha
Rujiters, Enno
Saarikivi, Olli

Sack, Joshua
Saivasan, Prakash
Salvo, Ivano
Sanguinetti, Guido
Sankur, Ocan

Saurin, Alexis
Schmidt, Benedikt
Schmitz, Sylvain
Schnoebelen, Philippe
Sezgin, Ali

Siirtola, Antti Tapani
Sistla, A. Prasad
Smith, Geoffrey
Sobocinski, Pawel
Sokolova, Ana

Srba, Jiri

Srivathsan, B

Staton, Sam

Stirling, Colin
Strejcek, Jan
Stiickrath, Jan
Sumii, Eijiro

Suresh, S.P.

T. Vasconcelos, Vasco
Thomas, Ehrhard
Toninho, Bernardo
Torres Vieira, Hugo
Trivedi, Ashutosh
Turrini, Andrea

IX

X Organization

Tzevelekos, Nikos
van Breugel, Franck
Van Eijck, Jan

Van Glabbeek, Rob
Vogler, Walter
Wahl, Thomas
Yildiz, Bugra

Yin, Qiang

Yoshida, Nobuko

Zappa Nardelli, Francesco
Zavattaro, Gianluigi
Zhang, Chihao

Zhang, Lijun

Zhu, Yunyun

Invited Talks

Laws of Programming: The Algebraic
Unification of Theories of Concurrency

Tony Hoare

Microsoft Research (Cambridge) Ltd.

Abstract. I began my academic research career in 1968, when I moved
from industrial employment as a programmer to the Chair of Computing
at the Queens University in Belfast. My chosen research goal was to dis-
cover an axiomatic basis for computer programming. Originally I wanted
to express the axioms as algebraic equations, like those which provide
the basis of arithmetic or group theory. But I did not know how. After
many intellectual vicissitudes, I have now discovered the simple secret. I
would be proud of this discovery, if I were not equally ashamed at taking
so long to discover it.

The Benefits of Sometimes Not Being Discrete

Jane Hillston

LFCS, School of Informatics, University of Edinburgh
jane.hillston@ed.ac.uk
http://www.quanticol.eu

Abstract. Discrete representations of systems are usual in theoretical
computer science and they have many benefits. Unfortunately they also
suffer from the problem of state space explosion, sometimes termed the
curse of dimensionality. In recent years, research has shown that there
are cases in which we can reap the benefits of discrete representation
during system description but then gain from more efficient analysis by
approximating the discrete system by a continuous one. This paper will
motivate this approach, explaining the theoretical foundations and their
practical benefits.

Deterministic Negotiations:
Concurrency for Free

Javier Esparza

Fakultét fir Informatik, Technische Universitdt Miinchen, Germany

Abstract. We give an overview of recent results and work in progress on
deterministic negotiations, a concurrency model with atomic multi-party
negotiations as primitive actions.

The Progress of Session Types

Vasco Thudichum Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

The session types can be traced back to 1993, when Kohei Honda presented
“Types for dyadic interaction” in the seventh edition of this conference [5].
This seminal work, introducing basic type constructors and type composition
operators for “dyadic interaction”, was followed by two other papers, the first
introducing a channel-based programming language [11], and later extending
these ideas to a more general setting where channels may carry channels, while
integrating recursive types [6].

Session types aim at modelling generic, meaningful structures of interaction.
The first versions, those prevalent until 2008, encompassed exactly two inter-
acting partners, as in term “dyadic”. We have seen applications to concurrent,
message passing systems, including the pi calculus (or a mild variation of it)
as in [6] or in functional languages equipped with channel operations [12], but
also to object-oriented systems, where session types mediate access to object’s
methods [3,4].

By the turn of the millennium, communication had become a central concern
in computational systems. Structures limited to describing binary interactions
fall short of capturing the big picture of complex systems, even if they manage
to represent all the individual binary interactions, necessarily in an unrelated
manner. Different proposals address this matter, for example, by extending bi-
nary session types to scenarios of multiple participants [7] or by starting from
new type constructs to describe multiparty interactions [2].

Types that capture the interaction patterns of a collection of participants find
multiple applications these days, including the conventional verification of source
code conformance against types, or, when the above deems not possible, the
monitoring of running code against types, signalling divergences or providing for
adaptation measures. They may as well be used for code generation, mechanically
laying down the whole communication code, to be manually completed with
the “computational” code, or for testing code against communication traces
extracted from types.

The success of session types is due in part for its simplicity. With a suit-
able syntax, types become intuitive descriptions of protocols [10]. Furthermore,
session types interact easily with programming languages; in fact they were de-
veloped to be integrated in programming languages. What is more surprising is
that they can equip programming languages that were not designed with session
types in mind, as for example conventional object-oriented languages [3,4] or
concurrent functional languages with channel based communication [12]. Also,
recent developments revealed deep connections between session types and linear
logic [1].

The Progress of Session Types XVII

What lies ahead? There is strong sense of linearity associated to session types.

Session types make (possibly long) series of interaction look like atomic, free from
interference from other computations. This is usually achieved via a tight control
on who keeps a reference to the interaction medium (the channel or the object
reference, for example). At times, more flexible mechanisms would be welcome,
but there is fine balance between flexibility and the kind of properties session
types ensure. There are also important models of computation that pose diffi-
culties to session types as we know them. These are systems whose assumptions
lie outside those that underlay session types. I recall distributed systems with
nodes that may die, and the actor system of computation [8,9].

References

10.
11.

12.

Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR, 2010. LNCS, vol. 6269, pp. 222-236.
Springer, Heidelberg (2010)

Caires, L., Vieira, H.T.: Conversation types. Theoretical Computer Science 411(51-
52), 4399-4440 (2010)

Fahndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication in
Singularity OS. SIGOPS Operating Systems Review 40(4), 177-190 (2006)

Gay, S., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: Proceedings of POPL
2010, pp. 299-312. ACM (2010)

Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509-523. Springer, Heidelberg (1993)

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122-138. Springer, Heidelberg (1998)

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of POPL 2008, pp. 273-284. ACM (2008)

Mostrous, D., Vasconcelos, V.T.: Session typing for a featherweight erlang. In: De
Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp.
95-109. Springer, Heidelberg (2011)

Neykova, R., Yoshida, N.: Multiparty session actors. In: Kiihn, E., Pugliese, R.
(eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 131-146. Springer, Heidelberg
(2014)

Scribble project home page, http://www.scribble.org

Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398-413. Springer, Heidelberg (1994)
Vasconcelos, V.T., Gay, S.J., Ravara, A.: Typechecking a multithreaded functional
language with session types. Theoretical Computer Science 368(1-2), 64-87 (2006)

Generalized Bisimulation Metrics*

Konstantinos Chatzikokolakis 12, Daniel Gebler 3,
Catuscia Palamidessi 42, and Lili Xu 2

! CNRS
2 LIX, Ecole Polytechnique
3 VU University Amsterdam
* INRIA

5 Institute of Software, Chinese Academy of Science

Abstract. The bisimilarity pseudometric based on the Kantorovich lift-
ing is one of the most popular metrics for probabilistic processes proposed
in the literature. However, its application in verification is limited to lin-
ear properties. We propose a generalization of this metric which allows to
deal with a wider class of properties, such as those used in security and
privacy. More precisely, we propose a family of metrics, parametrized on
a notion of distance which depends on the property we want to verify.
Furthermore, we show that the members of this family still character-
ize bisimilarity in terms of their kernel, and provide a bound on the
corresponding metrics on traces. Finally, we study the case of a met-
ric corresponding to differential privacy. We show that in this case it is
possible to have a dual form, easier to compute, and we prove that the
typical constructs of process algebra are non-expansive with respect to
this metrics, thus paving the way to a modular approach to verification.

* This work has been partially supported by the project ANR-~12-1S02-001 PACE, the
project ANR-11-1S02-0002 LOCALI, the INRIA Equipe Associée PRINCESS, the
INRIA Large Scale Initiative CAPPRIS, and the EU grant 295261 MEALS.

Table of Contents

25th Anniversary Talk

Laws of Programming: The Algebraic Unification of Theories of
CONCUITEIICY .« « vt vttt e ettt e e e e e e e e e e e et 1
Tony Hoare

Invited Talks

The Benefits of Sometimes Not Being Discrete 7
Jane Hillston

Deterministic Negotiations: Concurrency for Free 23
Javier Esparza

Generalized Bisimulation Metrics 32
Konstantinos Chatzikokolakis, Daniel Gebler,
Catuscia Palamidessi, and Lili Xu

Process Calculi

Choreographies, Logically i i 47
Marco Carbone, Fabrizio Montesi, and Carsten Schirmann

Deadlock Analysis of Unbounded Process Networks 63
Elena Giachino, Naoki Kobayashi, and Cosimo Laneve

Trees from Functions as Processes. 78
Davide Sangiorgi and Xian Xu

Bisimulations Up-to: Beyond First-Order Transition Systems 93
Jean-Marie Madiot, Damien Pous, and Davide Sangiorgi

Model Checking and Abstraction

Parameterized Model Checking of Rendezvous Systems 109
Benjamin Aminof, Tomer Kotek, Sasha Rubin,
Francesco Spegni, and Helmut Veith

On the Completeness of Bounded Model Checking for Threshold-Based
Distributed Algorithms: Reachability 125
Igor Konnov, Helmut Veith, and Josef Widder

XX Table of Contents

Lost in Abstraction: Monotonicity in Multi-threaded Programs
Alexander Kaiser, Daniel Kroening, and Thomas Wahl

Synthesis

Synthesis from Component Libraries with Costs
Guy Avni and Orna Kupferman

Compositional Controller Synthesis for Stochastic Games
Nicolas Basset, Marta Kwiatkowska, and Clemens Wiltsche

Synchronizing Strategies under Partial Observability
Kim Guldstrand Larsen, Simon Laursen, and Jiri Srba

Probabilistic Robust Timed Games.............
Youssouf Oualhadj, Pierre-Alain Reynier, and Ocan Sankur

Quantitative Models

Perturbation Analysis in Verification of Discrete-Time Markov
Chains
Taolue Chen, Yuan Feng, David S. Rosenblum, and Guoxin Su

Robust Synchronization in Markov Decision Processes
Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi

Probabilistic Bisimulation: Naturally on Distributions
Holger Hermanns, Jan Krcdl, and Jan Kretinsky

Averaging in LTL ...
Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel

Automata and Multithreading

Decidable Topologies for Communicating Automata with FIFO and
Bag Channels
Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre

Controllers for the Verification of Communicating Multi-pushdown
SYSEEINS .« .ttt e
C. Aiswarya, Paul Gastin, and K. Narayan Kumar

Pairwise Reachability Analysis for Higher Order Concurrent Programs
by Higher-Order Model Checking i,
Kazuhide Yasukata, Naoki Kobayashi, and Kazutaka Matsuda

Table of Contents XXI

Complexity

A Linear-Time Algorithm for the Orbit Problem over Cyclic Groups.... 327
Anthony Widjaja Lin and Sanming Zhou

A Nearly Optimal Upper Bound for the Self-Stabilization Time in
Herman’s Algorithm. 342
Yuan Feng and Lijun Zhang

Bounds on Mobility 357
Reiner Hichting, Rupak Majumdar, and Roland Meyer

Process Calculi and Types

Typing Messages for Free in Security Protocols: The Case of
Equivalence Properties 372
Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune

Using Higher-Order Contracts to Model Session Types
(Extended Abstract)ooiiiiiii i 387
Giovanni Bernardi and Matthew Hennessy

A Semantic Deconstruction of Session Types 402
Massimo Bartoletti, Alceste Scalas, and Roberto Zunino

Timed Multiparty Session Types........ 419
Laura Bocchi, Weizhen Yang, and Nobuko Yoshida

Categories, Graphs and Quantum Systems

A Categorical Semantics of Signal Flow Graphs 435
Filippo Bonchi, Pawetl Sobociniski, and Fabio Zanasi

Generic Forward and Backward Simulations III:
Quantitative Simulations by Matrices........... i 451
Natsuki Urabe and Ichiro Hasuo

A General Framework for Well-Structured Graph Transformation
SYSTEINS . . ottt 467
Barbara Konig and Jan Stickrath

(Un)decidable Problems about Reachability of Quantum Systems 482
Yangjia Li and Mingsheng Ying

Automata and Time

Ordered Navigation on Multi-attributed Data Words 497
Normann Decker, Peter Habermehl, Martin Leucker, and
Daniel Thoma

XXII Table of Contents

Verification for Timed Automata Extended with Unbounded Discrete
Data Structures. 512
Karin Quaas

Reducing Clocks in Timed Automata while Preserving Bisimulation 527
Shibashis Guha, Chinmay Narayan, and S. Arun-Kumar
Games

Qualitative Concurrent Parity Games: Bounded Rationality 544
Krishnendu Chatterjee

Adding Negative Prices to Priced Timed Games 560
Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna,
Lakshmi Manasa, Benjamin Monmege, and Ashutosh Trivedi

Tight Game Abstractions of Probabilistic Automata.................. 576
Falak Sher Vira and Joost-Pieter Katoen

Author Index 593

Laws of Programming: The Algebraic
Unification of Theories of Concurrency

Tony Hoare

Microsoft Research (Cambridge) Ltd.

Abstract. I began my academic research career in 1968, when I moved
from industrial employment as a programmer to the Chair of Computing
at the Queens University in Belfast. My chosen research goal was to dis-
cover an axiomatic basis for computer programming. Originally I wanted
to express the axioms as algebraic equations, like those which provide
the basis of arithmetic or group theory. But I did not know how. After
many intellectual vicissitudes, I have now discovered the simple secret. I
would be proud of this discovery, if I were not equally ashamed at taking
so long to discover it.

1 Historical Background

In 1969 [6], I reformulated Bob Floyd’s assertional method of assigning meanings
to programs [4] as a formal logic for conducting verification proofs. The basic
judgment of the logic was expressed as a triple, often written

{p}a{r}.

The first operand of the triple (its precondition p) is an assertion, i.e., a de-
scription of the state of the computer memory before the program is executed.
The middle operand (q) is the program itself, and the third operand (its post-
condition r) is also an assertion, describing the state of memory after execution.

I now realise that there is no need to confine the precondition and the post-
condition to be simply assertions. They can be arbitrary programs. The validity
of the logic in application to programming is not affected. However the restric-
tions are fully justified by the resulting simplification in application of the logic
to program verification.

The logic itself was specified as a collection of proof rules, similar to the system
of natural deduction for reasoning in propositional logic. I illustrated the rules
by the proof of correctness of a single small and over-simplified program, a very
long division. This method of verification has since been used by experts in the
proof of many more programs of much greater significance.

In the 1970s, my interests turned to concurrent programming, which I had
failed to understand when I was manager of an operating system project for
my industrial employer (the project failed [10]). To develop and confirm my
understanding, I hoped to find simple proof rules for verification of concurrent
programs. In fact, I regarded simplicity of proof as an objective criterion of

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 1-6, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

2 T. Hoare

the quality of any feature proposed for inclusion in a high level programming
language - just as important as a possibly conflicting criterion, efficiency of
implementation. As a by-product of the search for the relevant proof rules, I
developed two features for shared-memory multiprogramming: a proposal for
the conditional critical region [7], and later for a program structure known as
the monitor [8].

At this time, the microprocessor revolution was offering an abundance of cheap
computer power for programs running on multiple processors. They were con-
nected by simple wires, and did not share a common memory. It was therefore
important that communication on the wires entailed a minimum of software or
hardware overhead. The criterion of efficiency led me to the proposal of a pro-
gramming language structure known as Communicating Sequential Processes
(CSP) [9]. The results of this research were exploited in the design of a com-
paratively successful microprocessor series, the INMOS transputer, and its less
widely used programming language occam [14]. However, I was worried by the
absence of a formal verification system for CSP.

In 1977 1T moved to Oxford University, where Dana Scott had developed a
tradition of denotational semantics for the formal definition of programming
languages [20]. This tradition defines the meaning of a program in terms of all
its possible behaviours when executed. I exploited the research capabilities of my
Doctoral students at Oxford, Steve Brookes and Bill Roscoe; they developed a
trace-based denotational semantics of CSP and proved that it satisfies a powerful
and elegant set of algebraic laws [3].

Roscoe exploited the trace-based semantics in a model checking tool called
FDR [19]. Tts purpose was to explore the risk of deadlocks, non-termination and
other errors in a program. On discovery of a potential failure, the trace of events
leading up to the error helps the programmer to explore its possible causes, and
choose which of them to correct.

2 The Origins of CONCUR

In the 1990s, I was a co-investigator on the basic research action CONCUR,
funded by the European Community as an ESPRIT project. Its goal was a
unification of three rival theories of concurrent programming: CSP (described
above), a Calculus of Communicating Systems (CCS, due to Robin Milner) [17],
and an Algebra of Communicating Processes (ACP, due to Jan Bergstra) [1,2].
These three designs differed not only in the details of their syntax, but also in
the way that their semantic foundations were formalised.

Milners CCS was defined by an operational semantics. Its basic judgment is
also a triple, called a transition

rop.
But in this case, the first operand (r) is the program being executed, the second

operand (g) is a possible initial action of the program, and the third operand
(p) is the program which remains to be executed after the first action has been

Laws of Programming: The Algebraic Unification of Theories of Concurrency 3

performed. The operational semantics is given as a set of rules for deriving
transitions, similar to those for deriving triples by verification logic.

Such an operational semantics is most directly useful in the design and imple-
mentation of interpreters and compilers for the language. In fact, the restriction
of ¢ to a single atomic action is motivated by this application. Relaxation of the
restriction leads to a ‘big step’ semantics, which is equally valid for describing
concurrent programs, but less useful for describing implementations.

The semantics of ACP was expressed as a set of algebraic equations and
inequations, of just the kind I originally wanted in 1969. Equations between
pairs of operands are inherently simpler and more comprehensible than triples,
and algebraic substitution is a simpler and more powerful method of reasoning
than that described by proof rules. Thus algebra is directly useful in all forms
of reasoning about programs, including their optimisation for efficient execution
on available hardware.

Unfortunately, we did not exploit this power of algebra to achieve the unifica-
tion between theories that was the goal of the CONCUR project. In spite of the
excellent research of the participants, this goal eluded us. I explained the failure
as ultimately due to the three different methods of describing the semantics.
I saw them as rivals, rather than complementary methods, useful for different
purposes.

Inspired by this failure, in the 1990s I worked with my close colleague He Jifeng
on a book entitled “Unifying Theories of Programming” (published in 1998) [5].
It was based on a model in which programs are relations between the initial and
final states of their execution. To represent errors like non-termination, the rela-
tions were required to satisfy certain ‘healthiness’ constraints. Unfortunately, we
could not find a simple and realistic model for concurrency and communication
in a relational framework.

3 The Laws of Programming [11]

In the 1980s, the members of the Programming Research Group at Oxford were
pursuing several lines of research in the theory of programming. There were many
discussions of our apparently competing approaches. However, we all agreed
on a set of algebraic laws covering sequential programming. The laws stated
that the operator of sequential composition (3) is associative, has a unit (skip),
and distributes through non-deterministic choice (Ul). This choice operator is
associative, commutative and idempotent. I now recommend introduction of
concurrent composition as a new and independent operator (||). It shares all the
algebraic properties of sequential composition and in addition it is commutative.

These algebraic properties are very familiar. They are widely taught in sec-
ondary schools. They are satisfied by many different number systems in arith-
metic. And their application to computer programs commands almost immediate
assent from experienced programmers.

A less familiar idea in the algebra of programming is a fundamental refine-
ment ordering (p < ¢), which holds between similar or comparable programs.

4 T. Hoare

It means that ¢ can do everything that p can do, but maybe more. Thus p is
a more determinate program than g; in all circumstances, it is therefore a valid
implementation of ¢q. Furthermore, if ¢ has no errors, then neither has p. The
algebraic principle of substitution of sub-terms within a term is strengthened to
state that replacement of any sub-term of p by a sub-term that refines it will
lead to a refinement of the original term p. This property is often formalised by
requiring all the operators of the algebra to be monotonic with respect to the
refinement ordering. Equality, and the substitution of equals, is just an extreme
special case of refinement.

The most important new law governing concurrency is called the exchange law
[12,13]. I happened upon it in 2007, and explored and developed it in collabora-
tion with Tan Wehrman, then an intern with me at Microsoft Research. The law
has the form of a refinement, expressing a sort of mutual distribution between
sequential composition and concurrent composition. It is modelled after the in-
terchange law, which is part of the mathematical definition of a two-category
[16]. Although the law has four operands, it is similar in shape to other familiar
laws of arithmetic:

(rlla);®la<®p) (g9

The exchange law can be interpreted as expressing the validity of interleaving of
threads as an implementation their concurrent composition. Such an interleaving
is still widely used in time-sharing a limited number of processing units among
a larger number of threads. But the law does not exclude the possibility of true
concurrency, whereby actions from different threads occur simultaneously. As
a result, the law applies both to shared-memory concurrency with conditional
critical regions, as well as to communicating process concurrency, with either
synchronous or buffered communication. Such a combination of programming
idioms occurs widely in practical applications of concurrent systems.

4 Unification of Theories

This small collection of algebraic laws also plays a central role in the unification
of other theories of concurrency, and other methods of presenting its semantics.
For example, the deductive rules of Hoare logic can themselves be proved from
the laws by elementary algebraic reasoning, just as the rules of natural deduction
are proved from the Boolean Algebra of propositions. The proofs are based on
a simple algebraic definition of the Hoare triple:

{(p}afr} Epsg<r

Hoare logic has more recently been extended by John Reynolds and Peter
O’Hearn to include separation logic [15,18], which provides methods for reasoning
about object orientation as well as concurrency. It thereby fills two serious gaps in
the power of the original Hoare logic. The two new rules of concurrent separation
logic can be simply proved from the single exchange law. And vice-versa: the
exchange law can be proved from the rules of separation logic.

Laws of Programming: The Algebraic Unification of Theories of Concurrency 5

The concurrency rules for the transitions of Milners CCS can be similarly
derived from the exchange law. Again, the proof is reversible. The definition of
the Milner transition is remarkably similar to that of the Hoare triple:

q AN
rop=q;p<r

As a consequence, every theorem of Hoare logic can be translated to a theorem
of Milner semantics by changing the order of the operands. And vice versa.

Additional operational rules that govern transitions for sequential composition
can also be proved algebraically. The derivation from the same algebraic laws
of two distinct (and even rival) systems for reasoning about programs is good
evidence for the validity of the laws, and for their usefulness in application to
programs.

Finally, a denotational semantics in terms of traces has an important role in
defining a mathematical model for the laws. The model is realistic to the actual
internal behaviour of a program when it is executed. It therefore provides an
effective way of describing the events leading up to an error in the program, and
in helping its diagnosis and correction.

5 Prospects

The main initial value of the unification of theories in the natural sciences is
to enable experts to agree on the foundation, and collaborate in development of
different aspects and different applications of it. To persuade a sceptical engineer
(or manager) to adopt a theory for application on their next project, agreement
among experts is an essential prerequisite. It is far too risky to apply a theory
on which experts disagree.

In the longer term, the full value of a theory of programming will only be
realised when their use by programmers is supported by a modern program de-
velopment toolset. Such a toolset will contain a variety of sophisticated tools,
based on different presentations of the same underlying theory. For example, pro-
gram analysers and verification aids are based on deductive logic. Programming
language interpreters and compilers are based on operational semantics. Pro-
gram generators and optimisers are based on algebraic transformations. Finally,
debugging aids will be based on a denotational model of program behaviour.

The question then arises: how do we know that all these different tools are
fully consistent with each other? This is established by proof of the consistency
of the theories on which the separate tools have been based. Mutual derivation
of the theories is the strongest and simplest form of consistency: it establishes in
principle the mutual consistency of tools that are based on the separate theories.
What is more, the consistency is established by a proof that can be given even
in advance of the detailed design of the toolset.

Acknowledgements. My sincere thanks are due to Daniele Gorla and Paolo
Baldan for their encouragement and assistance in the preparation of this contri-
bution.

6 T. Hoare

References

1. Bergstra, J., Klop, J.: Fixed point semantics in process algebra. Technical Report
IW 208, Mathematical Centre, Amsterdam (1982)

2. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3), 109-137 (1984)

3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560-599 (1984)

4. Floyd, R.: Assigning meanings to programs. In: Proceedings of Symposium on
Applied Mathematics, vol. 19, pp. 19-32 (1967)

5. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576-580 (1969)

7. Hoare, C.A.R.: Towards a theory of parrallel programming. In: Hoare, C.A.R.,
Perrott, R.H. (eds.) Operating Systems Techniques, Proceedings of Seminar at
Queen’s University, Belfast, Northern Ireland, pp. 61-71. Academic Press (1972)

8. Hoare, C.A.R.: Monitors: An operating system structuring concept. Communica-
tions of the ACM 17(10), 549-557 (1974)

9. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666-677 (1978)

10. Hoare, C.A.R.: The emperor’s old clothes. Communications of the ACM 24(2),
75-83 (1981)

11. Hoare, C.A.R., Hayes, 1.J., He, J., Morgan, C., Roscoe, A.W., Sanders, J.W.,
Sgrensen, I.H., Spivey, J.M., Sufrin, B.: Laws of programming. Communications of
the ACM 30(8), 672—686 (1987)

12. Hoare, C.A.R., Mdller, B., Struth, G., Wehrman, I.: Concurrent kleene algebra. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399-414.
Springer, Heidelberg (2009)

13. Hoare, C.A.R., Wehrman, I., O’Hearn, P.W.: Graphical models of separation logic.
In: Engineering Methods and Tools for Software Safety and Security. IOS Press
(2009)

14. INMOS. occam Programming Manual. Prentice Hall (1984)

15. Ishtiaqg, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Proc. of POPL, pp. 14-26 (2001)

16. Mac Lane, S.: Categories for the working mathematician, 2nd edn. Springer,
Heidelberg (1998)

17. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. of LICS, pp. 55-74 (2002)

19. Roscoe, A.W.: Model-checking CSP. In: A Classical Mind: Essays in Honour of
C.A.R. Hoare. Prentice Hall International (UK) Ltd. (1994)

20. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages.

Oxford Programming Research Group Technical Monograph, PRG-6 (1971)

The Benefits of Sometimes Not Being Discrete

Jane Hillston

LFCS, School of Informatics, University of Edinburgh, UK
jane.hillston@ed.ac.uk
http://www.quanticol.eu

Abstract. Discrete representations of systems are usual in theoretical computer
science and they have many benefits. Unfortunately they also suffer from the
problem of state space explosion, sometimes termed the curse of dimensionality.
In recent years, research has shown that there are cases in which we can reap the
benefits of discrete representation during system description but then gain from
more efficient analysis by approximating the discrete system by a continuous one.
This paper will motivate this approach, explaining the theoretical foundations and
their practical benefits.

1 Introduction

Over the last twenty to thirty years, areas of quantitative modelling and analysis, such
as performance, dependability and reliability modelling have embraced formal mod-
els [37]. This trend has been motivated by the increasing concurrency of the systems
under consideration and the difficulties of constructing the underlying mathematical
models, which are used for analysis, by hand. In particular concurrent modelling for-
malisms such as stochastic Petri nets and stochastic process algebras have been widely
adopted as high-level modelling languages for generating underlying Markovian mod-
els. Moreover, there has been much work exploring how the properties of the high-level
languages can be exploited to assist in the analysis of the underlying model through a
variety of techniques (e.g. decomposition [23, 39], aggregation based on bisimulation
[38], etc).

However, a combination of improved model construction techniques, and the in-
creasing scale and complexity of the systems being developed, has led to ever larger
models; and these models now frequently defy analysis even after model reduction
techniques such as those mentioned above. The problem is the well-known curse of
dimensionality: the state space of a discrete event system can grow exponentially with
the number of components in the system.

Fortunately, over the last decade a new approach has emerged which offers a way
to avoid this state space explosion problem, at least for one class of models. When the
system under consideration can be presented as a population model and the populations
involved are known to be large, then a good approximation of the discrete behaviour
can be achieved through a continuous or fluid approximation. Moreover, this model is
scale-free in the sense that the computational effort to solve it remains the same even
as the populations involved grow larger. Of course, there is a cost, in the sense that
some information is lost and it is no longer possible to analyse the system in terms of

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 7-22, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

http://www.quanticol.eu

8 J. Hillston

individual behaviours. But when average behaviours or expectations are required, for
example in situations of collective behaviour, the fluid approach has substantial benefits.

The rest of this paper is organised as follows. Section 2 gives an intuitive explanation
of how the fluid approximation approach has been widely used in biological modelling
for many years, before presenting the mathematical foundations for the approach as
provided by Kurtz’s Theorem in Section 3. The attraction of combining the technique
with the compositional models generated by process algebras is explained in Section
4, with discussion of how the mapping has been developed for a variety of process
algebras. In Section 5 we give an overview of extending these results into the model
checking arena, and in Section 6 we briefly summarise and conclude.

2 Biologists Just Do It!

In several disciplines fluid approximations have long been used, often without concern
for formal foundations. The most noticeable example of this is in biological modelling
of intra-cellular processes. These processes result from the collisions of molecules
within the cell, an inherently discrete process. Yet, the most common form of mathe-
matical model for these processes is a system of ordinary differential equations (ODEs)
which captures the collective behaviour in terms of concentrations of different molec-
ular states, rather than the states of individual molecules. At heart, this is a fluid ap-
proximation, as highlighted by Kurtz [46] and Gillespie [32]. But it has been so widely
adopted that many biologists no longer recognise that there is a fundamental shift in
representation taking place.

That there was an implicit transformation taking place during model construction
became more obvious when formal representations started to be used to describe intra-
cellular biological processes [58]. In the early 2000s researchers recognised that the intra-
cellular processes were highly concurrent systems, amenable to description formalisms
used to describe concurrency in computer systems. This led to a plethora of adopted and
developed process algebras for describing cellular processes e.g. [18, 56, 57, 24]. Whilst
most focussed on the discrete representation and subsequent discrete event simulation of
an underlying continuous time Markov chain (CTMC) using Gillespie’s algorithm [32],
work such as [17, 20] established that it was also possible to derive the systems of ODEs
more familiar to biologists from process algebra descriptions.

3 Kurtz’s Theorem

At the foundations of fluid approximation is a fundamental result by Kurtz, dating back
to the 1970s [45], which establishes that a sequence of CTMCs which satisfy some con-
ditions and represent essentially the same system under growing populations, converges
to a set of ODEs. At convergence the behaviour of the CTMC is indistinguishable from
the behaviour of the set of ODEs. However, this theoretical limit is at an infinite popu-
lation. Nevertheless in many practical cases we find empirically that sufficient conver-
gence is often achieved at much lower populations, as illustrated in Fig. 1.

In order to explain this result in more detail we introduce a simple representation
of Markov models of populations of interacting agents. Such models may be readily

The Benefits of Sometimes Not Being Discrete 9

--- CTMC N=100
—— ODE
© . — e B
=8 :
>
= o s
5337 d
Q I
o
&% P
o
o~
o
0 20 40 60 80 100 120
time
(a) N =100
--- CTMC N=1000
—— ODE
N - —
=8
= - s
S g 1 d
8 -
o
[-~ P
o
o~
o

0 20 40 60 80 100 120
time

(b) N =1000

Fig. 1. Comparison between the limit fluid ODE and a single stochastic trajectory of a network
epidemic example, for total populations N = 100 and N = 1000. This demonstrates how the
accuracy of the approximation of behaviour captured by the fluid ODE improves as the population
size grows.

derived from stochastic process algebras such as PEPA or EMPA [38, 7]. We consider
the case of models of processes evolving in continuous time, although a similar theory
can be considered for discrete-time models (see, for instance, [13]). In principle, we can
have different classes of agents, and many agents for each class in the system. To keep
notation simple, we assume here that the number of agents is constant and equal to N
(making a closed world assumption) but analogous results can be derived for systems
which include the birth and death of agents.

In particular, let us assume that each agent is a finite state machine, with internal states
taken from a finite set S, and labelled by integers: S = {1,2,...,n}. We have a population

of N agents, and denote the state of agent i at time 7, fori = 1,...,N, by Yi(N> (t) €.
Note that we have made explicit the dependence on N, the total population size.

A configuration of a system is thus represented by the tuple (Y](N>, e ,YA(,N>). This
representation is based on treating each agent as a distinct individual with identity con-
ferred by the position in the vector. However, when dealing with population models,
it is customary to assume that single agents in the same internal state cannot be dis-

tinguished, hence we can move from the individual representation to the collective

10 J. Hillston

representation by introducing n variables counting how many agents are in each state.
This is sometimes termed a counting abstraction. Hence, we define

N N
=3 =y, M
i=1
where 1{Yi(N) = j} is an indicator function with value 1 when Yi(N) = j and zero, oth-
erwise. Note that the vector XV) = (X1<N), .. ,X,EN)) has a dimension independent of

N; it is referred to as the collective, population, or counting vector. The domain of
each variable X is {0,...,N}, and, by the closed world assumption, it holds that

i1 X;) — N. Let us denote with ™) the subset of vectors of {1,...,N}" that sat-
isfy this constraint.

The dynamics of the population models is expressed in terms of a set of possible
events or transitions. Events are stochastic, and take an exponentially distributed time
to happen. Moreover their rate may depend on the current global state of the system.
Hence, each event will be specified by a rate function, and by a set of update rules,
specifying the impact of the event on the population vector.

In this model, the set of events, or transitions, .7 v >, is made up of elements T €
Z W) which are pairs T = (vT,r§N>). Here v; is the update vector; specifically v¢
records the impact of event 7 on the ith entry (ith population) in the population vector.
The rate function, r§N> PN R>0, depends on the current state of the system, and
specifies the speed of the corresponding transition. It is assumed to be equal to zero if
there are not enough agents available to perform a 7 transition, and it is required to be
Lipschitz continuous (when interpreted as a function on real numbers).

Thus we define a population model 2" (V) = (X™) 7),X(()N>), where x(()N> is the
initial state. Given such a model, it is straightforward to construct the CTMC X" (z)

associated with it; its state space is . (V) while its infinitesimal generator matrix ow)
is the |.7M)| x |.#(M)| matrix defined by

qxx/—Z{rr \7:69 X—X—I—VT}

As explained above, fluid approximation approximates a CTMC by a set of ODEs.
These differential equations can be interpreted in two different ways: they can be seen
as an approximation of the average of the system (usually a first order approximation,
see [9, 68]). This is often termed a mean field approximation. Alternatively, they can be
interpreted as an approximate description of system trajectories for large populations.
We will focus on this second interpretation, which corresponds to a functional version of
the law of large numbers. In this interpretation, instead of having a sequence of random
variables, like the sample mean, converging to a deterministic value, like the true mean,
in this case we have a sequence of CTMCs (which can be seen as random trajectories
in R") for increasing population size, which converge to a deterministic trajectory, the
solution of the fluid ODE.

In order to consider the convergence, we must formally define the sequence of CTMCs
to be considered. To allow models of different population sizes to be compared we nor-
malise the populations by dividing each variable by the total population N. In this way,

The Benefits of Sometimes Not Being Discrete 11

the normalised population variables XV) = Xx]) , or population densities, will always
range between 0 and 1 (for the closed world models we consider here), and so the be-
haviour for different population sizes can be compared. In the case of a constant popu-
lation, normalised variables are usually referred to as the occupancy measures, as they
represent the fraction of agents which occupy each state.

After normalisation we must appropriately scale the update vectors, initial condi-
tions, and rate functions [13]. Let 2 ™) = (XM 7™) Xy ™)) be the non-normalised
model with total population N and W = (XW), gW >,)A(((]N>) the corresponding nor-
malised model. We require that:

— initial conditions scale appropriately:)A(((]N) = X‘}\(,M;
— for each transition (VT,V.(L-M (X)) of the non-normalised model, define f@ (X) to
be the rate function expressed in the normalised variables (obtained from r<TN) by
a change of variables). The corresponding transition in the normalised model is
(ve, f@ (X)), with update vector equal to vV
We further assume, for each transition 7, that there exists a bounded and Lipschitz
continuous function f;(X) : E — R" on normalised variables (where E contains all
domains of all # ™)), independent of N, such that 11/f<TN) (x) = fr(x) uniformly on E.
We denote the state of the CTMC of the N-th non-normalised (resp. normalised) model

at time 7 as XV (¢) (resp. X (1)).

3.1 Deterministic Limit Theorem

In order to present the “classic” deterministic limit theorem, consider a sequence of
normalised models Z) and let v be the (non-normalised) update vectors. The drift
FW)(X) of 4, which is formally the mean instantaneous increment of model variables
in state X, is defined as
N 1 N
FV&) =Y vtV (X))
N
€9

Furthermore, let f7 : E - R", T € 7 be the limit rate functions of transitions of Z).
The limit drift of the model 2™) is therefore

FX)= 3 vefe(X), 3)

€d
and F() (x) — F(x) uniformly as N — oo, as easily checked. The fluid ODE is

dx

gt =F(x), withx(0) =xg € S.

Given that F' is Lipschitz in E (since all f; are), this ODE has a unique solution x(¢) in
E starting from x¢. Then, one can prove the following theorem:

Theorem 1 (Deterministic approximation [45, 27]). Let the sequence XN)(1) of
Markov processes and x(t) be defined as above, and assume that there is some point

12 J. Hillston

xXg € S such that X™)(0) — xq in probability. Then, for any finite time horizon T < oo,
it holds that as N — oo:

p{ sup |[XM (1) —x(1)]] >e} — 0.

0<t<T

Notice that the Theorem makes assertions about the trajectories of the population
counts at all finite times, but nothing about what happens at steady state, i.e. when time
goes to infinity.

3.2 Fast Simulation

Based on the Deterministic Approximation Theorem, we can consider the implications
for a single individual in the population when the population size goes to infinity. Even
as the collective behaviour tends to a deterministic process, each individual agent will
still behave randomly. However, the Deterministic Approximation Theorem implies that
the dynamics of a single agent, in the limit, becomes independent of other agents, and it
will sense them only through the collective system state, or mean field, described by the
fluid limit. This asymptotic decoupling allows us to find a simple, time-inhomogenous,
Markov chain for the evolution of the single agent, a result often known as fast simula-
tion [28, 30].

To see this decoupling we focus on a single individual Yh(m (¢), which is a (Markov)
process on the state space S = {1,...,n}, conditional on the global state of the popu-
lation XV) (t). The evolution of this agent can be obtained by computing the rates g;;
at which its state changes from i to j, by projecting on a single agent the rate of global
transitions that induce a change of state of at least one agent from i to j. Such a rate
qi](X) still depends on the global system state, hence to track the evolution of agent
Yh(N) (t) we still need to know the global state of the system X)(7): e.g. solving any
model checking problem on Yh(N) () would requires us to work with the full Markov
model XV (¢).

However, as the size of the system increases, the deterministic limit theorem tells
us the stochastic fluctuations of X(V) (¢) tend to vanish, and this effect propagates to the
stochastic behaviour of Yh(m (¢), which can be approximated by making it dependent only
on the fluid limit x(7). More precisely, we need to construct the time-inhomogeneous
CTMC z(r) with state space S and rates ¢;;(x(¢)), computed along the fluid trajectory.

The following theorem [28] guarantees that z(¢) is a good approximation of Yh<N) (2):

Theorem 2 (Fast simulation theorem). For any finite time horizon T < oo
IP’{Yh(N) (t) # z(t), for somet < T} — 0, as N — oo.

This theorem states that, in the limit of an infinite population, each agent will behave
independently from all the others, sensing only the mean state of the global system,
described by the fluid limit x(¢). This asymptotic decoupling of the system, which can
be generalised to any subset of k > 1 agents, is also known in the literature under the
name of propagation of chaos [5].

The Benefits of Sometimes Not Being Discrete 13

Remark 1. For simplicity here we have considered a single class of agents without
births or deaths. Nevertheless the same results hold for a model consisting of multi-
ple classes of agents. In this case we construct a single agent class but partition the state
space S into subsets, each of which represents the states of a distinct agent, and such
that there are no transitions between subsets. The agents whose initial state is in each
subset corresponds to agents of that class. Furthermore, events that capture birth and
death can easily be included by allowing update vectors which are unbalanced in the
sense that the total positive update is greater than or less than the total negative update.
Such open systems can be handled in the same theory, see [12] for further details, but
for clarity we will restrict to closed world models in this paper.

4 Stochastic Process Algebra with Fluid Interpretation

Kurtz’s Theorem, or the Deterministic Approximation Theorem, has been established
for many years. It has been widely used but when it is used directly from a CTMC
model, it is the modeller’s responsibility to prove that the model satisfies the neces-
sary conditions for application of the theory, and moreover, to derive the corresponding
ODEs. This must be done on a model-by-model basis. In recent years, the approach has
been used for several performance and dependability models e.g. [3-5, 30].

This situation made it attractive to incorporate mean field or fluid approximation
into the formal high-level language approaches which have developed over the last two
decades for constructing CTMC models for quantitative analysis. From the perspective
of the formal modelling community, this gives access to a scalable analysis technique
which is immune to the problem of state space explosion; indeed, a technique which
increases in accuracy as the size of the model grows. From the perspective of modellers
already familiar with the mean field approach, it offers the possibility to establish the
conditions for convergence at the language level via the semantics, once and for all,
removing the need to fulfil the proof obligation on a model-by-model basis. Moreover
the derivation of the ODEs can be automated in the implementation of the language.

Work has developed in both stochastic Petri nets, e.g. [66, 60, 61] and stochastic
process algebras, e.g. [43, 40, 16]. Here we focus on the work in the process algebra
context as it is more readily related to the agent-based CTMC model presented in the
previous section. It is straightforward to see that components or agents within the pro-
cess algebra description can be regarded as agents within the CTMC model, typically
occupying different partitions within the notional complete state space for agents, as
explained at the end of Section 3. When multiple instances of a component are present
in the same context within the model, these constitute a population. In terms of the lan-
guage the dynamic combinators are associated with the description of the behaviour of
individual agents, essentially finite state machines, whereas static combinators, princi-
pally parallel composition, specify the structure of the system, which is now interpreted
as the formation and interaction of populations.

The fluid approximation approach is only applicable to models where we have in-
teractions of large populations (parallel compositions of large numbers of components
with the same behaviour) within which each component has relatively simple behaviour
rather than interactions between individuals each with complex behaviour. When this is

14 J. Hillston

the case we need to make the shift from a state representation based on individuals, to
one based on counting (analogous to the shift represented by equation (1)). How this is
handled depends on the process algebra but is generally straightforward. For example,
in PEPA models there is a simple procedure to reduce the syntactic representation to a
state vector [40, 65], but in languages such as Bio-PEPA the mapping is more straight-
forward because the language was designed to support fluid approximation [24]. The
actions of the algebra correspond to the events in the CTMC model, and the definition
of the process and its continuation via an action is the basis for the definition of the
update vector.

The first work relating process algebra and mean field models can be found in the
thesis of Sumpter [62]. Sumpter developed models of social insects in the discrete syn-
chronous process algebra WSCCS [63]. He then heuristically derived difference equa-
tions to capture the mean field representation of the model. This work inspired the work
of Norman and Shankland [54], in which WSCCS is used to build models of the spread
of infectious diseases and difference equation representations are derived. This led on
to further work with ever more rigour introduced into the relationship between the dif-
ference equation/ODE models and the process algebra descriptions from which they
were derived [52, 53, 51], but in later work the authors switched from using WSCCS to
using PEPA and Bio-PEPA for their modelling of epidemics.

As previously mentioned, work in systems biology stimulated more widespread in-
terest in the relationship between process algebra description and ODE models. The
first work here was the mapping given from PEPA models constructed in a particular
style, representing a reagent-centric view of biological signal transductions pathways,
to equivalent ODE models, by Calder et al. [17]. This was subsequently generalised to
more arbitrary PEPA models with large populations, where the mapping to the ODE
was made completely systematic, based on an intermediate structure termed the activ-
ity matrix [40]. In the work of Bortolussi and Policriti the authors consider a different
style of process algebra, stochastic Concurrent Constraint Programming (sCCP), and
demonstrate a mapping, both from process algebra to ODEs and from ODE:s to process
algebra descriptions [16]. At around the same time Cardelli also constructed a system-
atic mapping from process algebra (in this case a variant of CCS) to ODEs, using a
Chemical Parametric Form as an intermediary in this case [20]. The relationship be-
tween this interpretation of the process algebra model and the discrete-state stochastic
semantics is explored in [19].

After these initial explorations of the possibilities to relate the inherently discrete
representation of a process algebra model with a fluid approximation of the underly-
ing Markov process, there came a sequence of papers establishing the mapping on a
firmer foundation and considering the convergence properties which can be inferred
from Kurtz’s Theorem. For example in [31], Geisweiller et al., working with a gen-
eralised form of PEPA models which allow two forms of synchronisation — both the
usual PEPA synchronisation based on the bounded capacity, and the biological notion of
mass action — show that the syntactically derived ODE models are indeed those which
are obtained by the application of Kurtz’s Theoreom, guaranteeing convergence in the
limit. In [65], Tribastone et al. show how it is possible to fully formalise the derivation
of the ODEs for PEPA models, via a structured operational semantics. In [16] Bortolussi

The Benefits of Sometimes Not Being Discrete 15

and Policriti construct a process algebra that matches a given set of ODEs in the limit.
An alternative approach to the derivation of the fluid approximation model is taken in
the work on Kappa [26], where the ODEs are derived as an abstract interpretation.

Some authors also considered how to make the derivation of ODEs from process
algebra descriptions easier. As previously mentioned, the PEPA variant, Bio-PEPA
[24] was explicitly constructed to maintain a counting abstraction, initially making the
derivation of the activity matrix easier and later supporting a semantics in the style of
[65]. Hayden and Bradley developed another variant of PEPA, termed Grouped PEPA,
which makes clearer the population structures within models [34].

The system ODEs derived from a process algebra model are generally not amenable
to algebraic solution, but instead are analysed by numerical simulation. This solution
generates a trajectory, tracking the population counts of each local state over time,
which can be interpreted as the expected population value over time. Such expected
population counts are rarely the objective of quantitative modelling in computer science,
although they are often the focus in biological systems. In computer systems derived
measures such as throughput, response times, or first passage times are of more inter-
est. In [64], Tribastone et al. establish when performance measures such as throughput
and response time may legitimately be derived from a fluid approximation. Hayden et
al. develop an approach to derive the more sophisticated first passage time distribu-
tions [36]. When the ’passage” of interest relates to an individual component within the
model the approach taken relies on the use of the fast simulation result. In further work
[35], Hayden ef al. show how response-time measures specified by stochastic probes
can be readily calculated via the mean field approach.

5 Fluid Model Checking

Stochastic process algebra models have long been also analysed using quantitative
model checking. In the case of stochastic model checking, there are some consolidated
approaches, principally based on checking Continuous Stochastic Logic (CSL) formu-
lae [2, 1, 59], and these are supported by software tools which are in widespread use
such as PRISM [47, 48] and MRMC [41]. However these methods often depend on an
explicit representation of the state space and consequently suffer from the state space
explosion problem, which limits their applicability, particularly for population models.
Even when statistical model checking is used, and the state space is only built on-the-
fly, the size of population models may make adequate statistical sampling costly or even
unattainable.

Thus it is natural to ask the question, to what extent can the fluid approximation tech-
niques presented earlier in this paper be exploited to mitigate the problem of quantita-
tive model checking of population CTMC-based models. The first work in this direction
was presented in [11, 12], in which fluid approximation is used to carry out approxi-
mate model checking of behaviours of individual agents in large population models,
specified as CSL formulae. This work builds on the Fast Simulation Theorem [30, 28],
which characterises the limit behaviour of a single agent in terms of the solution of
the fluid equation. Recall that the Fast Simulation Theorem states that a single agent
senses the rest of the population only through its “average” evolution, as given by the

16 J. Hillston

fluid equation. Thus if the modeller wishes to verify a property of an individual agent
within a population of many interacting agents (possibly with a small set of different
capabilities) the approach is to check the property in a limit model which consists of
the discrete representation of the individual agent taking into account the average evo-
Iution of the rest of the system. In practice, for CTMC models, the discrete representa-
tion of the individual agent is a time-inhomogeneous CTMC (ICTMC), where the rates
of transitions between states are determined by the fluid approximation of the rest of
the system. Model checking of ICTMCs is far more complex than the homogeneous-
time case, but this is compensated because only the local states of one agent need to
be considered, so the state space is typically small. The authors termed this approach
Fluid Model Checking. Preliminary ideas on using fluid approximation in continuous
time for model checking population models, and in particular for an extension of the
logic CSL, were informally sketched in [43], but no model checking algorithms were
presented. Subsequently the work was more fully developed in [44], which relies sub-
stantially on [11].

In the Fluid Model Checking approach the technicalities come from the time-
inhomogeneous nature of the process being checked. As in the CTMC case, model
checking CSL formulas of ICTMC can be expressed in terms of reachability calcula-
tions on an ICTMC, typically with modified structure that makes some states absorbing.
However, these calculations are more complex as rates are not constant, but changing
over time as the state of the whole system evolves and influences the considered agent.
This introduces discontinuities in the satisfaction probabilities as, for example, states in
the ICTMC may change from being in the goal set to not, as time progresses. Thus the
solution of the Kolmogorov equations to calculate the reachability must be conducted in
a piecewise manner, between the time points at which the sets of goal states and unsafe
states change over time. Convergence and quasi-decidability results are presented that
guarantee the asymptotic consistency of the model checking [12].

Like all results from Kurtz’s theorem, the Fluid Model Checking result pertains to
models within a finite time horizon. However useful properties in CSL are sometimes
expressed in terms of the steady state operator .. Subsequently, Bortolussi and Hillston
consolidated the Fluid Model Checking approach by incorporating the next state oper-
ator and the steady state operator [14]. This latter involved establishing when Kurtz’s
result can safely be extended to the infinite time horizon in this context.

A limitation of the Fluid Model Checking approach is that only properties of a sin-
gle individual agent (or small set of agents) within a population can be checked. But
for population models it is natural to wish to evaluate more global properties such as
if a proportion of agents within a population have reached a particular state within
a given time period. In [15], Bortolussi and Lanciani present an alternative approach
which is able to deal with such properties. Their work is based on a second-order fluid
approximation known as Linear Noise Approximation [68]. This can be regarded as a
functional version of the Central Limit Approximation [45].

The basic idea of [15] is to lift local specifications to collective ones by means of
the Central Limit Theorem. Thus the properties that they consider are first expressed
as a property of an individual agent, specified by a deterministic timed automaton with
a single clock. This clock is taken to be global — it is never reset and keeps track of

The Benefits of Sometimes Not Being Discrete 17

global passing of time. For an individual this will be a linear-time property. Such an
individual property ¢(¢) is then lifted to the population level to estimate the probability
that a given number of agents within the system which satisfy ¢(z).

The method presented in [15] allows us to quickly estimate this probability by ex-
ploiting the Central Limit or Linear Noise Approximation (LNA). The key idea is to
keep some estimation of the variability in the system. Rather than solely using the fluid
approximation of average behaviour of the normalised behaviour x(¢), fluctuations in
the form of Gaussian processes of the order of /N, where N is the population size, are
included.

XM (1) = Nx(t) + VNZ(1),

where Z(¢) is a Gaussian stochastic process, i.e. a process whose finite dimensional
projection (marginal distributions at any fixed and finite set of times) are Gaussian. Z(z)
has zero mean, and a covariance given by the solution of an additional set of & (NZ)
ODEs. More details can be found in [15, 68].

For the purposes of model checking the authors combine the automaton-based prop-
erty specification with the model of an individual agent, using a product construction
(taking into account the clock constraints). This produces a population model with more
variables, counting pairs of state-property configurations. The LNA is applied to this
new model. The authors show that for a large class of individual properties, it is pos-
sible to introduce a variable X, (¢) in the extended model that counts how many indi-
vidual agents satisfy the local property up to time 7. From the Gaussian approximation
of X, (t), then one can easily compute the probabilities of interest. In [15], the authors
discuss preliminary results, which are quite accurate and computationally efficient.

A further use of mean field approximation in model checking has recently been de-
veloped for discrete time, synchronous-clock population processes by Loreti et al. [49].
Although also derived from Kurtz’s Theorem, this work takes a different approach as it
is an on-the-fly model checker, only examining states as they are required for checking
the property, rather than constructing the whole state space initially [25, 8, 33]. Simi-
larly to Fluid Model Checking [11], in [49] the authors focus on a single individual or
small set of individuals, with properties expressed in PCTL, and consider their evolu-
tion in the mean field created by the rest of the system. Again fast simulation provides
the foundation for the approach, but for the discrete case, Loreti ef al. follow the ap-
proach of [50] in which the behaviour of each agent is captured by a finite state discrete
time Markov chain (DTMC).

As previously, the authors consider a system comprised of N agents, each with some
initial state. A system global state CN) = (cy,... cy) is the N-tuple of the current
local states of its object instances. The dynamics of the system arise from all agents
proceeding in discrete time, synchronously. A transition matrix KV) defines the state
transitions of the object and their probabilities, and this may depend on the distribution
of states of all agents in the system. More specifically, K®™) is a function K®) (m) of the
occupancy measure vector m of the current global state cw) (switching to the counting
abstraction and normalising). State labels are associated with the states of an agent in
its specification, and a global state is taken to assume the labels of the first component
in the N-tuple. Further global system atomic properties can be expressed.

18 J. Hillston

In [49] the authors develop a model checking algorithm which can applied in both the
exact probabilistic case, and for the approximate mean-field semantics of the models.
Here we focus on the latter approach. In this discrete case, for N large, the overall
behaviour of the system in terms of its occupancy measure can be approximated by
the (deterministic) solution of a mean-field difference equation. Loreti et al. show that
the deterministic iterative procedure developed in [50] to compute the average overall
behaviour of the system and behaviour of individual agents in that context, combines
well with on-the-fly probabilistic model checking for bounded PCTL formulas on the
selected agents. Just as in Fluid Model Checking [11], since the transition probabilities
of individual agents may depend on the occupancy measure at a given time, the truth
values of formulas may vary with time. The asymptotic correctness of the model check-
ing procedure has been proven and a prototype implementation of the model checker,
FlyFast, which has been applied to a variety of models [49].

One drawback of mean-field or fluid approximation is that the convergence results
apply to infinite populations and currently there are not useful bounds on the errors
introduced when smaller populations are considered. Some promising work in this di-
rection was recently published by Bortolussi and Hayden [10]. In this paper the authors
consider the transient dynamics and the steady state of certain classes of discrete-time
population Markov processes. They combine stochastic bounds in terms of martingale
inequalities and Chernoff inequalities, with control-theoretic methods to study the sta-
bility of a system perturbed by non-deterministic noise terms, and with algorithms to
over-approximate the set of reachable states. The key idea is to abstract stochastic noise
non-deterministically and apply techniques from control theory to examine the phase
space of the mean field limit. This gives a more refined view of the dynamic behaviour
allowing tighter bounds than the previously proposed bounds of Darling and Norris [28]
which expand exponentially with time.

6 Conclusions and Future Perspectives

The fluid approximation technique is suitable for models comprised of interactions of
populations of components, each component having relatively simple behaviour (few or
moderate numbers of local states) but many components within the population. More-
over, in these cases the accuracy of the approximation increases as the size of the
population grows. Building such models with a discrete formal description technique
supports careful specification of the interactions between the components. This is in
contrast to when mean field or fluid approximation is applied in fields such as epidemi-
ology where predefined sets of ODEs are used, without consideration for the implicit
assumptions about the interactions of individuals.

However, the population models amenable to fluid approximation are not the only
systems which suffer from state space explosion and the technique is not suitable for
models comprised of a small number of individual components, each of which has very
complex behaviour resulting in a large number of local states. Moreover, recent work
by Tschaikowski and Tribastone has shown that if the mapping to ODE:s is carried out
naively, there can be a problem of fluid state space explosion [67]. Nevertheless, the
approach offers new possibilities for model analysis, tackling systems which would
previously have been completely intractable and opening new arenas of research.

The Benefits of Sometimes Not Being Discrete 19

Acknowledgement. This work is partially supported by the EU project QUANTICOL,
600708. The author is very grateful to Luca Bortolussi and Stephen Gilmore for help in
the preparation of this paper.

References

15.

. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: Verifying contin-

uous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp- 269-276. Springer, Heidelberg (1996)

. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-time

Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 358-372. Springer, Heidelberg (2000)

. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field analysis for the evaluation

of gossip protocols. In: Proceedings of 6th Int. Conference on the Quantitative Evaluation of
Systems (QEST 2009), pp. 247-256 (2009)

. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field framework for performance

evaluation of push-pull gossip protocols. Perform. Eval. 68(2), 157-179 (2011)

. Benaim, M., Le Boudec, J.: A class of mean field interaction models for computer and com-

munication systems. In: Performance Evaluation (2008)

. Benaim, M., Le Boudec, J.Y.: On mean field convergence and stationary regime. CoRR,

abs/1111.5710 (2011)

Bernardo, M., Gorrieri, R.: A Tutorial on EMPA: A Theory of Concurrent Processes with
Nondeterminism, Priorities, Probabilities and Time. Theor. Comput. Sci. 202(1-2), 1-54
(1998)

. Bhat, G, Cleaveland, R., Grumberg, O.: Efficient On-the-Fly Model Checking for CTL*. In:

Logic in Computer Science (LICS 1995), pp. 388-397 (1995)
Bortolussi, L.: On the approximation of stochastic concurrent constraint programming by
master equation, vol. 220, pp. 163-180 (2008)

. Bortolussi, L., Hayden, R.A.: Bounds on the deviation of discrete-time Markov chains from

their mean-field model. Perform. Eval. 70(10), 736-749 (2013)

. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.)

CONCUR 2012. LNCS, vol. 7454, pp. 333-347. Springer, Heidelberg (2012)

. Bortolussi, L., Hillston, J.: Fluid model checking. CoRR, 1203.0920 (2012)
. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective

systems behaviour: A tutorial. In: Performance Evaluation (2013)

. Bortolussi, L., Hillston, J.: Checking Individual Agent Behaviours in Markov Population

Models by Fluid Approximation. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H.
(eds.) SFM 2013. LNCS, vol. 7938, pp. 113-149. Springer, Heidelberg (2013)

Bortolussi, L., Lanciani, R.: Model Checking Markov Population Models by Central Limit
Approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’ Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 123-138. Springer, Heidelberg (2013)

. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To ordinary

differential equations and back. In: Priami, C., Back, R.-J., Petre, 1. (eds.) Transactions on
Computational Systems Biology XI. LNCS, vol. 5750, pp. 216-267. Springer, Heidelberg
(2009)

. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra mod-

els of signalling pathways. In: Proceedings of Computational Methods in Systems Biology
(CMSB 2005), pp. 204-215 (2005)

20

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

J. Hillston

. Cardelli, L.: Brane Calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI),

vol. 3082, pp. 257-278. Springer, Heidelberg (2005)

Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190-215 (2008)
Cardelli, L.: From Processes to ODEs by Chemistry. In: Ausiello, G., Karhumiki, J., Mauri,
G., Ong, L. (eds.) 5th IFIP International Conference On Theoretical Computer Science - TCS
2008. IFIP, vol. 273, pp. 261-281. Springer, Boston (2008)

Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: LTL model checking of time-inhomogeneous
markov chains. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 104—119.
Springer, Heidelberg (2009)

Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Model checking of continuous-time Markov
chains against timed automata specifications. Logical Methods in Computer Science 7(1)
(2011)

Ciardo, G., Trivedi, K.S.: A Decomposition Approach for Stochastic Reward Net Models.
Perform. Eval. 18(1), 37-59 (1993)

Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of bio-
logical systems. Theor. Comput. Sci. 410(33-34), 3065-3085 (2009)

Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for
the verification of temporal properties Form. Methods Syst. Des. 1(2-3), 275-288 (1992)
Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the Differential Se-
mantics of Rule-Based Models: Exact and Automated Model Reduction. In: Proceedings of
Logic in Computer Science (LICS 2010), pp. 362-381 (2010)

Darling, R.W.R.: Fluid limits of pure jump Markov processes: A practical guide (2002),
http://arXiv.org

Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov chains. Prob-
ability Surveys 5 (2008)

Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA | IEEE Trans. Software Eng. 35(2), 224-240 (2009)

Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems. In: Pro-
ceedings of ACM SIGMETRICS 2010, pp. 13-24 (2010)

Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete PEPA models of
signalling pathways. Theor. Comput. Sci. 404(1-2), 97-111 (2008)

Gillespie, D., Petzold, L.: Numerical simulation for biochemical kinetics. In: System Mod-
eling in Cellular Biology, pp. 331-353. MIT Press (2006)

Gnesi, S., Mazzanti, F.: An Abstract, on the Fly Framework for the Verification of Service-
Oriented Systems. In: Results of the SENSORIA Project, pp. 390407 (2011)

Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra.
Theor. Comput. Sci. 411(22-24), 2260-2297 (2010)

Hayden, R.A., Bradley, J.T., Clark, A.D.: Performance specification and evaluation with uni-
fied stochastic probes and fluid analysis. IEEE Trans. Software Eng. 39(1), 97-118 (2013)
Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions
in large Markov models. Theor. Comput. Sci. 413(1), 106-141 (2012)

Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theor.
Comput. Sci. 274(1-2), 43-87 (2002)

Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press (1995)

Hillston, J.: Exploiting Structure in Solution: Decomposing Compositional Models. In:
Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS,
vol. 2090, pp. 278-314. Springer, Heidelberg (2001)

Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second In-
ternational Conference on the Quantitative Evaluation of SysTems, QEST 2005, pp. 33 — 42
(2005)

http://arXiv.org

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.
57.
58.

59.

60.

61.

The Benefits of Sometimes Not Being Discrete 21

Katoen, J.-P., Khattri, M., Zapreev, L.S.: A Markov Reward Model Checker. In: Proceedings
of Quantitative Evaluation of Systems, QEST 2005, pp. 243-244 (2005)

Katoen, J.-P., Mereacre, A.: Model checking HML on piecewise-constant inhomogeneous
markov chains. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 203-217.
Springer, Heidelberg (2008)

Kolesnichenko, A., Remke, A., de Boer, P.T., Haverkort, B.R.: Comparison of the mean-field
approach and simulation in a peer-to-peer botnet case study. In: Thomas, N. (ed.) EPEW
2011. LNCS, vol. 6977, pp. 133-147. Springer, Heidelberg (2011)

Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: A logic for model-checking
of mean-field models. In: Proceedings of 43rd Int. Conference on Dependable Systems and
Networks, DSN 2013 (2013)

Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov pro-
cesses. Journal of Applied Probability 7, 49-58 (1970)

Kurtz, T.G.: Approximation of population processes. SIAM (1981)

Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with
PRISM: A hybrid approach. International Journal on Software Tools for Technology Trans-
fer 6(2), 128-142 (2004)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp- 585-591. Springer, Heidelberg (2011)

Latella, D., Loreti, M., Massink, M.: On-the-fly Fast Mean-Field Model-Checking. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297-314. Springer,
Heidelberg (2014)

Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A Generic Mean Field Convergence Result
for Systems of Interacting Objects. In: Proceedings of Quantitative Evaluation of Systems
(QEST 2007), pp. 3—18 (2007)

McCaig, C.: From individuals to populations: changing scale in process algebra models of
biological systems. PhD thesis, University of Stirling (2008)

McCaig, C., Norman, R., Shankland, C.: Process Algebra Models of Population Dynamics.
In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS,
vol. 5147, pp. 139-155. Springer, Heidelberg (2008)

McCaig, C., Norman, R., Shankland, C.: From Individuals to Populations: A Symbolic Pro-
cess Algebra Approach to Epidemiology. Mathematics in Computer Science 2(3), 535-556
(2009)

Norman, R., Shankland, C.: Developing the Use of Process Algebra in the Derivation and
Analysis of Mathematical Models of Infectious Disease. In: Moreno-Diaz Jr., R., Pichler, F.
(eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 404-414. Springer, Heidelberg (2003)
Norris, J.R.: Markov Chains. Cambridge University Press (1997)

Priami, C.: Stochastic pi-Calculus. Comput. J. 38(7), 578-589 (1995)

Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients: an ab-
straction for biological compartments. Theor. Comput. Sci. 325(1), 141-167 (2004)

Regev, A., Shapiro, E.: Cellular Abstractions: Cells as computation. Nature 419(6905),
343-343 (2002)

Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Ana-
lyzing Concurrent and Probabilistic Systems. CRM Monograph Series, vol. 23. American
Mathematical Society (2004)

Silva, M., Recalde, L.: Petri nets and integrality relaxations: A view of continuous Petri net
models. IEEE Trans. on Systems, Man, and Cybernetics, Part C 32(4), 314-327 (2002)
Silva, M., Recalde, L.: On fluidification of Petri Nets: from discrete to hybrid and continuous
models. Annual Reviews in Control 28(2), 253-266 (2004)

22

62.

63.

64.

65.

66.

67.

68.

J. Hillston

Sumpter, D.T.J.: From Bee to Society: An Agent-based Investigation of Honey Bee Colonies.
PhD thesis, University of Manchester (2000)

Tofts, C.M.N.: A Synchronous Calculus of Relative Frequency. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 467-480. Springer, Heidelberg (1990)
Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic process
algebra. IEEE Trans. Software Eng. 38(4), 861-874 (2012)

Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra
models. IEEE Trans. Software Eng. 38(1), 205-219 (2012)

Trivedi, K.S., Kulkarni, V.G.: FSPNs: Fluid Stochastic Petri Nets. In: Ajmone Marsan, M.
(ed.) ICATPN 1993. LNCS, vol. 691, pp. 24-31. Springer, Heidelberg (1993)
Tschaikowski, M., Tribastone, M.: Tackling continuous state-space explosion in a Markovian
process algebra. Theor. Comput. Sci. 517, 1-33 (2014)

Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier (1992)

Deterministic Negotiations:
Concurrency for Free

Javier Esparza

Fakultat fiir Informatik, Technische Universitdt Miinchen, Germany

Abstract. We give an overview of recent results and work in progress on
deterministic negotiations, a concurrency model with atomic multi-party
negotiations as primitive actions.

Concurrency theory has introduced and investigated system models based on
a variety of communication primitives: shared variables with semaphores, mon-
itors, or locks; rendez-vous; message-passing with point-to-point channels; co-
ordination (message-passing with tuple space); or broadcast. Recently, we have
started the study of a new primitive: negotiation. Perhaps surprisingly, while
negotiation has long been identified as an interaction paradigm by the artifi-
cial intelligence community [7,21,4,16], its theoretical study as communication
primitive has not been yet undertaken.

From a concurrency theory point of view, an atomic negotiation is a synchro-
nized choice: a set of agents meet to choose one out of a set of possible out-
comes. In [10], Jorg Desel and I have presented a model of concurrency model
with atomic multi-party negotiations, called atoms, as primitive actions. The
model is close to Petri nets, and it uses much of its terminology. For an intuitive
introduction, consider Figure 1, which shows a negotiation between four agents,
numbered 1 to 4. Atoms are represented by black bars. A bar has a white circle
or port for each participanting agent. For instance, the initial atom ng has four
parties, while atoms ny and ns have only two. The local state of an agent is the
set of atoms it is currently ready to engage in. Initially, all agents are only ready
to engage in the initial atom ng. A marking is a tuple of local states, one for
each agent. An atom is enabled at a marking if all its parties are ready to engage
in it. Enabled atoms can occur, meaning that their parties agree on one of the
possible outcomes. After choosing an outcome, the edges leaving the atom and
labelled with the outcome determine the negotiations that each of the parties is
ready to engage in next. For example, in Figure 1, at the initial atom the agents
decide whether, say, to accept a proposal for discussion (outcome y(es)) or not
(outcome n(0)). If the agents agree on n, then after that they are ready to engage
in the final atom ny, i.e, ny is the only enabled atom, and after ny occurs the
negotiation terminates. If they agree on y, then after that agents 1 and 2 are
ready to engage in n1, while 3 and 4 are ready to engage in ny, and so both atoms
are enabled. After ny and ny occur, ng becomes enabled, and the four agents
decide in n3 whether to accept (outcome a) or reject (outcome r) the proposal;
in case of rejection, the atoms n; and ns become enabled again, modeling that
the two teams of agents make revisions to the proposal and discuss it again.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 23-31, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

24 J. Esparza

Fig. 1. A negotiation between four agents

Negotiations can handle data, although this is not part of the graphical repre-
sentation. Agents also have an internal local state, typically determined by the
current values of a set of variables local to the agent. For example, assume the
goal of the negotiation of Figure 1 is to agree on the price of a commodity. The
internal state of the i-th agent could then be given by a variable x;, holding the
agent’s current proposal for the price. Each outcome of an atom has an associ-
ated state transformer, which only acts on the internal states of the agents that
take part in the atom. For instance, the state transformer for the outcome p in
atom n; would be a function that takes as input the current values of x1 and
9, and sets them to a new common value, the new price proposed by the two
agents. In general, a state transformer is a relation between global states.

While every negotiation diagram can be translated into an equivalent Petri
net, negotiations allow one to express some common situations more succintly
[10]. For instance, consider a system in which k agents decide, independently of
each other, whether they wish to accept or reject a proposal, and then conduct
a negotiation requiring unanimity, that is, the proposal can only be approved
if all agents support it. It is not difficult to see that the size of the Petri net
modelling such a behaviour grows exponentially with & (essentially, the net needs
a different transition for each subset of agents to cover the case in which exactly
that subset rejects the proposal), while the size of the negotiation diagram grows
only linearly in k.

The main merit of the negotiation model, however, is not succinctness, but
the fact that it draws our attention to classes of systems which have a very
natural definition within the model, but look contrived—and uninterestingly
so—in others. In particular, in [10] we have defined deterministic negotiations®.
A negotiation is deterministic if at every reachable state every agent is ready to
participate in at most one atom. The negotiation of Figure 1 is deterministic:
in fact, this follows directly from the fact that after choosing an outcome at an
atom, the edges labelled with it direct the parties to one atom. But consider

! We also introduce weakly deterministic negotiations, but we don’t discuss them in
this note.

Deterministic Negotiations: Concurrency for Free 25

n (E D ™)

st st st

n

y,n,am

TLf(é

Fig. 2. A nondeterministic negotiation

now the negotiation of Figure 2. It is a negotiation between three agents, called
Father, Daughter, and Mother, whose goal is to decide whether Daughter can go
to a party. After the initial atom, Daughter and Father are ready to engage in n,
while Mother is ready to engage in both ne and ny (graphically denoted by the
hyperedge connecting Mother’s port at atom ng to her ports at atoms ny and ny).
Negotiations with proper hyperedges of this kind are called nondeterministic.
Observe that after the initial atom occurs, the only atom enabled is ny, and
so Father and Daughter negotiate first, with possible outcomes yes (y), no (n),
and ask mother (am). Whether Mother participates in no or in ny is decided by
the outcome of ni: If Father and Daughter choose am, then atom no becomes
enabled, and Daughter and Mother negotiate with possible outcomes yes, no.
If they choose y or no, then atom ny becomes enabled, and the negotiation
terminates.

The results of [10,11] and some recent work [12,9] show that deterministic
negotiations are an exception to the “concurrency curse”: the rule of thumb
stating that all analysis problems for an interesting class of concurrent systems
(where the input is the concurrent system itself, not its state space) will be at
least NP- or PSPACE-hard. While the state space of a deterministic negotiation
can grow exponentially in its size, we have derived algorithms for important
analysis and synthesis problems that work directly on the negotiation diagram,
without constructing its state space, and have polynomial complexity. This is
our rationale for the title of this paper: in deterministic negotiations concurrency
is “for free”, in the sense that the capacity of the model to describe concurrent
interaction does not require one to pay the usual “exponential fee”. In the rest
of this note we present a brief overview of our results.

26 J. Esparza

Fig. 3. An unsound negotiation between four agents

Soundness and Summarization. Like any other model of concurrency, nego-
tiations can deadlock. Consider for instance the slight modification of the nego-
tiation of Figure 1 shown in Figure 3. The only difference is that after outcome
r agent 2 is now only ready to engage in the final atom. The negotiation reaches
a deadlock after the sequence ypp’ rp’ of outcomes. Loosely speaking, a negoti-
ation is sound if, whatever its current state, it can always finish, i.e., execute the
final atom. (Readers familiar with workflow models will recognize this notion
as the one defined in [1].) In particular, soundness implies deadlock-freedom.
The negotiations of Figure 1 and Figure 2 are sound. The soundness problem
consists of determining whether a given negotiation is sound, and it constitutes
a first fundamental problem in the analysis of negotiations. A second problem
comes from the fact that negotiations are expected to terminate. In particular,
all negotiation diagrams have an initial and a final atom, and so an associated
input/output relation on global states, where a global state, as usual, is a tuple
of local states of the agents. The relation contains the pairs (g, ¢’) of global states
such that, if the agents start in state g, then the negotiation can terminate in
state ¢’. Under the fairness assumption that it terminates, a sound negotiation
is equivalent to a single atom whose state transformer determines the possible
final internal states of all parties as a function of their initial internal states.
The summarization problem consists of computing such an atomic negotiation,
called a summary.

In [11] we have shown that the soundness and summarization problems for
deterministic negotiations can be solved in polynomial time. The algorithm for
the summarization problem takes the form of a reduction procedure in which
the original negotiation is progressively reduced to a simpler one by means of
three reduction rules. Each rule preserves soundness and summaries (i.e., the
negotiation before the application of the rule is sound iff the negotiation after
the application is sound, and both have the same summary). The rules are
graphically described in Figure 4; for each rule, the figure at the top shows a
fragment of a negotiation to which the rule can be applied, and the figure at
the bottom the result of applying it. The rules generalize to a concurrent setting

Deterministic Negotiations: Concurrency for Free 27

1 1 1
2 T2 2

Fig. 4. The reduction rules

those commonly used to transform a finite automaton into an equivalent regular
expression. Intuitively, the merge rule merges two outcomes that “move” each
participating agent to the same next atom (outcomes r1 and r9 in the figure) into
one single outcome with a fresh label. The iteration rule replaces the iteration
of an outcome r followed by an outcome r; by an outcome r;y with the same
overall effect?, and the shortcut rule merges the outcomes of two atoms n and
n' that can occur one after the other into one single outcome with the same
effect. Notice that the figure has to be complemented with the description of
the transformers associated to the outcomes. For instance, the transformer of
the outcome r1 ¢ in the iteration rule is the composition of the Kleene star of the
transformer of r and the transformer of 7.

In [11] we show that a deterministic negotiation can be reduced to a single
atom by repeated application of the rules if and only if it is sound. Moreover, the
rules only have to be applied a polynomial number of times. The algorithm for
checking soundness is a byproduct of this reduction algorithm: the negotiation
is sound if and only if the reduction algorithm reduces it to a single atom.

Realizability. In [9] we are studying the realizability problem for determinis-
tic negotiations. Design requirements for distributed systems are often captured
with the help of scenarios specifying the interactions among agents during a
run of the system. Formal notations for scenarios allow one to specify multi-
ple scenarios by means of operations like choice, concatenation, and repetition.
A set of scenarios specified in this way can be viewed as an early, global view
of the desired system behaviours. While this view is usually more intuitive for

2 This rule also reduces a negotiation with two atoms, one initial and one final, to

one single atom, which is then both initial and final. In this case we have n := no,

n' :=ng, and m = 0.

28 J. Esparza

developers, implementations require a parallel composition of sequential ma-
chines, which leads to the realizability problem. A specification is realizable if
there exists a set of state machines, one for each sequential component, whose
set of concurrent behaviours coincides with the set globally specified. The real-
izablity problem consists of deciding if a given specification is realizable and, if
so, computing a realization, i.e., a set of state machines.

The realizability problem has been studied for different communication prim-
itives. For message passing, message sequence charts (MSCs) and message se-
quence graphs (MSGs) (also called high-level MSCs) are very popular notations
for single scenarios and sets of scenarios, respectively [14]. In the choreography
setting, single scenarios are globally ordered sequences of messages, and sets of
scenarios are described by finite automata over the alphabet of all messages [19)].
In the case of communication by rendez-vous, single scenarios can be described
as Mazurkiewicz traces (or, equivalently, as words over so called distributed al-
phabets), and sets of scenarios by finite automata or regular expressions [8]. In
all these settings, the complexity of the problem is high, ranging from PSPACE-
hard to undecidable [3,5,13].

From a realizability point of view, negotiation diagrams are an implementation
formalism. Indeed, the negotiation on the left of Figure 1 is the composition of
the four state machines shown in Figure 5.

4

/

1 2 3
DR O
n/ |y y| \n n/ |y

=
&) o

Fig. 5. Distributed view of the negotiation of Figure 1

We have designed a negotiation language for the global description of the runs
of a deterministic negotiation, whose terms we call negotiation programs. For
instance, the program corresponding to the negotiation of Figure 1 is shown in
Figure 6.

The first two lines specify the agents of the system, and, for each outcome, the
agents that have to agree to choose the outcome. The outer do-block corresponds
to the atom ng. The block offers a choice betwen the outcomes y and n; in the
language, outcomes play the role of guards, and are prefixed by the operator “[]”.
After outcome y, the two outcomes p and p’ can be taken in parallel. The operator
o is the layer composition operator of Zwiers (see e.g. [22,15]). Loosely speaking,

Deterministic Negotiations: Concurrency for Free 29

agent A1, AQ, A3, A4

outcome y,n,a,r:{ai,...,as}
p: {a1, a2}
p':{as,as}

do [y: (pllp)e
do [] a:end

[r:(p| p) loop
od end

[n: end
od

Fig. 6. Program equivalent to the negotiation of Figure 1

in every execution ¢ of P; o P5, all actions of P; in which an agent a participates
take place before all actions of P, in which the same agent participates. The
other actions can occur in arbitrary order; in particular, if the sets of agents
of P; and P, are disjoint, then P} o P, and P, o P, are equivalent programs,
and in this case we write P; || P2. (Our language has only layer composition
as primitive, and parallel composition is just a special case.) Finally, the inner
do-block offers a choice between two alternatives, corresponding to the outcomes
a and r. Alternatives are labeled with the keywords loop and end, indicating
what happens after the chosen alternative has been executed: in the case of a
loop-alternative, the block restarts, and for an end-altenative it terminates.

Our results shows that the realizability problem for deterministic negotiations
has excellent semantic and computational properties:

(a) Every negotiation program has a sound realization.

(b) Negotiation programs are expressively complete: every sound deterministic
negotiation diagram has an equivalent negotiation program?.

(¢) Negotiation programs can be distributed in linear time. We provide an al-
gorithm to derive a negotiation from a program that generalizes classical
constructions to derive an automaton from a regular expression. The nego-
tiation diagram can then be projected onto its components.

Observe that (a) and (b) provide a syntactic characterization of soundness,
which is a semantic property. Further, (a) and (b) can also be interpreted as
a sort of Structure Theorem.. Just as flowcharts (or if-goto programs) model
unstructured sequential programs (see Figure 5), negotiations can be viewed as
a model of unstructured parallel programs. Therefore, (a) and (b) show that
every sound unstructured program has an equivalent structured program. In
other words, the soundness requirement, which is a desirable requirement for
any well designed negotiation, turns out to have an unexpected beneficial side-
effect: it forces the negotiation to be well structured.

Negotiation Games. In recent work with Philipp Hoffmann we have started
the study of games on negotiations [12]. As for games played on pushdown

3 Where equivalent means exhibiting the same completed Mazurkiewicz traces.

30 J. Esparza

automata [20], vector addition systems with states (VASS) [6], counter machines
[17], or asynchronous automata [18], games on negotiations can be translated
into games played on the (reachable part of the) state space. Since the number
of states of a negotiation may grow exponentially in the number of agents, the
game arena can be exponentially larger than the negotiation. We explore the
complexity of solving games in the size of the negotiation, not on the size of the
arena. We study games formalizing the two most interesting questions related to
a negotiation. Can a given coalition (i.e., a given subset of agents) force termina-
tion of the negotiation, or force that a given atom occurs? More precisely, a given
coalition divides the atoms into those controlled by the coalition—the atoms in
which a majority of the parties belong to the coalition—and those controlled
by the environment. This induces a concurrent games with three players, called
Coalition, Environment, and Scheduler. At each move, Scheduler selects a subset
of the atoms enabled at the current marking, ensuring that they can occur in
parallel (more precisely, Scheduler ensures that the sets of parties of the selected
atoms are pairwise disjoint). Then, Coalition and Environment, independently
of each other, choose an outcome for each of the selected atoms they control.
This leads to a new marking, after which the next move can be played. Coalition
wins if the play eventually executes the final atom, or the given goal atom.

Our results show that these two problems are EXPTIME-complete in the
size of the negotiation, even if it is deterministic. So, at first sight, it seems as if,
after all, the “concurrency curse” would also apply to deterministic negotiations.
But then we are able to show that, surprisingly, the problems are polynomial for
sound deterministic negotiations. The algorithm to decide the winner of a game is
obtained by lifting the well-known attractor construction for reachability games
from the arena of the state space to the negotiation diagram: While the usual
attractor construction iteratively computes increasingly larger sets of markings
from which Coalition can force termination, the lifted constructions computes
increasingly larger sets of atoms.

This result is very satisfactory. Since unsound negotiations are ill-designed,
we are not very interested in them, and the restriction to sound negotiations
has as collateral effect a strong improvement in the complexity of the problem.
Moreover, the restriction comes “at no cost”, because deciding soundness of
deterministic negotiations is also decidable in polynomial time.

A Short Conclusion. Concurrency theorists learn to live with the ubiquituous
state-explosion problem, and to accept as a seemingly unavoidable consequence
that all analysis problems for an interesting class of concurrent systems (where
the input is the concurrent system itself, not its state space) will be at least
NP- or PSPACE-hard. Our results show that deterministic negotiations escape
this “concurrency curse”. In future work we wish to investigate extensions of
the model that increase its expressive power and retain at least some of its
good analyzability properties. The next step is the study of weak deterministic
negotiations, already outlined in [10].

Deterministic Negotiations: Concurrency for Free 31

References

1.

2.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circuits, Syst. and Comput. 08(01), 21-66 (1998)

Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.): ICALP 2010. LNCS, vol. 6199. Springer, Heidelberg (2010)

Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of msc
graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 797-808. Springer, Heidelberg (2001)

Atdelzater, T.F., Atkins, E.M., Shin, K.G.: Qos negotiation in real-time systems
and its application to automated flight control. IEEE Transactions on Comput-
ers 49(11), 1170-1183 (2000)

Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL,
pp. 191-202. ACM (2012)

Brazdil, T., Jancar, P., Kucera, A.: Reachability games on extended vector addition
systems with states. In: Abramsky, et al. (eds.) [2], pp. 478489

Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving.
Artificial Intelligence 20(1), 63-109 (1983)

Diekert, V., Rozenberg, G., Rozenburg, G.: The book of traces, vol. 15. World
Scientific (1995)

Esparza, J., Desel, J.: Realizability of deterministic negotiations (in preparation)

. Esparza, J., Desel, J.: On negotiation as concurrency primitive. In: D’Argenio, P.R..,

Melgratti, H. (eds.) CONCUR 2013 — Concurrency Theory. LNCS, vol. 8052, pp.
440-454. Springer, Heidelberg (2013), Extended version in CoRR abs/1307.2145
Esparza, J., Desel, J.: On negotiation as concurrency primitive II: Deterministic cyclic
negotiations. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp.
258-273. Springer, Heidelberg (2014), Extended version in CoRR abs/1403.4958
Esparza, J., Hoffmann, P.: Negotiation games. CoRR, abs/1405.6820 (2014)
Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-type con-
struction of deterministic asynchronous automata. In: Abramsky, et al. (eds.) [2], pp.
52-63

Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098,
pp. 537-558. Springer, Heidelberg (2004)

Janssen, W., Poel, M., Zwiers, J.: Action systems and action refinement in the devel-
opment of parallel systems - an algebraic approach. In: Groote, J.F., Baeten, J.C.M.
(eds.) CONCUR 1991. LNCS, vol. 527, pp. 298-316. Springer, Heidelberg (1991)
Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra,
C.: Automated negotiation: prospects, methods and challenges. Group Decision
and Negotiation 10(2), 199-215 (2001)

Kugera, A.: Playing games with counter automata. In: Finkel, A., Leroux, J.,
Potapov, 1. (eds.) RP 2012. LNCS, vol. 7550, pp. 29-41. Springer, Heidelberg (2012)
Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338-351. Springer, Heidelberg (2003)
Salaiin, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE T. Services Computing 5(3), 290-304 (2012)
Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Com-
put. 164(2), 234-263 (2001)

Winsborough, W.H., Seamons, K.E., Jones, V.E.: Automated trust negotiation.
In: Proceedings of DARPA Information Survivability Conference and Exposition,
DISCEX 2000, vol. 1, pp. 88-102. IEEE (2000)

Zwiers, J.: Compositionality, Concurrency, and Partial Correctness. LNCS,
vol. 321. Springer, Heidelberg (1989)

Generalized Bisimulation Metrics*

Konstantinos Chatzikokolakis!-2, Daniel Gebler?,
Catuscia Palamidessi®2, and Lili Xu?"

! CNRS
2 LIX, Ecole Polytechnique
3 VU University Amsterdam
* INRIA
5 Institute of Software, Chinese Academy of Science

Abstract. The bisimilarity pseudometric based on the Kantorovich lift-
ing is one of the most popular metrics for probabilistic processes proposed
in the literature. However, its application in verification is limited to lin-
ear properties. We propose a generalization of this metric which allows to
deal with a wider class of properties, such as those used in security and
privacy. More precisely, we propose a family of metrics, parametrized on
a notion of distance which depends on the property we want to verify.
Furthermore, we show that the members of this family still character-
ize bisimilarity in terms of their kernel, and provide a bound on the
corresponding metrics on traces. Finally, we study the case of a met-
ric corresponding to differential privacy. We show that in this case it is
possible to have a dual form, easier to compute, and we prove that the
typical constructs of process algebra are non-expansive with respect to
this metrics, thus paving the way to a modular approach to verification.

1 Introduction

Originally proposed in the seminal works of Desharnais et al. [17,18], the bisimi-
larity pseudometric based on the Kantorovich lifting has become very popular in
the process algebra community. One reason of this success is that, when dealing
with probabilistic processes, metrics are more suitable than equivalences, since
the latter are not robust wrt small variation of probabilities. Another impor-
tant reason is that, thanks to the dual presentation of the Kantorovich lifting
in terms of the mass transportation problem, the metric can be computed using
linear programming algorithms [4,7,2]. Furthermore, this metric is an extension
of probabilistic bisimilarity, in the sense that two states have distance distance 0
if and only if they are bisimilar. In fact, the metric also shares with bisimilarity
the fact of being based on a similar coinductive definition. More precisely, it is
defined as the greatest fixpoint of a transformation that has the same structure

* This work has been partially supported by the project ANR-12-1S02-001 PACE, the
project ANR-11-1S02-0002 LOCALI, the INRIA Equipe Associée PRINCESS, the
INRIA Large Scale Initiative CAPPRIS, and the EU grant 295261 MEALS.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 32-46, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Generalized Bisimulation Metrics 33

as the one used for bisimilarity.! This allows to transfer some of the concepts
and methods that have been extensively explored in process algebra, and to use
lines of reasoning which the process algebra community is familiar with. Along
the same lines, a nice property of the Kantorovich bisimilarity pseudometric is
that the standard operators of process algebra are not expansive wrt it. This
can be seen as a generalization of the result that bisimulation is a congruence,
and can be used in a similar way, for compositional reasoning and verification.

Last but not least, the Kantorovich bisimilarity metric provides a bound on
the corresponding distance on probabilistic traces [12] (corresponding in the
sense that the definition is based on the same Kantorovich lifting). This means
that it can be used to verify certain probabilistic properties on traces. More
specifically, it can be used to verify properties that are expressed in terms of
difference between probabilities of sets of traces. These properties are linear, in
the sense that the difference increases linearly wrt variations on the distributions.

Many properties, however, such as several privacy and security ones, are not
linear. This is the case of the popular property of differential privacy [19], which
is expressed in terms of ratios of probabilities. In fact, there are processes that
have small Kantorovich distance, and which are not e-differentially private for
any finite e. Another example are the properties used in quantitative information
flow, which involve logarithmic functions on probabilities.

The purpose of this work is to generalize the Kantorovich lifting to obtain
a family of metrics suitable for the verification of a wide class of properties,
following the principles that:

i. the metrics of this family should depend on a parameter related to the class
of properties (on traces) that we wish to verify,
ii. each metric should provide a bound on the corresponding metric on traces,
iii. the kernel of these metric should correspond to probabilistic bisimilarity,
iv. the general construction should be coinductive,
v. the typical process-algebra operators should be non-expansive,
vi. it should be feasible to compute these metrics.

In this paper we have achieved the first four desiderata. For the last two, so
far we have studied the particular case of the multiplicative variant of the Kan-
torovich metric, which is based on the notion of distance used in the definition
of differential privacy. We were able to find a dual form of the lifting, which
allows to reduce the problem of its computation to a linear optimization prob-
lem solvable with standard algorithms. We have also proved that several typical
process-algebra operators are non-expansive, and we have given explicitly the
expression of the bound. For some of them we were able to prove this result in a
general form, i.e., non-expansiveness wrt all the metrics of the family, and with
the bound represented by the same expression.

! In the original definition the Kantorovich bisimilarity pseudometric was defined as
the greatest fixpoint, but such definition requires using the reverse order on metrics.
More recently, authors tend to use the natural order, and define the bisimilarity
metric as the least fixpoint, see [12,1,2]. Here we follow the latter approach.

34 K. Chatzikokolakis et al.

As an example of application of our method, we show of to instantiate our
construction to obtain the multiplicative variant of the Kantorovich metric, and
how to use it to verify the property of differential privacy.

All proofs are given in the report version of this paper [11].

Related Work. Bisimulation metrics based on the standard Kantorovich distance
have been used in various applications, such as systems biology [25], games [9],
planning [13] and security [8]. We consider in this paper discrete state spaces.
Bisimulation metrics on uncountable state spaces have been explored in [18]. We
define bisimulation metrics as fixed point of an appropriate functor. Alternative
characterizations were provided in terms of coalgebras [6] and real-valued modal
logics [18]. The formulation of the Kantorovich lifting as primal and dual linear
program is due to [5].

Verification of differential privacy has been itself an active area of research.
Prominent approaches based on formal methods are those based on type sys-
tems [22] and logical formulations [3]. Earlier papers [26,27] define a bisimulation
distance, which however suffered from the fact that the respective kernel relation
(states in distance 0) does not fully characterize probabilistic bisimilarity.

2 Preliminaries

2.1 Labelled Concurrent Markov Chains

Given a set X, we denote by Prob(X), Disc(X) the set of all and discrete prob-
ability measures over X respectively; the support of a measure pu is defined as
supp(p) = {z € X|u(z) > 0}. A labelled concurrent Markov chain (henceforth
LCMC) A is a tuple (S, A, D) where S is a countable set of states, A is a count-
able set of action labels, and D C S x A x Disc(S) is a transition relation. We
write s —% u for (s,a,u) € D.

An ezecution « is a (possibly infinite) sequence spaisiasss ... of alternating
states and labels, such that for each i : s; Litf tit1 and pip1(siy1) > 0. We
use [state(a) to denote the last state of a finite execution a. We use Ezec*(A)
and Fzec(A) to represent the set of finite executions and of all executions of A,
respectively. A trace is a sequence of labels in A* U A¥ obtained from execu-
tions by removing the states. We use [] to represent the empty trace, and ™ to
concatenate two traces.

A labelled Markov chain (henceforth LMC) A is a fully probabilistic LCMC,
namely a LCMC where from each state of A there is at most one transition
available. We denote by L(s) and w(s) the label and distribution of the unique
transition starting from s (if any).

In a LMC A, a state s of A induces a probability measure over traces as
follows. The basic measurable events are the cones of finite traces, where the
cone of a finite trace t, denoted by Ct, is the set {t' € A*U A“|t < '}, where <
is the standard prefix preorder on sequences. The probability induced by s on a
cone Ct, denoted by Pr[s > Ct], is defined recursively as follows:

Generalized Bisimulation Metrics 35

1 ift=1]
Pr[s> C¢] =<0 ift=a"t"and a # L(s) (1)
> s, W(si)Pr[s; > Cy] if t =a”t" and s s

This probability measure is extended to arbitrary measurable sets in the o-
algebra of traces in the standard way. We write Pr[s > o] to represent the
probability induced by s on the set of traces o.

2.2 Pseudometrics

A pseudometric is a relaxed notion of a normal metric in which distinct elements
can have distance zero. We consider here a generalized notion where the distance
can also be infinite, and we use [0, +00] to denote the non-negative fragment of
the real numbers R enriched with +o0o. Formally, an (extended) pseudometric on
aset X is a function m : X? — [0, +-00] with the following properties: m(z,) = 0
(reflexivity), m(x,y) = m(y,x) (symmetry), and m(z,y) < m(z,z) + m(z,y)
(triangle inequality). A metric has the extra condition that m(z,y) = 0 implies
z = y. Let Mx denote the set of all pseudo-metrics on X with the ordering
my <X my iff Vo,ymi(z,y) < ma(z,y). It can be shown that (Mx, <) is a
complete lattice with bottom element L such that Vz,y. L(z,y) = 0 and top
element T such that Vz,y. T(x,y) = oo.

The ball (wrt m) of radius r centered at © € X is defined as B"(z) =
{z/ € X : m(z,2’) < r}. A point z € X is called isolated iff there exists
r > 0 such that B"(z) = {z}. The diameter (wrt m) of A C X is defined as
diam,, (A) = sup, ,re 4 m(x, 2"). The kernel ker(m) is an equivalence relation on
X defined as

(z,2") € ker(m) iff m(z,2') =0

3 A General Family of Kantorovich Liftings

We introduce here a family of liftings from pseudometrics on a set X to pseu-
dometrics on Prob(X). This family is obtained as a generalization of the Kan-
torovich lifting, in which the Lipschitz condition plays a central role.

Given two pseudometric spaces (X, dx), (Y,dy), we say that f : X — Y is 1-
Lipschitz wrt dx, dy iff dy (f(x), f(2')) < dx(x,2’) for all z,2’ € X. We denote
by 1-Lip[(X,dx), (Y, dy)] the set of all such functions.

A function f: X — R can be lifted to a function f : Prob(X) — R by taking
its expected value. For discrete distributions (countable X) it can be written as:

F(w) = Cex w@)f(@) (2)

while for continuous distributions we need to restrict f to be measurable wrt
the corresponding o-algebra on X, and take f(,u) = [fdu.

Given a pseudometric m on X, the standard Kantorovich lifting of m is a
pseudometric K (m) on Prob(X), defined as:

36 K. Chatzikokolakis et al.

K(m)(p, ') = sup{| () = f(u')] = f € 1-Lip[(X,m), (R, dg)]}

where dr denotes the standard metric on reals. For continuous distributions we
implicitly take the sup to range over measurable functions.

Generalization. A generalization of the Kantorovich lifting can be naturally
obtained by extending the range of f from (R,dg) to a generic metric space
(V,dy), where V C R is a convex subset of the reals?, and dy is a metric on V.
A function f: X — V can be lifted to a function f : Prob(X) — V in the same
way as before (cfr. (2)); the requirement that V is convex ensures that f(u) € V.

Then, similarly to the standard case, given a pseudometric space (X, m) we
can define a lifted pseudometric Ky (m) on Prob(X) as:

Ky (m)(p, 1) = sup{dy (f(n), f(1) : f € 1-Lip[(X,m)(V,dv)]} (3)

The subscript V' in Ky is to emphasize the fact that for each choice of (V,dy)
we may get a different lifting. We should also point out the difference between
m, the pseudometric on X being lifted, and dy, the metric (not pseudo) on V
which parametrizes the lifting.

The constructed Ky (m) can be shown to be an extended pseudometric for
any choice of (V,dy), i.e. it is non-negative, symmetric, identical elements have
distance zero, and it satisfies the triangle inequality. However, without extra
conditions, it is not guaranteed to be bounded (even if m itself is bounded). For
the purposes of this paper this is not an issue. In the report version [11] we show
that under the condition that dy is ball-convex (i.e. all its balls are convex sets,
which holds for all metrics in this paper), the following bound can be obtained:

Ky (m)(p, ') < diam,y, (supp(p) U supp(p))

Ezxamples. The standard Kantorovich lifting is obtained by taking (V,dy) =
(R, dgr). When 1-bounded pseudometrics are used, like in the construction of the
standard bisimilarity metric, then we can equivalently take V' = [0, 1].

Moreover, a multiplicative variant of the Kantorovich lifting can be obtained
by taking (V,dy) = (]0,1],dg) (or equivalently ([0,00),dg)) where dg(x,y) =
|In x—1Iny|. The resulting lifting is discussed in detail in Section 5 and its relation
to differential privacy is shown in Section 5.1.

4 A General Family of Bisimilarity Pseudometrics

In this section we define a general family of pseudometrics on the states of an
LCMC which have the property of extending probabilistic bisimilarity in the
usual sense. Following standard lines, we define a transformation on state pseu-
dometrics by first lifting a state pseudometric to a pseudometric on distributions

2V could be further generalized to be a convex subset of a vector space. It is unclear
whether such a generalization would be useful, hence it is left as future work.

Generalized Bisimulation Metrics 37

(over states), using the generalized Kantorovich lifting defined in previous sec-
tion. Then we apply the standard Hausdorff lifting to obtain a pseudometric on
sets of distributions. This last step is to take into account the nondeterminism
of the LCMC, i.e., the fact that in general, from a state, we can make transitions
to different distributions. The resulting pseudometric naturally corresponds to
a state pseudometric, obtained by associating each set of distributions to the
states which originate them. Finally, we define the intended bisimilarity pseu-
dometric as the least fixpoint of this transformation wrt the ordering < on the
state pseudometrics (or equivalently, as the greatest fixpoint wrt the reverse of
=<). We recall that m < m’ means that m(s,s’) <m/(s,s’) for all s,s" € S.

Let A= (S, A, D) be a LCMC, let (V,dy) be a metric space (for some convex
V C R), and let M be the set of pseudometrics m on S such that diam,,(S) <
diamg,, (V). Recall that inf) = diamg,, (V') and sup () = 0.

Definition 1. The transformation Fy : M — M s defined as follows.

Fy(m)(s,t) = max{ sup inf Ky (m)(u,v), sup inf Ky (m)(v,p)}

s—typt—v t—"sy STH
We can also characterize Fy in terms of the following zigzag formulation:
Proposition 1. For any € > 0, Fy(m)(s,t) < € if and only if:

— if s %5 p, then there exists v such that t — v and Ky (m)(u,v) <,
— if t =25 v, then there exists yu such that s —— p and Ky (m)(v, u) < e.

The following result states that Ky and Fy are monotonic wrt (M, <).
Proposition 2. Let m,m’ € M. If m < m’ then:

Fy(m)(s,s') < Fy(m')(s,s") for all states s, s’
Ky(m)(p, 1) < Ky (m/)(u, 1) for all distributions u, p'

Since (M, <) is a complete lattice and Fy is monotone on M, by Tarski’s
theorem [24] Fy has a least fixpoint, which coincides with the least pre-fixpoint.
We define the bisimilarity pseudometric bmy as this least fixpoint:

Definition 2. The bisimilarity pseudometric bmy is defined as:
bmy =min {m € M| Fy(m)=m} = min {m € M| Fy(m) < m}

In addition, if the states of A are finite, then the closure ordinal of Fy is w
(cf: [17], Lemma 3.10). Hence we can approximate bmy by iterating the function
Fy from the bottom element:

Proposition 3. Assume S is finite. Let mo = L and m;y1 = Fy(m;). Then
bmy = sup; m;.

Next section shows that bmy is indeed a bisimilarity metric, in the sense that
its kernel coincides with probabilistic bisimilarity.

38 K. Chatzikokolakis et al.

4.1 Bisimilarity as 0-distance

We now show that under certain conditions, the pseudometric constructed by
Ky (m) characterizes bisimilarity at its kernel. Recall that the kernel ker(m) of
m is an equivalence relation relating states at distance 0.

Given an equivalence relation R on S, its lifting £(R) is an equivalence relation
on Disc(S), defined as

(nop') € L(R) iff Vs € S:pu([s|r) =/ ([s]r)

where [s]g denotes the equivalence class of s wrt R.

To obtain the characterization result we assume that (a) the set of states is
finite, and (b) the distance dy is non-discrete. Under these conditions, the kernel
operator and the lifting operator commute (cfr. [15] for the analogous property
for the standard Kantorovich lifting).

Lemma 1. If S is finite and dy is non-discrete, then L(ker(m)) = ker(Ky (m)).

We recall the notions of probabilistic bisimulation and bisimilarity, following
the formulation in terms of post-fixpoints of a transformation on state relations:

Definition 3.

— The transformation B : S x S — S x S is defined as: (s,s") € B(R) iff
o if s %5 u, then there exists ' such that t — ' and (u, ') € L(R),
o if ' %5 1/, then there exists u such that s —— p and (¢, p) € L(R).

— A relation R C S x S is called a bisimulation if it is a post-fizpoint of R, i.e.
R C B(R).

It is easy to see that B is monotonic on (25%9 C) and that the latter is a
complete lattice, hence by Tarski’s theorem there exists the greatest fixpoint of
B, and it coincides with the greatest bisimulation:

Definition 4. The bisimilarity relation ~C S x S is defined as:
~ = max{R|R=B(R)} = max{R|RC B(R)} = U{R|R C B(R)}

We are now ready to show the correspondence between pre-fixpoint metrics
and bisimulations. Using Lemma 1, we can see that the definition of B corre-
sponds to the characterization of Fy in Proposition 1, for ¢ = 0. Hence we have:

Proposition 4. For every m € M, if Fy(m) < m then ker(m) C B(ker(m)),
i.e., ker(m) is a bisimulation.

As a consequence, ker(bmy) C~. The converse of Proposition 4 does not hold,
because the fact that ker(m) C B(ker(m)) does not say anything about the
effect of Fy, on the distance between elements that are not on the kernel. How-
ever, in the case of bisimilarity we can make a connection: consider the greatest

Generalized Bisimulation Metrics 39

metric m. whose kernel coincides with bisimilarity, namely, m.(s,s’) = 0 if
s~ s and m..(s,s’) = diamg, (V') otherwise. We have that Fy (m.) < m., and
therefore ~= ker(m..) C bmy . Therefore we can conclude that the kernel of the
bisimilarity pseudometrics coincides with bisimilarity.

Theorem 1. ker(bmy) =~ for every (V,dy),

4.2 Relation with Trace Distributions

In this section, we show the relation between the bisimilarity metric bmy and the
corresponding metric on traces, in the case of LMCs (labeled Markov chains).
Note that we restrict to the fully probabilistic case here, where probabilities on
traces can defined in the way shown in the preliminaries. The full case of LCMCs
can be treated by using schedulers, but a proper treatment involves imposing
scheduler restrictions which complicate the formalism. Since these problems are
orthogonal to the goals of this paper, we keep the discussion simple by restricting
to the fully probabilistic case.

The distance between trace distributions (i.e. distributions over A“) will be
measured by the Kantorovich lifting of the discrete metric. Given (V,dy), let
oy = diamg, (V). Then let dms, be the dy-valued discrete metric on A%, defined
as dmg, (t,t') = 0if t = ¢/, and dms, (¢,t') = dy otherwise.

Then Ky (dms,)(p, ¢t’) is a pseudometric on Prob(A“), whose kernel coincides
with probabilistic trace equivalence.

Proposition 5. Ky(dms,)(u, ') =0 iff p(o)=p' (o) for all measurable o C A%.

The following theorem expresses that our bisimilarity metric bmy, is a bound
on the distance on traces, which extends the standard relation between proba-
bilistic bisimilarity and probabilistic trace equivalence.

Theorem 2. Let p = Pr[s > -] and y/ = Pr[s’ > -]. Then Ky (dms,)(u, 1) <
me(Sasl)

It should be noted that, although the choice of Ky (dms,) as our trace distri-
bution metric might seem arbitrary, this metric is in fact of great interest. In the
case of the standard bisimilarity pseudometric, i.e. when (V,dy) = ([0, 1], dr),
this metric is equal to the well-known total variation distance (also known as
statistical distance), defined as tv(u, p') = sup,, |u(o) — p'(o)|:

K(dms,) = tv (4)

Theorem 2 reduces to the result of [12] relating the total variation distance to
the bisimilarity pseudometric. Moreover, in the case of the multiplicative pseudo-
metric, discussed in the next section, Ky (dms,,) is the same as the multiplicative
distance between distributions, discussed in Section 5.1, which plays a central
role in differential privacy.

40 K. Chatzikokolakis et al.

Table 1. The standard Kantorovich metric and its multiplicative variant

Standard K (m)(p, ') Multiplicative Kg(m)(u, ')
maxy | f(n) = f(1)] maxy |1 f () —In f(i)]
Primal subject to subject to

Vs, o', |f(s) = ()| < m(s,8') Vs, |Inf(s) — In f(s')] < m(s, s)

miny Zi’j li;m(ss, 85) minln z
Dual subject to subject to
Vi. Zj fij = ,U,(SZ) Vi. Zj gij — Ty = /,(,(Si)
Vi Dby = 1 (s5) Vi o e i) — oy < 2y (s5)

5 The Multiplicative Variant

In this section we investigate the multiplicative variant of the Kantorovich pseu-
dometric, obtained by considering as distance dy the ratio between two numbers
instead than their difference. This is the distance used to define differential pri-
vacy. We show that this variant has a dual form, which can be used to compute
the metric by using linear programming techniques. In the next section, we will
show how to use it to verify differential privacy.

Definition 5. The multiplicative variant Kg of the Kantorovich lifting is de-
fined as the instantiation of Ky with ([0,1],dg) where dg(z,y) = |Inz — Iny|.

It is well known that the standard Kantorovich metric has a dual form which
can be interpreted in terms of the Transportation Problem, namely, the lowest
total cost of transporting the mass of one distribution p to the other distribution
w1’ given the distance m between locations (in our case, states). The dual form
is shown in Table 1. Note that both the primal and the dual forms are linear
optimization problems. The dual form is particularly suitable for computation,
via standard linear programming techniques.

For our multiplicative variant, the objective function of the primal form is not
a linear expression, hence the linear programming techniques cannot be applied

I ()

directly. However, since In f(p) — In f(1/) = In o) and In is a monotonically

increasing function, the primal problem is actually a linear-fractional program.
It is known that such kind of program can be converted to an equivalent lin-
ear programming problem and then to a dual program. The dual form of the
multiplicative variant obtained in this way is shown in Table 1. (For the sake
of simplicity, the table shows only the dual form of In f (1) —In f (1'). The dual
form of In f(p’) —1In f(,u) can be obtained by simply switching the roles of u and

Generalized Bisimulation Metrics 41

u'.) Hence, the multiplicative pseudometric can be computed by using linear
programming techniques.

5.1 Application to Differential Privacy

Differential privacy [19] is a notion of privacy originating from the area of statis-
tical databases, which however has been recently applied to several other areas.
The standard context is that of an analyst who wants to perform a statistical
query to a database. Although obtaining statistical information is permitted,
privacy issues arise when this information can be linked to that of an individual
in the database. In order to hide this link, differentially private mechanisms add
noise to the outcome of the query, in a way such that databases differing in a
single individual have similar probability of producing the same observation.

More concretely, let X' be the set of all databases; two databases z, 2’ € X
are adjacent, written x « z/, if they differ in the value of a single individual. A
mechanism is a function M : X — Prob(Z) where Z is some set of reported val-
ues. Intuitively, M (z) gives the outcome of the query when applied to database
x, which is a probability distribution since noise is added.

Let tvg be a multiplicative variant of the total variation distance on Prob(Z)
(simply called “multiplicative distance” in [23]), defined as:

wZ)

w(z)

tog (u, 1) = sup | In

Then differential privacy can be defined as follows.3

Definition 6. A mechanism M : X — Prob(Z) is e-differentially private iff
tvg(M(z), M(z')) <e Vawua

Intuitively, the definition requires that, when run on adjacent databases, the
mechanism should produce similar results, since the distance between the corre-
sponding distributions should be bounded by € (a privacy parameter).

In our setting, we assume that the mechanism M is modelled by a LMC, and
the result of the mechanism running on z is the trace produced by the execution
of the LMC starting from some corresponding state s,. That is, Z = A and

M(z) = Pr[sy >] (5)

The relation between differential privacy and the multiplicative bisimilarity met-
ric comes from the fact that tvg can be obtained as the Kg lifting of the discrete
metric on A“.

Lemma 2. Let §y = diamg, ([0,1]) = 400 and let dms,, be the discrete metric
on A¥. Then tvg = Kg(dms,).

3 The definition can be generalized to an arbitrary set of secrets X equipped with a
“distinguishability metric” dx [10]. The results of this section extend to this setting.

42 K. Chatzikokolakis et al.

% % % %
0. 999 O 0()1

- ~ S g ~

° 2% 29 vg ©

(a) bm(s,t) = 0.099 while € = In 100. (b) bm s',t/ =05 whlle ¢ =In3.5.

Fig. 1. The bisimilarity pseudometric bm does not imply differential privacy

Let bmg be the instantiation of the bisimilarity metric bmy with Kg. The
above Lemma, together with Theorem 2, imply the following result, which makes
bmg useful to verify differential privacy:

Theorem 3. Let M be the mechanism defined by (5), and assume that
bmg Sz, s2) < € for all z ~ 2’
Then M satisfies e-differential privacy.

Note that the use of the multiplicative bmg, is crucial in the above result. The
following example shows that the standard bisimilarity metric bmn (generated by
the original Kantorovich lifting) may be very different from the level of differ-
ential privacy, which is expected, since bm bounds the additive total variation
metric (Theorem 2 and (4)) instead of the multiplicative tvg.

Ezample 1. Consider the processes s, t shown in Fig. 1 (a). We have that bm(s, t) =
0.1—0.001 = 0.099 while their level of differential privacy is € = In %5, = In 100.
Moreover, for the processes s, t’ shown in Fig. 1 (b) We havebm(s’,t') = 0.7-0.2 =
0.5 while their level of differential privacy is € ln = In 3.5. Using the orlglnal
Kantorovich metric, s and ¢ are considered more 1ndlst1ngulshable than s’ and ¢/,

in sharp contrast to the corresponding differential privacy levels.

Approximate differential privacy. An approximate, also known as (e, §) version of
differential privacy is also widely used [20], relaxing the definition by an additive
factor ¢. It requires that:

M@)(Z2) <e M) Z)+d Nex—a',ZCZ

The a-distance on distributions is proposed in [3] to capture (e, d)-differential
privacy. For two real numbers a, b and a skew parameter « > 1, the a-distance
between a and b is max{a — ab,b — aa,0}. An instantiation of the Kantorovich
lifting based on the a-distance seems promising for extending Theorem 3 to the
approximate case; we leave this extension as future work.

Weak probabilistic anonymity. Weak probabilistic anonymity was proposed in
[16] as a measure of the degree of protection of user’s identities. It is defined in
a way similar to differential privacy, with the crucial difference (apart from the

Generalized Bisimulation Metrics 43

lack of an adjacency relation) that it uses the (additive) total variation instead
of the multiplicative one. Formally, let X contain the users’ identities, and let
M : X — Prob(Z) be the system in which users operate. We say that M is
e-weakly probabilistically anonymous iff tv(M(x), M (z")) < € for all z,2" € X.

For systems modelled by LMCs, by (4) and Theorem 2, we have that if
bm(sz, 827) < € for all z, 2’ € X, then M satisfies e-weak probabilistic anonymity.
Hence bm can be used to verify this anonymity property.

6 Process Algebra

Process algebras allow to syntactically describe probabilistic processes in terms of
a small set of well-understood operators. The operational semantics of a process
term is a LCMC with transitions derived from SOS rules.

In order to specify and verify systems in a compositional manner, it is neces-
sary that the behavioral semantics is compatible with all operators of the lan-
guage that describe these systems. For behavioral equivalence semantics there is
the common agreement that compositional reasoning requires that the consid-
ered behavioral equivalence is a congruence wrt all operators. On the other hand,
for behavioral metric semantics there are several proposals of properties that op-
erators should satisfy in order to facilitate compositional reasoning [18,1]. In this
section we will show that the standard non-recursive process algebra operators
are non-expansiveness [18] (as most prominent compositionality property) with
respect to the bisimilarity metric.

We introduce a simple probabilistic process algebra that comprises the follow-
ing operators i) constants 0 (stop process) and e (skip process); ii) a family of
n-ary prefix operators a.([p1] @...®[ps]) witha € Act,n > 1,p1,...,pn € (0,1]

and > | p; = 1; iii) binary operators ; (sequential composition), + (al-
ternative composition), +, (probabilistic alternative composition), | (syn-
chronous parallel composition), | (asynchronous parallel composition), and

I, (probabilistic parallel composition). We assume a set of actions Act with
the distinguished action v/ € A to denote successful termination. The operational
semantics of all operators is specified by the rules in Table 2.

We use distribution terms in the target of rules (right hand side of the
conclusion of the rules) in order to describe distributions. We briefly recall
the semantics of distribution terms of [21,14]. The expression 0(z) denotes a
Dirac distribution on x. The expression p;d(y) denotes a distribution such that
(15 6(y))(z;y) = p(x), the expression u @, v denotes a distribution such that
(1 ©p)(x) = () + (1 — (), and (|| v)(s ||) = (s

The probabilistic prefix operator expresses that the process a.([p1]t1 ® ... ®,
lus[pn]tn) can perform action a and evolves to process t; with probability p;.
The sequential composition and the alternative composition are as usual. The
synchronous parallel composition s | ¢ describes the simultaneous evolution of
processes s and ¢, while the asynchronous parallel composition ¢ || ¢ describes
the interleaving of s and t where both processes can progress by alternating
at any rate the execution of their actions. The probabilistic alternative and

44 K. Chatzikokolakis et al.

Table 2. Probabilistic process algebra operators

n n
e Yy 4(0) a. @[pz}xz = @pié(%)
i=1 i=1
S a#y xi>,u Yy — v -5 y— v
Ty = s 6(y) Y v Ty S u Tty -Sv
r S oy S r 5 Y-S v
zly = plv zlly = ulldy) xly =@ v
xS oy 2% % oy Sy S oy S
x+py£+p x+py~a»1/ x+py£+p€9p1/
TS oy A T4 oy TS oy

T Hp Y B e ||p i(y) € ||p Y = 3(z) ||p v .z ||p Y B e ||p i(y) Dp () ||p v

probabilistic parallel composition replaces the nondeterministic choice of their
non-probabilistic variants by a probabilistic choice. The probabilistic alterna-
tive composition s+, t evolves to the probabilistic choice between a distribution
reached by s (with probability p) and a distribution reached by ¢ (with proba-
bility 1 — p) for actions which can be performed by both processes. For actions
that can be performed by either only s or only ¢, the probabilistic alternative
composition s+,t behaves just like the nondeterministic alternative composition
s + t. Similarly, the probabilistic parallel composition s ||, ¢ evolves to a prob-
abilistic choice between the nondeterministic choices of asynchronous parallel
composition of s and ¢.

We start by showing an important auxiliary property how the distance be-
tween convex combinations of probability distributions relates to the distance
between the combined probability distributions.

Proposition 6. Let pq, pz2, pf, ph € Dise(X) and p € [0,1]. Then

Kg(bmg)(ppa+ (1—p)pe, ppi + (1—p)pz) < max(Kg(bme)(p1, p2), Ko (bme) (11, p2))

Non-expansiveness is the most wildly studied compositionality property stat-
ing that the distance between composed processes is at most the sum of the
distance between its parts.

Definition 7. A n-ary operator f is non-expansive wrt a pseudometric m if
n
m(f(s1, LR STL)v f(tlv D 7t7l)) S Zm(sutz)
i=1

Now we can show that all (non-recursive) operators of the probabilistic process
algebra introduced above are non-expansive. In fact, we will provide upper bounds
on distance between the composed processes which are in case of the (nondeter-
ministic and probabilistic) alternative composition even stricter than the non-
expansiveness condition.

Generalized Bisimulation Metrics 45

Theorem 4. Let s,t,s’,t' be probabilistic processes. Then

bmg(s;t,s';t') < bmg(s,s’) + bmg(t,t)
bmg(s+t,s +t') < max(bmg(s,s'),bmg(t,t'))
bmg(s+pt,s 4+, t') <max(bmg(s,s’),bmg(t,t'))
bmg(s|t, s || t') < bmg(s,s') + bmg(t,t)

bmg(s | t,s" || t) <bmg(s,s’) +bmg(t,t')
bme(s [t,s [lp ') < bmg(s, s') +bmg(t, 1)

S Grds Lo do =

A similar result can be gained for the bisimilarity metric bm based on the
standard Kantorovich lifting. This generalizes a similar result of [18] which con-
sidered only PTSs without nondeterministic branching and only a small set of
process combinators.

For the generalized bisimilarity metric bmy we can formulate a similar result
for the nondeterministic alternative composition.

Theorem 5. Let s,t,s’,t' be probabilistic processes. Then

bmy (s +t,s" +t') < max(bmy (s, s), bmy (¢, 1))

7 Conclusion and Future Work

We have proposed a family of Kantorovich pseudometrics depending on the
notion of distance used to specify properties over traces. We have developed the
theory of this notion, and showed how we can use it to verify the corresponding
kind of properties. We have also showed that for the multiplicative variant, which
is an interesting case because it corresponds to differential privacy, it is possible
to give a dual form that makes the metric computable by standard techniques.

Future work include the investigation of methods to compute other members
of this family, and of conditions that make possible a general dual form.

References

1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing Behavioral Distances,
Compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087,
pp. 74-85. Springer, Heidelberg (2013)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of
bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 1-15. Springer, Heidelberg (2013)

3. Barthe, G., Kopf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. In: Proc. of POPL. ACM (2012)

4. van Breugel, F., Worrell, J.B.: An algorithm for quantitative verification of prob-
abilistic transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 336-350. Springer, Heidelberg (2001)

5. van Breugel, F., Worrell, J.B.: Towards quantitative verification of probabilistic
transition systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP
2001. LNCS, vol. 2076, pp. 421-432. Springer, Heidelberg (2001)

6. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition
systems. Theor. Comp. Sci. 331(1), 115-142 (2005)

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

K. Chatzikokolakis et al.

van Breugel, F., Worrell, J.: Approximating and computing behavioural distances
in probabilistic transition systems. Theor. Comp. Sci. 360(1-3), 373-385 (2006)
Cai, X., Gu, Y.: Measuring anonymity. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC
2009. LNCS, vol. 5451, pp. 183-194. Springer, Heidelberg (2009)

Chatterjee, K., de Alfaro, L., Majumdar, R., Raman, V.: Algorithms for Game
Metrics. In: FSTTCS, vol. 2, pp. 107-118. Leibniz-Zentrum fuer Informatik (2008)
Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening
the scope of Differential Privacy using metrics. In: De Cristofaro, E., Wright, M.
(eds.) PETS 2013. LNCS, vol. 7981, pp. 82-102. Springer, Heidelberg (2013)
Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation
metrics. Tech. rep., INRIA (2014)

Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic
bisimilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437-451.
Springer, Heidelberg (2012)

Comanici, G., Precup, D.: Basis function discovery using spectral clustering and
bisimulation metrics. In: Vrancx, P., Knudson, M., Grze$, M. (eds.) ALA 2011.
LNCS, vol. 7113, pp. 85-99. Springer, Heidelberg (2012)

D’Argenio, P.R., Gebler, D., Lee, M.D.: Axiomatizing Bisimulation Equivalences
and Metrics from Probabilistic SOS Rules. In: Muscholl, A. (ed.) FOSSACS 2014.
LNCS, vol. 8412, pp. 289-303. Springer, Heidelberg (2014)

Deng, Y., Du, W.: The kantorovich metric in computer science: A brief survey.
ENTCS 253(3), 73-82 (2009)

Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. of
SecCo. ENTCS, vol. 180 (1), pp. 55-76. Elsevier (2007)

Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of
weak bisimulation for probabilistic processes. In: Proc. of LICS, pp. 413-422. IEEE
(2002)

Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comp. Sci. 318(3), 323-354 (2004)

Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1-12. Springer, Heidelberg (2006)
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves:
Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 486-503. Springer, Heidelberg (2006)

Lee, M.D., Gebler, D., D’Argenio, P.R.: Tree Rules in Probabilistic Transition System
Specifications with Negative and Quantitative Premises. In: Proc. EXPRESS/SOS
2012. EPTCS, vol. 89, pp. 115-130 (2012)

Reed, J., Pierce, B.C.: Distance makes the types grow stronger: A calculus for
differential privacy. In: Proc. of ICFP, pp. 157-168. ACM (2010)

Smith, A.: Efficient, differentially private point estimators. arXiv preprint
arXiv:0809.4794 (2008)

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285-309 (1955)

Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with
wasserstein pseudometrics. Systems Biology, IET 4(3), 193-211 (2010)

Tschantz, M.C., Kaynar, D., Datta, A.: Formal verification of differential privacy
for interactive systems (extended abstract). ENTCS 276, 61-79 (2011)

Xu, L., Chatzikokolakis, K., Lin, H.: Metrics for differential privacy in concurrent
systems. In: Abrahdm, E., Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461,
pp. 199-215. Springer, Heidelberg (2014)

Choreographies, Logically

Marco Carbone!, Fabrizio Montesi®*, and Carsten Schiirmann!

L IT University of Copenhagen, Copenhagen, Denmark
2 University of Southern Denmark, Odense, Denmark

Abstract. In Choreographic Programming, a distributed system is
programmed by giving a choreography, a global description of its in-
teractions, instead of separately specifying the behaviour of each of its
processes. Process implementations in terms of a distributed language
can then be automatically projected from a choreography.

We present Linear Compositional Choreographies (LCC), a proof
theory for reasoning about programs that modularly combine choreogra-
phies with processes. Using LCC, we logically reconstruct a semantics
and a projection procedure for programs. For the first time, we also ob-
tain a procedure for extracting choreographies from process terms.

1 Introduction

Choreographic Programming is a programming paradigm for distributed systems
inspired by the “Alice and Bob” notation, where programs, called choreographies,
are global descriptions of how endpoint processes interact during execution
[14,21,1]. The typical set of programs defining the actions performed by each
process is then generated by endpoint projection (EPP) [17,12,8,5,9,15].

The key aspect of choreography languages is that process interactions are
treated linearly, i.e., they are executed exactly once. Previous work [8,9,15] de-
veloped correct notions of EPP by using session types [11], linear types for com-
munications inspired by linear logic [10]. Despite the deep connections between
choreographies and linearity, the following question remains unanswered:

Is there a formal connection between choreographies and linear logic?

Finding such a connection would contribute to a more precise understanding of
choreographies, and possibly lead to answering open questions about them.

A good starting point for answering our question is a recent line of work on
a Curry-Howard correspondence between the internal w-calculus [18] and linear
logic [7,22]. In particular, proofs in Intuitionistic Linear Logic (ILL) correspond
to m-calculus terms (proofs-as-programs) and ILL propositions correspond to
session types [7]. An ILL judgement describes the interface of a process, for
example:

Pox:Ay:BFz:C

Above, process P needs to be composed with other processes that provide the
behaviours (represented as types) A on channel 2 and B on channel y, in order
to provide behaviour C' on channel z. The focus is on how the process can be

* Work performed while the author was employed at the IT University of Copenhagen.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 47-62, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

48 M. Carbone, F. Montesi, and C. Schiirmann

composed with other external processes, abstracting from the internal commu-
nications enacted inside the process itself (which may contain communicating
sub-processes). On the contrary, choreographies are descriptions of the internal
interactions among the processes inside a system, and therefore type systems
for choreographies focus on checking such internal interactions [8,9]. It is thus
unclear how the linear typing of ILL can be related to choreographies.

In this paper, we present Linear Compositional Choreographies (LCC), a
proof theory inspired by linear logic for typing programs that modularly combine
choreographies with processes in the internal m-calculus. The key aspect of LCC
is to extend ILL judgements to describe interactions among internal processes
in a system. Thanks to LCC, not only do we obtain a logical understanding of
choreographic programming, but we also provide the foundations for tackling
the open problem of extracting a choreography from a system of processes.

Main Contributions. We summarise our main contributions:

Linear Compositional Choreographies (LCC). We present LCC, a generalisation
of ILL where judgements can also describe the internal interactions of a system
(§ 3). LCC proofs are equipped with unique proof terms, called LCC programs,
following the Curry-Howard interpretation of proofs-as-programs. LCC programs
are in a language where choreographies and processes are modularly combined
by following protocols given in the type language of LCC (& la session types [11]).

Logically-derived semantics. We derive a semantics for LCC programs from our
proof theory (§ 4): (i) some rule applications in LCC proofs can be permuted
(commuting conversions), defining equivalences (structural congruence) on LCC
programs (§ 4.1); (ii) some proofs can be safely reduced to smaller proofs, cor-
responding to executing communications (§ 4.2). By following our semantics,
we prove that all internal communications in a system can be reduced (proof
normalisation), i.e., LCC programs are deadlock-free by construction (§ 4.3).

Choreography Extraction and Endpoint Projection. LCC consists of two frag-
ments: the action fragment, which manipulates the external interfaces of pro-
cesses, and the interaction fragment, which handles internal communications.
We derive automatic transformations from proofs in either fragment to proofs in
the other, yielding procedures of endpoint projection and choreography extrac-
tion (§ 5) that preserve the semantics of LCC programs. This is the first work
addressing extraction for a fragment of the m-calculus, providing the foundations
for a new development methodology where programmers can compose chore-
ographies with existing process code (e.g., software libraries) and then obtain a
choreography that describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal m-calculus and ILL [7].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

Choreographies, Logically 49

z(tea); x(tr); tr(p) z(tea); x(tr); tr(p); b(m) b(m)
~ ~ - ~ ~ - N (1)
Pjient Perver Phank

The three processes above, given as internal m-calculus terms [18], denote a
system composed by three endpoints (client, server, and bank). Their parallel
execution is such that: client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving
the payment, server deposits some money m by sending it over channel b to bank.

Programming with processes is error-prone, since they do not give an explicit
description of how endpoints interact [14]. By contrast, choreographies specify
how messages flow during execution [21]. For example, the choreography

1. client — server : z(tea); server — client : z(¢r);
2. client — server : tr(p); server — bank : b(m)

(2)

defines the communications that occur in (1). We read client — server : x(tea)
as “process client sends tea to process server through channel z”.

ILL and the w-calculus. The processes in (1) can be typed by ILL, using
propositions as session types that describe the usage of channels. For example,
channel z in Pgient has type string ® (string — end) —o end, meaning: send
a string; then, receive a channel of type string — end and, finally, stop (end).
Concretely, in Pgient, the channel of type string — end received through x is
channel ¢r. The type of tr says that the process sending tr, i.e., Pserver , Will use it
to receive a string; therefore, process Pgjient must implement the dual operation
of that implemented by Prerver, i-€., the output tr(p). Similarly, channel b has
type int ® end in Pierver . We can formalise this intuition with the following three
ILL judgements, where A = string ® (string — end) — end and B = int ® end:

Prient - Fx: A Pierver Dx:AFb:B Poank D b: B+ z:end

Recall that Peeper>x: A F b: B reads as “given a context that implements channel
x with type A, process Piener implements channel b with type B”. Given these
judgements, we compose Pejient, Peerver, and Phank using channels x and b as:

(l/a:‘) (Pllient |z (Vb) (Prerver |b Phank)) (3)
The compositions in (3) can be typed using the Cut rule of ILL:

PoAiFxz:A QprAz,z:Ary:B

(wo)(P|Q) > AL At y:B ")
Above, A; and Ay are sets of typing assignments, e.g., z: D. We interpret rule
Cut as “If a process provides A on channel z, and another requires A on channel
x to provide B on channel y, their parallel execution provides B on channel y”.
Proofs in ILL correspond to process terms in the internal m-calculus [7], and
applications of rule Cut can always be eliminated, a proof normalisation proce-
dure known as cut elimination. This procedure provides a model of computation
for processes. We illustrate a cut reduction, a step of cut elimination, in the

following (we omit process terms for readability):

50 M. Carbone, F. Montesi, and C. Schiirmann

CiFA Cy-B ABED Cs+B A BFD
Ci,CoFA®B © A®B|—DQ§ — kA Cr.AFD Cut
C1,CaF D ut C1,CaF D ut

The proof on the left-hand side applies a cut to two proofs, one providing A ®
B, and the other providing D when provided with A ® B. The cut-reduction
above (=) shows how this proof can be simplified to a proof where the cut
on A ® B is reduced to two cuts on the smaller formulas A and B. A cut-
reduction corresponds to executing a communication between two processes, one
outputting on a channel of type A ® B, and another inputting from the same
channel [7]. Executing the communication yields a new system corresponding
to the proof on the right-hand side. Cut-free proofs correspond to systems that
have successfully completed all their internal communications.

Towards LCC. Cut reductions in ILL model the interactions between the inter-
nal processes in a system, which is exactly what choreographies describe syntac-
tically. Therefore, in order to capture choreographies, we wish our proof theory
to reason about transformations such as the cut reduction above.

ILL judgements give us no information on the applications of rule Cut in a
proof. In contrast, standard type systems for choreographies [8,9,15] have differ-
ent judgements: instead of interfaces for later composition, they contain informa-
tion about internal processes and their interactions. Following this observation,
we make two important additions to ILL judgements. First, we extend them
to describe multiple processes by using hypersequents, i.e., collections of mul-
tiple ILL sequents [2]. Second, we represent the connections between sequents
in a hypersequent, since two processes need to share a common connection for
interacting. The following is an LCC judgement:

PrAibxz:eA| Ayyz:0AFy:B

Above, we composed two ILL sequents with the operator |, which captures the
parallel composition of processes. The two sequents are connected through chan-
nel z, denoted by the marking . We will use hypersequents and marking let us
reason about interactions by handling both ends of a connection.

LCC judgements can express cut elimination as a proof. For example,

Q>z1:C1,22:CoFz:0AQ B | z:0AQ BFw:D

represents the left-hand side of the cut reduction seen previously, where a process
requires Cy and C5 to perform an interaction of type A® B with another process
that can then provide D. Importantly, the connection of type A ® B between
the two sequents cannot be composed with external systems since it is used for
internal interactions. Using our judgements, we can capture cut reductions:

Q >21:C1Fy:0A|2:Co-z:0B|y:eA z:eBFw:D

The new judgement describes a system that still requires C; and Cs in order to
provide D, but now with three processes: one providing A from C4, one providing
B from (5 and, finally, one using A and B for providing D. Also, the first two
sequents are connected to the third one. This corresponds to the right-hand side
of the cut reduction seen previously, where process @ reduces to process @Q’.

Choreographies, Logically 51

We can now express the different internal states of a system before and after
a cut reduction, by the structure of its connections in our judgements. This
intuition is behind the new rules for typing choreographies presented in § 3.

3 Linear Compositional Choreographies

We present Linear Compositional Choreographies (LCC), a proof theory for
typing programs that can modularly combine choreographies and processes.

Types. LCC propositions, or types, are defined as:
(Propositions) A,B:=1 | A®B | A—-B | A®B | A&B

LCC propositions are the same as in ILL: ® and —o are the multiplicative con-
nectives, while @ and & are additives. 1 is the atomic proposition. A ® B is
interpreted as “output a channel of type A and then behave as specified by type
B”. On the other hand, A — B, the linear implication, reads “receive a channel
of type A and then continue as B”. Proposition A @ B selects a branch of type
A or B, while A& B offers the choice of A or B.

Hypersequents. Elements are types identified by variables, possibly marked by
o. Contexts are sets of elements, while hypersequents are sets of ILL sequents:

(Element) T == z:A | z:0A (Contexts) A0 = - | AT
(Hypersequents) v = AvRT | Y|P

Contexts A and hypersequents ¥ are equivalent modulo associativity and com-
mutativity. A hypersequent ¥ is the parallel composition of sequents. Given a
sequent A F T, we call A its hypotheses and T its conclusion.

We make the standard assumption that a variable can appear at most once in
any hypersequent, unless it is marked with e. In LCC, bulleted variables appear
exactly twice in a hypersequent, once as a hypothesis and once as a conclusion of
two respective sequents which we say are then “connected”. A provable hyperse-
quent always has exactly one sequent with a non-bulleted conclusion, which we
call the conclusion of the hypersequent. Similarly, we call non-bulleted hypothe-
ses the hypotheses of the hypersequent. Intuitively, a provable hypersequent is a
tree of sequents, whose root is the only sequent with a non-bulleted conclusion,
and whose sequents have exactly one child for each of their bulleted hypotheses.

Processes and Choreographies. We give the syntax of our proof terms, or
LCC programs, in Fig. 1. The syntax is an extension of that of the internal
m-calculus with choreographic primitives. The internal w-calculus allows us to
focus on a simple, yet very expressive fragment of the m-calculus [19], as in [7].
Terms can be processes performing I/O actions or choreographies of interactions.
Processes. An (output) x(y); (P|Q) sends a fresh name y over channel and then
proceeds with the parallel composition P|Q, whereas an (input) x(y); P receives
y over x and proceeds as P. In a (left sel) x.inl; P, we send over channel x our
choice of the left branch offered by the receiver. The term (right sel) x.inr; P
selects the right branch instead. Selections communicate with the term (case)

52 M. Carbone, F. Montesi, and C. Schiirmann

P,Q,R == z(y); (P|Q) (output) | z(y); P (input)
| z.inl; P (left sel) | z.inr; P (right sel)
| z.case(P,Q) (case) | P |:1: Q (par) Processes
| close[z] (close) | wait[z]; P (wait)
| (vx) P (res)
. — —
Choreographies | z(y); P (global com) | close[z]; P (global close)
| a}(P, Q) (global left sel) | ﬁ(P,Q) (global right sel)

Fig. 1. LCC programs

x.case(P, @), which offers a left branch P and a right branch @. The term
(par) P |, P models parallel composition; here, differently from the output case,
the two composed processes are not independent, but share the communication
channel . The term (res) is the standard restriction. Terms (close) and (wait)
model, respectively, the request and acceptance for closing a channel, following
real-world closing handshakes in communication protocols such as TCP.

Choreographies. The term (res)for name restriction is the same as for processes.
—

A (global com) x(y); P describes a system where a fresh name y is communi-
cated over a channel x, and then continues as P, where y is bound in P. The
terms (global left sel) and (global right sel) model systems where, respectively, a
left branch or a right branch is selected on channel z. Unused branches in global

selections, e.g., @ in a}(P, @), are unnecessary in our setting since they are
never executed; however, their specification will be convenient for our technical
development of endpoint projection, which will follow our concretisation trans-
formation in LCC. Finally, term (global close) models the closure of a channel.

Note that, differently from § 2, we omit process identifiers in choreographies
since our typing will make them redundant (cf. § 6).

Judgements. An LCC judgement has the form P >¥ where ¥ is a hypersequent
and P is a proof term. If we regard LCC as a type theory for our term language,
we say that the hypersequent ¥ types the term P.

3.1 Rules

The proof theory of LCC consists of the action fragment and the interaction
fragment, which reason respectively about processes and choreographies.

Action Fragment. The action fragment includes ILL-style left and right rules,
reported in Fig. 2, and the structural rules Conn and Scope, described separately.
Unit. The rules for unit are standard. Rule 1R types a process that requests

to close channel x and terminates. Symmetrically, rule 1L types a process that
waits for a request to close x, making sure that x does not occur in P.

Choreographies, Logically 53

Poo|AFy:A QpW¥s|Axkz:B R PpoV|Ay:A,z:B+-T

® QL
z(y); (P|Q) > W1 |¥2|A1, As - 2: AQ B z(y); Po¥|Az:AQ BFT

PpoVU|Ay:Ata:B Poui|AtFy:A QpWa|Az,z:BHT
— R — L
z(y); Po¥Y|A+-z:A— B z(y); (P|Q) b W1 |W2|Ay1, Az, 2:A— B+ T

PoVU|Az: AT Qprv|A,x:B+-T

1R &L &L,
close[z] > - F z:1 z.inl; P > W|A,z: A&AB+T z.inr, Q D Y|A, z: A&ABFT

PrU|ART PrU|Arz:A Q>VY|A+z:B

. . @Ry . DR
wait[z]; P > W|A,z: 1+ T z.in; Po¥Y|Arz:A® B z.inr Q >Y|AFz:A® B

PoVU|Atz:A QvVY|Arx:B PoU|Az:A+T QbvVY|Az:BHT

R aL
z.case(P, Q) bV|AF z: A&B z.case(P, Q) bV |A,z: A® B+ T

Fig. 2. Left and Right Rules of the Action Fragment

Tensor. Rule ®R types the output z(y); (P|Q), combining the conclusions of the
hypersequents of P and @ . The continuations P and @ will handle, respec-
tively, the transmitted channel y and channel . Ensuring that channels y and
x are handled by different parallel processes avoids potential deadlocks caused
by their interleaving [7,22]. Dually, rule ®L types an input z(y); P, by requiring
the continuation to use channels y and = following their respective types.

Linear Implication. The proof term for rule —o R is an input z(y); P, meaning
that the process needs to receive a name of type A before offering behaviour B
on channel z. Rule —o L types the dual term z(y); (P|Q). Note that the prefixes
in the proof terms are the same as for the tensor rules. This does not introduce
ambiguity, since continuations are typed differently and thus it is never the case
that both connectives could be used for typing the same term [7].

Additives. The rules for the additive connectives are standard. In a left selection
z.inl; P, we send over z our choice of the left branch offered by the receiver.
The term x.inr; P, is similar, but selects the right branch instead. Selections
communicate with the term x.case(P, @), which offers a left branch P and a
right branch @. In LCC, for example, rule &R states that x.case(P, Q) provides
x with type A& B whenever P and Q) provide x with type A and B respectively.

Connection and Scoping. We pull apart the standard Cut rule of ILL, as (4) in
§ 2, and obtain two rules that depend on hypersequents as an interim place to
store information. The first rule, Conn, merges two hypersequents by forming a

connection:
Po¥i AL ba:A Q> Ws|Ay,z:AFT

Conn
Pl, QoW |Wa|A b z:eA|As,z:0AF T
The proof term for Conn is parallel composition: in the conclusion, the two terms

P and @ are composed in parallel and share channel x.
The second rule, called Scope, delimits the scope of a connection:

PrU | Aibxz:0A| Ay, z:0AFT
Scope
(uac)P DIPIA17A2|—T

54 M. Carbone, F. Montesi, and C. Schiirmann

The proof term for Scope is a restriction of the scoped channel.

Interaction Fragment. Connections are first-class citizens in LCC and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which correspond to choreographies. Such rules form, together
with rule Scope, the interaction fragment of LCC.

Unit. A connection of type 1 between two sequents can always be introduced:

PoW|ART
1C

—
close[z]; P> |- - z:01|A, z:01 T

N
Observe that the choreography term close[x]; P describes the same behaviour as
the process term close[z] |, wait[z]; P, and indeed their typing is the same. In
general, in LCC the typing of process terms and choreographic terms describing
equivalent behaviour is the same. We will formalise this intuition in § 5.

Tensor. The connection rule for ® combines two connections between three se-
quents. Technically, when two sequents A; - y:eA and Ay F x:eB are connected
to a third sequent As,y:eA, x:eB + T, we can merge the two connections into
a single one, obtaining the sequents Ay, Ao - z:0A® B and Az, x:eAQ BT

PpoU|A -y:eA|As - z:eB|Az,y:0A, z:eB+T c
®
—

z(y); P> WAL, Ao - 2:0AR® B|As,2:6AQ BF T

.
Rule ®C corresponds to typing a choreographic communication z(y); P. This

rule is the formalisation in LCC of the cut reduction discussed in § 2. Term P
will then perform communications on channel y with type A and x with type B.

Linear Implication. The rule for —o manipulates connections with a causal de-
pendency: if Ay F y:eA is connected to As,y:eA F x:eB, which is connected
to As,z:eB T, then As - x:eA — B is connected to Ay, Az, x:eA — BFT.

PpoVU|A Fy:eA|Ay,y:0A z:eB|Az,z:eBF T

—o

—
z(y); P >W|As - x:0A — B|A1, A3, z:6A — B+T

— —
Rule — C types a communication z(y); P. The prefix z(y) is the same as

that of rule ®C, similarly to the action fragment for the connectives ® and —o.
Differently from rule ®C, the usage of channel x in the continuation P has a
causal dependency on y whereas in ®C the two channels proceed separately.

Additives. The rules for the additive connectives follow similar reasoning:

PpoU|W'|A Fx:0A|Az,z:0AFT QbW¥'|AL+-z:B
&Cy

—_—

21(P,Q) > U|W'|A1 - o:0A&B|As, z: 0 A&B F T

PoU|Aikz:A QbpU|P'|A1Fz:eB|Ay,z:eB+FT
&C,
TH(P,Q) b U|¥'| AL - z:0A&B| Ay, z:0A&B T

Choreographies, Logically 55

PoO|W|AL Fz:eA|As,z:0AFT QbW |Ay,z:BFT
©Cy

—
zl(P,Q) >V|U'|AL - z:0A®D B|Az,z:0AD BT

PoU|Ay,z:AFT QbVY|W'|AL - z:eB|Ay,z:eBFT c
DC2
20(P,Q) bW|W |AL - 2:0A@ B|As,z:0AD B+ T
Rule &C; types a choreography that selects the left branch on x and then pro-
ceeds P, provided that z is not used in () since the latter is unused.
We call C-rules the interaction rules for manipulating connections. C-rules

represent of cut reductions in ILL, following the intuition presented in § 2.

Example 1. We formalise and extend our example from § 2 as follows:

Py = z.inr; z(tea); (close[tea] | z(tr); tr(p); (close[p]|wait[tr]; close[x]))
z(water); b.inl; wait[water]; wait[z]; close[b],
P, ey = x.case tr(p); wait[tea]; wait[p]; close[tr] |
o(tea); z(tr); b.inr; b(m); (close[m] | wait[z]; close[b])
Py, = b.case(wait[b]; close[z], b(m); wait[m]; wait[b]; close[z])
P = (@) (Pient o (#0) (Peerver’ 15 Poank))
z(water); b.inl; wait[water]; wait[z]; close[b],
C = (vz)(wb) Tr

wait[b]; close[z]
— — — —
z(tea); xz(tr); tr(p); b.r ()

N —
b(m); close[tea, p, tr, m, z, b]

Process Pejienv implements a new version of the client, which selects the right
choice of a branching on channel x and then asks for some tea; then, it proceeds
as Pgient from § 2. Note that we have enhanced the processes with all expected
closing of channels. The server Piener , instead, now offers to the client a choice
between buying a tea (as in § 2) and getting a free glass of water. Since the
water is free, the payment to the bank is not performed in this case. In either
case, the bank is notified of whether a payment will occur or not, respectively
right and left branch in P,,,k. The processes are composed as a system in P.
Term C is the equivalent choreographic representation of P. We can type
channel z as (string ® end) @ (string ® (string — end) — end) in both C
and P. The type of channel b is: end @ (string ® end). For clarity, we have used
concrete data types instead of the abstract basic type 1. a

4 Semantics

We now derive an operational semantics for LCC programs from our proof the-
ory, by obtaining the standard relations of structural equivalence = and reduc-
tion — as theorems of LCC. For example, the 7-calculus rule (vw) (P |, Q) =

(vw) P |, Q (for w & fn(Q)) can be derived as a proof transformation, since:

Prv|Aiby:eD| Ajy:eDbFaz: A Qe | Az AFT
Conn
Pl, QY| ¥ | Aity:eD| Ajy:eDtx:0A| A z:eAFT
Scope
wy) (P, QpU| ¥ | A, A z:0A| A',z: AT

56 M. Carbone, F. Montesi, and C. Schiirmann

[Scope/Conn /L] W (P, Q=PI Q (vem(Q)
[Scope/Conn/R] Wy) (P 1, Q) = Pl, 1) Q (v g fm(P))
[Scope/Scope] (vy) (vz) P = (vz) (vy) P

[Scope/1L] (vz) wait[y]; P = wait[y]; (vz) P

[Scope/ ® R/L], [Scope/ —o L/L] (vw) 2(y); (P1Q) = (y); (bw) P | Q) (wem(Q))
[Scope/ @ R/R], [Scope/ —o L/R] (vw) a(y); (PIQ) = a(y)i (P | (vw) Q) (wgfm(P))
[Scope/ ® L], [Scope/ —] (vw)2(y); P = 2(y); (vw) P

[Scope/ @ R1], [Scope/&L1] (vw) z.inl; P = z.inl; (vw) P

[Scope/ @ Raz], [Scope/&L2] (vw) x.inr; P = z.inr; (vw) P

[Scope/ @ L], [Scope/&R] (vw) z.case(P, Q) = z.case((vw) P, (vw) Q)

[Scope/1C] (vw) clo_s:[z];P = clo_s:[m]; (vw) P

[Scope/ ® CJ, [Scope/ —o C] (ww) o(): P = 2(y)i (vw) P

[Scope/ & C1 /L, [Scope/&Ci/L] (vw) @d(P,Q) = = ((vw) P, Q) (wem(Q))
[Scope/ @ C1 /L/R], [Scope/&C1 /L/R] (vw) z.1(P,Q) = a.((vw) P, (vw) Q) (wef(@)
[Scope/ @ Ca/R], [Scope/&C2 /R] (vw) TH(P,Q) = z1(P, (vw) Q) (w ¢ fn(P))
[Scope/ @ Ca/L/R], [Scope/&Ca/L/R] (vw) zH(P,Q) = z+((vw) P, (vw) Q) (w € fn(P))

Fig. 3. Commuting Conversions (=) for Scope (Restriction)

is equivalent to (=)

PrU|AiFy:eD| Ajy:eDFx: A
Scope
(W) Po¥| A, Ak a: A QbYW | A,z AT
Conn
(vy)Pl, QoU| ¥ | Ay, Az :0A| A z:eAFT

4.1 Commuting Conversions (=)

The structural equivalence of LCC (=) is defined in terms of commuting con-
versions, i.e., admissible permutations of rule applications in proofs. In ILL,
commuting conversions concern the cut rule. However, since in LCC the cut rule
has been split into Scope and Conn, we need to introduce two sets of commuting
conversions, one for rule Scope, and one for rule Conn. In the sequel, we report
commuting conversions between proofs by giving the corresponding process and
choreography terms (cf. [14] for the complete LCC proofs).

Commuting Conversions for Scope. Commuting conversions for Scope cor-
respond to permuting restriction with other operators in LCC programs. We
report them in Fig. 3, where we assume variables to be distinct. For example,
[Scope/ ® R/L] says that an application of rule Scope to the conclusion of rule
®R can be commuted so that we can apply ®R to the conclusion of Scope. Note
that the top-level LCC terms of some cases are identical, e.g., [Scope/ @ R/L| and
[Scope/ —o L/L], but the subterms are different since they have different typing.

Commuting Conversions for Conn. The commuting conversions for rule
Conn, reported in Fig. 4, correspond to commuting the parallel operator with

Choreographies, Logically 57

[Conn /Conn] (Ply Q@ ly R=Pl, (Qly R)
[Conn/1L/L] wait[x]; P Iy Q = wait[z]; (P Iy Q)
[Conn/1L/R] P |y wait[z]; Q = wait[z]; (P Iy Q)

[Conn/ @R/R/L], [Conn/—o L/R/L] P |y, @(y); (RQIR) = = (y); (P |y Q) | R)
[Conn/ @R/R/R], [Conn/—o L/R/R] P |y, @(v); (RIR) = =(y); (Q | (P |y R))

[Conn/ ® L/L] z(Y); Py Q@ = =(y): (P |y, Q)
[Conn/ ® L/R], [Conn/ —o R/R] Py 2(y); Q = =(y); (P |y Q)
[Conn/ —o L/L/R] z(y); (PlQ) |y R = =(y); (P | (Q |y R))
[Conn/ @ Ry /R], [Conn/&Ly /R] Py @.inh Q@ = @.ink (P |, Q)
[Conn/ @ Ro /R], [Conn/&Lo /R] P |w x.inr; Q = w.inr; (P |w Q)
[Conn/ @ L/L] @.case(P, Q)| R = w.case((P |y R), (Q o R))
[Conn/ & L/R], [Conn/&R/R] Py, @.case(Q, R) = @.case((P |, Q) (P |y, R))
[Conn/&Lq /L] @il P |, Q = @.ink (P |, Q)
[Conn/&Lg /L] z.inr; P |, Q = w.inr; (P |, Q)

— —
[Conn/1C/L] close[z]; P |, Q = close[z]; (P |,, Q)

— —

[Conn/1C/R] P |, close[z]; Q = close[z]; (P |,, Q)

— —
[Conn/ ® C/L], [Conn/ —oC/L] (W) P ly @ = 2(u); (P |y Q) (v 2 (@)
(Conn/ ®C/R], [Comn/ = C/RI Pl a(0)i@ = o(0)i (P |,y Q) (v &m(P))
[Conn/ @ Cq /L] TP, Q) [y R= a1 ((Ply R, (Q 1l R)(w e m(P)Nm(Q))
[Conn/ @ Cq /R], [Conn/&Cq /R] Pl I (Q,R) = sl (P lw @)s (Pl R))(w cm(Q)n fn(R))
[Conn/ ®C1 /R/L, [Conn/&C1 /R/L] Ply, o4 (Q.B) = 20 ((P 1y @ B) (wem(@) wgm(R))
[Conn/ @® Co /L] ZA(P,Q) |y R= Tt ((Ply R), (Qly R))(w efm(P)Nf(Q))
[Conn/ @ Cq /R], [Conn/&Cq /R] Ply 37 (Q R) = TF (P ly Q) (Ply R)) (w € (Q) Nf(R))
[Conn/ @ Ca /R/R],[Conn/&Co /R/L] Ply o7 (Q,R) = ot (Q, (P ly R) (wgm(Q) wem(R))
[Conn/&:Cy /U] TIPQ) Iy B = 2l (Ply B, @ (wem(P)wgn(Q))
[Conn/&Cq /L] THP, Q) Iy R = oF (P, (Qly R) (wgh(P),wem(Q))

Fig. 4. Commuting Conversions (=) for Conn (Parallel Composition)

other terms. For example, rule [Conn/Conn] is the standard associativity of par-
—

.
allel in the m-calculus. Also, [Conn/ ® C/L] says that z(y) in z(y); P |, @ can
always be executed before @ as far as x and y do not occur in). This captures
the concurrent behaviour of choreographies in [9]. Note that some of the rules
are not standard for the 7-calculus, e.g., [Conn/ — R/R], but this does not alter
the intended semantics of parallel (cf. § 6, Semantics).

Since conversions preserve the concluding judgement of a proof, we have that:

Theorem 1 (Subject Congruence). P>V and P = @ implies that Q >W.

4.2 Reductions (—)

As for structural equivalence, we derive the reduction semantics for LCC pro-
grams from proof transformations. The obtained rules, reported in Fig. 5, are
standard for both processes and choreographies (cf. [19,9]): processes are reduced
when they are the parallel composition of compatible actions, while choreogra-
phies can always be reduced. With an abuse of notation, we labelled each reduc-
tion with the channel it uses. Choreography reductions are also annotated with

58 M. Carbone, F. Montesi, and C. Schiirmann

[B1] (va) (closelz] |, wait[z]; Q) = Q

[Be] (va) (z(y); (PIQ) |, z(¥); R) = (vy) (va) (P |, (Q |, R))
(-] (v@) (z(¥); P |, z(¥): (QIR)) == (vz) (wy) ((Q |, P) |, R)
[Be,] (va) (z.inl; P |, @.case(Q, R)) = (va) (P |, Q)
[Bes] (vz) (z.inr; P |, z.case(Q, R)) — (va) (P |, R)
[Bey] (va) (z.case(P,Q) |, @.in R) = (va) (P |, R)

[Beo] (va) (z.case(P, Q) |, x.inr; R) = (v2) (Q |, R)
[Bic] (va) closela); P % P [Bocl, [Bc] (va) o(y); P 5 (vy) (va) P

[Becy], [Bac,]| (va) ;7(1” Q) =% wa) P [Becy)s [Bac,] (ve) z7(P,Q) =% (v2)Q
Fig. 5. Reductions

e. We use ¢ to range over labels of the form x or ex, and to denote a sequence
of such labels. As for commuting conversions, reductions preserve judgements:

Theorem 2 (Subject Reduction). P >¥ and P LN Q implies that Q > V.

4.3 Scope Elimination (Normalisation)

We can use commuting conversions and reductions to permute and reduce all
applications of Scope in a proof until the proof is Scope-free. Since applications of
Scope correspond to restrictions in LCC programs, the latter can always progress
until all communications on restricted channels are executed. We denote the

i
reflexive and transitive closure of — up to = with —».
Theorem 3 (Deadlock-freedom). P>¥ implies there exist Q) restriction-free

and t such that P —t>-> Q and Q> V.

5 Choreography Extraction and Endpoint Projection

In LCC, a judgement containing connections can be derived by either (i) using
the action fragment, corresponding to processes, or (ii) using the interaction
fragment, corresponding to choreographies. Consider the two following proofs:

1R
close[y] > - F y:1 1R
1R 1L close[y] > -+ y:1
close[z] > - F x:1 wait[x]; close[y] > x:1F y:1 1C

—
€O loselx] ;close[y] > - - :ellz:el b y:1

close[z
(=] Scope

|, wait[z];close[y] > - - z:el|z:01 F y:1

Scope N
(vz) (close[z] |, wait[z];close[y]) > - - y:1 (va) (close[z] ;close[y]) > - F y:1

The two proofs above reach the same hypersequent following, respectively, method-
ologies (i) and (ii). In this section, we formally relate the two methodologies, de-

riving procedures of choreography extraction and endpoint projection from proof
equivalences.As an example, consider the following equivalence, [ayg]:

Choreographies, Logically 59

x —
[ay1] close[z] |, wait[z]; P 77 close[z]; P

—

lave] @) (PIQ) I, 2(y); B 1) (P, (@1, R)
lav—] @) P |, 2(): (QIR) ;> 2(): (@1, P) |, R)

[ave,] w.case(P,Q) |, wink R [zi((P|, R),Q)

x

leve,] z.case(P,Q) |, xin R > zr(P, Q|, R)

<
[ave,] @inli P |, z.case(@, R) [zl((P|, Q), R)

[ava,] @ines P |, w.case(Q,R) [HQ, (P, R))
Fig. 6. Extraction and Projection

Powi|AtFy:A QpWs|Azbka:B Rp>W3|As,y:A,z: B+ T

® ®L
z(y); (PlQ) > W1 |¥a|A1, Ay - z:AQ B z(y); R> A3z, 2: AQ BF T

Conn
z(y); (PlQ) |, z(y); R > ¥1|Wa|W3]|A1, Az - z:0A® B|Az,z:eAQ B+ T

x
can be extracted to (-=»), can be projected from (<)

Q> WAy k2B RoWs | As,y:A,z:B+T

Conn®
Ppow Ay A Q |, RoW|¥s3|Ax -x:eB|A3,y:A,z:eB+T
Conn¥
Pl,(QIl, R)pWi | Wa|Ws| A Fy:eA| Ayka:eB | As,y:eA,z:eBFT
®C*

—
z(y); (P l, (Ql, R) >W1 | P2 | W5 | A1, Az Fz:0AR B | Az, z:eA® BFT

The equivalence [ayg] allows to transform a proof of a connection of type A® B
from the action fragment into an equivalent proof in the interaction fragment,
and vice versa. We report the equivalences for extraction and projection in Fig. 6,
presenting their proof terms. We read these equivalences from left to right for
extraction, denoted by --+, and from right to left for projection, denoted by .
Note how a choreography term corresponds to the parallel composition of two
processes with the same behaviour. It is also clear why the unselected process

N
Q in z.I(P,Q) is necessary for projecting the corresponding case process.
Using commuting conversions, extraction can always be applied to proofs
containing instances of Conn, i.e., programs containing subterms of the form
P |, Q. Similarly, projection can always be applied to proofs with instances of
a C-rule, i.e., programs with choreography interactions. We denote the reflexive

7 x x
and transitive closure of --» up to = with AN (resp. » for).

Theorem 4 (Extraction and Projection). Let P >W. Then:

(choreography extraction) P AN Q for some T and Q such that Q >¥ and Q
does not contain subterms of the form R |, R';

x
(endpoint projection) P » @Q for some T and Q such that Q >V and Q
does not contain choreography terms.

60 M. Carbone, F. Montesi, and C. Schiirmann

Ezample 2. Using the equivalences in Fig. 6 and =, we can transform the pro-
cesses to the choreography in Example 1 and vice versa. O

We now present the main property guaranteed by LCC: the extraction and
projection procedures preserve the semantics of the transformed programs.

Theorem 5 (Correspondence). Let P >W¥ and P’ be restriction-free. Then:
(choreography extraction) P S implies P --3» Q such that Q .

oz x T
(endpoint projection) P P implies P> (Q such that Q P

6 Related Work and Discussion

Related Work. Our action fragment is inspired by 7-DILL [7]. The key difference
is that we split rule Cut into Conn and Scope, which allows us to (i) reason about
choreographies and (ii) type processes where restriction and parallel are used
separately. Extra typable processes are always convertible to those where a Conn
is immediately followed by a Scope, hence equivalent to those in [7]. Wadler [22]
introduces a calculus where processes correspond to proofs in classical linear
logic. We conjecture that LCC can be adapted to the classical setting.

Our commuting conversions can be seen as a logical characterisation of swap-
ping [9], which permutes independent communications in a choreography. Pre-
vious works [12,8,9,15] have formally addressed choreographies and EPP but
without providing choreography extraction. Choreography extraction is a known
hard problem [4], and our work is the first to address it for a language supporting
channel passing. Probably, the work closest to ours wrt extraction is [13], where
global types are extracted from session types; choreographies are more expres-
sive than global types, since they capture the interleaving of different sessions.
In the future, we plan to address standard features supported by [8,9,15] such
as multiparty sessions, asynchrony, replicated services and nondeterminism.

Our mixing of choreographies with processes is similar to that found in [3] for
global protocols and [15] for choreographies. The work [3] deals with the simpler
setting of protocols, whereas we handle programs supporting name passing and
session interleaving, both nontrivial problems [6,9,15]. The type system in [15]
does not keep information on where the endpoints of connections are actually
located as in our hypersequents, which enables extraction in our setting.

Process identifiers. In standard choreography calculi, the processes involved in
a communication are usually identified explicitly as in the choreography (2)
in § 2 [12,8,9,15]. In LCC, processes are implicitly identified in judgements by
using separate sequents in a hypersequent. Omitting process identifiers is thus
just a matter of presentational convenience: a way of retaining them would be
to annotate each sequent in a hypersequent with a process identifier (cf. [14]).

Ezponentials and Infinite Behaviour. Our work focuses on the multiplicative and
additive fragments of linear logic, but we conjecture that the known cut rule for
exponentials can be split into a connection rule and a scope rule such as the ones
for the linear case. We believe that the results in this paper can be generalised

Choreographies, Logically 61

to exponentials without altering its foundations. A logical characterisation of
infinite behaviour for ICC may similarly be added to our framework, following
the developments in [20]. We leave both extensions as future work.

ILL. LCC is a generalisation of ILL, since we can represent any instance of the
Cut rule in ILL with consecutive applications of rules Conn and Scope.

Semantics. LCC includes more term equivalences than the 7-calculus, e.g., [Conn
/ — R/R/2] in Fig. 4. We inherit this from linear logic [22]. However, the extra
equivalences do not produce any new reductions in well-typed systems (cf. [16]).

Acknowledgments. This work was partially funded by the Demtech grant
number 10-092309 from the Danish Council for Strategic Research.

References

1. Business Process Model and Notation, http://www.omg.org/spec/BPMN/2.0/

2. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Ann. Math. Artif. Intell. 4, 225-248 (1991)

3. Baltazar, P., Caires, L., Vasconcelos, V.T., Vieira, H.T.: A Type System for Flex-
ible Role Assignment in Multiparty Communicating Systems. In: Palamidessi, C.,
Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 82-96. Springer, Heidelberg
(2013)

4. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: WWW,
pp. 795-804 (2011)

5. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL,
pp. 191-202 (2012)

6. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418-433. Springer,
Heidelberg (2008)

7. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222-236.
Springer, Heidelberg (2010)

8. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM TOPLAS 34(2), 8 (2012)

9. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263274 (2013)

10. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1-102 (1987)

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122-138. Springer, Heidelberg (1998)

12. Lanese, 1., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Proc. of SEFM, pp. 323-332.
IEEE (2008)

13. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225-239.
Springer, Heidelberg (2012)

14. Montesi, F.: Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen (2013), http://www.itu.dk/people/fabr/papers/phd/thesis.pdf

http://www.omg.org/spec/BPMN/2.0/
http://www.itu.dk/people/fabr/papers/phd/thesis.pdf

62

15.

16.

17.

18.

19.

20.

21.

22.

M. Carbone, F. Montesi, and C. Schiirmann

Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013 — Concurrency Theory. LNCS, vol. 8052, pp.
425-439. Springer, Heidelberg (2013)

Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
539-558. Springer, Heidelberg (2012)

Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: WWW, pp. 973-982. IEEE (2007)

Sangiorgi, D.: pi-calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1&2), 235-274 (1996)

Sangiorgi, D., Walker, D.: The w-calculus: a Theory of Mobile Processes. Cambridge
University Press (2001)

Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-
sions: A monadic integration. In: Felleisen, M., Gardner, P. (eds.) Programming
Languages and Systems. LNCS, vol. 7792, pp. 350-369. Springer, Heidelberg (2013)
W3C WS-CDL Working Group. Web services choreography description language
version 1.0 (2004), http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
Wadler, P.: Propositions as sessions. In: ICFP, pp. 273-286 (2012)

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

Deadlock Analysis of Unbounded Process Networks

Elena Giachino!, Naoki Kobayashiz, and Cosimo Laneve!

! Dept. of Computer Science and Egineering, University of Bologna — INRIA FOCUS, Italy
2 Dept. of Computer Science, University of Tokyo, Japan

Abstract. Deadlock detection in concurrent programs that create networks with
arbitrary numbers of nodes is extremely complex and solutions either give im-
precise answers or do not scale. To enable the analysis of such programs, (1) we
define an algorithm for detecting deadlocks of a basic model featuring recursion
and fresh name generation: the lam programs, and (2) we design a type system for
value passing CCS that returns lam programs. As a byproduct of these two tech-
niques, we have an algorithm that is more powerful than previous ones and that
can be easily integrated in the current release of TyPiCal, a type-based analyser
for pi-calculus.

1 Introduction

Deadlock-freedom of concurrent programs has been largely investigated in the literature
[2,4,1,11,18,19]. The proposed algorithms automatically detect deadlocks by building
graphs of dependencies (a, b) between resources, meaning that the release of a resource
referenced by a depends on the release of the resource referenced by b. The absence of
cycles in the graphs entails deadlock freedom. When programs have infinite states, in
order to ensure termination, current algorithms use finite approximate models that are
excerpted from the dependency graphs. The cases that are particularly critical are those
of programs that create networks with an arbitrary number of nodes.

To illustrate the issue, consider the following pi-calculus-like process that computes
the factorial:

Fact(n,r,s) = 1if n=0 then r?m. s!m
else new t in (r?m. t!(m*n)) | Fact(n-1,t,s)

Here, r?m waits to receive a value for m on r, and s!m sends the value m on s. The
expressionnew t in P creates a fresh communication channel t and executes P. If the
above code is invoked with r!1 | Fact(n,r,s), then there will be a synchronisation
between r! 1 and the input r?min the body of Fact(n,r,s). In turn, this may delegate
the computation of the factorial to another process in parallel by means of a subsequent
synchronisation on a new channel t. That is, in order to compute the factorial of n,
Fact builds a network of n + 1 nodes, where node i takes as input a value m and outputs
m*i. Due to the inability of statically reasoning about unbounded structures, the current
analysers usually return false positives when fed with Fact. For example, this is the
case of TyPiCal [12,11], a tool developed for pi-calculus. (In particular, TyPiCal
fails to recognise that there is no circularity in the dependencies among r, s, and t.)

In this paper we develop a technique to enable the deadlock analysis of processes
with arbitrary networks of nodes. Instead of reasoning on finite approximations of such

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 63-77, 2014.
© Springer-Verlag Berlin Heidelberg 2014

64 E. Giachino, N. Kobayashi, and C. Laneve

processes, we associate them with terms of a basic recursive model, called lam — for
deadLock Analysis Model —, which collects dependencies and features recursion and
dynamic name creation [5,6]. For example, the lam function corresponding to Fact is
fact(ar, az, a3, as) = (a2, a3) + (vas, ap)((az, as) & fact(as, ag, as, as))

where (a;, a3) displays the dependency between the actions r?m and s!m and (a3, as)
the one between r?m and t! (m*n). The function fact is defined operationally by un-
folding the recursive invocations; see Section 3. The unfolding of fact(a;, as,as,as)
yields the following sequence of abstract states (bound names in the definition of fact
are replaced by fresh ones in the unfoldings).
fact(ai, az, a3, as) — (a2, a3) + ((a2, as) & fact(as, ag, as, as))

— (a2, a3) + (a2, a¢) & (ae, az) + (a2, a6) & (ae, as) & fact(ar, as, a3, as)

— (a2, a3) + (a2, a6) & (as, az) + (az, as) & (as, ag) & (ag, az)

+(az, ag) & (ag, as) & (as, aig) & fact(ay, aio, az, as)

While the model of fact is not finite-state, in Section 4 we demonstrate that it is de-
cidable whether the computations of a lam program will ever produce a circular depen-
dency. In our previous work [5,6], the decidability was established only for a restricted
subset of lams.

We then define a type system that associates lams to processes. Using the type
system, for example, the lam program fact can be extracted from the factorial pro-
cess Fact. For the sake of simplicity, we address the (asynchronous) value passing
CCS [15], a simpler calculus than pi-calculus, because it is already adequate to demon-
strate the power of our lam-based approach. The syntax, semantics, and examples of
value passing CCS are in Section 5; the type system is defined in Section 6. As a
byproduct of the above techniques, our system is powerful enough to detect deadlocks
of programs that create networks with arbitrary numbers of processes. It is also worth to
notice that our system admits type inference and can be easily extended to pi-calculus.
We discuss the differences of our techniques with respect to the other ones in the liter-
ature in Section 7 where we also deliver some concluding remark.

2 Preliminaries

We use an infinite set <7 of (level) names, ranged over by a, b, c, - - - . A relation on a set
A of names, denoted R,R’, - - -, is an element of Z2(A x A), where Z(-) is the standard
powerset operator and - X - is the cartesian product. Let

—R* be the transitive closure of R.

—{Ry,---,R,} € {R’l, ---, R} if and only if, for all R;, there is R} such that R; C R}+.

—(ag,ay), -+ ,(an-1,a,) €{Ry,--- ,R,} if and only if there is R; such that (ag,a;), - - ,
(an-1,a,) €ER;.
~Ri. R} &AR) R RUR, T <i<mand 1 < j<nl.

We use #,%’,--- to range over {Ry,---,R,} and {R],---,R}}, which are elements
of P(P(A x A)).

Definition 1. A relation R has a circularity if (a,a) € R* for some a. A set of relations
Z has a circularity if there is R € &% that has a circularity.

Deadlock Analysis of Unbounded Process Networks 65

For instance {{(a,b), (b,)}, {(a,b),(c,b),(d, D), (b,c)}, {(e,d),(d,)}, {(e,d)}} has a
circularity because the second element of the set does.

3 The Language of Lams

In addition to the set of (level) names, we will also use function names, ranged over by
£, g, h,---. A sequence of names is denoted by @ and, with an abuse of notation, we
also use a to address the set of names in the sequence.

A lam program is a pair (£, L), where .Z is a finite set of function definitions £(a) =
L¢, with @ and L¢ being the formal parameters and the body of £, and L is the main lam.
The syntax of the function bodies and the main lam is

L == ® | (ab) | f(a | L&L | L+L | (val

The lam 0 enforces no dependency, the lam (a, b) enforces the dependency (a, b), while
f(a) represents a function invocation. The composite lam L &L’ enforces the dependen-
cies of L and of L', while L + L’ nondeterministically enforces the dependencies of L
or of L', (va)L creates a fresh name a and enforces the dependencies of L that may use
a. Whenever parentheses are omitted, the operation “&” has precedence over “+”. We
will shorten Ly & - - &L, into &;ey ,L; and (va;)---(va,)L into (va; - - - a,)L. Function
definitions f(a) = L¢ and (va)L are binders of a in L¢ and of a in L, respectively, and
the corresponding occurrences of @ in L¢ and of a in L are called bound. A name x in
L is free if it is not underneath a (v a) (similarly for function definitions). Let var(L) be
the set of free names in L.

In the syntax of L, the operations “&” and “+” are associative, commutative with
0 being the identity on &, and definitions and lams are equal up-to alpha renaming of
bound names. Namely, if a ¢ var(L), the following axioms hold:

(va)L =L (va)l’ &L =(va)(L’ &L) (va)l’ +L = (va)(L' +L)
Additionally, when V ranges over lams that do not contain function invocations, the
following axioms hold:
V&V =V V+V=V V&L ' +L")=V&L +V&L”

These axioms permit to rewrite a lam without function invocations as a collection
(operation +) of relations (elements of a relation are gathered by the operation &). Let
= be the least congruence containing the above axioms. They are restricted to terms V
that do not contain function invocations. In fact, f(d)&((a b)+(b,c))# (f(d)&(a b))+
(f(d)&(b, ¢)) because the evaluation of the two lams (see below) may produce terms
with different names.

Definition 2. A lam V is in normal form, denoted nf(V), if V.= (va)(Vi + --- + V,)),
where Vy, - - ,V, are dependencies only composed with &.

Proposition 1. For every V, there is nf(V) such that V. = nf(V).

In the rest of the paper, we always assume lam programs (., L) to be well formed.

66 E. Giachino, N. Kobayashi, and C. Laneve

Definition 3. A lam program (£,L) is well formed if (1) function definitions in £
have pairwise different function names and all function names occurring in the function
bodies and L are defined; (2) the arity of function invocations occurring anywhere in the
program matches the arity of the corresponding function definition, (3) every function
definition in £ has shape £(a) = (vc)Lg, where Lg does not contain any v-binder and
var(Lg) CaUvc.

Operational semantics. Leta lam context, noted £[], be a term derived by the following
syntax:
el o= [| L&{[] | L+2¢[]

As usual £[L] is the lam where the hole of £[] is replaced by L. According to the
syntax, lam contexts have no v-binder; that is, the hassle of name captures is avoided.
The operational semantics of a program (.Z,L) is a transition system where states are
lams, the transition relation is the least one satisfying the rule

(ReD)
f@=(ols €. CTarefresh L¢[€ /A7 /7] =L}

L[£(a@)] — LL]

and the initial state is the lam L’ such that L = (v'¢)L’ and L’ does not contain any
v-binder. We write —" for the reflexive and transitive closure of —.

By (rRED), a lam L is evaluated by successively replacing function invocations with
the corresponding lam instances. Name creation is handled by replacing bound names
of function bodies with fresh names. For example, if f(a) = (v¢)((a,c) & £(c)) and
f(a’) occurs in the main lam, then f(a’) is replaced by (a’, ¢’) & £(¢’), where ¢’ is a
fresh name.

Let us discuss some examples.

1. ({f(a,b,c) = (a,b) & g(b,c) + (b,c), 9(d,e) = (d,e) + (e,d)}, £(a, b, c)). Then

f(a,b,c) — (a,b) & g(b,c) + (b,c) — (a,b) & ((b,¢) + (¢, b)) + (b, ¢)
—> (a,b) & (b, c) + (a,b) & (¢, b) + (b, ¢)

The lam in the final state does not contain function invocations. This is because
the above program is not recursive. Additionally, the evaluation of £(a, b,) has not
created names. This is because the bodies of £ and g do not contain v-binders.
2. ({f'(a) = (vb)(a,b) & £'(b)}, £'(ap)). Then
f'(ap) — (ao,a1) & f'(a1) — (ag, ar) & (a1, az) & £'(a2)
—" (ag, a1) &+ & (Ans1, ne2) & £ (ans2)
In this case, because of the (v b) binder, the lam grows in the number of dependen-
cies as the evaluation progresses.
3. ({£7(a) = (vb)(a,b) + (a,b) & £7(b)}, £”(ap)). Then
t"(ap) — (a0, a1) + (ap, ar) & £7(ay)
— (ao,ar) + (aop,a1) & (a1, a2) + (ag, a1) & (ay, az) & £’ (az)
—" (ag,ar) + -+ + (ap,a1) & - - - & (Aps1, Ans2) & £ (Aps2)
In this case, the lam grows in the number of “+”-terms, which in turn become larger
and larger as the evaluation progresses.

Deadlock Analysis of Unbounded Process Networks 67

Flattening and circularities. Lams represent elements of the set (P (< x «)). This
property is displayed by the following flattening function.

Let .Z be a set of function definitions and let I(-), called flattening, be a function on
lams that (i) maps function name f defined in .Z to elements of Z(F(A x A)) and (ii)
is defined on lams as follows

1(0) = {2}, 1((a, D)) = {{(a, b)}}, I(L &L') = I(L) &I(L),
IL+L1")=IL)UIL", I((va)L) = I(L)[¢'/,] witha’ fresh,
I(£(¢)) = I(f) [7/5] (where @ are the formal parameters of f).

Note that /(L) is unique up to a renaming of names that do not occur free in L. Let
I+ be the map such that, for every f defined in %, I*(f) = {@}. For example, let .&
defines f and g and let

I(£) = {{(a, D), (b, 0)}} 1(9) = {(b,a)}}
L” = f(a,b,c)+ (a,b) & g(b,c) & £(d,b,c) + g(d,e) & (d, c) + (e, d).
Then
I(L”) = {{(a, D), (b, o)}, {(a,b),(c,D),(d,]),(b,0)}, {(e,d),(d,c)}, {(e,d)}}
(L") = {2,{(a, b)}, {(d, 0)}, {(e, D)} -

Definition 4. A lam L has a circularity if [*(L) has a circularity. A lam program (£, L)
has a circularity if there is L —" L" and L’ has a circularity.

The property of “having a circularity” is preserved by = while the “absence of circu-
larities” of a composite lam can be carried to its components.

Proposition 2. 1. if L = L’ then L has a circularity if and only if L’ has a circularity;
2. L &L has no circularity implies both L and L’ have no circularity (similarly for
L + L’ and for (va)L).

4 The Decision Algorithm for Detecting Circularities

In this section we assume a lam program (£, L) such that pairwise different function
definitions in .Z have disjoint formal parameters. Without loss of generality, we assume
that L does not contain any v-binder.

Fixpoint definition of the interpretation function. The basic item of our algorithm is the
computation of lam functions’ interpretation. This computation is performed by means
of a standard fixpoint technique that is detailed below.

Let A be the set of formal parameters of definitions in . and let » be a special name
that does not occur in (%, L). We use the domain (@(@(A U{x} X AU {x})), Q) which
is a finite lattice [3].

Definition 5. Let £;(a;) = (v¢;)L;, with i € 1..n, be the function definitions in L. The
family of flattening functions IEQ L, B o P(P(AU) X AU () is defined
as follows

19 =ty 15(£) = {projz(R") | ReIDL))

where proi=(R) < {(a,b) | (a,b) € Rand a,b €@} U {(t,%)| (c,c) € R and ¢ ¢ @).

68 E. Giachino, N. Kobayashi, and C. Laneve

We notice that Ifgp) is the function I* of the previous section.

Proposition 3. Let £(@) = (vO)L¢ €.Z. (i) For every k, I)(£) € P(P(@U{x})x @U
(D)) (ii) For every k, 1'D(£) € IV ().

Since, for every &, If;)(fi) ranges over a finite lattice, by the fixpoint theory [3], there
exists m such that Ig;) is a fixpoint, namely If;) ~ IE;H) where ~ is the equivalence
relation induced by €. In the following, we let I ¢, called the interpretation function (of
a lam), be the least fixpoint If;).

Example 1. For example, let .Z be the factorial function in Section 1. Then
1D(fact) ={o) [D(fact) = {{(a, a3} @) [D(fact) = {{(a2 a3)}, D)

That is, in this case, I ¢ = Igf). O

Theorem 1. A lam program (£, L) has a circularity if and only if I (L) has a circu-
larity.

For example, let .Z be the factorial function in Section 1 and let L = (a3, az) &
fact(ay, as, az.as). From Example 1, we have I ¢(fact) = {{(a2, a3)}, @}. Since I (L)
has a circularity, by Theorem 1, there is L —" L’ such that I*(L’) has a circularity. In
fact it displays a circularity after the first transition:

L — (a3, a2) & ((a2,a3) + ((a2, as) & fact(as, as, a3, as))) .

5 Value-Passing CCS

In the present and next sections, we apply the foregoing theory of lams to refine Kobaya-
shi’s type system for deadlock-freedom of concurrent programs [11]. In his type system,
the deadlock-freedom is guaranteed by a combination of usages, which are a kind of
behavioral types capturing channel-wise communication behaviors, and capability/obli-
gation levels, which are natural numbers capturing inter-channel dependencies (like “a
message is output on x only if a message is received along y”). By replacing numbers
with (lam) level names, we can achieve a more precise analysis of deadlock-freedom
because of the algorithm in Section 4. The original type system in [11] is for the pi-
calculus [16], but for the sake of simplicity, we consider a variant of the value-passing
CCS [15], which is sufficient for demonstrating the power of our lam-based approach.

Our value-passing CCS uses several disjoint countable sets of names: in addition to
level names, there are integer and channel names, ranged over by x,y,z, -, process
names, ranged over by A, B, - - -, and usage names, ranged over by «, B3, - - -. A value-
passing CCS program is a pair (2, P), where 9 is a finite set of process name definitions
A(a;x) = Py, with a;x and P, respectively being the formal parameters and the body
of A, and P is the main process.

The syntax of processes P4 and P is shown in Figure 1. A process can be the inert
process 0, a message x!e sent on a name x that carries (the value of) an expression e, an
input x?y.P that consumes a message x!v and behaves like P[V/y], a parallel composition
of processes P | O, a conditional if e then P else Q that evaluates e and behaves either

Deadlock Analysis of Unbounded Process Networks 69

P (processes) =0 | xle|x?y.P| (P | Q)|if ethen Pelse Q| (va; x:T)P | A(a;e)
e (expressions) :=x|v|e; ope;

T (types) ::=int | U

U (usages) ==01!g 170U | (UilUy) | @ | pa.U

Fig. 1. The Syntax of value-passing CCS

like P or like Q depending on whether the value is # O (true) or = 0 (false), a restriction
(va; x : T)P that behaves like P except that communications on x with the external
environment are prohibited, an invocation A(a;e) of the process corresponding to A.

An expression e can be a name x, an integer value v, or a generic binary operation
on integers v op V', where op ranges over a set including the usual operators like +,
<, etc. Integer expressions without names (constant expressions) may be evaluated to
an integer value (the definition of the evaluation of constant expressions is omitted).
Let [[e]] be the evaluation of a constant expression e ([[¢] is undefined when the integer
expression e contains integer names). Let also [[x]] = x when x is a non-integer name.

We defer the explanation of the meaning of types T (and usages U) until Section 6. It
is just for the sake of simplicity that processes are annotated with types and level names.
They do not affect the operational semantics of processes, and can be automatically
inferred by using an inference algorithm similar to those in [11,10].

Similarly to lams, A(a; x) = P4 and (va; x : T)P are binders of a; x in P4 and of a, x
in P, respectively. We use the standard notions of alpha-equivalence, free and bound
names of processes and, with an abuse of notation, we let var(P) be the free names in
P. In process name definitions A(a; X) = P4, we always assume that var(P4) C a, X.

Definition 6. The structural equivalence = on processes is the least congruence con-
taining alpha-conversion of bound names, commutativity and associativity of | with
identity O, and closed under the following rule:

(va;x:T)P) | Q= (va;x:TYP | Q) a,x¢var(Q).
The operational semantics of a program (2, P) is a transition system where the states

are processes, the initial state is P, and the transition relation — o is the least one
closed under the following rules:

(R-Com) (R-PaR) (R-NEw)
el =v P—g P P-4 0
xle | x?y.P —g P[V/y] Pl Q—-gP|Q va,x:T)P -4 va,x:T)Q
(R-IFT) (R-IFF) (R—CALL)~
el # 0 Tel =0 [el =v A(@x)=Pe2
if e then Pelse Q —4 P if ¢ then Pelse Q —4 O A@;?) -4 Pl 171/7]
(R-Cong)
P=P P —-45Q 0=0
P-4 0

We often omit the subscript of — ¢ when it is clear from the context. We write —* for
the reflexive and transitive closure of —.

70 E. Giachino, N. Kobayashi, and C. Laneve

The deadlock-freedom of a process P, which is the basic property that we will verify,
means that P does not get stuck into a state where there is a message or an input. The
formal definition is below.

Definition 7 (deadlock-freedom). A program (2, P) is deadlock-free if the following
condition holds: whenever P —* P’ and either (i) P’ = (vay;x1 : Ty)---(Vag; xi :
T | Q), or(ii) P = (vay;x1 :Th) - (Vag; xk - Tr)(x?y.Q1 | Q2), then there exists
R such that P" — R.

Example 2 (The dining philosophers). Consider the program consisting of the process
definitions

Phils(ay, az, az, as;n :int, fork, : Uy, fork, : Uy) =
if n = 1 then Phil(a;, a», as, as; fork,, fork,) else
(vas, as; forks : Us | Us | !ZZ)(Phils(ay, ay, as, ag;n — 1, fork,, forks)
| Phil(as, as, a3, as; forks, fork,) | forks!l)

Phil(ay, ay, as, as; fork, : Uy, fork, : Us) =
Sork,2xy . forky Yxy.(fork,\xy | forky\x, | Phil(ay,as, as, as; fork,, fork,))

and of the main process P:

(vay, azfork, : Uy | Uy 1'g)(vas, as; fork, : Uy | Up | 1gh)
(Phils(ay, az, az, as; m, fork,, fork,) | Phil(ay, az, as, as; fork,, fork,) | fork,'1 | fork,!1)

Here, U; = pa.22.(1a) | @), Uz = pe. % .(13 | @), and Us = pae. %8 .(1: | @), but please ig-
nore the types for the moment. Every philosopher Phil(a;, a2, as, as; fork,, fork,) grabs
the two forks fork, and fork, in this order, releases the forks, and repeats the same be-
havior. The main process creates a ring consisting of m + 1 philosophers, where only
one of the philosophers grabs the forks in the opposite order to avoid deadlock. This
program is indeed deadlock-free in our definition. On the other hand, if we replace
Phil(ay, ay, as, as; fork,, fork,) with Phil(ay, as, az, as; fork,, fork,) in the main process,
then the resulting process is not deadlock-free. O

The dining philosophers example is a paradigmatic case of the power of the analysis
described in the next section. This example cannot be type-checked in Kobayashi’s
previous type system [11]: see Remark 1 in Section 6.

6 The Deadlock Freedom Analysis of Value-Passing CCS

We now explain the syntax of types in Figure 1. A type is either int or a usage. The
former is used to type integer names; the latter is used to type channel names [11,9]. A
usage describes how a channel can be used for input and output. The usage 0 describes
a channel that cannot be used, !5 describes a channel that is used for output, %..U
describes a channel that is first used for input and then used according to U, and U |
U’ describes a channel that is used according to U and U’, possibly in parallel. For
example, in process x!2 | x?z.ylz, y has the usage !5, (please, ignore the subscript and

Deadlock Analysis of Unbounded Process Networks 71

superscript for the moment), and x has the usage !g} | ?%:.0. The usage ua.U describes a
channel that is used recursively according to U[#®-U/ 1. The operation ua.— is a binder
and we use the standard notions of alpha-equivalence, free and bound usage names.
For example, pa.!g). describes a channel that can be sequentially used for output an
arbitrary number of times; pa. % .15} .« describes a channel that should be used for input
and output alternately. We often omit a trailing 0 and just write 7, for %, .0.

The superscripts and subscripts of ? and ! are level names of lams (recall Section 3),
and are used to control the causal dependencies between communications [11]. The su-
perscript, called an obligation level, describes the degree of the obligation to use the
channel for the specified operation. The subscript, called a capability level, describes
the degree of the capability to use the channel for the specified operation (and success-
fully find a partner of the communication).

In order to detect deadlocks we consider the following two conditions:

1. If a process has an obligation of level a, then it can exercise only capabilities of
level a’ less than a before fulfilling the obligation. This corresponds to a dependency
(@', a). For example, if x has type % and y has type !, then the process x?u.y!u has lam
(a2, a3).

2. The whole usage of each channel must be consistent, in the sense that if there is
a capability of level a to perform an input (respectively, a message), there must be a
corresponding obligation of level a to perform a corresponding message (respectively,
input). For example, the usage !, | % is consistent, but neither !g} | %} nor !g! is.

To see how the constraints above guide our deadlock analysis, consider the (dead-
locked) process: x?u.y!u | y?u.x!u. Because of condition 2 above, the usage of x and
y must be of the form 7%} | !z and 2% | g+ respectively. Due to 1, we derive (a2, as)
for x?u.ylu, and (a4, ay) for y?u.x!u. Hence the process is deadlocked because the lam
(az, as)&(ag, ay) has a circularity. On the other hand, for the process x?u.ylu | y?u.0 | x!u,
we derive the lam (a5, a4), which has no circularity. Indeed, this last process is not dead-
locked. While we use lams to detect deadlocks, Kobayashi [11] used natural numbers
for obligation/capability levels.

As explained above, usages describe the channel-wise behavior of a process, and
they form a tiny process calculus. The usage reduction relation U ~» U’ defined below
means that if a channel of usage U is used for a communication, the channel may be
used according to U’ afterwards.

Definition 8. Letr = be the least congruence on usages containing alpha-conversion of
bound names, commutativity and associativity of | with identity 0, and closed under the
following rule:

(UC-Mu)

ua.U = Ulpa.U/]

The reduction relation U ~» U’ is the least relation closed under the rules:

(UR-PaRr) (UR-Cong)
(R o Ui~ U Ur=Uj Uj~ Uy Us=Us
20U~ U
@l U]|U2’\I)U1|U2 U1'V>U2

As usual, we let ~* be the reflexive and transitive closure of ~.

72 E. Giachino, N. Kobayashi, and C. Laneve

The following relation rel(U) guarantees the condition 2 on capabilities and obliga-
tions above, that each capability must be accompanied by a corresponding obligation.
This must hold during the whole computation, hence the definition below. The predicate
rel(U) is computable because it may be reduced to Petri Nets reachability (see [10] for
the details about the encoding).

Definition 9. U is reliable, written rel(U), when the following conditions hold:

1. whenever U ~* U’ and U’ = 'Z; | Uy, there are Uy and Us such that U, =
%:.Us | Us for some az; and

2. whenever U ~* U’ and U’ = %}.U, | U,, there is Uz such that U, = g2 | Us for
some as.

The following type system uses type environments, ranged over I, I'’, - - -, that map
integer and channel names to types and process names to sequences [a; T]. When x ¢
dom(I'), we write I, x:T for the environment such that (I, x:T)(x) = T and (I, x:T)(y) =
I'(y), otherwise. The operation I"; | I, is defined by:

I'(x) if x € dom(I'1) and x ¢ dom(Iy)

I'>(x) if x € dom(I'») and x ¢ dom(I'1)
(I [I)x) =3[T] if I'(x) = T(x) = [a;T]

int if I'1(x) = I(x) = int

U] | U2 ifFl(x):U] andfz(x):Uz

The map I'y | I'; is undefined if, for some x, (I'; | I2)(x) does not match any of the
cases. Let var(I') = {a | thereis x : I'(x) = U and a € var(U)}.
There are three kinds of type judgments:

I' + e: T — the expression e has type T in [';
I'+ P:L—the process P haslam Lin [;
I'+(2,P):(¥Z,L) - the program (2, P) has lam program (.Z,L) in I

As usual, I' + e : T means that e evaluates to a value of type T under an environ-
ment that respects the type environment /. The judgment I + P : L means that P uses
each channel x according to I'(x), with the causal dependency as described by L. For
example, x:21, y:1g) + x?u.ylu : (a2, az) should hold.

The typing rules of value-passing CCS are defined in Figure 2, where we use the
predicate noact(I") and the function ob(U) defined as follows:

noact(I') = true if and only if, for every channel name x € dom(I'), I'(x) = 0;
Ob(r) = Uxedom(F),F(x):U Ob(U) where
ob(0) =@ ob(!g)) = {a1} ob(?73.U) = {a1}
ob(U | U") = ob(U) VU ob(U") ob(ua.U) = ob(U[O/a])

The predicate noact(I") is used for controlling weakening (as in linear type systems). For
example, if we did not require noact(I') in rule T-Zero, then we would obtain x:?Z;.O F
0 : 0. Then, by using T-In and T-Our, we would obtain: x:?Z;.OI 'Zf FO | x!1:0,and
wrongly conclude that the output on x does not get stuck. It is worth to notice that, in
the typing rules, we identify usages up to =.

Deadlock Analysis of Unbounded Process Networks 73

Processes:

(T-ZERO) (T-Our) (T-IN)

noact(I') I'vre:int Ix:Uy:intr P:L

I'ro0:0 Ixlg Fxle: @ L2 .U B x?y.P L & (Raeonny (a2, @)

(T-Par) (T-New)

I'rP:L I'+P:L I'x:U+rP:L rel(U) anvar(l =@

I'NI"rP| P :L&L 't (va;x:U)P:(va)l
(T-Ir) (T-CaLr) _ _
I'te:int I'+-P:L I'vP:L I'(A) = [a;T] [al =[] I're:T

I'| I’ +if ethen Pelse P’ : L+ L’ T'rA@@;e): £f4(@)
Expressions:
(T-InT) (T-Var) (T-Op) (T-SEQ) .
noact(I') noact(I') F're:intI'+ ¢ :int (T v e; : Tl
Frn:int Lx:Trx:T I'reope :int Tl | Tyrery. en:Th,.. T,
Programs:
(T-Proc)

7 = UarnlA@:%:T) = P} T = (A;: [a T
X :Tik Pl TPl L = U4, @) = L)

I\ I'v(2,P):(£.L)

Fig. 2. The type system of value-passing CCS (we assume a function name £, for every process
name A)

A few key rules are discussed. Rule (T-In) is the unique one that introduces depen-
dency pairs. In particular, the process x?u.P will be typed with a lam that contains
pairs (a»,a), where a, is the capability of x and a is the obligation of every channel
in P (because they are all causally dependent from x). Rule (T-Our) just records in
the type environment that x is used for output. Rule (T-Par) types a parallel composi-
tion of processes by collecting the environments — operation ““|” — (like in other linear
type systems [13,9]) and the lams of the components. Rule (T-CALL) types a process
name invocation in terms of a (lam) function invocation and constrains the sequences
of level names in the two invocations to have equal lengths (Ja] = [@’|) and the types of
expressions to match with the types in the process declaration.

Example 3. We illustrate the type system in Figure 2 by typing two simple processes:

= (var, az; x:%, | e (v as, as; y:%; 1 1) (x?%2.y!z | y2z.x12)
Q = (vai,ax x: r’ 1D (vas, ags y: r’a3 | 'Z;’)(Xr’zy'z | y72.0 | xI1)
The proof tree of P is
ek, ziintFylz: @ x:lg, z:intF x!z: 0
X (’Z;’ y las F X217 (a2, as) x:g2, v b yzxlz: (as, an)

o e v ey b x22.y12 | y22.x12: (a2, as) & (as, az)

DFrP: (Va17a2)(Va37a4)((a2’a4) & (as, a2))

74 E. Giachino, N. Kobayashi, and C. Laneve

and we notice that the lam in the conclusion has a circularity (in fact, P is deadlocked).

The typing of Q is
z:int + z:int
yilat, z:int k- ylz: @ y:0, z:int+-0:0 @F 1:int
x: %, yilar F x22.y1z: (a2, as) P Fy?72.0:0 xl@Z Fx!ll:0

2 G, v e x2zylz | y22.0 | x!1: (a2, as)
@+ Q:(var,a)(vas,as)(az, as)
The lam in the conclusion has no circularity. In fact, Q is not deadlocked. O

Example 3 also spots one difference between the type system in [11] and the one in
Figure 2. Here the inter-channel dependencies check is performed ex-post by resorting
to the lam algorithm in Section 4; in [11] this check is done during the type check-
ing(/inference) and, for this reason, the process P is not typable in previous Kobayashi’s
type systems. In this case, the two analysers both recognize that P is deadlocked; Ex-
ample 4 below discusses a case where the precision is different.

The following theorem states the soundness of our type system.

Theorem 2. Let I' + (2, P) : (£,L) such that noac(I'). If (£, L) has no circularity
then (2, P) is deadlock-free.

The following examples highlight the difference of the expressive power of the sys-
tem in Figure 2 and the type system in [11].

Example 4. Let (2, P) be the dining philosopher program in Example 2 and U; and U,
be the usages defined therein. We have I' + (2, P) : (¢, L) where
I' = Phils : [ay, a2, a3, ag; int, Uy, Us), Phil : (a1, az, a3, as; Uy, Us)
L ={ fpus(ar, az, a3,a4) = fppi(ay, az, az, as)
+(vas, ag)(fpnis(ai, az, as, ag) & fppilas, as, as, as)),
frnilar, az, a3, as) = (a1, a4) & (a3, a1) & (a3, az) & fppalar, az, a3, a4) }
L = (vay, az, a3, as)(£ppis(ay, az, az, as) & fppilay, az, as, as))
For example, let
Py = fork,1x fork,?xy.(fork,\x; | fork,!x, | Phil(ay,az,as,as; fork,, fork,))
Py = fork,?x,.(fork,!x; | fork,!x, | Phil(ay, az, a3, as; fork,, fork,))
P = fork,\xy | fork,\x, | Phil(a, az, as, as; fork,, fork,)
Then the body P, of Phil is typed as follows:

I, fork,:\g) v fork,!x; : ® I, forky: g} v fork,!x, : ©
Iy, fork, : Uy, fork, : Uy v Phil(ay, a, as, aa; fork,, fork,) : £ppi(ar, az, az, as)
Iy, fork,:\g) | Uy, forky:1g} | Ua v P3: fpyylan, az, as, as)
Iy, forky:\g) | Uy, forky : Uy + Py : (a3, a1) & (a3, a2) & fppiar, az, as, ag)
I, fork, : Ul,fork2 Uy b Pyi(ar, aq) & (a3, ar) & (as, az) & fppilar, az, as, ag)

where I'y = Ixy:int, [> = I, xp :int, U; :ua.? (' Ia)andUz—ua7 ('
a). Because (£, L) has no circularity, by Theorem 2, we can conclude that (@ P) is
deadlock-free.]

Deadlock Analysis of Unbounded Process Networks 75

Remark 1. The dining philosopher program cannot be typed in Kobayashi’s type sys-
tem [11]. That is because his type system assigns obligation/capability levels to each
input/output szatically. Thus only a fixed number of levels (represented as natural num-
bers) can be used to type a process in his type system. Since the above process can
create a network consisting of an arbitrary number of dining philosophers, we need an
unbounded number of levels to type the process. (Kobayashi [11] introduced a heuristic
to partially mitigate the restriction on the number of levels being fixed, but the heuristic
does not work here.) A variant of the dining philosopher example has been discussed
in [8]. Since the variant is designed so that a finite number of levels are sufficient, it is
typed both in [11] and in our new type system.

Similarly to the dining philosopher program, the system in [11] returns a false positive
for the process Fact in Section 1, while it is deadlock-free according to our new system.
We detail the arguments in the next example.

Example 5. Process Fact of Section 1 is written in the value passing CCS as follows.

. .3 .0a a3y
Fact(ai,az,as,as;n:int, r:7,), s:10) =
if n = 0 then r?n.s!n else
(vas, ae; 275 | 1g)(rn.t!(m x n) | Fact(as, as, a3, as;n — 1,1,))

Let I' = Fact : [a1,a), a3, a4;int, 75}, 133] and P be the body of the definition above.
Then we have I,n :int,r:?%,s:1g0 + P: L for L = (a»,a3) + (vas,ae)((az,a¢) &

fract(as, as, as, ag)). Thus, we have: I' + (2, P'):(Z, L) for:

P = (vay,ayr: | \g)(vas, as; s:7 | \g)(r!l | Fact(ay, az, az,as;m,r,s) | s7x.0)
Z = {fract(ai, az,a3,a4) = L}
L' = (vai,a,a3,a4)(® & frace(ar, az, az, as) & 0)

where m is an integer constant. Since (.Z,L’") does not have a circularity, we can con-
clude that (2, P’) is deadlock-free.

Type Inference. An untyped value-passing CCS program is a program where restric-
tions are (v x)P, process invocations are A(e) and process definitions are A(x) = P.
Given an untyped value-passing CCS program (&, P), with var(P) = @, there is an
inference algorithm to decide whether there exists a program (2’, P’) that coincides
with (2, P), except for the type annotations, and such that I" + (2’, P’) : (£, L). The
algorithm is almost the same as that of the type system in [10] and, therefore, we do not
re-describe it here. The only extra work compared with the previous algorithm is the
lam program extraction, which is done using the rules in Figure 2. Finally, it suffices to
analyze the extracted lams by using the fixpoint technique in Section 4.

Synchronous Value Passing CCS and pi Calculus. The type system above can be
easily extended to the pi-calculus, where channel names can be passed around through
other channels. To that end, we extend the syntax of types as follows.

T ::=int | ch(T, U).

The type ch(T, U) describes a channel that is used according to the usage U, and T is
the type of values passed along the channel. Only a slight change of the typing rules is
sufficient, as summarized below.

76 E. Giachino, N. Kobayashi, and C. Laneve

(T-Out’) (T-IN")
I're:T Ix:ch(T,U),y: T+-P:L

I x: Ch(T, ’3;) Fxle: &aegb(r)(az,a) I x: Ch(T, ?Z;U) F)C?y.P L& (&aegb(r)(dz,a))

In particular, (T-Out’) introduces dependencies between an output channel and the val-
ues sent along the channel. We notice that, in case of synchronous value passing CCS
(as well as pi-calculus), where messages have continuations, rule (T-Out’) also intro-
duces dependency pairs between the capability of the channel and the obligations in the
continuation.

7 Related Work and Conclusions

In this paper we have designed a new deadlock detection technique for the value-passing
CCS (and for the pi-calculus) that enables the analysis of networks with arbitrary numbers
of nodes. Our technique relies on a decidability result of a basic model featuring recur-
sion and fresh name generation: the lam programs. This model has been introduced and
studied in [5,6] for detecting deadlock of an object-oriented programming language [7],
but the decidability was known only for a subset of lams where only linear recursion is
allowed [6], and only approximate algorithms have been given for the full lam model.
The application of the lam model to deadlock-freedom of the value-passing CCS
(and pi-calculus) is also new, and the resulting deadlock-freedom analysis significantly
improves the previous deadlock-freedom analysis [11], as demonstrated through the
dining philosopher example. In particular, Kobayashi’s type system provides a mecha-
nism for dealing with a limited form of unbounded dependency chains, but the mecha-
nism is rather ad hoc and fragile with respect to a syntactic change. For example, while

Fib(n,r) = 1if n<2 then r?n else new s in new t in
(Fib!(n-1,s) | s?x.(Fib!(n-2,t)|t?y.r!(x+y))

is typable, the variation obtained by swapping new s in and new t in is untypable. Nei-
ther Fact nor the dining philosopher example are typable in [11]. More recently, in [17],
Padovani has introduced another type system for deadlock-freedom, which has a better
support than Kobayashi’s one for reasoning about unbounded dependency chains, by
using a form of polymorphism on levels. However, since the levels in his type system
are also integers, neither the Fact example nor the dining philosopher example are ty-
pable. In addition, Padovani’s type system cannot deal with non-linear channels, like
the fork channels in the dining philosopher example. That said, our type system does
not subsume Padovani’s one, as our system does not support recursive types.

Like other type-based analyses, our method cannot reason about value-dependent
behaviors. For example, consider the following process:

(if b then x?z.y!z else y!1 | x?z.) | (if b then x!1 | y?z. else y?z.x!z).

It is deadlock-free, but our type system would extract the lam expression: ((ay, ay) +
0) & (0 + (ay, ay)) (where a, and a, are the capability levels of the inputs on x and y
respectively), detecting a (false) circular dependency.

The integration of TyPiCal with the deadlock detection technique of this paper is left
for future work. We expect that we can extend our analysis to cover lock-freedom [8,17],

Deadlock Analysis of Unbounded Process Networks 77

too. To that end, we can require that a lam is not only circularity-free but is also well
founded, and/or combine the deadlock-freedom analysis with the termination analysis,
following the technique in [14].

Acknowledgments. This work was partially supported by JSPS Kakenhi 23220001
and by the EU project FP7-610582 ENVISAGE: Engineering Virtualized Services.

References

1.

2.

17.

18.

19.

Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection for Java.
TOPLAS 28 (2006)

Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe program.: preventing data races
and deadlocks. In: OOPSLA, pp. 211-230. ACM (2002)

. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press

(2002)

. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp. 338-349.

ACM (2003)

. Giachino, E., Laneve, C.: A beginner’s guide to the deadl/ock analysis model. In: Palamidessi,

C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 49-63. Springer, Heidelberg (2013)

. Giachino, E., Laneve, C.: Deadlock detection in linear recursive programs. In: Bernardo,

M., Damiani, F., Hiahnle, R., Johnsen, E.B., Schaefer, 1. (eds.) SFM 2014. LNCS, vol. 8483,
pp. 26-64. Springer, Heidelberg (2014)

. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in ABS. In:

Software and System Modeling (to appear, 2014)

. Kobayashi, N.: A type system for lock-free processes. Information and Computation 177,

122-159 (2002)

. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K. (ed.) Formal

Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp.
439-453. Springer, Heidelberg (2003)

. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Informat-

ica 42(4-5), 291-347 (2005)

. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.

(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233-247. Springer, Heidelberg (2006)

. Kobayashi, N.: TyPiCal: Type-based static analyzer for the Pi-Calculus (2007),

http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/

. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Transactions

on Programming Languages and Systems 21(5), 914-947 (1999)

. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile processes.

ACM TOPLAS 32(5) (2010)

. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg

(1980)

. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. and Comput. 100,

41-77 (1992)

Padovani, L.: Deadlock and Lock Freedom in the Linear m-Calculus. In: CSL-LICS 2014
(2014)

Suenaga, K.: Type-based deadlock-freedom verification for non-block-structured lock prim-
itives and mutable references. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356,
pp. 155-170. Springer, Heidelberg (2008)

Vasconcelos, V.T., Martins, F., Cogumbreiro, T.: Type inference for deadlock detection
in a multithreaded polymorphic typed assembly language. In: PLACES. EPTCS, vol. 17,
pp- 95-109 (2009)

http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/

Trees from Functions as Processes

Davide Sangiorgi' and Xian Xu?

! University of Bologna/INRIA, Bologna, Italy
2 Bast China University of Science and Technology, Shanghai, China

Abstract. Lévy-Longo Trees and Bohm Trees are the best known tree
structures on the A-calculus. We give general conditions under which an
encoding of the A-calculus into the 7-calculus is sound and complete with
respect to such trees. We apply these conditions to various encodings
of the call-by-name A-calculus, showing how the two kinds of tree can
be obtained by varying the behavioural equivalence adopted in the -
calculus and/or the encoding. The conditions are presented in the -
calculus but can be adapted to other concurrency formalisms.

1 Introduction

The m-calculus is a well-known model of computation with processes. Since its
introduction, its comparison with the A-calculus has received a lot of attention.
Indeed, a deep comparison between a process calculus and the A-calculus is in-
teresting for several reasons: it is a significant test of expressiveness, and helps
in getting deeper insight into its theory. From the A-calculus perspective, it pro-
vides the means to study A-terms in contexts other than purely sequential ones,
and with the instruments available in the process calculus. A more practical
motivations for describing functions as processes is to provide a semantic foun-
dation for languages which combine concurrent and functional programming and
to develop parallel implementations of functional languages.

Beginning with Milner’s seminal work [8], a number of A-calculus strategies
have been encoded into the w-calculus, including call-by-name, strong call-by-
name (and call-by-need variants), call-by-value, parallel call-by-value (see [12,
Chapter 15]). In each case, several variant encodings have appeared, by varying
the target language or details of the encoding itself. Usually, when an encoding
is given, a few basic results about its correctness are established, such as opera-
tional correctness and validity of reduction (i.e., the property that the encoding
of a A-term and the encoding of a derivative of it are behaviourally undistin-
guishable). Only in a few cases the question of the equality on A-terms induced
by the encoding has been tackled, e.g., [3-5,11,12]. In this paper, we refer to this
question as the full abstraction issue: for an encoding [] of the A-calculus into
m-calculus, an equality =) on the A-terms, and an equality =, on the m-terms,
full abstraction is achieved when for all A-terms M, N we have M =) N iff
[M] =« [N]. Full abstraction has two parts: soundness, which is the implication
from right to left, and completeness, which is its converse.

The equality =) usually is not the ordinary Morris-style contextual equivalence
on the A-terms: the m-calculus is richer — and hence more discriminating — than

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 78-92, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Trees from Functions as Processes 79

the A-calculus; the latter is purely sequential, whereas the former can also express
parallelism and non-determinism. (Exception to this are encodings into forms of
m-calculus equipped with rigid constraints, e.g., typing constraints, which limit
the set of legal m-calculus contexts.)

Indeed, the interesting question here is understanding what =) is when =
is a well-known behavioural equivalence on m-terms. This question essentially
amounts to using the encoding in order to build a A-model, and then under-
standing the A-model itself. While seldomly tackled, the outcomes of this study
have been significant: for a few call-by-name encodings it has been shown that,
taking (weak) bisimulation on the 7-terms, then =) corresponds to a well-known
tree structure in the A-calculus theory, namely the Lévy-Longo Trees (LTs) [12].

There is however another kind of tree structure in the A-calculus, even more
important: the Bohm Trees (BTs). BTs play a central role in the classical theory
of the A-calculus. The local structure of some of the most influential models of
the A-calculus, like Scott and Plotkin’s P, [13], Plotkin’s T [10], is precisely the
BT equality; and the local structure of Scott’s Do, (historically the first mathe-
matical, i.e., non-syntactical, model of the untyped A-calculus) is the equality of
the ‘infinite 7 contraction’ of BTs. The full abstraction results in the literature
for encodings of A-calculus into m-calculus, however, only concern LTs.

A major reason for the limited attention that the full abstraction issue for
encodings of A-calculus into m-calculus has received is that understanding what
kind of the structure the encoding produces may be difficult, and the full abstrac-
tion proof itself is long and tedious. The contribution of this paper is twofold:

1. We present general conditions for soundness and completeness of an encoding
of the A-calculus with respect to both LTs and BTs. The conditions can be
used both on coinductive equivalences such as bisimilarity, and on contextual
equivalences such as may and must equivalences.

2. We show that by properly tuning the notion of observability and/or the
details of the encoding it is possible to recover BTs in place of LTs.

Some conditions only concern the behavioural equivalence chosen for the 7-
calculus, and are independent of the encoding; a few conditions are purely syn-
tactic (e.g., certain encoded contexts should be guarded); the only behavioural
conditions are equality of S-convertible terms, equality among certain unsolv-
able terms, and existence of an inverse for certain contexts resulting from the
encoding (i.e., the possibility of extracting their immediate subterms, up-to the
behavioural equivalence chosen in the w-calculus). We use these properties to
derive full abstraction results for BTs and LTs for various encodings and var-
ious behavioural equivalence of the m-calculus. For this we exploit a few basic
properties of the encodings, making a large reuse of proofs.

In the paper we use the conditions with the m-calculus, but they could also
be used in other concurrency formalisms.

Structure of the paper. Section 2 collects background material. Section 3 introduces
the notion of encoding of the A-calculus, and concepts related to this. Section 4
presents the conditions for soundness and completeness. Sections 5 and 6 apply

80 D. Sangiorgi and X. Xu

the conditions on a few encodings of call-by-name and strong call-by-name from
the literature, and for various behavioural equivalences on the -calculus. Section 7
briefly discusses refinements of the 7-calculus, notably with linear types. Some con-
clusions are reported in Section 8.

2 Background

The A-calculus We use M, N to range over the set A of A-terms, and x,y, z
to range over variables. The standard syntax of A\-terms, and the rules for call-
by-name and strong call-by-name (where reduction may continue underneath a
A-abstraction), can be recalled in [2]. We assume the standard concepts of free
and bound variables and substitutions, and identify a-convertible terms. We
write {2 for the divergent term (Az. zx)(Ax. zx). Intuitively, a term M has order
of unsolvability n (0 < n < w) if it behaves like {2 after n initial abstractions; M
has order of unsolvability oo if it can reduce to an unbounded number of nested
abstractions; M is solvable otherwise, with a head normal form of the shape

Definition 1 (Lévy-Longo trees and Béhm trees). The Lévy—Longo Tree
of M € A is the labelled tree, LT(M), defined coinductively as follows:

1. LT(M) =T if M is an unsolvable of order co;

2. LT(M) = X2y ... 2. L if M is an unsolvable of order n;

3. LT(M) = tree with A\Z.y as the root and LT (My),...,LT(M,) as the children,
if M has head normal form AXx.yM;y ... M,, n > 0.

Two terms M, N have the same LT if LT (M) = LT(N). The definition of Béhm
trees (BTs) is obtained from that of LTs using BT in place of LT in the definition
above, and demanding that BT (M) = L whenever M is unsolvable (in place of
clauses (1) and (2)). See [6] for a thorough tutorial on observational equivalences
for such trees.

The (asynchronous) m-calculus We first consider encodings into the asynchronous
m-calculus because its theory is simpler and because it is the usual target lan-
guage for encodings of the A-calculus. In all encodings we consider, the encoding
of a A-term is parametric on a name, that is, is a function from names to n-
calculus processes. We call such expressions abstractions. For the purposes of
this paper unary abstractions, i.e., with only one parameter, suffice. The actual
instantiation of the parameter of an abstraction F' is done via the application
construct F'(a). We use P, Q for process, F' for abstractions. Processes and ab-
stractions form the set of m-agents (or simply agents), ranged over by A. Small
letters a,b,...,z,y,... range over the infinite set of names. We use a tilde to
indicate tuples; and given a tuple ¢, we write ¢; for the i-th component of the
tuple. Substitutions are ranged over by ¢. The grammar of the calculus is thus:

A:=P | F (agents)

P:=0 ‘ a(b). P | a(b) | P | P ‘ va P | la(b). P | F({a) (processes)
F:=(a)P (abstractions)

Trees from Functions as Processes 81

Since the calculus is polyadic, we assume a sorting system [9] to avoid dis-
agreements in the arities of the tuples of names carried by a given name. We will
not present the sorting system because not essential. The reader should take for
granted that all agents described obey a sorting. A context C of 7 is a m-agent
in which some subterms have been replaced by the hole [-] or, if the context is
polyadic, with indexed holes []1,.. ., []n; then C[A] or C[A] is the agent result-
ing from replacing the holes with the terms A or A. If the initial expression was
an abstraction, we call the context an abstraction mw-context; otherwise it is a
process w-context. (A hole itself may stand for an abstraction or a process.) A
name is fresh if it does not occur in the objects under consideration.

The standard operational semantics of the asynchronous m-processes (as well
as the one for synchronous 7-processes) is recalled in [12]. Transitions are of the

form P M P’ (an input, b are the bound names of the input prefix that has

been fired), P vaald)
the output), and P —— P’ (an internal action). We use x to range over the labels

P’ (an output, where d - b are private names extruded in

of transitions. We write = for the reflexive transitive closure of =, and ==
for =% =—; then =& is = if 1 is not 7, and = otherwise; finally P pr
holds if PP’ or (= 7 and P = P’). In bisimulations or similar coinductive
relations for the asynchronous 7w-calculus, no name instantiation is required in
the input clause or elsewhere (provided a-convertible processes are identified);
i.e., the ground versions of the relations are congruences or precongruences [12].

Definition 2 (bisimilarity). Bisimilarity is the largest symmetric relation =

on m-processes such that whenever P ~ Q and P -5 P’ then Q == Q' for
some Q' and P~ Q'.

A key preorder in our work will be ezpansion [1,12]; this is a refinement of
bisimulation that takes into account the number of internal actions in simulation.
Intuitively, @ expands P if they are weak bisimilar and moreover () has no fewer
internal actions when simulating P.

Definition 3 (expansion relation). A relation R on w-processes is an expan-
sion relation if whenever P R Q: (1) if P Ly P then Q =& Q' and P’ R Q';
(2)if Q X5 Q' then P 5 P' and P R Q'.

We write < for the largest expansion relation, and simply call it ezpansion. We
also need its ‘divergence-sensitive’ variant, written <, as an auxiliary relation
when tackling must equivalences. Using 1} to indicate divergence (i.e., P{ if P
can undergo an infinite sequence of 7 transitions), then <™ is obtained by adding
into Definition 3 the requirement that Q1) implies P{}. We write = and T3= for the
inverse of < and <™, respectively. The predicate | indicates barb-observability
(i.e., Pl if P = %5 for some p other than 7). As instance of a contextual
divergence-sensitive equivalence, we consider must-termination, because of the
simplicity of its definition — other choices would have been possible.

82 D. Sangiorgi and X. Xu

Definition 4 (may and must equivalences). The w-processes P and Q are
may equivalent, written P ~may @, if in all process contexts C we have C[P]l} iff
C[Q). They are must-termination equivalent (briefly must equivalent), written
P ~pust Q, if in all process contexts C we have C[P iff C[Q]f.

The behavioural relations defined above use the standard observables of 7-
calculus; they can be made coarser by using the observables of asynchronous
calculi, where one takes into account that, since outputs are not blocking, only
output transitions from tested processes are immediately detected by an ob-
server. In our examples, the option of asynchronous observable will make a dif-
ference only in the case of may equivalence. In asynchronous may equivalence,

~ay» the barb-observability predicate |} is replaced by the asynchronous barb-
observability predicate |, whereby P}, holds if P=—% and p is an output
action. We have C &~ C ~pay C ~onay and <™ C ~yust. The following results
will be useful later. A process is inactive if it may never perform a visible action.

Lemma 1. For all process contexts C, we have: (1) if P is inactive, then C[P]{

implies C[QJ} for all Q, C[P]{ s, implies C[Q),, for all Q, and Cla(z). P,
implies C[P{,; (2) if Pt then for all Q, C[Qft implies C[P]f).

Lemma 2. va (a(d) | a(z). P) M= P{bz}.

3 Encodings of the A-calculus and Full Abstraction

In this paper an ‘encoding of the A-calculus into w-calculus’ is supposed to be
compositional (a mapping to m-calculus agents defined structurally on A-terms),
and uniform. The ‘uniformity’ condition refers to the treatment of the free vari-
ables: if the A-term M and M’ are the same modulo a renaming of free variables,
then also their encodings should be same modulo a renaming of free names; since,
in our encodings, A-variables are included in the set of m-calculus names, a way
of ensuring uniformity is to require that the encoding commutes with (name)
substitution, i.e., [Mo] = [M]o.

A compositional encoding can be extended to contexts. We sometimes use:

(1) cy 2ef [Az.[]], an abstraction contexts of [] (the hole represents the body of

an abstraction); (2) CL™ 2ef [z[]1 - []n] (for n > 0), a variable contexts of []
(an application context in which the head is a variable and the holes represent
the following sequence of terms). In the remainder of the paper, ‘encoding’ refers

to a ‘compositional and uniform encoding of the A-calculus into the 7-calculus’.

Definition 5 (soundness, completeness, full abstraction, validity of
rule). An encoding [] and a relation R on m-agents are: (1) sound for LTs if
[M] R [N] implies LT(M) = LT(N), for all M,N € A; (2) complete for LTSs
if LT(M) = LT(N) implies [M] R [N], for all M, N € A; (8) fully abstract
for LTs if they are both sound and complete for LTs.

The same definitions will also be applied to BTs — just replace ‘LT’ with
‘BT’. Moreover, [] and R validate rule B if [(Ax. M)N] R [M{N/x}], for all
z, M, N.

Trees from Functions as Processes 83

4 Conditions for Completeness and Soundness

We first give the conditions for completeness of an encoding [] from the M-
calculus into 7 with respect to a relation < on 7-agents; then those for soundness.
In both cases, the conditions involve an auxiliary relation < on w-agents.

Completeness conditions. In the conditions for completeness the auxiliary pre-
congruence < is required so to validate an ‘up-to < and contexts’ technique.
Such technique is inspired by the ‘up-to expansion and contexts’ technique for
bisimulation [12], which allows us the following flexibility in the bisimulation
game required on a candidate relation R: given a pair of derivatives P and @, it
is not necessary that the pair (P, Q) itself be in R, as in the ordinary definition
of bisimulation; it is sufficient to find processes ﬁ, @, and a context C' such that
P = C[P], @ = C[Q], and P R Q; that is, we can manipulate the original deriva-
tives in terms of < so to isolate a common context C'; this context is removed
and only the resulting processes P, @ need to be in R. In the technique, the ex-
pansion relation is important: replacing it with bisimilarity breaks correctness.
Also, some care is necessary when a hole of the contexts occurs underneath an
input prefix, in which case a closure under name substitutions is required. Be-
low, the technique is formulated in an abstract manner, using generic relations
= and <. In the encodings we shall examine, =< will be any of the congruence
relations in Section 2, whereas < will always be the expansion relation (or its
divergence-sensitive variant, when = is must equivalence).

Definition 6 (up-to-<-and-contexts technique). Relation < validates the
up-to-<-and-contexts technique if for any symmetric relation R on m- pmcesses

we have R C = whenever for any pair (P,Q) € R, if P Ly P’ then Q =% Q’
and there are processes P,Q and a context C such that P’ > C[P], Q' > C[Q],
and, if n = 0 is the length of the tuples P and Q, at least one of the following
two statements is true, for each i < n: (1) P, < Qq; (2) P R Q; and, if [];
occurs under an input in C, also P;o R Q;0 for all substitutions o.

Below is the core of the completeness conditions. Some of these conditions
((1)-(3)) only concern the chosen behavioural equivalence < and its auxiliary
relation <, and are independent of the encoding; the most important condition
is the validity of the up-to-<-and-contexts technique. Other conditions (such
as (4)) are purely syntactic; we use the standard concept of guarded context
(in which the hole appears underneath some prefix) [12]. The only behavioural
conditions on the encoding are (5), (6) (plus (ii) in Theorem 1). They concern
validity of 8 rule and equality of certain unsolvables — very basic requirements
for the operational correctness of an encoding.

Definition 7. Let < and < be relations on w-agents such that:

1. < is a congruence and < 2 >;
2. < is an expansion relation and is a precongruence;
3. =< walidates the up-to-<-and-contexts technique.

84 D. Sangiorgi and X. Xu

Now, an encoding [] of A-calculus into w-calculus is faithful for < under < if

4. the variable contexts of [] are guarded;
5. [1 and > validate rule B;
6. if M is an unsolvable of order 0 then [M] =< [£2].

Theorem 1 (completeness). Let [] be an encoding of the \-calculus into m-
calculus, and < a relation on mw-agents. Suppose there is a relation < on w-agents
such that [] is faithful for < under <. We have:

(i) if the abstraction contexts of [] are guarded, then [] and =< are complete for
LTs;

(i) if [M] =< [£2] whenever M is unsolvable of order oo, then [] and =< are
complete for BTs.

The proofs for LTs and BTs are similar. In the proof for LTs, for instance,

we consider the relation R {(IM],[N]) st. LT(M) = LT(N)} and show

that for each ([M],[N]) € R one of the following conditions is true, for some
abstraction context CY, variable context C%;', and terms M;, N;:

(a) [M] =[] and [N] = [£];
(b) [M] = CX[[Mi]], [N] = CX[[M]] and ([ML], [N1]) € R;
(©) M] = CrlIML], - [Ma]), [N] = CER (I - - [Nn]] and ([MG], [Ni]) €

R for all 7.

Here, (a) is used when M and N are unsolvable of order 0, by appealing to clause
(6) of Definition 7. In the remaining cases we obtain (b) or (c), depending on
the shape of the LT for M and N, and appealing to clause (5) of Definition 7.
The crux of the proof is exploiting the property that < validates the up-to-<-
and-contexts technique so to derive R C < (the continuations of [M] and [N]
are somehow related via the expansion and common context). Intuitively, this
is possible because the variable and abstraction contexts of [] are guarded, and
therefore the first action from terms such as CY[[M,]] and CEZ[M], . .., [M,]]
only consumes the context, and because < is an expansion relation (clause (2)
of Definition 7). Note that condition (2) of Definition 6 requires closure under
substitutions when a hole is underneath a prefix. In clause (c¢) above we can
derive closure under substitutions from ([N;], [N;]) € R because the LT equality
is preserved by variable renaming and because we assume an encoding to act
uniformly on the free names (Section 3).

In the results for BTs, the condition on abstraction contexts being guarded
is not needed because the condition can be proved redundant in presence of the
condition in the assertion (ii) of the theorem. Intuitively, the reason is that, if in
a term the head reduction never unveils a variable, then the term is unsolvable
and can be equated to {2 using condition (ii); if it does unveil a variable, then
in the encoding the subterms following the variable are underneath at least one
prefix (because the variable contexts of the encoding are guarded, by condition
(4)) and then we are able to apply a reasoning similar to that in clause (c) above.
Also, we do not need to explicitly prove [Az. 2] < [£2], this can be derived from
condition (ii) and clauses (5) and (6) of Definition 7.

Trees from Functions as Processes 85

Soundness conditions. In the conditions for soundness, one of the key require-
ments will be that certain contexts have an inverse. This intuitively means that
it is possible to extract any of the processes in the holes of the context, up to
the chosen behavioural equivalence. To have some more flexibility, we allow the
appearance of the process of a hole after a rendez-vous with the external ob-
server. This allows us to: initially restrict some names that are used to consume
the context; then export such names before revealing the process of the hole.
The reason why the restriction followed by the export of these names is useful is
that the names might occur in the process of the hole; initially restricting them
allows us to hide the names to the external environment; exporting them allows
to remove the restrictions once the inversion work on the context is completed.
The drawback of this initial rendez-vous is that we have to require a prefix-
cancellation property on the behavioural equivalence; however, the requirement
is straightforward to check in common behavioural equivalences.

We give the definition of inversion only for abstraction m-contexts whose holes
are themselves abstractions. We only need this form of contexts when reasoning
on A-calculus encodings.

Definition 8. Let C' be an abstraction w-context with n holes, each occurring
exactly once, each hole itself standing for an abstraction. We say that C has
inverse with respect to a relation R on m-agents, if for every i = 1,...,n and
for every A there exists a process w-context D; and fresh names a, z,b such that

Di[C[A]] R (vb)(a(@) | b(2). Ai(2)) , forbebC.

It is useful to establish inverse properties for contexts for the finest possible
behavioural relation, so to export the result to coarser relations. In our work,
the finest such relation is the divergence-sensitive expansion ().

Example 1. We show examples of inversion using contexts that are similar to
some abstraction and variable contexts in encodings of A-calculus.

1. Consider a context C' %' (p) p(z,q). ([-|{q)). If F fills the context, then an
inverse for M= is the context

D € wb (ald) | b(r).vp ([1(p) | plz,7)))

where all names are fresh (i.e., not free in F'). Indeed we have, using simple
algebraic manipulations (such as the law of Lemma 2):

DIC[F]] ™= vb (a(b) | b(r).vp (p(z,q). Fq) | plx,r)))
M= wb (ald) | b(r). F(r))

2. Consider now a context C' %' (p) (wryy)(x(r) | r{y,p) | Wy(q). [){g). If F fills
the hole, then an inverse context is

DY (wa,p b)) | 2(r).r(y. 2). (ale,b) | bu)-y(@) (1)

86 D. Sangiorgi and X. Xu

where again all names are fresh with respect to F'. We have:

(v, p, b)((C[F]){p)
(va,p,b)(vr,y)(

DI[CIF]]

=
¥

=

> =

YO Y
<
&
=

Definition 9. A relation R on m-agents has the rendez-vous cancellation prop-
erty if whenever vb (a(Z) | b(r). P) R vb (a(@) | b(r). Q) where b€ b C ¢ and a,b
are fresh, then also P R Q.

The cancellation property is straightforward for a behavioural relation =< be-
cause, in the initial processes, the output a(c) is the only possible initial action,
after which the input at b must fire (the assumption ‘a, b fresh’ facilitates mat-
ters, though it is not essential).

As for completeness, so for soundness we isolate the common conditions for
LTs and BTs. Besides the conditions on inverse of contexts, the other main
requirement is about the inequality among some structurally different \-terms
(condition 6).

Definition 10. Let < and < be relations on m-agents where

congruence, < a precongruence,

= 1S

=2
= ha

%N!‘
c’°I\/®

he rendez-vous cancellation property.
An encoding [] of the A-calculus into w-calculus is respectful for < under < if

[1 and > validate rule B;
if M is an unsolvable of order 0, then [M] = [£2];

the terms [£2], [¢M], [#M'], and ly M"] are pairwise unrelated by =<, as-

suming that x # y and that tuples M and M’ have different lengths;
7. the abstraction and variable contexts of [] have inverse with respect to >.

S S

The condition on variable context having an inverse is the most delicate one.
In the encodings of the w-calculus we have examined, however, the condition is
simple to achieve.

Theorem 2 (soundness). Let [] be an encoding of the A-calculus into -
calculus, and < a relation on w-agents. Suppose there is a relation < on w-agents
such that [] is respectful for < under <. We have:

1. if, for any M, the term [Ax. M| is unrelated by < to [§2] and to any term
of the form [x#M], then [] and = are sound for LTs;
2. if

(a) [M] < [£2] whenever M is unsolvable of order oo,

Trees from Functions as Processes 87

(b) M solvable implies that the term [Axz. M] is unrelated by < to [§2] and

to any term of the form [z M],
then [] and < are sound for BTs.

For the proof of Theorem 2, we use a coinductive definition of LT and BT
equality, as forms of bisimulation. Then we show that the relation {(M,N) |
[M] = [N]} implies the corresponding tree equality. In the case of internal
nodes of the trees, we exploit conditions such as (6) and (7) of Definition 10.

Full abstraction We put together Theorems 1 and 2.

Theorem 3. Let [] be an encoding of the A-calculus into w-calculus, < a con-
gruence on w-agents. Suppose there is a precongruence < on w-agents such that

1. < is an expansion relation and < 2D >;

2. = walidates the up-to-<-and-contexts technique;

3. the variable contexts of [] are guarded;

4. the abstraction and variable contexts of [] have inverse with respect to >;
5. [] and > validate rule B;

6. if M is an unsolvable of order 0 then [M] = [2];

7.

the terms [2], [¢M], [xM'], and [yM"] are pairwise unrelated by =, as-
suming that x # y and that tuples M and M' have different lengths.

We have:
(i) if

(a) the abstraction contexts of [are guarded, and

(b) for any M the term [Az. M] is unrelated by < to [2] and to any term
of the form [xM],

then [] and < are fully abstract for LTs;

(ii) if

(a) M solvable implies that the term [Ax. M] is unrelated by =< to [2] and
to any term of the form [:EM]], and

(b) [M] =< [§2] whenever M is unsolvable of order oo,

then [] and < are fully abstract for BTs.

In Theorems 1(i) and 3(i) for LTs the abstraction contexts are required to
be guarded. This is reasonable in encodings of strategies, such as call-by-name,
where evaluation does not continue underneath a A-abstraction, but it is too
demanding when evaluation can go past a A-abstraction, such as strong call-by-
name. We therefore present also the following alternative condition:

M, N unsolvable of order co implies [M] =< [N]. (%)

Theorem 4. Theorems 1(i) and 3(i) continue to hold when the condition that
the abstraction contexts be guarded is replaced by (*) above.

88 D. Sangiorgi and X. Xu

5 Examples with call-by-name

In this section we apply the theorems on soundness and completeness in the pre-
vious section to two well-known encodings of call-by-name A-calculus: the one in
Figure 1.a is Milner’s original encoding [8]. The one in Figure 1.b is a variant en-
coding in which a function communicates with its environment via a rendez-vous
(request/answer) pattern. An advantage of this encoding is that it can be easily
tuned to call-by-need, or even used in combination with call-by-value [12].

For each encoding we consider soundness and completeness with respect to
four behavioural equivalences: bisimilarity (=), may (~may), must (~must), and
asynchronous may (~2%). The following lemma allows us to apply the up-to-

may
<-and-contexts technique.

Lemma 3. Relations =, ~may, and ~33 wvalidate the up-to-<-and-contexts

technique; relation ~must validates the up—to—#ﬂ—and—contexts technique.

The result in Lemma 3 for bisimulation is from [12]. The proofs for the may
equivalences follow the definitions of the equivalences, reasoning by induction on
the number of steps required to bring out an observable. The proof for the must
equivalence uses coinduction to reason on divergent paths. Both for the may and
for the must equivalences, the role of expansion (x) is similar to its role in the
technique for bisimulation.

Theorem 5. The encoding of Figure 1.a is fully abstract for LTs when the be-
havioural equivalence for m-calculus is =, ~may, 07 ~must; and fully abstract for
BTs when the behavioural equivalence is ~35 .

The encoding of Figure 1.b is fully abstract for LTs under any of the equiva-

N as
lences =, ~may, ~must, OT ngy'

As Lemma 3 brings up, in the proofs, the auxiliary relation for =, ~.y, and
~ay 18 < for ~must it is <™. With Lemma 3 at hand, the proofs for the sound-
ness and completeness statements are simple. Moreover, there is a large reuse
of proofs and results. For instance, in the completeness results for LTs, we only
have to check that: the variable and abstraction contexts of the encoding are
guarded; S rule is validated; all unsolvable of order 0 are equated. The first check
is straightforward and is done only once. For the (8 rule, it suffices to establish its
validity for <™, which is the finest among the behavioural relations considered;
this is done using distributivity laws for private replications [12], which are valid
for strong bisimilarity and hence for <™, and the law of Lemma 2. Similarly,
for the unsolvable terms of order 0 it suffices to prove that they are all ‘purely
divergent’ (i.e., divergent and unable to even perform some visible action), which
follows from the validity of the 3 rule for <™.

Having checked the conditions for completeness, the only two additional con-
ditions needed for soundness for LTs are conditions (6) and (7) of Definition 10,
where we have to prove that certain terms are unrelated and that certain con-
texts have an inverse. The non-equivalence of the terms in condition (6) can

be established for the coarsest equivalences, namely N;";fg’y and ~pust, and then

Trees from Functions as Processes 89

Da. M] % (9) p(z, q). [M](q)

] ' (p) 2(p)
[MNT () () (IMI) | () |
lz(q). [[N]](q)) (for x fresh)

lz(q). [[N]](q>)) (for x fresh)
Fig. 1.a: Milner’s encoding

Fig. 1.b: a variant encoding

Fig. 1. The two encodings of call-by-name

exported to the other equivalences. It suffices to look at visible traces of length 1
at most, except for terms of the form [2M] and [zM’], when tuples M and M’
have different lengths, in which case one reasons by induction on the shortest of
the two tuples.

The most delicate point is the existence of an inverse for the abstraction and
the variable contexts. This can be established for the finest equivalence (x™),
and then exported to coarser equivalences. The two constructions needed for this
are similar to those examined in Example 1.

For Milner’s encoding, in the case of ~2% we actually obtain the BT equality.
One may find this surprising at first: BTs are defined from weak head reduction, in
which evaluation continues underneath a A-abstraction; however Milner’s encod-
ing mimics the call-by-name strategy, where reduction stops when a A-abstraction
is uncovered. We obtain BTs with ~53 by exploiting Lemma 1(1) as follows. The
encoding of a term Az. M is (p) p(z, ¢). [M](g). In an asynchronous semantics, an
input is not directly observable; with ~{% an input prefix can actually be erased
provided, intuitively, that an output is never liberated. We sketch the proof of
[M] ~55 [$2] whenever M is unsolvable of order oo, as required in condition (ii)

of Theorem 3. Consider a context C' with C[[M]]{, and suppose the observable is
reached after n internal reductions. Term M, as oco-unsolvable, can be S-reduced

to M’ &' (Az)™. N, for some N. By validity of S-rule for =, also C[[M']]{ in at
most n steps; hence the subterm [N] of [M’] does not contribute to the observ-
able, since the abstraction contexts of the encodings are guarded and M’ has n
initial abstractions. We thus derive C[[(Az)". 2]]{} and then, by repeatedly ap-
plying the third statement of Lemma 1(1) (as 2 is inactive), also C[[£2]]{. (The
converse implication is given by the first statement in Lemma 1(1).)

6 An Example with Strong call-by-name

In this section we consider a different A-calculus strategy, strong call-by-name,
where the evaluation of a term may continue underneath a A-abstraction. The main
reason is that we wish to see the impact of this difference on the equivalences in-
duced by the encodings. Intuitively, evaluation underneath a A-abstraction is fun-
damental in the definition of BTs and therefore we expect that obtaining the

90 D. Sangiorgi and X. Xu

Da. M] Y (p) (va,) (p(w, q) | [M](q)) [z] < (p) (2(0). (o' > p))

[MNT € (p) (va,) (IMI{a) | a(,). (0 > p | Lo(r). [N]()) (for fresh)

—

where r > ¢ def r(y, h). q{y, h)

Fig. 2. Encoding of strong call-by-name

BT equality will be easier. However, the LT equality will still be predominant: in
BTs a A-abstraction is sometimes unobservable, whereas in an encoding into -
calculus a A-abstraction always introduces a few prefixes, which are observable in
the most common behavioural equivalences.

The encoding of strong call-by-name, from [7], is in Figure 2. The encoding be-
haves similarly to that in Figure 1.b; reduction underneath a ‘A’ is implemented
by exploting special wire processes (such as g > p). They allow us to split the
body M of an abstraction from its head Ax; then the wires make the liaison
between the head and the body. It actually uses the synchronous m-calculus,
because some of the output prefixes have a continuation. Therefore the encoding
also offers us the possibility of discussing the portability of our conditions to the
synchronous m-calculus. For this, the only point in which some care is needed is
that in the synchronous 7-calculus, bisimilarity and expansion need some closure
under name substitutions, in the input clause (on the placeholder name of the
input), and the outermost level (i.e., before the bisimulation or expansion game
is started) to become congruence or precongruence relations. Name substitutions
may be applied following the early, late or open styles. The move from a style
to another one does not affect the results in terms of BTs and LTs in the paper.
We omit the definitions, see e.g., [12].

In short, for any of the standard behavioural congruences and expansion pre-
congruences of the synchronous 7w-calculus, the conditions concerning =< and <
of the theorems in Section 4 remain valid. In Theorem 6 below, we continue to
use the symbols ~ and < for bisimilarity and expansion, assuming that these
are bisimulation congruences and expansion precongruences in any of the com-
mon 7-calculus styles (early, late, open). (Again, in the case of must equivalence
the expansion preorder should be divergence sensitive.) The proof of Theorem 6
is similar to that of Theorem 5. The main difference is that, since in strong
call-by-name the abstraction contexts are not guarded, we have to adopt the
modification in one of the conditions for LTs suggested in Theorem 4. Moreover,
for the proof of validity of 5 rule for <, we use the following law to reason about
wire processes r > ¢ (and similarly for <T):

—vq(qr>p | P) = P{Plq} provided p does not appear free in P, and ¢ only
appears free in P only once, in a subexpression of the form ¢(v). 0.

Theorem 6. The encoding of Figure 2 is fully abstract for LTs when the be-
havioural equivalence for the m-calculus is &, ~may, or ~2% : and fully abstract
for BTs when the behavioural equivalence is ~pyst-

Trees from Functions as Processes 91

Thus we obtain the BT equality for the must equivalence. Indeed, under strong
call-by-name, all unsolvable terms are divergent. In contrast with Milner’s encod-
ing of Figure 1.a, under asynchronous may equivalence we obtain LTs because
in the encoding of strong call-by-name the first action of an abstraction is an
output, rather than an input as in Milner’s encoding, and outputs are observable
in asynchronous equivalences.

7 Types and Asynchrony

We show, using Milner’s encoding (Figure 1.a), that we can sometimes switch
from LTs to BTs by taking into account some simple type information together
with asynchronous forms of behavioural equivalences. The type information
needed is the linearity of the parameter name of the encoding (names p,q,r
in Figure 1.a). Linearity ensures us that the external environment can never
cause interferences along these names: if the input capability is used by the
process encoding a A-term, then the external environment cannot exercise the
same (competing) capability. In an asynchronous behavioural equivalence input
prefixes are not directly observable (as discussed earlier for asynchronous may).
Linear types and asynchrony can easily be incorporate in a bisimulation
congruence by using a contextual form of bisimulation such as barbed congru-
ence [12]. In this case, barbs (the observables of barbed congruence) are only pro-
duced by output prefixes (as in asynchronous may equivalence); and the contexts
in which processes may be tested should respect the type information ascribed
to processes (in particular the linearity mentioned earlier). We write %gg’asy for
the resulting asynchronous typed barbed congruence. Using Theorem 3(ii) we
obtain:
Theorem 7. The encoding of Figure 1.a is fully abstract for BTs when the

. . . ii
behavioural equivalence for the m-calculus is =~ .

The auxiliary relation is still x; here asynchrony and linearity are not needed.

8 Conclusions and Future Work

In this paper we have studied soundness and completeness conditions with re-
spect to BTs and LTs for encodings of A-calculus into the w-calculus. While
the conditions have been presented on the m-calculus, they can be adapted to
some other concurrency formalisms. For instance, expansion, a key preorder in
our conditions, can always be extracted from bisimilarity as its “efficiency” pre-
order. It might be difficult, in contrast, to adapt our conditions to sequential
languages; a delicate condition, for instance, appears to be the one on inversion
of variable contexts.

We have used the conditions to derive tree characterisations for various encod-
ings and various behavioural equivalences, including bisimilarity, may and must
equivalences, and asynchronous may equivalence. The proofs of the conditions
can often be transported from a behavioural equivalence to another one, with

92 D. Sangiorgi and X. Xu

little or no extra work (e.g., exploiting containments among equivalences and
preorders). Overall, we found the conditions particularly useful when dealing
with contextual equivalences, such as may and must equivalences. It is unclear
to us how soundness and completeness could be proved for them by relying on,
e.g., direct characterisations of the equivalences (such as trace equivalence or
forms of acceptance trees) and standard proof techniques for them.

It would be interesting to examine additional conditions on the behavioural
equivalences of the w-calculus capable to retrieve, as equivalence induced by an
encoding, that of BTs under n contraction, or BTs under infinite 7 contractions
[2]. Works on linearity in the m-calculus, such as [14] might be useful.

In the paper we have considered encodings of call-by-name or strong call-by-
name. These strategies fit the definition of BTs and LTs, in which reduction
always picks the leftmost redex. We do not know, in contrast, what kind of tree
structures could be obtained from encodings of the call-by-value strategy.

Acknowledgements. We thank the anonymous reviewers for useful comments.
This work has been supported by project ANR 12IS02001 PACE and NSF of
China (61261130589), and partially supported by NSF of China (61202023 and
61173048).

References

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Infor-
matica 29, 737-760 (1992)
Barendregt, H.P.: The Lambda Calculus: Syntax, semantics. North-Holland (1984)

3. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the w-calculus. In: Abram-
sky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 29-45. Springer, Heidelberg (2001)

4. Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. Acta Infor-
matica 42(2-3), 83-141 (2005)

5. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with lin-
ear types. In: Katoen, J.-P., Konig, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 280-296. Springer, Heidelberg (2011)

6. Dezani-Ciancaglini, M., Giovannetti, E.: From Bohm’s theorem to observational
equivalences: an informal account. ENTCS 50(2), 83116 (2001)

7. Hirschkoff, D., Madiot, J.M., Sangiorgi, D.: Duality and i/o-types in the m-calculus.
In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 302-316.
Springer, Heidelberg (2012)

8. Milner, R.: Functions as processes. Mathematical Structures in Computer Sci-
ence 2(2), 119-141 (1992)

9. Milner, R.: Communicating and Mobile Systems: The 7-Calculus. CUP (1999)

10. Plotkin, G.D.: T as a universal domain. Journal of Computer and System Sci-
ences 17, 209-236 (1978)

11. Sangiorgi, D.: Lazy functions and mobile processes. In: Proof, Language and In-
teraction: Essays in Honour of Robin Milner, pp. 691-720. MIT Press (2000)

12. Sangiorgi, D., Walker, D.: The m-calculus: a Theory of Mobile Processes. CUP
2001)

13. (Scott, D.: Data types as lattices. STAM Journal on Computing 5(3), 522-587 (1976)

14. Yoshida, N., Honda, K., Berger, M.: Linearity and bisimulation. Journal of Logic
and Algebraic Programming 72(2), 207-238 (2007)

N

Bisimulations Up-to:
Beyond First-Order Transition Systems

Jean-Marie Madiot!, Damien Pous', and Davide Sangiorgi?

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France
2 Universita di Bologna, INRIA, Italy

Abstract. The bisimulation proof method can be enhanced by employ-
ing ‘bisimulations up-to’ techniques. A comprehensive theory of such
enhancements has been developed for first-order (i.e., CCS-like) labelled
transition systems (LTSs) and bisimilarity, based on the notion of com-
patible function for fixed-point theory.

We transport this theory onto languages whose bisimilarity and LTS
go beyond those of first-order models. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilar-
ities onto the first-order ones. This allows us to reuse directly the large
corpus of up-to techniques that are available on first-order LTSs. The
only ingredient that has to be manually supplied is the compatibility of
basic up-to techniques that are specific to the new languages. We investi-
gate the method on the m-calculus, the A-calculus, and a (call-by-value)
A-calculus with references.

1 Introduction

One of the keys for the success of bisimulation is its associated proof method,
whereby to prove two terms equivalent, one exhibits a relation containing the pair
and one proves it to be a bisimulation. The bisimulation proof method can be
enhanced by employing relations called ‘bisimulations up-to’ [14,19,20]. These
need not be bisimulations; they are simply contained in a bisimulation. Such
techniques have been widely used in languages for mobility such as m-calculus
or higher-order languages such as the A-calculus, or Ambients (e.g., [23,16,11]).

Several forms of bisimulation enhancements have been introduced: ‘bisim-
ulation up-to bisimilarity’ [17] where the derivatives obtained when playing
bisimulation games can be rewritten using bisimilarity itself; ‘bisimulation up-
to transitivity’ where the derivatives may be rewritten using the up-to relation;
‘bisimulation up-to-context’ [21], where a common context may be removed from
matching derivatives. Further enhancements may exploit the peculiarities of the
definition of bisimilarity on certain classes of languages: e.g., the up-to-injective-
substitution techniques of the w-calculus [7,23], techniques for shrinking or en-
larging the environment in languages with information hiding mechanisms (e.g.,
existential types, encryption and decryption constructs [1,25,24]), frame equiv-
alence in the psi-calculi [18], or higher-order languages [12,10]. Lastly, it is im-
portant to notice that one often wishes to use combinations of up-to techniques.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 93-108, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

94 J.-M. Madiot, D. Pous, and D. Sangiorgi

For instance, up-to context alone does not appear to be very useful; its strength
comes out in association with other techniques, such as up-to bisimilarity or
up-to transitivity.

The main problem with up-to techniques is proving their soundness (i.e. en-
suring that any ‘bisimulation up-to’ is contained in bisimilarity). In particular,
the proofs of complex combinations of techniques can be difficult or, at best,
long and tedious. And if one modifies the language or the up-to technique, the
entire proof has to be redone from scratch. Indeed the soundness of some up-to
techniques is quite fragile, and may break when such variations are made. For
instance, in certain models up-to bisimilarity may fail for weak bisimilarity, and
in certain languages up-to bisimilarity and context may fail even if bisimilarity is
a congruence relation and is strong (treating internal moves as any other move).

This problem has been the motivation for the development of a theory of en-
hancements, summarised in [19]. Expressed in the general fixed-point theory on
complete lattices, this theory has been fully developed for both strong and weak
bisimilarity, in the case of first-order labelled transition systems (LTSs) where
transitions represent pure synchronisations among processes. In this framework,
up-to techniques are represented using compatible functions, whose class enjoys
nice algebraic properties. This allows one to derive complex up-to techniques
algebraically, by composing simpler techniques by means of a few operators.

Only a small part of the theory has been transported onto other forms of tran-
sition systems, on a case by case basis. Transferring the whole theory would be a
substantial and non-trivial effort. Moreover it might have limited applicability,
as this work would probably have to be based on specific shapes for transitions
and bisimilarity (a wide range of variations exist, e.g., in higher-order languages).

Here we explore a different approach to the transport of the theory of bisimu-
lation enhancements onto richer languages. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilarities onto
first-order LTSs and bisimilarity. This allows us to import directly the existing
theory for first-order bisimulation enhancements onto the new languages. Most
importantly, the schema allows us to combine up-to techniques for the richer
languages. The only additional ingredient that has to be provided manually is
the soundness of some up-to techniques that are specific to the new languages.
This typically includes the up-to context techniques, since those contexts are not
first-order.

Our hope is that the method proposed here will make it possible to obtain a
single formalised library about up-to techniques, that can be reused for a wide
range of calculi: currently, all existing formalisations of such techniques in a proof
assistant are specific to a given calculus: m-calculus [5,4], the psi-calculi [18], or
a miniML language [6].

We consider three languages: the 7-calculus, the call-by-name A-calculus, and
an imperative call-by-value A-calculus. Other calculi like the Higher-Order -
calculus can be handled in a similar way; we omit the details here for lack of
space. We moreover focus on weak bisimilarity, since its theory is more delicate
than that of strong bisimilarity. When we translate a transition system into a

Bisimulations Up-to: Beyond First-Order Transition Systems 95

first-order one, the grammar for the labels can be complex (e.g. include terms,
labels, or contexts). What makes the system ‘first-order’ is that labels are taken
as syntactic atomic objects, that may only be checked for syntactic equality. Note
that full abstraction of the translation does not imply that the up-to techniques
come for free: further conditions must be ensured. We shall see this with the
m-calculus, where early bisimilarity can be handled but not the late one.

Forms of up-to context have already been derived for the languages we con-
sider in this paper [11,23,22]. The corresponding soundness proofs are difficult
(especially in A-calculi), and require a mix of induction (on contexts) and coin-
duction (to define bisimulations). Recasting up-to context within the theory
of bisimulation enhancements has several advantages. First, this allows us to
combine this technique with other techniques, directly. Second, substitutivity
(or congruence) of bisimilarity becomes a corollary of the compatibility of the
up-to-context function (in higher-order languages these two kinds of proofs are
usually hard and very similar). And third, this allows us to decompose the up-to
context function into smaller pieces, essentially one for each operator of the lan-
guage, yielding more modular proofs, also allowing, if needed, to rule out those
contexts that do not preserve bisimilarity (e.g., input prefix in the m-calculus).

The translation of the m-calculus LTS into a first-order LTS follows the schema
of abstract machines for the w-calculus (e.g., [26]) in which the issue of the choice
of fresh names is resolved by ordering the names. Various forms of bisimulation
enhancements have appeared in papers on the m-calculus or dialects of it. A
translation of higher-order 7-calculi into first-order processes has been proposed
by Koutavas et al [8]. While the shape of our translations of A-calculi is similar,
our LTSs differ since they are designed to recover the theory of bisimulation
enhancements. In particular, using the LTSs from [8] would lead to technical
problems similar to those discussed in Remark 2. In the A-calculus, limited forms
of up-to techniques have been developed for applicative bisimilarity, where the
soundness of the up-to context has still open problems [12,11]. More powerful
versions of up-to context exist for forms of bisimilarity on open terms (e.g.,
open bisimilarity or head-normal-form bisimilarity) [13]. Currently, the form of
bisimilarity for closed higher-order terms that allows the richest range of up-to
techniques is environmental bisimilarity [22,9]. However, even in this setting,
the proofs of combinations of up-to techniques are usually long and non-trivial.
Our translation of higher-order terms to first-order terms is designed to recover
environmental bisimilarity.

In Section 6, we show an example of how the wide spectrum of up-to tech-
niques made available via our translations allows us to simplify relations needed
in bisimilarity proofs, facilitating their description and reducing their size.

2 First-Order Bisimulation and Up-to Techniques

A first-order Labelled Transition System, briefly LTS, is a triple (Pr, Act,—)
where Pris a non-empty set of states (or processes), Act is the set of actions (or
labels), and — C Pr x Act x Pris the transition relation. We use P,Q, R to

96 J.-M. Madiot, D. Pous, and D. Sangiorgi

range over the processes of the LTS, and u to range over the labels in Act, and,
as usual, write P % @Q when (P, 1, Q) € —. We assume that Act includes a
special action 7 that represents an internal activity of the processes. We derive
bisimulation from the notion of progression between relations.

Definition 1. Suppose R,S are relations on the processes of an LTS. Then R
strongly progresses to S, written R ~»sp S, if R C S and if P R Q) implies:

— whenever P -5 P’ there is Q' s.t. Q 5 Q' and P' S Q';
— whenever Q 5 Q' there is P’ s.t. P 5 P’ and P’ S Q'.

A relation R is a strong bisimulation if R ~»sp R; and strong bisimilarity, ~,
1s the union of all strong bisimulations.

To define weak progressmn we need weak transitions, defined as usual: first,

P P means P 5 P or = 7 and P P’; and Ly is =" — where
— is the reflexive transitive closure of —s. Weak progression, R ~+wp S, and
weak bisimilarity, =, are obtained from Definition 1 by allowing the processes to

answer using =£. rather than .

Below we summarise the ingredients of the theory of bisimulation enhance-
ments for first-order LTSs from [19] that will be needed in the sequel. We use
f and g to range over functions on relations over a fixed set of states. Each
such function represents a potential up-to technique; only the sound functions,
however, qualify as up-to techniques:

Definition 2. A function f is sound for ~ if R ~»gp f(R) implies R C ~, for
all R; similarly, f is sound for =~ if R ~owp f(R) implies R C =, for all R.

Unfortunately, the class of sound functions does not enjoy good algebraic
properties. As a remedy to this, the subset of compatible functions has been
proposed. The concepts in the remainder of the section can be instantiated with
both strong and weak bisimilarities; we thus use p to range over sp or wp.

Definition 3. We write f ~+p g when R ~»p S implies f(R) ~p g(S) for all
R and S. A monotone function f on relations is p-compatible if f ~=5 f.

In other terms [19], f is p-compatible iff f o p C po f where p(S) is the
union of all R such that R ~, S and o denotes function composition. Note that
R ~p S is equivalent to R C p(S).

Lemma 1. If f is sp-compatible, then [is sound for ~; if f is wp-compatible,
then f is sound for ~.

Simple examples of compatible functions are the identity function and the func-
tion mapping any relation onto bisimilarity (for the strong or weak case, respec-
tively). The class of compatible functions is closed under function composition
and union (where the union UF of a set of functions F' is the point-wise union
mapping R to |J rer (R)), and thus under omega-iteration (where the omega-
iteration f* of a function f maps R to J,cy f"(R)).

Bisimulations Up-to: Beyond First-Order Transition Systems 97

Other examples of compatible functions are typically contextual closure func-
tions, mapping a relation into its closure w.r.t. a given set of contexts. For such
functions, the following lemma shows that the compatibility of up-to-context
implies substitutivity of (strong or weak) bisimilarity.

Lemma 2. If f is sp-compatible, then f(~) C ~; similarly if f is wp-compatible,
then f(=) C =.

Certain closure properties for compatible functions however only hold in the
strong case. The main example is the chaining operator ", which implements
relational composition:

79 (R) £ f(R) g(R)

where f(R) g(R) indicates the composition of the two relations f(R) and g(R).
Using chaining we can obtain the compatibility of the function ‘up to transitivity’
mapping any relation R onto its reflexive and transitive closure R*. Another
example of sp-compatible function is ‘up to bisimilarity’ (R — ~R~).

In contrast, in the weak case bisimulation up to bisimilarity is unsound. This
is a major drawback in up-to techniques for weak bisimilarity, which can be
partially overcome by resorting to the expansion relation 2> [3]. Expansion is an
asymmetric refinement of weak bisimilarity whereby P 2 @ holds if P and @) are
bisimilar and, in addition, @ is at least as efficient as P, in the sense that @ is
capable of producing the same activity as P without ever performing more inter-
nal activities (the T-actions); see [15] for its definition. Up-to-expansion yields a
function (R — 2R <) that is wp-compatible. As a consequence, the same holds
for the ‘up-to expansion and contexts’ function. More sophisticated up-to tech-
niques can be obtained by carefully adjusting the interplay between visible and
internal transitions, and by taking into account termination hypotheses [19].

Some further compatible functions are the functions sp and wp themselves
(indeed a function f is p-compatible if f op C po f, hence trivially f can be
replaced by p itself). Intuitively, the use of sp and wp as up-to techniques means
that, in a diagram-chasing argument, the two derivatives need not be related;
it is sufficient that the derivatives of such derivatives be related. Accordingly,
we sometimes call functions sp and wp unfolding functions. We will use sp in
the example in Section 6 and wp in Sections 4 and 5, when proving the wp-
compatibility of the up to context techniques.

Last, note that to use a function f in combinations of up-to techniques, it
is actually not necessary that f be p-compatible: for example proving that f
progresses to f U g and g progresses to g is enough, as then f U g would be
compatible. Extending this reasoning allows us to make use of ‘second-order up-
to techniques’ to reason about compatibility of functions. When F' is a set of
functions, we say that F' is p-compatible up to if for all f in F, it holds that
f ~p (gU (UF))¥ for a function g that has already been proven compatible.
(We sometimes say that F' is p-compatible up to g, to specify which compatible
function is employed.) Lemma 1 and 2 remain valid when ‘f is compatible’ is
replaced by ‘f € F and F' is compatible up to’.

98 J.-M. Madiot, D. Pous, and D. Sangiorgi

Terminology We will simply say that a function is compatible to mean that it
is both sp-compatible and wp-compatible; similarly for compatibility up to. In
languages defined from a grammar, a context C' is a term with numbered holes
[]1, - -+, []n, and each hole [-]; can appear any number of times in C.

3 The w-calculus

The syntax and operational semantics of the m-calculus are recalled in [15]. We
consider the early transition system, in which transitions are of the forms

P p P b pf P pr

In the third transition, called bound output transition, name b is a binder for
the free occurrences of b in P’ and, as such, it is subject to a-conversion. The
definition of bisimilarity takes a-conversion into account. The clause for bound
output of strong early bisimilarity says (fn(Q)) indicates the names free in Q):

—if P Mﬂ P and b ¢ fn(Q) then Q Mﬂ Q' for some Q' such that P’ ~ Q.

(The complete definition of bisimilarity is recalled in [15]). When translating
the m-calculus semantics to a first-order one, a-conversion and the condition
b ¢ (Q) have to be removed. To this end, one has to force an agreement
between two bisimilar process on the choice of the bound names appearing in
transitions. We obtain this by considering named processes (¢, P) in which ¢
is bigger or equal to all names in P. For this to make sense we assume an
enumeration of the names and use < as the underlying order, and ¢+ 1 for name
following ¢ in the enumeration; for a set of names N, we also write ¢ > N to
mean ¢ > a for all a € N.

The rules below define the translation of the w-calculus transition system to
a first-order LTS. In the first-order LTS, the grammar for labels is the same as
that of the original LTS; however, for a named process (¢, P) the only name that
may be exported in a bound output is ¢+ 1; similarly only names that are below
or equal to ¢+ 1 may be imported in an input transition. (Indeed, testing for all
fresh names b > ¢ is unnecessary, doing it only for one (b = ¢+ 1) is enough.)
This makes it possible to use the ordinary definition of bisimilarity for first-order
LTS, and thus recover the early bisimilarity on the source terms.

P, P P P P P
T ab LT ab g
(C7P)—>(capl) (C’P)—>(C’P/) (C,P)—)(C,P/)
P P P p
b b:c+1 a(b b:C+1
(¢, P) <% (b, P') (e, P) “B (v, ')

We write 7! for the first-order LTS derived from the above translation of
the m-calculus. Although the labels of the source and target transitions have a

Bisimulations Up-to: Beyond First-Order Transition Systems 99

similar shape, the LTS in 7! is first-order because labels are taken as purely
syntactic objects (without a-conversion). We write ~© and ~° for strong and
weak early bisimilarity of the m-calculus.

Theorem 1. Assume ¢ > tn(P) U (Q). Then we have: P ~° Q iff (¢, P) ~
(¢,Q), and P ~° Q iff (¢, P) = (¢, Q).

The above full abstraction result allows us to import the theory of up-to tech-
niques for first-order LTSs and bisimilarity, both in the strong and the weak case.
We have however to prove the soundness of up-to techniques that are specific to
the 7-calculus. Function isub implements ‘up to injective name substitutions’:

isub(R) £ {((d, Po), (d,Qc)) s.t. (¢, P) R (¢,Q), fn(Po) U fn(Qo) < d,
and o is injective on fn(P) U (@) }

A subtle drawback is the need of another function manipulating names, str,
allowing us to replace the index ¢ in a named process (¢, P) with a lower one:

str(R) £ {((d, P),(d,Q)) s.t.(c, P) R (¢,Q) and fn(P,Q) <d } .

Lemma 3. The set {isub,str} is compatible up to.

The up-to-context function is decomposed into a set of smaller context func-
tions, called initial [19], one for each operator of the m-calculus. The only excep-
tion to this is the input prefix, since early bisimilarity in the m-calculus is not
preserved by this operator. We write C,, C,,, C1, C|, and C4 for these initial context
functions, respectively returning the closure of a relation under the operators of
output prefix, restriction, replication, parallel composition, and sum.

Definition 4. If R is a relation on 7", we define Co(R), C,(R), Ci(R), C|(R)
and C1(R) by saying that whenever (¢, P) R (¢, @),

— (¢,ab.P) Co(R) (c,ab.Q), for any a,b with a,b < c,
— (¢,va.P) C,(R) (c,va.Q),
— (¢,!P) CG(R) (c,'Q);

and, whenever (¢, P1) R (¢,Q1) and (¢, P2) R (¢, Q2),

= (e, P11 @Q1) C(R) (¢, P2|Q2),
— (6, P+ Q1) C+(R) (¢, P2+ Q2).

While bisimilarity in the m-calculus is not preserved by input prefix, a weaker
rule holds (where = can be ~¢ or ~°):

P=Q and P{%} = Q{9} for each c free in P,Q
a(b).P = a(b).Q

We define C;, the function for input prefix, accordingly: we have (d, a(b).P) C;(R)
(d,a(0).Q)ifa <dand (d+1,P{c/b}) R (d+1,Q{c/b}) for all ¢ < d + 1.

(1)

Theorem 2. The set {C,,C;,C,,C1,C|,Cy} is sp-compatible up to isub U str.

100 J.-M. Madiot, D. Pous, and D. Sangiorgi

Weak bisimilarity is not preserved by sums, only by guarded sums, whose
function is Cgq = C% 0 (C, UC;).

Theorem 3. The set {C,,C;,C,,C1,C|,Cyy } is wp-compatible up to isubUstrUb
where b = (R +— ~R~) is ‘up to bisimilarity’.

The compatibility of these functions is not a logical consequence of the up to
context results in the m-calculus; instead we prove them from scratch [15], with
the benefit of having a separate proof for each initial context.

As a byproduct of the compatibility of these initial context functions, and
using Lemma 2, we derive the standard substitutivity properties of strong and
weak early bisimilarity, including the rule (1) for input prefix.

Corollary 1. In the w-calculus, relations ~° and ~° are preserved by the op-

erators of output prefiz, replication, parallel composition, restriction; ~ is also
preserved by sum, whereas = is only preserved by guarded sums. Moreover, rule
(1) is valid both for ~° and =°.

Remark 1. Late bisimilarity makes use of transitions P Mﬂ P’ where b is
bound, the definition of bisimulation containing a quantification over names.
To capture this bisimilarity in a first-order LTS we would need to have two
transitions for the input a(b): one to fire the input a, leaving b uninstantiated, and
another to instantiate b. While such a translation does yield full abstraction for
both strong and weak late bisimilarities, the decomposition of an input transition
into two steps prevents us from obtaining the compatibility of up to context.

4 Call-by-name A-calculus

To study the applicability of our approach to higher-order languages, we inves-
tigate the pure call-by-name A-calculus, referred to as AN in the sequel.

We use M, N to range over the set A of A-terms, and x,y, z to range over
variables. The standard syntax of A-terms, and the rules for call-by-name re-
duction, are recalled in [15]. We assume the familiar concepts of free and bound
variables and substitutions, and identify a-convertible terms. The only values
are the A-abstractions Ax.M. In this section and in the following one, results
and definitions are presented on closed terms; extension to open terms is made
using closing abstractions (i.e., abstracting on all free variables). The reduction
relation of AN is —,, and =, its reflexive and transitive closure.

As bisimilarity for the A-calculus we consider environmental bisimilarity [22,9],
which allows a set of up-to techniques richer than Abramsky’s applicative bisim-
ilarity [2], even if the two notions actually coincide, together with contextual
equivalence. Environmental bisimilarity makes a clear distinction between the
tested terms and the environment. An element of an environmental bisimulation
has, in addition to the tested terms M and N, a further component £, the envi-
ronment, which expresses the observer’s current knowledge. When an input from
the observer is required, the arguments supplied are terms that the observer can

Bisimulations Up-to: Beyond First-Order Transition Systems 101

build using the current knowledge; that is, terms obtained by composing the
values in & using the operators of the calculus. An environmental relation is a
set of elements each of which is of the form (£, M, N) or &, and where M, N
are closed terms and £ is a relation on closed values. We use X',) to range over
environmental relations. In a triple (£, M, N) the relation component £ is the en-
vironment, and M, N are the tested terms. We write M Xg¢ N for (£, M,N) € X.
We write £* for the closure of £ under contexts. We only define the weak version
of the bisimilarity; its strong version is obtained in the expected way.

Definition 5. An environmental relation X is an environmental bisimulation if

1. M X¢ N implies:
(a) if M —o M’ then N =, N’ and M’ X¢ N’';
(b) if M =V then N =, W and EU{(V, W)} € X (V and W are values);
(c) the converse of the above two conditions, on N;

2. if € € X then for all (Mx.P,A\x.Q) € € and for all (M,N) € E* it holds that

P{M/x} Xe Q{N/z}.
Environmental bisimilarity, ~¢", is the largest environmental bisimulation.

For the translation of environmental bisimilarity to first-order, a few issues
have to be resolved. For instance, an environmental bisimilarity contains both
triples (£, M, N), and pure environments £, which shows up in the difference
between clauses (1) and (2) of Definition 5. Moreover, the input supplied to
tested terms may be constructed using arbitrary contexts.

We write AN' for the first-order LTS resulting from the translation of AN.
The states of AN are sequences of A-terms in which only the last one need not
be a value. We use I" and A to range over sequences of values only; thus (I", M)
indicates a sequence of A-values followed by M; and I is the i-th element in I

For an environment &£, we write & for an ordered projection of the pairs in
& on the first component, and &5 is the corresponding projection on the second
component. In the translation, intuitively, a triple (£, M, N) of an environmental
bisimulation is split into the two components (£1, M) and (€2, N). Similarly, an
environment & is split into & and £. We write C[I] for the term obtained by
replacing each hole [-]; in C' with the value I';. The rules for transitions in AN*
are as follows:

M —, M’ L(CI) —a M’ @)
(I, M) == (I M) =S M)

The first rule says that if M reduces to M’ in AN then M can also reduce
in AN, in any environment. The second rule implements the observations in
clause (2) of Definition 5: in an environment I" (only containing values), any
component I; can be tested by supplying, as input, a term obtained by filling
a context C' with values from I itself. The label of the transition records the
position i and the context chosen. As the rules show, the labels of AN include
the special label 7, and can also be of the form i, C where i is a integer and C'
a context.

102 J.-M. Madiot, D. Pous, and D. Sangiorgi
Theorem 4. M ~¢" N iff (1, M) = (&2, N) and € € =" iff & =~ &s.

(The theorem also holds for the strong versions of the bisimilarities.) Again,
having established full abstraction with respect to a first-order transition system
and ordinary bisimilarity, we can inherit the theory of bisimulation enhance-
ments. We have however to check up-to techniques that are specific to environ-
mental bisimilarity. A useful such technique is ‘up to environment’, which allows
us to replace an environment with a larger one; w(R) is the smallest relation
that includes R and such that, whenever (V, I, M) w(R) (W, A, N) then also
(I, M) w(R) (A, N), where V and W are any values. (Here w stands for ‘weaken-
ing’ as, from Lemmas 2 and 4, if (V,I', M) ~ (W, A, N) then (I, M) = (A, N).)

Lemma 4. Function w is compatible.

Somehow dual to weakening is the strengthening of the environment, in which
a component of an environment can be removed. However this is only possible if
the component removed is ‘redundant’, that is, it can be obtained by gluing other
pieces of the environment within a context; strengthening is captured by the
following str function: (I, C,[I'], M) str(R) (A, Cy[A], N) whenever (I, M) R
(A, N) and C, is a value context (i.e., the outermost operator is an abstraction).
We derive the compatibility up to of str in Theorem 5.

For up-to context, we need to distinguish between arbitrary contexts and eval-
uation contexts. There are indeed substitutivity properties, and corresponding
up-to techniques, that only hold for the latter contexts. A hole [-]; of a context
C is in a redex position if the context obtained by filling all the holes but [];
with values is an evaluation context. Below C' ranges over arbitrary contexts,
whereas E ranges over contexts whose first hole is in redex position.

C(R) 2 {((I, CI), (A, C[A) st. TR AY
Ce(R) 2 {((I', E[M, T), (A, E[N, A))) s.t. (I, M) R (A, N)}

Theorem 5. The set {str,C,C.} is sp-compatible up to the identily function,
and wp-compatible up to wp U e where e = (R — >RX) is ‘up to expansion’.

For the proof, we establish the progression property separately for each func-
tion in {str,C,Ce}, using simple diagram-chasing arguments (together with in-
duction on the structure of a context). Once more, the compatibility of the up
to context functions entails also the substitutivity properties of environmental
bisimilarity. In [22] the two aspects (substitutivity and up-to context) had to be
proved separately, with similar proofs. Moreover the two cases of contexts (arbi-
trary contexts and evaluation contexts) had to be considered at the same time,
within the same proof. Here, in contrast, the machinery of compatible function
allows us to split the proof into two simpler proofs.

Remark 2. A transition system ensuring full abstraction as in Theorem 4 does
not guarantee the compatibility of the up-to techniques specific to the language

Bisimulations Up-to: Beyond First-Order Transition Systems 103

M=z |MM|veM |V V = Az.M | sety | get, E:=[]|EV|ME
£ ¢ dom(s)
(s; Az M)V) —r (s; M{V/z}) (8508 M) —r (s[€ — I]; M)
£ € dom(s) £ € dom(s)
(s; get,V) —r (s;s[€]) (s;setV) —r (s[€ — V]; I)

(s; M) —r (s'; M)
(s; E[M]) —r (s'; EIM"])

Fig. 1. The imperative A-calculus

in consideration. For instance, a simpler and maybe more natural alternative to
the second transition in (2) is the following one:

i,c 3)
I — (I, ()

With this rule, full abstraction holds, but up-to context is unsound: for any I”
and A, the singleton relation {(I, A)} is a bisimulation up to C: indeed, using
rule (3), the derivatives of the pair I', A are of the shape I;(C[I']), A;(C[4]), and
they can be discarded immediately, up to the context [-];C. If up-to context were
sound then we would deduce that any two terms are bisimilar. (The rule in (2)
prevents such a behaviour since it ensures that the tested values are ‘consumed’
immediately.)

5 Imperative call-by-value A-calculus

In this section we study the addition of imperative features (higher-order ref-
erences, that we call locations), to a call-by-value A-calculus. It is known that
finding powerful reasoning techniques for imperative higher-order languages is
a hard problem. The language, AR, is a simplified variant of that in [10,22].
The syntax of terms, values, and evaluation contexts, as well as the reduction
semantics are given in Figure 1. A A-term M is run in a store: a partial function
from locations to closed values, whose domain includes all free locations of both
M and its own co-domain. We use letters s,t to range over stores. New store
locations may be created using the operator v£ M; the content of a store loca-
tion £ may be rewritten using set,V, or read using get,V (the former instruction
returns a value, namely the identity I £ Az.z, and the argument of the latter
one is ignored). We denote the reflexive and transitive closure of —g by F=r.

Note that in contrast with the languages in [10,22], locations are not directly
first-class values; the expressive power is however the same: a first-class location
¢ can always be encoded as the pair (get,, sety).

104 J.-M. Madiot, D. Pous, and D. Sangiorgi

We present the first-order LTS for AR, and then we relate the resulting
strong and weak bisimilarities directly with contextual equivalence (the reference
equivalence in A-calculi). Alternatively, we could have related the first-order
bisimilarities to the environmental bisimilarities of AR, and then inferred the
correspondence with contextual equivalence from known results about environ-
mental bisimilarity, as we did for AN.

We write (s; M) | when M is a value; and (s; M) | if (s; M) =>gr|. For
the definition of contextual equivalence, we distinguish the cases of values and
of arbitrary terms, because they have different substitutivity properties: values
can be tested in arbitrary contexts, while arbitrary terms must be tested only
in evaluation contexts. As in [22], we consider contexts that do not contain free
locations (they can contain bound locations). We refer to [22] for more details
on these aspects.

Definition 6. — For values V., W, we write (s; V) = (t; W) when (s; C[V]){
iff (&; CW{, for all location-free context C.
— For terms M and N, we write (s; M) = (t; N) when (s; E[]M]){ iff (¢; E[N]){,
for all location-free evaluation context E.

We now define AR!, the first-order LTS for AR. The states and the transitions
for AR are similar to those for the pure A-calculus of Section 4, with the addition
of a component for the store. The two transitions (2) of call-by-name A-calculus
become:

(s; M) —r (s'; M) I'" =T, getset(r) (s&Jr[F'];Fi(C[F/])) —r (s; M)
(s; [, M) = (s's 1, M) (s;) 2S00 (o 1 MY

The first rule is the analogous of the first rule in (2). The important differences
are on the second rule. First, since we are call-by-value, C' now ranges over
Cy, the set of value contexts (i.e., contexts of the form Az.C’) without free
locations. Moreover, since we are now imperative, in a transition we must permit
the creation of new locations, and a term supplied by the environment should be
allowed to use them. In the rule, the new store is represented by r (whose domain
has to be disjoint from that of s). Correspondingly, to allow manipulation of
these locations from the observer, for each new location ¢ we make set; and get,
available, as an extension of the environment; in the rule, these are collectively
written getset(r), and I is the extended environment. Finally, we must initialise
the new store, using terms that are created out of the extended environment
I'’; that is, each new location ¢ is initialised with a term D,[I"”] (for D, €
C,). Moreover, the contexts Dy chosen must be made visible in the label of the
transition. To take care of these aspects, we view r as a store context, a tuple of
assignments £ — D,. Thus the initialisation of the new locations is written r[I"];
and, denoting by cod(r) the tuple of the contexts Dy in r, we add cod(r) to the
label of the transition. Note also that, although C and D, are location-free, their
holes may be instantiated with terms involving the set, and get, operators, and
these allow manipulation of the store.

Bisimulations Up-to: Beyond First-Order Transition Systems 105

Once more, on the (strong and weak) bisimilarities that are derived from this
first-order LTS we can import the theory of compatible functions and bisimula-
tion enhancements. Concerning additional up-to functions, specific to AR, the
functions w, str, C and C. are adapted from Section 4 in the expected manner—
contexts C,,, C and F must be location-free. A further function for AR is store,
which manipulates the store by removing locations that do not appear elsewhere
(akin to garbage collection); thus, store(R) is the set of all pairs

(swrll"); I, M), (twr[A]; A", N))
such that (s; I, M) R (t; A, N), and with I'" = I, getset(r) and A’ = A, getset(r).

Lemma 5. The set {w,str,Ce,store,C} is sp-compatible up to the identity func-
tion and is wp-compatible up to wp U e.

The techniques C and C. allow substitutivity under location-free contexts,
from which we can derive the soundness part of Theorem 6.

Theorem 6. (s; M) = (t; N) iff (s; M) =~ (t; N).

Proof (sketch). Soundness (<) follows from congruence by C. (Lemmas 5 and 2)
and completeness (=) is obtained by standard means. See [15] for details.

Note that substitutivity of bisimilarity is restricted either to values (C), or to
evaluation contexts (Ce). The following lemma provides a sufficient condition for
a given law between arbitrary terms to be preserved by arbitrary contexts.

Lemma 6. Let < be any of the relations ~,~, and 2. Suppose L, R are AR
terms with (s; I, L) < (s; I, R) for all environments I' and stores s. Then also
(s; I, C[L]) =< (s; I, C[R]), for any store s, environment I' and context C.

Proof (sketch). We first prove a simplified result in which C is an evaluation
context, using techniques C, and store. We then exploit this partial result together
with up-to expansion to derive the general result. See [15] for more details.

We use this lemma at various places in the example we cover in Section 6. For
instance we use it to replace a term N; £ (\z.E[z])M (with E an evaluation
context) with No £ E[M], under an arbitrary context. Such a property is delicate
to prove, even for closed terms, because the evaluation of M could involve reading
from a location of the store that itself could contain occurrences of N; and Ns.

6 An Example

We conclude by discussing an example from [10]. It consists in proving a law
between terms of AR extended with integers, operators for integer addition and
subtraction, and a conditional-—those constructs are straightforward to accom-
modate in the presented framework. For readability, we also use the standard
notation for store assignment, dereferencing and sequence: (¢ := M) £ set, M,
10 £ get,I, and M; N £ (\z.N)M where 2 does not appear in N. The two terms
are the following ones:

106 J.-M. Madiot, D. Pous, and D. Sangiorgi

— M & \g.vl £ :=0;g(incry); if !¢ mod 2 = 0 then [else 2
- N £ Xgg(F)1,

where incry £ Azl := 0 + 2, and F £ \z.I. Intuitively, those two terms are
weakly bisimilar because the location bound by ¢ in the first term will always
contain an even number.

This example is also considered in [22] where it is however modified to fit
the up-to techniques considered in that paper. The latter are less powerful than
those available here thanks to the theory of up-to techniques for first-order LTSs
(e.g., up to expansion is not considered in [22]—its addition to environmental
bisimulations is non-trivial, having stores and environments as parameters).

We consider two proofs of the example. In comparison with the proof in [22]:
(i) we handle the original example from [10], and (ii) the availability of a broader
set of up-to techniques and the possibility of freely combining them allows us to
work with smaller relations. In the first proof we work up to the store (through
the function store) and up to expansion—two techniques that are not available in
[22]. In the second proof we exploit the up-to-transitivity technique of Section 2,
which is only sound for strong bisimilarity, to further reduce the size of the
relation we work with.

First proof. We first employ Lemma 6 to reach a variant similar to that of [22]:
we make a ‘thunk’ out of the test in M, and we make N look similar. More
precisely, let test; £ \z.if !/ mod 2 = 0 then I else {2, we first prove that

— M~ M' 2 \g.vl £ := 0; g(incry); test I, and
— N=N' £ \g.g(F);FI.

It then suffices to prove that M’ ~ N’, which we do using the following relation:
RE {(S,M’, (incre, testy),e) , (O, N/, (F, F),ep) st Ve 0, s(t)is even}

The initial pair of terms is generalised by adding any number of private locations,
since M’ can use itself to create more of them. Relation R is a weak bisimulation
up to store, C and expansion. More details can be found in [15].

Second proof. Here we also preprocess the terms using Lemma 6, to add a few
artificial internal steps to N, so that we can carry out the reminder of the
proof using strong bisimilarity, which enjoys more up-to techniques than weak
bisimilarity:

— M~ M' 2 \g.vl £ := 0; g(incry); test, I,

— N~ N" £ \g.I, I; g(incrg); testo .
where incrg and testg just return I on any input, taking the same number of
internal steps as incr, and test,. We show that M’ ~ N’ by proving that the

following relation R is a strong bisimulation up to unfolding, store, weakening,
strengthening, transitivity and context (a technique unsound in the weak case):

SE{(M',N")}U{(¢ 2n,incr, testy) , (I, incrg, testy) s.t. n € N}

Bisimulations Up-to: Beyond First-Order Transition Systems 107

This relation uses a single location; there is one pair for each integer that can
be stored in the location. In the diagram-chasing arguments for S, essentially a
pair of derivatives is proved to be related under the function

Sp o sp o star o (str U store UC Uw)*

where star : R — R* is the reflexive-transitive closure function. (Again, we refer
to [15] for more details.)

The difference between the relation R in the first proof and the proofs in
[10,22] is that R only requires locations that appear free in the tested terms; in
contrast, the relations in [10,22] need to be closed under all possible extensions
of the store, including extensions in which related locations are mapped onto
arbitrary context-closures of related values. We avoid this thanks to the up-to
store function. The reason why, both in [10,22] and in the first proof above,
several locations have to be considered is that, with bisimulations akin to envi-
ronmental bisimulation, the input for a function is built using the values that
occur in the candidate relation. In our example, this means that the input for
a function can be a context-closure of M and N; hence uses of the input may
cause several evaluations of M and N, each of which generates a new location.
In this respect, it is surprising that our second proof avoids multiple allocations
(the candidate relation S only mentions one location). This is due to the massive
combination of up-to techniques whereby, whenever a new location is created, a
double application of up to context (the ‘double’ is obtained from up-to transi-
tivity) together with some administrative work (given by the other techniques)
allows us to absorb the location.

Acknowledgement. The authors acknowledge support from the ANR projects
2010-BLAN-0305 PiCoq and 121S02001 PACE.

References

1. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. In:
Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 12-26. Springer, Heidelberg
(1998)

2. Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in
Functional Programming, pp. 65-116. Addison-Wesley (1989)

3. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Infor-
matica 29, 737-760 (1992)

4. Chaudhuri, K., Cimini, M., Miller, D.: Formalization of the bisimulation-up-to
technique and its meta theory. Draft (2014)

5. Hirschkoff, D.: A full formalisation of pi-calculus theory in the calculus of con-
structions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275,
pp. 153-169. Springer, Heidelberg (1997)

6. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: POPL, pp. 193-206. ACM (2013)

108

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J.-M. Madiot, D. Pous, and D. Sangiorgi

Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: LICS,
pp. 56-66 (1999)

Koutavas, V., Hennessy, M.: First-order reasoning for higher-order concurrency.
Computer Languages, Systems & Structures 38(3), 242-277 (2012)

Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimula-
tion. Electr. Notes Theor. Comput. Sci. 276, 215-235 (2011)

Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: POPL 2006, pp. 141-152. ACM (2006)

Lassen, S.B.: Relational reasoning about contexts. In: Higher-order Operational
Techniques in Semantics, pp. 91-135. Cambridge University Press (1998)

Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus (1998)

Lassen, S.B.: Bisimulation in untyped lambda calculus: B6hm trees and bisimula-
tion up to context. Electr. Notes Theor. Comput. Sci. 20, 346-374 (1999)

Lenisa, M.: Themes in Final Semantics. Ph.D. thesis, Universita di Pisa (1998)
Madiot, J.-M., Pous, D., Sangiorgi, D.: Web appendix to this paper,
http://hal.inria.fr/hal-00990859

Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6),
961-1023 (2005)

Milner, R.: Communication and Concurrency. Prentice Hall (1989)

Pohjola, J.A., Parrow, J.: Bisimulation up-to techniques for psi-calculi. Draft (2014)
Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Ad-
vanced Topics in Bisimulation and Coinduction. Cambridge University Press (2012)
Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde
Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369-381. Springer, Heidelberg (2013)

Sangiorgi, D.: On the bisimulation proof method. J. of MSCS 8, 447479 (1998)
Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)

Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes. Cambridge
University Press (2001)

Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theor. Comput.
Sci. 375(1-3), 169-192 (2007)

Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. J. ACM
54(5) (2007)

Turner, N.D.: The polymorphic pi-calculus: Theory and Implementation. PhD
thesis, Department of Computer Science, University of Edinburgh (1996)

http://hal.inria.fr/hal-00990859

Parameterized Model Checking of Rendezvous
Systems*

Benjamin Aminof!, Tomer Kotek?, Sasha Rubin?,
Francesco Spegni®, and Helmut Veith?

L IST Austria
2 TU Wien, Austria
3 UnivPM Ancona, Italy

Abstract. A standard technique for solving the parameterized model
checking problem is to reduce it to the classic model checking problem
of finitely many finite-state systems. This work considers some of the
theoretical power and limitations of this technique. We focus on concur-
rent systems in which processes communicate via pairwise rendezvous,
as well as the special cases of disjunctive guards and token passing; spec-
ifications are expressed in indexed temporal logic without the next op-
erator; and the underlying network topologies are generated by suitable
Monadic Second Order Logic formulas and graph operations. First, we
settle the exact computational complexity of the parameterized model
checking problem for some of our concurrent systems, and establish new
decidability results for others. Second, we consider the cases that model
checking the parameterized system can be reduced to model checking
some fixed number of processes, the number is known as a cutoff. We
provide many cases for when such cutoffs can be computed, establish
lower bounds on the size of such cutoffs, and identify cases where no cut-
off exists. Third, we consider cases for which the parameterized system
is equivalent to a single finite-state system (more precisely a Biichi word
automaton), and establish tight bounds on the sizes of such automata.

1 Introduction

Many concurrent systems consist of an arbitrary number of identical processes
running in parallel, possibly in the presence of an environment or control process.
The parameterized model checking problem (PMCP) for concurrent systems is
to decide if a given temporal logic specification holds irrespective of the number
of participating processes.

Although the PMCP is undecidable in general (see [12,6]) for some combi-
nations of communication primitives, network topologies, and specification lan-
guages, it is often proved decidable by a reduction to model checking finitely

* The second, third, fourth and fifth authors were supported by the Austrian National
Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and
by the Vienna Science and Technology Fund (WWTF) through grants PROSEED,
ICT12-059, and VRG11-005.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 109-124, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

110 B. Aminof et al.

many finite-state systems [9,5,6,3,1]. In many of these cases it is even possible
to reduce the problem of whether a parameterized system satisfies a temporal
specification for any number of processes to the same problem for systems with
at most ¢ processes. The number ¢ is known as a cutoff for the parameterized
system. In other cases the reduction produces a single finite-state system, often
in the form of an automaton such as a Biichi automaton, that represents the set
of all execution traces of systems of all sizes.

The goal of this paper is to better understand the power and limitations of
these techniques, and this is done by addressing three concrete questions.

Question 1: For which combinations of communication primitive, specification
language, and network topologies is the PMCP decidable? In the decidable cases,
what is the computational complexity of the PMCP?

In case a cutoff ¢ exists, the PMCP is decidable by a reduction to model
checking ¢ many finite-state systems. The complexity of this procedure depends
on the size of the cutoff. Thus we ask:

Question 2: When do cutoffs exist? In case a cutoff exists, can it be computed?
And if so, what is a lower bound on the cutoff?

The set of execution traces of a parameterized system (for a given process
type P) is defined as the projection onto the local states of P of all (infinite)
runs of systems of all sizes.! In case this set is w-regular, one can reduce the
PMCP of certain specifications (including classic ones such as coverability) to
the language containment problem for automata (this is the approach taken in
[9, Section 4]). Thus we ask:

Question 3: Is the set of executions of the system w-regular? If so, what
is a lower bound on the sizes of the non-deterministic Biichi word automata
recognizing the set of executions?

System Model. In order to model and verify a concurrent system we should
specify three items: (i) the communication primitive, (ii) the specification lan-
guage, and (iii) the set of topologies.

We focus on concurrent systems in which processes communicate via pairwise
rendezvous [9], as well as two other communication primitives (expressible in
terms of pairwise rendezvous), namely disjunctive guards [5] and token-passing
systems [6,3,1]. Two special cases are systems with one process template U (in
other words, all processes run the same code), and systems with two process
templates C,U in which there is exactly one copy of C; in other words, all
processes run the same code, except for one (which is called the controller).

Specifications of parameterised systems are typically expressed in indexed
temporal logic [2] which allows one to quantify over processes (e.g., Vi # j. AG
(—(critical, 7) V —(critical, 7)) says that no two processes are in their critical sec-
tions at the same time). We focus on a fragment of this logic where the process
quantifiers only appear at the front of a temporal logic formula — allowing the

! Actually we consider the destuttering of this set, as explained in Section 2.5.

Parameterized Model Checking of Rendezvous Systems 111

process quantifiers to appear in the scope of path quantifiers results in undecid-
ability even with no communication between processes [10].

The sets of topologies we consider all have either bounded tree-width, or more
generally bounded clique-width, and are expressible in one of three ways. (1)
Using MSO, a powerful and general formalism for describing sets of topologies,
which can express e.g. planarity, acyclicity and ¢-connectivity. (2) As iteratively
constructible sets of topologies, an intuitive formalism which creates graph se-
quences by iterating graph operations [8]. Many typical classes of topologies (e.g.,
all rings, all stars, all cliques) are iteratively constructible. (3) As clique-like sets
of topologies, which includes the set of cliques and the set of stars, but excludes
the set of rings. Iteratively constructible and clique-like sets of topologies are
MSO-definable, the former in the presence of certain auxiliary relations.

Prior Work and Our Contributions. For each communication primitive (ren-
dezvous, disjunctive guards, token passing) and each question (decidability and
complexity, cutoffs, equivalent automata) we summarise the known answers and
our contributions. Obviously, the breadth of questions along these axis is great,
and we had to limit our choices as to what to address. Thus, this article is not
meant to be a comprehensive taxonomy of PMCP. That is, it is not a mapping
of the imaginary hypercube representing all possible choices along these axis.
Instead, we started from the points in this hypercube that represent the most
prominent known results and, guided by the three main questions mentioned
earlier, have explored the unknown areas in each point’s neighborhood.

Pairwise Rendezvous.

Decidability and Complexity: The PMCP for systems which communicate by
pairwise rendezvous, on clique topologies, with a controller C, for 1-index LTL\X
specifications is EXPSPACE-complete [9,7] (and PSPACE without a controller
[9, Section 4]). We show the PMCP is undecidable if we allow the more general
1-index CTL*\X specifications. Thus, for the results on pairwise rendezvous we
fix the specification language to be 1-index LTL\X. We introduce sets of topolo-
gies that naturally generalise cliques and stars, and exclude rings (the PMCP
is already undecidable for uni-directional rings and 1-index safety specifica-
tions [12,6]), which we call clique-like sets of topologies, and show that the PMCP
of 1-index LTL\X on clique-like topologies is EXPSPACE-complete (PSPACE-
complete without a controller). We also prove that the program complexity is
EXPSPACE-complete (respectively PTIME).

Cutoffs: We show that even for clique topologies there are not always cutoffs.

Equivalent automata: We prove that the set of (destuttered) executions of sys-
tems with a controller are not, in general, w-regular, already for clique topologies.
On the other hand, we extend the known result that the set of (destuttered) ex-
ecutions for systems with only user processes U (i.e., without a controller) is
w-regular for clique topologies [9] to clique-like topologies, and give an effective
construction of the corresponding Biichi automaton.

112 B. Aminof et al.

Disjunctive Guards.

In this section we focus on clique topologies and 1-index LTL\X specifica-
tions. Though we sometimes consider more general cases (as in Theorem 10), we
postpone these cases for future work.

Decidability and Complexity: We show the PMCP is undecidable if we allow
1-index CTL*\X specifications, already for clique topologies. We prove that for
systems with a controller the complexity of the PMCP is PSPACE-complete
and the program complexity is coNP-complete, whereas for systems without a
controller the complexity is PSPACE-complete and the program complexity is
in PTIME. We note that the PTIME and PSPACE upper bounds follow from
[9,5], although we improve the time complexity for the case with a controller.

Cutoffs: Cutoffs exist for such systems and are of size |U|+ 2 [5]. We prove these
cutoffs are tight.

Equivalent automaton: We prove that the set of (destuttered) executions is ac-
cepted by an effectively constructible Biichi automaton of size O(|C| x 2/Y1). Tt
is very interesting to note that this size is smaller than the smallest system size
one gets (in the worst-case) from the cutoff result, namely |C| x |U|IV!+2. Hence,
the PMCP algorithm obtained from the cutoff is less efficient than the one ob-
tained from going directly to a Biichi automaton. As far as we know, this is the
first theoretical proof of the existence of this phenomenon. We also prove that,
in general, our construction is optimal, i.e., that in some cases every automaton
for the set of (destuttered) executions must be of size 2?(VI+ICD,

Token Passing Systems.
In this section we focus on MSO-definable set of topologies of bounded tree-
width or clique-width, as well as on iteratively-constructible sets of topologies.

Decidability and Complezity: We prove that the PMCP is decidable for indexed
CTL™\Xon such topologies. This considerably generalises the results of [1], where
decidability for this logic was shown for a few concrete topologies such as rings
and cliques.

Cutoffs: For the considered topologies and indexed CTL*\X we prove that the
PMCPs have computable cutoffs. From [1] we know that there is a (computable)
set of topologies and a system template such that there is no algorithm that given
an indexed CTL*\X formula can compute the associated cutoff (even though a
cutoff for the given formula always exists). This justifies our search of sets of
topologies for which the PMCP for CTL*\ X has computable cutoffs. We also give
a lower bound on cutoffs for iteratively-constructible sets and indexed LTL\X.

Equivalent automaton: Our ability to compute cutoffs for 1-index LTL\X formulas
and the considered topologies implies that the (destuttered) sets of execution
traces are w-regular, and the construction of Biichi automata which compute
these traces is effective.

Due to space limitations, in many cases proofs/sketches are not given, and
only a statement of the basic technique used for the proof is given. The reader
is referred to the full version of the article for more details.

Parameterized Model Checking of Rendezvous Systems 113

2 Definitions and Preliminaries

A labeled transition system (LTS) is a tuple (S, R, I,®,AP, X)), where S is the
set of states, R C S x X x S is the transition relation, I C S are the initial
states, ® : S — 2°P is the state-labeling, AP is a set of atomic propositions or
atoms, and X' is the transition-labels alphabet. When AP and X' are clear from
the context we drop them. A finite LTS is an LTS in which S, R, X are finite and
@(s) is finite for every s € S. Transitions (s, a, s’) € R may be written s = s'. A
transition system (TS) (S, R, I,X) is an LTS without the labeling function and
without the set of atomic propositions. A run is an infinite path that starts in an
initial state. For a formal definition of path, state-labeled path, action-labeled
path, refer to the full version of this paper.

2.1 Process Template, Topology, Pairwise Rendezvous System

We define how to (asynchronously) compose processes that communicate via
pairwise rendezvous into a single system. We consider time as being discrete
(i.e. not continuous). Processes are not necessarily identical, but we assume only
a finite number of different process types. Roughly, at every vertex of a topology
(a directed graph with vertices labeled by process types) there is a process of the
given type running; at every time step either, and the choice is nondeterministic,
exactly one process makes an internal transition, or exactly two processes with
an edge between them in the topology instantaneously synchronize on a message
(sometimes called an action) m € Y. The sender of the message m performs
an m! transition, and the receiver an m? transition. Note that the sender can
not direct the message to a specific neighbouring process (nor can the receiver
choose from where to receive it), but the pair is chosen non-deterministically. 2
Fix a countable set of atoms (also called atomic propositions) APp. Fix a
finite synchronization alphabet YXgnc (that does not include the symbol 7), and
define the communication alphabet X = {m!,m?|m € Xn.}.
Process Template, System Arity, System Template. A process template is
afinite LTS P = (S, R, {¢}, P, AP, X U{7}). Since AP, and the transition-labels
alphabet are typically fixed, we will omit them. The system arity is a natural
number r € N. It refers to the number of different process types in the system. A
(r-ary) system template is a tuple of process templates P = (P, -, P.) where
r is the system arity. The process template P; = (S;, R;, {¢i}, @) is called the
ith process template.
Topology G. An r-topology is a finite structure G = (V, E, T3, --- ,T;.) where
E CV xV,and the T; C V partition V. The type of v € V denoted type(v) is
the unique j such that v € T;. We might write V7, Eg and typeg to stress G.

We sometimes assume that V := {1,---,n} for some n € N. For instance, an
r-ary clique topology with V- = {1,--- ,n} has E = {(i,5) € [n]*|i # j} (and
some partition of the nodes into sets T,---,T}.); and the 1-ary ring topology

with V.= {1,--- ,n} has E={(i,j) € [n]*|j =i+ 1 mod n} and Ty = V.

2 In models in which we allow processes to send in certain directions, e.g., send left
and send right in a bi-directional ring, then PMCP is quickly undecidable [1].

114 B. Aminof et al.

(Pairwise-Rendezvous) System. Given system arity 7, system template P =
(Py,-+-,P.) with P, = (S, Ri, {t:},P:), and r-topology G = (V, E,T), define
the system P as the LTS (Q,A,Qo, A, APy x V, Xgync U{7}) where

— The set @ is the set of functions f : V — U;<,S; such that f(v) € S, iff
type(v) = i (for all v € V,i < r). Such functions (sometimes written as
vectors) are called configurations.

— The set Qo consists of the unique initial configuration f, defined as f,(v) =
Liype(v) (for all v e V).

— The set of global transitions A are tuples (f,m,g) € Q X (Zeync U{7}) X Q
where one of the following two conditions hold:

e m = 7 and there exists v € V such that f(v) = g(v) is a transition of
the process template Pyype(r), and for all w # v, f(w) = g(w); this is
called an internal transition,

e m € Xy, and there exists v # w € V with (v,w) € E such that
fv) o, g(v) and f(w) mr, g(w) and for all z ¢ {v,w}, f(z) = g(2);
this is called a synchronous transition. We say that the process at v sends
the message m and the process at w receives the message m.

— The labeling function A : Q — 2AP»*V is defined by (p,v) € A(f) <= p €
Diype(v) (f(v)) (for all configurations f, atoms p € AP, and vertices v € V).

In words then, a topology of size n specifies n-many processes, which pro-
cesses have the same type, and how the processes are connected. In the internal
transition above only the process at vertex v makes a transition, and in the syn-
chronous transition above only the process at vertex v and its neighbour at w

make a transition. Let 7 = fof1 - -+ be a state-labeled path in PG. The projection
of ™ to vertex v € V, written proj,(w), is the sequence fo(v)f1(v)--- of states
of Pyype(vy- If type(v) = j we say that the vertex v runs (a copy of) the process
P;, or that the process at v is P;.

2.2 Disjunctively-Guarded System, and Token Passing System

We define guarded protocols and token-passing systems as restricted forms of
pairwise rendezvous systems. In fact, the restrictions are on the system template
and the synchronization alphabet. Write P; = (S;, Ry, {ti}, @i, APpr, X U {7}).

Disjunctively-Guarded System Template. A system P is disjunctively-
guarded if P is. A system template P is disjunctively-guarded if (i) The state sets
of the process templates are pairwise disjoint, i.e., S;NS; =0 for 1 <i < j <r.
(ii) The transition-labels alphabet X' is {7} U{q!,q? | ¢ € U;<,S;} (iii) For every
state s € .S, there is a transition labeled s = s, (iv) For every state s € S,
the only transitions labeled s? are of the form s s Intuitively, in this kind
of systems a process can decide to move depending on the local state of some

neighbor process, but it cannot relate the state of any two processes at the same
time, nor it can force another process to move from its local state. Our definition

Parameterized Model Checking of Rendezvous Systems 115

of disjunctively-guarded systems on a clique topology is a reformulation of the
definition of concrete system in [5, Section 2].

Token Passing System. One can express a token passing system (TPS) as
a special case of pairwise rendezvous. In this work we only consider the case
of a single valueless token, whose formal definition can be found in [1,6]. A

token passing system (TPS) PG can be thought of the asynchronous parallel
composition of the processes templates in P over topology G according to the
types of vertices. At any time during the computation, exactly one vertex has
the token. The token starts with the unique process in P;. At each time step
either exactly one process makes an internal transition, or exactly two processes
synchronize when one process sends the token to another along an edge of G.

2.3 Indexed Temporal Logic

We assume the reader is familiar with the syntax and semantics of CTL* and
LTL. Indexed temporal logics were introduced by [2] to model specifications
of certain distributed systems. They are obtained by adding verter quantifiers
to a given temporal logic over indexed atomic propositions. For example, in a
system with two process templates, the formula Vi : type(i) = 1. AG((good, 7))
states that every process of type 1 on all computations at all points of time
satisfies the atom good. In a system with one process template, the formula
Vi # j. AG(—(eritical, i) V —(critical, j)) states that it is never the case that two
processes both satisfy the atom critical at the same time.

Syntax. Fix an infinite set Vars = {i,j,...} of vertex variables (called index
variables for the clique topology). A wvertex quantifier is an expression of the
form 3z : type(z) = m or Vz : type(x) = m where m € N. An indezed CTL"
formula over vertex variables Vars and atomic propositions APy is a formula
of the form Qqi1,...,Qkix : ¢., where each i,, € Vars, each @Q;, is an index
quantifier, and ¢ is a CTL* formula over atomic predicates AP, x Vars.

The semantics is fully described in the full version of this paper. For 1l-ary
systems we may write Va instead of Vx : type(z) = 1. In the syntax of indexed
formulas we may write type(z) = P, instead of type(x) = m. i-CTL* denotes the
set of all indexed CTL™ sentences, and k-CTL™ for the set of all k-indexed formulas
in i-CTL", i.e., formulas with k quantifiers. We similarly define indexed versions of
various fragments of CTL", e.g., i-LTL, k-LTL\X and k-CTL}\X (k CcTL* formulas

with nesting depth of path quantifiers at most d). We write P P ,
it P and P° agree on all k-CTL}\X formulas.

Note. The index variables are bound outside of all the temporal path quantifiers
(A and E). In particular, for an existentially quantified LTL formula to be satisfied
there must exist a valuation of the index variables such that ¢ holds for all runs
(and not one valuation for each run). Thus this logic is sometimes called prenex
indexed temporal logic. Note that if one allows index quantifiers inside the scope
of temporal path quantifiers then one quickly reaches undecidability even for
systems with no communication [10].

=k-CTL;\X

116 B. Aminof et al.

For the remainder of this paper specifications only come from i-CTL*\X; i.e.,
without the next-time operators. It is usual in the context of parameterized
systems to consider specification logics without the “next” (X) operator.

2.4 Parameterized Topology, Parameterized System, PMCP, Cutoff

Parameterized Topology G. An (r-ary) parameterized topology G is a set of r-
topologies. Moreover, we assume membership in G is decidable. Typical examples
are the set of r-ary cliques or the set of 1-ary rings.

Parameterized Model Checking Problem. Fix an r-ary parameterized
topology G, a set of r-ary system templates P, and a set of indexed tempo-
ral logic sentences F. The parameterized model checking problem (PMCP) for
this data, written PMCPg(P,F), is to decide, given a formula ¢ € F and a
system template P € P, whether for all G € G, P E . The complexity of the
PMCPg (P, F), where the formula ¢ € F is fixed and only the system template
is given as an input, is called the program complezity.

Cutoff. A cutoff for PMCPg(P,F) is a natural number ¢ such that for every

P € P and p € F, the following are equivalent: (i) P = ¢ for all G € G with
Vel < ¢ (i) P¥ = g forall G € G.

Lemma 1. If PMCPg(P,F) has a cutoff, then PMCPg(P,F) is decidable

Proof. If ¢ is a cutoff, let Gy, ..., G, be all topologies G in G such that [Vg| < c.
The algorithm that solves PMCP takes P, ¢ as input and checks whether or not

PGilchforalllgign. a

2.5 Destuttering and Process Executions

The destuttering of an infinite word o € X* is the infinite word a® € X* defined
by replacing every maximal finite consecutive sequence of repeated symbols in
a by one copy of that symbol. Thus, the destuttering of (aaba)* is (ab)¥; and
the destuttering of aab® is ab®. The destuttering of set L C X*, written L°, is
the set {a® |a € L} C X,

It is known that LTL\X can not distinguish between a word and its destutter-
ing, which is the main motivation for the following definition.

Process Executions. For parameterized r-topology G, r-ary system template

P = (P, - ,P.) and t < r, define the set of (process) executions (with respect
to t, P,G), written {-EXECg p, as the destuttering of the following set:

Ugegiproju(m) | 7 is a state-labelled run of P and v € Ve is of type t}.

When G or P is clear from the context we may omit them.

The point is that for universal 1-index LTL\X we can reduce the PMCP to
model checking a single system whose runs are t-EXECg p. This is explained in
details in the full version of this paper.

Parameterized Model Checking of Rendezvous Systems 117

2.6 Two Prominent Kinds of Pairwise-Rendezvous Systems

Identical Processes. Concurrent systems in which all processes are identical
are modeled with system arity » = 1. In this case there is a single process
template P, and a topology may be thought of as a directed graph G = (V, E)
(formally G = (V, E,Ty) with T} = V). We write USER-EXECg(U) for the set of
executions of the user processes in a 1-ary system, i.e., 1-EXECg p.

Identical Processes with a Controller. Concurrent systems in which all
processes are identical except for one process (typically called a controller or
the environment) are modeled with system arity » = 2, and system templates
of the form (Py, P»), and we restrict the topologies so that exactly one vertex
has type 1 (i.e., runs the controller). We call such topologies controlled. We often
write (C, U) instead of (P1, P2), and G = (V, E,v) instead of (V, E, {v}, V\ {v}).
We write CONTROLLER-EXECg(C, U) for the set of executions of the controller
process, i.e., I-EXECg, (¢,u). We write USER-EXECg (C, U) for the set of executions
of the user processes in this 2-ary system, i.e., 2-EXECg, (c,17)-

2.7 Classes of Parameterized Topologies

Here we define the classes of parameterized topologies which we will use in the
sequel. The classes we define all have bounded clique-width.

w-terms and Clique-width. An r-ary w-topology (V, E, T, ..., T,,C1,...,Cy)
extends (V, E,Ty,...,T;) by a partition (Cy,...,Cy) of V. For every u € V, if
u € C; then we say u has color i. We define the w-terms inductively. € is a
w-term. If z,y are w-terms, then add;+(x), recol; ;(x), edge; j(x) and x Uy are
w-terms for i, j € [w], t € [r]. Every w-term z has an associated w-topology [[x]]:

[[€]] has V = E = () and empty labeling.

[ladd; ¢(x)]] is formed by adding a new vertex of color ¢ and type ¢ to [[x]].
Il

[l

recol; j(x)]] is formed by recoloring every vertex with color ¢ of [[z]] by j.
edge; ;(x)]] is formed from [[z]] by adding an edge from every vertex of
color i to every vertex of color j.
— [[z Uy]] is the disjoint union of z and y and the union of the labelings.

A topology G has clique-width at most w if there is a w-term p such that G is
isomorphic to [[p(e)]] (forgetting the coloring C1, ..., C,,). Every topology of size
n has clique-width at most n. A class of topologies G has bounded clique-width
if there exists w such that every graph in G has clique-width at most w. It is
well-known if G has bounded tree-width, then it has bounded clique-width.

Monadic Second Order Logic MSO. MSO is a powerful logic for graphs and
graph-like structures. It is the extension of First Order Logic with set quantifi-
cation. MSO can define classic graph-theoretic concepts such as planarity, con-
nectivity, c-regularity and c-colorability. We assume the reader is familiar with
Monadic Second Order logic as described e.g. in [4]. A parameterized topology
G is MSO-definable if there exists an MSO-formula @ such that G € G iff G = &.
E.g., 3UVaVy(E(z,y) — (U(x) <> =U(y))) defines the set of bipartite graphs.

118 B. Aminof et al.

We denote by Eg/lso the equivalence relation of topologies of being indistinguish-
able by MSO-formulas of quantifier rank g.

Theorem 1 (Courcelle’s Theorem, see [4]). Let w > 1 and let p € MSO.
The MSO theory of r-topologies of clique-width w is decidable. I.e., there is an
algorithm that on input o € MSO, decides whether there is an r-topology G of
clique-width at most w such that G = . Moreover, the number of equivalence
classes in EQ/’SO is finite and computable, and a topology belonging to each class
is computable.

We now define a user-friendly and expressive formalism that can be used to
generate natural parameterized topologies.

Iteratively Constructible Parameterized Topologies. A parameterized
topology is iteratively constructible if it can be built from an initial labeled graph
by means of a repeated fixed succession of elementary operations involving ad-
dition of vertices and edges, deletion of edges, and relabeling. More precisely, an
r-ary parameterized topology G is iteratively-constructible if there are w-terms
p(z),o(x) with one variable z and no use of disjoint union, and a w-graph H
such that (i) G € G iff G = o(p"(Hp)) for some n € N, where p°(H) = H, (ii)
exactly one vertex of Hy has type 1, and (iil) no vertex of type 1 is added in
p or o. For terms p(-) and p'(-) we write p :: p’ instead of p(p/(+)). Intuitively,
p “builds up” the topology, and o puts on the “finishing touch” (see examples
below). The unique vertex of type 1 can act as the controller if it is assigned a
unique process template, and it is the initial token position in TPSs.

Ezample 1 (Cliques and rings). The set of cliques (irreflexive) is iteratively con-
structible: let Hy consist of a single vertex v of color 1 and type 1, let p(z) be
edgey,1 2 addy 2(z), and o(z) be the identity.

The set of uni-directional rings is iteratively constructible: let Hy consist of
two vertices, one of color 1 and type 1 and one of color 2 and type 2 with an edge
from 1 to 2. Let p(z) be recoly o :: recols 3 :: edgea s :: addy 2 and o(z) = edges ;.

Clique-Like (and Controllerless Clique-like) Parameterized Topolo-
gies. We now define other sets of topologies of bounded clique-width that gen-
eralise cliques and stars, but not rings.

Let H be an r-ary topology with vertex set Vi of size m in which each vertex
has a distinct type. Let p2(z) = addy 1ypecry = -+ 2 addy, type(m)- Let p1(x) be
the m-term obtained by the composition of edge; ; for all (i,5) € Eg (in an
arbitrary order). Let p(x) = p1(x) :: p2(x). We have [[p(e)]] = H.

An r-ary parameterized topology G is clique-like if there is an r-ary topology
H and a partition Bgpg, Belg, Bina of Vi such that G € G iff there exists a
function num : BeqU Bing — N such that [[p"*" (¢)]] = G, and p™*™ is obtained
from p by (i) repeating each add; 4ype(;y num(i) times rather than once, and
(ii) finally performing edge; ; for all i € Bg,. Intuitively, G is obtained from H
by substituting each vertex in B, with a clique, each vertex in B;,q with an
independent set, and leaving every vertex in Byy,4 as a single vertex.

Parameterized Model Checking of Rendezvous Systems 119

We say that G is generated by H and Bgyg, Beig, Bind- The cardinality of Bgyg
is the number of controllersin G. In case Bgpg = () we say that G is controllerless.

Ezxample. Cliques, stars and complete bipartite graphs. Let H be the 2-topology
with vertex set Vi = {1, 2} and edge set {(1,2), (2,1)} and type(i) =i for i € [2].
The set of 2-ary cliques in which exactly one index has type 1 is clique-like using
H as defined, Byg = {2}, Bina = 0 and Bspg = {1}. The set of stars in which
exactly one index has type 1 is clique-like using H above, Beq = 0, Bina = {2}
and Bspg = {1}. The set of topologies that are complete bipartite graphs is
clique-like using H above, Bjnqg = {1,2}, and Bejg = Beng = 0.

Example. Rings are not clique-like. Clique-like parameterized topologies have
diameter at most |Vz| unless their diameter is infinite. Rings have unbounded
but finite diameter and are therefore not clique-like.

3 Results for Pairwise-Rendezvous Systems

The known decidability results for parameterized pairwise-rendezvous systems
are for clique topologies and specifications from 1-indexed LTL\X. [9]. Thus we
might hope to generalise this result in two directions: more general specification
languages and more general topologies. We first show, by reducing the non-
halting problem of two-counter machines (2CMs) to the PMCP, that allowing
branching specifications results in undecidability:

Theorem 2. PMCPg(P,F) is undecidable where F is the set of l-indexed
CTL\X formulas, G is the set of 1-ary clique topologies, and P is the set of
1-ary system templates.

We conclude that we should restrict the specification logic if we want decid-
ability. In the rest of this section we focus on 1-indexed LTL\X and parameterized
clique-topologies with or without a controller (note that the PMCP for 1-indexed
LTL\X is undecidable for topologies that contain uni-directional rings [12,6]).

Pairwise Rendezvous: Complexity of PMCP. The proof of the following
theorem extends the technique used in [9, Theorem 3.6] for clique topologies:

Theorem 3. Fiz an r-ary clique-like parameterized topology G, let F be the
set of 1-index LTL\X formulas, and P the set of r-ary system templates. Then
PMCPg(P,F) is decidable in EXPSPACE.

Thus, using the fact that PMCP is EXPSPACE-hard already for clique topolo-
gies and the coverability problem [7], we get:

Theorem 4. Fiz an r-ary clique-like parameterized topology G, let F be the
set of 1-index LTL\X formulas, and P the set of r-ary system templates. Then
PMCPg (P, F) is EXPSPACE-complete. The same holds for program complexity.

It is known that PMCP for l-ary cliques is PSPACE-complete (the upper
bound is from [9, Section 4], and the lower bound holds already for LTL\X model
checking a single finite state system P, with no communication). We extend the

120 B. Aminof et al.

upper bound to clique-like topologies in which Bs,, = 0, i.e., controllerless
clique-like parameterized topologies. The proof follows [9] and is via a reduction
to emptiness of Biichi automata, see Theorem 8.

Theorem 5. Fiz an r-ary controllerless clique-like parameterized topology G,
let F be the set of 1-index LTL\X formulas, and P the set of r-ary system tem-
plates. Then PMCPg(P,F) is PSPACE-complete, and the program complexity
is in PTIME.

Pairwise Rendezvous: Cutoffs.

Theorem 6. Let G be the 1-ary parameterized clique topology and let F be the
set of 1-index LTL\X formulas. There exists a process template P such that
PMCPg({P},F) has no cutoff.

Proof (Sketch). Define process template P = (S, R, I,®) by S := {1,2,3}, I =
{1}, R={(1,7,1),(1,al,2),(2,7,1),(1,a?,3)}, and &(i) = {i}. Thus in a system
with n 4 1 processes one possible behaviour is, up to stuttering, (12)™1¢. This
run does not appear in any system with < n processes. Thus take the formula
¢, stating that for every process and every path, the initial segment, up to
stuttering, is not of the form (12)" (for instance 1 A (1 U (2 A (2 U 1))) states
that there is an initial prefix of the form 11*22*11%). O

Pairwise Rendezvous: Equivalence to Finite-State Systems. The follow-
ing theorem says that if there is a cutoff for the set of 1-indexed LTL\X formulas
then the set of executions is w-regular. The proof uses the fact that 1-indexed
LTL\X is expressive enough to describe finite prefixes of infinite words, and
deducing that since all finite executions of a system of any size must already
appear in systems up to the cutoff size, so do the infinite executions. This holds
for general topologies, not only for clique-like ones.

Theorem 7. Fiz r-ary parameterized topology G, let F be the set of 1-index
LTL\X formulas, and let P be an r-ary system template. If PMCPg({P}, F) has
a cutoff, then for every t <r, the set of executions t-EXECg p is w-regular.

The following theorem states that the set of executions of each process in a
controllerless parameterized clique-like topology is w-regular, i.e., recognizable
by a Non-deterministic Blichi Word automaton (NBW)(see [13] for a definition).
This is done by a reduction to the case of a clique topology and using the
corresponding result in [9, Section 4]3

Theorem 8. For every controllerless clique-like r-ary parameterized topology G,
every r-ary system template P, and every v < r, there is a linearly sized NBW
(computable in PTIME) that recognises the set i-EXECg p.

3 The relevant result in [9, Section 4] is correct. However, its proof has some bugs
and some of the statements (e.g., Theorem 4.8) are wrong. In the full version of this
paper we give a correct proof for the main result of [9, Section 4].

Parameterized Model Checking of Rendezvous Systems 121

By constructing an appropriate system template, and using a pumping argu-
ment, we are able to show that the set of executions of systems with a controller
is not, in general, w-regular. More precisely:

Theorem 9. Let G be the 2-ary parameterized clique topology. There exist a
system template (C,U) for which CONTROLLER-EXECg (C, U) is not w-regular.

4 Results for Disjunctive Guards

In the following we will consider parameterized systems as described in Sec-
tion 2.6, i.e., with an arbitrary number of copies of one template U, and possibly
with a unique controller C, arranged in a clique.

The following theorem follows similar lines as Theorem 2, and uses a reduc-
tion from the non-halting problem of 2CMs. The main complication here is that,
unlike the case of pairwise rendezvous, mutual exclusion is not easily obtain-
able using disjunctive guards, and thus more complicated gadgets are needed to
ensure that the counter operations are simulated correctly.

Theorem 10. PMCPg(P,F) is undecidable where F is the set of l-indexed
CTL\X formulas, G is the 1-ary parameterized clique topology, and P is the set
of 1-ary disjunctively-guarded system templates.

We conclude that we should restrict the specification logic if we want decid-
ability, and in the rest of this section we focus on 1-indexed LTL\X.

Disjunctive Guards: CutofIs. By [5], for the r-ary parameterized clique topol-
ogy and k-indexed LTL\X formulae, there is a cutoff of size |U| 4+ 2 (where U is
the process template). The following proposition shows that this cutoff is tight.

Proposition 1. Let G be the r-ary parameterized clique topology, let F be the set
of 1-index LTL\X formulas, and let k > 0. There is a disjunctively-guarded system
template P of size O(k) such that O(k) is the smallest cutoff for PMCPg(P, F)

Proof (sketch). We show the case of l-ary cliques. Similar examples exist for
r-ary systems, with or without a controller. Consider the process template:
U = (Su,Ru,Iy,Py) where Sy = {s1,...,sk}, Ru = {(si,84,8i+1) | © <
k} U {(sk,Sk,51)} U{(si,T,8) | i <k}, Iy = {s1}, and Py(s;) = {s;}; and
the formula ¢y = Vo.AG((sk, x) = G(sg,x)). Evidently, ¢ holds in all systems
with at most k processes, but false in systems with k + 1 or more processes.

Disjunctive Guards: Equivalence to Finite-State Systems. There are sev-
eral techniques for solving the PMCP for 1-indexed LTL\X formulae for systems
using disjunctive guards. One such technique consists in finding an NBW that
model-checks the set of all possible executions of the system, for any number
of copies of user processes U. We begin by showing that in general, such an
automaton is necessarily big. We show the following lower bound by encoding
the language of palindromes of length 2k.

Proposition 2. Let G be the 2-ary parameterized controlled clique topology. For
every k > 0 there exist a disjunctively-guarded system template (C,U) where

122 B. Aminof et al.

the sizes of C and U are O(k) such that the smallest NBW whose language is
CONTROLLER-EXECG (C, U) has size at least 2.

On the other hand, the cutoff |U| + 2 yields an NBW of size |C| x |U\Q(|U‘),
and since this cutoff is tight, this technique can not yield a smaller NBW. In the
following theorem we prove, surprisingly, that there is a smaller NBW, of size

o(|C| x 21U1).

Theorem 11. Let G be the 2-ary parameterized controlled clique topology. For
every disjunctively-guarded system template (C,U) there is an NBW of size
O(|C| x 2IY1) recognizing the set CONTROLLER-EXECG(C,U). The same is true
for USER-EXECg(C, U).

Intuitively, each state in the NBW pairs the current controller state together
with a set of reachable user states, i.e. sets of states of U that can be reached
in some system of finite size, given the actual state of the controller C. In this
construction, a state s € Sy is considered reachable iff it is the target of a
sequence of transitions in Ry that (a) are not guarded, or (b) are guarded by
other reachable states, or (c) are guarded by the current controller state. The
NBW has O(|C| x 2!Ul) (abstract) configurations, and it is shown that every
path in the NBW can be concretized in some system of some finite size.

Disjunctive Guards: Complexity of PMCP. We inherit the PSPACE-
hardness of model-checking LTL\X on a single finite-state system. For the upper
bound, the construction in Theorem 11 can be done ‘on-the-fly’

Theorem 12. Let G be the 2-ary parameterized controlled clique topology or the
1-ary parameterized clique topology. Let F be the set of 1-index LTL\X formulas,
and let P be the set of disjunctively guarded system templates (of suitable arity).
The complexity of PMCPg(P,F) is PSPACE-complete.

We inherit the PTIME program complexity (without controller) from The-
orem 8. With a controller, the coNP upper bound results from a fine analysis
of Theorem 11, and the coNP-hardness by coding of unsatisfiability (the user
processes store an assignment, and the controller verifies it is not satisfying).

Theorem 13. Fix F to be the set of 1-index LTL\X formulas. If P is the set of
1-ary disjunctively guarded system templates, and G is the 1-ary parameterized
clique topology, then the program complexity of PMCPg(P,F) is PTIME.

If P is the set of 2-ary disjunctively guarded system templates, and G is the
2-ary parameterized controlled clique topology, then the program complexity of
PMCPg(P,F) is coNP-complete.

5 Results for Token Passing Systems

Theorem 14. Let G be a parameterized topology that is either iteratively-const-
ructible, or MSO-definable and of bounded clique-width. Then (i) The problem
PMCPg (P, i-CTL*\X) is decidable; (i1) There is an algorithm that given k and d
outputs a cutoff for k-CTL\X.

Parameterized Model Checking of Rendezvous Systems 123

Decidability. We use the finiteness and reduction properties of k-CTL;\X from
[1]. The reduction property essentially says that the process templates in P play
no role, i.e. we can assume the processes in Py, do nothing except send and
receive the token. The only atoms are p; which indicate that j has the token. In
a k-CTL;\X formula Q121 ... Q. ¢, every valuation of the variables z1, ...,z
designates k vertices of the underlying topology G, say § = g1, ..., gx. The for-
mula ¢ can only use the atoms py; for g; € g. We denote the structures of ¢ by
G|g to indicate (1) that the process templates are Pyopo and (2) that g have been
assigned to x1, ...,z by quantification. The finiteness property says that there
is a computable finite set CONy ;, such that every G|g is Ek_CTLz\x-equivalent
to a member of CONg ;. We use the details of the construction of CONy, to
show essentially that =k-cTLi\x is MSO-definable by reducing the quantifica-

tion on infinite paths in k-CTL;\X to MSO quantification on finite simple paths
and cycles. Decidability of PMCP is achieved using the decidability of MSO on
classes of parameterized topologies of bounded clique-width (Theorem 1). The
decidability of PMCP on iteratively constructible parameterized topologies can
be shown by employing methods of similar to [8].

Cutoffs. Cuttoffs are derived as the maximal size of a representative topol-
ogy belonging to a Egﬂso—equivalence class as guaranteed in Theorem 14 and
are non-elementary due to the number of equivalence classes. For iterateively-
constructible parameterized topologies the cutoffs may be much lower, though
there exists a system template P, and, for all k£ € N, an iteratively constructible
parameterized topology Gj of clique-width at most k and a k-indexed LTL\X

formula ¢ such that the cutoff of PMCPg({P}, {¢}) is 202(Vk),

6 Discussion and Related Work

The applicability of the reduction of the PMCP to finitely many classical model
checking problems as a technique for solving the PMCP depends on the com-
munication primitive, the specification language, and the set of topologies of the
system. The wide-ranging nature of our work along these axes gives us some
insights which may be pertinent to system models different from our own:

Decidability But no Cutoffs. Theorems 3 and 6 show that it can be the
case that, for certain sets of specifications formula, cutoffs do not exist yet the
PMCP problem is decidable.

Cutoffs may not be Optimal. Proposition 1 and Theorem 11 imply that
even in cases that cutoffs exist and are computable, they may not yield optimal
algorithms for solving the PMCP.

Formalisms for Topologies are Useful. Many results in Sections 3 and 5
show that decidability and complexity of PMCP can be extended from concrete
examples of sets of topologies such as rings and cliques to infinite classes of
topologies given as user-friendly yet powerful formalisms. The formalisms we
study may be useful for other system models.

In the context of cutoffs, it is worth noting that we only considered cutoffs
with respect to sets of formulas and process templates. As Theorem 6 shows,

124 B. Aminof et al.

there is a parameterized topology G, and a system template P, for which no
cutoff exists for the set of 1-indexed LTL\X formulas. Note, however, that if the
formula ¢ is also fixed then a cutoff always exists. Indeed, given G, P, ¢, letting
¢ := |Vg| yields a (minimal) cutoff if we choose G to be the smallest for which

o £ ¢, or simply the smallest topology in G if all topologies in G satisfy .
We reserve the question of computing the cutoff in such cases to future work.

As previously discussed, this work draws on and generalises the work in [9] on
pairwise rendezvous on cliques, the work in [5] on disjunctive guards on cliques,
and the work in [1,3,6] on token-passing systems. There are very few published
complexity lower-bounds for PMCP (notable exceptions are [7,11]), and to the
best of our knowledge, our lower bounds on the sizes of cutoffs are the first
proven non-trivial lower bounds for these types of systems.

Acknowledgments. The first author is supported by ERC Start grant (279307:
Graph Games) and the RiSE network (S11407-N23).

References

1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 262-281. Springer, Heidelberg (2014)

2. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many
identical finite state processes. Inf. Comput. 81, 13-31 (1989)

3. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276-291. Springer, Heidelberg (2004)

4. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of mathematics and its applications,
vol. 138. Cambridge University Press (2012)

5. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236-254. Springer,
Heidelberg (2000)

6. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527-550 (2003)

7. Esparza, J.: Keeping a crowd safe: On the complexity of parameterized verification.
In: STACS (2014)

8. Fischer, E., Makowsky, J.A.: Linear recurrence relations for graph polynomials. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Trakhtenbrot/Festschrift. LNCS,
vol. 4800, pp. 266—-279. Springer, Heidelberg (2008)

9. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675-735 (1992)

10. John, A., Konnov, 1., Schmid, U., Veith, H., Widder, J.: Counter attack on byzan-
tine generals: Parameterized model checking of fault-tolerant distributed algo-
rithms. CoRR abs/1210.3846 (2012)

11. Schmitz, S., Schnoebelen, P.: The Power of Well-Structured Systems. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 5-24.
Springer, Heidelberg (2013)

12. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process.
Lett. 28(4), 213214 (1988)

13. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs.
J. Comput. Syst. Sci. 32(2), 182-221 (1986)

On the Completeness of Bounded Model
Checking for Threshold-Based
Distributed Algorithms: Reachability

Igor Konnov, Helmut Veith, and Josef Widder

Vienna University of Technology (T'U Wien)

Abstract. Counter abstraction is a powerful tool for parameterized
model checking, if the number of local states of the concurrent processes
is relatively small. In recent work, we introduced parametric interval
counter abstraction that allowed us to verify the safety and liveness of
threshold-based fault-tolerant distributed algorithms (FTDA). Due to
state space explosion, applying this technique to distributed algorithms
with hundreds of local states is challenging for state-of-the-art model
checkers. In this paper, we demonstrate that reachability properties of
FTDASs can be verified by bounded model checking. To ensure complete-
ness, we need an upper bound on the diameter, i.e., on the longest dis-
tance between states. We show that the diameters of accelerated counter
systems of FTDAs, and of their counter abstractions, have a quadratic
upper bound in the number of local transitions. Our experiments show
that the resulting bounds are sufficiently small to use bounded model
checking for parameterized verification of reachability properties of sev-
eral FTDAs, some of which have not been automatically verified before.

1 Introduction

A system that consists of concurrent anonymous (identical) processes can be
modeled as a counter system: Instead of recording which process is in which
local state, we record for each local state, how many processes are in this state.
We have one counter per local state ¢, denoted by x[¢]. Each counter is bounded
by the number of processes. A step by a process that goes from local state £ to
local state ¢’ is modeled by decrementing x[f] and incrementing x[¢'].

We consider a specific class of counter systems, namely those that are de-
fined by threshold automata. The technical motivation to introduce threshold
automata is to capture the relevant properties of fault-tolerant distributed algo-
rithms (FTDAs). FTDAs are an important class of distributed algorithms that
work even if a subset of the processes fail [26]. Typically, they are parameter-
ized in the number of processes and the number of tolerated faulty processes.
These numbers of processes are parameters of the verification problem. We show
that accelerated counter systems defined by threshold automata have a diameter
whose bound is independent of the bound on the counters, but depends only on
characteristics of the threshold automaton. This bound can be used for param-
eterized model checking of FTDAs, as we confirm by experimental evaluation.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 125-140, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

126 I. Konnov, H. Veith, and J. Widder

Modeling FTDAs as counter systems defined by threshold automata. A threshold
automaton consists of rules that define the conditions and effects of changes to
the local state of a process of a distributed algorithm. Conditions are threshold
guards that compare the value of a shared integer variable to a linear combination
of parameters, e.g., x > n — t, where x is a shared variable and n and t are
parameters. This captures counting arguments which are used in FTDAs, e.g., a
process takes a certain step only if it has received a message from a majority of
processes. To model this, we use the shared variable x as the number of processes
that have sent a message, n as the number of processes in the system, and ¢ as
the assumed number of faulty processes. The condition x > n — t then captures
a majority under the resilience condition that n > 2t. Resilience conditions are
standard assumptions for the correctness of an FTDA. Apart from changing
the local state, applying a rule can increase a shared variable, which naturally
captures that a process has sent a message. Thus we consider threshold automata
where shared variables are never decreased and where rules that form cycles do
not modify shared variables, which is natural for modeling FTDAs.

Bounding the Diameter. For reachability it is not relevant whether we “move”
processes one by one from state £ to ¢'. If several processes perform the same
transition one after the other, we can model this as a single update on the
counters: The sequence where b processes one after the other move from ¢ to ¢’
can be encoded as a transition where k[f] is decreased by b and k[¢'] is increased
by b. Value b is called the acceleration factor and may vary in a run depending
on how many repetitions of the same transition should be captured. We call
such runs of a counter system accelerated. The lengths of accelerated runs are
the ones relevant for the diameter of the counter system.

The main technical challenge comes from the interactions of shared variables
and threshold guards. We address it with the following three ideas: (i) Accelera-
tion as discussed above. (ii) Sorting, that is, given an arbitrary run of a counter
system, we can shorten it by changing the order of transitions such that there
are possibly many consecutive transitions that can be merged according to (i).
However, as we have arithmetic threshold conditions, not all changes of the or-
der result in allowed runs. (iii) Segmentation, that is, we partition a run into
segments, inside of which we can reorder the transitions; cf. (ii). In combina-
tion, these three ideas enable us to prove the main theorem: The diameter of a
counter system is at most quadratic in the number of rules; more precisely, it is
bounded by the product of the number of rules and the number of distinct thresh-
old conditions. In particular, the diameter is independent of the parameters.

Using the Bound for Parameterized Model Checking. Parameterized model
checking is concerned with the verification of concurrent or distributed systems,
where the number of processes is not a priori fixed, that is, a system is verified
for all sizes. In our case, the counter systems for all values of n and ¢ that satisfy
the resilience condition should be verified. A well-known parameterized model
checking technique is to map all these counter systems to a counter abstraction,
where the counter values are not natural numbers, but range over an abstract

On the Completeness of Bounded Model Checking 127

finite domain, e.g. [29]. In [16] we developed a more general form of counter
abstraction for expressions used in threshold guards, which leads, e.g., to the
abstract domain of four values that capture the parametric intervals [0,1) and
[1,t+1) and [t + 1,n —¢) and [n — t,00). It is easy to see [16] that a counter
abstraction simulates all counter systems for all parameter values that satisfy
the resilience condition. The bound d on the diameter of counter systems implies
a bound d on the diameter of the counter abstraction. From this and simulation
follows that if an abstract state is not reachable in the counter abstraction within
d steps, no concretization of this state is reachable in any of the concrete counter
systems. This allows us to efficiently combine counter abstraction with bounded
model checking [6]. Typically, bounded model checking is restricted to finding
bugs that occur after a bounded number of steps of the systems. However, if one
can show that within this bound every state is reachable from an initial state,
bounded model checking is a complete method for verifying reachability.

2 Our Approach at a Glance

Figure 1 represents a threshold automaton: The circles depict the local states,
and the arrows represent rules (r; to r5) that define how the automaton makes
transitions. Rounded corner labels correspond to conditional rules, so that the
rule can only be executed if the threshold guard evaluates to true. In our exam-
ple, x and y are shared variables, and n, t, and f are parameters that are assumed
to satisfy the resilience condition n > 2t A f < t. The number of processes (that
each execute the automaton) depends on the parameters, in this example we
assume that n processes run concurrently. Finally, rectangular labels on arrows
correspond to rules that increment a shared variable. The transitions of the
counter system are then defined using the rules, e.g., when rule 7 is executed,
then variable y is incremented and the counters k[¢3] and k[¢3] are updated.

Consider a counter system in which the parameter values are n = 3, and
t = f = 1. Let o9 be the configuration where z = y = 0 and all counters
are set to 0 except x[f1] = 3. This configuration corresponds to a concurrent
system where all three processes are in ¢;. For illustration, we assume that
in this concurrent system processes have the identifiers 1, 2, and 3, and we
denote by 7;(j) that process j executes rule r;. Recall that we have anonymous
(symmetric) systems, so we use the identifiers only for illustration: the transition
of the counter system is solely defined by the rule being executed.

As we are interested in the diameter, we have to consider the distance be-
tween configurations in terms of length of runs. In this example, we consider
the distance of oy to a configuration where k[¢5] = 3, that is, all three processes
are in local state ¢5. First, observe that the rule r5 is locked in oy as y = 0
and ¢t = 1. Hence, we require that rule r5 is executed at least once so that the
value of y increases. However, due to the precedence relation on the rules, before
that, 71 must be executed, which is also locked in og. The sequence of tran-
sitions 71 = 73(1),74(1),7r3(2),74(2) leads from oy to the configuration where
k[l1] = 1, k[ly] = 2, and = = 2; we denote it by 1. In o1, rule r; is unlocked,

128 I. Konnov, H. Veith, and J. Widder

(Tl::czn—fJ |r2: incyl

Fig. 1. Example of a Threshold Automaton

so we may apply 72 = r1(3),72(3), to arrive at o2, where y = 1, and thus 75
is unlocked. To o2 we may apply 73 = 75(1),75(2),74(3),75(3) to arrive at the
required configuration o3 with k[¢5] = 3.

In order to exploit acceleration as much as possible, we would like to group
together occurrences of the same rule. In 71, we can actually swap r4(1) and 73(2)
as locally the precedence relation of each process is maintained, and both rules
are unconditional. Similarly, in 73, we can move r4(3) to the beginning of the se-
quence 73. Concatenating these altered sequences, the resulting complete sched-
ule is 7 = r3(1),7r3(2),r4(1),74(2),71(3),72(3),74(3), 75(1), r5(2), r5(3). We can
group together the consecutive occurrences for the same rules r;, and write the
schedule using pairs consisting of rules and acceleration factors, that is, (rs, 2),
(ra,2), (r1,1), (r2,1), (re,1), (rs,3).

In schedule 7, the occurrences of all rules are grouped together except for ry4.
That is, in the accelerated schedule we have two occurrences for ry, while for the
other rules one occurrence is sufficient. Actually, there is no way around this:
We cannot swap 72(3) with r4(3), as we have to maintain the local precedence
relation of process 3. More precisely, in the counter system, r4 would require
us to decrease the counter k[f3] at a point in the schedule where k[f3] = 0.
We first have to increase the counter value by executing a transition according
to rule 79, before we can apply r4. Moreover, we cannot move the subsequence
r1(3),72(3),74(3) to the left, as r1(3) is locked in the prefix.

In this paper we characterize such cases. The issue here is that r4 can unlock rq
(we use the notation r4 <, 71), while m precedes r4 in the control flow of
the processes (r; <, r4). We coin the term milestone for transitions like r(3)
that cannot be moved, and show that the same issue arises if a rule r locks a
threshold guard of rule 7/, where r precedes r’ in the control flow. As processes
do not decrease shared variables, we have at most one milestone per threshold
guard. The sequence of transitions between milestones is called a segment. We
prove that transitions inside a segment can be swapped, so that one can group
transitions for the same rule in so-called batches. Each of these batches can then
be replaced by a single accelerated transition that leads to the same configuration
as the original batch. Hence, any segment can be replaced by an accelerated
one whose length is at most the number of rules of a process. This and the
number of milestones gives us the required bound on the diameter. This bound
is independent of the parameters, and only depends on the number of threshold
guards and the precedence relation between the rules of the processes.

On the Completeness of Bounded Model Checking 129

Our main result is that the bound on the diameter is independent of the
parameter values. In contrast, reachability of a specific local state depends on
the parameter values: for a process to reach /5, at least n — f processes must
execute 14 before at least ¢ other processes must execute ro. That is, the system
must contain at least (n— f)+¢ processes. In case of t > f, we obtain (n— f)+t >
n, which is a contradiction, and ¢5 cannot be reached for such parameter values.
The model checking problem we are interested in is whether a given state is
unreachable for all parameter values that satisfy the resilience condition.

3 Parameterized Counter Systems

3.1 Threshold Automata

A threshold automaton describes a process in a concurrent system. It is defined
by its local states, the shared variables, the parameters, and by rules that define
the state changes and their conditions and effects on shared variables. Formally,
a threshold automaton is a tuple TA = (£, Z,I,II, R, RC) defined below.

States. The set L is the finite set of local states, and Z C L is the set of initial
local states. The set I is the finite set of shared variables that range over Ng.
To simplify the presentation, we view the variables as vectors in Nl)”. The finite
set I is a set of parameter variables that range over Ny, and the resilience
condition RC' is a formula over parameter variables in linear integer arithmetic,
eg.,n >3t N t> f. Then, we denote the set of admissible parameters by

Prec={p¢€ Ngﬂl: p E RC}.

Rules. A rule defines a conditional transition between local states that may
update the shared variables. Here we define the syntax and give only informal
explanations of the semantics, which is defined via counter systems in Section 3.2.

Formally, a rule is a tuple (from, to, o=, >, u): The local states from and to
are from L. Intuitively, they capture from which local state to which a process
moves, or, in terms of counter systems, which counters decrease and increase,
respectively. A rule is only executed if the conditions ¢= and ¢> evaluate to true.
Each condition consists of multiple guards. Each guard is defined using some
shared variable x € I', coefficients ao,...,a;;7; € Z, and parameter variables
P1,-- -, P € I so that

|| ||
a0+zi:1ai~pi <z and a0+zi:1ai~pi > x

are a lower guard and upper guard, respectively (both, variables and coefficients,
may differ for different guards). The condition ©< is a conjunction of lower
guards, and the condition > is a conjunction of upper guards. Rules may in-
crease shared variables. We model this using an update vector u € N(‘)Fl, which
is added to the vector of shared variables, when the rule is executed. Then R is
the finite set of rules.

130 I. Konnov, H. Veith, and J. Widder

Definition 1. Given a threshold automaton (L,Z,I'II, R, RC), we define the
precedence relation <., the unlock relation <, and the lock relation <, as
subsets of R X R as follows:
1. 71 <p 7o iff 11.t0 = ro.from. We denote by <} the transitive closure of <.
If ri <p 719 A 1o <p 11, or if 1y = ro, we write vy ~p ro.
2. r <y roiff thereisag € Nlom and p € Pre satisfying (g, p) | r1.pSAr1.p”
and (g, p) & r2.¢p= Ara.¢0” and (g + m1.0,p) E r2.05 Ara.p”.
3. r1 <, 1o iff thereisag € N(‘)Fl and p € Pre satisfying (g,p) E r1.0SAr1.¢”
and (g, P) = r2.¢p= Ar2.0” and (g + 7m1.u,p) FE 12.905 Ara.p”.

Definition 2. Given a threshold automaton (L,Z,I'II, R, RC), we define the
following quantities: C= = [{r.p=:r € R, I’ € R. " £AF r AN v <, r},
C=|rp>:reR, I eR.r At " N " <,r}. Finally, C =C=+C>.

We consider specific threshold automata, namely those that naturally capture
FTDAs, where rules that form cycles do not increase shared variables.

Definition 3 (Canonical Threshold Automaton). A threshold automaton
(L, I, 11,R, RC) is canonical, if r.u = 0 for all rulesr € R that satisfyr <7 r.

Order on rules. The relation ~, defines equivalence classes of rules. For a given
set of rules R let R/~ be the set of equivalence classes defined by ~,. We denote
by [r] the equivalence class of rule r. For two classes ¢; and ¢; from R/~ we write
c1 <¢ ¢ iff there are two rules m and ro in R satisfying [r1] = ¢1 and [re] = ¢o
and r1 <3 79 and ry 4 ro. Observe that the relation <, is a strict partial order
(irreflexive and transitive). Hence, there are linear extensions of <. Below, we
fix an arbitrary of these linear extensions to sort transitions in a schedule:

Notation. We denote by <" a linear extension of <.

3.2 Counter Systems

Given a threshold automaton TA = (£,Z, I, II, R, RC), a function N: Pgrc —
Ny that formalizes the number of processes to be modeled (e.g., n), and admissi-
ble parameter values p € P rc, we define a counter system as a transition system
(X, I, R), that consists of the set of configurations X', which contain the counters
and variables, the set of initial configurations I, and the transition relation R:

Configurations. A configuration ¢ = (k,g,p) consists of a vector of counter
values 0.k € N(‘)m,l a vector of shared variable values o0.g € Nlom, and a vector
of parameter values o.p = p. The set X is the set of all configurations. The

set of initial configurations I contains the configurations that satisfy o.g = 0,
> iz 0-kli] = N(p), and .7 0.[i] = 0.

! For simplicity we use the convention that £ = {1,...,|L|}.

On the Completeness of Bounded Model Checking 131

Transition relation. A transition is a pair t = (rule, factor) of a rule of the
threshold automaton and a non-negative integer called the acceleration factor,
or just factor for short. For a transition ¢t = (rule, factor) we refer by t.u to rule.u,
by t.p> to rule.p™, etc. We say a transition ¢ is unlocked in configuration o if
Vk €{0,...,t.factor — 1}. (0.k,0.g + k - t.u,0.p) |= t.p= At.p>. For transitions
t1 and to we say that the two transitions are related iff t1.rule and ts.rule are
related, e.g., for <, we write t1 <, to iff t1.rule <, ta.1ule.

A transition t is applicable (or enabled) in configuration o, if it is unlocked, and
if o.k[t.from] > t.factor. We say that ¢’ is the result of applying the (enabled)
transition ¢ to o, and use the notation o’ = t(o), if

— tis enabled in o

— o'.g = o.g + t.factor - t.u

—d.p=op

— if t.from # t.to then o’.k[t.from] = o.k[t.from] — t.factor and o’.k[t.to] =
o.k[t.to] + t.factor and V¢ € L\ {t.from,t.to}. o' .k[{] = 0.K[(]

— if t.from = t.to then ¢’ .k = 0.k

The transition relation R C X' x X' of the counter system is defined as follows:
(0,0") € R iff there is a r € R and a k € Ny such that o/ = t(0) for t = (r, k).
As updates to shared variables do not decrease their values, we obtain:

Proposition 1. For all configurations o, all rules v, and all transitions t appli-
cable to o, the following holds:

1. If o = r.p< then t(o) | r.p< 3. If o [r.@> then t(o) [r.p>
2. Ift(o) = r.p< then o b~ r.o< 4. Ift(o) E r.o> then o = r.p>
Schedules. A schedule is a sequence of transitions. A schedule 7 = tq1,...,t;,
is called applicable to configuration og, if there is a sequence of configurations
O1y...,0m such that o; = t;(0;—1) for all i, 0 < i < m. A schedule t1,...,t,
where t;.factor = 1 for 0 < i < m is a conventional schedule. If there is a

t;.factor > 1, then a schedule is called accelerated.

We write 7 - 7/ to denote the concatenation of two schedules 7 and 7/, and
treat a transition t as schedule. If 7 = 7 -t -7 - ¢’ - 73, for some 71, 72, and 73,
we say that transition ¢ precedes transition ¢’ in 7, and denote this by ¢ —, .

4 Diameter of Counter Systems

In this section, we will present the outline of the proof of our main theorem:

Theorem 1. Given a canonical threshold automaton TA and a size function N,
for each p in Prc the diameter of the counter system is less than or equal to
d(TA) = (C+1) - |R| +C, and thus independent of p.

From the theorem it follows that for all parameter values, reachability in
the counter system can be verified by exploring runs of length at most d(TA).
However, the theorem alone is not sufficient to solve the parameterized model
checking problem. For this, we combine the bound with the abstraction method

132 I. Konnov, H. Veith, and J. Widder

in [16]. More precisely, the counter abstraction in [16] simulates the counter sys-
tems for all parameter values that satisfy the resilience condition. Consequently,
the bound on the length of the run of the counter systems entails a bound for
the counter abstraction. We exploit this in the experiments in Section 5.

4.1 Proof Idea

Given a rule r, a schedule 7 and two transitions ¢; and ¢;, with t; —, ¢;, the
subschedule ¢; - ... - t; of 7 is a batch of rule v if tp.rule = r for ¢ < £ < j, and
if the subschedule is maximal, that is, i = 1V t;_1 # 7 and j = m V tj41 # 7.
Similarly, we define a batch of a class ¢ as a subschedule ¢; - .. .-t; where [r] = ¢
for i < ¢ < j, and where the subschedule is maximal as before.

Definition 4 (Sorted schedule). Given a schedule T, and the relation <!,
we define sort(r) as the schedule that satisfies:
1. sort(r) is a permutation of schedule T.
2. two transitions from the same equivalence class maintain their relative order,
that is, if t =+ t" and t ~p t', then t — o) U
3. for each equivalence class defined by ~p there is at most one batch in sort(r).
4o if t = sope(r) Uy then t ~p t' or [t] <1 [t/].

The crucial observation is that if we have a schedule 7, = ¢ - ¢ applicable to
configuration o with t.rule = t'.rule, we can replace it with another applicable
(one-transition) schedule 7o = t”, with ¢".rule = t.rule and t”.factor = t.factor+
t'.factor, such that 7 (0) = 72(0). Thus, we can reach the same configuration
with a shorter schedule. More generally, we may replace a batch of a rule by a
single accelerated transition whose factor is the sum of all factors in the batch.

In this section we give a bound on the diameter, i.e., the length of the shortest
path between any two configurations ¢ and ¢’ for which there is a schedule T
applicable to o satisfying ¢/ = 7(o). A simple case is if sort(7) is applicable to o
and each equivalence class defined by the precedence relation consists of a single
rule (e.g., the control flow is a directed acyclic graph). Then by Definition 4 we
have at most |R| batches in sort(r), that is, one per rule. By the reasoning of
above we can replace each batch by a single accelerated transition.

In general sort(7) may not be applicable to o, or there are equivalence classes
containing multiple rules, i.e., rules form cycles in the precedence relation. The
first issue comes from locking and unlocking. We identify milestone transitions,
and show that two neighboring non-milestone transitions can be swapped accord-
ing to sort in Section 4.3. We also deal with the issue of cycles in the precedence
relation. It is ensured by sort that within a segment, all transitions that belong
to a cycle form a batch. In Section 4.2, we replace such a batch by a batch
where the remaining rules do not form a cycle. Removing cycles requires the
assumption that shared variables are not incremented in cycles.

4.2 Removing Cycles

We consider the distance between two configurations o and ¢’ that satisty o.g =
o'.g, i.e., along any schedule connecting these configurations, the values of shared

On the Completeness of Bounded Model Checking 133

variables are unchanged, and thus the evaluations of guards are also unchanged.
By Definition 3, we can apply this section’s result to batches of a class.

Definition 5. Given a schedule T = t1,ts,..., we denote by || the length of
the schedule. Further, we define the following vectors

in(7)[(] = Z t;.factor, out(r)[(] = Z t;.factor, up(r) = Z t;.u.

1<i<|7| 1<i<|7| 1<i<|7|
ti.to=¢ ti.from=¢

From the definition of a counter system, we directly obtain:

Proposition 2. For all configurations o, and all schedules T applicable to o, if
o' =71(0), then ¢'.k = 0.k + in(7) — out(7), and o’.g = 0.g + up(7).

Proposition 3. For all configurations o, and all schedules 7 and 7' applicable to
o, if in(7) = in(7"), out(7) = out(r’'), and up(r) = up(7’), then 7(c) = 7/(0).

Given a schedule 7 = ¢1,t9,... we say that the index set I = {i1,...,7;}
forms a cycle in 7, if for all b, 1 < b < j, it holds that ¢;,.to = t;,_,.from, and
ti;.to = t;,.from. Let R(1) = {r: t; € T At;.rule = r}.

Proposition 4. For all schedules T, if T contains a cycle, then there is a sched-
ule 7' satisfying |7'| < |7], in(7) = in(7’), out(r) = out(7’), and R(7") C R(7).

Repeated application of the proposition leads to a cycle-free schedule (possibly
the empty schedule), and we obtain:

Theorem 2. For all schedules T, there is a schedule T that contains no cycles,
in(r) =in(7'), out(r) = out(r’), and R(7') C R(7).

The issue with this theorem is that 7 is not necessarily applicable to the same
configurations as 7. In the following theorem, we prove that if a schedule satisfies
a specific condition on the order of transitions, then it is applicable.

Theorem 3. Let 0 and o’ be two configurations with o.g = o’.g, and let T be
a schedule with up(7) = 0, all transitions unlocked in o, and where if t; —; t;,
then t; A5 t;. If o'.k — 0.k = in(1) — out(7), then T is applicable to o.

Corollary 1. For all configurations o, and all schedules T applicable to o, with
up(7) = 0, there is a schedule with at most one batch per rule applicable to o
satisfying that ' contains no cycles, 7'(0) = 7(0), and R(7") C R(7).

4.3 Identifying Milestones and Swapping Transitions

In this section we deal with locking and unlocking. To this end, we start by
defining milestones. Then the central Theorem 4 establishes that two conse-
quent non-milestone transitions can be swapped, if needed to sort the segment
according to <"": the resulting schedule is still applicable, and leads to the same
configuration as the original one.

134 I. Konnov, H. Veith, and J. Widder

Definition 6 (Left Milestone). Given a configuration o and a schedule 7 =
7' -t - 7" applicable to o, the transition t is a left milestone for o and T, if

1. there is a transition t' in 7’ satisfying t' ALt At <, t,

2. t.p< is locked in o, and

3. for allt' in 7', t'. 0= # t.p=.

Definition 7 (Right Milestone). Given a configuration o and a schedule T =
7 -t - 7" applicable to o, the transition t is a right milestone for o and 7, if

1. there is a transition t" in 7" satisfying t AL t" N U <, t,

2. t.p> is locked in (o), and

3. for allt" in 7", t".p> £ t.p>.

Definition 8 (Segment). Given a schedule T and configuration o, ' is a seg-
ment if it is a subschedule of T, and does not contain a milestone for o and T.

Having defined milestones and segments, we arrive at our central result.

Theorem 4. Let o be a configuration, T a schedule applicable to o, and T =
Ty - t1 - to - To. If transitions t1 and ty are not milestones for o and T, and satisfy
[ta] <Y [t1], then

1. schedule 7/ = 71 - ta - t1 - T2 s applicable to o,

it. 7'(0) =7(0), and

Repeated application of the theorem leads to a schedule where milestones
and sorted schedules alternate. By the definition of a milestone, there is at most
one milestone per condition. Thus, the number of milestones is bounded by C
(Definition 2). Together with Corollary 1, this is used to establish Theorem 1.

5 Experimental Evaluation

We have implemented the techniques in our tool BYMC [1]. Technical details
about our approach to abstraction and refinement can be found in [13]. The input
are the descriptions of our benchmarks in parametric PROMELA [17], which de-
scribe parameterized processes. Hence, as preliminary step BYMC computes the
PTA data abstraction [16] to obtain finite state processes. Based on this, BYMC
does preprocessing to compute threshold automata, the locking and unlocking
relations, and to generate the inputs for our model checking back-ends.

Preprocessing. First, we compute the set of rules R: Recall that a rule is a
tuple (from, to, =, >, u). BYMC calls NuSMV to explore a single process sys-
tem with unrestricted shared variables, in order to compute the (from, to) pairs.
From this, BYMC computes the reachable local states. In the case of our bench-
mark CBC, e.g., that cuts the local states we have to consider from 2000 to 100,
approximately. All our experiments — including the ones with FASTer [3] —are
based on the reduced local state space. Then, for each pair (from, to), BYMC
explores symbolic path to compute the guards and update vectors for the pair.
This gives us the set of rules R. Then, BYMC encodes Definition 1 in YICES,

On the Completeness of Bounded Model Checking 135

to construct the lock <, and unlock <, relations. Then, BYMC computes the
relations {(r,7): " A5 v A o' <, r}and {(r,7”):r L5 7" A 7" <, 1} as
required by Definition 2. This provides the bounds.

Back-ends. BYMC generates the PIA counter abstraction [16] to be used by
the following back-end model checkers. We have also implemented an automatic
abstraction refinement loop for the counterexamples provided by NuSMV.
BMC. NuSMV 2.5.4 [10] (using MiniSAT) performs incremental bounded model
checking with the bound d.If a counterexample is reported, BYMC refines the
system as explained in [16], if the counterexample is spurious.

BMCL. We combine NuSMV with the multi-core SAT solver Plingeling [5]:
NuSMYV does bounded model checking for 30 steps. Spurious counterexample are
refined by BYMC. If there is no counterexample, NuSMV produces a single CNF
formula with the bound d, whose satisfiability is then checked with Plingeling.
BDD. NuSMV 2.5.4 performs BDD-based symbolic checking.

FAST. FASTer 2.1 [3] performs reachability analysis using plugin Mona-1.3.

5.1 Benchmarks

We encoded several asynchronous FTDAs in our parametric PROMELA, follow-
ing the technique in [17]; they can be obtained from [1]. All models contain
transitions with lower threshold guards. The benchmarks CBC also contain up-
per threshold guards. If we ignore self-loops, the precedence relation of all but
NBAC and NBACC, which have non-trivial cycles, are partial orders.
Folklore Reliable Broadcast (FRB) [9]. In this algorithm, n processes have
to agree on whether a process has broadcast a message, in the presence of f < n
crashes. Our model of FRB has one shared variable and the abstract domain of
two intervals [0,1) and [1,00). In this paper, we are concerned with the safety
property unforgeability: If no process is initialized with value 1 (message from
the broadcaster), then no correct process ever accepts.

Consistent Broadcast (STRB) [31]. Here, we have n — f correct processes
and f > 0 Byzantine faulty ones. The resilience condition is n > 3t At > f.
There is one shared variable and the abstract domain of four intervals [0, 1),
[L,t+ 1), [t+1,n—t), and [n —¢,00). Here, we check only unforgeability (see
FRB), whereas in [16] we checked also liveness properties.

Byzantine Agreement (ABA) [8]. There are n > 3t processes, f < t of them
Byzantine faulty. The model has two shared variables. We have to consider two
different cases for the abstract domain, namely, case ABAO with the domain
[0,1), [1,t+1), [t+1,["3]), and [["F"],00) and case ABA1 with the domain
0,1), [L,t+1), [t+ 1,264+ 1), [2t+1,["3*]), and [["]'],00). As for FRB, we
check unforgeability. This case study, and all below, run out of memory when
using SPIN for model checking the counter abstraction [16].

Condition-Based Consensus (CBC) [27]. This is a restricted form of con-
sensus solvable in asynchronous systems. We consider binary condition-based
consensus in the presence of clean crashes, which requires four shared variables.

136 I. Konnov, H. Veith, and J. Widder

Table 1. Summary of experiments on AMD Opteron®ZProcessor 6272 with 192 GB
RAM and 32 CPU cores. Plingeling used up to 16 cores. “T'O” denotes timeout of
24 hours; “OOM” denotes memory overrun of 64 GB; “ERR” denotes runtime error;
“RTO” denotes that the refinement loop timed out.

Input Threshold A. Bounds Time, [HH:]MM:SS Memory, GB
FTDA |L| |R|CS C” d d* d BMCL BMC BDD FAST BMCL BMC BDD FAST

Fic. 1 5 51 0 11 9 27 00:00:03 00:00:04 00:01 00:00:08 0.01 0.02 0.02 0.06
FRB 6 81 0 17 10 10 00:00:13 00:00:13 00:06 00:00:08 0.01 0.02 0.02 0.01
STRB 7 153 0 63 30 90 00:00:09 00:00:06 00:04 00:00:07 0.02 0.03 0.02 0.07
ABAO 37 180 6 0 1266 586 1758 00:21:26 02:20:10 00:15 00:08:40 6.37 1.49 0.07 3.56
ABA1 61 392 8 0 3536 1655 6620 TO 25% TO 12% 00:33 02:36:25 TO TO 0.08 15.65
CBCO 43 204 0 O 204 204 612 01:38:54 TO 57% OOM ERR 1.28 TO OOM ERR
CBC1 115 896 1 1 2690 2180 8720 TO 05% TO 11% TO TO TO TO TO TO
NBACC 109 1724 6 0 12074 5500 16500 RTO RTO TO TO RTO RTO TO TO
NBAC 771356 6 0 9498 4340 13020 RTO RTO TO TO RTO RTO TO TO

‘WHEN A BuG 1S INTRODUCED
979 469 1407 00:00:16 00:00:18 TO 00:05:57 0.04 0.04 TO 2.70
2699 1305 5220 00:00:22 00:00:21 TO ERR 0.06 0.06 TO ERR

ABAO 32 139
ABA1 54 299 8

(=]
[

Under the resilience condition n > 2t A f > 0, we have to consider two differ-
ent cases depending on f: If f = 0 we have case CBCO with the domain [0, 1),
(L, [5]), [[5],n—1), and [n —t,00). If f # 0, case CBC1 has the domain: [0, 1),
(L), [151, [[5],n—1), and [n —t,00). We verified several properties, all of
which resulted in experiments with similar characteristics. We only give validity,
in the table, i.e., no process accepts value 0, if all processes initially have value 1.
Non-blocking Atomic Commitment (NBAC and NBACC) [30,15]. Here,
n processes are initialized with YES or NO and decide on whether to commit a
transaction. The transaction must be aborted if at least one process is initialized
to No. We consider the cases NBACC and NBAC of clean crashes and crashes,
respectively. Both models contain four shared variables, and the abstract domain
is [0,1) and [1,n) and [n—1,n), and [n, c0). The algorithm uses a failure detector,
which is modeled as local variable that changes its value non-deterministically.

5.2 Evaluation

Table 1 summarizes the experiments. For the threshold automata, we give the
number of local states |£|, rules |R|, and conditions according to Definition 2,
i.e., C= and C>. The column d provides the bound on the diameter as in The-
orem 1, whereas the column d* provides an improved diameter: In the proof of
Theorem 1, we bound the length of all segments by |R|. However, by Definition 6,
segments to the left of a left milestone cannot contain transitions for rules with
the same condition as the milestone. The same is true for segments to the right
of right milestones. BYMC explores all orders of milestones, an uses this obser-
vation about milestones to compute a more precise bound d* for the diameter.
Our encoding of the counter abstraction only increments and decrements coun-
ters. If \ﬁ| is the size of the abstract domain, a transition in a counter system is

On the Completeness of Bounded Model Checking 137

simulated by at most |D| — 1 steps in the counter abstraction; this leads to the
diameter d for counter abstractions, which we use in our experiments.

As the experiments show, all techniques rapidly verify FRB, STRB, and
Fic. 1. FRB and STRB had already been verified before using SPIN [16]. The
more challenging examples are ABAO and ABA1, where BDD clearly outper-
forms the other techniques. Bounded model checking is slower here, because the
diameter bound does not exploit knowledge on the specification. FAST performs
well on these benchmarks. We believe this is because many rules are always dis-
abled, due to the initial states as given in the specification. To confirm this
intuition, we introduced a bug into ABAO and ABA1, which allows the pro-
cesses to non-deterministically change their value to 1. This led to a dramatic
slowdown of BDD and FAST, as reflected in the last two lines.

Using the bounds of this paper, BMCL verified CBCO, whereas all other tech-
niques failed. BMCL did not reach the bounds for CBC1 with our experimental
setup, but we believe that the bound is within the reach with a better hardware
or an improved implementation. In this case, we report the percentages of the
bounds we reached with bounded model checking.

In the experiments with NBAC and NBACC, the refinement loop timed out.
We are convinced that we can address this issue by integrating the refinement
loop with an incremental bounded model checker.

6 Related Work and Discussions

Specific forms of counter systems can be used to model parameterized systems of
concurrent processes. Lubachevsky [25] discusses compact programs that reach
each state in a bounded number of steps, where the bound is independent of
the number of processes. In [25] he gives examples of compact programs, and
in [24] he proves that specific semaphore programs are compact. We not only
show compactness, but give a bound on the diameter. In our case, communi-
cation is not restricted to semaphores, but we have threshold guards. Counter
abstraction [29] follows this line of research, but as discussed in [4], does not
scale well for large numbers of local states.

Acceleration in infinite state systems (e.g., in flat counter automata [22]) is
a technique that computes the transitive closure of a transition relation and
applies it to the set of states. The tool FAST [2] uses acceleration to compute
the set of reachable states in a symbolic procedure. This appears closely related
to our acceleration factors. However, in [2] a transition is chosen and accelerated
dynamically in the course of symbolic state space exploration, while we statically
use acceleration factors and reordering of transitions.

One achieves completeness for reachability in bounded model checking by
exploring all runs that are not longer than the diameter of the system [6]. The
notion of completeness threshold [11] generalizes this idea to safety and liveness
properties. As in general, computing the diameter is believed to be as hard
as the model checking problem, one can use a coarser bound provided by the
reoccurrence diameter [19]. In practice, the reoccurrence diameter of counter
abstraction is prohibitively large, so that we give bounds on the diameter.

138 I. Konnov, H. Veith, and J. Widder

Partial orders are a useful concept for reasoning about distributed systems [20].
In model checking, partial order reduction [14,32,28] is used to reduce the search
space. It is based on the idea that changing the order of steps of concurrent pro-
cesses leads to “equivalent” behavior with respect to the specification. Typically,
partial order reduction is used on-the-fly to prune runs that are equivalent to
representative ones. In contrast, we bound the length of representative runs of-
fline in order to ensure completeness of bounded model checking. A partial order
reduction for threshold-guarded FTDAs was introduced in [7]. It can be used for
model checking small instances, while we focus on parameterized model checking.

Our technique of determining which transitions can be swapped in a run
reminds of movers as discussed by Lipton [23], or more generally the idea to
show that certain actions can be grouped into larger atomic blocks to simplify
proofs [12,21]. Movers address the issue of grouping many local transitions of
a process together. In contrast, we conceptually group transitions of different
processes together into one accelerated transition. Moreover, the definition of a
mover by Lipton is independent of a specific run: a left mover (e.g., a “release”
operation) is a transition that in all runs can “move to the left” with respect
to transitions of other processes. In our work, we look at individual runs and
identify which transitions (milestones) must not move in this run.

As next steps we will focus on liveness of fault-tolerant distributed algorithms.
In fact the liveness specifications are in the fragment of linear temporal logic for
which it is proven [18] that a formula can be translated into a cliquey Biichi
automaton. For such automata, [18] provides a completeness threshold. Still,
there are open questions related to applying our results to the idea of [18].

References

1. ByMC: Byzantine model checker (2013),
http://forsyte.tuwien.ac.at/software/bymc/ (accessed: June 2014)

2. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to
practice. STTT 10(5), 401-424 (2008)

3. Bardin, S., Leroux, J., Point, G.: Fast extended release. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63—66. Springer, Heidelberg (2006)

4. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction
for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 64-78. Springer, Heidelberg (2009)

5. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition 2013.
In: Proceedings of SAT Competition 2013; Solver and p. 51 (2013)

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
bdds. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207.
Springer, Heidelberg (1999)

7. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-
tolerant distributed protocols. In: DSN, pp. 73-84 (2011)

8. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J.
ACM 32(4), 824-840 (1985)

9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225-267 (1996)

http://forsyte.tuwien.ac.at/software/bymc/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

On the Completeness of Bounded Model Checking 139

Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359-364. Springer, Heidelberg (2002)

Clarke, E., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and complexity
of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS,
vol. 2937, pp. 85-96. Springer, Heidelberg (2004)

Doeppner, T.W.: Parallel program correctness through refinement. In: POPL,
pp. 155-169 (1977)

Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tutorial on parame-
terized model checking of fault-tolerant distributed algorithms. In: Bernardo, M.,
Damiani, F., Hiahnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 122-171. Springer, Heidelberg (2014)

Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176-185. Springer,
Heidelberg (1991)

Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distributed Computing 15(1), 17-25 (2002)

John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD,
pp. 201-209 (2013)

John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards modeling and model
checking fault-tolerant distributed algorithms. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) SPIN 2013. LNCS, vol. 7976, pp. 209-226. Springer, Heidelberg (2013)
Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear complete-
ness thresholds for bounded model checking. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV 2011. LNCS, vol. 6806, pp. 557-572. Springer, Heidelberg (2011)
Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298-309. Springer, Heidelberg (2002)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558-565 (1978)

Lamport, L., Schneider, F.B.: Pretending atomicity. Tech. Rep. 44, SRC (1989)
Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489-503. Springer, Heidelberg
(2005)

Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Commun. ACM 18(12), 717-721 (1975)

Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. II. Tech. Rep. 64, New York University. Computer Science
Department (1983)

Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. I. Acta Informatica 21(2), 125-169 (1984)

Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)

Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541-550 (2003)

Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409-423. Springer,
Heidelberg (1993)

140 I. Konnov, H. Veith, and J. Widder

29. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1, 00)- counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107-122.
Springer, Heidelberg (2002)

30. Raynal, M.: A case study of agreement problems in distributed systems: Non-
blocking atomic commitment. In: HASE, pp. 209-214 (1997)

31. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80-94 (1987)

32. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) APN 1990. LNCS, vol. 483, pp. 491-515. Springer, Heidelberg (1991)

Lost in Abstraction:
Monotonicity in Multi-threaded Programs*

Alexander Kaiser!, Daniel Kroening!, and Thomas Wahl?

! University of Oxford, United Kingdom
2 Northeastern University, Boston, United States

Abstract. Monotonicity in concurrent systems stipulates that, in any global state,
extant system actions remain executable when new processes are added to the
state. This concept is not only natural and common in multi-threaded software,
but also useful: if every thread’s memory is finite, monotonicity often guaran-
tees the decidability of safety property verification even when the number of
running threads is unknown. In this paper, we show that the act of obtaining
finite-data thread abstractions for model checking can be at odds with mono-
tonicity: Predicate-abstracting certain widely used monotone software results in
non-monotone multi-threaded Boolean programs — the monotonicity is lost in
the abstraction. As a result, well-established sound and complete safety checking
algorithms become inapplicable; in fact, safety checking turns out to be undecid-
able for the obtained class of unbounded-thread Boolean programs. We demon-
strate how the abstract programs can be modified into monotone ones, without
affecting safety properties of the non-monotone abstraction. This significantly
improves earlier approaches of enforcing monotonicity via overapproximations.

1 Introduction

This paper addresses non-recursive procedures executed by multiple threads (e.g. dy-
namically generated, and possibly unbounded in number), which communicate via
shared variables or higher-level mechanisms such as mutexes. OS-level code, includ-
ing Windows, UNIX, and Mac OS device drivers, makes frequent use of such concur-
rency APIs, whose correct use is therefore critical to ensure a reliable programming
environment.

The utility of predicate abstraction as a safety analysis method is known to depend
critically on the choice of predicates: the consequences of a poor choice range from
inferior performance to flat-out unprovability of certain properties. We propose in this
paper an extension of predicate abstraction to multi-threaded programs that enables
reasoning about intricate data relationships, namely

shared-variable: “shared variables s and t are equal”,
single-thread: “local variable 1 of thread ¢ is less than shared variable s”, and
inter-thread: “local variable 1 of thread 7 is less than variable 1 in all other threads”.

* This work is supported by the Toyota Motor Corporation, NSF grant no. 1253331 and ERC
project 280053.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 141-155, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

142 A. Kaiser, D. Kroening, and T. Wahl

Why such a rich predicate language? For certain concurrent algorithms such as the
widely used ticket busy-wait lock algorithm [4] (the default locking mechanism in the
Linux kernel since 2008; see Fig. 1), the verification of elementary safety properties
requires single- and inter-thread relationships. They are needed to express, for instance,
that a thread holds the minimum ticket value, an inter-thread relationship.

In the main part of the paper, we address the problem of full parameterized (un-
bounded-thread) program verification with respect to our rich predicate language. Such
reasoning requires first that the n-thread abstract program P, obtained by existential
inter-thread predicate abstraction of the n-thread concrete program P™, is rewritten
into a single template program P to be executed by (any number of) multiple threads.
In order to capture the semantics of these programs in the template P, the template
programming language must itself permit variables that refer to the currently executing
or a generic passive thread; we call such programs dual-reference (DR). We describe
how to obtain P, namely essentially as an overapproximation of PP, for a constant
b that scales linearly with the number of inter-thread predicates used in the predicate
abstraction.

Given the Boolean dual-reference program P, we might now expect the unbounded-
thread replicated program P to form a classical well quasi-ordered transition sys-
tem [2], enabling the fully automated, algorithmic safety property verification in the
abstract. This turns out not to be the case: the expressiveness of dual-reference pro-
grams renders parameterized program location reachability undecidable, despite the
finite-domain variables. The root cause is the lack of monotonicity of the transition re-
lation with respect to the standard partial order over the space of unbounded thread
counters. That is, adding passive threads to the source state of a valid transition can
invalidate this transition and in fact block the system. Since the input C programs are,
by contrast, perfectly monotone, we say the monotonicity is lost in the abstraction. As
a result, our abstract programs are in fact not well quasi-ordered.

Inspired by earlier work on monotonic abstractions [3], we address this problem by
restoring the monotonicity using a simple closure operator, which enriches the transi-
tion relation of the abstract program P such that the obtained program P,, engenders a
monotone (and thus well quasi-ordered) system. The closure operator essentially termi-
nates passive threads that block transitions allowed by other passive threads. In contrast
to those earlier approaches, which enforce (rather than restore) monotonicity in gen-
uinely non-monotone systems, we exploit the fact that the input programs are mono-
tone. As a result, the monotonicity closure P, can be shown to be safety-equivalent to
the intermediate program P.

To summarize, the central contribution of this paper is a predicate abstraction strat-
egy for unbounded-thread C programs, with respect to the rich language of inter-thread
predicates. This language allows the abstraction to track properties that are essentially
universally quantified over all passive threads. To this end, we first develop such a
strategy for a fixed number of threads. Second, in preparation for extending it to the
unbounded case, we describe how the abstract model, obtained by existential predi-
cate abstraction for a given thread count n, can be expressed as a template program
that can be multiply instantiated. Third, we show a sound and complete algorithm for
reachability analysis for the obtained parameterized Boolean dual-reference programs.

Lost in Abstraction: Monotonicity in Multi-threaded Programs 143

struct Spinlock { The ticket algorithm: Shared vari-

natural s := 1; // ticket being served able lock has two integer components:

natural ¢ := 1; }; // next free ticket s holds the ticket currently served (or,

if none, the ticket served next), while

struct Spinlock lock; // shared t holds the ticket to be served after all
waiting threads have had access.

void spin_lock() { To request access to the locked region,

natural [:= 0; / local a thread atomically retrieves the value

£1: 1 := fetch_and_add(lock.t); of t and then increments t. The thread

02 while (I # lock.s) then busy-waits (“spins”) until local

/* spin */; } variable 1 agrees with shared s. To un-

lock, a thread increments s.
void spin_unlock() {
l3: lock.s++; } See [21] for more intuition.

Fig. 1. Our goal is to verify “unbounded-thread mutual exclusion”: no matter how many threads
try to acquire and release the lock concurrently, no two of them should simultaneously be between
the calls to functions spin_lock and spin_unlock

We overcome the undecidability of the problem by building a monotone closure that
enjoys the same safety properties as the original abstract dual-reference program.

We omit in this paper practical aspects such as predicate discovery, the algorithmic
construction of the abstract programs, and abstraction refinement. In our technical re-
port [21], we provide, however, an extensive appendix, with proofs of all lemmas and
theorems.

2 Inter-Thread Predicate Abstraction

In this section we introduce single- and inter-thread predicates, with respect to which
we then formalize existential predicate abstraction. Except for the extended predicate
language, these concepts are mostly standard and lay the technical foundations for the
contributions of this paper.

2.1 Input Programs and Predicate Language

2.1.1 Asynchronous Programs. An asynchronous program P allows only one thread
at a time to change its local state. We model P, designed for execution by n > 1 con-
current threads, as follows. The variable set V of a program P is partitioned into sets
S and L. The variables in S, called shared, are accessible jointly by all threads, and
those in L, called local, are accessible by the individual thread that owns the variable.
We assume the statements of P are given by a transition formula R over unprimed
(current-state) and primed (next-state) variables, Vand V/ = {v' : v € V}. Further, the
initial states are characterized by the initial formula Z over V. We assume Z is express-
ible in a suitable logic for which existential quantification is computable (required later
for the abstraction step).

144 A. Kaiser, D. Kroening, and T. Wahl

As usual, the computation may be controlled by a local program counter pc, and
involve non-recursive function calls. When executed by n threads, P gives rise to n-
thread program states consisting of the valuations of the variables in V,, = S U L; U
... Ly, where L; = {1, : 1 € L}. We call a variable set uniformly indexed if its vari-
ables either