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Preface

This volume contains the proceedings of the 25th Conference on Concurrency
Theory (CONCUR 2014), held in Rome, at the University of Rome “La Sapienza”
and organized by University of Rome “La Sapienza” and the University of
Padova. The purpose of the CONCUR conference is to bring together researchers,
developers and students in order to advance the theory of concurrency and
promote its applications. The principal topics include basic models of concur-
rency such as abstract machines, domain theoretic models, game theoretic mod-
els, categorical models, process algebras, graph transformation systems, coalge-
braic models and Petri nets; logics for concurrency such as modal logics, prob-
abilistic and stochastic logics, temporal logics, and resource logics; models of
specialized systems such as biology-inspired systems, circuits, hybrid systems,
mobile and collaborative systems, multi-core processors, probabilistic systems,
real-time systems, service-oriented computing, and synchronous systems; ver-
ification and analysis techniques for concurrent systems such as abstract in-
terpretation, atomicity checking, model checking, race detection, pre-order and
equivalence checking, run-time verification, state-space exploration, static anal-
ysis, synthesis, testing, theorem proving, and type systems; related programing
models such as distributed, component-based, object-oriented, web services and
security issues in concurrent systems. This was the 25th edition of CONCUR.
To mark this special occasion, the conference program included an invited pre-
sentation by Tony Hoare on the history of the theory of concurrency, the way
it intertwines with the origin and development of the CONCUR conferences
and the future perspectives in the field of concurrency theory. The conference
program was further greatly enhanced by the enlightening invited talks by

– Javier Esparza (Technische Universität München, Germany)
– Jane Hillston (University of Edinburgh, UK),
– Catuscia Palamidessi (Inria Saclay and LIX, France),
– Vasco Vasconcelos (Universidade de Lisboa, Portugal).

This edition of the conference attracted 124 submissions. We wish to thank
all the authors for their interest in CONCUR 2014. After careful discussions,
the Program Committee selected 35 papers for presentation at the conference.
Each submission was refereed by at least three reviewers, who delivered detailed
and insightful comments and suggestions. The conference chairs warmly thank
all the members of the Program Committee and all the referees for their hard
and professional work, as well as for the friendly and constructive discussions.
We would also like to thank the authors for having done their best to revise their
papers taking into account the comments and suggestions by the referees.



VI Preface

The conference this year was co-located with two other conferences: TGC
2014 (9th International Symposium on Trustworthy Global Computing) and
IFIP-TCS (8th International IFIP Conference on Theoretical Computer Sci-
ence). Additionally, CONCUR 2014 included the following satellite workshops:

– EXPRESS/SOS (Combined 21st International Workshop on Expressiveness
in Concurrency and 11th Workshop on Structured Operational Semantics),
organized by Johannes Borgström and Silvia Crafa;

– YR-CONCUR (5th Young Researchers Workshop on Concurrency Theory),
organized by Matteo Cimini;

– BEAT (3rd International Workshop on Behavioural Types), organized by
Simon Gay, on behalf of COST Action IC1201 (BETTY);

– FOCLASA (13th International Workshop on the Foundations of Coordina-
tion Languages and Self-Adaptation), organized by Javier Cámara and José
Proença;

– PV 2014 (Workshop on Parameterized Verification), organized by Giorgio
Delzanno and Parosh A. Abdulla;

– TRENDS (Trends in Concurrency Theory), organized by Ilaria Castellani
and Mohammad Mousavi, under the auspices of IFIP WG 1.8.

We would like to thank all the people who contributed to the success of
CONCUR 2014, in particular the workshop organization chair Silvia Crafa, the
Organizing Committee and the administrative staff. Furthermore, we thank the
University of Rome “La Sapienza” and the Department of Mathematics of the
University of Padova for their financial support. We are also grateful to Andrei
Voronkov for his excellent EasyChair conference management system, which was
extremely helpful for the electronic submission of papers, the Program Commit-
tee discussions and the production of the proceedings.

June 2014 Paolo Baldan
Daniele Gorla
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Åman Pohjola, Johannes
Aminof, Benjamin
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Laws of Programming: The Algebraic

Unification of Theories of Concurrency

Tony Hoare

Microsoft Research (Cambridge) Ltd.

Abstract. I began my academic research career in 1968, when I moved
from industrial employment as a programmer to the Chair of Computing
at the Queens University in Belfast. My chosen research goal was to dis-
cover an axiomatic basis for computer programming. Originally I wanted
to express the axioms as algebraic equations, like those which provide
the basis of arithmetic or group theory. But I did not know how. After
many intellectual vicissitudes, I have now discovered the simple secret. I
would be proud of this discovery, if I were not equally ashamed at taking
so long to discover it.



The Benefits of Sometimes Not Being Discrete

Jane Hillston

LFCS, School of Informatics, University of Edinburgh
jane.hillston@ed.ac.uk

http://www.quanticol.eu

Abstract. Discrete representations of systems are usual in theoretical
computer science and they have many benefits. Unfortunately they also
suffer from the problem of state space explosion, sometimes termed the
curse of dimensionality. In recent years, research has shown that there
are cases in which we can reap the benefits of discrete representation
during system description but then gain from more efficient analysis by
approximating the discrete system by a continuous one. This paper will
motivate this approach, explaining the theoretical foundations and their
practical benefits.



Deterministic Negotiations:

Concurrency for Free

Javier Esparza

Fakultät für Informatik, Technische Universität München, Germany

Abstract. We give an overview of recent results and work in progress on
deterministic negotiations, a concurrency model with atomic multi-party
negotiations as primitive actions.



The Progress of Session Types

Vasco Thudichum Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

The session types can be traced back to 1993, when Kohei Honda presented
“Types for dyadic interaction” in the seventh edition of this conference [5].
This seminal work, introducing basic type constructors and type composition
operators for “dyadic interaction”, was followed by two other papers, the first
introducing a channel-based programming language [11], and later extending
these ideas to a more general setting where channels may carry channels, while
integrating recursive types [6].

Session types aim at modelling generic, meaningful structures of interaction.
The first versions, those prevalent until 2008, encompassed exactly two inter-
acting partners, as in term “dyadic”. We have seen applications to concurrent,
message passing systems, including the pi calculus (or a mild variation of it)
as in [6] or in functional languages equipped with channel operations [12], but
also to object-oriented systems, where session types mediate access to object’s
methods [3, 4].

By the turn of the millennium, communication had become a central concern
in computational systems. Structures limited to describing binary interactions
fall short of capturing the big picture of complex systems, even if they manage
to represent all the individual binary interactions, necessarily in an unrelated
manner. Different proposals address this matter, for example, by extending bi-
nary session types to scenarios of multiple participants [7] or by starting from
new type constructs to describe multiparty interactions [2].

Types that capture the interaction patterns of a collection of participants find
multiple applications these days, including the conventional verification of source
code conformance against types, or, when the above deems not possible, the
monitoring of running code against types, signalling divergences or providing for
adaptation measures. They may as well be used for code generation, mechanically
laying down the whole communication code, to be manually completed with
the “computational” code, or for testing code against communication traces
extracted from types.

The success of session types is due in part for its simplicity. With a suit-
able syntax, types become intuitive descriptions of protocols [10]. Furthermore,
session types interact easily with programming languages; in fact they were de-
veloped to be integrated in programming languages. What is more surprising is
that they can equip programming languages that were not designed with session
types in mind, as for example conventional object-oriented languages [3, 4] or
concurrent functional languages with channel based communication [12]. Also,
recent developments revealed deep connections between session types and linear
logic [1].



The Progress of Session Types XVII

What lies ahead? There is strong sense of linearity associated to session types.
Session types make (possibly long) series of interaction look like atomic, free from
interference from other computations. This is usually achieved via a tight control
on who keeps a reference to the interaction medium (the channel or the object
reference, for example). At times, more flexible mechanisms would be welcome,
but there is fine balance between flexibility and the kind of properties session
types ensure. There are also important models of computation that pose diffi-
culties to session types as we know them. These are systems whose assumptions
lie outside those that underlay session types. I recall distributed systems with
nodes that may die, and the actor system of computation [8, 9].

References
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Generalized Bisimulation Metrics�

Konstantinos Chatzikokolakis 1,2, Daniel Gebler 3,
Catuscia Palamidessi 4,2, and Lili Xu 2,5

1 CNRS
2 LIX, Ecole Polytechnique
3 VU University Amsterdam

4 INRIA
5 Institute of Software, Chinese Academy of Science

Abstract. The bisimilarity pseudometric based on the Kantorovich lift-
ing is one of the most popular metrics for probabilistic processes proposed
in the literature. However, its application in verification is limited to lin-
ear properties. We propose a generalization of this metric which allows to
deal with a wider class of properties, such as those used in security and
privacy. More precisely, we propose a family of metrics, parametrized on
a notion of distance which depends on the property we want to verify.
Furthermore, we show that the members of this family still character-
ize bisimilarity in terms of their kernel, and provide a bound on the
corresponding metrics on traces. Finally, we study the case of a met-
ric corresponding to differential privacy. We show that in this case it is
possible to have a dual form, easier to compute, and we prove that the
typical constructs of process algebra are non-expansive with respect to
this metrics, thus paving the way to a modular approach to verification.

* This work has been partially supported by the project ANR-12-IS02-001 PACE, the
project ANR-11-IS02-0002 LOCALI, the INRIA Equipe Associée PRINCESS, the
INRIA Large Scale Initiative CAPPRIS, and the EU grant 295261 MEALS.
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Laws of Programming: The Algebraic

Unification of Theories of Concurrency

Tony Hoare

Microsoft Research (Cambridge) Ltd.

Abstract. I began my academic research career in 1968, when I moved
from industrial employment as a programmer to the Chair of Computing
at the Queens University in Belfast. My chosen research goal was to dis-
cover an axiomatic basis for computer programming. Originally I wanted
to express the axioms as algebraic equations, like those which provide
the basis of arithmetic or group theory. But I did not know how. After
many intellectual vicissitudes, I have now discovered the simple secret. I
would be proud of this discovery, if I were not equally ashamed at taking
so long to discover it.

1 Historical Background

In 1969 [6], I reformulated Bob Floyd’s assertional method of assigning meanings
to programs [4] as a formal logic for conducting verification proofs. The basic
judgment of the logic was expressed as a triple, often written

{p}q{r}.

The first operand of the triple (its precondition p) is an assertion, i.e., a de-
scription of the state of the computer memory before the program is executed.
The middle operand (q) is the program itself, and the third operand (its post-
condition r) is also an assertion, describing the state of memory after execution.

I now realise that there is no need to confine the precondition and the post-
condition to be simply assertions. They can be arbitrary programs. The validity
of the logic in application to programming is not affected. However the restric-
tions are fully justified by the resulting simplification in application of the logic
to program verification.

The logic itself was specified as a collection of proof rules, similar to the system
of natural deduction for reasoning in propositional logic. I illustrated the rules
by the proof of correctness of a single small and over-simplified program, a very
long division. This method of verification has since been used by experts in the
proof of many more programs of much greater significance.

In the 1970s, my interests turned to concurrent programming, which I had
failed to understand when I was manager of an operating system project for
my industrial employer (the project failed [10]). To develop and confirm my
understanding, I hoped to find simple proof rules for verification of concurrent
programs. In fact, I regarded simplicity of proof as an objective criterion of
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the quality of any feature proposed for inclusion in a high level programming
language - just as important as a possibly conflicting criterion, efficiency of
implementation. As a by-product of the search for the relevant proof rules, I
developed two features for shared-memory multiprogramming: a proposal for
the conditional critical region [7], and later for a program structure known as
the monitor [8].

At this time, the microprocessor revolution was offering an abundance of cheap
computer power for programs running on multiple processors. They were con-
nected by simple wires, and did not share a common memory. It was therefore
important that communication on the wires entailed a minimum of software or
hardware overhead. The criterion of efficiency led me to the proposal of a pro-
gramming language structure known as Communicating Sequential Processes
(CSP) [9]. The results of this research were exploited in the design of a com-
paratively successful microprocessor series, the INMOS transputer, and its less
widely used programming language occam [14]. However, I was worried by the
absence of a formal verification system for CSP.

In 1977 I moved to Oxford University, where Dana Scott had developed a
tradition of denotational semantics for the formal definition of programming
languages [20]. This tradition defines the meaning of a program in terms of all
its possible behaviours when executed. I exploited the research capabilities of my
Doctoral students at Oxford, Steve Brookes and Bill Roscoe; they developed a
trace-based denotational semantics of CSP and proved that it satisfies a powerful
and elegant set of algebraic laws [3].

Roscoe exploited the trace-based semantics in a model checking tool called
FDR [19]. Its purpose was to explore the risk of deadlocks, non-termination and
other errors in a program. On discovery of a potential failure, the trace of events
leading up to the error helps the programmer to explore its possible causes, and
choose which of them to correct.

2 The Origins of CONCUR

In the 1990s, I was a co-investigator on the basic research action CONCUR,
funded by the European Community as an ESPRIT project. Its goal was a
unification of three rival theories of concurrent programming: CSP (described
above), a Calculus of Communicating Systems (CCS, due to Robin Milner) [17],
and an Algebra of Communicating Processes (ACP, due to Jan Bergstra) [1,2].
These three designs differed not only in the details of their syntax, but also in
the way that their semantic foundations were formalised.

Milners CCS was defined by an operational semantics. Its basic judgment is
also a triple, called a transition

r
q→ p.

But in this case, the first operand (r) is the program being executed, the second
operand (q) is a possible initial action of the program, and the third operand
(p) is the program which remains to be executed after the first action has been
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performed. The operational semantics is given as a set of rules for deriving
transitions, similar to those for deriving triples by verification logic.

Such an operational semantics is most directly useful in the design and imple-
mentation of interpreters and compilers for the language. In fact, the restriction
of q to a single atomic action is motivated by this application. Relaxation of the
restriction leads to a ‘big step’ semantics, which is equally valid for describing
concurrent programs, but less useful for describing implementations.

The semantics of ACP was expressed as a set of algebraic equations and
inequations, of just the kind I originally wanted in 1969. Equations between
pairs of operands are inherently simpler and more comprehensible than triples,
and algebraic substitution is a simpler and more powerful method of reasoning
than that described by proof rules. Thus algebra is directly useful in all forms
of reasoning about programs, including their optimisation for efficient execution
on available hardware.

Unfortunately, we did not exploit this power of algebra to achieve the unifica-
tion between theories that was the goal of the CONCUR project. In spite of the
excellent research of the participants, this goal eluded us. I explained the failure
as ultimately due to the three different methods of describing the semantics.
I saw them as rivals, rather than complementary methods, useful for different
purposes.

Inspired by this failure, in the 1990s I worked with my close colleague He Jifeng
on a book entitled “Unifying Theories of Programming” (published in 1998) [5].
It was based on a model in which programs are relations between the initial and
final states of their execution. To represent errors like non-termination, the rela-
tions were required to satisfy certain ‘healthiness’ constraints. Unfortunately, we
could not find a simple and realistic model for concurrency and communication
in a relational framework.

3 The Laws of Programming [11]

In the 1980s, the members of the Programming Research Group at Oxford were
pursuing several lines of research in the theory of programming. There were many
discussions of our apparently competing approaches. However, we all agreed
on a set of algebraic laws covering sequential programming. The laws stated
that the operator of sequential composition (;) is associative, has a unit (skip),
and distributes through non-deterministic choice (�). This choice operator is
associative, commutative and idempotent. I now recommend introduction of
concurrent composition as a new and independent operator (‖). It shares all the
algebraic properties of sequential composition and in addition it is commutative.

These algebraic properties are very familiar. They are widely taught in sec-
ondary schools. They are satisfied by many different number systems in arith-
metic. And their application to computer programs commands almost immediate
assent from experienced programmers.

A less familiar idea in the algebra of programming is a fundamental refine-
ment ordering (p < q), which holds between similar or comparable programs.
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It means that q can do everything that p can do, but maybe more. Thus p is
a more determinate program than q; in all circumstances, it is therefore a valid
implementation of q. Furthermore, if q has no errors, then neither has p. The
algebraic principle of substitution of sub-terms within a term is strengthened to
state that replacement of any sub-term of p by a sub-term that refines it will
lead to a refinement of the original term p. This property is often formalised by
requiring all the operators of the algebra to be monotonic with respect to the
refinement ordering. Equality, and the substitution of equals, is just an extreme
special case of refinement.

The most important new law governing concurrency is called the exchange law
[12,13]. I happened upon it in 2007, and explored and developed it in collabora-
tion with Ian Wehrman, then an intern with me at Microsoft Research. The law
has the form of a refinement, expressing a sort of mutual distribution between
sequential composition and concurrent composition. It is modelled after the in-
terchange law, which is part of the mathematical definition of a two-category
[16]. Although the law has four operands, it is similar in shape to other familiar
laws of arithmetic:

(p ‖ q); (p ‖ q) < (p; p) ‖ (q; q)
The exchange law can be interpreted as expressing the validity of interleaving of
threads as an implementation their concurrent composition. Such an interleaving
is still widely used in time-sharing a limited number of processing units among
a larger number of threads. But the law does not exclude the possibility of true
concurrency, whereby actions from different threads occur simultaneously. As
a result, the law applies both to shared-memory concurrency with conditional
critical regions, as well as to communicating process concurrency, with either
synchronous or buffered communication. Such a combination of programming
idioms occurs widely in practical applications of concurrent systems.

4 Unification of Theories

This small collection of algebraic laws also plays a central role in the unification
of other theories of concurrency, and other methods of presenting its semantics.
For example, the deductive rules of Hoare logic can themselves be proved from
the laws by elementary algebraic reasoning, just as the rules of natural deduction
are proved from the Boolean Algebra of propositions. The proofs are based on
a simple algebraic definition of the Hoare triple:

{p}q{r} �
= p ; q < r

Hoare logic has more recently been extended by John Reynolds and Peter
O’Hearn to include separation logic [15,18], which provides methods for reasoning
about object orientation as well as concurrency. It thereby fills two serious gaps in
the power of the original Hoare logic. The two new rules of concurrent separation
logic can be simply proved from the single exchange law. And vice-versa: the
exchange law can be proved from the rules of separation logic.
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The concurrency rules for the transitions of Milners CCS can be similarly
derived from the exchange law. Again, the proof is reversible. The definition of
the Milner transition is remarkably similar to that of the Hoare triple:

r
q→ p

�
= q ; p < r

As a consequence, every theorem of Hoare logic can be translated to a theorem
of Milner semantics by changing the order of the operands. And vice versa.

Additional operational rules that govern transitions for sequential composition
can also be proved algebraically. The derivation from the same algebraic laws
of two distinct (and even rival) systems for reasoning about programs is good
evidence for the validity of the laws, and for their usefulness in application to
programs.

Finally, a denotational semantics in terms of traces has an important role in
defining a mathematical model for the laws. The model is realistic to the actual
internal behaviour of a program when it is executed. It therefore provides an
effective way of describing the events leading up to an error in the program, and
in helping its diagnosis and correction.

5 Prospects

The main initial value of the unification of theories in the natural sciences is
to enable experts to agree on the foundation, and collaborate in development of
different aspects and different applications of it. To persuade a sceptical engineer
(or manager) to adopt a theory for application on their next project, agreement
among experts is an essential prerequisite. It is far too risky to apply a theory
on which experts disagree.

In the longer term, the full value of a theory of programming will only be
realised when their use by programmers is supported by a modern program de-
velopment toolset. Such a toolset will contain a variety of sophisticated tools,
based on different presentations of the same underlying theory. For example, pro-
gram analysers and verification aids are based on deductive logic. Programming
language interpreters and compilers are based on operational semantics. Pro-
gram generators and optimisers are based on algebraic transformations. Finally,
debugging aids will be based on a denotational model of program behaviour.

The question then arises: how do we know that all these different tools are
fully consistent with each other? This is established by proof of the consistency
of the theories on which the separate tools have been based. Mutual derivation
of the theories is the strongest and simplest form of consistency: it establishes in
principle the mutual consistency of tools that are based on the separate theories.
What is more, the consistency is established by a proof that can be given even
in advance of the detailed design of the toolset.

Acknowledgements. My sincere thanks are due to Daniele Gorla and Paolo
Baldan for their encouragement and assistance in the preparation of this contri-
bution.
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Abstract. Discrete representations of systems are usual in theoretical computer
science and they have many benefits. Unfortunately they also suffer from the
problem of state space explosion, sometimes termed the curse of dimensionality.
In recent years, research has shown that there are cases in which we can reap the
benefits of discrete representation during system description but then gain from
more efficient analysis by approximating the discrete system by a continuous one.
This paper will motivate this approach, explaining the theoretical foundations and
their practical benefits.

1 Introduction

Over the last twenty to thirty years, areas of quantitative modelling and analysis, such
as performance, dependability and reliability modelling have embraced formal mod-
els [37]. This trend has been motivated by the increasing concurrency of the systems
under consideration and the difficulties of constructing the underlying mathematical
models, which are used for analysis, by hand. In particular concurrent modelling for-
malisms such as stochastic Petri nets and stochastic process algebras have been widely
adopted as high-level modelling languages for generating underlying Markovian mod-
els. Moreover, there has been much work exploring how the properties of the high-level
languages can be exploited to assist in the analysis of the underlying model through a
variety of techniques (e.g. decomposition [23, 39], aggregation based on bisimulation
[38], etc).

However, a combination of improved model construction techniques, and the in-
creasing scale and complexity of the systems being developed, has led to ever larger
models; and these models now frequently defy analysis even after model reduction
techniques such as those mentioned above. The problem is the well-known curse of
dimensionality: the state space of a discrete event system can grow exponentially with
the number of components in the system.

Fortunately, over the last decade a new approach has emerged which offers a way
to avoid this state space explosion problem, at least for one class of models. When the
system under consideration can be presented as a population model and the populations
involved are known to be large, then a good approximation of the discrete behaviour
can be achieved through a continuous or fluid approximation. Moreover, this model is
scale-free in the sense that the computational effort to solve it remains the same even
as the populations involved grow larger. Of course, there is a cost, in the sense that
some information is lost and it is no longer possible to analyse the system in terms of
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individual behaviours. But when average behaviours or expectations are required, for
example in situations of collective behaviour, the fluid approach has substantial benefits.

The rest of this paper is organised as follows. Section 2 gives an intuitive explanation
of how the fluid approximation approach has been widely used in biological modelling
for many years, before presenting the mathematical foundations for the approach as
provided by Kurtz’s Theorem in Section 3. The attraction of combining the technique
with the compositional models generated by process algebras is explained in Section
4, with discussion of how the mapping has been developed for a variety of process
algebras. In Section 5 we give an overview of extending these results into the model
checking arena, and in Section 6 we briefly summarise and conclude.

2 Biologists Just Do It!

In several disciplines fluid approximations have long been used, often without concern
for formal foundations. The most noticeable example of this is in biological modelling
of intra-cellular processes. These processes result from the collisions of molecules
within the cell, an inherently discrete process. Yet, the most common form of mathe-
matical model for these processes is a system of ordinary differential equations (ODEs)
which captures the collective behaviour in terms of concentrations of different molec-
ular states, rather than the states of individual molecules. At heart, this is a fluid ap-
proximation, as highlighted by Kurtz [46] and Gillespie [32]. But it has been so widely
adopted that many biologists no longer recognise that there is a fundamental shift in
representation taking place.

That there was an implicit transformation taking place during model construction
became more obvious when formal representations started to be used to describe intra-
cellular biological processes [58]. In the early 2000s researchers recognised that the intra-
cellular processes were highly concurrent systems, amenable to description formalisms
used to describe concurrency in computer systems. This led to a plethora of adopted and
developed process algebras for describing cellular processes e.g. [18, 56, 57, 24]. Whilst
most focussed on the discrete representation and subsequent discrete event simulation of
an underlying continuous time Markov chain (CTMC) using Gillespie’s algorithm [32],
work such as [17, 20] established that it was also possible to derive the systems of ODEs
more familiar to biologists from process algebra descriptions.

3 Kurtz’s Theorem

At the foundations of fluid approximation is a fundamental result by Kurtz, dating back
to the 1970s [45], which establishes that a sequence of CTMCs which satisfy some con-
ditions and represent essentially the same system under growing populations, converges
to a set of ODEs. At convergence the behaviour of the CTMC is indistinguishable from
the behaviour of the set of ODEs. However, this theoretical limit is at an infinite popu-
lation. Nevertheless in many practical cases we find empirically that sufficient conver-
gence is often achieved at much lower populations, as illustrated in Fig. 1.

In order to explain this result in more detail we introduce a simple representation
of Markov models of populations of interacting agents. Such models may be readily
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Fig. 1. Comparison between the limit fluid ODE and a single stochastic trajectory of a network
epidemic example, for total populations N = 100 and N = 1000. This demonstrates how the
accuracy of the approximation of behaviour captured by the fluid ODE improves as the population
size grows.

derived from stochastic process algebras such as PEPA or EMPA [38, 7]. We consider
the case of models of processes evolving in continuous time, although a similar theory
can be considered for discrete-time models (see, for instance, [13]). In principle, we can
have different classes of agents, and many agents for each class in the system. To keep
notation simple, we assume here that the number of agents is constant and equal to N
(making a closed world assumption) but analogous results can be derived for systems
which include the birth and death of agents.

In particular, let us assume that each agent is a finite state machine, with internal states
taken from a finite set S, and labelled by integers: S = {1,2, . . . ,n}. We have a population

of N agents, and denote the state of agent i at time t, for i = 1, . . . ,N, by Y (N)
i (t) ∈ S.

Note that we have made explicit the dependence on N, the total population size.

A configuration of a system is thus represented by the tuple (Y (N)
1 , . . . ,Y (N)

N ). This
representation is based on treating each agent as a distinct individual with identity con-
ferred by the position in the vector. However, when dealing with population models,
it is customary to assume that single agents in the same internal state cannot be dis-
tinguished, hence we can move from the individual representation to the collective
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representation by introducing n variables counting how many agents are in each state.
This is sometimes termed a counting abstraction. Hence, we define

X (N)
j =

N

∑
i=1

1{Y (N)
i = j}, (1)

where 1{Y (N)
i = j} is an indicator function with value 1 when Y (N)

i = j and zero, oth-

erwise. Note that the vector X(N) = (X (N)
1 , . . . ,X (N)

n ) has a dimension independent of
N; it is referred to as the collective, population, or counting vector. The domain of

each variable X (N)
j is {0, . . . ,N}, and, by the closed world assumption, it holds that

∑n
j=1 X (N)

j = N. Let us denote with S (N) the subset of vectors of {1, . . . ,N}n that sat-
isfy this constraint.

The dynamics of the population models is expressed in terms of a set of possible
events or transitions. Events are stochastic, and take an exponentially distributed time
to happen. Moreover their rate may depend on the current global state of the system.
Hence, each event will be specified by a rate function, and by a set of update rules,
specifying the impact of the event on the population vector.

In this model, the set of events, or transitions, T (N), is made up of elements τ ∈
T (N), which are pairs τ = (vτ ,r

(N)
τ ). Here vτ is the update vector; specifically vτ,i

records the impact of event τ on the ith entry (ith population) in the population vector.

The rate function, r(N)
τ : S (N) → R≥0, depends on the current state of the system, and

specifies the speed of the corresponding transition. It is assumed to be equal to zero if
there are not enough agents available to perform a τ transition, and it is required to be
Lipschitz continuous (when interpreted as a function on real numbers).

Thus we define a population model X (N) = (X(N),T (N),x(N)
0 ), where x(N)

0 is the
initial state. Given such a model, it is straightforward to construct the CTMC X(N)(t)
associated with it; its state space is S (N), while its infinitesimal generator matrix Q(N)

is the |S (N)|× |S (N)| matrix defined by

qx,x′ = ∑{rτ(x) | τ ∈ T , x′ = x+ vτ}.

As explained above, fluid approximation approximates a CTMC by a set of ODEs.
These differential equations can be interpreted in two different ways: they can be seen
as an approximation of the average of the system (usually a first order approximation,
see [9, 68]). This is often termed a mean field approximation. Alternatively, they can be
interpreted as an approximate description of system trajectories for large populations.
We will focus on this second interpretation, which corresponds to a functional version of
the law of large numbers. In this interpretation, instead of having a sequence of random
variables, like the sample mean, converging to a deterministic value, like the true mean,
in this case we have a sequence of CTMCs (which can be seen as random trajectories
in Rn) for increasing population size, which converge to a deterministic trajectory, the
solution of the fluid ODE.

In order to consider the convergence,we must formally define the sequence of CTMCs
to be considered. To allow models of different population sizes to be compared we nor-
malise the populations by dividing each variable by the total population N. In this way,
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the normalised population variables X̂(N) = X(N)

N , or population densities, will always
range between 0 and 1 (for the closed world models we consider here), and so the be-
haviour for different population sizes can be compared. In the case of a constant popu-
lation, normalised variables are usually referred to as the occupancy measures, as they
represent the fraction of agents which occupy each state.

After normalisation we must appropriately scale the update vectors, initial condi-
tions, and rate functions [13]. Let X (N) = (X(N),T (N),X0

(N)) be the non-normalised

model with total population N and X̂ (N) = (X̂(N),T̂ (N), X̂(N)
0 ) the corresponding nor-

malised model. We require that:

– initial conditions scale appropriately: X̂(N)
0 = X0

(N)

N ;

– for each transition (vτ ,r
(N)
τ (X)) of the non-normalised model, define r̂(N)

τ (X̂) to

be the rate function expressed in the normalised variables (obtained from r(N)
τ by

a change of variables). The corresponding transition in the normalised model is

(vτ , r̂
(N)
τ (X̂)), with update vector equal to 1

N vτ .

We further assume, for each transition τ , that there exists a bounded and Lipschitz
continuous function fτ (X̂) : E → Rn on normalised variables (where E contains all

domains of all X̂ (N)), independent of N, such that 1
N r̂(N)

τ (x)→ fτ (x) uniformly on E .
We denote the state of the CTMC of the N-th non-normalised (resp. normalised) model
at time t as X(N)(t) (resp. X̂(N)(t)).

3.1 Deterministic Limit Theorem

In order to present the “classic” deterministic limit theorem, consider a sequence of
normalised models X̂ (N) and let vτ be the (non-normalised) update vectors. The drift
F (N)(X̂) of X̂ , which is formally the mean instantaneous increment of model variables
in state X̂, is defined as

F (N)(X̂) = ∑
τ∈T̂

1
N

vτ r̂(N)
τ (X̂) (2)

Furthermore, let fτ : E →Rn, τ ∈ T̂ be the limit rate functions of transitions of X̂ (N).
The limit drift of the model X̂ (N) is therefore

F(X̂) = ∑
τ∈T̂

vτ fτ (X̂), (3)

and F(N)(x)→ F(x) uniformly as N −→ ∞, as easily checked. The fluid ODE is

dx
dt

= F(x), with x(0) = x0 ∈ S.

Given that F is Lipschitz in E (since all fτ are), this ODE has a unique solution x(t) in
E starting from x0. Then, one can prove the following theorem:

Theorem 1 (Deterministic approximation [45, 27]). Let the sequence X̂(N)(t) of
Markov processes and x(t) be defined as above, and assume that there is some point
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x0 ∈ S such that X̂(N)(0)→ x0 in probability. Then, for any finite time horizon T < ∞,
it holds that as N −→ ∞:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)||> ε

}
→ 0.

Notice that the Theorem makes assertions about the trajectories of the population
counts at all finite times, but nothing about what happens at steady state, i.e. when time
goes to infinity.

3.2 Fast Simulation

Based on the Deterministic Approximation Theorem, we can consider the implications
for a single individual in the population when the population size goes to infinity. Even
as the collective behaviour tends to a deterministic process, each individual agent will
still behave randomly. However, the Deterministic Approximation Theorem implies that
the dynamics of a single agent, in the limit, becomes independent of other agents, and it
will sense them only through the collective system state, or mean field, described by the
fluid limit. This asymptotic decoupling allows us to find a simple, time-inhomogenous,
Markov chain for the evolution of the single agent, a result often known as fast simula-
tion [28, 30].

To see this decoupling we focus on a single individual Y (N)
h (t), which is a (Markov)

process on the state space S = {1, . . . ,n}, conditional on the global state of the popu-
lation X̂(N)(t). The evolution of this agent can be obtained by computing the rates qi j

at which its state changes from i to j, by projecting on a single agent the rate of global
transitions that induce a change of state of at least one agent from i to j. Such a rate
qi j(X̂) still depends on the global system state, hence to track the evolution of agent

Y (N)
h (t) we still need to know the global state of the system X̂(N)(t): e.g. solving any

model checking problem on Y (N)
h (t) would requires us to work with the full Markov

model X̂(N)(t).
However, as the size of the system increases, the deterministic limit theorem tells

us the stochastic fluctuations of X̂(N)(t) tend to vanish, and this effect propagates to the

stochastic behaviour ofY (N)
h (t), which can be approximated by making it dependent only

on the fluid limit x(t). More precisely, we need to construct the time-inhomogeneous
CTMC z(t) with state space S and rates qi j(x(t)), computed along the fluid trajectory.

The following theorem [28] guarantees that z(t) is a good approximation of Y (N)
h (t):

Theorem 2 (Fast simulation theorem). For any finite time horizon T < ∞,

P{Y (N)
h (t) 	= z(t), for some t ≤ T}→ 0, as N → ∞.

This theorem states that, in the limit of an infinite population, each agent will behave
independently from all the others, sensing only the mean state of the global system,
described by the fluid limit x(t). This asymptotic decoupling of the system, which can
be generalised to any subset of k ≥ 1 agents, is also known in the literature under the
name of propagation of chaos [5].
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Remark 1. For simplicity here we have considered a single class of agents without
births or deaths. Nevertheless the same results hold for a model consisting of multi-
ple classes of agents. In this case we construct a single agent class but partition the state
space S into subsets, each of which represents the states of a distinct agent, and such
that there are no transitions between subsets. The agents whose initial state is in each
subset corresponds to agents of that class. Furthermore, events that capture birth and
death can easily be included by allowing update vectors which are unbalanced in the
sense that the total positive update is greater than or less than the total negative update.
Such open systems can be handled in the same theory, see [12] for further details, but
for clarity we will restrict to closed world models in this paper.

4 Stochastic Process Algebra with Fluid Interpretation

Kurtz’s Theorem, or the Deterministic Approximation Theorem, has been established
for many years. It has been widely used but when it is used directly from a CTMC
model, it is the modeller’s responsibility to prove that the model satisfies the neces-
sary conditions for application of the theory, and moreover, to derive the corresponding
ODEs. This must be done on a model-by-model basis. In recent years, the approach has
been used for several performance and dependability models e.g. [3–5, 30].

This situation made it attractive to incorporate mean field or fluid approximation
into the formal high-level language approaches which have developed over the last two
decades for constructing CTMC models for quantitative analysis. From the perspective
of the formal modelling community, this gives access to a scalable analysis technique
which is immune to the problem of state space explosion; indeed, a technique which
increases in accuracy as the size of the model grows. From the perspective of modellers
already familiar with the mean field approach, it offers the possibility to establish the
conditions for convergence at the language level via the semantics, once and for all,
removing the need to fulfil the proof obligation on a model-by-model basis. Moreover
the derivation of the ODEs can be automated in the implementation of the language.

Work has developed in both stochastic Petri nets, e.g. [66, 60, 61] and stochastic
process algebras, e.g. [43, 40, 16]. Here we focus on the work in the process algebra
context as it is more readily related to the agent-based CTMC model presented in the
previous section. It is straightforward to see that components or agents within the pro-
cess algebra description can be regarded as agents within the CTMC model, typically
occupying different partitions within the notional complete state space for agents, as
explained at the end of Section 3. When multiple instances of a component are present
in the same context within the model, these constitute a population. In terms of the lan-
guage the dynamic combinators are associated with the description of the behaviour of
individual agents, essentially finite state machines, whereas static combinators, princi-
pally parallel composition, specify the structure of the system, which is now interpreted
as the formation and interaction of populations.

The fluid approximation approach is only applicable to models where we have in-
teractions of large populations (parallel compositions of large numbers of components
with the same behaviour) within which each component has relatively simple behaviour
rather than interactions between individuals each with complex behaviour. When this is
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the case we need to make the shift from a state representation based on individuals, to
one based on counting (analogous to the shift represented by equation (1)). How this is
handled depends on the process algebra but is generally straightforward. For example,
in PEPA models there is a simple procedure to reduce the syntactic representation to a
state vector [40, 65], but in languages such as Bio-PEPA the mapping is more straight-
forward because the language was designed to support fluid approximation [24]. The
actions of the algebra correspond to the events in the CTMC model, and the definition
of the process and its continuation via an action is the basis for the definition of the
update vector.

The first work relating process algebra and mean field models can be found in the
thesis of Sumpter [62]. Sumpter developed models of social insects in the discrete syn-
chronous process algebra WSCCS [63]. He then heuristically derived difference equa-
tions to capture the mean field representation of the model. This work inspired the work
of Norman and Shankland [54], in which WSCCS is used to build models of the spread
of infectious diseases and difference equation representations are derived. This led on
to further work with ever more rigour introduced into the relationship between the dif-
ference equation/ODE models and the process algebra descriptions from which they
were derived [52, 53, 51], but in later work the authors switched from using WSCCS to
using PEPA and Bio-PEPA for their modelling of epidemics.

As previously mentioned, work in systems biology stimulated more widespread in-
terest in the relationship between process algebra description and ODE models. The
first work here was the mapping given from PEPA models constructed in a particular
style, representing a reagent-centric view of biological signal transductions pathways,
to equivalent ODE models, by Calder et al. [17]. This was subsequently generalised to
more arbitrary PEPA models with large populations, where the mapping to the ODE
was made completely systematic, based on an intermediate structure termed the activ-
ity matrix [40]. In the work of Bortolussi and Policriti the authors consider a different
style of process algebra, stochastic Concurrent Constraint Programming (sCCP), and
demonstrate a mapping, both from process algebra to ODEs and from ODEs to process
algebra descriptions [16]. At around the same time Cardelli also constructed a system-
atic mapping from process algebra (in this case a variant of CCS) to ODEs, using a
Chemical Parametric Form as an intermediary in this case [20]. The relationship be-
tween this interpretation of the process algebra model and the discrete-state stochastic
semantics is explored in [19].

After these initial explorations of the possibilities to relate the inherently discrete
representation of a process algebra model with a fluid approximation of the underly-
ing Markov process, there came a sequence of papers establishing the mapping on a
firmer foundation and considering the convergence properties which can be inferred
from Kurtz’s Theorem. For example in [31], Geisweiller et al., working with a gen-
eralised form of PEPA models which allow two forms of synchronisation — both the
usual PEPA synchronisation based on the bounded capacity, and the biological notion of
mass action — show that the syntactically derived ODE models are indeed those which
are obtained by the application of Kurtz’s Theoreom, guaranteeing convergence in the
limit. In [65], Tribastone et al. show how it is possible to fully formalise the derivation
of the ODEs for PEPA models, via a structured operational semantics. In [16] Bortolussi
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and Policriti construct a process algebra that matches a given set of ODEs in the limit.
An alternative approach to the derivation of the fluid approximation model is taken in
the work on Kappa [26], where the ODEs are derived as an abstract interpretation.

Some authors also considered how to make the derivation of ODEs from process
algebra descriptions easier. As previously mentioned, the PEPA variant, Bio-PEPA
[24] was explicitly constructed to maintain a counting abstraction, initially making the
derivation of the activity matrix easier and later supporting a semantics in the style of
[65]. Hayden and Bradley developed another variant of PEPA, termed Grouped PEPA,
which makes clearer the population structures within models [34].

The system ODEs derived from a process algebra model are generally not amenable
to algebraic solution, but instead are analysed by numerical simulation. This solution
generates a trajectory, tracking the population counts of each local state over time,
which can be interpreted as the expected population value over time. Such expected
population counts are rarely the objective of quantitative modelling in computer science,
although they are often the focus in biological systems. In computer systems derived
measures such as throughput, response times, or first passage times are of more inter-
est. In [64], Tribastone et al. establish when performance measures such as throughput
and response time may legitimately be derived from a fluid approximation. Hayden et
al. develop an approach to derive the more sophisticated first passage time distribu-
tions [36]. When the ”passage” of interest relates to an individual component within the
model the approach taken relies on the use of the fast simulation result. In further work
[35], Hayden et al. show how response-time measures specified by stochastic probes
can be readily calculated via the mean field approach.

5 Fluid Model Checking

Stochastic process algebra models have long been also analysed using quantitative
model checking. In the case of stochastic model checking, there are some consolidated
approaches, principally based on checking Continuous Stochastic Logic (CSL) formu-
lae [2, 1, 59], and these are supported by software tools which are in widespread use
such as PRISM [47, 48] and MRMC [41]. However these methods often depend on an
explicit representation of the state space and consequently suffer from the state space
explosion problem, which limits their applicability, particularly for population models.
Even when statistical model checking is used, and the state space is only built on-the-
fly, the size of population models may make adequate statistical sampling costly or even
unattainable.

Thus it is natural to ask the question, to what extent can the fluid approximation tech-
niques presented earlier in this paper be exploited to mitigate the problem of quantita-
tive model checking of population CTMC-based models. The first work in this direction
was presented in [11, 12], in which fluid approximation is used to carry out approxi-
mate model checking of behaviours of individual agents in large population models,
specified as CSL formulae. This work builds on the Fast Simulation Theorem [30, 28],
which characterises the limit behaviour of a single agent in terms of the solution of
the fluid equation. Recall that the Fast Simulation Theorem states that a single agent
senses the rest of the population only through its “average” evolution, as given by the
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fluid equation. Thus if the modeller wishes to verify a property of an individual agent
within a population of many interacting agents (possibly with a small set of different
capabilities) the approach is to check the property in a limit model which consists of
the discrete representation of the individual agent taking into account the average evo-
lution of the rest of the system. In practice, for CTMC models, the discrete representa-
tion of the individual agent is a time-inhomogeneous CTMC (ICTMC), where the rates
of transitions between states are determined by the fluid approximation of the rest of
the system. Model checking of ICTMCs is far more complex than the homogeneous-
time case, but this is compensated because only the local states of one agent need to
be considered, so the state space is typically small. The authors termed this approach
Fluid Model Checking. Preliminary ideas on using fluid approximation in continuous
time for model checking population models, and in particular for an extension of the
logic CSL, were informally sketched in [43], but no model checking algorithms were
presented. Subsequently the work was more fully developed in [44], which relies sub-
stantially on [11].

In the Fluid Model Checking approach the technicalities come from the time-
inhomogeneous nature of the process being checked. As in the CTMC case, model
checking CSL formulas of ICTMC can be expressed in terms of reachability calcula-
tions on an ICTMC, typically with modified structure that makes some states absorbing.
However, these calculations are more complex as rates are not constant, but changing
over time as the state of the whole system evolves and influences the considered agent.
This introduces discontinuities in the satisfaction probabilities as, for example, states in
the ICTMC may change from being in the goal set to not, as time progresses. Thus the
solution of the Kolmogorov equations to calculate the reachability must be conducted in
a piecewise manner, between the time points at which the sets of goal states and unsafe
states change over time. Convergence and quasi-decidability results are presented that
guarantee the asymptotic consistency of the model checking [12].

Like all results from Kurtz’s theorem, the Fluid Model Checking result pertains to
models within a finite time horizon. However useful properties in CSL are sometimes
expressed in terms of the steady state operator S . Subsequently, Bortolussi and Hillston
consolidated the Fluid Model Checking approach by incorporating the next state oper-
ator and the steady state operator [14]. This latter involved establishing when Kurtz’s
result can safely be extended to the infinite time horizon in this context.

A limitation of the Fluid Model Checking approach is that only properties of a sin-
gle individual agent (or small set of agents) within a population can be checked. But
for population models it is natural to wish to evaluate more global properties such as
if a proportion of agents within a population have reached a particular state within
a given time period. In [15], Bortolussi and Lanciani present an alternative approach
which is able to deal with such properties. Their work is based on a second-order fluid
approximation known as Linear Noise Approximation [68]. This can be regarded as a
functional version of the Central Limit Approximation [45].

The basic idea of [15] is to lift local specifications to collective ones by means of
the Central Limit Theorem. Thus the properties that they consider are first expressed
as a property of an individual agent, specified by a deterministic timed automaton with
a single clock. This clock is taken to be global — it is never reset and keeps track of
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global passing of time. For an individual this will be a linear-time property. Such an
individual property ϕ(t) is then lifted to the population level to estimate the probability
that a given number of agents within the system which satisfy ϕ(t).

The method presented in [15] allows us to quickly estimate this probability by ex-
ploiting the Central Limit or Linear Noise Approximation (LNA). The key idea is to
keep some estimation of the variability in the system. Rather than solely using the fluid
approximation of average behaviour of the normalised behaviour x(t), fluctuations in
the form of Gaussian processes of the order of

√
N, where N is the population size, are

included.

X(N)(t)≈ Nx(t)+
√

NZ(t),

where Z(t) is a Gaussian stochastic process, i.e. a process whose finite dimensional
projection (marginal distributions at any fixed and finite set of times) are Gaussian. Z(t)
has zero mean, and a covariance given by the solution of an additional set of O(N2)
ODEs. More details can be found in [15, 68].

For the purposes of model checking the authors combine the automaton-based prop-
erty specification with the model of an individual agent, using a product construction
(taking into account the clock constraints). This produces a population model with more
variables, counting pairs of state-property configurations. The LNA is applied to this
new model. The authors show that for a large class of individual properties, it is pos-
sible to introduce a variable Xϕ(t) in the extended model that counts how many indi-
vidual agents satisfy the local property up to time t. From the Gaussian approximation
of Xϕ(t), then one can easily compute the probabilities of interest. In [15], the authors
discuss preliminary results, which are quite accurate and computationally efficient.

A further use of mean field approximation in model checking has recently been de-
veloped for discrete time, synchronous-clock population processes by Loreti et al. [49].
Although also derived from Kurtz’s Theorem, this work takes a different approach as it
is an on-the-fly model checker, only examining states as they are required for checking
the property, rather than constructing the whole state space initially [25, 8, 33]. Simi-
larly to Fluid Model Checking [11], in [49] the authors focus on a single individual or
small set of individuals, with properties expressed in PCTL, and consider their evolu-
tion in the mean field created by the rest of the system. Again fast simulation provides
the foundation for the approach, but for the discrete case, Loreti et al. follow the ap-
proach of [50] in which the behaviour of each agent is captured by a finite state discrete
time Markov chain (DTMC).

As previously, the authors consider a system comprised of N agents, each with some
initial state. A system global state C(N) = 〈c1, . . . ,cN〉 is the N-tuple of the current
local states of its object instances. The dynamics of the system arise from all agents
proceeding in discrete time, synchronously. A transition matrix K(N) defines the state
transitions of the object and their probabilities, and this may depend on the distribution
of states of all agents in the system. More specifically, K(N) is a function K(N)(m) of the
occupancy measure vector m of the current global state C(N) (switching to the counting
abstraction and normalising). State labels are associated with the states of an agent in
its specification, and a global state is taken to assume the labels of the first component
in the N-tuple. Further global system atomic properties can be expressed.
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In [49] the authors develop a model checking algorithm which can applied in both the
exact probabilistic case, and for the approximate mean-field semantics of the models.
Here we focus on the latter approach. In this discrete case, for N large, the overall
behaviour of the system in terms of its occupancy measure can be approximated by
the (deterministic) solution of a mean-field difference equation. Loreti et al. show that
the deterministic iterative procedure developed in [50] to compute the average overall
behaviour of the system and behaviour of individual agents in that context, combines
well with on-the-fly probabilistic model checking for bounded PCTL formulas on the
selected agents. Just as in Fluid Model Checking [11], since the transition probabilities
of individual agents may depend on the occupancy measure at a given time, the truth
values of formulas may vary with time. The asymptotic correctness of the model check-
ing procedure has been proven and a prototype implementation of the model checker,
FlyFast, which has been applied to a variety of models [49].

One drawback of mean-field or fluid approximation is that the convergence results
apply to infinite populations and currently there are not useful bounds on the errors
introduced when smaller populations are considered. Some promising work in this di-
rection was recently published by Bortolussi and Hayden [10]. In this paper the authors
consider the transient dynamics and the steady state of certain classes of discrete-time
population Markov processes. They combine stochastic bounds in terms of martingale
inequalities and Chernoff inequalities, with control-theoretic methods to study the sta-
bility of a system perturbed by non-deterministic noise terms, and with algorithms to
over-approximate the set of reachable states. The key idea is to abstract stochastic noise
non-deterministically and apply techniques from control theory to examine the phase
space of the mean field limit. This gives a more refined view of the dynamic behaviour
allowing tighter bounds than the previously proposed bounds of Darling and Norris [28]
which expand exponentially with time.

6 Conclusions and Future Perspectives

The fluid approximation technique is suitable for models comprised of interactions of
populations of components, each component having relatively simple behaviour (few or
moderate numbers of local states) but many components within the population. More-
over, in these cases the accuracy of the approximation increases as the size of the
population grows. Building such models with a discrete formal description technique
supports careful specification of the interactions between the components. This is in
contrast to when mean field or fluid approximation is applied in fields such as epidemi-
ology where predefined sets of ODEs are used, without consideration for the implicit
assumptions about the interactions of individuals.

However, the population models amenable to fluid approximation are not the only
systems which suffer from state space explosion and the technique is not suitable for
models comprised of a small number of individual components, each of which has very
complex behaviour resulting in a large number of local states. Moreover, recent work
by Tschaikowski and Tribastone has shown that if the mapping to ODEs is carried out
naively, there can be a problem of fluid state space explosion [67]. Nevertheless, the
approach offers new possibilities for model analysis, tackling systems which would
previously have been completely intractable and opening new arenas of research.
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Deterministic Negotiations:

Concurrency for Free

Javier Esparza
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Abstract. We give an overview of recent results and work in progress on
deterministic negotiations, a concurrency model with atomic multi-party
negotiations as primitive actions.

Concurrency theory has introduced and investigated system models based on
a variety of communication primitives: shared variables with semaphores, mon-
itors, or locks; rendez-vous; message-passing with point-to-point channels; co-
ordination (message-passing with tuple space); or broadcast. Recently, we have
started the study of a new primitive: negotiation. Perhaps surprisingly, while
negotiation has long been identified as an interaction paradigm by the artifi-
cial intelligence community [7,21,4,16], its theoretical study as communication
primitive has not been yet undertaken.

From a concurrency theory point of view, an atomic negotiation is a synchro-
nized choice: a set of agents meet to choose one out of a set of possible out-
comes. In [10], Jörg Desel and I have presented a model of concurrency model
with atomic multi-party negotiations, called atoms, as primitive actions. The
model is close to Petri nets, and it uses much of its terminology. For an intuitive
introduction, consider Figure 1, which shows a negotiation between four agents,
numbered 1 to 4. Atoms are represented by black bars. A bar has a white circle
or port for each participanting agent. For instance, the initial atom n0 has four
parties, while atoms n1 and n2 have only two. The local state of an agent is the
set of atoms it is currently ready to engage in. Initially, all agents are only ready
to engage in the initial atom n0. A marking is a tuple of local states, one for
each agent. An atom is enabled at a marking if all its parties are ready to engage
in it. Enabled atoms can occur, meaning that their parties agree on one of the
possible outcomes. After choosing an outcome, the edges leaving the atom and
labelled with the outcome determine the negotiations that each of the parties is
ready to engage in next. For example, in Figure 1, at the initial atom the agents
decide whether, say, to accept a proposal for discussion (outcome y(es)) or not
(outcome n(o)). If the agents agree on n, then after that they are ready to engage
in the final atom nf , i.e, nf is the only enabled atom, and after nf occurs the
negotiation terminates. If they agree on y, then after that agents 1 and 2 are
ready to engage in n1, while 3 and 4 are ready to engage in n2, and so both atoms
are enabled. After n1 and n2 occur, n3 becomes enabled, and the four agents
decide in n3 whether to accept (outcome a) or reject (outcome r) the proposal;
in case of rejection, the atoms n1 and n2 become enabled again, modeling that
the two teams of agents make revisions to the proposal and discuss it again.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 23–31, 2014.
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Fig. 1. A negotiation between four agents

Negotiations can handle data, although this is not part of the graphical repre-
sentation. Agents also have an internal local state, typically determined by the
current values of a set of variables local to the agent. For example, assume the
goal of the negotiation of Figure 1 is to agree on the price of a commodity. The
internal state of the i-th agent could then be given by a variable xi, holding the
agent’s current proposal for the price. Each outcome of an atom has an associ-
ated state transformer, which only acts on the internal states of the agents that
take part in the atom. For instance, the state transformer for the outcome p in
atom n1 would be a function that takes as input the current values of x1 and
x2, and sets them to a new common value, the new price proposed by the two
agents. In general, a state transformer is a relation between global states.

While every negotiation diagram can be translated into an equivalent Petri
net, negotiations allow one to express some common situations more succintly
[10]. For instance, consider a system in which k agents decide, independently of
each other, whether they wish to accept or reject a proposal, and then conduct
a negotiation requiring unanimity, that is, the proposal can only be approved
if all agents support it. It is not difficult to see that the size of the Petri net
modelling such a behaviour grows exponentially with k (essentially, the net needs
a different transition for each subset of agents to cover the case in which exactly
that subset rejects the proposal), while the size of the negotiation diagram grows
only linearly in k.

The main merit of the negotiation model, however, is not succinctness, but
the fact that it draws our attention to classes of systems which have a very
natural definition within the model, but look contrived—and uninterestingly
so—in others. In particular, in [10] we have defined deterministic negotiations1.
A negotiation is deterministic if at every reachable state every agent is ready to
participate in at most one atom. The negotiation of Figure 1 is deterministic:
in fact, this follows directly from the fact that after choosing an outcome at an
atom, the edges labelled with it direct the parties to one atom. But consider

1 We also introduce weakly deterministic negotiations, but we don’t discuss them in
this note.
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now the negotiation of Figure 2. It is a negotiation between three agents, called
Father, Daughter, and Mother, whose goal is to decide whether Daughter can go
to a party. After the initial atom, Daughter and Father are ready to engage in n1,
while Mother is ready to engage in both n2 and nf (graphically denoted by the
hyperedge connecting Mother’s port at atom n0 to her ports at atoms n2 and nf).
Negotiations with proper hyperedges of this kind are called nondeterministic.
Observe that after the initial atom occurs, the only atom enabled is n1, and
so Father and Daughter negotiate first, with possible outcomes yes (y), no (n),
and ask mother (am). Whether Mother participates in n2 or in nf is decided by
the outcome of n1: If Father and Daughter choose am, then atom n2 becomes
enabled, and Daughter and Mother negotiate with possible outcomes yes, no.
If they choose y or no, then atom nf becomes enabled, and the negotiation
terminates.

The results of [10,11] and some recent work [12,9] show that deterministic
negotiations are an exception to the “concurrency curse”: the rule of thumb
stating that all analysis problems for an interesting class of concurrent systems
(where the input is the concurrent system itself, not its state space) will be at
least NP- or PSPACE-hard. While the state space of a deterministic negotiation
can grow exponentially in its size, we have derived algorithms for important
analysis and synthesis problems that work directly on the negotiation diagram,
without constructing its state space, and have polynomial complexity. This is
our rationale for the title of this paper: in deterministic negotiations concurrency
is “for free”, in the sense that the capacity of the model to describe concurrent
interaction does not require one to pay the usual “exponential fee”. In the rest
of this note we present a brief overview of our results.
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Fig. 3. An unsound negotiation between four agents

Soundness and Summarization. Like any other model of concurrency, nego-
tiations can deadlock. Consider for instance the slight modification of the nego-
tiation of Figure 1 shown in Figure 3. The only difference is that after outcome
r agent 2 is now only ready to engage in the final atom. The negotiation reaches
a deadlock after the sequence y p p′ r p′ of outcomes. Loosely speaking, a negoti-
ation is sound if, whatever its current state, it can always finish, i.e., execute the
final atom. (Readers familiar with workflow models will recognize this notion
as the one defined in [1].) In particular, soundness implies deadlock-freedom.
The negotiations of Figure 1 and Figure 2 are sound. The soundness problem
consists of determining whether a given negotiation is sound, and it constitutes
a first fundamental problem in the analysis of negotiations. A second problem
comes from the fact that negotiations are expected to terminate. In particular,
all negotiation diagrams have an initial and a final atom, and so an associated
input/output relation on global states, where a global state, as usual, is a tuple
of local states of the agents. The relation contains the pairs (q, q′) of global states
such that, if the agents start in state q, then the negotiation can terminate in
state q′. Under the fairness assumption that it terminates, a sound negotiation
is equivalent to a single atom whose state transformer determines the possible
final internal states of all parties as a function of their initial internal states.
The summarization problem consists of computing such an atomic negotiation,
called a summary.

In [11] we have shown that the soundness and summarization problems for
deterministic negotiations can be solved in polynomial time. The algorithm for
the summarization problem takes the form of a reduction procedure in which
the original negotiation is progressively reduced to a simpler one by means of
three reduction rules. Each rule preserves soundness and summaries (i.e., the
negotiation before the application of the rule is sound iff the negotiation after
the application is sound, and both have the same summary). The rules are
graphically described in Figure 4; for each rule, the figure at the top shows a
fragment of a negotiation to which the rule can be applied, and the figure at
the bottom the result of applying it. The rules generalize to a concurrent setting
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Fig. 4. The reduction rules

those commonly used to transform a finite automaton into an equivalent regular
expression. Intuitively, the merge rule merges two outcomes that “move” each
participating agent to the same next atom (outcomes r1 and r2 in the figure) into
one single outcome with a fresh label. The iteration rule replaces the iteration
of an outcome r followed by an outcome ri by an outcome rif with the same
overall effect2, and the shortcut rule merges the outcomes of two atoms n and
n′ that can occur one after the other into one single outcome with the same
effect. Notice that the figure has to be complemented with the description of
the transformers associated to the outcomes. For instance, the transformer of
the outcome r1f in the iteration rule is the composition of the Kleene star of the
transformer of r and the transformer of r1.

In [11] we show that a deterministic negotiation can be reduced to a single
atom by repeated application of the rules if and only if it is sound. Moreover, the
rules only have to be applied a polynomial number of times. The algorithm for
checking soundness is a byproduct of this reduction algorithm: the negotiation
is sound if and only if the reduction algorithm reduces it to a single atom.

Realizability. In [9] we are studying the realizability problem for determinis-
tic negotiations. Design requirements for distributed systems are often captured
with the help of scenarios specifying the interactions among agents during a
run of the system. Formal notations for scenarios allow one to specify multi-
ple scenarios by means of operations like choice, concatenation, and repetition.
A set of scenarios specified in this way can be viewed as an early, global view
of the desired system behaviours. While this view is usually more intuitive for

2 This rule also reduces a negotiation with two atoms, one initial and one final, to
one single atom, which is then both initial and final. In this case we have n := n0,
n′ := nf , and m = 0.
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developers, implementations require a parallel composition of sequential ma-
chines, which leads to the realizability problem. A specification is realizable if
there exists a set of state machines, one for each sequential component, whose
set of concurrent behaviours coincides with the set globally specified. The real-
izablity problem consists of deciding if a given specification is realizable and, if
so, computing a realization, i.e., a set of state machines.

The realizability problem has been studied for different communication prim-
itives. For message passing, message sequence charts (MSCs) and message se-
quence graphs (MSGs) (also called high-level MSCs) are very popular notations
for single scenarios and sets of scenarios, respectively [14]. In the choreography
setting, single scenarios are globally ordered sequences of messages, and sets of
scenarios are described by finite automata over the alphabet of all messages [19].
In the case of communication by rendez-vous, single scenarios can be described
as Mazurkiewicz traces (or, equivalently, as words over so called distributed al-
phabets), and sets of scenarios by finite automata or regular expressions [8]. In
all these settings, the complexity of the problem is high, ranging from PSPACE-
hard to undecidable [3,5,13].

From a realizability point of view, negotiation diagrams are an implementation
formalism. Indeed, the negotiation on the left of Figure 1 is the composition of
the four state machines shown in Figure 5.
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Fig. 5. Distributed view of the negotiation of Figure 1

We have designed a negotiation language for the global description of the runs
of a deterministic negotiation, whose terms we call negotiation programs. For
instance, the program corresponding to the negotiation of Figure 1 is shown in
Figure 6.

The first two lines specify the agents of the system, and, for each outcome, the
agents that have to agree to choose the outcome. The outer do-block corresponds
to the atom n0. The block offers a choice betwen the outcomes y and n; in the
language, outcomes play the role of guards, and are prefixed by the operator “[]”.
After outcome y, the two outcomes p and p′ can be taken in parallel. The operator
◦ is the layer composition operator of Zwiers (see e.g. [22,15]). Loosely speaking,
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agent A1, A2, A3, A4

outcome y, n, a, r : {a1, . . . , a4}
p : {a1, a2}
p′ : {a3, a4}

do [] y : (p ‖ p′) ◦
do [] a : end

[] r : (p ‖ p′) loop
od end

[] n : end
od

Fig. 6. Program equivalent to the negotiation of Figure 1

in every execution σ of P1 ◦P2, all actions of P1 in which an agent a participates
take place before all actions of P2 in which the same agent participates. The
other actions can occur in arbitrary order; in particular, if the sets of agents
of P1 and P2 are disjoint, then P1 ◦ P2 and P2 ◦ P1 are equivalent programs,
and in this case we write P1 ‖ P2. (Our language has only layer composition
as primitive, and parallel composition is just a special case.) Finally, the inner
do-block offers a choice between two alternatives, corresponding to the outcomes
a and r. Alternatives are labeled with the keywords loop and end, indicating
what happens after the chosen alternative has been executed: in the case of a
loop-alternative, the block restarts, and for an end-altenative it terminates.

Our results shows that the realizability problem for deterministic negotiations
has excellent semantic and computational properties:

(a) Every negotiation program has a sound realization.
(b) Negotiation programs are expressively complete: every sound deterministic

negotiation diagram has an equivalent negotiation program3.
(c) Negotiation programs can be distributed in linear time. We provide an al-

gorithm to derive a negotiation from a program that generalizes classical
constructions to derive an automaton from a regular expression. The nego-
tiation diagram can then be projected onto its components.

Observe that (a) and (b) provide a syntactic characterization of soundness,
which is a semantic property. Further, (a) and (b) can also be interpreted as
a sort of Structure Theorem.. Just as flowcharts (or if-goto programs) model
unstructured sequential programs (see Figure 5), negotiations can be viewed as
a model of unstructured parallel programs. Therefore, (a) and (b) show that
every sound unstructured program has an equivalent structured program. In
other words, the soundness requirement, which is a desirable requirement for
any well designed negotiation, turns out to have an unexpected beneficial side-
effect: it forces the negotiation to be well structured.

Negotiation Games. In recent work with Philipp Hoffmann we have started
the study of games on negotiations [12]. As for games played on pushdown

3 Where equivalent means exhibiting the same completed Mazurkiewicz traces.
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automata [20], vector addition systems with states (VASS) [6], counter machines
[17], or asynchronous automata [18], games on negotiations can be translated
into games played on the (reachable part of the) state space. Since the number
of states of a negotiation may grow exponentially in the number of agents, the
game arena can be exponentially larger than the negotiation. We explore the
complexity of solving games in the size of the negotiation, not on the size of the
arena. We study games formalizing the two most interesting questions related to
a negotiation. Can a given coalition (i.e., a given subset of agents) force termina-
tion of the negotiation, or force that a given atom occurs? More precisely, a given
coalition divides the atoms into those controlled by the coalition—the atoms in
which a majority of the parties belong to the coalition—and those controlled
by the environment. This induces a concurrent games with three players, called
Coalition, Environment, and Scheduler. At each move, Scheduler selects a subset
of the atoms enabled at the current marking, ensuring that they can occur in
parallel (more precisely, Scheduler ensures that the sets of parties of the selected
atoms are pairwise disjoint). Then, Coalition and Environment, independently
of each other, choose an outcome for each of the selected atoms they control.
This leads to a new marking, after which the next move can be played. Coalition
wins if the play eventually executes the final atom, or the given goal atom.

Our results show that these two problems are EXPTIME-complete in the
size of the negotiation, even if it is deterministic. So, at first sight, it seems as if,
after all, the “concurrency curse” would also apply to deterministic negotiations.
But then we are able to show that, surprisingly, the problems are polynomial for
sound deterministic negotiations. The algorithm to decide the winner of a game is
obtained by lifting the well-known attractor construction for reachability games
from the arena of the state space to the negotiation diagram: While the usual
attractor construction iteratively computes increasingly larger sets of markings
from which Coalition can force termination, the lifted constructions computes
increasingly larger sets of atoms.

This result is very satisfactory. Since unsound negotiations are ill-designed,
we are not very interested in them, and the restriction to sound negotiations
has as collateral effect a strong improvement in the complexity of the problem.
Moreover, the restriction comes “at no cost”, because deciding soundness of
deterministic negotiations is also decidable in polynomial time.

A Short Conclusion. Concurrency theorists learn to live with the ubiquituous
state-explosion problem, and to accept as a seemingly unavoidable consequence
that all analysis problems for an interesting class of concurrent systems (where
the input is the concurrent system itself, not its state space) will be at least
NP- or PSPACE-hard. Our results show that deterministic negotiations escape
this “concurrency curse”. In future work we wish to investigate extensions of
the model that increase its expressive power and retain at least some of its
good analyzability properties. The next step is the study of weak deterministic
negotiations, already outlined in [10].
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Abstract. The bisimilarity pseudometric based on the Kantorovich lift-
ing is one of the most popular metrics for probabilistic processes proposed
in the literature. However, its application in verification is limited to lin-
ear properties. We propose a generalization of this metric which allows to
deal with a wider class of properties, such as those used in security and
privacy. More precisely, we propose a family of metrics, parametrized on
a notion of distance which depends on the property we want to verify.
Furthermore, we show that the members of this family still character-
ize bisimilarity in terms of their kernel, and provide a bound on the
corresponding metrics on traces. Finally, we study the case of a met-
ric corresponding to differential privacy. We show that in this case it is
possible to have a dual form, easier to compute, and we prove that the
typical constructs of process algebra are non-expansive with respect to
this metrics, thus paving the way to a modular approach to verification.

1 Introduction

Originally proposed in the seminal works of Desharnais et al. [17,18], the bisimi-
larity pseudometric based on the Kantorovich lifting has become very popular in
the process algebra community. One reason of this success is that, when dealing
with probabilistic processes, metrics are more suitable than equivalences, since
the latter are not robust wrt small variation of probabilities. Another impor-
tant reason is that, thanks to the dual presentation of the Kantorovich lifting
in terms of the mass transportation problem, the metric can be computed using
linear programming algorithms [4,7,2]. Furthermore, this metric is an extension
of probabilistic bisimilarity, in the sense that two states have distance distance 0
if and only if they are bisimilar. In fact, the metric also shares with bisimilarity
the fact of being based on a similar coinductive definition. More precisely, it is
defined as the greatest fixpoint of a transformation that has the same structure
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as the one used for bisimilarity.1 This allows to transfer some of the concepts
and methods that have been extensively explored in process algebra, and to use
lines of reasoning which the process algebra community is familiar with. Along
the same lines, a nice property of the Kantorovich bisimilarity pseudometric is
that the standard operators of process algebra are not expansive wrt it. This
can be seen as a generalization of the result that bisimulation is a congruence,
and can be used in a similar way, for compositional reasoning and verification.

Last but not least, the Kantorovich bisimilarity metric provides a bound on
the corresponding distance on probabilistic traces [12] (corresponding in the
sense that the definition is based on the same Kantorovich lifting). This means
that it can be used to verify certain probabilistic properties on traces. More
specifically, it can be used to verify properties that are expressed in terms of
difference between probabilities of sets of traces. These properties are linear, in
the sense that the difference increases linearly wrt variations on the distributions.

Many properties, however, such as several privacy and security ones, are not
linear. This is the case of the popular property of differential privacy [19], which
is expressed in terms of ratios of probabilities. In fact, there are processes that
have small Kantorovich distance, and which are not ε-differentially private for
any finite ε. Another example are the properties used in quantitative information
flow, which involve logarithmic functions on probabilities.

The purpose of this work is to generalize the Kantorovich lifting to obtain
a family of metrics suitable for the verification of a wide class of properties,
following the principles that:

i. the metrics of this family should depend on a parameter related to the class
of properties (on traces) that we wish to verify,

ii. each metric should provide a bound on the corresponding metric on traces,
iii. the kernel of these metric should correspond to probabilistic bisimilarity,
iv. the general construction should be coinductive,
v. the typical process-algebra operators should be non-expansive,
vi. it should be feasible to compute these metrics.

In this paper we have achieved the first four desiderata. For the last two, so
far we have studied the particular case of the multiplicative variant of the Kan-
torovich metric, which is based on the notion of distance used in the definition
of differential privacy. We were able to find a dual form of the lifting, which
allows to reduce the problem of its computation to a linear optimization prob-
lem solvable with standard algorithms. We have also proved that several typical
process-algebra operators are non-expansive, and we have given explicitly the
expression of the bound. For some of them we were able to prove this result in a
general form, i.e., non-expansiveness wrt all the metrics of the family, and with
the bound represented by the same expression.

1 In the original definition the Kantorovich bisimilarity pseudometric was defined as
the greatest fixpoint, but such definition requires using the reverse order on metrics.
More recently, authors tend to use the natural order, and define the bisimilarity
metric as the least fixpoint, see [12,1,2]. Here we follow the latter approach.
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As an example of application of our method, we show of to instantiate our
construction to obtain the multiplicative variant of the Kantorovich metric, and
how to use it to verify the property of differential privacy.

All proofs are given in the report version of this paper [11].

Related Work. Bisimulation metrics based on the standard Kantorovich distance
have been used in various applications, such as systems biology [25], games [9],
planning [13] and security [8]. We consider in this paper discrete state spaces.
Bisimulation metrics on uncountable state spaces have been explored in [18]. We
define bisimulation metrics as fixed point of an appropriate functor. Alternative
characterizations were provided in terms of coalgebras [6] and real-valued modal
logics [18]. The formulation of the Kantorovich lifting as primal and dual linear
program is due to [5].

Verification of differential privacy has been itself an active area of research.
Prominent approaches based on formal methods are those based on type sys-
tems [22] and logical formulations [3]. Earlier papers [26,27] define a bisimulation
distance, which however suffered from the fact that the respective kernel relation
(states in distance 0) does not fully characterize probabilistic bisimilarity.

2 Preliminaries

2.1 Labelled Concurrent Markov Chains

Given a set X , we denote by Prob(X), Disc(X) the set of all and discrete prob-
ability measures over X respectively; the support of a measure μ is defined as
supp(μ) = {x ∈ X |μ(x) > 0}. A labelled concurrent Markov chain (henceforth
LCMC) A is a tuple (S,A,D) where S is a countable set of states, A is a count-
able set of action labels, and D ⊆ S × A ×Disc(S) is a transition relation. We

write s
a−→ μ for (s, a, μ) ∈ D.

An execution α is a (possibly infinite) sequence s0a1s1a2s2 . . . of alternating

states and labels, such that for each i : si
ai+1−→ μi+1 and μi+1(si+1) > 0. We

use lstate(α) to denote the last state of a finite execution α. We use Exec∗(A)
and Exec(A) to represent the set of finite executions and of all executions of A,
respectively. A trace is a sequence of labels in A∗ ∪ Aω obtained from execu-
tions by removing the states. We use [ ] to represent the empty trace, and � to
concatenate two traces.

A labelled Markov chain (henceforth LMC) A is a fully probabilistic LCMC,
namely a LCMC where from each state of A there is at most one transition
available. We denote by L(s) and π(s) the label and distribution of the unique
transition starting from s (if any).

In a LMC A, a state s of A induces a probability measure over traces as
follows. The basic measurable events are the cones of finite traces, where the
cone of a finite trace t, denoted by Ct, is the set {t′ ∈ A∗ ∪Aω|t ≤ t′}, where ≤
is the standard prefix preorder on sequences. The probability induced by s on a
cone Ct, denoted by Pr[s � Ct], is defined recursively as follows:
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Pr[s � Ct] =

⎧⎨⎩
1 if t = [ ]
0 if t = a�t′ and a 	= L(s)∑

si
μ(si)Pr[si � Ct′ ] if t = a�t′ and s

a−→ μ
(1)

This probability measure is extended to arbitrary measurable sets in the σ-
algebra of traces in the standard way. We write Pr[s � σ] to represent the
probability induced by s on the set of traces σ.

2.2 Pseudometrics

A pseudometric is a relaxed notion of a normal metric in which distinct elements
can have distance zero. We consider here a generalized notion where the distance
can also be infinite, and we use [0,+∞] to denote the non-negative fragment of
the real numbers R enriched with +∞. Formally, an (extended) pseudometric on
a set X is a function m : X2 → [0,+∞] with the following properties:m(x, x) = 0
(reflexivity), m(x, y) = m(y, x) (symmetry), and m(x, y) ≤ m(x, z) + m(z, y)
(triangle inequality). A metric has the extra condition that m(x, y) = 0 implies
x = y. Let MX denote the set of all pseudo-metrics on X with the ordering
m1 � m2 iff ∀x, y.m1(x, y) ≤ m2(x, y). It can be shown that (MX ,�) is a
complete lattice with bottom element ⊥ such that ∀x, y.⊥(x, y) = 0 and top
element � such that ∀x, y.�(x, y) =∞.

The ball (wrt m) of radius r centered at x ∈ X is defined as Bm
r (x) =

{x′ ∈ X : m(x, x′) ≤ r}. A point x ∈ X is called isolated iff there exists
r > 0 such that Bm

r (x) = {x}. The diameter (wrt m) of A ⊆ X is defined as
diamm(A) = supx,x′∈Am(x, x′). The kernel ker(m) is an equivalence relation on
X defined as

(x, x′) ∈ ker(m) iff m(x, x′) = 0

3 A General Family of Kantorovich Liftings

We introduce here a family of liftings from pseudometrics on a set X to pseu-
dometrics on Prob(X). This family is obtained as a generalization of the Kan-
torovich lifting, in which the Lipschitz condition plays a central role.

Given two pseudometric spaces (X, dX), (Y, dY ), we say that f : X → Y is 1-
Lipschitz wrt dX , dY iff dY (f(x), f(x

′)) ≤ dX(x, x′) for all x, x′ ∈ X . We denote
by 1-Lip[(X, dX), (Y, dY )] the set of all such functions.

A function f : X → R can be lifted to a function f̂ : Prob(X)→ R by taking
its expected value. For discrete distributions (countable X) it can be written as:

f̂(μ) =
∑

x∈X μ(x)f(x) (2)

while for continuous distributions we need to restrict f to be measurable wrt
the corresponding σ-algebra on X , and take f̂(μ) =

∫
fdμ.

Given a pseudometric m on X , the standard Kantorovich lifting of m is a
pseudometric K(m) on Prob(X), defined as:
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K(m)(μ, μ′) = sup{|f̂(μ)− f̂(μ′)| : f ∈ 1-Lip[(X,m), (R, dR)]}
where dR denotes the standard metric on reals. For continuous distributions we
implicitly take the sup to range over measurable functions.

Generalization. A generalization of the Kantorovich lifting can be naturally
obtained by extending the range of f from (R, dR) to a generic metric space
(V, dV ), where V ⊆ R is a convex subset of the reals2, and dV is a metric on V .

A function f : X → V can be lifted to a function f̂ : Prob(X)→ V in the same

way as before (cfr. (2)); the requirement that V is convex ensures that f̂(μ) ∈ V .
Then, similarly to the standard case, given a pseudometric space (X,m) we

can define a lifted pseudometric KV (m) on Prob(X) as:

KV (m)(μ, μ′) = sup{dV (f̂(μ), f̂(μ′)) : f ∈ 1-Lip[(X,m)(V, dV )]} (3)

The subscript V in KV is to emphasize the fact that for each choice of (V, dV )
we may get a different lifting. We should also point out the difference between
m, the pseudometric on X being lifted, and dV , the metric (not pseudo) on V
which parametrizes the lifting.

The constructed KV (m) can be shown to be an extended pseudometric for
any choice of (V, dV ), i.e. it is non-negative, symmetric, identical elements have
distance zero, and it satisfies the triangle inequality. However, without extra
conditions, it is not guaranteed to be bounded (even if m itself is bounded). For
the purposes of this paper this is not an issue. In the report version [11] we show
that under the condition that dV is ball-convex (i.e. all its balls are convex sets,
which holds for all metrics in this paper), the following bound can be obtained:

KV (m)(μ, μ′) ≤ diamm(supp(μ) ∪ supp(μ′))

Examples. The standard Kantorovich lifting is obtained by taking (V, dV ) =
(R, dR). When 1-bounded pseudometrics are used, like in the construction of the
standard bisimilarity metric, then we can equivalently take V = [0, 1].

Moreover, a multiplicative variant of the Kantorovich lifting can be obtained
by taking (V, dV ) = ([0, 1], d⊗) (or equivalently ([0,∞), d⊗)) where d⊗(x, y) =
| lnx−ln y|. The resulting lifting is discussed in detail in Section 5 and its relation
to differential privacy is shown in Section 5.1.

4 A General Family of Bisimilarity Pseudometrics

In this section we define a general family of pseudometrics on the states of an
LCMC which have the property of extending probabilistic bisimilarity in the
usual sense. Following standard lines, we define a transformation on state pseu-
dometrics by first lifting a state pseudometric to a pseudometric on distributions

2 V could be further generalized to be a convex subset of a vector space. It is unclear
whether such a generalization would be useful, hence it is left as future work.
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(over states), using the generalized Kantorovich lifting defined in previous sec-
tion. Then we apply the standard Hausdorff lifting to obtain a pseudometric on
sets of distributions. This last step is to take into account the nondeterminism
of the LCMC, i.e., the fact that in general, from a state, we can make transitions
to different distributions. The resulting pseudometric naturally corresponds to
a state pseudometric, obtained by associating each set of distributions to the
states which originate them. Finally, we define the intended bisimilarity pseu-
dometric as the least fixpoint of this transformation wrt the ordering � on the
state pseudometrics (or equivalently, as the greatest fixpoint wrt the reverse of
�). We recall that m � m′ means that m(s, s′) ≤ m′(s, s′) for all s, s′ ∈ S.

Let A = (S,A,D) be a LCMC, let (V, dV ) be a metric space (for some convex
V ⊆ R), and let M be the set of pseudometrics m on S such that diamm(S) ≤
diamdV (V ). Recall that inf ∅ = diamdV (V ) and sup ∅ = 0.

Definition 1. The transformation FV :M→M is defined as follows.

FV (m)(s, t) = max{ sup
s

a−→μ

inf
t

a−→ν

KV (m)(μ, ν), sup
t

a−→ν

inf
s

a−→μ

KV (m)(ν, μ)}

We can also characterize FV in terms of the following zigzag formulation:

Proposition 1. For any ε ≥ 0, FV (m)(s, t) ≤ ε if and only if:

– if s
a−→ μ, then there exists ν such that t

a−→ ν and KV (m)(μ, ν) ≤ ε,

– if t
a−→ ν, then there exists μ such that s

a−→ μ and KV (m)(ν, μ) ≤ ε.

The following result states that KV and FV are monotonic wrt (M,�).

Proposition 2. Let m,m′ ∈ M. If m � m′ then:

FV (m)(s, s′) ≤ FV (m
′)(s, s′) for all states s, s′

KV (m)(μ, μ′) ≤ KV (m
′)(μ, μ′) for all distributions μ, μ′

Since (M,�) is a complete lattice and FV is monotone on M, by Tarski’s
theorem [24] FV has a least fixpoint, which coincides with the least pre-fixpoint.
We define the bisimilarity pseudometric bmV as this least fixpoint:

Definition 2. The bisimilarity pseudometric bmV is defined as:

bmV = min
{
m ∈M|FV (m) = m

}
= min

{
m ∈ M|FV (m) � m

}
In addition, if the states of A are finite, then the closure ordinal of FV is ω

(cf: [17], Lemma 3.10). Hence we can approximate bmV by iterating the function
FV from the bottom element:

Proposition 3. Assume S is finite. Let m0 = ⊥ and mi+1 = FV (mi). Then
bmV = supi mi.

Next section shows that bmV is indeed a bisimilarity metric, in the sense that
its kernel coincides with probabilistic bisimilarity.
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4.1 Bisimilarity as 0-distance

We now show that under certain conditions, the pseudometric constructed by
KV (m) characterizes bisimilarity at its kernel. Recall that the kernel ker(m) of
m is an equivalence relation relating states at distance 0.

Given an equivalence relation R on S, its lifting L(R) is an equivalence relation
on Disc(S), defined as

(μ, μ′) ∈ L(R) iff ∀s ∈ S : μ([s]R) = μ′([s]R)

where [s]R denotes the equivalence class of s wrt R.
To obtain the characterization result we assume that (a) the set of states is

finite, and (b) the distance dV is non-discrete. Under these conditions, the kernel
operator and the lifting operator commute (cfr. [15] for the analogous property
for the standard Kantorovich lifting).

Lemma 1. If S is finite and dV is non-discrete, then L(ker(m)) = ker(KV (m)).

We recall the notions of probabilistic bisimulation and bisimilarity, following
the formulation in terms of post-fixpoints of a transformation on state relations:

Definition 3.

– The transformation B : S × S → S × S is defined as: (s, s′) ∈ B(R) iff

• if s
a−→ μ, then there exists μ′ such that t

a−→ μ′ and (μ, μ′) ∈ L(R),

• if s′
a−→ μ′, then there exists μ such that s

a−→ μ and (μ′, μ) ∈ L(R).
– A relation R ⊆ S×S is called a bisimulation if it is a post-fixpoint of R, i.e.

R ⊆ B(R).

It is easy to see that B is monotonic on (2S×S,⊆) and that the latter is a
complete lattice, hence by Tarski’s theorem there exists the greatest fixpoint of
B, and it coincides with the greatest bisimulation:

Definition 4. The bisimilarity relation ∼⊆ S × S is defined as:

∼ = max{R |R = B(R)} = max{R |R ⊆ B(R)} =
⋃
{R |R ⊆ B(R)}

We are now ready to show the correspondence between pre-fixpoint metrics
and bisimulations. Using Lemma 1, we can see that the definition of B corre-
sponds to the characterization of FV in Proposition 1, for ε = 0. Hence we have:

Proposition 4. For every m ∈ M, if FV (m) � m then ker(m) ⊆ B(ker(m)),
i.e., ker(m) is a bisimulation.

As a consequence, ker(bmV ) ⊆∼. The converse of Proposition 4 does not hold,
because the fact that ker(m) ⊆ B(ker(m)) does not say anything about the
effect of FV on the distance between elements that are not on the kernel. How-
ever, in the case of bisimilarity we can make a connection: consider the greatest
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metric m∼ whose kernel coincides with bisimilarity, namely, m∼(s, s
′) = 0 if

s ∼ s′ and m∼(s, s
′) = diamdV (V ) otherwise. We have that FV (m∼) � m∼, and

therefore ∼= ker(m∼) ⊆ bmV . Therefore we can conclude that the kernel of the
bisimilarity pseudometrics coincides with bisimilarity.

Theorem 1. ker(bmV ) = ∼ for every (V, dV ),

4.2 Relation with Trace Distributions

In this section, we show the relation between the bisimilarity metric bmV and the
corresponding metric on traces, in the case of LMCs (labeled Markov chains).
Note that we restrict to the fully probabilistic case here, where probabilities on
traces can defined in the way shown in the preliminaries. The full case of LCMCs
can be treated by using schedulers, but a proper treatment involves imposing
scheduler restrictions which complicate the formalism. Since these problems are
orthogonal to the goals of this paper, we keep the discussion simple by restricting
to the fully probabilistic case.

The distance between trace distributions (i.e. distributions over Aω) will be
measured by the Kantorovich lifting of the discrete metric. Given (V, dV ), let
δV = diamdV (V ). Then let dmδV be the δV -valued discrete metric on Aω , defined
as dmδV (t, t

′) = 0 if t = t′, and dmδV (t, t
′) = δV otherwise.

Then KV (dmδV )(μ, μ′) is a pseudometric on Prob(Aω), whose kernel coincides
with probabilistic trace equivalence.

Proposition 5. KV(dmδV )(μ, μ′)=0 iff μ(σ)=μ′(σ) for all measurable σ⊆Aω.

The following theorem expresses that our bisimilarity metric bmV is a bound
on the distance on traces, which extends the standard relation between proba-
bilistic bisimilarity and probabilistic trace equivalence.

Theorem 2. Let μ = Pr[s � · ] and μ′ = Pr[s′ � · ]. Then KV (dmδV )(μ, μ′) ≤
bmV (s, s

′)

It should be noted that, although the choice of KV (dmδV ) as our trace distri-
bution metric might seem arbitrary, this metric is in fact of great interest. In the
case of the standard bisimilarity pseudometric, i.e. when (V, dV ) = ([0, 1], dR),
this metric is equal to the well-known total variation distance (also known as
statistical distance), defined as tv(μ, μ′) = supσ |μ(σ) − μ′(σ)|:

K(dmδV ) = tv (4)

Theorem 2 reduces to the result of [12] relating the total variation distance to
the bisimilarity pseudometric. Moreover, in the case of the multiplicative pseudo-
metric, discussed in the next section, KV (dmδV ) is the same as the multiplicative
distance between distributions, discussed in Section 5.1, which plays a central
role in differential privacy.
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Table 1. The standard Kantorovich metric and its multiplicative variant

Standard K(m)(μ, μ′) Multiplicative K⊗(m)(μ, μ′)

maxf |f̂(μ)− f̂(μ′)| maxf | ln f̂(μ)− ln f̂(μ′)|

Primal subject to subject to

∀s, s′. |f(s)− f(s′)| ≤ m(s, s′) ∀s, s′. | ln f(s)− ln f(s′)| ≤ m(s, s′)

min�
∑

i,j 
ijm(si, sj) min ln z

Dual subject to subject to

∀i, j. 
ij ≥ 0 ∀i, j. 
ij , ri ≥ 0

∀i.
∑

j 
ij = μ(si) ∀i.
∑

j 
ij − ri = μ(si)

∀j.
∑

i 
ij = μ′(sj) ∀j.
∑

i 
ije
m(si,sj) − rj ≤ z · μ′(sj)

5 The Multiplicative Variant

In this section we investigate the multiplicative variant of the Kantorovich pseu-
dometric, obtained by considering as distance dV the ratio between two numbers
instead than their difference. This is the distance used to define differential pri-
vacy. We show that this variant has a dual form, which can be used to compute
the metric by using linear programming techniques. In the next section, we will
show how to use it to verify differential privacy.

Definition 5. The multiplicative variant K⊗ of the Kantorovich lifting is de-
fined as the instantiation of KV with ([0, 1], d⊗) where d⊗(x, y) = | lnx− ln y|.

It is well known that the standard Kantorovich metric has a dual form which
can be interpreted in terms of the Transportation Problem, namely, the lowest
total cost of transporting the mass of one distribution μ to the other distribution
μ′ given the distance m between locations (in our case, states). The dual form
is shown in Table 1. Note that both the primal and the dual forms are linear
optimization problems. The dual form is particularly suitable for computation,
via standard linear programming techniques.

For our multiplicative variant, the objective function of the primal form is not
a linear expression, hence the linear programming techniques cannot be applied

directly. However, since ln f̂(μ) − ln f̂(μ′) = ln f̂(μ)

f̂(μ′)
and ln is a monotonically

increasing function, the primal problem is actually a linear-fractional program.
It is known that such kind of program can be converted to an equivalent lin-
ear programming problem and then to a dual program. The dual form of the
multiplicative variant obtained in this way is shown in Table 1. (For the sake

of simplicity, the table shows only the dual form of ln f̂(μ)− ln f̂(μ′). The dual

form of ln f̂(μ′)− ln f̂(μ) can be obtained by simply switching the roles of μ and
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μ′.) Hence, the multiplicative pseudometric can be computed by using linear
programming techniques.

5.1 Application to Differential Privacy

Differential privacy [19] is a notion of privacy originating from the area of statis-
tical databases, which however has been recently applied to several other areas.
The standard context is that of an analyst who wants to perform a statistical
query to a database. Although obtaining statistical information is permitted,
privacy issues arise when this information can be linked to that of an individual
in the database. In order to hide this link, differentially private mechanisms add
noise to the outcome of the query, in a way such that databases differing in a
single individual have similar probability of producing the same observation.

More concretely, let X be the set of all databases; two databases x, x′ ∈ X
are adjacent, written x � x′, if they differ in the value of a single individual. A
mechanism is a function M : X → Prob(Z) where Z is some set of reported val-
ues. Intuitively, M(x) gives the outcome of the query when applied to database
x, which is a probability distribution since noise is added.

Let tv⊗ be a multiplicative variant of the total variation distance on Prob(Z)
(simply called “multiplicative distance” in [23]), defined as:

tv⊗(μ, μ′) = sup
Z
| ln μ(Z)

μ′(Z)
|

Then differential privacy can be defined as follows.3

Definition 6. A mechanism M : X → Prob(Z) is ε-differentially private iff

tv⊗(M(x),M(x′)) ≤ ε ∀x � x′

Intuitively, the definition requires that, when run on adjacent databases, the
mechanism should produce similar results, since the distance between the corre-
sponding distributions should be bounded by ε (a privacy parameter).

In our setting, we assume that the mechanism M is modelled by a LMC, and
the result of the mechanism running on x is the trace produced by the execution
of the LMC starting from some corresponding state sx. That is, Z = Aω and

M(x) = Pr[sx � ·] (5)

The relation between differential privacy and the multiplicative bisimilarity met-
ric comes from the fact that tv⊗ can be obtained as the K⊗ lifting of the discrete
metric on Aω.

Lemma 2. Let δV = diamd⊗([0, 1]) = +∞ and let dmδV be the discrete metric
on Aω. Then tv⊗ = K⊗(dmδV ).

3 The definition can be generalized to an arbitrary set of secrets X equipped with a
“distinguishability metric” dX [10]. The results of this section extend to this setting.
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(a) bm(s, t) = 0.099 while ε = ln 100.
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(b) bm(s′, t′) = 0.5 while ε′ = ln 3.5.

Fig. 1. The bisimilarity pseudometric bm does not imply differential privacy

Let bm⊗ be the instantiation of the bisimilarity metric bmV with K⊗. The
above Lemma, together with Theorem 2, imply the following result, which makes
bm⊗ useful to verify differential privacy:

Theorem 3. Let M be the mechanism defined by (5), and assume that

bm⊗(sx, sx′) ≤ ε for all x � x′

Then M satisfies ε-differential privacy.

Note that the use of the multiplicative bm⊗ is crucial in the above result. The
following example shows that the standard bisimilarity metric bm (generated by
the original Kantorovich lifting) may be very different from the level of differ-
ential privacy, which is expected, since bm bounds the additive total variation
metric (Theorem 2 and (4)) instead of the multiplicative tv⊗.

Example 1. Consider the processes s, t shown inFig. 1 (a).We have that bm(s, t) =
0.1− 0.001 = 0.099 while their level of differential privacy is ε = ln 0.1

0.001 = ln 100.
Moreover, for the processes s′, t′ shown in Fig. 1 (b) we have bm(s′, t′) = 0.7−0.2 =
0.5 while their level of differential privacy is ε′ = ln 0.7

0.2 = ln 3.5. Using the original
Kantorovich metric, s and t are considered more indistinguishable than s′ and t′,
in sharp contrast to the corresponding differential privacy levels.

Approximate differential privacy. An approximate, also known as (ε, δ) version of
differential privacy is also widely used [20], relaxing the definition by an additive
factor δ. It requires that:

M(x)(Z) ≤ eεM(x′)(Z) + δ ∀x � x′, Z ⊆ Z

The α-distance on distributions is proposed in [3] to capture (ε, δ)-differential
privacy. For two real numbers a, b and a skew parameter α ≥ 1, the α-distance
between a and b is max{a− αb, b − αa, 0}. An instantiation of the Kantorovich
lifting based on the α-distance seems promising for extending Theorem 3 to the
approximate case; we leave this extension as future work.

Weak probabilistic anonymity. Weak probabilistic anonymity was proposed in
[16] as a measure of the degree of protection of user’s identities. It is defined in
a way similar to differential privacy, with the crucial difference (apart from the
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lack of an adjacency relation) that it uses the (additive) total variation instead
of the multiplicative one. Formally, let X contain the users’ identities, and let
M : X → Prob(Z) be the system in which users operate. We say that M is
ε-weakly probabilistically anonymous iff tv(M(x),M(x′)) ≤ ε for all x, x′ ∈ X .

For systems modelled by LMCs, by (4) and Theorem 2, we have that if
bm(sx, sx′) ≤ ε for all x, x′ ∈ X , then M satisfies ε-weak probabilistic anonymity.
Hence bm can be used to verify this anonymity property.

6 Process Algebra

Process algebras allow to syntactically describe probabilistic processes in terms of
a small set of well-understood operators. The operational semantics of a process
term is a LCMC with transitions derived from SOS rules.

In order to specify and verify systems in a compositional manner, it is neces-
sary that the behavioral semantics is compatible with all operators of the lan-
guage that describe these systems. For behavioral equivalence semantics there is
the common agreement that compositional reasoning requires that the consid-
ered behavioral equivalence is a congruence wrt all operators. On the other hand,
for behavioral metric semantics there are several proposals of properties that op-
erators should satisfy in order to facilitate compositional reasoning [18,1]. In this
section we will show that the standard non-recursive process algebra operators
are non-expansiveness [18] (as most prominent compositionality property) with
respect to the bisimilarity metric.

We introduce a simple probabilistic process algebra that comprises the follow-
ing operators i) constants 0 (stop process) and ε (skip process); ii) a family of
n-ary prefix operators a.([p1] ⊕. . .⊕[pn] ) with a ∈ Act , n ≥ 1, p1, . . . , pn ∈ (0, 1]
and

∑n
i=1 pi = 1; iii) binary operators ; (sequential composition), + (al-

ternative composition), +p (probabilistic alternative composition), | (syn-
chronous parallel composition), ‖ (asynchronous parallel composition), and
‖p (probabilistic parallel composition). We assume a set of actions Act with

the distinguished action
√ ∈ A to denote successful termination. The operational

semantics of all operators is specified by the rules in Table 2.
We use distribution terms in the target of rules (right hand side of the

conclusion of the rules) in order to describe distributions. We briefly recall
the semantics of distribution terms of [21,14]. The expression δ(x) denotes a
Dirac distribution on x. The expression μ; δ(y) denotes a distribution such that
(μ; δ(y))(x; y) = μ(x), the expression μ ⊕p ν denotes a distribution such that
(μ⊕p ν)(x) = pμ(x) + (1− p)ν(x), and (μ ‖ ν)(s ‖ t) = μ(s)ν(t).

The probabilistic prefix operator expresses that the process a.([p1]t1 ⊕ . . .⊕p

lus[pn]tn) can perform action a and evolves to process ti with probability pi.
The sequential composition and the alternative composition are as usual. The
synchronous parallel composition s | t describes the simultaneous evolution of
processes s and t, while the asynchronous parallel composition t ‖ t describes
the interleaving of s and t where both processes can progress by alternating
at any rate the execution of their actions. The probabilistic alternative and
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Table 2. Probabilistic process algebra operators

ε
√
−−→ δ(0) a.

n⊕
i=1

[pi]xi
a−→

n⊕
i=1

piδ(xi)

x
a−→ μ a 	= √

x; y
a−→ μ; δ(y)

x
√
−−→ μ y

a−→ ν

x; y
a−→ ν

x
a−→ μ

x + y
a−→ μ

y
a−→ ν

x + y
a−→ ν

x
a−→ μ y

a−→ ν

x | y a−→ μ | ν
x

a−→ μ

x ‖ y
a−→ μ ‖ δ(y)

y
a−→ ν

x ‖ y
a−→ δ(x) ‖ ν

x
a−→ μ y

a−→	
x +p y

a−→ μ

x
a−→	 y

a−→ ν

x +p y
a−→ ν

x
a−→ μ y

a−→ ν

x +p y
a−→ μ⊕p ν

x
a−→ μ y

a−→	
x ‖p y

a−→ μ ‖p δ(y)

x
a−→	 y

a−→ ν

x ‖p y
a−→ δ(x) ‖p ν

x
a−→ μ y

a−→ ν

x ‖p y
a−→ μ ‖p δ(y)⊕p δ(x) ‖p ν

probabilistic parallel composition replaces the nondeterministic choice of their
non-probabilistic variants by a probabilistic choice. The probabilistic alterna-
tive composition s+p t evolves to the probabilistic choice between a distribution
reached by s (with probability p) and a distribution reached by t (with proba-
bility 1− p) for actions which can be performed by both processes. For actions
that can be performed by either only s or only t, the probabilistic alternative
composition s+p t behaves just like the nondeterministic alternative composition
s + t. Similarly, the probabilistic parallel composition s ‖p t evolves to a prob-
abilistic choice between the nondeterministic choices of asynchronous parallel
composition of s and t.

We start by showing an important auxiliary property how the distance be-
tween convex combinations of probability distributions relates to the distance
between the combined probability distributions.

Proposition 6. Let μ1, μ2, μ
′
1, μ

′
2 ∈ Disc(X) and p ∈ [0, 1]. Then

K⊗(bm⊗)(pμ1+(1−p)μ2, pμ
′
1+(1−p)μ′

2) ≤ max(K⊗(bm⊗)(μ1, μ2),K⊗(bm⊗)(μ
′
1, μ

′
2))

Non-expansiveness is the most wildly studied compositionality property stat-
ing that the distance between composed processes is at most the sum of the
distance between its parts.

Definition 7. A n-ary operator f is non-expansive wrt a pseudometric m if

m(f(s1, . . . , sn), f(t1, . . . , tn)) ≤
n∑
i=1

m(si, ti)

Now we can show that all (non-recursive) operators of the probabilistic process
algebra introduced above are non-expansive. In fact, we will provide upper bounds
on distance between the composed processes which are in case of the (nondeter-
ministic and probabilistic) alternative composition even stricter than the non-
expansiveness condition.
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Theorem 4. Let s, t, s′, t′ be probabilistic processes. Then

1. bm⊗(s; t, s
′; t′) ≤ bm⊗(s, s

′) + bm⊗(t, t
′)

2. bm⊗(s + t, s′ + t′) ≤ max(bm⊗(s, s
′), bm⊗(t, t

′))
3. bm⊗(s +p t, s′ +p t′) ≤ max(bm⊗(s, s

′), bm⊗(t, t
′))

4. bm⊗(s | t, s′ ‖ t′) ≤ bm⊗(s, s
′) + bm⊗(t, t

′)
5. bm⊗(s ‖ t, s′ ‖ t′) ≤ bm⊗(s, s

′) + bm⊗(t, t
′)

6. bm⊗(s ‖p t, s ‖p t′) ≤ bm⊗(s, s
′) + bm⊗(t, t

′)

A similar result can be gained for the bisimilarity metric bm based on the
standard Kantorovich lifting. This generalizes a similar result of [18] which con-
sidered only PTSs without nondeterministic branching and only a small set of
process combinators.

For the generalized bisimilarity metric bmV we can formulate a similar result
for the nondeterministic alternative composition.

Theorem 5. Let s, t, s′, t′ be probabilistic processes. Then

bmV (s + t, s′ + t′) ≤ max(bmV (s, s
′), bmV (t, t

′))

7 Conclusion and Future Work

We have proposed a family of Kantorovich pseudometrics depending on the
notion of distance used to specify properties over traces. We have developed the
theory of this notion, and showed how we can use it to verify the corresponding
kind of properties. We have also showed that for the multiplicative variant, which
is an interesting case because it corresponds to differential privacy, it is possible
to give a dual form that makes the metric computable by standard techniques.

Future work include the investigation of methods to compute other members
of this family, and of conditions that make possible a general dual form.
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Abstract. In Choreographic Programming, a distributed system is
programmed by giving a choreography, a global description of its in-
teractions, instead of separately specifying the behaviour of each of its
processes. Process implementations in terms of a distributed language
can then be automatically projected from a choreography.

We present Linear Compositional Choreographies (LCC), a proof
theory for reasoning about programs that modularly combine choreogra-
phies with processes. Using LCC, we logically reconstruct a semantics
and a projection procedure for programs. For the first time, we also ob-
tain a procedure for extracting choreographies from process terms.

1 Introduction

Choreographic Programming is a programming paradigm for distributed systems
inspired by the “Alice and Bob” notation, where programs, called choreographies,
are global descriptions of how endpoint processes interact during execution
[14,21,1]. The typical set of programs defining the actions performed by each
process is then generated by endpoint projection (EPP) [17,12,8,5,9,15].

The key aspect of choreography languages is that process interactions are
treated linearly, i.e., they are executed exactly once. Previous work [8,9,15] de-
veloped correct notions of EPP by using session types [11], linear types for com-
munications inspired by linear logic [10]. Despite the deep connections between
choreographies and linearity, the following question remains unanswered:

Is there a formal connection between choreographies and linear logic?

Finding such a connection would contribute to a more precise understanding of
choreographies, and possibly lead to answering open questions about them.

A good starting point for answering our question is a recent line of work on
a Curry-Howard correspondence between the internal π-calculus [18] and linear
logic [7,22]. In particular, proofs in Intuitionistic Linear Logic (ILL) correspond
to π-calculus terms (proofs-as-programs) and ILL propositions correspond to
session types [7]. An ILL judgement describes the interface of a process, for
example:

P � x :A, y :B � z : C

Above, process P needs to be composed with other processes that provide the
behaviours (represented as types) A on channel x and B on channel y, in order
to provide behaviour C on channel z. The focus is on how the process can be

� Work performed while the author was employed at the IT University of Copenhagen.
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c© Springer-Verlag Berlin Heidelberg 2014
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composed with other external processes, abstracting from the internal commu-
nications enacted inside the process itself (which may contain communicating
sub-processes). On the contrary, choreographies are descriptions of the internal
interactions among the processes inside a system, and therefore type systems
for choreographies focus on checking such internal interactions [8,9]. It is thus
unclear how the linear typing of ILL can be related to choreographies.

In this paper, we present Linear Compositional Choreographies (LCC), a
proof theory inspired by linear logic for typing programs that modularly combine
choreographies with processes in the internal π-calculus. The key aspect of LCC
is to extend ILL judgements to describe interactions among internal processes
in a system. Thanks to LCC, not only do we obtain a logical understanding of
choreographic programming, but we also provide the foundations for tackling
the open problem of extracting a choreography from a system of processes.

Main Contributions. We summarise our main contributions:

Linear Compositional Choreographies (LCC). We present LCC, a generalisation
of ILL where judgements can also describe the internal interactions of a system
(§ 3). LCC proofs are equipped with unique proof terms, called LCC programs,
following the Curry-Howard interpretation of proofs-as-programs. LCC programs
are in a language where choreographies and processes are modularly combined
by following protocols given in the type language of LCC (à la session types [11]).

Logically-derived semantics. We derive a semantics for LCC programs from our
proof theory (§ 4): (i) some rule applications in LCC proofs can be permuted
(commuting conversions), defining equivalences (structural congruence) on LCC
programs (§ 4.1); (ii) some proofs can be safely reduced to smaller proofs, cor-
responding to executing communications (§ 4.2). By following our semantics,
we prove that all internal communications in a system can be reduced (proof
normalisation), i.e., LCC programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two frag-
ments: the action fragment, which manipulates the external interfaces of pro-
cesses, and the interaction fragment, which handles internal communications.
We derive automatic transformations from proofs in either fragment to proofs in
the other, yielding procedures of endpoint projection and choreography extrac-
tion (§ 5) that preserve the semantics of LCC programs. This is the first work
addressing extraction for a fragment of the π-calculus, providing the foundations
for a new development methodology where programmers can compose chore-
ographies with existing process code (e.g., software libraries) and then obtain a
choreography that describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal π-calculus and ILL [7].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:
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x(tea); x(tr); tr(p)︸ ︷︷ ︸ x(tea); x(tr); tr(p); b(m)︸ ︷︷ ︸ b(m)︸ ︷︷ ︸
Pclient Pserver Pbank

(1)

The three processes above, given as internal π-calculus terms [18], denote a
system composed by three endpoints (client, server, and bank). Their parallel
execution is such that: client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving
the payment, server deposits some money m by sending it over channel b to bank.

Programming with processes is error-prone, since they do not give an explicit
description of how endpoints interact [14]. By contrast, choreographies specify
how messages flow during execution [21]. For example, the choreography

1. client → server : x(tea); server → client : x(tr);
2. client → server : tr(p); server → bank : b(m)

(2)

defines the communications that occur in (1). We read client → server : x(tea)
as “process client sends tea to process server through channel x”.

ILL and the π-calculus. The processes in (1) can be typed by ILL, using
propositions as session types that describe the usage of channels. For example,
channel x in Pclient has type string ⊗ (string � end) � end, meaning: send
a string; then, receive a channel of type string � end and, finally, stop (end).
Concretely, in Pclient , the channel of type string � end received through x is
channel tr. The type of tr says that the process sending tr, i.e., Pserver , will use it
to receive a string; therefore, process Pclient must implement the dual operation
of that implemented by Pserver , i.e., the output tr(p). Similarly, channel b has
type int⊗ end in Pserver . We can formalise this intuition with the following three
ILL judgements, where A = string⊗ (string � end) � end and B = int⊗end:

Pclient � · � x :A Pserver � x :A � b :B Pbank � b :B � z :end

Recall that Pserver �x :A � b :B reads as “given a context that implements channel
x with type A, process Pserver implements channel b with type B”. Given these
judgements, we compose Pclient , Pserver , and Pbank using channels x and b as:

(νx)
(
Pclient |x (νb) ( Pserver |b Pbank )

)
(3)

The compositions in (3) can be typed using the Cut rule of ILL:

P � Δ1 � x :A Q �Δ2, x :A � y :B

(νx) (P | Q) � Δ1,Δ2 � y :B
Cut

(4)

Above, Δ1 and Δ2 are sets of typing assignments, e.g., z :D. We interpret rule
Cut as “If a process provides A on channel x, and another requires A on channel
x to provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal π-calculus [7], and
applications of rule Cut can always be eliminated, a proof normalisation proce-
dure known as cut elimination. This procedure provides a model of computation
for processes. We illustrate a cut reduction, a step of cut elimination, in the
following (we omit process terms for readability):
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C1 � A C2 � B

C1, C2 � A⊗B
⊗R

A,B � D

A⊗B � D
⊗L

C1, C2 � D
Cut

=⇒ C1 � A

C2 � B A,B � D

C2, A � D
Cut

C1, C2 � D
Cut

The proof on the left-hand side applies a cut to two proofs, one providing A ⊗
B, and the other providing D when provided with A ⊗ B. The cut-reduction
above (⇒) shows how this proof can be simplified to a proof where the cut
on A ⊗ B is reduced to two cuts on the smaller formulas A and B. A cut-
reduction corresponds to executing a communication between two processes, one
outputting on a channel of type A ⊗ B, and another inputting from the same
channel [7]. Executing the communication yields a new system corresponding
to the proof on the right-hand side. Cut-free proofs correspond to systems that
have successfully completed all their internal communications.

Towards LCC. Cut reductions in ILL model the interactions between the inter-
nal processes in a system, which is exactly what choreographies describe syntac-
tically. Therefore, in order to capture choreographies, we wish our proof theory
to reason about transformations such as the cut reduction above.

ILL judgements give us no information on the applications of rule Cut in a
proof. In contrast, standard type systems for choreographies [8,9,15] have differ-
ent judgements: instead of interfaces for later composition, they contain informa-
tion about internal processes and their interactions. Following this observation,
we make two important additions to ILL judgements. First, we extend them
to describe multiple processes by using hypersequents, i.e., collections of mul-
tiple ILL sequents [2]. Second, we represent the connections between sequents
in a hypersequent, since two processes need to share a common connection for
interacting. The following is an LCC judgement:

P � Δ1 � x :•A | Δ2, x :•A � y :B

Above, we composed two ILL sequents with the operator |, which captures the
parallel composition of processes. The two sequents are connected through chan-
nel x, denoted by the marking •. We will use hypersequents and marking let us
reason about interactions by handling both ends of a connection.

LCC judgements can express cut elimination as a proof. For example,

Q � z1 :C1, z2 :C2 � x :•A⊗B | x :•A⊗B � w :D

represents the left-hand side of the cut reduction seen previously, where a process
requires C1 and C2 to perform an interaction of type A⊗B with another process
that can then provide D. Importantly, the connection of type A ⊗ B between
the two sequents cannot be composed with external systems since it is used for
internal interactions. Using our judgements, we can capture cut reductions:

Q′ � z1 :C1 � y :•A | z2 :C2 � x :•B | y :•A, x :•B � w :D

The new judgement describes a system that still requires C1 and C2 in order to
provide D, but now with three processes: one providing A from C1, one providing
B from C2 and, finally, one using A and B for providing D. Also, the first two
sequents are connected to the third one. This corresponds to the right-hand side
of the cut reduction seen previously, where process Q reduces to process Q′ .
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We can now express the different internal states of a system before and after
a cut reduction, by the structure of its connections in our judgements. This
intuition is behind the new rules for typing choreographies presented in § 3.

3 Linear Compositional Choreographies

We present Linear Compositional Choreographies (LCC), a proof theory for
typing programs that can modularly combine choreographies and processes.

Types. LCC propositions, or types, are defined as:

(Propositions) A,B ::= 1 | A⊗B | A � B | A⊕B | A&B

LCC propositions are the same as in ILL: ⊗ and � are the multiplicative con-
nectives, while ⊕ and & are additives. 1 is the atomic proposition. A ⊗ B is
interpreted as “output a channel of type A and then behave as specified by type
B”. On the other hand, A � B, the linear implication, reads “receive a channel
of type A and then continue as B”. Proposition A⊕B selects a branch of type
A or B, while A&B offers the choice of A or B.

Hypersequents. Elements are types identified by variables, possibly marked by
•. Contexts are sets of elements, while hypersequents are sets of ILL sequents:

(Element) T ::= x :A | x :•A (Contexts) Δ,Θ ::= · | Δ,T

(Hypersequents) Ψ ::= Δ � T | Ψ |Ψ
Contexts Δ and hypersequents Ψ are equivalent modulo associativity and com-
mutativity. A hypersequent Ψ is the parallel composition of sequents. Given a
sequent Δ � T , we call Δ its hypotheses and T its conclusion.

We make the standard assumption that a variable can appear at most once in
any hypersequent, unless it is marked with •. In LCC, bulleted variables appear
exactly twice in a hypersequent, once as a hypothesis and once as a conclusion of
two respective sequents which we say are then “connected”. A provable hyperse-
quent always has exactly one sequent with a non-bulleted conclusion, which we
call the conclusion of the hypersequent. Similarly, we call non-bulleted hypothe-
ses the hypotheses of the hypersequent. Intuitively, a provable hypersequent is a
tree of sequents, whose root is the only sequent with a non-bulleted conclusion,
and whose sequents have exactly one child for each of their bulleted hypotheses.

Processes and Choreographies. We give the syntax of our proof terms, or
LCC programs, in Fig. 1. The syntax is an extension of that of the internal
π-calculus with choreographic primitives. The internal π-calculus allows us to
focus on a simple, yet very expressive fragment of the π-calculus [19], as in [7].
Terms can be processes performing I/O actions or choreographies of interactions.

Processes. An (output) x(y); (P |Q) sends a fresh name y over channel x and then

proceeds with the parallel composition P |Q , whereas an (input) x(y);P receives
y over x and proceeds as P . In a (left sel) x.inl;P , we send over channel x our
choice of the left branch offered by the receiver. The term (right sel) x.inr;P
selects the right branch instead. Selections communicate with the term (case)
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P,Q,R ::= x(y); (P |Q) (output) | x(y);P (input)

| x.inl;P (left sel) | x.inr;P (right sel)

| x.case(P,Q) (case) | P |x Q (par)

| close[x] (close) | wait[x];P (wait)

| (νx)P (res)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Processes

Choreographies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|
−→
x(y);P (global com) |

−→
close[x] ;P (global close)

|
−→
x.l(P,Q) (global left sel) | −→

x.r(P,Q) (global right sel)

Fig. 1. LCC programs

x.case(P,Q) , which offers a left branch P and a right branch Q . The term

(par) P |x P models parallel composition; here, differently from the output case,
the two composed processes are not independent, but share the communication
channel x. The term (res) is the standard restriction. Terms (close) and (wait)
model, respectively, the request and acceptance for closing a channel, following
real-world closing handshakes in communication protocols such as TCP.

Choreographies. The term (res)for name restriction is the same as for processes.

A (global com)
−→
x(y);P describes a system where a fresh name y is communi-

cated over a channel x, and then continues as P , where y is bound in P . The
terms (global left sel) and (global right sel) model systems where, respectively, a
left branch or a right branch is selected on channel x. Unused branches in global

selections, e.g., Q in
−→
x.l(P,Q) , are unnecessary in our setting since they are

never executed; however, their specification will be convenient for our technical
development of endpoint projection, which will follow our concretisation trans-
formation in LCC. Finally, term (global close) models the closure of a channel.

Note that, differently from § 2, we omit process identifiers in choreographies
since our typing will make them redundant (cf. § 6).
Judgements. An LCC judgement has the form P �Ψ where Ψ is a hypersequent
and P is a proof term. If we regard LCC as a type theory for our term language,
we say that the hypersequent Ψ types the term P .

3.1 Rules

The proof theory of LCC consists of the action fragment and the interaction
fragment, which reason respectively about processes and choreographies.

Action Fragment. The action fragment includes ILL-style left and right rules,
reported in Fig. 2, and the structural rules Conn and Scope, described separately.

Unit. The rules for unit are standard. Rule 1R types a process that requests
to close channel x and terminates. Symmetrically, rule 1L types a process that
waits for a request to close x, making sure that x does not occur in P .
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P 	 Ψ1|Δ1 � y :A Q 	 Ψ2|Δ2 � x :B

x(y); (P |Q) 	 Ψ1|Ψ2|Δ1, Δ2 � x :A⊗ B
⊗R

P 	 Ψ |Δ, y :A,x :B � T

x(y);P 	 Ψ |Δ, x :A⊗ B � T
⊗L

P 	 Ψ |Δ, y :A � x :B

x(y);P 	 Ψ |Δ � x :A � B
� R

P 	 Ψ1|Δ1 � y :A Q 	 Ψ2|Δ2, x :B � T

x(y); (P |Q) 	 Ψ1|Ψ2|Δ1, Δ2, x :A � B � T
� L

close[x] 	 · � x :1
1R

P 	 Ψ |Δ, x :A � T

x.inl;P 	 Ψ |Δ, x :A&B � T
&L1

Q 	 Ψ |Δ, x :B � T

x.inr;Q 	 Ψ |Δ, x :A&B � T
&L2

P 	 Ψ |Δ � T

wait[x];P 	 Ψ |Δ, x :1 � T
1L

P 	 Ψ |Δ � x :A

x.inl;P 	 Ψ |Δ � x :A⊕ B
⊕R1

Q 	 Ψ |Δ � x :B

x.inr;Q 	 Ψ |Δ � x :A⊕ B
⊕R2

P 	 Ψ |Δ � x :A Q 	 Ψ |Δ � x :B

x.case(P,Q) 	 Ψ |Δ � x :A&B
&R

P 	 Ψ |Δ, x :A � T Q 	 Ψ |Δ, x :B � T

x.case(P,Q) 	 Ψ |Δ, x :A⊕ B � T
⊕L

Fig. 2. Left and Right Rules of the Action Fragment

Tensor. Rule ⊗R types the output x(y); (P |Q) , combining the conclusions of the
hypersequents of P and Q . The continuations P and Q will handle, respec-
tively, the transmitted channel y and channel x. Ensuring that channels y and
x are handled by different parallel processes avoids potential deadlocks caused
by their interleaving [7,22]. Dually, rule ⊗L types an input x(y);P , by requiring
the continuation to use channels y and x following their respective types.

Linear Implication. The proof term for rule � R is an input x(y);P , meaning
that the process needs to receive a name of type A before offering behaviour B
on channel x. Rule � L types the dual term x(y); (P |Q) . Note that the prefixes
in the proof terms are the same as for the tensor rules. This does not introduce
ambiguity, since continuations are typed differently and thus it is never the case
that both connectives could be used for typing the same term [7].

Additives. The rules for the additive connectives are standard. In a left selection
x.inl;P , we send over x our choice of the left branch offered by the receiver.
The term x.inr;P , is similar, but selects the right branch instead. Selections
communicate with the term x.case(P,Q) , which offers a left branch P and a

right branch Q . In LCC, for example, rule &R states that x.case(P,Q) provides
x with type A&B whenever P and Q provide x with type A and B respectively.

Connection and Scoping. We pull apart the standard Cut rule of ILL, as (4) in
§ 2, and obtain two rules that depend on hypersequents as an interim place to
store information. The first rule, Conn, merges two hypersequents by forming a
connection:

P 	 Ψ1|Δ1 � x :A Q 	 Ψ2|Δ2, x :A � T

P |x Q 	 Ψ1|Ψ2|Δ1 � x :•A|Δ2, x :•A � T
Conn

The proof term for Conn is parallel composition: in the conclusion, the two terms
P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P 	 Ψ | Δ1 � x :•A | Δ2, x :•A � T

(νx)P 	 Ψ | Δ1, Δ2 � T
Scope
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The proof term for Scope is a restriction of the scoped channel.

Interaction Fragment. Connections are first-class citizens in LCC and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which correspond to choreographies. Such rules form, together
with rule Scope, the interaction fragment of LCC.

Unit. A connection of type 1 between two sequents can always be introduced:

P 	 Ψ |Δ � T

−→
close[x];P 	 Ψ |· � x :•1|Δ, x :•1 � T

1C

Observe that the choreography term
−→

close[x];P describes the same behaviour as

the process term close[x] |x wait[x];P , and indeed their typing is the same. In
general, in LCC the typing of process terms and choreographic terms describing
equivalent behaviour is the same. We will formalise this intuition in § 5.
Tensor. The connection rule for ⊗ combines two connections between three se-
quents. Technically, when two sequents Δ1 � y :•A and Δ2 � x :•B are connected
to a third sequent Δ3, y :•A, x :•B � T , we can merge the two connections into
a single one, obtaining the sequents Δ1, Δ2 � x :•A⊗B and Δ3, x :•A⊗B � T :

P 	 Ψ |Δ1 � y :•A|Δ2 � x :•B|Δ3, y :•A,x :•B � T

−→
x(y);P 	 Ψ |Δ1, Δ2 � x :•A⊗ B|Δ3, x :•A⊗ B � T

⊗C

Rule ⊗C corresponds to typing a choreographic communication
−→
x(y);P . This

rule is the formalisation in LCC of the cut reduction discussed in § 2. Term P
will then perform communications on channel y with type A and x with type B.

Linear Implication. The rule for � manipulates connections with a causal de-
pendency: if Δ1 � y : •A is connected to Δ2, y : •A � x : •B, which is connected
to Δ3, x :•B � T , then Δ2 � x :•A � B is connected to Δ1, Δ3, x :•A � B � T .

P 	 Ψ |Δ1 � y :•A|Δ2, y :•A � x :•B|Δ3, x :•B � T

−→
x(y);P 	 Ψ |Δ2 � x :•A � B|Δ1, Δ3, x :•A � B � T

�C

Rule � C types a communication
−→
x(y);P . The prefix

−→
x(y) is the same as

that of rule ⊗C, similarly to the action fragment for the connectives ⊗ and �.
Differently from rule ⊗C, the usage of channel x in the continuation P has a
causal dependency on y whereas in ⊗C the two channels proceed separately.

Additives. The rules for the additive connectives follow similar reasoning:

P 	 Ψ |Ψ ′|Δ1 � x :•A|Δ2, x :•A � T Q 	 Ψ ′|Δ1 � x :B

−→
x.l (P,Q) 	 Ψ |Ψ ′|Δ1 � x :•A&B|Δ2, x :•A&B � T

&C1

P 	 Ψ |Δ1 � x :A Q 	 Ψ |Ψ ′|Δ1 � x :•B|Δ2, x :•B � T

−→
x.r(P,Q) 	 Ψ |Ψ ′|Δ1 � x :•A&B|Δ2, x :•A&B � T

&C2
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P 	 Ψ |Ψ ′|Δ1 � x :•A|Δ2, x :•A � T Q 	 Ψ ′|Δ2, x :B � T

−→
x.l (P,Q) 	 Ψ |Ψ ′|Δ1 � x :•A⊕ B|Δ2, x :•A⊕ B � T

⊕C1

P 	 Ψ |Δ2, x :A � T Q 	 Ψ |Ψ ′|Δ1 � x :•B|Δ2, x :•B � T

−→
x.r(P,Q) 	 Ψ |Ψ ′|Δ1 � x :•A⊕ B|Δ2, x :•A⊕ B � T

⊕C2

Rule &C1 types a choreography that selects the left branch on x and then pro-
ceeds P , provided that x is not used in Q since the latter is unused.

We call C-rules the interaction rules for manipulating connections. C-rules
represent of cut reductions in ILL, following the intuition presented in § 2.
Example 1. We formalise and extend our example from § 2 as follows:

Pclient′ = x.inr; x(tea);
(

close[tea] | x(tr); tr(p); (close[p]|wait[tr]; close[x] )
)

Pserver′ = x.case

⎛
⎜⎝

x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

(
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

(
close[m] | wait[x]; close[b]

))
⎞
⎟⎠

Pbank′ = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

P = (νx) (Pclient′ |x (νb) (Pserver′ |b Pbank′))

C = (νx) (νb)
−→
x.r

⎛
⎜⎜⎜⎜⎜⎝

x(water); b.inl; wait[water]; wait[x]; close[b],

−→
x(tea);

−→
x(tr);

−→
tr(p);

−→
b.r

⎛
⎜⎝

wait[b]; close[z]

−→
b(m);

−→
close[tea, p, tr,m, x, b]

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

Process Pclient′ implements a new version of the client, which selects the right
choice of a branching on channel x and then asks for some tea; then, it proceeds
as Pclient from § 2. Note that we have enhanced the processes with all expected
closing of channels. The server Pserver′ , instead, now offers to the client a choice
between buying a tea (as in § 2) and getting a free glass of water. Since the
water is free, the payment to the bank is not performed in this case. In either
case, the bank is notified of whether a payment will occur or not, respectively
right and left branch in Pbank . The processes are composed as a system in P .

Term C is the equivalent choreographic representation of P . We can type
channel x as (string ⊗ end) ⊕ (string ⊗ (string � end) � end) in both C
and P . The type of channel b is: end⊕ (string⊗ end). For clarity, we have used
concrete data types instead of the abstract basic type 1. ��

4 Semantics

We now derive an operational semantics for LCC programs from our proof the-
ory, by obtaining the standard relations of structural equivalence ≡ and reduc-
tion → as theorems of LCC. For example, the π-calculus rule (νw) (P |x Q) ≡
(νw)P |x Q (for w 	∈ fn(Q )) can be derived as a proof transformation, since:

P 	 Ψ | Δ1 � y : •D| Δ, y : •D � x : A Q 	 Ψ ′| Δ′, x : A � T

P |x Q 	 Ψ | Ψ ′| Δ1 � y : •D| Δ, y : •D � x : •A| Δ′, x : •A � T
Conn

(νy) (P |x Q) 	 Ψ | Ψ ′| Δ1, Δ � x : •A| Δ′, x : •A � T
Scope
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[Scope/Conn/L] (νy) (P |x Q) ≡ (νy)P |x Q
(
y �∈ fn(Q )

)
[Scope/Conn/R] (νy) (P |x Q) ≡ P |x (νy)Q

(
y �∈ fn(P )

)
[Scope/Scope] (νy) (νx)P ≡ (νx) (νy)P

[Scope/1L] (νx)wait[y];P ≡ wait[y]; (νx)P

[Scope/⊗ R/L], [Scope/ � L/L] (νw)x(y); (P |Q) ≡ x(y); ((νw)P | Q)
(
w �∈ fn(Q )

)
[Scope/⊗ R/R], [Scope/ � L/R] (νw)x(y); (P |Q) ≡ x(y); (P | (νw)Q)

(
w �∈ fn(P )

)
[Scope/⊗ L], [Scope/ � R] (νw)x(y);P ≡ x(y); (νw)P

[Scope/⊕ R1], [Scope/&L1] (νw)x.inl;P ≡ x.inl; (νw)P

[Scope/⊕ R2], [Scope/&L2] (νw)x.inr;P ≡ x.inr; (νw)P

[Scope/⊕ L], [Scope/&R] (νw)x.case(P,Q) ≡ x.case((νw)P , (νw)Q)

[Scope/1C] (νw)
−→

close[x];P ≡
−→

close[x]; (νw)P

[Scope/⊗ C], [Scope/ � C] (νw)
−→
x(y);P ≡

−→
x(y); (νw)P

[Scope/⊕ C1/L], [Scope/&C1/L] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw)P,Q)

(
w �∈ fn(Q )

)

[Scope/⊕ C1/L/R], [Scope/&C1/L/R] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw)P, (νw)Q)

(
w ∈ fn(Q )

)
[Scope/⊕ C2/R], [Scope/&C2/R] (νw)

−→
x.r(P,Q) ≡ −→

x.r(P, (νw)Q)
(
w �∈ fn(P )

)
[Scope/⊕ C2/L/R], [Scope/&C2/L/R] (νw)

−→
x.r(P,Q) ≡ −→

x.r((νw)P, (νw)Q)
(
w ∈ fn(P )

)

Fig. 3. Commuting Conversions (≡) for Scope (Restriction)

is equivalent to (≡)

P 	 Ψ | Δ1 � y : •D| Δ, y : •D � x : A

(νy)P 	 Ψ | Δ1, Δ � x : A
Scope

Q 	 Ψ ′| Δ′, x : A � T

(νy)P |x Q 	 Ψ | Ψ ′| Δ1, Δ � x : •A| Δ′, x : •A � T
Conn

4.1 Commuting Conversions (≡)

The structural equivalence of LCC (≡) is defined in terms of commuting con-
versions, i.e., admissible permutations of rule applications in proofs. In ILL,
commuting conversions concern the cut rule. However, since in LCC the cut rule
has been split into Scope and Conn, we need to introduce two sets of commuting
conversions, one for rule Scope, and one for rule Conn. In the sequel, we report
commuting conversions between proofs by giving the corresponding process and
choreography terms (cf. [14] for the complete LCC proofs).

Commuting Conversions for Scope. Commuting conversions for Scope cor-
respond to permuting restriction with other operators in LCC programs. We
report them in Fig. 3, where we assume variables to be distinct. For example,
[Scope/ ⊗ R/L] says that an application of rule Scope to the conclusion of rule
⊗R can be commuted so that we can apply ⊗R to the conclusion of Scope. Note
that the top-level LCC terms of some cases are identical, e.g., [Scope/⊗R/L] and
[Scope/ � L/L], but the subterms are different since they have different typing.

Commuting Conversions for Conn. The commuting conversions for rule
Conn, reported in Fig. 4, correspond to commuting the parallel operator with
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[Conn/Conn] (P |y Q) |x R ≡ P |y (Q |x R)

[Conn/1L/L] wait[x];P |y Q ≡ wait[x]; (P |y Q)

[Conn/1L/R] P |y wait[x];Q ≡ wait[x]; (P |y Q)

[Conn/ ⊗R/R/L], [Conn/�L/R/L] P |w x(y); (Q|R) ≡ x(y); ((P |w Q) | R)

[Conn/ ⊗R/R/R], [Conn/�L/R/R] P |w x(y); (Q|R) ≡ x(y); (Q | (P |w R))

[Conn/ ⊗ L/L] x(y); P |w Q ≡ x(y); (P |w Q)

[Conn/ ⊗ L/R], [Conn/ � R/R] P |w x(y); Q ≡ x(y); (P |w Q)

[Conn/ � L/L/R] x(y); (P |Q) |w R ≡ x(y); (P | (Q |w R))

[Conn/ ⊕ R1/R], [Conn/&L1/R] P |w x.inl;Q ≡ x.inl; (P |w Q)

[Conn/ ⊕ R2/R], [Conn/&L2/R] P |w x.inr;Q ≡ x.inr; (P |w Q)

[Conn/ ⊕ L/L] x.case(P, Q)|wR ≡ x.case((P |w R), (Q |w R))

[Conn/ ⊕ L/R], [Conn/&R/R] P|wx.case(Q, R) ≡ x.case((P |w Q), (P |w R))

[Conn/&L1/L] x.inl;P |w Q ≡ x.inl; (P |w Q)

[Conn/&L2/L] x.inr;P |w Q ≡ x.inr; (P |w Q)

[Conn/1C/L]
−→

close[x];P |w Q ≡
−→

close[x]; (P |w Q)

[Conn/1C/R] P |w
−→

close[x];Q ≡
−→

close[x]; (P |w Q)

[Conn/⊗ C/L], [Conn/ �C/L]
−→
x(y);P |w Q ≡

−→
x(y); (P |w Q)

(
y �∈ fn(Q )

)

[Conn/⊗C/R], [Conn/ � C/R] P |w
−→
x(y);Q ≡

−→
x(y); (P |w Q)

(
y �∈ fn(P )

)

[Conn/⊕ C1/L]
−→
x.l (P, Q) |w R ≡

−→
x.l ((P |w R), (Q |w R))

(
w ∈ fn(P ) ∩ fn(Q )

)

[Conn/⊕ C1/R], [Conn/&C1/R] P |w
−→
x.l (Q,R) ≡

−→
x.l ((P |w Q), (P |w R))

(
w ∈ fn(Q ) ∩ fn(R )

)

[Conn/⊕C1/R/L],[Conn/&C1/R/L] P |w
−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , R)

(
w ∈ fn(Q ), w �∈ fn(R )

)

[Conn/⊕ C2/L]
−→
x.r (P, Q) |w R ≡ −→

x.r ((P |w R), (Q |w R))
(
w ∈ fn(P ) ∩ fn(Q )

)

[Conn/⊕ C2/R], [Conn/&C2/R] P |w
−→
x.r (Q, R) ≡ −→

x.r ((P |w Q), (P |w R))
(
w ∈ fn(Q ) ∩ fn(R )

)

[Conn/⊕C2/R/R],[Conn/&C2/R/L] P |w
−→
x.r (Q,R) ≡ −→

x.r (Q , (P |w R))
(
w �∈ fn(Q ), w ∈ fn(R )

)

[Conn/&C1/L]
−→
x.l (P, Q) |w R ≡

−→
x.l ((P |w R), Q)

(
w ∈ fn(P ), w �∈ fn(Q )

)

[Conn/&C2/L]
−→
x.r (P, Q) |w R ≡ −→

x.r (P , (Q |w R))
(
w �∈ fn(P ), w ∈ fn(Q )

)

Fig. 4. Commuting Conversions (≡) for Conn (Parallel Composition)

other terms. For example, rule [Conn/Conn] is the standard associativity of par-

allel in the π-calculus. Also, [Conn/⊗ C/L] says that
−→
x(y) in

−→
x(y);P |w Q can

always be executed before Q as far as x and y do not occur in Q . This captures
the concurrent behaviour of choreographies in [9]. Note that some of the rules
are not standard for the π-calculus, e.g., [Conn/ � R/R], but this does not alter
the intended semantics of parallel (cf. § 6, Semantics).

Since conversions preserve the concluding judgement of a proof, we have that:

Theorem 1 (Subject Congruence). P � Ψ and P ≡ Q implies that Q � Ψ .

4.2 Reductions (→)

As for structural equivalence, we derive the reduction semantics for LCC pro-
grams from proof transformations. The obtained rules, reported in Fig. 5, are
standard for both processes and choreographies (cf. [19,9]): processes are reduced
when they are the parallel composition of compatible actions, while choreogra-
phies can always be reduced. With an abuse of notation, we labelled each reduc-
tion with the channel it uses. Choreography reductions are also annotated with
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[β1] (νx) (close[x] |x wait[x];Q)
x−→ Q

[β⊗] (νx) (x(y); (P |Q) |x x(y);R)
x−→ (νy) (νx)

(
P |y (Q |x R)

)
[β�] (νx) (x(y);P |x x(y); (Q|R))

x−→ (νx) (νy)
(
(Q |y P ) |x R)

[β⊕1 ] (νx) (x.inl;P |x x.case(Q,R))
x−→ (νx) (P |w Q)

[β⊕2 ] (νx) (x.inr;P |x x.case(Q,R))
x−→ (νx) (P |x R)

[β&1
] (νx) (x.case(P,Q) |x x.inl;R)

x−→ (νx) (P |x R)

[β&2
] (νx) (x.case(P,Q) |x x.inr;R)

x−→ (νx) (Q |x R)

[β1C] (νx)
−→

close[x];P
•x−−→ P [β⊗C], [β�C] (νx)

−→
x(y);P

•x−−→ (νy) (νx)P

[β&C1
], [β⊕C1

] (νx)
−→
x.l (P,Q)

•x−−→ (νx)P [β&C2
], [β⊕C2

] (νx)
−→
x.r(P,Q)

•x−−→ (νx)Q

Fig. 5. Reductions

•. We use t to range over labels of the form x or •x, and t̃ to denote a sequence
of such labels. As for commuting conversions, reductions preserve judgements:

Theorem 2 (Subject Reduction). P � Ψ and P
t−→ Q implies that Q � Ψ .

4.3 Scope Elimination (Normalisation)

We can use commuting conversions and reductions to permute and reduce all
applications of Scope in a proof until the proof is Scope-free. Since applications of
Scope correspond to restrictions in LCC programs, the latter can always progress
until all communications on restricted channels are executed. We denote the

reflexive and transitive closure of
t−→ up to ≡ with

t̃
−→→.

Theorem 3 (Deadlock-freedom). P �Ψ implies there exist Q restriction-free

and t̃ such that P
t̃
−→→ Q and Q � Ψ .

5 Choreography Extraction and Endpoint Projection

In LCC, a judgement containing connections can be derived by either (i) using
the action fragment, corresponding to processes, or (ii) using the interaction
fragment, corresponding to choreographies. Consider the two following proofs:

close[x] � · 
 x :1
1R

close[y] � · 
 y :1
1R

wait[x]; close[y] � x :1 
 y :1
1L

close[x] |x wait[x]; close[y] � · 
 x :•1|x :•1 
 y :1
Conn

(νx) (close[x] |x wait[x]; close[y]) � · 
 y :1
Scope

close[y] � · 
 y :1
1R

−→
close[x] ; close[y] � · 
 x :•1|x :•1 
 y :1

1C

(νx) (
−→

close[x] ; close[y]) � · 
 y :1

Scope

The twoproofs above reach the samehypersequent following, respectively,method-
ologies (i) and (ii). In this section, we formally relate the two methodologies, de-
riving procedures of choreography extraction and endpoint projection from proof
equivalences.As an example, consider the following equivalence, [αγ⊗]:
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[αγ1] close[x] |x wait[x];P
x��� −→

close[x];P

[αγ⊗] x(y); (P |Q) |x x(y);R
x��� −→

x(y);
(
P |y (Q |x R))

[αγ�] x(y);P |x x(y); (Q|R)
x��� −→

x(y);
(
(Q |y P ) |x R

)

[αγ&1
] x.case(P,Q) |x x.inl;R

x��� −→
x.l ((P |x R), Q)

[αγ&2
] x.case(P,Q) |x x.inr;R

x��� −→
x.r(P , Q |x R)

[αγ⊕1 ] x.inl;P |x x.case(Q,R)
x��� −→

x.l ((P |x Q) , R)

[αγ⊕2 ] x.inr;P |x x.case(Q,R)
x��� −→

x.r(Q , (P |x R))

Fig. 6. Extraction and Projection

P 	 Ψ1|Δ1 � y :A Q 	 Ψ2|Δ2 � x :B

x(y); (P |Q) 	 Ψ1|Ψ2|Δ1, Δ2 � x :A⊗ B
⊗R

R 	 Ψ3|Δ3, y :A,x :B � T

x(y);R 	 Δ3, x :A⊗ B � T
⊗L

x(y); (P |Q) |x x(y);R 	 Ψ1|Ψ2|Ψ3|Δ1, Δ2 � x :•A⊗ B|Δ3, x :•A⊗ B � T
Conn

can be extracted to (
x���), can be projected from (

x
)

P 	 Ψ1|Δ1 � y :A

Q 	 Ψ2|Δ2 � x :B R 	 Ψ3 | Δ3, y :A,x :B � T

Q |x R 	 Ψ2|Ψ3|Δ2 � x :•B|Δ3, y :A,x :•B � T
Connx

P |y (Q |x R) 	 Ψ1 | Ψ2 | Ψ3 | Δ1 � y :•A | Δ2 � x :•B | Δ3, y :•A,x :•B � T
Conny

−→
x(y);

(
P |y (Q |x R)) 	 Ψ1 | Ψ2 | Ψ3 | Δ1, Δ2 � x :•A⊗ B | Δ3, x :•A⊗ B � T

⊗Cx

The equivalence [αγ⊗] allows to transform a proof of a connection of type A⊗B
from the action fragment into an equivalent proof in the interaction fragment,
and vice versa. We report the equivalences for extraction and projection in Fig. 6,
presenting their proof terms. We read these equivalences from left to right for
extraction, denoted by ���, and from right to left for projection, denoted by .
Note how a choreography term corresponds to the parallel composition of two
processes with the same behaviour. It is also clear why the unselected process

Q in
−→
x.l(P,Q) is necessary for projecting the corresponding case process.

Using commuting conversions, extraction can always be applied to proofs
containing instances of Conn, i.e., programs containing subterms of the form
P |x Q . Similarly, projection can always be applied to proofs with instances of
a C-rule, i.e., programs with choreography interactions. We denote the reflexive

and transitive closure of
x��� up to ≡ with

x̃������ (resp.
x̃

for
x
).

Theorem 4 (Extraction and Projection). Let P � Ψ . Then:

(choreography extraction) P
x̃������ Q for some x̃ and Q such that Q �Ψ and Q

does not contain subterms of the form R |x R′ ;

(endpoint projection) P
x̃

Q for some x̃ and Q such that Q � Ψ and Q
does not contain choreography terms.
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Example 2. Using the equivalences in Fig. 6 and ≡, we can transform the pro-
cesses to the choreography in Example 1 and vice versa. ��

We now present the main property guaranteed by LCC: the extraction and
projection procedures preserve the semantics of the transformed programs.

Theorem 5 (Correspondence). Let P � Ψ and P ′ be restriction-free. Then:

(choreography extraction) P
x̃
−→→ P ′ implies P

x̃������ Q such that Q
•x̃
−→→ P ′ .

(endpoint projection) P
•x̃
−→→ P ′ implies P

x̃

Q such that Q
x̃
−→→ P ′ .

6 Related Work and Discussion

Related Work. Our action fragment is inspired by π-DILL [7]. The key difference
is that we split rule Cut into Conn and Scope, which allows us to (i) reason about
choreographies and (ii) type processes where restriction and parallel are used
separately. Extra typable processes are always convertible to those where a Conn
is immediately followed by a Scope, hence equivalent to those in [7]. Wadler [22]
introduces a calculus where processes correspond to proofs in classical linear
logic. We conjecture that LCC can be adapted to the classical setting.

Our commuting conversions can be seen as a logical characterisation of swap-
ping [9], which permutes independent communications in a choreography. Pre-
vious works [12,8,9,15] have formally addressed choreographies and EPP but
without providing choreography extraction. Choreography extraction is a known
hard problem [4], and our work is the first to address it for a language supporting
channel passing. Probably, the work closest to ours wrt extraction is [13], where
global types are extracted from session types; choreographies are more expres-
sive than global types, since they capture the interleaving of different sessions.
In the future, we plan to address standard features supported by [8,9,15] such
as multiparty sessions, asynchrony, replicated services and nondeterminism.

Our mixing of choreographies with processes is similar to that found in [3] for
global protocols and [15] for choreographies. The work [3] deals with the simpler
setting of protocols, whereas we handle programs supporting name passing and
session interleaving, both nontrivial problems [6,9,15]. The type system in [15]
does not keep information on where the endpoints of connections are actually
located as in our hypersequents, which enables extraction in our setting.

Process identifiers. In standard choreography calculi, the processes involved in
a communication are usually identified explicitly as in the choreography (2)
in § 2 [12,8,9,15]. In LCC, processes are implicitly identified in judgements by
using separate sequents in a hypersequent. Omitting process identifiers is thus
just a matter of presentational convenience: a way of retaining them would be
to annotate each sequent in a hypersequent with a process identifier (cf. [14]).

Exponentials and Infinite Behaviour. Our work focuses on the multiplicative and
additive fragments of linear logic, but we conjecture that the known cut rule for
exponentials can be split into a connection rule and a scope rule such as the ones
for the linear case. We believe that the results in this paper can be generalised
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to exponentials without altering its foundations. A logical characterisation of
infinite behaviour for ICC may similarly be added to our framework, following
the developments in [20]. We leave both extensions as future work.

ILL. LCC is a generalisation of ILL, since we can represent any instance of the
Cut rule in ILL with consecutive applications of rules Conn and Scope.

Semantics. LCC includes more term equivalences than the π-calculus, e.g., [Conn
/ � R/R/2] in Fig. 4. We inherit this from linear logic [22]. However, the extra
equivalences do not produce any new reductions in well-typed systems (cf. [16]).

Acknowledgments. This work was partially funded by the Demtech grant
number 10-092309 from the Danish Council for Strategic Research.
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15. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp.
425–439. Springer, Heidelberg (2013)
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Abstract. Deadlock detection in concurrent programs that create networks with
arbitrary numbers of nodes is extremely complex and solutions either give im-
precise answers or do not scale. To enable the analysis of such programs, (1) we
define an algorithm for detecting deadlocks of a basic model featuring recursion
and fresh name generation: the lam programs, and (2) we design a type system for
value passing CCS that returns lam programs. As a byproduct of these two tech-
niques, we have an algorithm that is more powerful than previous ones and that
can be easily integrated in the current release of TyPiCal, a type-based analyser
for pi-calculus.

1 Introduction

Deadlock-freedom of concurrent programs has been largely investigated in the literature
[2,4,1,11,18,19]. The proposed algorithms automatically detect deadlocks by building
graphs of dependencies (a, b) between resources, meaning that the release of a resource
referenced by a depends on the release of the resource referenced by b. The absence of
cycles in the graphs entails deadlock freedom. When programs have infinite states, in
order to ensure termination, current algorithms use finite approximate models that are
excerpted from the dependency graphs. The cases that are particularly critical are those
of programs that create networks with an arbitrary number of nodes.

To illustrate the issue, consider the following pi-calculus-like process that computes
the factorial:

Fact(n,r,s) = if n=0 then r?m. s!m
else new t in (r?m. t!(m*n)) | Fact(n-1,t,s)

Here, r?m waits to receive a value for m on r, and s!m sends the value m on s. The
expression new t in P creates a fresh communication channel t and executes P. If the
above code is invoked with r!1 | Fact(n,r,s), then there will be a synchronisation
between r!1 and the input r?m in the body of Fact(n,r,s). In turn, this may delegate
the computation of the factorial to another process in parallel by means of a subsequent
synchronisation on a new channel t. That is, in order to compute the factorial of n,
Fact builds a network of n+1 nodes, where node i takes as input a value m and outputs
m*i. Due to the inability of statically reasoning about unbounded structures, the current
analysers usually return false positives when fed with Fact. For example, this is the
case of TyPiCal [12,11], a tool developed for pi-calculus. (In particular, TyPiCal
fails to recognise that there is no circularity in the dependencies among r, s, and t.)

In this paper we develop a technique to enable the deadlock analysis of processes
with arbitrary networks of nodes. Instead of reasoning on finite approximations of such

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 63–77, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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processes, we associate them with terms of a basic recursive model, called lam – for
deadLock Analysis Model –, which collects dependencies and features recursion and
dynamic name creation [5,6]. For example, the lam function corresponding to Fact is

fact(a1, a2, a3, a4) = (a2, a3) + (ν a5, a6)
(
(a2, a6) � fact(a5, a6, a3, a4)

)

where (a2, a3) displays the dependency between the actions r?m and s!m and (a2, a5)
the one between r?m and t!(m*n). The function fact is defined operationally by un-
folding the recursive invocations; see Section 3. The unfolding of fact(a1, a2, a3, a4)
yields the following sequence of abstract states (bound names in the definition of fact
are replaced by fresh ones in the unfoldings).

fact(a1, a2, a3, a4) −→ (a2, a3) +
(
(a2, a6) � fact(a5, a6, a3, a4)

)
−→ (a2, a3) + (a2, a6) � (a6, a3) + (a2, a6) � (a6, a8) � fact(a7, a8, a3, a4)
−→ (a2, a3) + (a2, a6) � (a6, a3) + (a2, a6) � (a6, a8) � (a8, a3)
+(a2, a6) � (a6, a8) � (a8, a10) � fact(a9, a10, a3, a4)

−→ · · ·
While the model of fact is not finite-state, in Section 4 we demonstrate that it is de-

cidable whether the computations of a lam program will ever produce a circular depen-
dency. In our previous work [5,6], the decidability was established only for a restricted
subset of lams.

We then define a type system that associates lams to processes. Using the type
system, for example, the lam program fact can be extracted from the factorial pro-
cess Fact. For the sake of simplicity, we address the (asynchronous) value passing
CCS [15], a simpler calculus than pi-calculus, because it is already adequate to demon-
strate the power of our lam-based approach. The syntax, semantics, and examples of
value passing CCS are in Section 5; the type system is defined in Section 6. As a
byproduct of the above techniques, our system is powerful enough to detect deadlocks
of programs that create networks with arbitrary numbers of processes. It is also worth to
notice that our system admits type inference and can be easily extended to pi-calculus.
We discuss the differences of our techniques with respect to the other ones in the liter-
ature in Section 7 where we also deliver some concluding remark.

2 Preliminaries

We use an infinite set A of (level) names, ranged over by a, b, c, · · · . A relation on a set
A of names, denoted R, R′, · · · , is an element of P(A × A), where P(·) is the standard
powerset operator and · × · is the cartesian product. Let
– R+ be the transitive closure of R.
– {R1, · · · , Rm} � {R′1, · · · , R′n} if and only if, for all Ri, there is R′j such that Ri ⊆ R′j+.
– (a0, a1), · · · , (an−1, an) ∈∈ {R1, · · · , Rm} if and only if there is Ri such that (a0, a1),· · · ,

(an−1, an) ∈ Ri.

– {R1, · · · , Rm}� {R′1, · · · , R′n}
def
= {Ri ∪ R′j | 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

We use R,R′, · · · to range over {R1, · · · , Rm} and {R′1, · · · , R′n}, which are elements
of P(P(A × A)).

Definition 1. A relation R has a circularity if (a, a) ∈ R+ for some a. A set of relations
R has a circularity if there is R ∈ R that has a circularity.
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For instance
{
{(a, b), (b, c)}, {(a, b), (c, b), (d, b), (b, c)}, {(e, d), (d, c)}, {(e, d)}

}
has a

circularity because the second element of the set does.

3 The Language of Lams

In addition to the set of (level) names, we will also use function names, ranged over by
f, g, h, · · · . A sequence of names is denoted by ã and, with an abuse of notation, we
also use ã to address the set of names in the sequence.

A lam program is a pair
(
L , L

)
, where L is a finite set of function definitions f(̃a) =

Lf, with ã and Lf being the formal parameters and the body of f, and L is the main lam.
The syntax of the function bodies and the main lam is

L ::= 0 | (a, b) | f(̃a) | L� L | L + L | (ν a)L

The lam 0 enforces no dependency, the lam (a, b) enforces the dependency (a, b), while
f(̃a) represents a function invocation. The composite lam L�L′ enforces the dependen-
cies of L and of L′, while L + L′ nondeterministically enforces the dependencies of L
or of L′, (ν a)L creates a fresh name a and enforces the dependencies of L that may use
a. Whenever parentheses are omitted, the operation “�” has precedence over “+”. We
will shorten L1 � · · ·� Ln into �i∈1..nLi and (ν a1) · · · (ν an)L into (ν a1 · · ·an)L. Function
definitions f(̃a) = Lf and (ν a)L are binders of ã in Lf and of a in L, respectively, and
the corresponding occurrences of ã in Lf and of a in L are called bound. A name x in
L is free if it is not underneath a (ν a) (similarly for function definitions). Let var(L) be
the set of free names in L.

In the syntax of L, the operations “�” and “+” are associative, commutative with
0 being the identity on �, and definitions and lams are equal up-to alpha renaming of
bound names. Namely, if a � var(L), the following axioms hold:

(ν a)L = L (ν a)L′ � L = (ν a)(L′ � L) (ν a)L′ + L = (ν a)(L′ + L)
Additionally, when V ranges over lams that do not contain function invocations, the

following axioms hold:

V� V = V V + V = V V� (L′ + L′′) = V� L′ + V� L′′
These axioms permit to rewrite a lam without function invocations as a collection

(operation +) of relations (elements of a relation are gathered by the operation �). Let
≡ be the least congruence containing the above axioms. They are restricted to terms V
that do not contain function invocations. In fact, f(d̃)�((a, b)+(b, c))� (f(d̃)�(a, b))+
(f(d̃)� (b, c)) because the evaluation of the two lams (see below) may produce terms
with different names.

Definition 2. A lam V is in normal form, denoted nf(V), if V = (ν ã)(V1 + · · · + Vn),
where V1, · · · , Vn are dependencies only composed with �.

Proposition 1. For every V, there is nf(V) such that V ≡ nf(V).

In the rest of the paper, we always assume lam programs
(
L , L

)
to be well formed.
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Definition 3. A lam program
(
L , L

)
is well formed if (1) function definitions in L

have pairwise different function names and all function names occurring in the function
bodies and L are defined; (2) the arity of function invocations occurring anywhere in the
program matches the arity of the corresponding function definition; (3) every function
definition in L has shape f(̃a) = (ν c̃)Lf, where Lf does not contain any ν-binder and
var(Lf) ⊆ ã ∪ c̃.

Operational semantics. Let a lam context, noted L[ ], be a term derived by the following
syntax:

L[ ] ::= [ ] | L� L[ ] | L + L[ ]

As usual L[L] is the lam where the hole of L[ ] is replaced by L. According to the
syntax, lam contexts have no ν-binder; that is, the hassle of name captures is avoided.
The operational semantics of a program

(
L , L

)
is a transition system where states are

lams, the transition relation is the least one satisfying the rule

(Red)

f(̃a) = (ν c̃)Lf ∈ L c̃′ are fresh Lf [̃c
′
/̃c][̃a′/̃a] = L′

f

L[f(̃a′)] −→ L[L′
f
]

and the initial state is the lam L′ such that L ≡ (ν c̃)L′ and L′ does not contain any
ν-binder. We write −→∗ for the reflexive and transitive closure of −→.

By (red), a lam L is evaluated by successively replacing function invocations with
the corresponding lam instances. Name creation is handled by replacing bound names
of function bodies with fresh names. For example, if f(a) = (ν c)((a, c) � f(c)) and
f(a′) occurs in the main lam, then f(a′) is replaced by (a′, c′) � f(c′), where c′ is a
fresh name.

Let us discuss some examples.

1.
( {f(a, b, c) = (a, b) � g(b, c) + (b, c), g(d, e) = (d, e) + (e, d)}, f(a, b, c)

)
. Then

f(a, b, c) −→ (a, b) � g(b, c) + (b, c) −→ (a, b) � ((b, c) + (c, b)
)
+ (b, c)

−→ (a, b) � (b, c) + (a, b) � (c, b) + (b, c)

The lam in the final state does not contain function invocations. This is because
the above program is not recursive. Additionally, the evaluation of f(a, b, c) has not
created names. This is because the bodies of f and g do not contain ν-binders.

2.
({f′(a) = (ν b)(a, b) � f′(b)} , f′(a0)

)
. Then

f′(a0) −→ (a0, a1) � f′(a1) −→ (a0, a1) � (a1, a2) � f′(a2)
−→n (a0, a1) � · · ·� (an+1, an+2) � f′(an+2)

In this case, because of the (ν b) binder, the lam grows in the number of dependen-
cies as the evaluation progresses.

3.
({f′′(a) = (ν b)(a, b)+ (a, b) � f′′(b)}, f′′(a0)

)
. Then

f′′(a0) −→ (a0, a1) + (a0, a1) � f′′(a1)
−→ (a0, a1) + (a0, a1) � (a1, a2) + (a0, a1) � (a1, a2) � f′′(a2)
−→n (a0, a1) + · · · + (a0, a1) � · · ·� (an+1, an+2) � f′′(an+2)

In this case, the lam grows in the number of “+”-terms, which in turn become larger
and larger as the evaluation progresses.
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Flattening and circularities. Lams represent elements of the set P(P(A ×A )). This
property is displayed by the following flattening function.

Let L be a set of function definitions and let I(·), called flattening, be a function on
lams that (i) maps function name f defined in L to elements of P(P(A × A)) and (ii)
is defined on lams as follows

I(0) = {∅}, I((a, b)) = {{(a, b)}}, I(L� L′) = I(L) � I(L′),

I(L + L′) = I(L) ∪ I(L′), I((ν a)L) = I(L)[a′/a] with a′ fresh,

I(f(̃c)) = I(f)[̃c/̃a] (where ã are the formal parameters of f).

Note that I(L) is unique up to a renaming of names that do not occur free in L. Let
I⊥ be the map such that, for every f defined in L , I⊥(f) = {∅}. For example, let L
defines f and g and let

I(f) = {{(a, b), (b, c)}} I(g) = {{(b, a)}}
L′′ = f(a, b, c) + (a, b) � g(b, c) � f(d, b, c) + g(d, e) � (d, c) + (e, d).

Then
I(L′′) =

{{(a, b), (b, c)}, {(a, b), (c, b), (d, b), (b, c)}, {(e, d), (d, c)}, {(e, d)}}
I⊥(L′′) =

{
∅, {(a, b)}, {(d, c)}, {(e, d)}} .

Definition 4. A lam L has a circularity if I⊥(L) has a circularity. A lam program
(
L , L

)
has a circularity if there is L −→∗ L′ and L′ has a circularity.

The property of “having a circularity” is preserved by ≡ while the “absence of circu-
larities” of a composite lam can be carried to its components.

Proposition 2. 1. if L ≡ L′ then L has a circularity if and only if L′ has a circularity;
2. L � L′ has no circularity implies both L and L′ have no circularity (similarly for
L + L′ and for (ν a)L).

4 The Decision Algorithm for Detecting Circularities

In this section we assume a lam program
(
L , L

)
such that pairwise different function

definitions in L have disjoint formal parameters. Without loss of generality, we assume
that L does not contain any ν-binder.

Fixpoint definition of the interpretation function. The basic item of our algorithm is the
computation of lam functions’ interpretation. This computation is performed by means
of a standard fixpoint technique that is detailed below.

Let A be the set of formal parameters of definitions in L and let κ be a special name
that does not occur in

(
L , L

)
. We use the domain

(
P(P(A∪ {κ} × A∪ {κ})), ⊆

)
which

is a finite lattice [3].

Definition 5. Let fi(̃ai) = (ν c̃i)Li, with i ∈ 1..n, be the function definitions in L . The
family of flattening functions I(k)

L
: {f1, · · · , fn} →P(P(A ∪ {κ} × A ∪ {κ})) is defined

as follows

I(0)
L

(fi) = {∅} I(k+1)
L

(fi) = {projãi
(R+) | R ∈ I(k)

L
(Li)}

where projã(R)
def
= {(a, b) | (a, b) ∈ R and a, b ∈ ã} ∪ {(κ, κ) | (c, c) ∈ R and c � ã}.
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We notice that I(0)
L

is the function I⊥ of the previous section.

Proposition 3. Let f(̃a) = (ν c̃)Lf ∈ L . (i) For every k, I(k)
L

(f) ∈P(P((̃a∪{κ})× (̃a∪
{κ}))). (ii) For every k, I(k)

L
(f) � I(k+1)

L
(f).

Since, for every k, I(k)
L

(fi) ranges over a finite lattice, by the fixpoint theory [3], there

exists m such that I(m)
L

is a fixpoint, namely I(m)
L
≈ I(m+1)

L
where ≈ is the equivalence

relation induced by �. In the following, we let IL , called the interpretation function (of
a lam), be the least fixpoint I(m)

L
.

Example 1. For example, let L be the factorial function in Section 1. Then

I(0)
L

(fact) = {∅} I(1)
L

(fact) = {{(a2, a3)},∅} I(2)
L

(fact) = {{(a2, a3)},∅}
That is, in this case, IL = I(1)

L
. �

Theorem 1. A lam program
(
L , L

)
has a circularity if and only if IL (L) has a circu-

larity.

For example, let L be the factorial function in Section 1 and let L = (a3, a2) �
fact(a1, a2, a3.a4). From Example 1, we have IL (fact) = {{(a2, a3)},∅}. Since IL (L)
has a circularity, by Theorem 1, there is L −→∗ L′ such that I⊥(L′) has a circularity. In
fact it displays a circularity after the first transition:

L −→ (a3, a2) � ((a2, a3) +
(
(a2, a5) � fact(a5, a6, a3, a4)

)
) .

5 Value-Passing CCS

In the present and next sections, we apply the foregoing theory of lams to refine Kobaya-
shi’s type system for deadlock-freedom of concurrent programs [11]. In his type system,
the deadlock-freedom is guaranteed by a combination of usages, which are a kind of
behavioral types capturing channel-wise communication behaviors, and capability/obli-
gation levels, which are natural numbers capturing inter-channel dependencies (like “a
message is output on x only if a message is received along y”). By replacing numbers
with (lam) level names, we can achieve a more precise analysis of deadlock-freedom
because of the algorithm in Section 4. The original type system in [11] is for the pi-
calculus [16], but for the sake of simplicity, we consider a variant of the value-passing
CCS [15], which is sufficient for demonstrating the power of our lam-based approach.

Our value-passing CCS uses several disjoint countable sets of names: in addition to
level names, there are integer and channel names, ranged over by x, y, z, · · · , process
names, ranged over by A, B, · · · , and usage names, ranged over by α, β, · · · . A value-
passing CCS program is a pair

(
D , P
)
, where D is a finite set of process name definitions

A(̃a; x̃) = PA, with ã; x̃ and PA respectively being the formal parameters and the body
of A, and P is the main process.

The syntax of processes PA and P is shown in Figure 1. A process can be the inert
process 0, a message x!e sent on a name x that carries (the value of) an expression e, an
input x?y.P that consumes a message x!v and behaves like P[v/y], a parallel composition
of processes P | Q, a conditional if e then P else Q that evaluates e and behaves either
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P (processes) ::= 0 | x!e | x?y.P | (P | Q) | if e then P else Q | (ν ã; x : T)P | A(̃a; ẽ)
e (expressions) ::= x | v | e1 op e2

T (types) ::= int | U
U (usages) ::= 0 |!a1

a2 |?a1
a2 .U | (U1|U2) | α | μα.U

Fig. 1. The Syntax of value-passing CCS

like P or like Q depending on whether the value is � 0 (true) or = 0 (false), a restriction
(ν ã; x : T)P that behaves like P except that communications on x with the external
environment are prohibited, an invocation A(̃a; ẽ) of the process corresponding to A.

An expression e can be a name x, an integer value v, or a generic binary operation
on integers v op v′, where op ranges over a set including the usual operators like +,
≤, etc. Integer expressions without names (constant expressions) may be evaluated to
an integer value (the definition of the evaluation of constant expressions is omitted).
Let [[e]] be the evaluation of a constant expression e ([[e]] is undefined when the integer
expression e contains integer names). Let also [[x]] = x when x is a non-integer name.

We defer the explanation of the meaning of types T (and usages U) until Section 6. It
is just for the sake of simplicity that processes are annotated with types and level names.
They do not affect the operational semantics of processes, and can be automatically
inferred by using an inference algorithm similar to those in [11,10].

Similarly to lams, A(̃a; x̃) = PA and (ν ã; x : T)P are binders of ã; x̃ in PA and of ã, x
in P, respectively. We use the standard notions of alpha-equivalence, free and bound
names of processes and, with an abuse of notation, we let var(P) be the free names in
P. In process name definitions A(̃a; x̃) = PA, we always assume that var(PA) ⊆ ã, x̃.

Definition 6. The structural equivalence ≡ on processes is the least congruence con-
taining alpha-conversion of bound names, commutativity and associativity of | with
identity 0, and closed under the following rule:

((ν ã; x : T )P) | Q ≡ (ν ã; x : T )(P | Q) ã, x � var(Q) .

The operational semantics of a program
(
D , P
)

is a transition system where the states
are processes, the initial state is P, and the transition relation →D is the least one
closed under the following rules:

(R-Com)
[[e]] = v

x!e | x?y.P→D P[v/y]

(R-Par)
P→D P′

P | Q→D P′ | Q

(R-New)
P→D Q

(ν ã; x : T )P→D (ν ã; x : T )Q
(R-IfT)

[[e]] � 0

if e then P else Q→D P

(R-IfF)
[[e]] = 0

if e then P else Q→D Q

(R-Call)

[[̃e]] = ṽ A(̃a; x̃) = P ∈ D

A(̃a′; ẽ)→D P[̃a
′
/̃a][̃v/x̃]

(R-Cong)
P ≡ P′ P′ →D Q′ Q′ ≡ Q

P→D Q

We often omit the subscript of→D when it is clear from the context. We write→∗ for
the reflexive and transitive closure of→.
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The deadlock-freedom of a process P, which is the basic property that we will verify,
means that P does not get stuck into a state where there is a message or an input. The
formal definition is below.

Definition 7 (deadlock-freedom). A program
(
D , P
)

is deadlock-free if the following
condition holds: whenever P →∗ P′ and either (i) P′ ≡ (ν ã1; x1 : T1) · · · (ν ãk; xk :
Tk)(x!v | Q), or (ii) P′ ≡ (ν ã1; x1 : T1) · · · (ν ãk; xk : Tk)(x?y.Q1 | Q2), then there exists
R such that P′ → R.

Example 2 (The dining philosophers). Consider the program consisting of the process
definitions

Phils(a1, a2, a3, a4; n : int, fork1 : U1, fork2 : U2) =
if n = 1 then Phil(a1, a2, a3, a4; fork1, fork2) else

(ν a5, a6; fork3 : U3 | U3 | !a5
a6

)( Phils(a1, a2, a5, a6; n − 1, fork1, fork3)
| Phil(a5, a6, a3, a4; fork3, fork2) | fork3!1 )

Phil(a1, a2, a3, a4; fork1 : U1, fork2 : U2) =
fork1?x1.fork2?x2.( fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2) )

and of the main process P:

(ν a1, a2; fork1 : U1 | U1 | !a1
a2

)(ν a3, a4; fork2 : U2 | U2 | !a1
a2

)
( Phils(a1, a2, a3, a4; m, fork1, fork2) | Phil(a1, a2, a3, a4; fork1, fork2) | fork1!1 | fork2!1 )

Here, U1 = μα.?
a2
a1
.(!a1

a2
| α), U2 = μα.?

a4
a3
.(!a3

a4
| α), and U3 = μα.?

a6
a5
.(!a5

a6
| α), but please ig-

nore the types for the moment. Every philosopher Phil(a1, a2, a3, a4; fork1, fork2) grabs
the two forks fork1 and fork2 in this order, releases the forks, and repeats the same be-
havior. The main process creates a ring consisting of m + 1 philosophers, where only
one of the philosophers grabs the forks in the opposite order to avoid deadlock. This
program is indeed deadlock-free in our definition. On the other hand, if we replace
Phil(a1, a2, a3, a4; fork1, fork2) with Phil(a1, a2, a3, a4; fork2, fork1) in the main process,
then the resulting process is not deadlock-free. �

The dining philosophers example is a paradigmatic case of the power of the analysis
described in the next section. This example cannot be type-checked in Kobayashi’s
previous type system [11]: see Remark 1 in Section 6.

6 The Deadlock Freedom Analysis of Value-Passing CCS

We now explain the syntax of types in Figure 1. A type is either int or a usage. The
former is used to type integer names; the latter is used to type channel names [11,9]. A
usage describes how a channel can be used for input and output. The usage 0 describes
a channel that cannot be used, !a1

a2
describes a channel that is used for output, ?a1

a2
.U

describes a channel that is first used for input and then used according to U, and U |
U′ describes a channel that is used according to U and U′, possibly in parallel. For
example, in process x!2 | x?z.y!z, y has the usage !a1

a2
(please, ignore the subscript and
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superscript for the moment), and x has the usage !a3
a4
| ?a5

a6
.0. The usage μα.U describes a

channel that is used recursively according to U[μα.U/α]. The operation μα.− is a binder
and we use the standard notions of alpha-equivalence, free and bound usage names.
For example, μα.!a1

a2
.α describes a channel that can be sequentially used for output an

arbitrary number of times; μα.?a1
a2
.!a3

a4
.α describes a channel that should be used for input

and output alternately. We often omit a trailing 0 and just write ?a1
a1

for ?a1
a1
.0.

The superscripts and subscripts of ? and ! are level names of lams (recall Section 3),
and are used to control the causal dependencies between communications [11]. The su-
perscript, called an obligation level, describes the degree of the obligation to use the
channel for the specified operation. The subscript, called a capability level, describes
the degree of the capability to use the channel for the specified operation (and success-
fully find a partner of the communication).

In order to detect deadlocks we consider the following two conditions:
1. If a process has an obligation of level a, then it can exercise only capabilities of

level a′ less than a before fulfilling the obligation. This corresponds to a dependency
(a′, a). For example, if x has type ?a1

a2
and y has type !a3

a4
, then the process x?u.y!u has lam

(a2, a3).
2. The whole usage of each channel must be consistent, in the sense that if there is

a capability of level a to perform an input (respectively, a message), there must be a
corresponding obligation of level a to perform a corresponding message (respectively,
input). For example, the usage !a1

a2
| ?a2

a1
is consistent, but neither !a1

a2
| ?a1

a2
nor !a1

a2
is.

To see how the constraints above guide our deadlock analysis, consider the (dead-
locked) process: x?u.y!u | y?u.x!u. Because of condition 2 above, the usage of x and
y must be of the form ?a1

a2
| !a2

a1
and ?a3

a4
| !a4

a3
respectively. Due to 1, we derive (a2, a4)

for x?u.y!u, and (a4, a2) for y?u.x!u. Hence the process is deadlocked because the lam
(a2, a4)�(a4, a2) has a circularity. On the other hand, for the process x?u.y!u | y?u.0 | x!u,
we derive the lam (a2, a4), which has no circularity. Indeed, this last process is not dead-
locked. While we use lams to detect deadlocks, Kobayashi [11] used natural numbers
for obligation/capability levels.

As explained above, usages describe the channel-wise behavior of a process, and
they form a tiny process calculus. The usage reduction relation U � U′ defined below
means that if a channel of usage U is used for a communication, the channel may be
used according to U′ afterwards.

Definition 8. Let = be the least congruence on usages containing alpha-conversion of
bound names, commutativity and associativity of | with identity 0, and closed under the
following rule:

(UC-Mu)

μα.U = U[μα.U/α]

The reduction relation U � U′ is the least relation closed under the rules:

(UR-Com)

!a1
a2
| ?a3

a4
.U � U

(UR-Par)

U1 � U ′1
U1 | U2 � U ′1 | U2

(UR-Cong)

U1 = U ′1 U ′1 � U ′2 U ′2 = U2

U1 � U2

As usual, we let�∗ be the reflexive and transitive closure of�.
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The following relation rel(U) guarantees the condition 2 on capabilities and obliga-
tions above, that each capability must be accompanied by a corresponding obligation.
This must hold during the whole computation, hence the definition below. The predicate
rel(U) is computable because it may be reduced to Petri Nets reachability (see [10] for
the details about the encoding).

Definition 9. U is reliable, written rel(U), when the following conditions hold:

1. whenever U �∗ U ′ and U ′ = !a1
a2
| U1, there are U2 and U3 such that U1 =

?a2
a3
.U2 | U3 for some a3; and

2. whenever U �∗ U ′ and U ′ = ?a1
a2
.U1 | U2, there is U3 such that U2 = !a2

a3
| U3 for

some a3.

The following type system uses type environments, ranged over Γ, Γ′, · · · , that map
integer and channel names to types and process names to sequences [̃a; T̃ ]. When x �
dom(Γ), we write Γ, x:T for the environment such that (Γ, x:T )(x) = T and (Γ, x:T )(y) =
Γ(y), otherwise. The operation Γ1 | Γ2 is defined by:

(Γ1 | Γ2)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ1(x) if x ∈ dom(Γ1) and x � dom(Γ2)
Γ2(x) if x ∈ dom(Γ2) and x � dom(Γ1)
[̃a; T̃ ] if Γ1(x) = Γ2(x) = [̃a; T̃ ]
int if Γ1(x) = Γ2(x) = int
U1 | U2 if Γ1(x) = U1 and Γ2(x) = U2

The map Γ1 | Γ2 is undefined if, for some x, (Γ1 | Γ2)(x) does not match any of the
cases. Let var(Γ) = {a | there is x : Γ(x) = U and a ∈ var(U)}.

There are three kinds of type judgments:

Γ � e : T – the expression e has type T in Γ;
Γ � P : L – the process P has lam L in Γ;
Γ � (D , P) : (L , L) – the program

(
D , P
)

has lam program
(
L , L

)
in Γ.

As usual, Γ � e : T means that e evaluates to a value of type T under an environ-
ment that respects the type environment Γ. The judgment Γ � P : L means that P uses
each channel x according to Γ(x), with the causal dependency as described by L. For
example, x:?a1

a2
, y:!a3

a4
� x?u.y!u : (a2, a3) should hold.

The typing rules of value-passing CCS are defined in Figure 2, where we use the
predicate noact(Γ) and the function ob(U) defined as follows:

noact(Γ) = true if and only if, for every channel name x ∈ dom(Γ), Γ(x) = 0;
ob(Γ) =

⋃
x∈dom(Γ),Γ(x)=U ob(U) where

ob(0) = ∅ ob(!a1
a2

) = {a1} ob(?a1
a2
.U) = {a1}

ob(U | U ′) = ob(U) ∪ ob(U ′) ob(μα.U) = ob(U[0/α])

The predicate noact(Γ) is used for controlling weakening (as in linear type systems). For
example, if we did not require noact(Γ) in rule T-Zero, then we would obtain x:?a1

a2
.0 �

0 : 0. Then, by using T-In and T-Out, we would obtain: x:?a1
a2
.0 | !a2

a1
� 0 | x!1 : 0, and

wrongly conclude that the output on x does not get stuck. It is worth to notice that, in
the typing rules, we identify usages up to =.
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Processes:
(T-Zero)
noact(Γ)

Γ � 0 : 0

(T-Out)
Γ � e : int

Γ, x:!a1
a2 � x!e : 0

(T-In)
Γ, x : U, y : int � P : L

Γ, x:?a1
a2 .U � x?y.P : L� (�a∈ob(Γ)(a2, a))

(T-Par)
Γ � P : L Γ′ � P′ : L′

Γ | Γ′ � P | P′ : L� L′

(T-New)
Γ, x : U � P : L rel(U) ã ∩ var(Γ) = ∅

Γ � (ν ã; x : U)P : (ν ã)L

(T-If)
Γ � e : int Γ′ � P : L Γ′ � P′ : L′

Γ | Γ′ � if e then P else P′ : L + L′

(T-Call)

Γ(A) = [̃a; T̃] |̃a| = |̃a′| Γ � ẽ : T̃

Γ � A(̃a′; ẽ) : fA (̃a′)

Expressions:
(T-Int)
noact(Γ)

Γ � n : int

(T-Var)
noact(Γ)

Γ, x : T � x : T

(T-Op)
Γ � e : int Γ � e′ : int
Γ � e op e′ : int

(T-Seq)

(Γi � ei : Ti)i∈1..n

Γ1 | · · · | Γn � e1,. . ., en : T1,. . .,Tn

Programs:
(T-Prog)

D =
⋃

i∈1..n{Ai(̃ai; x̃i : T̃i) = Pi} Γ = (Ai : [̃ai; T̃i])i∈1..n

(Γ, x̃i : T̃i � Pi : Li)i∈1..n Γ′ � P : L L =
⋃

i∈1..n{fAi (̃ai) = Li}
Γ | Γ′ � (D , P) : (L , L)

Fig. 2. The type system of value-passing CCS (we assume a function name fA for every process
name A)

A few key rules are discussed. Rule (T-In) is the unique one that introduces depen-
dency pairs. In particular, the process x?u.P will be typed with a lam that contains
pairs (a2, a), where a2 is the capability of x and a is the obligation of every channel
in P (because they are all causally dependent from x). Rule (T-Out) just records in
the type environment that x is used for output. Rule (T-Par) types a parallel composi-
tion of processes by collecting the environments – operation “ | ” – (like in other linear
type systems [13,9]) and the lams of the components. Rule (T-Call) types a process
name invocation in terms of a (lam) function invocation and constrains the sequences
of level names in the two invocations to have equal lengths (|̃a| = |̃a′|) and the types of
expressions to match with the types in the process declaration.

Example 3. We illustrate the type system in Figure 2 by typing two simple processes:

P = (ν a1, a2; x:?a1
a2
| !a2

a1
)(ν a3, a4; y:?a3

a4
| !a4

a3
)(x?z.y!z | y?z.x!z)

Q = (ν a1, a2; x:?a1
a2
| !a2

a1
)(ν a3, a4; y:?a3

a4
| !a4

a3
)(x?z.y!z | y?z.0 | x!1)

The proof tree of P is

y:!a4
a3
, z : int � y!z : 0

x:?a1
a2
, y:!a4

a3
� x?z.y!z : (a2, a4)

x:!a2
a1
, z : int � x!z : 0

x:!a2
a1
, y:?a3

a4
� y?z.x!z : (a4, a2)

x:?a1
a2
| !a2

a1
, y:?a3

a4
| !a4

a3
� x?z.y!z | y?z.x!z : (a2, a4) � (a4, a2)

∅ � P : (ν a1, a2)(ν a3, a4)
(
(a2, a4) � (a4, a2)

)



74 E. Giachino, N. Kobayashi, and C. Laneve

and we notice that the lam in the conclusion has a circularity (in fact, P is deadlocked).
The typing of Q is

z : int � z : int
y:!a4

a3
, z : int � y!z : 0

x:?a1
a2
, y:!a4

a3
� x?z.y!z : (a2, a4)

y : 0, z : int � 0 : 0

y:?a3
a4
� y?z.0 : 0

∅ � 1 : int
x:!a2

a1
� x!1 : 0

x:?a1
a2
| !a2

a1
, y:?a3

a4
| !a4

a3
� x?z.y!z | y?z.0 | x!1 : (a2, a4)

∅ � Q : (ν a1, a2)(ν a3, a4)(a2, a4)

The lam in the conclusion has no circularity. In fact, Q is not deadlocked. �
Example 3 also spots one difference between the type system in [11] and the one in

Figure 2. Here the inter-channel dependencies check is performed ex-post by resorting
to the lam algorithm in Section 4; in [11] this check is done during the type check-
ing(/inference) and, for this reason, the process P is not typable in previous Kobayashi’s
type systems. In this case, the two analysers both recognize that P is deadlocked; Ex-
ample 4 below discusses a case where the precision is different.

The following theorem states the soundness of our type system.

Theorem 2. Let Γ � (D , P) :
(
L , L

)
such that noact(Γ). If

(
L , L

)
has no circularity

then
(
D , P
)

is deadlock-free.

The following examples highlight the difference of the expressive power of the sys-
tem in Figure 2 and the type system in [11].

Example 4. Let
(
D , P
)

be the dining philosopher program in Example 2 and U1 and U2

be the usages defined therein. We have Γ � (D , P) :
(
L , L

)
where

Γ = Phils : [a1, a2, a3, a4; int,U1,U2],Phil : [a1, a2, a3, a4; U1,U2]
L = { fPhils(a1, a2, a3, a4) = fPhil(a1, a2, a3, a4)

+(νa5, a6)(fPhils(a1, a2, a5, a6) � fPhil(a5, a6, a3, a4)),
fPhil(a1, a2, a3, a4) = (a1, a4) � (a3, a1) � (a3, a2) � fPhil(a1, a2, a3, a4) }

L = (νa1, a2, a3, a4)(fPhils(a1, a2, a3, a4) � fPhil(a1, a2, a3, a4))

For example, let

P1 = fork1?x1.fork2?x2.( fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2) )
P2 = fork2?x2.( fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2) )
P3 = fork1!x1 | fork2!x2 | Phil(a1, a2, a3, a4; fork1, fork2)

Then the body P1 of Phil is typed as follows:

Γ2, fork1:!a1
a2
� fork1!x1 : 0 Γ2, fork2:!a3

a4
� fork2!x2 : 0

Γ2, fork1 : U1, fork2 : U2 � Phil(a1, a2, a3, a4; fork1, fork2) : fPhil(a1, a2, a3, a4)

Γ2, fork1:!a1
a2
| U1, fork2:!a3

a4
| U2 � P3 : fPhil(a1, a2, a3, a4)

Γ1, fork1:!a1
a2
| U1, fork2 : U2 � P2 : (a3, a1) � (a3, a2) � fPhil(a1, a2, a3, a4)

Γ, fork1 : U1, fork2 : U2 � P1 : (a1, a4) � (a3, a1) � (a3, a2) � fPhil(a1, a2, a3, a4)

where Γ1 = Γ, x1 : int, Γ2 = Γ, x2 : int, U1 = μα.?
a2
a1
.(!a1

a2
| α) and U2 = μα.?

a4
a3
.(!a3

a4
|

α). Because
(
L , L

)
has no circularity, by Theorem 2, we can conclude that

(
D , P
)

is
deadlock-free. �
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Remark 1. The dining philosopher program cannot be typed in Kobayashi’s type sys-
tem [11]. That is because his type system assigns obligation/capability levels to each
input/output statically. Thus only a fixed number of levels (represented as natural num-
bers) can be used to type a process in his type system. Since the above process can
create a network consisting of an arbitrary number of dining philosophers, we need an
unbounded number of levels to type the process. (Kobayashi [11] introduced a heuristic
to partially mitigate the restriction on the number of levels being fixed, but the heuristic
does not work here.) A variant of the dining philosopher example has been discussed
in [8]. Since the variant is designed so that a finite number of levels are sufficient, it is
typed both in [11] and in our new type system.

Similarly to the dining philosopher program, the system in [11] returns a false positive
for the process Fact in Section 1, while it is deadlock-free according to our new system.
We detail the arguments in the next example.

Example 5. Process Fact of Section 1 is written in the value passing CCS as follows.

Fact(a1, a2, a3, a4; n : int, r:?a1
a2
, s:!a3

a4
) =

if n = 0 then r?n.s!n else
(ν a5, a6; t:?a5

a6
| !a6

a5
)(r?n.t!(m × n) | Fact(a5, a6, a3, a4; n − 1, t, s))

Let Γ = Fact : [a1, a2, a3, a4; int, ?a1
a2
, !a3

a4
] and P be the body of the definition above.

Then we have Γ, n : int, r:?a1
a2
, s:!a3

a4
� P : L for L = (a2, a3) + (ν a5, a6)((a2, a6) �

fFact(a5, a6, a3, a4)). Thus, we have: Γ � (D , P′):(L , L′) for:

P′ = (ν a1, a2; r:?a1
a2
| !a2

a1
)(ν a3, a4; s:?a4

a3
| !a3

a4
)(r!1 | Fact(a1, a2, a3, a4; m, r, s) | s?x.0)

L = {fFact(a1, a2, a3, a4) = L}
L′ = (ν a1, a2, a3, a4)(0� fFact(a1, a2, a3, a4) � 0)

where m is an integer constant. Since (L , L′) does not have a circularity, we can con-
clude that (D , P′) is deadlock-free.

Type Inference. An untyped value-passing CCS program is a program where restric-
tions are (ν x)P, process invocations are A(̃e) and process definitions are A(x̃) = P.
Given an untyped value-passing CCS program

(
D , P
)
, with var(P) = ∅, there is an

inference algorithm to decide whether there exists a program
(
D ′, P′

)
that coincides

with
(
D , P
)
, except for the type annotations, and such that Γ � (D ′, P′) :

(
L , L

)
. The

algorithm is almost the same as that of the type system in [10] and, therefore, we do not
re-describe it here. The only extra work compared with the previous algorithm is the
lam program extraction, which is done using the rules in Figure 2. Finally, it suffices to
analyze the extracted lams by using the fixpoint technique in Section 4.

Synchronous Value Passing CCS and pi Calculus. The type system above can be
easily extended to the pi-calculus, where channel names can be passed around through
other channels. To that end, we extend the syntax of types as follows.

T ::= int | ch(T,U).

The type ch(T,U) describes a channel that is used according to the usage U, and T is
the type of values passed along the channel. Only a slight change of the typing rules is
sufficient, as summarized below.
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(T-Out’)
Γ � e : T

Γ, x : ch(T, !a1
a2 ) � x!e : �a∈ob(Γ)(a2, a)

(T-In’)
Γ, x : ch(T,U), y : T � P : L

Γ, x : ch(T, ?a1
a2 .U) � x?y.P : L� (�a∈ob(Γ)(a2, a))

In particular, (T-Out’) introduces dependencies between an output channel and the val-
ues sent along the channel. We notice that, in case of synchronous value passing CCS
(as well as pi-calculus), where messages have continuations, rule (T-Out’) also intro-
duces dependency pairs between the capability of the channel and the obligations in the
continuation.

7 Related Work and Conclusions

In this paper we have designed a new deadlock detection technique for the value-passing
CCS (and for the pi-calculus) that enables the analysis of networks with arbitrary numbers
of nodes. Our technique relies on a decidability result of a basic model featuring recur-
sion and fresh name generation: the lam programs. This model has been introduced and
studied in [5,6] for detecting deadlock of an object-oriented programming language [7],
but the decidability was known only for a subset of lams where only linear recursion is
allowed [6], and only approximate algorithms have been given for the full lam model.

The application of the lam model to deadlock-freedom of the value-passing CCS
(and pi-calculus) is also new, and the resulting deadlock-freedom analysis significantly
improves the previous deadlock-freedom analysis [11], as demonstrated through the
dining philosopher example. In particular, Kobayashi’s type system provides a mecha-
nism for dealing with a limited form of unbounded dependency chains, but the mecha-
nism is rather ad hoc and fragile with respect to a syntactic change. For example, while

Fib(n,r) = if n<2 then r?n else new s in new t in

(Fib!(n-1,s) | s?x.(Fib!(n-2,t)|t?y.r!(x+y))

is typable, the variation obtained by swapping new s in and new t in is untypable. Nei-
ther Fact nor the dining philosopher example are typable in [11]. More recently, in [17],
Padovani has introduced another type system for deadlock-freedom, which has a better
support than Kobayashi’s one for reasoning about unbounded dependency chains, by
using a form of polymorphism on levels. However, since the levels in his type system
are also integers, neither the Fact example nor the dining philosopher example are ty-
pable. In addition, Padovani’s type system cannot deal with non-linear channels, like
the fork channels in the dining philosopher example. That said, our type system does
not subsume Padovani’s one, as our system does not support recursive types.

Like other type-based analyses, our method cannot reason about value-dependent
behaviors. For example, consider the following process:

(if b then x?z.y!z else y!1 | x?z.) | (if b then x!1 | y?z. else y?z.x!z).

It is deadlock-free, but our type system would extract the lam expression: ((ax, ay) +
0) � (0 + (ay, ax)) (where ax and ay are the capability levels of the inputs on x and y
respectively), detecting a (false) circular dependency.

The integration of TyPiCalwith the deadlock detection technique of this paper is left
for future work. We expect that we can extend our analysis to cover lock-freedom [8,17],
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too. To that end, we can require that a lam is not only circularity-free but is also well
founded, and/or combine the deadlock-freedom analysis with the termination analysis,
following the technique in [14].

Acknowledgments. This work was partially supported by JSPS Kakenhi 23220001
and by the EU project FP7-610582 ENVISAGE: Engineering Virtualized Services.
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Abstract. Lévy-Longo Trees and Böhm Trees are the best known tree
structures on the λ-calculus. We give general conditions under which an
encoding of the λ-calculus into the π-calculus is sound and complete with
respect to such trees. We apply these conditions to various encodings
of the call-by-name λ-calculus, showing how the two kinds of tree can
be obtained by varying the behavioural equivalence adopted in the π-
calculus and/or the encoding. The conditions are presented in the π-
calculus but can be adapted to other concurrency formalisms.

1 Introduction

The π-calculus is a well-known model of computation with processes. Since its
introduction, its comparison with the λ-calculus has received a lot of attention.
Indeed, a deep comparison between a process calculus and the λ-calculus is in-
teresting for several reasons: it is a significant test of expressiveness, and helps
in getting deeper insight into its theory. From the λ-calculus perspective, it pro-
vides the means to study λ-terms in contexts other than purely sequential ones,
and with the instruments available in the process calculus. A more practical
motivations for describing functions as processes is to provide a semantic foun-
dation for languages which combine concurrent and functional programming and
to develop parallel implementations of functional languages.

Beginning with Milner’s seminal work [8], a number of λ-calculus strategies
have been encoded into the π-calculus, including call-by-name, strong call-by-
name (and call-by-need variants), call-by-value, parallel call-by-value (see [12,
Chapter 15]). In each case, several variant encodings have appeared, by varying
the target language or details of the encoding itself. Usually, when an encoding
is given, a few basic results about its correctness are established, such as opera-
tional correctness and validity of reduction (i.e., the property that the encoding
of a λ-term and the encoding of a derivative of it are behaviourally undistin-
guishable). Only in a few cases the question of the equality on λ-terms induced
by the encoding has been tackled, e.g., [3–5,11,12]. In this paper, we refer to this
question as the full abstraction issue: for an encoding [[ ]] of the λ-calculus into
π-calculus, an equality =λ on the λ-terms, and an equality =π on the π-terms,
full abstraction is achieved when for all λ-terms M,N we have M =λ N iff
[[M ]] =π [[N ]]. Full abstraction has two parts: soundness, which is the implication
from right to left, and completeness, which is its converse.

The equality =λ usually is not the ordinaryMorris-style contextual equivalence
on the λ-terms: the π-calculus is richer — and hence more discriminating — than

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 78–92, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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the λ-calculus; the latter is purely sequential, whereas the former can also express
parallelism and non-determinism. (Exception to this are encodings into forms of
π-calculus equipped with rigid constraints, e.g., typing constraints, which limit
the set of legal π-calculus contexts.)

Indeed, the interesting question here is understanding what =λ is when =π

is a well-known behavioural equivalence on π-terms. This question essentially
amounts to using the encoding in order to build a λ-model, and then under-
standing the λ-model itself. While seldomly tackled, the outcomes of this study
have been significant: for a few call-by-name encodings it has been shown that,
taking (weak) bisimulation on the π-terms, then =λ corresponds to a well-known
tree structure in the λ-calculus theory, namely the Lévy-Longo Trees (LTs) [12].

There is however another kind of tree structure in the λ-calculus, even more
important: the Böhm Trees (BTs). BTs play a central role in the classical theory
of the λ-calculus. The local structure of some of the most influential models of
the λ-calculus, like Scott and Plotkin’s Pω [13], Plotkin’s Tω [10], is precisely the
BT equality; and the local structure of Scott’s D∞ (historically the first mathe-
matical, i.e., non-syntactical, model of the untyped λ-calculus) is the equality of
the ‘infinite η contraction’ of BTs. The full abstraction results in the literature
for encodings of λ-calculus into π-calculus, however, only concern LTs.

A major reason for the limited attention that the full abstraction issue for
encodings of λ-calculus into π-calculus has received is that understanding what
kind of the structure the encoding produces may be difficult, and the full abstrac-
tion proof itself is long and tedious. The contribution of this paper is twofold:

1. We present general conditions for soundness and completeness of an encoding
of the λ-calculus with respect to both LTs and BTs. The conditions can be
used both on coinductive equivalences such as bisimilarity, and on contextual
equivalences such as may and must equivalences.

2. We show that by properly tuning the notion of observability and/or the
details of the encoding it is possible to recover BTs in place of LTs.

Some conditions only concern the behavioural equivalence chosen for the π-
calculus, and are independent of the encoding; a few conditions are purely syn-
tactic (e.g., certain encoded contexts should be guarded); the only behavioural
conditions are equality of β-convertible terms, equality among certain unsolv-
able terms, and existence of an inverse for certain contexts resulting from the
encoding (i.e., the possibility of extracting their immediate subterms, up-to the
behavioural equivalence chosen in the π-calculus). We use these properties to
derive full abstraction results for BTs and LTs for various encodings and var-
ious behavioural equivalence of the π-calculus. For this we exploit a few basic
properties of the encodings, making a large reuse of proofs.

In the paper we use the conditions with the π-calculus, but they could also
be used in other concurrency formalisms.

Structure of the paper. Section 2 collects backgroundmaterial. Section 3 introduces
the notion of encoding of the λ-calculus, and concepts related to this. Section 4
presents the conditions for soundness and completeness. Sections 5 and 6 apply
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the conditions on a few encodings of call-by-name and strong call-by-name from
the literature, and for various behavioural equivalences on theπ-calculus. Section 7
briefly discusses refinements of the π-calculus, notablywith linear types. Some con-
clusions are reported in Section 8.

2 Background

The λ-calculus We use M,N to range over the set Λ of λ-terms, and x, y, z
to range over variables. The standard syntax of λ-terms, and the rules for call-
by-name and strong call-by-name (where reduction may continue underneath a
λ-abstraction), can be recalled in [2]. We assume the standard concepts of free
and bound variables and substitutions, and identify α-convertible terms. We
write Ω for the divergent term (λx.xx)(λx.xx). Intuitively, a term M has order
of unsolvability n (0 � n < ω) if it behaves like Ω after n initial abstractions; M
has order of unsolvability ∞ if it can reduce to an unbounded number of nested
abstractions; M is solvable otherwise, with a head normal form of the shape
λx̃. yM1 . . .Mn.

Definition 1 (Lévy-Longo trees and Böhm trees). The Lévy–Longo Tree
of M ∈ Λ is the labelled tree, LT(M), defined coinductively as follows:

1. LT (M) = � if M is an unsolvable of order ∞;
2. LT (M) = λx1 . . . xn.⊥ if M is an unsolvable of order n;
3. LT (M) = tree with λx̃. y as the root and LT (M1),...,LT (Mn) as the children,

if M has head normal form λx̃. yM1 . . .Mn, n � 0.

Two terms M,N have the same LT if LT (M) = LT (N). The definition of Böhm
trees (BTs) is obtained from that of LTs using BT in place of LT in the definition
above, and demanding that BT (M) = ⊥ whenever M is unsolvable (in place of
clauses (1) and (2)). See [6] for a thorough tutorial on observational equivalences
for such trees.

The (asynchronous) π-calculus We first consider encodings into the asynchronous
π-calculus because its theory is simpler and because it is the usual target lan-
guage for encodings of the λ-calculus. In all encodings we consider, the encoding
of a λ-term is parametric on a name, that is, is a function from names to π-
calculus processes. We call such expressions abstractions. For the purposes of
this paper unary abstractions, i.e., with only one parameter, suffice. The actual
instantiation of the parameter of an abstraction F is done via the application
construct F 〈a〉. We use P,Q for process, F for abstractions. Processes and ab-
stractions form the set of π-agents (or simply agents), ranged over by A. Small
letters a, b, . . . , x, y, . . . range over the infinite set of names. We use a tilde to
indicate tuples; and given a tuple t̃, we write ti for the i-th component of the
tuple. Substitutions are ranged over by σ. The grammar of the calculus is thus:

A := P | F (agents)

P := 0 | a(̃b).P | a〈̃b〉 | P1 | P2 | νa P | !a(̃b).P | F 〈a〉 (processes)
F := (a)P (abstractions)
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Since the calculus is polyadic, we assume a sorting system [9] to avoid dis-
agreements in the arities of the tuples of names carried by a given name. We will
not present the sorting system because not essential. The reader should take for
granted that all agents described obey a sorting. A context C of π is a π-agent
in which some subterms have been replaced by the hole [·] or, if the context is

polyadic, with indexed holes [·]1, . . . , [·]n; then C[A] or C[Ã] is the agent result-

ing from replacing the holes with the terms A or Ã. If the initial expression was
an abstraction, we call the context an abstraction π-context ; otherwise it is a
process π-context. (A hole itself may stand for an abstraction or a process.) A
name is fresh if it does not occur in the objects under consideration.

The standard operational semantics of the asynchronous π-processes (as well
as the one for synchronous π-processes) is recalled in [12]. Transitions are of the

form P
a(̃b)−→ P ′ (an input, b̃ are the bound names of the input prefix that has

been fired), P
νd̃ a〈b̃〉−→ P ′ (an output, where d̃ ⊆ b̃ are private names extruded in

the output), and P
τ−→ P ′ (an internal action). We use μ to range over the labels

of transitions. We write =⇒ for the reflexive transitive closure of
τ−→, and

μ
==⇒

for ==⇒ μ−→==⇒; then
μ̂

=⇒ is
μ

==⇒ if μ is not τ , and ==⇒ otherwise; finally P
μ̂−→P ′

holds if P
μ−→P ′ or (μ = τ and P = P ′). In bisimulations or similar coinductive

relations for the asynchronous π-calculus, no name instantiation is required in
the input clause or elsewhere (provided α-convertible processes are identified);
i.e., the ground versions of the relations are congruences or precongruences [12].

Definition 2 (bisimilarity). Bisimilarity is the largest symmetric relation ≈
on π-processes such that whenever P ≈ Q and P

μ−→ P ′ then Q
μ̂

=⇒ Q′ for
some Q′ and P ≈ Q′.

A key preorder in our work will be expansion [1, 12]; this is a refinement of
bisimulation that takes into account the number of internal actions in simulation.
Intuitively, Q expands P if they are weak bisimilar and moreover Q has no fewer
internal actions when simulating P .

Definition 3 (expansion relation). A relation R on π-processes is an expan-

sion relation if whenever P R Q: (1) if P
μ−→ P ′ then Q

μ
=⇒ Q′ and P ′ R Q′;

(2) if Q
μ−→ Q′ then P

μ̂−→ P ′ and P ′ R Q′.

We write 	 for the largest expansion relation, and simply call it expansion. We
also need its ‘divergence-sensitive’ variant, written 	⇑, as an auxiliary relation
when tackling must equivalences. Using ⇑ to indicate divergence (i.e., P⇑ if P
can undergo an infinite sequence of τ transitions), then 	⇑ is obtained by adding
into Definition 3 the requirement that Q⇑ implies P⇑. We write 
 and ⇑
 for the
inverse of 	 and 	⇑, respectively. The predicate ⇓ indicates barb-observability

(i.e., P⇓ if P =⇒ μ−→ for some μ other than τ). As instance of a contextual
divergence-sensitive equivalence, we consider must-termination, because of the
simplicity of its definition — other choices would have been possible.
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Definition 4 (may and must equivalences). The π-processes P and Q are
may equivalent, written P ∼may Q, if in all process contexts C we have C[P ]⇓ iff
C[Q]⇓. They are must-termination equivalent (briefly must equivalent), written
P ∼must Q, if in all process contexts C we have C[P ]⇑ iff C[Q]⇑.

The behavioural relations defined above use the standard observables of π-
calculus; they can be made coarser by using the observables of asynchronous
calculi, where one takes into account that, since outputs are not blocking, only
output transitions from tested processes are immediately detected by an ob-
server. In our examples, the option of asynchronous observable will make a dif-
ference only in the case of may equivalence. In asynchronous may equivalence,
∼asy

may, the barb-observability predicate ⇓ is replaced by the asynchronous barb-

observability predicate ⇓asy, whereby P⇓asy holds if P==⇒ μ−→ and μ is an output

action. We have 	 ⊆ ≈ ⊆ ∼may ⊆ ∼asy
may, and 	⇑ ⊆ ∼must. The following results

will be useful later. A process is inactive if it may never perform a visible action.

Lemma 1. For all process contexts C, we have: (1) if P is inactive, then C[P ]⇓
implies C[Q]⇓ for all Q, C[P ]⇓asy implies C[Q]⇓asy for all Q, and C[a(x̃).P ]⇓asy
implies C[P ]⇓asy; (2) if P⇑ then for all Q, C[Q]⇑ implies C[P ]⇑.

Lemma 2. νa (a〈̃b〉 | a(x̃).P ) ⇑
 P{b̃/̃x}.

3 Encodings of the λ-calculus and Full Abstraction

In this paper an ‘encoding of the λ-calculus into π-calculus’ is supposed to be
compositional (a mapping to π-calculus agents defined structurally on λ-terms),
and uniform. The ‘uniformity’ condition refers to the treatment of the free vari-
ables: if the λ-term M and M ′ are the same modulo a renaming of free variables,
then also their encodings should be same modulo a renaming of free names; since,
in our encodings, λ-variables are included in the set of π-calculus names, a way
of ensuring uniformity is to require that the encoding commutes with (name)
substitution, i.e., [[Mσ]] ≡ [[M ]]σ.

A compositional encoding can be extended to contexts. We sometimes use:

(1) Cx
λ

def
= [[λx. [·]]], an abstraction contexts of [[ ]] (the hole represents the body of

an abstraction); (2) Cx,n
var

def
= [[x[·]1 · · · [·]n]] (for n � 0), a variable contexts of [[ ]]

(an application context in which the head is a variable and the holes represent
the following sequence of terms). In the remainder of the paper, ‘encoding’ refers
to a ‘compositional and uniform encoding of the λ-calculus into the π-calculus’.

Definition 5 (soundness, completeness, full abstraction, validity of β
rule). An encoding [[ ]] and a relation R on π-agents are: (1) sound for LTs if
[[M ]] R [[N ]] implies LT (M) = LT (N), for all M,N ∈ Λ; (2) complete for LTSs
if LT (M) = LT (N) implies [[M ]] R [[N ]], for all M,N ∈ Λ; (3) fully abstract
for LTs if they are both sound and complete for LTs.

The same definitions will also be applied to BTs — just replace ‘LT’ with
‘BT’. Moreover, [[ ]] and R validate rule β if [[(λx.M)N ]] R [[M{N/x}]], for all
x,M,N .
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4 Conditions for Completeness and Soundness

We first give the conditions for completeness of an encoding [[ ]] from the λ-
calculus into π with respect to a relation on π-agents; then those for soundness.
In both cases, the conditions involve an auxiliary relation ≤ on π-agents.

Completeness conditions. In the conditions for completeness the auxiliary pre-
congruence ≤ is required so to validate an ‘up-to ≤ and contexts’ technique.
Such technique is inspired by the ‘up-to expansion and contexts’ technique for
bisimulation [12], which allows us the following flexibility in the bisimulation
game required on a candidate relation R: given a pair of derivatives P and Q, it
is not necessary that the pair (P,Q) itself be in R, as in the ordinary definition

of bisimulation; it is sufficient to find processes P̃ , Q̃, and a context C such that
P 
 C[P̃ ], Q 
 C[Q̃], and P̃ R Q̃; that is, we can manipulate the original deriva-
tives in terms of 	 so to isolate a common context C; this context is removed
and only the resulting processes P̃ , Q̃ need to be in R. In the technique, the ex-
pansion relation is important: replacing it with bisimilarity breaks correctness.
Also, some care is necessary when a hole of the contexts occurs underneath an
input prefix, in which case a closure under name substitutions is required. Be-
low, the technique is formulated in an abstract manner, using generic relations
 and ≤. In the encodings we shall examine,  will be any of the congruence
relations in Section 2, whereas ≤ will always be the expansion relation (or its
divergence-sensitive variant, when  is must equivalence).

Definition 6 (up-to-≤-and-contexts technique). Relation  validates the
up-to-≤-and-contexts technique if for any symmetric relation R on π-processes

we have R ⊆  whenever for any pair (P,Q) ∈ R, if P
μ−→ P ′ then Q

μ̂
=⇒ Q′

and there are processes P̃ , Q̃ and a context C such that P ′ ≥ C[P̃ ], Q′ ≥ C[Q̃],

and, if n � 0 is the length of the tuples P̃ and Q̃, at least one of the following
two statements is true, for each i � n: (1) Pi  Qi; (2) Pi R Qi and, if [·]i
occurs under an input in C, also Piσ R Qiσ for all substitutions σ.

Below is the core of the completeness conditions. Some of these conditions
((1)-(3)) only concern the chosen behavioural equivalence  and its auxiliary
relation ≤, and are independent of the encoding; the most important condition
is the validity of the up-to-≤-and-contexts technique. Other conditions (such
as (4)) are purely syntactic; we use the standard concept of guarded context
(in which the hole appears underneath some prefix) [12]. The only behavioural
conditions on the encoding are (5), (6) (plus (ii) in Theorem 1). They concern
validity of β rule and equality of certain unsolvables — very basic requirements
for the operational correctness of an encoding.

Definition 7. Let  and ≤ be relations on π-agents such that:

1.  is a congruence and  ⊇ ≥;
2. ≤ is an expansion relation and is a precongruence;
3.  validates the up-to-≤-and-contexts technique.
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Now, an encoding [[ ]] of λ-calculus into π-calculus is faithful for  under ≤ if

4. the variable contexts of [[ ]] are guarded;
5. [[ ]] and ≥ validate rule β;
6. if M is an unsolvable of order 0 then [[M ]]  [[Ω]].

Theorem 1 (completeness). Let [[ ]] be an encoding of the λ-calculus into π-
calculus, and  a relation on π-agents. Suppose there is a relation ≤ on π-agents
such that [[ ]] is faithful for  under ≤. We have:

(i) if the abstraction contexts of [[ ]] are guarded, then [[ ]] and  are complete for
LTs;

(ii) if [[M ]]  [[Ω]] whenever M is unsolvable of order ∞, then [[ ]] and  are
complete for BTs.

The proofs for LTs and BTs are similar. In the proof for LTs, for instance,

we consider the relation R def
= {([[M ]], [[N ]]) s.t. LT (M) = LT (N)} and show

that for each ([[M ]], [[N ]]) ∈ R one of the following conditions is true, for some
abstraction context Cx

λ , variable context Cx,n
var , and terms Mi, Ni:

(a) [[M ]]  [[Ω]] and [[N ]]  [[Ω]];
(b) [[M ]] ≥ Cx

λ [[[M1]]], [[N ]] ≥ Cx
λ [[[N1]]] and ([[M1]], [[N1]]) ∈ R;

(c) [[M ]] ≥ Cx,n
var [[[M1]], . . . , [[Mn]]], [[N ]] ≥ Cx,n

var [[[N1]], . . . , [[Nn]]] and ([[Mi]], [[Ni]]) ∈
R for all i.

Here, (a) is used when M and N are unsolvable of order 0, by appealing to clause
(6) of Definition 7. In the remaining cases we obtain (b) or (c), depending on
the shape of the LT for M and N , and appealing to clause (5) of Definition 7.
The crux of the proof is exploiting the property that  validates the up-to-≤-
and-contexts technique so to derive R ⊆  (the continuations of [[M ]] and [[N ]]
are somehow related via the expansion and common context). Intuitively, this
is possible because the variable and abstraction contexts of [[ ]] are guarded, and
therefore the first action from terms such as Cx

λ [[[M1]]] and Cx,n
var [[[M1]], . . . , [[Mn]]]

only consumes the context, and because ≤ is an expansion relation (clause (2)
of Definition 7). Note that condition (2) of Definition 6 requires closure under
substitutions when a hole is underneath a prefix. In clause (c) above we can
derive closure under substitutions from ([[Ni]], [[Ni]]) ∈ R because the LT equality
is preserved by variable renaming and because we assume an encoding to act
uniformly on the free names (Section 3).

In the results for BTs, the condition on abstraction contexts being guarded
is not needed because the condition can be proved redundant in presence of the
condition in the assertion (ii) of the theorem. Intuitively, the reason is that, if in
a term the head reduction never unveils a variable, then the term is unsolvable
and can be equated to Ω using condition (ii); if it does unveil a variable, then
in the encoding the subterms following the variable are underneath at least one
prefix (because the variable contexts of the encoding are guarded, by condition
(4)) and then we are able to apply a reasoning similar to that in clause (c) above.
Also, we do not need to explicitly prove [[λx.Ω]]  [[Ω]], this can be derived from
condition (ii) and clauses (5) and (6) of Definition 7.
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Soundness conditions. In the conditions for soundness, one of the key require-
ments will be that certain contexts have an inverse. This intuitively means that
it is possible to extract any of the processes in the holes of the context, up to
the chosen behavioural equivalence. To have some more flexibility, we allow the
appearance of the process of a hole after a rendez-vous with the external ob-
server. This allows us to: initially restrict some names that are used to consume
the context; then export such names before revealing the process of the hole.
The reason why the restriction followed by the export of these names is useful is
that the names might occur in the process of the hole; initially restricting them
allows us to hide the names to the external environment; exporting them allows
to remove the restrictions once the inversion work on the context is completed.
The drawback of this initial rendez-vous is that we have to require a prefix-
cancellation property on the behavioural equivalence; however, the requirement
is straightforward to check in common behavioural equivalences.

We give the definition of inversion only for abstraction π-contexts whose holes
are themselves abstractions. We only need this form of contexts when reasoning
on λ-calculus encodings.

Definition 8. Let C be an abstraction π-context with n holes, each occurring
exactly once, each hole itself standing for an abstraction. We say that C has
inverse with respect to a relation R on π-agents, if for every i = 1, . . . , n and
for every Ã there exists a process π-context Di and fresh names a, z, b such that

Di[C[Ã]] R (ν b̃ )(a〈c̃〉 | b(z).Ai〈z〉) , for b ∈ b̃ ⊆ c̃.

It is useful to establish inverse properties for contexts for the finest possible
behavioural relation, so to export the result to coarser relations. In our work,
the finest such relation is the divergence-sensitive expansion (	⇑).

Example 1. We show examples of inversion using contexts that are similar to
some abstraction and variable contexts in encodings of λ-calculus.

1. Consider a context C
def
= (p) p(x, q). ([·]〈q〉). If F fills the context, then an

inverse for ⇑
 is the context

D
def
= νb (a〈b〉 | b(r).νp ([·]〈p〉 | p〈x, r〉))

where all names are fresh (i.e., not free in F ). Indeed we have, using simple
algebraic manipulations (such as the law of Lemma 2):

D[C[F ]] ⇑
 νb (a〈b〉 | b(r).νp (p(x, q).F 〈q〉 | p〈x, r〉))
⇑
 νb (a〈b〉 | b(r).F 〈r〉)

2. Consider now a context C
def
= (p) (νr, y )(x〈r〉 | r〈y, p〉 | !y(q). [·]〈q〉). If F fills

the hole, then an inverse context is

D
def
= ((νx, p, b )([·]〈p〉 | x(r). r(y, z). (a〈x, b〉 | b(u). y〈u〉)) (1)
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where again all names are fresh with respect to F . We have:

D[C[F ]] = (νx, p, b )((C[F ])〈p〉 | x(r). r(y, z). (a〈x, b〉 | b(u). y〈u〉))
⇑
 (νx, p, b )(νr, y )(x〈r〉 | r〈y, p〉 | !y(q).F 〈q〉) |

x(r). r(y, z). (a〈x, b〉 | b(u). y〈u〉)
⇑
 (νx, b)(νy (!y(q).F 〈q〉 | (a〈x, b〉 | b(u). y〈u〉)))
⇑
 (νx, b)(a〈x, b〉 | b(r). (νy (!y(q).F 〈q〉 | y〈r〉)))
⇑
 (νx, b)(a〈x, b〉 | b(r).F 〈r〉)

Definition 9. A relation R on π-agents has the rendez-vous cancellation prop-
erty if whenever νb̃ (a〈c̃〉 | b(r).P ) R ν b̃ (a〈c̃〉 | b(r).Q) where b ∈ b̃ ⊆ c̃ and a, b
are fresh, then also P R Q.

The cancellation property is straightforward for a behavioural relation  be-
cause, in the initial processes, the output a〈c̃〉 is the only possible initial action,
after which the input at b must fire (the assumption ‘a, b fresh’ facilitates mat-
ters, though it is not essential).

As for completeness, so for soundness we isolate the common conditions for
LTs and BTs. Besides the conditions on inverse of contexts, the other main
requirement is about the inequality among some structurally different λ-terms
(condition 6).

Definition 10. Let  and ≤ be relations on π-agents where

1.  is a congruence, ≤ a precongruence,
2.  ⊇ ≥;
3.  has the rendez-vous cancellation property.

An encoding [[ ]] of the λ-calculus into π-calculus is respectful for  under ≤ if

4. [[ ]] and ≥ validate rule β;
5. if M is an unsolvable of order 0, then [[M ]]  [[Ω]];

6. the terms [[Ω]], [[xM̃ ]], [[xM̃ ′]], and [[yM̃ ′′]] are pairwise unrelated by  , as-

suming that x 	= y and that tuples M̃ and M̃ ′ have different lengths;
7. the abstraction and variable contexts of [[ ]] have inverse with respect to ≥.

The condition on variable context having an inverse is the most delicate one.
In the encodings of the π-calculus we have examined, however, the condition is
simple to achieve.

Theorem 2 (soundness). Let [[ ]] be an encoding of the λ-calculus into π-
calculus, and  a relation on π-agents. Suppose there is a relation ≤ on π-agents
such that [[ ]] is respectful for  under ≤. We have:

1. if, for any M , the term [[λx.M ]] is unrelated by  to [[Ω]] and to any term

of the form [[xM̃ ]], then [[ ]] and  are sound for LTs;
2. if

(a) [[M ]]  [[Ω]] whenever M is unsolvable of order ∞,
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(b) M solvable implies that the term [[λx.M ]] is unrelated by  to [[Ω]] and

to any term of the form [[xM̃ ]],

then [[ ]] and  are sound for BTs.

For the proof of Theorem 2, we use a coinductive definition of LT and BT
equality, as forms of bisimulation. Then we show that the relation {(M,N) |
[[M ]]  [[N ]]} implies the corresponding tree equality. In the case of internal
nodes of the trees, we exploit conditions such as (6) and (7) of Definition 10.

Full abstraction We put together Theorems 1 and 2.

Theorem 3. Let [[ ]] be an encoding of the λ-calculus into π-calculus,  a con-
gruence on π-agents. Suppose there is a precongruence ≤ on π-agents such that

1. ≤ is an expansion relation and  ⊇ ≥;
2.  validates the up-to-≤-and-contexts technique;
3. the variable contexts of [[ ]] are guarded;
4. the abstraction and variable contexts of [[ ]] have inverse with respect to ≥;
5. [[ ]] and ≥ validate rule β;
6. if M is an unsolvable of order 0 then [[M ]]  [[Ω]];

7. the terms [[Ω]], [[xM̃ ]], [[xM̃ ′]], and [[yM̃ ′′]] are pairwise unrelated by  , as-

suming that x 	= y and that tuples M̃ and M̃ ′ have different lengths.

We have:

(i) if

(a) the abstraction contexts of [[ ]] are guarded, and
(b) for any M the term [[λx.M ]] is unrelated by  to [[Ω]] and to any term

of the form [[xM̃ ]],

then [[ ]] and  are fully abstract for LTs;
(ii) if

(a) M solvable implies that the term [[λx.M ]] is unrelated by  to [[Ω]] and

to any term of the form [[xM̃ ]], and
(b) [[M ]]  [[Ω]] whenever M is unsolvable of order ∞,

then [[ ]] and  are fully abstract for BTs.

In Theorems 1(i) and 3(i) for LTs the abstraction contexts are required to
be guarded. This is reasonable in encodings of strategies, such as call-by-name,
where evaluation does not continue underneath a λ-abstraction, but it is too
demanding when evaluation can go past a λ-abstraction, such as strong call-by-
name. We therefore present also the following alternative condition:

M,N unsolvable of order ∞ implies [[M ]]  [[N ]]. (∗)

Theorem 4. Theorems 1(i) and 3(i) continue to hold when the condition that
the abstraction contexts be guarded is replaced by (∗) above.
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5 Examples with call-by-name

In this section we apply the theorems on soundness and completeness in the pre-
vious section to two well-known encodings of call-by-name λ-calculus: the one in
Figure 1.a is Milner’s original encoding [8]. The one in Figure 1.b is a variant en-
coding in which a function communicates with its environment via a rendez-vous
(request/answer) pattern. An advantage of this encoding is that it can be easily
tuned to call-by-need, or even used in combination with call-by-value [12].

For each encoding we consider soundness and completeness with respect to
four behavioural equivalences: bisimilarity (≈), may (∼may), must (∼must), and
asynchronous may (∼asy

may). The following lemma allows us to apply the up-to-
≤-and-contexts technique.

Lemma 3. Relations ≈, ∼may, and ∼asy
may validate the up-to-	-and-contexts

technique; relation ∼must validates the up-to-	⇑-and-contexts technique.

The result in Lemma 3 for bisimulation is from [12]. The proofs for the may
equivalences follow the definitions of the equivalences, reasoning by induction on
the number of steps required to bring out an observable. The proof for the must
equivalence uses coinduction to reason on divergent paths. Both for the may and
for the must equivalences, the role of expansion (	) is similar to its role in the
technique for bisimulation.

Theorem 5. The encoding of Figure 1.a is fully abstract for LTs when the be-
havioural equivalence for π-calculus is ≈,∼may, or ∼must; and fully abstract for
BTs when the behavioural equivalence is ∼asy

may.
The encoding of Figure 1.b is fully abstract for LTs under any of the equiva-

lences ≈,∼may, ∼must, or ∼asy
may.

As Lemma 3 brings up, in the proofs, the auxiliary relation for ≈, ∼may, and
∼asy

may is 	; for ∼must it is 	⇑. With Lemma 3 at hand, the proofs for the sound-
ness and completeness statements are simple. Moreover, there is a large reuse
of proofs and results. For instance, in the completeness results for LTs, we only
have to check that: the variable and abstraction contexts of the encoding are
guarded; β rule is validated; all unsolvable of order 0 are equated. The first check
is straightforward and is done only once. For the β rule, it suffices to establish its
validity for 	⇑, which is the finest among the behavioural relations considered;
this is done using distributivity laws for private replications [12], which are valid
for strong bisimilarity and hence for 	⇑, and the law of Lemma 2. Similarly,
for the unsolvable terms of order 0 it suffices to prove that they are all ‘purely
divergent’ (i.e., divergent and unable to even perform some visible action), which
follows from the validity of the β rule for 	⇑.

Having checked the conditions for completeness, the only two additional con-
ditions needed for soundness for LTs are conditions (6) and (7) of Definition 10,
where we have to prove that certain terms are unrelated and that certain con-
texts have an inverse. The non-equivalence of the terms in condition (6) can
be established for the coarsest equivalences, namely ∼asy

may and ∼must, and then
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[[λx.M ]]
def
= (p) p(x, q). [[M ]]〈q〉

[[x]]
def
= (p)x〈p〉

[[MN ]]
def
= (p) (νr, x )

(
[[M ]]〈r〉 | r〈x, p〉 |

!x(q). [[N ]]〈q〉
)

(for x fresh)

Fig. 1.a: Milner’s encoding

[[λx.M ]]
def
= (p)νv (p〈v〉 | v(x, q). [[M ]]〈q〉)

[[x]]
def
= (p)x〈p〉

[[MN ]]
def
= (p)νr

(
[[M ]]〈r〉 |

r(v).νx (v〈x, p〉 |
!x(q). [[N ]]〈q〉)

)
(for x fresh)

Fig. 1.b: a variant encoding

Fig. 1. The two encodings of call-by-name

exported to the other equivalences. It suffices to look at visible traces of length 1
at most, except for terms of the form [[xM̃ ]] and [[xM̃ ′]], when tuples M̃ and M̃ ′

have different lengths, in which case one reasons by induction on the shortest of
the two tuples.

The most delicate point is the existence of an inverse for the abstraction and
the variable contexts. This can be established for the finest equivalence (	⇑),
and then exported to coarser equivalences. The two constructions needed for this
are similar to those examined in Example 1.

For Milner’s encoding, in the case of ∼asy
may, we actually obtain the BT equality.

One may find this surprising at first: BTs are defined fromweak head reduction, in
which evaluation continues underneath a λ-abstraction; however Milner’s encod-
ing mimics the call-by-name strategy, where reduction stops when a λ-abstraction
is uncovered.We obtain BTs with∼asy

may by exploiting Lemma 1(1) as follows. The
encoding of a term λx.M is (p) p(x, q). [[M ]]〈q〉. In an asynchronous semantics, an
input is not directly observable; with ∼asy

may an input prefix can actually be erased
provided, intuitively, that an output is never liberated. We sketch the proof of
[[M ]] ∼asy

may [[Ω]] whenever M is unsolvable of order∞, as required in condition (ii)
of Theorem 3. Consider a context C with C[[[M ]]]⇓, and suppose the observable is
reached after n internal reductions. Term M , as∞-unsolvable, can be β-reduced

to M ′ def
= (λx)n.N , for some N . By validity of β-rule for 
, also C[[[M ′]]]⇓ in at

most n steps; hence the subterm [[N ]] of [[M ′]] does not contribute to the observ-
able, since the abstraction contexts of the encodings are guarded and M ′ has n
initial abstractions. We thus derive C[[[(λx)n.Ω]]]⇓ and then, by repeatedly ap-
plying the third statement of Lemma 1(1) (as Ω is inactive), also C[[[Ω]]]⇓. (The
converse implication is given by the first statement in Lemma 1(1).)

6 An Example with Strong call-by-name

In this section we consider a different λ-calculus strategy, strong call-by-name,
where the evaluation of a termmay continue underneath aλ-abstraction.Themain
reason is that we wish to see the impact of this difference on the equivalences in-
duced by the encodings. Intuitively, evaluation underneath a λ-abstraction is fun-
damental in the definition of BTs and therefore we expect that obtaining the
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[[λx.M ]]
def
= (p) (νx, q)(p〈x, q〉 | [[M ]]〈q〉) [[x]]

def
= (p) (x(p′). (p′ � p))

[[MN ]]
def
= (p) (νq, r)([[M ]]〈q〉 | q(x, p′). (p′ � p | !x〈r〉. [[N ]]〈r〉)) (for x fresh)

where r � q
def
= r(y, h). q〈y, h〉

Fig. 2. Encoding of strong call-by-name

BT equality will be easier. However, the LT equality will still be predominant: in
BTs a λ-abstraction is sometimes unobservable, whereas in an encoding into π-
calculus a λ-abstraction always introduces a few prefixes, which are observable in
the most common behavioural equivalences.

The encoding of strong call-by-name, from [7], is in Figure 2. The encoding be-
haves similarly to that in Figure 1.b; reduction underneath a ‘λ’ is implemented
by exploting special wire processes (such as q � p). They allow us to split the
body M of an abstraction from its head λx; then the wires make the liaison
between the head and the body. It actually uses the synchronous π-calculus,
because some of the output prefixes have a continuation. Therefore the encoding
also offers us the possibility of discussing the portability of our conditions to the
synchronous π-calculus. For this, the only point in which some care is needed is
that in the synchronous π-calculus, bisimilarity and expansion need some closure
under name substitutions, in the input clause (on the placeholder name of the
input), and the outermost level (i.e., before the bisimulation or expansion game
is started) to become congruence or precongruence relations. Name substitutions
may be applied following the early, late or open styles. The move from a style
to another one does not affect the results in terms of BTs and LTs in the paper.
We omit the definitions, see e.g., [12].

In short, for any of the standard behavioural congruences and expansion pre-
congruences of the synchronous π-calculus, the conditions concerning  and ≤
of the theorems in Section 4 remain valid. In Theorem 6 below, we continue to
use the symbols ≈ and 	 for bisimilarity and expansion, assuming that these
are bisimulation congruences and expansion precongruences in any of the com-
mon π-calculus styles (early, late, open). (Again, in the case of must equivalence
the expansion preorder should be divergence sensitive.) The proof of Theorem 6
is similar to that of Theorem 5. The main difference is that, since in strong
call-by-name the abstraction contexts are not guarded, we have to adopt the
modification in one of the conditions for LTs suggested in Theorem 4. Moreover,
for the proof of validity of β rule for 	, we use the following law to reason about
wire processes r � q (and similarly for 	⇑):

– νq (q � p | P ) 
 P{p/q} provided p does not appear free in P , and q only
appears free in P only once, in a subexpression of the form q〈ṽ〉.0.

Theorem 6. The encoding of Figure 2 is fully abstract for LTs when the be-
havioural equivalence for the π-calculus is ≈,∼may, or ∼asy

may; and fully abstract
for BTs when the behavioural equivalence is ∼must.
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Thus we obtain the BT equality for the must equivalence. Indeed, under strong
call-by-name, all unsolvable terms are divergent. In contrast with Milner’s encod-
ing of Figure 1.a, under asynchronous may equivalence we obtain LTs because
in the encoding of strong call-by-name the first action of an abstraction is an
output, rather than an input as in Milner’s encoding, and outputs are observable
in asynchronous equivalences.

7 Types and Asynchrony

We show, using Milner’s encoding (Figure 1.a), that we can sometimes switch
from LTs to BTs by taking into account some simple type information together
with asynchronous forms of behavioural equivalences. The type information
needed is the linearity of the parameter name of the encoding (names p, q, r
in Figure 1.a). Linearity ensures us that the external environment can never
cause interferences along these names: if the input capability is used by the
process encoding a λ-term, then the external environment cannot exercise the
same (competing) capability. In an asynchronous behavioural equivalence input
prefixes are not directly observable (as discussed earlier for asynchronous may).

Linear types and asynchrony can easily be incorporate in a bisimulation
congruence by using a contextual form of bisimulation such as barbed congru-
ence [12]. In this case, barbs (the observables of barbed congruence) are only pro-
duced by output prefixes (as in asynchronous may equivalence); and the contexts
in which processes may be tested should respect the type information ascribed
to processes (in particular the linearity mentioned earlier). We write ≈lin,asy

bc for
the resulting asynchronous typed barbed congruence. Using Theorem 3(ii) we
obtain:

Theorem 7. The encoding of Figure 1.a is fully abstract for BTs when the
behavioural equivalence for the π-calculus is ≈lin,asy

bc .

The auxiliary relation is still 	; here asynchrony and linearity are not needed.

8 Conclusions and Future Work

In this paper we have studied soundness and completeness conditions with re-
spect to BTs and LTs for encodings of λ-calculus into the π-calculus. While
the conditions have been presented on the π-calculus, they can be adapted to
some other concurrency formalisms. For instance, expansion, a key preorder in
our conditions, can always be extracted from bisimilarity as its “efficiency” pre-
order. It might be difficult, in contrast, to adapt our conditions to sequential
languages; a delicate condition, for instance, appears to be the one on inversion
of variable contexts.

We have used the conditions to derive tree characterisations for various encod-
ings and various behavioural equivalences, including bisimilarity, may and must
equivalences, and asynchronous may equivalence. The proofs of the conditions
can often be transported from a behavioural equivalence to another one, with
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little or no extra work (e.g., exploiting containments among equivalences and
preorders). Overall, we found the conditions particularly useful when dealing
with contextual equivalences, such as may and must equivalences. It is unclear
to us how soundness and completeness could be proved for them by relying on,
e.g., direct characterisations of the equivalences (such as trace equivalence or
forms of acceptance trees) and standard proof techniques for them.

It would be interesting to examine additional conditions on the behavioural
equivalences of the π-calculus capable to retrieve, as equivalence induced by an
encoding, that of BTs under η contraction, or BTs under infinite η contractions
[2]. Works on linearity in the π-calculus, such as [14] might be useful.

In the paper we have considered encodings of call-by-name or strong call-by-
name. These strategies fit the definition of BTs and LTs, in which reduction
always picks the leftmost redex. We do not know, in contrast, what kind of tree
structures could be obtained from encodings of the call-by-value strategy.
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Abstract. The bisimulation proof method can be enhanced by employ-
ing ‘bisimulations up-to’ techniques. A comprehensive theory of such
enhancements has been developed for first-order (i.e., CCS-like) labelled
transition systems (LTSs) and bisimilarity, based on the notion of com-
patible function for fixed-point theory.

We transport this theory onto languages whose bisimilarity and LTS
go beyond those of first-order models. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilar-
ities onto the first-order ones. This allows us to reuse directly the large
corpus of up-to techniques that are available on first-order LTSs. The
only ingredient that has to be manually supplied is the compatibility of
basic up-to techniques that are specific to the new languages. We investi-
gate the method on the π-calculus, the λ-calculus, and a (call-by-value)
λ-calculus with references.

1 Introduction

One of the keys for the success of bisimulation is its associated proof method,
whereby to prove two terms equivalent, one exhibits a relation containing the pair
and one proves it to be a bisimulation. The bisimulation proof method can be
enhanced by employing relations called ‘bisimulations up-to’ [14,19,20]. These
need not be bisimulations; they are simply contained in a bisimulation. Such
techniques have been widely used in languages for mobility such as π-calculus
or higher-order languages such as the λ-calculus, or Ambients (e.g., [23,16,11]).

Several forms of bisimulation enhancements have been introduced: ‘bisim-
ulation up-to bisimilarity’ [17] where the derivatives obtained when playing
bisimulation games can be rewritten using bisimilarity itself; ‘bisimulation up-
to transitivity’ where the derivatives may be rewritten using the up-to relation;
‘bisimulation up-to-context’ [21], where a common context may be removed from
matching derivatives. Further enhancements may exploit the peculiarities of the
definition of bisimilarity on certain classes of languages: e.g., the up-to-injective-
substitution techniques of the π-calculus [7,23], techniques for shrinking or en-
larging the environment in languages with information hiding mechanisms (e.g.,
existential types, encryption and decryption constructs [1,25,24]), frame equiv-
alence in the psi-calculi [18], or higher-order languages [12,10]. Lastly, it is im-
portant to notice that one often wishes to use combinations of up-to techniques.
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For instance, up-to context alone does not appear to be very useful; its strength
comes out in association with other techniques, such as up-to bisimilarity or
up-to transitivity.

The main problem with up-to techniques is proving their soundness (i.e. en-
suring that any ‘bisimulation up-to’ is contained in bisimilarity). In particular,
the proofs of complex combinations of techniques can be difficult or, at best,
long and tedious. And if one modifies the language or the up-to technique, the
entire proof has to be redone from scratch. Indeed the soundness of some up-to
techniques is quite fragile, and may break when such variations are made. For
instance, in certain models up-to bisimilarity may fail for weak bisimilarity, and
in certain languages up-to bisimilarity and context may fail even if bisimilarity is
a congruence relation and is strong (treating internal moves as any other move).

This problem has been the motivation for the development of a theory of en-
hancements, summarised in [19]. Expressed in the general fixed-point theory on
complete lattices, this theory has been fully developed for both strong and weak
bisimilarity, in the case of first-order labelled transition systems (LTSs) where
transitions represent pure synchronisations among processes. In this framework,
up-to techniques are represented using compatible functions, whose class enjoys
nice algebraic properties. This allows one to derive complex up-to techniques
algebraically, by composing simpler techniques by means of a few operators.

Only a small part of the theory has been transported onto other forms of tran-
sition systems, on a case by case basis. Transferring the whole theory would be a
substantial and non-trivial effort. Moreover it might have limited applicability,
as this work would probably have to be based on specific shapes for transitions
and bisimilarity (a wide range of variations exist, e.g., in higher-order languages).

Here we explore a different approach to the transport of the theory of bisimu-
lation enhancements onto richer languages. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilarities onto
first-order LTSs and bisimilarity. This allows us to import directly the existing
theory for first-order bisimulation enhancements onto the new languages. Most
importantly, the schema allows us to combine up-to techniques for the richer
languages. The only additional ingredient that has to be provided manually is
the soundness of some up-to techniques that are specific to the new languages.
This typically includes the up-to context techniques, since those contexts are not
first-order.

Our hope is that the method proposed here will make it possible to obtain a
single formalised library about up-to techniques, that can be reused for a wide
range of calculi: currently, all existing formalisations of such techniques in a proof
assistant are specific to a given calculus: π-calculus [5,4], the psi-calculi [18], or
a miniML language [6].

We consider three languages: the π-calculus, the call-by-name λ-calculus, and
an imperative call-by-value λ-calculus. Other calculi like the Higher-Order π-
calculus can be handled in a similar way; we omit the details here for lack of
space. We moreover focus on weak bisimilarity, since its theory is more delicate
than that of strong bisimilarity. When we translate a transition system into a
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first-order one, the grammar for the labels can be complex (e.g. include terms,
labels, or contexts). What makes the system ‘first-order’ is that labels are taken
as syntactic atomic objects, that may only be checked for syntactic equality. Note
that full abstraction of the translation does not imply that the up-to techniques
come for free: further conditions must be ensured. We shall see this with the
π-calculus, where early bisimilarity can be handled but not the late one.

Forms of up-to context have already been derived for the languages we con-
sider in this paper [11,23,22]. The corresponding soundness proofs are difficult
(especially in λ-calculi), and require a mix of induction (on contexts) and coin-
duction (to define bisimulations). Recasting up-to context within the theory
of bisimulation enhancements has several advantages. First, this allows us to
combine this technique with other techniques, directly. Second, substitutivity
(or congruence) of bisimilarity becomes a corollary of the compatibility of the
up-to-context function (in higher-order languages these two kinds of proofs are
usually hard and very similar). And third, this allows us to decompose the up-to
context function into smaller pieces, essentially one for each operator of the lan-
guage, yielding more modular proofs, also allowing, if needed, to rule out those
contexts that do not preserve bisimilarity (e.g., input prefix in the π-calculus).

The translation of the π-calculus LTS into a first-order LTS follows the schema
of abstract machines for the π-calculus (e.g., [26]) in which the issue of the choice
of fresh names is resolved by ordering the names. Various forms of bisimulation
enhancements have appeared in papers on the π-calculus or dialects of it. A
translation of higher-order π-calculi into first-order processes has been proposed
by Koutavas et al [8]. While the shape of our translations of λ-calculi is similar,
our LTSs differ since they are designed to recover the theory of bisimulation
enhancements. In particular, using the LTSs from [8] would lead to technical
problems similar to those discussed in Remark 2. In the λ-calculus, limited forms
of up-to techniques have been developed for applicative bisimilarity, where the
soundness of the up-to context has still open problems [12,11]. More powerful
versions of up-to context exist for forms of bisimilarity on open terms (e.g.,
open bisimilarity or head-normal-form bisimilarity) [13]. Currently, the form of
bisimilarity for closed higher-order terms that allows the richest range of up-to
techniques is environmental bisimilarity [22,9]. However, even in this setting,
the proofs of combinations of up-to techniques are usually long and non-trivial.
Our translation of higher-order terms to first-order terms is designed to recover
environmental bisimilarity.

In Section 6, we show an example of how the wide spectrum of up-to tech-
niques made available via our translations allows us to simplify relations needed
in bisimilarity proofs, facilitating their description and reducing their size.

2 First-Order Bisimulation and Up-to Techniques

A first-order Labelled Transition System, briefly LTS, is a triple (Pr, Act,−→)
where Pr is a non-empty set of states (or processes), Act is the set of actions (or
labels), and −→ ⊆ Pr × Act × Pr is the transition relation. We use P,Q,R to



96 J.-M. Madiot, D. Pous, and D. Sangiorgi

range over the processes of the LTS, and μ to range over the labels in Act, and,

as usual, write P
μ−→ Q when (P, μ,Q) ∈ −→. We assume that Act includes a

special action τ that represents an internal activity of the processes. We derive
bisimulation from the notion of progression between relations.

Definition 1. Suppose R,S are relations on the processes of an LTS. Then R
strongly progresses to S, written R�sp S, if R ⊆ S and if P R Q implies:

– whenever P
μ−→ P ′ there is Q′ s.t. Q

μ−→ Q′ and P ′ S Q′;

– whenever Q
μ−→ Q′ there is P ′ s.t. P

μ−→ P ′ and P ′ S Q′.

A relation R is a strong bisimulation if R �sp R; and strong bisimilarity, ∼,
is the union of all strong bisimulations.

To define weak progression we need weak transitions, defined as usual: first,

P
μ̂−→ P ′ means P

μ−→ P ′ or μ = τ and P = P ′; and
μ̂

=⇒ is =⇒ μ̂−→=⇒ where
=⇒ is the reflexive transitive closure of

τ−→. Weak progression, R �wp S, and
weak bisimilarity, ≈, are obtained from Definition 1 by allowing the processes to

answer using
μ̂

=⇒ rather than
μ−→.

Below we summarise the ingredients of the theory of bisimulation enhance-
ments for first-order LTSs from [19] that will be needed in the sequel. We use
f and g to range over functions on relations over a fixed set of states. Each
such function represents a potential up-to technique; only the sound functions,
however, qualify as up-to techniques:

Definition 2. A function f is sound for ∼ if R�sp f(R) implies R ⊆ ∼, for
all R; similarly, f is sound for ≈ if R�wp f(R) implies R ⊆ ≈, for all R.

Unfortunately, the class of sound functions does not enjoy good algebraic
properties. As a remedy to this, the subset of compatible functions has been
proposed. The concepts in the remainder of the section can be instantiated with
both strong and weak bisimilarities; we thus use p to range over sp or wp.

Definition 3. We write f �p g when R �p S implies f(R) �p g(S) for all
R and S. A monotone function f on relations is p-compatible if f �p f .

In other terms [19], f is p-compatible iff f ◦ p ⊆ p ◦ f where p(S) is the
union of all R such that R�p S and ◦ denotes function composition. Note that
R�p S is equivalent to R ⊆ p(S).

Lemma 1. If f is sp-compatible, then f is sound for ∼; if f is wp-compatible,
then f is sound for ≈.

Simple examples of compatible functions are the identity function and the func-
tion mapping any relation onto bisimilarity (for the strong or weak case, respec-
tively). The class of compatible functions is closed under function composition
and union (where the union ∪F of a set of functions F is the point-wise union
mapping R to

⋃
f∈F f(R)), and thus under omega-iteration (where the omega-

iteration fω of a function f maps R to
⋃
n∈N fn(R)).
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Other examples of compatible functions are typically contextual closure func-
tions, mapping a relation into its closure w.r.t. a given set of contexts. For such
functions, the following lemma shows that the compatibility of up-to-context
implies substitutivity of (strong or weak) bisimilarity.

Lemma 2. If f is sp-compatible, then f(∼) ⊆ ∼; similarly if f is wp-compatible,
then f(≈) ⊆ ≈.

Certain closure properties for compatible functions however only hold in the
strong case. The main example is the chaining operator 	, which implements
relational composition:

f	g (R) � f(R) g(R)

where f(R) g(R) indicates the composition of the two relations f(R) and g(R).
Using chaining we can obtain the compatibility of the function ‘up to transitivity’
mapping any relation R onto its reflexive and transitive closure R�. Another
example of sp-compatible function is ‘up to bisimilarity’ (R #→ ∼R∼).

In contrast, in the weak case bisimulation up to bisimilarity is unsound. This
is a major drawback in up-to techniques for weak bisimilarity, which can be
partially overcome by resorting to the expansion relation  [3]. Expansion is an
asymmetric refinement of weak bisimilarity whereby P  Q holds if P and Q are
bisimilar and, in addition, Q is at least as efficient as P , in the sense that Q is
capable of producing the same activity as P without ever performing more inter-
nal activities (the τ -actions); see [15] for its definition. Up-to-expansion yields a
function (R #→ R�) that is wp-compatible. As a consequence, the same holds
for the ‘up-to expansion and contexts’ function. More sophisticated up-to tech-
niques can be obtained by carefully adjusting the interplay between visible and
internal transitions, and by taking into account termination hypotheses [19].

Some further compatible functions are the functions sp and wp themselves
(indeed a function f is p-compatible if f ◦ p ⊆ p ◦ f , hence trivially f can be
replaced by p itself). Intuitively, the use of sp and wp as up-to techniques means
that, in a diagram-chasing argument, the two derivatives need not be related;
it is sufficient that the derivatives of such derivatives be related. Accordingly,
we sometimes call functions sp and wp unfolding functions. We will use sp in
the example in Section 6 and wp in Sections 4 and 5, when proving the wp-
compatibility of the up to context techniques.

Last, note that to use a function f in combinations of up-to techniques, it
is actually not necessary that f be p-compatible: for example proving that f
progresses to f ∪ g and g progresses to g is enough, as then f ∪ g would be
compatible. Extending this reasoning allows us to make use of ‘second-order up-
to techniques’ to reason about compatibility of functions. When F is a set of
functions, we say that F is p-compatible up to if for all f in F , it holds that
f �p (g ∪ (∪F ))ω for a function g that has already been proven compatible.
(We sometimes say that F is p-compatible up to g, to specify which compatible
function is employed.) Lemma 1 and 2 remain valid when ‘f is compatible’ is
replaced by ‘f ∈ F and F is compatible up to’.
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Terminology We will simply say that a function is compatible to mean that it
is both sp-compatible and wp-compatible; similarly for compatibility up to. In
languages defined from a grammar, a context C is a term with numbered holes
[·]1, . . . , [·]n, and each hole [·]i can appear any number of times in C.

3 The π-calculus

The syntax and operational semantics of the π-calculus are recalled in [15]. We
consider the early transition system, in which transitions are of the forms

P
ab#−→π P ′ P

ab#−→π P ′ P
a(b)#−→π P ′ .

In the third transition, called bound output transition, name b is a binder for
the free occurrences of b in P ′ and, as such, it is subject to α-conversion. The
definition of bisimilarity takes α-conversion into account. The clause for bound
output of strong early bisimilarity says (fn(Q) indicates the names free in Q):

– if P
a(b)#−→π P ′ and b /∈ fn(Q) then Q

a(b)#−→π Q′ for some Q′ such that P ′ ∼ Q′.

(The complete definition of bisimilarity is recalled in [15]). When translating
the π-calculus semantics to a first-order one, α-conversion and the condition
b /∈ fn(Q) have to be removed. To this end, one has to force an agreement
between two bisimilar process on the choice of the bound names appearing in
transitions. We obtain this by considering named processes (c, P ) in which c
is bigger or equal to all names in P . For this to make sense we assume an
enumeration of the names and use ≤ as the underlying order, and c+1 for name
following c in the enumeration; for a set of names N , we also write c ≥ N to
mean c ≥ a for all a ∈ N .

The rules below define the translation of the π-calculus transition system to
a first-order LTS. In the first-order LTS, the grammar for labels is the same as
that of the original LTS; however, for a named process (c, P ) the only name that
may be exported in a bound output is c+1; similarly only names that are below
or equal to c+1 may be imported in an input transition. (Indeed, testing for all
fresh names b > c is unnecessary, doing it only for one (b = c + 1) is enough.)
This makes it possible to use the ordinary definition of bisimilarity for first-order
LTS, and thus recover the early bisimilarity on the source terms.

P
τ#−→π P ′

(c, P )
τ−→ (c, P ′)

P
ab#−→π P ′

(c, P )
ab−→ (c, P ′)

b ≤ c
P

ab#−→π P ′

(c, P )
ab−→ (c, P ′)

b ≤ c

P
ab#−→π P ′

(c, P )
ab−→ (b, P ′)

b = c+ 1
P

a(b)#−→π P ′

(c, P )
a(b)−→ (b, P ′)

b = c+ 1

We write π1 for the first-order LTS derived from the above translation of
the π-calculus. Although the labels of the source and target transitions have a
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similar shape, the LTS in π1 is first-order because labels are taken as purely
syntactic objects (without α-conversion). We write ∼e and ≈e for strong and
weak early bisimilarity of the π-calculus.

Theorem 1. Assume c ≥ fn(P ) ∪ fn(Q). Then we have: P ∼e Q iff (c, P ) ∼
(c,Q), and P ≈e Q iff (c, P ) ≈ (c,Q).

The above full abstraction result allows us to import the theory of up-to tech-
niques for first-order LTSs and bisimilarity, both in the strong and the weak case.
We have however to prove the soundness of up-to techniques that are specific to
the π-calculus. Function isub implements ‘up to injective name substitutions’:

isub(R) � {((d, Pσ), (d,Qσ)) s.t. (c, P ) R (c,Q), fn(Pσ) ∪ fn(Qσ) ≤ d,
and σ is injective on fn(P ) ∪ fn(Q) } .

A subtle drawback is the need of another function manipulating names, str,
allowing us to replace the index c in a named process (c, P ) with a lower one:

str(R) � {((d, P ), (d,Q)) s.t. (c, P ) R (c,Q) and fn(P,Q) ≤ d } .

Lemma 3. The set {isub, str} is compatible up to.

The up-to-context function is decomposed into a set of smaller context func-
tions, called initial [19], one for each operator of the π-calculus. The only excep-
tion to this is the input prefix, since early bisimilarity in the π-calculus is not
preserved by this operator. We write Co, Cν , C!, C|, and C+ for these initial context
functions, respectively returning the closure of a relation under the operators of
output prefix, restriction, replication, parallel composition, and sum.

Definition 4. If R is a relation on π1, we define Co(R), Cν(R), C!(R), C|(R)
and C+(R) by saying that whenever (c, P ) R (c,Q),

– (c, ab.P ) Co(R) (c, ab.Q), for any a, b with a, b ≤ c,
– (c, νa.P ) Cν(R) (c, νa.Q),
– (c, !P ) C!(R) (c, !Q);

and, whenever (c, P1) R (c,Q1) and (c, P2) R (c,Q2),

– (c, P1 | Q1) C|(R) (c, P2 | Q2),
– (c, P1 + Q1) C+(R) (c, P2 + Q2).

While bisimilarity in the π-calculus is not preserved by input prefix, a weaker
rule holds (where = can be ∼e or ≈e):

P = Q and P{c/b} = Q{c/b} for each c free in P,Q

a(b).P = a(b).Q
(1)

We define Ci, the function for input prefix, accordingly: we have (d, a(b).P ) Ci(R)
(d, a(b).Q) if a ≤ d and (d + 1, P{c/b})R (d + 1, Q{c/b}) for all c ≤ d + 1.

Theorem 2. The set {Co, Ci, Cν , C!, C|, C+} is sp-compatible up to isub ∪ str.
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Weak bisimilarity is not preserved by sums, only by guarded sums, whose
function is Cg+ � Cω+ ◦ (Co ∪ Ci).

Theorem 3. The set {Co, Ci, Cν , C!, C|, Cg+} is wp-compatible up to isub∪str∪b
where b = (R #→ ∼R∼) is ‘up to bisimilarity’.

The compatibility of these functions is not a logical consequence of the up to
context results in the π-calculus; instead we prove them from scratch [15], with
the benefit of having a separate proof for each initial context.

As a byproduct of the compatibility of these initial context functions, and
using Lemma 2, we derive the standard substitutivity properties of strong and
weak early bisimilarity, including the rule (1) for input prefix.

Corollary 1. In the π-calculus, relations ∼e and ≈e are preserved by the op-
erators of output prefix, replication, parallel composition, restriction; ∼e is also
preserved by sum, whereas ≈e is only preserved by guarded sums. Moreover, rule
(1) is valid both for ∼e and ≈e.

Remark 1. Late bisimilarity makes use of transitions P
a(b)#−→π P ′ where b is

bound, the definition of bisimulation containing a quantification over names.
To capture this bisimilarity in a first-order LTS we would need to have two
transitions for the input a(b): one to fire the input a, leaving b uninstantiated, and
another to instantiate b. While such a translation does yield full abstraction for
both strong and weak late bisimilarities, the decomposition of an input transition
into two steps prevents us from obtaining the compatibility of up to context.

4 Call-by-name λ-calculus

To study the applicability of our approach to higher-order languages, we inves-
tigate the pure call-by-name λ-calculus, referred to as ΛN in the sequel.

We use M,N to range over the set Λ of λ-terms, and x, y, z to range over
variables. The standard syntax of λ-terms, and the rules for call-by-name re-
duction, are recalled in [15]. We assume the familiar concepts of free and bound
variables and substitutions, and identify α-convertible terms. The only values
are the λ-abstractions λx.M . In this section and in the following one, results
and definitions are presented on closed terms; extension to open terms is made
using closing abstractions (i.e., abstracting on all free variables). The reduction
relation of ΛN is #−→n, and �=⇒n its reflexive and transitive closure.

As bisimilarity for the λ-calculus we consider environmental bisimilarity [22,9],
which allows a set of up-to techniques richer than Abramsky’s applicative bisim-
ilarity [2], even if the two notions actually coincide, together with contextual
equivalence. Environmental bisimilarity makes a clear distinction between the
tested terms and the environment. An element of an environmental bisimulation
has, in addition to the tested terms M and N , a further component E , the envi-
ronment, which expresses the observer’s current knowledge. When an input from
the observer is required, the arguments supplied are terms that the observer can
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build using the current knowledge; that is, terms obtained by composing the
values in E using the operators of the calculus. An environmental relation is a
set of elements each of which is of the form (E ,M,N) or E , and where M,N
are closed terms and E is a relation on closed values. We use X ,Y to range over
environmental relations. In a triple (E ,M,N) the relation component E is the en-
vironment, and M,N are the tested terms. We write M XE N for (E ,M,N) ∈ X .
We write E� for the closure of E under contexts. We only define the weak version
of the bisimilarity; its strong version is obtained in the expected way.

Definition 5. An environmental relation X is an environmental bisimulation if

1. M XE N implies:
(a) if M #−→n M ′ then N �=⇒n N ′ and M ′ XE N ′;
(b) if M = V then N �=⇒n W and E ∪{(V,W )} ∈ X (V and W are values);
(c) the converse of the above two conditions, on N ;

2. if E ∈ X then for all (λx.P, λx.Q) ∈ E and for all (M,N) ∈ E� it holds that
P{M/x} XE Q{N/x}.

Environmental bisimilarity, ≈env, is the largest environmental bisimulation.

For the translation of environmental bisimilarity to first-order, a few issues
have to be resolved. For instance, an environmental bisimilarity contains both
triples (E ,M,N), and pure environments E , which shows up in the difference
between clauses (1) and (2) of Definition 5. Moreover, the input supplied to
tested terms may be constructed using arbitrary contexts.

We write ΛN1 for the first-order LTS resulting from the translation of ΛN .
The states of ΛN1 are sequences of λ-terms in which only the last one need not
be a value. We use Γ and Δ to range over sequences of values only; thus (Γ,M)
indicates a sequence of λ-values followed by M ; and Γi is the i-th element in Γ .

For an environment E , we write E1 for an ordered projection of the pairs in
E on the first component, and E2 is the corresponding projection on the second
component. In the translation, intuitively, a triple (E ,M,N) of an environmental
bisimulation is split into the two components (E1,M) and (E2, N). Similarly, an
environment E is split into E1 and E2. We write C[Γ ] for the term obtained by
replacing each hole [·]i in C with the value Γi. The rules for transitions in ΛN1

are as follows:

M #−→n M ′

(Γ,M)
τ−→ (Γ,M ′)

Γi(C[Γ ]) #−→n M ′

Γ
i,C−→ (Γ,M ′)

(2)

The first rule says that if M reduces to M ′ in ΛN then M can also reduce
in ΛN1, in any environment. The second rule implements the observations in
clause (2) of Definition 5: in an environment Γ (only containing values), any
component Γi can be tested by supplying, as input, a term obtained by filling
a context C with values from Γ itself. The label of the transition records the
position i and the context chosen. As the rules show, the labels of ΛN1 include
the special label τ , and can also be of the form i, C where i is a integer and C
a context.
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Theorem 4. M ≈env
E N iff (E1,M) ≈ (E2, N) and E ∈ ≈env iff E1 ≈ E2.

(The theorem also holds for the strong versions of the bisimilarities.) Again,
having established full abstraction with respect to a first-order transition system
and ordinary bisimilarity, we can inherit the theory of bisimulation enhance-
ments. We have however to check up-to techniques that are specific to environ-
mental bisimilarity. A useful such technique is ‘up to environment’, which allows
us to replace an environment with a larger one; w(R) is the smallest relation
that includes R and such that, whenever (V, Γ,M) w(R) (W,Δ,N) then also
(Γ,M) w(R) (Δ,N), where V and W are any values. (Here w stands for ‘weaken-
ing’ as, from Lemmas 2 and 4, if (V, Γ,M) ≈ (W,Δ,N) then (Γ,M) ≈ (Δ,N).)

Lemma 4. Function w is compatible.

Somehow dual to weakening is the strengthening of the environment, in which
a component of an environment can be removed. However this is only possible if
the component removed is ‘redundant’, that is, it can be obtained by gluing other
pieces of the environment within a context; strengthening is captured by the
following str function: (Γ,Cv [Γ ],M) str(R) (Δ,Cv[Δ], N) whenever (Γ,M) R
(Δ,N) and Cv is a value context (i.e., the outermost operator is an abstraction).
We derive the compatibility up to of str in Theorem 5.

For up-to context, we need to distinguish between arbitrary contexts and eval-
uation contexts. There are indeed substitutivity properties, and corresponding
up-to techniques, that only hold for the latter contexts. A hole [·]i of a context
C is in a redex position if the context obtained by filling all the holes but [·]i
with values is an evaluation context. Below C ranges over arbitrary contexts,
whereas E ranges over contexts whose first hole is in redex position.

C(R) �
{
((Γ,C[Γ ]), (Δ,C[Δ])) s.t.Γ R Δ

}
Ce(R) �

{
((Γ,E[M,Γ ]), (Δ,E[N,Δ])) s.t. (Γ,M) R (Δ,N)

}
Theorem 5. The set {str, C, Ce} is sp-compatible up to the identity function,
and wp-compatible up to wp ∪ e where e � (R #→ R�) is ‘up to expansion’.

For the proof, we establish the progression property separately for each func-
tion in {str, C, Ce}, using simple diagram-chasing arguments (together with in-
duction on the structure of a context). Once more, the compatibility of the up
to context functions entails also the substitutivity properties of environmental
bisimilarity. In [22] the two aspects (substitutivity and up-to context) had to be
proved separately, with similar proofs. Moreover the two cases of contexts (arbi-
trary contexts and evaluation contexts) had to be considered at the same time,
within the same proof. Here, in contrast, the machinery of compatible function
allows us to split the proof into two simpler proofs.

Remark 2. A transition system ensuring full abstraction as in Theorem 4 does
not guarantee the compatibility of the up-to techniques specific to the language
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M ::= x | MM | ν�M | V V ::= λx.M | set� | get� E ::= [·] | EV | ME

(s; (λx.M)V ) −→R (s;M{V/x})
� /∈ dom(s)

(s; ν�M) −→R (s[� → I ];M)

� ∈ dom(s)

(s; get�V ) −→R (s; s[�])

� ∈ dom(s)

(s; set�V ) −→R (s[� → V ]; I)

(s;M) −→R (s′;M ′)

(s;E[M ]) −→R (s′;E[M ′])

Fig. 1. The imperative λ-calculus

in consideration. For instance, a simpler and maybe more natural alternative to
the second transition in (2) is the following one:

Γ
i,C−→ (Γ, Γi(C[Γ ]))

(3)

With this rule, full abstraction holds, but up-to context is unsound: for any Γ
and Δ, the singleton relation {(Γ,Δ)} is a bisimulation up to C: indeed, using
rule (3), the derivatives of the pair Γ,Δ are of the shape Γi(C[Γ ]), Δi(C[Δ]), and
they can be discarded immediately, up to the context [·]iC. If up-to context were
sound then we would deduce that any two terms are bisimilar. (The rule in (2)
prevents such a behaviour since it ensures that the tested values are ‘consumed’
immediately.)

5 Imperative call-by-value λ-calculus

In this section we study the addition of imperative features (higher-order ref-
erences, that we call locations), to a call-by-value λ-calculus. It is known that
finding powerful reasoning techniques for imperative higher-order languages is
a hard problem. The language, ΛR, is a simplified variant of that in [10,22].
The syntax of terms, values, and evaluation contexts, as well as the reduction
semantics are given in Figure 1. A λ-term M is run in a store: a partial function
from locations to closed values, whose domain includes all free locations of both
M and its own co-domain. We use letters s, t to range over stores. New store
locations may be created using the operator ν
M ; the content of a store loca-
tion 
 may be rewritten using set�V , or read using get�V (the former instruction
returns a value, namely the identity I � λx.x, and the argument of the latter
one is ignored). We denote the reflexive and transitive closure of #−→R by �=⇒R.

Note that in contrast with the languages in [10,22], locations are not directly
first-class values; the expressive power is however the same: a first-class location

 can always be encoded as the pair (get�, set�).
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We present the first-order LTS for ΛR, and then we relate the resulting
strong and weak bisimilarities directly with contextual equivalence (the reference
equivalence in λ-calculi). Alternatively, we could have related the first-order
bisimilarities to the environmental bisimilarities of ΛR, and then inferred the
correspondence with contextual equivalence from known results about environ-
mental bisimilarity, as we did for ΛN .

We write (s;M) ↓ when M is a value; and (s;M) ⇓ if (s;M) �=⇒R↓. For
the definition of contextual equivalence, we distinguish the cases of values and
of arbitrary terms, because they have different substitutivity properties: values
can be tested in arbitrary contexts, while arbitrary terms must be tested only
in evaluation contexts. As in [22], we consider contexts that do not contain free
locations (they can contain bound locations). We refer to [22] for more details
on these aspects.

Definition 6. – For values V , W , we write (s;V ) ≡ (t;W ) when (s;C[V ])⇓
iff (t;C[W ])⇓, for all location-free context C.

– For terms M and N , we write (s;M) ≡ (t;N) when (s;E[M ])⇓ iff (t;E[N ])⇓,
for all location-free evaluation context E.

We now define ΛR1, the first-order LTS for ΛR. The states and the transitions
for ΛR1 are similar to those for the pure λ-calculus of Section 4, with the addition
of a component for the store. The two transitions (2) of call-by-name λ-calculus
become:

(s;M) −→R (s′;M ′)

(s;Γ,M)
τ−→ (s′;Γ,M ′)

Γ ′ = Γ, getset(r)
(
s � r[Γ ′];Γi(C[Γ ′])

) −→R (s′;M ′)

(s;Γ )
i,C,cod(r)−−−−−−−→ (s′;Γ ′,M ′)

The first rule is the analogous of the first rule in (2). The important differences
are on the second rule. First, since we are call-by-value, C now ranges over
Cv, the set of value contexts (i.e., contexts of the form λx.C′) without free
locations. Moreover, since we are now imperative, in a transition we must permit
the creation of new locations, and a term supplied by the environment should be
allowed to use them. In the rule, the new store is represented by r (whose domain
has to be disjoint from that of s). Correspondingly, to allow manipulation of
these locations from the observer, for each new location 
 we make set� and get�
available, as an extension of the environment; in the rule, these are collectively
written getset(r), and Γ ′ is the extended environment. Finally, we must initialise
the new store, using terms that are created out of the extended environment
Γ ′; that is, each new location 
 is initialised with a term D�[Γ

′] (for D� ∈
Cv). Moreover, the contexts D� chosen must be made visible in the label of the
transition. To take care of these aspects, we view r as a store context, a tuple of
assignments 
 #→ D�. Thus the initialisation of the new locations is written r[Γ ′];
and, denoting by cod(r) the tuple of the contexts D� in r, we add cod(r) to the
label of the transition. Note also that, although C and D� are location-free, their
holes may be instantiated with terms involving the set� and get� operators, and
these allow manipulation of the store.
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Once more, on the (strong and weak) bisimilarities that are derived from this
first-order LTS we can import the theory of compatible functions and bisimula-
tion enhancements. Concerning additional up-to functions, specific to ΛR, the
functions w, str, C and Ce are adapted from Section 4 in the expected manner—
contexts Cv, C and E must be location-free. A further function for ΛR is store,
which manipulates the store by removing locations that do not appear elsewhere
(akin to garbage collection); thus, store(R) is the set of all pairs

((s % r[Γ ′];Γ ′,M), (t % r[Δ′];Δ′, N))

such that (s;Γ,M) R (t;Δ,N), and with Γ ′ = Γ, getset(r) and Δ′ = Δ, getset(r).

Lemma 5. The set {w, str, Ce, store, C} is sp-compatible up to the identity func-
tion and is wp-compatible up to wp ∪ e.

The techniques C and Ce allow substitutivity under location-free contexts,
from which we can derive the soundness part of Theorem 6.

Theorem 6. (s;M) ≡ (t;N) iff (s;M) ≈ (t;N).

Proof (sketch). Soundness (⇐) follows from congruence by Ce (Lemmas 5 and 2)
and completeness (⇒) is obtained by standard means. See [15] for details.

Note that substitutivity of bisimilarity is restricted either to values (C), or to
evaluation contexts (Ce). The following lemma provides a sufficient condition for
a given law between arbitrary terms to be preserved by arbitrary contexts.

Lemma 6. Let  be any of the relations ∼,≈, and . Suppose L, R are ΛR
terms with (s;Γ,L)  (s;Γ,R) for all environments Γ and stores s. Then also
(s;Γ,C[L])  (s;Γ,C[R]), for any store s, environment Γ and context C.

Proof (sketch). We first prove a simplified result in which C is an evaluation
context, using techniques Ce and store. We then exploit this partial result together
with up-to expansion to derive the general result. See [15] for more details.

We use this lemma at various places in the example we cover in Section 6. For
instance we use it to replace a term N1 � (λx.E[x])M (with E an evaluation
context) with N2 � E[M ], under an arbitrary context. Such a property is delicate
to prove, even for closed terms, because the evaluation of M could involve reading
from a location of the store that itself could contain occurrences of N1 and N2.

6 An Example

We conclude by discussing an example from [10]. It consists in proving a law
between terms of ΛR extended with integers, operators for integer addition and
subtraction, and a conditional—those constructs are straightforward to accom-
modate in the presented framework. For readability, we also use the standard
notation for store assignment, dereferencing and sequence: (
 := M) � set�M ,
!
 � get�I, and M ;N � (λx.N)M where x does not appear in N . The two terms
are the following ones:
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– M � λg.ν
 
 := 0; g(incr�); if !
 mod 2 = 0 then I else Ω
– N � λg.g(F ); I,

where incr� � λz.
 := !
 + 2, and F � λz.I. Intuitively, those two terms are
weakly bisimilar because the location bound by 
 in the first term will always
contain an even number.

This example is also considered in [22] where it is however modified to fit
the up-to techniques considered in that paper. The latter are less powerful than
those available here thanks to the theory of up-to techniques for first-order LTSs
(e.g., up to expansion is not considered in [22]—its addition to environmental
bisimulations is non-trivial, having stores and environments as parameters).

We consider two proofs of the example. In comparison with the proof in [22]:
(i) we handle the original example from [10], and (ii) the availability of a broader
set of up-to techniques and the possibility of freely combining them allows us to
work with smaller relations. In the first proof we work up to the store (through
the function store) and up to expansion—two techniques that are not available in
[22]. In the second proof we exploit the up-to-transitivity technique of Section 2,
which is only sound for strong bisimilarity, to further reduce the size of the
relation we work with.

First proof. We first employ Lemma 6 to reach a variant similar to that of [22]:
we make a ‘thunk’ out of the test in M , and we make N look similar. More
precisely, let test� � λz.if !
 mod 2 = 0 then I else Ω, we first prove that

– M ≈M ′ � λg.ν
 
 := 0; g(incr�); test�I, and
– N ≈ N ′ � λg.g(F );FI.

It then suffices to prove that M ′ ≈ N ′, which we do using the following relation:

R �
{(

s,M ′, (incr�, test�)�∈�̃
)
,
(
∅, N ′, (F, F )�∈�̃

)
s.t. ∀
 ∈ 
̃, s(
) is even

}
.

The initial pair of terms is generalised by adding any number of private locations,
since M ′ can use itself to create more of them. Relation R is a weak bisimulation
up to store, C and expansion. More details can be found in [15].

Second proof. Here we also preprocess the terms using Lemma 6, to add a few
artificial internal steps to N , so that we can carry out the reminder of the
proof using strong bisimilarity, which enjoys more up-to techniques than weak
bisimilarity:

– M ≈M ′ � λg.ν
 
 := 0; g(incr�); test�I,
– N ≈ N ′′ � λg.I; I; g(incr0); test0I.

where incr0 and test0 just return I on any input, taking the same number of
internal steps as incr� and test�. We show that M ′ ∼ N ′′ by proving that the
following relation R is a strong bisimulation up to unfolding, store, weakening,
strengthening, transitivity and context (a technique unsound in the weak case):

S � {(M ′, N ′′)} ∪ {(
 #→ 2n, incr�, test�) , (∅, incr0, test0) s.t. n ∈ N}
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This relation uses a single location; there is one pair for each integer that can
be stored in the location. In the diagram-chasing arguments for S, essentially a
pair of derivatives is proved to be related under the function

sp ◦ sp ◦ star ◦ (str ∪ store ∪ C ∪ w)ω

where star : R #→ R� is the reflexive-transitive closure function. (Again, we refer
to [15] for more details.)

The difference between the relation R in the first proof and the proofs in
[10,22] is that R only requires locations that appear free in the tested terms; in
contrast, the relations in [10,22] need to be closed under all possible extensions
of the store, including extensions in which related locations are mapped onto
arbitrary context-closures of related values. We avoid this thanks to the up-to
store function. The reason why, both in [10,22] and in the first proof above,
several locations have to be considered is that, with bisimulations akin to envi-
ronmental bisimulation, the input for a function is built using the values that
occur in the candidate relation. In our example, this means that the input for
a function can be a context-closure of M and N ; hence uses of the input may
cause several evaluations of M and N , each of which generates a new location.
In this respect, it is surprising that our second proof avoids multiple allocations
(the candidate relation S only mentions one location). This is due to the massive
combination of up-to techniques whereby, whenever a new location is created, a
double application of up to context (the ‘double’ is obtained from up-to transi-
tivity) together with some administrative work (given by the other techniques)
allows us to absorb the location.
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Abstract. A standard technique for solving the parameterized model
checking problem is to reduce it to the classic model checking problem
of finitely many finite-state systems. This work considers some of the
theoretical power and limitations of this technique. We focus on concur-
rent systems in which processes communicate via pairwise rendezvous,
as well as the special cases of disjunctive guards and token passing; spec-
ifications are expressed in indexed temporal logic without the next op-
erator; and the underlying network topologies are generated by suitable
Monadic Second Order Logic formulas and graph operations. First, we
settle the exact computational complexity of the parameterized model
checking problem for some of our concurrent systems, and establish new
decidability results for others. Second, we consider the cases that model
checking the parameterized system can be reduced to model checking
some fixed number of processes, the number is known as a cutoff. We
provide many cases for when such cutoffs can be computed, establish
lower bounds on the size of such cutoffs, and identify cases where no cut-
off exists. Third, we consider cases for which the parameterized system
is equivalent to a single finite-state system (more precisely a Büchi word
automaton), and establish tight bounds on the sizes of such automata.

1 Introduction

Many concurrent systems consist of an arbitrary number of identical processes
running in parallel, possibly in the presence of an environment or control process.
The parameterized model checking problem (PMCP) for concurrent systems is
to decide if a given temporal logic specification holds irrespective of the number
of participating processes.

Although the PMCP is undecidable in general (see [12,6]) for some combi-
nations of communication primitives, network topologies, and specification lan-
guages, it is often proved decidable by a reduction to model checking finitely
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many finite-state systems [9,5,6,3,1]. In many of these cases it is even possible
to reduce the problem of whether a parameterized system satisfies a temporal
specification for any number of processes to the same problem for systems with
at most c processes. The number c is known as a cutoff for the parameterized
system. In other cases the reduction produces a single finite-state system, often
in the form of an automaton such as a Büchi automaton, that represents the set
of all execution traces of systems of all sizes.

The goal of this paper is to better understand the power and limitations of
these techniques, and this is done by addressing three concrete questions.

Question 1: For which combinations of communication primitive, specification
language, and network topologies is the PMCP decidable? In the decidable cases,
what is the computational complexity of the PMCP?

In case a cutoff c exists, the PMCP is decidable by a reduction to model
checking c many finite-state systems. The complexity of this procedure depends
on the size of the cutoff. Thus we ask:

Question 2: When do cutoffs exist? In case a cutoff exists, can it be computed?
And if so, what is a lower bound on the cutoff?

The set of execution traces of a parameterized system (for a given process
type P ) is defined as the projection onto the local states of P of all (infinite)
runs of systems of all sizes.1 In case this set is ω-regular, one can reduce the
PMCP of certain specifications (including classic ones such as coverability) to
the language containment problem for automata (this is the approach taken in
[9, Section 4]). Thus we ask:

Question 3: Is the set of executions of the system ω-regular? If so, what
is a lower bound on the sizes of the non-deterministic Büchi word automata
recognizing the set of executions?

System Model. In order to model and verify a concurrent system we should
specify three items: (i) the communication primitive, (ii) the specification lan-
guage, and (iii) the set of topologies.

We focus on concurrent systems in which processes communicate via pairwise
rendezvous [9], as well as two other communication primitives (expressible in
terms of pairwise rendezvous), namely disjunctive guards [5] and token-passing
systems [6,3,1]. Two special cases are systems with one process template U (in
other words, all processes run the same code), and systems with two process
templates C,U in which there is exactly one copy of C; in other words, all
processes run the same code, except for one (which is called the controller).

Specifications of parameterised systems are typically expressed in indexed
temporal logic [2] which allows one to quantify over processes (e.g., ∀i 	= j. AG
(¬(critical, i) ∨ ¬(critical, j)) says that no two processes are in their critical sec-
tions at the same time). We focus on a fragment of this logic where the process
quantifiers only appear at the front of a temporal logic formula — allowing the

1 Actually we consider the destuttering of this set, as explained in Section 2.5.
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process quantifiers to appear in the scope of path quantifiers results in undecid-
ability even with no communication between processes [10].

The sets of topologies we consider all have either bounded tree-width, or more
generally bounded clique-width, and are expressible in one of three ways. (1)
Using MSO, a powerful and general formalism for describing sets of topologies,
which can express e.g. planarity, acyclicity and 
-connectivity. (2) As iteratively
constructible sets of topologies, an intuitive formalism which creates graph se-
quences by iterating graph operations [8]. Many typical classes of topologies (e.g.,
all rings, all stars, all cliques) are iteratively constructible. (3) As clique-like sets
of topologies, which includes the set of cliques and the set of stars, but excludes
the set of rings. Iteratively constructible and clique-like sets of topologies are
MSO-definable, the former in the presence of certain auxiliary relations.

Prior Work and Our Contributions. For each communication primitive (ren-
dezvous, disjunctive guards, token passing) and each question (decidability and
complexity, cutoffs, equivalent automata) we summarise the known answers and
our contributions. Obviously, the breadth of questions along these axis is great,
and we had to limit our choices as to what to address. Thus, this article is not
meant to be a comprehensive taxonomy of PMCP. That is, it is not a mapping
of the imaginary hypercube representing all possible choices along these axis.
Instead, we started from the points in this hypercube that represent the most
prominent known results and, guided by the three main questions mentioned
earlier, have explored the unknown areas in each point’s neighborhood.

Pairwise Rendezvous.
Decidability and Complexity: The PMCP for systems which communicate by
pairwise rendezvous, on clique topologies, with a controller C, for 1-index LTL\X
specifications is EXPSPACE-complete [9,7] (and PSPACE without a controller
[9, Section 4]). We show the PMCP is undecidable if we allow the more general
1-index CTL∗\X specifications. Thus, for the results on pairwise rendezvous we
fix the specification language to be 1-index LTL\X. We introduce sets of topolo-
gies that naturally generalise cliques and stars, and exclude rings (the PMCP
is already undecidable for uni-directional rings and 1-index safety specifica-
tions [12,6]), which we call clique-like sets of topologies, and show that the PMCP
of 1-index LTL\X on clique-like topologies is EXPSPACE-complete (PSPACE-
complete without a controller). We also prove that the program complexity is
EXPSPACE-complete (respectively PTIME).

Cutoffs: We show that even for clique topologies there are not always cutoffs.

Equivalent automata: We prove that the set of (destuttered) executions of sys-
tems with a controller are not, in general, ω-regular, already for clique topologies.
On the other hand, we extend the known result that the set of (destuttered) ex-
ecutions for systems with only user processes U (i.e., without a controller) is
ω-regular for clique topologies [9] to clique-like topologies, and give an effective
construction of the corresponding Büchi automaton.
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Disjunctive Guards.
In this section we focus on clique topologies and 1-index LTL\X specifica-

tions. Though we sometimes consider more general cases (as in Theorem 10), we
postpone these cases for future work.

Decidability and Complexity: We show the PMCP is undecidable if we allow
1-index CTL∗\X specifications, already for clique topologies. We prove that for
systems with a controller the complexity of the PMCP is PSPACE-complete
and the program complexity is coNP-complete, whereas for systems without a
controller the complexity is PSPACE-complete and the program complexity is
in PTIME. We note that the PTIME and PSPACE upper bounds follow from
[9,5], although we improve the time complexity for the case with a controller.

Cutoffs: Cutoffs exist for such systems and are of size |U |+2 [5]. We prove these
cutoffs are tight.

Equivalent automaton: We prove that the set of (destuttered) executions is ac-
cepted by an effectively constructible Büchi automaton of size O(|C| × 2|U|). It
is very interesting to note that this size is smaller than the smallest system size
one gets (in the worst-case) from the cutoff result, namely |C|× |U ||U|+2. Hence,
the PMCP algorithm obtained from the cutoff is less efficient than the one ob-
tained from going directly to a Büchi automaton. As far as we know, this is the
first theoretical proof of the existence of this phenomenon. We also prove that,
in general, our construction is optimal, i.e., that in some cases every automaton
for the set of (destuttered) executions must be of size 2Ω(|U|+|C|).

Token Passing Systems.
In this section we focus on MSO-definable set of topologies of bounded tree-

width or clique-width, as well as on iteratively-constructible sets of topologies.

Decidability and Complexity: We prove that the PMCP is decidable for indexed
CTL∗\Xon such topologies. This considerably generalises the results of [1], where
decidability for this logic was shown for a few concrete topologies such as rings
and cliques.

Cutoffs: For the considered topologies and indexed CTL∗\X we prove that the
PMCPs have computable cutoffs. From [1] we know that there is a (computable)
set of topologies and a system template such that there is no algorithm that given
an indexed CTL∗\X formula can compute the associated cutoff (even though a
cutoff for the given formula always exists). This justifies our search of sets of
topologies for which the PMCP for CTL∗\X has computable cutoffs. We also give
a lower bound on cutoffs for iteratively-constructible sets and indexed LTL\X.
Equivalent automaton: Our ability to compute cutoffs for 1-index LTL\X formulas
and the considered topologies implies that the (destuttered) sets of execution
traces are ω-regular, and the construction of Büchi automata which compute
these traces is effective.

Due to space limitations, in many cases proofs/sketches are not given, and
only a statement of the basic technique used for the proof is given. The reader
is referred to the full version of the article for more details.
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2 Definitions and Preliminaries

A labeled transition system (LTS) is a tuple (S,R, I, Φ,AP, Σ), where S is the
set of states, R ⊆ S × Σ × S is the transition relation, I ⊆ S are the initial
states, Φ : S → 2AP is the state-labeling, AP is a set of atomic propositions or
atoms, and Σ is the transition-labels alphabet. When AP and Σ are clear from
the context we drop them. A finite LTS is an LTS in which S,R,Σ are finite and
Φ(s) is finite for every s ∈ S. Transitions (s, a, s′) ∈ R may be written s

a−→ s′. A
transition system (TS) (S,R, I,Σ) is an LTS without the labeling function and
without the set of atomic propositions. A run is an infinite path that starts in an
initial state. For a formal definition of path, state-labeled path, action-labeled
path, refer to the full version of this paper.

2.1 Process Template, Topology, Pairwise Rendezvous System

We define how to (asynchronously) compose processes that communicate via
pairwise rendezvous into a single system. We consider time as being discrete
(i.e. not continuous). Processes are not necessarily identical, but we assume only
a finite number of different process types. Roughly, at every vertex of a topology
(a directed graph with vertices labeled by process types) there is a process of the
given type running; at every time step either, and the choice is nondeterministic,
exactly one process makes an internal transition, or exactly two processes with
an edge between them in the topology instantaneously synchronize on a message
(sometimes called an action) m ∈ Σsync. The sender of the message m performs
an m! transition, and the receiver an m? transition. Note that the sender can
not direct the message to a specific neighbouring process (nor can the receiver
choose from where to receive it), but the pair is chosen non-deterministically. 2

Fix a countable set of atoms (also called atomic propositions) APpr. Fix a
finite synchronization alphabet Σsync (that does not include the symbol τ), and
define the communication alphabet Σ = {m!,m? |m ∈ Σsync}.
Process Template, System Arity, System Template. A process template is
a finite LTS P = (S,R, {ι}, Φ,APpr, Σ∪{τ}). Since APpr and the transition-labels
alphabet are typically fixed, we will omit them. The system arity is a natural
number r ∈ N. It refers to the number of different process types in the system. A
(r-ary) system template is a tuple of process templates P = (P1, · · · , Pr) where
r is the system arity. The process template Pi = (Si, Ri, {ιi}, Φi) is called the
ith process template.

Topology G. An r-topology is a finite structure G = (V,E, T1, · · · , Tr) where
E ⊆ V × V , and the Ti ⊆ V partition V . The type of v ∈ V denoted type(v) is
the unique j such that v ∈ Tj . We might write VG, EG and typeG to stress G.

We sometimes assume that V := {1, · · · , n} for some n ∈ N. For instance, an
r-ary clique topology with V = {1, · · · , n} has E = {(i, j) ∈ [n]2 | i 	= j} (and
some partition of the nodes into sets T1, · · · , Tr); and the 1-ary ring topology
with V = {1, · · · , n} has E = {(i, j) ∈ [n]2 | j = i + 1 mod n} and T1 = V .

2 In models in which we allow processes to send in certain directions, e.g., send left
and send right in a bi-directional ring, then PMCP is quickly undecidable [1].
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(Pairwise-Rendezvous) System. Given system arity r, system template P =
(P1, · · · , Pr) with Pi = (Si, Ri, {ιi}, Φi), and r-topology G = (V,E, T ), define

the system P
G

as the LTS (Q,Δ,Q0, Λ,APpr × V,Σsync ∪ {τ}) where

– The set Q is the set of functions f : V → ∪i≤rSi such that f(v) ∈ Si iff
type(v) = i (for all v ∈ V, i ≤ r). Such functions (sometimes written as
vectors) are called configurations.

– The set Q0 consists of the unique initial configuration fι defined as fι(v) =
ιtype(v) (for all v ∈ V ).

– The set of global transitions Δ are tuples (f,m, g) ∈ Q × (Σsync ∪ {τ}) ×Q
where one of the following two conditions hold:

• m = τ and there exists v ∈ V such that f(v)
τ−→ g(v) is a transition of

the process template Ptype(v), and for all w 	= v, f(w) = g(w); this is
called an internal transition,

• m ∈ Σsync and there exists v 	= w ∈ V with (v, w) ∈ E such that

f(v)
m!−→ g(v) and f(w)

m?−−→ g(w) and for all z /∈ {v, w}, f(z) = g(z);
this is called a synchronous transition. We say that the process at v sends
the message m and the process at w receives the message m.

– The labeling function Λ : Q→ 2APpr×V is defined by (p, v) ∈ Λ(f) ⇐⇒ p ∈
Φtype(v)(f(v)) (for all configurations f , atoms p ∈ APpr and vertices v ∈ V ).

In words then, a topology of size n specifies n-many processes, which pro-
cesses have the same type, and how the processes are connected. In the internal
transition above only the process at vertex v makes a transition, and in the syn-
chronous transition above only the process at vertex v and its neighbour at w

make a transition. Let π = f0f1 · · · be a state-labeled path in P
G
. The projection

of π to vertex v ∈ V , written projv(π), is the sequence f0(v)f1(v) · · · of states
of Ptype(v). If type(v) = j we say that the vertex v runs (a copy of) the process
Pj , or that the process at v is Pj .

2.2 Disjunctively-Guarded System, and Token Passing System

We define guarded protocols and token-passing systems as restricted forms of
pairwise rendezvous systems. In fact, the restrictions are on the system template
and the synchronization alphabet. Write Pi = (Si, Ri, {ιi}, Φi,APpr, Σ ∪ {τ}).

Disjunctively-Guarded System Template. A system P
G

is disjunctively-
guarded if P is. A system template P is disjunctively-guarded if (i) The state sets
of the process templates are pairwise disjoint, i.e., Si ∩Sj = ∅ for 1 ≤ i < j ≤ r.
(ii) The transition-labels alphabet Σ is {τ}∪{q!, q? | q ∈ ∪i≤rSi} (iii) For every
state s ∈ S, there is a transition labeled s

s?−→ s. (iv) For every state s ∈ S,

the only transitions labeled s? are of the form s
s?−→ s. Intuitively, in this kind

of systems a process can decide to move depending on the local state of some
neighbor process, but it cannot relate the state of any two processes at the same
time, nor it can force another process to move from its local state. Our definition
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of disjunctively-guarded systems on a clique topology is a reformulation of the
definition of concrete system in [5, Section 2].

Token Passing System. One can express a token passing system (TPS) as
a special case of pairwise rendezvous. In this work we only consider the case
of a single valueless token, whose formal definition can be found in [1,6]. A

token passing system (TPS) P
G

can be thought of the asynchronous parallel
composition of the processes templates in P over topology G according to the
types of vertices. At any time during the computation, exactly one vertex has
the token. The token starts with the unique process in P1. At each time step
either exactly one process makes an internal transition, or exactly two processes
synchronize when one process sends the token to another along an edge of G.

2.3 Indexed Temporal Logic

We assume the reader is familiar with the syntax and semantics of CTL∗ and
LTL. Indexed temporal logics were introduced by [2] to model specifications
of certain distributed systems. They are obtained by adding vertex quantifiers
to a given temporal logic over indexed atomic propositions. For example, in a
system with two process templates, the formula ∀i : type(i) = 1.AG((good, i))
states that every process of type 1 on all computations at all points of time
satisfies the atom good. In a system with one process template, the formula
∀i 	= j. AG(¬(critical, i)∨¬(critical, j)) states that it is never the case that two
processes both satisfy the atom critical at the same time.

Syntax. Fix an infinite set Vars = {i, j, . . .} of vertex variables (called index
variables for the clique topology). A vertex quantifier is an expression of the
form ∃x : type(x) = m or ∀x : type(x) = m where m ∈ N. An indexed CTL∗

formula over vertex variables Vars and atomic propositions APpr is a formula
of the form Q1i1, . . . , Qkik : ϕ. , where each in ∈ Vars, each Qin is an index
quantifier, and ϕ is a CTL∗ formula over atomic predicates APpr × Vars.

The semantics is fully described in the full version of this paper. For 1-ary
systems we may write ∀x instead of ∀x : type(x) = 1. In the syntax of indexed
formulas we may write type(x) = Pm instead of type(x) = m. i-CTL∗ denotes the
set of all indexed CTL∗ sentences, and k-CTL∗ for the set of all k-indexed formulas
in i-CTL∗, i.e., formulas with k quantifiers. We similarly define indexed versions of
various fragments of CTL∗, e.g., i-LTL, k-LTL\X and k-CTL∗d\X (k-CTL∗ formulas

with nesting depth of path quantifiers at most d). We write P
G ≡k-CTL∗

d\X
P
G′
,

if P
G
and P

G′
agree on all k-CTL∗d\X formulas.

Note. The index variables are bound outside of all the temporal path quantifiers
(A and E). In particular, for an existentially quantified LTL formula to be satisfied
there must exist a valuation of the index variables such that φ holds for all runs
(and not one valuation for each run). Thus this logic is sometimes called prenex
indexed temporal logic. Note that if one allows index quantifiers inside the scope
of temporal path quantifiers then one quickly reaches undecidability even for
systems with no communication [10].
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For the remainder of this paper specifications only come from i-CTL∗\X, i.e.,
without the next-time operators. It is usual in the context of parameterized
systems to consider specification logics without the “next” (X) operator.

2.4 Parameterized Topology, Parameterized System, PMCP, Cutoff

Parameterized Topology G. An (r-ary) parameterized topology G is a set of r-
topologies. Moreover, we assume membership in G is decidable. Typical examples
are the set of r-ary cliques or the set of 1-ary rings.

Parameterized Model Checking Problem. Fix an r-ary parameterized
topology G, a set of r-ary system templates P , and a set of indexed tempo-
ral logic sentences F . The parameterized model checking problem (PMCP) for
this data, written PMCPG(P ,F), is to decide, given a formula ϕ ∈ F and a

system template P ∈ P , whether for all G ∈ G, P
G |= ϕ. The complexity of the

PMCPG(P ,F), where the formula ϕ ∈ F is fixed and only the system template
is given as an input, is called the program complexity.

Cutoff. A cutoff for PMCPG(P ,F) is a natural number c such that for every

P ∈ P and ϕ ∈ F , the following are equivalent: (i) P
G |= ϕ for all G ∈ G with

|VG| ≤ c; (ii) P
G |= ϕ for all G ∈ G.

Lemma 1. If PMCPG(P ,F) has a cutoff, then PMCPG(P ,F) is decidable

Proof. If c is a cutoff, let G1, . . . , Gn be all topologies G in G such that |VG| ≤ c.
The algorithm that solves PMCP takes P , ϕ as input and checks whether or not

P
Gi |= ϕ for all 1 ≤ i ≤ n. ��

2.5 Destuttering and Process Executions

The destuttering of an infinite word α ∈ Σω is the infinite word αδ ∈ Σω defined
by replacing every maximal finite consecutive sequence of repeated symbols in
α by one copy of that symbol. Thus, the destuttering of (aaba)ω is (ab)ω; and
the destuttering of aabω is abω. The destuttering of set L ⊆ Σω, written Lδ, is
the set {αδ |α ∈ L} ⊆ Σω.

It is known that LTL\X can not distinguish between a word and its destutter-
ing, which is the main motivation for the following definition.

Process Executions. For parameterized r-topology G, r-ary system template
P = (P1, · · · , Pr) and t ≤ r, define the set of (process) executions (with respect
to t, P ,G), written t-execG,P , as the destuttering of the following set:⋃

G∈G{projv(π) |π is a state-labelled run of P
G

and v ∈ VG is of type t}.

When G or P is clear from the context we may omit them.
The point is that for universal 1-index LTL\X we can reduce the PMCP to

model checking a single system whose runs are t-execG,P . This is explained in
details in the full version of this paper.
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2.6 Two Prominent Kinds of Pairwise-Rendezvous Systems

Identical Processes. Concurrent systems in which all processes are identical
are modeled with system arity r = 1. In this case there is a single process
template P , and a topology may be thought of as a directed graph G = (V,E)
(formally G = (V,E, T1) with T1 = V ). We write user-execG(U) for the set of
executions of the user processes in a 1-ary system, i.e., 1-execG,U .

Identical Processes with a Controller. Concurrent systems in which all
processes are identical except for one process (typically called a controller or
the environment) are modeled with system arity r = 2, and system templates
of the form (P1, P2), and we restrict the topologies so that exactly one vertex
has type 1 (i.e., runs the controller). We call such topologies controlled. We often
write (C,U) instead of (P1, P2), and G = (V,E, v) instead of (V,E, {v}, V \{v}).
We write controller-execG(C,U) for the set of executions of the controller
process, i.e., 1-execG,(C,U). We write user-execG(C,U) for the set of executions
of the user processes in this 2-ary system, i.e., 2-execG,(C,U).

2.7 Classes of Parameterized Topologies

Here we define the classes of parameterized topologies which we will use in the
sequel. The classes we define all have bounded clique-width.

w-terms and Clique-width.An r-ary w-topology (V,E, T1, . . . , Tr, C1, . . . , Cw)
extends (V,E, T1, . . . , Tr) by a partition (C1, . . . , Cw) of V . For every u ∈ V , if
u ∈ Ci then we say u has color i. We define the w-terms inductively. ε is a
w-term. If x, y are w-terms, then addi,t(x), recoli,j(x), edgei,j(x) and x � y are
w-terms for i, j ∈ [w], t ∈ [r]. Every w-term x has an associated w-topology [[x]]:

– [[ε]] has V = E = ∅ and empty labeling.
– [[addi,t(x)]] is formed by adding a new vertex of color i and type t to [[x]].
– [[recoli,j(x)]] is formed by recoloring every vertex with color i of [[x]] by j.
– [[edgei,j(x)]] is formed from [[x]] by adding an edge from every vertex of

color i to every vertex of color j.
– [[x � y]] is the disjoint union of x and y and the union of the labelings.

A topology G has clique-width at most w if there is a w-term ρ such that G is
isomorphic to [[ρ(ε)]] (forgetting the coloring C1, . . . , Cw). Every topology of size
n has clique-width at most n. A class of topologies G has bounded clique-width
if there exists w such that every graph in G has clique-width at most w. It is
well-known if G has bounded tree-width, then it has bounded clique-width.

Monadic Second Order Logic MSO. MSO is a powerful logic for graphs and
graph-like structures. It is the extension of First Order Logic with set quantifi-
cation. MSO can define classic graph-theoretic concepts such as planarity, con-
nectivity, c-regularity and c-colorability. We assume the reader is familiar with
Monadic Second Order logic as described e.g. in [4]. A parameterized topology
G is MSO-definable if there exists an MSO-formula Φ such that G ∈ G iff G |= Φ.
E.g., ∃U∀x∀y(E(x, y) → (U(x) ↔ ¬U(y))) defines the set of bipartite graphs.
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We denote by ≡MSO
q the equivalence relation of topologies of being indistinguish-

able by MSO-formulas of quantifier rank q.

Theorem 1 (Courcelle’s Theorem, see [4]). Let w ≥ 1 and let ϕ ∈ MSO.
The MSO theory of r-topologies of clique-width w is decidable. I.e., there is an
algorithm that on input ϕ ∈ MSO, decides whether there is an r-topology G of
clique-width at most w such that G |= ϕ. Moreover, the number of equivalence
classes in ≡MSO

q is finite and computable, and a topology belonging to each class
is computable.

We now define a user-friendly and expressive formalism that can be used to
generate natural parameterized topologies.

Iteratively Constructible Parameterized Topologies. A parameterized
topology is iteratively constructible if it can be built from an initial labeled graph
by means of a repeated fixed succession of elementary operations involving ad-
dition of vertices and edges, deletion of edges, and relabeling. More precisely, an
r-ary parameterized topology G is iteratively-constructible if there are w-terms
ρ(x), σ(x) with one variable x and no use of disjoint union, and a w-graph H0

such that (i) G ∈ G iff G = σ(ρn(H0)) for some n ∈ N, where ρ0(H) = H , (ii)
exactly one vertex of H0 has type 1, and (iii) no vertex of type 1 is added in
ρ or σ. For terms ρ(·) and ρ′(·) we write ρ :: ρ′ instead of ρ(ρ′(·)). Intuitively,
ρ “builds up” the topology, and σ puts on the “finishing touch” (see examples
below). The unique vertex of type 1 can act as the controller if it is assigned a
unique process template, and it is the initial token position in TPSs.

Example 1 (Cliques and rings). The set of cliques (irreflexive) is iteratively con-
structible: let H0 consist of a single vertex v of color 1 and type 1, let ρ(x) be
edge1,1 :: add1,2(x), and σ(x) be the identity.

The set of uni-directional rings is iteratively constructible: let H0 consist of
two vertices, one of color 1 and type 1 and one of color 2 and type 2 with an edge
from 1 to 2. Let ρ(x) be recol4,2 :: recol2,3 :: edge2,4 :: add4,2 and σ(x) = edge2,1.

Clique-Like (and Controllerless Clique-like) Parameterized Topolo-
gies. We now define other sets of topologies of bounded clique-width that gen-
eralise cliques and stars, but not rings.

Let H be an r-ary topology with vertex set VH of size m in which each vertex
has a distinct type. Let ρ2(x) = add1,type(1) :: · · · :: addm,type(m). Let ρ1(x) be
the m-term obtained by the composition of edgei,j for all (i, j) ∈ EH (in an
arbitrary order). Let ρ(x) = ρ1(x) :: ρ2(x). We have [[ρ(ε)]] = H .

An r-ary parameterized topology G is clique-like if there is an r-ary topology
H and a partition Bsng, Bclq, Bind of VH such that G ∈ G iff there exists a
function num : Bclq ∪Bind → N such that [[ρnum(ε)]] = G, and ρnum is obtained
from ρ by (i) repeating each addi,type(i) num(i) times rather than once, and
(ii) finally performing edgei,i for all i ∈ Bclq. Intuitively, G is obtained from H
by substituting each vertex in Bclq with a clique, each vertex in Bind with an
independent set, and leaving every vertex in Bsng as a single vertex.
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We say that G is generated by H and Bsng, Bclq, Bind. The cardinality of Bsng

is the number of controllers in G. In case Bsng = ∅ we say that G is controllerless.
Example. Cliques, stars and complete bipartite graphs. Let H be the 2-topology

with vertex set VH = {1, 2} and edge set {(1, 2), (2, 1)} and type(i) = i for i ∈ [2].
The set of 2-ary cliques in which exactly one index has type 1 is clique-like using
H as defined, Bclq = {2}, Bind = ∅ and Bsng = {1}. The set of stars in which
exactly one index has type 1 is clique-like using H above, Bclq = ∅, Bind = {2}
and Bsng = {1}. The set of topologies that are complete bipartite graphs is
clique-like using H above, Bind = {1, 2}, and Bclq = Bsng = ∅.

Example. Rings are not clique-like. Clique-like parameterized topologies have
diameter at most |VH | unless their diameter is infinite. Rings have unbounded
but finite diameter and are therefore not clique-like.

3 Results for Pairwise-Rendezvous Systems

The known decidability results for parameterized pairwise-rendezvous systems
are for clique topologies and specifications from 1-indexed LTL\X. [9]. Thus we
might hope to generalise this result in two directions: more general specification
languages and more general topologies. We first show, by reducing the non-
halting problem of two-counter machines (2CMs) to the PMCP, that allowing
branching specifications results in undecidability:

Theorem 2. PMCPG(P ,F) is undecidable where F is the set of 1-indexed
CTL∗2\X formulas, G is the set of 1-ary clique topologies, and P is the set of
1-ary system templates.

We conclude that we should restrict the specification logic if we want decid-
ability. In the rest of this section we focus on 1-indexed LTL\X and parameterized
clique-topologies with or without a controller (note that the PMCP for 1-indexed
LTL\X is undecidable for topologies that contain uni-directional rings [12,6]).

Pairwise Rendezvous: Complexity of PMCP. The proof of the following
theorem extends the technique used in [9, Theorem 3.6] for clique topologies:

Theorem 3. Fix an r-ary clique-like parameterized topology G, let F be the
set of 1-index LTL\X formulas, and P the set of r-ary system templates. Then
PMCPG(P ,F) is decidable in EXPSPACE.

Thus, using the fact that PMCP is EXPSPACE-hard already for clique topolo-
gies and the coverability problem [7], we get:

Theorem 4. Fix an r-ary clique-like parameterized topology G, let F be the
set of 1-index LTL\X formulas, and P the set of r-ary system templates. Then
PMCPG(P ,F) is EXPSPACE-complete. The same holds for program complexity.

It is known that PMCP for 1-ary cliques is PSPACE-complete (the upper
bound is from [9, Section 4], and the lower bound holds already for LTL\X model
checking a single finite state system P , with no communication). We extend the
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upper bound to clique-like topologies in which Bsng = ∅, i.e., controllerless
clique-like parameterized topologies. The proof follows [9] and is via a reduction
to emptiness of Büchi automata, see Theorem 8.

Theorem 5. Fix an r-ary controllerless clique-like parameterized topology G,
let F be the set of 1-index LTL\X formulas, and P the set of r-ary system tem-
plates. Then PMCPG(P ,F) is PSPACE-complete, and the program complexity
is in PTIME.

Pairwise Rendezvous: Cutoffs.

Theorem 6. Let G be the 1-ary parameterized clique topology and let F be the
set of 1-index LTL\X formulas. There exists a process template P such that
PMCPG({P},F) has no cutoff.

Proof (Sketch). Define process template P = (S,R, I, Φ) by S := {1, 2, 3}, I =
{1}, R = {(1, τ, 1), (1, a!, 2), (2, τ, 1), (1, a?, 3)}, and Φ(i) = {i}. Thus in a system
with n + 1 processes one possible behaviour is, up to stuttering, (12)n1ω. This
run does not appear in any system with ≤ n processes. Thus take the formula
φn stating that for every process and every path, the initial segment, up to
stuttering, is not of the form (12)n (for instance 1 ∧ (1 U (2 ∧ (2 U 1))) states
that there is an initial prefix of the form 11∗22∗11∗). ��

Pairwise Rendezvous: Equivalence to Finite-State Systems. The follow-
ing theorem says that if there is a cutoff for the set of 1-indexed LTL\X formulas
then the set of executions is ω-regular. The proof uses the fact that 1-indexed
LTL\X is expressive enough to describe finite prefixes of infinite words, and
deducing that since all finite executions of a system of any size must already
appear in systems up to the cutoff size, so do the infinite executions. This holds
for general topologies, not only for clique-like ones.

Theorem 7. Fix r-ary parameterized topology G, let F be the set of 1-index
LTL\X formulas, and let P be an r-ary system template. If PMCPG({P},F) has
a cutoff, then for every t ≤ r, the set of executions t-execG,P is ω-regular.

The following theorem states that the set of executions of each process in a
controllerless parameterized clique-like topology is ω-regular, i.e., recognizable
by a Non-deterministic Büchi Word automaton (NBW)(see [13] for a definition).
This is done by a reduction to the case of a clique topology and using the
corresponding result in [9, Section 4]3

Theorem 8. For every controllerless clique-like r-ary parameterized topology G,
every r-ary system template P , and every i ≤ r, there is a linearly sized NBW
(computable in PTIME) that recognises the set i-execG,P .

3 The relevant result in [9, Section 4] is correct. However, its proof has some bugs
and some of the statements (e.g., Theorem 4.8) are wrong. In the full version of this
paper we give a correct proof for the main result of [9, Section 4].



Parameterized Model Checking of Rendezvous Systems 121

By constructing an appropriate system template, and using a pumping argu-
ment, we are able to show that the set of executions of systems with a controller
is not, in general, ω-regular. More precisely:

Theorem 9. Let G be the 2-ary parameterized clique topology. There exist a
system template (C,U) for which controller-execG(C,U) is not ω-regular.

4 Results for Disjunctive Guards

In the following we will consider parameterized systems as described in Sec-
tion 2.6, i.e., with an arbitrary number of copies of one template U , and possibly
with a unique controller C, arranged in a clique.

The following theorem follows similar lines as Theorem 2, and uses a reduc-
tion from the non-halting problem of 2CMs. The main complication here is that,
unlike the case of pairwise rendezvous, mutual exclusion is not easily obtain-
able using disjunctive guards, and thus more complicated gadgets are needed to
ensure that the counter operations are simulated correctly.

Theorem 10. PMCPG(P ,F) is undecidable where F is the set of 1-indexed
CTL∗2\X formulas, G is the 1-ary parameterized clique topology, and P is the set
of 1-ary disjunctively-guarded system templates.

We conclude that we should restrict the specification logic if we want decid-
ability, and in the rest of this section we focus on 1-indexed LTL\X.
Disjunctive Guards: Cutoffs. By [5], for the r-ary parameterized clique topol-
ogy and k-indexed LTL\X formulae, there is a cutoff of size |U |+ 2 (where U is
the process template). The following proposition shows that this cutoff is tight.

Proposition 1. Let G be the r-ary parameterized clique topology, let F be the set
of 1-index LTL\X formulas, and let k > 0. There is a disjunctively-guarded system
template P of size Θ(k) such that Θ(k) is the smallest cutoff for PMCPG(P ,F)

Proof (sketch). We show the case of 1-ary cliques. Similar examples exist for
r-ary systems, with or without a controller. Consider the process template:
U = (SU , RU , IU , ΦU ) where SU = {s1, . . . , sk}, RU = {(si, si, si+1) | i <
k} ∪ {(sk, sk, s1)} ∪ {(si,�, si) | i ≤ k}, IU = {s1}, and ΦU (si) = {si}; and
the formula φk = ∀x.AG((sk, x)→ G(sk, x)). Evidently, φk holds in all systems
with at most k processes, but false in systems with k + 1 or more processes.

Disjunctive Guards: Equivalence to Finite-State Systems. There are sev-
eral techniques for solving the PMCP for 1-indexed LTL\X formulae for systems
using disjunctive guards. One such technique consists in finding an NBW that
model-checks the set of all possible executions of the system, for any number
of copies of user processes U . We begin by showing that in general, such an
automaton is necessarily big. We show the following lower bound by encoding
the language of palindromes of length 2k.

Proposition 2. Let G be the 2-ary parameterized controlled clique topology. For
every k > 0 there exist a disjunctively-guarded system template (C,U) where
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the sizes of C and U are Θ(k) such that the smallest NBW whose language is
controller-execG(C,U) has size at least 2Ω(k).

On the other hand, the cutoff |U |+ 2 yields an NBW of size |C| × |U |Ω(|U|),
and since this cutoff is tight, this technique can not yield a smaller NBW. In the
following theorem we prove, surprisingly, that there is a smaller NBW, of size
O(|C| × 2|U|).

Theorem 11. Let G be the 2-ary parameterized controlled clique topology. For
every disjunctively-guarded system template (C,U) there is an NBW of size
O(|C| × 2|U|) recognizing the set controller-execG(C,U). The same is true
for user-execG(C,U).

Intuitively, each state in the NBW pairs the current controller state together
with a set of reachable user states, i.e. sets of states of U that can be reached
in some system of finite size, given the actual state of the controller C. In this
construction, a state s ∈ SU is considered reachable iff it is the target of a
sequence of transitions in RU that (a) are not guarded, or (b) are guarded by
other reachable states, or (c) are guarded by the current controller state. The
NBW has O(|C| × 2|U|) (abstract) configurations, and it is shown that every
path in the NBW can be concretized in some system of some finite size.

Disjunctive Guards: Complexity of PMCP. We inherit the PSPACE-
hardness of model-checking LTL\X on a single finite-state system. For the upper
bound, the construction in Theorem 11 can be done ‘on-the-fly’

Theorem 12. Let G be the 2-ary parameterized controlled clique topology or the
1-ary parameterized clique topology. Let F be the set of 1-index LTL\X formulas,
and let P be the set of disjunctively guarded system templates (of suitable arity).
The complexity of PMCPG(P ,F) is PSPACE-complete.

We inherit the PTIME program complexity (without controller) from The-
orem 8. With a controller, the coNP upper bound results from a fine analysis
of Theorem 11, and the coNP-hardness by coding of unsatisfiability (the user
processes store an assignment, and the controller verifies it is not satisfying).

Theorem 13. Fix F to be the set of 1-index LTL\X formulas. If P is the set of
1-ary disjunctively guarded system templates, and G is the 1-ary parameterized
clique topology, then the program complexity of PMCPG(P ,F) is PTIME.

If P is the set of 2-ary disjunctively guarded system templates, and G is the
2-ary parameterized controlled clique topology, then the program complexity of
PMCPG(P ,F) is coNP-complete.

5 Results for Token Passing Systems

Theorem 14. Let G be a parameterized topology that is either iteratively-const-
ructible, or MSO-definable and of bounded clique-width. Then (i) The problem
PMCPG(P , i-CTL∗\X) is decidable; (ii) There is an algorithm that given k and d
outputs a cutoff for k-CTL∗d\X.
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Decidability. We use the finiteness and reduction properties of k-CTL∗d\X from
[1]. The reduction property essentially says that the process templates in P play
no role, i.e. we can assume the processes in P topo do nothing except send and
receive the token. The only atoms are pj which indicate that j has the token. In
a k-CTL∗d\X formula Q1x1 . . . Qkxk. ϕ, every valuation of the variables x1, . . . , xk
designates k vertices of the underlying topology G, say ḡ = g1, . . . , gk. The for-
mula ϕ can only use the atoms pgj for gj ∈ ḡ. We denote the structures of ϕ by

G|ḡ to indicate (1) that the process templates are P topo and (2) that ḡ have been
assigned to x1, . . . , xk by quantification. The finiteness property says that there
is a computable finite set CONd,k such that every G|ḡ is ≡k-CTL∗

d\X
-equivalent

to a member of CONd,k. We use the details of the construction of CONd,k to
show essentially that ≡k-CTL∗

d\X
is MSO-definable by reducing the quantifica-

tion on infinite paths in k-CTL∗d\X to MSO quantification on finite simple paths
and cycles. Decidability of PMCP is achieved using the decidability of MSO on
classes of parameterized topologies of bounded clique-width (Theorem 1). The
decidability of PMCP on iteratively constructible parameterized topologies can
be shown by employing methods of similar to [8].

Cutoffs. Cuttoffs are derived as the maximal size of a representative topol-
ogy belonging to a ≡MSO

q -equivalence class as guaranteed in Theorem 14 and
are non-elementary due to the number of equivalence classes. For iterateively-
constructible parameterized topologies the cutoffs may be much lower, though
there exists a system template P , and, for all k ∈ N, an iteratively constructible
parameterized topology Gk of clique-width at most k and a k-indexed LTL\X
formula ϕ such that the cutoff of PMCPG({P}, {ϕ}) is 2Ω(

√
k).

6 Discussion and Related Work

The applicability of the reduction of the PMCP to finitely many classical model
checking problems as a technique for solving the PMCP depends on the com-
munication primitive, the specification language, and the set of topologies of the
system. The wide-ranging nature of our work along these axes gives us some
insights which may be pertinent to system models different from our own:

Decidability But no Cutoffs. Theorems 3 and 6 show that it can be the
case that, for certain sets of specifications formula, cutoffs do not exist yet the
PMCP problem is decidable.

Cutoffs may not be Optimal. Proposition 1 and Theorem 11 imply that
even in cases that cutoffs exist and are computable, they may not yield optimal
algorithms for solving the PMCP.

Formalisms for Topologies are Useful. Many results in Sections 3 and 5
show that decidability and complexity of PMCP can be extended from concrete
examples of sets of topologies such as rings and cliques to infinite classes of
topologies given as user-friendly yet powerful formalisms. The formalisms we
study may be useful for other system models.

In the context of cutoffs, it is worth noting that we only considered cutoffs
with respect to sets of formulas and process templates. As Theorem 6 shows,
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there is a parameterized topology G, and a system template P , for which no
cutoff exists for the set of 1-indexed LTL\X formulas. Note, however, that if the
formula ϕ is also fixed then a cutoff always exists. Indeed, given G, P , ϕ, letting
c := |VG| yields a (minimal) cutoff if we choose G to be the smallest for which

P
G 	|= ϕ, or simply the smallest topology in G if all topologies in G satisfy ϕ.

We reserve the question of computing the cutoff in such cases to future work.
As previously discussed, this work draws on and generalises the work in [9] on

pairwise rendezvous on cliques, the work in [5] on disjunctive guards on cliques,
and the work in [1,3,6] on token-passing systems. There are very few published
complexity lower-bounds for PMCP (notable exceptions are [7,11]), and to the
best of our knowledge, our lower bounds on the sizes of cutoffs are the first
proven non-trivial lower bounds for these types of systems.
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On the Completeness of Bounded Model

Checking for Threshold-Based
Distributed Algorithms: Reachability

Igor Konnov, Helmut Veith, and Josef Widder
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Abstract. Counter abstraction is a powerful tool for parameterized
model checking, if the number of local states of the concurrent processes
is relatively small. In recent work, we introduced parametric interval
counter abstraction that allowed us to verify the safety and liveness of
threshold-based fault-tolerant distributed algorithms (FTDA). Due to
state space explosion, applying this technique to distributed algorithms
with hundreds of local states is challenging for state-of-the-art model
checkers. In this paper, we demonstrate that reachability properties of
FTDAs can be verified by bounded model checking. To ensure complete-
ness, we need an upper bound on the diameter, i.e., on the longest dis-
tance between states. We show that the diameters of accelerated counter
systems of FTDAs, and of their counter abstractions, have a quadratic
upper bound in the number of local transitions. Our experiments show
that the resulting bounds are sufficiently small to use bounded model
checking for parameterized verification of reachability properties of sev-
eral FTDAs, some of which have not been automatically verified before.

1 Introduction

A system that consists of concurrent anonymous (identical) processes can be
modeled as a counter system: Instead of recording which process is in which
local state, we record for each local state, how many processes are in this state.
We have one counter per local state 
, denoted by κ[
]. Each counter is bounded
by the number of processes. A step by a process that goes from local state 
 to
local state 
′ is modeled by decrementing κ[
] and incrementing κ[
′].

We consider a specific class of counter systems, namely those that are de-
fined by threshold automata. The technical motivation to introduce threshold
automata is to capture the relevant properties of fault-tolerant distributed algo-
rithms (FTDAs). FTDAs are an important class of distributed algorithms that
work even if a subset of the processes fail [26]. Typically, they are parameter-
ized in the number of processes and the number of tolerated faulty processes.
These numbers of processes are parameters of the verification problem. We show
that accelerated counter systems defined by threshold automata have a diameter
whose bound is independent of the bound on the counters, but depends only on
characteristics of the threshold automaton. This bound can be used for param-
eterized model checking of FTDAs, as we confirm by experimental evaluation.
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Modeling FTDAs as counter systems defined by threshold automata. A threshold
automaton consists of rules that define the conditions and effects of changes to
the local state of a process of a distributed algorithm. Conditions are threshold
guards that compare the value of a shared integer variable to a linear combination
of parameters, e.g., x ≥ n − t, where x is a shared variable and n and t are
parameters. This captures counting arguments which are used in FTDAs, e.g., a
process takes a certain step only if it has received a message from a majority of
processes. To model this, we use the shared variable x as the number of processes
that have sent a message, n as the number of processes in the system, and t as
the assumed number of faulty processes. The condition x ≥ n− t then captures
a majority under the resilience condition that n > 2t. Resilience conditions are
standard assumptions for the correctness of an FTDA. Apart from changing
the local state, applying a rule can increase a shared variable, which naturally
captures that a process has sent a message. Thus we consider threshold automata
where shared variables are never decreased and where rules that form cycles do
not modify shared variables, which is natural for modeling FTDAs.

Bounding the Diameter. For reachability it is not relevant whether we “move”
processes one by one from state 
 to 
′. If several processes perform the same
transition one after the other, we can model this as a single update on the
counters: The sequence where b processes one after the other move from 
 to 
′

can be encoded as a transition where κ[
] is decreased by b and κ[
′] is increased
by b. Value b is called the acceleration factor and may vary in a run depending
on how many repetitions of the same transition should be captured. We call
such runs of a counter system accelerated. The lengths of accelerated runs are
the ones relevant for the diameter of the counter system.

The main technical challenge comes from the interactions of shared variables
and threshold guards. We address it with the following three ideas: (i) Accelera-
tion as discussed above. (ii) Sorting, that is, given an arbitrary run of a counter
system, we can shorten it by changing the order of transitions such that there
are possibly many consecutive transitions that can be merged according to (i).
However, as we have arithmetic threshold conditions, not all changes of the or-
der result in allowed runs. (iii) Segmentation, that is, we partition a run into
segments, inside of which we can reorder the transitions; cf. (ii). In combina-
tion, these three ideas enable us to prove the main theorem: The diameter of a
counter system is at most quadratic in the number of rules; more precisely, it is
bounded by the product of the number of rules and the number of distinct thresh-
old conditions. In particular, the diameter is independent of the parameters.

Using the Bound for Parameterized Model Checking. Parameterized model
checking is concerned with the verification of concurrent or distributed systems,
where the number of processes is not a priori fixed, that is, a system is verified
for all sizes. In our case, the counter systems for all values of n and t that satisfy
the resilience condition should be verified. A well-known parameterized model
checking technique is to map all these counter systems to a counter abstraction,
where the counter values are not natural numbers, but range over an abstract
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finite domain, e.g. [29]. In [16] we developed a more general form of counter
abstraction for expressions used in threshold guards, which leads, e.g., to the
abstract domain of four values that capture the parametric intervals [0, 1) and
[1, t + 1) and [t + 1, n − t) and [n − t,∞). It is easy to see [16] that a counter
abstraction simulates all counter systems for all parameter values that satisfy
the resilience condition. The bound d on the diameter of counter systems implies
a bound d̂ on the diameter of the counter abstraction. From this and simulation
follows that if an abstract state is not reachable in the counter abstraction within
d̂ steps, no concretization of this state is reachable in any of the concrete counter
systems. This allows us to efficiently combine counter abstraction with bounded
model checking [6]. Typically, bounded model checking is restricted to finding
bugs that occur after a bounded number of steps of the systems. However, if one
can show that within this bound every state is reachable from an initial state,
bounded model checking is a complete method for verifying reachability.

2 Our Approach at a Glance

Figure 1 represents a threshold automaton: The circles depict the local states,
and the arrows represent rules (r1 to r5) that define how the automaton makes
transitions. Rounded corner labels correspond to conditional rules, so that the
rule can only be executed if the threshold guard evaluates to true. In our exam-
ple, x and y are shared variables, and n, t, and f are parameters that are assumed
to satisfy the resilience condition n ≥ 2t∧ f ≤ t. The number of processes (that
each execute the automaton) depends on the parameters, in this example we
assume that n processes run concurrently. Finally, rectangular labels on arrows
correspond to rules that increment a shared variable. The transitions of the
counter system are then defined using the rules, e.g., when rule r2 is executed,
then variable y is incremented and the counters κ[
3] and κ[
2] are updated.

Consider a counter system in which the parameter values are n = 3, and
t = f = 1. Let σ0 be the configuration where x = y = 0 and all counters
are set to 0 except κ[
1] = 3. This configuration corresponds to a concurrent
system where all three processes are in 
1. For illustration, we assume that
in this concurrent system processes have the identifiers 1, 2, and 3, and we
denote by ri(j) that process j executes rule ri. Recall that we have anonymous
(symmetric) systems, so we use the identifiers only for illustration: the transition
of the counter system is solely defined by the rule being executed.

As we are interested in the diameter, we have to consider the distance be-
tween configurations in terms of length of runs. In this example, we consider
the distance of σ0 to a configuration where κ[
5] = 3, that is, all three processes
are in local state 
5. First, observe that the rule r5 is locked in σ0 as y = 0
and t = 1. Hence, we require that rule r2 is executed at least once so that the
value of y increases. However, due to the precedence relation on the rules, before
that, r1 must be executed, which is also locked in σ0. The sequence of tran-
sitions τ1 = r3(1), r4(1), r3(2), r4(2) leads from σ0 to the configuration where
κ[
1] = 1, κ[
4] = 2, and x = 2; we denote it by σ1. In σ1, rule r1 is unlocked,
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1 
2 
4 
5


3

r3 : true

r1 : x ≥ n− f r2 : inc y

r4 : inc x r5 : y ≥ t

Fig. 1. Example of a Threshold Automaton

so we may apply τ2 = r1(3), r2(3), to arrive at σ2, where y = 1, and thus r5
is unlocked. To σ2 we may apply τ3 = r5(1), r5(2), r4(3), r5(3) to arrive at the
required configuration σ3 with κ[
5] = 3.

In order to exploit acceleration as much as possible, we would like to group
together occurrences of the same rule. In τ1, we can actually swap r4(1) and r3(2)
as locally the precedence relation of each process is maintained, and both rules
are unconditional. Similarly, in τ3, we can move r4(3) to the beginning of the se-
quence τ3. Concatenating these altered sequences, the resulting complete sched-
ule is τ = r3(1), r3(2), r4(1), r4(2), r1(3), r2(3), r4(3), r5(1), r5(2), r5(3). We can
group together the consecutive occurrences for the same rules ri, and write the
schedule using pairs consisting of rules and acceleration factors, that is, (r3, 2),
(r4, 2), (r1, 1), (r2, 1), (r4, 1), (r5, 3).

In schedule τ , the occurrences of all rules are grouped together except for r4.
That is, in the accelerated schedule we have two occurrences for r4, while for the
other rules one occurrence is sufficient. Actually, there is no way around this:
We cannot swap r2(3) with r4(3), as we have to maintain the local precedence
relation of process 3. More precisely, in the counter system, r4 would require
us to decrease the counter κ[
2] at a point in the schedule where κ[
2] = 0.
We first have to increase the counter value by executing a transition according
to rule r2, before we can apply r4. Moreover, we cannot move the subsequence
r1(3), r2(3), r4(3) to the left, as r1(3) is locked in the prefix.

In this paper we characterize such cases. The issue here is that r4 can unlock r1
(we use the notation r4 ≺U r1), while r1 precedes r4 in the control flow of
the processes (r1 ≺P r4). We coin the term milestone for transitions like r1(3)
that cannot be moved, and show that the same issue arises if a rule r locks a
threshold guard of rule r′, where r precedes r′ in the control flow. As processes
do not decrease shared variables, we have at most one milestone per threshold
guard. The sequence of transitions between milestones is called a segment. We
prove that transitions inside a segment can be swapped, so that one can group
transitions for the same rule in so-called batches. Each of these batches can then
be replaced by a single accelerated transition that leads to the same configuration
as the original batch. Hence, any segment can be replaced by an accelerated
one whose length is at most the number of rules of a process. This and the
number of milestones gives us the required bound on the diameter. This bound
is independent of the parameters, and only depends on the number of threshold
guards and the precedence relation between the rules of the processes.
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Our main result is that the bound on the diameter is independent of the
parameter values. In contrast, reachability of a specific local state depends on
the parameter values: for a process to reach 
5, at least n − f processes must
execute r4 before at least t other processes must execute r2. That is, the system
must contain at least (n−f)+t processes. In case of t > f , we obtain (n−f)+t >
n, which is a contradiction, and 
5 cannot be reached for such parameter values.
The model checking problem we are interested in is whether a given state is
unreachable for all parameter values that satisfy the resilience condition.

3 Parameterized Counter Systems

3.1 Threshold Automata

A threshold automaton describes a process in a concurrent system. It is defined
by its local states, the shared variables, the parameters, and by rules that define
the state changes and their conditions and effects on shared variables. Formally,
a threshold automaton is a tuple TA = (L, I, Γ,Π,R, RC ) defined below.

States. The set L is the finite set of local states, and I ⊆ L is the set of initial
local states. The set Γ is the finite set of shared variables that range over N0.

To simplify the presentation, we view the variables as vectors in N|Γ |
0 . The finite

set Π is a set of parameter variables that range over N0, and the resilience
condition RC is a formula over parameter variables in linear integer arithmetic,
e.g., n > 3t ∧ t ≥ f . Then, we denote the set of admissible parameters by

PRC = {p ∈ N|Π|
0 : p |= RC}.

Rules. A rule defines a conditional transition between local states that may
update the shared variables. Here we define the syntax and give only informal
explanations of the semantics, which is defined via counter systems in Section 3.2.

Formally, a rule is a tuple (from , to, ϕ≤, ϕ>,u): The local states from and to
are from L. Intuitively, they capture from which local state to which a process
moves, or, in terms of counter systems, which counters decrease and increase,
respectively. A rule is only executed if the conditions ϕ≤ and ϕ> evaluate to true.
Each condition consists of multiple guards. Each guard is defined using some
shared variable x ∈ Γ , coefficients a0, . . . , a|Π| ∈ Z, and parameter variables
p1, . . . , p|Π| ∈ Π so that

a0 +
∑|Π|

i=1
ai · pi ≤ x and a0 +

∑|Π|

i=1
ai · pi > x

are a lower guard and upper guard, respectively (both, variables and coefficients,
may differ for different guards). The condition ϕ≤ is a conjunction of lower
guards, and the condition ϕ> is a conjunction of upper guards. Rules may in-

crease shared variables. We model this using an update vector u ∈ N|Γ |
0 , which

is added to the vector of shared variables, when the rule is executed. Then R is
the finite set of rules.
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Definition 1. Given a threshold automaton (L, I, Γ,Π,R, RC ), we define the
precedence relation ≺P , the unlock relation ≺U , and the lock relation ≺L as
subsets of R×R as follows:
1. r1 ≺P r2 iff r1.to = r2.from. We denote by ≺+

P
the transitive closure of ≺P.

If r1 ≺P r2 ∧ r2 ≺P r1, or if r1 = r2, we write r1 ∼P r2.

2. r1 ≺U r2 iff there is a g ∈ N|Γ |
0 and p ∈ PRC satisfying (g,p) |= r1.ϕ

≤∧r1.ϕ
>

and (g,p) 	|= r2.ϕ
≤ ∧ r2.ϕ

> and (g + r1.u,p) |= r2.ϕ
≤ ∧ r2.ϕ

>.

3. r1 ≺L r2 iff there is a g ∈ N
|Γ |
0 and p ∈ PRC satisfying (g,p) |= r1.ϕ

≤∧r1.ϕ
>

and (g,p) |= r2.ϕ
≤ ∧ r2.ϕ

> and (g + r1.u,p) 	|= r2.ϕ
≤ ∧ r2.ϕ

>.

Definition 2. Given a threshold automaton (L, I, Γ,Π,R, RC ), we define the
following quantities: C≤ = |{r.ϕ≤ : r ∈ R, ∃r′ ∈ R. r′ 	≺+

P
r ∧ r′ ≺U r}|,

C> = |{r.ϕ> : r ∈ R, ∃r′′ ∈ R. r 	≺+
P r′′ ∧ r′′ ≺L r}|. Finally, C = C≤ + C>.

We consider specific threshold automata, namely those that naturally capture
FTDAs, where rules that form cycles do not increase shared variables.

Definition 3 (Canonical Threshold Automaton). A threshold automaton
(L, I, Γ,Π,R, RC ) is canonical, if r.u = 0 for all rules r ∈ R that satisfy r ≺+

P r.

Order on rules. The relation ∼P defines equivalence classes of rules. For a given
set of rules R let R/∼ be the set of equivalence classes defined by ∼P . We denote
by [r] the equivalence class of rule r. For two classes c1 and c2 fromR/∼ we write
c1 ≺C c2 iff there are two rules r1 and r2 in R satisfying [r1] = c1 and [r2] = c2
and r1 ≺+

P
r2 and r1 	∼P r2. Observe that the relation ≺C is a strict partial order

(irreflexive and transitive). Hence, there are linear extensions of ≺C . Below, we
fix an arbitrary of these linear extensions to sort transitions in a schedule:

Notation. We denote by ≺lin
C

a linear extension of ≺C .

3.2 Counter Systems

Given a threshold automaton TA = (L, I, Γ,Π,R, RC ), a function N : PRC →
N0 that formalizes the number of processes to be modeled (e.g., n), and admissi-
ble parameter values p ∈ PRC , we define a counter system as a transition system
(Σ, I,R), that consists of the set of configurations Σ, which contain the counters
and variables, the set of initial configurations I, and the transition relation R:

Configurations. A configuration σ = (κ,g,p) consists of a vector of counter

values σ.κ ∈ N|L|
0 ,1 a vector of shared variable values σ.g ∈ N|Γ |

0 , and a vector
of parameter values σ.p = p. The set Σ is the set of all configurations. The
set of initial configurations I contains the configurations that satisfy σ.g = 0,∑

i∈I σ.κ[i] = N(p), and
∑

i�∈I σ.κ[i] = 0.

1 For simplicity we use the convention that L = {1, . . . , |L|}.
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Transition relation. A transition is a pair t = (rule, factor ) of a rule of the
threshold automaton and a non-negative integer called the acceleration factor,
or just factor for short. For a transition t = (rule, factor ) we refer by t.u to rule.u,
by t.ϕ> to rule.ϕ>, etc. We say a transition t is unlocked in configuration σ if
∀k ∈ {0, . . . , t.factor − 1}. (σ.κ, σ.g + k · t.u, σ.p) |= t.ϕ≤ ∧ t.ϕ>. For transitions
t1 and t2 we say that the two transitions are related iff t1.rule and t2.rule are
related, e.g., for ≺P we write t1 ≺P t2 iff t1.rule ≺P t2.rule.

A transition t is applicable (or enabled) in configuration σ, if it is unlocked, and
if σ.κ[t.from ] ≥ t.factor . We say that σ′ is the result of applying the (enabled)
transition t to σ, and use the notation σ′ = t(σ), if
– t is enabled in σ
– σ′.g = σ.g + t.factor · t.u
– σ′.p = σ.p
– if t.from 	= t.to then σ′.κ[t.from ] = σ.κ[t.from ] − t.factor and σ′.κ[t.to] =

σ.κ[t.to] + t.factor and ∀
 ∈ L \ {t.from , t.to}. σ′.κ[
] = σ.κ[
]
– if t.from = t.to then σ′.κ = σ.κ

The transition relation R ⊆ Σ×Σ of the counter system is defined as follows:
(σ, σ′) ∈ R iff there is a r ∈ R and a k ∈ N0 such that σ′ = t(σ) for t = (r, k).
As updates to shared variables do not decrease their values, we obtain:

Proposition 1. For all configurations σ, all rules r, and all transitions t appli-
cable to σ, the following holds:
1. If σ |= r.ϕ≤ then t(σ) |= r.ϕ≤ 3. If σ 	|= r.ϕ> then t(σ) 	|= r.ϕ>

2. If t(σ) 	|= r.ϕ≤ then σ 	|= r.ϕ≤ 4. If t(σ) |= r.ϕ> then σ |= r.ϕ>

Schedules. A schedule is a sequence of transitions. A schedule τ = t1, . . . , tm
is called applicable to configuration σ0, if there is a sequence of configurations
σ1, . . . , σm such that σi = ti(σi−1) for all i, 0 < i ≤ m. A schedule t1, . . . , tm
where ti.factor = 1 for 0 < i ≤ m is a conventional schedule. If there is a
ti.factor > 1, then a schedule is called accelerated.

We write τ · τ ′ to denote the concatenation of two schedules τ and τ ′, and
treat a transition t as schedule. If τ = τ1 · t · τ2 · t′ · τ3, for some τ1, τ2, and τ3,
we say that transition t precedes transition t′ in τ , and denote this by t→τ t′.

4 Diameter of Counter Systems

In this section, we will present the outline of the proof of our main theorem:

Theorem 1. Given a canonical threshold automaton TA and a size function N ,
for each p in PRC the diameter of the counter system is less than or equal to
d(TA) = (C + 1) · |R|+ C, and thus independent of p.

From the theorem it follows that for all parameter values, reachability in
the counter system can be verified by exploring runs of length at most d(TA).
However, the theorem alone is not sufficient to solve the parameterized model
checking problem. For this, we combine the bound with the abstraction method
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in [16]. More precisely, the counter abstraction in [16] simulates the counter sys-
tems for all parameter values that satisfy the resilience condition. Consequently,
the bound on the length of the run of the counter systems entails a bound for
the counter abstraction. We exploit this in the experiments in Section 5.

4.1 Proof Idea

Given a rule r, a schedule τ and two transitions ti and tj , with ti →τ tj , the
subschedule ti · . . . · tj of τ is a batch of rule r if t�.rule = r for i ≤ 
 ≤ j, and
if the subschedule is maximal, that is, i = 1 ∨ ti−1 	= r and j = m ∨ tj+1 	= r.
Similarly, we define a batch of a class c as a subschedule ti · . . . · tj where [r�] = c
for i ≤ 
 ≤ j, and where the subschedule is maximal as before.

Definition 4 (Sorted schedule). Given a schedule τ , and the relation ≺lin
C

,
we define sort(τ) as the schedule that satisfies:
1. sort(τ) is a permutation of schedule τ .
2. two transitions from the same equivalence class maintain their relative order,

that is, if t→τ t′ and t ∼P t′, then t→sort(τ) t′.
3. for each equivalence class defined by ∼P there is at most one batch in sort(τ).
4. if t→sort(τ) t′, then t ∼P t′ or [t] ≺lin

C
[t′].

The crucial observation is that if we have a schedule τ1 = t · t′ applicable to
configuration σ with t.rule = t′.rule, we can replace it with another applicable
(one-transition) schedule τ2 = t′′, with t′′.rule = t.rule and t′′.factor = t.factor+
t′.factor , such that τ1(σ) = τ2(σ). Thus, we can reach the same configuration
with a shorter schedule. More generally, we may replace a batch of a rule by a
single accelerated transition whose factor is the sum of all factors in the batch.

In this section we give a bound on the diameter, i.e., the length of the shortest
path between any two configurations σ and σ′ for which there is a schedule τ
applicable to σ satisfying σ′ = τ(σ). A simple case is if sort(τ) is applicable to σ
and each equivalence class defined by the precedence relation consists of a single
rule (e.g., the control flow is a directed acyclic graph). Then by Definition 4 we
have at most |R| batches in sort(τ), that is, one per rule. By the reasoning of
above we can replace each batch by a single accelerated transition.

In general sort(τ) may not be applicable to σ, or there are equivalence classes
containing multiple rules, i.e., rules form cycles in the precedence relation. The
first issue comes from locking and unlocking. We identify milestone transitions,
and show that two neighboring non-milestone transitions can be swapped accord-
ing to sort in Section 4.3. We also deal with the issue of cycles in the precedence
relation. It is ensured by sort that within a segment, all transitions that belong
to a cycle form a batch. In Section 4.2, we replace such a batch by a batch
where the remaining rules do not form a cycle. Removing cycles requires the
assumption that shared variables are not incremented in cycles.

4.2 Removing Cycles

We consider the distance between two configurations σ and σ′ that satisfy σ.g =
σ′.g, i.e., along any schedule connecting these configurations, the values of shared



On the Completeness of Bounded Model Checking 133

variables are unchanged, and thus the evaluations of guards are also unchanged.
By Definition 3, we can apply this section’s result to batches of a class.

Definition 5. Given a schedule τ = t1, t2, . . . , we denote by |τ | the length of
the schedule. Further, we define the following vectors

in(τ)[
] =
∑

1≤i≤|τ |
ti.to=�

ti.factor , out(τ)[
] =
∑

1≤i≤|τ |
ti.from=�

ti.factor , up(τ) =
∑

1≤i≤|τ |
ti.u.

From the definition of a counter system, we directly obtain:

Proposition 2. For all configurations σ, and all schedules τ applicable to σ, if
σ′ = τ(σ), then σ′.κ = σ.κ+ in(τ) − out(τ), and σ′.g = σ.g + up(τ).

Proposition 3. For all configurations σ, and all schedules τ and τ ′ applicable to
σ, if in(τ) = in(τ ′), out(τ) = out(τ ′), and up(τ) = up(τ ′), then τ(σ) = τ ′(σ).

Given a schedule τ = t1, t2, . . . we say that the index set I = {i1, . . . , ij}
forms a cycle in τ , if for all b, 1 ≤ b < j, it holds that tib .to = tib+1

.from , and
tij .to = ti1 .from . Let R(τ) = {r : ti ∈ τ ∧ ti.rule = r}.

Proposition 4. For all schedules τ , if τ contains a cycle, then there is a sched-
ule τ ′ satisfying |τ ′| < |τ |, in(τ) = in(τ ′), out(τ) = out(τ ′), and R(τ ′) ⊆ R(τ).

Repeated application of the proposition leads to a cycle-free schedule (possibly
the empty schedule), and we obtain:

Theorem 2. For all schedules τ , there is a schedule τ ′ that contains no cycles,
in(τ) = in(τ ′), out(τ) = out(τ ′), and R(τ ′) ⊆ R(τ).

The issue with this theorem is that τ ′ is not necessarily applicable to the same
configurations as τ . In the following theorem, we prove that if a schedule satisfies
a specific condition on the order of transitions, then it is applicable.

Theorem 3. Let σ and σ′ be two configurations with σ.g = σ′.g, and let τ be
a schedule with up(τ) = 0, all transitions unlocked in σ, and where if ti →τ tj,
then tj 	≺P ti. If σ′.κ− σ.κ = in(τ) − out(τ), then τ is applicable to σ.

Corollary 1. For all configurations σ, and all schedules τ applicable to σ, with
up(τ) = 0, there is a schedule with at most one batch per rule applicable to σ
satisfying that τ ′ contains no cycles, τ ′(σ) = τ(σ), and R(τ ′) ⊆ R(τ).

4.3 Identifying Milestones and Swapping Transitions

In this section we deal with locking and unlocking. To this end, we start by
defining milestones. Then the central Theorem 4 establishes that two conse-
quent non-milestone transitions can be swapped, if needed to sort the segment
according to ≺lin

C : the resulting schedule is still applicable, and leads to the same
configuration as the original one.
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Definition 6 (Left Milestone). Given a configuration σ and a schedule τ =
τ ′ · t · τ ′′ applicable to σ, the transition t is a left milestone for σ and τ , if
1. there is a transition t′ in τ ′ satisfying t′ 	≺+

P t ∧ t′ ≺U t,
2. t.ϕ≤ is locked in σ, and
3. for all t′ in τ ′, t′.ϕ≤ 	= t.ϕ≤.

Definition 7 (Right Milestone). Given a configuration σ and a schedule τ =
τ ′ · t · τ ′′ applicable to σ, the transition t is a right milestone for σ and τ , if
1. there is a transition t′′ in τ ′′ satisfying t 	≺+

P t′′ ∧ t′′ ≺L t,
2. t.ϕ> is locked in τ(σ), and
3. for all t′′ in τ ′′, t′′.ϕ> 	= t.ϕ>.

Definition 8 (Segment). Given a schedule τ and configuration σ, τ ′ is a seg-
ment if it is a subschedule of τ , and does not contain a milestone for σ and τ .

Having defined milestones and segments, we arrive at our central result.

Theorem 4. Let σ be a configuration, τ a schedule applicable to σ, and τ =
τ1 · t1 · t2 · τ2. If transitions t1 and t2 are not milestones for σ and τ , and satisfy
[t2] ≺lin

C
[t1], then

i. schedule τ ′ = τ1 · t2 · t1 · τ2 is applicable to σ,
ii. τ ′(σ) = τ(σ), and

Repeated application of the theorem leads to a schedule where milestones
and sorted schedules alternate. By the definition of a milestone, there is at most
one milestone per condition. Thus, the number of milestones is bounded by C
(Definition 2). Together with Corollary 1, this is used to establish Theorem 1.

5 Experimental Evaluation

We have implemented the techniques in our tool ByMC [1]. Technical details
about our approach to abstraction and refinement can be found in [13]. The input
are the descriptions of our benchmarks in parametric Promela [17], which de-
scribe parameterized processes. Hence, as preliminary step ByMC computes the
PIA data abstraction [16] to obtain finite state processes. Based on this, ByMC

does preprocessing to compute threshold automata, the locking and unlocking
relations, and to generate the inputs for our model checking back-ends.

Preprocessing. First, we compute the set of rules R: Recall that a rule is a
tuple (from , to, ϕ≤, ϕ>,u). ByMC calls NuSMV to explore a single process sys-
tem with unrestricted shared variables, in order to compute the (from , to) pairs.
From this, ByMC computes the reachable local states. In the case of our bench-
mark CBC, e.g., that cuts the local states we have to consider from 2000 to 100,
approximately. All our experiments— including the ones with FASTer [3]—are
based on the reduced local state space. Then, for each pair (from , to), ByMC

explores symbolic path to compute the guards and update vectors for the pair.
This gives us the set of rules R. Then, ByMC encodes Definition 1 in Yices,
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to construct the lock ≺L and unlock ≺U relations. Then, ByMC computes the
relations {(r, r′) : r′ 	≺+

P
r ∧ r′ ≺U r} and {(r, r′′) : r 	≺+

P
r′′ ∧ r′′ ≺L r} as

required by Definition 2. This provides the bounds.

Back-ends. ByMC generates the PIA counter abstraction [16] to be used by
the following back-end model checkers. We have also implemented an automatic
abstraction refinement loop for the counterexamples provided by NuSMV.
BMC. NuSMV 2.5.4 [10] (using MiniSAT) performs incremental bounded model

checking with the bound d̂. If a counterexample is reported, ByMC refines the
system as explained in [16], if the counterexample is spurious.
BMCL. We combine NuSMV with the multi-core SAT solver Plingeling [5]:
NuSMV does bounded model checking for 30 steps. Spurious counterexample are
refined by ByMC. If there is no counterexample, NuSMV produces a single CNF
formula with the bound d̂, whose satisfiability is then checked with Plingeling.
BDD. NuSMV 2.5.4 performs BDD-based symbolic checking.
FAST. FASTer 2.1 [3] performs reachability analysis using plugin Mona-1.3.

5.1 Benchmarks

We encoded several asynchronous FTDAs in our parametric Promela, follow-
ing the technique in [17]; they can be obtained from [1]. All models contain
transitions with lower threshold guards. The benchmarks CBC also contain up-
per threshold guards. If we ignore self-loops, the precedence relation of all but
NBAC and NBACC, which have non-trivial cycles, are partial orders.
Folklore Reliable Broadcast (FRB) [9]. In this algorithm, n processes have
to agree on whether a process has broadcast a message, in the presence of f ≤ n
crashes. Our model of FRB has one shared variable and the abstract domain of
two intervals [0, 1) and [1,∞). In this paper, we are concerned with the safety
property unforgeability: If no process is initialized with value 1 (message from
the broadcaster), then no correct process ever accepts.
Consistent Broadcast (STRB) [31]. Here, we have n− f correct processes
and f ≥ 0 Byzantine faulty ones. The resilience condition is n > 3t ∧ t ≥ f .
There is one shared variable and the abstract domain of four intervals [0, 1),
[1, t + 1), [t + 1, n − t), and [n − t,∞). Here, we check only unforgeability (see
FRB), whereas in [16] we checked also liveness properties.
Byzantine Agreement (ABA) [8]. There are n > 3t processes, f ≤ t of them
Byzantine faulty. The model has two shared variables. We have to consider two
different cases for the abstract domain, namely, case ABA0 with the domain
[0, 1), [1, t + 1), [t + 1, -n+t2 .), and [-n+t2 .,∞) and case ABA1 with the domain
[0, 1), [1, t + 1), [t + 1, 2t + 1), [2t + 1, -n+t2 .), and [-n+t2 .,∞). As for FRB, we
check unforgeability. This case study, and all below, run out of memory when
using Spin for model checking the counter abstraction [16].
Condition-Based Consensus (CBC) [27]. This is a restricted form of con-
sensus solvable in asynchronous systems. We consider binary condition-based
consensus in the presence of clean crashes, which requires four shared variables.
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Table 1. Summary of experiments on AMD Opteron R©Processor 6272 with 192 GB
RAM and 32 CPU cores. Plingeling used up to 16 cores. “TO” denotes timeout of
24 hours; “OOM” denotes memory overrun of 64 GB; “ERR” denotes runtime error;
“RTO” denotes that the refinement loop timed out.

Input Threshold A. Bounds Time, [HH:]MM:SS Memory, GB

FTDA |L| |R| C≤ C> d d� d̂ BMCL BMC BDD FAST BMCL BMC BDD FAST

Fig. 1 5 5 1 0 11 9 27 00:00:03 00:00:04 00:01 00:00:08 0.01 0.02 0.02 0.06

FRB 6 8 1 0 17 10 10 00:00:13 00:00:13 00:06 00:00:08 0.01 0.02 0.02 0.01

STRB 7 15 3 0 63 30 90 00:00:09 00:00:06 00:04 00:00:07 0.02 0.03 0.02 0.07

ABA0 37 180 6 0 1266 586 1758 00:21:26 02:20:10 00:15 00:08:40 6.37 1.49 0.07 3.56

ABA1 61 392 8 0 3536 1655 6620 TO 25% TO 12% 00:33 02:36:25 TO TO 0.08 15.65

CBC0 43 204 0 0 204 204 612 01:38:54 TO 57% OOM ERR 1.28 TO OOM ERR

CBC1 115 896 1 1 2690 2180 8720 TO 05% TO 11% TO TO TO TO TO TO

NBACC 109 1724 6 0 12074 5500 16500 RTO RTO TO TO RTO RTO TO TO

NBAC 77 1356 6 0 9498 4340 13020 RTO RTO TO TO RTO RTO TO TO

When a Bug is Introduced

ABA0 32 139 6 0 979 469 1407 00:00:16 00:00:18 TO 00:05:57 0.04 0.04 TO 2.70

ABA1 54 299 8 0 2699 1305 5220 00:00:22 00:00:21 TO ERR 0.06 0.06 TO ERR

Under the resilience condition n > 2t ∧ f ≥ 0, we have to consider two differ-
ent cases depending on f : If f = 0 we have case CBC0 with the domain [0, 1),
[1, -n2 .), [-

n
2 ., n− t), and [n− t,∞). If f 	= 0, case CBC1 has the domain: [0, 1),

[1, f), [f, -n2 .), [-
n
2 ., n− t), and [n− t,∞). We verified several properties, all of

which resulted in experiments with similar characteristics. We only give validity0

in the table, i.e., no process accepts value 0, if all processes initially have value 1.
Non-blocking Atomic Commitment (NBAC and NBACC) [30,15]. Here,
n processes are initialized with Yes or No and decide on whether to commit a
transaction. The transaction must be aborted if at least one process is initialized
to No. We consider the cases NBACC and NBAC of clean crashes and crashes,
respectively. Both models contain four shared variables, and the abstract domain
is [0, 1) and [1, n) and [n−1, n), and [n,∞). The algorithm uses a failure detector,
which is modeled as local variable that changes its value non-deterministically.

5.2 Evaluation

Table 1 summarizes the experiments. For the threshold automata, we give the
number of local states |L|, rules |R|, and conditions according to Definition 2,
i.e., C≤ and C>. The column d provides the bound on the diameter as in The-
orem 1, whereas the column d� provides an improved diameter: In the proof of
Theorem 1, we bound the length of all segments by |R|. However, by Definition 6,
segments to the left of a left milestone cannot contain transitions for rules with
the same condition as the milestone. The same is true for segments to the right
of right milestones. ByMC explores all orders of milestones, an uses this obser-
vation about milestones to compute a more precise bound d� for the diameter.
Our encoding of the counter abstraction only increments and decrements coun-
ters. If |D̂| is the size of the abstract domain, a transition in a counter system is
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simulated by at most |D̂| − 1 steps in the counter abstraction; this leads to the
diameter d̂ for counter abstractions, which we use in our experiments.

As the experiments show, all techniques rapidly verify FRB, STRB, and
Fig. 1. FRB and STRB had already been verified before using Spin [16]. The
more challenging examples are ABA0 and ABA1, where BDD clearly outper-
forms the other techniques. Bounded model checking is slower here, because the
diameter bound does not exploit knowledge on the specification. FAST performs
well on these benchmarks. We believe this is because many rules are always dis-
abled, due to the initial states as given in the specification. To confirm this
intuition, we introduced a bug into ABA0 and ABA1, which allows the pro-
cesses to non-deterministically change their value to 1. This led to a dramatic
slowdown of BDD and FAST, as reflected in the last two lines.

Using the bounds of this paper, BMCL verifiedCBC0, whereas all other tech-
niques failed. BMCL did not reach the bounds for CBC1 with our experimental
setup, but we believe that the bound is within the reach with a better hardware
or an improved implementation. In this case, we report the percentages of the
bounds we reached with bounded model checking.

In the experiments with NBAC and NBACC, the refinement loop timed out.
We are convinced that we can address this issue by integrating the refinement
loop with an incremental bounded model checker.

6 Related Work and Discussions

Specific forms of counter systems can be used to model parameterized systems of
concurrent processes. Lubachevsky [25] discusses compact programs that reach
each state in a bounded number of steps, where the bound is independent of
the number of processes. In [25] he gives examples of compact programs, and
in [24] he proves that specific semaphore programs are compact. We not only
show compactness, but give a bound on the diameter. In our case, communi-
cation is not restricted to semaphores, but we have threshold guards. Counter
abstraction [29] follows this line of research, but as discussed in [4], does not
scale well for large numbers of local states.

Acceleration in infinite state systems (e.g., in flat counter automata [22]) is
a technique that computes the transitive closure of a transition relation and
applies it to the set of states. The tool FAST [2] uses acceleration to compute
the set of reachable states in a symbolic procedure. This appears closely related
to our acceleration factors. However, in [2] a transition is chosen and accelerated
dynamically in the course of symbolic state space exploration, while we statically
use acceleration factors and reordering of transitions.

One achieves completeness for reachability in bounded model checking by
exploring all runs that are not longer than the diameter of the system [6]. The
notion of completeness threshold [11] generalizes this idea to safety and liveness
properties. As in general, computing the diameter is believed to be as hard
as the model checking problem, one can use a coarser bound provided by the
reoccurrence diameter [19]. In practice, the reoccurrence diameter of counter
abstraction is prohibitively large, so that we give bounds on the diameter.
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Partial orders are a useful concept for reasoning about distributed systems [20].
In model checking, partial order reduction [14,32,28] is used to reduce the search
space. It is based on the idea that changing the order of steps of concurrent pro-
cesses leads to “equivalent” behavior with respect to the specification. Typically,
partial order reduction is used on-the-fly to prune runs that are equivalent to
representative ones. In contrast, we bound the length of representative runs of-
fline in order to ensure completeness of bounded model checking. A partial order
reduction for threshold-guarded FTDAs was introduced in [7]. It can be used for
model checking small instances, while we focus on parameterized model checking.

Our technique of determining which transitions can be swapped in a run
reminds of movers as discussed by Lipton [23], or more generally the idea to
show that certain actions can be grouped into larger atomic blocks to simplify
proofs [12,21]. Movers address the issue of grouping many local transitions of
a process together. In contrast, we conceptually group transitions of different
processes together into one accelerated transition. Moreover, the definition of a
mover by Lipton is independent of a specific run: a left mover (e.g., a “release”
operation) is a transition that in all runs can “move to the left” with respect
to transitions of other processes. In our work, we look at individual runs and
identify which transitions (milestones) must not move in this run.

As next steps we will focus on liveness of fault-tolerant distributed algorithms.
In fact the liveness specifications are in the fragment of linear temporal logic for
which it is proven [18] that a formula can be translated into a cliquey Büchi
automaton. For such automata, [18] provides a completeness threshold. Still,
there are open questions related to applying our results to the idea of [18].
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27. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: DSN, pp. 541–550 (2003)

28. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)



140 I. Konnov, H. Veith, and J. Widder

29. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)- counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

30. Raynal, M.: A case study of agreement problems in distributed systems: Non-
blocking atomic commitment. In: HASE, pp. 209–214 (1997)

31. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80–94 (1987)

32. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)



Lost in Abstraction:
Monotonicity in Multi-threaded Programs�

Alexander Kaiser1, Daniel Kroening1, and Thomas Wahl2

1 University of Oxford, United Kingdom
2 Northeastern University, Boston, United States

Abstract. Monotonicity in concurrent systems stipulates that, in any global state,
extant system actions remain executable when new processes are added to the
state. This concept is not only natural and common in multi-threaded software,
but also useful: if every thread’s memory is finite, monotonicity often guaran-
tees the decidability of safety property verification even when the number of
running threads is unknown. In this paper, we show that the act of obtaining
finite-data thread abstractions for model checking can be at odds with mono-
tonicity: Predicate-abstracting certain widely used monotone software results in
non-monotone multi-threaded Boolean programs — the monotonicity is lost in
the abstraction. As a result, well-established sound and complete safety checking
algorithms become inapplicable; in fact, safety checking turns out to be undecid-
able for the obtained class of unbounded-thread Boolean programs. We demon-
strate how the abstract programs can be modified into monotone ones, without
affecting safety properties of the non-monotone abstraction. This significantly
improves earlier approaches of enforcing monotonicity via overapproximations.

1 Introduction

This paper addresses non-recursive procedures executed by multiple threads (e.g. dy-
namically generated, and possibly unbounded in number), which communicate via
shared variables or higher-level mechanisms such as mutexes. OS-level code, includ-
ing Windows, UNIX, and Mac OS device drivers, makes frequent use of such concur-
rency APIs, whose correct use is therefore critical to ensure a reliable programming
environment.

The utility of predicate abstraction as a safety analysis method is known to depend
critically on the choice of predicates: the consequences of a poor choice range from
inferior performance to flat-out unprovability of certain properties. We propose in this
paper an extension of predicate abstraction to multi-threaded programs that enables
reasoning about intricate data relationships, namely

shared-variable: “shared variables s and t are equal”,
single-thread: “local variable l of thread i is less than shared variable s”, and
inter-thread: “local variable l of thread i is less than variable l in all other threads”.
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Why such a rich predicate language? For certain concurrent algorithms such as the
widely used ticket busy-wait lock algorithm [4] (the default locking mechanism in the
Linux kernel since 2008; see Fig. 1), the verification of elementary safety properties
requires single- and inter-thread relationships. They are needed to express, for instance,
that a thread holds the minimum ticket value, an inter-thread relationship.

In the main part of the paper, we address the problem of full parameterized (un-
bounded-thread) program verification with respect to our rich predicate language. Such
reasoning requires first that the n-thread abstract program P̂n, obtained by existential
inter-thread predicate abstraction of the n-thread concrete program Pn, is rewritten
into a single template program P̃ to be executed by (any number of) multiple threads.
In order to capture the semantics of these programs in the template P̃, the template
programming language must itself permit variables that refer to the currently executing
or a generic passive thread; we call such programs dual-reference (DR). We describe
how to obtain P̃, namely essentially as an overapproximation of P̂b, for a constant
b that scales linearly with the number of inter-thread predicates used in the predicate
abstraction.

Given the Boolean dual-reference program P̃ , we might now expect the unbounded-
thread replicated program P̃∞ to form a classical well quasi-ordered transition sys-
tem [2], enabling the fully automated, algorithmic safety property verification in the
abstract. This turns out not to be the case: the expressiveness of dual-reference pro-
grams renders parameterized program location reachability undecidable, despite the
finite-domain variables. The root cause is the lack of monotonicity of the transition re-
lation with respect to the standard partial order over the space of unbounded thread
counters. That is, adding passive threads to the source state of a valid transition can
invalidate this transition and in fact block the system. Since the input C programs are,
by contrast, perfectly monotone, we say the monotonicity is lost in the abstraction. As
a result, our abstract programs are in fact not well quasi-ordered.

Inspired by earlier work on monotonic abstractions [3], we address this problem by
restoring the monotonicity using a simple closure operator, which enriches the transi-
tion relation of the abstract program P̃ such that the obtained program P̃m engenders a
monotone (and thus well quasi-ordered) system. The closure operator essentially termi-
nates passive threads that block transitions allowed by other passive threads. In contrast
to those earlier approaches, which enforce (rather than restore) monotonicity in gen-
uinely non-monotone systems, we exploit the fact that the input programs are mono-
tone. As a result, the monotonicity closure P̃m can be shown to be safety-equivalent to
the intermediate program P̃.

To summarize, the central contribution of this paper is a predicate abstraction strat-
egy for unbounded-thread C programs, with respect to the rich language of inter-thread
predicates. This language allows the abstraction to track properties that are essentially
universally quantified over all passive threads. To this end, we first develop such a
strategy for a fixed number of threads. Second, in preparation for extending it to the
unbounded case, we describe how the abstract model, obtained by existential predi-
cate abstraction for a given thread count n, can be expressed as a template program
that can be multiply instantiated. Third, we show a sound and complete algorithm for
reachability analysis for the obtained parameterized Boolean dual-reference programs.
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struct Spinlock {
natural s := 1; // ticket being served
natural t := 1; }; // next free ticket

struct Spinlock lock; // shared

void spin_lock() {
natural l := 0; // local

�1: l := fetch_and_add(lock.t);
�2: while (l �= lock.s)

/∗ spin ∗/; }

void spin_unlock() {
�3: lock.s++; }

The ticket algorithm: Shared vari-
able lock has two integer components:
s holds the ticket currently served (or,
if none, the ticket served next), while
t holds the ticket to be served after all
waiting threads have had access.
To request access to the locked region,
a thread atomically retrieves the value
of t and then increments t. The thread
then busy-waits (“spins”) until local
variable l agrees with shared s. To un-
lock, a thread increments s.

See [21] for more intuition.

Fig. 1. Our goal is to verify “unbounded-thread mutual exclusion”: no matter how many threads
try to acquire and release the lock concurrently, no two of them should simultaneously be between
the calls to functions spin_lock and spin_unlock

We overcome the undecidability of the problem by building a monotone closure that
enjoys the same safety properties as the original abstract dual-reference program.

We omit in this paper practical aspects such as predicate discovery, the algorithmic
construction of the abstract programs, and abstraction refinement. In our technical re-
port [21], we provide, however, an extensive appendix, with proofs of all lemmas and
theorems.

2 Inter-Thread Predicate Abstraction

In this section we introduce single- and inter-thread predicates, with respect to which
we then formalize existential predicate abstraction. Except for the extended predicate
language, these concepts are mostly standard and lay the technical foundations for the
contributions of this paper.

2.1 Input Programs and Predicate Language

2.1.1 Asynchronous Programs. An asynchronous program P allows only one thread
at a time to change its local state. We model P , designed for execution by n ≥ 1 con-
current threads, as follows. The variable set V of a program P is partitioned into sets
S and L. The variables in S, called shared, are accessible jointly by all threads, and
those in L, called local, are accessible by the individual thread that owns the variable.
We assume the statements of P are given by a transition formula R over unprimed
(current-state) and primed (next-state) variables, V and V ′ = {v′ : v ∈ V}. Further, the
initial states are characterized by the initial formula I over V. We assume I is express-
ible in a suitable logic for which existential quantification is computable (required later
for the abstraction step).
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As usual, the computation may be controlled by a local program counter pc, and
involve non-recursive function calls. When executed by n threads, P gives rise to n-
thread program states consisting of the valuations of the variables in Vn = S ∪ L1 ∪
. . . Ln, where Li = {li : l ∈ L}. We call a variable set uniformly indexed if its vari-
ables either all have no index, or all have the same index. For a formula f and two
uniformly-indexed variable sets X1 and X2, let f{X1�X2} denote f after replacing
every occurrence of a variable in X1 by the variable in X2 with the same base name, if
any; unreplaced if none. We write f{X1��X2} short for f{X1�X2}{X1

′�X2
′}. As an

example, given S = {s} and L = {l}, we have (l′ = l + s){L��La} = (l′
a = la+s).

Finally, let X
◦= X ′ stand for ∀x ∈ X : x = x′.

The n-thread instantiation Pn is defined for n ≥ 1 as

Pn = (Rn, In) =
(∨n

a=1
(Ra)n,

∧n

a=1
I{L�La}

)
(1)

where (Ra)n :: R{L��La} ∧
∧

p:p�=a
Lp

◦= L′
p . (2)

Formula (Ra)n asserts that the shared variables, and the variables of the active (execut-
ing) thread a are updated according to R, while the local variables of passive threads
p �= a are not modified (p ranges over {1, . . . , n}). A state is initial if all threads are
in a state satisfying I. An n-thread execution is a sequence of n-thread program states
whose first state satisfies In and whose consecutive states are related by Rn. We as-
sume the existence of an error location in P ; an error state is one where some thread
resides in the error location. P is safe if no execution exists that ends in an error state.
Mutex conditions can be checked using a ghost semaphore and redirecting threads to
the error location if they try to access the critical section while the semaphore is set.

2.1.2 Predicate Language. We extend the predicate language from [10] to allow the
use of the passive-thread variables LP = {lP : l ∈ L}, each of which represents a
local variable owned by a generic passive thread. The presence of variables of various
categories gives rise to the following predicate classification.

Definition 1. A predicate Q over S, L and LP is shared if it contains variables from
S only, local if it contains variables from L only, single-thread if it contains variables
from L but not from LP , and inter-thread if it contains variables from L and from LP .

Single- and inter-thread prediactes may contain variables from S. For example, in the
ticket algorithm (Fig. 1), with S = {s, t} and L = {l}, examples of shared, local,
single- and inter-thread predicates are: s = t, l = 5, s = l and l �= lP , respectively.

Semantics. Let Q[1], . . . , Q[m] be m predicates (any class). Predicate Q[i] is evaluated
in a given n-thread state v (n ≥ 2) with respect to a choice of active thread a:

Q[i]a ::
∧

p:p�=a
Q[i]{L�La}{LP �Lp} . (3)

As special cases, for single-thread and shared predicates (no LP variables), we have
Q[i]a = Q[i]{L�La} and Q[i]a = Q[i], resp. We write v |= Q[i]a if Q[i]a holds in
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state v. Predicates Q[i] give rise to an abstraction function α, mapping each n-thread
program state v to an m × n bit matrix with entries

α(v)i,a =
{

T if v |= Q[i]a
F otherwise .

(4)

Function α partitions the n-thread program state space via m predicates into 2m×n

equivalence classes. As an example, consider the inter-thread predicates l ≤ lP , l >
lP , and l �= lP for a local variable l, n = 4 and the state v :: (l1, l2, l3, l4) =
(4, 4, 5, 6):

α(v) =

⎛
⎝

T T F F
F F F T
F F T T

⎞
⎠ . (5)

In the matrix, row i ∈ {1, 2, 3} lists the truth of predicate Q[i] for each of the four
threads in the active role. Predicate l ≤ lP captures whether a thread owns the mini-
mum value for local variable l (true for a = 1, 2); l > lP tracks whether a thread owns
the unique maximum value (true for a = 4) ; finally l �= lP captures the uniqueness of
a thread’s copy of l (true for a = 3, 4).

Inter-thread predicates and abstraction. Predicates that reason universally about threads
have been used successfully as targets in (inductive) invariant generation procedures
[5,24]. In this paper we discuss their role in abstractions. The use of these fairly expres-
sive and presumably expensive predicates is not by chance: automated methods that
cannot reason about them [13,10,26] essentially fail for the ticket algorithm in Fig. 1:
for a fixed number of threads that concurrently and repeatedly (e.g. in an infinite loop)
request and release lock ownership, the inter-thread relationships need to be “simulated”
via enumeration, incurring very high time and space requirements, even for a handful
of threads. In the unbounded-thread case, they diverge. This is essentially due to known
limits of thread-modular and Owicki-Gries style proof systems, which do not have ac-
cess to inter-thread predicates [23]. In [21], we show that the number of single-thread
predicates needed to prove correctness of the ticket algorithm depends on n, from which
unprovability in the unbounded case follows.

2.2 Existential Inter-Thread Predicate Abstraction

Embedded into our formalism, the goal of existential predicate abstraction [8,18] is to
derive an abstract program P̂n by treating the equivalence classes induced by Eq. (4) as
abstract states. P̂n thus has m × n Boolean variables:

V̂n =
⋃n

a=1 L̂a =
⋃n

a=1{b[i]a : 1 ≤ i ≤ m} .

Variable b[i]a tracks the truth of predicate Q[i] for active thread a. This is formalized in
(6), relating concrete and abstract n-thread states (valuations of Vn and V̂n, resp.):

Dn ::
m∧

i=1

n∧
a=1

b[i]a ⇔ Q[i]a . (6)



146 A. Kaiser, D. Kroening, and T. Wahl

For a formula f , let f ′ denote f after replacing each variable by its primed version. We

then have P̂n = (R̂n, În) =
(∨n

a=1(R̂a)n, În
)

where

(R̂a)n :: ∃VnV ′
n : (Ra)n ∧ Dn ∧ (Dn)′, (7)

În :: ∃Vn : In ∧ Dn . (8)

As an example, consider the decrement operation l := l − 1 on a local integer
variable l, and the inter-thread predicate l < lP . Using Eq. (7) with n = 2, a =
1, we get 4 abstract transitions, which are listed in Table 1. The table shows that the
abstraction is no longer asynchronous (treating b1 as belonging to thread 1, b2 to thread
2): in the highlighted transition, the executing thread 1 changes (its pc and hence) its
local state, and so does thread 2. By contrast, on the right we have l2 = l′

2 in all rows.
The loss of asynchrony will become relevant in Sect. 3, where we define a suitable
abstract Boolean programming language (which then necessarily must accommodate
non-asynchronous programs).

Table 1. Abstraction (R̂1)2 for stmt. l := l−1 against predicate l < lP (left); concrete witness
transitions, i.e. elements of (R1)2 (right). The highlighted row indicates asynchrony violations.

b1 b2 b′
1 b′

2 l1 l2 l′
1 l′

2

F F T F 1 1 0 1
F T F F 1 0 0 0
F T F T 2 0 1 0
T F T F 1 2 0 2

Proving the ticket algorithm (fixed-thread case). As in any existential abstraction, the
abstract program P̂n overapproximates (the set of executions of) the concrete program
Pn; the former can therefore be used to verify safety of the latter. We illustrate this
using the ticket algorithm (Fig. 1). Consider the predicates Q[1] :: l �= lP , Q[2] :: t >
max(l, lP ), and Q[3] :: s = l. The first two are inter-thread; the third is single-thread.
The predicates assert the uniqueness of a ticket (Q[1]), that the next free ticket is larger
than all tickets currently owned by threads (Q[2]), and that a thread’s ticket is currently
being served (Q[3]). The abstract reachability tree for P̂n and these predicates reveals
that mutual exclusion is satisfied: there is no state with both threads in location �3. The
tree grows exponentially with n.

3 From Existential to Parametric Abstraction

Classical existential abstraction as described in Sect. 2.2 obliterates the symmetry pres-
ent in the concrete concurrent program, which is given as the n-thread instantiation of
a single-thread template P : the abstraction is instead formulated via predicates over the
explicitly expanded n-thread program Rn. As observed in previous work [10], such a
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“symmetry-oblivious” approach suffers from poor scalability for fixed-thread verifica-
tion problems. Moreover, parametric reasoning over an unknown number of threads is
impossible since the abstraction (7) directly depends on n.

To overcome these problems, we now derive an overapproximation of P̂n via a
generic program template P̃ that can be instantiated for any n. There is, however, one
obstacle: instantiating a program (such as P) formulated over shared variables and one
copy of the thread-local variables naturally gives rise to asynchronous concurrency. The
programs resulting from inter-thread predicate abstraction are, however, not asynchro-
nous, as we have seen. As a result, we need a more powerful abstract programming
language.

3.1 Dual-Reference Programs

In contrast to asynchronous programs, the variable set Ṽ of a dual-reference (DR) pro-
gram P̃ is partitioned into two sets: L̃, the local variables of the active thread as before,
and L̃P = {lP : l ∈ L̃}. The latter set contains passive-thread variables, which, in-
tuitively, regulate the behavior of non-executing threads. To simplify reasoning about
DR programs, we exclude classical shared variables from the description: they can be
simulated using the active and passive flavors of local variables (see [21]).

The statements of P̃ are given by a transition formula R̃ over Ṽ and Ṽ ′, now poten-
tially including passive-thread variables. Similarly, Ĩ may contain variables from L̃P .
The n-thread instantiation P̃n of a DR program P̃ is defined for n ≥ 2 as

P̃n = (R̃n, Ĩn) =
(∨n

a=1
(R̃a)n,

∨n

a=1
(Ĩa)n

)
(9)

where (R̃a)n ::
∧

p:p�=a
R̃{L̃��L̃a}{L̃P ��L̃p} (10)

(Ĩa)n ::
∧

p:p�=a
Ĩ{L̃�L̃a}{L̃P �L̃p} (11)

Recall that f{X1��X2} denotes index replacement of both current-state and next-state
variables. Eq. (10) encodes the effect of a transition on the active thread a, and n − 1
passive threads p. The conjunction ensures that the transition formula R̃ holds no matter
which thread p �= a takes the role of the passive thread: transitions that “work” only for
select passive threads are rejected.

3.2 Computing an Abstract Dual-Reference Template

From the existential abstraction P̂n we derive a Boolean dual-reference template pro-
gram P̃ such that, for all n, the n-fold instantiation P̃n overapproximates P̂n. The
variables of P̃ are L̃ = {b[i] : 1 ≤ i ≤ m} and L̃P = {b[i]P : 1 ≤ i ≤ m}. Intuitively,
the transitions of P̃ are those that are feasible, for some n, in P̂n, given active thread
1 and passive thread 2. We first compute the set R̃(n) of these transitions for fixed n.
Formally, the components of P̃(n) = (R̃(n), Ĩ(n)) are, for n ≥ 2,

R̃(n) :: ∃L̂3, L̂′
3, . . . , L̂n, L̂′

n : (R̂1)n{L̂1��L̃}{L̂2��L̃P } (12)

Ĩ(n) :: ∃L̂3, . . . , L̂n : În {L̂1�L̃}{L̂2�L̃P } (13)
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We apply this strategy to the earlier example of the decrement statement l := l − 1.
To compute Eq. (12) first with n = 2, we need (R̂1)2, which was enumerated previously
in Table 1. Simplification results in a Boolean DR program with variables b and bP and
transition relation

R̃(2) = (¬b ∧ bP ∧ ¬b′) ∨ (¬bP ∧ b′ ∧ ¬b′
P ) . (14)

Using (14) as the template R̃ in (10) generates existential abstractions of many concrete
decrement transitions; for instance, for n = 2 and a = 1 we get back the transition rela-
tion in Table 1. The question is now: does (14) suffice as a template, i.e. does (R̃(2))n

overapproximate R̂n for all n? The answer is no: the abstract 3-thread transitions shown
in Table 2 are not permitted by (R̃(2))n

for any n, since neither ¬b ∧ bP nor b′ ∧ ¬b′
P

are satisfied for all choices of passive threads (violations highlighted in the table).
We thus increase n to 3, recompute Eq. (12), and obtain

R̃(3) :: R̃(2) ∨ (¬b ∧ ¬bP ∧ ¬b′ ∧ ¬b′
P ) . (15)

The new disjunct accommodates the abstract transitions highlighted in Table 2, which
were missing before.

Table 2. Part of the abstraction (R̂1)3 for stmt. l := l − 1 against predicate l < lP (left);
concrete witness transitions (right). The highlighted elements are inconsistent with (14) as a tem-
plate.

b1 b2 b3 b′
1 b′

2 b′
3 l1 l2 l3 l′

1 l′
2 l′

3

F F F F F F 1 0 0 0 0 0
F F T F F F 1 1 0 0 1 0
F F T F F T 2 1 0 1 1 0

Does (R̃(3))n
overapproximate R̂n for all n? When does the process of increasing

n stop? To answer these questions, we first state the following diagonalization lemma,
which helps us prove the overapproximation property for the template program.

Lemma 2. (P̃(n))n
overapproximates P̂n: For every n ≥ 2 and every a, (R̂a)n ⇒

(R̃(n)a)n and În ⇒ (Ĩ(n)a)n.

We finally give a saturation bound for the sequence (P̃(n)). Along with the diago-
nalization lemma, this allows us to obtain a template program P̃ independent of n, and
enable parametric reasoning in the abstract.

Theorem 3. Let #IT be the number of inter-thread predicates among the Q[i]. Then
the sequence (P̃(n)) stabilizes at b = 4 × #IT + 2, i.e. for n ≥ b, P̃(n) = P̃(b).

Corollary 4 (from L. 2,T. 3). Let P̃ := P̃(b), for b as in Thm. 3. The components of
P̃ are thus (R̃, Ĩ) = (R̃(b), Ĩ(b)). Then, for n ≥ 2, P̃n overapproximates P̂n.
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Building a template DR program thus requires instantiating the existentially ab-
stracted transition relation for a number b of threads that is linear in the number of
inter-thread predicates with respect to which to abstraction is built.

As a consequence of losing asynchrony in the abstraction, many existing model
checkers for concurrent software become inapplicable [25,11,12]. For a fixed thread
count n, the problem can be circumvented by forgoing the replicated nature of the con-
current programs, as done in [10] for boom tool: it proves the ticket algorithm correct
up to n = 3, but takes a disappointing 30 minutes. The goal of the following section is
to design an efficient and, more importantly, fully parametric solution.

4 Unbounded-Thread Dual-Reference Programs

The multi-threaded Boolean dual-reference programs P̃n resulting from predicate-ab-
stracting asynchronous programs against inter-thread predicates are symmetric and free
of recursion. The symmetry can be exploited using classical methods that “counterize”
the state space [17]: a global state is encoded as a vector of local-state counters, each of
which records the number of threads currently occupying a particular local state.

These methods are applicable to unbounded thread numbers as well, in which case
the local state counters range over unbounded natural numbers [0, ∞[. The fact that
the abstract program executed by each thread is finite-state now might suggest that
the resulting infinite-state counter systems can be modeled as vector addition systems
(as done in [17]) or, more generally, as well quasi-ordered transition systems [15,1]
(defined below). This would give rise to sound and complete algorithms for local-state
reachability in such programs.

This strategy turns out to be wrong: the full class of Boolean DR programs is expres-
sive enough to render safety checking for an unbounded number of threads undecidable,
despite the finite-domain variables:

Theorem 5. Program location reachability for Boolean DR programs run by an un-
bounded number of threads is undecidable.

The proof reduces the halting problem for 2-counter machines to a reachability problem
for a DR program P̃ . Counter values ci are reduced to numbers of threads in program
locations di of P̃ . A zero-test for counter ci is reduced to testing the absence of any
thread in location di. This condition can be expressed using passive-thread variables,
but not using traditional single-thread local variables. (Details of the proof are in [21].)

Thm. 5 implies that the unbounded-counter systems obtained from asynchronous
programs are in fact not well quasi-ordered. How come? Can this problem be fixed, in
order to permit a complete verification method? If so, at what cost?

4.1 Monotonicity in Dual-Reference Programs

For a transition system (Σ,�) to be well-quasi ordered, we need two conditions to be
in place [15,1,2]:

Well Quasi-Orderedness: There exists a reflexive and transitive binary relation � on
Σ such that for every infinite sequence v, w, . . . of states in Σ there exist i, j with
i < j and vi � vj .
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Monotonicity: For any v, v′, w with v � v′ and v � w there exists w′ such that
w � w′ and v′ � w′.

We apply this definition to the case of dual-reference programs. Representing global
states of the abstract system P̃n defined in Sect. 3 as counter tuples, we can define � as

(n1, . . . , nk) � (n′
1, . . . , n′

k) :: ∀i = 1..k : ni ≤ n′
i

where k is the number of thread-local states. We can now characterize monotonicity of
DR programs as follows:

Lemma 6. Let R̃ be the transition relation of a DR program. Then the infinite-state
transition system ∪∞

n=1R̃n is monotone (with respect to �) exactly if, for all k ≥ 2:

(v, v′) ∈ R̃k ⇒ ∀lk+1 ∃l′
k+1, π :

(〈v, lk+1〉, π(〈v′, l′
k+1〉)) ∈ R̃k+1 . (16)

In (16), the expression ∀lk+1∃l′
k+1 . . . quantifies over valuations of the local variables

of thread k+1. The notation 〈v, lk+1〉 denotes a (k+1)-thread state that agrees with v in
the first k local states and whose last local state is lk+1; similarly 〈v′, l′

k+1〉. Symbol π
denotes a permutation on {1, . . . , k + 1} that acts on states by acting on thread indices,
which effectively reorders thread local states.

Asynchronous programs are trivially monotone (and DR): Eq. (16) is satisfied by
choosing l′

k+1 := lk+1 and π the identity. Table 3 shows instructions found in non-asyn-
chronous programs that destroy monotonicity, and why. For example, the swap instruc-
tion in the first row gives rise to a DR program with a 2-thread transition (0, 0, 0, 0) ∈
R̃2. Choosing l3 = 1 in (16) requires the existence of a transition in R̃3 of the form
(l1, l2, l3, l′

1, l′
2, l′

3) = (0, 0, 1, π(0, 0, l′
3)), which is impossible: by equations (9)

and (10), there must exist a ∈ {1, 2, 3} such that for {p, q} = {1, 2, 3} \ {a}, both “a
swaps with p” and “a swaps with q” hold, i.e.

l′
p = la ∧ l′

a = lp ∧ l′
q = la ∧ l′

a = lq ,

which is equivalent to l′
a = lp = lq ∧ la = l′

p = l′
q. It is easy to see that this formula

is inconsistent with the partial assignment (0, 0, 1, π(0, 0, l′
3)), no matter what l′

3.
More interesting for us is the fact that asynchronous programs (= our input lan-

guage) are monotone, while their parametric predicate abstractions may not be; this
demonstrates that the monotonicity is in fact lost in the abstraction. Consider again the
decrement instruction l := l − 1, but this time abstracted against the inter-thread pred-
icate Q :: l = lP . Parametric abstraction results in the two-thread and three-thread
template instantiations

R̃2 = (¬b1 ∨ ¬b′
1) ∧ b1 = b2 ∧ b′

1 = b′
2

R̃3 = (¬b1 ∨ ¬b′
1) ∧ b1 = b2 = b3 ∧ b′

1 = b′
2 = b′

3 .

Consider the transition (0, 0) → (1, 1) ∈ R̃2 and the three-thread state w = (0, 0, 1) �
(0, 0) : w clearly has no successor in R̃3 (it is in fact inconsistent), violating mono-
tonicity. We discuss in Sect. 4.2 what happens to the decrement instruction with respect
to predicate l < lP .
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Table 3. Each row shows a single-instruction program, whether the program gives rise to a mono-
tone system and, if not, an assignment that violates Eq. (17). (Some of these programs are not
finite-state.)

Dual-reference program Monotonicity

instruction variables mon.? assgn. violating (17)

l, lP := lP , l l ∈ B no l = 0, l′ = 1
l, lP := l + 1, lP − 1 l ∈ N yes

lP := lP + l l ∈ N yes
l := l + lP l ∈ N no l = l′ = 1

lP := c l, c ∈ N yes

4.2 Restoring Monotonicity in the Abstraction

Our goal is now to restore the monotonicity that was lost in the parametric abstraction.
The standard covering relation � defined over local state counter tuples turns mono-
tone and Boolean DR programs into instances of well quasi-ordered transition systems.
Program location reachability is then decidable, even for unbounded threads.

In order to do so, we first derive a sufficient condition for monotonicity that can be
checked locally over R̃, as follows.

Theorem 7. Let R̃ be the transition relation of a DR program. Then the infinite-state
transition system ∪∞

n=1R̃n is monotone if the following formula over L̃ × L̃′ is valid:

∃L̃P L̃′
P : R̃ ⇒ ∀L̃P ∃L̃′

P : R̃ . (17)

Unlike the monotonicity characterization given in Lemma 6, Eq. (17) is formulated
only about the template program R̃. It suggests that, if R̃ holds for some valuation of
its passive-thread variables, then no matter how we replace the current-state passive-
thread variables L̃P , we can find next-state passive-thread variables L̃′

P such that R̃
still holds. This is true for asynchronous programs, since here L̃P = ∅. It fails for the
swap instruction in the first row of Table 3: the instruction gives rise to the DR program
R̃ :: l′ = lP ∧ l′

P = l. The assignment on the right in the table satisfies R̃, but if lP

is changed to 0, R̃ is violated no matter what value is assigned to l′
P .

We are now ready to modify the possibly non-monotone abstract DR program P̃
into a new, monotone abstraction P̃m. Our solution is similar in spirit to, but different
in effect from, earlier work on monotonic abstractions [3], which proposes to delete
processes that violate universal guards and thus block a transition. This results in an
overappoximation of the original system and thus possibly spuriously reachable error
states. By contrast, exploiting the monotonicity of the concrete program P , we can build
a monotone program P̃m that is safe exactly when P̃ is, thus fully preserving soundness
and precision of the abstraction P̃.

Definition 8. The non-monotone fragment (NMF) of a DR program with transition
relation R̃ is the formula over L̃ × L̃P × L̃′:

F(R̃) :: ¬∃L̃′
P : R̃ ∧ ∃L̃P L̃′

P : R̃ . (18)
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The NMF encodes partial assignments (l, lP , l′) that cannot be extended, via any l′
P ,

to a full assignment satisfying R̃, but can be extended for some valuation of L̃P other
than lP . We revisit the two non-monotone instructions from Table 3. The NMF of
l, lP := lP , l is l′ �= lP : this clearly cannot be extended to an assignment satisfying
R̃, but when lP is changed to l′, we can choose l′

P = l to satisfy R̃. The non-
monotone fragment of l := l + lP is l′ ≥ l ∧ l′ �= l + lP .

Eq. (18) is slightly stronger than the negation of (17): the NMF binds the values of
the L̃P variables for which a violation of R̃ is possible. It can be used to “repair” R̃:

Lemma 9. For a DR program with transition relation R̃, the program with transition
relation R̃ ∨ F(R̃) is monotone.

Lemma 9 suggests to add artificial transitions to P̃ that allow arbitrary passive-thread
changes in states of the non-monotone fragment, thus lifting the blockade previously
caused by some passive threads. While this technique restores monotonicity, the prob-
lem is of course that such arbitrary changes will generally modify the program behavior;
in particular, an added transition may lead a thread directly into an error state that used
to be unreachable.

In order to instead obtain a safety-equivalent program, we prevent passive threads
that block a transition in P̃n from affecting the future execution. This can be realized
by redirecting them to an auxiliary sink state. Let �⊥ be a fresh program label.

Definition 10. The monotone closure of DR program P̃ = (R̃, Ĩ) is the DR program
P̃m = (R̃m, Ĩ) with the transition relation R̃m :: R̃ ∨ (F(R̃) ∧ (pc′

P = �⊥)) .

This extension of the transition relation has the following effects: (i) for any program
state, if any passive thread can make a move, so can all, ensuring monotonicity, (ii) the
added moves do not affect the safety of the program, and (iii) transitions that were
previously possible are retained, so no behavior is removed. The following theorem
summarizes these claims:

Theorem 11. Let P be an asynchronous program, and P̃ its parametric abstraction.
The monotone closure P̃m of P̃ is monotone. Further, (P̃m)n

is safe exactly if P̃n is.

Thm. 11 justifies our strategy for reachability analysis of an asynchronous pro-
gram P : form its parametric predicate abstraction P̃ described in Sections 2 and 3,
build the monotone closure P̃m, and analyze (P̃m)∞ using any technique for mono-
tone systems.

Proving the parameterized ticket algorithm. Applying this strategy to the ticket
algorithm yields a well quasi-ordered transition system for which the backward reach-
ability method described in [1] returns “uncoverable”, confirming that the ticket algo-
rithm guarantees mutual exclusion, this time for arbitrary thread counts. We remind
the reader that the ticket algorithm is challenging for existing techniques: cream [19],
slab [11] and symmpa [10] handle only a fixed number of threads, and the resource re-
quirements of these algorithms grow rapidly; none of them can handle even a handful
of threads. The recent approach from [14] generates polynomial-size proofs, but again
only for fixed thread counts.
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5 Comparison with Related Work

Existing approaches for verifying asynchronous shared-memory programs typically do
not exploit the monotone structure that source-level multi-threaded programs often
naturally exhibit [20,7,9,26,19,10,12,14]. For example, the constraint-based approach
in [19], implemented in cream, generates Owicki-Gries and rely-guarantee type proofs.
It uses predicate abstraction in a CEGAR loop to generate environment invariants for
fixed thread counts, whereas our approach directly checks the interleaved state space
and exploits monotonicity. Whenever possible, cream generates thread-modular proofs
by prioritizing predicates that do not refer to the local variables of other threads.

A CEGAR approach for fixed-thread symmetric concurrent programs has been imple-
mented in symmpa [10]. It uses predicate abstraction to generate a Boolean Broadcast
program (a special case of DR program). Their approach cannot reason about relation-
ships between local variables across threads, which is crucial for verifying algorithms
such as the ticket lock. Nevertheless, even the restricted predicate language of [10] can
give rise to non-asynchronous programs. As a result, their technique cannot be extended
to unbounded thread counts with well quasi-ordered systems technology.

Recent work on data flow graph representations of fixed-thread concurrent programs
has been applied to safety property verification [14]. The inductive data flow graphs
can serve as succinct correctness proofs for safety properties; for the ticket example
they generate correctness proofs of size quadratic in n. Similar to [14], the technique
in [12] uses data flow graphs to compute invariants of concurrent programs with un-
bounded threads (implemented in duet). In contrast to our approach, which uses an
expressive predicate language, duet constructs proofs from relationships between ei-
ther solely shared or solely local variables. These are insufficient for many benchmarks
such as the parameterized ticket algorithm.

Predicates that, like our inter-thread predicates, reason over all participating pro-
cesses/threads have been used extensively in invariant generation methods [5,16,22].
As a recent example, an approach that relies on abstract interpretation instead of model
checking is [24]. Starting with a set of candidate invariants (assertions), the approach
builds a reflective abstraction, from which invariants of the concrete system are ob-
tained in a fixed point process. These approaches and ours share the insight that complex
relationships over all threads may be required to prove easy-to-state properties such as
mutual exclusion. They differ fundamentally in the way these relationships are used: ab-
straction with respect to a given set Q of quantified predicates determines the strongest
invariant expressible as a Boolean formula over the set Q; the result is unlikely to be
expressible in the language that defines Q. Future work will investigate how invariant
generation procedures can be used towards predicate discovery in our technique.

The idea of “making” systems monotone, in order to enable wqo-based reasoning,
was pioneered in earlier work [6,3]. Bingham and Hu deal with guards that require
universal quantification over thread indices, by transforming such systems into Broad-
cast protocols. This is achieved by replacing conjunctively guarded actions by transi-
tions that, instead of checking a universal condition, execute it assuming that any thread
not satisfying it “resigns”. This happens via a designated local state that isolates such
threads from participation in future the computation. The same idea was further devel-
oped by Abdulla et al. in the context of monotonic abstractions. Our solution to the loss
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of monotonicity was in some way inspired by these works, but differs in two crucial
aspects: first, our concrete input systems are asynchronous and thus monotone, so our
incentive to preserve monotonicity in the abstract is strong. Second, exploiting the in-
put monotonicity, we can achieve a monotonic abstraction that is safety-equivalent to
the non-monotone abstraction and thus not merely an error-preserving approximation.
This is essential, to avoid spurious counterexamples in addition to those unavoidably
introduced by the predicate abstraction.

6 Concluding Remarks

We have presented in this paper a comprehensive verification method for arbitrarily-
threaded asynchronous shared-variable programs. Our method is based on predicate
abstraction and permits expressive universally quantified inter-thread predicates, which
track relationships such as “my ticket number is the smallest, among all threads”. Such
predicates are required to verify, via predicate abstraction, some widely used algorithms
like the ticket lock. We found that the abstractions with respect to these predicates
result in non-monotone finite-data replicated programs, for which reachability is in fact
undecidable. To fix this problem, we strengthened the earlier method of monotonic
abstractions such that it does not introduce spurious errors into the abstraction.

We view the treatment of monotonicity as the major contribution of this work. Pro-
gram design often naturally gives rise to “monotone concurrency”, where adding com-
ponents cannot disable existing actions, up to component symmetry. Abstractions that
interfere with this feature are limited in usefulness. Our paper shows how the feature
can be inexpensively restored, allowing such abstraction methods and powerful infinite-
state verification methods to coexist peacefully.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. B. Symb. Log. (2010)
2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems of infinite-

state systems. In: LICS (1996)
3. Abdulla, P.A., Delzanno, G., Rezine, A.: Monotonic abstraction in parameterized verifica-

tion. ENTCS (2008)
4. Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-Cummings

Publishing Co., Inc., Redwood City (1991)
5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with automat-

ically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

6. Bingham, J.D., Hu, A.J.: Empirically efficient verification for a class of infinite-state systems.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 77–92. Springer,
Heidelberg (2005)

7. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-passing
C programs with recursive calls. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In: TOPLAS
(1994)



Lost in Abstraction: Monotonicity in Multi-threaded Programs 155

9. Cook, B., Kroening, D., Sharygina, N.: Verification of Boolean programs with unbounded
thread creation. Theoretical Comput. Sci. (2007)

10. Donaldson, A.F., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.: Counterexample-guided
abstraction refinement for symmetric concurrent programs. In: FMSD (2012)

11. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: A certifying model
checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010)

12. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by modular
reasoning about data and control. In: POPL (2012)

13. Farzan, A., Kincaid, Z.: DUET: Static analysis for unbounded parallelism. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 191–196. Springer, Heidelberg (2013)

14. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL (2013)
15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical

Comput. Sci. (2001)
16. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,

pp. 191–202. ACM (2002)
17. German, S., Sistla, P.: Reasoning about systems with many processes. JACM (1992)
18. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
19. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying

multi-threaded programs. In: POPL (2011)
20. Henzinger, T., Jhala, R., Majumdar, R.: Race checking by context inference. In: PLDI (2004)
21. Kaiser, A., Kroening, D., Wahl, T.: Lost in abstraction: Monotonicity in multi-threaded pro-

grams (extended technical report). CoRR (2014)
22. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction.

In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer,
Heidelberg (2004)

23. Malkis, A.: Cartesian Abstraction and Verification of Multithreaded Programs. PhD thesis,
Albert-Ludwigs-Universität Freiburg (2010)

24. Sanchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.-Y.E.: Invariant generation for
parametrized systems using self-reflection. In: Miné, A., Schmidt, D. (eds.) SAS 2012.
LNCS, vol. 7460, pp. 146–163. Springer, Heidelberg (2012)

25. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concurrent pro-
grams using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

26. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent
Linux device drivers. In: ASE (2007)



Synthesis from Component Libraries with Costs

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, The Hebrew University, Israel

Abstract. Synthesis is the automated construction of a system from its specifi-
cation. In real life, hardware and software systems are rarely constructed from
scratch. Rather, a system is typically constructed from a library of components.
Lustig and Vardi formalized this intuition and studied LTL synthesis from com-
ponent libraries. In real life, designers seek optimal systems. In this paper we add
optimality considerations to the setting. We distinguish between quality consid-
erations (for example, size – the smaller a system is, the better it is), and pricing
(for example, the payment to the company who manufactured the component).
We study the problem of designing systems with minimal quality-cost and price.
A key point is that while the quality cost is individual – the choices of a designer
are independent of choices made by other designers that use the same library,
pricing gives rise to a resource-allocation game – designers that use the same
component share its price, with the share being proportional to the number of
uses (a component can be used several times in a design). We study both closed
and open settings, and in both we solve the problem of finding an optimal design.
In a setting with multiple designers, we also study the game-theoretic problems
of the induced resource-allocation game.

1 Introduction

Synthesis is the automated construction of a system from its specification. The classical
approach to synthesis is to extract a system from a proof that the specification is sat-
isfiable. In the late 1980s, researchers realized that the classical approach to synthesis
is well suited to closed systems, but not to open (also called reactive) systems [1,24].
A reactive system interacts with its environment, and a correct system should have a
strategy to satisfy the specification with respect to all environments. It turns out that the
existence of such a strategy is stronger than satisfiability, and is termed reliability.

In spite of the rich theory developed for synthesis, in both the closed and open set-
tings, little of this theory has been reduced to practice. This is in contrast with verifi-
cation algorithms, which are extensively applied in practice. We distinguish between
algorithmic and conceptual reasons for the little impact of synthesis in practice. The
algorithmic reasons include the high complexity of the synthesis problem (PSPACE-
complete in the closed setting [28] and 2EXPTIME-complete in the open setting [24],
for specifications in LTL) as well as the intricacy of the algorithms in the open setting
– the traditional approach involves determinization of automata on infinite words [27]
and a solution of parity games [19].

We find the argument about the algorithmic challenge less compelling. First, ex-
perience with verification shows that even nonelementary algorithms can be practical,
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since the worst-case complexity does not arise often. For example, while the model-
checking problem for specifications in second-order logic has nonelementary complex-
ity, the model-checking tool MONA [14] successfully verifies many specifications given
in second-order logic. Furthermore, in some sense, synthesis is not harder than verifica-
tion: the complexity of synthesis is given with respect to the specification only, whereas
the complexity of verification is given with respect to the specification and the system,
which is typically much larger than the specification. About the intercity of the algo-
rithms, in the last decade we have seen quite many alternatives to the traditional ap-
proach – Safraless algorithms that avoid determinization and parity games, and reduce
synthesis to problems that are simpler and are amenable to optimizations and symbolic
implementations [17,21,22].

The arguments about the conceptual and methodological reasons are more
compelling. We see here three main challenges, relevant in both the closed and open
settings. First, unlike verification, where a specification can be decomposed into sub-
specifications, each can be checked independently, in synthesis the starting point is one
comprehensive specification. This inability to decompose or evolve the specification is
related to the second challenge. In practice, we rarely construct systems from scratch
or from one comprehensive specification. Rather, systems are constructed from existing
components. This is true for both hardware systems, where we see IP cores or design
libraries, and software systems, where web APIs and libraries of functions and objects
are common. Third, while in verification we only automate the check of the system,
automating its design is by far more risky and unpredictable – there are typically many
ways to satisfy a satisfiable or realizable specification, and designers will be willing to
give up manual design only if they can count on the automated synthesis tool to con-
struct systems of comparable quality. Traditional synthesis algorithms do not attempt
to address the quality issue.

In this paper we continue earlier efforts to cope with the above conceptual challenges.
Our contribution extends both the setting and the results of earlier work. The realization
that design of systems proceeds by composition of underlying components is not new
to the verification community. For example, [18] proposed a framework for component-
based modelling that uses an abstract layered model of components, and [12] initiated a
series of works on interface theories for component-based design, possibly with a reuse
of components in a library [13]. The need to consider components is more evident
in the context of software, where, for example, recursion is possible, so components
have to be equipped with mechanisms for call and return [4]. The setting and technical
details, however, are different from these in the synthesis problem we consider here. The
closer to our work here is [23], which studied LTL synthesis from reusable component
libraries. Lustig and Vardi studied two notions of component composition. In the first
notion, termed data-flow composition, components are cascaded so that the outputs of
one component are fed to other components. In the second notion, termed control-flow
composition, the composition is flat and control flows among the different components.
The second notion, which turns out to be the decidable one [23], is particularly suitable
for modelling web-service orchestration, where users are typically offered services and
interact with different parties [3].
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Let us turn now to the quality issue. Traditional formal methods are based on a
Boolean satisfaction notion: a system satisfies, or not, a given specification. The rich-
ness of today’s systems, however, calls for specification formalisms that are multi-
valued. The multi-valued setting arises directly in probabilistic and weighted systems
and arises indirectly in applications where multi-valued satisfaction is used in order to
model quantitative properties of the system like its size, security level, or quality. Rea-
soning about quantitative properties of systems is an active area of research in recent
years, yielding quantitative specification formalisms and algorithms [11,16,10,2,9]. In
quantitative reasoning, the Boolean satisfaction notion is refined and one can talk about
the cost, or reward, of using a system, or, in our component-based setting, the cost of
using a component from the library.

In order to capture a wide set of scenarios in practice, we associate with each com-
ponent in the library two costs: a quality cost and a construction cost. The quality cost,
as describes above, concerns the performance of the component and is paid each time
the component is used. The construction cost is the cost of adding the component to the
library. Thus, a design that uses a component pays its construction cost once. When sev-
eral designs use the same component, they share its construction cost. This corresponds
to real-life scenarios, where users pay, for example, for web-services, and indeed their
price is influenced by the market demand.

We study synthesis from component libraries with costs in the closed and open set-
tings. In both settings, the specification is given by means of a deterministic automaton
S on finite words (DFA).1 In the closed setting, the specification is a regular language
over some alphabet Σ and the library consists of box-DFAs (that is, DFAs with exit
states) over Σ. In the open setting, the specification S is over sets I and O of input and
output signals, and the library consists of box-I/O-transducers. The boxes are black, in
the sense that a design that uses components from the library does not see Σ (or I ∪O)
nor it sees the behaviour inside the components. Rather, the mode of operation is as in
the control-flow composition of [23]: the design gives control to one of the components
in the library. It then sees only the exit state through which the component completes
its computation and relinquishes control. Based on this information, the design decides
which component gets control next, and so on.

In more technical details, the synthesis problem gets as input the specification S as
well as a library L of components B1, . . . ,Bn. The goal is to return a correct design –
a transducer D that reads the exit states of the components and outputs the next com-
ponent to gain control. In the closed setting, correctness means that the language over
Σ that is generated by the composition defined by D is equal to the language of S. In
the open setting, correctness means that the interaction of the composition defined by
D with all input sequences generates a computation over I ∪ O that is in the language
of S.

We first study the problem without cost and reduce it to the solution of a two-player
safety game GL,S . In the closed setting, the game is of full information and the problem

1 It is possible to extend our results to specifications in LTL. We prefer to work with determin-
istic automata, as this setting isolates the complexity and technical challenges of the design
problem and avoids the domination of the doubly-exponential complexity of going from LTL
to deterministic automata.
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can be solved in polynomial time. In the open setting, the flexibility that the design
have in responding to different input sequences introduces partial information to the
game, and the problem is EXPTIME-complete. We note that in [23], where the open
setting was studied and the specification is given by means of an LTL formula, the
complexity is 2EXPTIME-complete, thus one could have expected our complexity to
be only polynomial. We prove, however, hardness in EXPTIME, showing that it is not
just the need to transfer the LTL formula to a deterministic formalism that leads to the
high complexity.

We then turn to integrate cost to the story. As explained above, there are two types
of costs associated with each component Bi in L. The first type, quality cost, can be
studied for each design in isolation. We show that even there, the combinatorial setting
is not simple. While for the closed setting an optimal design can be induced from a
memoryless strategy of the designer in the game GL,S , making the problem of finding an
optimal design NP-complete, seeking designs of optimal cost may require sophisticated
compositions in the open setting. In particular, we show that optimal designs may be
exponentially larger than other correct designs2, and that an optimal design may not be
induced by a memoryless strategy in GL,S . We are still able to bound the size of an
optimal transducer by the size of GL,S , and show that the optimal synthesis problem is
NEXPTIME-complete.

The second type of cost, namely construction cost, depends not only on choices made
by the designer, but also on choices made by designers of other specifications that use
the library. Indeed, recall that the construction cost of a component is shared by design-
ers that use this component, with the share being proportional to the number of uses
(a component can be used several times in a design). Hence, the setting gives rise to a
resource-allocation game [26,15]. Unlike traditional resource-allocation games, where
players’ strategies are sets of resources, here each strategy is a multiset – the compo-
nents a designer needs. As has been the case in [7], the setting of multisets makes the
game less stable. We show that the game is not guaranteed to have a Nash Equilibrium
(NE), and that the problem of deciding whether an NE exists is ΣP

2 -complete. We then
turn to the more algorithmic related problems and show that the problems of finding an
optimal design given the choices of the other designers (a.k.a. the best-response prob-
lem, in algorithmic game theory) and of finding designs that minimize the total cost for
all specifications (a.k.a. the social optimum) are both NP-complete.

Due to lack of space, many proofs and examples are missing in this version. They
can be found in the full version, in the authors’ URLs.

2 Preliminaries

Automata, Transducers, and Boxes. A deterministic finite automaton (DFA, for
short) is a tuple A = 〈Σ,Q, δ, q0, F 〉, where Σ is an alphabet, Q is a set of states,
δ : Q×Σ → Q is a partial transition function, q0 ∈ Q is an initial states, and F ⊆ Q is a
set of accepting states. We extend δ to words in an expected way, thus δ∗ : Q×Σ∗ → Q
is such that for q ∈ Q, we have δ∗(q, ε) = q and for w ∈ Σ∗ and σ ∈ Σ, we have
δ∗(q, w · σ) = δ(δ∗(q, w), σ). When q = q0, we sometimes omit it, thus δ∗(w) is the

2 Recall that “optimal” here refers to the quality-cost function.
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state that A reaches after reading w. We assume that all states are reachable from q0,
thus for every q ∈ Q there exists a word w ∈ Σ∗ such that δ∗(w) = q. We refer to the
size of A, denoted |A|, as the number of its states.

The run of A on a word w = w1, . . . wn ∈ Σ∗ is the sequence of states r =
r0, r1, . . . , rn such that r0 = q0 and for every 0 ≤ i ≤ n − 1 we have ri+1 =
δ(ri, wi+1). The run r is accepting iff rn ∈ F . The language of A, denoted L(A),
is the set of words w ∈ Σ∗ such that the run of A on w is accepting, or, equivalently,
δ∗(w) ∈ F . For q ∈ Q, we denote by L(Aq) the language of the DFA that is the same
as A only with initial state q.

A transducer models an interaction between a system and its environment. It is
similar to a DFA except that in addition to Σ, which is referred to as the input al-
phabet, denoted ΣI , there is an output alphabet, denoted ΣO, and rather than being
classified to accepting or rejecting, each state is labeled by a letter from ΣO

3. For-
mally, a transducer is a tuple T = 〈ΣI , ΣO, Q, q0, δ, ν〉, where ΣI is an input alpha-
bet, ΣO is an output alphabet, Q, q0, and δ : Q × ΣI → Q are as in a DFA, and
ν : Q → ΣO is an output function. We require T to be receptive. That is, δ is com-
plete, so for every input word w ∈ Σ∗

I , there is a run of T on w. Consider an input
word w = w1, . . . , wn ∈ Σ∗

I . Let r = r0, . . . , rn be the run of T on w. The com-
putation of T in w is then σ1, . . . , σn ∈ (ΣI × ΣO)

∗, where for 1 ≤ i ≤ n, we
have σi = 〈wi, ν(ri−1)〉. We define the language of T , denoted L(T ), as the set of all
its computations. For a specification L ⊆ (ΣI × ΣO)

∗, we say that T realizes L iff
L(T ) ⊆ L. Thus, no matter what the input sequence is, the interaction of T with the
environment generates a computation that satisfies the specification.

By adding exit states to DFAs and transducers, we can view them as components
from which we can compose systems. Formally, we consider two types of components.
Closed components are modeled by box-DFAs and open components are modeled by
box-transducers. A box-DFA augments a DFA by a set of exit states. Thus, a box-DFA
is a tuple 〈Σ,Q, δ, q0, F, E〉, where E ⊆ Q is a nonempty set of exit states. There are
no outgoing transitions from an exit state. Also, the initial state cannot be an exit state
and exit states are not accepting. Thus, q0 /∈ E and F ∩ E = ∅. Box-transducers are
defined similarly, and their exit states are not labeled, thus ν : Q \ E → ΣO .

Component Libraries. A component library is a collection of boxes L = {B1, . . . ,
Bn}. We say that L is a closed library if the boxes are box-DFAs, and is an open library
if the boxes are box-transducers. Let [n] = {1, . . . , n}. In the first case, for i ∈ [n], let
Bi = 〈Σ,Ci, δi, c

0
i , Fi, Ei〉. In the second case, Bi = 〈ΣI , ΣO, Ci, δi, c

0
i , νi, Ei〉. Note

that all boxes in L share the same alphabet (input and output alphabet, in the case of
transducers). We assume that the states of the components are disjoint, thus for every
i 	= j ∈ [n], we have Ci ∩ Cj = ∅. We use the following abbreviations C =

⋃
i∈[n] Ci,

C0 =
⋃
i∈[n]{c0i }, F =

⋃
i∈[n] Fi, and E =

⋃
i∈[n] Ei. We define the size of L as |C|.

We start by describing the intuition for composition of closed libraries. A design is a
recipe to compose the components of a library L (allowing multiple uses) into a DFA.
A run of the design on a word starts in an initial state of one of the components in L.
We say that this component has the initial control. When a component is in control, the

3 These transducers are sometimes referred to as Moore machines.
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run uses its states, follows its transition function, and if the run ends, it is accepting iff
it ends in one of the components’ accepting states. A component relinquishes control
when the run reaches one of its exit states. It is then the design’s duty to assign control
to the next component, which gains control through its initial state.

Formally, a design is a transducer D with input alphabet E and output alphabet [n].
We can think of D as running beside the components. When a component reaches an
exit state e, then D reads the input letter e, proceeds to its next state, and outputs the
index of the component to gain control next. Note that D does not read the alphabet Σ
and has no information about the states that the component visits. It only sees which
exit state has been reached.

Consider a design D = 〈E , [n], D, δ, d0, ν〉 and a closed library L. We formalize the
behavior ofD by means of the composition DFAAL,D that simulates the run ofD along
with the runs of the box-DFAs. Formally, AL,D = 〈Σ,QL,D, δL,D, q0L,D, FL,D〉 is de-
fined as follows. The set of states QL,D ⊆ (C \ E)×D consists of pairs of a component
state from C and an design state from S. The component states are consistent with ν,
thus QL,D =

⋃
i∈[n](Ci \ Ei) × {q : ν(q) = i}. In exit states, the composition imme-

diately moves to the initial state of the next component, which is why the component
states ofAL,D do not include E . Consider a state 〈c, q〉 ∈ QL,D and a letter σ ∈ Σ. Let
i ∈ [n] be such that c ∈ Ci. When a run ofAL,D reaches the state 〈c, q〉, the component
Bi is in control. Recall that c is not an exit state. Let c′ = δi(c, σ). If c′ /∈ Ei, then Bi
does not relinquish control after reading σ and δL,D(〈c, q〉, σ) = 〈c′, q〉. If c′ ∈ Ei, then
Bi relinquishes control through c′, and it is the design’s task to choose the next compo-
nent to gain control. Let q′ = δ(q, c′) and let j = ν(q′). Then, Bj is the next component
to gain control (possibly j = i). Accordingly, we advance D to q′ and continue to the
initial state of Bj . Formally, δL,D(〈c, q〉, σ) = 〈c0j , q′〉. (Recall that c0j 	∈ Ej , so the new
state is in QL,D.) Note also that a visit in c′ is skipped. The component that gains initial
control is chosen according to ν(d0). Thus, q0L,D = 〈c0j , d0〉, where j = ν(d0). Finally,
the accepting states of AL,D are these in which the component state is accepting, thus
FL,D = F ×D.

The definition of a composition for an open library is similar. There, the composi-
tion is a transducer TL,D = 〈ΣI , ΣO, QL,D, δL,D, q0L,D, νL,D〉, where QL,D, q0L,D , and
δL,D are as in the closed setting, except that δL,D reads letters in ΣI , and νL,D(〈c, q〉) =
νi(c), for i ∈ [n] such that c ∈ Ci.

3 The Design Problem

The design problem gets as input a component library L and a specification that is
given by means of a DFA S. The problem is to decide whether there exists a correct
design for S using the components in L. In the closed setting, a design D is correct if
L(AL,D) = L(S). In the open setting, D is correct if the transducer TL,D realizes S.
Our solution to the design problem reduces it to the problem of finding the winner in a
turn-based two-player game, defined below.

A turn-based two-player game is played on an arena 〈V,Δ, V0, α〉, where V = V1 ∪
V2 is a set of vertices that are partitioned between Player 1 and Player 2, Δ ⊆ V × V
is a set of directed edges, V0 ⊆ V is a set of initial vertices, and α is an objective for
Player 1, specifying a subset of V ω. We consider here safety games, where α ⊆ V is a
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set of vertices that are safe for Player 1. The game is played as follows. Initially, Player 1
places a token on one of the vertices in V0. Assume the token is placed on a vertex v ∈ V
at the beginning of a round. The player that owns v is the player that moves the token to
the next vertex, where the legal vertices to continue to are {v′ ∈ V : 〈v, v′〉 ∈ Δ}. The
outcome of the game is a play π ∈ V ω. The play is winning for Player 1 if for every
i ≥ 1, we have πi ∈ α. Otherwise, Player 2 wins.

A strategy for Player i, for i ∈ {1, 2}, is a recipe that, given a prefix of a play, tells
the player what his next move should be. Thus, it is a function fi : V ∗ · Vi → V such
that for every play π · v ∈ V ∗ with v ∈ Vi, we have 〈v, fi(π · v)〉 ∈ Δ. Since Player 1
moves first, we require that f1(ε) is defined and is in V0. For strategies f1 and f2 for
players 1 and 2 respectively, the play out(f1, f2) ∈ V ω is the unique play that is the
outcome the game when the players follow their strategies. A strategy fi for Player i is
memoryless if it depends only in the current vertex, thus it is a function fi : Vi → V .

A strategy is winning for a player if by using it he wins against every strategy of the
other player. Formally, a strategy f1 is winning for Player 1 iff for every strategy f2 for
Player 2, Player 1 wins the play out(f1, f2). The definition for Player 2 is dual. It is
well known that safety games are determined, namely, exactly one player has a winning
strategy, and admits memoryless strategies, namely, Player i has a winning strategy iff
he has a memoryless winning strategy. Deciding the winner of a safety game can done
in linear time.

Solving the Design Problem. We describe the intuition of our solution for the design
problems. Given a library L and a specification S we construct a safety game GL,S
such that Player 1 wins GL,S iff there is a correct design for S using the components
in L. Intuitively, Player 1’s goal is to construct a correct design, thus he chooses the
components to gain control. Player 2 challenges the design that Player 1 chooses, thus
he chooses a word (over Σ in the closed setting and over ΣI ×ΣO in the open setting)
and wins if his word is a witness for the incorrectness of Player 1’s design.

Closed Designs. The input to the closed-design problem is a closed-library L and a
DFA S over the alphabet Σ. The goal is to find a correct design D. Recall that D is
correct if the DFAAL,D that is constructed from L usingD satisfies L(AL,D) = L(S).
We assume that S is the minimal DFA for the language L(S).

Theorem 1. The closed-design problem can be solved in polynomial time.

Proof: Given a closed-library L and a DFA S = 〈Σ,S, δS , s0, FS〉, we describe a
safety game GL,S such that Player 1 wins GL,S iff there is a design of S using com-
ponents from L. Recall that L consists of box-DFAs Bi = 〈Σ,Ci, δi, c

0
i , Fi, Ei〉, for

i ∈ [n], and that we use C, C0, E , and F to denote the union of all states, initial states,
exit states, and accepting states in all the components of L. The number of vertices in
GL,S is |(C0∪E)×S| and it can be constructed in polynomial time. Since solving safety
games can be done in linear time, the theorem follows.

We define GL,S = 〈V,E, V0, α〉. First, V = (C0 ∪ E) × S and V0 = C0 × {s0}.
Recall that Player 1 moves when it is time to decide the next (or first) component to
gain control. Accordingly, V1 = E × S. Also, Player 2 challenges the design suggested
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by Player 1 and chooses the word that is processed in a component that gains control,
so V2 = C0 × S.

Consider a vertex 〈e, s〉 ∈ V1. Player 1 selects the next component to gain control.
This component gains control through its initial state. Accordingly, E contains edges
〈〈e, s〉, 〈c0i , s〉〉, for every i ∈ [n]. Note that since no letter is read when control is
passed, we do not advance the state in S. Consider a vertex v = 〈c0i , s〉 ∈ V2. Player 2
selects the word that is read in the component Bi, or equivalently, he selects the exit
state from which Bi relinquishes control. Thus, E contains an edge 〈〈c0i , s〉, 〈e, s′〉〉 iff
there exists a word u ∈ Σ∗ such that δ∗i (u) = e and δ∗S(s, u) = s′.

We now turn to define the winning condition. All the vertices in V1 are in α. A
vertex v ∈ V2 is not in α if it is possible to extend the word traversed for reaching v to a
witness for the incorrectness of D. Accordingly, a vertex 〈c0i , s〉 is not in α if one of the
following holds. First (“the suffix witness”), there is a finite word that is read inside the
current component and witnesses the incorrectness. Formally, there is u ∈ Σ∗ such that
δ∗i (u) ∈ Fi and δ∗S(s, u) /∈ FS , or δ∗i (u) ∈ Ci \ (Fi ∪ Ei) and δ∗S(s, u) ∈ FS . Second
(“the infix witness”), there are two words that reach the same exit state of the current
component yet the behavior of S along them is different. Formally, there exist words
u, u′ ∈ Σ∗ such that δ∗i (u) = δ∗i (u

′) ∈ Ei and δ∗S(s, u) 	= δ∗S(s, u
′). Intuitively, the

minimality of S enables us to extend either u or u′ to an incorrectness witness. Given
L and S, the game GL,S can be constructed in polynomial time.

In the full version we prove that there is a correct design iff Player 1 wins GL,S .
We continue to study the open setting. Recall that there, the input is a DFA S over

the alphabet ΣI ×ΣO and an open library L. The goal is to find a correct design D or
return that no such design exists, whereD is correct if the composition transducer TL,D
realizes L(S).

Lustig and Vardi [23] studied the design problem in a setting in which the specifica-
tion is given by means of an LTL formula. They showed that the problem is 2EXPTIME-
complete. Given an LTL formula one can construct a deterministic parity automaton that
recognizes the language of words that satisfy the formula. The size of the automaton
is doubly-exponential in the size of the formula. Thus, one might guess that the design
problem in a setting in which the specification is given by means of a DFA would be
solvable in polynomial time. We show that this is not the case and that the problem is
EXPTIME-complete. As in [23], our upper bound is based on the ability to “summa-
rize” the activity inside the components. Starting with an LTL formula, the solution in
[23] has to combine the complexity involved in the translation of the LTL formula into
an automaton with the complexity of finding a design, which is done by going through-
out a universal word automaton that is expanded to a tree automaton. Starting with a
deterministic automaton, our solution directly uses games: Given an open-libraryL and
a DFA S, we describe a safety game GL,S such that Player 1 wins GL,S iff there is a
design for S using components from L. The number of vertices in GL,S is exponential
in S and C. Since solving safety games can be done in linear time, membership in EXP-
TIME follows. The interesting contribution, however, is the lower bound, showing that
the problem is EXPTIME-hard even when the specification is given by means of a de-
terministic automaton. For that, we describe a reduction from the problem of deciding
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whether Player 1 has a winning strategy in a partial-information safety game, known to
be EXPTIME-complete [8].

Partial-information games are a variant of the full-information games defined above
in which Player 1 has imperfect information [25]. That is, Player 1 is unaware of the
location on which the token is placed and is only aware of the observation it is in.
Accordingly, in his turn, Player 1 cannot select the next location to move the token
to. Instead, the edges in the game are labeled with actions, denoted Γ . In each round,
Player 1 selects an action and Player 2 resolves nondeterminism and chooses the next
location the token moves to. In our reduction, the library L consists of box-transducers
Ba, one for every action a ∈ Γ . The exit states of the components correspond to the
observations inO. That is, when a component exits through an observation Li ∈ O, the
design decides which componentBa ∈ L gains control, which corresponds to a Player 1
strategy that chooses the action a ∈ Γ from the observation Li. The full definition of
partial-information games as well as the upper and lower bounds are described in the
full version.

Theorem 2. The open-design problem is EXPTIME-complete.

4 Libraries with Costs

Given a library and a specification, there are possibly many, in fact infinitely many,
designs that are solutions to the design problem. As a trivial example, assume that
L(S) = a∗ and that the library contains a component B that traverses the letter a (that
is, B consists of an accepting initial state that has an a-transition to an exist state). An
optimal design for S uses B once: it has a single state with a self loop in which B is
called. Other designs can use B arbitrarily many numbers. When we wrote “optimal”
above, we assumed that the smaller the design is, the better it is. In this section we
would like to formalize the notion of optimality and add to the composition picture
different costs that components in the libraries may have.

In order to capture a wide set of scenarios in practice, we associate with each com-
ponent in L two costs: a construction cost and a quality cost. The costs are given by
the functions c-cost, q-cost : L → IR+ ∪ {0}, respectively. The construction cost of a
component is the cost of adding it to the library. Thus, a design that uses a component
pays its construction cost once, and (as would be the case in Section 5), when several
designs use a component, they share its construction cost. The quality cost measures
the performance of the component, and involves, for example, its number of states or
security level. Accordingly, a design pays the quality cost of a component every time it
uses it, and the fact the component is used by other designs is not important.4

Formally, consider a libraryL= {B1, . . . ,Bn} and a designD = 〈[n], E,D, d0, δ, ν〉.
The number of timesD uses a component Bi is nused(D,Bi) = |{d ∈ D : ν(d) = i}|.

4 One might consider a different quality-cost model, which takes into an account the cost of
computations. The cost of a design is then the maximal or expected cost of its computations.
Such a cost model is appropriate for measures like the running time or other complexity mea-
sures. We take here a global approach, which is appropriate for measures like the number of
states or security level.
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The set of components that are used inD, is used(D) = {Bi : nused(D,Bi) ≥ 1}. The
cost of a design is then cost(D) =

∑
B∈used(D) c-cost(B) +nused(D,B) · q-cost(B).

We state the problem of finding the cheapest design as a decision problem. For a
specification DFA S, a library L, and a threshold μ, we say that an input 〈S,L, μ〉 is
in BCD (standing for “bounded cost design”) iff there exists a correct design D such
that cost(D) ≤ μ. In this section we study the BCD problem in a setting with a single
user. Thus, decisions are independent of other users of the library, which, recall, may
influence the construction cost.

In section 3, we reduced the design problem to the problem of the solution of a safety
game. In particular, we showed how a winning strategy in the game induces a correct
design. Note that while we know that safety games admits memoryless strategies, there
is no guarantee that memoryless strategies are guaranteed to lead to optimal designs.
We first study this point and show that, surprisingly, while memoryless strategies are
sufficient for obtaining an optimal design in the closed setting, this is not the case in
the open setting. The source of the difference is the fact that the language of a design
in the open setting may be strictly contained in the language of the specification. The
approximation may enable the user to generate a design that is more complex and is still
cheaper in terms of cost. This is related to the fact that over approximating the language
of a DFA may result in exponentially bigger DFAs [5]. We are still able to bound the
size of the cheapest design by the size of the game.

4.1 On the Optimality and Non-Optimality of Memoryless Strategies

Consider a closed library L and a DFA S. Recall that a correct design for S from
components in L is induced by a winning strategy of Player 1 in the game GL,S (see
Theorem 1). If the winning strategy is not memoryless, we can trim it to a memoryless
one and obtain a design whose state space is a subset of the design induced by the
original strategy. Since the design has no flexibility with respect to the language of S,
we cannot do better. Hence the following lemma.

Lemma 1. Consider a closed library L and a DFA S. For every μ ≥ 0, if there is a
correct design D with cost(D) ≤ μ, then there is a correct design D′ induced by a
memoryless strategy for Player 1 in GL,S such that cost(D′) ≤ μ.

While Lemma 1 seems intuitive, it does not hold in the setting of open systems.
There, a design has the freedom to generate a language that is a subset of L(S), as long
as it stays receptive. This flexibility allows the design to generate a language that need
not be related to the structure of the game GL,S , which may significantly reduce its cost.
Formally, we have the following.

Lemma 2. There is an open library L and a family of DFAs Sn such that Sn has a
correct design Dn with cost 1 but every correct design for Sn that is induced by a
memoryless strategy for Player 1 in GL,Sn has cost n.

Proof: We define Sn = 〈ΣI ×ΣO, Sn, δSn , s00, FSn〉, where ΣI = {0̃, 1̃,#}, ΣO =
{0, 1, }, and Sn, δSn and FSn are as follows. Essentially, after reading a prefix of i
#’s, for 1 ≤ i ≤ n, the design should arrange its outputs so that the i-th and (n + i)-th
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letters agree (they are 0̃ and 0, or are 1̃ and 1). One method to do it is to count the
number of #’s and then check the corresponding indices. Another method is to keep
track of all the first n input letters and make sure that they repeat. The key idea is
that while in the second method we strengthen the specification (agreement is checked
with respect to all i’s, ignoring the length of the #-prefix), it is still receptive, which is
exactly the flexibility that the open setting allows. We define Sn and the libraryL so that
the structure of GL,Sn supports the first method, but counting each # has a cost of 1.
Consequently, a memoryless strategy of Player 1 in GL,Sn induces a design that counts,
and is therefore of cost n, whereas an optimal design follows the second method, and
since it does not count the number of #’s, its cost is only 1.

We can now describe the DFA Sn in more detail. It consists of n chains, sharing an
accepting sink sacc and a rejecting sink srej . For 0 ≤ i ≤ n − 1, we describe the i-th
chain, which is depicted in Figure 1. When describing δSn , for ease of presentation, we
sometimes omit the letter in ΣI or ΣO and we mean that every letter in the respective
alphabet is allowed. For 0 ≤ i < n−1, we define δSn(s

i
0,#) = si+1

0 and δSn(s
n
0 ,#) =

sn0 . Note that words of the form #ia11̃a2b0 or #ia10̃a2b1 are not in L(Sn), where if
0 ≤ i ≤ n − 1, then a1 ∈ (0̃ + 1̃)i, a2 ∈ (0̃ + 1̃)n−i−1, and b ∈ (0 + 1)i, and if
i > n − 1 then the lengths of a1, a2, and b are n − 1, 0, and n − 1, respectively. We
require that after reading a word in #∗(0̃ + 1̃)n there is an output of n letters in {0, 1}.
Thus, for n ≤ j ≤ n + i + 1, we define δSn(s

i,0
j , ) = δSn(s

i,1
j , ) = srej . Also, Sn

accepts every word that has a # after the initial prefix of # letters. Thus, for 1 ≤ j ≤ i,
we define δSn(s

i
j ,#) = sacc, and for i + 1 ≤ j ≤ n + i + 1 and t ∈ {0, 1} we define

δSn(s
i,t
j ,#) = sacc.

s
i
0

#

· · · s
i
i
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Fig. 1. A description of the i-th chain of the specification Sn

The library L is depicted in Figure 2. The quality and construction costs of all the
components is 0, except for B1 which has q-cost(B1) = 1 and c-cost(B1) = 0.

B1

e
1
#

e
1
0e

1
1

#

0̃1̃ B2 e
2
0e

2
1

#

0̃1̃

{0̃, 1̃,#}

B3 0 e
3

#

{0̃, 1̃}

{0̃, 1̃,#}

B4 1 e
4

#

{0̃, 1̃}

{0̃, 1̃,#}

Fig. 2. The library L. Exit states are square nodes and the output of a state is written in the node.

In the full version we prove that every correct design must cost at least 1 and describe
such a design, which, as explained above, does not track the number of #’s that are read
and can thus useB1 only once. On the other hand, a design that corresponds to a winning
memoryless strategy in GL,S uses B1 n times, thus it costs n, and we are done.



Synthesis from Component Libraries with Costs 167

4.2 Solving the BCD Problem

Theorem 3. The BCD problem is NP-complete for closed designs.

Proof: Consider an input 〈S,L, μ〉 to the BCD problem. By Lemma 1, we can restrict
the search for a correct design D with cost(D) ≤ μ to these induced by a memoryless
strategy for Player 1 in GL,S . By the definition of the game GL,S , such a design has at
most |C0 × S| states. Since checking if a design is correct and calculating its cost can
be done in polynomial time, membership in NP follows. For the lower bound we show
a reduction from SET-COVER, which we describe in the full version.

We turn to study the open setting, which is significantly harder than the closed one.
For the upper bound, we first show that while we cannot restrict attention to designs
induced by memoryless strategies, we can still bound the size of optimal designs:

Theorem 4. For an open library L with 
 components and a specification S with n
states, a cheapest correct design D has at most

(
n
n/2

)
· 
 states.

Proof: Given S and L, assume towards contradiction that the cheapest smallest de-
sign D for S using the components in L has more than

(
n
n/2

)
· 
 states.

Consider a word w ∈ L(TL,D). Let Bi1 , . . . ,Bim ∈ L be the components that are
traversed in the run r of TL,D that induces w. Let w = w1 · . . . · wm, where, for
1 ≤ j ≤ m, the word wj is induced in the component Bij . We say that w is suffix-less
if wm = ε, thus r ends in the initial state of the last component to gain control. We
denote by πw(D) = ei1 , . . . , eim−1 ∈ E∗ the sequence of exit states that r visits.

For a state d ∈ D, we define the set Sd ⊆ S so that s ∈ Sd iff there exists a suffix-
less word w ∈ (ΣI × ΣO)

∗ such that δ∗S(w) = s and δ∗D(πw(D)) = d. Since D has
more than

(
n
n/2

)
·
 states, there is a componentBi ∈ L such that the set D′ ⊆ L of states

that are labeled with Bi is larger than
(
n
n/2

)
. Thus, there must be two states d, d′ ∈ D′

that have Sd′ ⊆ Sd. Note that ν(d) = ν(d′) = i.
In the full version we show that we can construct a new correct designD′ by merging

d′ into d. Since for every component B ∈ L, we have nused(D,B) ≥ nused(D′,B),
it follows that cost(D) ≥ cost(D′). Moreover, D′ has less states than D, and we have
reached a contradiction.

Before we turn to the lower bound, we argue that the exponential blow-up proven in
Theorem 4 cannot be avoided:

Theorem 5. For every n ≥ 1, there is an open library L and specification Sn such that
the size of L is constant, the size of Sn is O(n2), and every cheapest correct design for
Sn that uses components from L has at least 2n states.

Proof: Consider the specification Sn and library L that are described in Lemma 2.
As detailed in the full version, every correct design that costs 1 cannot count #’s and
should thus remember vectors in {0̃, 1̃}n.

Theorem 6. The BCD problem for open libraries is NEXPTIME-complete.

Proof: Membership in NEXPTIME follows from Theorem 4 and the fact we can
check the correctness of a design and calculate its cost in polynomial time. For the lower
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bound, in the full version, we describe a reduction from the problem of exponential
tiling to the BCD problem for open libraries. The idea behind the reduction is as follows.
Consider an input 〈T, V,H, n〉 to EXP-TILING, where T = {t1, . . . , tm} is a set of
tiles, V,H ⊆ T ×T are vertical and horizontal relations, respectively, and n ∈ IN is an
index given in unary. We say that 〈T, V,H, n〉 ∈ EXP-TILING if it is possible to fill a
2n × 2n square with the tiles in T that respects the two relations.

Given an input 〈T, V,H, n〉, we construct an input 〈L,S, k〉 to the open-BCD prob-
lem such that there is an exponential tiling iff there is a correct designD with cost(D) ≤
22n+1 + 1. The idea behind the reduction is similar to that of Lemma 2. We define
ΣI = {0̃, 1̃,#, c, v, h, } and ΣO = {0, 1, } ∪ T . For x ∈ {0, 1}n, we use x̃ to refer
to the {0̃, 1̃} copy of x. The library L has the same components as in Lemma 2 with
an additional tile component Bt for every t ∈ T . The component Bt outputs t in its
initial state, and when reading c, v, or h, it relinquishes control. When reading every
other letter, it enters an accepting sink. The construction costs of the components in L
is 0. We define q-cost(B1) = 22n + 1, and q-cost(Bt) = 1 for all t ∈ T . The other
components’ quality cost is 0.

Consider a correct design D with cost(D) ≤ 22n+1 + 1. We define S so that a
correct design must use B1 at least once, thus D uses it exactly once. Intuitively, a · b,
for a, b ∈ {0, 1}n, can be thought of as two coordinates in a 2n × 2n square. We define
S so that after reading the word ã · b̃ ∈ {0̃, 1̃}2n, a component is output, which can be
thought of as the tile in the (a, b) coordinate in the square. The next letter that can be
read is either c, v, or h. Then, S enforces that the output is a ·b, (a+1) ·b, and a ·(b+1),
respectively. Thus, we show that D uses exactly 22n tile components and the tiling that
it induces is legal.

5 Libraries with Costs and Multiple Users

In this section we study the setting in which several designers, each with his own spec-
ification, use the library. The construction cost of a component is now shared by the
designers that use it, with the share being proportional to the number of times the com-
ponent is used. For example, if c-cost(B) = 8 and there are two designers, one that
uses B once and a second that uses B three times, then the construction costs of B
of the two designers are 2 and 6, respectively. The quality cost of a component is not
shared. Thus, the cost a designer pays for a design depends on the choices of the other
users and he has an incentive to share the construction costs of components with other
designers. We model this setting as a multi-player game, which we dub component li-
brary games (CLGs, for short). The game can be thought of as a one-round game in
which each player (user) selects a design that is correct according to his specification.
In this section we focus on closed designs.

Formally, a CLG is a tuple 〈L,S1, . . . ,Sk〉, where L is a closed component library
and, for 1 ≤ i ≤ k, the DFA Si is a specification for Player i. A strategy of Player i is a
design that is correct with respect to Si. We refer to a choice of designs for all the players
as a strategy profile. Consider a profile P = 〈D1, . . . ,Dk〉 and a componentB ∈ L. The
construction cost of B is split proportionally between the players that use it. Formally,
for 1 ≤ i ≤ k, recall that we use nused(B,Di) to denote the number of timesDi usesB.
For a profile P , let nused(B, P ) denote the number of times B is used by all the designs
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in P . Thus, nused(B, P ) =
∑

1≤i≤k nused(B,Di). Then, the construction cost that

Player i pays in P for B is c-costi(P,B) = c-cost(B) · nused(B,Di)
nused(B,P ) . Since the quality

costs of the components is not shared, it is calculated as in Section 4. Thus, the cost
Player i pays in profile P , denoted costi(P ) is

∑
B∈L c-costi(P,B) + nused(B,Di) ·

q-cost(Di). We define the cost of a profile P , denoted cost(P ), as
∑

i∈[k] costi(P ).
For a profile P and a correct design D for Player i, let P [i ← D] denote the profile

obtained from P by replacing the choice of design of Player i by D. A profile P is
a Nash equilibrium (NE) if no Player i can benefit by unilaterally deviating from his
choice in P to a different design; i.e., for every Player i and every correct design D
with respect to Si, it holds that costi(P [i← D]) ≥ costi(P ).

Theorem 7. There is a CLG with no NE.

Proof: We adapt the example for multiset cost-sharing games from [6] to CLGs.
Consider the two-player CLG over the alphabet Σ = {a, b, c} in which Player 1 and 2’s
specifications are (the single word) languages {ab} and {c}, respectively. The library is
depicted in Figure 3, where the quality costs of all components is 0, c-cost(B1) = 12,
c-cost(B2) = 5, c-cost(B3) = 1, and c-cost(B4) = c-cost(B5) = 0. Both players have
two correct designs. For Player 1, the first design uses B1 twice and the second design
uses B1 once and B2 once. There are also uses of B4 and B5, but since they can be used
for free, we do not include them in the calculations. For Player 2, the first design uses
B2 once, and the second design uses B1 once. The table in Figure 3 shows the players’
costs in the four possible CLG’s profiles, and indeed none of the profiles is a NE.

B1

e
1
a

e
1
b

e
1
c

a

b

c

B2 e
2
b

b

B3 e
3
c

c

B4

B5

{B1,B1} {B1,B2}
{B3} 5, 12 5, 13

{B1} 4, 8 6, 7

Fig. 3. The library of the CLG with no NE, and the costs of the players in its profiles

We study computational problems for CLGs. The most basic problem is the best-
response problem (BR problem, for short). Given a profile P and i ∈ [k], find the
cheapest correct design for Player i with respect to the other players’ choices in P .
Apart from its practical importance, it is an important ingredient in the solutions to
the other problems we study. The next problem we study is finding the social optimum
(SO, for short), namely the profile that minimizes the total cost of all players; thus the
one obtained when the players obey some centralized authority. For both the BR and SO
problems, we study the decision (rather than search) variants, where the input includes a
threshold μ. Finally, since CLGs are not guaranteed to have a NE, we study the problem
of deciding whether a given CLG has a NE. We term this problem ∃NE.

Note that the BCD problem studied in Section 4 is a special case of BRP when there
is only one player. Also, in a setting with a single player, the SO and BR problems
coincide, thus the lower bound of Theorem 3 applies to them. In Lemma 1 we showed
that if there is a correct design D with cost(D) ≤ μ, then there is also a correct design
D′, based on a memoryless strategy and hence having polynomially many states, such
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that for every component B, we have nused(D′,B) ≤ nused(D,B). The arguments
there apply in the more general case of CLGs. Thus, we have the following.

Theorem 8. The BR and SO problems are NP-complete.

We continue to study the ∃NE problem. We show that ∃NE is complete for ΣP
2 –

the second level of the polynomial hierarchy. Namely, decision problems solvable in
polynomial time by a nondeterministic Turing machine augmented by an oracle for an
NP-complete problem.

Theorem 9. The ∃NE problem is ΣP
2 -complete.

Proof: The full proof can be found in the full version. We describe its idea in the
following. For the upper bound, we describe a nondeterministic Turing machine with
an oracle to SBR problem – the strict version of the BR problem, where we seek a
design whose cost is strictly smaller than μ. Given a CLG G = 〈L,S1, . . . ,Sk〉, we
guess a profile P = 〈D1, . . . ,Dk〉, where for 1 ≤ i ≤ k, the design Di has at most
|C0×Si| states, where Si are the states of Si. We check whether the designs are correct,
and use the oracle to check whether there is a player that can benefit from deviating
from P . For the lower bound, we show a reduction from the complement of the ΠP

2 -
complete problem min-max vertex cover [20].

6 Discussion

Traditional synthesis algorithms assumed that the system is constructed from scratch.
Previous work adjusted synthesis algorithms to a reality in which systems are con-
structed from component libraries. We adjust the algorithms further, formalize the no-
tions of quality and cost and seek systems of high quality and low cost. We argue that
one should distinguish between quality considerations, which are independent of uses
of the library by other designs, and pricing considerations, which depend on uses of the
library by other designs.

Once we add multiple library users to the story, synthesis is modeled by a resource-
allocation game and involves ideas and techniques form algorithmic game theory. In
particular, different models for sharing the price of components can be taken. Recall that
in our model, users share the price of a component, with the share being proportional to
the number of uses. In some settings, a uniform sharing rule may fit better, which also
makes the game more stable. In other settings, a more appropriate sharing rule would be
the one used in congestion games – the more a component is used, the higher is its price,
reflecting, for example, a higher load. Moreover, synthesis of different specifications
in different times gives rise to dynamic allocation of components, and synthesis of
collections of specifications by different users gives rise to coalitions in the games.
These notions are well studied in algorithmic game theory and enable an even better
modeling of the rich settings in which traditional synthesis is applied.
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18. Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Pro-
gram. 55(1-3), 161–183 (2005)
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Abstract. Design of autonomous systems is facilitated by automatic
synthesis of correct-by-construction controllers from formal models and
specifications. We focus on stochastic games, which can model the inter-
action with an adverse environment, as well as probabilistic behaviour
arising from uncertainties. We propose a synchronising parallel composi-
tion for stochastic games that enables a compositional approach to con-
troller synthesis. We leverage rules for compositional assume-guarantee
verification of probabilistic automata to synthesise controllers for games
with multi-objective quantitative winning conditions. By composing win-
ning strategies synthesised for the individual components, we can thus
obtain a winning strategy for the composed game, achieving better scal-
ability and efficiency at a cost of restricting the class of controllers.

1 Introduction

With increasing pervasiveness of technology in civilian and industrial appli-
cations, it has become paramount to provide formal guarantees of safety and
reliability for autonomous systems. We consider the development of correct-
by-construction controllers satisfying high-level specifications, based on formal
system models. Automated synthesis of controllers has been advocated, for ex-
ample, for autonomous driving [3] and distributed control systems [15].

Stochastic Games. When designing autonomous systems, often a critical el-
ement is the presence of an uncertain and adverse environment, which intro-
duces stochasticity and requires the modelling of the non-cooperative aspect in
a game-theoretical setting [7,14]. Hence, we model a system we wish to control
as a two-player turn-based stochastic game [18], and consider automated synthe-
sis of strategies that are winning against every environment (Player �), which
we can then interpret as controllers of the system (Player ♦). In addition to
probabilities, one can also annotate the model with rewards to evaluate various
quantities, for example, profit or energy usage, by means of expectations.

Compositionality. We model systems as a composition of several smaller com-
ponents. For controller synthesis for games, a compositional approach requires
that we can derive a strategy for the composed system by synthesising only for
the individual components. Probabilistic automata (PAs) are naturally suited
to modelling multi-component probabilistic systems, where synchronising com-
position is well-studied [17]; see also [19] for a taxonomic discussion. While PAs
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can be viewed as stochastic games with strategies already applied, it is not im-
mediately clear how to compose games in a natural way.

Our Composition. We formulate a composition of stochastic games where
component games synchronise on shared actions and interleave otherwise. The
composition is inspired by interface automata [9], which are well-suited to com-
positional assume-guarantee verification of component-based systems, where we
preserve the identity of Player ♦ and Player � in the composition by imposing
similar compatibility conditions. Our composition is commutative and associa-
tive, and reduces to PA composition when only Player � is present. The results
we prove are independent of specific winning conditions, and thus provide a
general framework for the development of compositional synthesis methods.

Compositional Synthesis. We show that any rule for compositional verifi-
cation of PAs carries over as a synthesis rule for games. First, after applying
winning strategies to a game, the resulting PAs still satisfy the winning condi-
tion for any environment. Then, compositional rules for PAs can be used, such
as the assume-guarantee rules in [13] developed for winning conditions involving
multi-objective total expected reward and probabilistic LTL queries. These first
two steps, described also as “schedule-and-compose” [8], are applicable when
strategies can only be implemented locally in practice, for instance, when want-
ing to control a set of physically separated electrical generators and loads in a
microgrid, where no centralised strategy can be implemented. One key property
of our game composition is that strategies applied to individual components
can be composed to a strategy for the composed game, while preserving the
probability measure over the traces. Hence, we obtain a winning strategy for
the composed game, which alleviates the difficulty of having to deal with the
product state space by trading off the expressiveness of the generated strategies.

Winning Conditions. Each player plays according to a winning condition,
specifying the desirable behaviour of the game, for example “the probability of
reaching a failure state is less than 0.01.” We are interested in synthesis for
zero-sum games for which several kinds of winning conditions are defined in
the literature, including ω-regular [4], expected total and average reward [10],
and multi-objective versions thereof [7]. Our game composition is independent
of such winning conditions, since they are definable on the trace distributions.

Work We Build Upon. In this paper we extend the work of [13] by lifting
the compositional verification rules for PAs to compositional synthesis rules for
games. Typically, such rules involve multi-objective queries, and we extend the
synthesis methods for such queries in [6,7] to compositional strategy synthesis.

Contributions. Several notions of (non-stochastic) game composition have re-
cently been proposed [11,12], but they do not preserve player identity, i.e. which
player controls which actions, and hence are not applicable to synthesising strate-
gies for a specific player. In this paper, we make the following contributions.

– We define a composition for stochastic games, which, to our knowledge, is
the first composition for competitive probabilistic systems that preserves the
control authority of Player ♦, enabling compositional strategy synthesis.
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– We show how to apply strategies synthesised for the individual components
to the composition, such that the trace distribution is preserved.

– We lift compositional rules for PAs to the game framework for synthesis.
– We apply our theory to demonstrate how to compositionally synthesise con-

trollers for games with respect to multi-objective total expected reward
queries, and demonstrate the benefits on a prototype implementation.

Structure. In Section 2 we introduce stochastic games, their normal form, and
their behaviour under strategies. In Section 3 we define our game composition,
and show that strategies for the individual components can be applied to the
composed game. We demonstrate in Section 4 how to use proof rules for PAs and
previously developed synthesis methods to compositionally synthesise strategies.

2 Stochastic Games, Induced PAs and DTMCs

We introduce notation and main definitions for stochastic games and their be-
haviour under strategies.

Distributions.A discrete probability distribution (or distribution) over a (count-
able) set Q is a function μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1; its support

{q ∈ Q |μ(q) > 0} is the set of values where μ is nonzero. We denote by D(Q)
the set of all distributions over Q with finite support. A distribution μ ∈ D(Q) is
Dirac if μ(q) = 1 for some q ∈ Q, and if the context is clear we just write q to de-
note such a distribution μ. We denote by μ the product distribution of μi ∈ D(Qi)

for 1 ≤ i ≤ n, defined on Q1× · · ·×Qn by μ(q1, . . . , qn)
def
= μ1(q1) · · · · · μn(qn).

Stochastic Games. We consider turn-based action-labelled stochastic two-
player games (henceforth simply called games), which distinguish two types of
nondeterminism, each controlled by a separate player. Player ♦ represents the
controllable part for which we want to synthesise a strategy, while Player � repre-
sents the uncontrollable environment. Examples of games are shown in Figure 1.

Definition 1. A game is a tuple 〈S, (S♦, S�), ς,A,−→〉, where S is a countable
set of states partitioned into Player ♦ states S♦ and Player� states S�; ς ∈ D(S)
is an initial distribution; A is a countable set of actions; and −→⊆ S × (A ∪
{τ})×D(S) is a transition relation, such that, for all s, {(s, a, μ) ∈−→} is finite.

We adopt the infix notation by writing s
a−→ μ for a transition (s, a, μ) ∈−→,

and if a = τ we speak of a τ -transition. The action labels A on transitions model
observable behaviours, whereas τ can be seen as internal: it cannot be used in
winning conditions and is not synchronised in the composition.

We denote the set of moves by S©
def
= {(a, μ) | ∃s ∈ S . s

a−→ μ}. A move (a, μ)

is incoming to a state s if μ(s) > 0, and is outgoing from a state s if s
a−→ μ. Note

that, as for PAs [17], there could be several moves associated to each action. We

define the set of actions enabled in a state s by En(s)
def
= {a ∈ A | ∃μ . s

a−→ μ}.
A finite (infinite) path λ = s0(a0, μ0)s1(a1, μ1)s2 . . . is a finite (infinite) se-

quence of alternating states and moves, such that ς(s0) > 0, and, for all i ≥ 0,
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Fig. 1. Three games: the game on the right is the composition of the normal forms of
the other two games. Dirac distributions are shown as filled circles.

si
ai−→ μi and μi(si+1) > 0. A finite path λ ends in a state, and we write last(λ)

for the last state of λ. We denote the set of finite (infinite) paths of a game
G by Ω+

G (ΩG), and by Ω+
G,# the set of paths ending in a Player # state, for

# ∈ {♦,�}. A finite (infinite) trace is a finite (infinite) sequence of actions.
Given a path, its trace is the sequence of actions along λ, with τ projected out.

Formally, trace(λ)
def
= proj{τ}(a0a1 . . .), where, for α ⊆ A ∪ {τ}, projα is the

morphism defined by projα(a) = a if a 	∈ α, and ε (the empty trace) otherwise.

Strategies. Nondeterminism for each player is resolved by a strategy. A strategy
for Player #, for # ∈ {♦,�}, is a function σ# : Ω+

G,# → D(S©) such that

σ#(λ)(a, μ) > 0 only if last(λ)
a−→ μ. The set of Player # strategies in game G

is denoted by ΣG
#. A strategy is called memoryless if, for each path λ, the choice

σ#(λ) is uniquely determined by last(λ).

Normal Form of a Game.We can transform every game into its corresponding
normal form, which does not affect the winning conditions. Transforming a game
to normal form is the first step of our game composition.

Definition 2. A game is in normal form if the following hold:

– Every τ-transition s
τ−→ μ is from a Player � state s to a Player ♦ state s′

with a Dirac distribution μ = s′.
– Every Player ♦ state s can only be reached by an incoming move (τ, s). In

particular, every distribution μ of a non-τ-transition, as well as the initial
distribution, assigns probability zero to all Player ♦ states.

Given a game G without τ -transitions, one can construct its normal form N (G)
by splitting every state s ∈ S♦ into a Player � state s and a Player ♦ state s, s.t.

– the incoming (resp. outgoing) moves of s (resp. s) are precisely the incoming
(resp. outgoing) moves of s, with every Player ♦ state t ∈ S♦ replaced by t;

– and the only outgoing (resp. incoming) move of s (resp. s) is (τ, s).

Intuitively, at s the game is idle until Player � allows Player ♦ to choose a move
in s. Hence, any strategy for G carries over naturally to N (G), and we can oper-
ate w.l.o.g. with normal-form games. Also, τ can be considered as a scheduling
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choice. In the transformation to normal form, at most one such scheduling choice
is introduced for each Player � state, but in the composition more choices can
be added, so that Player � resolves nondeterminism arising from concurrency.

Game Unfolding. Strategy application is defined on the unfolded game. The
unfolding U(G) = 〈Ω+

G , (Ω+
G,�, Ω+

G,♦), ς,A,−→′〉 of the game G is such that

λ
a−→′μλ,a if and only if last(λ)

a−→ μ and μλ,a(λ(a, μ)s)
def
= μ(s) for all s ∈ S.

An unfolded game is a set of trees (the roots are the support of the initial
distribution), with potentially infinite depth, but finite branching. The entire his-
tory is stored in the states, so memoryless strategies suffice for unfolded games;
formally, each strategy σ♦ ∈ ΣG

♦ straightforwardly maps to a memoryless strat-

egy U(σ♦) ∈ Σ
U(G)
♦ by letting U(σ♦)(λ)(a, μλ,a) = σ♦(λ)(a, μ). We denote by

U(G)© the set of moves of the unfolded form of a game G and by U(G)#© the set
of moves following a Player # state that is of the form (a, μλ,a) with λ ∈ Ω+

G,#.
We remark that the unfolding of a normal form game is also in normal form.

2.1 Induced PA

When only one type of nondeterminism is present in a game, it is a probabilistic
automaton (PA). PAs are well-suited for compositional modelling [17], and can
be used for verification, i.e. checking whether all behaviours satisfy a specifica-
tion (when only Player � is present), as well as strategy synthesis (when only
Player ♦ is present) [14]. A PA is a game where S♦ = ∅ and S� = S, which
we write here as 〈S, ς,A,−→〉. This definition corresponds to modelling non-
determinism as an adverse, uncontrollable, environment, and so, by applying a
Player ♦ strategy to a game to resolve the controllable nondeterminism, we are
left with a PA where only uncontrollable nondeterminism for Player � remains.

Definition 3. Given an unfolded game U(G) = 〈Ω+
G , (Ω+

G,�, Ω+
G,♦), ς,A,−→〉 in

normal form and a strategy σ♦ ∈ ΣG
♦ , the induced PA is Gσ♦ = 〈S′, ς,A,−→′〉,

where S′ ⊆ Ω+
G,� ∪ U(G)♦© is defined inductively as the reachable states, and

(I1) λ
τ−→′U(σ♦)(λ′) iff λ

τ−→ λ′ (Player ♦ strategy chooses a move);

(I2) (a, μλ,a)
a−→′μλ,a for (a, μλ,a) ∈ U(G)♦© (the chosen move is performed);

(I3) λ
a−→′μλ,a iff λ

a−→ μλ,a and λ ∈ Ω+
G,� (external transitions from older

Player � state remain unchanged).

The unfolded form of the game in Figure 1(right) is shown in Figure 2(a), and
strategy application is illustrated in Figure 2(b).

2.2 Induced DTMC

A discrete-time Markov chain (DTMC) is a model for systems with probabilistic
behaviour only. When applying a Player � strategy to an induced PA, all non-
determinism is resolved, and a DTMC is obtained. A (labelled) DTMC D is a

PA such that, for each s ∈ S, there is at most one transition s
a−→ μ.
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Definition 4. Given an unfolded PA U(M) = 〈S, ς,A,−→〉 and a strategy σ� ∈
ΣM

� , the induced DTMC Mσ� = 〈S′, ς ′,A,−→′〉 is such that S′ ⊆ U(M)© is
defined inductively as the states reachable via ς ′ and −→′, where

– (a, μλ,a)
a−→′μ

σ�
λ,a, such that, for all moves (b, νλ(a,μ)t,b), we let the distribu-

tion μ
σ�
λ,a(b, νλ(a,μ)t,b)

def
= μ(t)σ�(λ(a, μ)t)(b, ν); and

– for all moves (b, νt,b), ς ′(b, νt,b)
def
= ς(t)σ�(t)(b, ν).

Note that an induced PA is already unfolded, and does not need to be unfolded
again. We illustrate in Figure 2(c) the application of a Player � strategy.

Probability Measures. We define the probability measure PrD of a DTMC
D in the usual way. The cylinder set of a path λ ∈ Ω+

D (resp. trace w ∈ A∗)
is the set of infinite paths (resp. traces) with prefix λ (resp. w). For a finite
path λ = s0(a0, μ0)s1(a1, μ1) . . . sn we define PrD(λ), the measure of its cylinder

set, by: PrD(λ)
def
= ς(s0)

∏n−1
i=0 μi(si+1). We write Pr

σ♦,σ�
G (resp. Pr

σ�
M ) for the

measure PrGσ♦,σ� (resp. PrMσ� ). The measures uniquely extend to infinite paths
due to Carathéodory’s extension theorem.

Given a finite trace w, paths(w) denotes the set of minimal finite paths with
trace w, i.e. λ ∈ paths(w) if trace(λ) = w and there is no path λ′ 	= λ with
trace(λ′) = w and λ′ being a prefix of λ. The measure of the cylinder set of w is

PrD(w)
def
=
∑

λ∈paths(w) PrD(λ), and we call PrD the trace distribution of D.
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Winning Conditions. Providing strategies for both players resolves all nonde-
terminism in a game, resulting in a distribution over paths. A specification ϕ is
a predicate on trace distributions, and for a DTMC D we write D |= ϕ if ϕ(PD)
holds. A specification ϕ is defined on traces if ϕ(PD) = ϕ(PD′ ) for all DTMCs
D,D′ such that PD(w) = PD′(w) for all traces w.

3 Composing Stochastic Games

We now introduce composition operators for games and Player ♦ strategies, lead-
ing towards a framework for compositional synthesis in Section 4. Games can be
composed of several component games, and our composition is inspired by inter-
face automata [9], which have a natural interpretation as (concurrent) games.

3.1 Game Composition

We provide a synchronising composition of games so that controllability is pre-
served for Player ♦, that is, actions controlled by Player ♦ in the components are
controlled by Player ♦ in the composition. We endow each component game with
an alphabet of actions A, where synchronisation on shared actions in A1 ∩ A2

is viewed as a (blocking) communication over ports, as in interface automata,
though for simplicity we do not distinguish inputs and outputs. Synchronisation
is multi-way and we do not impose input-enabledness of IO automata [8].

Given n games Gi in normal form with respective state spaces Si, for i ∈ I
(let I = {1, . . . , n} be the index set of the composed game), the state space of
the composition is a subset of the Cartesian product S1× . . .×Sn, whose states
contain at most one Player ♦ component thanks to the normal form. We denote
by si the ith component of s ∈ S1 × . . . × Sn. Furthermore, every probability
distribution in the composition is a product distribution. We say that a transition
s

a−→ μ involves the ith component if si
a−→ μi.

Definition 5. Given n games in normal form Gi = 〈Si, (Si♦, Si�), ς
i,Ai,−→i〉,

i ∈ I, their composition is the game ‖i∈I Gi def
= 〈S, (S♦, S�), ς,A,−→〉, where

– S ⊆ S♦ ∪ S�, with S� ⊆ S1
� × · · · × Sn�, and S♦ ⊆ {s ∈ S1 × · · · × Sn |

∃!ι . sι ∈ Sι♦} inductively defined to contain the states reachable from the
initial distribution through the transition relation;

– ς = ς1×· · ·×ςn; (note that, due to the normal form, ς(s) > 0 only if s ∈ S�)
– A =

⋃n
i=1Ai;

– The transition relation −→ is defined such that

• s
a−→ μ for a 	= τ if

(C1) at least one component is involved;
(C2) the components involved in the transition are exactly those having a

in their action alphabet;
(C3) for the uninvolved components j (equivalently, that do not have a in

their action alphabet), the state remains the same (μj = sj);
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(C4) if s is a Player ♦ state then its only Player ♦ component Gι is involved
in the transition; and

• s
τ−→ t if only one component Gi is involved, s ∈ S�, and s.t. En(t) 	= ∅.

We take the view that identity of the players must be preserved through
composition to facilitate synthesis, and thus Player ♦ actions of the individual
components are controlled by a single Player ♦ in the composition. Player � in the
composition acts as a scheduler, controlling which component advances and, in
Player � states, selecting among available actions, whether synchronised or not.
Synchronisation in Player ♦ states means that Player ♦ in one component may
indirectly control some Player � actions in another component. In particular, we
can impose assume-guarantee contracts at the component level in the following
sense. Player ♦ of different components can cooperate to achieve a common goal:
in one component Player ♦ satisfies the goal B under an assumption A on its
environment behaviour (i.e. A → B), while Player ♦ in the other component
ensures that the assumption is satisfied, against all Player � strategies.

Our game composition is both associative and commutative, facilitating a
modular model development, and is closely related to PA composition [17], with
the condition (C4) added. As PAs are just games without Player ♦ states, the
game composition restricted to PAs is the same as classical PA composition.
The condition En(t) 	= ∅ for τ -transitions ensures that a Player ♦ state is never
entered if it were to result in deadlock introduced by the normal form transfor-
mation. Deadlocks that were present before the transformation are still present
in the normal form. In the composition of normal form games, τ -transitions are
only enabled in Player � states, and Player ♦ states are only reached by such
transitions; hence, composing normal form games yields a game in normal form.

In Figure 1, the game on the right is the composition of the normal forms of the
two games on the left. The actions “f” and “s” are synchronised and controlled
by Player ♦ in su. The “d” action is synchronised and controlled by Player � in
both components, and so it is controlled by Player � in the composition, in tu.
The action “t” is not synchronised, and thus available in tv and tu; it is, however,
not available in tv, as it is a Player ♦ state controlled by v. The action “c” is
also not synchronised, and is available in tv. The “r” action is synchronised; it
is available both in t and in v, and hence also in tv.

Constructing the composition of n components of size |S| clearly requires time
O(|S|n). In strategy synthesis, the limiting factor is that applying the method
on a large product game may be computationally infeasible. For example, the
synthesis methods for multi-objective queries of [6] that we build upon are expo-
nential in the number of objectives and polynomial in the size of the state space,
and the theoretical bounds can be impractical even for small systems (see [7]).
To alleviate such difficulties we focus on compositional strategy synthesis.

3.2 Strategy Composition

For compositional synthesis, we assume the following compatibility condition on
component games: we require that actions controlled by Player ♦ in one game
are enabled and fully controlled by Player ♦ in the composition.



Compositional Controller Synthesis for Stochastic Games 181

Definition 6. Games G1, . . . , Gn are compatible if, for every Player ♦ state
s ∈ S♦ in the composition with sι ∈ Sι♦, if sι

a−→ιμι then there is exactly one

distribution ν, denoted by 〈μι〉s,a, such that s
a−→ ν and νι = μι. (That is, for

i 	= ι such that a ∈ Ai, there exists exactly one a-transition enabled in si.)

Our compatibility condition is analogous to that for single-threaded interface
automata [9]. It remains to be seen if this condition can be relaxed without
affecting preservation properties of the winning conditions.

Composing Strategies. Given a path λ of a composed game G =‖i∈I Gi, for
each individual component Gi one can retrieve the corresponding path [λ]i that
contains precisely the transitions Gi is involved in. The projection [·]i : Ω+

G→Ω+
Gi

is defined inductively so that, for all states t ∈ S and paths λ(a,μ)t ∈ Ω+
G (with

possibly a = τ), we have [s]i
def
= si; and inductively that [λ(a,μ)t]i

def
= [λ]i(a, μi)ti

if last(λ)i
a−→iμi, and [λ]i otherwise.

Recall that a Player ♦ state s of the composed game has exactly one component
sι that is a Player ♦ state in Gι; we say that the ιth Player ♦ controls s. Given a
Player ♦ strategy for each component, the strategy for the composed game plays
the strategy of the Player ♦ controlling the respective states.

Definition 7. Let σi♦, i ∈ I, be Player ♦ strategies for compatible games. Their

composition, σ♦ =‖i∈I σi♦, is defined such that σ♦(λ)(a, 〈μι〉s,a) def
= σι♦([λ]

ι)(a, μι)

for all λ ∈ Ω+
G with s = last(λ) ∈ S♦.

From this definition, strategy composition is clearly associative. Note that,
for each choice, the composed strategy takes into account the history of only one
component, which is less general than using the history of the composed game.

3.3 Properties of the Composition

We now show that synthesising strategies for compatible individual components
is sufficient to obtain a composed strategy for the composed game.

Functional Simulations. We introduce functional simulations, which are a
special case of classical PA simulations [17], and show that they preserve winning
conditions over traces. Intuitively, a PA M ′ functionally simulates a PA M if all
behaviours of M are present in M ′, and if strategies translate from M to M ′.

Given a distribution μ, and a partial function f : S → S′ defined on the sup-

port of μ, we write f(μ) for the distribution defined by f(μ)(s′)
def
=
∑

f(s)=s′ μ(s).

A functional simulation from a PA M to a PA M ′ is a partial function f : S → S′

such that f(ς) = ς ′, and if s
a−→ μ in M then f(s)

a−→′f(μ) in M ′.

Lemma 1. Given a functional simulation from a PA M to a PA M ′ and a
specification ϕ defined on traces, for every strategy σ� ∈ ΣM

� there is a strategy

σ′� ∈ ΣM ′
� such that (M ′)σ

′
� |= ϕ⇔Mσ� |= ϕ.

Key Lemma. The PA ‖i∈I (Gi)σ
i
♦ is constructed by first unfolding each com-

ponent, applying the Player ♦ strategies, and then composing the resulting PAs,
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while the PA (‖i∈I Gi)‖i∈Iσ
i
♦ is constructed by first composing the individual

components, then unfolding, and applying the composed Player ♦ strategy. The
following lemma justifies, via the existence of a functional simulation, that com-
posing Player ♦ strategies preserves the trace distribution between such PAs,
and hence yields a fully compositional approach.

Lemma 2. Given compatible games Gi, i ∈ I, and respective Player ♦ strategies

σi♦, there is a functional simulation from (‖i∈I Gi)‖i∈Iσ
i
♦ to ‖i∈I (Gi)σ

i
♦ .

In general, there is no simulation in the other direction, as in the PA composition
one can no longer distinguish states in the induced PA that were originally
Player ♦ states, and so condition (C4) of the composition is never invoked.

4 Compositional Synthesis

Applying strategies synthesised for games to obtain induced PAs allows us to
reuse compositional rules for PAs. Using Lemma 2, we can then lift the result
back into the game domain. This process is justified in Theorem 1 below.

4.1 Composition Rules

We suppose the designer is supplying a game G =‖i∈I Gi composed of atomic
games Gi, together with specifications defined on traces ϕi, i ∈ I, and show how,
using our framework, strategies σi♦ synthesised for Gi and ϕi can be composed
to a strategy σ♦ =‖i∈I σi♦ for G, satisfying a specification ϕ defined on traces.

Theorem 1. Given a rule P for PAs Mi and specifications ϕij and ϕ defined

on traces, then the rule G holds for all Player ♦ strategies σi♦ of compatible games
Gi with the same action alphabets as the corresponding PAs, where

P ≡
Mi |= ϕij 1 ≤ j ≤ m i ∈ I

‖i∈I Mi |= ϕ,
and G ≡

(Gi)σ
i
♦ |=

∧m
j=1 ϕij i ∈ I

(‖i∈I Gi)‖i∈Iσi
♦ |= ϕ.

Theorem 1 enables the compositional synthesis of strategies in an automated
way. First, synthesis is performed for atomic components Gi, i ∈ I, by obtaining

for each i a Player ♦ strategy σi♦ for Gi |=
∧m
j=1 ϕij . We apply P with Mi

def
=

(Gi)σ
i
♦ to deduce that ϕ holds in ‖ni=1 (Gi)σ

i
♦ and, using Lemma 1 and 2, that

‖i∈I σi♦ is a winning strategy for Player ♦ in ‖ni=1 Gi. The rules can be applied
recursively, making use of associativity of the game and strategy composition.

4.2 Multi-objective Queries

In this section we leverage previous work on compositional verification for PAs
in order to compositionally synthesise strategies for games.

Reward and LTL Objectives. The expected value of a function ρ : A∗ →
R±∞ over traces in a DTMC D is ED[ρ]

def
= limn→∞

∑
w∈An PrD(w)ρ(w), if

the limit exists in R±∞. We denote by Eσ♦,σ�
G (resp. Eσ�

M ) the expected value
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in a game G (resp. PA M) under the respective strategies. A reward structure
of a game with actions A is a function r : Ar → Q, where Ar ⊆ A. Given
a reward structure r such that either r(a) ≤ 0 or r(a) ≥ 0 for all actions a
occurring infinitely often on a path, the total reward for a trace w = a0a1 . . .

is rew(r)(w)
def
= lim

t→∞

∑t
i=0 r(ai), which is measurable thanks to the restrictions

imposed on r. Given reward structures rj , j ∈ J , for all a ∈
⋃
j∈J Arj we let

(
∑

j∈J rj)(a) be the sum of the rj(a) that are defined for a.
To express LTL properties over traces, we use the standard LTL operators

(cf. [16]); in particular, the operators F and G stand for eventually and always,
respectively. For a DTMC D, and an LTL formula Ξ over actions AΞ , define

PrD(Ξ)
def
= PrD({λ ∈ ΩD | projA\AΞ

(trace(λ)) |= Ξ}), that is, the measure of
infinite paths with traces satisfying Ξ, where actions not in AΞ are disregarded.

A reward (resp. LTL) objective is of the form r � v (resp. Ξ � v), where r
is a reward structure, Ξ is an LTL formula, v ∈ Q is a bound, and �∈ {≥, >}.
A reward objective r � v (resp. LTL objective Ξ � v) is true in a game G
under a pair of strategies (σ♦, σ�) if and only if Eσ♦,σ�

G [rew(r)] � v (resp.
Pr

σ♦,σ�
G (Ξ) � v), and similarly for PAs and DTMCs. Minimisation of rewards

can be expressed by reverting signs.

Multi-objective Queries. A multi-objective query (MQ) ϕ is a Boolean com-
bination of reward and LTL objectives, and its truth value is defined inductively
on its syntax. An MQ ϕ is a conjunctive query (CQ) if it is a conjunction of
objectives. Given an MQ with bounds v1, v2, . . ., call v = (v1, v2, . . .) the tar-
get. Denote by ϕ[x] the MQ ϕ, where, for all i, ri � vi is replaced by ri � xi,
and Ξi � vi is replaced by Ξi � xi. Given a game G (resp. PA M) we write
Gσ♦,σ� |= ϕ (resp. Mσ� |= ϕ), if the query ϕ evaluates to true under the re-
spective strategies. We write M |= ϕ if Mσ� |= ϕ for all σ� ∈ ΣM

� . We say that
an MQ ϕ is achievable in a game G if there is a Player ♦ strategy σ♦ such that
Gσ♦ |= ϕ, that is, σ♦ is winning for ϕ against all possible Player � strategies. We
require that expected total rewards are bounded, that is, we ask for any reward
structure r in an MQ ϕ that Gσ♦,σ� |= r <∞∧ r > −∞ for all σ♦ and σ�.
Fairness. Since PA rules as used in Theorem 1 often include fairness conditions,
we recall here the concept of unconditional process fairness based on [1]. Given
a composed PAM =‖i∈I M i, a strategy σ� is unconditionally fair ifMσ� |= u,

where u
def
=

∧
i∈I GFAi ≥ 1, that is, each component makes progress infinitely

often with probability 1. We writeM |=u ϕ if, for all unconditionally fair strate-
gies σ� ∈ Σ�,Mσ� |= ϕ; this is equivalent toM |= u→ ϕ (the arrow→ stands
for the standard logical implication), and so MQs can incorporate fairness.

Applying Theorem 1. In particular, for the premises in Theorem 1 we can
use the compositional rules for PAs developed in [13], which are stated for MQs.
Thus, the specification ϕ for the composed game can, for example, be a CQ,
or a summation of rewards, among others. Unconditional fairness corresponds
precisely to the fairness conditions used in the PA rules of [13]. When the PA rules
include fairness assumptions, note that, for a single component, unconditional
fairness is equivalent to only requiring deadlock-freedom.
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Fig. 3. Compositional Pareto set computation (a); weight vector selection (b)

4.3 Compositional Pareto Set Computation

We describe in this section how to pick the targets of the objectives ϕi in com-
positional rules, such as those in Theorem 1, so that ϕ is achievable.

Pareto Sets. Given an MQ ϕ with N objectives, vector v ∈ RN is a Pareto
vector if and only if ϕ[v − ε] is achievable for all ε > 0, and ϕ[v + ε] is not
achievable for any ε > 0. The downward closure of the set of all such vectors
is called a Pareto set, where the downward closure of a set X is defined as

dwc(X)
def
= {y ∈ RN | ∃x ∈ X .x ≥ y}. Given ε > 0, an ε-approximation of a

Pareto set P is a set of vectors Q satisfying that, for any w ∈ Q, there is a vector
v ∈ P such that ‖v−w‖ ≤ ε, and for every v ∈ P there is a vector w ∈ Q such
that ‖v −w‖ ≤ ε, where ‖ · ‖ is the Manhattan norm.

Under-Approximating Pareto Sets. We can compositionally compute an
under-approximation of the Pareto set for ϕ, which we illustrate in Figure 3.

Consider N reward structures, r1, . . . , rN , and objectives ϕi, i ∈ I, over these
reward structures for respective games Gi, as well as an objective ϕ, over the
same reward structures, for the composed game G =‖i∈I Gi. Note that, for each
1 ≤ j ≤ N , the reward structure rj may be present in several objectives ϕi.
Let P i be the Pareto set for Gi |= ϕi, for i ∈ I, and so each point v(i) ∈ P i

represents a target vector for the MQ ϕi[v(i)] achievable in the game Gi.
For a Pareto set P i, define the lifting [P i] to all N reward structures by

[P i]
def
= {v ∈ RN

±∞ | the coordinates of v appearing in ϕi are in P i}. The set

P ′ def
= ∩i∈I [P i] is the set of target vectors for all M reward structures, which

are consistent with achievability of all objectives ϕi in the respective games.
The projection1 P ′′ of P ′ onto the space of reward structures appearing in ϕ
then yields an under-approximation of the Pareto set P for ϕ in the composed
game G, that is, P ′′ ⊆ P . A point v ∈ P ′′ can be achieved by instantiating the
objectives ϕi with any targets v(i) in P ′ that match v.

1 More generally, if ϕ contains items such as ri+rj � vi+vj , as in the (Sum-Reward)

rule of [13], a new dimension is introduced combining the rewards as required.
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4.4 Compositional MQ Synthesis

We now describe our compositional strategy synthesis method.

MQ Synthesis for Component Games. A game is stopping if, under any
strategy pair, with probability 1 a part of the game is reached where the prop-
erties no longer change (see the technical report [2] for details.) A strategy is
ε-optimal for an MQ ϕ with target v if it achieves ϕ[v−ε] for all ε > 0. From [6]
we have that, for atomic stopping games with MQs, it is decidable whether
an ε-optimal strategy exists (optimal strategies may not exist), and, ε-optimal
strategies can be represented finitely using stochastic memory update [7].

We compute a strategy for an MQ in CNF
∧n
i=1

∨m
j=1 ri,j ≥ vi,j by imple-

menting value iteration based on [6]. First, set an initial accuracy, a ← 1
2 . For

each 0 ≤ i < n, select a corresponding 0 ≤ ji < m. Then uniformly iterate over
weights xi ∈ [0, 1− a/2]m by gridding with accuracy a, keeping the jith dimen-
sion constant at 1 − a/2. The pattern of selected vectors is shown for m = 2
dimensions in Figure 3(b). At each selection of xi, check, using the CQ algorithm
of [7], if

∧n
i=1(

∑m
j=1 x

j
i · ri,j ≥

∑m
j=1 x

j
i · vi,j) is realisable, and, if so, return the

winning strategy. Otherwise, if all options for selecting ji are exhausted, refine
the accuracy to a← a

2 and repeat.
Every point y ∈ Rn in a CQ Pareto set with weights x1, . . . ,xn ∈ Rm

≥0

corresponds to intersection of half-spaces xi · z ≥ yi; the union over all choices
of weight vectors is the ε-approximation of the corresponding MQ Pareto set.

MQ Synthesis for Composed Games. Our method for compositional strat-
egy synthesis, based on synthesis for atomic games, is summarised as follows:

(S1) User Input: A composed game G =‖i∈I Gi, MQs ϕi, ϕ, and matching PA
rules for use in Theorem 1.

(S2) First Stage: Obtain ε-approximate Pareto sets P i for Gi |= ϕi, and com-
pute P ′′ as in Section 4.3.

(S3) User Feedback: Pick targets v for ϕ from P ′′ and matching targets v(i)

for ϕi from P i.
(S4) Second Stage: Synthesise strategies σi♦, for Gi |= ϕi[v(i)], and compose

them using Definition 7 (see the technical report [2] for composing strategies
in the stochastic memory update representation.)

(S5) Output:A composed strategy ‖i∈I σi♦, winning for G |= ϕ[v] by Theorem 1.

Steps (S1), (S4) and (S5) are sufficient if the targets are known, while (S2)
and (S3) are an additional feature enabled by the Pareto set computation.

4.5 Case Study

We illustrate our approachwith an example, briefly outlined here; see the technical
report [2] for more detail. Wemodel an Internet-enabled fridge that autonomously
selects between different digital agents selling milk whenever restocking is needed.
We compute the Pareto sets and strategies in a prototype implementation as an
extension of PRISM-games [5].
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Table 1. Run time comparison between compositional and monolithic strategy syn-
thesis. For the CQ value iteration (cf. [7]) we use 60, 400 and 200 iterations for the
fridge, trader and composed model, respectively. Computations were done on a 2.8
GHz IntelR© XeonR© CPU, with 32 GB RAM, under Fedora 14.

Traders (n) State Space Size Running Time [s]
F Ti C Composition Compositional Monolithic

Pareto Set Strategies Pareto Set Strategy

1 11 7 17 0.006 31.0 0.2 10.9 0.26
2 23 7 119 0.1 400.0 0.37 6570.0 161.0
3 39 7 698 2.0 407.0 2.4 > 3h –
4 59 7 3705 75.0 4870.0 1.4 > 5h –

The fridge repeatedly invites offers from several traders, and decides whether
to accept or decline the offers, based on the quality of each offer. The objective
is for the traders to maximise the unit price, and for the fridge to maximise the
amount of milk it purchases. For n traders Ti, 1 ≤ i ≤ n, and a fridge F , denote

the composition C
def
= (‖ni=1 Ti) ‖ F . We use the following reward objectives

Oi ≡ “offers made by Ti” ≥ voi , Ai ≡ “offers of Ti accepted” ≥ vai , Qi ≡
“quality of offers made by Ti” ≥ vqi , $i ≡ “unit price of Ti” ≥ v$i , and # ≡
“amount of milk obtained by F” ≥ v#, and synthesise strategies as explained
in Section 4.1 according to the rule:

F |=
∧n
j=1(Oj → Aj) ∧ (

∧n
j=1 Qj → #) Ti |= Ai → (Qi ∧ $i) 1 ≤ i ≤ n

C |=
∧n
j=1(Oj → $j) ∧ (

∧n
j=1 Oj → #).

The main advantages of compositional synthesis are a dramatic improvement
in efficiency and the compactness of strategies, as indicated in Table 1. In general,
the strategies are randomised and history dependent. For the case of two traders,
with the target that we selected, we generate a strategy where the traders make
an expensive offer in the first round with probability 0.91, but from then on
consistently make less expensive bulk offers.

5 Conclusion

We have defined a synchronising composition for stochastic games, and formu-
lated a compositional approach to controller synthesis by leveraging techniques
for compositional verification of PAs [13] and multi-objective strategy synthe-
sis of [6,7]. We have extended the implementation of [7] to synthesise ε-optimal
strategies for two-player stochastic games for total expected reward objectives
in conjunctive normal form. We intend to investigate relaxing the compatibility
condition and consider notions of fairness weaker than unconditional fairness to
broaden the applicability of our methods.
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Abstract. Embedded devices usually share only partial information
about their current configurations as the communication bandwidth can
be restricted. Despite this, we may wish to bring a failed device into a
given predetermined configuration. This problem, also known as reset-
ting or synchronizing words, has been intensively studied for systems
that do not provide any information about their configurations. In or-
der to capture more general scenarios, we extend the existing theory of
synchronizing words to synchronizing strategies, and study the syn-
chronization, short-synchronization and subset-to-subset synchroniza-
tion problems under partial observability. We provide a comprehensive
complexity analysis of these problems, concluding that for deterministic
systems the complexity of the problems under partial observability re-
mains the same as for the classical synchronization problems, whereas
for nondeterministic systems the complexity increases already for sys-
tems with just two observations, as we can now encode alternation.

1 Introduction

In February last year (2013), Aalborg University launched an experimental satel-
lite [3] designed by students. There was a failure during the initialization phase
executed by the satellite at the orbit, resulting in unknown orientation of the so-
lar panel. This caused significant problems with energy supply and very limited
communication capabilities of the satellite, especially when transmitting infor-
mation that is energetically more expensive than receiving it. The task was to
command the satellite from the Earth so that it returned to some predefined
well-known position.

A simplified model of the problem is depicted in Figure 1a. In the example,
we assume for illustration purposes that there are only eight possible rotation
positions of a single solar panel, numbered by 1 to 8 in the figure. The thin lines
with a dashed surface indicate the direction the panel is facing in a given position.
This determines whether the panel is active and produces energy (facing towards
light) or inactive and does not produce any energy. The thick line at position 5
indicates the current (unknown) position of the solar panel. The satellite cannot
communicate the exact position of the solar panel, instead it is only capable
of transmitting information as to whether the current position produces energy

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 188–202, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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(a) Unknown orientation of the satellite’s solar panel

Synchronizing strat-
egy that brings the
system to state 1:

if Inactive then
repeat rotate L
until Active;

else repeat rotate R
until Inactive;
rotate L;

endif
rotate L;

(b) Synch. strategy

Fig. 1. Satellite with partial observability and its synchronizing strategy

(observation Active) or not (observation Inactive). The panel can be commanded
to rotate one position to the left (action L) or to the right (action R) and our
task is to bring it from any possible (unknown) position into the position 1 where
it produces most energy. As we cannot observe the actual position of the panel,
we need to find a strategy that relies only on the fact whether the panel is Active
or Inactive. Such a strategy indeed exists as shown in Figure 1b.

The classical concept of synchronizing words [6] for deterministic finite au-
tomata dates back more than 50 years and it concerns the existence of a word
that brings a given automaton from any of its states to a single state (see [22,24]
for recent survey papers). However, for our example in Figure 1a it is clear that
there is no single synchronizing word—in this classical setting—over {L,R} that
can bring the panel into the same position. Instead, we need to design a strategy
that relies on a partial information about the system, in our case on whether
the panel is Active or Inactive.

1.1 Our Contribution

We introduce a general synthesis problem for synchronizing strategies of systems
with partial observability. We deal with this problem in the setting of finite-state
automata where each state has a single observation from a finite set of obser-
vations; we call the model labelled transition system with partial observability
(LTSP). The task is to suggest a strategy for adaptive generation of actions
based on the so-far seen observations. Such a strategy should bring the system
from any possible initial state into a single synchronizing state. We also consider
two other variants of the synchronization synthesis problem (i) with a bound on
the maximal length of (runs of) the strategy (short-synchronization) and (ii) syn-
chronization from a given set of states to a given set of states (subset-to-subset
synchronization). We provide a comprehensive complexity study of these prob-
lems in the setting of total deterministic (DFA), partial deterministic (PFA) and
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Table 1. Summary of complexity results (new results are in bold)

Classical synchronization Partial Observability

No information, |O| = 1 No restriction on O

S
y
n
ch

ro
n
iz
a
ti
o
n

DFA NL-complete [6,24] NL-complete (Thm. 5)

PFA PSPACE-complete [15] PSPACE-complete (Thm. 4)

NFA PSPACE-complete [15,21] EXPTIME-complete (Thm. 2, 7)

S
h
o
rt
-s
y
n
ch

. DFA NP-complete [11] NP-complete (Thm. 5)

PFA PSPACE-complete [15] PSPACE-complete (Thm. 4)

NFA PSPACE-complete [15] EXPTIME-complete (Thm. 2, 7)

S
u
b
se
t-
to
-s
u
b
se
t

DFA PSPACE-complete [20] PSPACE-complete (Thm. 4)

PFA PSPACE-complete ([20], on-the-fly) PSPACE-complete (Thm. 4)

NFA PSPACE-complete ([20], on-the-fly) EXPTIME-complete (Thm. 2, 6)

nondeterministic (NFA) finite automata. Our results, compared to the classical
synchronization problems, are summarized in the right column of Figure 1.

Our first technical contribution is a translation from the synthesis of history-
dependent synchronizing strategies on LTSP to the synthesis of memoryless win-
ning reachability strategies for a larger two-player knowledge game. This allows
us to argue for the EXPTIME containment of the synchronization problem on
NFA. However, for DFA and PFA the knowledge game is insufficient to obtain
tight complexity upper-bounds. For this reason, and as our second contribu-
tion, we define a notion of aggregated knowledge graph allowing us to derive
a PSPACE containment for PFA and NL containment for DFA, despite the
double-exponential size of the aggregated knowledge graph in the general non-
deterministic case.

In order to complement the complexity upper-bounds with matching lower-
bounds, we provide as our third contribution a novel polynomial-time reduction
from alternating linear bounded automata into the synchronization problems
for NFA with partial observability. This is achieved by showing that a combi-
nation of the partial observability and nondeterminism can capture alternation.
This technique provides matching lower-bounds for all our three synchroniza-
tion problems on NFA. The lower-bounds for DFA and PFA are derived from
the classical problem setting.
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In addition, we describe a polynomial-time reduction from a setting with an
arbitrary number of observations to an equivalent setting with just two observa-
tions, causing only a logarithmic overhead as a factor in the size of the system.
Thus all the lower-bound results mentioned earlier remain valid even when re-
stricting the synchronizing strategy synthesis problem to only two observations.

1.2 Related Work

The study of synchronizing words initiated by Černý [6] is a variant of our more
general strategy synthesis problem where all states return the same observation,
and the existence of synchronizing words, short synchronizing words and subset-
to-subset synchronizing words have been in different contexts studied up to now;
see [22,24] for recent surveys. The computational complexities of word synchro-
nization problems for DFA, PFA and NFA are summarized in left column of
Table 1. Note that the NL-completeness for the classical synchronization prob-
lem on DFA (not explicitly mentioned in the literature) follows directly from the
fact that the problem of synchronizing all states is equivalent to checking that
any given pair of states can be synchronized [6, 24]. The PSPACE containment
of subset-to-subset word synchronization for NFA and PFA follows from [20] by
running the algorithm for DFA in an on-the-fly manner, while guessing step-by-
step the synchronizing path.

Through the last years there has been an increasing interest in novel settings
of the synchronization problem. Volkov et al. [12] study the problem for deter-
ministic automata with positive cost on transitions, and constrain the cost of the
synchronizing word. They also study a synchronization game, where the player
who wants to synchronize the system proposes only every second character in
the synchronizing word. Doyen et al. [9, 10] study the existence of infinite syn-
chronizing words in a probabilistic setting. The theory of synchronizing words
have also seen several practical applications, for instance in biocomputing [2],
model-based testing [4], and robotics [1].

The notion of homing sequences [13, 16] is related to the study of synchro-
nizing words and to our study of synchronizing strategies. A homing sequence
is a sequence of input actions that makes it possible to determine the current
state of the system by looking at the outputs from the system. Homing se-
quences are studied on the model of Mealy machine, essentially a DFA where
each transition produces an output from a given finite alphabet (see [22] for a
recent survey). Homing sequences have been, among others, studied in an adap-
tive variant where the next input symbol is determined by the knowledge of the
previous outputs. This is related to our synchronizing strategies that depend on
the history of observations, however, there are no complexity results for adaptive
homing sequence on nondeterministic systems.

Pomeranz and Reddy [17] suggest to combine synchronizing words and adap-
tive homing sequences. They first apply a homing sequence and then find a word
that brings the machine to one particular state. The theory is applied to sequen-
tial circuit testing for deterministic systems and their adaptive synchronization
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problem can be seen as a subclass of our systems with partial observability (the
output actions of a Mealy machine can be encoded as observations).

The idea of gathering the knowledge of possible states where the system can
be after a sequence of observable actions, formalized in the notion of knowledge
game, is inspired by a similar technique from [5, 7]. Our aggregated knowledge
graph technique is related to the super graph construction used in [14]. The
complexity of the conditional planning problem from artificial intelligence have
also recently been studied under different observability assumptions [19].

Finally, regarding our EXPTIME lower bound, similar complexity results are
available for reachability on finite games with partial observability. In [18] the au-
thors study reachability games where both players have only a partial informa-
tion about the current configuration of the game and show 2-EXPTIME-hardness
of deciding whether the first player has a winning strategy. Our synchronization
problem for NFA can be also seen as a game, however, here the second player (non-
determinism) has a full information. This variant, called semiperfect-information
game, was studied in [8] for a parity objective (including reachability) and the au-
thors show that the problem is both in NP and coNP. Our synchronization prob-
lem for NFA is similar to the semiperfect-information game, however, with a very
different objective of synchronizing from any given state. This is documented by
the fact that the synchronization problem under partial observability for NFA be-
comes EXPTIME-complete.

2 Definitions

We shall now formally rephrase our problem. We define labelled transition sys-
tems with partial observability, introduce synchronizing strategies and formulate
the three decision problems we are interested in.

Definition 1. A labelled transition system with partial observability (LTSP)
is a quintuple T = (S, Act ,→,O, γ) where S is a set of states, Act is an action

alphabet, → ⊆ S × Act × S is the transition relation, written s
a−→ s′ whenever

(s, a, s′) ∈ →, O is a nonempty set of observations, and γ : S → O is a function
mapping each state to an observation.

We shall study the synchronization problems for three natural subclasses
of LTSP, namely DFA (deterministic finite automata), PFA (partial finite au-
tomata) and NFA (nondeterministic finite automata). An LTSP is called NFA
if S, Act and O are all finite sets. If the transition relation is also deterministic,
i.e. for every s ∈ S and a ∈ Act there is at most one s′ ∈ S such that s

a−→ s′,
then we call it PFA. If the transition relation is moreover complete, i.e. for all
s ∈ S and a ∈ Act there is exactly one s′ ∈ S such that s

a−→ s′, then we have a
DFA. In the rest of the paper we focus on the NFA class and its PFA and DFA
subclasses (implicitly assuming partial observability).

For the rest of this section, let T = (S, Act ,→,O, γ) be a fixed LTSP. A path

in T is a finite sequence π = s1a1s2a2 . . . an−1sn where si
ai−→ si+1 for all i,

1 ≤ i < n. The length of π is the number of transitions, denoted as |π| = n− 1.
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The last state sn in such a path π is referred to as last(π). The set of all finite
paths in T is denoted by paths(T ). The observation sequence of π is the unique
sequence of state observations γ(π) = γ(s1)γ(s2) . . . γ(sn).

A strategy on T is a function from finite sequences of observations to next
actions to be taken, formally

δ : O+ → Act ∪ {done}

where done 	∈ Act is a special symbol signalling that the achieved path is max-
imal. In the rest of the paper we consider only strategies that are feasible and
terminating. A strategy δ is feasible if the action proposed by the strategy is
executable from the last state of the path; formally we require that for every
π = s1a1s2a2 . . . an−1sn ∈ paths(T ) that follows the strategy, meaning that
δ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n, either δ(γ(π)) = done or there is

at least one s′ ∈ S such that last(π)
δ(γ(π))−−−−−→ s′. A strategy δ is terminating if it

does not generate any infinite path, in other words there is no infinite sequence
π = s1a1s2a2 . . . such that si

ai−→ si+1 and δ(γ(s1a1s2a2 . . . si)) = ai for all i ≥ 1.
Given a subset of states X ⊆ S and a feasible, terminating strategy δ, the set

of all maximal paths that follow the strategy δ in T and start from some state
in X , denoted by δ[X ], is defined as follows:

δ[X ] = {π = s1a1s2a2 . . . an−1sn ∈ paths(T ) | s1 ∈ X and δ(γ(π)) = done

and δ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n } .

The set of final states reached when following δ starting from X is defined
as last(δ[X ]) = {last(π) | π ∈ δ[X ]} and the length of δ from X is defined as
length(δ[X ]) = max{|π| | π ∈ δ[X ]}. By length(δ) we understand length(δ[S]).

We now define a synchronizing strategy that guarantees to bring the system
from any of its states into a single state.

Definition 2 (Synchronizing strategy). A strategy δ for an LTSP T =
(S, Act ,→,O, γ) is synchronizing if δ is feasible, terminating and last(δ[S]) is a
singleton set.

Note that synchronizing strategy for NFA means that any execution of the
system (for all possible nondeterministic choices) will synchronize into the same
singleton set. It is clear that a synchronizing strategy can be arbitrarily long as
it relies on the full history of observable actions. We will now show that this is in
fact not needed as we can find strategies that do not perform unnecessary steps.

Let T = (S, Act ,→,O, γ) be an LTSP and let ω ∈ O+ be a sequence of
observations. We define the set of possible states (called belief) where the system
can be after observing the sequence ω by

belief (ω) = {last(π) | π ∈ paths(T ), γ(π) = ω} .

A strategy δ for T is belief-compatible if for all ω1, ω2 ∈ O+ with belief (ω1) =
belief (ω2) we have δ(ω1) = δ(ω2).
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Lemma 1. If there is a synchronizing strategy δ for a finite LTSP T =
(S, Act ,→,O, γ) then T has also a belief-compatible synchronizing strategy δ′

such that length(δ′) ≤ 2|S| and length(δ′) ≤ length(δ).

We shall now define three versions of the synchronization problem studied in
this paper. The first problem simply asks about the existence of a synchronizing
strategy.

Problem 1 (Synchronization). Given an LTSP T , is there a synchronizing strat-
egy for T ?

The second problem of short-synchronization moreover asks about the exis-
tence of a strategy shorter than a given length bound. This can be, for instance,
used for finding the shortest synchronizing strategy via the bisection method.

Problem 2 (Short-Synchronization). Given an LTSP T and a bound k ∈ N, is
there a synchronizing strategy δ for T such that length(δ) ≤ k?

Finally, the general subset-to-subset synchronization problem asks to synchro-
nize only a subset of states, reaching not necessarily a single synchronizing state
but any state from a given set of final states.

Problem 3 (Subset-to-Subset Synchronization). Given an LTSP T and subsets
Sfrom , Sto ⊆ S, is there a feasible and terminating strategy δ for T such that
last(δ[Sfrom ]) ⊆ Sto?

If we restrict the set of observations to a singleton set (hence the γ function
does not provide any useful information about the current state apart from the
length of the sequence), we recover the well-known decision problems studied in
the body of literature related to the classical word synchronization (see e.g. [22,
24]). Note that in this classical case the strategy is now simply a fixed finite
sequence of actions.

3 Complexity Upper-Bounds

In this section we shall introduce the concept of knowledge game and aggregated
knowledge graph so that we can conclude with the complexity upper-bounds for
the various synchronization problems with partial observability.

3.1 Knowledge Game

Let T = (S, Act ,→,O, γ) be a fixed LTSP. We define the set of successors from

a given state s ∈ S under the action a ∈ Act as succ(s, a) = {s′ | s a−→ s′}. For
X ⊆ S we define

succ(X, a) =

{
{s′ ∈ succ(s, a) | s ∈ X} if succ(s, a) 	= ∅ for all s ∈ X

∅ otherwise
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such that succ(X, a) is nonempty iff every state from X enables the action a.

We also define a function split : 2S → 2(2
S)

split(X) = {{s ∈ X | γ(s) = o} | o ∈ O} \ ∅

that partitions a given set of states X into the equivalence classes according to
the observations that can be made.

We can now define the knowledge game, a two-player game played on a graph
where each node represents a belief (a set of states where the players can end up
by following a sequence of transitions). Given a current belief, Player 1 plays by
proposing a possible action that all states in the belief can perform. Player 2 then
determines which of the possible next beliefs (partitionings) the play continues
from. Player 1 wins the knowledge game if there is a strategy so that any play
from the given initial belief reaches the same singleton belief {s}. Formally, we
define the knowledge game as follows.

Definition 3. Given an LTSP T = (S, Act ,→,O, γ), the corresponding knowl-
edge game is a quadruple G(T ) = (V , I, Act ,⇒) where

– V = {V ∈ 2S \ ∅ | {V } = split(V )} is the set of all unsplittable beliefs,

– I = split(S) is the set of initial beliefs, and

– ⇒⊆ V×Act×V is the transition relation, written V1
a
=⇒ V2 for (V1, a, V2) ∈⇒,

such that V1
a
=⇒ V2 iff V2 ∈ split(succ(V1, a)).

Example 1. In Figure 2a we show the knowledge game graph for our running
example from Figure 1a. We only display the part of the graph reachable from
the initial belief consisting of states {3, 4, 5, 6, 7}where the solar panel is inactive.
Assume that we want to synchronize from any of these states into the state 8.
This can be understood as a two-player game where from the current belief
Player 1 proposes an action and Player 2 picks a new belief reachable in one
step under the selected action. The question is whether Player 1 can guarantee
that any play of the game reaches the belief {8}. This is indeed the case and the
strategy of Player 1 is, for example, to repeatedly propose the action L until
the belief {8} is eventually reached.

We shall now formalize the rules of the knowledge game. A play in a knowledge
game G(T ) = (V , I, Act ,⇒) is a sequence of beliefs μ = V1V2V3 . . . where V1 ∈ I
and for all i ≥ 1 there is ai ∈ Act such that Vi

ai=⇒ Vi+1. The set of all plays in
G(T ) is denoted plays(G(T )).

A strategy (for Player 1 ) is a function ρ : V → Act . A play μ = V1V2V3 . . .

follows the strategy ρ if Vi
ρ(Vi)
===⇒ Vi+1 for all i ≥ 1. Note that the strategy is

memoryless as it depends only on the current belief.
Player 1 wins the game G(T ) if there is s ∈ S and a strategy ρ such that for

every play μ = V1V2V3 . . . ∈ plays(G(T )) that follows ρ there exists an i ≥ 1
such that Vi = {s}.
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Fig. 2. Examples of a knowledge game and an aggregated knowledge graph

The length of a play μ = V1V2V3 . . . for reaching a singleton belief {s} is
length(μ, s) = i− 1 where i is the smallest i such that Vi = {s}. The length of a
winning strategy ρ in the game G(T ) that reaches the singleton belief {s} is

length(ρ) = max
μ∈plays(G(T )), μ follows ρ

length(μ, s) .

Theorem 1. Let T = (S, Act ,→,O, γ) and let G(T ) = (V , I, Act ,⇒) be the
corresponding knowledge game where I = split(S). Then Player 1 wins the
knowledge game G(T ) iff there is a synchronizing strategy for T . Moreover for
any winning strategy ρ in the game G(T ) there is a synchronizing strategy δ for
T such that length(ρ) = length(δ), and for any synchronizing strategy δ for T
there is a winning strategy ρ in the game G(T ) such that length(ρ) ≤ length(δ).

Proof. Assume that Player 1 wins the knowledge game G(T ) with the strategy
ρ so that all plays reach the belief {s}. We want to find a synchronizing strategy
δ for T . Let the initial observation be o1 ∈ O; this gives the initial belief V1 =
{t ∈ S | γ(t) = o1}. We can now use the winning strategy ρ to determine the
first action of our synchronizing strategy δ(o1) = ρ(V1). By executing the action
ρ(V1), we get the next observation o2. Now assume that we have a sequence of
observations o1o2 . . . oi−1oi. We can inductively determine the current belief Vi
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as

Vi = {t ∈ succ(Vi−1, ρ(Vi−1)) | γ(t) = oi}

for all i > 1. This gives us the synchronizing strategy

δ(o1o2 . . . oi−1oi) =

{
done if Vi = {s}
ρ(Vi) otherwise

that guarantees that all plays follow the winning strategy ρ. Hence in any play
there exists an i ≥ 1 such that Vi = {s}. By this construction it is clear that
length(ρ) = length(δ).

For the other direction, assume that there is a synchronizing strategy δ for
T . Then we know from Lemma 1 that there exists also a belief-compatible syn-
chronizing strategy δ′ where length(δ′) ≤ length(δ). We want to find a winning
strategy ρ for Player 1 in G(T ). As we know by construction that all states in
a belief V have the same observation, we use the notation γ(V ) = o if γ(t) = o
for all t ∈ V . Let the initial belief be V1 ∈ I. We use the synchronizing strategy
δ′ to determine the first action that Player 1 winning strategy should propose
by ρ(V1) = δ′(γ(V1)). Now Player 2 determines the next belief V2 such that

V1
δ′(γ(V1))
=====⇒ V2. In general, assume inductively that we reached a belief Vi along

the play μ = V1V2 . . . Vi. The winning strategy from Vi is given by

ρ(Vi) = δ′(γ(V1)γ(V2) . . . γ(Vi)) .

Note that this definition makes sense because δ′ is belief-compatible (and hence
different plays in the knowledge game that lead to the same belief will propose
the same action). From the construction of the strategy and by Lemma 1 it is
also clear that length(ρ) = length(δ′) ≤ length(δ). ��

We conclude with a theorem proving EXPTIME-containment of the three
synchronization problems for NFA (and hence clearly also for PFA and DFA).

Theorem 2. The synchronization, short-synchronization and subset-to-subset
synchronization problems for NFA are in EXPTIME.

The proof is done by exploring in polynomial time the underlying, exponen-
tially large, graph of the knowledge game.

3.2 Aggregated Knowledge Graph

Knowledge games allowed us to prove EXPTIME upper-bounds for the three
synchronization problems on NFA, however, it is in general not possible to guess
winning strategies for Player 1 in polynomial space. Hence we introduce the
so-called aggregated knowledge graph where we ask a simple reachability ques-
tion (one player game). This will provide better complexity upper-bounds for
deterministic systems, despite the fact that the aggregated knowledge graph can
be exponentially larger than the knowledge game graph.
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Definition 4. Let G(T ) = (V , I, Act ,⇒) be a knowledge game. The aggregated
knowledge graph is a tuple AG(G(T )) = (C , C0,⇒) where

– C = 2V \ ∅ is the set of configurations (set of aggregated beliefs),
– C0 = I is the initial configuration (set of all initial beliefs), and
– ⇒⊆ C × C is the transition relation such that C1 ⇒ C2, standing for

(C1, C2) ∈⇒, is possible if for every V ∈ C1 there is an action aV ∈ Act ∪{•}
such that V

aV=⇒ V ′ for at least one V ′ (by definition V
•
=⇒ V if and only if

|V | = 1), ending in C2 = {V ′ | V ∈ C1 and V
aV=⇒ V ′}.

Example 2. Figure 2b shows a fragment of the aggregated knowledge graph for
our running example from Figure 1a. The initial configuration is the aggregation
of the initial beliefs and each transition is labelled with a sequence of actions for
each belief in the aggregated configuration. The suggested path shows how to
synchronize into the state 8. Note that the action •, allowed only on singleton
beliefs, stands for the situation where the belief is not participating in the given
step.

Theorem 3. Let G(T ) = (V , I, Act ,⇒) be a knowledge game and let
AG(G(T )) = (C , C0,⇒) be the corresponding aggregated knowledge graph. Then
C0 ⇒∗ {{s}} for some state s if and only if Player 1 wins the knowledge game
G(T ). Moreover, for any winning strategy ρ in G(T ) that reaches the singleton
belief {s} we have C0 ⇒length(ρ) {{s}}, and whenever C0 ⇒n {{s}} then there is
a winning strategy ρ in G(T ) such that length(ρ) ≤ n.

The proof is done by translating the path in the aggregated knowledge graph
into a winning strategy for Player 1 in the knowledge game, and vice versa.

The aggregated knowledge graph can in general be exponentially larger than
its corresponding knowledge game as the nodes are now subsets of beliefs (that
are subsets of states). Nevertheless, we can observe that for DFA and PFA, the
size of configurations in AG(G(T )) cannot grow.

Lemma 2. Let T be an LTSP generated by DFA or PFA. Let AG(G(T )) =
(C , C0,⇒) be the corresponding aggregated knowledge graph. Whenever C ⇒ C′

then
∑

V ∈C |V | ≥
∑

V ′∈C′ |V ′|.

Theorem 4. The synchronization, short-synchronization and subset-to-subset
synchronization problems for DFA and PFA are decidable in PSPACE.

Proof. By Theorem 3 and Theorem 1 we get that we can reach the configuration
{{s}} for some s ∈ S in the aggregated graph AG(G(T )) if and only if there is a
synchronizing strategy for the given LTSP T . From Lemma 2 we know that for
DFA and PFA the size of each aggregated configuration reachable during any
computation is bounded by the size of the set S and therefore can be stored in
polynomial space. As PSPACE is closed under nondeterminism, the path to the
configuration {{s}} for some s ∈ S can be guessed, resulting in a polynomial-
space algorithm for the synchronizing problem. Theorem 3 also implies that the
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length of the shortest synchronizing strategy in T is the same as the length of
the shortest path to the configuration {{s}} for some s, giving us that the short-
synchronization problems for DFA and PFA are also in PSPACE. Regarding
the subset-to-subset synchronization problem from the set Sfrom to the set Sto ,
we can in a straightforward manner modify the aggregated knowledge graph so
that the initial configuration is produced by splitting Sfrom according to the
observations and we end in any configuration consisting solely of beliefs V that
satisfy V ⊆ Sto (while allowing the action • from any such belief to itself). ��

Finally, for the synchronization and short-synchronization problems on DFA,
we can derive even better complexity upper-bounds by using the aggregated
knowledge graph.

Theorem 5. The synchronization problem on DFA is in NL and the short-
synchronization problem on DFA is in NP.

The first claim is proved using our aggregated knowledge graph together with
a generalization of the result from [6, 24] saying that all pairs of states in the
system can synchronize iff all states can synchronize simultaneously. For the
second claim we show that the shortest synchronizing strategy in DFA has length
at most (n− 1)n2 where n is the number of states. The strategy can be guessed
(in the aggregated knowledge graph) and verified in nondeterministic polynomial
time.

4 Complexity Lower-Bounds

We shall now describe a technique that will allow us to argue about EXPTIME-
hardness of the synchronization problems for NFA.

Theorem 6. The subset-to-subset synchronization problem is EXPTIME-hard
for NFA.

Proof (Sketch). By a polynomial time reduction from the EXPTIME-
complete [23] acceptance problem for alternating linear bounded automaton over
the binary alphabet {a, b}. W.l.o.g. we assume that the existential and universal
choices do not change the current head position and the tape content and we
have special deterministic states for tape manipulation. We shall construct an
LTSP over three observations {default , choice1, choice2}.

Each tape cell at position k is encoded as in Figure 3a. The actions tka and tkb
can reveal the current content of the cell, while the actions uka and ukb are used to
update the stored letter. The current control state q and the head position k are
remembered via newly added states of the form (q, k). If (q, k) corresponds to a
deterministic state, it will (by a sequence of two actions tkx and ukx′ as depicted
in Figure 3b) test whether the k’th cell stores the required letter x and then it
will update it to x′. For the pair (q, k) where q is an existential state, we add the
transitions as in Figure 3c. Clearly, the strategy can select the action 1 or 2 in
order to commit to one of the choices and all tape cells just mimic the selected
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Fig. 3. Encoding idea

action via self-loops. So far we did not need any observations as the introduced
states all belong to default .

The tricky part is regarding the transitions from the pair (q, k) where q is a
universal state. The situation is depicted in Figure 3d. Here the strategy can
propose only the action g while the nondeterminism is in control of whether we
end up in (q, k, 1) or (q, k, 2). However, this choice is revealed by the observa-
tion choice1 or choice2, respectively. Notice that the nondeterminism in the cell
encoding does not have to follow the same observation as in the control part.
Nevertheless, if this happens, the strategy is allowed to “split” into two separate
continuations.

Finally, if the accepting control state qacc is reached, we allow to enter a new
state sink under a new action $, not only from (qacc, k) but also from any cell
state (k, a) and (k, b) as depiced in Figure 3e. This is the only way in which the
LTSP can synchronize, assuming that we only start from the states (q0, 1) where
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q0 is the initial state and the cell positions that correspond to the initial content
of the tape. This assumption is valid as we only consider the subset-to-subset
synchronization problem in this theorem. ��

Theorem 7. The synchronization and short-synchronization problems are
EXPTIME-hard for NFA.

Proof (Sketch). Given the construction for the subset-to-subset synchronization
problem, we need to guarantee that the execution starts from the predefined
states also in the general synchronization problem. Hence we introduce additional
transitions together with a new state init having the observation default . These
transitions add a new action # that bring us from any state into one of the initial
states of the subset-to-subset problem. There is also a new #-labelled transition
from init into the initial control state and init has no other transitions. This
implies that any synchronizing strategy must start by performing the action
#. Note that for the short-synchronization case, we use Lemma 1 giving us an
exponential upper-bound on the length of the shortest synchronizing strategy.

��

The reader may wonder whether three different observations are necessary
for proving EXPTIME-hardness of the synchronizing problems or whether one
can show the hardness only with two. By analysis of the construction, we can
observe that two observations are in fact sufficient. Moreover, there is a general
polynomial-time reduction from a given synchronization problem with an arbi-
trary number of observations to just two observations, while increasing the size
of the system by only a logarithmic factor.

Theorem 8. The synchronization, short-synchronization and subset-to-subset
synchronization problems on DFA, PFA and NFA are polynomial-time reducible
to the equivalent problems with only two observations.

Proof (Sketch). Let T = (S, Act ,→,O, γ) be a given finite LTSP and let 
 =
-log |O|.. The idea is to encode every observation in binary, so that we need
only 
 bits for each observation. Now instead of entering a state s in the original
system, we enter instead a chain of newly added states of length 
−1 that reveal
via the binary observations 0/1 the actual observation of the state s (where s
reveals the last bit). ��
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2 LIF, Université d’Aix-Marseille and CNRS, France
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Abstract. Solving games played on timed automata is a well-known
problem and has led to tools and industrial case studies. In these games,
the first player (Controller) chooses delays and actions and the second
player (Perturbator) resolves the non-determinism of actions. However,
the model of timed automata suffers from mathematical idealizations
such as infinite precision of clocks and instantaneous synchronization
of actions. To address this issue, we extend the theory of timed games
in two directions. First, we study the synthesis of robust strategies for
Controller which should be tolerant to adversarially chosen clock impreci-
sions. Second, we address the case of a stochastic perturbation model
where both clock imprecisions and the non-determinism are resolved
randomly. These notions of robustness guarantee the implementability
of synthesized controllers. We provide characterizations of the resulting
games for Büchi conditions, and prove the EXPTIME-completeness of
the corresponding decision problems.

1 Introduction

For real-time systems, timed games are a standard mathematical formalism
which can model control synthesis problems under timing constraints. These con-
sist in two-players games played on arenas, defined by timed automata, whose
state space consists in discrete locations and continuous clock values. The two
players represent the control law and the environment. Since the first theoretical
works [2], symbolic algorithms have been studied [10], tools have been developed
and successfully applied to several case studies.
Robustness. Because model-based techniques rely on abstract mathematical
models, an important question is whether systems synthesized in a formalism
are implementable in practice. In timed automata, the abstract mathematical
semantics offers arbitrarily precise clocks and time delays, while real-world digital
systems have response times that may not be negligible, and control software
cannot ensure timing constraints exactly, but only up to some error, caused
by clock imprecisions, measurement errors, and communication delays. A major
challenge is thus to ensure that the synthesized control software is robust, i.e.
ensures the specification even in presence of imprecisions [15].
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Following these observations there has been a growing interest in lifting the
theory of verification and synthesis to take robustness into account. Model-
checking problems were re-visited by considering an unknown perturbation pa-
rameter to be synthesized for several kinds of properties [19,12,7], see also [9].
Robustness is also a critical issue in controller synthesis problems. In fact, due
to the infinite precision of the semantics, synthesized strategies may not be
realizable in a finite-precision environment; the controlled systems synthesized
using timed games technology may not satisfy the proven properties at all. In
particular, due to perturbations in timings, some infinite behaviors may disap-
pear completely. A first goal of our work is to develop algorithms for robust
controller synthesis: we consider this problem by studying robust strategies in
timed games, namely, those guaranteeing winning despite imprecisions bounded
by a parameter.
Adversarial or Stochastic Environments. We consider controller synthesis
problems under two types of environments. In order to synthesize correct con-
trollers for critical systems, one often considers an adversarial (or worst-case)
environment, so as to ensure that all behaviors of the system are correct. How-
ever, in some cases, one is rather interested considering a stochastic environment
which determines the resolution of non-determinism, and the choice of clock
perturbations following probability distributions. We are then interested in sat-
isfying a property almost-surely, that is, with probability 1, or limit-surely, that
is, for every ε > 0, there should exist a strategy for Controller under which the
property is satisfied with probability at least 1− ε.
Contributions. We formalize the robust controller synthesis problem against
an adversarial environment as a (non-stochastic) game played on timed au-
tomata with an unknown imprecision parameter δ, between players Controller
and Perturbator. The game proceeds by Controller suggesting an action and a
delay, and Perturbator perturbing each delay by at most δ and resolving the non-
determinism by choosing an edge with the given action. Thus, the environment’s
behaviors model both uncontrollable moves and the limited precision Controller
has. We prove the EXPTIME-completeness of deciding whether there exists a
positive δ for which Controller has a winning strategy for a Büchi objective,
matching the complexity of timed games in the classical sense. Our algorithm
also allows one to compute δ > 0 and a witness strategy on positive instances.

For stochastic environments, we study two probabilistic variants of the se-
mantics: we first consider the case of adversarially resolved non-determinism
and independently and randomly chosen perturbations, and then the case where
both the non-determinism and perturbations are randomly resolved and chosen.
In each case, we are interested in the existence of δ > 0 such that Controller wins
almost-surely (resp. limit-surely). We give decidable characterizations based on
finite abstractions, and EXPTIME algorithms. All problems are formulated in a
parametric setting: the parameter δ is unknown and is to be computed by our
algorithms. This is one of the technical challenges in this paper.

Our results on stochastic perturbations can also be seen as a new interpre-
tation of robustness phenomena in timed automata. In fact, in the literature
on robustness in timed automata, non-robust behaviors are due to the accu-
mulation of the imprecisions δ along long runs, and in the proofs, one exhibits
non-robustness by artificially constructing such runs (e.g. [12,22]). In contrast,
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in the present setting, we show that non-robust behaviors either occur almost
surely, or can be avoided surely (Theorem 13).
Related Work. While several works have studied robustness issues for model-
checking, there are very few works on robust controller synthesis in timed systems:

– The (non-stochastic) semantics we consider was studied for fixed δ in [11]; but
the parameterized version of the problem was not considered.
– The restriction of the parameterized problem to (non-stochastic) determinis-
tic timed automata was considered in [22]. Here, the power of Perturbator is
restricted as it only modifies the delays suggested by Controller, but has no
non-determinism to resolve. Therefore, the results consist in a robust Büchi ac-
ceptance condition for timed automata, but they do not generalize to timed
games. Technically, the algorithm consists in finding an aperiodic cycle, which
are cycles that are “stable” against perturbations. This notion was defined in [3]
to study entropy in timed languages. We will also use aperiodic cycles in the
present paper.
– A variant of the semantics we consider was studied in [8] for (deterministic)
timed automata and shown to be EXPTIME-complete already for reachability
due to an implicit presence of alternation. Timed games, Büchi conditions, or
stochastic environments were not considered.
– Probabilistic timed automata where the non-determinism is resolved following
probability distributions have been studied [16,4,17]. Our results consist in de-
ciding almost-sure and limit-sure Büchi objectives in PTAs subject to random
perturbations in the delays. Note that PTAs are equipped with a possibly differ-
ent probability distribution for each action. Although we only consider uniform
distributions, the two settings are equivalent for almost-sure and limit-sure ob-
jectives. Games played on PTA were considered in [14] for minimizing expected
time to reachability with NEXPTIME ∩ co-NEXPTIME algorithms.

To the best of our knowledge, this work is the first to study a stochastic model
of perturbations for synthesis in timed automata.

Due to space limitations, the proofs are omitted, but they are available in [18].

2 Robust Timed Games

Timed Automata. Given a finite set of clocks C, we call valuations the elements
of RC

≥0. For a subset R ⊆ C and a valuation ν, ν[R ← 0] is the valuation defined
by ν[R ← 0](x) = 0 if x ∈ R and ν[R ← 0](x) = ν(x) otherwise. Given d ∈ R≥0

and a valuation ν, the valuation ν + d is defined by (ν + d)(x) = ν(x) + d for all
x ∈ C. We extend these operations to sets of valuations in the obvious way. We
write 0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation ν satisfies a guard g, denoted ν |= g, if
all constraints are satisfied when each x ∈ C is replaced with ν(x). We write ΦC
for the set of guards built on C. A zone is a subset of RC

≥0 defined by a guard.
A timed automaton A over a finite alphabet of actions Act is a tuple (L, C,


0,Act, E), where L is a finite set of locations, C is a finite set of clocks, E ⊆
L×ΦC ×Act× 2C ×L is a set of edges, and 
0 ∈ L is the initial location. An edge

e = (
, g, a, R, 
′) is also written as 

g,a,R−−−→ 
′. A state is a pair q = (
, ν) ∈ L×RC

≥0.
An edge e = (
, g, a, R, 
′) is enabled in a state (
, ν) if ν satisfies the guard g.
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The set of possible behaviors of a timed automaton can be described by the set
of its runs, as follows. A run of A is a sequence q1e1q2e2 . . . where qi ∈ L×RC

≥0,
and writing qi = (
, ν), either ei ∈ R>0, in which case qi+1 = (
, ν + ei), or
ei = (
, g, a, R, 
′) ∈ E, in which case ν |= g and qi+1 = (
′, ν[R ← 0]). The set
of runs of A starting in q is denoted Runs(A, q).

Parameterized Timed Game. In order to define perturbations, and to capture
the reactivity of a controller to these, we define the following parameterized timed
game semantics. Intuitively, the parameterized timed game semantics of a timed
automaton is a two-player game parameterized by δ > 0, where Player 1, also
called Controller chooses a delay d > δ and an action a ∈ Act such that every
a-labeled enabled edge is such that its guard is satisfied after any delay in the
set d+[−δ, δ] (and there exists at least one such edge). Then, Player 2, also called
Perturbator chooses an actual delay d′ ∈ d+ [−δ, δ] after which the edge is taken,
and chooses one of the enabled a-labeled edges. Hence, Controller is required to
always suggest delays that satisfy the guards whatever the perturbations are.

Formally, given a timed automaton A = (L, C, 
0,Act, E) and δ > 0, we define
the parameterized timed game of A w.r.t. δ as a two-player turn-based game
Gδ(A) between players Controller and Perturbator. The state space of Gδ(A) is
partitioned into VC ∪ VP where VC = L × RC

≥0 belong to Controller, and VP =

L × RC
≥0 × R≥0 × Act belong to Perturbator. The initial state is (
0,0) ∈ VC .

The transitions are defined as follows: from any state (
, ν) ∈ VC , there is a
transition to (
, ν, d, a) ∈ VP whenever d > δ, for every edge e = (
, g, a, R, 
′)
such that ν + d |= g, we have ν + d + ε |= g for all ε ∈ [−δ, δ], and there exists
at least one such edge e. Then, from any such state (
, ν, d, a) ∈ VP , there is a
transition to (
′, ν′) ∈ VC iff there exists an edge e = (
, g, a, R, 
′) as before, and
ε ∈ [−δ, δ] such that ν′ = (ν + d + ε)[R ← 0]). A play of Gδ(A) is a finite or
infinite sequence q1e1q2e2 . . . of states and transitions of Gδ(A), with q1 = (
0,0),
where ei is a transition from qi to qi+1. It is said to be maximal if it is infinite or
cannot be extended. A strategy for Controller is a function that assigns to every
non-maximal play ending in some (
, ν) ∈ VC , a pair (d, a) where d > δ and a
is an action such that there is a transition from (
, ν) to (
, ν, d, a). A strategy
for Perturbator is a function that assigns, to every play ending in (
, ν, d, a), a
state (
′, ν′) such that there is a transition from the former to the latter state.
A play ρ is compatible with a strategy f for Controller if for every prefix ρ′

of ρ ending in VC , the next transition along ρ after ρ′ is given by f . We define
similarly compatibility for Perturbator’s strategies. A play naturally gives rise to
a unique run, where the states are in VC , and the delays and the edges are those
chosen by Perturbator.

Robust Timed Game Problem. Given δ > 0, and a pair of strategies f, g,
respectively for Controller and Perturbator, we denote ρ the unique maximal run
that is compatible with both f and g. A Büchi objective is a subset of the
locations of A. A Controller’s strategy f is winning for a Büchi objective B if for
any Perturbator’s strategy g the run ρ that is compatible with f and g is infinite
and visits infinitely often a location of B. The robust timed game problem asks,
for a timed automaton A and a Büchi objective B, if there exists δ > 0 such that
Controller has a winning strategy in Gδ(A) for the objective B. When this holds,
we say that Controller wins the robust timed game for A, and otherwise that
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Fig. 1. On the left, a timed automaton from [19] that is not robustly controllable
for the Büchi objective {�2}. In fact, Perturbator can enforce that the value of x be
increased by δ at each arrival at �1, thus blocking the run eventually (see [22]). On
the right, a timed automaton that is robustly controllable for the Büchi objective
{�1, �2, �3}. We assume that all transitions have the same label. The cycle around
�1 cannot be taken forever, as value of x increases due to perturbations. The cycle
around �2 can be taken forever, but Controller cannot reach �2 due to the equality
x = 1. Controller’s strategy is thus to loop forever around �3. This is possible as for
both choices of Perturbator in location �4, clock x will be reset, and thus perturbations
do not accumulate. If one of the two resets were absent, Perturbator could force the
run to always take that branch, and would win the game.

Perturbator does. Note that these games are determined since for each δ > 0, the
semantics is a timed game.

Figure 1 shows examples of timed automata where either Controller or
Perturbator wins the robust timed game according to our definitions. The main
result of this paper for this non-stochastic setting is the following.

Theorem 1. The robust timed game problem is EXPTIME-complete.

We focus on presenting the EXPTIME membership in Sections 4 and 5. The
algorithm relies on a characterization of winning strategies in a refinement of
the region automaton construction.

In order to formally introduce the appropriate notions for this characteriza-
tion, we need definitions given in the following section.

3 Regions, Orbit Graphs and Shrunk DBMs

Regions and Region Automata. Following [12,19,3], we assume that the
clocks are bounded above by a known constant 1 in all timed automata we
consider. Fix a timed automaton A = (L, C, 
0,Act, E). We define regions as
in [1], as subsets of RC

≥0. Any region r is defined by fixing the integer parts of
the clocks, and giving a partitionX0, X1, . . . , Xm of the clocks, ordered according
to their fractional values: for any ν ∈ r, 0 = frac(ν(x0)) < frac(ν(x1)) < . . . <
frac(ν(xm)) for any x0 ∈ X0, . . . , xm ∈ Xm, and frac(ν(x)) = frac(ν(y)) for any
x, y ∈ Xi. Here, Xi 	= ∅ for all 1 ≤ i ≤ m but X0 might be empty. For any
valuation ν, let [ν] denote the region to which ν belongs. Reg(A) denotes the
set of regions of A. A region r is said to be non-punctual if it contains some

1 Any timed automaton can be transformed to satisfy this property.
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ν ∈ r such that ν + [−ε, ε] ⊆ r for some ε > 0. It is said punctual otherwise. By
extension, we say that (
, r) is non-punctual if r is.

We define the region automaton as a finite automaton R(A) whose states are
pairs (
, r) where 
 ∈ L and r is a region. Given (r′, a) ∈ Reg(A)× Act, there is

a transition (
, r)
(r′,a)−−−→ (
′, s) if r′ is non-punctual 2, there exist ν ∈ r, ν′ ∈ r′

and d > 0 such that ν′ = ν + d, and there is an edge e = (
, g, R, 
′) such that
r′ |= g and r′[R ← 0] = s. We write the paths of the region automaton as
π = q1e1q2e2 . . . qn where each qi is a state, and ei ∈ Reg(A) × Act, such that

qi
ei−→ qi+1 for all 1 ≤ i ≤ n−1. The length of the path is n, and is denoted by |π|.

If a Büchi condition B is given, a cycle of the region automaton is winning if it
contains an occurrence of a state (
, r) with 
 ∈ B.

Vertices and Orbit Graphs. A vertex of a region r is any point of r̄ ∩ NC ,
where r̄ denotes the topological closure of r. Let V(r) denote the set of vertices
of r. We also extend this definition to V((
, r)) = V(r).

With any path π of the region automaton, we associate a labeled bipartite
graph Γ (π) called the folded orbit graph of π [19] (FOG for short). Intuitively,
the FOG of a path gives the reachability relation between the vertices of the
first and the last regions, assuming the guards are closed. For any path π from
state q to q′, the node set of the graph Γ (π) is defined as the disjoint union of
V(q) and V(q′). There is an edge from v ∈ V(q) to v′ ∈ V(q′), if, and only if v′ is
reachable from v along the path π when all guards are replaced by their closed
counterparts. It was shown that any run along π can be written as a convex
combination of runs along vertices; using this observation orbit graphs can be
used to characterize runs along given paths [19]. An important property that we
will use is that there is a monoid morphism from paths to orbit graphs. In fact,
the orbit graph of a path can be obtained by combining the orbit graphs of a
factorization of the path.

When the path π is a cycle around q, then Γ (π) is defined on the node set V(q),
by merging the nodes of the bipartite graph corresponding to the same vertex.
A cycle π is aperiodic if for all k ≥ 1, Γ (πk) is strongly connected. Aperiodic
cycles are closely related to cycles whose FOG is a complete graph since a long
enough iteration of the former gives a complete FOG and conversely, any cycle
that has some power with a complete FOG is aperiodic. In the timed automaton
of Fig. 1(b), the cycles around locations 
2 and 
3 are aperiodic while that of 
1
is not. Complete FOG are of particular interest to us as they exactly correspond
to paths whose reachability relation (between valuations of the initial and last
region) is complete [3]. This means that there is no convergence phenomena
along the path.

DBMs and Shrunk DBMs. We assume the reader is familiar with the data
structure of difference-bound matrix (DBM) which are square matrices over (R×
{<,≤})∪ {(∞, <)} used to represent zones. DBMs were introduced in [6,13] for
analyzing timed automata; see also [5]. Standard operations used to explore
the state space of timed automata have been defined on DBMs: intersection is
written M ∩N , Pre (M) is the set of time predecessors of M , UnresetR(M) is the
set of valuations that end in M when the clocks in R are reset. We also consider
Pre>δ(M), time predecessors with a delay of more than δ.

2 Note this slight modification in the definition of the region automaton.
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= Pre

⎛⎜⎜⎜⎝
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y

⎞⎟⎟⎟⎠
Fig. 2. Time-predecessors operation
(M,P ) = Pre(N,Q) applied on a shrunk
DBM. Here, the shaded area on the left
represents the set M − δP , while the zone
with the thick contour represents M .

To analyze the parametric game
Gδ(A), we need to express shrinkings
of zones, e.g. sets of states satisfying
constraints of the form g = 1 + δ <
x < 2−δ∧2δ < y, where δ is a parame-
ter. Formally, a shrunk DBM is a pair
(M,P ), where M is a DBM, and P is
a nonnegative integer matrix called a
shrinking matrix (SM). This pair rep-
resents the set of valuations defined
by the DBM M − δP , for any δ > 0.
For instance, M is the guard g obtained by setting δ = 0, and P is made of the
integer multipliers of δ.

We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P ), we mean that for some δ0 > 0, the statement holds for
(M − δP ) for all δ ∈ [0, δ0]. For instance, (M,P ) = Pre>δ(N,Q) means that
M − δP = Pre>δ(N − δQ) for all small enough δ > 0. Additional operations are
defined for shrunk DBMs: for any (M,P ), we define shrink[−δ,δ](M,P ) as the set
of valuations ν with ν + [−δ, δ] ⊆ M − δP , for small enough δ > 0. Figure 2
shows an example of a shrunk DBM and an operation applied on it. Standard
operations on zones can also be performed on shrunk DBMs in poly-time [21,8].

4 Playing in the Region Automaton

In this section, we will define an appropriate abstraction based on region au-
tomata in order to characterize winning in the robust timed game. We note that
the usual region automaton does not carry enough information for our purpose;
for instance, the blocking behavior in Fig.1(a) cannot be detected in the region
automaton (which does contain infinite runs). We therefore define, on top of
the usual region construction, a complex winning conditionW characterizing ac-
cepting runs along aperiodic cycles. In order to be able to transfer the condition
W to the continuous semantics, we study the properties of W on the abstract
region game, and derive two necessary and sufficient conditions (CC and CP ) for
winning which will be used in the next section to derive the algorithm.

Abstract Arena and Strategies.We fix a timed automatonA = (L, C, 
0,Act,
E) and a Büchi condition φ. We define a two-player turn-based game played on
the region automaton R(A). In this game, Controller’s strategy consists in choos-
ing actions, while Perturbator’s strategy consists in resolving non-determinism.

We consider standard notions of (finite-memory, memoryless) strategies in
this game and, given a finite-memory strategy σ, we denote by R(A)[σ] the
automaton obtained under strategy σ.
Winning Condition on R(A). We define set W of winning plays in the game
R(A): an infinite play is winning iff the following two conditions are satisfied:
1) an accepting state in φ is visited infinitely often 2) disjoint finite factors with
complete folded orbit graphs are visited infinitely often.

Proposition 2. The game (R(A),W) is determined, admits finite-memory
strategies for both players, and wining strategies can be computed in EXPTIME.
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The above proposition is proved by showing that condition 2) of W can be
rewritten as a Büchi condition: the set of folded orbit graphs constitute a finite
monoid (of exponential size) which can be used to build a Büchi automaton
encoding condition 2). Using a product construction for Büchi automata, one
can define a Büchi game of exponential size where winning for any player is
equivalent to winning in (R(A),W).

From the Abstract Game to the Robust Timed Game. We introduce
two conditions for Perturbator and Controller which are used in Section 5 to
build concrete strategies in the robust timed game.

CP : there exists a finite memory strategy τ for Perturbator such that no cycle
in R(A)[τ ] reachable from the initial state is winning aperiodic.

CC : there exists a finite-memory strategy σ for Controller such that every cycle
in R(A)[σ] reachable from the initial state is winning aperiodic.

Intuitively, determinacy allows us to write that either all cycles are aperiodic, or
none is, respectively under each player’s winning strategies. We prove that these
properties are sufficient and necessary for respective players to win (R(A),W):

Lemma 3. The winning condition W is equivalent to CP and CC: 1. Perturbator
wins the game (R(A),W) iff property CP holds. 2. Controller wins the game
(R(A),W) iff property CC holds. In both cases, a winning strategy for W is also
a witness for CC (resp. CP ).

The proof is obtained by the following facts: finite-memory strategies are
sufficient to win the game (R(A),W), thanks to the previous proposition; given
a folded orbit graph γ, there exists n such that γn is complete iff γ is aperiodic;
last, the concatenation of a complete FOG with an arbitrary FOG is complete.

5 Solving the Robust Timed Game

In this section, we show that condition CP (resp. CC) is sufficient to witness the
existence of a winning strategy in the robust timed game for Perturbator (resp.
Controller). By Lemma 3, the robust timed game problem is then reduced to
(R(A),W) and we obtain:

Theorem 4. Let A be a timed automaton with a Büchi condition. Then,
Controller wins the robust timed game for A iff he wins the game (R(A),W).

By Proposition 2, the robust timed game can be solved in EXPTIME. In ad-
dition, when Controller wins the robust timed game, one can also compute δ > 0
and an actual strategy in Gδ(A): Lemma 3 gives an effective strategy σ satis-
fying CC and the proof of Lemma 6 will effectively derive a strategy (given as
shrunk DBMs).

5.1 Sufficient Condition for Perturbator

We first prove that under condition CP , Perturbator wins the robust timed game.
We use the following observations. Once one fixes a strategy for Perturbator
satisfying CP , intuitively, one obtains a timed automaton (where there is no more
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non-determinism in actions), such that all accepting cycles are non-aperiodic. As
Perturbator has no more non-determinism to resolve, results of [22] apply and
the next lemma follows.

Lemma 5. If CP holds, then Perturbator wins the robust timed game.

5.2 Sufficient Condition for Controller

Proving that CC is a sufficient condition for Controller is the main difficulty in
the paper; the proof for the next lemma is given in this section.

Lemma 6. If CC holds, then Controller wins the robust timed game.

Proof Outline. We consider the non-deterministic automaton B = R(A)[σ]
which represents the behavior of game R(A) when Controller plays according
to σ, given by condition CC . Without loss of generality, we assume that σ is
a memoryless strategy played on the game R(A)[σ] (states of R(A) can be
augmented with memory) and that B is trim. Given an edge e = q → q′ of B,
we denote by edge(e) the underlying transition in A.

Given a state p of B, we denote by Unfold(B, p) the infinite labeled tree ob-
tained as the unfolding of B, rooted in state p. Formally, nodes are labeled by
states of B and given a node x labeled by q, σ(q) is defined and there exists q′

such that q
σ(q)−−−→ q′ in B. Then x has one child node for each such q′. We may

abusively use nodes to refer to labels to simplify notations.
We first choose states q1, . . . , qn such that every cycle of B contains one of

the qi’s. Let us denote by q0 the initial state of B, for i = 0..n, one can choose
a finite prefix ti of Unfold(B, qi) such that every leaf of ti is labeled by some qj ,
j = 1..n. Indeed, as B is trim and σ is a winning strategy for Controller in the
game (R(A),W), every branch of Unfold(B, qi) is infinite.

(r, Q1)

(r, Q3) (r, Q4) (s, Q5)

(s, Q2)(t, Q6)

Fig. 3. Proof idea of Lemma 6. Dashed ar-
rows represent cycles.

Strategies for standard timed games
can be described by means of re-
gions. In our robustness setting, we
use shrinkings of regions. Let (
i, ri)
be the label of state qi. To build a
strategy for Controller, we will iden-
tify δ > 0 and zones si, i = 1..n,
obtained as shrinking of regions ri.
These zones satisfy that the control-
lable predecessors through the tree ti
computed with zones (sj)j at leafs
contains the zone si: this means that from any configuration in (
i, si), Controller
has a strategy to ensure reaching a configuration in one of the (
j , sj)’s, when
following the tree ti. These strategies can thus be repeated, yielding infinite
outcomes. This idea is illustrated in Fig. 3 where the computations along some
prefix t are depicted: the shrunk zone at a node represents the controllable pre-
decessors of the shrunk zones of its children. Here, from the shrunk set of the
root node, one can ensure reaching a shrinking of each leaf which is included in
the shrinking of the starting state of its cycle, yielding a kind of fixpoint. We
have in fact (r,Qi) ⊆ (r,Q1) for i = 3, 4, and (s,Q5) ⊆ (s,Q2).
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To identify these zones si, we will successively prove the three following facts:
1) Prefixes ti’s can be chosen such that every branch has a complete FOG
2) Controllable predecessors through ti’s of non-empty shrunk zones are non-
empty shrunk zones
3) Controllable predecessors through ti’s can be faithfully over-approximated by
the intersection of controllable predecessors through branches of ti

Ensuring Branches with Complete FOGs. To prove property 1) of the
Proof outline, we use condition CC and the fact that long enough repetitions of
aperiodic cycles yield complete FOGs. We obtain:

Lemma 7. Under condition CC, there exists an integer N such that every path
ρ in B of length at least N has a complete folded orbit graph.

Controllable Predecessors and Merge. In order to compute winning states
in Gδ(A) through unfoldings, we define two operators. CPre is the standard set
of controllable predecessors along a single edge:

Definition 8 (Operator CPre). Let e = q → q1 be an edge in some unfolding
of B. Let us write q = (
, r), q1 = (
1, r1), σ(q) = (r′, a) and edge(q → q1) =
(
, g1, a, R1, 
1). Let M1 be a DBM such that M1 ⊆ r1 and δ ≥ 0. We define the
set of δ-controllable predecessors of M1 through edge e as
CPreδe(M1) = r ∩ Pre>δ

(
Shrink[−δ,δ] (r

′ ∩ UnresetR1(M1))
)
.

The above definition is extended to paths. Intuitively, CPreδe(M1) are the
valuations in region r from which M1 can be surely reached through a delay
in r′ and the edge e despite perturbations up to δ.

We now consider the case of branching paths, where Perturbator resolves non-
determinism. In this case, in order for Controller to ensure reaching given subsets
in all branches, one needs a stronger operator, which we call CMerge. Intuitively,
CMergeδe1,e2(M1,M2) is the set of valuations in the region starting r from which
Controller can ensure reaching either M1 or M2 by a single strategy, whatever
Perturbator’s strategy is. The operator is illustrated in Fig. 4.

Definition 9 (Operator CMerge). Let e1 = q → q1 and e2 = q → q2 be
edges in some unfolding of B, and write q = (
, r), σ(q) = (r′, a) and for i ∈
{1, 2}, qi = (
i, ri), edge(q → qi) = (
, gi, a, Ri, 
i). Let Mi be a DBM such
that Mi ⊆ ri for i ∈ {1, 2}. For any δ ≥ 0, define the set of δ-controllable

predecessors of M1,M2 through edges e1, e2 as CMergeδe1,e2(M1,M2) = r∩Pre>δ(
Shrink[−δ,δ]

(
r′ ∩

⋂
i∈{1,2} UnresetRi(Mi)

))
.

We extend CMerge by induction to finite prefixes of unfoldings of B. Consider
a tree t and shrunk DBMs (Mi, Pi)i for its leaves, CMergeδt

(
(Mi, Pi)i

)
is the

set of states for which there is a strategy ensuring reaching one of (Mi, Pi).

Because CMergeδe1,e2 is more restrictive than CPreδe1 ∩ CPreδe2 , we always have

CMergeδt ⊆
⋂
β CPre

δ
β, where β ranges over all branches of t (See Fig. 4).

The following lemma states property 2) of the proof outline. Existence of the
SM Q follows from standard results on shrunk DBMs. Non-emptiness of (M,Q)
follows from the fact that every delay edge leads to a non-punctual region. Define
a full-dimensional subset of a set r ⊆ Rn is a subset r′ ⊆ r such that there is
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ν ∈ r′ and ε > 0 satisfying Balld∞(ν, ε) ∩ r ⊆ r′, where Balld∞(ν, ε) is the
standard ball of radius ε for the infinity norm on Rn.

Lemma 10. Let t be a finite prefix of Unfold(B, q), r the region labeling the root,
and r1, . . . , rk those of the leafs. M,N1, . . . , Nk be non-empty DBMs that are full
dimensional subsets of r, r1, . . . , rk satisfying M = CMerge0t ((Nj)j). We consider
shrinking matrices Pj, 1 ≤ j ≤ k, of DBM Nj such that (Nj , Pj) 	= ∅. Then,

there exists a SM Q such that (M,Q) = CMergeδt ((Nj , Pj)j), and (M,Q) 	= ∅.

x

y

r

r′

r2, P2

r1, P1

s

Fig. 4. We have s =
CMerge0((ri, Pi)i), which is
strictly included in
∩iCPre

0(ri, Pi) but has
the same shape

Over-Approximation of CMerge. Given a pre-
fix t where each branch βi ends in a leaf labeled
with (ri, Pi), we see ∩βiCPre

0
βi
((ri, Pi)) as an over-

approximation of CMerge0t ((ri, Pi)i). We will show
that both sets have the same “shape”, i.e. any facet
that is not shrunk in one set, is not shrunk in the
other one. This is illustrated in Fig. 4.

We introduce the notion of 0-dominance as fol-
lows: for a pair of SMs P,Q, Q 0-dominates P ,
written P �0 Q, if Q[i, j] ≤ P [i, j], and Q[i, j] = 0
implies P [i, j] = 0 for all i, j. Informally, a set
shrunk by P is smaller than that shrunk by Q,
but yields the same shape. The 0-dominance is
the notion we use for a “precise” over-approximation of CMerge:

Lemma 11. Let t be a finite prefix of Unfold(B, q), with q = (
, r), and let
(
i, ri), 1 ≤ i ≤ k denote the (labels of) leafs of t. We denote by βi, 1 ≤ i ≤ k,
the branches of t. Consider SMs Pi, 1 ≤ i ≤ k, for regions ri. Let us denote

(r, P ) = CMerge0t ((ri, Pi)1≤i≤k) and (r,Q) =
⋂k
i=1 CPre

0
βi
(ri, Pi), then P �0 Q.

Putting Everything Together. In order to complete the proof of Lemma 6,
we first recall the following simple lemma:

Lemma 12 ([22]). For any DBM M , there is a SM P0 s.t. (M,P0) 	= ∅, and is
fully dimensional, and for any SM P and ε>0 with (M,P ) 	= ∅ and M−εP0 	= ∅,
we have M − εP0 ⊆ (M,P ).

Remember we have identified states qi and trees ti, i = 0..n. Denote (
i, ri) the
label of qi. For each i = 1..n, we denote by Pi the SM obtained by Lemma 12
for ri. Consider now some tree ti, i = 0..n, with ((rj , Pj)j) at leafs. Let βj be
a branch of ti and denote by (rj , Pj) its leaf. By Lemma 7, the FOG of βj
is complete, and thus from any valuation in ri, one can reach every valuation
in the target region rj along βj (see [3]), and thus ri = CPre0βj

(rj , Pj). This

holds for every branch and we obtain ri =
⋂
j CPre

0
βj
(rj , Pj). By Lemma 11,

this entails ri = CMerge0ti((rj , Pj)j). We can choose ε > 0 small enough such
that the zone si = ri − εPi is non-empty for every i = 1..n and we obtain
ri = CMerge0ti((sj)j). We can then apply Lemma 10, yielding some SM Qi of ri
such that ∅ 	= (ri, Qi) = CMergeδti((sj)j). There are two cases:

– i = 0: as r0 is the singleton {0}, we have (r0, Q0) = r0, and thus r0 = CMergeδt0
((sj)j). In other terms, for small enough δ’s, Controller has a strategy in Gδ(A)
along t0 to reach one of the (
j , sj)’s starting from the initial configuration
(
0,0).
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– i ≥ 1: Lemma 12 entails si ⊆ CMergeδti((sj)j), which precisely states that
for small enough δ’s, Controller has a strategy in Gδ(A) along ti, starting in
(
i, si), to reach one of the (
j , sj)’s.

These strategies can thus be combined and repeated, yielding the result.

6 Probabilistic Semantics

In some systems, considering the environment as a completely adversarial op-
ponent is too strong an assumption. We thus consider stochastic environments
by defining two semantics as probabilistic variants of the robust timed games.
The first one is the stochastic game semantics where Perturbator only resolves the
non-determinism in actions, but the perturbations are chosen independently and
uniformly at random in the interval [−δ, δ]. The second semantics is the Markov
decision process (MDP) semantics, where the non-determinism is also resolved
by a uniform distribution on the edges, and there is no player Perturbator.

6.1 Stochastic Game Semantics

Formally, given δ > 0, the state space is partitioned into VC ∪ VP as previously.
At each step, Controller picks a delay d ≥ δ, and an action a such that for every
edge e = (
, g, a, R, 
′) such that ν + d |= g, we have ν + d + ε |= g for all
ε ∈ [−δ, δ], and there exists at least one such edge e. Perturbator then chooses an
edge e with label a, and a perturbation ε ∈ [−δ, δ] is chosen independently and
uniformly at random. The next state is determined by delaying d+ ε and taking
the edge e. To ensure that probability measures exist, we restrict to measurable
strategies.

In this semantics, we are interested in deciding whether Controller can ensure
a given Büchi objective almost surely, for some δ > 0. It turns out that the same
characterization as in Theorem 4 holds in the probabilistic case.

Theorem 13. It is EXPTIME-complete to decide whether for some δ > 0,
Controller has a strategy achieving a given Büchi objective almost surely in the
stochastic game semantics. Moreover, if CC holds then Controller wins almost-
surely; if CP holds then Perturbator wins almost-surely.

This is a powerful result showing a strong distinction between robust and non-
robust timed games: in the first case, a controller that ensures the specification
almost surely can be computed, while in non-robust timed games, any controller
will fail almost surely. Thus, while in previous works on robustness in timed
automata (e.g. [19]) the emphasis was on additional behaviors that might appear
in the worst-case due to the accumulation of perturbations, we show that in our
setting, this is inevitable. Note that this also shows that limit-sure winning (see
next section) is equivalent to almost-sure winning.

6.2 Markov Decision Process Semantics

The Markov decision process semantics consists in choosing both the perturba-
tions, and the edges uniformly at random (and independently). Formally, it con-
sists in restricting Perturbator to choose all possible edges uniformly at random in
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the stochastic game semantics. We denote by GMDP
δ (A) the resulting game, and

PσGMDP
δ (A),s

the probability measure on Runs(A, s) under strategy σ.

For a given timed Büchi automaton, denote φ the set of accepting runs. We
are interested in the two following problems: (we let s0 = (
0,0))

Almost-sure winning: does there exist δ > 0 and a strategy σ for Controller such
that PσGMDP

δ (A),s0
(φ) = 1?

Limit-sure winning: does there exist, for every 0 ≤ ε ≤ 1, a perturbation upper
bound δ, and a strategy σ for Controller such that PσGMDP

δ (A),s0
(φ) ≥ 1− ε?


0


1

x≤1,a,x:=0

x≤1,a

x≤1,a,x:=0

Fig. 5. This automaton is los-
ing in the MDP semantics for
the almost-sure winning but
winning under the same se-
mantics for the limit-sure win-
ning. In fact, a blocking state
(�0, x) with x > 1− δ is reach-
able with positive probability
for any δ.

Observe that if almost-sure winning cannot be
ensured, then limit-sure winning still has a con-
crete interpretation in terms of controller synthe-
sis: given a quantitative constraint on the quality
of the controller, what should be the precision on
clocks measurements to be able to synthesize a cor-
rect controller? Consider the timed automaton de-
picted on the right. It is easy to see that Controller
loses the (non-stochastic) robust game, the stochas-
tic game and in the MDP semantics with almost-
sure condition, but he wins in the MDP semantics
with limit-sure condition.

Theorem 14. It is EXPTIME-complete to decide
whether Controller wins almost-surely (resp. limit-surely) in the MDP semantics
of a timed Büchi automaton.

To prove this theorem, we will define decidable characterizations on R(A)
which we will see as a finite Markov decision process. In this MDP, the non-
determinism of actions is resolved according to a uniform distribution. Given
a strategy σ̂ for Controller and a state v, we denote by Pσ̂R(A),v the resulting

measure on Runs(R(A), v). The initial state of R(A) is v0. We will use well-
known notions about finite MDPs; we refer to [20].

Almost-Sure winning We introduce the winning condition W ′: Controller’s
strategy σ̂ in R(A) is winning in state v iff Pσ̂R(A),v(φ) = 1 and all runs in

Runs(R(A)[σ̂], v) contain infinitely many disjoint factors whose FOGs are com-
plete. Observe that this combines an almost-sure requirement with a sure require-
ment. This winning condition is our characterization for almost-sure winning:

Proposition 15. Controller wins almost-surely in the MDP semantics of a timed
Büchi automaton A iff Controller wins the game (R(A),W ′) in v0.

Intuitively, the first condition is required to ensure winning almost-surely, and
the second condition allows to forbid blocking behaviors. Notice the resemblance
with conditionW ; the difference is that φ only needs to be ensured almost-surely
rather than surely. We prove the decidability of this condition.

Lemma 16. The game (R(A),W ′) admits finite-memory strategies, and win-
ning strategies can be computed in EXPTIME.
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The proof of Prop. 15 uses the following ideas. We first assume that Controller
wins the abstract game using some strategy σ̂. We derive from σ̂ a strategy σ in
the MDP semantics by concretizing the delays chosen by σ. To do so, we consider
the automaton R(A)[σ̂] and proceed as in Section 5, which results in a strategy
defined bymeans of shrinkingmatrices. Using the results of Section 5, we can prove
that the outcomes of σ are never blocked, and thus the probabilities of paths in
R(A) under σ̂ are preserved by σ. As a consequence, σ wins almost-surely.

Conversely, by contradiction, we assume that Controller does not satisfyW ′ in
R(A) while there exists an almost-sure strategy σ for the MDP semantics. We
build from σ a strategy σ̂ in R(A), and prove that it satisfies φ almost-surely.
This entails the existence of a run ρ in R(A)[σ̂] such that ρ eventually does
not contain factors with a complete FOG. We finally show that, with positive
probability, perturbations ensure that the run gets blocked along a finite prefix
of this path, which ensures that σ is not almost-surely winning.

Limit-Sure winning As illustrated in Fig. 5, it is possible, for any ε > 0,
to choose the parameter δ > 0 small enough to ensure a winning probability of
at least 1− ε. The idea is that in such cases one can ensure reaching the set of
almost-sure winning states with arbitrarily high probability, although the run
can still be blocked with small probability before reaching this set.

To characterize limit-sure winning, we define conditionW ′′ as follows. If Win
′

denotes the set of winning states for Controller in the game (R(A),W ′), then
W ′′ is defined as the set of states from which one can almost surely reach Win

′.

Proposition 17. Controller wins limit-surely in the MDP semantics of a timed
Büchi automaton A from s0 iff Controller wins the game (R(A),W ′′) in v0.

The proof of this proposition relies on the following lemma, and uses tech-
niques similar as those introduced to prove Proposition 15.

Lemma 18. The game (R(A),W ′′) admits finite-memory strategies, and win-
ning strategies can be computed in EXPTIME.

7 Conclusion

In this paper, we defined robust timed games with Büchi conditions and unknown
imprecision parameters. Our formalism allows one to solve robust controller syn-
thesis problems both against an adversarial (or worst-case) environment, and
two variants of probabilistic environments. The procedures we have developed
allow, when they exist, to effectively build a bound δ > 0 on the perturbation
and a winning strategy for Controller. Some questions remain open including the
generalization of these results to concurrent timed games with parity conditions
considered in [11]. We believe it is possible to derive symbolic algorithms but
this will require extending the theory to detect aperiodic cycles in zone graphs
rather than in the region graph.
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Abstract. Perturbation analysis in probabilistic verification addresses the robust-
ness and sensitivity problem for verification of stochastic models against quali-
tative and quantitative properties. We identify two types of perturbation bounds,
namely non-asymptotic bounds and asymptotic bounds. Non-asymptotic bounds
are exact, pointwise bounds that quantify the upper and lower bounds of the ver-
ification result subject to a given perturbation of the model, whereas asymptotic
bounds are closed-form bounds that approximate non-asymptotic bounds by as-
suming that the given perturbation is sufficiently small. We perform perturbation
analysis in the setting of Discrete-time Markov Chains. We consider three basic
matrix norms to capture the perturbation distance, and focus on the computational
aspect. Our main contributions include algorithms and tight complexity bounds
for calculating both non-asymptotic bounds and asymptotic bounds with respect
to the three perturbation distances.

1 Introduction

Probabilistic verification techniques, and in particular probabilistic model checking,
have been successfully applied to a variety of domains ranging from wireless com-
munication protocols to dynamic power management schemes, and to systems biology
and quantum cryptography. Mature probabilistic model checking tools such as PRISM
[22] support verification of most existing stochastic models, e.g., Discrete-time Markov
Chains (DTMCs), Markov Decision Processes (MDPs), and stochastic games, against
a wide range of qualitative and quantitative properties.

When modelling real-life systems with stochastic models, one usually has to face
the issue that these systems are governed by empirical or unknown distributions, such
as the failure rate of some system component. As a result, measurements or experi-
ments are employed to determine, for instance, transition probabilities (for discrete-time
systems) or transition rates (for continuous-time systems). Those statistical quantities
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are imprecise. In the worst case, a tiny but non-trivial change to some quantities in the
model might lead to a misleading or even invalid verification result.

These issues motivate the following important problem for probabilistic verification:
If some of the quantities in the stochastic model are perturbed, what is the influence on
verification of the model? In other words, given a stochastic model, we need to mea-
sure the robustness and sensitivity of verification results. The purpose of perturbation
analysis, as the central topic of the current paper, is to shed light on this problem.

A straightforward approach is to modify the model manually for each set of values of
each perturbed quantity, and then perform model checking multiple times with a model
checker such as PRISM. Such a solution is simple but unsatisfactory: It is resource-
consuming while providing little information about the impact of model perturbations
on verification. Instead, in this paper, we present a sound and rigorous approach to char-
acterising the maximal/minimal variation that might occur to the verification outcome,
with respect to a given perturbation of the model. This yields a measure for the sen-
sitivity and robustness of these verification results. Such an analysis also potentially
reduces the overall time of verifying a large number of similar stochastic models if only
approximated results are required. More specifically, we pursue two types of perturba-
tion bounds, namely non-asymptotic bounds1 and asymptotic bounds.

– Non-asymptotic bounds are pointwise bounds that quantify the maximum and the
minimum of the verification result subject to a given perturbation of the model.

– Asymptotic bounds are closed-form, lightweight approximations of non-asymptotic
bounds when the model perturbation is sufficiently small (i.e., close to 0).

The main task of perturbation analysis in the current paper is to compute these bounds,
the formal definitions of which are presented in Section 2.

Contributions. In this paper, we focus on the computational aspect of perturbation
analysis in DTMC verification. We consider three different perturbation distances for
DTMCs based on three norms over stochastic matrices—the “entrywise”∞-norm, the
induced∞-norm, and the “entrywise” 1-norm, which quantify the perturbation distance
of DTMCs. These norms are widely adopted in literature (e.g. [8,15,31]), and somehow
are easy to compute as they are “linear”. Henceforth, we refer to the three distances as
Type I, II and III distances, respectively. Our key contributions, summarised in Table 1,
include two aspects:

– We present algorithms to compute non-asymptotic bounds under Type I, II and III
distances, respectively, and identify tight computational complexity bounds. For
Type I and II distances, we present polynomial-time algorithms, while for Type III
distance, we show that the computation (technically, the aligned decision problem)
is in PSPACE and is SQUARE-ROOT-SUM hard.

– We provide a unified treatment for the asymptotic bounds of an arbitrary degree
for distances of all three types. In particular, we show how to compute the linear
and the quadratic asymptotic bounds. This subsumes the resuls reported previously
[31] regarding linear asymptotic bounds.

1 The term is adopted from non-asymptotic analysis of random matrices and non-asymptotic
information theory.



220 T. Chen et al.

Table 1. Complexity of Computing Perturbation Bounds

Distance Non-Asymptotic
Asymptotic

linear quadratic
I & II P

PL NP
III in PSPACE, SRS-hard

The computation of non-asymptotic bounds is related to verification of stochastic
models with uncertainty (e.g. Interval Markov Chains (IMCs)). Typically, two differ-
ent semantics for IMCs are studied in the literature, namely Uncertain Markov Chains
(UMCs) and Interval Markov Decision Processes (IMDPs) [28]. The non-asymptotic
bounds adopt the UMC semantics. For Type I and II distances, since the UMC and
IMDP semantics coincide, we apply a technique similar to the one by Puggelli et al. [24]
to obtain polynomial-time algorithms for non-asymptotic bounds. However, for Type III
distance, we can only obtain a PSPACE algorithm—we show a slightly better complex-
ity upper bound, namely the complexity of the existential theory of reals. For the lower
bound, we give a reduction from the well-known SQUARE-ROOT-SUM (SRS) problem.
The exact complexity of the SRS problem, i.e., whether it is in P or even in NP, is
open since 1976. This suggests that our PSPACE upper bound cannot be substantially
improved without a breakthrough concerning this long-standing open problem.

The study of asymptotic bounds in probabilistic verification was initiated by Su et al.
[30,31], where linear and quadratic asymptotic bounds with respect to a single pertur-
bation distance function are studied. Apart from giving a unified formulation of general
asymptotic bounds under the three types of distances, the current paper also improves
the complexity results reported in the previous work. Our main techniques for this are
from multivariate calculus: We resort the problem to optimisation problems of multi-
variate polynomials under (virtually) linear constraints. For linear asymptotic bounds,
this enables us to derive an analytical expression, whereas for quadratic asymptotic
bounds, we exploit quadratic programming. We also identify complexity upper bounds
for the two cases.

For simplicity, we focus on reachability in this paper. However, the presented tech-
niques can be generalised for ω-regular properties and various performance properties,
such as expected rewards and long-run average rewards, without substantial difficulty
(and see our previous work [31] for ω-regular properties).

Related Work. In general, perturbation theory for applied mathematics investigates so-
lutions for mathematically formulated problems that involve parameters subject to per-
turbations [23]. There exists a line of research on perturbation analysis of DTMCs, the
common goal of which is to find a suitable condition number for the distance of steady
states and the distance of transition matrices between two DTMCs [27,13,29]. In these
works, the condition number is defined as the supremum of the quotient of the deviation
of the perturbed DTMCs and the allowed perturbation. The deviation is hence bounded
universally for all DTMCs with respect to chosen norms of distance metrics. In the formal
verification setting, the closest work is by Chatterjee [8], who studied the continuity and
robustness of the value function in stochastic parity games with respect to imprecision
in the transition probabilities. This can be regarded as a (rough) perturbation analysis for
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stochastic games. However, non-asymptotic and asymptotic bounds are not considered
there, nor is their computational aspect. It is an interesting direction for future work to
extend our results to the game setting. Moreover, Desharnaisa et al. [15] addressed per-
turbation analysis for labelled Markov processes (LMPs). The authors defined a distance
akin to the Type II distance and gave a bound on the difference between LMPs measured
by a behaviour pseudo-metric with respect to the perturbation.

Most available verification results are on IMCs, (arguably) the simplest variant mod-
els of DTMCs with uncertainty. In particular, Sen et al. [28] proved that model checking
IMC against probabilistic computational tree logic (PCTL) is NP-hard. More general
results on IMCs against ω-regular properties are reported in [9]. Chen et al. [12] pre-
sented thorough results on the complexity of model checking IMCs against reachability
and PCTL properties, under both the UMC and the IMDP semantics. Benedikt et al. [5]
considered the LTL model checking problem for IMCs.

Other related work includes parameter synthesis for stochastic models [14,21,19,20]
and model repair [16,4,11]. In general, these studies attempt to identify some (or all)
parameter configuration(s) in a parametric model such that a given property is satisfied.
Hence, the approaches there are considerably different from ours.

Structure of the Paper. The rest of the paper is structured as follows: Section 2 presents
definitions of models, model distances, and non-asymptotic and asymptotic bounds.
Section 3 presents results on computation of non-asymptotic bounds with respect to
three types of distances. Section 4 presents results on computation of asymptotic bounds.
Section 5 concludes the paper and outlines future work. An extended version of the pa-
per contains proofs and more details [10].

2 Models, Distances and Perturbation Bounds

Given a finite set S, we use Δ(S) to denote the set of (discrete) probability distributions
over S, i.e., functions μ : S → [0, 1] with

∑
s∈S μ(s) = 1.

Definition 1. A Discrete-time Markov Chain (DTMC) is a tuple D = (S, α,P), where

– S is a finite set of states,
– α ∈ Δ(S) is the initial distribution, and
– P : S × S → [0, 1] is a transition probability matrix such that for any state s ∈ S,∑

s′∈S P(s, s′) = 1, i.e., P(s, ·) ∈ Δ(S).

An (infinite) path inD is a sequence π = s0s1 · · · such that si ∈ S andP(si, si+1) >
0 for each i ≥ 0. Denote the i-th state of π (i.e., si) as π[i], and the set of paths in D
as PathsD . The probability distribution PrD over PathsD is defined in a standard way
[3, Chapter 10].

Definition 2. A Markov Decision Process (MDP) is a tupleM = (S, α, T ), where

– S and α are defined the same as in Definition 1, and
– T : S → ℘(Δ(S)) is the transition function s.t. T (s) is finite for each s ∈ S.
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Without loss of generality, we assume that T (s) 	= ∅ for each s ∈ S. At each state
s of M, a probability distribution μ (over S) is chosen nondeterministically from the
set T (s). A successor state s′ is then chosen according to μ with probability μ(s′).
An (infinite) path π in M is a sequence of the form s0

μ1→ s1
μ2→ · · · where si ∈ S,

μi+1 ∈ T (si) and μi+1(si+1) > 0 for each i ≥ 0. A finite path is a prefix of an
infinite path ending in a state. Let PathsM be the set of finite paths. A scheduler σ :
PathsM → Δ(S) maps a finite path (the history) to a distribution over S such that for
any finite path π = s0

μ1→ · · · μn→ sn, σ(π) ∈ T (sn). In particular, a simple scheduler
σ chooses a distribution only based on the current state, and thus for each finite path π
ending in s, σ(π) = σ(s) ∈ T (s). Note that we obtain a (possibly infinite-state) DTMC
by fixing a scheduler in an MDP [3,25]. In the sequel, we writeMσ for such a DTMC
given an MDPM and a scheduler σ.

We often relax the definition of MDPs by allowing T (s) to be infinite. As long as
T (s) is compact (for instance in the paper, T (s) ⊆ R|S| with respect to the Euclidean
topology), most interesting properties for MDPs are carried over. This feature is made
use of by existing work on IMDPs mentioned in the Introduction.

For the convenience of perturbation analysis, we also define a parametric variant
of DTMCs [31]. When performing perturbation analysis for a DTMC in practice, it
is usually required that some of transitions remain unchanged. To accommodate this,
we specify a set of transitions C ⊆ S × S for a DTMC D with state space S. The
intuition behind this requirement is that only probabilities of transitions in C can be
perturbed. The perturbed quantities are captured by a sequence of pair-wise distinct
variables x = (x1, . . . , xk) with k = |C|.

Definition 3. The parametric DTMC of D on x is a tuple D(x) = (S, α,P, F ) where
F is a one-to-one mapping from C to the variable set {xi}1≤i≤k.

For simplicity, we denote by P(x) the parametric variation of P with the (s, t)-entry
being P(s, t) + F (s, t) if (s, t) ∈ C, and P(s, t) otherwise. We defer the specification
of domains for variables from {xi}1≤i≤k in Section 2.2.

Reachability. For a given DTMC D = (S, α,P), let G ⊆ S be a set of target states.
We consider the probability of reaching G. Formally, let ♦G = {π ∈ PathsD | π[i] ∈
G for some i ≥ 0}. We are interested in PrD(♦G). Let S0 = {s ∈ S | PrD(s |=
♦G) = 0}, and S? = S\(S0∪G). Let P̃ be the matrix obtained by restricting P on S?.
Then, I−P̃ is invertible. Let b be a vector on S? such that b[s] =

∑
t∈GP(s, t) for each

s ∈ S?. Let α̃ be the restriction of α on S?. We have that PrD(♦G) = α̃T(I−P̃)−1b [3,
Chapter 10].For an MDP M with state space S ⊇ G, we can also define the maximum
reachability probability supσ Pr

Mσ (♦G), which can be calculated efficiently by linear
programming [25].

2.1 Distance between DTMCs

A DTMC (S, α,P) induces a digraph in a standard way: The set of vertices of the
digraph is S, and there is an edge from s to t iff P(s, t) > 0. Given two DTMCs
D1 = (S, α1,P1) and D2 = (S, α2,P2), we say that D1 and D2 are structurally
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equivalent, denoted as D1 ≡ D2, if for each pair of states s, t ∈ S, P1(s, t) > 0 iff
P2(s, t) > 0. Namely,D1 and D2 have the same underlying digraphs. We now identify
three distances for two (structurally equivalent) DTMCs.

Definition 4 (Distance of DTMCs). Given two DTMCs D1 and D2 such that D1 ≡
D2, we define the distances dI, dII, and dIII as

(1) dI(D1,D2) = maxs,t∈S |P1(s, t)−P2(s, t)|,
(2) dII(D1,D2) = maxs∈S{

∑
t∈S |P1(s, t)−P2(s, t)|},

(3) dIII(D1,D2) =
∑

s,t∈S |P1(s, t)−P2(s, t)|.

We call dI, dII, and dIII as Type I, Type II, and Type III distances respectively. We use �
to range over {I, II, III}, and d� to denote a generic distance definition.

Remark 1. In matrix theory, Type I is the distance induced from the “entrywise” ∞-
norm, Type II is induced from the ∞-norm (which is an induced norm of the ∞-norm
for vectors), and Type III is induced from the “entrywise” 1-norm.

Let Cs = {t ∈ S | (s, t) ∈ C} (Cs may be empty), and so C =
⊎
s∈S{s} × Cs.

To simplify notations in the remainder of the paper, when given a DTMC, we fix an
associated C. Accordingly, the distance definitions can be formulated as norms of vari-
able vectors for parametric DTMCs. Recall that x = {xi}1≤i≤k with k = |C|. Let
xs = (xs,t)t∈Cs and so x is a concatenation of xs for s ∈ S. Note that the distance be-
tween D(x) and D is exactly the corresponding norm of x which is defined as follows:

(1) ‖x‖I = max1≤i≤k |xi|,
(2) ‖x‖II = maxs∈S{

∑
t∈Cs

|xs,t|},
(3) ‖x‖III =

∑
1≤i≤k |xi|.

2.2 Perturbation Bounds

For the purpose of perturbation analysis, we define two types of perturbation bounds,
namely non-asymptotic bounds and asymptotic bounds, which are the main research
object of this paper.

We write D ∼C D′ if D and D′ differ only for transitions in C, and let

[D]�,δ = {D′ is a DTMC | D ≡ D′, d�(D,D′) ≤ δ and D ∼C D′}.

Definition 5 (Non-Asymptotic bound). The upper and lower non-asymptotic bounds
of a DTMC D are defined as follows:

ρ+� (δ) = sup
{
PrD

′
(♦G) | D′ ∈ [D]�,δ

}
and ρ−� (δ) = inf

{
PrD

′
(♦G) | D′ ∈ [D]�,δ

}
.

We use the subscript � to emphasise the fact that ρ+� (δ) and ρ−� (δ) are dependent
on the distance d�. We can present an alternative characterisation for non-asymptotic
bounds with parametric DTMCs. Let

U�,δ = {x ∈ Rk | D(x) ∈ [D]�,δ}.
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Here, and in the sequel, we abuse the notation slightly to denote by D(x) the DTMC
obtained by instantiating the variables in the corresponding parametric DTMC with the
real vector x. In particular, we have D(0) = D with P(0) = P.

Note that, for each x ∈ U�,δ , D(x) and D are structurally equivalent and I − P̃(x)
is invertible. We then write

p(x) := PrD(x)(♦G) = αT(I − P̃(x))−1b(x). (1)

There are alternative ways of generating or expressing p(x) reported in [14,19,18].
Obviously, p(·) is a multivariate rational function on U�,δ and thus is infinitely differ-
entiable. It is then straightforward to observe that

ρ+� (δ) = sup
x∈U�,δ

p(x) and ρ−� (δ) = inf
x∈U�,δ

p(x) (2)

Also note that U�,δ is convex and thus connected. Hence, by the continuity of p(·)
and the Intermediate Value Theorem, for any value y ∈ (ρ−� (δ), ρ

+
� (δ)), there exists

x ∈ U�,δ such that p(x) = y.
Asymptotic bounds provide reasonably accurate approximations for ρ+(δ) and ρ−(δ)

when δ > 0 is close to 0. Let r = min(s,t)∈C{P(s, t), 1−P(s, t)} > 0.

Definition 6 (Asymptotic bound). An asymptotic bound of degree n for ρ+� (·) (resp.
ρ−� (·)) is a function f+

n : (0, r)→ R (resp. f−n : (0, r)→ R) such that

f+
n (δ)− ρ+� (δ) = o(δn) and f−n (δ)− ρ−� (δ) = o(δn);

in other words,

lim
δ→0

|f+
n (δ) − ρ+� (δ)|

δn
= 0 and lim

δ→0

|f−n (δ)− ρ−� (δ)|
δn

= 0.

In words, Definition 6 states that, as δ tends to 0, the convergent rate of f+
n (resp.

f−n ) to ρ+� (resp. ρ−� ) is at least of order n or, equivalently, f+
n (resp. f−n ) approaches to

ρ+� (δ) (resp. ρ−� ) at least as fast as any polynomial function on δ of degree n. We note
that asymptotic perturbation bounds can be non-unique. We refer to asymptotic bounds
of degree one as linear asymptotic bounds (linear bounds for short), and asymptotic
bound of degree two as quadratic asymptotic bounds (quadratic bounds for short).

3 Computing Non-asymptotic Bounds

In this section, we present algorithms for computing non-asymptotic bounds and anal-
yse the complexity. An obvious fact about non-asymptotic bounds is given by the fol-
lowing proposition:

Proposition 1. Given a DTMC D and � ∈ {I, II, III}, ρ+� (·) and ρ−� (·) are continuous
functions in (0, r).
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3.1 Type I and Type II Distances

In this section, we deal with non-asymptotic bounds under Type I and II distances given
in Definition 4. In particular, we focus on Type I distance, while Type II distance can
be dealt with in a similar way.

In general terms, our strategy is to reduce the computation of ρ+I (·) and ρ−I (·) to
linear programming via MDPs. Let D = (S, α,P). Consider an MDPM = (S, α, T ),
where for each state s ∈ S,

T (s) = {μ ∈ Δ(S) | |μ(s′)−P(s, s′)| ≤ δ for any s′ ∈ S}

We have the following proposition:

Proposition 2. ρ+I (δ) = supσ Pr
Mσ (♦G) and ρ−I (δ) = infσ Pr

Mσ (♦G).

Proposition 2 allows us to reduce the problem of computing ρ+I (δ) (resp. ρ−I (δ)) to
computing the maximum (resp. minimum) reachability probability for the MDP M,
and the latter is resorted to the standard linear programming technique. Note that here
the MDP M is merely a tool which can simplify the technical development, and that
we are not considering verification of “perturbed” MDPs. Below we only present an
algorithm for ρ+I (δ), since an algorithm for ρ−I (δ) can be obtained in a dual manner.

Recall that x = (xs,t)(s,t)∈C is a concatenation of vectors xs = (xs,t)t∈Cs for
each s ∈ S. Intuitively, xs,t captures the perturbed quantity at the (s, t)-entry of the
transition probability matrix P. We introduce a new vector of variables y = (ys)s∈S .
Intuitively, ys captures the probability to reach G from state s. For each state s, Ω(s) is
a set of vectors defined as:

xs ∈ Ω(s) iff

⎧⎪⎨⎪⎩
∑

t∈Cs
xs,t = 0

0 ≤ P(s, t) + xs,t ≤ 1, for each t ∈ Cs

−δ ≤ xs,t ≤ δ, for each t ∈ Cs

(3)

For simplicity, we also write

Γ (xs,y) =
∑
t∈Cs

(P(s, t) + xs,t) · yt +
∑
t/∈Cs

P(s, t) · yt.

Then, we consider the following (pseudo-) linear program (which can be derived di-
rectly from the MDP formulation [25,6]:

minimise
∑
s∈S

α(s)ys

subject to ys ≥ max
xs∈Ω(s)

Γ (xs,y) s /∈ G

ys = 1 s ∈ G

(4)

Note that, for a fixed y, maxxs∈Ω(s) Γ (xs,y) in Problem (4) is itself a linear program
where the constraint is given in (3). (It also follows thatmaxxs∈Ω(s) Γ (xs,y) does exist
although Ω(s) is infinite.) We denote its (Lagrange) dual function as minλs Γ ′(λs,y),
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where λs is the Lagrange multiplier vectors (dural variables) for the linear program.
Strong duality implies that

max
xs

Γ (xs,y) = min
λs

Γ ′(λs,y) (5)

Hence, Problem (4) becomes the following problem:

minimise
∑
s∈S

α(s)ys

subject to ys ≥ min
λs

Γ ′(λs,y) s /∈ G

ys = 1 s ∈ G

(6)

It is not hard to observe that Problem (6) is equivalent to the following problem:

minimise
∑
s∈S

α(s)ys

subject to ys ≥ Γ ′(λs,y) s /∈ G

ys = 1 s ∈ G

(7)

Note that Problem (7) is a linear program and is solvable in polynomial time.
By a similar argument (detailed in our extended paper [10]) we can demonstrate that

ρ+II can be computed in polynomial time. We conclude our results in this subsection by
the following theorem:

Theorem 1. Given any DTMC, ρ+I (·), ρ
−
I (·), ρ

+
II(·), ρ

−
II(·) can be computed in polyno-

mial time.

Remark 2. It is worth mentioning that Chen et al. [12] gave a thorough answer on the
complexity of model checking IMCs against PCTL under both the UMC and the IMDP
semantics. The main technique there is (a generalised version of) the ellipsoid algorithm
for linear programming. Their approach can also be adopted here to tackle the problem
for Type I and II distances. However, the technique exploited here (and by Perggelli
et al. [24]) allows us to use off-the-shelf linear program solvers (e.g., Matlab), while
the approach by Chen et al. requires more efforts in implementation. Furthermore, our
extended paper [10] presents more practical algorithms based on a “value iteration”
scheme from MDPs, which underpin the tool support.

3.2 Type III Distance

In this section, we focus on Type III distance given in Definition 4. We note that the
technique employed in the previous subsection for Type I and II distances cannot be
used here. Nevertheless, we still formulate the problem as an optimisation problem
(with the same optimisation variables as in Problem (4) in the previous subsection):



Perturbation Analysis in Verification of Discrete-Time Markov Chains 227

�������	s1
a ��

b

��

1−a−b

��

�������	s3 1

��

�������	s2
0.5+x ��

0.5−x

��

�������	s4 1

��

�������	s1,1

�������	s0

1
n

���������

1
n

����
���

��
...

�������	sn,1

Fig. 1. Examples of DTMCs: (a) Da,b and (b) D0

maximise
∑
s∈S

α(s)ys

subject to ys = 1 for s ∈ G

ys =
∑
t∈S

(P(s, t) + xs,t) · yt for s /∈ G∑
(s,t)∈C

|xs,t| ≤ δ

∑
t∈Cs

xs,t = 0 for all s ∈ S

0 ≤ P(s, t) + xs,t ≤ 1 for each (s, t) ∈ C

(8)

Clearly, Problem (8) is not a convex programming problem owing to the bilinear
form

∑
t∈S(P(s, t) + xs,t) · yt. However, an obvious observation is that the corre-

sponding decision problem, that is, deciding whether ρ+III(δ) ≥ θ for some given ratio-
nal θ ∈ [0, 1], can be formulated in the existential theory of reals. Since the decision
problem of the existential theory of reals is in PSPACE [7], a PSPACE complexity upper
bound follows.

Proposition 3. The problem to decide whether ρ+III(δ) ≥ θ for a given rational θ ∈
[0, 1] is in PSPACE.

Below, we show that the computation of ρ+III(δ) is unlikely to admit a polynomial-
time algorithm. Moreover, even the achievement of an NP upper bound (for its corre-
sponding decision problem) is difficult. We illustrate this by an example.

Example 1. Consider a DTMCDa,b depicted in Fig. 1(a). The transition matrix ofDa,b
and its perturbed matrix are respectively as follows:⎡⎢⎢⎣

0 b a 1− a− b
0.5 0 0 0.5
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ and

⎡⎢⎢⎣
0 b a 1− a− b

0.5− x 0 0 0.5 + x
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
where 0 < a, b < a + b < 1 and x ranges over (−0.5, 0.5). Basic calculation reveals
that the probability of reaching s4 from s1 is

1− a

1− b(0.5− x)
= 1− a/b

1/b− 0.5 + x
.
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We construct another DTMCD0, depicted in Fig. 1(b).D0 contains n “copies” ofDa,b,
each denoted by Dai,bi with 1 ≤ i ≤ n, and global initial state s0 that has 1/n prob-
ability to reach each initial state si,1 in each Dai,bi . Then, the probability of reaching
states in {si,4 | 1 ≤ i ≤ n} from s0 is captured by

p(x1, . . . , xn) = 1− 1

n

n∑
i=1

ai/bi
1/bi − 0.5 + xi

.

Let ρ+III(2δ) be the maximum of p(·) subject to
∑n

i=1 |xi| ≤ δ and xi ∈ (−0.5, 0.5) for
each 1 ≤ i ≤ n. Essentially, to compute ρ+III(2δ), we need to minimise

1− p(x1, . . . , xn) =
1

n

n∑
i=1

ai/bi
1/bi − 0.5 + xi

subject to the same constraints. Since 1− p(·) is a decreasing function, it is not hard to
see that, in order to minimise it, each xi must be non-negative and thus

∑n
i=1 xi = δ.

By the Cauchy–Schwarz inequality,

n∑
i=1

(1/bi − 0.5 + xi) ·
n∑
i=1

ai/bi
1/bi − 0.5 + xi

≥
(

n∑
i=1

√
ai
bi

)2

.

Namely,
∑n

i=1
ai/bi

1/bi−0.5+xi
≥
(∑n

i=1

√
ai

bi

)2

/(
∑n

i=1 1/bi − 0.5n + δ). The equality

in the above inequality holds if and only if

xi =

√
ai/bi∑n

i=1

√
ai/bi

·
(

n∑
i=1

(1/bi − 0.5) + δ

)
− (1/bi − 0.5) ≥ 0.

Clearly, in general ρ+III(2δ) is not a rational number, and neither are xi’s. This example
suggests the insight that in general one would not be able to use linear programming to
compute ρ+III(·), which is in a sharp contrast to ρ+I (·) and ρ+II(·).

With a generalisation of Example 1, we can show that the SQUARE-ROOT-SUM

(SRS) problem can be reduced to deciding whether ρ+III(δ) ≥ θ for some given rational
θ ∈ [0, 1]. An instance of the SRS problem is the decision of

∑n
i=1

√
ti ≤ y for a given

tuple (t1, · · · , tn, y) of natural numbers (greater than 1). The reduction is involved and
is detailed in our extended paper [10].

Proposition 4. Given a DTMC, deciding ρ+III(δ) ≥ θ for given δ and θ is SQUARE-
ROOT-SUM hard.

Using a similar construction, one can also show that computing ρ−III(·) is SRS hard.
The SRS problem has been studied extensively, especially in computational geometry
where the square root sum represents the sum of Euclidean distances between given
pairs of points with integer/rational coordinates.2 Allender et al. [1] showed that this

2 For example, determining whether the length of a TSP tour of a set of points on the plane is
bounded by a given threshold can be easily encoded as the SRS problem.
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problem is decidable in the 4-th level of the Counting Hierarchy (an analogue of the
polynomial-time hierarchy for counting classes); hence it is unlikely to be PSPACE-
hard. But it remains open whether the problem can be decided in P or even in NP.
Interesting examples that are related to formal verification can be studied by Etessami
and Yannakakis [17], among others.

4 Computing Asymptotic Bounds

In this section, we consider the computation of asymptotic bounds. Recall that the
reachability probability p(x) (cf. (1)) is smooth, namely, infinitely differentiable. We
present a unified characterisation for ρ+� and ρ−� with � ∈ {I, II, III} using the Tay-
lor expansion of p(x). Define the following multi-variate index notations: Let ι =
(ι1, . . . , ιk) be a vector of integers. Let

|ι| = ι1 + . . . + ιk, ι! = ι1! . . . ιk!, xι = xι11 . . . xιkk

and ∇ιp(x) =
∂|ι|p(x)

∂xι11 · · · ∂xιkk
.

Recall that r = min(s,t)∈C{P(s, t), 1 −P(s, t)}. For n ∈ N, let g+�,n : (0, r) → R
such that g+�,n(δ) is the solution of the following optimisation problem:

maximise
∑

1≤|ι|≤n

∇ιp(0)

ι!
xι

subject to x ∈ U�,δ

(9)

Theorem 2. For each � ∈ {I, II, III}, g+�,n(·) is an asymptotic bound of degree n for
ρ+� .

An asymptotic bound of degree n for ρ−� can be obtained in a similar way as in
Problem (9) by replacing maximise by minimise. We hence focus on the maximum
case. The remainder of this section presents a method for computing g+�,1(·) and g+�,2(·),
namely, the linear and quadratic bounds.

4.1 Linear Bounds

The linear bound of ρ+� , g+�,1(·), can be obtained by instantiating Problem (9) with n =

1. We show that g+�,1(δ) = κ�δ, where κ� is a solution of the following optimisation
problem:

maximise ∇p(0) · x

subject to
∑
t∈Cs

xs,t = 0 for each s ∈ S

‖x‖� = 1

(10)

We write ∇p(0) as h = (h1, · · · , hk), which is of dimension k = |C|. Then h can
be computed according to the following proposition.
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Proposition 5. For each 1 ≤ i ≤ k,

hi = αT [I − P̃]−1P̃i[I − P̃]−1b+ αT [I − P̃]−1bi

where P̃i is the matrix on S? such that P̃i(s, t) = 1 if P̃(x)(s, t) contains xi and 0
otherwise, and bi is the vector on S? such that bi(s) = 1 if b(x)(s) contains xi and 0
otherwise.

When instantiated with the three types of norms (corresponding to the three types
of distances, respectively), we obtain analytical solutions of Problem (10) for each � ∈
{I, II, III}.

Proposition 6. The following statements hold:

– Let hs = (hs,t)t∈Cs (i.e., h is a concatenation of hs for each s ∈ S). We sort each
hs in non-decreasing order to get h′

s = (h′s,1, . . . , h
′
s,ks

) where ks = |Cs|. Then

κI =
∑
s∈S

⎛⎝ ∑
1≤i≤�ks/2�

h′s,i −
∑

�ks/2�+1≤i≤ks

h′s,i

⎞⎠ ;

– κII =
∑

s∈S
1
2 (maxt∈Cs{hs,t} −mint∈Cs{hs,t}); and

– κIII = maxs∈S
1
2 (maxt∈Cs{hs,t} −mint∈Cs{hs,t})

As κ� for each � ∈ {I, II, III} is nonnegative, Theorem 2 immediately implies the
following theorem.

Theorem 3. For each � ∈ {I, II, III}, κ�δ is a linear bound for ρ+� .

Essentially, computing κ� boils down to computing an inverse matrix, which can be
done by Gaussian elimination. Hence we have

Proposition 7. The problem of computing linear bounds is in O(|D|3).

Remark 3. We can show that computing κ� can be done in GapL, which concerns
logspace-bounded computation. In a nutshell, %L is defined, in analogy to %P , to be
the set of functions that count the number of accepting computation paths of a nonde-
terministic logspace-bounded Turing machine. The class GapL is defined by Allender
and Ogihara [2] to be the closure of %L under subtraction. Furthermore, the decision
version of computing κ� is in PL (probabilistic logspace), and the technical details can
be found in the extended version of our paper [10].

4.2 Quadratic Bounds

Similar to the linear case, we can instantiate Problem (9) to obtain the quadratic bound
g+�,2. However, it is usually inefficient to solve Problem (9) for every given δ. Instead, we
show that there exists a uniform direction vector for x for all sufficiently small δ, along
which the quadratic bound is obtained. For this purpose, we consider an alternative
optimisation problem:



Perturbation Analysis in Verification of Discrete-Time Markov Chains 231

maximise
∑
|ι|=2

∇ιp(0)

ι!
xι

subject to
∑
t∈Cs

xs,t = 0 for each s ∈ S

‖x‖� = 1 and h · x = κ�

(11)

For each � ∈ {I, II, III}, let v� be the solution of Problem (11). The following technical
result states that the coefficient of the linear term of g+�,2 is exactly κ�, and the coefficient
of the quadratic term of g+�,2 is v� (obtained by solving Problem (11)).

Theorem 4. For each � ∈ {I, II, III}, the function v�δ
2 + κ�δ is a quadratic bound for

ρ+� .

To compute the quadratic bounds, we must solve a quadratic program, which is
known to be NP-complete [26]. The following result is rather straightforward.

Proposition 8. The problem of computing quadratic bounds is in TFNP (namely Total
Function NP).

5 Conclusion

In this paper, we have performed an in-depth study on perturbation analysis in the set-
ting of DTMC verification. We defined non-asymptotic and asymptotic perturbation
bounds and focused on their computation. In particular, we considered three funda-
mental matrix norms for stochastic matrices to quantify perturbations of DTMCs. With
respect to these distances, we presented algorithms and complexity analysis for com-
puting the non-asymptotic and asymptotic perturbation bounds.

An ongoing work is to generalise the results for continuous-time models, MDPs,
stochastic games, etc. Moreover, in the current paper, we only consider structurally
equivalent perturbations, but it would be interesting to see how to relax this assumption.
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Abstract. We consider synchronizing properties of Markov decision pro-
cesses (MDP), viewed as generators of sequences of probability distri-
butions over states. A probability distribution is p-synchronizing if the
probability mass is at least p in some state, and a sequence of probabil-
ity distributions is weakly p-synchronizing, or strongly p-synchronizing
if respectively infinitely many, or all but finitely many distributions in
the sequence are p-synchronizing.

For each synchronizing mode, an MDP can be (i) sure winning if there
is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure
winning if there is a strategy that produces a sequence that is, for all
ε > 0, a (1-ε)-synchronizing sequence; (iii) limit-sure winning if for all
ε > 0, there is a strategy that produces a (1-ε)-synchronizing sequence.

For each synchronizing and winning mode, we consider the problem
of deciding whether an MDP is winning, and we establish matching up-
per and lower complexity bounds of the problems, as well as the optimal
memory requirement for winning strategies: (a) for all winning modes,
we show that the problems are PSPACE-complete for weak synchroniza-
tion, and PTIME-complete for strong synchronization; (b) we show that
for weak synchronization, exponential memory is sufficient and may be
necessary for sure winning, and infinite memory is necessary for almost-
sure winning; for strong synchronization, linear-size memory is sufficient
and may be necessary in all modes; (c) we show a robustness result that
the almost-sure and limit-sure winning modes coincide for both weak
and strong synchronization.

1 Introduction

Markov Decision Processes (MDPs) are studied in theoretical computer science
in many problems related to system design and verification [22,15,10]. MDPs
are a model of reactive systems with both stochastic and nondeterministic be-
havior, used in the control problem for reactive systems: the nondeterminism
represents the possible choices of the controller, and the stochasticity represents
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the uncertainties about the system response. The controller synthesis problem is
to compute a control strategy that ensures correct behaviors of the system with
probability 1. Traditional well-studied specifications describe correct behaviors
as infinite sequences of states, such as reachability, Büchi, and co-Büchi, which
require the system to visit a target state once, infinitely often, and ultimately
always, respectively [3,4].

In contrast, we consider symbolic specifications of the behaviors of MDPs
as sequences of probability distributions Xi : Q → [0, 1] over the finite state
space Q of the system, where Xi(q) is the probability that the MDP is in state
q ∈ Q after i steps. The symbolic specification of stochastic systems is rele-
vant in applications such as system biology and robot planning [6,14,17], and
recently it has been used in several works on design and verification of reactive
systems [2,9,20]. While the verification of MDPs may yield undecidability, both
with traditional specifications [5,16], and symbolic specifications [20,13], decid-
ability results are obtained for eventually synchronizing conditions under general
control strategies that depend on the full history of the system execution [14].
Intuitively, a sequence of probability distributions is eventually synchronizing if
the probability mass tends to accumulate in a given set of target states along
the sequence. This is an analogue, for sequences of probability distributions, of
the reachability condition.

In this paper, we consider an analogue of the Büchi and coBüchi conditions
for sequences of distributions [12,11]: the probability mass should get synchro-
nized infinitely often, or ultimately at every step. More precisely, for 0 ≤ p ≤ 1
let a probability distribution X : Q → [0, 1] be p-synchronized if it assigns
probability at least p to some state. A sequence X̄ = X0X1 . . . of probability
distributions is (a) eventually p-synchronizing if Xi is p-synchronized for some i;
(b) weakly p-synchronizing if Xi is p-synchronized for infinitely many i’s; (c)
strongly p-synchronizing if Xi is p-synchronized for all but finitely many i’s.
It is easy to see that strongly p-synchronizing implies weakly p-synchronizing,
which implies eventually p-synchronizing. The qualitative synchronizing proper-
ties, corresponding to the case where either p = 1, or p tends to 1, are analogous
to the traditional reachability, Büchi, and coBüchi conditions.

We consider the following qualitative (winning) modes, summarized in Ta-
ble 1: (i) sure winning, if there is a strategy that generates a {eventually, weakly,
strongly} 1-synchronizing sequence; (ii) almost-sure winning, if there is a strat-
egy that generates a sequence that is, for all ε > 0, {eventually, weakly, strongly}
(1− ε)-synchronizing; (iii) limit-sure winning, if for all ε > 0, there is a strategy
that generates a {eventually, weakly, strongly} (1− ε)-synchronizing sequence.

For eventually synchronizing deciding if a given MDP is winning is PSPACE-
complete, and the three winning modes form a strict hierarchy [14]. In particular,
there are limit-sure winning MDPs that are not almost-sure winning. An impor-
tant and difficult result in this paper is that the new synchronizing modes are
more robust: for weak and strong synchronization, we show that the almost-sure
and limit-sure modes coincide. Moreover we establish the complexity of deciding
if a given MDP is winning by providing tight (matching) upper and lower bounds:
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Table 1. Winning modes and synchronizing objectives (where Mα
n(T ) denotes the

probability that under strategy α, after n steps the MDP M is in a state of T )

Eventually Weakly Strongly

Sure ∃α ∃n Mα
n(T ) = 1 ∃α ∀N ∃n ≥ N Mα

n(T ) = 1 ∃α ∃N ∀n ≥ N Mα
n(T ) = 1

Almost-sure ∃α supn Mα
n(T ) = 1 ∃α lim supn→∞ Mα

n(T ) = 1 ∃α lim infn→∞ Mα
n(T ) = 1

Limit-sure supα supn Mα
n(T ) = 1 supα lim supn→∞ Mα

n(T ) = 1 supα lim infn→∞ Mα
n(T ) = 1

for each winning mode we show that the problems are PSPACE-complete for
weak synchronization, and PTIME-complete for strong synchronization.

Thus the weakly and strongly synchronizing properties provide conservative
approximations of eventually synchronizing, they are robust (limit-sure and
almost-sure coincide), and they are of the same (or even lower) complexity as
compared to eventually synchronizing.

We also provide optimal memory bounds for winning strategies: exponential
memory is sufficient and may be necessary for sure winning in weak synchroniza-
tion, infinite memory is necessary for almost-sure winning in weak synchroniza-
tion, and linear memory is sufficient for strong synchronization in all winning
modes. We present a variant of strong synchronization for which memoryless
strategies are sufficient.

Related works and applications. Synchronization problems were first considered
for deterministic finite automata (DFA) where a synchronizing word is a finite
sequence of control actions that can be executed from any state of an automaton
and leads to the same state (see [23] for a survey of results and applications).
While the existence of a synchronizing word can be decided in polynomial time
for DFA, extensive research efforts are devoted to establishing a tight bound
on the length of the shortest synchronizing word, which is conjectured to be
(n − 1)2 for automata with n states [8]. Various extensions of the notion of
synchronizing word have been proposed for non-deterministic and probabilistic
automata [7,18,19,12], leading to results of PSPACE-completeness [21], or even
undecidability [19,13].

For probabilistic systems, a natural extension of words is the notion of strat-
egy that reacts and chooses actions according to the sequence of states visited
along the system execution. In this context, an input word corresponds to the
special case of a blind strategy that chooses the control actions in advance.
In particular, almost-sure weak and strong synchronization with blind strate-
gies has been studied [12] and the main result is the undecidability of deciding
the existence of a blind almost-sure winning strategy for weak synchronization,
and the PSPACE-completeness of the emptiness problem for strong synchro-
nization [11,13]. In contrast, for general strategies (which also correspond to
input trees), we establish the PSPACE-completeness and PTIME-completeness
of deciding almost-sure weak and strong synchronization respectively.

A typical application scenario is the design of a control program for a group
of mobile robots running in a stochastic environment. The possible behaviors of



Robust Synchronization in Markov Decision Processes 237

the robots and the stochastic response of the environment (such as obstacle en-
counters) are represented by an MDP, and a synchronizing strategy corresponds
to a control program that can be embedded in every robot to ensure that they
meet (or synchronize) eventually once, infinitely often, or eventually forever.

2 Markov Decision Processes and Synchronization

We closely follow the definitions of [14]. A probability distribution over a finite
set S is a function d : S → [0, 1] such that

∑
s∈S d(s) = 1. The support of d

is the set Supp(d) = {s ∈ S | d(s) > 0}. We denote by D(S) the set of all
probability distributions over S. Given a set T ⊆ S, let d(T ) =

∑
s∈T d(s)

and ‖d‖T = max s∈T d(s). For T 	= ∅, the uniform distribution on T assigns
probability 1

|T | to every state in T . Given s ∈ S, the Dirac distribution on s

assigns probability 1 to s, and by a slight abuse of notation, we denote it simply
by s.

A Markov decision process (MDP) is a tupleM = 〈Q,A, δ〉 where Q is a finite
set of states, A is a finite set of actions, and δ : Q×A→ D(Q) is a probabilistic
transition function. A state q is absorbing if δ(q, a) is the Dirac distribution on
q for all actions a ∈ A.

Given state q ∈ Q and action a ∈ A, the successor state of q under action a
is q′ with probability δ(q, a)(q′). Denote by post(q, a) the set Supp(δ(q, a)), and
given T ⊆ Q let Pre(T ) = {q ∈ Q | ∃a ∈ A : post(q, a) ⊆ T } be the set of states
from which there is an action to ensure that the successor state is in T . For
k > 0, let Prek(T ) = Pre(Prek−1(T )) with Pre0(T ) = T .

A path in M is an infinite sequence π = q0a0q1a1 . . . such that qi+1 ∈
post(qi, ai) for all i ≥ 0. A finite prefix ρ = q0a0q1a1 . . . qn of a path (or simply
a finite path) has length |ρ| = n and last state Last(ρ) = qn. We denote by
Play(M) and Pref(M) the set of all paths and finite paths in M respectively.

Strategies. A randomized strategy for M (or simply a strategy) is a function
α : Pref(M)→ D(A) that, given a finite path ρ, returns a probability distribution
α(ρ) over the action set, used to select a successor state q′ of ρ with probability∑

a∈A α(ρ)(a) · δ(q, a)(q′) where q = Last(ρ).
A strategy α is pure if for all ρ ∈ Pref(M), there exists an action a ∈ A

such that α(ρ)(a) = 1; and memoryless if α(ρ) = α(ρ′) for all ρ, ρ′ such that
Last(ρ) = Last(ρ′). Finally, a strategy α uses finite-memory if there exists a
right congruence ≈ over Pref(M) (i.e., if ρ ≈ ρ′, then ρ · a · q ≈ ρ′ · a · q for
all ρ, ρ′ ∈ Pref(M) and a ∈ A, q ∈ Q) of finite index such that ρ ≈ ρ′ implies
α(ρ) = α(ρ′). The index of ≈ is the memory size of the strategy.

Outcomes and Winning Modes. Given an initial distribution d0 ∈ D(Q) and a
strategy α in an MDPM, a path-outcome is a path π = q0a0q1a1 . . . inM such
that q0 ∈ Supp(d0) and ai ∈ Supp(α(q0a0 . . . qi)) for all i ≥ 0. The probability

of a finite prefix ρ = q0a0q1a1 . . . qn of π is d0(q0) ·
∏n−1

j=0 α(q0a0 . . . qj)(aj) ·
δ(qj , aj)(qj+1). We denote by Outcomes(d0, α) the set of all path-outcomes from
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d0 under strategy α. An event Ω ⊆ Play(M) is a measurable set of paths, and
given an initial distribution d0 and a strategy α, the probability Prα(Ω) of Ω is
uniquely defined [22]. We consider the following classical winning modes. Given
an initial distribution d0 and an event Ω, we say that M is: sure winning if
there exists a strategy α such that Outcomes(d0, α) ⊆ Ω; almost-sure winning
if there exists a strategy α such that Prα(Ω) = 1; and limit-sure winning if
supα Pr

α(Ω) = 1.
For example, given a set T ⊆ Q of target states, and k ∈ N, we denote by�T = {q0a0q1 · · · ∈ Play(M) | ∀i : qi ∈ T } the safety event of always staying

in T , by �T = {q0a0q1 · · · ∈ Play(M) | ∃i : qi ∈ T } the event of reaching T , and
by �k T = {q0a0q1 · · · ∈ Play(M) | qk ∈ T } the event of reaching T after exactly
k steps. Hence, if Prα(�T ) = 1 then almost-surely a state in T is reached under
strategy α.

We consider a symbolic outcome of MDPs viewed as generators of sequences of
probability distributions over states [20]. Given an initial distribution d0 ∈ D(Q)
and a strategy α in M, the symbolic outcome of M from d0 is the sequence
(Mα

n)n∈N of probability distributions defined by Mα
k (q) = Prα(�k {q}) for all

k ≥ 0 and q ∈ Q. Hence, Mα
k is the probability distribution over states after

k steps under strategy α. Note that Mα
0 = d0 and the symbolic outcome is

a deterministic sequence of distributions: each distribution Mα
k has a unique

(deterministic) successor.
Informally, synchronizing objectives require that the probability of a given

state (or some group of states) tends to 1 in the sequence (Mα
n)n∈N, either

once, infinitely often, or always after some point. Given a set T ⊆ Q, consider
the functions sumT : D(Q) → [0, 1] and maxT : D(Q) → [0, 1] that compute
sumT (X) =

∑
q∈T X(q) and maxT (X) = maxq∈T X(q). For f ∈ {sumT , maxT }

and p ∈ [0, 1], we say that a probability distribution X is p-synchronized ac-
cording to f if f(X) ≥ p, and that a sequence X̄ = X0X1 . . . of probability
distributions is [12,11,14]:

(a) event (or eventually) p-synchronizing if Xi is p-synchronized for some i ≥ 0;
(b) weakly p-synchronizing if Xi is p-synchronized for infinitely many i’s;
(c) strongly p-synchronizing if Xi is p-synchronized for all but finitely many i’s.

For p = 1, these definitions are analogous to the traditional reachability,
Büchi, and coBüchi conditions [3], and the following winning modes can be con-
sidered [14]: given an initial distribution d0 and a function f ∈ {sumT , maxT }, we
say that for the objective of {eventually, weak, strong} synchronization from d0,
M is:

– sure winning if there exists a strategy α such that the symbolic outcome of
α from d0 is {eventually, weakly, strongly} 1-synchronizing according to f ;

– almost-sure winning if there exists a strategy α such that for all ε > 0 the
symbolic outcome of α from d0 is {eventually, weakly, strongly} (1 − ε)-
synchronizing according to f ;

– limit-sure winning if for all ε > 0, there exists a strategy α such that the
symbolic outcome of α from d0 is {eventually, weakly, strongly} (1 − ε)-
synchronizing according to f ;
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Table 2. Computational complexity of the membership problem (new results in bold-
face)

Eventually Weakly Strongly

Sure PSPACE-C [14] PSPACE-C PTIME-C

Almost-sure PSPACE-C [14]
PSPACE-C PTIME-C

Limit-sure PSPACE-C [14]

Note that the winning modes for synchronization objectives differ from the
classical winning modes in MDPs: they can be viewed as a specification of the set
of sequences of distributions that are winning in a non-stochastic system (since
the symbolic outcome is deterministic), while the traditional almost-sure and
limit-sure winning modes for path-outcomes consider a probability measure over
paths and specify the probability of a specific event (i.e., a set of paths). Thus for
instance a strategy is almost-sure synchronizing if the (single) symbolic outcome
it produces belongs to the corresponding winning set, whereas traditional almost-
sure winning requires a certain event to occur with probability 1.

We often write ‖X‖T instead of maxT (X) (and we omit the subscript when
T = Q) and X(T ) instead of sumT (X), as in Table 1 where the definitions
of the various winning modes and synchronizing objectives for f = sumT are
summarized.

Decision problems. For f ∈ {sumT , maxT } and λ ∈ {event, weakly, strongly},
the winning region 〈〈1〉〉λsure(f) is the set of initial distributions such that M
is sure winning for λ-synchronizing (we assume that M is clear from the con-
text). We define analogously the sets 〈〈1〉〉λalmost (f) and 〈〈1〉〉λlimit (f). For a sin-
gleton T = {q} we have sumT = maxT , and we simply write 〈〈1〉〉λμ(q) (where

μ ∈ {sure, almost, limit}). It follows from the definitions that 〈〈1〉〉stronglyμ (f) ⊆
〈〈1〉〉weakly

μ (f) ⊆ 〈〈1〉〉eventμ (f) and thus strong and weak synchronization are con-
servative approximations of eventually synchronization. It is easy to see that
〈〈1〉〉λsure(f) ⊆ 〈〈1〉〉λalmost (f) ⊆ 〈〈1〉〉λlimit (f), and for λ = event the inclusions are
strict [14]. In contrast, weak and strong synchronization are more robust as we
show in this paper that the almost-sure and limit-sure winning modes coincide.

Lemma 1. There exists an MDP M and state q such that 〈〈1〉〉λsure(q) �
〈〈1〉〉λalmost (q) for λ ∈ {weakly, strongly}.

The membership problem is to decide, given an initial probability distribution
d0, whether d0 ∈ 〈〈1〉〉λμ(f). It is sufficient to consider Dirac initial distributions
(i.e., assuming that MDPs have a single initial state) because the answer to the
general membership problem for an MDP M with initial distribution d0 can be
obtained by solving the membership problem for a copy ofM with a new initial
state from which the successor distribution on all actions is d0.

For eventually synchronizing, the membership problem is PSPACE-complete
for all winning modes [14]. In this paper, we show that the complexity of the
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Table 3. Memory requirement (new results in boldface)

Eventually Weakly
Strongly

sumT maxT

Sure exponential [14] exponential memoryless linear

Almost-sure infinite [14]
infinite memoryless linear

Limit-sure unbounded [14]

membership problem is PSPACE-complete for weak synchronization, and even
PTIME-complete for strong synchronization. The complexity results are summa-
rized in Table 2, and we present the memory requirement for winning strategies
in Table 3.

3 Weak Synchronization

We establish the complexity and memory requirement for weakly synchronizing
objectives. We show that the membership problem is PSPACE-complete for sure
and almost-sure winning, that exponential memory is necessary and sufficient
for sure winning while infinite memory is necessary for almost-sure winning, and
we show that limit-sure and almost-sure winning coincide.

3.1 Sure Weak Synchronization

The PSPACE upper bound of the membership problem for sure weak synchro-
nization is obtained by the following characterization.

Lemma 2. Let M be an MDP and T be a target set. For all states qinit, we
have qinit ∈ 〈〈1〉〉weakly

sure (sumT ) if and only if there exists a set S ⊆ T such that
qinit ∈ Prem(S) for some m ≥ 0 and S ⊆ Pren(S) for some n ≥ 1.

The PSPACE upper bound follows from the characterization in Lemma 2. A
(N)PSPACE algorithm is to guess the set S ⊆ T , and the numbers m,n (with
m,n ≤ 2|Q| since the sequence Pren(S) of predecessors is ultimately periodic),
and check that qinit ∈ Prem(S) and S ⊆ Pren(S). The PSPACE lower bound
follows from the PSPACE-completeness of the membership problem for sure
eventually synchronization [14, Theorem 2].

Lemma 3. The membership problem for 〈〈1〉〉weakly
sure (sumT ) is PSPACE-hard

even if T is a singleton.

The proof of Lemma 2 suggests an exponential-memory strategy for sure weak
synchronization that in q ∈ Pren(S) plays an action a such that post(q, a) ⊆
Pren−1(S), which can be realized with exponential memory since n ≤ 2|Q|. It
can be shown that exponential memory is necessary in general.
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Theorem 1. For sure weak synchronization in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.
2. (Memory). Exponential memory is necessary and sufficient for both pure and

randomized strategies, and pure strategies are sufficient.

3.2 Almost-Sure Weak Synchronization

We present a characterization of almost-sure weak synchronization that gives a
PSPACE upper bound for the membership problem. Our characterization uses
the limit-sure eventually synchronizing objectives with exact support [14]. This
objective requires that the probability mass tends to 1 in a target set T , and
moreover that after the same number of steps the support of the probability
distribution is contained in a given set U . Formally, given an MDP M, let
〈〈1〉〉eventlimit (sumT , U) for T ⊆ U be the set of all initial distributions such that for
all ε > 0 there exists a strategy α and n ∈ N such that Mα

n(T ) ≥ 1 − ε and
Mα

n(U) = 1.
We show that an MDP is almost-sure weakly synchronizing in target T if

(and only if), for some set U , there is a sure eventually synchronizing strategy in
target U , and from the probability distributions with support U there is a limit-
sure winning strategy for eventually synchronizing in Pre(T ) with support in
Pre(U). This ensures that from the initial state we can have the whole probability
mass in U , and from U have probability 1 − ε in Pre(T ) (and in T in the next
step), while the whole probability mass is back in Pre(U) (and in U in the next
step), allowing to repeat the strategy for ε → 0, thus ensuring infinitely often
probability at least 1− ε in T (for all ε > 0).

Lemma 4. Let M be an MDP and T be a target set. For all states qinit, we have
qinit ∈ 〈〈1〉〉weakly

almost (sumT ) if and only if there exists a set U such that

– qinit ∈ 〈〈1〉〉eventsure (sumU ), and

– dU ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(U)) where dU is the uniform distribution over U .

Since the membership problems for sure eventually synchronizing and for
limit-sure eventually synchronizing with exact support are PSPACE-complete
([14, Theorem 2 and Theorem 4]), the membership problem for almost-sure
weak synchronization is in PSPACE by guessing the set U , and checking that
qinit ∈ 〈〈1〉〉eventsure (sumU ), and that dU ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(U)). We establish
a matching PSPACE lower bound.

Lemma 5. The membership problem for 〈〈1〉〉weakly
almost (sumT ) is PSPACE-hard

even if T is a singleton.

Simple examples show that winning strategies require infinite memory for
almost-sure weak synchronization.

Theorem 2. For almost-sure weak synchronization in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.
2. (Memory). Infinite memory is necessary in general for both pure and ran-

domized strategies, and pure strategies are sufficient.
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qinit

q1

q2 q3

q4
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a, b : 1
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a, b : 1
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a, b : 1
2
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Fig. 1. An example to show qinit ∈ 〈〈1〉〉weakly
limit (q4) implies qinit ∈ 〈〈1〉〉weakly

almost (q4)

3.3 Limit-Sure Weak Synchronization

We show that the winning regions for almost-sure and limit-sure weak synchro-
nization coincide. The result is not intuitively obvious (recall that it does not
hold for eventually synchronizing) and requires a careful analysis of the structure
of limit-sure winning strategies to show that they always induce the existence
of an almost-sure winning strategy. The construction of an almost-sure winning
strategy from a family of limit-sure winning strategies is illustrated in the fol-
lowing example.

Consider the MDPM in Fig. 1 with initial state qinit and target set T = {q4}.
Note that there is a relevant strategic choice only in q3, and that qinit is limit-sure
winning for eventually synchronization in {q4} since we can inject a probability
mass arbitrarily close to 1 in q3 (by always playing a in q3), and then switching
to playing b in q3 gets probability 1− ε in T (for arbitrarily small ε). Moreover,
the same holds from state q4. These two facts are sufficient to show that qinit
is limit-sure winning for weak synchronization in {q4}: given ε > 0, play from
qinit a strategy to ensure probability at least p1 = 1 − ε

2 in q4 (in finitely many
steps), and then play according to a strategy that ensures from q4 probability
p2 = p1− ε

4 in q4 (in finitely many, and at least one step), and repeat this process
using strategies that ensure, if the probability mass in q4 is at least pi, that the
probability in q4 is at least pi+1 = pi− ε

2i+1 (in at least one step). It follows that
pi = 1 − ε

2 −
ε
4 − · · · −

ε
2i > 1 − ε for all i ≥ 1, and thus lim supi→∞ pi ≥ 1 − ε

showing that qinit is limit-sure weakly synchronizing in target {q4}.
It follows from the result that we establish in this section (Theorem 3) that

qinit is actually almost-sure weakly synchronizing in target {q4}. To see this,
consider the sequence Prei(T ) for i ≥ 0: {q4}, {q3}, {q2}, {q3}, . . . is ultimately
periodic with period r = 2 and R = {q3} = Pre(T ) is such that R = Pre2(R).
The period corresponds to the loop q2q3 in the MDP. It turns out that limit-sure
eventually synchronizing in T implies almost-sure eventually synchronizing in R
(by the proof of [14, Lemma 9]), thus from qinit a single strategy ensures that
the probability mass in R is 1, either in the limit or after finitely many steps.
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Note that in both cases since R = Prer(R) this even implies almost-sure weakly
synchronizing in R. The same holds from state q4.

Moreover, note that all distributions produced by an almost-sure weakly syn-
chronizing strategy are themselves almost-sure weakly synchronizing. An almost-
sure winning strategy for weak synchronization in {q4} consists in playing from
qinit an almost-sure eventually synchronizing strategy in target R = {q3}, and
considering a decreasing sequence εi such that limi→∞ εi = 0, when the prob-
ability mass in R is at least 1 − εi, inject it in T = {q4}. Then the remaining
probability mass defines a distribution (with support {q1, q2} in the example)
that is still almost-sure eventually synchronizing in R, as well as the states in T .
Note that in the example, (almost all) the probability mass in T = {q4} can move
to q3 in an even number of steps, while from {q1, q2} an odd number of steps is
required, resulting in a shift of the probability mass. However, by repeating the
strategy two times from q4 (injecting large probability mass in q3, moving to q4,
and injecting in q3 again), we can make up for the shift and reach q3 from q4
in an even number of steps, thus in synchronization with the probability mass
from {q1, q2}. This idea is formalized in the rest of this section, and we prove
that we can always make up for the shifts, which requires a carefully analysis of
the allowed amounts of shifting.

The result is easier to prove when the target T is a singleton, as in the example.
For an arbitrary target set T , we need to get rid of the states in T that do not
contribute a significant (i.e., bounded away from 0) probability mass in the limit,
that we call the ‘vanishing’ states. We show that they can be removed from T
without changing the winning region for limit-sure winning. When the target set
has no vanishing state, we can construct an almost-sure winning strategy as in
the case of a singleton target set.

Given an MDPM with initial state qinit ∈ 〈〈1〉〉weakly
limit (sumT ) that is limit-sure

winning for the weakly synchronizing objective in target set T , let (αi)i∈N be a
family of limit-sure winning strategies such that lim supn→∞Mαi

n (T ) ≥ 1 − εi
where limi→∞ εi = 0. Hence by definition of lim sup, for all i ≥ 0 there exists a
strictly increasing sequence ki,0 < ki,1 < · · · of positions such that Mαi

ki,j
(T ) ≥

1−2εi for all j ≥ 0. A state q ∈ T is vanishing if lim infi→∞ lim infj→∞Mαi

ki,j
(q) =

0 for some family of limit-sure weakly synchronizing strategies (αi)i∈N. Intuitively,
the contribution of a vanishing state q to the probability in T tends to 0 and there-
foreM is also limit-sure winning for the weakly synchronizing objective in target
set T \ {q}.
Lemma 6. If an MDP M is limit-sure weakly synchronizing in target set T ,
then there exists a set T ′ ⊆ T such that M is limit-sure weakly synchronizing
in T ′ without vanishing states.

For a limit-sure weakly synchronizing MDP in target set T (without vanishing
states), we show that from a probability distribution with support T , a proba-
bility mass arbitrarily close to 1 can be injected synchronously back in T (in at
least one step), that is dT ∈ 〈〈1〉〉eventlimit (sumPre(T )). The same holds from the ini-
tial state qinit of the MDP. This property is the key to construct an almost-sure
weakly synchronizing strategy.
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Lemma 7. If an MDP M with initial state qinit is limit-sure weakly synchroniz-
ing in a target set T without vanishing states, then qinit ∈ 〈〈1〉〉eventlimit (sumPre(T ))
and dT ∈ 〈〈1〉〉eventlimit (sumPre(T )) where dT is the uniform distribution over T .

To show that limit-sure and almost-sure winning coincide for weakly synchro-
nizing objectives, from a family of limit-sure winning strategies we construct an
almost-sure winning strategy that uses the eventually synchronizing strategies of
Lemma 7. The construction consists in using successively strategies that ensure
probability mass 1 − εi in the target T , for a decreasing sequence εi → 0. Such
strategies exist by Lemma 7, both from the initial state and from the set T . How-
ever, the mass of probability that can be guaranteed to be synchronized in T by
the successive strategies is always smaller than 1, and therefore we need to argue
that the remaining masses of probability (of size εi) can also get synchronized
in T , and despite their possible shift with the main mass of probability.

Two main key arguments are needed to establish the correctness of the con-
struction: (1) eventually synchronizing implies that a finite number of steps is
sufficient to obtain a probability mass of 1− εi in T , and thus the construction
of the strategy is well defined, and (2) by the finiteness of the period r (such
that R = Prer(R) where R = Prek(T ) for some k) we can ensure to eventually
make up for the shifts, and every piece of the probability mass can contribute
(synchronously) to the target infinitely often.

Theorem 3. 〈〈1〉〉weakly
limit (sumT ) = 〈〈1〉〉weakly

almost (sumT ) for all MDPs and target
sets T .

Finally,we note that the complexity results ofTheorem1andTheorem2hold for
themembership problemwith functionsmax andmaxT by the lemmabelow. First,
for μ ∈ {sure, almost, limit}, we have 〈〈1〉〉weakly

μ (maxT ) =
⋃
q∈T 〈〈1〉〉weakly

μ (q),
showing that the membership problems for max are polynomial-time reducible to
the corresponding membership problem for sumT with singleton T . The reverse
reduction is as follows.Given anMDPM, a state q andan initial distributiond0, we
can construct an MDPM′ and initial distribution d′0 such that d0 ∈ 〈〈1〉〉weakly

μ (q)

iff d′0 ∈ 〈〈1〉〉weakly
μ (maxQ′) whereQ′ is the state space ofM′ (thus maxQ′ is simply

the function max). The idea is to constructM′ and d′0 as a copy ofM and d0 where
all states except q are duplicated, and the initial and transition probabilities are
equally distributed between the copies.Therefore if the probabilitymass tends to 1
in some state, it has to be in q.

Lemma 8. For weak synchronization and each winning mode, the membership
problems with functions max and maxT are polynomial-time equivalent to the
membership problem with function sumT ′ with a singleton T ′.

4 Strong Synchronization

In this section, we show that the membership problem for strongly synchronizing
objectives can be solved in polynomial time, for all winning modes, and both with
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function maxT and function sumT . We show that linear-size memory is necessary
in general for maxT , and memoryless strategies are sufficient for sumT .

It follows from our results that the limit-sure and almost-sure winning modes
coincide for strong synchronization.

4.1 Strong Synchronization with Function max

First, note that for strong synchronization the membership problem with func-
tion maxT reduces to the membership problem with function maxQ where Q is
the entire state space, by a construction similar to the proof of Lemma 8: states
in Q \ T are duplicated, ensuring that only states in T are used to accumulate
probability.

The strongly synchronizing objective with function max requires that from
some point on, almost all the probability mass is at every step in a single state.
The sequence of states that contain almost all the probability corresponds to a
sequence of deterministic transitions in the MDP, and thus eventually to a cycle
of deterministic transitions.

The graph of deterministic transitions of an MDP M = 〈Q,A, δ〉 is the di-
rected graph G = 〈Q,E〉 where E = {〈q1, q2〉 | ∃a ∈ A : δ(q1, a)(q2) = 1}. For

 ≥ 1, a deterministic cycle in M of length 
 is a finite path q̂�q̂�−1 · · · q̂0 in G
(that is, 〈q̂i, q̂i−1〉 ∈ E for all 1 ≤ i ≤ 
) such that q̂0 = q̂�. The cycle is simple if
q̂i 	= q̂j for all 1 ≤ i < j ≤ 
.

We show that sure (resp., almost-sure and limit-sure) strong synchronization
is equivalent to sure (resp., almost-sure and limit-sure) reachability to a state in
such a cycle, with the requirement that it can be reached in a synchronized way,
that is by finite paths whose lengths are congruent modulo the length 
 of the
cycle. To check this, we keep track of a modulo-
 counter along the play.

Define the MDP M× [
] = 〈Q′,A, δ′〉 where Q′ = Q × {0, 1, · · · , 
 − 1} and
δ′(〈q, i〉, a)(〈q′, i − 1〉) = δ(q, a)(q′) (where i − 1 is 
 − 1 for i = 0) for all states
q, q′ ∈ Q, actions a ∈ A, and 0 ≤ i ≤ 
− 1.

Lemma 9. Let η be the smallest positive probability in the transitions of M,
and let 1

1+η < p ≤ 1. There exists a strategy α such that lim infn→∞‖Mα
n‖ ≥

p from an initial state qinit if and only if there exists a simple deterministic
cycle q̂�q̂�−1 · · · q̂0 in M and a strategy β in M×[
] such that Prβ(�{〈q̂0, 0〉}) ≥ p
from 〈qinit, 0〉.

It follows directly from Lemma 9 with p = 1 that almost-sure strong syn-
chronization is equivalent to almost-sure reachability to a deterministic cycle
in M × [
]. The same equivalence holds for the sure and limit-sure winning
modes.

Lemma 10. A state qinit is sure (resp., almost-sure or limit-sure) winning for
the strongly synchronizing objective (according to maxQ) if and only if there
exists a simple deterministic cycle q̂�q̂�−1 · · · q̂0 such that 〈qinit, 0〉 is sure (resp.,
almost-sure or limit-sure) winning for the reachability objective �{〈q̂0, 0〉} in
M× [
].
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Since the winning regions of almost-sure and limit-sure winning coincide for
reachability objectives in MDPs [4], the next corollary follows from Lemma 10.

Corollary 1. 〈〈1〉〉stronglylimit (maxT ) = 〈〈1〉〉stronglyalmost (maxT ) for all target sets T .

If there exists a cycle c satisfying the condition in Lemma 10, then all cycles
reachable from c in the graph G of deterministic transitions also satisfy the
condition. Hence it is sufficient to check the condition for an arbitrary simple
cycle in each strongly connected component (SCC) of G. It follows that strong
synchronization can be decided in polynomial time (SCC decomposition can
be computed in polynomial time, as well as sure, limit-sure, and almost-sure
reachability in MDPs). The length of the cycle gives a linear bound on the
memory needed to win, and the bound is tight.

Theorem 4. For the three winning modes of strong synchronization according
to maxT in MDPs:

1. (Complexity). The membership problem is PTIME-complete.
2. (Memory). Linear memory is necessary and sufficient for both pure and ran-

domized strategies, and pure strategies are sufficient.

4.2 Strong Synchronization with Function sum

The strongly synchronizing objective with function sumT requires that eventu-
ally all the probability mass remains in T . We show that this is equivalent to a
traditional reachability objective with target defined by the set of sure winning
initial distributions for the safety objective �T .

It follows that almost-sure (and limit-sure) winning for strong synchroniza-
tion is equivalent to almost-sure (or equivalently limit-sure) winning for the
coBüchi objective ��T = {q0a0q1 · · · ∈ Play(M) | ∃j · ∀i > j : qi ∈ T }.
However, sure strong synchronization is not equivalent to sure winning for the
coBüchi objective: the MDP in Fig. 2 is sure winning for the coBüchi objec-
tive ��{qinit, q2} from qinit, but not sure winning for the reachability objective�S where S = {q2} is the winning region for the safety objective �{qinit, q2}
(and thus not sure strongly synchronizing). Note that this MDP is almost-sure
strongly synchronizing in target T = {qinit, q2} from qinit, and almost-sure win-
ning for the coBüchi objective ��T , as well as almost-sure winning for the
reachability objective �S.

Lemma 11. Given a target set T , an MDP M is sure (resp., almost-sure or
limit-sure) winning for the strongly synchronizing objective according to sumT if
and only if M is sure (resp., almost-sure or limit-sure) winning for the reachabil-
ity objective �S where S is the sure winning region for the safety objective �T .

Corollary 2. 〈〈1〉〉stronglylimit (sumT ) = 〈〈1〉〉stronglyalmost (sumT ) for all target sets T .

The following result follows from Lemma 11 and the fact that the sure winning
region for safety and reachability, and the almost-sure winning region for reacha-
bility can be computed in polynomial time for MDPs [4]. Moreover, memoryless
strategies are sufficient for these objectives.
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qinit q1 q2

a : 1
2

a : 1
2 a

a

Fig. 2. An MDP such that qinit is sure-winning for coBüchi objective in T = {qinit, q2}
but not for strong synchronization according to sumT

Theorem 5. For the three winning modes of strong synchronization according
to sumT in MDPs:

1. (Complexity). The membership problem is PTIME-complete.
2. (Memory). Pure memoryless strategies are sufficient.
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Abstract. In contrast to the usual understanding of probabilistic sys-
tems as stochastic processes, recently these systems have also been re-
garded as transformers of probabilities. In this paper, we give a natural
definition of strong bisimulation for probabilistic systems corresponding
to this view that treats probability distributions as first-class citizens.
Our definition applies in the same way to discrete systems as well as
to systems with uncountable state and action spaces. Several examples
demonstrate that our definition refines the understanding of behavioural
equivalences of probabilistic systems. In particular, it solves a longstand-
ing open problem concerning the representation of memoryless contin-
uous time by memoryfull continuous time. Finally, we give algorithms
for computing this bisimulation not only for finite but also for classes of
uncountably infinite systems.

1 Introduction

Continuous time concurrency phenomena can be addressed in two principal man-
ners: On the one hand, timed automata (TA) extend interleaving concurrency
with real-valued clocks [2]. On the other hand, time can be represented by memo-
ryless stochastic time, as in continuous time Markov chains (CTMC) and exten-
sions, where time is represented in the form of exponentially distributed random
delays [33,30,6,23]. TA and CTMC variations have both been applied to very
many intriguing cases, and are supported by powerful real-time, respectively
stochastic time model checkers [3,37] with growing user bases. The models are
incomparable in expressiveness, but if one extends timed automata with the pos-
sibility to sample from exponential distributions [5,10,28], there appears to be
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a natural bridge from CTMC to TA. This kind of stochastic semantics of timed
automata has recently gained considerable popularity by the statistical model
checking approach to TA analysis [14,13].

Still there is a disturbing difference, and this difference is the original moti-
vation [12] of the work presented in this paper. The obvious translation of an
exponentially distributed delay into a clock expiration sampled from the very
same exponential probability distribution fails in the presence of concurrency.
This is because the translation is not fully compatible with the natural inter-
leaving concurrency semantics for TA respectively CTMC. This is illustrated by
the following example, which in the middle displays two small CTMC, which are
supposed to run independently and concurrently.

q

u v

r

x:=Exp(1),
y:=Exp(2)

ax = 0 b y = 0

by = 0 a x = 0

1 2

q′

u′ v′

r′

x:=Exp(1),
y:=Exp(2)

y:=Exp(2) x:=Exp(1)

ax = 0 b y = 0

by = 0 a x = 0

On the left and right we see two stochastic automata (a variation of timed
automata formally defined in Section 3). They have clocks x and y which are
initialized by sampling from exponential distributions, and then each run down
to 0. The first one reaching 0 triggers a transition and the other clock keeps
on running unless resampled, which happens on the right, but not on the left.
The left model is obtained by first translating the respective CTMC, and then
applying the natural TA interleaving semantics, while the right model is ob-
tained by first applying the equally natural CTMC interleaving semantics prior
to translation.

The two models have subtly different semantics in terms of their underlying
dense probabilistic timed transition systems. This can superficially be linked
to the memoryless property of exponential distributions, yet there is no formal
basis for proving equivalence. Our paper closes this gap, which has been open for
at least 15 years, by introducing a natural continuous-space distribution-based
bisimulation. Our result is embedded in several further intriguing application
contexts and algorithmic achievements for this novel bisimulation.

The theory of bisimulations is a well-established and elegant framework to
describe equivalence between processes based on their behaviour. In the stan-
dard semantics of probabilistic systems [38,44], when a probabilistic step from
a state to a distribution is taken, the random choice is resolved and we instead
continue from one of the successor states. Recently, there has been considerable
interest in instead regarding probabilistic systems as deterministic transform-
ers of probability distributions [36,1,20], where the choice is not resolved and
we continue from the distribution over successors. Thus, instead of the current
state the transition changes the current distribution over the states. Although
the distribution semantics is very natural in many contexts [29], it has been only
partially reflected in the study of bisimulations [29,19,24,23].
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Our definition arises as an unusual, but very simple instantiation of the stan-
dard coalgebraic framework for bisimulations [42]. (No knowledge of coalgebra
is required from the reader though.) Despite its simplicity, the resulting notion
is surprisingly fruitful, not only because it indeed solves the longstanding corre-
spondence problem between CTMC and TA with stochastic semantics.

Firstly, it is more adequate than other equivalences when applied to systems
with distribution semantics, including large-population models where different
parts of the population act differently [39]. Indeed, as argued in [26], some equiv-
alent states are not identified in the standard probabilistic bisimulations and too
many are identified in the recent distribution based bisimulations [19,24]. Our
approach allows for a bisimulation identifying precisely the desired states [26].

Secondly, our bisimulation over distributions induces an equivalence on states,
and this relation equates behaviourally indistinguishable states which in many
settings are unnecessarily distinguished by standard bisimulations. We shall dis-
cuss this phenomenon in the context of several applications. Nevertheless, the
key idea to work with distributions instead of single states also bears disadvan-
tages. The main difficulty is that even for finite systems the space of distributions
is uncountable, thus bisimulation is difficult to compute. However, we show that
it admits a concise representation using methods of linear algebra and we provide
an algorithm for computing it. Further, in order to cover e.g. continuous-time
systems, we need to handle both uncountably many states (that store the sam-
pled time) and labels (real time durations). Fortunately, there is an elegant way
to do so using the standard coalgebra framework. Moreover, it can easily be
further generalized, e.g. adding rewards to the generic definition is a trivial task.
Our contribution is the following:

– We give a natural definition of bisimulation from the distribution perspective
for systems with generally uncountable spaces of states and labels.

– We argue by means of several applications that the definition can be consid-
ered more useful than the classical notions of probabilistic bisimulation.

– We provide an algorithm to compute this distributional bisimulation on finite
non-deterministic probabilistic systems, and present a decision algorithm for
uncountable continuous-time systems induced by the stochastic automata
mentioned above.

A full version of this paper is available [31].

2 Probabilistic Bisimulation on Distributions

A (potentially uncountable) set S is a measurable space if it is equipped with a σ-
algebra, denoted by Σ(S). The elements of Σ(S) are called measurable sets. For
a measurable space S, let D(S) denote the set of probability measures (or prob-
ability distributions) over S. The following definition is similar to the treatment
of [51].

Definition 1. A non-deterministic labelled Markov process (NLMP) is a tuple
P = (S , L, {τa | a ∈ L}) where S is a measurable space of states, L is a measurable
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space of labels, and τa : S → Σ(D(S )) assigns to each state s a measurable set of
probability measures τa(s) available in s under a.(1)

When in a state s ∈ S , NLMP reads a label a ∈ L and non-deterministically
chooses a successor distribution μ ∈ D(S ) that is in the set of convex combina-
tions(2) over τa(s), denoted by s

a−→μ. If there is no such distribution, the pro-
cess halts. Otherwise, it moves into a successor state according to μ. Considering
convex combinations is necessary as it gives more power than pure resolution of
non-determinism [43].

Example 1. If all sets are finite, we obtain probabilistic automata (PA) defined
[43] as a triple (S , L,−→) where −→ ⊆ S ×L×D(S ) is a probabilistic transition
relation with (s, a, μ) ∈ −→ if μ ∈ τa(s).

Example 2. In the continuous setting, consider a random number generator that
also remembers the previous number. We set L = [0, 1], S = [0, 1] × [0, 1] and
τx(〈new, last〉) = {μx} for x = new and ∅ otherwise, where μx is the uniform
distribution on [0, 1]× {x}. If we start with a uniform distribution over S, the
measure of successors under any x ∈ L is 0. Thus in order to get any information
of the system we have to consider successors under sets of labels, e.g. intervals.

For a measurable set A ⊆ L of labels, we write s
A−→μ if s

a−→μ for some a ∈
A, and denote by SA := {s | ∃μ : s

A−→μ} the set of states having some outgoing
label from A. Further, we can lift this to probability distributions by setting
μ

A−→ ν if μ(SA) > 0 and ν = 1
μ(SA)

∫
s∈SA

νs μ(d s) for some measurable function

assigning to each state s ∈ SA a measure νs such that s
A−→ νs. Intuitively, in μ we

restrict to states that do not halt under A and consider all possible combinations
of their transitions; we scale up by 1

μ(SA) to obtain a distribution again.

Example 3. In the previous example, let υ be the uniform distribution. Due to
the independence of the random generator on previous values, we get υ

[0,1]−→ υ.

Similarly, υ
[0.1,0.2]−−−−−→ υ[0.1,0.2] where υ[0.1,0.2] is uniform on [0, 1] in the first com-

ponent and uniform on [0.1, 0.2] in the second component, with no correlation.

Using this notation, a non-deterministic and probabilistic system such as
NLMP can be regarded as a non-probabilistic, thus solely non-deterministic, la-
belled transition system over the uncountable space of probability distributions.
The natural bisimulation from this distribution perspective is as follows.

Definition 2. Let (S , L, {τa | a ∈ L}) be a NLMP and R ⊆ D(S ) × D(S ) be a
symmetric relation. We say that R is a (strong) probabilistic bisimulation if for
each μRν and measurable A ⊆ L

(1) We further require that for each s ∈ S we have {(a, μ)|μ ∈ τa(s)} ∈ Σ(L)⊗Σ(D(S))
and for each A ∈ Σ(L) and Y ∈ Σ(D(S)) we have {s ∈ S | ∃a ∈ A.τa(s)∩Y �= ∅} ∈
Σ(S). Here Σ(D(S)) is the Giry σ-algebra [27] over D(X).

(2) A distribution μ ∈ D(S) is a convex combination of a set M ∈ Σ(D(S)) of distribu-
tions if there is a measure ν on D(S) such that ν(M) = 1 and μ =

∫
μ′∈D(S)

μ′ν(dμ′).
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1. μ(SA) = ν(SA), and
2. for each μ

A−→μ′ there is a ν
A−→ ν′ such that μ′ Rν′.

We set μ ∼ ν if there is a probabilistic bisimulation R such that μRν.

Example 4. Considering Example 2, states {x}× [0, 1] form a class of ∼ for each
x ∈ [0, 1] as the old value does not affect the behaviour. More precisely, μ ∼ ν
iff marginals of their first component are the same.

Naturalness. Our definition of bisimulation is not created ad-hoc as it often
appears for relational definitions, but is actually an instantiation of the standard
bisimulation for a particular coalgebra. Although this aspect is not necessary for
understanding the paper, it is another argument for naturalness of our defini-
tion. For reader’s convenience, we present a short introduction to coalgebras and
the formal definitions in [31]. Here we only provide an intuitive explanation by
example.

Non-deterministic labelled transition systems are essentially given by the tran-
sition function S → P(S )L; given a state s ∈ S and a label a ∈ L, we can
obtain the set of the successors {s′ ∈ S | s a−→s′}. The transition function corre-
sponds to a coalgebra, which induces a bisimulation coinciding with the classical
one of Park and Milner [40]. Similarly, PA are given by the transition function
S → P(D(S ))L; instead of successors there are distributions over successors.
Again, the corresponding coalgebraic bisimulation coincides with the classical
ones of Larsen and Skou [38] and Segala and Lynch [44].

In contrast, our definition can be obtained by considering states S ′ to be
distributions in D(S) over the original state space and defining the transition
function to be S ′ → ([0, 1] × P(S ′))Σ(L). The difference to the standard non-
probabilistic case is twofold: firstly, we consider all measurable sets of labels,
i.e. all elements of Σ(L); secondly, for each label set we consider the mass, i.e.
element of [0, 1], of the current state distribution that does not deadlock, i.e. can
perform some of the labels. These two aspects form the crux of our approach
and distinguish it from other approaches.

3 Applications

We now argue by some concrete application domains that the distribution view
on bisimulation yields a fruitful notion.

Memoryless vs. Memoryfull Continuous Time. First, we reconsider the
motivating discussion from Section 1 revolving around the difference between
continuous time represented by real-valued clocks, respectively memoryless
stochastic time. For this we introduce a simple model of stochastic automata [10].

Definition 3. A stochastic automaton (SA) is a tuple S = (Q, C,A,→, κ, F )
where Q is a set of locations, C is a set of clocks, A is a set of actions, → ⊆
Q×A× 2C ×Q is a set of edges, κ : Q → 2C is a clock setting function, and F
assigns to each clock its distribution over R≥0.
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Avoiding technical details, S has the following NLMP semantics PS with state
space S = Q×RC, assuming it is initialized in some location q0: When a location
q is entered, for each clock c ∈ κ(q) a positive value is chosen randomly according
to the distribution F (c) and stored in the state space. Intuitively, the automaton
idles in location q with all clock values decreasing at the same speed until some
edge (q, a,X, q′) becomes enabled, i.e. all clocks from X have value ≤ 0. After
this idling time t, the action a is taken and the automaton enters the next
location q′. If an edge is enabled on entering a location, it is taken immediately,
i.e. t = 0. If more than one edge become enabled simultaneously, one of them is
chosen non-deterministically. Its formal definition is given in [31]. We now are
in the position to harvest Definition 2, to arrive at the novel bisimulation for
stochastic automata.

Definition 4. We say that locations q1, q2 of an SA S are probabilistic bisim-
ilar, denoted q1 ∼ q2, if μq1 ∼ μq2 in PS where μq denotes a distribution over
the state space of PS given by the location being q, every c 	∈ κ(q) being 0, and
every c ∈ κ(q) being independently set to a random value according to F (c).

This bisimulation identifies q and q′ from Section 1 unlike any previous bisim-
ulation on SA [10]. In Section 4 we discuss how to compute this bisimulation,
despite being continuous-space. Recall that the model initialized by q is obtained
by first translating two simple CTMC, and then applying the natural interleav-
ing semantics, while the model, of q′ is obtained by first applying the equally
natural CTMC interleaving semantics prior to translation. The bisimilarity of
these two models generalizes to the whole universe of CTMC and SA:

Theorem 1. Let SA(C) denote the stochastic automaton corresponding to a
CTMC C. For any CTMC C1, C2, we have

SA(C1) ‖SA SA(C1) ∼ SA(C1 ‖CT C1).

Here, ‖CT and ‖SA denotes the interleaving parallel composition of SA [11] (echo-
ing TA parallel composition) and CTMC [33,30] (Kronecker sum of their matrix
representations), respectively.

Bisimulation for Partial-Observation MDP (POMDP). A POMDP is a
quadruple M = (S ,A, δ,O) where (as in an MDP) S is a set of states, A is
a set of actions, and δ : S × A → D(S ) is a transition function. Furthermore,
O ⊆ 2S partitions the state space. The choice of actions is resolved by a policy
yielding a Markov chain. Unlike in an MDP, such choice is not based on the
knowledge of the current state, only on knowing that the current state belongs
into an observation o ∈ O. POMDPs have a wide range of applications in robotic
control, automated planning, dialogue systems, medical diagnosis, and many
other areas [45].

In the analysis of POMDP, the distributions over states, called beliefs, arise
naturally and bisimulations over beliefs have already been considered [7,34].
However, to the best of our knowledge, no algorithms for computing belief bisim-
ilation for POMDP exist. We fill this gap by our algorithm for computing dis-
tribution bisimulation for PA in Section 4. Indeed, two beliefs μ, ν in POMDP
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M are belief bisimilar in the spirit of [7] iff μ and ν are distribution bisimilar
in the induced PA DM = (S ,O ×A,−→) where (s, (o, a), μ) ∈−→ if s ∈ o and
δ(s, a) = μ.(3)

Further Applications. Probabilistic automata are especially apt for compo-
sitional modelling of distributed systems. The only information a component in
a distributed system has about the current state of another component stems
from their mutual communication. Therefore, each component can be also viewed
from the outside as a partial-observation system. Thus, also in this context, dis-
tribution bisimulation is a natural concept. While ∼ is not a congruence w.r.t.
standard parallel composition, it is apt for compositional modelling of distributed
systems where only distributed schedulers are considered. For details, see [31,48].

Furthermore we can understand a PA as a description, in the sense of [25,39],
of a representative agent in a large homogeneous population. The distribution
view then naturally represents the ratios of agents being currently in the individ-
ual states and labels given to this large population of PAs correspond to global
control actions [25]. For more details on applications, see [31].

4 Algorithms

In this section, we discuss computational aspects of deciding our bisimulation.
Since ∼ is a relation over distributions over the system’s state space, it is un-
countably infinite even for simple finite systems, which makes it in principle
intricate to decide. Fortunately, the bisimulation relation has a linear structure,
and this allows us to employ methods of linear algebra to work with it effectively.
Moreover, important classes of continuous-space systems can be dealt with, since
their structure can be exploited. We exemplify this on a subset of deterministic
stochastic automata, for which we are able to provide an algorithm to decide
bisimilarity.

Finite Systems – Greatest Fixpoints. Let us fix a PA (S , L,−→). We apply
the standard approach by starting with D(S ) × D(S ) and pruning the relation
until we reach the fixpoint ∼. In order to represent ∼ using linear algebra, we
identify a distribution μ with a vector (μ(s1), . . . , μ(s|S |)) ∈ R|S |.

Although the space of distributions is uncountable, we construct an implicit
representation of ∼ by a system of equations written as columns in a matrix E.

Definition 5. A matrix E with |S | rows is a bisimulation matrix if for some
bisimulation R, for any distributions μ, ν

μRν iff (μ− ν)E = 0.

For a bisimulation matrix E, an equivalence class of μ is then the set (μ + {ρ |
ρE = 0}) ∩D(S ), the set of distributions that are equal modulo E.

Example 5. The bisimulation matrix E below encodes that several conditions
must hold for two distributions μ, ν to be bisimilar. Among others, if we multiply

(3) Note that [7] also considers rewards that can be easily added to∼ and our algorithm.
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μ − ν with e.g. the second column, we must get 0. This translates to (μ(v) −
ν(v)) · 1 = 0, i.e. μ(v) = ν(v). Hence for bisimilar distributions, the measure
of v has to be the same. This proves that u 	∼ v (here we identify states and
their Dirac distributions). Similarly, we can prove that t ∼ 1

2 t
′ + 1

2 t
′′. Indeed,

if we multiply the corresponding difference vector (0, 0, 1,− 1
2 ,−

1
2 , 0, 0) with any

column of the matrix, we obtain 0.

s t

u

v

a
½
a

½

b

c s′
t′

t′′

a

½

½

a

a

s :
s′ :
t :
t′ :
t′′ :
u :
v :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 0 0 0
1 0 0 ½ ½
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the unit matrix is always a bisimulation matrix, not relating any-
thing with anything but itself. For which bisimulations do there exist bisimula-
tion matrices? We say a relation R over distributions is convex if μRν and μ′Rν′

imply
(
pμ + (1− p)μ′

)
R
(
pν + (1− p)ν′

)
for any p ∈ [0, 1].

Lemma 1. Every convex bisimulation has a corresponding bisimulation matrix.

Since ∼ is convex (see [31]), there is a bisimulation matrix corresponding to
∼. It is a least restrictive bisimulation matrix E (note that all bisimulation
matrices with the least possible dimension have identical solution space), we
call it minimal bisimulation matrix. We show that the necessary and sufficient
condition for E to be a bisimulation matrix is stability with respect to transitions.

Definition 6. For a |S | × |S | matrix P , we say that a matrix E with |S | rows
is P -stable if for every ρ ∈ R|S |,

ρE = 0 =⇒ ρPE = 0 (1)

We first briefly explain the stability in a simpler setting.

Action-Deterministic Systems. Let us consider PA where in each state, there is
at most one transition. For each a ∈ L, we let Pa = (pij) denote the transition
matrix such that for all i, j, if there is (unique) transition si

a−→μ we set pij to
μ(sj), otherwise to 0. Then μ evolves under a into μPa. Denote 1 = (1, . . . , 1)�.

Proposition 1. In an action-deterministic PA, E containing 1 is a bisimula-
tion matrix iff it is Pa-stable for all a ∈ L.

To get a minimal bisimulation matrix E, we start with a single vector 1 which
stands for an equation saying that the overall probability mass in bisimilar dis-
tributions is the same. Then we repetitively multiply all vectors we have by all
the matrices Pa and add each resulting vector to the collection if it is linearly
independent of the current collection, until there are no changes. In Example 5,
the second column of E is obtained as Pc1, the fourth one as Pa(Pc1) and so on.

The set of all columns of E is thus given by the described iteration

{Pa | a ∈ L}∗1
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modulo linear dependency. Since Pa have |S | rows, the fixpoint is reached within
|S | iterations yielding 1 ≤ d ≤ |S | equations. Each class then forms an (|S |− d)-
dimensional affine subspace intersected with the set of probability distributions
D(S ). This is also the principle idea behind the algorithm of [50] and [19].

Non-Deterministic Systems. In general, for transitions under A, we have to con-
sider cAi non-deterministic choices in each si among all the outgoing transitions

under some a ∈ A. We use variables wj
i denoting the probability that j-th tran-

sition, say (si, a
j
i , μ

j
i ), is taken by the scheduler/player(4) in si. We sum up the

choices into a “non-deterministic” transition matrix PW
A with parameters W

whose ith row equals
∑cAi

j=1 wj
iμ

j
i . It describes where the probability mass moves

from si under A depending on the collection W of the probabilities the player
gives each choice. By WA we denote the set of all such W .

A simple generalization of the approach above would be to consider {PW
A |

A ⊆ L,W ∈ WA}∗1. However, firstly, the set of these matrices is uncountable
whenever there are at least two transitions to choose from. Secondly, not all PW

A

may be used as the following example shows.

Example 6. In each bisimulation class in the following example, the probabilities
of s1 + s2, s3, and s4 are constant, as can also be seen from the bisimulation
matrix E, similarly to Example 5. Further, E can be obtained as (1 Pc1 Pb1).
Observe that E is PW

{a}-stable for W that maximizes the probability of going

into the “class” s3 (both s1 and s2 go to s3, i.e. w1
1 = w1

2 = 1); similarly for the
“class” s4.

s1

s2

s3

s4

a

a

a

a

b

c
PW
{a} =

⎛⎜⎜⎝
0 0 w1

1 w2
2

0 0 w1
2 w2

2

0 0 0 0
0 0 0 0

⎞⎟⎟⎠ E =

⎛⎜⎜⎝
1 0 0
1 0 0
1 0 1
1 1 0

⎞⎟⎟⎠

However, for W with w1
1 	= w1

2 , e.g. s1 goes to s3 and s2 goes with equal

probability to s3 and s4 (w1
1 = 1, w1

2 = w2
2 = 1

2 ), we obtain from PW
{a}E a new

independent vector (0, 0.5, 0, 0)� enforcing a partition finer than ∼. This does
not mean that Spoiler wins the game when choosing such mixed W in some μ,
it only means that Duplicator needs to choose a different W in a bisimilar ν in

order to have μPW
A ∼ νPW

A for the successors.

A fundamental observation is that we get the correct bisimulation when
Spoiler is restricted to finitely many “extremal” choices and Duplicator is re-
stricted for such extremal W to respond only with the very same W . (∗)

To this end, consider MW
A = PW

A E where E is the current matrix with each of
e columns representing an equation. Intuitively, the ith row of MW

A describes how

(4) We use the standard notion of Spoiler-Duplicator bisimulation game (see e.g. [42])
where in {μ0, μ1} Spoiler chooses i ∈ {0, 1}, A ⊆ L, and μi

A−→μ′
i, Duplicator has to

reply with μ1−i
A−→μ′

1−i such that μi(SA) = μi−1(SA), and the game continues in
{μ′

0, μ
′
1}. Spoiler wins iff at some point Duplicator cannot reply.
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much of si is moved to various classes when a step is taken. Denote the linear forms
in MW

A over W by mij . Since the players can randomize and mix choices which
transition to take, the set of vectors {(mi1(w

1
i , . . . , w

ci
i ), . . . ,mib(w

1
i , . . . , w

ci
i )) |

w1
i , . . . , w

ci
i ≥ 0,

∑ci
j=1 wj

i = 1} forms a convex polytope denoted by Ci. Each

vector in Ci is thus the ith row of the matrix MW
A where some concrete weights

wj
i are “plugged in”. This way Ci describes all the possible choices in si and their

effect on where the probability mass is moved.
Denote vertices (extremal points) of a convex polytope P by E(P ). Then E(Ci)

correspond to pure (non-randomizing) choices that are “extremal” w.r.t. E. Note
that now if sj ∼ sk then Cj = Ck, or equivalently E(Cj) = E(Ck). Indeed, for
every choice in sj there needs to be a matching choice in sk and vice versa.
However, since we consider bisimulation between generally non-Dirac distribu-
tions, we need to combine these extremal choices. For an arbitrary distribution

μ ∈ D(S ), we say that a tuple c ∈
∏|S |

i=1 E(Ci) is extremal in μ if μ ·c� is a vertex

of the polytope {μ · c′� | c′ ∈
∏|S |

i=1 Ci}. Note that each extremal c corresponds
to particular pure choices, denoted by W (c). Unfortunately, for choices W (c) of
Spoiler extremal in some distribution, Duplicator may in another distribution
need to make different choices. Indeed, in Example 6 the tuple corresponding to
W is extremal in the Dirac distribution of state s1. Therefore, we define E(C) to
be the set of tuples c extremal in the uniform distribution. Interestingly, tuples
extremal in the uniform distribution are (1) extremal in all distributions and
(2) reflect all extremal choices, i.e. for every c extremal in some μ, there is a
c′ extremal in the uniform distribution such that c′ is also extremal in μ and
μ · c = μ · c′. As a result, the fundamental property (∗) is guaranteed.

Proposition 2. Let E be a matrix containing 1. It is a bisimulation matrix iff

it is P
W (c)
A -stable for all A ⊆ L and c ∈ E(C).

Input : Probabilistic automaton (S , L,−→)
Output : A minimal bisimulation matrix E

foreach A ⊆ L do
compute PW

A // non-deterministic transition matrix
E ← (1)
repeat

foreach A ⊆ L do
MW

A ← PW
A E // polytope of all choices

compute E(C) from MW
A // vertices, i.e. extremal choices

foreach c ∈ E(C) do

M
W (c)
A ← MW

A with values W (c) plugged in

Enew ← columns of M
W (c)
A linearly independent of columns of E

E ← (E Enew)

until E does not change

Algorithm 1: Bisimulation on probabilistic automata

Theorem 2. Algorithm 1 computes a minimal bisimulation matrix.
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The running time is exponential. We leave the question whether linear pro-
gramming or other methods [32] can yield E in polynomial time open. The
algorithm can easily be turned into one computing other bisimulation notions
from the literature, for which there were no algorithms so far, see Section 5.

Continuous-Time Systems - Least Fixpoints. Turning our attention to
continuous systems, we finally sketch an algorithm for deciding bisimulation ∼
over a subclass of stochastic automata, this constitutes the first algorithm to
compute a bisimulation on the uncountably large semantical object.

We need to adopt two restrictions. First, we consider only deterministic SA,
where the probability that two edges become enabled at the same time is zero
(when initiated in any location). Second, to simplify the exposition, we restrict all
distributions occurring to exponential distributions. Notably, even for this class,
our bisimulation is strictly coarser than the one induced by standard bisimula-
tions [33,30,6] for continuous-time Markov chains. At the end of the section we
discuss possibilities for extending the class of supported distributions. Both the
restrictions can be effectively checked on SA.

Theorem 3. Let S = (Q, C,A,→, κ, F ) be a deterministic SA over exponential
distributions. There is an algorithm to decide in time polynomial in |S| and
exponential in |C| whether q1 ∼ q2 for any locations q1, q2.

The rest of the section deals with the proof. We fix S = (Q, C,A,→, κ, F ) and
q1, q2 ∈ Q. First, we straightforwardly abstract the NLMP semantics PS over
state space S = Q× RC by a NLMP P̂ over state space Ŝ = Q× (R≥0 ∪ {−})C
where all negative values of clocks are expressed by −. Let ξ denote the obvious
mapping of distributions D(S) onto D(Ŝ ). Then ξ preserves bisimulation since
two states s1, s2 that differ only in negative values satisfy ξ(τa(s1)) = ξ(τa(s2))
for all a ∈ L.

Lemma 2. For any distributions μ, ν on S we have μ ∼ ν iff ξ(μ) ∼ ξ(ν).

Second, similarly to an embedded Markov chain of a CTMC, we further ab-
stract the NLMP P̂ by a finite deterministic PA D̄ = (S̄,A,−→) such that each
state of D̄ is a distribution over the uncountable state space Ŝ .

– The set S̄ is the set of states reachable via the transitions relation defined be-
low from the distributions μq1 , μq2 corresponding to q1, q2 (see Definition 4).

– Let us fix a state μ ∈ S̄ (note that μ ∈ D(Ŝ )) and an action a ∈ A
such that in the NLMP P̂ an a-transition occurs with positive probabil-
ity, i.e. μ

Aa−→ ν for some ν and for Aa = {a} × R≥0. Thanks to restrict-

ing to deterministic SA, P̂ is also deterministic and such a distribution ν
is uniquely defined. We set (μ, a,M) ∈ −→ where M is the discrete dis-
tribution that assigns probability pq,f to state νq,f for each q ∈ Q and

f : C → {−,+} where pq,f = ν(Ŝq,f ), νq,f is the conditional distribu-

tion νq(X) := ν(X ∩ Ŝq,f )/ν(Ŝq,f ) for any measurable X ⊆ Ŝ , and Ŝq,f =

{(q′, v) ∈ Ŝ | q′ = q, v(c) ≥ 0 iff f(c) = + for each c ∈ C} the set of states
with location q and where the sign of clock values matches f .
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For exponential distributions all the reachable states ν ∈ S̄ correspond to some
location q where the subset X ⊆ C is newly sampled, hence we obtain:

Lemma 3. For a deterministic SA over exponential distributions, |S̄| ≤ |Q| ·
2|C|.

Instead of a greatest fixpoint computation as employed for the discrete algo-
rithm, we take a complementary approach and prove or disprove bisimilarity by
a least fixpoint procedure. We start with the initial pair of distributions (states
in D̄) which generates further requirements that we impose on the relation and
try to satisfy them. We work with a tableau, a rooted tree where each node is
either an inner node with a pair of discrete probability distributions over states
of D̄ as a label, a repeated node with a label that already appears somewhere
between the node and the root, or a failure node denoted by �, and the children
of each inner node are obtained by one rule from {Step,Lin}. A tableau not
containing � is successful.

Step. For a node μ ∼ ν where μ and ν have compatible timing, we add for
each label a ∈ L one child node μa ∼ νa where μa and νa are the unique
distributions such that μ

a−→μa and ν
a−→ νa. Otherwise, we add one failure

node. We say that μ and ν have compatible timing if for all actions a ∈ A
we have that Ta[μ] is equivalent to Ta[ν]. Here Ta[ρ] is a measure over R≥0

such that Ta[ρ](I) := ρ(Ŝ{a}×I), i.e. the measure of states moving after time
in I with action a.

Lin. For a node μ ∼ ν linearly dependent on the set of remaining nodes in the
tableau, we add one child (repeat) node μ ∼ ν. Here, we understand each
node μ ∼ ν as a vector μ− ν in the |SS |-dimensional vector space.

Note that compatibility of timing is easy to check. Furthermore, the set of rules
is correct and complete w.r.t. bisimulation in P̂.

Lemma 4. There is a successful tableau from μ ∼ ν iff μ ∼ ν in P̂. Moreover,
the set of nodes of a successful tableau is a subset of a bisimulation.

We get Theorem 3 since q1 ∼ q2 iff ξ(μq1) ∼ ξ(μq2) in P̂ and since, thanks to
Lin:

Lemma 5. There is a successful tableau from μ ∼ ν iff there is a finite successful
tableau from μ ∼ ν of size polynomial in |S̄|.

Example 7. Let us demonstrate the rules by a simple example. Consider the
following stochastic automaton S on the left.

q u v

x := Exp(1/2)
y := Exp(1/2) x := Exp(1) x := Exp(1)

x = 0

a
a

y = 0
x = 0

a

x = 0

a μq μu μv
a

0.5

0.5 a a

Thanks to the exponential distributions, D̄ on the right has also only three
states where μq = q ⊗ Exp(1/2) ⊗ Exp(1/2) is the product of two exponential
distributions with rate 1/2, μu = u ⊗ Exp(1), and μv = v ⊗ Exp(1). Note that
for both clocks x and y, the probability of getting to zero first is 0.5.
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1 · μu ∼ 1 · μv
Step

1 · μu ∼ 1 · μv

1 · μq + 0 · μu ∼ 1 · μv
1
2 · μq +

1
2 · μu ∼ 1 · μv

1
4 · μq +

3
4 · μu ∼ 1 · μv

· · ·

Step

Step

Step

The finite tableau on the left is successful since it ends in a repeated node, thus it
proves u ∼ v. The infinite tableau on the right is also successful and proves q ∼ v.
When using only the rule Step, it is necessarily infinite as no node ever repeats.
The rule Lin provides the means to truncate such infinite sequences. Observe
that the third node in the tableau on the right above is linearly dependent on
its ancestors.

Remark 1. Our approach can be turned into a complete proof system for bisim-
ulation on models with expolynomial distributions (5). For them, the states of
the discrete transition system D̄ can be expressed symbolically. In fact, we con-
jecture that the resulting semi-algorithm can be twisted to a decision algorithm
for this expressive class of models. This is however out of the scope of this paper.

5 Related Work and Discussion

For an overview of coalgebraic work on probabilistic bisimulations we refer
to a survey [46]. A considerable effort has been spent to extend this work to
continuous-space systems: the solution of [15] (unfortunately not applicable to
R), the construction of [21] (described by [42] as “ingenious and intricate”), so-
phisticated measurable selection techniques in [18], and further approaches of
[17] or [51]. In contrast to this standard setting where relations between states
and their successor distributions must be handled, our work uses directly rela-
tions on distributions which simplifies the setting. The coalgebraic approach has
also been applied to trace semantics of uncountable systems [35]. The topic is
still very lively, e.g. in the recent [41] a different coalgebraic description of the
classical probabilistic bisimulation is given.

Recently, distribution-based bisimulations have been studied. In [19], a bisim-
ulation is defined in the context of language equivalence of Rabin’s deterministic
probabilistic automata and also an algorithm to compute the bisimulation on
them. However, only finite systems with no non-determinism are considered.
The most related to our notion are the very recent independently developed
[24] and [48]. However, none of them is applicable in the continuous setting and
for neither of the two any algorithm has previously been given. Nevertheless,
since they are close to our definition, our algorithm with only small changes can
actually compute them. Although the bisimulation of [24] in a rather complex
way extends [19] to the non-deterministic case reusing their notions, it can be
equivalently rephrased as our Definition 2 only considering singleton sets A ⊆ L.

(5) With density that is positive on an interval [�, u) for � ∈ N0, u ∈ N ∪ {∞} given
piecewise by expressions of the form

∑I
i=0

∑J
j=0 aijx

ie−λijx for aij , λij ∈ R∪{∞}.
This class contains many important distributions such as exponential, or uniform,
and enables efficient approximation of others.
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Therefore, it is sufficient to only consider matrices PW
A for singletons A in our

algorithm. Apart from being a weak relation, the bisimulation of [48] differs in
the definition of μ

A−→ν: instead of restricting to the states of the support that
can perform some action of A, it considers those states that can perform exactly
actions of A. Here each ith row of each transition matrix PW

A needs to be set to
zero if the set of labels from si is different from A.

There are also bisimulation relations over distributions defined over finite
[9,29] or uncountable [8] state spaces. They, however, coincide with the clas-
sical [38] on Dirac distributions and are only directly lifted to non-Dirac dis-
tributions. Thus they fail to address the motivating correspondence problem
from Section 1. Moreover, no algorithms were given. Further, weak bisimula-
tions [23,22,16] (coarser than usual state based analogues) applied to models
without internal transitions also coincide with lifting [29] of the classical bisim-
ulation [38] while our bisimulation is coarser.

There are other bisimulations that identify more states than the classical [38]
such as [47] and [4] designed to match a specific logic. Another approach to obtain
coarser equivalences on probabilistic automata is via testing scenarios [49].

6 Conclusion

We have introduced a general and natural notion of a distribution-based prob-
abilistic bisimulation, have shown its applications in different settings and have
provide algorithms to compute it for finite and some classes of infinite systems.
As to future work, the precise complexity of the finite case is certainly of interest.
Further, the tableaux decision method opens the arena for investigating wider
classes of continuous-time systems where the new bisimulation is decidable.

Acknowledgement. We would like to thank Pedro D’Argenio, Filippo Bonchi,
Daniel Gebler, and Matteo Mio for valuable feedback and discussions.
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Abstract. For the accurate analysis of computerized systems, powerful
quantitative formalisms have been designed, together with efficient veri-
fication algorithms. However, verification has mostly remained boolean—
either a property is true, or it is false. We believe that this is too crude
in a context where quantitative information and constraints are crucial:
correctness should be quantified!

In a recent line of works, several authors have proposed quantitative
semantics for temporal logics, using e.g. discounting modalities (which
give less importance to distant events). In the present paper, we define
and study a quantitative semantics of LTL with averaging modalities,
either on the long run or within an until modality. This, in a way, relaxes
the classical Boolean semantics of LTL, and provides a measure of certain
properties of a model. We prove that computing and even approximating
the value of a formula in this logic is undecidable.

1 Introduction

Formal verification of computerized systems is an important issue that aims at
preventing bugs in the developed computerized systems. The model-checking
approach to verification consists in automatically checking that the model of
a system satisfies a correctness property. The standard approach is therefore
a yes/no (that is, boolean) approach: either the system satisfies the specified
property, or the system does not satisfy the property. Model-checking has been
widely developed and spread over the last 35 years and is a real success story.

In many applications, quantitative information is crucial; quantities can al-
ready appear at the functional level of the system (such as timing constraints
between events, or bounds on various quantities like the energy consumption, ...),
and many quantitative models like timed automata [4] and their weighted exten-
sion [5,7] have therefore been proposed and studied. But quantities can even have
more impact on the quality of the system: how good is a system w.r.t. a property?
In that case the standard boolean approach might appear as too crude: among
those systems that are incorrect (in a boolean sense), some might still be better
than others. In order to take this into account, the model-checking approach to
verification has to be lifted to a more quantitative perspective [18]. This would
allow to quantify the quality of systems, and to investigate their tolerance to
slight perturbations.
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There are three classical approaches for turning standard model checking to
a quantitative perspective. A first approach, building on automata-based tech-
niques to model checking, consists in defining quantitative semantics for finite
state automata. This uses weighted automata [21,16], with different possible se-
mantics. Quantitative decision problems for this setting are addressed in [13,15].
A second approach consists in defining distances between models, or between
models and specifications, that can provide an accurateness measure of the model
w.r.t. the specification. This approach has been developed e.g. in [12], and then
extended into the model measuring problem [19]. A third approach is to define
quantitative specification languages. For probabilistic systems, this approach is
rather standard, and quantitative logics like CSL have been defined and used for
model-checking [6]. More recently, this approach has been developed for quanti-
tative but non-stochastic systems. We give more details on those approaches in
the “related work” paragraph below.

Example 1 (Jobshop scheduling). Consider a finite set of machines, on which
we want to schedule finitely many jobs with possibly dependencies between
jobs. Standard analysis asks for the existence of a scheduler that satisfies some
scheduling policy, or for optimal such schedulers. A more quality-oriented ap-
proach could consist in evaluating the average load along a schedule, or the least
machine usage, or the average idle time of a given machine. Those cannot be
expressed as a standard boolean model-checking question. (

Example 2 (Mobile-phone server). Consider a server that should acknowledge
any request by some grant (representing the range of frequency—the bigger the
range, the larger the grant). Then the quality of such a server could be expressed
as the average over all requests of the range that is allocated in response. This
cannot be expressed as a standard boolean model-checking question. (

In this paper, we propose quantitative measures of correctness based on the
linear-time temporal logic LTL. More precisely, we propose a natural extension
of LTL, called avgLTL, with two natural averaging modalities: a new average-until
operator ψ1 Ũψ2 that computes the average value of ψ1 along the path until ψ2

has a high value, and where the semantics of standard modalities are extended us-
ing a min-max approach; and a long-run average operator G̃ψ, which computes
the limit of the values of ψ in the long run along the path. Developing the two
examples above, we will show that this logic can express interesting properties.

We focus on the model-checking problem, which corresponds to computing
the value of a run (or a Kripke structure) w.r.t. a given property, and on the
corresponding decision (comparison with a threshold) and approximation prob-
lems. We show that all variants (i.e., all kinds of thresholds, and both when
the model is a single path and when it is a Kripke structure) of model-checking
and approximation problems are undecidable. Such a robust undecidability is
rather surprising (at least to us), given the positive results of [2] for a dis-
counted semantics for LTL, of [22] for an extension of LTL with mean-payoff con-
straints. Despite the undecidability result for frequency-LTL (a boolean extension
of LTL with frequency-constrained “until” modality) and for LTL with average
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assertions over weighted Kripke structures [8,10], we had hope that some variants
of our problem would be decidable.

However we believe these undecidability results are interesting in several re-
spects. (i) First, up to now (see related work below), quantitative specification
languages based on LTL have always involved discounting factors, which allows
to only consider a bounded horizon; this helps obtaining decidability results.
In several papers though, averaging in LTL is mentioned, but left as open re-
search directions. (ii) Also, we prove robust undecidability results, in the sense
that undecidability is proven both for model-checking over a path and model-
checking a Kripke structure, and for all thresholds; note that many cases require
a specific proof. (iii) Finally, our proof techniques are non-trivial and may be
interesting in other contexts; we were not able to get a direct encoding of two-
counter machines for proving the undecidability of the model-checking problem
over Kripke structures, and had to use a diagonal argument; this is due to con-
vergence phenomena that arise in the context of quantitative model-checking,
and which have mostly been omitted so far in the rest of the literature.

Related Work. Several recent papers have proposed quantitative-verification
frameworks based on temporal logic. The authors of [14] were the first to suggest
giving temporal logics a quantitative semantics: they extend CTL with various
new modalities involving a discount on the future (the later the event, the smaller
the impact on the value of the formula). In that framework, model-checking is
proven decidable.

As regards linear-time temporal logics, a first attempt to define a quantitative
semantics has been proposed in [17]. However, no modality is really quantitative,
only the models are quantitative, yielding finitely non-boolean values. Still, the
authors suggest discounting and long-run averaging as possible extensions of
their work. Another approach is tackled in [1], where functions f are added to
the syntax of LTL, with the value of f(ψ1, . . . , ψk) on a path π being the result
of applying f to the values of subformulas ψ1, . . . , ψk on π. As explained in [1],
this quantitative language is not that expressive: each formula only takes finitely
many values. It follows that the verification problems are decidable.

Frequency-LTL , an extension of LTL with “frequency-until”, has been studied
in [9], and even though it has a boolean semantics, the frequency modality gives
a quantitative taste to the logic: φ1 U

cφ2 holds true along a path whenever there
is a position along that path at which φ2 holds, and the frequency of φ1 along
the prefix is at least c. This paper shows the undecidability of the satisfiability
problem. We discuss this approach in more details in Section 8, since it shares
some techniques with ours.

Finally the recent work [2] is the closest to ours. It studies LTL extended with a
discounted until modality: roughly, the values of the subformulas are multiplied
by a discount factor, which decreases and tends to zero with the distance to
the evaluation point. This way, the further the witness, the lower the value.
An automata-based algorithm is given to decide the threshold problem. Due to
discounting, whether the value of a formula is larger than some threshold on a
path can be checked on a bounded prefix of the path. On the other hand, adding
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local average (i.e., the average of finitely many subformulas) yields undecidability
(for the existence of a path with value 1/2). We will discuss with more details
this paper in Section 8.

2 Average-LTL

Let P be a finite set of atomic propositions. A quantitative Kripke structure
over P is a 4-tuple K = 〈V, v0, E, 
〉 where V is a finite set of vertices, v0 ∈
V is the initial vertex, E ⊆ V × V is a set of transitions (which we assume
total, meaning that for each v ∈ V , there exists v′ ∈ V s.t. (v, v′) ∈ E) and

 : V → ([0, 1] ∩ Q)P is a labelling function, associating with each state the
value of each atomic proposition in that state. The Kripke structure K is said
qualitative whenever for every v ∈ V and p ∈ P , (
(v))(p) ∈ {0, 1}. A run or path
in a Kripke structure K from v ∈ V is a finite or infinite sequence π = (vi)i∈I
(where I is a (bounded or unbounded) interval of N containing 0) s.t. v0 = v
and (vi−1, vi) ∈ E for all relevant i ∈ I \ {0}. The size |π| of π is the cardinality
of I. In the sequel, we will be interested in the sequence 
(π) = (
(vi))i∈I , and
we will often identify a run with the sequence in (([0, 1]∩Q)P)I it defines. Given
a run π = (vi)i∈I and an integer j, we write π≥j for the run (vi+j)i≥0,i+j∈I .

We now introduce the logic average-LTL (avgLTL for short) and its interpre-
tation over infinite runs. The syntax of avgLTL over P is given by:

ϕ ::= p | ¬p | ϕ∨ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | Gϕ | ϕ Ũϕ | G̃ϕ.

where p ∈ P . Notice that negation is only allowed on atomic propositions.
We write LTL for the fragment where Ũ and G̃ are not allowed.

Let π = (vi)i∈N be an infinite run, and ϕ be an avgLTL formula. The valuation
�π, ϕ� is then given as follows:

�π, p� = (
(v0))(p) �π,¬p� = 1− (
(v0))(p)

�π, ψ1 ∨ψ2� = max{�π, ψ1�, �π, ψ2�} �π,Xψ� = �π≥1, ψ�
�π, ψ1 ∧ψ2� = min{�π, ψ1�, �π, ψ2�}

�π,Gψ� = infi∈N�π≥i, ψ�
�π, ψ1 Uψ2� = supi∈N min

{�π≥i, ψ2�,min0≤j<i(�π≥j , ψ1�)}
�π, G̃ψ� = lim inf i→∞

(∑j<i
j=0�π≥j , ψ�)/i

�π, ψ1 Ũψ2� = sup
(
{�π, ψ2�} ∪ {min

{�π≥i, ψ2�, (∑j<i
j=0 �π≥j , ψ1�)/i} | i > 0

})
We recover the boolean semantics for the standard operators when all atomic

propositions have either value 0 (false) or value 1 (true). Note that in that case we
might abusively consider that vi ∈ 2P , recording the set of atomic propositions
with value 1 at each position. The first five rules are standard and natural in a
quantitative setting. The semantics of the U - andG -modalities are also natural:
they extends the standard equivalences ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧X (ψ1 Uψ2)), and
Gψ ≡ ψ ∧XGψ to a quantitative setting. The last two modalities are specific
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to our setting: formula ψ1 Ũψ2 computes the average of formula ψ1 for the i first
steps, and then compares the value with that of ψ2 at the (i + 1)-st step. The
best choice of i (if it exists) is then selected, and gives the value to the formula.

Formula G̃ψ computes the average of ψ in the long-run.

We come back to our two illustrative examples given in the introduction, to
show how our logic can be used to express natural properties.

Example 3 (Jobshop scheduling). We come back to Example 1, assuming a set
of n machines. Let load be an atomic proposition having value k/n at state s if
k machines are in use in that state. Notice that we could equivalently use the
local averaging operator ⊕ of [2] in order to have load defined as the average
of the atomic propositions indicating which machines are in use. Then formula
ϕ1 = load Ũ stop evaluated on a schedule computes the average machine use
along that schedule, if stop is a boolean atomic proposition which holds true
when all jobs are finished. A schedule assigning value 1 to ϕ1 could be seen as
an optimal schedule, where no computation power is lost. A schedule assigning
a small value to formula ϕ1 is a schedule with a large loss of computation power.

On the other hand formula ϕ2 = loadU stop will evaluate to the smallest
instantaneous machine use along a schedule. Note that syntactically it is a stan-
dard until, but it evaluates differently in our quantitative framework. (

Example 4 (Mobile phone server). The quality of the server of Example 2 can be
expressed as the average over all requests of the frequency allocated in response.
We can write such a property as ϕ3 = G̃ (¬req ∨ no grantU grant), where req
and no grant are boolean atomic propositions with the obvious meaning, and
grant is an atomic proposition with value in [0, 1] representing the quality of the
allocated range of frequencies (the closer to 1, the better). Larger values of ϕ3

then indicate better frequency allocation algorithms. (

We also evaluate formulas of avgLTL over Kripke structures. If v is a state of
the Kripke structure K and ϕ ∈ avgLTL, then we define: �(K, v), ϕ� = sup

{�π,

ϕ� | π is an infinite run of K from v
}
. We simply write �K, ϕ� when v = v0 is

the initial vertex of K. Notice that considering the supremum here corresponds
to the existential semantics of boolean LTL, where the aim is to find a path
satisfying the formula.

Example 5. We develop a small toy example to illustrate how simple formulas
can be evaluated in the (qualitative) Kripke structure depicted on Fig. 1.

Consider the avgLTL formulas a Ũ b and c Ũ b. For the first formula we have
�a · b · cω, a Ũ b� = 1 (the supremum being reached at the second position along

the run), and therefore �K, a Ũ b� = 1.

Now, for the formula c Ũ b and the same run as above, we have �a · b · cω,

c Ũ b� = 0: indeed, the right-hand-side formula b has value zero everywhere
except at position 1, but the average of c on the previous positions is zero.
For the run a · (b · c)ω, considering all positions (but position 1) where b is

non-zero, we get �a · (b · c)ω, c Ũ b� = sup {n/(2n + 1) | n ∈ N>0} = 1/2. Note
that the value 1/2 is not reached by any prefix. Now consider the run π′k =
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a b c

b c

Fig. 1. A Kripke structure K

a · b · ck · (b · c)ω, for some positive integer k. Then we have �π′k, c Ũ b� =
sup {(k + n)/(k + 2n + 2) | n ∈ N}. When k ≥ 3, the supremum is k/(k + 2),
which is reached for n = 0 (i.e., at the second occurrence of b). From this we get

that �K, c Ũ b� = 1. However no run witnesses that value. (

3 The Problems We Consider

In this paper, we consider the following two problems:

Existence Problem: given a Kripke structure K, an avgLTL formula ϕ, and a
threshold �( c (with �( ∈ {<,≤,=,≥, >} and c ∈ [0, 1]∩Q), is there a path π
in K such that �π, ϕ� �( c?

Value Problem: given a Kripke structure K, an avgLTL formula ϕ, and a
threshold �( c (with �( ∈ {<,≤,=,≥, >} and c ∈ [0, 1]∩Q), does �K, ϕ� �( c?

Note that both problems are different since, as illustrated in Example 5, it can
be the case that �K, ϕ� = 1 even though no path of K assigns value 1 to ϕ.

We also consider their approximation variants, defined as follows:

Approximate Existence Problem: given a Kripke structure K, an avgLTL
formula ϕ, a value c ∈ [0, 1] ∩Q and ε > 0, is there a path π in K such that
c− ε < �π, ϕ� < c + ε?

Approximate Value Problem: given a Kripke structure K, an avgLTL for-
mula ϕ, a value c ∈ [0, 1] ∩Q and ε > 0, does c− ε < �K, ϕ� < c + ε?

4 Model Checking avgLTL Is Undecidable

In the sequel, we prove that avgLTL model-checking is robustly undecidable,
in the sense that all the problems above are undecidable, for all threshold con-
ditions considered. We would like to emphasize that different kinds of threshold
give rise to different problems, and could have led to different decidability results.
For instance, given a Kripke structure K and an avgLTL formula ϕ, �K, ϕ� > 1/2
iff there exists an infinite run π in K such that �π, ϕ� > 1/2. On the other
hand, �K, ϕ� = 1/2 iff there exists a sequence of infinite runs (πn)n∈N such that
�πn, ϕ� ≤ 1/2 for every n, and limn→∞�πn, ϕ� = 1/2. These remarks advocate
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for a clear and exhaustive study of the different problems with all the different
thresholds.

Additionally, we believe that our original proof techniques (in particular the
diagonal argument used to circumvent convergence phenomena for the model-
checking of Kripke structures) are of particular interest and could be used in
related settings. We discuss further these issues and related works in Section 8

We can now state the main results of the paper.

Theorem 6. The existence problem is undecidable, for every threshold of the
form �( 1/2, with �( ∈ {<,≤,=,≥, >}.
Theorem 7. The value problem is undecidable, for every threshold of the form
�( 1/2, with �( ∈ {<,≤,=,≥, >}.

We present these results as two distinct theorems, since proofs require very
different techniques, even though a similar encoding is used.

Remark 8. Our proofs only involve qualitative Kripke structures. We present the
results for c = 1/2, but our proofs could be adapted to handle any other rational
value in (0, 1) (e.g. by inserting fake actions in the encoding).

Now, if the approximate variants were decidable, then taking e.g. c = 1 and
ε = 1/2, we could decide e.g. whether a formula has value larger than 1/2,
contradicting the previous theorems. Hence:

Theorem 9. The approximate existence and value problems are undecidable.

The rest of the paper presents the main ideas of the proof. Due to lack of
space, the full proofs could not be included here, but can be found in the research
report [11] associated to this paper.

5 Proof of Theorem 6

We only give an explanation of the undecidability for the existence problem with
threshold ≥ 1/2 (the other types of thresholds require a twist in the construction,
but no fundamental new argument).

The proof relies on an encoding of the halting problem for deterministic two-
counter machines, which is well-known to be undecidable. A two-counter ma-
chineM is a finite-state machine, equiped with two kinds of transitions: update-
transitions move from one state to another one while incrementing or decrement-
ing one of the counters; test -transitions keep the counters unchanged, but may
lead to two different states depending on the positiveness of one of the counters.
The machine has a special state, called the halting state, from which no transi-
tions is possible. We assume w.l.o.g. that all the other states have exactly one
outgoing transition.

A configuration of M is given by the current state and the values of both
counters. A run ofM is a sequence of consecutive configurations which might not
properly update the counters. It is said valid whenever the counters are properly
updated along the run. There is a unique maximal valid run in M from the
initial configuration: it is either halting or infinite.
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The idea of our reduction is to build a Kripke structure which generates the
encodings of all (including invalid) runs ofM: it has to take care of the discrete
structure ofM, but does not check that counters are properly updated along the
run. Correct update of counter values will be checked using an avgLTL formula.

Description of the Encoding. We first explain how we encode the runs ofM.
We only give a simplified idea of the encoding. We write Q for the set of states
of M.

For p ≥ 2, we write Bp for the set {0, 1, . . . , p − 1}. For b ∈ Bp, we let
b+i = b + i mod p. An element of Bp is abusively called a bit . These bits
are used to distinguish between consecutive configurations. For the rest of this
section, taking p = 2 would be sufficient, but the proof of Theorem 7 requires
higher values for p. We encode configurations ofM using the following finite set
of atomic propositions: Pp =

(
Q ∪ {a0, a1}

)
× Bp ∪ {#}. The symbol # will be

a marker for halting computations.
Exactly one atomic proposition from Pp will have value one at each position

along the encoding (the other propositions having value zero). Given a bit b,
a configuration γ = (q, n0, n1) of M is encoded as the word encb(γ) = (q, b) ·
(a0, b)

n0 · (a1, b)
n1 . For a halting configuration, we set encb(γ) = (qhalt, b).

The bit b ∈ Bp is incremented (modulo p) from one configuration to the next
one. Let ρ = γ0 ·γ1 · · · be a (not necessary valid) run inM. The p-encoding of ρ
is then given by:

p-enc(ρ) =

{
encb0(γ0) · encb1(γ1) · encb2(γ2) · · · if ρ is infinite
encb0(γ0) · encb1(γ1) · · · encbn−1(γn−1)#

ω if ρ has length n

with bj = j mod p for every j. We write enc(ρ) if p is clear from the context.
We can easily construct a Kripke structure that generates the encodings of

all possible (valid or invalid) runs of M. For index p, we write KpM for the
corresponding Kripke structure. We now turn to the avgLTL formula, whose role
is to check proper updates of the counters.

Definition of the Formulas. We will define a formula consec
p
M, which will

be used to check that each single consecution in the run properly updates the
counters. Then we define formula

halt
p
M = F qhalt ∧G consec

p
M.

It is rather clear that if we can build such a formula consec
p
M, then the above

formula will check that the unique maximal valid run of M is halting. Unfortu-
nately, things are not that easy, and formula Gconsec

p
M will only be able to

check the validity of finite runs
We now focus on defining consecpM, using the average-until modality. We only

give an intuition (the full definition requires the complete encoding). Consider a
portion P of the p-encoding of a run ρ, which corresponds to a single-step of the
computation of M where instruction q keeps both counter values unchanged:

. . . (q, b) · (a0, b)
n0 · (a1, b)

n1 · (q′, b+1) · (a0, b
+1)n

′
0 · (a1, b

+1)n
′
1(q′′, b+2) . . .
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The formula has to enforce n′0 = n0 and n′1 = n1. This is the case if, and only if,
for every α ∈ {1 + n0 + n1, 1 + n0 + n′1, 1 + n′0 + n1, 1 + n′0 + n′1},

α

1 + n0 + n1 + 1 + n′0 + n′1
=

1

2
.

The denominator is the length of the portion from (q, b) to the position just before
(q′′, b+2), whereas the various values for α are the number of positions where some
distinguished atomic proposition holds along this portion. For instance, 1+n′0+
n1 is the number of positions where formula ψ = (q′, b+1)∨(a0, b

+1)∨(a1, b)

holds along P . Computing the above quotient will be done using an Ũ -formula:
�P, ψ Ũ (q′′, b+2)� precisely equals α

1+n0+n1+1+n′
0+n

′
1

Using this idea, we are able to construct a formula consecpM (as a conjunction

of several Ũ -formulas) whose value is 1/2 along a single step of the computation
if, and only if, this step is valid (that is, it correctly updates the counters).

Correctness of the Reduction. Even though formula consec
p
M properly

checks the validity of a single step of the computation, it might be the case that
�p-enc(ρ),G consec

p
M� = 1/2, even though the whole computation is not valid:

this is due to the definition of the semantics of Ũ as the supremum over all
positions of the average; in particular, a single error in the computation can
be hidden in the rest of the run. Consider for instance the counter machine
in Fig. 2. The unique initial and maximal valid run of M halts. However, if
the first transition increments counter a0 twice, and all further transitions are
properly taken, then the resulting (invalid) run will assign value 1/2 to formula
G consec

p
M.

q0 q1

q2

q3

q4

qhalt
a0++

a0
>
0 a

0−−

a0
>
0a

0+
+

a0=0

a0=0

Fig. 2. There is an invalid infinite run ρ such that �p-enc(ρ),G consec
p
M� = 1/2

Still, we are able to prove the following classification of runs of M in terms
of the value of haltpM. It proves the fact that formula consec

p
M properly checks

the validity of a single step of the computation, provided the Ũ -formulas cannot
benefit from the supremum semantics. This is the case when the run in the Kripke
structure ends with #ω, which corresponds to finite runs of M.

Classification 1. Fix p ≥ 2. Let ρ be a maximal run in M.

– if ρ is infinite, then �p-enc(ρ), haltpM� = 0;
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– if ρ is finite and valid, then �p-enc(ρ), haltpM� = 1/2;

– if ρ is finite and invalid, then �p-enc(ρ), haltpM� < 1/2.

Corollary 10. Fix p ≥ 2. The following five statements are equivalent:

1. M halts;

2. the unique initial and maximal valid run ρM of M is such that �p-enc(ρM),
halt

p
M� = 1/2;

3. there exists an initial maximal run ρ in M such that �p-enc(ρ), haltpM� =
1/2;

4. there exists an initial maximal path π in KpM such that �π, haltpM� = 1/2;

5. there exists an initial maximal path π in KpM such that �π, haltpM� ≥ 1/2.

This corollary allows to conclude the undecidability proof of Theorem 6.

6 Proof of Theorem 7

As already mentioned, whether �K, ϕ� > 1/2 (and dually, �K, ϕ� ≤ 1/2) is equiv-
alent to the existence of a path whose value is strictly more than 1/2, which we
just proved undecidable.

We now turn to the more interesting cases of = (the result for ≥ and < directly
follows, as we explain at the end of this proof). We were not able to write a direct
proof as previously, because we could not distinguish between counter machines
that have a halting computation (whose encoding has value 1/2 against formula
halt

p
M above) and counter machines that have sequences of computations whose

encodings have values converging to 1/2.

q0 q1

q2

q3 qhalt

q4 q5

a1++ a1=0 a0=0

a1>0 a0++ a0>0

a0−−

a1++

Fig. 3. A non-halting two-counter machine for which �Kp
M, haltpM� = 1/2

Example 11. We consider the deterministic two-counter machine M of Fig. 3,
having q0 as its initial state. The unique initial and maximal valid run of M is
infinite (it loops in q1 � q2). A single error can make the transition from q1 to q3
available, from which valid consecutions lead to qhalt. The weight of this error
can be arbitrarily small, as it can occur with an arbitrarily large value of a0. It
is not difficult to check that �KpM, haltpM� = 1/2 (for any p ≥ 2). (
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Analysis of a Non-Halting Two-Counter Machine. We consider a deter-
ministic accept/reject two-counter machine M: such machines have two halt-
ing states, now named qaccept and qreject. Their computations may still be infi-
nite. We consider formula consec

p
M again, and define accept

p
M = F qaccept∧

G consec
p
M.

We first analyse the impact of the first error along a finite run ρ ofM onto the
value ofG consec

p
M, and we are able to show the following surprising but crucial

lemma (remember the example of Fig. 2) whose proof requires long technical
developments. The condition imposed on p is a sufficient condition for “detecting”
invalid consecutions along finite runs. The computation leading to this value is
explained in the long version [11] of this work.

Lemma 12. Fix p ≥ 927. Let ρ be a finite invalid run of M. Assume ρiρi+1 is
the first invalid consecution along ρ, and write stepi for the portion of p-enc(ρ)
corresponding to that consecution. Pick n ≥ 30 such that �stepi, consecpM� ≤
1/2− 1/n. Then �p-enc(ρ),G consec

p
M� ≤ 1/2− 1/n.

This allows to prove the next fundamental result:

Lemma 13. Fix p ≥ 927, and assume that �KpM, acceptpM� = 1/2, but that
no run ρ of M has �p-enc(ρ), acceptpM� = 1/2. Then the unique initial and
maximal valid run of M is infinite.

We sketch the proof of this lemma, since it contains an interesting argument.

Sketch of proof. Let ρ be the unique initial and maximal valid run of KpM.
Let (ρn)n∈N be a sequence of initial and maximal runs such that �p-enc(ρn),
accept

p
M� > 1/2−1/n (such a sequence exists by hypothesis, but runs ρn might

be invalid). Pick n ≥ 30, and let ρninρnin+1 be the first invalid consecution of ρn.
Write stepin for the portion of p-enc(ρn) corresponding to that consecution. Ap-
plying Lemma 12, we get that �stepin , consecpM� > 1/2 − 1/n. Since ρninρnin+1

is an invalid consecution, we also have that �stepin , consecpM� < 1/2. It follows
that 1/(|stepin | − 1) < 1/n, which implies that |stepin | > n. Now, the prefix of ρ
of size in coincides with that of ρn, since ρninρnin+1 is the first invalid consecution.
We conclude that ρ contains configurations of arbitrarily large size, so that the
sum of the two counters is unbounded along ρ. Hence ρ is infinite. �

A Diagonal Argument. Any deterministic Turing machine can be simulated
by a deterministic two-counter machine [20]. In particular, given a deterministic
Turing machine B, we can build a deterministic two-counter machine M(B)
whose computation mimics the run of B on input B. Then M(B) accepts
(resp. rejects, does not halt) if, and only if, B accepts (resp. rejects, does not
halt on) input B.

We fix p ≥ 927, and define the following function H, which takes as input a
deterministic Turing machine B:

H(B) =

{
accept if �KpM(B), accept

p
M(B)� = 1/2

reject otherwise
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Proposition 14. The function H is not computable.

Proof. Towards a contradiction, assume H is computable. Let TH be a determin-
istic Turing machine that computes H. Notice in particular that TH halts on all
its inputs; we assume that it ends in its state qTaccept when H accepts the input,

and in qTreject when H returns reject.
We now define the following deterministic Turing machine C, which takes as

input a deterministic Turing machine B:

C(B) : Simulate TH on B;
If the simulation ends in qTaccept then goto qCreject, otherwise goto qCaccept.

The Turing machine C terminates on all its inputs, since so does TH; also, C is
deterministic, and we can therefore run C on input C itself.

Assume C accepts input C. This means that H(C) rejects, which means that
�KpM(C), accept

p
M(C)� < 1/2. This means that M(C) does not accept (by a

straightforward extension of Corollary 10 to accept/reject two-counter machines),
and therefore C does not accept C, contradicting our hypothesis.

Hence C rejects input C, so that �KpM(C), accept
p
M(C)� = 1/2. However, since

C does not accept C, the unique initial and maximal valid run of MC is either
infinite or rejecting. Applying Lemma 13 to MC , we get that it is actually infi-
nite. This means that the simulation of TH on input C does not terminate. This
contradicts the fact that TH terminates on every input. Therefore H is not com-
putable. �

Theorem 7 is a direct consequence of this lemma for threshold = 1/2. Now,
using Classification 1, for a deterministic two-counter machineM, it holds that
�KpM, acceptpM� = 1/2 iff �KpM, acceptpM� ≥ 1/2. Hence the above proof applies
to threshold ≥ 1/2 as well. The case of < 1/2 is the dual of ≥ 1/2: if K is a
Kripke structure and ϕ an avgLTL formula, �K, ϕ� < 1/2 iff it is not the case
that �K, ϕ� ≥ 1/2, which proves the result for threshold < 1/2 as well.

7 Proof of Theorem 9

We now discuss the undecidability of the approximate variants. It relies on the
same encoding as that for the existence problem and threshold > 1/2. For that
threshold, we have a classification of the runs similar to Classification 1, for
formula halt

p,>
M : for every maximal run ρ in M:

– if ρ is infinite, then �p-enc(ρ), haltp,>M � = 0;
– if ρ is finite and valid, then 1/2 < �p-enc(ρ), haltp,>M � < 3/4;
– if ρ is finite and invalid, then �p-enc(ρ), haltp,>M � ≤ 1/2.

We deduce thatM halts iff there exists an initial and maximal valid run π in KpM
with 1/2 < �π, haltp,>M � < 3/4. This shows undecidability of the approximate
existence problem.

Now, we also have in this case the equivalence with 1/2 < �KpM, haltp,>M � <
7/8 (not 3/4 since there might be some convergence phenomenon towards value
3/4), which also shows the undecidability of the approximate value problem.
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8 Discussion on Related Works

In this section, we would like to illustrate the difficulty of lifting temporal-logic
model checking from the qualitative to the quantitative setting. As we saw in this
paper, several new convergence phenomena do appear, which make the problem
complex, but also make the proofs difficult. Our undecidability proofs in this
paper involve difficult techniques to properly handle the convergence phenomena
that appear in the semantics of the logic. This difficulty has led to several wrong
arguments in the related litterature, as we now illustrate.

We first discuss the logic frequency-LTL of [9]. This logic has a boolean seman-
tics, but extends LTL with a frequency-U modality, which gives it a quantitative
taste: formula φ1 U

cφ2 holds true along a path π whenever there is a position n
along π at which φ2 holds, and the number of previous positions where φ1 holds
is larger than or equal to c ·n (hence c is a lower bound on the frequency of φ1 on
the prefix before φ2 holds). Note that it need not be the case that the position n

is the first position where φ2 holds: for instance abbcaaac satisfies formula aU
1
2 c,

but at the first occurrence of c, the frequency of a on the prefix is 1/3, which

is less than 1/2; the correct witness position for aU
1
2 c is the second occurrence

of c, where the frequency of a becomes 4/7. In frequency-LTL, there is no con-
vergence phenomena, but some possibly unbounded search for some witnessing
position. Then evaluating bU

1
2 c on a path π is not equivalent to comparing

formula b Ũ c to value 1/2 on path π: first because of convergence phenomena
(as illustrated in Example 5), and because in our quantitative setting, the value
of the right-hand-side subformula could be less than 1/2.

It is shown in [9] that the validity problem for frequency-LTL is undecidable,
and our reduction shares similarities with that reduction (but we believe that

our reduction is simpler, and the result stronger, since it uses no nested Ũ ).
However the undecidability proof (as written in [9]) has a flaw: it relies on the

claim that “[t]he formula bU
1
2 l∧ b̂U

1
2 l enforces the pattern bmb̂ml...” (the order

of b’s and b̂’s is enforced by another LTL formula). This claim is wrong in general,

since the U
1
2 -formulas might not refer to the same occurrences of l. The proof

can be patched1, and one way is to restrict to paths that end with #ω for
some marker #; in that way a backward argument can be used to check proper
encoding of the execution of the two-counter machine (this is actually what we
do in the proof of Theorem 6).

We now discuss the logic discounted-LTL of [2]. This logic gives a quantitative
semantics to an extension of LTL, with a new discounted-U modality: given a dis-
count function η, the value of formula φ1 Uη φ2 along a path π is the supremum
over all positions n along π of the minimum of the value of φ2 at that position,
discounted by η(n), and of the values of φ1 at every earlier position i, discounted
by η(i). Satisfiability is proven decidable; it is shown undecidable when adding
the local average operator ⊕, which computes the average of two formulas.

1 Personal communication with the authors.
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Those results are then extended to the model-checking problem2. While the
first result extends properly for threshold < c (since the infimum over all paths
is smaller than c if, and only if, there is a path that evaluates to a value smaller
than c; hence convergence phenomena are avoided), it is not valid for Theorem 3
of [2] (which is stated with threshold > c). Also, undecidability of the model-
checking problem with local-average operator (Theorem 6 of [2]) is not correct
since it does not take convergence phenomena into account. A corrected version
of the proof is available in [3]; while it does not use a diagonal argument as we do,
the undecidability proof is not a direct encoding of a two-counter machine, but
requires computing the value of two different formulas in order to encode the
halting problem.

This all shows that extending temporal logics to a quantitative setting is more
than a simple exercise: complex convergence phenomena come into play, which
have to be understood and handled with extreme care. We hope that our work
will provide new insights about these problems, and believe that our techniques
can be useful for handling them.

9 Conclusion and Future Work

We believe that our logic avgLTL is a very relevant logic in many applications.
It provides a way of measuring some properties, such as the average load of the
CPUs in scheduling applications. We proved that the value of a formula can
not be computed—and not even approximated. For the interesting case however
(deciding whether �K, φ� ≥ η), we had to resort to an original diagonal argument
to get around convergence phenomena.

Our negative results certainly echo back the fact, mentioned e.g. in [17], that
averaging does not fit well with classical automata-based approaches for temporal
logics. Indeed, averaging gives rise to new values that are not present in the
original automaton. Discounting LTL instead of averaging has the same difficulty,
but this is compensated by the fact that when discounting, the value of a formula
can be approximated by considering only a finite prefix of a run [2].

We are currently investigating two directions in order to get decidability re-
sults: first by adding discounting on the right-hand-side formula (while keeping
averaging on the left-hand-side); second, by considering the qualitative cases of
avgLTL, namely whether a formula has value 0 or 1. One difficulty here is that
in some cases the witnesses are a family of paths, instead of just a single path.
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Abstract. We study the reachability problem for networks of finite-
state automata communicating over unbounded perfect channels. We
consider communication topologies comprising both ordinary FIFO chan-
nels and bag channels, i.e., channels where messages can be freely re-
ordered. It is well-known that when only FIFO channels are considered,
the reachability problem is decidable if, and only if, there is no undi-
rected cycle in the topology. On the other side, when only bag channels
are allowed, the reachability problem is decidable for any topology by a
simple reduction to Petri nets. In this paper, we study the more complex
case where the topology contains both FIFO and bag channels, and we
provide a complete characterisation of the decidable topologies in this
generalised setting.

1 Introduction

Communicating finite-state automata (CFSA) are a fundamental model of com-
putation where concurrent processes exchange messages over unbounded, reli-
able channels. Depending on the context, messages are delivered in the order
they were sent (FIFO channel), or in any order (bag channel). On the one hand,
FIFO channels can be used, e.g., to model communications through TCP sock-
ets, as TCP preserves the order of messages. It is well-known that the reacha-
bility problem for CFSA with only FIFO channels is undecidable [5,18]. This
problem becomes decidable when the communication topology is required to be
acyclic [18,14]. Many other decidable subclasses and under/over-approximation
techniques have been considered in the literature [3,2,7,6,14,8,4,11,10,1]. On the
other hand, bag channels can be used, e.g., to model asynchronous procedure
calls [19,12,9]. Indeed, libraries supporting asynchronous programming do not
guarantee, in general, that procedures are executed in the order they were asyn-
chronously called. The reachability problem for CFSA with only bag channels
is decidable (without any further restriction), by an immediate reduction to
reachability in Petri nets, which is known to be decidable [16,13,15].

Contributions. While the reachability problem is well-understood for communi-
cation topologies of just FIFO or bag channels, we go one step forward and we
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p q

c (FIFO)

b (bag)

(a) Opposite channels

p q

c0, c1 (bag)

b (bag)

(b) Synchronising c

Fig. 1. Opposite channels

p q
c (FIFO)

b0 (bag)

b1 (bag)

Fig. 2. Undecidable topology

study topologies comprising both FIFO and bag channels. Our main result is
a complete characterisation of decidable topologies of FIFO and bag channels,
and a detailed complexity analysis in the decidable case. As a consequence of
our results, we show that certain non-trivial cycles comprising FIFO and bag
channels can be allowed while preserving decidability.

In addition to being the right model in some contexts, bag channels also
provide a non-trivial over-approximation of FIFO channels. Indeed, it is always
possible to over-approximate the reachability set by turning all channels into bag
channels. Thanks to our characterisation, a much finer analysis may be obtained,
in practice, by selectively over-approximating only some of the FIFO channels.

Preview. Let us illustrate our main techniques with some example. While the
topology in Fig. 1a is undecidable when all channels are FIFO, it becomes de-
cidable when b is bag. Indeed, the FIFO channel c can be “made synchronous”
by forcing receptions to occur right after transmissions. This, in turn, can be
implemented by replacing c with two opposite bag channels c0, c1 implementing
a simple rendezvous protocol. We thus obtain the topology in Fig. 1b, which is
decidable since it contains only bag channels.

A more difficult case is the one in Fig. 3a. As above, reachability is undecidable
if all channels are FIFO, but it becomes decidable when one channel, say b, is
bag. However, the correctness argument is more involved here, since, unlike in the
previous example, channel c cannot be made synchronous. The problem is that
making c synchronous requires rescheduling the actions of the receiver q to occur
earlier. But this is not possible since q might try to read on the other channel
b, which could be empty. The crucial observation is that we can always schedule
all actions of p to occur before all actions of q. Therefore, in this topology, the
order between transmissions and receptions can be relaxed. The only property
that matters is that the string of messages which is received is the same as the
one which is sent. We can thus split the bag channel b into two bag channels b0
and b1 (see Fig. 3b), where q’s potentially blocking receptions on b are replaced
with non-blocking transmissions on b1. The new process r just matches incoming
messages on b0 and b1. In the new topology, c can be made synchronous, and we
proceed as above to obtain the decidable topology in Fig. 3c.

Finally, we also have undecidable topologies which mix in a non-trivial way
FIFO and bag channels. For example, consider the one in Fig. 2, where c is
FIFO and b0 and b1 are bags. This topology is undecidable, even when b0 and
b1 are unary bag channels (i.e., the message alphabet is a singleton). The idea is
to use the two bag channels b0 and b1 to implement a synchronisation protocol
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Fig. 3. Two parallel channels

between processes p and q. This protocol is then used by p to decide which
message is to be received by q from c, thus simulating a channel machine (which
has undecidable reachability).

Outline. The rest of the paper is organised as follows. We start with preliminaries
in Sec. 2. In Sec. 3 we show techniques for synchronising and splitting channels (de-
cidability). In Sec. 4 we explain how unary bag channels can be used to simulate
rendezvous synchronisation (undecidability). In Sec. 5 we present our characteri-
sation of decidable topologies and study the complexity of the decidable instances.
Finally, in Sec. 6 we compare our techniques with the work of Chambart and Sch-
noebelen [8], and in Sec. 7 we end with directions for future work.

2 Preliminaries

A labelled transition system (LTS for short) is a tuple A = 〈S, SI , SF , A,→〉
where S is a set of states with initial states SI ⊆ S and final states SF ⊆ S,
A is a finite set of actions, and → ⊆ S × A × S is a labelled transition relation.
For simplicity, we write s

a−−→ s′ in place of (s, a, s′) ∈ →. An LTS is called
finite when its set of states is finite. A run in A is an alternating sequence
(s0, a1, s1, . . . , an, sn) of states si ∈ S and actions ai ∈ A, with n ≥ 0, such that

si−1
ai−−→ si for all 1 ≤ i ≤ n. The natural number n, which may be zero, is

called the length of the run. An accepting run is a run starting in an initial state
(i.e., with s0 ∈ SI) and ending in a final state (i.e., with sn ∈ SF ). Given two
runs σ = (s0, a1, s1, . . . , am, sm) and τ = (t0, b1, t1, . . . , bn, tn) such that sm = t0,
their join is the run σ · τ = (s0, a1, s1, . . . , am, sm, b1, t1, . . . , bn, tn).

Topologies. We consider systems that are composed of several processes commu-
nicating through the asynchronous exchange of messages. Communications rely
on point-to-point FIFO channels between processes. In our setting, each channel
is equipped with a message alphabet that specifies the set of messages that can
be conveyed over the channel. To simplify the presentation, we assume a special
message, written 1, that is always in the message alphabet. Formally, a commu-
nication topology is a tuple T = 〈P,C,M, src, dst,msg〉, where P is a finite set of
processes, C is a finite set of channels, M is a finite set of messages containing the
special message 1, src : C → P and dst : C → P are mappings assigning to each
channel a source and a destination process, and msg : C → {N ⊆ M | 1 ∈ N}
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is a mapping assigning to each channel its message alphabet. For convenience,
we assume that the sets P , C and M are pairwise disjoint. A channel c ∈ C is
called unary when msg(c) is a singleton, i.e., when msg(c) = {1}.

The following graph-theoretic concepts and notations1 will be used throughout
the paper. Consider a topology T = 〈P,C,M, src, dst,msg〉. For each channel

c ∈ C, we let
c

==⇒ denote the binary relation on P defined by p
c

==⇒ q if p = src(c)

and q = dst(c). The inverse of
c

==⇒ is written
c⇐==. A directed walk in T is an

alternating sequence (p0, c1, p1, . . . , cn, pn) of processes pi ∈ P and channels

ci ∈ C, with n ≥ 0, such that pi−1
ci==⇒ pi for all 1 ≤ i ≤ n. The natural

number n, which may be zero, is called the length of the directed walk. To
improve readability, directed walks will usually be written p0

c1==⇒ p1 · · ·
cn==⇒ pn.

A directed walk is said to be closed when it starts and ends in the same process
(i.e., when p0 = pn). A directed path is a directed walk in which all channels are
pairwise distinct, and all processes—except, possibly, the first and last ones—are
pairwise distinct. The notation p

∗
==⇒ q means that there is a directed walk—or,

equivalently, there is a directed path—from p to q (i.e., with p0 = p and pn = q).
A directed cycle is a closed directed path of non-zero length.

We also need undirected variants of the above notions. For each channel c ∈
C, we let

c
=== denote the binary relation on P defined by p

c
=== q if {p, q} =

{src(c), dst(c)}. Observe that p
c

=== q if, and only if, p
c

==⇒ q or p
c⇐== q. The

notions of undirected walk, undirected path and undirected cycle are defined as
the directed ones, except that

c
==⇒ is replaced by

c
===.

Communicating Processes. Given a topology T = 〈P,C,M, src, dst,msg〉, the
set of possible communication actions for a process p ∈ P , written Ap

com, is the
union of the set {c!m | c ∈ C ∧ src(c) = p ∧ m ∈ msg(c)} of its transmission
actions and of the set {c?m | c ∈ C ∧ dst(c) = p ∧m ∈ msg(c)} of its reception
actions. The set of all communication actions is Acom =

⋃
p∈P Ap

com. Actions not
in Acom are called internal actions.

Definition 2.1. A system of communicating processes is a pair S=〈T , {Ap}p∈P 〉
where T = 〈P, . . .〉 is a topology, and, for each p ∈ P , Ap = 〈Sp, SpI , S

p
F , Ap,→p〉

is a finite labelled transition system such that Ap∩Acom = Ap
com. For convenience,

we assume2 that the sets of actions Ap, with p ∈ P , are pairwise disjoint.

We give the operational semantics of a system of communicating processes
S as a global labelled transition system �S� = 〈X,XI , XF , A,→〉. States of S
are called configurations to prevent confusion with those of Ap. A configuration
of �S� is pair x = (s,w) where s maps each process p to a state in Sp, and
w maps each channel c to a word over its message alphabet msg(c). Formally,
X = (

∏
p∈P Sp) × (

∏
c∈C msg(c)∗). A configuration is initial (resp. final) when

1 In this paper, we use contemporary graph terminology (see, e.g., [20]). For instance,
the term walk is used for “paths” that may repeat channels and/or processes.

2 This assumption is not restrictive as it only concerns internal actions. Indeed, the
sets Ap

com, with p ∈ P , are already pairwise disjoint by definition.
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each process is in its initial state (resp. final state) and all channels are empty.
Formally, XI = (

∏
p∈P SpI ) × {ε} and XF = (

∏
p∈P SpF ) × {ε}, where ε maps

each channel c ∈ C to the empty word ε. The set of actions A of S is given by
A =

⋃
p∈P Ap. Observe that {Ap}p∈P is a partition of A. We define the transition

relation→ of �S� to be the set of all triples (x1, a, x2), where x1 = (s1,w1) and
x2 = (s2,w2) are configurations, such that, for some process p ∈ P , the following
conditions are satisfied:

– sp1
a−−→ sp2 is a transition in Ap, and sq1 = sq2 for all other processes q ∈ P \{p}.

– If a is an internal action, then w1 = w2.
– If a = c!m, then wc

2 = wc
1 ·m and wd

2 = wd
1 for all other channels d ∈ C \ {c}.

– If a = c?m, then wc
1 = m ·wc

2 and wd
2 = wd

1 for all other channels d ∈ C \ {c}.

So, in a transition x1
a−−→ x2, exactly one process p moves (namely, the unique

p ∈ P such that a ∈ Ap), and the others stay put. The channels are updated
according to the action a that is performed by the transition. Given a process
p ∈ P , a move of p is any transition x1

a−−→ x2 such that a ∈ Ap. Following [11],
we define the causal-equivalence relation ∼ over runs as the least congruence,
with respect to join, such that (x1, a, x2, b, x3) ∼ (x1, b, x

′
2, a, x3) whenever a, b

are actions of distinct processes. Informally, two runs are causal-equivalent if
they can be transformed one into the other by iteratively commuting adjacent
moves that (i) are not from the same process and (ii) do not form a “matching
send/receive pair”. It is readily seen that causal-equivalent runs necessarily start
in the same configuration and end in the same configuration.

Statement of the Problem. Given a topology T , the reachability problem for
systems of communicating processes with topology T , denoted by Reach(T ), is
defined as follows:

Input: a system of communicating processes S with topology T ,
Output: whether there exists an accepting run in �S�.
Observe that we require all channels to be empty at the end of an accepting
run. Also note that Reach(T ) is parametrised by a topology T . The main re-
sult of this paper is a characterisation of the topologies T for which Reach(T )
is decidable. Our techniques are based on topological transformations that in-
duce reductions between the associated reachability problems. We let �m de-
note the many-one reducibility relation between decision problems. For example,
Reach(T ) �m Reach(U) when T is obtained from U by removing channels.

When only unary channels are present, the reachability problem is decidable
by an immediate reduction to reachability in Petri nets.

Theorem 2.2 ([16,13,15]). If T is a topology with only unary channels, then
Reach(T ) is decidable.

On the other hand, when the topology contains only non-unary channels the
following characterisation for Reach(T ) is well-known.
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Theorem 2.3 ([18,14]). Given a topology T with no unary channel, Reach(T )
is decidable if, and only if, T has no undirected cycle.

In Sec. 5, we refine the latter condition to account for topologies with both unary
and non-unary channels (see Theorem 5.3). We further generalise it in Sec. 6 to
a more general setting comprising both FIFO and bag channels.

3 Synchronising and Splitting Channels

A useful technique in the analysis of communicating processes is to transform
asynchronous communications into synchronous ones, without compromising
the behaviour of the system. To this end, we use the notion of synchronous
runs from [8,11]. Formally, a run ((s0, w0), a1, (s1, w1), . . . , an, (sn, wn)) is syn-
chronous for a given channel c if wc

0 = wc
n = ε and wc

i = ε ∨ wc
i+1 = ε for

all 0 < i < n. Intuitively, this means that each transmission on c is immedi-
ately followed by its matching reception, i.e., communication over c behaves like
rendezvous synchronisation [17]. It is well-known that in a polyforest topology
(i.e., with no undirected cycle), every run can be reordered to have all channels
synchronous, and reachability can be solved by exploring the resulting finite
transition system [18,14,8,11]. Since we are interested in analysing more com-
plex topologies where not all channels can be simultaneously made synchronous
in general, we need to consider channels individually rather than globally.

Synchronising Essential Channels. Whether a channel can always be made syn-
chronous (by reordering moves in runs) is a semantic condition that depends on
the complex behaviour of the whole system. In fact, this condition is an unde-
cidable problem in general (by an easy reduction from the reachability problem).
Therefore, we are interested in syntactic conditions that are sufficient for a chan-
nel to be made synchronous. One such condition is that of essential channel [8],
which is a structural condition depending only on the topology.

Definition 3.1 ([8]). A channel c is essential if all directed paths from src(c)
to dst(c) contain c. In particular, src(c) 	= dst(c).

Lemma 3.2 ([8]). If c is an essential channel, then every run that starts and
ends with c empty is causal-equivalent to a run that is synchronous for c.

Thus, we can replace asynchronous communications on an essential channel
by synchronous ones. We loosely implement the latter through a topological
transformation that replaces an essential channel c, with source p and destination
q, by one unary channel cm from p to q for each message m ∈ msg(c), as well as
one unary channel cack back from q to p. These unary channels are enough to
simulate synchronous communications over c. Each message m conveyed over c is
placed in the corresponding unary channel cm instead. After each transmission
on cm, the process p waits for an acknowledgement from cack. Conversely, q
notifies p via cack after each reception from cm. While it applies to arbitrary
essential channels, this topological transformation is only useful for non-unary
ones.
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Definition 3.3. Given a topology T = 〈P,C,M, src, dst,msg〉 and a channel
c ∈ C, the synchronisation of c in T is the topology U = 〈P,C′,M, src′, dst′,msg′〉
defined by C′ = (C \ {c}) ∪ {cm | m ∈ msg(c)} ∪ {cack} and

(src′(d), dst′(d),msg′(d)) =

⎧⎪⎨⎪⎩
(src(d), dst(d),msg(d)) if d ∈ C \ {c}
(src(c), dst(c), {1}) if d = cm

(dst(c), src(c), {1}) if d = cack

where cm, for m ∈ msg(c), and cack are new channels that are not in P ∪C ∪M .

Proposition 3.4 (Synchronisation). If c is an essential channel in T , then
Reach(T ) �m Reach(U) where U results from the synchronisation of c in T .

Remark 3.5. An essential channel could, alternatively, be removed by merging its
endpoints (see [8]). Instead, our synchronisation construction replaces an essential
channel by a collection of newunary channels.While either technique could be used
for decidability (see Subsec. 5.2), synchronisation yields simpler proofs and avoids
taking the product of LTSes at the process level, which cirvumvents an immediate
exponential blow-up in our reduction to reachability in Petri nets (see Subsec. 5.3).
Fromapractical viewpoint, the newunary channels are 1-boundedby construction;
analyzers for Petri nets could take advantage of this fact.

Splitting Irreversible Channels. According to Proposition 3.4 above, a topology
containing an essential non-unary channel c can always be simplified by synchro-
nising c. The resulting topology is simpler in the sense that it contains one less
non-unary channel. However, there are situations where a channel is not essential,
and thus it cannot be synchronised in general, but it can be made essential after
a small modification. We have shown one such simple case on Fig. 3a, where the
channel c is not essential but it can be made so by splitting3 the other channel

p
b

==⇒ q into two channels p
b0==⇒ r and q

b1==⇒ r for a new process r, see Fig. 3b.
Here, r is a new process that simply matches messages received from b0 and b1;
receptions on b become transmissions on b1. Clearly, the new system with the
split topology has at least the same runs as the original system. Moreover, in
this case, the converse holds as well, since we can always schedule all actions of p
before any action of q, thus causality between transmissions and receptions can
be relaxed. Formally, the splitting operation is defined as follows.

Definition 3.6. Given a topology T = 〈P,C,M, src, dst,msg〉 and a channel
c ∈ C, the split of c in T is the topology U = 〈P ′, C′,M, src′, dst′,msg′〉 defined
by P ′ = P ∪ {r}, C′ = (C \ {c}) ∪ {c0, c1}, and

(src′(d), dst′(d),msg′(d)) =

⎧⎪⎨⎪⎩
(src(d), dst(d),msg(d)) if d ∈ C \ {c}
(src(c), r,msg(c)) if d = c0

(dst(c), r,msg(c)) if d = c1

where r is a new process and c0, c1 are new channels that are not in P ∪C ∪M .

3 Despite having similar names, this splitting notion and the splitting technique of [8]
have little in common (see Sec. 6).
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To justify splitting, we introduce the notion of causal run. Intuitively, in a
run which is causal for a process p, only those processes that can “transitively”
send messages to p may be scheduled before p.

Definition 3.7. A run (x0, a1, x1, . . . , an, xn) is causal for a given process p if

q
∗

==⇒ p for every process q such that ai ∈ Aq and aj ∈ Ap for some 1 ≤ i < j ≤ n.

Lemma 3.8. Given a process p, every run is causal-equivalent to a run that is
causal for p.

Recall that the idea behind splitting is to relax the causality between trans-
missions and receptions. This does not introduce “spurious” runs provided that
every run can be reordered to have all actions of the receiver after the last action
of the sender. A sufficient condition is given by the notion of irreversible channel.

Definition 3.9. A channel c is reversible if there is a directed path from its
destination dst(c) to its source src(c). A channel is irreversible if it is not re-
versible.

The following proposition states that the reachability problem for a given
topology T can be reduced to the reachability problem for the topology obtained
from T by splitting c. As we will see in Sec. 5, splitting will be the first of a
series of reductions for decidable topologies.

Proposition 3.10 (Split). If c is an irreversible channel in T , then it holds
that Reach(T ) �m Reach(U) where U results from the split of c in T .

4 The Power of Unary Channels

Let u be a process in a topology T , and let U be a topology which is the
same as T except that u is expanded into a strongly-connected sub-topology. In
this section, we show that the behaviour of u in T can be distributed over its
expansion in U . We achieve this by demonstrating how processes in a strongly-
connected sub-topology can simulate global rendezvous synchronisation over a
finite alphabet of shared actions, which allows them to synchronise with each
others and to step-wise simulate the behaviour of u. This technique works even
when distributing behaviour over unary channels only, and it will be used to
show the undecidability part of our characterisation (see Subsec. 5.1).

To formally define how a process is expanded into a sub-topology, it is more
convenient to describe how to fuse a set of channels D. Intuitively, the fusion of
D in a given topology is the topology obtained by merging together, in a single
process, all endpoints of channels in D, by removing D, and by redirecting the
other channels in the natural way.

Definition 4.1. Given a topology T = 〈P,C,M, src, dst,msg〉 and a set of chan-
nels D ⊆ C, the fusion of D in T is the topology U = 〈P ′, C′,M, src′, dst′,msg′〉
defined by P ′ = (P \ {src(c), dst(c) | c ∈ D}) ∪ {u} where u is a new process
that is not in P ∪C ∪M , C′ = C \D, and, for every c ∈ C′, msg′(c) = msg(c),
src′(c) = src(c) if src(c) ∈ P ′ and src′(c) = u otherwise, and similarly for dst′.
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Fig. 4. Synchronisation protocol for a simple directed cycle

This section shows that fusing a strongly-connected sub-topology makes the
reachability problem easier. We first deal with the simple case of directed cycles.
The support of a directed walk/cycle is the set of channels that it visits.

Lemma 4.2. If D is the support of a directed cycle in a topology T then Reach(U)
�m Reach(T ) where U results from the fusion of D in T .

Proof. Consider a directed cycle p0
c1==⇒ p1

c2==⇒ · · · cn==⇒ pn = p0 in T such that
D = {c1, . . . , cn}. This directed cycle is depicted in Fig. 4c. Denote by U the
topology that results from the fusion of D in T , and let u be the process in
U that corresponds to the merging of all endpoints of D. Consider a system of
communicating processes S with topology U . We construct a new system R with
topology T that simulates S by “distributing” the behaviour of the process u
over p1, . . . , pn. All other processes are left unchanged.

As a first step, let us assume that the processes p1, . . . , pn can perform multi-
way rendezvous synchronisation over a finite alphabet of actions Σ. By multi-way,
we mean that each time some process pi performs an action a in Σ, then in fact all
processes p1, . . . , pn perform the action a at the same time. For brevity, we will
omit the “multi-way” qualifier from now on. It is easily shown that rendezvous
synchronisation, even over a binary alphabet, allows p1, . . . , pn to coordinate in
T and simulate the behaviour of u in U . This way, we obtain from S a new
system S ′, with topology T , such that �S� has an accepting run if, and only if,
�S ′� does. Moreover, S ′ does not use any channel in D.

As a second step,we explain how rendezvous synchronisationbetween p1, . . . , pn
over a binary alphabet, say {a, b}, can be achieved through communications on the
channels in D. In our simulation, rendezvous synchronisations are initiated by p0,
and then propagated along the directed cycle p0

c1==⇒ p1
c2==⇒ · · · cn==⇒ pn back to

p0. The latter then checks that the other processes correctly performed the desired
rendezvous action.More precisely, whenever p0 wants to handshake on some action
(a or b), it sends some number of messages on c1 to p1 and waits for an acknowl-
edgement on cn before proceeding to its next move. In themeantime, the processes
p1, . . . , pn−1 do the same, but first receive and then transmit. The number of mes-
sages received by pi+1 from ci+1 is exactly the same as the number of messages sent
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by pi on ci+1. The precise protocol is shown in Fig. 4, where each dashed transitions
in S ′ is replaced inR by the alternative sequence below it (by introducing interme-
diate states). All other transitions are left unchanged. InR, actions a and b are to
be interpreted as internal, non-rendezvous actions. For instance, to simulate the
rendezvous action a, p0 first sends a message on c1, internally performs a, and then
receives a message from cn.

To conclude the proof, we show that �S ′� has an accepting run if, and only
if, �R� does. By construction, each rendezvous synchronisation in �S ′� can be
reproduced, through the above protocol, in �R�. We now argue that the protocol
does not introduce any spurious behaviour. Recall that the channels c1, . . . , cn
are empty at the beginning. So, for each 1 ≤ i ≤ n− 1, the process pi may only
simulate a rendezvous action after p0 has initiated a synchronisation round. Let
us look at the first rendezvous action that is simulated by p0. If this action is a,
then p0 sends one message on c1 and receives one message from cn. This entails
that all the other processes p1, . . . , pn−1 simulate the rendezvous action a. At the
end of this synchronisation round, all the channels c1, . . . , cn are again empty. If
the first rendezvous action that p0 simulates is b, then p0 sends two messages
on c1 and receives n + 1 messages from cn. Again, this entails that p1, . . . , pn−1

simulate, each, the rendezvous action b. Indeed, by contradiction, if pi simulates
a, then it must continue simulating a since there are not enough messages in
ci anymore to simulate b. Therefore, it simply relays messages from ci to ci+1,
and cannot produce on ci+1 the extra message that pi+1 expects to simulate
b. By applying the same arguments to the remaining processes pi+1, . . . , pn−1,
we obtain that pn−1 is not able to produce on cn the n + 1 messages that p0
expects to complete its simulation of b, a contradiction. Again, at the end of this
synchronisation round, all the channels c1, . . . , cn are empty. By repeating this
analysis for each synchronisation round, we obtain that every accepting run of
�R� can be mapped back to an accepting run of �S ′�. ��

We now show that the previous lemma still holds for closed directed walks,
i.e., where processes/channels can be repeated. The proof is by induction on the
cardinality of D. As expected, the induction step follows from Lemma 4.2.

Proposition 4.3 (Fusion). If D is the support of a closed directed walk in a
topology T , then Reach(U) �m Reach(T ) where U results from the fusion of
D in T .

5 Characterisation of Decidable Topologies

We are now ready to state and prove our characterisation of decidable topologies.
The characterisation is expressed in the same vein as Theorem 2.3, and gener-
alises it. We first introduce some additional definitions and notations. Consider
a topology T = 〈P,C,M, src, dst,msg〉, and let D ⊆ C be a subset of channels.
Two processes p and q are synchronizable over D, written p ≈D q, if there exists
a directed path from p to q and a directed path from q to p, both using only
channels in D. Note that ≈D is an equivalence relation on P .
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A jumping circuit is a sequence (p0, c1, q1, p1, . . . , cn, qn, pn) of processes pi, qi ∈
P and channels ci ∈ C, with n ≥ 1, such that c1, . . . , cn are pairwise distinct
non-unary channels, p0 = pn, and pi−1

ci=== qi ≈D pi for all 1 ≤ i ≤ n, where

D = C \ {c1, . . . , cn}. Recall that the binary relation
c

=== is the union of
c

==⇒ and
c⇐==. A jumping cycle is a jumping circuit (p0, c1, q1, p1, . . . , cn, qn, pn) such that

qi 	≈D qj for all 1 ≤ i < j ≤ n. To improve readability, jumping circuits and

jumping cycles will often be written p0
c1=== q1 ≈D p1 · · ·

cn==== qn ≈D pn.

Remark 5.1. Every jumping circuit can be transformed into a jumping cycle.

Remark 5.2. For every jumping cycle p0
c1=== q1 ≈D p1 · · ·

cn==== qn ≈D pn, there
exist n pairwise disjoint subsets D1, . . . , Dn of the set D = C \ {c1, . . . , cn} such
that qi ≈Di pi for all 1 ≤ i ≤ n.

Theorem 5.3. Given a topology T , Reach(T ) is decidable if, and only if, T
has no jumping cycle.

The two directions of the theorem are proved in the two subsections below. To
illustrate our characterisation, let us give some examples of decidable topologies.
Certainly, polyforest topologies are decidable since they contain no undirected
cycle, therefore no jumping cycle. Moreover, decidability is preserved if we add,
for each channel of the polyforest, a unary channel in the opposite direction
(see Lemma 5.4 below). Even further, we still get a decidable topology if each
process is expanded into a sub-topology containing only unary channels. These
operations introduce non-trivial cycles of unary and non-unary channels. Finally,
adding unary channels looping on the same process always preserves decidability,
as well as adding additional unary channels in parallel to already existing ones.

5.1 Undecidability

Consider a topology T containing a jumping cycle ξ=(p0, c1, q1, p1, . . . , cn, qn, pn).

By Remark 5.2, it holds that p0
c1=== q1 ≈D1 p1 · · ·

cn==== qn ≈Dn pn for some pair-
wise disjoint subsets D1, . . . , Dn ofC \{c1, . . . , cn}. We may assume, w.l.o.g., that
each Di is the support of a closed directed walk in T . To prove that Reach(T ) is
undecidable, we show that Reach(U) �m Reach(T ) for some topology U with
an undirected cycle containing only non-unary channels, hence, for which reacha-
bility is undecidable by Theorem 2.3. To do so, we build a sequence of topologies
U0,U1, . . . ,Un by fusing together synchronizable processes, as follows: We define
U0 = T , and, for each 1 ≤ i ≤ n, we let Ui result from the fusion ofDi in Ui−1. Pair-
wise disjointness of D1, . . . , Dn ensures that every channel in Di is still a channel
in Ui−1. It is routinely checked that:

– Di is still the support of a closed directed walk in Ui−1, and

– ξ induces a closed undirected walk u0
c1=== u1 · · ·

cn==== un in Un.

The first item entails, by Proposition 4.3, that Reach(Ui) �m Reach(Ui−1). By
the transitivity of �m, we get that Reach(Un) �m Reach(U0). Since c1, . . . , cn
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are pairwise distinct non-unary channels, we derive, from the second item, that
Un contains an undirected cycle with only non-unary channels. It follows from
Theorem 2.3 that Reach(Un) is undecidable. As U0 = T , we conclude that
Reach(T ) is undecidable.

5.2 Decidability

Starting from a topology T with no jumping cycle, we apply a sequence of
topological transformations that produce a topology U with only unary chan-
nels, and such that Reach(T ) �m Reach(U). Since the latter is decidable by
Theorem 2.2, the former is decidable as well.

Given a topology T and a channel c in T , an acknowledgement channel for c is
a new unary channel, written ←−c , with source dst(c) and destination src(c). The
following lemma says that adding an acknowledgement channel for an essential
non-unary channel preserves the absence of jumping cycle. It immediately entails
Corollary 5.5 below.

Lemma 5.4. Consider a topology T and an essential non-unary channel c therein.
Let U be the topology obtained from T by adding an acknowledgement channel for
c. Then T contains a jumping cycle if U contains a jumping cycle.

Proof (sketch). Assume that T has no jumping cycle, but adding ←−c yields a

topology U with a jumping cycle p0
c1=== q1 ≈D1 p1 · · ·

cn==== qn ≈Dn pn = p0.
Observe that ←−c cannot be one of c1, . . . , cn since it is unary. If ←−c does not
appear in any Di, then T has a jumping cycle. Hence, ←−c appears on a closed
directed walk π that synchronises two processes qi and pi. Since c is essential, it
must appear on π too. We may assume, w.l.o.g., that ←−c appears on the directed
path from pi to qi on π, and that c appears on the directed path from qi to pi. We

get that qi
∗

==⇒ p
c

==⇒ q
∗

==⇒ pi
∗

==⇒ q
←−c
==⇒ p

∗
==⇒ qi. Therefore, qi can synchronise

with p using only channel from Ei = Di\{c,←−c }, and similarly pi can synchronise
with q via Ei. So we can build a jumping cycle in T from the jumping cycle in
U by replacing qi ≈Di pi by qi ≈Ei p

c
==⇒ q ≈Ei pi, a contradiction. ��

Corollary 5.5. Consider a topology T and an essential non-unary channel c
therein. Let U be the topology resulting from the synchronisation of c in T . Then
T contains a jumping cycle if U contains a jumping cycle.

Remark 5.6. The converse of Corollary 5.5 also holds, but it is not required for
the proof of Theorem 5.3.

We say that a topology T is divided if the destination of every irreversible
unary channel is a sink (i.e., is not the source of some channel) and is not the
destination of some non-unary channel. The following two properties of divided
topologies are crucial in the proof of Theorem 5.3.

Lemma 5.7. Consider a topology T and a non-unary channel c therein. If T
is divided, then so is the topology resulting from the synchronisation of c in T .
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Lemma 5.8. If T is a divided topology with no jumping cycle, then every non-
unary channel in T is essential.

We now prove the “if” direction of Theorem 5.3. Assume that T has no jumping
cycle. Let c1, . . . , cn denote the non-unary channels of T . We first build U0 from
T by splitting all unary channels that are irreversible in T . Note that U0 does not
depend on the order inwhich the irreversible unary channels ofT are split. It follows
from Proposition 3.10 and the transitivity of�m thatReach(T ) �m Reach(U0).
By construction, the topology U0 is divided, and it still has no jumping cycle. So,
by Lemma 5.8, every non-unary channel in U0 is essential. Notice that U0 has the
same non-unary channels as T , namely c1, . . . , cn. For each 1 ≤ i ≤ n, let Ui be
the topology resulting from the synchronisation of ci in Ui−1. By induction, it is
immediate toprove that, for every 0 ≤ i ≤ n,Ui hasno jumping cycle, the induction
step holding by Corollary 5.5, that Ui is divided, by Lemma 5.7, that ci+1, . . . , cn
are still essential in Ui, by Lemma 5.8, and thatReach(Ui−1) �m Reach(Ui), by
Proposition3.4. By the transitivity of�m, we get thatReach(T ) �m Reach(Un).
Since Un contains only unary channels, Reach(Un) is decidable by Theorem 2.2.
ThusReach(T ) is decidable.

5.3 Complexity

We consider the reachability problem for systems of communicating processes
whose topology has no jumping cycle. This problem, written ReachNJC, is the
union of the problems Reach(T ) for topologies T with no jumping cycle. Note
that deciding whether a topology has a jumping cycle is a simple graph-theoretic
problem that can be solved in polynomial time. Hence, it can be checked efficiently
whether a given system of communicating processes is an instance of ReachNJC

or not. Here, we show thatReachNJC is equivalent to reachability in Petri nets.
The size of a labelled transition system A = 〈S, SI , SF , A,→〉 is defined as

|A| = |S| + |→|. Similarly, the size of a topology T = 〈P,C,M, src, dst,msg〉
is |T | = |P | + |C| +

∑
c∈C |msg(c)|. Finally, the size of a system of communi-

cating processes S = 〈T , {Ap}p∈P 〉 is |S| = |T | +
∑

p∈P |Ap|. The algorithm
in Subsec. 5.2 transforms a system S over a topology with no jumping cycle,
into a system S ′ with unary channels only. Since unary channels are essentially
counters (over the natural numbers) that may only be incremented and decre-
mented, S ′ can be naturally interpreted as a Petri net. Crucially, we show that
S ′ (and thus the Petri net) has size polynomial in |S|. This is possible since the
synchronisation operation from Sec. 3 avoids taking the product of processes (at
the cost of introducing 1-bounded unary channels/counters).

Theorem 5.9. ReachNJC is equivalent to reachability in Petri nets under
polynomial-time many-one reductions.

6 Discussion

Unary vs. Bag Channels. A bag channel is a channel where messages can be
freely reordered. Therefore, it suffices to count how many messages of each type



294 L. Clemente, F. Herbreteau, and G. Sutre

are in the channel. So, a bag channel over a message alphabet of cardinality n can
be implemented with n unary channels in parallel. A topology of bag and FIFO
channels is a topology (as defined in Sec. 2) where, in addition, each channel has
a flag indicating whether it is ordered (FIFO) or not (bag). Our characterisation
from Sec. 5 immediately generalises to bag channels by modifying the definition
of jumping cycle and requiring that the ci’s be non-unary FIFO channels (instead
of just non-unary).

Unary/Bag vs. Lossy Channels. Another over-approximation incomparable with
bag channels is provided by lossy channels, where messages might be lost at any
moment [2,7]. A complete characterisation of decidable topologies mixing perfect
and lossy channels has been presented in [8]. In order to reduce to basic decid-
able topologies, they consider two reduction rules. The first one is the fusion of
essential channels. This is similar in spirit to our synchronisation (see Propo-
sition 3.4), with the only difference that fusing channels requires to take the
product of the underlying processes, while synchronising channels just replaces
one channel with several 1-bounded unary channels. This allows us to obtain
precise complexity bounds in Subsec. 5.3. The second reduction rule is splitting
a complex topology T into T1 and T2 when all channels between T1 and T2 are
unidirectional and lossy. Despite similar names, this is different to our splitting
technique (see Proposition 3.10), because we split (irreversible) channels, and
not topologies. However, while lossy channels cannot be split, the lossy channels
involved in the splitting of T in the sense of [8] are irreversible in our terminology,
and thus could be split if they were perfect channels. Moreover, if we replace lossy
channels with perfect bag channels, it additionally holds that, if T1, T2 above are
decidable in our characterisation (i.e., no jumping cycles), then the same holds
for T . Since also fusion/synchronisation preserves decidable topologies in both
settings, we have that any decidable topology of perfect and lossy channels is
still a decidable topology by replacing lossy channels with perfect bag channels.

Moreover, some topologies which are undecidable with lossy channels become
decidable with bag channels. For example, the topology with three parallel chan-
nels c, d, e between two processes with c perfect FIFO and d, e lossy FIFO is
undecidable, while if d, e are bag channels it becomes decidable.

Finally, while the topology in Fig. 2 is undecidable when channels b0 and b1
are either both bag channels or both lossy channels, our construction with unary
bag channels is correct even if those are unary and lossy. Indeed, as soon as any
message gets lost due to lossiness, our synchronization protocol gets irremediably
stuck. However, the construction from [8] does not generalise to unary channels
in this case. Thus, we extend their undecidability result to this topology.

7 Conclusions and Future Work

We have presented a complete characterisation of the decidable topologies for
networks of finite-state automata communicating over FIFO and bag channels.
Remarkably, every decidable topology can be solved using two simple techniques
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(synchronising essential channels and splitting irreversible channels), whereas
every topology that cannot be solved with these two techniques is undecidable.

The same characterisation problem is solved in [8] but for networks mixing
perfect and lossy FIFO channels. A direction for future research is to characterise
decidable topologies of lossy/perfect FIFO/bag channels.

Relaxing FIFO channels to the bag type can be applied in other contexts
as well. For example, the work [11] studies topologies of networks of pushdown
automata communicating over FIFO channels, and it is natural to ask what
happens when some channels and/or pushdown stores are bags instead of strings.
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Abstract. Multi-pushdowns communicating via queues are formal mod-
els of multi-threaded programs communicating via channels. They are
turing powerful and much of the work on their verification has focussed
on under-approximation techniques. Any error detected in the under-
approximation implies an error in the system. However the successful
verification of the under-approximation is not as useful if the system
exhibits unverified behaviours. Our aim is to design controllers that
observe/restrict the system so that it stays within the verified under-
approximation. We identify some important properties that a good con-
troller should satisfy. We consider an extensive under-approximation
class, construct a distributed controller with the desired properties and
also establish the decidability of verification problems for this class.

1 Introduction

Most of the critical hardware and software consists of several parallel comput-
ing units/components. Each of these may execute recursive procedures and may
also have several unbounded data-structures to enhance its computing power.
Several of such components may be running on the same processor giving rise to
a multi-threaded system with many unbounded data-structures. Furthermore,
such complex infinite state systems may communicate over a network and be
physically distributed. The high computational power in combination with un-
constrained interactions make the analysis of these systems very hard.

The verification of such systems is undecidable in general. Even the basic
problem of control state reachability (or emptiness checking) is undecidable as
soon a program has two stacks or a self queue. However, these systems are so
important, that several under-approximation techniques have been invented for
their verification. If the under-approximation fails to satisfy a requirement, that
immediately indicates an error in the system. However, if the system is verified
correct under such restrictions, the correctness is compromised if the system
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eventually exhibits behaviours outside the class. Controlling the system to only
exhibit behaviours that have been verified to be correct is therefore crucial to
positively use these under-approximation techniques. Alternately, we may use
these controllers to raise a signal whenever the system behaviour departs from
the verified class. For example, in the cruise control system of a car (or auto-
pilot systems in trains/aircrafts), it will be useful to signal such a departure and
switch from automatic to manual mode.

Our Contributions. We aim at obtaining a uniform controller for a class,
which when run in parallel with the system, controls it so as to exhibit only
those behaviours permitted by the class. Such a controller should possess nice
properties like determinism, non-blocking, system independence etc. In Section 3,
we identify and analyse such desirable features of a controller.

Our next contribution is to propose a very generous under-approximation
class and to construct a controller satisfying all the desired properties. Our class
bounds the number of phases – in a phase only one data-structure can be read
in an unrestricted way though writes to all data-structures are allowed. But our
notion of phases extends sensibly contexts of [14] and phases of [13]. In particular
it permits autonomous computations within a phase instead of the well-queuing
assumption. The latter corresponds to permitting reads from queues in the main
program but not from any of the functions it calls. We permit recursive calls to
be at any depth of recursion when reading from a queue. After such a read,
however, returning from the function causes a phase change.

A concurrent system may be controlled in a global manner or in a distributed
manner. If the concurrent processes are at a single location and communicate
via shared variables, e.g., multi-threaded programs, a global controller is reason-
able. We describe this sequential controller in Section 4. However, when these
multi-threaded processes are physically distributed it is natural to demand a
distributed controller. In Section 5, we illustrate the design of a controllable
under-approximation class by extending our idea of phases to the distributed
setting and constructing a distributed controller with all the desired properties.

Finally, we can prove using the split-width technique [5,6,8] that our generous
under-approximation class can be model-checked against a wide variety of logics.

For lack of space, proofs of correctness and of decidability are omitted from
this extended abstract and can be found in the full version [7].

Related Work: In the study of distributed automata a number of difficult syn-
thesis theorems [9–11,19] have been proved. These theorems in conjunction with
constructions for intersections yield controllers for these classes. Of particular
interest is the theory of finite state machines communicating via queues, called
message-passing automata (MPA). These have been well studied using labeled
partial-orders (or graphs) called MSCs (Message-sequence charts) to represent
behaviours. These systems are turing powerful and techniques restricting channel
usage have been studied to obtain decidability. The most general class of this
kind, called existentially k-bounded MSCs, consists of all behaviours (MSCs)
that have at least one linearization in which the queue lengths are bounded by
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k at every point. A deep result of [9] shows that for each k there is an MPA
which accepts precisely the set of existentially k-bounded MSCs. Thus, if one
uses such behaviours as an under-approximation class then this result implies
the existence of a distributed controller. However, it is known that this controller
cannot be made deterministic.

The bounding technique for verification has been extensively studied in the
case of multi-pushdown systems (MPDS). For the restrictions studied in litera-
ture, bounded-context [18], bounded-phase [13], bounded-scope [16] and ordered
stacks [2, 3], it is quite easy to construct deterministic controllers, though this
question has not been addressed before. The context bounding technique is ex-
tended to pushdown systems communicating via queues under the restriction
that queues may be read only when the stacks are empty (well-queuing) in [14],
and under a dual restriction (on writes instead of reads) in [12]. Controllability is
however not studied there. The k-Phase restriction we consider here is a natural
joint generalization of these contexts (as well as the bounded-phase restriction
for MPDS). In fact, for every bound k, there exist behaviours which are not
captured by [13] and [14], but which are captured by our class with a bound of
3. (See Figure 1 for an example.)

2 Systems with Stacks and Queues

We provide a formal description of systems with data-structures and their be-
haviours. We restrict ourselves to systems with global states providing an (inter-
leaved) sequential view. In Section 5 we extend this to the distributed case where
there are a number of components each with their own collection of transitions.
We consider a finite set DS = Stacks % Queues of data-structures which are
either stacks or queues and a finite set Σ of actions. Our systems have a finite set
of control locations and use these (unbounded) stacks and queues. We obtain an
interesting class of infinite state systems, providing an (interleaved) sequential
view of multi-threaded recursive programs communicating via FIFO channels.

A stack-queue system (SQS) over data-structures DS and actions from Σ
is a tuple S = (Locs,Val,Trans, in,Fin) where Locs is a finite set of locations, Val
is a finite set of values that can be stored in the data-structures, in ∈ Locs is the
initial location, Fin ⊆ Locs is the set of final locations, and Trans is the set of
transitions which may write a value to, or read a value from, or do not involve
a data-structure. For 
, 
′ ∈ Locs, a ∈ Σ, d ∈ DS and v ∈ Val, we have

– internal transitions of the form 

a−→ 
′,

– write transitions of the form 

a,d!v−−−→ 
′, and

– read transitions of the form 

a,d?v−−−→ 
′.

Intuitively, an SQS consists of a finite state system equipped with a collection
of stacks and queues. In each step, it may use an internal transition to merely
change its state, or use a write transition to append a value to the tail of a
particular queue or stack or use a read transition to remove a value from the
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head (or tail) of a queue (of a stack respectively). The transition relation makes
explicit the identity of the data-structure being accessed and the type of the
operation. As observed in [1, 6, 13, 17] it is often convenient to describe the
runs of such systems as a state-labeling of words decorated with a matching
relation per data-structure instead of the traditional operational semantics using
configurations and moves. This will prove all the more useful when we move to
the distributed setting where traditionally semantics has always been given as
state-labelings of appropriate partial orders [9, 11, 19].

A stack-queue Word (SQW) over DS and Σ is a tuple W = (w, (�d)d∈DS)
where w = a1a2 · · · an ∈ Σ+ is the sequence of actions, and for each d ∈ DS,
the matching relation �d ⊆ {1, . . . , n}2 relates write events to data-structure d
to their corresponding read events. The following conditions should be satisfied:
– write events should precede read events: e �d f implies e < f ,
– data-structure accesses are disjoint: if e1�de2 and e3�d′ e4 are distinct edges

(d 	= d′ or (e1, e2) 	= (e3, e4)) then they are disjoint (|{e1, e2, e3, e4}| = 4),
– ∀d ∈ Stacks, �d conforms to LIFO: if e1 �d f1 and e2 �d f2 are different

edges then we do not have e1 < e2 < f1 < f2.
– ∀d ∈ Queues, �d conforms to FIFO: if e1 �d f1 and e2 �d f2 are different

edges then we do not have e1 < e2 and f2 < f1.
We let � =

⋃
d∈DS�d be the set of all matching edges and E = {1, . . . , n} be

the set of events of W . The set of all stack-queue words is denoted by ���.

We say that an event e is a read event (on data-strucutre d) if there is an f
such that f �d e. We define write events similarly and an event is internal if it
is neither a read nor a write. To define the run of an SQS over a stack-queue
wordW , we introduce two notations. For e ∈ E , we denote by e− the immediate
predecessor of e if it exists, and we let e− = ⊥ /∈ E otherwise. We let max(W)
be the maximal event of W .

A run of an SQS S on a stack-queue word W is a mapping ρ : E → Locs
satisfying the following consistency conditions (with ρ(⊥) = in):

– if e is an internal event then ρ(e−)
λ(e)−−−→ ρ(e) ∈ Trans,

– if e�d f for some data-structure d ∈ DS then for some v ∈ Val we have both

ρ(e−)
λ(e),d!v−−−−−→ ρ(e) ∈ Trans and ρ(f−)

λ(f),d?v−−−−−→ ρ(f) ∈ Trans.

The run is accepting if ρ(max(W)) ∈ Fin. The language L(S) accepted by an
SQS S is the set of stack-queue words on which it has an accepting run.

Notice that SQSs are closed under intersection, by means of the cartesian
product. Let Si = (Locsi,Vali,Transi, ini,Fini) for i ∈ {1, 2} be two SQSs. The
cartesian product is S1×S2 = (Locs1×Locs2,Val1×Val2,Trans, (in1, in2),Fin1×
Fin2) where the set of transitions is defined by

– (
1, 
2)
a−→ (
′1, 


′
2) ∈ Trans if 
i

a−→ 
′i ∈ Transi for i ∈ {1, 2},
– (
1, 
2)

a,d!(v1,v2)−−−−−−−→ (
′1, 

′
2) ∈ Trans if 
i

a,d!vi−−−−→ 
′i ∈ Transi for i ∈ {1, 2},
– (
1, 
2)

a,d?(v1,v2)−−−−−−−→ (
′1, 

′
2) ∈ Trans if 
i

a,d?vi−−−−→ 
′i ∈ Transi for i ∈ {1, 2}.
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In fact, S1×S2 has an (accepting) run on a stack-queue wordW iff both S1 and
S2 have an (accepting) run on W . Therefore, L(S1 × S2) = L(S1) ∩ L(S2).

3 Controllers and Controlled Systems

SQSs are turing powerful as soon as DS contains two stacks or a queue, and
hence their verification is undecidable. However, since it is an important problem,
various under-approximation techniques have been invented in the recent years
[2,3,13,14,16,18], starting with the bounded-context restriction [18] for systems
with only stacks. Here, the number of times the system switches from using one
stack to another is bounded by a fixed number k. Reachability and many other
properties become decidable when restricted to such behaviours.

A typical under-approximation technique describes a whole family of classes
�k parametrized by an integer k which is proportional to the coverage: the higher
the parameter, the more behaviours are covered. For example, the bound on
number of context switches k serves as this parameter for the context bounding
technique. Ideally, the under-approximations defined by the classes (�k)k should
be universal, i.e., should cover all behaviours: every stack-queue wordW should
be in �k for some k. This is true for the context bounding technique.

Traditionally under-approximations yield decidability for verification prob-
lems such as reachability [18] and model checking against linear time properties
expressed in various logics upto MSO [17]. For such properties, if the model-
checking problem yields a negative answer then this immediately means that
the full system fails the verification as well.

However, assume that a system S has been verified against some linear-time
or reachability property (or properties) wrt. some under-approximation class �.
This give us little information on whether the full system satisfies these prop-
erties. Hence we need a mechanism, which we call a controller, to restrict the
system so that it does not exhibit behaviours outside �. Observe that w.r.t.
linear-time properties restricting the system to even a proper subset of � would
still be acceptable though not desirable. However, for reachability properties a
proper restriction might lead to a system that no longer satisfies the property.
Therefore, a controller should allow all and only the behaviours of �.

We now describe formally our notion of a controller for a class and examine
some key properties that make it interesting.

A controller for a class � ⊆ ��� is an SQS C such that L(C) = �. We say
that a class � is controllable if it admits a controller.

Suppose the restriction of the behaviours of a system S to a class � has been
verified against some linear-time or reachability property ϕ. Further suppose
that � admits a controller C. Then, the controlled system S ′ = S × C is such
that L(S ′) = L(S) ∩ �, and therefore satisfies ϕ. Thus, a controller for a class
is independent of the system S as well as the property. Once we identify a con-
trollable class with decidable verification we may verify and control any system
in a completely generic and transparent manner without any additional work.
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Notice that we could have introduced more general controllability. For instance,
a class � is non-uniformly controllable if for each system S, there exists another
system S ′ such that L(S ′) = L(S) ∩ �. While this would allow more classes to
be controllable, it would not be very useful since it does not yield an automatic
way to build S ′ from S.

Using the cartesian product makes the controller integrable into the system.
The controller, by definition, does not have its own auxiliary data-structures,
but only shares the data-structures of the system. Moreover, it does not access
a data-structure out of sync with the system. We could also give more intrusive
power to a controller by allowing its transitions to depend on the current state
of the system and on the current value read/written by the system on data-
structures. But again, such a system would not be generic, and also, by its
strong observation power, would compromise the privacy of the system.

We now consider other properties that a good controller must satisfy and use
that to arrive at a formal definition of such a controller.

The under-approximation classes are often defined based on the data-structure
accesses, and do not depend on the action labels/internal actions. Hence an
ideal controller should be definable independent of the action labels and must
be oblivious to the internal moves. This can be done as follows.

We omit action labels from read/write transitions of C: an abstract transition



d!v−−→ 
′ stands for transitions 


a,d!v−−−→ 
′ for all a ∈ Σ and similarly for read
transitions. Also, we do not describe internal transitions and assume instead that
there are self-loops 


a−→ 
 for all locations and actions.
This (abstract) controller should be deterministic and non-blocking, so that

instantiating it with any alphabet will still be deterministic and non-blocking.
Thus, the controller should have a unique run on any W and moreover this run
does not depend on the internal events / action labels along the run, but depends
only on the sequence of reads/writes on the different data-structures that appear
along W . The state of the controller at any point along this run unambiguously
indicates whether the current prefix can be extended to a word that belongs to
the class �. With this we are ready to formalize our notion of a good controller.

A DS-controller is an SQS C which is oblivious to internal events and to ac-
tion labels and which is deterministic and non-blocking. Formally, its (abstract)
transitions should satisfy:

– for every 
 ∈ Locs and d ∈ DS there exists exactly one 
′ ∈ Locs and v ∈ Val

such that 

d!v−−→ 
′,

– for every 
 ∈ Locs, d ∈ DS and v ∈ Val there exists exactly one 
′ ∈ Locs

such that 

d?v−−→ 
′.

All that we said so far suffices for a global (or seqeuntial) system. If the system
to be verified and controlled is actually physically distributed, then a global
sequential controller would not be integrable in the system. Instead we would
need a distributed controller and this is much harder to achieve. We discuss this
in Section 5.
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Next we examine real examples of controllable under-approximations. While
an under-approxiamation �k is nicely controllable if it admits a controller with
the above features, the class itself should satisfy some other properties for it to be
useful. Firstly, �k should have a wide coverage over the set of possible behaviours.
A useful feature is that all behaviours fall in the class for an appropriately
chosen parameter. Second, the definition of the class should be easy to describe.
Finally, the verification problem for the class should be decidable. For instance,
considering the collection of behaviours with clique/split/tree-width bounded by
k satisfies the first and third properties but does not satisfy the second property.
But more importantly, it is not clear that they have nice controllers of the form
described above. We propose a meaningful class which has more coverage than
bounded phase of [13], and is nicely controllable. We show the decidability of
this class by demonstrating a bound on split-width.

4 Class and Controller: Sequential Case

We begin by identifying a class of behaviours, called k-Phase behaviours, which
is verifiable and admits a DS-controller. Roughly speaking, a phase is a segment
of the run where the reads are from a fixed data-structure. However, between
successive reads, read-free recursive computations are permitted which may write
to all data-structures, including their own call-stack. We formalize this below.

An autonomous computation involves a single recursive thread executing
a recursive procedure without reading any other data structure. All read events
are from a single stack while there is no restriction placed on the writes. We
say that an edge e � f is autonomous if e �s f for some s ∈ Stacks and all
in-between read events are from the same stack s: if e′ �d f ′ with e ≤ f ′ ≤ f
then d = s. We shall write �a for the subset of � consisting of the autonomous
edges and �na for � \ �a and refer to them as the non-autonomous edges. If
e �a f then e and f are called autonomous write and read events respectively.

A d-phase is a sequence of consecutive events in which all non-autonomous
reads are from the data-structure d ∈ DS. Writes to all data-structures are
permitted. Moreover, a phase must not break an autonomous computation. For-
mally, a d-phase is identified by a pair of events e ≤ f (the first and the last
events in the sequence) such that, if e′ �na f ′ with e ≤ f ′ ≤ f then e′ �d f ′ and
if e′ �a f ′ with e ≤ f ′ ≤ f or e ≤ e′ ≤ f then e ≤ e′ ≤ f ′ ≤ f .

Example 1. Suppose DS = {q, s1, s2}.
A q-phase is depicted on the right.
Straight lines (resp. curved lines) rep-
resent �d edges from queues (resp.
stacks). Autonomous computations are
highlighted in white.

Remark 2. Permitting autonomous (recursive) computations during a phase is
a natural generalization of well-queueing assumption of [14] where reads from
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Phase 1 Phase 2 Phase 3

Fig. 1. A stack-queue word over two stacks and its maximal phase decomposition

queues are permitted only when the stack associated with a process is empty.
The latter corresponds to permitting reads from queues in the main program
but not from any of the functions it calls. We permit recursive calls to be at any
depth of recursion when reading from the queue. After such a read, however,
returning from the function causes a phase change.

Our aim is to obtain a decidable and controllable class by bounding the num-
ber of phases. In the presence of queues, reading and writing on a queue during a
phase can be used to simulate a turing machine using just 1-phase computations.
Allowing autonomous computations on one stack while reading and writing on
another also results in the same effect. This motivates the following definition
which rules out such self-loops.

A phase identified by a pair (e, f) has a self-loop if it contains a non-autonomous
edge: e ≤ e′ �na f ′ ≤ f .

A phase decomposition is a partition of the set of events into phases with
no self-loops. A k-phase decomposition is a phase decomposition with at most
k phases. We denote by k-Phase the class of stack-queue words that admit a
k-phase decomposition.

Remark 3. Observe that by freely allowing autonomous computations (as op-
posed to well-queuing), every stack-queue word is in k-Phase for some k.

Remark 4. When restricted to systems with only stacks, k-Phase subsumes the
k bounded phase restriction for multi-pushdown systems [13]. It also subsumes
the k bounded context restriction for systems with stacks and queues [14]. In
fact, for every bound k, there exist stack-queue words which are not captured
by [13] and [14], but which are in 3-Phase. (See Figure 1.)

A phase with no self-loops identified by (e, f) is upper-maximal if it cannot
be extended upwards in a phase with no self-loops: if (e, g) is a phase with no
self-loops then g ≤ f . Given any k phase decomposition, we may extend the first
phase to be upper-maximal and then extend the next (remaining) phase to be
upper-maximal and so on till all the phases are upper maximal.

Lemma 5. Every stack-queue word in k-Phase admits a maximal k-phase de-
composition in which all phases are upper-maximal.

Now we take up the task of constructing a DS-controller for the class k-Phase.
A crucial step towards this end is to identify autonomous reads. We show below
that this can be achieved with a multi-pushdown automaton B observing the
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data-structure access. When the system S writes/reads some value on a stack
s the automaton B will simultaneously write/read a bit on the same stack. B
is obtained as a cartesian product of automata Bs (s ∈ Stacks) identifying the
autonomous reads on stack s (described in Figure 2).

Here, s!b (resp. s?b) means that the system S
writes/reads on stack s and b is the tag bit
that is simultaneously written/read by Bs
on stack s. The other events do not change
stack s. Moreover, s̄? is the observation of a
read event of S which is not on stack s, and
else means any event which is not explicitly
specified.

0 1

s?0
s?1
s̄?

else

s?0
s!0

else

s!1

s?1
s̄?

Fig. 2. The automaton Bs

We say that e is a possibly autonomous write to stack s at event g if e �s f
and e ≤ g < f and e′ �d f ′ with e ≤ f ′ ≤ g implies d = s. Intuitively Bs will be
in state 1 iff in the current prefix there is an unmatched write event e to stack s
which is possibly autonomous. On a write to s the automaton moves from state
0 to 1 since this write is possibly autonomous, and pushes 1 on the stack to
indicate that it is the first possibly autonomous write in the past. Then, as long
as it does not read from a data-structure d 	= s, it stays in state 1, pushing 0
on the stack on a write to s and reading 0 from the stack on a read from s. If it
reads 1 from the stack, then it has matched the first possibly autonomous write
in the past, hence it goes back to state 0. On a read from d 	= s it goes to state
0 since there cannot be any possibly autonomous write to s at this read event.

Lemma 6. The automaton Bs is deterministic and non-blocking. Moreover, in
the unique run of Bs on a word, the state bs before a read from stack s determines
whether this read is autonomous (bs = 1) or not (bs = 0).

We now construct the deterministic DS-controller Ck for k-Phase. This con-
troller computes the maximal phase decomposition of a behaviour and uses the
automaton B to identify autonomous reads. We denote by b = (bs)s∈Stacks a
state of B. In addition, a state of Ck holds two other values:

– a counter n ∈ {1, . . . , k,∞} which indicates the current phase number. The
counter starts from value 1 and is non-decreasing along a run. The ∞ indi-
cates that the number of phases has exceeded k. We follow the convention
that i + 1 has the usual meaning if i < k, k + 1 =∞ and ∞+ 1 =∞.

– a value d ∈ DS ∪ {?} which indicates that the current phase has non-
autonomous reads from d ∈ DS or that only autonomous reads have oc-
curred so far (d = ?). Note that in the first phase all reads are autonomous
(a non-autonomous read would create a self-loop). Hence, d = ? iff n = 1.

The initial state of the controller is (1, ?,0). On an internal event, the state
remains unchanged. When the system writes to a data-structure the controller
Ck writes its current phase number in addition to the bits written by B.

(n, d, b)
d′!n−−→ (n, d, b) if d′ ∈ Queues (1)

(n, d, b)
d′!(n,c)−−−−−→ (n, d, b′) if d′ ∈ Stacks ∧ b

d′!c−−→ b′ in B (2)
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Fig. 3. A run of the deterministic sequential controller Ck

Notice that in the first case, b
d′!−→ b is a transition in B. A read event from a

queue d′ will stay in the same phase if d′ is the current data-structure and the
matching write comes from a previous phase (to avoid self-loops): if d′ ∈ Queues
then we have the following transitions in Ck

(n, d, b)
d′?m−−−→ (n, d′,0) if d′ = d ∧m < n (3)

(n, d, b)
d′?m−−−→ (n + 1, d′,0) otherwise (4)

Notice that in these cases, b
d′?−−→ 0 is a transition in B since no stack can be

on an autonomous computation at a read event from a queue. Further if d = ?,
reading from a queue forces a phase change. This is needed, as otherwise there
will be a self-loop on the first phase.

Finally, a read event from a stack s will stay in the same phase if it is an
autonomous read (bs = 1), or s = d is the current data-structure and this read
does not create a self-loop: if s ∈ Stacks then in Ck we have the transitions

(n, d, b)
s?(m,c)−−−−−→ (n, d, b′) if (bs = 1 ∨ (s = d ∧m < n)) ∧ b

s?c−−→ b′ in B (5)

(n, d, b)
s?(m,c)−−−−−→ (n + 1, s,0) otherwise (6)

Notice that in the last case, b
s?c−−→ 0 is a transition in B and thus in all moves

the third component stays consistent with moves of B.
By construction the controller is deterministic and non-blocking. If the unique

run of the controller on a W does not use a state of the form (∞, d, b) then W
is in k-Phase. The set of positions labeled by states of the form (i, d, b) identify
the ith phase in a k phase decomposition. Conversely, let W be in k-Phase. Let
(be) be the state labeling position e in W in the unique run of B on W . Let
(Xi)(i≤l) be the phases in the maximal decomposition of W . It is easy to verify
that the first position of Xi, i ≥ 2 is a non-autonomous read and let di be the
data-structure associated with this read. Then the labeling assigning (1, ?, be)
to any position e ∈ X1 and (i, di, be) to any event e in Xi, 2 ≤ i ≤ l is is an
accepting run of the controller on W .

Theorem 7. The SQS Ck is a DS-controller for the class k-Phase with (|DS| ·
(k + 1) + 1)2|Stacks| states.
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5 Class and Controller: Distributed Case

In this section we describe a model intended to capture collections of SQS com-
municating via reliable FIFO channels (or queues). Such systems are called
Stack-Queue Distributed System (SQDS). A behaviour of an SQDS is a tuple
of stack-queue words with additional matching relations describing the inter-
process communication via queues. Such behaviours extend Message Sequence
Charts (MSCs) with matching relations for the internal stacks and queues. We
call them stack-queue MSCs (SQMSC).

We then extend the notion of k-Phase to this distributed setting. We show
that k-Phase enjoys a deterministic distributed controller with local acceptance
conditions.

An architecture A is a tuple (Procs,Stacks,Queues,Writer,Reader) con-
sisting of a set of processesProcs, a set of stacks Stacks, a set of queuesQueues
and functions Writer and Reader which assign to each stack/queue the process
that will write (push/send) into it and the process that will read (pop/receive)
from it respectively. We write DS for Stacks %Queues.

A stack d must be local to its process, so Writer(d) = Reader(d). On the
other hand, a queue d may be local to a process p if Writer(d) = p = Reader(d),
otherwise it provides a FIFO channel from Writer(d) to Reader(d).

A Stack-Queue Distributed System (SQDS) over an architecture A and
an alphabet Σ is a tuple S = (Locs,Val, (Transp)p∈Procs, in,Fin) where each
Sp = (Locs,Val,Transp, in, ∅) is an SQS over DS and Σ in which the transitions
are compatible with the architecture: Transp may have a write (resp. read) tran-
sitions on data-structure d only if Writer(d) = p (resp. Reader(p) = d). Moreover,
Fin ⊆ LocsProcs is the global acceptance condition. We say that the acceptance
condition is local if Fin =

∏
p∈Procs Finp where Finp ⊆ Locs for all p ∈ Procs.

A stack-queue MSC (SQMSC) over architecture A and alphabet Σ is a
tupleM = ((wp)p∈Procs, (�d)d∈DS) where wp ∈ Σ∗ is the sequence of events on
process p and �d is the relation matching write events on data-structure d with
their corresponding read events. We let Ep = {(p, i) | 1 ≤ i ≤ |wp|} be the set of
events on process p ∈ Procs. For an event e = (p, i) ∈ Ep, we set pid(e) = p and
λ(e) be the ith letter of wp. We write → for the successor relation on processes:
(p, i) → (p, i + 1) if 1 ≤ i < |wp| and we let � =

⋃
d∈DS �d be the set of all

matching edges. We require the relation < = (→ ∪ �)+ to be a strict partial
order on the set of events. Finally, the matching relations should comply with
the architecture: �d ⊆ EWriter(d) × EReader(d). Moreover, data-structure accesses
should be disjoint, stacks should conform to LIFO and queues should conform
to FIFO (the formal definitions are taken verbatim from Section 2). An SQMSC
is depicted in Figure 4.

As before, to define the run of an SQDS over a stack-queue MSC M, we
introduce two notations. For p ∈ Procs and e ∈ Ep, we denote by e− the unique
event such that e− → e if it exists, and we let e− = ⊥p /∈ E otherwise. We let
maxp(M) be the maximal event of Ep if it exists and maxp(M) = ⊥p otherwise.
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A run of an SQDS S over a stack-queue MSC M is a mapping ρ : E → Locs
satisfying the following consistency conditions (with ρ(⊥p) = in):

– if e is an internal event then ρ(e−)
λ(e)−−−→ ρ(e) ∈ Transpid(e),

– if e�d f for some data-structure d ∈ DS then for some v ∈ Val we have both

ρ(e−)
λ(e),d!v−−−−−→ ρ(e) ∈ Transpid(e) and ρ(f−)

λ(f),d?v−−−−−→ ρ(f) ∈ Transpid(f).

The run is accepting if (ρ(maxp(M)))p∈Procs ∈ Fin. The language L(S) accepted
by an SQDS S is the set of stack-queue MSCs on which it has an accepting run.

Notice that SQDSs are closed under intersection, by means of the cartesian
product. The construction is similar to the one for SQSs in Section 2.

Bounded Acyclic Phase SQMSCs. We generalize the under-approximation
class k-Phase to the distributed setting. We allow at most k phases per process.
As in the sequential case, autonomous computations are freely allowed. However,
cycles on phases can be caused be the richer structure of the SQMSC than simple
self loops.

In the distributed setting, the definitions of autonomous computations and
of d-phases are identical to the sequential case, cf. Section 4. Again, we write
�a for autonomous edges and �na for non-autonomous edges. A phase, which
is a sequence of consecutive events executed by a single process, is identified by
a pair of events (e, f) such that e→∗ f .

A phase (e, f) has a cycle if there is a non-autonomous
edge e′�na f ′ with e ≤ e′ and f ′ →∗ f . Notice that e′ needs
not be in the phase. So a cycle starts from the phase at e
then follows the partial order to some non-autonomous write

e ff ′

e′

e′ whose read f ′ is in the phase. A phase is acyclic if it has no cycles. Notice
that a non-autonomous edge within a phase induces a cycle (self-loop) whereas
autonomous edges are freely allowed within phases. As a matter of fact, when
there is exactly one process, a phase has a cycle iff it has a self-loop.

A phase decomposition of an SQMSC is a partition of its set of events into
phases. A phase decomposition is acyclic if all phases are acyclic. It is a k-phase
decomposition if there are at most k phases per process. We denote by k-Phase
the set of SQMSCs that admits an acyclic k-phase decomposition.

An acyclic phase (e, f) is upper-maximal if extending it upwards would result
in a cycle, i.e., for every other acyclic phase (e, f ′), we have f ′ ≤ f . See Figure 4
for an example. Lemma 5 easily lifts up to the distributed case as well.

Lemma 8. Every SQMSC in k-Phase admits a maximal acyclic k-phase de-
composition in which all phases are upper-maximal.

Deterministic Distributed Controller. We extend the notion of nice con-
trollers to the distributed setting. That means controllers should be distributed
and have local acceptance conditions. A local controller for one process should
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Fig. 4. A stack-queue MSC and its maximal phase decomposition

be able to control the behaviour of that process regardless of the states of the
other local controllers. The communication between the local controllers is also
only by means of overloading the actual messages sent between the processes.
The local controllers are not allowed to send messages out of sync, as it would
create new behaviours in the controlled system. Thus a controlled system should
be again obtained as a cartesian product of the system with a controller where
both are SQDS, but in addition the controller has local acceptance conditions.

Theorem 9. The class k-Phase admits a deterministic distributed controller Ck
with (|DS| · (k + 2)|Procs| + 1)2|Stacks| states.

The distributed controller is a generalisation of the sequential controller of
Section 4. The main difference is that the local controller of process p remembers
not only its current phase number, but a tuple n = (nq)q∈Procs of phase numbers
for each process. The intuition is that nq is the largest phase of process q that
is known to process p (nq = 0 if no events of process q are in the past of the
current event of process p).

For each stack s, we use the automaton Bs defined in Section 4 that identifies
autonomous reads. For each process p ∈ Procs, we let Bp be the product of the
automata Bs where s is a stack of process p (i.e., s ∈ Stacks and Writer(s) = p).

A state of the local controller Ckp for process p is a tuple (n, d, bp) where
n = (nq)q∈Procs is the phase vector with nq ∈ {0, 1, . . . , k,∞}, d ∈ DS ∪ {?}
with Reader(d) = p if d 	= ?, and bp is a state of Bp. The initial state of Ckp is
inp = (n, ?,0) with np = 1 and nq = 0 for q 	= p. The local acceptance condition
Finp is given by the set of states (n, d, bp) with nq 	=∞ for all q ∈ Procs.

We describe now the local transitions of Ckp . They are similar to the transitions
of the sequential controller given in Section 4. We start with write transitions,
so let d′ ∈ DS be such that Writer(d′) = p. On write events, the current phase
vector is written on to the data-structure (in addition to the autonomous bit
where needed).

(n, d, bp)
d′!n−−−→ (n, d, bp) if d′ ∈ Queues (7)

(n, d, bp)
d′!(n,c)−−−−−→ (n, d, b′p) if d′ ∈ Stacks ∧ bp

d′!c−−→ b′p in Bp (8)

Let d′ ∈ Queues be such that Reader(d′) = p. The transitions of Ckp that read
queue d′ are given below. We should switch to the next phase 1) if mp = np since
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otherwise this non-autonomous read would close a cycle, 2) or if d′ 	= d 	= ? since
in a phase all non-autonomous reads should be from the same data-structure.

(n, d, bp)
d′?m−−−→ (n′, d′,0) if mp = np ∨ (d′ 	= d 	= ?) (9)

with n′p = np + 1 ∧ n′q = max(nq,mq) for q 	= p

(n, d, bp)
d′?m−−−→ (n′, d′,0) otherwise, with n′ = max (n,m) (10)

Similarly, we give below read transitions from d′ ∈ Stacks with Reader(d′) = p.
Here a switch of phase is required under the same conditions but only when the
read is not autonomous.

(n, d, bp)
d′?(m,c)−−−−−→ (n′, d′,0) if bd′ = 0 ∧ (mp = np ∨ (d′ 	= d 	= ?)) (11)

with n′p = np + 1 ∧ n′q = max(nq,mq) for q 	= p

(n, d, bp)
d′?(m,c)−−−−−→ (n′, d, b′p) otherwise, (12)

with n′ = max (n,m) ∧ bp
d′?c−−→ b′p in Bp

One of the differences of a local controller from a sequential controller is that
the first phase may also perform non-autonomous reads. However, in such case,
it must be from a queue.

On read transitions (10 and 12) which stay in the same phase, the phase
vector is updated by taking the maximum between the current phase vector and
the read-phase vector (n′ = max (n,m)). On a phase switch, a similar update
is performed but the current phase number of process p is incremented.

6 Decidability

In this section we explain briefly why k-Phase is a verifiable under-approximation
for SQDS. Consider the reachability problem which is equivalent to asking if
given an SQDS S and k ∈ � whether S accepts at least one M from k-Phase.
A non-trivial extension of the technique of [14] allows to reduce the reachability
problem of SQDS restricted to k-Phase to the reachability problem of multi-
pushdown systems for bounded phase.

A more general question is to model-check properties expressed in linear time
logics ranging from temporal logics to MSO(→,�d). Given a formula ϕ we have to
determine whether everyM ∈ k-Phase that is accepted by S satisfies ϕ. Observe
that we may equivalently ask whether every behaviour of the controlled system
S ′ satisfies ϕ. Using a slightly different approach we can obtain decidability not
only for reachability but also for the linear-time model-checking problems.

In this approach we show that every behaviour in k-Phase has split-width
[5, 6, 8] or tree-width [17] or clique-width [4] (measures of the complexity of
graphs that happen to be equivalent for our class of graphs) bounded by some
function f(k). Here, we show an exponential bound on the split-width. Then,
results from [6, 8, 17] imply that MSO model-checking for S ′ is decidable and
results from [5,8] imply that model-checking linear-time temporal logic formulas
can be solved in double exponential time. This is optimal, since reachability of
k-phase multi-pushdown systems is double exponential time hard [15].
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Pairwise Reachability Analysis for Higher Order

Concurrent Programs by Higher-Order Model
Checking

Kazuhide Yasukata, Naoki Kobayashi, and Kazutaka Matsuda

The University of Tokyo, Hongo, Japan

Abstract. We propose a sound, complete, and automatic method for
pairwise reachability analysis of higher-order concurrent programs with
recursion, nested locks, joins, and dynamic thread creation. The method
is based on a reduction to higher-order model checking (i.e., model check-
ing of trees generated by higher-order recursion schemes). It can be con-
sidered an extension of Gawlitz et al.’s work on the join-lock-sensitive
reachability analysis for dynamic pushdown networks (DPN) to higher-
order programs. To our knowledge, this is the first application of higher-
order model checking to sound and complete verification of (reasonably
expressive models of) concurrent programs.

1 Introduction

Verification of concurrent programs is important but fundamentally difficult,
especially in the presence of recursion. Ramalingam [19] has shown that the
reachability problem for two pushdown systems with rendezvous-style synchro-
nization primitives is undecidable. There are two major approaches to cope with
this limitation. One is to give up the soundness, and underapproximate the
actual behavior of a concurrent program by bounding the number of context
switches [18], etc. The other approach is to restrict the synchronization primi-
tives. Kahlon et al. [7] have shown that the pairwise reachability problem (“Given
two pushdown systems P1 and P2 and control locations 
1 and 
2, is there a
reachable global state where P1 is at 
1 and P2 is at 
2?”) is decidable if the
two pushdown systems synchronize only via nested locking. Lammich et al. [14]
later extended it to dynamic pushdown networks (DPN), where processes may
be dynamically created. Gawlitza et al. [4] have further extended the result to
allow synchronization via joins in addition to nested locking.

In the present paper, we follow the latter line of work and extend it to deal
with higher-order concurrent programs with recursion, dynamic process creation,
joins, and nested locking. We consider the pairwise reachability problem: “Given
a program P and two control locations 
1 and 
2, may the program reach a state
where one process is at 
1 and another is at 
2?”. We show that this problem
can be reduced to higher-order model checking [15,9], hence it is decidable. The
main idea is to transform a given program to a non-deterministic higher-order
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recursion scheme (a kind of tree grammar where non-terminals may take higher-
order functions as arguments) G that generates a tree language L(G) consisting
of all the possible execution histories (called action trees [14,4]) of the program
ignoring the synchronization constraints imposed by joins and nested locking.
Let L1 be the set of action trees that respect the synchronization constraints
imposed by joins and nested locking, and L2 be the set of action trees that
represent histories that end with a state where two of the processes are at 
1
and 
2. Then, 
1 and 
2 are pairwise reachable if and only if L(G)∩L1 ∩L2 	= ∅.
Since both L1 and L2 are regular (where the regularity of L1 is due to [4]), the
latter condition can be decided by using higher-order model checking [15,9]. We
formalize the reduction and prove its correctness. We also report preliminary
experimental results, which confirm that the approach is feasible at least for
small programs, despite the extremely high worst-case complexity of higher-
order model checking (k-EXPTIME complete for order-k higher-order recursion
schemes [15,12]).

To our knowledge, this is the first application of higher-order model checking
to sound and complete verification of higher-order concurrent programs. The pre-
vious applications of higher-order model checking were mainly for higher-order
functional programs [9,13,16]. For concurrent programs, the previous applica-
tions [10,5] were based on the underapproximation approach. One may think
that higher-order functions are exotic features for multi-threaded programs. As
demonstrated in [9,20], however, even if higher-order functions are not so of-
ten used explicitly in source programs, they are required for precisely modelling
control/data structures such as exceptions and lists.

The rest of the paper is structured as follows. Section 2 introduces the target
language and formally defines the pairwise reachability problem. After providing
the necessary backgrounds (such as action trees [14,4] and higher-order model
checking [15,9]) Section 3 provides the reduction of the pairwise reachability
problem to higher-order model checking. Section 4 reports preliminary exper-
iments. Section 5 discusses related work and Section 6 concludes the paper.
Omitted proofs are found in the longer version, available from the authors’ web
page.

2 Target Language and Pairwise Reachability Problem

This section introduces a higher-order concurrent programming language and
defines the pairwise reachability problem for it.

Definition 1. A program is a finite set of function definitions

{F1 x̃1 = e1, ..., Fn x̃n = en},

where Fi denotes a defined function symbol, and e ranges over the set Exp of
expressions, defined by:

e ::= $ | x | F | if e1 e2 | e1 e2 | join; e | acqi; e | reli; e | spawn(ec); e | e�
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Here, i ranges over a finite set Lock of (non-reentrant) locks, and 
 ranges over
a finite set Label of program point labels. Note that the arity of each function
may be 0. We require that the function symbols F1, ..., Fn are different from
each other, and that any program p contains exactly one definition of a “main”
function S, of the form S = e.

We explain the intuitive meaning of each expression; the formal operational se-
mantics is given later. The expression $ represents the termination of the current
process. The expression if e1 e2 executes either e1 or e2 non-deterministically,
and the expression e1e2 applies the function e1 to e2. As defined later, function
calls are based on the call-by-name semantics; call-by-value programs can be
transformed to call-by-name programs by using the CPS transformation [17].
The expression spawn(ec); e spawns a new child process that executes ec, and
continues to execute e without waiting for the child process. The expression
join; e waits for the termination of all the processes that the current process
has created, and then executes e. The expression acqi; e waits to acquire the
lock i, and then executes e. The expression reli; e releases the lock i and executes
e. The label 
 in the expression e� is used for specifying the pairwise reachability
problem, and does not affect the operational semantics.

In this paper, we consider only “well-typed” programs, as defined below.

Definition 2 (types). The set of types is inductively defined by:

τ ::= unit | τ1 → τ2

Here, unit is the type of the unit value $, and τ1 → τ2 is the type of functions
from τ1 to τ2. The order and the arity of types are inductively defined by:

order(unit) = 0 order (τ1 → τ2) = max(order (τ1) + 1, order (τ2))
arity(unit) = 0 arity(τ1 → τ2) = arity(τ2) + 1

A type environment Γ is a map from a finite set of variables to types. The
type judgment relation Γ � e : τ for expressions is the least relation closed
under the following rules:

∅ � $ : unit Γ{x #→ τ} � x : τ
Γ � e1 : unit Γ � e2 : unit

Γ � if e1 e2 : unit

Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1 e2 : τ2

Γ � e : unit

Γ � join; e : unit

Γ � e : unit

Γ � acqi; e : unit

Γ � e : unit

Γ � reli; e : unit

Γ � e : unit Γ � ec : unit

Γ � spawn(ec); e : unit

Γ � e : unit

Γ � e� : unit

A program p = {F1 x11, . . . , x1k1 = e1, . . . , Fn xn1, . . . , xnkn = en} is well-
typed under Γ if Γ = {Fi #→ τi1 → ...→ τiki → unit | i ∈ { 1, . . . , n } } and Γ ∪
{xj1 #→ τj1, ..., xjkj #→ τjkj} � ej : unit holds for each j ∈ { 1, . . . , n }. The
order of p (well-typed under Γ ) is max({ order(Γ (F )) | F ∈ dom(Γ ) }).

Remark 1. In the language above, we have only the unit-value as a base value.
As we have higher-order functions, however, we can encode booleans and con-
ditionals by using the Church encoding. Values in infinite data domains (such
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as unbounded integers) can be dealt with (soundly but incompletely) by using
predicate abstraction [9,13].

Example 1. Here is an example of an order-2 program, well-typed under Γ =
{S #→ unit, F #→ (unit→ unit)→ unit→ unit, G #→ unit→ unit,
H #→ (unit→ unit)→ unit→ unit}.

p =

{
S = F G $ F g t = if (spawn(H g $); F g t) (join; t)
Gt = t� H g t = acq1; (g (rel1; t))

}
This program is obtained by CPS-transforming the following C-like code:

main(){f(g);}

f(g){

if(*){spawn{h(g);}; f(g);}

else{join(); }

}

g(){

L: <critical section>;

return;

}

h(g){ acq(1); g(); rel(1);}

The root process spawns non-deterministically many child processes, and then
waits for the child processes by the join operation. Each child acquires the lock
1 and then release 1 at the program point 
.

We now define the formal semantics of programs. A configuration c of a
program is a map from a finite set consisting of sequences of natural numbers
(where each sequence serves as a process identifier) to the set of triples (e, L, s)
consisting of an expression e, a sequence L of locks, and a natural number s.
Intuitively, c(π) = (e, i1 · · · ik, s) means that the process π is executing e, that it
holds locks i1, . . . , ik that have been acquired in this order, and that it has created
s child processes so far. The reduction relation c −→ c′ on configurations is
defined by the following rules.

F x1 · · · xk → e ∈ p

c % { π #→ (F e1 ... ek, L, s) } −→p c % { π #→ ([e1/x1, ..., ek/xk]e, L, s) }

c % { π #→ (if e1 e2, L, s) } −→p c % { π #→ (ei, L, s) } (i ∈ { 1, 2 })

c % { π #→ (e�, L, s) } −→p c % { π #→ (e, L, s) }

i 	∈ locked(c % { π #→ (acqi; e, L, s) })
c % { π #→ (acqi; e, L, s) } −→p c % { π #→ (e, L · i, s) }

c % { π #→ (reli; e, L · i, s) } −→p c % { π #→ (e, L, s) }

c % { π #→ (spawn(ec); e, L, s) } −→p c % { π #→ (e, L, s + 1), π · s #→ (ec, ε, 0) }

{ j | π · j ∈ dom(c) } = ∅
c % { π #→ (join; e, L, s) } −→p c % { π #→ (e, L, s) }
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c % { π #→ ($, ε, s) } −→p c

Here, locked(c) represents the set of all acquired locks, defined by:

locked(c) =
⋃

c(π)=(e,i1···ik,s)
{ i1, . . . , ik } .

Definition 3 (pairwise reachability). Let p be a (well-typed) program and

1, 
2 be labels. We say that (
1, 
2) is pairwise reachable by p, written p |=

1||
2, if there exist c, π1, π2 (π1 	= π2) such that { ε #→ (S, ε, 0) } −→∗

p c with

c(π1) = (e�11 , L1, s1) and c(π2) = (e�22 , L2, s2) for some e2, e2, L1, L2, s1, s2. The
pairwise reachability problem is the decision problem of checking whether
p |= 
1||
2 holds.

Example 2. Recall the example program showed in Example 1. The verification
problem “can the program point 
 (i.e., the critical section) be reached by mul-
tiple processes simultaneously?” can be reduced to the pairwise reachability for
the program p and the pair (
, 
). In this case, the answer to the problem is “no”.

3 From Pairwise Reachability to Higher-Order Model
Checking

In this section, we show that the pairwise reachability problem can be reduced
to higher-order model checking [15], hence it is decidable. The basic idea of
this reduction is to transform a program to a grammar called a higher-order
recursion scheme [15], which generates action trees [4,14] that represent all the
possible executions of the program. Since the set of action trees that represent
valid executions (i.e., those that respect synchronization constraints on joins
and nested locks) is regular, the pairwise reachability problem can be reduced to
an inclusion problem between the tree language generated by the higher-order
recursion scheme and the regular language, which can be further reduced to
higher-order model checking. We first review action trees and higher-order model
checking in Sections 3.1 and 3.2 respectively. We then present the reduction from
the pairwise reachability analysis to higher-order model checking.

3.1 Action Trees

An action tree [4,14] is a finite tree that represents a history of executions of
a program up to a certain state. It ignores how the executions of multiple pro-
cesses are interleaved, and expresses only process-wise execution histories and
the parent/child relationship between processes. Gawlitza et al. [4] originally
introduced action trees to represent execution histories of dynamic pushdown
networks, but the notion of action trees is independent of a particular compu-
tation model. Here we use them to represent execution histories of higher-order
concurrent programs introduced in the previous section.
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Definition 4 (action trees). The set of action trees, ranged over by γ, is
defined inductively by:

γ ::= ⊥ | 〈$〉 | 
 | 〈jo〉 γ | 〈sp〉 γ1 γ2 | 〈Acqi〉 γ | 〈Reli〉 γ.

Here, 
 ranges over (program) labels and i over locks.

We have used the term representation of (labelled) trees above. Trees can also
be considered as map from paths to labels, by: (a γ1 · · · γn)# = { ε #→ a } ∪
{ i · u #→ b | γ#

i (u) = b }.

Parent process

Child process

<Acqi>

<Reli><$>

<sp>

<jo>

<$>

Fig. 1. Action tree

Each non-leaf node represents an action of each
process. The tree 〈jo〉 γ (〈Acqi〉 γ and 〈Reli〉 γ re-
spectively) means that the process performed join
(acquires and releases the lock i, respectively) and
then behaved like γ. The tree 〈sp〉 γ1 γ2 means that
the process spawned a child process that behaved
like γ2, and the process itself behaved like γ1. Thus,
the leftmost path from the root node in an action
tree represents a sequence of actions performed by
the root process, and each leftmost path from the
second child of a 〈sp〉-node represents a sequence
of actions performed by the spawned process. Each
leaf node of an action tree represents the current
state of each process: 〈$〉 means that the process
has terminated, 
 means that the process is at the program point 
, and ⊥
means that the process is at a program point not labeled by any element of
Label. Figure 1 shows an example of an action tree. It represents an execution
history where the root process spawns a child process, waits for the child, and
terminates (represented by 〈$〉), and the child process acquires and releases the
lock i, and then terminates. It corresponds to the following execution of the
program in Example 1:

{ ε #→ (S, ε, 0) } −→ { ε #→ (F G $, ε, 0) } −→∗ { ε #→ (spawn(H G $); F G $, ε, 0) }
−→ { ε #→ (F G $, ε, 1), 0 #→ (H G $, ε, 0) }
−→∗ { ε #→ (join; $, ε, 1), 0 #→ (acq1;G(rel1; $), ε, 0) }
−→∗ { ε #→ (join; $, ε, 1), 0 #→ (G(rel1; $), 1, 0) }
−→∗ { ε #→ (join; $, ε, 1), 0 #→ ((rel1; $)

�, 1, 0) }
−→∗ { ε #→ (join; $, ε, 1), 0 #→ ($, ε, 0) }
−→ { ε #→ (join; $, ε, 1) } −→ { ε #→ ($, ε, 1) } −→ ∅

Note that not every action tree represents a valid execution history. For ex-
ample, consider the action tree: 〈sp〉 (〈Acq1〉 
1) (〈Acq1〉 
2). It represents a state
where the parent and child processes are at program points 
1 and 
2 respec-
tively, after both having acquired the lock 1 (and not released it yet), which
is obviously impossible. In order to exclude action trees that do not respect
synchronization constraints, we introduce a transition system on abstract con-
figurations, obtained by removing expressions from configurations introduced in
the previous section.
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Definition 5. An abstract configuration is a map from a finite set consist-
ing of sequences of natural numbers (where each sequence serves as a process
identifier) to the set of pairs (L, s) consisting of a sequence L of locks, and a
natural number s. The transition relation on abstract configurations is defined
by:

i 	∈ locked(c % { π #→ (L, s) })

c % { π #→ (L, s) } π,〈Acqi〉−−−−−→ c % { π #→ (L · i, s) }

c % { π #→ (L · i, s) } π,〈Reli〉−−−−−→ c % { π #→ (L, s) }

c % { π #→ (L, s) } π,〈sp〉−−−−→ c % { π #→ (L, s + 1), π · s #→ (ε, 0) }

{ k | π · k ∈ dom(c) } = ∅

c % { π #→ (L, s) } π,〈jo〉−−−→ c % { π #→ (L, s) }

c % { π #→ (ε, s) } π,〈$〉−−−→ c

Here, locked(c) is defined similarly to that for configurations, as

locked(c) =
⋃

c(π)=(i1···ik,s)
{ i1, . . . , ik } .

Each action tree can be mapped to an abstract configuration as follows.

θπ,L,s(〈$〉) = ∅ θπ,L,s(〈sp〉 γ1 γ2) = θπ,L,s+1(γ1) ∪ θπ·s,ε,0(γ2)
θπ,L,s(〈jo〉 γ) = θπ,L,s(γ) θπ,L,s(〈Acqi〉 γ) = θπ,L·i,s(γ)
θπ,L·i,s(〈Reli〉 γ) = θπ,L,s(γ) θπ,L,s(γ) = { π #→ (L, s) } (if γ ∈ {⊥} ∪ Label)

We write θ(t) for θε,ε,s(t), and write γ1
u� γ2 if γ1(u) = ⊥ and γ2 is ob-

tained from γ1 by replacing ⊥ at u with a tree of the form a⊥ . . . ⊥ with
a = 〈$〉, 〈sp〉, 〈jo〉, 〈Acqi〉, 〈Reli〉.

We can now define “valid” action trees as follows.

Definition 6. An action tree γ is join-lock sensitive if there is a sequence ⊥=

γ0
u1� γ1

u2� . . .
un� γn = γ′ such that θ(γ0)

pn(u1,γ),γ1(u1)−−−−−−−−−−→ θ(γ1)
pn(u2,γ),γ2(u2)−−−−−−−−−−→

. . .
pn(un,γ),γn−−−−−−−→ θ(γn), where γ′ is the action tree obtained from γ by replacing

all 
 ∈ Label with ⊥. Here, pn(u, γ) represents the identifier of the process that
executes the action of γ(u). It is defined by:

pn(ε, γ) = ε
pn(u · 1, γ) = pn(u, γ)
pn(u · 2, γ) = pn(u, γ) · cn(u, γ)

cn(ε, γ) = 0
cn(u · 1, γ) = cn(u, γ) if γ(u) 	= 〈sp〉
cn(u · 1, γ) = cn(u, γ) + 1 if γ(u) = 〈sp〉
cn(u · 2, γ) = 0
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Note that pn(ui, γi) = pn(ui, γ).
The following is the key property of action trees, which we use in our reduction

from pairwise reachability analysis to higher-order model checking.

Lemma 1 (Gawlitza et al. 2011, Section 5 [4]). The set Lsensitive of join-
lock-sensitive action trees is a regular tree language.

Remark 2. We have modified the original definition of join-lock sensitive (schedu-
lable) action trees. Our notion of join-lock sensitive action trees corresponds to
join-lock-well-formed, join-lock sensitive schedulable action trees [4].

3.2 Higher-Order Model Checking

In this subsection, we review higher-order recursion schemes and (a variation
of) higher-order model checking [15].

The set of sorts is given by the grammar: κ ::= o | κ1 → κ2. Intuitively o

describes trees, and κ1 → κ2 describes functions from κ1 to κ2. The order of sorts
is defined by: order (o) = 0 and order(κ1 → κ2) = max(order (κ1)+ 1, order(κ2)).

Definition 7 (Higher-Order Recursion Scheme). A (non-deterministic)
higher-order recursion scheme (HORS, for short) is a quadruple: G =
(Σ,N ,R, S) where Σ is a ranked alphabet (i.e., a map from a finite set of sym-
bols called terminals to their arities); N is a map from a finite set of symbols
called non-terminals to sorts; S ∈ dom(N ) is the start symbol of sort o; and
R is a finite set of transition rules of the form Ax1 · · · x� → t, where t ranges
over the set of applicative terms defined by t ::= x | a | A | t1t2. Here, a ranges
over dom(Σ) and A ranges over dom(N ). If Ax1 · · · x� → t ∈ N , then N (A)
must be of the form κ1 → · · · → κ� → o and N ∪ { x1 : κ1, . . . , x� : κ� } �Σ t : o
must be derivable by using the following rules (where non-terminals are treated
as variables).

K �Σ a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o K �Σ x : K(x)

K �Σ t1 : κ1 → κ2 K �Σ t2 : κ1

K �Σ t1t2 : κ2

The order of a HORS G, written order (G) is max({ order(A) | A ∈ dom(N ) }).
Note that unlike deterministic HORS, there may be an arbitrary number of
rewriting rules for each non-terminal. We omit the adjective ‘non-deterministic’
in the rest of this paper.

To define the rewriting relation, we define the notion of the reduction context.

Definition 8. The set of reduction contexts is defined by:

C ::= [ ] | a t1 . . . ti−1 C ti+1 . . . tn

For a reduction context C, we write C[t] for the term obtained from C by replac-
ing [ ] with t.
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Then, the rewriting relation −→G on terms is defined by:

C[At1 . . . tm] −→G C[ [t1/x1, . . . , tm/xm]t ] (if Ax1 . . . xm → t)

In this paper, we consider a HORS as a generator of a language of finite trees,
rather than that of an infinite tree [15].

Definition 9 (TreeLanguagesofRecursionSchemes).LetG = (Σ,N ,R, S)
be a HORS. The language generated by G is defined by:

L(G) = {t | t is a ranked Σ-labeled tree and S −→∗
G t}

Example 3. Consider an order-2 HORS G = (Σ,N ,R, S) such that

Σ = { a #→ 2, b #→ 1, c #→ 0 }
N = {S #→ o, F #→ (o→ o)→ o→ o, G #→ o→ o, T #→ (o→ o)→ o→ o }
R = {S → F Gc, F g x→ a (g x) (F (T g)x), F g x→ g x,

Gx→ b x, T g x→ g (g x)}

Here is an example of reduction from S to a (b c) (b2 c).

S −→G F Gc −→G a (Gc) (F (T G)c) −→G a (b c)(F (T G) c) −→G a (b c)(T Gc)

−→G a (b c)(G (Gc)) −→∗
G a (b c)(b (b c))

The language L(G) is { a (b c)(a (b2 c)(a . . . (a (b2
n−1

c)(b2
n

c)) . . .)) | n ∈ N+ }.
The following theorem is an easy corollary of Ong’s result on the model check-

ing of (deterministic) HORS [15].

Theorem 1. Given a HORS G and a regular tree language L, it is decidable
whether L(G) ⊆ L.

In the present paper, we call the inclusion problem above a higher-order model
checking problem. The standard model checking problem for HORS [15] is the
problem of deciding whether the infinite tree generated by a deterministic HORS
satisfies a given property.

3.3 Reduction from Pairwise Reachability to Higher-Order Model
Checking

Now we show how to reduce pairwise reachability to higher-order model checking.
First, we define a transformation from a concurrent program to a HORS that
generates action trees of the which join-lock sensitive subset represent all and
only the possible reachable configurations of the program.

Definition 10. Let p = {F1 x11, . . . , x1k1 = e1, . . . , Fn xn1, . . . , xnkn = en} be
a well-typed higher-order concurrent program under Γ . A (non-deterministic)
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HORS Gp is defined by:

Σ = { 〈sp〉 #→ 2, 〈jo〉 #→ 1, 〈$〉 #→ 0,⊥ #→ 0 }
∪ { 〈Acqi〉, 〈Reli〉 | i ∈ Lock } ∪ { 
 #→ 0 | 
 ∈ Label }

Gp = (Σ,NΓ ∪ N0,RΓ ∪R0, S)

NΓ = {F1 #→ (Γ (F1))
�, . . . , Fn #→ (Γ (Fn))

�}
N0 = {E$ #→ o, Eif #→ (o→ o→ o), Ejoin #→ (o→ o), Espawn #→ (o→ o→ o)}

∪{Eacqi
#→ (o→ o) | i ∈ Lock} ∪ {Ereli #→ (o→ o) | i ∈ Lock}

∪{E� #→ (o→ o) | 
 ∈ Label}
RΓ = {F1x̃1 → E(e1), ..., Fnx̃n → E(en)}
R0 = {Eif x y → x, Eif x y → y, Ejoin x→ 〈jo〉x, Espawn x y → 〈sp〉x y}

∪{Eacqi
x→ 〈Acqi〉x | i ∈ Lock} ∪ {Ereli x→ 〈Reli〉x | i ∈ Lock}

∪{E� x→ 
 | 
 ∈ Label} ∪ {E� x→ x | 
 ∈ Label} ∪ {E$ → 〈$〉 }
∪{E x̃→ ⊥ | E ∈ dom(NΓ ∪ N0) \ {E� | 
 ∈ Label}}

Here, (·)� is a transformation from types of expressions to sorts, defined by:

unit� = o and (τ1 → τ2)
� = τ �1 → τ �2 . The function E transforms an expression

to an applicative term, defined inductively by:

E($) = E$ E(x) = x E(F ) = F E(if e1 e2) = Eif E(e1) E(e2)
E(e1 e2) = E(e1) E(e2) E(join; e) = Ejoin E(e) E(acqi; e) = Eacqi

E(e)
E(reli; e) = Ereli E(e) E(spawn(ec); e) = Espawn E(e) E(ec) E(e�) = E� E(e)
The idea of the transformation above is quite simple: just replace each syn-

chronization primitive op with a non-terminal Eop, which will generate a tree
node 〈op〉 indicating that the operation op has been performed. Additionally, in
order to generate all the intermediate states of an execution, we allow each non-
terminal to be reduced to ⊥ or 
 ∈ Label. Note that order (Γ (F )) = order(N (F ))
holds for every function symbol F of p. Thus, order (Gp) = max(order (p), 1).

Example 4. The program p of Example 1 is transformed to the recursion scheme
Gp = (Σ,NΓ ∪ N0,RΓ ∪R0, S) where

NΓ = {S #→ o, F #→ (o→ o)→ o→ o, G #→ o→ o, H #→ (o→ o)→ o→ o}

RΓ =

⎧⎪⎪⎨⎪⎪⎩
S → F GE$

F g t→ Eif (Espawn (F g t) (H g E$)) (Ejoin t)
Gt→ E� t

H g t→ Eacqi
(g (Ereli t))

⎫⎪⎪⎬⎪⎪⎭ .

The action tree in Figure 1 is generated by the following reduction sequence:

S −→ F GE$ −→ Eif (Espawn (F GE$) (H GE$)) (Ejoin E$)
−→ Espawn (F GE$) (H GE$)) −→ 〈sp〉 (F GE$) (H GE$))
−→∗ 〈sp〉 (Eif (Espawn (F GE$) (H GE$)) (Ejoin E$)) (Eacqi

(G (Ereli E$)))
−→∗ 〈sp〉 (Ejoin E$) (〈Acqi〉 (G (Ereli E$))) −→∗ 〈sp〉 (〈jo〉E$) (〈Acqi〉 (Ereli E$))
−→∗ 〈sp〉 (〈jo〉 〈$〉) (〈Acqi〉 (〈Reli〉E$)) −→ 〈sp〉 (〈jo〉 〈$〉) (〈Acqi〉 (〈Reli〉 〈$〉))
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Now we show that the grammar generates all the action trees that corresponds
to the reachable configurations of a program. We first prepare some definitions.
To clarify the relationship between an applicative term (consisting of terminals
and non-terminals of a HORS) and a configuration, we first define the terms that
can appear at “run-time” and thus have unique corresponding configurations.

Definition 11. An applicative term t is called a run-time term if (1) t has
sort o, (2) t contains no labels nor ⊥, and (3) no terminals occur in the argu-
ments of non-terminals in t.

Definition 12. Let t be a run-time term of sort o. The action tree t⊥ is defined
by:

(E� t)
⊥ = 
 (At1 . . . tn)

⊥ = ⊥ (if A 	∈ {E� | 
 ∈ Label })
(a t1 . . . tn)

⊥ = a t⊥1 . . . t⊥n

We extend the map Xπ,L,S(·) to that on run-time trees, by:

Xπ,L,s(〈sp〉 t1 t2) = Xπ,L,s+1(t1) ∪ Xπ·s,ε,0(t2) Xπ,L,s(〈jo〉 t) = Xπ,L,s(t)
Xπ,L,s(〈$〉) = ∅ Xπ,L,s(〈Acqi〉 t) = Xπ,L·i,s(t) Xπ,L·i,s(〈Reli〉 t) = Xπ,L,s(t)
Xπ,L,s(t) = { π #→ (E−1(t), L, s) } (for the other cases)

Here, E−1 is the inverse of E . We write X(t) for Xε,ε,0(t).
The following lemmas establish the correspondence between p and Gp.

Lemma 2. Suppose S −→∗
Gp

t where t is a run-time term and t⊥ is join-lock

sensitive. Then, { ε #→ (S, ε, 0) } −→∗
p X(t) holds.

Lemma 3. If { ε #→ (S, ε, 0) } −→∗
p c, then there exists a run-time term t such

that S −→∗
Gp

t, X(t) = c, and t⊥ is join-lock-sensitive.

By the above lemmas, the pairwise reachability problem on p is reduced to
higher-order model checking on Gp.
Theorem 2. Let p be a program and (
1, 
2) be a pair of labels. Let L�1,�2 be
the set { γ | ∃u1, u2.γ(u1) = 
1 ∧ γ(u2) = 
2 ∧ u1 	= u2 } of action trees. Then,
p |= 
1||
2 if and only if L(Gp) 	⊆ Lsensitive ∪ L�1,�2 holds.

Proof. Suppose p |= 
1||
2. Then there exists c such that { (S, ε, 0)} −→∗
p c with

c(π1) = (e�11 , L1, s1), c(π2) = (e�22 , L2, s2), and π1 	= π2. By Lemma 3, there exists
a run-time term t such that S −→∗

Gp
t, X(t) = c, and t⊥ is join-lock-sensitive.

By the conditions X(t) = c and t⊥, t⊥ ∈ L�1,�2 . Since S −→∗
Gp

t −→∗
Gp

t⊥, we

have t⊥ ∈ L(Gp) ∩ Lsensitive ∩ L�1,�2 , i.e., L(Gp) 	⊆ Lsensitive ∪ L�1,�2 .
Conversely, suppose L(Gp) 	⊆ Lsensitive∪L�1,�2 , i.e., γ ∈ L(Gp)∩Lsensitive∩L�1,�2

for some action tree γ. Then there exists a run-time term t such that t⊥ = γ and
S −→∗

Gp
t. By Lemma 2, we have { ε #→ (S, ε, 0) } −→∗

p X(t). By the conditions

t⊥ = γ and γ ∈ L�1,�2 , t has two distinct sub-terms (at redex-positions) of the

form E�1 t1 and E�2 t2. Thus, there exist π1, π2 such that X(t)(π1) = (e�11 , L1, s1)
and X(t)(π2) = (e�22 , L2, s2) with π1 	= π2. Therefore, we have p |= 
1||
2 as
required. ��
Because Lsensitive ∪ L�1,�2 is a regular tree language, by Theorems 1 and 2, the
pairwise reachability p |= 
1||
2 is decidable.
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Complexity. Recall that the order of Gp is max(order (p), 1) and the model
checking of order-k HORS is k-EXPTIME [15]. Therefore, the pairwise reacha-
bility analysis for order-k programs is k-EXPTIME for k ≥ 1. As for the lower-
bound, the problem of checking whether 
 ∈ L(G) (where 
 is a singleton tree
consisting of the leaf 
) is already (k − 1)-EXPTIME-hard [12]. Since it can be
easily reduced to a pairwise reachability analysis problem, the pairwise reacha-
bility is (k − 1)-EXPTIME-hard. It should be noted, however, that if a regular
tree language L is fixed, and also if both the largest arity and order of symbols
are fixed, then L(G) ⊆ L can be decided in time linear in the size of G [11].
In our method, the regular tree language Lsensitive ∪ L�1,�2 is determined by the
sets Label and Lock. We can fix Label as { 
1, 
2 } by omitting the other labels
from the input program. Therefore, if we fix (i) the largest arity and order of
functions in a program and (ii) the number of locks used in the program (i.e.,
|Lock|), then the pairwise reachability can also be decided in time linear in the
size of the program.

4 Preliminary Experiments

We carried out preliminary experiments to check the feasibility of our verification
method. As the underlying model checker, we used HorSat [1]. At the time
of writing this paper, we have not yet fully automated the translation from
programs to HORS, but doing so is not difficult.

Table 1 shows the experimental results. The column “Order” and “# of func-
tions” indicate the order and the number of function definitions of each program.
The rightmost column shows the times spent for higher-order model checking
(excluding those for translations, which can be performed instantly once au-
tomated). Note that the Reachability column shows the answers for pairwise
reachability, not for the original verification problems. The benchmark program
example has been taken from Example 1. The program example wrong is a varia-
tion of example, obtained by omitting join operation of F . The other benchmark
programs have been obtained by encoding exceptions, Java-style “synchronized”
constructs (but with non-reentrant locks), and lists. The encoding uses higher-
order functions, so it demonstrates an advantage of being able to deal with
higher-order programs. For example, exception models the following OCaml-
like program:

let rec read_and_update x =

let n = read_int(x) (* may raise an Eof exception *) in

lock g; c := c+n; (* may raise an Overflow exception *)

unlock g; read_and_update x;;

let rec f file =

let x = open_in file in

try read_and_update(x) with

Eof -> close x | Overflow -> unlock g;

spawn(f("foo"));spawn(f("bar"));join();print c
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Table 1. The experimental results

Program Order # of functions Checked pair Reachability Elapsed time [sec.]

example 2 4 (�, �) no 0.11

example wrong 2 4 (�, �) yes 0.08

exception 3 7 (�, �) no 0.25

exception wrong 3 7 (�, �) yes 0.12

synchronized 3 7 (�1, �1) no 0.28
(�1, �2) yes 1.01

list 4 8 (�1, �1) no 0.81
(�1, �2) no 1.75

Here, the goal of verification is to check that no race occurs on the shared
variable c. The above program is encoded into the following order-3 program of
the language in Section 2;

R h k = if (h True) (acqg; (if (relg;R h k) (h False))�)
F k = R H k H b = b $ (relg; $) P k = k�

S = spawn(F ); (spawn(F ); (join; (P $))) True x y = x False x y = y

Here, the function R corresponds to read and update; we have abstracted away
x and instead added an exception handler h and a continuation parameter k in
order to precisely model exception primitives. The program exception wrong is
a variation of exception obtained by omitting acqg and relg operations.

All the benchmark programs have been verified within a few seconds. Al-
though the programs are very small, this is encouraging, considering the worst-
case complexity of higher-order model checking. As discussed at the end of the
previous section, the pairwise reachability can be decided in time linear with re-
spect to the size of HORS under a certain assumption; thus, the results indicate
that our method may scale for larger programs.

5 Related Work

As already mentioned in Section 1, the present work is based on the series of work
on verification of pushdown systems with nested locking [7,14,4], and extends
it to deal with higher-order programs. The target language of our verification
is more expressive than dynamic pushdown networks and corresponds to an ex-
tension of collapsible pushdown systems [6] (which are higher-order pushdown
systems extended with collapse operations) with concurrency primitives. Gawl-
itza et al. [4] used a clever encoding of a configuration of a dynamic pushdown
network, so that the (forward) reachable set of configurations can be represented
as a regular tree language and the reachability problem can be reduced to the
inclusion between regular tree languages. One of our insights was that thanks to
the decidability of higher-order model checking, actually we need not represent
the reachable set as a regular language; a higher-order tree language (generated
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by a HORS) suffices. This has enabled not only the higher-order extension, but
also a conceptual simplification of the verification method in our opinion.

Higher-order model checking has recently been applied to program verifica-
tion, but most of them have been for sequential programs [9,13,16]. Kobayashi
and Igarashi [10] have shown that the reachability problem for higher-order con-
current programs with a bounded number of context switches can be reduced
to higher-order model checking. (They have also shown a reduction from ver-
ification of higher-order concurrent programs to an extension of higher-order
model checking, but the latter is undecidable.) Hague [5] has shown the decid-
ability of reachability of ordered, phase-bounded and scope-bounded concurrent
collapsible pushdown systems. These methods underapproximate the reachable
set of ordinary higher-order concurrent programs (without the “bound” condi-
tions). To our knowledge, there is no realistic implementation of those methods.
There are also overapproximation approaches to static analysis or verification of
higher-order concurrent programs [2,3,8].

6 Conclusion

We have shown the decidability of pairwise reachability of higher-order con-
current programs with recursion, dynamic process creation, joins, and nested
locking. To our knowledge, this is the first realistic application of higher-order
model checking to verification of concurrent programs. Despite the extremely
high worst-case complexity of higher-order model checking, preliminary experi-
ments show that our approach is feasible at least for small programs.
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Abstract. The orbit problem is at the heart of symmetry reduction
methods for model checking concurrent systems. It asks whether two
given configurations in a concurrent system (represented as finite se-
quences over some finite alphabet) are in the same orbit with respect to
a given finite permutation group (represented by their generators) acting
on this set of configurations. It is known that the problem is in general
as hard as the graph isomorphism problem, which is widely believed to
be not solvable in polynomial time. In this paper, we consider the re-
striction of the orbit problem when the permutation group is cyclic (i.e.
generated by a single permutation), an important restriction of the orbit
problem. Our main result is a linear-time algorithm for this subproblem.

1 Introduction

Since the inception of model checking, a key challenge in verifying concurrent
systems has always been how to circumvent the state explosion problem due to
the growth in the number of processes. Among others, symmetry reduction [10,
14, 18] has emerged to be an effective technique in combatting the state explosion
problem. The essence of symmetry reduction is to identify symmetries in the
system and avoid exploring states that are “similar” (under these symmetries)
to previously explored states, thereby speeding up model checking.

Every symmetry reduction method has to deal with the following problems:
(1) how to identify symmetries in the given system, and (2) how to check that
two configurations are similar under these symmetries. For concurrent systems
with n processes, Problem 1 amounts to searching for a group G of permutations
on [n] := {1, . . . , n} such that the system behaves in an identical way under the
action of permuting the indices of the processes by any π ∈ G. For example,
for a distributed protocol with a ring topology, the group G could be a rotation
group generated by the “cyclical right shift” permutation RS that maps i #→ i+1
mod n for each i ∈ [n]. The reader is referred to the recent survey [23] for more
detailed discussions and techniques for handling Problem 1, a computationally
difficult problem in general. Now the group G partitions the state space of the
concurrent system (i.e. Γn for some finite set Γ ) into equivalence classes called
(G-)orbits. Problem 2 is essentially the orbit problem (over finite permutation
groups): given G and two configurations v,w ∈ Γn, determine whether v and w

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 327–341, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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are in the same G-orbit. For example, if G is generated by RS with n = 4, the
two configurations (1, 1, 0, 0) and (0, 0, 1, 1) are in the same orbit.

The orbit problem (OP) was first studied in the context of model checking by
Clarke et al. [10] in which it was shown to be in NP but is as hard as the graph
isomorphism problem, which is widely believed to be not solvable in polynomial
time. The difficulty of the problem is due to the fact that the input group G is
represented by a set S of generators and that the size of G can be exponential
in |S| in the worst case. There is also a closely related variant of OP called the
constructive orbit problem (COP), which asks to compute the lexicographically
smallest element w ∈ Γn in the orbit of a given configuration v ∈ Γn with
respect to a given group G. OP is easily reducible to COP, though the reverse
direction is by no means clear. COP was initially studied in the context of
graph canonisation by Babai and Luks [3], in which COP was shown to be NP-
hard (in contrast, whether OP is NP-hard is open). In the context of model
checking, COP was first studied by Clarke et al. [9], in which a number of “easy
groups” for which COP becomes solvable in P are given including polynomial-
sized groups (e.g. rotation groups), the full symmetry group Sn (i.e. containing
all permutations on [n]), and disjoint/wreath products of easy groups (cf. [13]).

In this paper, we consider the orbit problem over cyclic groups (i.e. generated
by a single permutation π ∈ Sn), which is an important subproblem of OP.
Firstly, an algorithm for this subproblem has immediate applications for OP in
the general case. For example, given a permutation group G with generators
π1, . . . , πk, we can check if the two configurations v and w are in the same
orbit of the cyclic subgroup generated by any one of πj . [If yes, then v and w
are also in the same G-orbit.] It is also possible to combine cyclic groups with
other easy groups from [9] via disjoint/wreath product operators. Secondly, it
subsumes a commonly occurring class of symmetries for concurrent systems: the
rotation groups. Unlike the case of rotation groups however, the size of cyclic
groups can be exponential in n (see Proposition 3 below), which rules out a naive
enumeration of the group elements. Finally, OP over cyclic groups is intimately
connected to the classical orbit problem over rational matrices [19]: given a
rational n-by-n matrix M and two rational vectors v,w ∈ Qn, determine if there
exists k ∈ N such that Akv = w. In fact, they coincide when M is restricted to
permutation matrices [6], i.e., 0-1 matrices with precisely one column for each
row with entry 1. To see this, given a permutation π on [n], simply take an n-by-
n 0-1 matrix A = (A[i, j])1≤i,j≤n such that A[i, j] = 1 iff π(j) = i. The reverse
direction is similar. That OP over cyclic groups is in P follows from Kannan and
Lipton’s celebrated result [19] that OP over rational matrices is in P.

Contributions. In this paper, we provide an algorithm for the orbit problem
over cyclic groups that is simpler than Kannan-Lipton’s algorithm [19] and more-
over runs in linear-time in the standard RAM model. To this end, we provide a
linear-time reduction to the problem of solvability of systems of linear congruence
equations. The reduction is simple though it exploits subtle connections to the
string searching problem and number-theoretic results like the Erdös-Graham
Lemma [15] concerning solutions of Diophantine equations.
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As for the solvability of systems of linear congruence equations, we start off
with an algorithm that runs in linear-time assuming constant-time integer arith-
metic operations. However, when we measure the number of bit operations (i.e.
bit complexity model), it turns out that the algorithm runs in time cubic in the
number of equations in the systems. To address this issue, we restrict the prob-
lem to input instances provided by our reduction from the orbit problem. We
offer two solutions. Firstly, we show that the average-case complexity of the algo-
rithm under the bit complexity model is O(log5 n), which is sublinear. Secondly,
we provide another algorithm that uses at most linearly many bit operations in
the worst case (though on average it is worse than the first algorithm).

Organisation. Section 2 contains definitions and basic concepts. We provide
our first algorithm for solving systems of linear congruence equations in Sec-
tion 3 (Algorithm 1), while we provide our linear-time reduction from the orbit
problem to equations solving in Section 4 (Algorithm 2). Thus far, we assume
that arithmetic operations take constant time. We deal with the issue of bit
complexity in Section 5. We conclude with future work in Section 6.

2 Preliminaries

General Notations: We use log (resp. ln) to denote the logarithm function
in base 2 (resp. natural logarithm). We use the standard interval notations to
denote a subset of integers within that interval. For example, [i, j) denotes the
set {k ∈ Z : i ≤ k < j}. Likewise, for each positive integer n, we use [n] to
denote the set {1, . . . , n}. We shall also extend arithmetic operations to sets of
numbers in the usual way: whenever S1, S2 ⊆ Z, we define S1 + S2 := {s1 + s2 :
s1 ∈ S1, s2 ∈ S2} and S1S2 := {s1 × s2 : s1 ∈ S1, s2 ∈ S2}. In the context
of arithmetic over 2Z, we will treat a number n ∈ N as the singleton set {n}.
That way, for a, b ∈ N, the notation a + bZ refers to the arithmetic progression
{a + bc : c ∈ Z}, where a (resp. b) is called the offset (resp. period) of the
arithmetic progression. Likewise, for a subset S ⊆ N, we use gcd(S) to denote
the greatest common divisor of S.

We will use standard notations from formal language theory. Let Γ be an
alphabet whose elements are called letters. A word (or a string) w over Γ is a
finite sequence of elements from Γ . We use Γ ∗ to denote the set of all words over
Γ . The length of w is denoted by |w|. Given a word w = a1 . . . an, the notation
w[i, j] denotes the subword ai . . . aj . For a sequence σ = i1, . . . , ik ∈ [n]∗ of
distinct indices of w, we write w[σ] to denote the word ai1 . . . aik . We also define
RS(w) to be ana1a2 . . . an−1, i.e., the word w cyclically right-shifted.

Number Theory: We will use the following basic result (cf. [11]).

Proposition 1 (Chinese Remainder Theorem). Let n1, . . . , nk be pairwise

relatively prime positive integers, and n =
∏k

i=1 ni. The ring Zn and the direct
product of rings Zn1 × · · · × Znk

are isomorphic under the function σ : Z →
Zn1 × · · · × Znk

with σ(x) := (x mod n1, . . . , x mod nk) for each x ∈ Z.
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Groups: We briefly recall basic concepts from group theory and permutation
groups (cf. see [7]). A group G is a pair (S, ·), where S is a set and · : (S×S)→ S
is a binary operator satisfying: (i) associativity (i.e. g1 · (g2 · g3) = (g1 · g2) · g3),
(ii) the existence of a (unique) identity element e ∈ S such that g · e = e · g = g
for all g ∈ S, and (iii) closure under inverse (i.e. for each g ∈ G, there exists
g−1 ∈ G such that g · g−1 = g−1 · g = e). When it is clear from the context, we
will write g · g′ as gg′. The order ord(G) of the group G is defined to be |S|.
This paper concerns only finite groups, i.e., groups G with ord(G) = |S| ∈ N.
For each n ∈ N, we define gn by induction: (i) g0 = e, and (ii) gn = gn−1 · g.
The order ord(g) of g ∈ G is the least positive integer n such that gn = e.

A subgroup H of G = (S, ·) (denoted as H ≤ G) is any group (S′, ·H) such
that S′ ⊆ S and ·H and · agree on S′. Given any subset X ⊆ S, the subgroup
of G generated by X is defined to be the subgroup 〈X〉 := (S′, ·h) of G each of
whose elements can be expressed as a finite product of elements of X and their
inverses. If H = 〈X〉, then X is said to generate H . A cyclic group is a group
generated by a singleton set X = {g}.

An action of a group G = (S, ·) on a set Y is a function × : S × Y → Y such
that for all g, h ∈ S and y ∈ Y : (1) (gh) × y = g × (h × y), and (2) e × y = y.
The (G-)orbit containing y, denoted Gy, is the subset {g× y : g ∈ G} of Y . The
action × partitions the set Y into G-orbits. When the meaning is clear, we shall
omit mention of the operator ×, e.g, condition (2) above becomes ey = y.

Permutation Groups. A permutation on [n] is any bijection π : [n] → [n].
The set of all permutations on [n] forms the (nth) full symmetry group Sn un-
der functional composition. We shall use the notation Id to denote the identity
element of each Sn. A word w = a0 . . . ak−1 ∈ [n]∗ containing distinct elements
of [n] (i.e. ai 	= aj if i 	= j) can be used to denote the permutation that maps
ai #→ ai+1 mod k for each i ∈ [0, k) and fixes other elements of [n]. In this case, w
is called a cycle, which we will often write in the standard notation (a0, . . . , ak−1)
so as to avoid confusion. Observe that w and RS(w) represent the same cycle c.
We will however fix a particular ordering to represent c (e.g. the word provided as
input to the orbit problem). For this reason, if v ∈ Γn for some alphabet Γ , the
notation v[c] is well-defined (see General Notations above), which means projec-
tions of v onto elements with indices in c, e.g., if v = (1, 1, 1, 0) and c = (1, 4, 2),
then v[c] = (1, 0, 1). Any permutation can be written as a composition of disjoint
cycles [7]. Each subgroup G = (S, ·) of Sn acts on the set Γn (over any finite
alphabet Γ ) under the group action of permuting indices, i.e., for each π ∈ S
and v = (a1, . . . , an) ∈ Γn, we define πv := (aπ(1), . . . , aπ(n)).

Complexity Analysis: We will assume that permutations will be given in the
input as a composition of disjoint cycles. It is easy to see that permutations can
be converted back and forth in linear time from such representations and the
representations of permutations as functions. The size ‖n‖ of a number n ∈ N is
defined to be the length of the binary representation of n, which is 2logn3+ 1.

The size ‖c‖ of a cycle c = (a1, . . . , ak) on [n] is defined to be
∑k

i=1 ‖ai‖ (in
contrast, the length |c| of c is k). For a permutation π = c1 · · · cm where each
ci is a cycle, the size ‖π‖ of π is defined to be

∑m
i=1 ‖ci‖. We will use standard
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asymptotic notations from analysis of algorithms (big-O and little-o), cf. [11].
We also use the standard ∼ notation: f(n) ∼ g(n) iff limn→∞ f(n)/g(n) = 1.
We will use the standard RAM model that is commonly used when analysing
the complexity of algorithms (cf. [11]). In Sections 3 and 4, we will assume that
integer arithmetic takes constant time. Later in Section 5, we will use the bit
complexity model (cf. [11]), wherein the running time is measured in the number
of bit operations.

3 Solving a System of Modular Arithmetic Equations

Recall that a linear congruence equation is a relation of the form x ≡ a (mod b),
where a, b ∈ N, whose solution set is denoted by [[x ≡ a (mod b)]] = a + bZ. A
system of linear congruence equations is a relation of the form

∧m
i=1 x ≡ ai

(mod bi). The set of solutions x ∈ Z to this system is denoted by [[
∧m
i=1 x ≡ ai

(mod bi)]], which equals
⋂m
i=1[[x ≡ ai (mod bi)]]. The system is soluble / solvable

if the solution set is nonempty. We use false to denote x ≡ 0 (mod 2) ∧ x ≡ 1
(mod 2), which is not solvable. The following proposition provides a fast symbolic
method for computing solutions to systems of linear congruences.

Proposition 2. For any solvable system of linear congruence equations ϕ(x) :=∧m
i=1 x ≡ ai (mod bi), we have [[ϕ(x)]] = [[x ≡ a (mod b)]] for some a, b ∈ Z.

Furthermore, there exists an algorithm which computes a, b in linear time.

This proposition is in fact a rather easy corollary of the following result in algo-
rithmic number theory about solving more general linear congruence equations
of the form ax ≡ b (mod n).

Lemma 1 (Linear Congruence Theorem; see [11, Chapter 31.4]). The
equation ax ≡ b (mod n) is solvable for the unknown x iff d|b, where d =
gcd(a, n). Furthermore, if it is solvable, then the set of solutions equals x0 +
(n/d)Z, for some x0 ∈ [0, n/d) that can be computed in time O(log n).

This algorithm made use of the Extended Euclidean algorithm, which explains
the O(log n) time complexity (see [11]). Algorithm 1 witnesses the linear-time
algorithm claimed in Proposition 2. The algorithm sequentially goes through
each equation x ≡ ai (mod bi), while keeping the solution to the subsystem∧j
i=1 x ≡ ai (mod bi) at jth iteration as an arithmetic progression a + bZ, for

some a, b ∈ Z. Before we go through any equation, the set of solutions to the
empty system of equations is a+ bZ with a = 0 and b = 1. At the jth iteration,
we assume that [[

∧j−1
i=1 x ≡ ai (mod bi)]] = a + bZ for some a, b ∈ Z. We replace

x in the equation x ≡ aj (mod bj) by a + by for an unknown y, which results
in the new equation ϕ(x) := by ≡ ai − a (mod bi). Lemma 1 gives an answer to
[[ϕ]] as either ∅ or a′+ b′Z, for some a′ ∈ [0, bi) and b′ ∈ [1, bi]. We substitute this

solution set back to x, which gives [[
∧j
i=1 x ≡ ai (mod bi)]] = (a′b + a) + bb′Z,

which justifies the assignments a := a′b + a and b := bb′.
As for the time complexity of the algorithm, at jth iteration the algorithm

invokes the algorithm from Lemma 1, which runs in time O(log bj). Therefore,
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Algorithm 1. Solving a system of modular arithmetic equations

Input: A system of modular arithmetic equations
∧m

i=1 x ≡ ai (mod bi)
Output: Solution set [[

∧m
i=1 x ≡ ai (mod bi)]] as ∅ or an arithmetic progression a+bZ.

a := 0; b := 1;
for i = 1, . . . ,m do

ϕ(y) := by ≡ ai − a (mod bi);
Apply algorithm from Lemma 1 on ϕ returning either ∅ or a′ + b′Z for [[ϕ]];
if [[ϕ]] = ∅ then return NO else a := a′b+ a; b := bb′ end if

end for
return a+ bZ;

the total running time of our algorithm is O(
∑m

j=1 log bj), i.e., linear in the size∑m
j=1(log aj + log bj) of the input.

Remark 1. The number of bits that is used to maintain a and b in the worst
case is linear in the size

∑m
j=1(log aj+log bj) of the input. This justifies treating

a single arithmetic operation as a constant-time operation. We will address the
issue of bit complexity in Section 5.

4 Reducing to Solving a System of Linear Congruence
Equations

In this section, we prove the main result of the paper.

Theorem 1. There is a linear-time algorithm for solving the orbit problem when
the acting group is cyclic.

This algorithm is a linear-time reduction from the orbit problem over cyclic
groups to solving a system of linear congruence equations, which will allow us
to use results from the previous section.

Before we proceed to the algorithm, the following proposition shows why the
naive algorithm that checks whether gi(v) = w, for a given permutation g ∈ Sn
and for each i ∈ [0, ord(g)), actually runs in exponential time.

Proposition 3. There exists a sequence {Gi}∞i=1 of cyclic groups Gi = 〈gi〉 such
that ord(gi) is exponential in the size ‖gi‖ of the permutation gi.

Proof. Let pn denote the nth prime. The Prime Number Theorem states that
pn ∼ n logn (cf. [17]). For each i ∈ Z>0, we define a cycle ci of length pi by
induction on i. For i = 1, let c1 = (1, 2). Suppose that ci−1 = (j, . . . , k). In
this case, we define ci to be the cycle (k + 1, . . . , k + pi). To define the sequence
{gi}∞i=1 of permutations, simply let gi = Πi

j=1ci. For example, we have g3 =
(1, 2)(3, 4, 5)(6, 7, 8, 9, 10). Since ci’s are disjoint, the order ord(gi) of gi is the
smallest positive integer k such that ckj = Id for all j ∈ [i]. If Sj denotes the set

of integers k satisfying ckj = Id, then ord(gi) is precisely the smallest positive

integer in the set
⋂i
j=1 Sj . It is easy to see that Sj = pjZ, which is the set of

solutions to the linear congruence equation x ≡ 0 (mod pj). Therefore, by the
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Chinese Remainder Theorem (cf. Propositon 1), the set
⋂i
j=1 Sj coincides with

the arithmetic progression tiZ with ti :=
∏i

j=1 pj . This implies that ord(gi) = ti.
Now the number ti is also known as the ith primorial number [1] with ti ∼
e(1+o(1))i log i, which is a corollary of the Prime Number Theorem. On the other
hand, the size of gi is

∑
(i) :=

∑i
j=1 pi, which is known to be ∼ 1

2 i
2 ln i (cf. [4]).

Therefore, ord(gi) is exponential in ‖gi‖ as desired. ��

Algorithm 2. Reduction to system of modular arithmetic equations

Input: A permutation g = c1 · · · cm ∈ Sn, a finite alphabet Γ , and v,w ∈ Γn.
Output: A system of modular arithmetic equations, which is satisfiable iff ∃i ∈ N :

gi(v) = w.
// First solve for each individual cycle
for all i = 1, . . . ,m do

Compute the length |ci| of the cycle ci;
Compute an ordered list S′

i ⊆ [0, |ci|) of numbers r with cri (v[ci]) = w[ci];
if S′

i = ∅ then return false end if
if |S′

i| = 1 then let ai be the member of Si; bi := |ci|; end if
if |S′

i| > 1 then ai := min(S′
i); a

′
i := min(S′

i \ {ai}); bi := a′
i − ai; end if

end for
// Now for each i ∈ [1, m] we have a modular arithmetic equation x ≡ ai (mod bi)
return YES iff there exists x ∈ N satisfying

∧m
i=1 x ≡ ai (mod bi)

Our linear-time reduction that witnesses Theorem 1 is given in Algorithm
2. In this algorithm, the acting group is G = 〈g〉 with g ∈ Sn, expressed as a
composition of disjoint cycles in a standard way, say, g = c1c2 · · · cm where each ci
is a cycle. Also part of the input is two strings v = v1 . . . vn,w = w1 . . . wn ∈ Γn

over a finite alphabet Γ . The orbit problem is to check whether f(v) = w for
some f ∈ G, i.e., f = gr for some r ∈ N. Since ci’s are pairwise disjoint cycles,
the question reduces to checking if there exists r ∈ N such that

∀i ∈ [1,m] : (criv)[ci] = w[ci] (∗)

In other words, for each i ∈ [1,m], applying the action cri to v gives us w when
restricted to the indices in ci. Essentially, Algorithm 2 sequentially goes through
each cycle ci and computes the set Si of solutions r to (criv)[ci] = w[ci] as the set
of solutions to the linear congruence equation x ≡ ai (mod bi). Therefore, the set
of solutions to (*) is precisely the set of solutions to the system of congruence
equations

∧m
i=1 x ≡ ai (mod bi). In the following, we will provide the details

of each individual step of Algorithm 2. We will also use the following running
example to illustrate the algorithm: c = (6, 5, 7, 3, 2, 1), v = 010001111, and
w = 101110001, where the positions in v and w that are modified by c are
underlined.

Step 1: Computing the length of cycles. This is the same as how to compute
the length of a list. Therefore, computing the length |ci| can be done in time
O(‖ci‖).
Step 2: Computing representatives S′

i ⊆ [0, |ci|) for Si. During this step,
we collect a subset of numbers h ∈ [0, |ci|) such that chi (v[ci]) = w[ci]. A
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quadratic algorithm for this is easy to come up with: sequentially go through
h ∈ [0, |ci|) while computing the current chi , and save h if chi (v[ci]) = w[ci] holds.
One way to obtain a linear-time algorithm is to reduce our problem to the string
searching problem: given a “text” T ∈ Σ∗ (over some finite alphabet Σ) and
a “pattern” P ∈ Σ∗, find all positions i in T such that T [i, i + |P |] = P . This
problem is solvable in linear-time by Knuth-Morris-Pratt (KMP) algorithm (e.g.
see [11]).

We now show how to reduce our problem to the string searching problem in
linear time. Suppose that c := ci = (j1, . . . , jk). We have v[c] = vj1 . . . vjk and
w[c] = wj1 . . . wjk .

Lemma 2. (cv)[c] = RS(v[c]).

In other words, if Dom(c) = {j1, . . . , jk}, the effect of c on v when restricted
to Dom(c) coincides with applying a cyclical right shift on the string [c]. Fol-
lowing our running example, it is easy to check that [c] = 101010 and (cv)[c] =
RS(v[c]) = 010101.

Proof (of Lemma 2). Let u = u1 . . . uk := (cv)[c] and u = u′1 . . . u′k := RS(v[c]).
It suffices to show that ut = u′t for all t ∈ Zk. By definition of RS, it follows
that u′t = vjt−1 . Now suppose that v′ = v′1 . . . v′n := cv. Then

v′j :=

{
vj if j /∈ Dom(c)
vj′ if j ∈ Dom(c) and, for some t ∈ Zk, j = jt+1 and j′ = jt.

So, we have ut = ((cv)[c])[t] = (v′[c])[t] = v′jt = vjt−1 . This proves that ut = u′t.
��

Lemma 3. For each r ∈ N, we have (crv)[c] = RS
r(v[c]).

Lemma 3 can easily be proven by induction using Lemma 2 (see full version).
Lemma 3 implies that the set S := Si ⊆ N of solutions r to the equation
(criv)[ci] = w[ci] is a finite union of arithmetic progressions of the form a + kZ,
where k = |ci| and a ∈ [0, k). This is simply because RS

r+k(v[ci]) = RS
r(v[ci]).

We will finitely represent S by the offsets a’s and the unique period k in these
arithmetic progressions.

We now show how to compute the offsets for S in linear time by a linear-time
reduction to the string searching problem. Define the text T := v[c]v[c] and the
pattern P := w[c]. Observe that, for each r ∈ [0, k), P is matched at position r
in T iff RS

r−1(v[c]) = w[c]. Therefore, after running the KMP algorithm with
the solution set S′, the offsets for S will be {r− 1 : r ∈ S′}. Solvability for each
individual equation amounts to checking that, for each cycle ci, the set Si of
solutions for the corresponding equation is nonempty.

Example 1. Continuing with our running example, it follows that T = v[c]v[c] =
101010101010 and P = w[c] = 010101. We see that P matches T at positions
S′ = {2, 4, 6}. This implies that the set S of solutions r ∈ Z to the equation
(crv)[c] = w[c] is (1+6Z)∪(3+6Z)∪(5+6Z). �
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Observe that, for each ci, this step takes time O(‖ci‖). Therefore, going
through all the ci’s, this step takes time

∑m
i=1 O(‖ci‖) = O (

∑m
i=1 ‖ci‖) =

O(‖g‖), i.e., linear in input size.

Step 3: Representing Si as a single arithmetic progression. In the pre-
vious step, we have computed the representatives for Si in [0, |ci|). This only
shows that Si is a finite union of arithmetic progressions, which cannot in gen-
eral be expressed as the set of solutions to a linear congruence equation. In this
step, we show that Si can be represented as a single arithmetic progression and
furthermore justify why the last three lines in Algorithm 2 computes Si.

Lemma 4 (Normal Form). For each i = 1, . . . ,m, either Si = ∅ or Si =
ai+ biZ for some ai, bi ∈ [0, |ci|) where bi divides |ci|. In the case when |S′

i| > 1,
we have ai = p1 and bi = p2− p1, where p1 < p2 are the smallest numbers in S′

i.
Furthermore, we may compute the pair (ai, bi) of numbers in time O(‖ci‖).

To prove this lemma, we will use the following number-theoretic result by Erdös
and Graham [15]. [Also see the formulation in [8, 22], in which the result was
applied in automata theory.]

Proposition 4. Let 0 < p1 < . . . < ps ≤ k be natural numbers. Then, the set
X := {

∑s
i=1 pixi : x1, . . . , xs ∈ N} ⊆ N coincides with the set S∪(a+bN), where

S ⊆ N contains no numbers bigger than k2, and a is the least integer bigger than
k2 that is a multiple of b := gcd(p1, . . . , ps).

Proof (of Lemma 4). We use the shorthand S (resp. c) for Si (resp. ci). From Step
2, we know that S is a union of arithmetic progressions

⋃s
j=1 (pj + kZ), for some

pj ∈ [0, k) and k = |c|. Without loss of generality, we assume that p1 < · · · < ps.
If s ∈ {0, 1}, then we are done. Suppose now that s > 1. Let v[c] = d1 . . . dk and
w[c] = d′1 . . . d′k. In this case, thanks to Lemma 3, it is the case that for each
j ∈ [1, s] and l ∈ [1, k], we have dl+pj mod k = d′l. Let Δ := {ph′ − ph : ∀h < h′ ∈
[1, s]}∪{k} be the set of all differences in the offsets of the arithmetic progressions
union the set {k} containing the common period. By transitivity of ‘=’, it follows
that dl mod k = dl+δ mod k for each l ∈ [0, k) and δ ∈ Δ. Again, by transitivity
of ‘=’, it follows that dl mod k = dl+σ mod k for each l ∈ [0, k) and each number
σ in the set X := {(

∑s
i=1 pixi) + kxs+1 : x1, . . . , xs+1 ∈ N}. By Proposition 4,

we have X = S∪ (a+bN) where S ⊆ [0, k2] and a is the least integer bigger than
k2 that is a multiple of b := gcd(Δ). Observe also that b divides all numbers in S
and so we have dl = dl′ for each l, l′ ∈ [0, k) with l ≡ l′ (mod b). In other words,
we have v = v′ . . .v′︸ ︷︷ ︸

k/b times

, where v′ = d1 . . . db. Since RS
p1(v[c]) = w[c], it follows

that, for each q ∈ N, RS
p1+bq(v[c]) = RS

p1(RS
bq(v[c])) = RS

p1(v[c]) = w[c].
Therefore, we have S ⊆ p1 + bN. On the other hand, since b divides k and
each number in {pj − p1 : j ∈ [2, s]}, we also have S ⊇ p1 + bN. This gives us
S = p1 + bN.

From Step 2, we have computed the set S′ := S ∩ [0, |c|). If S′ = ∅, we also
knew that Si = ∅. If S′ = {p} is a singleton, we have S = p+ kZ. If |S′| > 1, we
find the two smallest numbers p1 < p2 in S′. It follows that S = p1+(p2− p1)Z.
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Observe that this takes time O(‖c‖). [In fact, it is only linear in the size of the
two smallest numbers since we ignore the rest of the members of S′.] ��

Example 2. Continuing with our running example, we have S = (1+ 6Z)∪ (3 +
6Z)∪ (5+6Z) = 1+2Z. �

The last three lines in Algorithm 2 runs in constant time since determining
whether |Si| = 0, |Si| = 1, or |Si| > 1 requires the algorithm to explore only a
constant number of elements in Si.

Summing Up. To sum up, the time spent computing the linear congruence
equation x ≡ ai (mod bi) for each i ∈ [1,m] is O(‖ci‖). Therefore, our reduction
runs in time O(

∑m
i=1 ‖ci‖) = O(‖g‖), which is linear in input size. Therefore,

invoking Proposition 2 on the resulting system of linear congruence equations,
we obtain the set of solutions to (*) in linear time.

Example 3. Let us continue with our running example. Let

g1 := c(4, 8) = (6, 5, 7, 3, 2, 1)(4, 8), g2 := c(4, 8, 9) = (6, 5, 7, 3, 2, 1)(4, 8, 9).

Then, running Algorithm 2 on g1 yields the system x ≡ 1 (mod 2) ∧ x ≡ 1
(mod 2), which is equivalent to x ≡ 1 (mod 2). Running Algorithm 2 on g2
yields the system x ≡ 1 (mod 2)∧ x ≡ 1 (mod 3). Both systems are solvable. �

Remark 2. At this stage, the reader might wonder whether the Normal Form
Lemma (cf. Lemma 4) is necessary. For example, without this lemma one could
directly convert the orbit problem over cyclic groups into satisfiability of positive
boolean formulas (i.e. involving both disjunctions and conjunctions) where each
proposition is interpreted as a linear congruence equation. [This can be construed
as adding the power of disjunction to systems of linear congruence equations.]
Unfortunately, it is not difficult to show that the resulting satisfiability problem
is NP-complete using the techniques of Gödel numbering (cf. [16, 21]).

5 Making Do with Linearly Many Bit Operations

Thus far, we have assumed that arithmetic operations take constant time. In
this section, since Algorithm 1 makes a substantial use of basic arithmetic oper-
ations, we will revisit this assumption. It turns out that, although our reduction
(Algorithm 2) to solving a system of linear congruence equations runs in linear
time in the bit complexity model, the algorithm for solving the system of equa-
tions (Algorithm 1) uses at least a cubic number of arithmetic operations. The
main results in this section are two-fold: (1) on inputs given by our reduction,
Algorithm 1 runs in sublinear time (more precisely, O(log5 n)) on average in
the bit complexity model, and (2) there exists another algorithm for solving a
system of linear congruence equations (with numbers in the input represented
in unary) that runs in linear time in the bit complexity model in the worst case.

We begin with two lemmas that provide the running time of Algorithm 2 and
Algorithm 1 in the bit complexity model.
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Lemma 5. Algorithm 2 runs in linear time in the bit complexity model.

Proof. On ith iteration, the number |ci| is stored in binary counter and can be
computed by counting upwards from 0 and incrementing by 1 as we go through
the elements in ci. Although a single increment by 1 might take O(|ci|) bit
operations in the worst case (since we have to propagate the carry bit), it is
known (e.g. see [11, Chapter 17, p. 454]) that the entire sequence of opera-
tions actually takes time O(|ci|). Finally, since addition and substraction of two
numbers can easily be performed in O(β) time on numbers that use at most β
bits, the operation bi := a′i − ai on the last line of the iteration takes at most
O(log |ci|) time. Therefore, accounting for all the cycles, the algorithm takes∑m

i=1 O(‖ci‖) = O(
∑m

i=1 ‖ci‖) = O(‖g‖), which is linear in the input size. ��
Lemma 6. On an input

∧m
i=1 x ≡ ai (mod bi) with N = max{bi : i ∈ [1,m]},

Algorithm 1 uses at most m logN bits to store any numeric variables. Further-
more, the algorithm runs in time O(m3 log2 N) in the bit complexity model.

Proof. On ith iteration, the number of bits used to store a and b grow by at
most log bi. On the other hand, the invariant that a′, b′ ∈ [0, bi) is always main-
tained on the ith iteration and so they only need at most logN bits to represent
throughout the algorithm. Hence, the algorithm uses M = O(m logN) bits to
store a, b, a′, and b′. Extended Euclidean Algorithm runs in time O(M2) on
inputs where each number uses at most M bits (cf. [11, Problem 31-2]), which
also bounds the time it takes on each iteration. Therefore, the algorithm takes
at most O(mM2) = O(m3 log2 N) in the bit complexity model. ��

We now provide an average case analysis of the running time of Algorithm 1 on
system of linear congruence equations given by our reduction. The input to the
orbit problem over cyclic groups includes a permutation g ∈ Sn and two vectors
v,w ∈ Γn. We briefly recall the setting of average-case analysis (cf. [20]). Let ΠN

be the set of all inputs to the algorithm of size N . Likewise, let ΣN be the sum of
the costs (i.e. running time) of the algorithm on all inputs of sizeN . Hence, ifΠN,k

is the cost of the algorithm on input of sizeN , then ΣN =
∑

k kΠN,k. The average
case complexity of the algorithm is defined to be ΣN/ΠN .

Theorem 2. The expected running time of Algorithm 1 in the bit complexity
model on inputs provided by Algorithm 2 is O(log5 n).

Proof. The size of a single permutation g ∈ Sn is O(n) and additionally Πn =
|Sn| = n!. Suppose that g has k cycles (say, g = c1 · · · ck). Then, Algorithm 2

produces a system of equations
∧k
i=1 x ≡ ai (mod bi), where ai, bi ∈ [0, |ci|).

By Lemma 6, Algorithm 1 takes O(k3 log2 n) time in the bit complexity model,
since N := max{bi : i ∈ [1,m]} ≤ n. In addition, the number of permutations
in Sn with k cycles is precisely the definition of the unsigned Stirling num-

ber of the first kind

[
n
k

]
. Therefore, we have Σn = O

(∑n
k=1(k

3 log2 n)

[
n
k

])
= O

(
log2 n

∑n
k=1 k3

[
n
k

])
. Therefore, it suffices to show that 1

n!

∑n
k=1 k3

[
n
k

]
∼

c log3 n for a constant c. The proof can be found in the full version. ��
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Finally, we will now give our final main result of this section.

Theorem 3. There exists a linear-time algorithm in the bit complexity model
for solving a system of linear congruence equations when the input numbers are
represented in unary.

We now provide an algorithm that witnesses the above theorem. Let
∧m
i=1 x ≡ ai

(mod bi) be the given system of equations. With unary representation of num-
bers, the size Ni of the equation x ≡ ai (mod bi) is ai + bi. We use n to denote
the total number of bits in the system of equations. Initially, we compute a bi-
nary representation of all the numbers ai’s, bi’s, and n as in the proof of Lemma
5, which takes linear time. Next we factorise all the numbers bi into a product
of distinct prime powers pei1ji1 · · · p

eiti
jiti

, where pj stands for the jth prime and

all eij ’s are positive integers. This can be done in time O(
√

Ni log
2 Ni). To ob-

tain this time bound, we can use any unconditional1 deterministic factorisation
methods like Strassen’s algorithm, whose complexity was shown in [5] (cf. also
see [12]) to be O(f(N1/4 logN)) for factoring a number N , where f(M) is the
number of bit operations required to multiply two numbers with M bits. The
standard (high-school) multiplication algorithm runs in quadratic time giving us
f(M) = O(M2), which suffices for our purposes. This shows that Strassen’s al-
gorithm runs in time O(N1/2 log2 N). [In practice, do factoring using the general
number field sieve (cf. [11]), which performs extremely well in practice, though
its complexity requires some unproven number-theoretic assumptions.]

Next, following Chinese Remainder Theorem (CRT), we compute zij := ai
mod p

eij
ij for each j ∈ [1, ti]. Let us analyse the time complexity for performing

this. Each zij can be computed by a standard algorithm (e.g. see [11]) in time
quadratic in the number of bits used to represent ai and p

eij
ij . Since each of these

numbers use at most logNi bits, each zi can be computed in time O(log2 Ni),
which is o(Ni). In addition, since eij > 1 for each j ∈ [1, ti], it follows that ti =
O(logNi). This means that the total time it takes to compute {zij : j ∈ [1, ti]}
is O(log3 Ni), which is also o(Ni). So, computing this for all i ∈ [1,m] takes time
O(
∑m

i=1 log
3 Ni), which is at most linear in the input size.

In summary, for each i ∈ [1,m], we obtained the following system of equations,
which is equivalent to x ≡ ai (mod bi) by CRT:

x ≡ zi1 (mod pei1i1 ) ∧ · · · · · · ∧ x ≡ ziti (mod p
eiti
iti

) (Ei)

The final step is to determine if there exists a number x ∈ N that satisfies
each (Ei), for all i ∈ [1,m]. Loosely, we will go through all the equations and
makes sure that there is no conflict between any two equations whose periods
are powers of the same prime number, i.e., x ≡ a (mod b) and x ≡ a′ (mod b′)
such that b = pi and b′ = pi

′
for some prime p and i, i′ ∈ Z>0. In order to achieve

this in linear-time in the bit complexity model, one has to store these equations
in the memory (in the form of lookup tables) and carefully perform the lookup
operations while looking for a conflict. To this end, we first compute pmax =
max{pij : i ∈ [1,m], j ∈ [1, ti]} and emax = max{eij : i ∈ [1,m], j ∈ [1, tj]}.
1 This means that the bound does not depend on any number-theoretic assumptions.



A Linear-Time Algorithm for the Orbit Problem over Cyclic Groups 339

Lemma 7. pmax and emax can be computed using O(n) many bit operations.

Proof. The algorithm for computing pmax and emax is a slight modification of the
standard algorithm that computes the maximum number in a list, which sequen-
tially goes through the list n1, . . . , nm while keeping the maximum number nmax

in the sublist explored so far. To ensure linear-time complexity, we have to make
sure that when comparing the values of ni and nmax, we explore at most ni bits of
nmax (since nmax is possibly much larger than ni). This is easily achievable by as-
suming binary representation of these numbers without redundant leading 0s, e.g.,
the number 5 will be represented as 101, not 0101 or 00000101. That way, we will
only need to inspect log(ni) bits from nmax on the ith iteration, which will give a
total running time of O(

∑m
i=1 log(ni)), which is linear in input size. ��

Next, keep one 1-dimensional array A and one 2-dimensional array B:

A[1, . . . , pmax] B[1, . . . , pmax][1, . . . , emax].

A[k] and B[k][e] will not be defined when k is not a prime number. We will use
A[k] as a flag indicating whether some equation of the form x ≡ z (mod ke)
has been visited, in which case A[k] will contain (z, e). In this case, we will use
B[k][e′] (with e′ ≤ e) to store the value of z mod ke

′
.

We now elaborate how A and B are used when iterating over the equations
in the system. Sequentially go through each system (Ei) of equations. For each
i ∈ [1,m], sequentially go through each equation x ≡ zij (mod p

eij
ij ), for each

j ∈ [1, ti], and check if A[pij ] is defined. If it is not defined, set A[pij ] := (zij , eij)
and compute B[pij ][l] = zij mod pl for each l ∈ [1, eij ]. If it is defined (say,
A[pij ] = (z, e)), then we analyse the constraints x ≡ z (mod peij) and x ≡ zij
(mod p

eij
ij ) simultaneously. We compare e and eij resulting in three cases:

Case 1. e = eij . In this case, make sure that z = zij otherwise the two equations
(and, hence, the entire system) cannot be satisfied simultaneously.

Case 2. e < eij . In this case, make sure that zij ≡ z (mod peij) (otherwise,
unsatisfiable) and assign A[pij ] := (zij , eij). For each l ∈ [1, eij ], update
B[pij ][l] := zij mod plij .

Case 3. e > eij . In this case, make sure that zij ≡ z (mod p
eij
ij ) (otherwise,

unsatisfiable).

We now analyse the running time of this final step (i.e. when scanning through
the subsystem (Ei)). To this end, we measure the time it takes to process each
equation x ≡ zij (mod p

eij
ij ). There are two cases, which we will analyse in turn.

(Case I): when A[pij ] is not defined. In this case, setting A[pij ] takes constant
time, while setting B[pij ][l] for all l ∈ [1, eij ] takes O(eij × (log zij + log p

eij
ij )2)

since computing a mod b can be done in time quadratic in log(a)+log(b). Since
eij ≤ logNi and zij , pij ≤ Ni, this expression can be simplified to O(logNi ×
log2(zijNipij)) = O(log3 Ni).

(Case II): when A[pij ] is already defined, e.g., A[pij ] = (z, e). In this case,
we will compare the values of e and eij . To ensure linear-time complexity,
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we will make sure that at most log(eij) bits from e are read by using the trick
from the proof of Lemma 7. For Case 1, we will need extra O(log zij) = O(logNi)
time steps. For Case 2, we have 0 ≤ z ≤ peij and computing zij mod peij can

be done in time O(log2 Ni) as before. Updating B[pij ][l] for all l ∈ [1, eij] takes
O(log3 Ni) as in the previous paragraph. For Case 3, since e > eij , we may access
the value of z mod p

eij
ij from B[pij ][eij ] in constant time and compare this with

the value of zij . Since z ∈ [0, p
eij
ij ), this takes time O(logNi).

In summary, either case takes time at most O(log3 Ni). Therefore, account-
ing for the entire subsystem (Ei), the algorithm incurs O(

∑ti
j=1 log

3 Ni) =

O(log4 Ni) time steps. Hence, accounting for all of the subsystems Ei (i ∈ [1,m])
the algorithm takes time O(

∑m
i=1 log

4 Ni), which is linear in the size of the input.
This completes the proof of Theorem 3.

Remark 3. The purpose of the 2-dimensional array B above is to avoid super-
linear time complexity for Case 3. We can imagine a system of linear equations∧m
i=1 x ≡ ai (mod bi), where a1 and b1 are substantially larger than the other

ai’s and bi’s (i ∈ [2,m]). In this case, without the lookup table B, checking
whether ai ≡ a1 (mod bi) in Case 3 will require the algorithm to inspect the
entire value of a1, which prevents us from bounding the time complexity in terms
of ai and will yield a superlinear time complexity for our algorithm.

6 Future Work

We mention several future research avenues. Firstly, can we extend polynomial-
solvability to any fixed number k ∈ Z>0 of group generators? The polynomial-
time reduction in [10] from the graph isomorphism problem to the orbit problem
requires an unbounded number of generators. In addition, the generalisation of
the orbit problem over rational matrices to any fixed number k of matrices
viewed as generators of (semi)groups is undecidable even when k = 3, 4, though
results on polynomial-time solvability (hence, decidability) exist when the ma-
trices commute (see [2] and references therein). So, polynomial-time solvability
does not follow from the corresponding problem over matrices. The second prob-
lem concerns the constructive orbit problem over cyclic groups. Due to the lack
of a target configuration w ∈ Γn, our technique does not seem to apply directly
in this case. In particular, we cannot simply use w ∈ Γn that is derived from the
input configuration v ∈ Γn by separately finding the lexicographically minimum
parts for each cycle in the given permutation, since this might render the system
of equations insoluble.
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Abstract. Self-stabilization algorithms are very important in designing
fault-tolerant distributed systems. In this paper we consider Herman’s
self-stabilization algorithm and study its expected self-stabilization time.
McIver and Morgan have conjectured the optimal upper bound being
0.148N2 , where N denotes the number of processors. We present an
elementary proof showing a bound of 0.167N2 , a sharp improvement
compared with the best known bound 0.521N2 . Our proof is inspired by
McIver and Morgan’s approach: we find a nearly optimal closed form of
the expected stabilization time for any initial configuration, and apply
the Lagrange multipliers method to give an upper bound of it.

1 Introduction

In [2], Dijkstra proposed the influential notion of self-stabilization algorithms
for designing fault-tolerant distributed systems. A distributed system is self-
stabilizable if it will always reach legitimate configurations, no matter where the
system starts. The system thus can recover from any transient error such as local
corrupted states. The concept has many applications in the network protocol,
and thus received much attention. See for example [14,3] for surveys on this
topic.

Dijkstra assumed that all participating processors are identical except for
a single processor which is necessary for breaking the symmetry. It is already
shown by Dijkstra in 1974 that no deterministic scheduler exists which guaran-
tees self-stabilization if all processors are identical. On the other side, Herman
proposed a randomized program in [7] to break the symmetry: he proposed a
self-stabilizing mutual exclusion algorithm, today known as Herman’s algorithm,
which stabilizes within finite steps with probability 1.

The protocol is designed for a token ring of N , N is odd, synchronous proces-
sors. Each processor may or may not have a token, and in a legitimate configu-
ration only a single token exists. For any finite N , the protocol can be viewed as
a finite state Markov chain with a single bottom strongly connected component
(SCC) consisting of all legitimate configurations. So a legitimate configuration

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 342–356, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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is reached with probability 1, regardless of the initial configuration. Hence, Her-
man’s protocol is self-stabilizing.

Another important performance measure in designing self-stabilization proto-
cols is the stabilization time which is the expected time until a legitimate config-
uration is reached. In Herman’s original work [7], an upper bound O(N2-logN.)
for stabilization time has been established, while in 2005, several groups of re-
searchers [6,12,13] gave an upper bound of O(N2), independently. Moreover,
McIver and Morgan [12] proved that the stabilization time is actually Θ(N2),
meaning that the lower bound and upper bound coincide. They also provided a
precise expected stabilization time for configurations with exactly three tokens.

One may expect that the story should end here from the viewpoint of com-
plexity theory, as we already have the asymptotically tight bound for the sta-
bilization time. However, McIver and Morgan [12] conjectured that the optimal
upper bound for general configurations is 4

27N
2 ≈ 0.148N2, which is obtained

by equidistant three token configurations. This conjecture, simple and elegant,
is indeed very difficult to prove. In recent years, it has attracted much attention
to improve the bound towards this conjecture: Kiefer et al. [9] proved a bound
of 0.64N2, and the authors of this paper further improved it to 0.521N2 [5], by
simply exploiting the precise solution for the three token configurations derived
in [12].

In this paper, we follow this research line by proving an upper bound of 1
6N

2,
approximately 0.167N2, for arbitrary configurations. Our bound is very close to
the conjectured optimal bound, with a gap of 0.019N2. It is worth noting that
our approach is completely elementary: for each initial configuration, we found
a closed-form upper bound for the expected stabilization time, inspired by the
three token formula given by McIver and Morgan. This bound is a function of the
gap vector of the initial configuration, thus a multivariate function. Our result
then follows by obtaining the maximum of the upper bounds over all initial
configurations, using the Lagrange multipliers method.

Note that systems of interacting and annihilating particles, either on a circle or
on a line, are heavily studied in areas including physics, combinatorics and neural
networks [11]. Most of them focus on exploring the precise solutions, for example
Balding [1] gives generating functions for the number of remaining particles at
time t, and this results is transferred in [9] to Herman’s setting. However, such
expressions are in general very complex and difficult to analyze, see [1,4,9]. In
contrast, our proof in this paper exploits mostly elementary concepts, and it is
much simpler than previous techniques for analyzing Herman’s algorithm [6,9].
Because of this, we are optimistic that our approach might provide alternative
ways to improve worst-case analysis of such particle systems.

Related Work. In [9], an asynchronous variant of Herman’s protocol is studied
as well. Recently, [8] has studied the distribution of the self-stabilization time
and shown that for an arbitrary t the probability of stabilization within time t
is minimized under this configuration with M = 3. On the practical side, using
the probabilistic model checker PRISM [10], McIver and Morgan’s conjecture is
validated for all rings with the size N ≤ 21 that can be exhaustively analyzed.
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2 Preliminaries z0

z1

w1

z2

w2

z3w3

z4

w4

w0

Fig. 1. A configuration with M =
5, N = 25

We assume to have N processors numbered
from 0 to N − 1, clockwise, with N odd, or-
ganized in a ring topology. Each processor
may or may not have a token. A configura-
tion with 0 < M ≤ N tokens, M is odd, is
a strictly increasing mapping z : {0, . . . ,M −
1} → {0, . . . , N − 1} such that z(0) < · · · <
z(M − 1). For all i ∈ {0, . . . ,M − 1}, the pro-
cessor z(i) has a token. We fix the ring size N
throughout this paper.

Herman’s protocol [7] works as follows: in
each time step, each processor with a token
either passes its token to its clockwise neighbor with probability 1

2 , or keeps
it with probability 1

2 . If a processor keeps its token and receives another one
from its counterclockwise neighbor, then both of those tokens are annihilated.
We refer to configurations with only one token as legitimate configurations. The
protocol can also be viewed as a finite state Markov chain. It is easy to see that
in this Markov chain there is a single bottom SCC consisting of all legitimate
configurations. Thus this SCC is reached with probability 1, regardless of the
initial configuration. It implies then that Herman’s protocol is self-stabilizing.

Let SM be the set of configurations with the number of tokens not exceeding
M . Let PM : SM × SM → [0, 1] be the probabilistic transition matrix between
configurations in SM , and EM : SM → [0,∞) the function of expected stabiliza-
tion time. The following lemma from [12], slightly modified with respect to our
notations, is crucial for our discussion.

Lemma 1. [12, Lemma 5] Let M ≥ 1 and v : SM → [0,∞) be a mapping such
that v(z) = 0 whenever z ∈ S1 is a legitimate configuration. Suppose (PM ·v)(z) ≤
v(z)−1 for any non-legitimate configuration z, where PM ·v is the mapping from
SM to [0,∞) such that

(PM · v)(z) =
∑
y∈SM

PM (z, y)v(y).

Then EM (z) ≤ v(z) for all z ∈ SM .

Employing Lemma 1, McIver and Morgan were able to find a closed form for
EM when M = 3. To present their result, we need a further definition.

Definition 1 (Gap Vector). Let M ≥ 3 and z ∈ SM\SM−2, i.e., it has exactly
M tokens. We define the associated gap vector w = 〈w0, w1, . . . , wM−1〉 of z,
where wi is the gap between the tokens z(i− 1) and z(i) defined by wi := z(i)−
z(i − 1) for i = 1, . . . ,M − 1, and w0 = N −

∑M−1
i=1 wi. We denote by GM ,

M ≥ 3, the set of gap vectors corresponding to configurations from SM , and set
G1 = {〈N〉}.
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Obviously, configurations with the same gap vector have the same expected
stabilization time. In other words, the value EM (z) depends only on the gap
vector w associated with z.

Lemma 2. [12, Lemma 7] For any z ∈ S3, let w = 〈w0, w1, w2〉 be the gap
vector of z. Then E3(z) = 4w0w1w2/N.

In this paper, we will further dig the potential of Lemma 1 to give a (nearly
optimal) bound on EM for the general case M ≥ 3.

3 Our Main Result

To simplify notations, we sometimes extend gap vectors, which have finite di-
mension, to infinite ones by appending 0 entries. That is, we let wi = 0 for all
i ≥M if w is a gap vector of dimension M . The following definition is crucial.

Definition 2. Let G =
⋃N
M=1,M is odd GM and F : G → [0,∞) be a mapping

defined by

F (〈w0, w1, · · · , wM−1〉) =
∞∑
i=0

wi ·

⎡⎣ ∞∑
j=0

wi+2j+1 ·
( ∞∑
k=0

wi+2j+2k+2

)⎤⎦ . (1)

With this definition, we can now state the main result of this paper.

Theorem 1. For any z ∈ SM with the associated gap vector w,

EM (z) ≤ 4

N
F (w). (2)

We can further apply the Lagrange multipliers method to compute the max-
imal value of EM (z) for each M ≤ N , which provides a better upper bound
1
6N

2 = 0.167N2, over the previous known bound 0.521N2 [5], of the expected
self-stabilization time for arbitrary initial configurations (cf. Theorem 2).

The proof of Theorem 1 will be presented in the next section. But first, we
apply it for some small values of M .

– M = 3. Then F (〈w0, w1, w2〉) = w0w1w2, and Eqn.(2) agrees with the precise
bound in Lemma 2.

– M = 5. Then F (w) equals the sum of all the products of three neighboring
gaps :

F (〈w0, w1, w2, w3, w4〉) = w0w1w2 + w1w2w3 + w2w3w4 + w3w4w0 + w4w0w1

(3)

– M = 7. In this case, F (w) is already involved. It contains the sum of all the
products of three neighboring gaps, and in addition it contains products of
gaps of the form wiwi+3wi+4. Here if we assume all arithmetic operations
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over the index set {0, . . . ,M − 1} are understood as modulo 7, then it can
be written as:

F (〈w0, w1, w2, w3, w4, w5, w6〉) =
6∑
i=0

wiwi+1wi+2 +

6∑
i=0

wiwi+3wi+4 .

– The explicit expressions for M > 7 are even more involved. It is still the
sum of some products of three (not necessarily neighboring) gaps, but the
pattern becomes more and more complicated. For example, products of
the form wiwi+N

3
wi+ 2N

3
will be needed for those N which are multiples

of 3.

To prove the main theorem, we first need to introduce some notation.

Definition 3. For any configuration z ∈ SM , we denote by O(z) the bag of
next-step configurations obtained from z; that is, O(z) = {y ∈ SM : PM (z, y) >
0}. Let Og(z) be the bag of gap vectors for O(z); that is

Og(z) = {w : w is the gap vector for some y ∈ O(z)}.

Here by bag we mean a multiset where an element can appear more than once.
For simplicity, we use the set notation {·} to denote bags as well.

Actually, Og(z) is almost an ordinary set except that the gap vector associated
to z occurs twice, one corresponding to the case where all tokens move, and the
other where no token moves.

Note that in our setting, for each z ∈ SM\SM−2, M ≥ 3, and y ∈ O(z), the
probability PM (z, y) is always 1

2M
. Let F g

M be the function obtained by compos-
ing F with the gap function, restricting on the set of M -token configurations;
that is, for any z ∈ SM\SM−2, F g

M (z) = F (w) where w is the gap vector of z.
Then

(PM · 4

N
F g
M )(z) =

4

2MN

∑
y∈O(z)

F g
M (y) =

4

2MN

∑
v∈Og(z)

F (v).

The proof of our main theorem will exploit the definition of F to derive a closed
form for the sum

∑
v∈Og(z)

F (v), which is the most challenging part.With that we
will be able to show

(PM · 4

N
F g
M )(z) ≤ 4

N
F g
M (z)− 1

for all non-legitimate configuration z, and themain theorem follows fromLemma1.

4 Proof of the Main Theorem

4.1 The 5-Token Case

To illustrate our basic ideas, let us first consider the case of 5 tokens. The function
F is given in Eqn.(3), which has obviously the following properties:
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– F is rotationally symmetric, i.e., F (〈w0, . . . , w4〉) = F (〈w1, w2, w3, w4, w0〉).
– F is in harmony for smaller M < 5, i.e., assuming w1 = 0,

F (〈w0, w1, w2, w3, w4〉) = F (〈w0 + w2, w3, w4〉).

Thus, we can freely use the 5-token formula for all 3-token configurations as
well, and we will not distinguish a 5-dimensional integer vector with some
of the elements being 0 with the 3-token or 1-token configuration it really
represents.

These two properties will be extended for arbitrary M , and they will be exploited
to prove our main theorem.

We define the one-step gap increment vectors for a 5-token configuration as
follows.

1. Let Δ1 = 〈1,−1, 0, 0, 0〉, which corresponds to the first token passing while
the others remaining. Obviously, the cases where a single token passes while
the others remain can be obtained by applying Peri to ΔT

1 , where i ∈
{0, 1, 2, 3, 4} and

Per =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠
is the basic cyclic permutation matrix.

2. Let Δ2,1 = 〈1, 0,−1, 0, 0〉, corresponding to the first two tokens passing while
the others remaining, and Δ2,2 = 〈1,−1, 1,−1, 0〉, corresponding to the first
and the third tokens passing while the others remaining. Other cases where
exactly 2 tokens passing can be obtained by applying the cyclic permutation
matrices to either Δ2,1 or Δ2,2.

3. Let Δ0 = 〈0, 0, 0, 0, 0〉, corresponding to the case that no token, or all, moves.

Observe that the case of exactly 3 tokens passing is equivalent to exactly 2
passing, but in the opposite direction. Similar correspondence holds for exactly
1 or 4 tokens passing. Thus all the possible outcomes of a single step starting
from a non-legitimate configuration z ∈ S5 with the gap vector w = (w0, · · · , w4)
constitute the set

Og(z) = {w ±Δ0, w ± PeriΔT
1 , w ± PeriΔT

2,1, w ± PeriΔT
2,2 : i = 0, 1, 2, 3, 4}

where each element occurs with probability 1/32 (here we recall Og(z) is a bag,
and w+Δ0 = w−Δ0). Since F (v) is in harmony, in case some gaps in v ∈ Og(z)
are equal to 0, which corresponds to a 3 or 1 token configuration, we can still
use the 5-token formula.

To calculate the value
∑

v∈Og(z)
F (v), we let

�i
1 := F (w + PeriΔT

1 ) + F (w − PeriΔT
1 )
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for i = 0, 1, 2, 3, 4, and �i
2,1 and �i

2,2 be defined similarly. Note that

(w0 + 1)(w1 − 1)w2 + (w0 − 1)(w1 + 1)w2 = 2w0w1w2 − 2w2.

We have �0
1 = 2F (w)−2w2−2w4. Moreover, as F (w) is rotationally symmetric,

and
∑4

i=0 wi = N , we derive
∑4

i=0 �i
1 = 10F (w) − 4N . In a similar way, we

have �0
2,1 = 2F (w) − 2w1 and

∑4
i=0 �i

2,1 = 10F (w)− 2N . The case for Δ2,2 is
slightly complicated: the sum �0

2,2 can be first simplified to

(w1 − 1)(w2 + 1)(w0 + w3) + (w2 + 1)(w3 − 1)w4 + (w3 − 1)w4(w0 + 1)

+ w4(w0 + 1)(w1 − 1) + w4(w0 − 1)(w1 + 1)

(w1 + 1)(w2 − 1)(w0 + w3) + (w2 − 1)(w3 + 1)w4 + (w3 + 1)w4(w0 − 1)

Thus �0
2,2 = 2F (w) − 2(w0 + w3) − 6w4, and

∑4
i=0 �i

2,2 = 10F (w) − 10N .
Finally, noting F (w + Δ0) = F (w − Δ0) = F (w), we have

∑
v∈Og(z)

F (v) =

32F (w)− 16N . Thus

(P5 ·
4

N
F g
5 )(z) =

4

32N
(32F (w)− 16N) =

4

N
F (w) − 2 ≤ 4

N
F g
5 (z)− 1,

and Lemma 1 implies E5(z) ≤ 4
N · F g

5 (z). Using Lagrange multipliers method
(cf. Theorem 2), we have then E5(z) ≤ 4

N ·
1
25N

3 = 4
25N

2 = 0.16N2.

4.2 Properties of the Function F

For M = 5, we have seen that F is rotationally symmetric and in harmony for
smaller values of M . Below we generalize these two properties for arbitrary M .

Lemma 3. [Rotational Symmetricity] The function F is rotationally symmet-
ric. That is, for any odd number M ≥ 3,

F (〈w0, w1, · · · , wM−1〉) = F (〈w1, · · · , wM−1, w0〉).
Proof. Let w = 〈w0, w1, · · · , wM−1〉 and w′ = 〈w1, w2, · · · , wM−1, w0〉. We need
to prove F (w) = F (w′). Note that by Eqn.(1),

F (w) =
M−3∑
i=0

wi

∞∑
j=0

wi+2j+1

∞∑
k=0

wi+2j+2k+2

=

M−3∑
i=0

wi

�(M−3−i)/2�∑
j=0

wi+2j+1

�(M−3−i−2j)/2�∑
k=0

wi+2j+2k+2 .

The proof idea is to divide the sum above into two parts, for even and odd index
i, respectively. Then we can see the relation of F (w) and F (w′) by shifting the
indices. For this purpose, we denote by

Σ1(w) :=

(M−3)/2∑
n=1

w2n−1

(M−3−2n)/2∑
j=0

w2n+2j

(M−3−2n−2j)/2∑
k=0

w2n+2j+2k+1 (4)

Σ2(w) :=

(M−3)/2∑
n=0

w2n

(M−3−2n)/2∑
j=0

w2n+2j+1

(M−3−2n−2j)/2∑
k=0

w2n+2j+2k+2. (5)
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Then F (w) = Σ1(w) + Σ2(w). Note that M − 1 is an even number, and w′
i

equals wi+1 if i < M − 1, and equals w0 if i = M − 1. For the gap vector w′, we
calculate that

Σ1(w
′) =

(M−3)/2∑
n=1

w2n

(M−3−2n)/2∑
j=0

w2n+2j+1

(M−3−2n−2j)/2∑
k=0

w2n+2j+2k+2

= Σ2(w) − w0

(M−3)/2∑
j=0

w2j+1

(M−3−2j)/2∑
k=0

w2j+2k+2.

The most involved part is the sum Σ2(w
′). Note k = (M−3−2n−2j)/2 implies

w′
2n+2j+2k+2 = w′

M−1. Isolating the term of w′
M−1 from the last part of Σ2(w

′),
we derive:

Σ2(w
′) =

(M−5)/2∑
n=0

w′
2n

(M−5−2n)/2∑
j=0

w′
2n+2j+1

(M−5−2n−2j)/2∑
k=0

w′
2n+2j+2k+2

+

(M−3)/2∑
n=0

w′
2n

(M−3−2n)/2∑
j=0

w′
2n+2j+1 · w′

M−1.

Some subtle simplifications have been used above: the case n = (M−3)/2 implies
(M − 3− 2n)/2 = 0 and (M − 3− 2n− 2j)/2 = 0 as well, thus the corresponding
term w′

M−3w
′
M−2w

′
M−1 appears in the sum in the last line. Similar with the case

j = (M − 3− 2n)/2. Now we can further rewrite Σ2(w
′) by:

Σ2(w
′) =

(M−3)/2∑
n=1

w2n−1

(M−3−2n)/2∑
j=0

w2n+2j

(M−3−2n−2j)/2∑
k=0

w2n+2j+2k+1

+ w0

(M−3)/2∑
n=0

w2n+1

(M−3−2n)/2∑
j=0

w2n+2j+2

= Σ1(w) + w0

(M−3)/2∑
j=0

w2j+1

(M−3−2j)/2∑
k=0

w2j+2k+2.

Thus we have F (w′) = Σ1(w
′) + Σ2(w

′) = Σ1(w) + Σ2(w) = F (w). ��

Remark 1. We could also define the function F in Definition 2 in a rotationally
symmetric way directly by, say, letting the arithmetic operations over indices be
modulo M . This would save our efforts to prove Lemma 3. However, we decided
to adopt the current definition for the following two reasons:

1. This definition makes the proof of Lemma 4 easier to follow;
2. The generating set C(M) of the gap increment vectors in the next section

is constructed inductively (Proposition 1), which is in harmony with the
current definition of F , and makes the proof of the main theorem easy to
follow as well.
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The following lemma shows that the definition of F is in harmony for arbitraryM .

Lemma 4. For any odd number M ≥ 3, if w1 = 0 then

F (〈w0, w1, w2, · · · , wM−1〉) = F (〈w0 + w2, w3, · · · , wM−1〉).

Proof. The equality is obtained by directly expanding both sides according to
Eqn.(1), by noting that w1 = 0:

F (〈w0, w1, w2, · · · , wM−1〉) =
∞∑
i=0

wi ·

⎡⎣ ∞∑
j=0

wi+2j+1 ·
( ∞∑
k=0

wi+2j+2k+2

)⎤⎦
= w0 ·

⎡⎣ ∞∑
j=0

w2j+1 ·
( ∞∑
k=0

w2j+2k+2

)⎤⎦+ w2 ·

⎡⎣ ∞∑
j=0

w2j+3 ·
( ∞∑
k=0

w2j+2k+4

)⎤⎦
+

∞∑
i=3

wi ·

⎡⎣ ∞∑
j=0

wi+2j+1 ·
( ∞∑
k=0

wi+2j+2k+2

)⎤⎦
= (w0 + w2) ·

⎡⎣ ∞∑
j=0

w2j+3 ·
( ∞∑
k=0

w2j+2k+4

)⎤⎦
+

∞∑
i=3

wi ·

⎡⎣ ∞∑
j=0

wi+2j+1 ·
( ∞∑
k=0

wi+2j+2k+2

)⎤⎦
= F (〈w0 + w2, w3, · · · , wM−1〉).

��

As the function F is rotationally symmetric, the above lemma indeed shows that
any 0 entry in the gap vectors can be absorbed, without affecting the value of
the F function.

4.3 Gap Increment Vector

In this section, we characterize the vectors in Og(z) with the help of gap incre-
ment vectors.

Definition 4 (Gap Increment Vector). Let z be a configuration with w its
associated gap vector. The vectors Δ := w′−w, where w′ ∈ Og(z), are called the
gap increment vector for z.

Moreover, as seen in the 5-token case, the set of gap increment vectors consists
of pairs of symmetric ones:

Lemma 5. For any gap increment vector Δ for z, both w + Δ and w −Δ are
in Og(z).
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Proof. By definition, w′ := w+Δ ∈ Og(z). The gap vector w′ is obtained from w
by moving a set A of tokens forward. By symmetry, the vector w−Δ is obtained
if all tokens in A stay, but other tokens move forward. ��

Let C(M) be a subset of gap increment vectors for M tokens such that for
each non-legitimate z ∈ SM\SM−2,

Og(z) = {w ±Δ : Δ ∈ C(M)}.

Without loss of generality, we assume every vector in C(M) has the first entry
being either 0 or 1. We would like to construct C(M) in an inductive way.

When M = 1, obviously C(M) = {〈0〉}. Let z ∈ SM\SM−2 be a configuration
with M ≥ 3 tokens, and w = 〈w0, w1, · · · , wM−1〉 the associated gap vector. We
first ignore the first two tokens and consider the M − 2 token configuration z′

with gap vector w′ = 〈w0 + w1 + w2, w3, · · · , wM−1〉. For each v′ ∈ Og(z
′) with

v′ = w′ + Δ′ and Δ′ ∈ C(M − 2), we need to consider two cases:

1. v′0 = w′
0. That is, the first gap of w′ does not change. Come back to the

original vector w. There are four gap vectors v ∈ Og(z) corresponding to
this case: (i) vi = wi for each i = 0, 1, 2; (ii) v0 = w0, v1 = w1 + 1, and
v2 = w2 − 1; (iii) v0 = w0 + 1, v1 = w1 − 1, and v2 = w2; (iv) v0 = w0 + 1,
v1 = w1, and v2 = w2 − 1. That is, corresponding to each increment vector
Δ′ ∈ C(M − 2) with Δ′

0 = 0, there are four increment vectors Δ ∈ C(M)
obtained from Δ′ by replacing Δ′

0 with the three-element vectors 〈0, 0, 0〉,
〈0, 1,−1〉, 〈1,−1, 0〉, and 〈1, 0,−1〉, respectively.

2. v′0 = w′
0+1. That is, the first gap of w′ increases by 1. Similar to the first case,

we have for each increment vector Δ′ ∈ C(M − 2) with Δ′
0 = 1, there are

four increment vectors Δ ∈ C(M) obtained from Δ′ by replacing Δ′
0 by the

three-element vectors 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1,−1, 1〉, and 〈1, 0, 0〉, respectively.

The items 1 and 2 above actually give us an inductive way to construct C(M),
M ≥ 3, from C(M − 2):

Proposition 1. Let C(M) be defined above. Then C(1) = {〈0〉}, and for any
odd number M ≥ 3,

C(M) = A�C0(M − 2) ∪B�C1(M − 2)

where the operation � means the element-wise concatenation of vectors,

Ci(M − 2) = {〈Δ1, . . . , ΔM−3〉 : 〈i,Δ1, . . . , ΔM−3〉 ∈ C(M − 2)}

for i = 0, 1, and

A := {〈0, 0, 0〉, 〈0, 1,−1〉, 〈1,−1, 0〉, 〈1, 0,−1〉}
B := {〈0, 0, 1〉, 〈0, 1, 0〉, 〈1,−1, 1〉, 〈1, 0, 0〉}.
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For example, applying the above proposition, we have C(3) = A, and C(5) is
the union of the following two sets:

A�C0(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈0, 0, 0, 0, 0〉,
〈0, 1, −1, 0, 0〉,
〈1, −1, 0, 0, 0〉,
〈1, 0, −1, 0, 0〉,
〈0, 0, 0, 1, −1〉,
〈0, 1, −1, 1, −1〉,
〈1, −1, 0, 1, −1〉,
〈1, 0, −1, 1, −1〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; B�C1(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈0, 0, 1, −1, 0〉,
〈0, 1, 0, −1, 0〉,
〈1, −1, 1, −1, 0〉,
〈1, 0, 0, −1, 0〉,
〈0, 0, 1, 0, −1〉,
〈0, 1, 0, 0, −1〉,
〈1, −1, 1, 0, −1〉,
〈1, 0, 0, 0, −1〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Obviously, the cardinality of C(M) is 2M−1.

4.4 Properties of Gap Increment Vectors

As for the gap vectors, in the following, when the index exceeds M−1, we always
assume 0 entries for the gap increment vectors. That is, we let wi = 0 and Δi = 0
for all i ≥ M if w = (w0, · · · , wM−1) and Δ = (Δ0, · · · , ΔM−1). The following
two lemmas state properties about sums of increment vectors, that will be used
to simplify the sum

∑
v∈Og(z)

F (v) later.

Lemma 6. For any odd number M ≥ 3,

∑
Δ∈C(M)

Δ1

∞∑
k=0

Δ2k+2 = −2M−3. (6)

Proof. The lemma is proved by dividing the sum according to the recursive def-
inition of the gap increment vector. Precisely,

∑
Δ∈C(M) Δ1

∑∞
k=0 Δ2k+2 equals

∑
Δ′∈C0(M−2)

1 ·
( ∞∑
k=0

Δ′
2k+1 − 1

)
+

∑
Δ′∈C0(M−2)

(−1) ·
∞∑
k=0

Δ′
2k+1

+
∑

Δ′∈C1(M−2)

(−1) ·
( ∞∑
k=0

Δ′
2k+1 + 1

)
+

∑
Δ′∈C1(M−2)

∞∑
k=0

Δ′
2k+1

= −|C0(M − 2)| − |C1(M − 2)|
= −|C(M − 2)| = −2M−3.

��

Lemma 7. For any odd number M ≥ 1,

∑
Δ∈C(M)

∞∑
j=0

∞∑
k=0

Δ2j+1Δ2j+2k+2 = −(M − 1)2M−4. (7)
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Proof. Let T (M) be the LHS of Eqn.(7).We prove by induction that T (M) =
−(M − 1)2M−4. The result is obvious for M = 1. Suppose now that Eqn.(7)
holds for M − 2, M ≥ 3. Then we have from Lemma 6 that

T (M) =
∑

Δ∈C(M)

Δ1

∞∑
k=0

Δ2k+2 +
∑

Δ∈C(M)

∞∑
j=1

∞∑
k=0

Δ2j+1Δ2j+2k+2

= −2M−3 + 4 ·
∑

Δ∈C(M−2)

∞∑
j=0

∞∑
k=0

Δ2j+1Δ2j+2k+2

= −2M−3 − 4(M − 3)2M−6 = −(M − 1)2M−4.

��

4.5 Proof of the Main Theorem

We are now ready to prove the main theorem. First we give a closed form for
the sum

∑
v∈Og(z)

F (v).

Lemma 8. For any non-legitimate configuration z ∈ SM\SM−2 with gap vector
w, ∑

v∈Og(z)

F (v) = 2MF (w)− (M − 1)2M−3N.

Proof. First note that∑
v∈Og(z)

F (v) =
∑

Δ∈C(M)

[F (w + Δ) + F (w −Δ)]

=
∑

Δ∈C(M)

M−3∑
i=0

∞∑
j=0

∞∑
k=0

[(wi + Δi)(wi+2j+1 + Δi+2j+1)(wi+2j+2k+2 + Δi+2j+2k+2)

+ (wi −Δi)(wi+2j+1 −Δi+2j+1)(wi+2j+2k+2 −Δi+2j+2k+2)].

On the other hand, a simple calculation shows that for any a, b, c and x, y, z,

(a + x)(b + y)(c + z) + (a− x)(b − y)(c− z) = 2abc+ 2xyc + 2xzb + 2yza

Thus we have ∑
v∈Og(z)

F (v) =
∑

Δ∈C(M)

2F (w) +

M−1∑
i=0

Awiwi

where Awi is the coefficient of wi. Using Lemma 7 we compute the coefficient
Aw0 of w0 as

Aw0 =
∑

Δ∈C(M)

2 ·
∞∑
j=0

∞∑
k=0

Δ2j+1Δ2j+2k+2 = −(M − 1)2M−3.
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As the function F is rotationally symmetric, we derive that

∑
v∈Og(z)

F (v) =
∑

Δ∈C(M)

2F (w)− (M − 1)2M−3
M−1∑
i=0

wi

= 2MF (w) − (M − 1)2M−3N.

��

Proof of the Main Theorem. From Lemma 8, we have that for any non-legitimate
configuration z ∈ SM\SM−2 with gap vector w,

(PM · 4

N
F g
M )(z) =

4

2MN

∑
v∈Og(z)

F (v) =
4

N
F (w) − M − 1

2
≤ 4

N
F g
M (z)− 1.

(8)

Thus, Lemma 1 implies that EM (z) ≤ 4
N F g

M (z) = 4
N F (w). ��

5 A Nearly Optimal Upper Bound

In our main theorem, we derived an upper bound for the stabilization time
EM (z), which is given in terms of the function F (w). Furthermore, using the
method of Lagrange multipliers, we can derive a nearly optimal upper bound
which is independent of the initial configurations.

Theorem 2. 1. For all N and odd number 3 ≤M ≤ N , we have

max
z∈SM

EM (z) ≤ N2

6
·
(
1− 1

M2

)
.

2. For all N and for all initial configurations, we have ET ≤ 1
6N

2.

Proof. Item 2 is direct from Item 1. For Item 1, it suffices to show that for any
z ∈ SM with gap vector w,

F (w) ≤ u(M) :=
N3

24
·
(
1− 1

M2

)
.

First, we use the method of Lagrange multipliers to find the critical point of
F (w) with the constraints wi ≥ 0 for each i, and

∑M−1
i=0 wi = N . Here we do

not require values of wi being integers any more; they can be any nonnegative
real numbers. Let

f(w) = F (w) + λ

(
M−1∑
i=0

wi −N

)
.
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We calculate the gradient equations for w0 and w2 as

∂f

∂w0
=

∞∑
j=0

w2j+1

∞∑
k=0

w2j+2k+2 + λ

∂f

∂w2
=

∞∑
j=0

w2j+3

∞∑
k=0

w2j+2k+4 + w0w1 + w1

∞∑
k=0

w2k+3 + λ.

By letting ∂f
∂w0

= ∂f
∂w2

= 0 and noting that
∑M−1

i=0 wi = N , we derive directly:

w2 + w4 + · · ·+ wM−1 =
N − w1

2
(9)

w1 + w3 + · · ·+ wM−2 =
N + w1

2
− w0. (10)

Since F is rotationally symmetric, we can derive from Eqn.(10) that

w2 + w4 + · · ·+ wM−1 =
N + w2

2
− w1. (11)

Thus w1 = w2 from Eqs.(9) and (11). By the rotational symmetry of F again,
we have w0 = w1 = · · · = wM−1 = N/M . Denote by w∗ this (unique) critical

point. Then F (w∗) = u(M) = N3

24 ·
(
1− 1

M2

)
from Eqs.(4) and (5).

On the other hand, note that F (w) is a continous multivariate function and

R(M) := {w ∈ RM | wi ≥ 0,
M−1∑
i=0

wi = N}

is a compact set. It follows that F (w) has a global maximum in R(M). For
any w′ ∈ R(M) which achieves this global maximum, if w′ is an interior point
of R(M), then it must be a critical point. Thus w∗ = w′, and as a result,
F (w∗) = u(M) is the global maximum of F (w) in R(M) (and so in G(M)).
Then the theorem follows.

We now argue that w′ is indeed an interior point of R(M). Otherwise, w′

must have some zero elements. By deleting all zero elements from w′, we get a
vector w′′ which lies in the interior of R(M ′) for some M ′ < M . Thus F (w′′) =
F (w′) is the global maximum of F (w) in R(M ′), so w′′ is a critical point, and
F (w′′) = u(M ′). From the fact that u(M) is a strictly increasing function, we
have

F (w′) = F (w′′) = u(M ′) < u(M),

contraditing the assumption that w′ achieves the global maximum of F in R(M).
��

6 Conclusion and Future Work

It is conjectured that 4
27N

2 is the tight upper bound of Herman’s self-stabilization
algorithm. Our paper provides a bound 1

6N
2, which is very close to the conjec-

tured bound. This gap, which is approximately 0.019N2, arises from the strict
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inequality in Eqn.(8) for M ≥ 5. To make the inequality tighter, and derive a
better bound is one of our further works. Our technique takes large advantage
of the uniform distribution of the next-step configurations. This is not true for
the asynchronous variant of Herman’s protocol [9], as well as for the asymmetric
case for token passing. The generalization to these cases will be our future work.

Finally, as Herman’s protocol is very similar to systems of interacting and
annihilating particles proposed and studied in physics, combinatorics, and neural
networks, we are also interested in exploiting the possibility of extending our
elementary methodology for Herman’s protocol to providing approximate upper
bound for the worst-case analysis of such particle systems.
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Abstract. We study natural semantic fragments of the π-calculus:
depth-bounded processes (there is a bound on the longest communica-
tion path), breadth-bounded processes (there is a bound on the num-
ber of parallel processes sharing a name), and name-bounded processes
(there is a bound on the number of shared names). We give a complete
characterization of the decidability frontier for checking if a π-calculus
process in one subclass belongs to another. Our main construction is
a general acceleration scheme for π-calculus processes. Based on this
acceleration, we define a Karp and Miller (KM) tree construction for
the depth-bounded π-calculus. The KM tree can be used to decide if a
depth-bounded process is name-bounded, if a depth-bounded process is
breadth-bounded by a constant k, and if a name-bounded process is ad-
ditionally breadth-bounded. Moreover, we give a procedure that decides
whether an arbitrary process is bounded in depth by a given k.

We complement our positive results with undecidability results for
the remaining cases. While depth- and name-boundedness are known to
be Σ1-complete, we show that breadth-boundedness is Σ2-complete, and
checking if a process has a breadth bound at most k is Π1-complete, even
when the input process is promised to be breadth-bounded.

1 Introduction

The π-calculus is an expressive formalism for modelling and reasoning about
concurrent systems. The full π-calculus is Turing-complete. From a verification
perspective, much research has therefore focused on defining semantic fragments
which have decidable analysis questions but retain enough expressiveness to
capture practical systems. π-calculus processes model communication between
components along channels. Natural restrictions on the use of these channels give
rise to natural semantic fragments, like bounding the depth of communication
(the longest communication chain between processes), bounding the degree of
sharing (the number of processes sharing a channel), or bounding the number of
channels used concurrently. These restrictions model natural resource constraints
in implementations, and indeed have all been studied previously: bounds on
depth lead to depth-bounded processes [11], bounds on sharing lead to breadth-
bounded processes [12], and bounds on the number of concurrent channels lead to
name-bounded processes [9]. While these bounds are defined by induction on the
syntax, the restricted classes they define are semantic: for example, a process P
is breadth-bounded if there is a bound k ≥ 0 such that in every process reachable

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 357–371, 2014.
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from P , every channel is shared by at most k processes. The semantic fragments
are still very expressive. For example, name-bounded processes can simulate
Petri nets, and depth- or breadth-bounded processes can simulate extensions
of Petri nets with reset operations. At the same time, they enable algorithmic
verification, e.g. coverability is decidable for depth-bounded processes [18].

Little is known about the relation between semantic fragments, beyond the
fact that name-bounded processes are also depth-bounded, and the incomparabil-
ity of the depth- and breadth-bounded fragments. In particular, the classification
problem —given a process from one (sub)class, does it also belong to another?—
has not been studied. By an analogue of Rice’s theorem, checking if a π-calculus
process belongs to a semantic fragment is likely to be undecidable. However, the
status of natural classification questions, such as whether a given depth-bounded
process is actually name-bounded, remains open.

The classification problem has various applications in verification. As stand-
alone analysis, classification can judge the resource requirements of a system.
For example, to check whether a system is implementable on a given platform,
one may check whether it is depth-, breadth-, or name-bounded by a suitable
constant k. In turn, a heap-manipulating program that is shown to violate name
boundedness may have a memory leak. Within a verification effort, classification
serves as a type check that precedes the actual analysis. If the check establishes
certain bounds, then the following verification may employ specialized algorithms
that make use of this knowledge. For example, to check coverability for general
depth-bounded systems, there is only a forward procedure based on iterative
refinement. However, if the system is additionally known to be breadth- or name-
bounded then more efficient acceleration schemes apply. Similarly, if a bound on
the depth is known, then one can use a backwards search.

In this paper, we study and completely characterize the decidability fron-
tier for classification of π-calculus processes into the depth, breadth, and name-
bounded semantic fragments, as well as their “k-restricted” versions consisting
of all processes where the bound k is given explicitly. Our main construction is a
general acceleration scheme for π-calculus processes, and a π-calculus analogue
of the Karp-Miller construction for vector addition systems. We characterize the
limits of the acceleration for depth-bounded systems and show that —using suit-
able break conditions— the Karp-Miller construction can decide classification
questions such as “given depth-bounded P , is P name-bounded?” and “given
depth-bounded P and k ≥ 0, is P breadth-bounded by k?”.

Figure 1 shows a summary of the classification problems, and highlights the
results of this paper that complete the picture. The question “given a general
process P and k ≥ 0, is P depth-bounded by k?” was also open (and conjectured
to be undecidable). We prove it decidable by showing the existence of a small
witness in case the depth bound k is violated. Then we reduce to the coverability
problem for depth-bounded processes, which is known to be decidable [18].

We complement our decidability results with undecidability results
in the remaining cases. We show that checking if a breadth-bounded
process is also depth- or name-bounded is Σ1-complete, and that checking if
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∈ Breadth ∈ Breadth(k) ∈ Depth ∈ Depth(k) ∈ Name ∈ Name(k)

Proc Σ2 Π1 (Σ1)
√

(Σ1)
√

[9]

Breadth Π1 (Σ1) (
√
) Σ1 (

√
)

Depth Σ1
√

(
√
)

√
(
√
)

Name
√

(
√
) (

√
) (

√
)

√
: decidable Σi/Πi : undecidable (−) : follows from another result

shaded box : results in this paper empty box : trivial

Fig. 1. Decidability frontier for the classification problem

a breadth-bounded process has breadth-bound at most a given k is already
Π1-complete. Additionally, while checking if a process is depth- or name-bounded
is only Σ1-complete, checking breadth boundedness is actually Σ2-complete.
Our lower bounds follow from simulations of Turing machines by depth- or
breadth-bounded processes.

Related Work. The Karp-Miller construction, originally developed for Petri
nets [10], is generalized to WSTS in [4,5]. The use of Karp-Miller procedures in
model checking is assessed e.g. in [3]. In [6,7,8], Finkel and Goubault-Larrecq pro-
vide a general algorithmic concept that abstracts from the actual tree structure.
They devise a class of systems for which this type of algorithm is guaranteed to
terminate. One can prove that our domain of limits is the ideal completion of the
partially ordered set of processes in the sense of [6]. Wies et al. make a similar
observation in [18]. These results make the general acceleration-based algorithms
developed in [7,8] applicable to depth-bounded processes. In contrast to [7,8], we
explicitly construct a Karp-Miller tree in order to decide properties like name and
breadth boundedness. Recently, a specific acceleration scheme was developed for
name-bounded processes [9]. Our acceleration scheme applies to any process, not
restricted to depth-bounded systems and subsumes the results in [9].

The key observation in our acceleration is that repeating transition sequences
leads to a cyclic behaviour in the use of restricted names. A similar observation is
made for ν-APNs (an extension of Petri nets using names as tokens) in [14], where
it is used to establish decidability of so-called width boundedness. The property
asks for a bound on the number of names that holds in all reachable ν-APN
markings and is related to name boundedness. However, our decision procedure
handles the more general depth-bounded systems. The notion of depth applies
to other concurrency models with name creation (e.g. ν-MSR in [15]), but we
are not aware of any results for the classification problem.

2 The π-Calculus

We recall the basics on π-calculus [13,16], a formalism to encode computation
using processes that exchange messages over channels. Messages and channels are
represented uniformly by names from a countable set N . Processes communicate
by synchronising on prefixes π that send (x〈y〉) or receive (x(y)) message y on
channel x. Using these communication primitives, we construct processes using
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choice (+), parallel composition ( | ), restriction (νa), and calls (K2ã3). Process
identifiers K in calls are associated with defining equations K(x̃) := P where P
is a process and x̃ is a vector of distinct names. Each process depends on finitely
many defining equations. Formally, π-calculus processes P,Q,R are defined by

M ::= 0 � π.P � M1 + M2 P ::= M � K2ã3 � P1 | P2 � νa.P .

We write Proc for the set of all processes. Processes M and K2ã3 are called se-
quential, and we use S to indicate that a process is sequential. We denote parallel
compositions by products (

∏
), and use P k for the k-fold parallel composition of

P . Multiple restrictions νa1 . . . νak.P are written as a vector νã.P .
A name a that is neither bound by a restriction νa nor by an input prefix x(a)

is called free. Names bound by ν are called restricted. A restricted name νa is
active if it is not covered by a prefix. For instance, in the process νa.a(y).νb.P 2y3,
names a and b are restricted, a is active, b is not active, and y is bound but not
restricted. We denote the set of free names in P by fn(P ) and the active restricted
names by arn(P ). Since we will be able to α-convert bound names, we assume
active restrictions to be unique within a process, and to be disjoint from the free
names. By P{ã/x̃} we mean the substitution of the free names x̃ in P by ã. We
only apply substitutions that do not clash with the restricted names.

The π-calculus semantics relies on the structural congruence relation ≡, the
smallest relation that allows for α-conversion of bound names, where + and |
are associative and commutative with neutral element 0, and that satisfies

νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P νa.(P | Q) ≡ P | νa.Q if a 	∈ fn(P ) .

The behaviour of processes is given by the reaction relation, the smallest relation
closed under | , ν, and structural congruence, and that satisfies the rules

x(z).P + M | x〈y〉.Q + N → P{y/z} | Q and K2ã3 → P{ã/x̃}
with K(x̃) := P a defining equation. Up to ≡, processes have only finitely many
successors. The set of all processes reachable from P is the reachability set R (P ).

We define the embedding ordering � on processes to satisfy νã.P � νã.(P | Q)
and to be closed under structural congruence. We use P↓ := {Q ∈ Proc | Q � P}
to denote the downward closure of P wrt. embedding.

Our development relies on two normal forms for processes. A process νã.P
with P = S1 | . . . | Sn and ã ⊆ fn(P ) is in standard form [13], which can be
obtained by maximising the scope of restricted names. Similarly, a process is
rewritten to restricted form by minimising the scope of restricted names [12].
We write P ≡ F1 | . . . | Fn where each Fi is sequential or of the form νa.P ′ with
P ′ again in restricted form and a ∈ fn(Fi) for all i. The Fi are called fragments.

The restricted form of a process P can be used to determine its depth,
defined as the minimal nesting depth of restrictions in its congruence class:
|P |D := min{nestν(Q) | P ≡ Q in restricted form} with nestν defined induc-
tively as nestν(S) := 0, nestν(P1 | P2) := max{nestν(P1), nestν(P2)}, and
nestν(νa.P ) := 1 + nestν(P ). Similarly, the breadth |P |B is the maximal num-
ber of sequential processes composed in parallel underneath an active restricted
name.
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We define the following subclasses of the set Proc of π-calculus processes.
The class Depth(k) contains all processes P that are bounded in depth by k.
Formally, for all Q ∈ R (P ) we have |Q|D ≤ k. Then the class Depth of all
depth-bounded processes is the union ∪k≥0Depth(k). The classes Breadth(k) and
Breadth are defined analogously. Finally, Name(k) contains all processes P so
that every process in R (P ) has at most k active restricted names, and Name :=
∪k≥0Name(k). Clearly, Name(k) ⊆ Depth(k) for each k ≥ 0 and so Name ⊆
Depth. It is well known that Depth and Breadth are incomparable.

Our results rely on the fact that depth-, breadth-, and name-bounded pro-
cesses can be represented in a finite way:

Lemma 1. Let P ∈ Name(k). There is a finite set of sequential processes
{S1, . . . Sn} so that every Q ∈ R (P ) satisfies

Q ≡ νa1 . . . ak.(S
mi
1 | . . . | Smn

n ) with m1, . . . ,mn ∈ N .

Similarly, given a depth-bounded process P ∈ Depth, all reachable Q ∈ R (P )
can be written using finitely many sequential processes [11]. Indeed, with depth
bound k, we rewrite Q to restricted form with at most k nested restrictions.
Then we choose a distinguished name ak for each nesting level:

Q ≡ νa1.(νa2.(. . .) | . . . | νa2(. . .)) .

After this modification, the sequential processes take the form Dσ with finitely
many D and finitely many substitutions σ. For Depth ∩ Breadth, we obtain a
finite representation using fragments [12].

Lemma 2. Let P ∈ Depth ∩ Breadth. There is a finite set of fragments
{F1, . . . Fn} so that every Q ∈ R (P ) satisfies

Q ≡ Fmi
1 | . . . | Fmn

n with m1, . . . ,mn ∈ N .

Decision Problems. We study decision problems of the form (C1, C2) for classes
of processes C1 and C2, asking for a process from class C1, is it also in C2.

3 Karp and Miller for Bounded Depth

We now describe an adaptation of the Karp-Miller algorithm for Petri nets [10]
to the π-calculus. The Karp-Miller algorithm determines a finite representation
of (the downward closure of) a system’s reachability set. It unwinds the state
space until it detects a transition sequence between comparable states. The key
ingredient is then an acceleration theorem that characterizes the states reachable
with arbitrary repetitions of this sequence in a symbolic way. When transferring
the idea to depth-bounded processes, the unwinding finds Q1 →∗ Q2 with Q1 ≺
Q2. By monotonicity, this can be repeated as

Q1 →∗ Q2 →∗ Q3 →∗ . . . with Q1 ≺ Q2 ≺ Q3 ≺ . . . .
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Our main result is an acceleration theorem that characterizes {Qi | i ∈ N}.
Acceleration for the π-calculus is more involved than for Petri nets, because we
have to take the identities of restricted names into account. Consider the reaction

νa.νb.K12a, b3 → νa.νb. (K12a, b3 | K22b3)

with K1(x, y) := νz.(K12z, x3 | K22x3) and K2(x) := 0. At first glance, k
repetitions of this reaction should lead to processes νa.νb.

(
K12a, b3 | (K22b3)k

)
.

However, due to α-conversion, a and b in source and target process are different.
Since a has been renamed to b and a fresh a has been created, repetitions will
lead to terms νc.K22c3. To see this, we repeat the reaction without renaming:

νa.νb.K12a, b3 → νc.νa.(K12c, a3 | K22a3)
→ νd.νc.(K12d, c3 | K22c3 | νa.K22a3) .

The example illustrates that we have to track the identity of restricted names
over transitions. We have to determine if a restricted name is stable in the sense
that it remains in the original process, or it is fragile, i.e. it is eventually forgotten
and moves to the accelerated part. The following subsection develops a suitable
notion of identity relations, afterwards we turn to the actual acceleration.

3.1 Identity Relations

To track the identity of active restricted names over transitions, we extend the
reaction relation. Recall that we assume active restrictions to be unique within
processes. With each reaction P → Q, we associate an identity relation I ⊆
(N ∪ {�}) × N relating the active restrictions in P and Q. Formally, I is the
smallest set that satisfies the following conditions. If reaction P → Q α-converts
a ∈ arn(P ) into b ∈ arn(Q), then we have (a, b) ∈ I. Moreover, if νc becomes
active in Q, we have (�, c) ∈ I. We write P →I Q for these extended reactions
in Proc × P((N ∪ {�}) × N ) × Proc. The definition generalizes to sequences
of extended reactions by composing the identity relations. Such a sequence is
faithful if it does not use α-conversion. Formally, I ∩ (N ×N ) is the identity.

For the purpose of acceleration, we focus on the special case that I acts on
a finite subset ã ⊆ N of names, I ⊆ ({�} ∪ ã) × ã. In this case, I induces a
partition ã = f̃ % s̃ as follows. The set f̃ of fragile names contains all names that
are recreated in repeated applications of I. Technically, these names form a least
fixed point. If (�, a) ∈ I, then a ∈ f̃ . If a ∈ f̃ and (a, b) ∈ I, then b ∈ f̃ . The
remaining names s̃ := ã \ f̃ are called stable. We use σI for I ∩ (s̃× s̃).

Lemma 3. σI : s̃→ s̃ is a bijection.

Since σI is a bijection, repeated applications of σI become periodic. The period
of σI is the smallest p ≥ 1 so that σpI = id . Now σxI = σx mod p

I for all x ∈ N.
We call an identity relation I forgetful if it immediately recreates all fragile

names, as opposed to needing several applications to recreate them. Formally, I
is forgetful if the fragile names are precisely the names (�, a) in I. We also call
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an extended reaction sequence P →∗
I Q forgetful if I is. To give an example,

consider ã = a.b.c.d and I = {(�, a), (a, b), (d, c), (c, d)}. Then f̃ = a.b, s̃ = c.d,
σI(c) = d, and σI(d) = c. The period of σI is p = 2. Relation I is not forgetful,
but I2 = {(�, a), (�, b), (c, c), (d, d)} is.

3.2 Acceleration for π-Calculus

We make precise what it means to repeat a reaction sequence. Embedding P �
Q1 ensures P ≡ νã.P ′ and Q1 ≡ νã.(P ′ | Q′). Hence, Q1 contains all the
sequential processes of P . So if P →∗ Q1 then also Q1 →∗ Q2 with reactions

between the same sequential processes. We use the syntax P
ρ−→ Q1 and Q1

ρ−→ Q2

to indicate that the sequences rely on the same reactions ρ.

Our main result characterizes the shape of Qk with P
ρk−→ Qk. The idea is

to compose additional copies of Q′ in parallel with the repeating process P ′.
These copies keep track of (i) the fragile names forgotten by P ′ and (ii) repeated
applications of σI to the stable names. We state the precise result for forgetful
sequences. The general case is more involved, but does not add ideas.

Theorem 1 (Acceleration). Let νs̃.νf̃ .P
ρ′−→I′ νs̃′.νf̃ ′.(P ′ | νf̃ .Q) be a faith-

ful sequence that, using α-conversion, gives rise to the forgetful sequence

νs̃.νf̃ .P
ρ−→I νs̃.νf̃ .(P | νf̃1.Q{f̃1/f̃}{f̃/f̃ ′}σI) .

Then for all k ∈ N we have

νs̃.νf̃ .P
ρk−→ νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

where Qi := Q{f̃i/f̃}{f̃i+1/f̃
′}σk−i+1

I and f̃k+1 := f̃ .

Proof. We use an induction on the number of repetitions of ρ. In the base case,
the term νf̃k.(. . .) is missing. Now assume ρk behaves as required. We can repeat
ρ once more since embedding is a simulation [11]. We use a faithful repetition
that avoids α-conversion and instantiates restricted names to fresh names:

νs̃.νf̃ .P
ρk−→ νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

ρ′−→I′ νs̃′.νf̃ .(νf̃ ′.(P ′ | Q) | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)) .

Since the names f̃ ′ are fresh and do not occur free in νf̃k.(. . .), we can extend
the scope of νf̃ ′. Process P forgets the names f̃ in the reaction sequence ρ. After
swapping νf̃ and νf̃ ′, we can therefore restrict the scope of νf̃ :

νs̃′.νf̃ .[νf̃ ′.(P ′ | Q) | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)]

≡ νs̃′.νf̃ .νf̃ ′.(P ′ | Q | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

≡ νs̃′.νf̃ ′.νf̃ .(P ′ | Q | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

≡ νs̃′.νf̃ ′.(P ′ | νf̃ .[Q | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)]) .



364 R. Hüchting, R. Majumdar, and R. Meyer

We rename f̃ to fresh names f̃k+1 and afterwards f̃ ′ to f̃ . The last step is to
rename s̃′ to s̃ using σI . The resulting processes have the required form. ��

Depth boundedness of νs̃.νf̃ .P allows us to draw further conclusions about the
shape of the processes resulting from acceleration. We now characterize this
shape. We start with the assumption that νs̃.νf̃ .P is even name-bounded. This
case explains well the finiteness obtained from periodicity of σI . Moreover, it
illustrates the shape of limit processes in the decision procedure for name bound-
edness of depth-bounded processes. Under the assumption of name boundedness,
the accelerated processes Qi cannot contain the fragile names f̃i and f̃i+1. As a
consequence, these processes can be written as Qσi.

Lemma 4. Under the conditions in Theorem 1 and the additional assumption
that νs̃.νf̃ .P is name-bounded, acceleration yields

νs̃.νf̃ .P
ρk−→ νs̃.(νf̃ .P |

p∏
i=1

(QσiI)
� k

p �+zi) .

Here, p is the period of σI and zi = 1 if i ≤ k mod p and zi = 0 otherwise.

Proof. We skip the substitutions {f̃i/f̃}{f̃i+1/f̃
′} and remove the corresponding

restrictions from Qi. This leaves us with an i-fold application of σI :

νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)) ≡ νs̃.(νf̃ .P |
k∏
i=1

QσiI) .

The claim then follows from σx = σx mod p for all x ∈ N and the fact that
k = 2kp 3p + r where r = k mod p. ��

In case νs̃.νf̃ .P is depth-bounded, the processes Qi in

νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

cannot connect all fragile names f̃k+1 to f̃1. Instead, we now argue that process
νf̃k.(. . .) falls apart into a composition of fragments that stem from a finite set.

We first note that Q induces a relation D ⊆ f̃ × f̃ among the fragile names.
Intuitively, (f1, f2) ∈ D indicates that name f2 from some execution of ρ is
connected with name f1 from the next execution via a fragment in Q. For the
formal definition, recall that Qi = Q{f̃i/f̃}{f̃i+1/f̃

′}σk−i+1
I . Substitution σI

is a bijection among the stable names. When studying the relation among the
fragile names, we can drop it. Moreover, {f̃i/f̃} and {f̃i+1/f̃

′} are bijective
renamings of f̃ that we also avoid. To define D ⊆ f̃ × f̃ , we turn the remaining
process Q into restricted form. The restricted form is a parallel composition
G1 | . . . | Gn of fragments. Relation D ⊆ f̃ × f̃ is defined to contain the pair
(f1, f2) if there is a fragment Gi that has f ′1 ∈ f̃ ′ and f2 ∈ f̃ as free names. To
give an example, consider Q = G1 | G2 where G1 = νa.(K12f ′1, a3 | K22a, f23)
and G2 = K32f ′2, f33. Then we have D = {(f1, f2), (f2, f3)}.

If the process of interest is depth-bounded, relation D is guaranteed to vanish.
Otherwise, the connected fragments Gi would witness unbounded depth.
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Lemma 5. If νs̃.νf̃ .P ∈ Depth, then there is b ≤ |f̃ | so that Db = ∅.
The lemma shows that fragments in Qi+(b−2) may only share fragile names with
fragments in Qi+(b−3), which only share names with fragments in Qi+(b−4) up to

Qi. Combined with periodicity of σI , it follows that process νf̃k.(. . .) falls apart
into fragments from a finite set {F1, . . . , Ft}. In the example, we have b = 3 as
D3 = ∅. So fragments in Qi+1 may only share fragile names with fragments in Qi,
but these fragments will not share fragile names with fragments in Qi−1. Hence,
we may observe νf1,i+2.f2,i+1.f3,i.(G1,i+1 | G2,i) but G2,i = K32f2,i+1, f3,i3 will
not share f3,i with another fragment.

Lemma 6. If νs̃.νf̃ .P is depth-bounded, then acceleration yields

νs̃.νf̃ .P
ρk−→ νs̃.(νf̃ .(P | Rk) |

t∏
i=1

Fni

i )

where the Rk are periodic, t ∈ N is the number of fragments, and n1, . . . nt ∈ N
grow unboundedly with k.

To actually compute the fragments F1, . . . , Ft, we iterate ρ until the fragments
repeat, due to periodicity of σI and modulo α-conversion of fragile names. The
time it takes until repetition depends on the period of σI and |f̃ |. However,
termination does not rely on the precise depth bound.

In the decision procedure for restricted breadth boundedness, we apply
Lemma 6 in a setting where also the breadth is bounded. In this case, the stable
names are guaranteed not to occur in the accelerated fragments. We derive

νs̃.νf̃ .P
ρk−→ νf̃ .(νs̃.P | Rk) |

t∏
i=1

Fni

i .

3.3 Karp and Miller Trees for Bounded Depth

We now apply these insights about acceleration to devise a Karp and Miller
algorithm for depth-bounded processes. Our goal is to separate soundness and
completeness of the construction from termination. We will guarantee that the
tree represents precisely the downward closure of the reachability set, but the
tree computation may not terminate. Termination is studied independently in
the next section where we draw conclusions about decidability. In Section 5, we
show that in general the coverability set is not computable for depth-bounded
systems. Hence, no Karp-Miller algorithm for depth-bounded processes can be
both, sound and complete as well as terminating.

To represent the downward closure of the state space, we use limit processes :

L ::= S � L1 | L2 � νa.L � Lω .

Structural congruence is extended to limits by

0ω ≡ 0 Lω ≡ L | Lω (Lω)ω ≡ Lω (L1 | L2)
ω ≡ Lω

1 | Lω
2 Lω | Lω ≡ Lω .
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Algorithm 1. Generic Karp & Miller Tree Construction

1: V := {root : P}; � := ∅; work := root : P ;
2: while work not empty do
3: pop n1 : L1 from work ;
4: Break condition;
5: for all L1 →I L2 up to ≡ do
6: if there is n : Lp �∗

I1
n1 : L1 since last acceleration so that

Lp ≡ νs̃.f̃ .L and L2 ≡ νs̃.f̃ .(L | Q) then
7: L2 := Accelerate(Lp, L2);
8: let n2 fresh; V := V ∪ {n2 : L2}; � := � ∪ {n1 : L1 �I n2 : L2};
9: work := work · (n2 : L2) provided L2 does not occur on the path;

10: return (V,�, root : P );

With this, the reaction relation and the embedding order carry over to limit pro-
cesses. To generalize the extended reaction relation to limits, we do not consider
a restricted name as active if it is covered by an ω. If a reaction takes a restriction
νb.L{b/a} out of a term (νa.L)ω, we add (�, b) to the identity relation.

Our Karp-Miller construction is stated as Algorithm 1. Understand break
condition as a no-op for the moment. The command will be instantiated in
Section 4. The algorithm constructs a tree KM(P ) := (V,�, root : P ) where the
nodes are labelled by limit processes, starting from the root that is labelled by
the given process P . To construct the tree, the algorithm maintains a worklist of
nodes that have not yet been processed. As long as the worklist is not empty, the
algorithm pops nodes n1 : L1 and computes all successors L1 →I L2. In contrast
to a standard state space computation, the algorithm does not immediately add
L2 to the tree, but it checks for a predecessor Lp that is strictly smaller in the

following sense: Lp ≡ νs̃.f̃ .L and L2 ≡ νs̃.f̃ .(L | Q). If such an Lp exists, the
algorithm accelerates subterms in L2 to ω and adds the result to the tree.

We use an acceleration scheme that is flat in the following sense. We only
look for predecessors Lp starting from the last accelerated process on the path
from the root. This ensures that the Karp-Miller transitions between Lp and L2

are actually reactions. As a consequence, the additional process Q in L2 can be
assumed to be concrete because the reaction relation does not introduce ω.

To define the acceleration, assume νs̃.f̃ .L
ρ→I νs̃.f̃ .(L | Q). We observe

that Theorem 1 carries over to limits. As the input process is depth-bounded,
Lemma 6 shows that k ∈ N repetitions of the reaction sequence yield

νs̃.νf̃ .L
ρk−→ νs̃.(νf̃ .(L | Rk) |

t∏
i=1

Fni

i )

where the Rk are periodic and n1, . . . , nt ∈ N grow with k. We set

Accelerate(νs̃.f̃ .L, νs̃.f̃ .(L | Q)) := νs̃.(νf̃ .(L | R1) |
t∏

i=1

Fω
i ) .
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The following theorem states that the limit processes in KM(P ) are a sound and
complete representation of the state space.

Theorem 2. Let P ∈ Depth. Then R (P )↓ = KM(P )↓∩ Proc.

Completeness means every Q ∈ R (P ) satisfies Q ∈ KM(P )↓. This holds because
acceleration only returns a larger process and embedding is a simulation. Sound-
ness states that every process Q � L ∈ KM(P ) is covered by a reachable process,
Q � R ∈ R (P ). The acceleration results show that for every limit L ∈ KM(P )
and k ∈ N there is a process RL,k ∈ R (P ) that coincides with L in the concrete
part and yields more than k parallel compositions of the ω terms.

4 Decidability Results

4.1 Given P ∈ Depth, is P ∈ Name?

To decide name boundedness, we instantiate break condition as follows:

if there is a predecessor n : Lp �∗ n1 : L1 so that n : Lp is not inside
an acceleration, Lp ≺ L1, and |arn(Lp)| < |arn(L1)| then

return not name-bounded;

That predecessor n : Lp is not inside an acceleration, means there is no pair of
nodes nx : Lx �+ n : Lp �+ ny : Ly that have been used to accelerate Ly. The
condition guarantees that the sequence n : Lp �∗ n1 : L1 can be accelerated
although it may be nested. The trick is that nested sequences inside have all the
processes required to pump.

We say that Algorithm 1 succeeds, if it returns the tree (Line 10) and it
breaks, if it enters the break condition (Line 4). The next observation shows that
acceleration never introduces ω over an active restriction.

Lemma 7. If KM(P ) accelerates an active restriction, it breaks.

Proof. Let L1 be the first limit on a path with some (νa.(. . .))ω . The acceleration
is due to some n : Lp �∗ n1 : L1 that occurs after the last acceleration and
satisfies Lp ≺ L1. As L1 is minimal, |arn(Lp)| ∈ N and |arn(L1)| := ω. ��

We now show Algorithm 1 is partially correct. If KM(P ) succeeds, it will not
accelerate active restrictions by Lemma 7. Moreover, the constructed tree is
finite and the maximum max{|arn(L)| | L ∈ KM(P )} is a natural number and
an optimal name bound. If KM(P ) breaks, we obtain name unboundedness with
the above argumentation on nested acceleration and Lemma 6.

Lemma 8. If KM(P ) succeeds, P ∈ Name. If KM(P ) breaks, P /∈ Name.

It remains to show that Algorithm 1 is guaranteed to terminate. First assume P
is name-bounded. By Lemma 8, the algorithm does not break. To show that the
tree construction succeeds, we apply König’s lemma and argue that the paths in
the tree are finite. Towards a contradiction, assume there was an infinite path

root : P = n0 : L0 � n1 : L1 � n2 : L2 � . . .
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Since the Karp-Miller construction is sound (Theorem 2) and P ∈ Name, not
only the reachable processes but also the limits Li take the shape from Lemma 1:

Li ≡ νa1 . . . ak.(S
mi
1 | . . . | Smn

n )

where n ∈ N is fixed and potentially some mi are accelerated to ω. We can
understand the limits as vectors in (N∪{ω})n. The set of vectors (N∪{ω})n with
the usual ordering on N ∪ {ω} (applied component-wise) is well-quasi-ordered.
Hence, the infinite path contains an infinite non-decreasing subsequence

Li1 � Li2 � . . . .

This sequence is strict, as Algorithm 1 never adds a process to the worklist that
already occurs on the path. Since there are only n sequential processes and ωs
are never removed, the number of Sω stabilizes in some node in the path, say
nik : Lik . Then there are no more accelerations from Lik , and Lik+1

4 Lik can
be accelerated. A contradiction to the fact that no ω is added to Lik+1

.

Lemma 9. If P ∈ Name, then KM(P ) succeeds.

Now assume that P /∈ Name. By Lemma 8, the algorithm does not succeed. To
show that it always breaks, assume this is not the case. With Lemma 7, we never
accelerate an active restriction. Since Algorithm 1 is complete and P /∈ Name,
for every k ∈ N the tree contains a limit Lk with more than k active restrictions.
Thus, the tree is infinite and by König’s lemma contains an infinite path

root : P = n0 : L0 � n1 : L1 � n2 : L2 � . . . .

We isolate the subsequence Li1 , Li2 , . . . of limits that (i) form the lhs of an
acceleration, like nx : Lx above, or (ii) that lie strictly between accelerations.

We now show that the limits computed without a break form a wqo with �.
Since we never accelerate a restriction, the limits Li are term trees over sequential
processes S and Sω. Due to soundness, the limits are bounded in depth by some
k ∈ N. It remains to show that S stems from a finite set. With the depth bound
and the observation following Lemma 1, we can assume that the limits are flat
processes with at most k nested restrictions. They can be written as

Li ≡ νa1.(νa2.(. . .) | . . . | νa2(. . .)) .

This in turn means S ≡ Dσ with σ : fn(D)→ fn(P ) ∪ {a1, . . . , ak}, where D is
a syntactic subterm of P and σ is taken from a finite set of substitutions.

As the limits on the path are wqo, there is an infinite non-decreasing subse-
quence Lj1 � Lj2 � . . . of the sequence Li1 , Li2 , . . . we just considered. Again,
Algorithm 1 does not add copies and the sequence is strict. Either the num-
ber of active restricted names in the limits along this path is bounded, or it
grows indefinitely. If it is bounded, this contradicts infinity of the path as in
Lemma 9. Otherwise, there are Ljk ≺ Ljl with |arn(Ljk)| < |arn(Ljl)| and the
break condition applies.
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Lemma 10. If P /∈ Name, then KM(P ) breaks.

Theorem 3. Given P ∈ Depth, it is decidable if P ∈ Name.

Name-bounded processes have finite Karp-Miller trees by Lemma 9. We can now
decide breadth boundedness for P ∈ Name by checking if the tree contains a limit
νã.(Sm1

1 | . . . | Smn
n ) where a ∈ fn(Si) for some a ∈ ã and Si with mi = ω.

Corollary 1. Given P ∈ Name, it is decidable if P ∈ Breadth.

4.2 Given P ∈ Depth and k, is P ∈ Breadth(k)?

To derive a decision procedure, we use the following break condition:

if |L1|B > k then return not breadth-bounded by k;

Lemma 11. If KM(P ) succeeds, P ∈ Breadth(k). If KM(P ) breaks, P /∈
Breadth(k).

We now show that Algorithm 1 is guaranteed to terminate. If P ∈ Breadth(k), by
Lemma 11, the break condition will not apply. By soundness of the construction,
limits are composed of finitely many fragments (Lemma 2). Then an infinite path
yields a contradiction to the acceleration behaviour as for name boundedness. If
P /∈ Breadth(k), by Lemma 11, the tree construction will not succeed. We show
that we enter the break condition. Since P /∈ Breadth(k), there is a process
Q ∈ R (P ) with |Q|B > k. As Algorithm 1 is complete, we eventually find a limit
L with Q � L and k < |Q|B ≤ |L|B. The break condition applies for L.

Lemma 12. If P ∈ Breadth(k), then KM(P ) succeeds. If P /∈ Breadth(k), then
KM(P ) breaks.

Theorem 4. Given P ∈ Depth and k ∈ N, it is decidable if P ∈ Breadth(k).

Note that we cannot semi-decide breadth unboundedness. We show in Sec-
tion 5 that breadth boundedness, despite the seeming similarity with name
boundedness, is undecidable for depth-bounded processes.

4.3 Given P ∈ Proc and k, is P ∈ Depth(k)?

By definition, P ∈ Depth(k) iff all processes in R (P )↓ are in Depth(k).
If R (P )↓ is not in Depth(k), we claim that there is some process Q in R (P )↓

for which k < |Q|D ≤ |P |+ 2k. Let P →∗ Q′ → Q, such that (1) |Q|D > k, and
(2) all processes in the path P →∗ Q′ have depth less than or equal to k. So Q is
a minimal process whose depth exceeds k. Note that Q need not be unique, we
arbitrarily pick a minimal process. Consider the step Q′ → Q. By case analysis
on the possible steps, Q′ either unfolds a recursive call and Q has its depth
bounded by |P |+ |Q′|D, or Q results from a communication and has fragments
whose depth is bounded above by |P |+ 2|Q′|D. In both cases, |P | takes care of
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active restrictions that are freed in the reaction. As |Q′|D ≤ k by assumption,
we have that there is a process Q in R (P )↓ whose depth is at most |P |+ 2k.

Now, consider the set Procw := {Q ∈ Proc | k < |Q|D ≤ |P | + 2k}. We work
in the well-quasi-order of |P | + 2k depth-bounded processes with the ordering
�. If R (P )↓ intersects this set, a minimal element of this set must be covered
by process P . We enumerate the finitely many minimal elements of this set, and
for each minimal element Q, we check if R (P )↓ intersects Q. This problem is
a coverability question. Since the coverability problem is decidable for depth-
bounded systems [18], we get a decision procedure to check if P ∈ Depth(k).

Theorem 5. Given P ∈ Proc and k ∈ N, it is decidable if P ∈ Depth(k).

5 Undecidability Results

We complement our decidability results with undecidability results for the re-
maining questions. Recall that a problem L is in the class Σ1 if it is semi-
decidable, and in Σ2 if it is semi-decidable using a Σ1 oracle. A problem is Π1 if
it is the complement of a Σ1 problem, and L is C-complete if it is in the class C
and there is a recursive reduction from every L′ ∈ C to L. The halting problem is
Σ1-complete, the emptiness problem is Π1-complete, and the finiteness problem
is Σ2-complete [17]. Boundedness for reset Petri nets is also Σ1-complete [1,2].

Theorem 6 (Undecidability results).

1. Given P ∈ Proc, checking if P ∈ Name or P ∈ Depth are both Σ1-complete.
2. Given P ∈ Proc and k ∈ N, checking if P ∈ Breadth(k) is Π1-complete.
3. Given P ∈ Proc, checking if P ∈ Breadth is Σ2-complete.
4. Given P ∈ Depth, checking if P ∈ Breadth is Σ1-complete.

Given a process P , since checking P ∈ Depth(k) and P ∈ Name(k) is decidable,
P ∈ Depth and P ∈ Name are both Σ1. For the problem P ∈ Breadth(k) to
be in Π1, we semi-decide the complement. We enumerate processes until we
find Q ∈ R (P ) with |Q|B > k. With an oracle for this, we can semi-decide
P ∈ Breadth by enumerating the possible bounds k and querying the oracle.

We show hardness for these problems. For a Turing machine M with input x,
we construct a process P (M,x) that simulates M and in each step increases the
number of names and the depth. If M halts on x, then P (M,x) is name-, and also
depth-bounded. If M does not halt on x, then P (M,x) is not depth-bounded.

For problems related to breadth boundedness, we show that the computation
of a Turing machine M simultaneously on all possible inputs can be simulated by
a process P (M) in constant breadth. We increment the breadth of P (M) every
time M accepts an input. Restricted breadth boundedness is Π1-hard, because
we can reduce emptiness of M to this question. Breadth boundedness is Σ2-hard,
since the simulating process has bounded breadth iff L(M) is finite.

To show that boundedness in breadth is Σ1-complete even for P ∈ Depth,
we reduce the boundedness problem for reset Petri nets to breadth bound-
edness. We simulate net N with a depth-bounded P (N). Tokens are send actions,
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consumed and produced when transitions fire. To reset a place, we create a fresh
name for its tokens. The breadth of P (N) is related to the token count in N ,
and P (N) is bounded in breadth if and only if N is bounded.

This shows that the coverability set is not computable for P ∈ Depth. The
coverability set of P (N) would allow to decide boundedness of the reset net N .
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Abstract. Privacy properties such as untraceability, vote secrecy, or anonymity
are typically expressed as behavioural equivalence in a process algebra that mod-
els security protocols. In this paper, we study how to decide one particular rela-
tion, namely trace equivalence, for an unbounded number of sessions.

Our first main contribution is to reduce the search space for attacks. Specifi-
cally, we show that if there is an attack then there is one that is well-typed. Our
result holds for a large class of typing systems and a large class of determinate
security protocols. Assuming finitely many nonces and keys, we can derive from
this result that trace equivalence is decidable for an unbounded number of ses-
sions for a class of tagged protocols, yielding one of the first decidability results
for the unbounded case. As an intermediate result, we also provide a novel deci-
sion procedure in the case of a bounded number of sessions.

1 Introduction

Privacy properties such as untraceability, vote secrecy, or anonymity are typically ex-
pressed as behavioural equivalence (e.g. [9,5]). For example, the anonymity of Bob
is typically expressed by the fact that an adversary should not distinguish between
the situation where Bob is present and the situation where Alice is present. Formally,
the behaviour of a protocol can be modelled through a process algebra such as CSP
or the pi calculus, enriched with terms to represent cryptographic messages. Then in-
distinguishability can be modelled through various behavioural equivalences. We focus
here on trace equivalence, denoted ≈. Checking for privacy then amounts into check-
ing for trace equivalence between processes, which is of course undecidable in general.
Even in the case of a bounded number of sessions, there are few decidability results and
the associated decision procedures are complex [6,22,11]. In this paper, we study trace
equivalence in the case of an unbounded number of sessions.

Our Contribution. Our first main contribution is a simplification result, that reduces the
search space for attacks: if there is an attack, then there exists a well-typed attack. More
formally, we show that if there is a witness (i.e. a trace) that P 	≈ Q then there exists
a witness which is well-typed w.r.t. P or Q, provided that P and Q are determinate
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processes (intuitively, messages that are outputted are completely determined by the
interactions of the protocol with the environment, i.e. the attacker). This typing result
holds for an unbounded number of sessions and an unbounded number of nonces, that
is, it holds even if P and Q contain arbitrary replications and NEW operations. It holds
for any typing system provided that any two unifiable encrypted subterms of P (or Q)
are of the same type. It is then up to the user to adjust the typing system such that this
hypothesis holds for the protocols under consideration. For simplicity, we prove this
typing result for the case of symmetric encryption and concatenation but we believe
that our result could be extended to the other standard cryptographic primitives.

The finer the typing system is, the more our typing result restricts the attack search.
In general, our typing result does not yield directly a decidability result since even the
simple property of reachability is undecidable for an unbounded number of sessions and
arbitrary nonces, even if the messages are of bounded size (e.g. [3]). Indeed, our typing
system ensures the existence of a well-typed attack (if any) but the number of well-typed
traces may remain infinite. To obtain decidability, we further assume a finite number of
terms of each type (i.e. in particular a finite number of nonces). Decidability of trace
equivalence then follows from our main typing result, for a class of simple protocols
where each subprocess uses a distinct channel (intuitively, a session identifiers).

As an application, we consider the class of tagged protocols introduced by Blanchet
and Podelski [8]. An easy way to achieve this in practice by labelling encryption and is
actually a good protocol design principle [2,19]. We show that tagged protocols induce
a typing system for which trace equivalence is decidable, for simple protocols and for
an unbounded number of sessions (but a fixed number of nonces).

Interestingly, the proof of our main typing result involves providing a new decision
procedure for trace equivalence in the case of a bounded number of sessions. This is a
key intermediate result of our proof. Trace equivalence was already shown to be decid-
able for a bounded number of sessions (e.g. [22,11]) but we propose a novel decision
procedure that further provides a well-typed witness whenever the two processes are not
in trace equivalence. Compared to existing procedures (e.g. [22]), we show that it is only
necessary to consider unification between encrypted terms. We believe that this new
procedure is of independent interest since it reduces the number of traces (executions)
that need to be considered. Our result could therefore be used to speed up equivalence
checkers like SPEC [22]. Detailed proofs of our results can be found in [14].

Related Work. Formal methods have been very successful for the analysis of security
protocols and many decision procedures and tools (e.g. [21,20,16]) have been proposed.
However, most of these results focus on reachability properties such as confidentiality
or authentication. Much fewer results exist for behavioural equivalences. Based on a
procedure proposed by Baudet [6], a first decidability result has been proposed for de-
terminate process without else branches, and for equational theories that capture most
standard primitives [12]. Then Tiu and Dawson [22] have designed and implemented
a procedure for open bisimulation, a notion of equivalence stronger than the standard
notion of trace equivalence. Cheval et al [11] have proposed and implemented a pro-
cedure for processes with else branches and standard primitives. The tool AkisS [10]
is also dedicated to trace equivalence but is not guaranteed to terminate. However, all
these results focus on a bounded number of sessions. An exception is the tool ProVerif
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which can handle observational equivalence for an unbounded number of sessions [7].
It actually reasons on a stronger notion of equivalence (which may turn to be too strong
in practice) and is again not guaranteed to terminate.

To our knowledge, the only decidability result for an unbounded number of sessions
is [13]. It is shown that trace equivalence can be reduced to the equality of languages
of pushdown automata. A key hypothesis for reducing to pushdown automata is that
protocol rules have at most one variable, that is, at any execution step, any participant
knows already every component of the message he received except for at most one
component (e.g. a nonce received from another participant). Moreover variables shall
not occur in key position, i.e. agents may not use received keys for encryption. This
strongly limits the class of protocols that can be considered and the approach is strictly
bound to this “one-variable” hypothesis. In contrast, we can consider here a much wider
class of protocols, provided that they are tagged (which is easy to implement).

Our proof technique is inspired from the approach developed by Arapinis et al [4]
for bounding the size of messages of an attack for the reachability case. Specifically,
they show for some class of tagged protocols, that whenever there is an attack, there is
a well-typed attack (for a particular typing system). We somehow extend their approach
to trace equivalence and more general typing systems.

2 Model for Security Protocols

Security protocols are modelled through a process algebra inspired from [1] that ma-
nipulates terms.

2.1 Syntax

Term algebra. We assume an infinite setN of names, which are used to represent keys
and nonces, and two infinite disjoint sets of variables X and W . The variables in W
intuitively refer to variables used to store messages learnt by the attacker. We assume a
signature F , i.e. a set of function symbols together with their arity. We consider:

Σc = {enc, 〈 〉}, Σd = {dec, proj1, proj2}, and Σ = Σc ∪Σd.

The symbols dec and enc of arity 2 represent symmetric decryption/encryption.
Pairing is modelled using a symbol of arity 2, denoted 〈 〉, and projection functions
are denoted proj1 and proj2. We further assume an infinite set of constant symbols Σ0

to represent atomic data known to the attacker. The symbols in Σc are constructors
whereas those in Σd are destructors. Both represent functions available to the attacker.

Given a set of A of atoms (i.e. names, variables, and constants), and a signature
F ∈ {Σc, Σd, Σ}, we denote by T (F ,A) the set of terms built from symbols in F ,
and atoms in A. The subset of T (Σc,A) which only contains terms with atoms as a
second argument of the symbol enc, is denoted T0(Σc,A). Terms in T0(Σc, Σ0 ∪ N )
are called messages. An attacker builds his own messages by applying functions to
terms he already knows. Formally, a computation done by the attacker is modelled by a
term, called a recipe, built on the signature Σ using (public) constants in Σ0 as well as
variables inW , i.e. a term R ∈ T (Σ,Σ0 ∪W). Note that such a term does not contain
any name.
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We denote vars(u) the set of variables that occur in u. The application of a substi-
tution σ to a term u is written uσ, and we denote dom(σ) its domain. Two terms u1

and u2 are unifiable when there exists σ such that u1σ = u2σ.
The relations between encryption/decryption and pairing/projections are represented

through the three following rewriting rules, yielding a convergent rewrite system:

dec(enc(x, y), y)→ x, and proji(〈x1, x2〉)→ xi with i ∈ {1, 2}.
Given u ∈ T (Σ,Σ0 ∪ N ∪ X ), we denote by u↓ its normal form. We refer the reader
to [18] for the precise definitions of rewriting systems, convergence, and normal forms.

Example 1. Let s, k ∈ N , and u = enc(s, k). The term dec(u, k) models the applica-
tion of the decryption algorithm on u using k. We have that dec(u, k)↓ = s.

Process algebra. Let Ch be an infinite set of channels. We consider processes built
using the following grammar where u ∈ T (Σc, Σ0 ∪N ∪ X ), n ∈ N , and c, c′ ∈ Ch:

P,Q := 0 | in(c, u).P | out(c, u).P | (P | Q) | !P | new n.P | new c′.out(c, c′).P

The process 0 does nothing. The process “in(c, u).P ” expects a message m of the
form u on channel c and then behaves like Pσ where σ is a substitution such that
m = uσ. The process “out(c, u).P ” emits u on channel c, and then behaves like P .
The variables that occur in u are instantiated when the evaluation takes place. The
process P | Q runs P and Q in parallel. The process !P executes P some arbitrary
number of times. The name restriction “new n” is used to model the creation in a pro-
cess of a fresh random number (e.g., a nonce or a key) whereas channel generation
“new c′.out(c, c′).P ” is used to model the creation of a new channel name that shall
immediately be made public. Note that we consider only public channels. It is still use-
ful to generate fresh (public) channel names to let the attacker identify the different
sessions of a protocol (as it is often the case in practice through sessions identifiers).

We assume that names are implicitly freshly generated, thus new k.out(c, k) and
out(c, k) have exactly the same behaviour. The construction “new” becomes important
in the presence of replication to distinguish whether some value k is generated at each
session, e.g. in !(new k.out(c, k)) or not, e.g. in new k.(!out(c, k)).

For the sake of clarity, we may omit the null process. We also assume that processes
are name and variable distinct, i.e. any name and variable is at most bound once. For
example, in the process in(c, x).in(c, x) the variable x is bound once and thus the pro-
cess is name and variable distinct. By contrast, in in(c, x) | in(c, x), one occurrence of
the variable x would need to be renamed. We write fv (P ) for the set of free variables
that occur in P , i.e. the set of variables that are not in the scope of an input.

We assume Ch = Ch0 % Chfresh where Ch0 and Chfresh are two infinite and disjoint
sets of channels. Intuitively, channels of Chfresh, denoted ch1, . . . , chi, . . . will be used
in the semantics to instantiate the channels generated during the execution of a protocol.
They shall not be part of its specification.

Definition 1. A protocol P is a process such that P is ground, i.e. fv(P ) = ∅; P is
name and variable distinct; and P does not use channel names from Chfresh.
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Example 2. The Otway-Rees protocol [15] is a key distribution protocol using symmet-
ric encryption and a trusted server. It can be described informally as follows:

1. A→ B : M,A,B, {Na,M,A,B}Kas

2. B → S : M,A,B, {Na,M,A,B}Kas , {Nb,M,A,B}Kbs

3. S → B : M, {Na,Kab}Kas , {Nb,Kab}Kbs

4. B → A : M, {Na,Kab}Kas

where {m}k denotes the symmetric encryption of a message m with key k, A and B are
agents trying to authenticate each other, S is a trusted server, Kas (resp. Kbs) is a long
term key shared between A and S (resp. B and S), Na and Nb are nonces generated
by A and B, Kab is a session key generated by S, and M is a session identifier.

We propose a modelling of the Otway-Rees protocol in our formalism. We use re-
stricted channels to model the use of unique session identifiers used along an execution
of the protocol. Below, kas, kbs, m, na, nb, kab are names, whereas a and b are constants
from Σ0. We denote by 〈x1, . . . , xn−1, xn〉 the term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.

POR =! new c1.out(cA, c1).PA | ! new c2.out(cB, c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB are given below, and PS can be defined in a similar way.

PA = new m.new na. out(c1, 〈m, a, b, enc(〈na,m, a, b〉, kas)〉).
in(c1, 〈m, enc(〈na, xab〉, kas)〉);

PB = in(c2, 〈ym, a, b, yas〉).new nb.out(c2, 〈ym, a, b, yas, enc(〈nb, ym, a, b〉, kbs)〉).
in(c2, 〈ym, zas, enc(〈nb, yab〉, kbs)〉).out(c2, 〈ym, zas〉)

2.2 Semantics

The operational semantics of a process is defined using a relation over configurations.
A configuration is a pair (P ;φ) where:

– P is a multiset of ground processes.
– φ = {w1 � m1, . . . ,wn � mn} is a frame, i.e. a substitution where w1, . . . ,wn are

variables in W , and m1, . . . ,mn are messages, i.e. terms in T0(Σc, Σ0 ∪ N ).

We often write P instead of ({P}; ∅), and P ∪ P or P | P instead of {P} ∪ P .
The terms in φ represent the messages that are known by the attacker. The operational
semantics of a process is induced by the relation

α−→ over configurations defined below.

(in(c, u).P ∪ P ;φ) in(c,R)−−−−→ (Pσ ∪ P ;φ) where R is a recipe such that Rφ↓
is a message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)

(out(c, u).P ∪ P ;φ) out(c,wi+1)−−−−−−−→ (P ∪ P ;φ ∪ {wi+1 � u})
where u is a message and i is the number of elements in φ

(new c′.out(c, c′).P ∪ P ;φ) out(c,chi)−−−−−−→ (P{chi/c′} ∪ P ;φ)
where chi is the “next” fresh channel name available in Chfresh

(new n.P ∪ P ;φ) τ−→ (P{n′
/n} ∪ P ;φ) where n′ is a fresh name in N

(!P ∪ P ;φ) τ−→ (P ∪ !P ∪ P ;φ)
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The first rule allows the attacker to send to some process a term built from publicly
available terms and symbols. The second rule corresponds to the output of a term by
some process: the corresponding term is added to the frame of the current configura-
tion, which means that the attacker can now access the sent term. Note that the term is
outputted provided that it is a message. In case the evaluation of the term yields an en-
cryption with a non atomic key, the evaluation fails and there is no output. The third rule
corresponds to the special case of an output of a freshly generated channel name. In such
a case, the channel is not added to the frame but it is implicitly assumed known to the
attacker, as all the channel names. These three rules are the only observable actions. The
two remaining rules are quite standard and are unobservable (τ action) from the point
of view of the attacker. The relation

α1...αn−−−−−→ between configurations (where α1 . . . αn
is a sequence of actions) is defined as the transitive closure of

α−→.
Given a sequence of observable actions tr, we write K

tr
==⇒ K ′ when there exists

a sequence α1 . . . αn such that K
α1...αn−−−−−→ K ′ and tr is obtained from α1 . . . αn by

erasing all occurrences of τ . For every protocol P , we define its set of traces as follows:

trace(P ) = {(tr, φ) | P tr
==⇒ (P ;φ) for some configuration (P ;φ)}.

Note that, by definition of trace(P ), trφ↓ only contains terms from T0(Σc, Σ0 ∪N ).

Example 3. Consider the following sequence tr:

tr = out(cA, ch1).out(cB , ch2).out(ch1,w1).in(ch2,w1).
out(ch2,w2).in(ch2, R0).out(ch2,w3).in(ch1,w3)

where R0 = 〈proj1/5(w2), proj4/5(w2), proj5/5(w2)〉, and proji/5 is used as a shortcut
to extract the ith component of a 5-uplet. Actually such a sequence of actions allows
one to reach the following frame with tenc = enc(〈na,m, a, b〉, kas):
φ = {w1 � 〈m, a, b, tenc〉,w2 � 〈m, a, b, tenc, enc(〈nb,m, a, b〉, kbs)〉,w3 � 〈m, tenc〉}.

We have that (tr, φ) ∈ trace(POR). The first five actions actually correspond to a
normal execution of the protocol. Then, the agent who plays PB will accept in input the
message built using R0, i.e. u = 〈m, enc(〈na,m, a, b〉, kas), enc(〈nb,m, a, b〉, kbs)〉.
Indeed, this message has the expected form. At this stage, the agent who plays PB is
waiting for a message of the form: u0 = 〈m, zas, enc(〈nb, yab〉, kbs)〉. The substitution
σ = {zas � tenc, yab � 〈m, a, b〉} is such that u = u0σ. Once this input has been
done, a message is outputted (action out(ch3,w3)) and given in input to PA (action
in(ch1,w3)).

Note that, at the end of the execution, A and B share a key but it is not the expected
one, i.e. one freshly generated by the trusted server, but 〈m, a, b〉.

2.3 Trace Equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any attacker.
Trace equivalence can be used to formalise many interesting security properties, in
particular privacy-type properties, such as those studied for instance in [9]. We first
introduce a notion of intruder’s knowledge well-suited to cryptographic primitives for
which the success of decrypting is visible.
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Definition 2. Two frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when we have
that dom(φ1) = dom(φ2), and:

– for any recipe R, Rφ1↓ ∈ T0(Σc, Σ0 ∪ N ) iff Rφ2↓ ∈ T0(Σc, Σ0 ∪ N ); and
– for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ T0(Σc, Σ0 ∪ N ), we have

that R1φ1↓ = R2φ1↓ iff R1φ2↓ = R2φ2↓.

Intuitively, two frames are equivalent if an attacker cannot see the difference between
the two situations they represent. If some computation fails in φ1 for some recipe R, i.e.
Rφ1↓ is not a message, it should fail in φ2 as well. Moreover, φ1 and φ2 should satisfy
the same equalities. In other words, the ability of the attacker to distinguish whether a
recipe R produces a message, or whether two recipes R1, R2 produce the same message
should not depend on the frame.

Example 4. Consider φ1 = φ ∪ {w4 � 〈m, a, b〉}, and φ2 = φ ∪ {w4 � n} where n is a
name. Let R = proj1(w4). We have that Rφ1↓ = m ∈ T0(Σc, Σ0 ∪ N ), but Rφ2↓ =
proj1(n) /∈ T0(Σc, Σ0 ∪ N ), hence φ1 	∼ φ2. This non static equivalence can also be
established considering the recipes R1 = 〈proj1(w3), a, b〉 and R2 = w4. We have that
R1φ1↓, R2φ1↓ ∈ T0(Σc, Σ0 ∪N ), and R1φ1↓ = R2φ1↓ whereas R1φ2↓ 	= R2φ2↓.

Intuitively, two protocols are trace equivalent if, however they behave, the resulting
sequences of messages observed by the attacker are in static equivalence.

Definition 3. A protocol P is trace included in a protocol Q, written P 5 Q, if for every
(tr, φ) ∈ trace(P ), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′. The
protocols P and Q are trace equivalent, written P ≈ Q, if P 5 Q and Q 5 P .

As illustrated by the following example, restricting messages to only contain atoms
in key position also provides the adversary with more comparison power when variables
occurred in key position in the protocol.

Example 5. Let n, k ∈ N and consider the protocol P = in(c, x).out(c, enc(n, k))
as well as the protocol Q = in(c, x).out(c, enc(enc(n, x), k)). An attacker may dis-
tinguish between P and Q by sending a non atomic data and observing whether the
process can emit. Q will not be able to emit since its first encryption will fail. This
attack would not have been detected if arbitrary terms were allowed in key position.

In what follows, we consider determinate protocols as defined in [10], i.e., we con-
sider protocols in which the attacker knowledge is completely determined (up to static
equivalence) by its past interaction with the protocol participants.

Definition 4. A protocol P is determinate if for any tr, and for any (P1, φ1), (P2, φ2)

such that P
tr
==⇒ (P1, φ1), and P

tr
==⇒ (P2, φ2), we have that φ1 ∼ φ2.

Assume given two determinate protocols P and Q such that P 	5 Q. A witness of
non-inclusion is a trace tr for which there exists φ such that (tr, φ) ∈ trace(P ) and:

– either there does not exist φ′ such that (tr, φ′) ∈ trace(Q),
– or such a φ′ exists and φ 	∼ φ′.
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A witness of non-equivalence for determinate protocols P and Q is a trace tr that is a
witness for P 	5 Q or Q 	5 P . Note that when a protocol P is determinate, once the se-
quence tr is fixed, all the frames reachable through tr are actually in static equivalence,
which ensures the unicity of φ′, if it exists, up-to static equivalence.

Example 6. We wish to check strong secrecy of the exchanged key received by the
agent A for the Otway-Rees protocol. A way of doing so is to check that P 1

OR ≈ P 2
OR

where the two protocols are defined as follows:

– P 1
OR is as POR but we add the instruction out(c1, xab) at the end of the process PA;

– P 2
OR is as POR but we add the instruction new n.out(c1, n) at the end of PA.

The idea is to check whether an attacker can see the difference between the session key
obtained by A and a fresh nonce.

As already suggested by the scenario described in Example 3, the secrecy (and so the
strong secrecy) of the key received by A is not preserved. More precisely, consider the
sequence tr′ = tr.out(ch1,w4) where tr is as in Example 3. In particular, (tr′, φ1) ∈
trace(P 1

OR) and (tr′, φ2) ∈ trace(P 2
OR) with φ1 = φ ∪ {w4 � 〈m, a, b〉} and φ2 =

φ ∪ {w4 � n}. As described in Example 4, φ1 	∼ φ2 and thus tr′ is a witness of non-
equivalence for P 1

OR and P 2
OR. This witness is actually a variant of a known attack on

the Otway-Rees protocol [15].

3 Existence of a Well-Typed Witness of Non-equivalence

In this section, we present our first main contribution: a simplification result that re-
duces the search space for attacks. Roughly, when looking for an attack, we can restrict
ourselves to consider well-typed traces. This results holds for a general class of typing
systems and as soon as the protocols under study are determinate and type-compliant.
We first explain these hypotheses and then we state our general simplification result
(see Theorem 1). The proof of this simplification result involves to provide a novel de-
cision procedure for trace equivalence in the case of a bounded number of sessions. The
novelty of this decision procedure, in comparison to the existing ones, is to provide a
well-typed witness whenever the two processes are not in trace equivalence. This key
intermediate result is stated in Proposition 1.

3.1 Typing System

Our simplification result holds for a general class of typing systems: we simply require
that types are preserved by unification and application of substitutions. These operations
are indeed routinely used in decision procedures.

Definition 5. A typing system is a pair (T , δ) where T is a set of elements called types,
and δ is a function mapping terms t ∈ T (Σc, Σ0 ∪N ∪ X ) to types τ in T such that:

– if t is a term of type τ and σ is a well-typed substitution, i.e. every variable of its
domain has the same type as its image, then tσ is of type τ ,
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– for any terms t and t′ with the same type, i.e. δ(t) = δ(t′) and which are unifiable,
their most general unifier (mgu(t, t′)) is well-typed.

We further assume the existence of an infinite number of constants in Σ0 (resp. variables
in X , names in N ) of any type.

A straightforward typing system is when all terms are of a unique type, say Msg. Of
course, our typing result would then be useless to reduce the search space for attacks.
Which typing system shall be used typically depends on the protocols under study. We
present in Section 5 a typing system that allows us to reduce the search space (and then
derive decidability) for a large subclass of (tagged) protocols.

3.2 Well-Typed Trace

Whether or not a trace is well-typed is defined w.r.t. the set of symbolic traces of a

protocol. Formally, we define
trs−−→s to be the transitive closure of the relation

αs−→s

defined between processes as follows:

in(c, u).P ∪ P in(c,u)−−−−→s P ∪ P !P ∪ P τ−→s P ′ ∪ !P ∪ P
out(c, u).P ∪ P out(c,u)−−−−−→s P ∪ P new n.P ∪ P τ−→s P{n′

/n} ∪ P
new c′.out(c, c′).P ∪ P out(c,chi)−−−−−−→s P{chi/c′} ∪ P

where P ′ is equal to P up to renaming of variables that do not occur yet in the trace
with fresh ones (of the same type), n′ is a fresh name (of the same type as n), and chi
is the “next” fresh channel name available in Chfresh.

Then, the set of symbolic traces traces(P ) of a protocol P is defined as follows:

traces(P ) = {trs | P
trs−→s Q for some Q }.

Intuitively, the symbolic traces are simply all possible traces before instantiation of
the variables, with some renaming to avoid unwanted captures.

Example 7. Let P1 = in(c, x).!new k. in(c, enc(〈x, y〉, k)). We have that:

trs = in(c, x).in(c, enc(〈x, y1〉, k1)).in(c, enc(〈x, y2〉), k2) ∈ traces(P1)

Indeed, the variable x is bound before replication.

As stated in the lemma below, any concrete trace is the instance of a symbolic trace.

Lemma 1. Let P be a protocol and (tr, φ) ∈ trace(P ). We have that trφ↓ = trsσ for
some trs ∈ traces(P ) and some substitution σ.

A well-typed trace is simply a trace that is well-typed w.r.t. one of the symbolic
traces. Since keys are atomic, some executions may fail when a protocol is about to
output a term that contains an encryption with a non atomic key. To detect these be-
haviours, we need to consider slightly ill-typed traces. Formally, we consider a special
constant ω ∈ Σ0. Its usefulness is illustrated in Example 8.

Definition 6. A first-order trace of P is a sequence tr = trsσ where trs ∈ traces(P )
and σ is a substitution such that for any io(c, u) that occurs in trs with io ∈ {in, out}
and u not a channel, then uσ ∈ T0(Σc, Σ0 ∪ N ∪ X ). The trace tr is said to be:
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– well-typed w.r.t. a typing system (T , δ) if there exists such a σ that is well-typed;
– pseudo-well-typed w.r.t. a typing system (T , δ) if there exists such σ, as well as

c0 ∈ Σ0 and σ′ such that σ = σ′{〈ω,ω〉/c0} with σ′ well-typed.

Then a trace (tr, φ) ∈ trace(P ) is well-typed (resp. pseudo-well-typed) if trφ↓ is
well-typed (resp. pseudo-well-typed).

Note that Lemma 1 ensures that trφ↓ is a first-order trace of P , and a well-typed
trace is also pseudo-well-typed.

Example 8. Going back to Example 5, let tr = in(c, 〈ω, ω〉).out(c,w1). We have that
(tr, {w1 � enc(n, k)}) ∈ trace(P ) while there exists no frame ψ such that (tr, ψ) ∈
trace(Q). Consider the typing system (T , δ) such that δ(t) = atom for any atom or
variable t and δ(t) = ¬atom if t is not an atom. We can see there exists no well-typed
witness of P 	≈ Q (while P and Q are type-compliant as defined in Definition 7).
However, the witness (tr, {w1 � enc(n, k)}) of P 	5 Q is pseudo-well-typed (note that
〈ω, ω〉 occurs in tr). Intuitively, pseudo-well-typed traces harness the ability for the
attacker to use the protocol as an oracle to test if some terms (when used in a key
position) are atomic.

3.3 Type Compliance

Our main assumption on the typing of protocols is that any two unifiable encrypted
subterms are of the same type. The goal of this part is to state this hypothesis formally.

Due to the presence of replication, we need to consider two copies of protocols in or-
der to consider different instances of the variables. Given a protocol P with replication,
we define its 2-unfolding unfold2(P ) to be the protocol such that every occurrence of a
process !R in P is replaced by R | R, and some α-renaming is performed on one copy
to ensure names and variables distinctness of the resulting process. Note that if P is a
protocol that does not contain any replication, we have that unfold2(P ) = P .

Example 9. Let P1 be the protocol defined in Example 7. We have that:

unfold2(P1) = in(c, x).(new k1.in(c, enc(〈x, y1〉, k1)) | new k2.in(c, enc(〈x, y2〉, k2)))

We write St(t) for the set of (syntactic) subterms of a term t, and ESt(t) the set of
its encrypted subterms, i.e. ESt(t) = {u ∈ St(t) | u is of the form enc(u1, u2)}. We
extend this notion to sets/sequences of terms, and to protocols as expected.

Definition 7. A protocol P is type-compliant w.r.t. a typing system (T , δ) if for every
t, t′ ∈ ESt(unfold2(P )) we have that: t and t′ unifiable implies that δ(t) = δ(t′).

3.4 Main Result

We are now ready to state our first main contribution: if there is an attack, then there is a
pseudo-well-typed attack. This result holds for protocols with replications and nonces.

Theorem 1. Let P and Q be two determinate protocols type-compliant w.r.t. (T1, δ1)
and (T2, δ2) respectively. We have that P 	≈ Q if, and only if, there exists a witness of
non-equivalence tr such that:
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– either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t. (T1, δ1);
– or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

The key step for proving Theorem 1 is to provide a decision procedure, in the
bounded case (i.e. processes without replication), that returns a pseudo-well-typed wit-
ness of non-equivalence.

Proposition 1. Let P and Q be two determinate protocols without replication. There
exists an algorithm that decides whether P ≈ Q and if not, returns a witness tr of
non-equivalence. Moreover, if P and Q are type-compliant w.r.t. (T1, δ1) and (T2, δ2)
respectively, the witness tr of non-equivalence returned by the algorithm is such that:

– either (tr, φ) ∈ trace(P ) for some φ and (tr, φ) is pseudo-well-typed w.r.t. (T1, δ1);
– or (tr, ψ) ∈ trace(Q) for some ψ and (tr, ψ) is pseudo-well-typed w.r.t. (T2, δ2).

The main idea is to assume given a decision procedure (for a bounded number of
sessions) for reachability properties such as those proposed in [20,16,23] and to built
on top of it a decision procedure for trace equivalence. Our procedure is carefully design
to only allow unification between encrypted subterms. To achieve this,

1. we use as a reachability blackbox one that satisfies this requirement. Most of the
existing algorithms (e.g. [20,16,23]) were not designed with such a goal in mind.
However, in the case of the algorithm given in [16], it has already been shown how
it can be turned into one that satisfies this requirement [17].

2. we design carefully the remaining of our algorithm to only consider unification
between encrypted subterms.

This design allows us to provide a pseudo-well-typed witness when the protocols
under study are type-compliant and not trace equivalent.

Then, relying on Proposition 1, the proof of Theorem 1 is almost immediate. Indeed,
whenever two determinate type-compliant protocols P and Q are not in trace equiva-
lence, there exists a witness of non-inclusion for P 5 Q (or Q 5 P ) for a bounded
version of P and Q (unfolding the replications).

4 Decidability Result

Now, assuming finitely many terms of each type, and in particular finitely many nonces,
we obtain a new decidability result for trace equivalence, for an unbounded number of
sessions. Compared to [13], we no longer need to restrict the number of variables per
transition (to one), we allow variables in key positions, and we are more flexible in the
control-flow of the program (we may have arbitrary sequences of in and out actions).

4.1 Simple Processes

To establish decidability, we consider the class of simple protocols as given in [12] but
we do not allow name restriction. Intuitively, simple protocols are protocols such that
each copy of a replicated process has its own channel. This reflects the fact that due to
IP addresses and sessions identifiers, an attacker can identify which process and which
session he is sending messages to (or receiving messages from).
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Definition 8. A simple protocol P is a protocol of the form PU | PB where:

– PU =!new c′1.out(c1, c
′
1).B1 | ... | !new c′m.out(cm, c′m).Bm; and

– PB = Bm+1 | . . . | Bm+n.

Each Bi with 1 ≤ i ≤ m (resp. m < i ≤ m + n) is a ground process on channel c′i
(resp. ci) built using the following grammar:

B := 0 | in(c′i, u).B | out(c′i, u).B where u ∈ T0(Σc, Σ0 ∪ N ∪ X ).
Moreover, we assume that c1, . . . , cn, cn+1, . . . , cn+m are pairwise distinct.

Example 10. The protocol presented in Example 2 is not simple yet: we need to con-
sider only finitely many nonces. To achieve this, we may remove all the instructions
”new n” with n ∈ N that occur in the process. Note that removing for instance
”new na” from the process PA means that na is still modelled as a name, and thus
it is unknown to the attacker. However, we do not assume anymore that a fresh nonce is
generated at each session.

Simple protocols form a large class of protocols that are determinate: the attacker
knows exactly who is sending a message or from whom he is receiving a message.
Given a simple protocol P and a sequence of observable actions tr, there is a unique
configuration (P ;φ) (up to some internal reduction steps) such that P

tr
==⇒ (P ;φ).

Lemma 2. A simple protocol is determinate.

4.2 Main Result

Our decidability result relies on the assumption that there are finitely many terms of
each type (of the protocol), once the number of constants is bound for each type.

Formally, we say that a typing system (T , δ) is finite if, for any set A ⊆ N ∪Σ0 such
that there is a finite number of names/constants of each type, then there are finitely many
terms of each type, that is, for any τ ∈ T , the following set is finite and computable:

{t ∈ T (Σc,A) | δ(t) = τ}.

Theorem 2. The problem of deciding whether two simple protocols P and Q, type-
compliant w.r.t. some finite typing systems (T1, δ1) and (T2, δ2) are trace equivalent
(i.e. P ≈ Q) is decidable.

Proof. (Sketch) Since simple protocols are determinate (see Lemma 2), we obtain,
thanks to our typing result (Theorem 1), the existence of well-typed witness of non-
equivalence when such a witness exists. We further show that we can bound the number
of useful constants in the witness trace. We then derive from the finiteness of the typing
system that the witness trace uses finitely many distinct terms. Therefore, after some
point, the trace only reproduces already existing transitions. Using the form of simple
protocols, we can then show how to shorten the length of the witness trace. ��
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5 Application: Tagged Protocols

In this section, we instantiate our general results (Theorems 1 and 2) by exhibiting a
class of protocols that is type-compliant for rather fine-grained typing systems. We con-
sider tagged protocols, for a notion of tagging similar to one introduced by Blanchet [8].

Assume given a protocol P and an unfolding P ′ of it (remember that when comput-
ing unfold2(P ) names and variables are renamed to avoid clashes). Let u be a term in
T (Σc, ΣP ∪ N ′

P ∪ X ′
P ) where ΣP , N ′

P , X ′
P are the constants, names, and variables

occurring in P ′, we denote by u the transformation that replaces any name and variable
occurring in u by its representative in NP and XP where NP and XP are the names
and variables occurring in P .

Definition 9. A protocol P is tagged if there exists a substitution σP such that for any
s1, s2 ∈ ESt(unfold2(P )) with s1 and s2 unifiable, we have that s1σP = s2σP .

Tagging can easily be enforced by labelling encrypted terms, as proposed in [8].

Definition 10. A protocol P is strongly tagged if:

1. any term in ESt(P ) is of the form enc(〈c,m〉, k) for some c ∈ Σ0; and
2. there exists σP such that for any s, t ∈ ESt(P ) with s = enc(〈c0, s1〉, s2) and

t = enc(〈c0, t1〉, t2) for some c0 ∈ Σ0, we have that sσP = tσP .

The second condition requires that there is a a substitution that unifies any two tagged
terms unless their tags differ. This condition is easy to achieve for executable protocols.
More precisely, assume a protocol admits an execution where each protocol step (in and
out) is executed once (i.e. there is one honest execution). This protocol can be easily
strongly tagged by adding a distinct tag in each encrypted term.

Lemma 3. Let P be a protocol. If P is strongly tagged then P is tagged.

Example 11. In our modelling of the Otway-Rees protocol, the protocols P 1
OR and

P 2
OR (as described in Example 6) are not tagged. For instance, consider the terms

s1 = enc(〈na,m, a, b〉, kas) and s2 = enc(〈na, xab〉, kas). Both are encrypted sub-
terms of PA (and thus of unfold2(P 1

OR) and unfold2(P 2
OR)) and s1 and s2 are unifiable.

Now, let s3 = enc(〈za, kab〉, kas). Actually, s3 is an encrypted subterm of PS which is
unifiable with s2. However, there exists no substitution σ such that s1σ = s2σ = s3σ.

We can consider a tagged, and safer, version of the Otway-Rees protocol by intro-
ducing 4 different tags, denoted 1,2,3 and 4, that are modelled using constants from Σ0.

P ′
OR =! new c1.out(cA, c1).P

′
A | ! new c2.out(cB, c2).P

′
B | ! new c3.out(cS , c3).P

′
S

P ′
A = new m.new na. out(c1, 〈m, a, b, enc(〈1, na,m, a, b〉, kas)〉).

in(c1, 〈m, enc(〈2, na, xab〉, kas)〉)
P ′
B = in(c2, 〈ym, a, b, yas〉).

new nb. out(c2, 〈ym, a, b, yas, enc(〈3, nb, ym, a, b〉, kbs)〉).
in(c2, 〈ym, zas, enc(〈4, nb, yab〉, kbs)〉).out(c2, 〈ym, zas〉)

P ′
S = in(c3, 〈zm, a, b, enc(〈1, za, zm, a, b〉, kas), enc(〈3, zb, zm, a, b〉, kbs)〉).

new kab. out(c3, 〈zm, enc(〈2, za, kab〉, kas), enc(〈4, zb, kab〉, kbs)〉)
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and P ′1
OR and P ′2

OR are defined similarly as P 1
OR and P 2

OR relying on P ′
OR instead of POR.

Note that tr′ is no longer a witness of P ′1
OR 	≈ P ′2

OR as the attack has been removed
by this tagging scheme. We can show that P ′

OR is strongly tagged: consider the natural
execution of P ′

OR, matching inputs and outputs as intended. From this execution we can
define:

σP = {xab � kab, ym � m, yas � enc(〈1, na,m, a, b〉, kas)〉,
zas � enc(〈2, na, kab〉, kas), zm � m, za � na, zb � nb}.

It is then easy to check that for any two terms s1 and s2 that are unifiable, their instances
by σP are actually identical.

For any tagged protocol, we can infer a finite typing system, and show the type-
compliance of the tagged protocol w.r.t. this typing system. Thus, relying on Theorem 2,
we derive the following decidability result for simple and tagged protocols.

Corollary 1. The problem of deciding whether two simple and tagged protocols P
and Q are trace equivalent (i.e. P ≈ Q) is decidable.

Proof. (Sketch) The first step of the proof consists in associating to a tagged protocol P ,
a typing system (TP , δP ) such that P is type-compliant w.r.t. (TP , δP ). Intuitively,
(TP , δP ) is simply induced by σP , the substitution ensuring the tagged condition in
Definition 9. For example, the type of a closed term t is t itself while the type of a vari-
able x in P is simply xσP . This definition is then propagated to any term. With such
typing systems, we can show that the size of a term (i.e. number of function symbols) is
smaller than the size “indicated” by its type (i.e. the size of the type, viewed as a term).
Thus the typing system (TP , δP ) is finite. We then conclude by applying Theorem 2.

��
Example 12. Consider the protocols P ′1

OR and P ′2
OR obtained from P ′1

OR and P ′2
OR by re-

moving the instructions corresponding to a name restriction. These protocols are still
strongly tagged and are now simple. Thus, our algorithm can be used to check whether
these two protocols are in trace equivalence or not. This equivalence actually models a
notion of strong secrecy of the key received by A. Since we have bounded the number
of nonces, this equivalence does not require that the key is renewed at each session but
it requires the key to be indistinguishable from a (private) name, n in our setting.

6 Conclusion

Decidability results for unbounded nonces are rare and complex, even in the reachability
case. One of the only results has been established by Ramanujam and Suresh [21],
assuming a particular tagging scheme (which itself involves nonces). We plan to explore
whether our typing result could be applied to the tagging scheme defined in [21], to
derive decidability of trace equivalence in the presence of nonces.

Our main typing result relies on the design of a new procedure in the case of a
bounded number of sessions, that preserves typing. Specifically, we show that it is suf-
ficient to consider only unification between encrypted (sub)terms. We think that this
result can be applied to existing decision procedures (in particular SPEC [22] and also
APTE [11], with some more work) to speed up their corresponding tools. As future
work, we plan to implement this optimisation and measure its benefit.
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Abstract. Session types are used to describe and structure interactions between
independent processes in distributed systems. Higher-order types are needed in
order to properly structure delegation of responsibility between processes. In this
paper we show that higher-order web-service contracts can be used to provide
a fully-abstract model of recursive higher-order session types. The model is set-
theoretic, in the sense that the denotation of a contract is given by the set of
contracts with which it complies; we use a novel notion of peer compliance. A
crucial step in the proof of full-abstraction is showing that every contract has a
non-empty denotation.

1 Introduction

The purpose of this paper is to show that recursive higher-order session types [15],
[11] can be given a behavioural interpretation using web-service contracts [19], which
is fully-abstract with respect to the Gay & Hole subtyping [13]. Higher-order session
types are necessary to handle session delegation, and in turn this calls for the develop-
ment of a novel form of peer compliance between higher-order contracts. Our model
interprets a higher-order session type as the set of session types, again higher-order,
with which it complies. This is formalised by viewing session types as contracts [19]
and using a notion of compliance, which we call peer compliance. The completeness
of the model relies on showing that every type has at least one other type with which
it complies. We prove this using the recently suggested type complement [6]. We also
believe that this type complement captures the intuition of complementary behaviour
more faithfully than the standard notion of type duality from [15]; in the full report [5]
we show that type-checking systems for session types, such as in [23], can be improved
by using type complement rather than type duality.

Session types: The interactions between processes in a complex distributed system
often follow a pre-ordained pattern. Session types [21,15] have been proposed as a
mechanism for concisely describing and structuring these interactions. As a simple
example consider a system consisting of two entities

(νs) (urls?(x+ : S ).store || urls![ s+ ].cstmr)
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which first exchange a new private communication channel or session, s, over the public
address of the store urls; using the conventions of [13] the customer sends to the store
one endpoint of this private session, namely s+, and keeps the other endpoint s− for
itself. The session type S determines the nature of the subsequent interaction allowed
between the two entities; as an example S could be

?[ Id ]; &〈 l1 : ![ Addr ]; ?[ Int ]; T, l2 : ![ Addr ]; ?[ Int ]; T 〉 (1)

where Int, Addr, Id are some base types of integers, addresses and credentials respec-
tively, and &〈 l1 : S 1, . . . , ln : S n 〉 is a branch type which accepts a choice between
interaction on any of the predefined labels li, followed by the interaction described by
the residual type S i. Thus (1) above dictates that store offers a sequence of four inter-
actions on its end s+ of the session, namely (i) reception of credential, (ii) acceptance
of a choice among two commodities labelled by l1, and l2, (iii) followed by the receipt
of an address, and (iv) the transmission of a price, of type Int; subsequent behaviour is
determined by the type T .

The behaviour of cstmr on the other end of the session, s−, is required to match the
behaviour described by S , thus satisfying a session type which is intuitively dual to S .
For example, the dual to (1) above is

![ Id ];⊕〈 l1 : ?[ Addr ]; ![ Int ]; T ′, l2 : ?[ Addr ]; ![ Int ]; T ′ 〉 (2)

under the assumption that T ′ is the dual of T . Intuitively, input is dual to output and the
dual to a branch type is a choice type ⊕〈 l1 : S 1, . . . lk : S k 〉, which allows the process
executing the role described by the type to choose one among the labels li. These two
principles lead to a general definition of the dual of a session type T , denoted T in
[21,15].

In order to allow flexibility to the processes fulfilling the roles described by these types
a subtyping relation between session types, T � S , is essential; see [13] for a description
of the crucial role played by subtyping. Intuitively T � S means that any process or
component fulfilling the role dictated by the session type S may be used where one is
required to fulfil the role dictated by T . Thus subtyping gives an intuitive comparative
semantics to session types. In Definition 1 of Section 2 we slightly generalise the standard
definition of [13], so as to account also for base types such as Int and Bool.

Recursive types are necessary in order to handle sessions which may allow interac-
tions between their endpoints to go on indefinitely.

Example 1. [ An ever-lasting session ]

Ds = X(y) := y� { plus : y?(x) in y?(z) in y![ x + z ].X[ y ] �
pos : y?(z) in x![ z > 0 ].X[ y ] }

Dc = Y(x) := x� { pos : x![ random() ].x?(z) in Y[ x ] }
P = (νκ) (def Ds in def Dc in X[ κ+ ] || Y[ κ− ])

The peer X[ κ+ ], defined by instantiating Ds, accepts over κ+ the invocation of one of the
two methods plus and pos, reads the actual parameters, sends the result of the chosen
method and starts again. The peer Y[ κ− ], defined by instantiating Dc, invokes via its
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endpoint κ− the method pos, sends a random number, reads the result of the invoked
method, and also starts again. The composition of these two peers in P results in a never
ending session in which interaction occurs between the two peers forever. Note that the
definition of Ds is a recursive version of the math server of [13]. �

The type T that describes the behaviour of Ds on an endpoint k+ is naturally expressed
using recursion:

μX.&〈 plus : ?[ Int ]; ?[ Int ]; ![ Int ]; X, pos : ?[ Int ]; ![ Int ]; X 〉

Contracts: Web services [19,9] are distributed components which may be combined
and extended to offer services to clients. These services are advertised using contracts,
which are high-level descriptions of the expected behaviour of services. These contracts
come equipped with a sub-contract relation cnt1 � cnt2; intuitively this means that
the contract cnt2, or rather a service offering the behaviour described by this contract,
may be used as a service which is required to provide the contract cnt1; these abstract
contracts are reminiscent of process calculi as CCS and CSP [18,14].

Contracts are very similar, at least syntactically, to sessions types; for example (2)
above can very easily be read as the following process description from CCS, !(Id).
(?l1.?Addr.!Int.cnt′+ ?l2.?Addr.!Int.cnt′). In fact in Section 3 we give the obvi-
ous translationM from the language of session types to that of contracts; however we
continue to use the two distinct languages in order to emphasise the intended use of
terms. Then if we provide a behavioural theory of contracts it should be possible to
explain how session types determine process behaviour via this mapping M, at least
along individual sessions. Indeed steps in this direction have already been made in
[1,4] restricting session types to the first-order ones, that is types that cannot express
session delegation. But, as we will now explain, the use of delegation in session types
requires the use of higher-order types, and in turn higher-order contracts, for which
suitable behavioural theories are lacking.

Session delegation: Consider the following system where the customer cstmr is re-
placed by girlf and there are now four components:

(νs) (νp) (νb) (urls![ s+ ].urlb![ p+ ].urlb![ b+ ].girlf ||
urls?(s+ : S ).store || urls?(p+ : S p).bank ||
urlbf?(b+ : S b).boyf)

Three private sessions s, p, b are created and the positive endpoints are distributed to
the store, bank, and boyf respectively. One possible script for the new customer girlf
is as follows:

(i) send credential to store: send id on session s−
(ii) delegate choice of commodity to boyf: send session b− on session s−

(iii) await delegation from boyf to arrange payment: receive session s− back on ses-
sion b−.

Thus the session type S b at which the boyfriend uses the session end b+ must counte-
nance both the reception and transmission of session ends, rather than simply data. In
this case we can take S b to be the higher-order session type ?[ T1 ]; ![ T2 ]; end, where
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in turn T1 is the session type ⊕〈 l1 : ?[ Addr ]; end 〉 and T2 must allow girlf to arrange
payment through the bank. This in turn means that T2 is a higher-order session type as
payment will involve the transmission of the payment session p.

The combination of delegation and recursion leads to processes with complicated
behaviour which in turn puts further strain on the system of session types.

Example 2. [ Everlasting generation of finite sessions ]
We use the syntax of [23]. Consider the process P = (νκo) (def D in X[ κ+o , κ

−
o ]),

where D := X(x, y) = (νκf) (throw x[ κ+f ]; 0 || catch y( z ) in X[ z, κ−f ]). Intuitively,
at each iteration the code X[ κ+o , κ

−
f ] has the two endpoints of a pre-existing session, κo,

delegates over the endpoint κ+o the endpoint κ+f , and then recursively repeats the loop
using κf as pre-existing session.

According to the reduction semantics in [23] the execution of P will never give rise
to a communication error or a deadlock. But the endpoint κ+f can only be assigned a
session type of the form μX. ![ X ]; end. Such types are forbidden in [2] but they are
allowed in the typing systems of [15,13,23,22]. �

If session types are to be explained behaviourally via the translation M into con-
tracts, the target language of contracts needs to be higher-order. For instance, the type
?[ T1 ]; ![ T2 ]; end is mapped byM to the contract ?( !l1.?(Addr). 1 ).?( cnt2 ). 1, where
cnt2 = M(T2). This in turn means that we require a behavioural theory of higher-
order contracts. This is the topic of the current paper. In particular we develop a novel
sub-contract preorder, which we refer to as the peer sub-contract preorder �∼ with the
property that, for all session types,

S � T if and only ifM(S ) �∼ M(T ) (3)

On the left hand-side we have the subtyping preorder between session types, which
determines when processes with session type T can play the role required by type S ; on
the right-hand side we have a behaviourally determined sub-contract preorder between
the interpretation of the types as higher-order contracts. This behavioural preorder is
defined in terms of a novel definition of peer compliance between these contracts.

In the remainder of this Introduction we briefly outline how the peer sub-contract
preorder is defined. Intuitively σ1 �∼ σ2, where σi are contracts, if every contract ρ
which complies with σ1 also complies with σ2. In turn the intuition behind compliance
is as follows. We say that a contract ρ complies with contract σ, written ρ �

p2p σ, if any
pair of processes in the source language p, q which guarantee the contracts ρ, σ respec-
tively, can interact indefinitely to their mutual satisfaction; in particular if no further
interaction is possible between them, individually they both have reached successful or
happy states. We call this concept mutual or peer compliance, as both participants are
required to attain a happy state simultaneously. This is in contrast to [9,19,4] where an
asymmetric compliance is used, in which only one participant, the client, is required to
reach a happy state.

In this paper, rather than discussing processes in the source language, how they can
interact and how they guarantee contracts, we mimic the interaction between processes
using a symbolic semantics between contracts. We define judgements of the form

ρ || σ τ−→ ρ′ || σ′ (4)
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meaning that if p, q, from the source language, guarantee the contracts ρ, σ respec-
tively, then they can interact and evolve to processes p′, q′ which guarantee the residual
contracts ρ′, σ′ respectively.

For example we will have the judgement !Int.ρ′ || ?Real.σ′ τ−→ ρ′ || σ′. On the
left-hand side of the parallel constructor || we have a contract guaranteed by a process
that supplies an Int; on the right-hand side there is a contract guaranteed by a process
which will accept a datum that can be used as a real. Since we are assuming that integers
can be interpreted as reals, that is Int �b Real, we know that an interaction described
by the judgement above takes place.

However it is unclear when an interaction of the form

!(σ1).ρ′ || ?(σ2).σ′
τ−→ ρ′ || σ′ (5)

should take place. Here on the left is a contract satisfied by a process which provides
a session endpoint that satisfies the contract σ1; on the right is a contract satisfied by a
process that accepts any session endpoint which guarantees the contract σ2. Intuitively
the interaction should be allowed if σ1 is a sub-contract of σ2, that is σ2 �∼ σ. However
the whole purpose of defining the judgements (4) above is in order to define the preorder
�∼; there is a circularity in our arguments.

We break this circularity by supposing a predefined sub-contract preorder B and
allowing the interaction (5) whenever σ1 B σ2. More generally we develop a

parametrised theory, with interaction judgements of the form ρ || σ τ−→B ρ′ || σ′ leading
to a parametrised peer-compliance relationσ �B

p2p ρwhich in turn leads to a parametrised
sub-contract preorder ρ1 �B ρ2. We then prove the main result of the paper, (3) above,
by showing:

There exists some preorder B0 over higher-order contracts such that S � T if
and only ifM(S ) �B0 M(T )

This particular preorder B0, which we construct and in (3) above has been referred to
as �∼, has a natural behavioural interpretation. It satisfies the behavioural equation

σ1 B0 σ2 if and only if σ1 �B0 σ2 (6)

Moreover it is the largest preorder between higher-order contracts which satisfies (6).
The proof of (6) depends on an alternative syntactic characterisation of the set-based

preorders�B which in turn relies crucially on a natural property of the peer-compliance
relations:

For every contract σ there exists a complementary contract, cplmt(σ), which
complies with it, σ �B

p2p cplmt(σ). (�)

In view of the natural correspondence between contracts and session types there is
a natural candidate for complementary contracts. Intuitively the dual of a type T is
designed to capture the complementary behaviour expressed by the type T . Moreover
the duality function on session types discussed on page 388 immediately extends to
contracts; specifically we can define σ to beM(M−1(σ)).
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However, somewhat surprisingly, there are contracts σ which do not comply with
their duals, σ ��B

p2p σ; see Example 4. However (�) above can be established by using
instead a different notion of dual, first proposed in [6] for typing copyless message-
passing processes. We also believe that this alternative notion, which in this paper we
call complement, captures the intuitive notion of complementary behaviour more faith-
fully than the standard duality.

Paper structure: In Section 2 we recall the standard theory of recursive higher-
order session types, while Section 3 introduces higher-order contracts and our novel
parametrised peer sub-contract preorder �B. Although the definition of this preorder
is set-theoretic, it can be characterised using only the syntactic form of contracts; this
stems from the very restricted form that our higher-order contracts can take. This is also
discussed in Section 3. Using this syntactic characterisation we develop enough proper-
ties of the preorders �B to ensure the existence of the particular preorder B0 alluded to
in (6) above; this is the topic of Section 4. The complementation operator on contracts
from [6], cplmt(σ), alluded to above is also defined and discussed in Section 4. Related
work is then discussed in Section 5.

All the proofs and the technical details are omitted from this extended abstract, and
can be found in the companion report [5].

2 Session Types

Here we recall, using the notation from [13], the standard theory of subtyping for recur-
sive session types. The grammar for the language LSTyp of session type terms is given by
the following grammar, which uses a collection of unspecified base types BT, of which
we enumerate a sample.

S , T ::= end | X | ?[ M ]; S | ![ M ]; S | μX.S |&〈 l1 : S 1, . . . , ln : S n 〉
⊕〈 l1 : S 1, . . . , ln : S n 〉

M,N ::= S | t
t ::= Id, Addr, Int, Real, . . .

In the grammar above we assume n ≥ 1; moreover we use a denumerable set of labels,
L = { l1, l2, l3, . . . }, in the branch and choice constructs. Recall from the Introduction
that &〈 l1 : S 1, . . . , ln : S n 〉 offers different possible behaviours based on a set of labels
{ l1, l2, l3, . . .ln } while ⊕〈 l1 : S 1, . . . , ln : S n 〉 takes a choice of behaviours; in both
constructs the labels used are assumed to be distinct.

We use STyp to denote the set of session type terms in LSTyp which are closed and
guarded; both these concepts have standard definitions, which may be found in [5,
Appendix A]. We refer to the terms in STyp as session types. For instance μX.X and
&〈 tea : μX.X 〉 are not in STyp.

Subtyping is defined coinductively and uses some unspecified subtyping preorder�b
between base types, a typical example being Int �b Real, meaning that an integer
may be supplied where a real number is required. Recursive types are handled by a
standard function unfold(T ) which unfolds all the first-level occurrences of μX.− in the
(guarded) type T . The formal definition of unfold in turn depends on the definition of
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substitution T { S/X }, the syntactic substitution of the term S for all free occurrences of
X in T . The details may be found in [5].

Definition 1. [ Subtyping ]
Let F� : P(STyp2) −→ P(STyp2) be the functional defined so that (T,U) ∈ F�(R)
whenever one of the following holds:

(i) if unfold(T ) = end then unfold(U) = end
(ii) if unfold(T ) = ?[ t1 ]; S 1 then unfold(U) = ?[ t2 ]; S 2 and S 1 R S 2 and t1 �b t2

(iii) if unfold(T ) = ![ t1 ]; S 1 then unfold(U) = ![ t2 ]; S 2 and S 1 R S 2 and t2 �b t1
(iv) if unfold(T ) = ![ T1 ]; S 1 then unfold(U) = ![ T2 ]; S 2 and S 1 R S 2 and T2 R T1

(v) if unfold(T ) = ?[ T1 ]; S 1 then unfold(U) = ?[ T2 ]; S 2 and S 1 R S 2 and T1 R T2

(vi) if unfold(T ) = &〈 l1 : S 1, . . . lm : S m 〉 then unfold(U) = &〈 l1 : S ′1, . . . , ln : S ′n 〉
where m ≤ n and S i R S ′i for all i ∈ [1, . . . ,m]

(vii) if unfold(T ) = ⊕〈 l1 : S 1, . . . lm : S m 〉 then unfold(U) = ⊕〈 l1 : S ′1, . . . , ln : S ′n 〉
where n ≤ m and S i R S ′i for all i ∈ [1, . . . , n]

If R ⊆ F�(R), then we say that R is a type simulation. Standard arguments ensure that
there exists the greatest solution of the equation R = F�(R); we call this solution the
subtyping, and we denote it �. �

Intuitively S � T means that processes adhering to the role dictated by T may be
used where processes following the role dictated by S are required. Our aim is to for-
malise this intuition by proving that the higher-order contracts determined by these
types, respectivelyM(S ) andM(T ) are related behaviourally, using our notion of peer
compliance.

3 Higher-Order Contracts

Here first we define higher-order session contracts and explain the set-based subcontract
preorder on them; this uses the notion of peer compliance between them. Afterwards
we characterise up-to a parameterB this set-based preorder. We do so by comparing the
purely syntactic structure of contracts.

The grammar for the language of contract terms LSCts is:

ρ, σ ::= 1 | ?t.σ | !t.σ | !(σ).σ | ?(σ).σ | x | μx.σ |
∑

i∈I
?li.σi |

⊕

i∈I
!li.σi

where we assume the labels lis to be pairwise distinct and the set I to be non-empty.
We use SCts to denote the set of terms which are guarded and closed. These will be
referred to as higher-order session contracts, or simply contracts. When I is a singleton
set { k }, we write !lk.σk and ?lk.σk in place of

⊕
i∈I !li.σi and

∑
i∈I?li.σi.

The operational meaning of contracts is given by interpreting them as processes from
a simple process calculus. To this end let Act, ranged over by λ, be the union of three
sets, namely { ?l, !l | l ∈ L }, { ?t, !t | t ∈ BT }, and { ?(σ), !(σ) | σ ∈ SCts }. We
use Actτ to denote the set Act∪{ τ } to emphasise that the special symbol τ is not in Act.
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We define judgements of the form σ1
μ−→ σ2, where μ ∈ Actτ and σ1, σ2 ∈ SCts, by

using the following (standard) axioms, where | I | is the cardinality of I,

λ.σ
λ−→ σ

λ ∈ Act
μx.σ

τ−→ σ { μx.σ/x }
⊕

i∈I!li.σi
τ−→!li.σi

| I | > 1 ∑
i∈I?li.σi

?li−→ σi

We also have the special judgement 1
�−→, which formalises operationally that 1

is the satisfied contract. Although terms like !l.σ stand actually for singleton internal

sums, we infer their semantics by using the rule for prefixes; for example !l.σ
!l−→ σ.

In order to define the peer compliance between two contracts ρ, σ, we also need to
say when two processes p, q satisfying these contracts can interact. This is formalised

indirectly as a relation of the form ρ || σ τ−→B ρ′ || σ′ which, as explained in the
Introduction, is designed to capture the intuition that if processes p, q satisfy the con-
tracts ρ, σ respectively, then they can interact and their residuals will satisfy the residual
contracts ρ′, σ′ respectively.

The relation −→B is determined by the following inference rules:

ρ
τ−→ ρ′

ρ || σ τ−→B ρ′ || σ
σ

τ−→ σ′
ρ || σ τ−→B ρ || σ′

ρ
λ1−→ ρ′ σ λ2−→ σ′

ρ || σ τ−→B ρ′ || σ′
λ1 �B λ2

This reduction relation is parametrised on a relation σ1 B σ2 between contracts,
which determines when the contract σ1 can be accepted when σ2 is required. Using
such a B we define an interaction relation between contracts as follows:

λ1 �B λ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = !l, λ2 = ?l

λ1 = ?l, λ2 = !l

λ1 = !t1, λ2 = ?t2 t1 �b t2
λ1 = ?t1, λ2 = !t2 t2 �b t1
λ1 = !(σ1), λ2 = ?(σ2) σ1 B σ2

λ1 = ?(σ1), λ2 = !(σ2) σ2 B σ1

Essentially the relation �B treats B as a subtyping on contracts.

Definition 2. [ B-Peer compliance ]
Let Cp2p : P(SCts2) × P(SCts2) −→ P(SCts2) be the rule functional defined so that
(ρ, σ) ∈ Cp2p(R,B) whenever both the following conditions hold:

(i) if ρ || σ τ�−→B then ρ
�−→ and σ

�−→
(ii) if ρ || σ τ−→B ρ′ || σ′ then ρ′ R σ′

If R ⊆ Cp2p(R,B), then we say that R is a B-coinductive peer compliance. Fix a B.
Standard arguments ensure that there exists the greatest solution of the equation X =
Cp2p(X,B); we call this solution the B-peer compliance, and we denote it �B

p2p. �
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The intuition here is that if ρ �B
p2p σ then processes satisfying these contracts can interact

safely; the co-inductive nature of the definition even allows this interaction to continue
forever. But if a point is reached where no further interaction is allowed condition (i)
means that both participants must be happy simultaneously; that is they must be able to
perform the success action �.

Definition 3. [ B-peer subcontract preorder ]
For σ1, σ2 ∈ SCts let σ1 �B σ2 whenever ρ �B

p2p σ1 implies ρ �B
p2p σ2, for every

ρ ∈ SCts. �

The parametrised peer subcontract preorder σ1 �B σ2 is set based, and quantifies
over all peers in B-compliance with σ1. However, because of the restricted syntax of
higher-order contracts, it turns out that �B can be characterised by the syntactic struc-
ture of σ1 and σ2, at least for behavioural preorders B which satisfy certain minimal
conditions.

Definition 4. [ B-syntactic peer preorder ]
Let S : P(SCts2)×P(SCts2) −→ P(SCts2) be the functional defined so that (σ1, σ2) ∈
S(R,B) whenever one of the following holds:

(i) if unfold(σ1) = 1 then unfold(σ2) = 1
(ii) if unfold(σ1) = ?t1.σ′1 then unfold(σ2) = ?t2.σ′2 and σ′1 R σ′2 and t1 �b t2

(iii) if unfold(σ1) = !t1.σ′1 then unfold(σ2) = !t2.σ′2 and σ′1 R σ′2 and t2 �b t1
(iv) if unfold(σ1) = !(σ′′1 ).σ′1 then unfold(σ2) = !(σ′′2 ).σ′2 and σ′1 R σ′2 and σ′′2 B σ′′1
(v) if unfold(σ1) = ?(σ′′1 ).σ′1 then unfold(σ2) = ?(σ′′2 ).σ′2 and σ′1 R σ′2 and σ′′1 B σ′′2

(vi) if unfold(σ1) =
∑

i∈I?li.σ
1
i then unfold(σ2) =

∑
j∈J?l j.σ

2
j where I ⊆ J and

σ1
i R σ2

i for all i ∈ I
(vii) if unfold(σ1) =

⊕
i∈I!li.σ

1
i then unfold(σ2) =

⊕
j∈J!l j.σ

2
j where J ⊆ I and

σ1
j R σ2

j for all j ∈ J

Fix a B. Since S is monotone ([5, Lemma 3.3]), standard arguments ensure that there
exists the greatest solution of the equation X = S(X, B); we call this solution the B-
syntactic peer preorder, and we denote it by �B. �

Our intention is to show that the set-theoretic relation σ1 �B σ2 coincides with the
more amenable syntactically defined relation σ1 �B σ2, provided B satisfies some
simple properties. In one direction the proof follows directly from the definitions of the
relations at issue. In the other we need a non-trivial property of session contracts that
we relegate to Section 4; see Theorem 4.

Theorem 1. Let B be a transitive relation on session contracts. Then σ1 �B σ2 implies
σ1 �B σ2.

Example 3. Here we show that Theorem 1 requires the relationB to be transitive. LetB
be { (1, σ), (σ, !l. 1) }, where σ is the contract !l.!l. 1; this is obviously not transitive.
We show that �B � �B. First, the relation R = { (σ1, σ2), (1, 1) }, where σ1 = !(σ). 1,
σ2 = !(1). 1, is a prefixed point of S, and thus σ1 �B σ2. Now let ρ = ?(!l. 1). 1. The
reason why σ1 �B σ2 is that ρ �B

p2p σ1, because { (ρ, σ1), (1, 1) } is a B-coinductive

compliance, while ρ ��B
p2p σ2 because of the computation ρ || σ2

τ�−→B. �
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Theorem 2. For every preorder on session contracts B, σ1 �B σ2 implies σ1 �B σ2.

Proof (Outline). The argument is by case analysis on unfold(σ1). For instance, consider
the case in which unfold(σ1) =!(t).σ′1. Thanks to Theorem 4 there exists a ρ′ such that
ρ′ �B

p2p σ
′
1. It follows that ?(t).ρ′ �B

p2p unfold(σ1), and so ρ �B
p2p unfold(σ2). This is enough

to show the properties of unfold(σ2) required by the definition of �B.

Corollary 1. For any preorderB over session contracts, σ1 �B σ2 if and only if σ1 �B
σ2.

4 Modelling Session Types

Session types and contracts, formalisms developed independently, are nevertheless just
syntactic variations of each other:

M(end) = 1, M(X) = x, M(μX.S ) = μx.M(S ), M(![ T ]; S ′) = !(M(T )).M(S ′),
M(&〈 l1 : S 1, . . . , ln : S n 〉) = ∑i∈[1;n]?li.M(S i), M(![ t ]; S ′) = !t.M(S ′),
M(⊕〈 l1 : S 1, . . . , ln : S n 〉) =

⊕
i∈[1;n]!li.M(S i), M(?[ T ]; S ′) = ?(M(T )).M(S ′),

M(?[ t ]; S ′) = ?t.M(S ′)

Our aim is to show that the subtyping relation between session types, S � T , can be
modelled precisely by the set-based contract preorder,M(S ) �B M(T ), for a partic-
ular choice of B. In order to determine this B we need to develop some properties of
functionals over contracts. Let Pre denote the collection of preorders over the set of
contracts SCts; ordered set-theoretically this is a complete lattice [5, Lemma 4.2]. Let
F : Pre −→ Pre be defined by letting F (B) be the preorder �B. By Corollary 1 we
know that F (B) =�B, and therefore F (B) = νX.S(X, B), from Definition 4. Since S
is monotone in its second parameter ([5, Lemma 3.3 (b)]), the endofunction F over the
complete lattice Pre is monotone. The Knaster-Tarski theorem now ensures that F has
fixed points, in particular a maximal one.

Definition 5. [ Peer subcontract preorder ]
Let �∼ denote νX.F (X), the greatest fixed point of the function F . We refer to �∼ as the
Peer subcontract preorder. �

The proof that �∼ provides a fully-abstract model of subtyping � on session types,
relies on a syntactic characterisation of �∼, stated in the next lemma, and it implies a
result on the decidability of �∼.

Lemma 1. �∼= νX.S(X, X).

Theorem 3. [ Full-abstraction ]
For every T, S ∈ STyp, S � T if and only ifM(S ) �∼ M(T ).

Proof (Outline). The subtyping � is the greatest fixed point of F� by definition, �∼ is
the greatest fixed point of S because of Lemma 1, and M provides a bijection from
prefixed points of F� to prefixed points S ([5, Lemma 4.8, Lemma 4.9]). This is why
full-abstraction is true.
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Proposition 1. If �b is decidable, then the relation �∼ is decidable.

Theorem 3 depends on Corollary 1, which depends on Theorem 2. In turn this theo-
rem relies on the existence for every session contract σ of a “complementary” session
contract cplmt(σ) that is inB-peer compliance with σ, at least forBs that satisfy certain
minimal conditions. To construct cplmt(σ), the well-known syntactic duality of session
types is an obvious candidate. This is defined inductively as follows [15]:

end = end, X = X, μX.S = μX.S , ?[ M ]; S = ![ M ]; S , ![ M ]; S = ?[ M ]; S ,

&〈 l1 : S 1, . . . , ln : S n 〉 = ⊕〈 l1 : S 1, . . . , ln : S n 〉,
⊕〈 l1 : S 1, . . . , ln : S n 〉 = &〈 l1 : S 1, . . . , ln : S n 〉

This operator can also be applied to contracts in the obvious manner, using the injection
M(−).

Example 4. In general it is not true that a contract σ complies with its dual σ. To prove
this, we say that the relation B is reasonable whenever σ1 B σ2 implies the following
conditions:

i) unfold(σ1) B unfold(σ2)

ii) σ1
λ1−→ and σ2

λ2−→ imply that λ1 and λ2 are both input actions or both output
actions.

If B is reasonable then we can find a contract σ such that σ ��B
p2p σ. For example take

σ to be μx.?(x). 1; here σ is μx.!(x). 1. The behaviour of these contracts is σ
τ−→

?(σ ). 1
?(σ)−→ 1

�−→, and σ
τ−→!(σ ). 1

!(σ)−→ 1
�−→. If B is reasonable, then the pair

(!(σ), ?(σ)) is not in B, and so σ and σ are not in B-mutual compliance.
Since unfold(σ) performs inputs, while unfold(σ) performs outputs, and B is a rea-

sonable relation, condition ii) above ensures that ( unfold(σ), unfold(σ) ) �B, so con-
dition i) implies that (σ, σ) �B. This implies that !(σ) ��B?(σ), and so σ || σ τ−→B
unfold(σ) || unfold(σ)

τ�−→B. But this means that σ ��B
p2p σ because neither unfold(σ) nor

unfold(σ) perform �. �

In view of the previous example, we introduce a function to syntactically manipulate
session contracts, whereby the result of manipulating ρ is a session contract in mutual
compliance with ρ, at least for preorders Bs. In view of the encodingM, this syntactic
transformation applies equally well to session types.

Definition 6 ([ Complement ] [6] ).
Let cplmt : LSCts −→ LSCts be defined inductively as follows,

cplmt(1) = 1, cplmt(x) = x, cplmt(μx.σ) = μx.cplmt(σ�μx.σ/x�),
cplmt(!(σ′′).σ′) = ?(σ′′).cplmt(σ′), cplmt(?(σ′′).σ′) = !(σ′′).cplmt(σ′),

cplmt(
∑

i∈I?li.σi) =
⊕

i∈I!li.cplmt(σi), cplmt(
⊕

i∈I!li.σi) =
∑

i∈I?li.cplmt(σi)

We say that cplmt(σ) is the complement of σ. �
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In this definition the application of �σ/x� to σ′ stands for the substitution of σ in place
of x in the message fields that appear in σ′; this is called inner substitution in [6]. The
formal definition for our contracts is in [5, Appendix A].

Example 5. Suppose that σ = μx.?(x).x, then cplmt(σ) = μx.!(σ).x. Observe that,
intuitively, the input of σ depends on σ itself. The application of cplmt results in a
contract which does not show that dependency, in that the output of cplmt(σ) does not
depend on cplmt(σ).

Let us check a more involved example. We show how cplmt acts on session contracts.
Let σ = μx.μy.!(y)!(x).y, and σ′ = μy.!(y)!(σ).y. By definition,

cplmt(σ) = μx.cplmt((μy.!(y).!(x).y)�σ/x�)
= μx.cplmt(σ′)
= μx.μy.cplmt((!(y).!(σ).y)�σ′/y�)
= μx.μy.cplmt(!(σ′).!(σ).y)
= μx.μy.?(σ′).?(σ).y

Here again note that the contacts used in the input fields of cplmt(σ) are not defined in
terms of cplmt(σ). �

In the previous example the contract σ and its complement are syntactically quite dif-
ferent objects, the complement being syntactically more complicated than σ,

cplmt(σ) = μx.μy.?(μy.!(y)!(σ).y).?(μx.μy.!(y)!(x).y).y

What matters, though, are the behaviours of σ and of its complement. Those two be-
haviours are in B-mutual compliance for every preorderB. What was just argued for σ
and its complement is true for every contract; the proof of it uses the commutativity of
unfold and cplmt.

Proposition 2. [ Unfolding and complement commute ]
For every contract σ, cplmt(unfold(σ)) = unfold(cplmt(σ)).

Theorem 4. For every preorder on contracts B, ρ �B
p2p cplmt(ρ) for every session con-

tract ρ.

In the full version of the paper [5] we argue that the notion of complement of a session
type, Definition 6, in addition to being indispensable in the proof of Theorem 4, can
also have a significant impact on type-checking systems for session types. For example
the program P in Example 2 from the Introduction cannot be typed using the type-
checking rules from [23]; the difficulty is the use of the duality operator T in the rule
[CRes] on page 14. The bulk of the argument is that the dual of μX. ![ X ]; end, that is
μX. ?[ X ]; end, is not equivalent to ?[ μX. ![ X ]; end ]; end, and this hinders the necessary
application of [CRes]. However we exhibit a type inference if instead cplmt(T ) were
used: the complement of μX. ![ X ]; end, namely μX. ?[ μX. ![ X ]; end ]; end, is equivalent
to ?[ μX. ![ X ]; end ]; end, and this allows us to apply rule [CRes].
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5 Related Work
In this paper we proposed a new behavioural model for recursive higher-order session
types [15], which is fully-abstract with respect to the subtyping relation [13]. The de-
notation of a type consists of the set of higher-order contracts with which it complies,
when it in turn is viewed as a contract. We use a novel notion of compliance, called peer
compliance, which is also parametrised with a particular decidable relation B0, used for
comparing higher-order contracts which are supplied by one peer in order to satisfy the
higher-order contract required by it’s partner. Moreover this relation B0 is the maximal
solution to a natural behavioural equation over contracts.

Contracts for Web-Service: First-order contracts for web-services and an operationally
defined contract compliance have been proposed first in [16], where the compliance is
defined in terms of the LTS of contracts, and then, in the style of testing theory [10],
the sub-contract preorder is defined using the compliance. All the subsequent works -
including this paper - adhere to that style.

The most recent accounts of first-order contracts for web-services are [19,9]. A strik-
ing difference between the two papers is the treatment of infinite behaviours. In [19] infi-
nite behaviours are expressed by recursive contracts, whereas in [9] there is no recursive
construct, μX.−, and the theory accounts for infinite behaviours by using a coinductively
defined language. Our treatment of infinite behaviours follows the lines of [19].

Session Types: Recursive higher-order session types appeared first in [15], where also
the definition of type duality that we reported in Section 4 has been proposed. The
authors of [15] argue in favour of program abstractions, that help programmers structure
the interaction of processes around sessions. The proposed result is that a “typable
program never reduces into an error” (see Theorem 5.4 (3) of [15]). In [23, pag. 86,
paragraph 4], though, it is shown that that result is not true, that is the type system of
[15] does not satisfy type-safety. The authors of [23] amend the type system of [15],
thereby achieving type-safety (see Theorem 3.4 of [23]).

Subtyping for recursive higher-order session types has been introduced in [13], along
with a coinductive definition of the duality. In addition to the standard type-safety result
(Theorem 2), the authors show also a type-checking algorithm which they prove sound
(Theorem 5) wrt the type system. The proof of completeness, though, relies on a rela-
tion between the inductive and the coinductive dualities (Proposition 5 there) which in
general is false; a counter example is provided by the session type μX. ![ X ]; end. The
consequence is that there is the possibility that the algorithm of [13], if employed in
more general settings, may reject programs which are well-typed.

An alternative “fair” subtyping has been proposed recently in [20]. There session types
are higher-order and recursive, their operational semantics is defined by parametrising
the interactions of session types on pre-subtyping relations, and the fair subtyping is de-
fined as a greatest fixed point (Definition 2.4). In our development we adopted the same
technique as [20]. However, our aim was to model the standard subtyping of [13], while
Padovani focuses on the properties of his new fair subtyping.

Models of Gay& Hole Subtyping: The first attempt to model the Gay & Hole subtyping
of [13] in terms of a compliance preorder appeared in [17]. For a comparison of that
research and our work the reader is referred to [4]. The authors of [1] have shown
the first sound model of this subtyping restricted to first-order session types, by using
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a subset of contracts for web-services, a mutual compliance, called orthogonality, and
the preorder generated by it. The B-peer compliances we used in this work generalises
to parametrised LTS the orthogonality of [1].

Following the approach of [1], in [4] we have shown a fully-abstract model of the
subtyping for first-order session types, but using the standard asymmetric compliance
and an intersection of the obvious server and client preorders. An alternative definition
of the model proposed in [4] can be found in [3, Chapter 5], where the must testing of
[10] is used in place of the compliance.

Semantic Subtyping: We view our main result as a behavioural or semantic interpre-
tation of Gay & Hole subtyping. There is an alternative well-developed approach to
semantic theories of types and subtyping [12] in which the denotation of a type is given
by the set of values which inhabit it, and subtyping is simply subset inclusion. This
apparent simplicity is tempered by the fact that for non-trivial languages, such as the
pi-calculus [7], there is a circularity in the constructions due to the fact that determining
which terms are values depends in turn on the set of types. This circularity is broken us-
ing a technique called bootstrapping or stratification, essentially an inductive approach.
The research using this approach which is closest to our results on Gay & Hole subtyp-
ing may be found in [8]; this contains a treatment of a very general language of session
types, an extension of Gay & Hole types. But there are essential differences. The most
important is that their model does not yield a semantic theory of Gay & Hole subtyp-
ing. Their subtyping relation, ≤, is defined via an LTS generated by considering the
transmission of values rather than session types; effectively subtyping is not allowed
on messages. The resulting subtyping is very different than our focus of concern, the
Gay & Hole subtyping relation �. For example the preorder ≤ has bottom elements, in
contrast to �, and ?[ Int ]; end � ?[ Real ]; end whereas ?[ Int ]; end � ?[ Real ]; end.
The particular use of stratification (Theorem 2.6) is also complex, and rules out the
use of session types such as μX. ![ X ]; end. Finally they use as types infinite regular
trees whereas we prefer to work directly with recursive terms, as proposed in [13]; for
example this allows us to discuss the inadequacies of the type-checking rules of [23].

Nevertheless the extended language of sessions types of [8] is of considerable sig-
nificance. It would be interesting to see if it can be interpreted behaviourally using our
co-inductive approach, particularly endowed with a larger subtyping preorder more akin
to the standard Gay & Hole relation [13].
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Abstract. We investigate the semantic foundations of session types, by
revisiting them in the abstract setting of labelled transition systems.
The crucial insight is a simulation relation which generalises the usual
syntax-directed notions of typing and subtyping, and encompasses both
synchronous and asynchronous binary session types. This allows us to
extend the session types theory to some common programming patterns
which are not typically considered in the session types literature.

1 Introduction

Session typing is a well-established approach to the problem of correctly design-
ing distributed applications [20,21,28]. In a nutshell, the application designer
specifies the overall communication behaviour through a choreography, which
enjoys some correctness properties (e.g. safety and progress). The overall appli-
cation is the result of the composition of a set of processes, which are distributed
over the network and interact through sessions. To ensure the correctness of this
composition, the choreography is projected into a set of session types, which
abstract the end-point communication behaviour of processes: if each process is
type-checked against its session type, the composition of services preserves the
properties enjoyed by the choreography.

The usual technical tool used to prove the correctness of a behavioural type
system is subject reduction. Say P is a process, and T is a session type. Roughly,
subject reduction guarantees that, if we have a typing judgement � P : T , then

whenever P takes a computation step P
�−→ P ′, also the type can take a similar

step, i.e. there exists some T ′ such that T
�−→ T ′ and � P ′ : T ′.

This relation between processes and types somehow resembles the simulation
relation in labelled transition systems (LTSs): a state T simulates a state P iff,

whenever P
�−→ P ′, then T

�−→ T ′, for some T ′ which still simulates P ′. This seems
to suggest that � P : T is rooted in some kind of “process-type simulation”.
To elaborate further on this insight, consider a session type T = !a ⊕ !b, which
models an internal choice between two outputs.
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P
!a T

τ !a

τ !b

We can refine this session type as the pro-
cess P = !a which just wants to output !a.
Intuitively, the process P respects the type T ,

because any client who can handle both choices in T will interact correctly
with P . Now, let us consider the LTSs of P and T (on the left): we can observe
that P is (weakly) simulated by T , in symbols P � T , because each move of P
is matched by a move of T .

Q

?a

?c

?b

U

?a

?b

Let us now consider the type U = ?a & ?b, which
models an external choice between two inputs, and
let Q = ?a + ?b + ?c (where + is the standard CCS
choice operator) which allows for an additional input
?c. Again, Q respects U : any client compatible with U will not exploit the addi-
tional choice, and will interact correctly with Q. But let us look at the LTSs of
Q and U (on the right): differently from the previous case, now we have that Q
is not weakly simulated by U (whereas the converse U � Q holds). This shows
that the weak simulation relation does not faithfully capture the notion of session
typing: indeed, the previous examples suggest that a hypothetical “process-type
simulation” should treat input and output capabilities differently: intuitively, it
should be covariant w.r.t. outputs and contravariant w.r.t. inputs.

A similar kind of co/contra-variance arises when dealing with subtyping. The
intuition is that if a session type T is subtype of U , and we have two processes
P ,Q such that � P : T and � Q : U , then P can safely “replace” Q: i.e.,
each process that interacts correctly with Q will also interact correctly with P .
Again, the session subtyping relations (e.g. [18]) are covariant w.r.t. outputs and
contravariant w.r.t. inputs ; moreover, they are coinductive. This suggests a link
between the subtyping relation and our hypothetical “process-type simulation”.

Several papers have studied session typing relations (e.g. [7,8,11,19,20,21,23])
and subtype preorders (e.g. [1,2,9,10,12,15,18]). Despite the variety of aims and
results, all these works share a common approach: fix some syntax for types
and/or processes, and then characterise typing/subtyping through syntax-driven
definitions, usually in the form of a type system, or coinductive definitions (for
subtyping). This seems in slight contrast with a common principle in concur-
rency theory: keeping syntax separated from semantics. Indeed, behavioural
equivalences (e.g. (bi)simulation, testing, etc.) are typically defined over arbi-
trary LTSs, and then applied to calculi by providing the latter with an LTS
semantics [27].

Another drawback of these syntax-driven approaches is that they do not usu-
ally consider some common programming patterns for interactive applications.
For example, let us think about a server waiting for client’s input: typically, the
server must handle the case where such inputs do not arrive. This can be achieved
via signals/exceptions handling, or other programming language constructs. In
Erlang , for instance, one can write:

receive P1 -> Body1 . . .
Pk -> Bodyk

after 10 -> BodyT

?P1 Body1

?Pk Bodyk

τ BodyT
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This causes receive to be aborted if no messages matching the patterns P1,. . . ,Pk
arrive within 10 milliseconds; in this case, BodyT is executed — where the pro-
gram may e.g. do internal actions and start receiving again. Such a program
blurs the distinction between internal/external choices: intuitively, its LTS (on
the right) has a state with external inputs ?P1, . . . , ?Pk and an internal τ -move
abstracting the timeout. This eludes the notion of “structured communication-
based programming” at the roots of the session types approach [19,20]; yet, it is a
use case that one would like to somehow typecheck to ensure correct interaction.

In this work, we tackle these problems by revisiting the semantic founda-
tions of session types, aiming for behavioural, syntax-independent relations and
properties that can be later applied to specific process calculi and programming
languages.

Contributions. We study a behavioural theory of session types, aimed at unifying
the notions of typing and subtyping, including both synchronous/asynchronous
semantics. We start in §2 by setting our framework, and giving a running exam-
ple. In §3 we define I/O compliance as a notion of correct interaction between
behaviours, stricter than progress, albeit coinciding with it on synchronous ses-
sion types (Theorem 1). In §4 we introduce the I/O simulation �̈ between be-
haviours, which is an I/O compliance-preserving preorder (Theorems 3 and 4),
is a Gay-Hole subtyping relation [18] (Theorem 5), and is preserved when pass-
ing from synchronous to asynchronous session types semantics (Theorem 6). In
§5 we show that �̈ induces syntax-driven type systems, which guarantee cor-
rect interaction (Theorem 8). Due to space constraints, the proofs of all our
statements, more examples and discussion are available in [5].

2 Behaviours

In this section we exploit the semantic model of labelled transition systems
(LTSs) to provide a unifying ground for the notions developed later. We con-
sider LTSs where labels are partitioned into internal, input, and output actions,
and we call behaviours the states of such LTSs. Then, we exploit this model to
embed three calculi for concurrency: binary session types with synchronous or
asynchronous semantics, and asynchronous CCS. We will sometimes use these
calculi to write examples and to discuss related work, but all the main technical
notions and results do apply to the general class of behaviours.

We consider an LTS (U,Aτ , {
�τ−→ | 
τ ∈ Aτ}), where U = {p, q, . . .} is a set of

behaviours, Aτ is a set of labels, and
�τ−→ ⊆ U× U is a transition relation. Aτ is

partitioned into input actions A? = {?a, ?b, . . .}, output actions A! = {!a, !b, . . .},
and the internal action τ . We use an involution co(·) such that co(?a) = !a and
co(!a) = ?a. We let 
, 
′, . . . range over A = A? ∪ A!. For a set L ⊆ A, we define
L? = L∩A? and L! = L∩A!. For all p, q ∈ U, we define the parallel composition
p ‖ q as the behaviour whose transitions are given by the (standard) rules:

p
�τ−→ p′

p ‖ q
�τ−→ p′ ‖ q

q
�τ−→ q′

p ‖ q
�τ−→ p ‖ q′

p
�−→ p′ q

co(�)−−−→ q′

p ‖ q
τ−→ p′ ‖ q′
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T 1

τ

!a ?b

τ

!a′ ?b′

T 1[ ]

τ

!a ?b

?b !a

τ

!a′ ?b′

?b′ !a′ T 2

= T 2[ ]

?a

τ

!b

τ !c

Fig. 1. Three session behaviours

We define the relation =⇒ as the reflexive and transitive closure of
τ−→, and

�τ=⇒
as =⇒ �τ−→=⇒. We write p

�τ−→ when ∃p′ . p
�τ−→ p′; we write p−→ when ∃
τ . p

�τ−→.
We write 0 to denote any p such that p 	−→. We define the weak barbs of p as

p⇓ = {
 | p
�
=⇒}. Hereafter, we shall consider two behaviours equal iff their

transition graphs are isomorphic (i.e. equal up-to node renaming).

Session types. A session type is an abstraction of the behaviour of a process
interacting with its environment. Here, we use a simple version of session types
by slightly adapting those studied in [1]. Session types comprise external choice
(&) among inputs (?a), internal choice (⊕) among outputs (!a), and recursion.
Empty choices (of any kind) represent successful termination.

Definition 1 (Session types). Session types are terms with the syntax:

T ::=
˘

i∈I?ai .T i

∣∣ ⊕
i∈I !ai .T i

∣∣ recX T
∣∣ X

where (i) the set I is finite, (ii) the actions in internal/external choices are
pairwise distinct, and (iii) recursion is guarded. We write 0 for the empty choice.

We present two semantics for session types: one synchronous (Def. 2) and one
asynchronous (Def. 3). In both, an internal choice first commits to one of the
branches !a.T , before enabling !a. An external choice enables all its actions.

Definition 2 (Synchronous session behaviours). We denote with Ss the set
of behaviours of the form T (up-to unfolding), with transitions given by the rules:

˘
i∈I?ai .T i

?aj−−→ T j (j ∈ I)
⊕

i∈IT i
τ−→ T j (j ∈ I, |I| > 1) !a.T

!a−→ T

For the asynchronous semantics, we consider behaviours of the form T [σ]
where σ is a sequence of output actions, modelling an unbounded buffer.

Definition 3 (Asynchronous session behaviours). We denote with Sa the
set of behaviours of the form T [σ] (up-to unfolding), with transition rules:(⊕
i∈I

!ai .T i

)
[σ]

τ−→ T j [σ.!aj ] (j ∈ I) T [!a.σ]
!a−→ T [σ]

(¯
i∈I

?ai .T i

)
[σ]

?aj−−→ T j [σ] (j ∈ I)

The async rule for ⊕ adds the selected output to the end of the buffer, with a
τ -move. The 2nd rule says that an output !a at the head of the buffer is consumed
with a !a-transition. The async rule for & is similar to the sync one.
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Example 1. Let T 1 = !a .?b ⊕ !a′ .?b′, and T 2 = ?a .(!b⊕ !c). Their sync/async
behaviours are shown in Figure 1. Note that T 2 has equal sync/async behaviours.

The following proposition shows that asynchronous session behaviours are not
more general than synchronous ones, and vice versa: e.g., considering the session
types in Example 1, we have that T 1 	∈ Sa, while T 1 [] 	∈ Ss.

Proposition 1. Sa 	⊆	⊇ Ss.

Definition 4 (CCS). CCS terms have the following syntax:

P ,Q ::= 0
∣∣ 
τ .P

∣∣ P + Q
∣∣ P |Q

∣∣ X
∣∣ μXP

where + is non-deterministic choice, | is parallel composition, and recursion μXP
is guarded. Like async session behaviours, async CCS semantics use a buffer
[σ].

Definition 5 (Async CCS semantics). We denote with Pa the set of be-
haviours of the form P [σ] (up-to unfolding), with transitions given by the follow-
ing rules (the symmetric ones for | and + are omitted):


τ ∈ {τ} ∪ A?


τ .P [σ]
�τ−→ P [σ]

!a.P [σ]
τ−→ P [σ.!a]

P [!a.σ]
!a−→ P [σ]

P [σ]
�τ−→ P ′[σ′]

(P + Q)[σ]
�τ−→ P ′[σ′]

P [σ]
�τ−→ P ′[σ′]

(P |Q)[σ]
�τ−→ (P ′ |Q)[σ′]

As in async session behaviours, an output !a is first added at the end of the
buffer, and can only be consumed from its head. Note that a behaviour cannot
consume its own buffer: | just allows for interleaving. Synchronization is obtained
with P [σ] ‖ Q[σ′], i.e. using the parallel composition of LTS states: this allows
P ’s input actions to consume Q’s output buffer, and vice versa.

Example 2. The behaviour of the async process !a.τ [] is shown as p1 in Figure 2.

Definition 6. We define an encoding �� of session type terms into async CCS:

�⊕I !ai .T i� =∑
I !ai .�T i� �˘I?ai .T i� = ∑

I?ai .�ci� �recX T � = μX�T � �X� = X

By Lemma 1, an async session type and its encoding in async CCS are equivalent.

Lemma 1. T [] = �T �[].
Proposition 2 relates async CCS behaviours with session behaviours.

Proposition 2. Sa � Pa 	⊆	⊇ Ss.

An example. The following types model a bartender (B) and a client Alice (A):

UB = recX (?aCoffee.!coffee.X & ?aBeer.(!beer.X ⊕ !no.X) & ?pay)
T A = !aCoffee.?coffee.!pay ⊕ !aBeer.(?beer.!pay& ?no.!pay)
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The bartender presents an external choice &, allowing a customer to order either
coffee or beer, or to eventually pay; in the first case, he will serve the coffee and
then recursively wait for more orders; in the second case, he uses the internal
choice ⊕ to decide whether to serve the beer or not — and then waits for more
orders; in the third case, after the due amount (possibly 0) is paid, the interaction
ends. Alice internally chooses between coffee or beer; in the first case, she waits
to get the coffee and then pays; in the second case, she lets the bartender choose
between serving the beer, or saying no — and in both cases, she will check out.

Intuitively, UB and TA are compliant, and the following processes type-check:

QB = μY (?aCoffee.!coffee.Y + ?aBeer . (!beer.Y + !no.Y ) + ?pay)
PA = !aCoffee.?coffee.!pay + !aBeer . (?beer.!pay+ ?no.!pay)

From typing and compliance, we can deduce that PA[] ‖ QB[] synchronize and
reach the successful state 0[]‖0[], where they agree in stopping their interaction.

Alice may also implement a subtype of TA only asking for coffee: T ′
A =

!aCoffee.?coffee.!pay, with a corresponding process P ′
A = !aCoffee.?coffee.!pay.

Note however that the subtyping step is not necessary: P ′
A has also type TA.

So far, the structures of A’s and B’s processes match the structure of their
types. This is a common situation in the session types literature: processes are
usually written using calculi inheriting the structured communication approach
pioneered by Honda et al. [19,20], thus reflecting the internal/external choices
of types. However, in some cases things may be more complex. The bartender
might have other incumbencies, and may need to stop selling beer after a certain
hour:

Q′′
B = μY

(
(?aCoffee.!coffee.Y + ?aBeer . (!beer.Y + !no.Y ) + ?pay)
+ τ .μZ(?aCoffee.!coffee.Z + ?aBeer.!no.Z + ?pay)

)
This reminds us of the small Erlang code sample given in §1: the τ branch
represents the bartender’s decision to stop waiting for customer orders, perform
some internal duties (e.g. clean up the bar) and then serve again — this time,
refusing to sell beer. Intuitively, we would like Q′′

B to still have the type UB, since
compliant customer processes (e.g. Alice’s one) will still be able to interact (either
before or after the τ ). A process like Q′′

B, however, is usually impossible to write
(and type) using classical session calculi: their grammar does not offer a τ prefix,
since it would allow for processes where the distinction between internal/external
choices is blurred (contrary to the expected program structure).

Let us consider another scenario: Alice is late for work. But she realises that
the bartender-customer system is asynchronous : the counter is a bidirectional
buffer where drinks and money can be placed. Thus, she tries to save time by
implementing the following type and process:

T ′′
A = !aCoffee.!pay.?coffee P ′′

A = !aCoffee.(?coffee | !pay)
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i.e., in her type she plans to order a coffee, put her money on the counter while B
prepares her drink, and take it as soon as it is ready; in her process, she orders a
coffee, and tries to grab the coffee with one hand, while putting the money on the
counter with the other. P ′′

A represents an optimised program exploiting buffered
communication, thus diverging from the syntactic structure of T ′′

A. Therefore, is
T ′′

A a type for P ′′
A? Is T ′′

A compliant with UB, and will P ′′
A interact smoothly with

QB and Q′′
B? We shall answer these questions later on in §5.

3 I/O Compliance

We now address the problem of defining a relation between behaviours to guar-
antee that, when combined together, they interact in a “correct” manner. Many
different notions of correctness have been considered to this purpose in the liter-
ature, both for the binary [12,14,1,2] and for the multi-party settings [9,10,3,17].

We start by considering the classical, trace-based notion of compliance of [14,1],
where correctness is interpreted as progress of the interaction. In Definition 7 we
say that a behaviour p has progress with q (in symbols, p 6 q) iff, whenever a
τ -computation of the system p‖ q is stuck, then p has reached the final (success)
state 0. Note that this notion is asymmetric, in the sense that p is allowed to
terminate the interaction without the permission of q. This is intended to model
the asymmetry between the role of a client p and that of a server q, as in [1].

Definition 7 (Progress). We write p 6 q iff p‖q =⇒ p′‖q′ 	−→ implies p′ = 0.
We write p ⊥ q when p 6 q and p � q.

The following proposition states that, for session types, progress with the
synchronous semantics implies progress with the async semantics. As we shall
see, the main relations introduced in the rest of the paper will be preserved when
passing from the synchronous to the asynchronous semantics of session types.

Proposition 3. If T 6 U , then T [] 6 U [].

Example 3. We have the following relations:

!a.?b ⊥ ?a.!b !a.?b 	6 � ?a recX !a.X 	6 � ?a (recX !a.X) [] ⊥ ?b []
!a.?b 	6 	� !b.?a (!a.?b)[] ⊥ (!b.?a) [] recX !a.X ⊥ recY ?a.Y (recX ?a.X) [] 	6 � !b []

The progress-based notion of correctness above also relates behaviours that allow
arguably incorrect interactions. For instance, (recX !a.X)[] 6 ?b [] holds, because
they produce an infinite τ -trace, even if they cannot synchronise. Ideally, we
would like our notion of correct interaction to be stricter, avoiding “vacuous”
progress where the client p exposes I/O capabilities, but the server q cannot
interact, and p ‖ q merely advances via internal τ -transitions (without synchro-
nisations). We introduce a notion of compliance enjoying such a property on
general behaviours (recall from §2 that p⇓! = (p⇓)! = p⇓ ∩ A!):
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τ

!a

τ

τ

!a

p1

?a

τ
?a

?b

p2

?a

!b

?c

p3

!a

τ

!b

p4

Fig. 2. Four behaviours which are not session behaviours

Definition 8. R is an I/O compliance relation iff, when p R q:

a) p⇓! ⊆ co(q⇓?) ∧
(
(p⇓! = ∅ ∧ p⇓? 	= ∅) =⇒ ∅ 	= q⇓! ⊆ co(p⇓?)

)
;

b) p
�−→ p′ ∧ q

co(�)−−−→ q′ =⇒ p′ R q′;

c) p
τ−→ p′ =⇒ p′ R q;

d) q
τ−→ q′ =⇒ p R q′.

We write �̈ for the largest I/O com-
pliance relation, and �̈( for the largest
symmetric I/O compliance relation.
When p �̈( q, then we say that p and
q are I/O compliant.

Definition 8 can be interpreted with the game-theoretic metaphor. Let p and
q be two players. Item a) has two conditions: by the leftmost constraint, if p
wants to do some output (possibly after some τ -moves), then q must match it
with its inputs; by the rightmost constraint, if p is not going to output, but
wants to do some input, then q must be ready (possibly after some τ -moves)
to do some output, and q cannot have outputs other than those accepted by p.
I/O compliance must be preserved if p and q synchronise or do internal moves
(items b), c), d)).

Lemma 2. �̈( = �̈ ∩ �̈.

Example 4. Consider the behaviours in Figure 2. We have that p1 �̈( p2, p2 �̈( p4,
p1 �̈ p3, and p2 �̈ p3, while all the other pairs of behaviours are not compliant.

Theorem 1 relates I/O compliance with Def. 7. If two behaviours are compli-
ant, then they enjoy progress. The vice versa is not true: e.g., (recX !a.X)[] 	�̈
?b [], coherently with our desideratum that correct interactions must not progress
vacuously. �̈ can relate async session behaviours which intuitively interact cor-
rectly, e.g. (!a.?b)[] �̈( (!b.?a)[]. Still, �̈ and 6 coincide in Ss.

Theorem 1. If p �̈ q then p 6 q. Also, if p, q ∈ Ss then p 6 q implies p �̈ q.

Example 5. Recall the example in §2. In the sync case, UB ⊥ TA, UB �̈( TA,
UB ⊥ T ′

A and UB �̈( T ′
A. The same holds for their async versions. When Alice is

late for work, for the sync types UB 	⊥ T ′′
A and UB 	�̈( T ′′

A, due to the wrong order
of Alice’s actions. In the async case, instead, UB[] ⊥ T ′′

A[] and UB[] �̈( T ′′
A[].

Proposition 4 says that �̈ is preserved when passing from sync to async session
behaviour. It refines Proposition 3, that deals with the weaker notion of progress.

Proposition 4. If T �̈ U , then T [] �̈ U [].
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4 I/O Simulation

In this section we introduce a simulation relation between behaviours. We start
by adapting to our framework one of the classical notions of subtyping from the
session types literature: the strong subcontract relation of [14]. A behaviour p is
a subtype of p′ iff, whenever p′ is compliant with some (arbitrary) behaviour q,
then p is compliant with q1. Thus, p can transparently replace p′, in all contexts.

Definition 9 (Subtype). 5 is the largest relation s.t. p 5 q implies ∀r . q �̈(
r =⇒ p �̈( r. We write p 5R q to restrict r to the set R (i.e., ∀r ∈ R . . .).

Despite its elegance and generality, Def. 9 cannot be directly exploited to es-
tablish whether two behaviours are related, due to the universal quantification
over all contexts. For session types, alternative characterisations of 5 have been
defined, usually in the form of a syntax-driven coinductive relation [14,1]. This
approach amounts to restricting p, q and r in Def. 9 to a process calculus with
specific syntax and transition rules — e.g., p, q, r ∈ Ss. In our semantic frame-
work, however, behaviours are not syntax. We shall extend these characterisa-
tions from session behaviours to arbitrary ones, without resorting to a universal
quantification over contexts. To do that, we define an I/O simulation relation
on behaviours, denoted by �̈. We show that it is a preorder (Theorem 3), and it
preserves I/O compliance (Theorem 4). �̈ is equivalent to the subtype relation
on sync session behaviours (Theorem 5), albeit stricter on arbitrary behaviours.

Let Q be a set of behaviours. We write q � Q iff ∅ 	= Q ⊆ {q′ | q =⇒ q′}. By
extension, we write Q

�τ=⇒ q′′ iff ∃q′ ∈ Q . q′
�τ=⇒ q′′, and similarly for Q =⇒ q′′.

We write Q⇓ for
⋃
q′∈Q q′⇓, and similarly for Q⇓? and Q⇓!.

Definition 10 (I/O simulation). R̈ is a I/O simulation relation iff, whenever
p R̈ q, then ∃Q (called predictive set) such that q � Q, and:

a) p⇓! = ∅ =⇒ Q⇓! = ∅;
b) Q⇓? ⊆ p⇓? ∧ (Q⇓? = ∅ =⇒ p⇓? = ∅);
c) p

τ−→ p′ =⇒ ∃q′ . Q =⇒ q′ ∧ p′ R̈ q′;

d) p
!a−→ p′ =⇒ ∃q′ . Q !a

=⇒ q′ ∧ p′ R̈ q′;

e) p
?a−→ p′ ∧ Q

?a
=⇒ =⇒ ∃q′ . Q

?a
=⇒ q′ ∧ p′ R̈ q′.

We write �̈ for the largest
I/O simulation, ≈̈ for the
largest symmetric I/O sim-
ulation, and =̈ for �̈ ∩ �̈.

Definition 10 can be explained in terms of a sort of simulation game between
players p and q. At the first step, q predicts a suitable choice of its internal moves,
via a set Q of states reachable from q. The outputs of Q must include those of p
(item d)), and the inputs of Qmust be included in those of p (item b)). Moreover,
if p has no outputs, then alsoQ cannot have outputs, and if Q has no inputs, then
also p cannot have inputs (items a),b)). Intuitively, these constraints reflect the

1 In this paper the direction of � is opposite w.r.t. the subcontract relation in [14].
Moreover, we require I/O compliance in each context, while [14] only requires
progress.
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Table 1. Example of I/O simulation

p p(1) p(2)

p(3)
p(4)

?a !b

τ !c

q q(1) q(2)

q(3) q(5) q(6)

q(4)

q(7)

q(8) q(9)

?a

τ

τ

τ
!b

?a !c

τ

τ

τ
?d

Relation Pred. set

(p, q) {q}
(p(1), q(1)) {q(2), q(5)}
(p(1), q(5)) {q(5)}
(p(2), q(4)) {q(4)}
(p(3), q(2)) {q(2)}
(p(3), q(7)) {q(7)}
(p(4), q(6)) {q(6)}

p is in relation with q, q(3), match-
ing their ?a. Then, p(1) wants either
to perform !b, !c or quit interact-
ing: this behaviour is matched by
q(1) and q(5); if p(1) follows its τ -
branch to p(3), the latter is related
with q(2) and q(7). Notice that q(2),
does not stop, but enters in a τ -
loop. Also notice that p(1)’s predic-
tive set has 2 elements: it cannot be
{q(1)}, because otherwise p(1) would
not match ?d, reachable via q(8).

usual subtyping in session types: inputs (external choices) can be enlarged (if not
empty), while outputs (internal choices) can be narrowed (but not emptied). The
requirements above must be preserved by the moves of p. τ -moves and outputs
of p must be (weakly) simulated by some process in Q (items c)–d)). The same
holds for inputs (item e)), but only moves shared by p and Q are considered.

Example 6. Detailed examples of �̈ are shown in Table 1, and in [5].

Example 7. Consider Figure 3. To assess p �̈ q, we choose a predictive set Q
that mandates the inputs of p, and includes its outputs (note that p has an
additional input ?c′ not offered by Q). The same happens with the predictive
set R, assessing q �̈ r — but R must be chosen carefully: it must include the
lower τ -branch of r, matching the branch of q with a τ -loop and no further
I/O; however, it must not include the upper τ -branch of r, which requires ?d
(not matched by q). Note that R and the small set inside are predictive sets for
p �̈ r.

We now study some properties of �̈. Lemma 3 ensures that Def. 10 is well-formed.

Lemma 3. Let R̈ be a set of I/O simulations. Then,
⋃
R̈ is an I/O simulation.

The following result relates I/O simulation with weak moves. When p �̈ q,
the relation �̈ is preserved by forward τ -moves of p and backward τ -moves of q.

p

τ

!a

?b

τ

!b

?c
r

τ

!a

?b

τ

!b

?c

τ

?d

q

τ

!a

?b

τ

!b

?c

?c′
τ

Q

τ

R

�̈ �̈

τ

Fig. 3. I/O simulation. Q, R are the predictive sets resp. for p �̈ q and q �̈ r.
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Lemma 4. If p �̈ q, with p =⇒ p′ and q′ =⇒ q, then p′ �̈ q′.

Weak simulation (�) and I/O simulations are unrelated, i.e. �̈ 	⊆ � 	⊆ �̈.
However, weak bisimulation (≈) is strictly stronger than I/O bisimulation.

Theorem 2. ≈ � ≈̈

By Theorem 3, �̈ is a preorder, as the subtype relation. This is not quite straight-
forward, due to the existential quantification on the predictive set Q.

Theorem 3. (U, �̈) is a preorder.

Quite surprisingly, on general behaviours progress is not preserved by �̈: if
p �̈ q 6 r, then it is not always the case that p 6 r. For instance, consider the
behaviours in Figure 4. It is easy to check that p5 �̈ p6 and p6 6 p7. However,
p5 	6 p7: indeed, if p7 chooses the branch !b, then p5 is stuck waiting for ?c.

Theorem 4 is one of our main results: it states that �̈ preserves (symmet-
ric/asymmetric) I/O compliance. This is a further motivation for using �̈( instead
of ⊥, when dealing with behaviours where these two notions do not coincide. In
the example above, p7 is not a sync session behaviour: were all behaviours in
Figure 4 elements of Ss, we would also have preserved progress (by Theorem 1).

Theorem 4. p �̈ q ◦ r =⇒ p ◦ r, for ◦ ∈ {�̈, �̈(, �̈}.

I/O simulation can be seen as a subtyping relation on general behaviours,
that is p �̈ q allows p to be always used in place of q. For instance, assume that
p is an asynchronous CCS process typed with a session type q, which in turn
complies with the session type r. Then, Theorem 4 states that I/O compliance
is preserved by �̈, i.e. p is also I/O compliant with r, notwithstanding with the
fact that p and r are specified in different calculi (actually, our statement is even
more general, as it applies to arbitrary behaviours). Summing up, the process p
will interact correctly with any process with type r (Theorem 8).

Theorem 5 below states that I/O simulation is stricter than Definition 9.
However, the two notions coincide on synchronous session behaviours. Hence, �̈
can be interpreted as a subtyping relation in Ss, according to [18].

Theorem 5. If p �̈ q, then p 5 q. Also, if p, q ∈ Ss, then p 5Ss
q =⇒ p �̈ q.

Theorem 6 generalises Propositions 3 and 4, extending to I/O simulation the
set of properties preserved when passing from a sync to an async semantics.

Theorem 6. If T ◦ T ′, then T [] ◦ T ′ [], for ◦ ∈ {�̈,�,⊥,6, �̈, �̈(, �̈}.

?a

?b ?c

p5 �̈

?a

p6  

!a

!b

p7

Fig. 4. Progress is not preserved by I/O simulation (on general behaviours)
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P = P + 0

P +Q = Q+ P

P + (Q+R) = (P +Q) +R

P = P + P

P = P | 0
P |Q = Q | P

P | (Q |R) = (P |Q) | R
μXP = P [μXP/X]

P �̈ P

!a | ?b �̈ !a.?b

P �̈ Q

!a.?b.P �̈ !a | ?b.Q [|0]

∀i ∈ I . Pi �̈ Q∑
i∈Iτ .Pi �̈ Q

[τ ]

∀i ∈ I . Pi �̈ Qi∑
i∈I�τ i .Pi �̈

∑
i∈I�τ i .Qi

[�τ ]

Q =̈
∑

i∈I !ai .Qi

∀i ∈ I . Pi �̈ Qi I �= ∅∑
i∈I !ai .Pi �̈ Q+ !b.Q′ [Int]

P �̈ Q
R �̈ S ins(P )∪ins(Q) = ∅

P |R �̈ Q | S
[|]

Q =̈
∑

i∈I?ai .Qi

∀i ∈ I . Pi �̈ Qi ∅ �= I ⊆ J
∀k ∈ K . Pk �̈ Q
∀j ∈ J\I . aj �∈ {ai}i∈I∑

j∈J (?aj .Pj) +
∑

k∈Kτ .Pk �̈ Q
[Ext]

Fig. 5. Axioms for �̈ in P−
a . ins(P ) gives the set of inputs in P ’s body.

5 Session Types without Types

Our treatment so far does not depend on a syntactic representation of behaviours
in U. In the resulting unifying view, there are no inherent distinctions between
processes and types: they are just states of an LTS. This allows us to define
relations between objects which morally belong to different realms: e.g. p �̈ q
may relate, say, an async CCS process with a (sync or async) session type.

The price for this generalisation is (seemingly) the loss of a useful feature:
using syntax-based reasoning to check whether a process has a certain type,
without having to deal with the semantic level. In this section, we show how this
possibility can be restored in four steps: (i) choosing a process language and a
type language (with their corresponding semantics); (ii) encoding the former in
the latter; (iii) devising a sound set of axioms for �̈; and (iv) using these axioms
to induce syntax-based typing rules that imply (i.e., safely approximate) �̈.

In this section we give a proof-of-concept of this methodology for the case of
async CCS (Pa) for processes, and async session behaviours (Sa) as types. The
encoding from types to processes for step (ii) is the one given in Definition 6.
Proceeding to step (iii), we now introduce a set of �̈-based relations for Pa. We
shall sometimes omit generic buffers [σ] appearing in processes.

Lemma 5 (“Axioms” for �̈). The relations in Figure 5 hold.

The axioms in Lemma 5 are mostly straightforward. [Int] and [Ext] (with
K = ∅) model the typical session typing rules for internal/external choices
(resp. with outputs and inputs), allowing to add inputs and remove outputs
according to �̈. [Ext] with K 	= ∅ handles an external choice that is inter-
rupted (with τ -moves) and later reprised (i.e., a simple case of Erlang-style
receive. . . after. . . behaviour, seen in §2). [|] allows the parallel composition
of behaviours, provided that they cannot interfere badly (i.e., compete on the
same inputs) along their reductions.

To ease the presentation, we focus on a fragment of async CCS (called P−
a )

where (a) choices are guarded, (b) | cannot appear within recursion, and (c)
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in P | Q, either P ’s or Q’s body cannot contain inputs. Conditions (b) and (c)
globally enforce the premises of [|], allowing us to simplify Def. 11 below.

Definition 11. Let Γ be a mapping from recursion variables to pairs of P−
a

terms. We define 	̈Γ as the least relation between P−
a terms closed under the

rules obtained by replacing �̈ with 	̈Γ in Figure 5 — plus the following:

Γ(X) = (P ,Q)

X 	̈Γ Q
[S-Var]

P 	̈Γ ,X:(μXP ,Q) Q

μXP 	̈Γ Q
[S-Rec]

We treat the =-based relations in Figure 5 as structural congruence rules.

The rules in Def. 11 are straightforward: [S-Var] enriches the environment by
“guessing” that P �̈ Q; [S-Rec] consumes such a guess, introducing recursion.

Theorem 7 states that (P−
a , 	̈) is a preorder stricter than (P−

a , �̈), and it is
preserved by all the operators of P−

a , that is ., +, and |. This enables us to use
the syntactic rules 	̈Γ as a basis for a type system for P−

a (as we will see in
Def. 12).

Theorem 7. 	̈ is a precongruence for P−
a , and P 	̈ Q =⇒ P [σ] �̈ Q[σ].

A non-obvious aspect of Definition 11 and Theorem 7 is that, by requiring
guarded choices in P−

a , 	̈ is preserved by + (rule [�τ ]). This is not directly
matched by a corresponding property for �̈ in Pa without guarded choices,
i.e. P �̈ Q =⇒ P + R �̈ Q + R. Indeed, the latter implication is false in
general, because τ.?a.P �̈ ?a.P , but ?b+ τ.?a.P 	�̈ ?b+?a.P . A similar argument
holds for |, when arbitrary terms are put in parallel. This shows that �̈ is not a
precongruence for Pa, and gives reason for having 	̈ stricter than �̈.

We can now define a syntax-directed typing judgement relating P−
a processes

with session types. To this purpose, we exploit the encoding in Definition 6.

Definition 12. We write Γ � P : T iff P 	̈Γ �T �.
Theorem 8 states the correctness of our “typing” discipline. Suppose you have

a process P with type T , and a process Q with type U . If T and U are I/O com-
pliant, then we have that P and Q are I/O compliant, too. Thus, by Theorem 1
we have that the behaviour P [] ‖Q[] enjoys progress.

Theorem 8. If � P : T , � Q : U with T []◦U [], then P []◦Q[], for ◦ ∈ {�̈, �̈(, �̈}.

Proof. From Def. 12 we have P 	̈ �T �; by Lemma 1, Def. 11 and Theorem 7
it follows P [] �̈ T []. Similarly, Q[] �̈ U []. Since P �̈ T [] ◦ U [], by Theorem 4 it
follows P [] ◦U []. Since Q[] �̈ U [] ◦P [], then by Theorem 4 we conclude Q[] ◦P [].

Note that � P : T and � Q : U can be inferred by a syntax-driven analysis,
by the rules in Definition 11. If T and U are interpreted as synchronous session
types, than we can use syntax-driven techniques (e.g. those in [1]) to deduce
T ◦U in the synchronous case; then, by Theorem 6, this result is lifted “for free”
to the async case. We stress that the above result is obtained just by exploiting
the properties of I/O simulation, without explicitly proving subject reduction.
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Example 8. From §2, recall Alice’s type T ′′
A and process P ′′

A when she is late for
work. We have the following type encoding in P−

a : PT ′′
A
=

�
T ′′

A

�
= !aCoffee.!pay.

?coffee. Then, by Definition 11, we can derive � P ′′
A : T ′′

A.
Let us now consider the bartender processes and types in §2. Since in Exam-

ple 5 we determined that UB �̈( T ′′
A, by Theorem 4 we have QB �̈( P ′′

A. Also, since
in Example 9 we show that � Q′′

B : UB, by Theorem 8 we have Q′′
B �̈( P ′′

A.

Example 9. From §2, recall Q′′
B, UB. We can derive � Q′′

B : UB.

The previous examples show that our syntax-driven rules allow to type an
Erlang-style receive. . .after. . . behaviour, featured in the bartender process.

6 Conclusions and Related Work

We have revisited the theory of session types from a purely semantic perspective.
We have defined a preorder �̈ between generic behaviours, which unifies the
notions of typing and subtyping for session types, as well as their synchronous
and asynchronous interpretations. In this work we mostly focused on behaviours
arising from session types and async CCS; however, it seems that our framework
can be easily exploited to analyse the properties of other behaviours populating
U — e.g. the LTS semantics of other process calculi and programming languages.

Session types were introduced by Honda et al. in [19,28,20], as a type sys-
tem for communication channels in a variant of the π-calculus. The result-
ing concept of structured communication-based programming has been the cor-
nerstone of the subsequent research. In [23], session types are coupled with
a “featherweight” Erlang-like language that, however, omits the problematic
receive. . . after. . . construct described in §1. While adapting the type system
of [23] to cope with such construct should be feasible, our approach allows the
construction of the type system (in our case, the rules for 	̈) to be driven by an
explicit underlying semantic notion (the I/O simulation). In particular, we think
that the syntax-based reasoning in §5 can be extended to deal with other lan-
guage constructs, beyond the Erlang-style receive. . . after. . . (which is treated
in §5).

Some recent results extend the session types discipline to the multiparty case,
starting from [21]. We expect that our approach can be extended to this setting:
some insights come from the streamlined approach of [13], where the authors
“take a step back . . . defining global descriptions whose restrictions are semanti-
cally justified”. The plan is to extend the �̈ relation to capture the role of each
type/process, and then to produce the syntax-based typing rules via (partial)
axiomatisation for a given calculus. We also plan to address the orthogonal prob-
lem of multiple interleaved sessions. Two starting points are [4,26], which both
introduce type systems for ensuring liveness in this setting.

[18] studies subtyping for (dyadic) session types. This topic is reprised in [1,2]
with different notions of client-server compliance (e.g., allowing the client to
terminate interaction or to skip messages). We took inspiration from these works,
aiming at a framework general enough to replicate their notions and results.
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Asynchronous dyadic session types have been addressed in [24], where type
equivalence up-to buffering was defined over traces, and then approximated via
syntax-based rules. A notion of compliance among services with buffers has been
studied in [10], which extends [9] (albeit the setting is quite different from session
types). Also [25] addresses the problem of defining compliance between service
contracts. In their weak compliance relation, finite-state orchestrators can resolve
external choices or rearrange messages in order to guarantee progress. Weak
compliance is unrelated to our I/O compliance: on the one hand, the latter
cannot rearrange messages; on the other hand, I/O compliance has no fixed
bound on the size of the buffers. For instance, let !am be a sequence of m !a; the
async behaviours !a.?b.!a2 .?b2 · · · !an .?bn · · · and !b.?a.!b2 .?a2 · · · !bn .?an · · · are
I/O compliant, but they are not weakly compliant, as orchestrators must have a
finite rank. In [22] a bisimulation is defined to relate processes communicating via
unbounded buffers. The aim of Theorem 6 is to provide for a unifying approach
to these issues, by tranferring properties from the sync to the async setting.

Several works denote the successful termination of a behaviour with a specific
transition label (e.g. �) and/or a specific state (e.g. 1 or End). In this paper,
we consider two behaviours to be I/O compliant when they synchronise until
the client (in the asymmetric case) simply stops interacting. It is easy to extend
our framework with a success label/state, thus allowing e.g. to study a testing
theory (as in [6]). For simplicity, we chose not to include it in the present work.

Our approach shares some common ground with [14,12]: the inspiration to [16]
for the (synchronous) session types semantics, the idea of representing processes
and contracts/types in the same LTS, thus allowing for easy reasoning about
their progress/compliance properties, and the will to overcome the rigid inter-
nal/external choices dichotomy required by session types. In [14], it is assumed
that some type system can abstract processes P,Q (expressed in any calculus)
into contracts. This type system must be “consistent” and “informative”, by
preserving some essential properties like e.g. visible actions and internal non-
determinism. A result in [14] is that if the abstractions of P,Q are (strongly)
compliant, then P,Q will be (strongly) compliant as well. We believe that the
concept of consistent/informative abstraction could be adapted to our frame-
work: it would allow, e.g., to abstract rich process calculi (e.g. with value passing
and delegation) into an LTS populated with I/O sorts (like the one adopted in
this work). Beyond these general ideas, the technical developments are different:
in the strong subcontract relation of [14] there is no input/output distinction,
and some desirable subtypings do not hold, e.g. ?a&?b 	5 ?a. These are restored
through a “weak” subcontract relation, exploiting filters to suitably resolve ex-
ternal non-determinism. A challenging task would be that of using filters to
enforce the I/O co/contra-variance typical of session types (and embodied in
�̈).
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for Web Services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

13. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

14. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for Web services.
ACM TOPLAS 31(5) (2009)

15. Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 211–228. Springer,
Heidelberg (2009)

16. De Nicola, R., Hennessy, M.: CCS without tau’s. In: TAPSOFT, vol. 1 (1987)
17. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating au-

tomata: Characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS,
vol. 7966, pp. 174–186. Springer, Heidelberg (2013)

18. Gay, S., Hole, M.: Subtyping for session types in the Pi calculus. Acta Inf. 42(2)
(2005)

19. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

http://tcs.unica.it/publications


418 M. Bartoletti, A. Scalas, and R. Zunino

22. Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics.
In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp.
228–243. Springer, Heidelberg (2011)

23. Mostrous, D., Vasconcelos, V.T.: Session typing for a featherweight Erlang. In: De
Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp.
95–109. Springer, Heidelberg (2011)

24. Neubauer, M., Thiemann, P.: Session types for asynchronous communication.
Universität Freiburg (2004)

25. Padovani, L.: Contract-based discovery of web services modulo simple orchestra-
tors. Theor. Comput. Sci. 411(37) (2010)

26. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
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Abstract. We propose a typing theory, based on multiparty session types, for
modular verification of real-time choreographic interactions. To model real-time
implementations, we introduce a simple calculus with delays and a decidable
static proof system. The proof system ensures type safety and time-error freedom,
namely processes respect the prescribed timing and causalities between interac-
tions. A decidable condition on timed global types guarantees time-progress for
validated processes with delays, and gives a sound and complete characterisation
of a new class of CTAs with general topologies that enjoys progress and liveness.

1 Introduction

Communicating timed automata (CTAs) [14] extend the theory of timed automata [3] to
enable precise specification and verification of real-time distributed protocols. A CTA
consists of a finite number of timed automata synchronising over the elapsing of time
and exchanging messages over unbound channels. In spite of its simplicity, the com-
bination of timed automata [3] and communicating automata (CAs) [8] can represent
many different temporal aspects from a local viewpoint. On the other hand, the model
is known to be computationally hard, and it is difficult to directly link its idealised
semantics to implementations of programming languages and distributed systems.

On a parallel line of research, multiparty session types (MPSTs) [13,6] have been
proposed to describe communication protocols among two or more participants from a
global viewpoint. Global types are projected to local types, against which programs can
be type-checked and verified to behave correctly without deadlocks. This framework is
applied in industry projects [19] and to the governance of large cyberinfrastructures [17]
via the Scribble project (a MPST-based tool chain) [20].

From the theoretical side, in the untimed setting recent work brings CAs into chore-
ographic frameworks, by seeking a correspondence with projected local types [11]. We
proceed along these lines by applying the idealised mathematical semantics of CTAs to
the design of MPSTs with clocks, clock constraints, and resets, in order to fill the gap
between the abstract specification by CTAs and the verification of real-time programs.
Surprisingly, since MPSTs inherently capture relative temporal constraints by imposing
an order on the communications, they enable effective verification without limitations
on topology or buffer-boundedness, unlike existing work on CTAs.

We organise our results in two parts. First we show that although time annotations
increase the expressive power of global types, time-error freedom is guaranteed with-
out additional time analysis of the types. In § 3 we give the semantics of timed global
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types (TGs) and prove soundness and completeness of the projection onto timed local
types (TLs) (Theorem 3). In § 4 we give a simple π-calculus for programs (running as
processes) with delays that can be used to synchronise the communications in a ses-
sion. A compositional proof system enables modular verification of time-error freedom
(Theorem 7): if all programs in a system are validated, then the global conversation will
respect the prescribed timing and causalities between interactions. In the second part we
investigate the conditions for an advanced property – time-progress – ensuring that if a
process deadlocks, then its untimed counter-part would also deadlock (i.e., deadlock is
not caused by time constraints). The fact that untimed processes in single sessions are
deadlock-free [13] yields progress for timed processes. Time-progress is related to two
delicate issues: (1) some time constraints in a TG may be unsatisfiable and (2) there
may exist some distributed implementation of the TG which deadlocks. We give two
sufficient conditions on TGs (§5) to prevent (1) and (2): feasibility (for each partial exe-
cution allowed by a TG there is a correct complete one) and wait-freedom (if all senders
respect their time constraints, then no receiver has to wait for a message). Feasibility
and wait-freedom are decidable (Proposition 8), and if we start from feasible and wait-
free TGs, then the proof system given in part one guarantees time-progress for processes
(Theorem 11). We give a sound and complete characterisation (Theorem 13) yielding a
new class of CTAs which enjoys progress and liveness (Theorem 14). Conclusion and
related work are in § 6. Full definitions can be found in the technical report [22].

2 Running Example: A Use-Case of a Distributed Timed Protocol

The motivating scenario developed with our partner, the Ocean Observatories Initiative
(OOI) [17], is directed towards deploying a network of sensors and ocean instruments
used/controlled remotely via service agents. In many OOI use-cases requests are aug-
mented with deadlines and services are scheduled to execute at certain time intervals.
These temporal requirements can be expressed by combining global protocol descrip-
tions from MPSTs and time from CTAs. We show a protocol to calculate the average
water temperature via sensor sampling. The protocol involves three participants: a mas-
ter M that initiates the sampling, a worker/sensor W with fixed response time w, and an
aggregator A for accumulating the data; their time constraints are expressed using clocks
xM, xW, and xA, initially set to 0. Each clocks can be reset many times. Delays l (average
latency of the network) and w (sampling time) are expressed in milliseconds. As in [14]
(synchronous semantics) time elapses at the same pace for all the parts of the system.

M

<task>

⊕

more<data>

(1)

(2)

(3)

(4)

(5)

iterate

   l  = 400 (latency), w = 300,000 (sampling)Delays (in ms):

W A

xM = 0 

<data>

more<task>

stop<data>

stop

xM := 0 
l ≤  xW < 2l 

xM =2l+w xW ≤ w
xW := 0 

xM =2l+w 

xM := 0 

xM := 0 

xW = 2l
xW := 0 

xW = 2l
xW := 0 

3l+w ≤  xA
xA := 0 

3l+w ≤  xA
xA := 0 

 

(1): M sends W a message of type task and resets xM (xM :=0).
After at least l and at most 2l, W receives the message.

(2): W completes the task and replies to M with the tempera-
ture (of type data) at any time satisfying xW ≤ w and resets
xW. M receives the message at time xM = 2l +w.

(3): M immediately sends A a message of type data with ei-
ther label more (the sampling continues for another iteration)
or stop (enough results have been aggregated).

(4): If more was selected then M sends W a new task with label
more, resets xM and another iteration is executed.

(5): If stop was selected, M notifies W and the session ends.
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3 Timed Multiparty Session Types

Global types [6,13] are specifications of the interactions (causalities and carried data
types) of multiparty sessions. A global type can be automatically projected onto a set
of local types describing the session from the perspective of each single participant
and used for local verification of processes. We extend global and local types with
constraints on clocks, yielding timed global types (TGs) and local session types (TLs).

We use some definitions from timed automata (see [3, § 3.3], [14, § 2]): let X be
a set of clocks ranging over x1, . . . ,xn and taking values in R≥0. A clock assignment
ν : X #→ R≥0 returns the time of the clocks in X . We write ν+ t for the assignment
mapping all x ∈ X to ν(x)+ t. We write ν0 for the initial assignment mapping all clocks
to 0. The set Φ(X) of clock constraints over X is:

δ ::= true | x > c | x = c | ¬δ | δ1∧δ2

where c is a bound time constant taking values in Q≥0 (we derive false, <,≤,≥, ∨ in
the standard way). The set of free clocks in δ, written fn(δ), is defined inductively as:
fn(true) = /0, fn(x > c) = fn(x = c) = {x}, fn(¬δ) = fn(δ), and fn(δ1∧δ2) = fn(δ1)∪
fn(δ2). We write δ( #»x ) if fn(δ) = #»x and let ν |= δ denote that δ is satisfied by ν. A
reset λ over X is a subset of X . When λ is /0 then clocks are not reset, otherwise the
assignment for each x ∈ λ is set to 0. We write [λ #→ 0]ν for the clock assignment that
is like ν except 0 is assigned to all clocks in λ.

Participants (p,q,p1, . . .∈N) interact via point-to-point asynchronous message pass-
ing. An interaction consists of a send action and a receive action, each annotated with a
clock constraint and a (possibly empty) reset. The clock constraint specifies when that
action can be executed and the reset specifies which clocks must be set to 0.

Syntax. The syntax for sorts S, timed global types G, and timed local types T is:

S ::= bool | nat | . . . | G | (T,δ)
G ::= p→ q : {li〈Si〉{Ai}.Gi}i∈I | µt.G | t | end A ::= {δO,λO,δI,λI}
T ::= p⊕{li : 〈Si〉{Bi}.Ti}i∈I | p&{li : 〈Si〉{Bi}.Ti}i∈I | µt.T | t | end B ::= {δ,λ}
The sorts S include base types (bool, nat, etc.), G for shared name passing (used for
the initiation of sessions of type G, cf. § 4), and (T,δ) for session delegation. Sort (T,δ)
allows a participant involved in a session to delegate the remaining behaviour T ; upon
delegation the sender will no longer participate in the delegated session and receiver
will execute the protocol described by T under any clock assignment satisfying δ. G
and T in sorts do not include free type variables.

In G, type p→ q : {li〈Si〉{Ai}.Gi}i∈I models an interaction: p chooses a branch i∈ I,
where I is a finite set of indices, and sends q the branching label li along with a message
of sort Si. The session then continues as prescribed by Gi. Each branch is annotated
with a time assertion Ai = {δOi,λOi,δIi,λIi}, where δOi and λOi are the clock constraint
and reset for the output action, and δIi and λIi are for the input action. We will write
p→ q : 〈S〉{A}.G′ for interactions with one branch. Recursive type µt.G associates a
type variable t to a recursion body G; we assume that type variables are guarded in the
standard way and end occurs at least once in G (this is a common assumption e.g., [9]).
We denote by P (G) the set of participants of G and write G′ ∈G when G′ appears in G.
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As in [14] we assume that the sets of clocks ‘owned’ (i.e., that can be read and reset)
by different participants in a TG are pair-wise disjoint, and that the clock constraint and
reset of an action performed by a participant are defined only over the clocks owned by
that participant. The example below violates this assumption.

G1 = p→ q : 〈int〉{xp < 10,xp,xp < 20,xp}

since both the constraints of the (send) action of p and of the (receive) action of q
are defined over xp, and xp can be owned by either p or q (similarly for the resets
{xp}). Formally, we require that for all G there exists a partition {X(p,G)}p∈P (G) of X
such that p→ q : {li〈Si〉{δOi,λOi,δIi,λIi}.Gi}i∈I ∈G implies fn(δOi),λO i ⊆ X(p,G) and
fn(δI i),λIi ⊆ X(q,G) for all i ∈ I.

In T , interactions are modelled from a participant’s viewpoint either as selection
types p⊕{li : 〈Si〉{Bi}.Ti}i∈I or branching types p&{li : 〈Si〉{Bi}.Ti}i∈I . We denote
the projection of G on p ∈ P (G) by G ↓p; the definition is standard except that each
{δOi,λOi,δIi,λIi} is projected on the sender (resp. receiver) by keeping only the output
part {δOi,λOi} (resp. the input part {δIi,λIi}), e.g., if G = p→ q : {li〈Si〉{Bi,B′i}.Gi}i∈I

then G ↓p= q⊕{li : 〈Si〉{Bi}.Gi ↓p}i∈I and G ↓q= p&{li : 〈Si〉{B′i}.Gi ↓q}i∈I .

Example 1 (Temperature calculation). We show below the global timed type G for
the protocol in § 2 and its projection G ↓M onto M. We write for empty resets.

G = M→ W : 〈task〉{B1
O,B

1
I}.µt.G′

G′ = W→ M : 〈data〉{B2
O,B

2
I}.

M→ A : {more〈data〉{B3
O,B

3
I}. M→ W : more〈task〉{B4

O,B
4
I}.t,

stop〈data〉{B3
O,B

3
I}. M→ W : stop〈〉{B4

O,B
4
I}.end}

G ↓M = W⊕〈task〉{B1
O}.

µt. W&〈data〉{B2
I}.

A⊕{more : 〈data〉{B3
O}.W⊕more : 〈task〉{B4

O}.t,
stop : 〈data〉{B3

O}.W⊕stop : 〈〉{B4
O}.end}

B1
O = {xM = 0,xM}

B1
I = {l ≤ xW < 2l, }

B2
O = {xW ≤ w,xW}

B2
I = {xM = 2l +w, }

B3
O = {xM = 2l +w, }

B3
I = {3l +w≤ xA,xA}

B4
O = {xM = 2l +w,xM}

B4
I = {xW = 2l,xW}

Remark 1 (On the importance of resets). Resets in timed global types play an impor-
tant role to model the same notion of time as the one supported by CTAs, yielding a
more direct comparison between types and CTAs. Resets give a concise representa-
tion of several scenarios, e.g., when time constraints must be repeatedly satisfied for
an unbounded number of times. This is clear from Example 1: the repetition of the
same scenario across recursion instances (one for each sampling task) is modelled by
resetting all clocks before starting a new recursion instance (e.g., B3

I, B4
O and B4

I on the
second line of G′ in Example 1).

Semantics of Timed Global Types. The LTS for TGs is defined over states of the form
(ν,G) and labels 
 ::= pq!l〈S〉 | pq?l〈S〉 | t where pq!l〈S〉 is a send action (i.e., p sends
l〈S〉 to q), pq?l〈S〉 is the dual receive action, and t ∈R≥0 is a time action modelling time
passing. We denote the set of labels by L and let subj(pq!l〈S〉) = p, subj(qp?l〈S〉) = p

and subj(t) = /0.
We extend the syntax of G with p� q : l〈S〉{A}.G to describe the state in which mes-

sage l〈S〉 has been sent by p but not yet received by q (as in [11, § 2]). The separation
of send and receive actions is used to model the asynchronous behaviour in distributed
systems, as illustrated by the following example.
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p→ q : 〈int〉{xp < 10, ,xq ≥ 10, }.p→ r : 〈int〉{xp ≥ 10, ,true, }
pq!〈int〉−−−−−→ p� q : 〈int〉{xp < 10, ,xq > 20, }.p→ r : 〈int〉{xp < 10, ,true, }
pr!〈int〉−−−−−→ p� q : 〈int〉{xp < 10, ,xq > 20, }.p� r : 〈int〉{xp ≥ 10, ,true, }

After the first action pq!〈int〉 the TG above can reduce by one of the following actions:
a send pr!〈int〉 (as illustrated), a receive of q, or a time step. By using intermediate
states, a send action and its corresponding receive action (e.g., pq!〈int〉 and pq?〈int〉)
are separate, hence could be interleaved with other actions, as well as occur at dif-
ferent times. This fine-grained semantics corresponds to local type semantics where
asynchrony is modelled as message exchange through channels (see Theorem 3).

TGs are used as a model of the correct behaviour for distributed implementations in
§ 4. Therefore their semantics should only include desirable executions. We need to take
special care in the definition of the semantics of time actions: if an action is ready to be
executed and the associated constraint has an upper bound, then the semantics should
prevent time steps that are too big and would make that clock constraint unsatisfiable.
For instance in p→ q : 〈int〉{xp ≤ 20, ,true, } (assuming xp = 0) the LTS should
allow, before the send action of p occurs, only time steps that preserve xp ≤ 20.

More generally, we need to ensure that time actions do not invalidate the constraint
of any action that is ready to be executed, or ready action. A ready action is an action
that has no causal relationship with other actions that occur earlier, syntactically. A TG
may have more than one ready action, as shown by the following example.

p→ q : 〈int〉{xp ≤ 20, ,true, }.k→ r : 〈int〉{xk < 10, ,xr = 10, }

The TG above has two ready actions, namely the send actions of p and of k which can
happen in any order due to asynchrony (i.e., an order cannot be enforced without extra
communications between p and k). In this case a desirable semantics should prevent the
elapsing of time intervals that would invalidate either {xp ≤ 20} or {xk < 10}.

Below, function rdy(G,D) returns the set, for each ready actions in G, of elements
of the form {δi}i∈I which are the constraints of the branches of that ready action. D
is a set of participants, initially empty, used to keep track of the causal dependencies
between actions. We write rdy(G) for rdy(G, /0).

(1)
rdy(p→ q : {li〈Si〉{Ai}.Gi}i∈I ,D)

(with Ai = {δO i,λOi,δIi,λIi})
=

{
{{δO i}i∈I}

⋃
i∈I rdy(Gi,D∪{p,q}) if p 	∈ D⋃

i∈I rdy(Gi,D∪{p,q}) otherwise

(2) rdy(p� q : l〈S〉{δO,λO,δI,λI}.G,D) =

{
{{δI}}∪rdy(G,D∪{q}) if q 	∈ D

rdy(G,D∪{q}) otherwise

(3) rdy(µt.G,D) = rdy(G,D) (4) rdy(t,D) = rdy(end,D) = /0

In (1) the send action of p is ready, hence the singleton including the constraints {δOi}i∈I

are added to the solution and each Gi is recursively checked. Any action in Gi involving
p or q is not ready. Adding {p,q} to D ensures that the constraints of actions that
causally depend from the first interaction are not included in the solution. (2) is similar.

Definition 2 (Satisfiability of ready actions). We write ν |=∗ rdy(G) when the con-
straints of all ready actions of G are eventually satisfiable under ν. Formally, ν |=∗
rdy(G) iff ∀{{δi}i∈I} ∈ rdy(G)∃t ≥ 0, j ∈ I. ν+ t |= δ j .
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j ∈ I A j = {δO,λO,δI,λI} ν |= δO ν′ = [λO #→ 0]ν

(ν,p→ q : {li〈Si〉{Ai}.Gi}i∈I)
pq!l j〈Sj〉−−−−−→ (ν′,p� q : l j〈S j〉{A j}.G j)

2SELECT3

ν |= δI ν′ = [λI #→ 0]ν

(ν,p� q : l〈S〉{δO,λO,δI,λI}.G)
pq?l〈S〉−−−−→ (ν′,G)

(ν,G[µt.G/t]) 
−→ (ν′,G′)

(ν,µt.G)

−→ (ν′,G′)

2BRANCH3/2REC3

∀k ∈ I (ν,Gk)

−→ (ν′,G′k) p,q 	∈ sub j(
) 
 	= t

(ν,p→ q : {li〈Si〉{Ai}.Gi}i∈I)

−→ (ν′,p→ q : {li〈Si〉{Ai}.G′i}i∈I)

2ASYNC13

(ν,G)

−→ (ν′,G′) q 	∈ sub j(
)

(ν,p� q : l〈S〉{A}.G)

−→ (ν′,p� q : l〈S〉{A}.G′)

ν+ t |=∗ rdy(G)

(ν,G)
t−→ (ν+ t,G)

2ASYNC23/2TIME3

Fig. 1. Labelled transitions for timed global types

The transition rules for TGs are given in Figure 1. We assume the execution always
begins with initial assignment ν0. Rule 2SELECT3 models selection as usual, except that
the clock constraint of the selected branch j is checked against the current assignment
(i.e., ν |= δO) which is updated with reset λO. Rules 2ASYNC13 and 2ASYNC23 model inter-
actions that appear later (syntactically), but are not causally dependent on the first in-
teraction. Rule 2TIME3 models time passing by incrementing all clocks; the clause in the
premise prevents time steps that would make the clock constraints of some ready action
unsatisfiable. By Definition 2, ν+ t |=∗ rdy(G) requires the satisfiability of the con-
straints of some of the branches of (each ready action of) G, while some other branches
may become unsatisfiable. In this way, the semantics of TGs specifies the full range
of correct behaviours. For instance in p→ q : {l1 : {xp < c, ,true, }, l2 : {xp >
c, ,true, }} one can, in some executions, let time pass until xp > c so that l2 can be
chosen. 2TIME3 can always be applied to (ν,end) since ν+ t |=∗ rdy(end) for all t.

Semantics for Timed Local Types. The LTS for TLs is defined over states (ν,T ), labels
L and is generated by the following rules:

(ν,q⊕{li : 〈Si〉{Bi}.Ti}i∈I)
pq!l j〈Sj〉−−−−−→ (ν′,Tj) ( j ∈ I B j = {δ,λ} ν |= δ ν′ = [λ #→ 0]ν) 2LSEL3

(ν,q&{li : 〈Si〉{Bi}.Ti}i∈I)
qp?l j〈Sj〉−−−−−→ (ν′,Tj) ( j ∈ I B j = {δ,λ} ν |= δ ν′ = [λ #→ 0]ν) 2LBRA3

(ν,T [µt.T/t]) 
−→ (ν′,T ′) implies (ν,µt.T) 
−→ (ν′,T ′) 2LREC3
ν+ t |=∗ rdy(T ) implies (ν,T)

t−→ (ν′,T ) 2LTIME3
Rule 2LSEL3 is for send actions and its dual 2LBRA3 for receive actions. In rule 2LTIME3 for
time passing, the constraints of the ready action of T must be satisfiable after t in ν. Note
that T always has only one ready action. The definitions of rdy(T ) and ν+t |=∗ rdy(T )
are the obvious extensions of the definitions we have given for TGs.

Given a set of participants {1, . . . ,n} we define configurations (T1, . . . ,Tn,
#»w) where

#»w ::= {wi j}i	= j∈{1,...,n} are unidirectional, possibly empty (denoted by ε), unbounded
channels with elements of the form l〈S〉. The LTS of (T1, . . . ,Tn,

#»w) is defined as fol-
lows, with ν being the overriding union (i.e., ⊕i∈{1,...,n}νi) of the clock assignments νi
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of the participants. (ν,(T1, . . . ,Tn,
#»w))


−→ (ν′,(T ′1 , . . . ,T ′n ,
#»w ′)) iff:

(1) 
 = pq!l〈S〉 ⇒ (νp,Tp)

−→ (ν′p,T ′p)∧w′pq = wpq · l〈S〉∧ (i j 	= pq⇒ wi j = w′i j ∧Ti = T ′i )

(2) 
 = pq?l〈S〉 ⇒ (νq,Tq)

−→ (ν′q,T ′q)∧ l〈S〉 ·w′pq = wpq∧ (i j 	= pq⇒ wi j = w′i j∧Tj = T ′j )

(3) 
 = t ⇒∀i 	= j ∈ {1, . . . ,n}.(νi,Ti)

−→ (νi + t,Ti)∧wi j = w′i j

with p,q, i, j ∈ {1, . . . ,n}.
We write TR(G) for the set of visible traces obtained by reducing G under the initial

assignment ν0. Similarly for TR(T1, . . . ,Tn,
#»ε ). We denote trace equivalence by ≈.

Theorem 3 (Soundness and completeness of projection). Let G be a timed global type
and {T1, . . . ,Tn}= {G ↓p}p∈P (G) be the set of its projections, then G≈ (T1, . . . ,Tn,

#»ε ).

4 Multiparty Session Processes with Delays

We model processes using a timed extension of the asynchronous session calculus [6].
The syntax of the session calculus with delays is presented below.

P ::= u[n](y).P Request
| u[i](y).P Accept
| c[p]( l〈e〉;P Select
| c[p]�{li(zi).Pi}i∈I Branching
| delay(t).P Delay
| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| µX .P Recursion
| X Variable

| (νa)P Hide Shared
| (νs)P Hide Session
| s : h Queue

h ::= /0 | h · (p,q,m) (queue content)
m ::= l〈v〉 | (s[p],ν) (messages)
c ::= s[p] | y (session names)
u ::= a | z (shared names)
e ::= v | ¬e | e′op e′ (expressions)
v ::= c | u | true | . . . (values)

u[n](y).P sends, along u, a request to start a new session y with participants 1, . . . ,n,
where it participates as 1 and continues as P. Its dual u[i](y).P engages in a new session
as participant i. Select c[p]( l〈e〉;P sends message l〈e〉 to participant p in session c and
continues as P. Branching is dual. Request and accept bind y in P, and branching binds
zi in Pi. We introduce a new primitive delay(t).P that executes P after waiting exactly
t units of time. Note that t is a constant (as in [5,16]). The other processes are standard.
We often omit inaction 0, and the label in a singleton selection or branching, and denote
with fn(P) the set of free variables and names of P.

We define programs as processes that have not yet engaged in any session, namely
that have no queues, no session name hiding, and no free session names/variables.

Structural equivalence for processes is the least equivalence relation satisfying the
standard rules from [6] – we recall below (first row) those for queues – plus the follow-
ing rules for delays:
(νs)s : /0≡ 0 s : h · (p,q,m) · (p′,q′,m′) ·h′ ≡ s : h · (p′,q′,m′) · (p,q,m) ·h′ if p 	= p′ or q 	= q′

delay(t + t ′).P≡ delay(t).delay(t ′).P delay(0).P≡ P
delay(t).(νa)P≡ (νa)delay(t).P delay(t).(P | Q)≡ delay(t).P | delay(t).Q

In the first row: (νs)s : /0 ≡ 0 removes queues of ended sessions, the second rule per-
mutes causally unrelated messages. In the second row: the first rule breaks delays into
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a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}Pi[s[i]/y] | s : /0) (s 	∈ fn(Pi)) 2LINK3
s[p][q]( l〈e〉;P | s : h −→ P | s : h · (p,q, l〈v〉) (e ↓ v) 2SEL3

s[p][q]�{li(zi).Pi}i∈J | s : (p,q, l j 〈v〉) ·h −→ Pj [v/z j ] | s : h ( j ∈ J) 2BRA3
delay(t).P |∏ j∈J s j : hj −→ P |∏ j∈J s j : hj 2DELAY3

P−→ P′ (not by 2DELAY3) imply P | Q−→ P′ | Q 2COM3
if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) 2IFT/IFF3
P≡ P′ P′ −→ Q′ Q≡ Q′ imply P−→ Q P−→ P′ imply (νn)P−→ (νn)P′ 2STR/HIDE3

Fig. 2. Reduction for processes

smaller intervals, and delay(0).P≡ P allows time to pass for idle processes. The rules
in the third row distribute delays in hiding and parallel processes.

The reduction rules are given in Figure 2. In 2SEL3 we write e ↓ v when expression
e evaluates to value v. Rule 2DELAY3 models time passing for P. By combining 2DELAY3
with rule delay(t).(P | Q) ≡ delay(t).P | delay(t).Q we allow a delay to elapse si-
multaneously for parallel processes. The queues in parallel with P always allow time
passing, unlike other kinds of processes (as shown in rule 2COM3 which models the syn-
chronous semantics of time in [14]). Rule 2COM3 enables part of the system to reduce as
long as the reduction does not involve 2DELAY3 on P. If P reduces by 2DELAY3 then also
all other parallel processes must make the same time step, i.e. the whole system must
move by 2DELAY3. The other rules are standard (n stands for s or a in 2HIDE3).
Example 4 (Temperature calculation). Process PM is a possible implementation of
participant M of the protocol in Example 1, e.g., G ↓M. Assuming that at least one task
is needed in each session, we let task() be a local function returning the next task and
more tasks() return truewhen more tasks have to be submitted and false otherwise.

PM = s[M][W]( 〈task()〉;µX .delay(2l +w). s[M][W]� (y);if more tasks()
then s[M][A](more〈y〉;s[M][W](more〈task()〉;Xelse s[M][A](stop〈y〉;s[M][W](stop〈〉;end

Proof rules. We validate programs against specifications based on TLs, using judge-
ments of the form Γ � P�Δ and Γ � e : S defined on the following environments:

Γ ::= /0 | Γ,u : S | Γ,X : Δ Δ ::= /0 | Δ,c : (ν,T )

The type environment Γ maps shared variables/names to sorts and process variables to
their types, and the session environment Δ holds information on the ongoing sessions,
e.g., Δ(s[p]) = (ν,T ) when the process being validated is acting as p in session s speci-
fied by T ; ν is a virtual clock assignment built during the validation (virtual in the sense
that it mimics the clock assignment associated to T by the LTS) .

Resets can generate infinite time scenarios in recursive protocols. To ensure sound
typing we introduce a condition, infinite satisfiability, that guarantees a regularity across
different instances of a recursion.

Definition 5 (Infinitely satisfiable). G is infinitely satisfiable if either: (1) constraints
in recursion bodies have no equalities nor upper bounds (i.e., x < c or x ≤ c) and no
resets occur, or (2) all participants reset at each iteration.

In the rest of this section we assume that TGs are infinitely satisfiable. As usual (e.g., [13]),
in the validation of P we check Γ � P′ � Δ where P′ is obtained by unfolding once all
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2VREQ3
Γ,u : G � P�Δ,y[1] : (ν0,G ↓1)

dom(ν0) = {x1}
Γ,u : G � u[n](y).P �Δ

2VACC3
Γ,u : G � P�Δ,y[i] : (ν0,G ↓i)

dom(ν0) = {xi} i 	= 1

Γ,u : G � u[i](y).P �Δ

2VBRA3
∀i ∈ I ν |= δi

{
Γ,zi : Si � Pi �Δ,c : ([λi #→ 0]ν,Ti) (Si 	= (Td ,δd ))
Γ � Pi �Δ,c : ([λi #→ 0]ν,Ti),zi : (νd ,Td ) νd |= δd (Si = (Td ,δd ))

Γ � c[p]�{li(zi).Pi}i∈I �Δ,c : (ν,p&{li : 〈Si〉{δi,λi}.Ti}i∈I)

2VSEL3 j ∈ I Γ � e : Sj ν |= δ j Γ � P�Δ,c : ([λ j #→ 0]ν,Tj) (Sj 	= (Td ,δd))

Γ � c[p]( l j 〈e〉;P�Δ,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I)

2VDEL3 j ∈ I Γ � e : Sj ν |= δ j νd |= δd Γ � P�Δ,c : ([λ j #→ 0]ν,Tj) (Sj = (Td ,δd ))

Γ � c[p]( l j 〈e〉;P �Δ,c : (ν,p⊕{li : 〈Si〉{δi,λi}.Ti}i∈I),c
′ : (νd ,Td )

2VPAR3 dom(Δ1)∩dom(Δ2) = /0 Γ � Pi �Δi i ∈ {1,2}
Γ � P1 | P2 �Δ1,Δ2

2VCOND3 Γ � e : bool Γ � Pi �Δ i ∈ {1,2}
Γ � if e then P1 else P2 �Δ

2VTIME3 Γ � P�{ci : (νi + t,Ti)}i∈I

Γ � delay(t).P�{ci : (νi,Ti)}i∈I
2VEND3 ∀c ∈ dom(Δ) Δ(c) = (ν,end)

Γ � 0�Δ

2VDEF3Γ,X : Δ � P�Δ
Γ � µX .P�Δ

2VCALL3 ∀c ∈ dom(Δ′) Δ′(c) = (ν,end)
Γ,X : Δ � X �Δ,Δ′

Fig. 3. Proof rules for programs

recursions µX .P′′ occurring in P. This ensures that both the first instance of a recursion
and the successive ones (all similar by infinite satisfiability) satisfy the specification.

We show in Figure 3 selected proof rules for programs. Rule 2VREQ3 for session re-
quest adds a new instance of session for participant 1 to Δ in the premise. The newly
instantiated session is associated with an initial assignment ν0 for the clock of partici-
pant 1. Rule 2VACC3 for session accept is similar but initiates a new session for partic-
ipant i with i > 1. Rule 2VBRA3 is for branching processes. For all i ∈ I, δi must hold
under ν and the virtual clock assignments used to validate Pi is reset according to λi. If
the received message is a session (i.e., Si = (Td ,δd)) a new assignment zi : (νd ,Td) is
added to Δ in the premise. This can be any assignment such that νd |= δd . Rule 2VSEL3
for selection processes checks the constraint δ j of the selected branch j against ν. In
the premise, ν is reset as prescribed by λ j. Rule 2VDEL3 for delegation requires δd to be
satisfied under νd (of the delegated session) which is removed from the premise. Rule
2VTIME3 increments the clock assignments of all sessions in Δ. Rule 2VEND3 validates 0
if there are no more actions prescribed by Δ. Rule 2VDEF3 extends Γ with the assignment
for process variable X . Rules 2VPAR3 and 2VCOND3 are standard. Rule 2VCALL3 validates,
as usual, recursive call X against Γ(X) (and possibly some terminated sessions Δ′).

Theorem 6 (Type preservation). If Γ � P� /0 and P−→ P′, then Γ � P′ � /0.

In the above theorem, P is a process reduced from a program (hence Δ is /0). A stan-
dard corollary of type preservation is error freedom. An error state is reached when
a process performs an action at a time that violates the constraints prescribed by its
type. To formulate this property, we extend the syntax of processes as follows: selection
and branching are annotated with clock constraints and resets (i.e., c[p] ( l〈e〉{δ,λ};P
and c[p]� {li(zi){δi,λi}.Pi}i∈I); two new processes, error and clock process (s[p],ν),
are introduced. Process error denotes a state in which a violation has occurred, and
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(s[p],ν) associates a clock assignment ν to ongoing session s[p]. The reduction rules for
processes are extended as shown below.

∀i ∈ {1, ..,n} s 	∈ fn(Pi)

a[n](y).P1 |∏i∈{2,..,n} a[i](y).Pi −→ (νs)(∏i∈{1,..,n}(Pi[s[i]/y] | (s[i],ν0)) | s : /0)
2LINK3

delay(t).P |∏ j∈J (s j : hj |∏k∈Kj
(s j[pk ],νk))−→ P |∏ j∈J(s j : hj |∏k∈Kj

(s j [pk],νk + t)) 2DELAY3
e ↓ v ν′ = [λ #→ 0]ν δ |= ν

s[p][q]({δ,λ}l〈e〉;P | s : h | (s[p],ν)−→ P | s : h · (p,q, l〈v〉) | (s[p],ν′)
2SEL3

¬δ |= ν
s[p][q]({δ,λ}l〈e〉;P | s : h | (s[p],ν) −→ error | s : h | (s[p],ν)

2ESEL3

2LINK3 introduces a clock process (s[i],ν0) with initial assignment for each participant
i in the new session; 2DELAY3 increments all clock assignments; 2SEL3 checks clock
constraints against clock assignments and appropriately resets (the rule for branching is
extended similarly); 2ESEL3 is an additional rule which moves to error when a process
tries to perform a send action at a time that does not satisfy the constraint (a similar rule
is added for violating receive actions). Note that 2SEL3 only resets the clocks associated
to participant p in session s and never affects clocks of other participants and sessions.
The proof rules are adapted straightforwardly, with error not validated against any Δ.

Theorem 7 (Time-error freedom). If Γ � P�Δ, and P→∗ P′ then P′ 	≡ error.

5 Time-Progress of Timed Processes and CTAs

This section studies a subclass of timed global types characterised by two properties,
feasibility and wait-freedom and states their decidability; it then shows that these are
sufficient conditions for progress of validated processes and CTAs.

Feasibility. A TG G is feasible iff (ν0,G0) −→∗ (ν,G) implies (ν,G) −→∗ (ν′,end)
for some ν′. Intuitively, G0 is feasible if every partial execution can be extended to
a terminated session. Not all TGs are feasible. The specified protocol may get stuck
because a constraint is unsatisfiable, for example it is false, or the restrictions posed
by previously occurred constraints are too strong. We give below a few examples of
non-feasible (1,5) and feasible (2,3,4,6) global types:

1. p→ q : 〈int〉{xp > 3, ,xq = 4, }
2. p→ q : 〈int〉{xp > 3∧ xp ≤ 4, ,xq = 4, } 3. p→ q : 〈int〉{xp > 3, ,xq ≥ 4, }
4. q→ r : {l1 : {xq > 3, ,true, }, l2 : {xq < 3, ,true, }}
5. µt.p→ q : 〈int〉{xp < 1,xp,xq = 2,xq}.p→ r : 〈int〉{xp < 5, ,true,xr}.t
6. µt.p→ q : 〈int〉{xp < 1,xp,xq = 2,xq}.p→ r : 〈int〉{xp < 1, ,true,xr}.t

In (1) if p sends 〈int〉 at time 5, which satisfies xp > 3, then there exists no xq satisfying
xq = 4 (considering that xq must be greater than or equal to 5 to respect the global
flowing of time); (2) amends (1) by restricting the earlier constraint; (3) amends (1) by
relaxing the unsatisfiable constraint. In branching and selection at least one constraint
associated to the branches must be satisfiable, e.g., we accept (4). In recursive TGs,
a constraint may become unsatisfiable by constraints that occur after, syntactically, in
the same recursion body. In the second iteration of (5) xq = 2 is made unsatisfiable by
xp < 5 occurring in the first iteration (e.g., p may send q the message when xq > 2); in
(6) this problem is solved by restricting the second constraint on xp.
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Wait-freedom. In distributed implementations, a party can send a message at any time
satisfying the constraint. Another party can choose to execute the corresponding receive
action at any specific time satisfying the constraint without knowing when the message
has been or will be sent. If the constraints in a TG allow a receive action before the
corresponding send, a complete correct execution of the protocol may not be possible
at run-time. We show below a process P | Q whose correct execution cannot complete
despite P | Q is the well-typed implementation of a feasible TG.

G = p→ q : 〈int〉{xp < 3∨ xp > 3, ,xq < 3∨ xq > 3, }.
q→ p : {l1 : {xq > 3, ,xp > 3, }, l2 : {xq < 3, ,xp < 3, }}

G ↓p = q⊕〈int〉{xp < 3∨ xp > 3, }.q&{l1 : {xp > 3, }, l2 : {xp < 3, }}
G ↓q = p&〈int〉{xq < 3∨ xq > 3, }.p⊕{l1 : {xq > 3, }, l2 : {xq < 3, }}
P = delay(6).s[p][q]( 〈10〉;s[q][p]�{l1.0, l2.0} Q = s[p][q]� (x).s[q][p]( l2〈〉;0

P implements G ↓p: it waits 6 units of time, then sends q a message and waits for the
reply. Q implements G ↓q: it receives a message from p and then selects label l2; both
interactions occur at time 0 which satisfies the clock constraints of G ↓q. By Theorem 7,
since /0 � P | Q � s[p] : (ν0,G ↓p),s[q] : (ν0,G ↓q), no violating interactions will occur
in P | Q. However P | Q cannot make any step and the session it stuck. This exhibits
an intrinsic problem of G, which allows participants to have incompatible views of the
timings of action (unlike error transitions in § 4 which, instead, represent constraints
violations).

To prevent scenarios as the one above, we introduce a condition on TGs called
wait-freedom, ensuring that in all the distributed implementations of a TG, a receiver
checking the queue at any prescribed time never has to wait for a message. Formally

(and using ⊃ for logic implication): G0 is wait-free iff (ν0,G0)−→∗ pq!l〈S〉−−−−→ (ν,G) and
p� q : l〈S〉{δO,λO,δI,λI}.G′ ∈ G imply δI ⊃ ν(x)≤ x for all x ∈ fn(δI).

Decidability. If G is infinitely satisfiable (as also assumed by the typing in § 4), then
there exists a terminating algorithm for checking that it is feasible and wait-free. The
algorithm is based on a direct acyclic graph annotated with clock constraints and re-
sets, and whose edges model the causal dependencies between actions in (the one-time
unfolding of) G. The algorithm yields Proposition 8.

Proposition 8 (Decidability) Feasibility and wait-freedom of infinitely satisfiable TGs
are decidable.

Time-progress for processes. We study the conditions under which a validated program
P is guaranteed to proceed until the completion of all activities of the protocols it im-
plements, assuming progress of its untimed counterpart (i.e., erase(P)). The erasure
erase(P) of a timed processes P is defined inductively by removing the delays in P
(i.e., erase(delay(t).P′) = erase(P′)), while leaving unchanged the untimed parts
(e.g., erase(u[n](y).P′) = u[n](y).erase(P′)); the other rules are homomorphic.

Proposition 9 (Conformance) If P−→ P′, then erase(P)−→∗ erase(P′).

Processes implementing multiple sessions may get stuck because of a bad timing of
their attempts to initiate new sessions. Consider P = delay(5).a[2](v).P1 | a[2](y).P2;
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erase(P) can immediately start the session, whereas P is stuck. Namely, the delay of
5 time units introduces a deadlock in a process that would otherwise progress. This
scenario is ruled out by requiring processes to only initiate sessions before any delay
occurs, namely we assume processes to be session delay. All examples we have exam-
ined in practice (e.g., OOI use cases [17]) conform session delay.

Definition 10 (Session delay). P is session delay if for each process occurring in P of
the form delay(t).P′ (with t > 0), there are no session request and session accept in P′.

We show that feasibility and wait-freedom, by regulating the exchange of messages
within established sessions, are sufficient conditions for progress of session delay pro-
cesses. We say that P is a deadlock process if P−→∗ P′ where P′ 	−→ and P′ 	≡ 0, and
that Γ is feasible (resp. wait-free) if Γ(u) is feasible (resp. wait-free) for all u∈ dom(Γ).

Theorem 11 (Timed progress in interleaved sessions). Let Γ be a feasible and wait-
free mapping, Γ � P0 � /0, and P0 −→+ P. If P0 is session delay, erase(P) is not a
deadlock process and if erase(P)−→ then P−→.

Several typing systems guarantee deadlock-freedom, e.g. [6]. We use one instance from
[13] where a single session ensures deadlock-freedom. We characterise processes im-
plementing single sessions, or simple, as follows: P is simple if P0 −→∗ P for some
program P0 such that a : G � P0 � /0, and P0 = a[n](y).P1 | ∏i∈{2,..,n} a[i](y).Pi where
P1, . . . ,Pn do not contain any name hiding, request/accept, and session receive/delegate.

Corollary 12 (Time progress in single sessions). Let G be feasible and wait-free, and
P be a simple process with a : G � P � /0. If erase(P) −→, then there exist P′ and P′′

such that erase(P)−→ P′, P−→+ P′′ and erase(P′′) = P′.

Progress for CTAs. Our TGs (§ 3) are a natural extension of global types with timed no-
tions from CTAs. This paragraph clarifies the relationships between TGs and CTAs. We
describe the exact subset of CTAs that corresponds to TGs. We also give the conditions
for progress and liveness that characterise a new class of CTAs.

We first recall some definitions from [3,14]. A timed automaton is a tuple A =
(Q,q0,Act,X ,E,F) such that Q are the states, q0 ∈ Q is the initial state, Act is the
alphabet, X are the clocks, and E ⊆ (Q×Q×Act× 2X ×Φ(X)) are the transitions,
where 2X are the resets, Φ(X) the clock constraints, and F the final states. A network of
CTAs is a tuple C = (A1, . . . ,An,

#»w) where #»w = {wi j}i	= j∈{1,..,n} are unidirectional un-
bounded channels. The LTS for CTAs is defined on states s = ((q1,ν1), . . . ,(qn,νn),

#»w)
and labels L and is similar to the semantics of configurations except that each Ai can
make a time step even if it violates a constraint. For instance, assume that A1 can only
perform transition (q1,q′1, i j!l〈S〉, /0,xi ≤ 10) from a non-final state q1, and that ν1 = 10,
then the semantics in [14] would allow a time transition with label 10. However, after
such transition A1 would be stuck in a non-final state and the corresponding trace would
not be accepted by the semantics of [14].

In order to establish a natural correspondence between TGs and CTAs we introduce
an additional condition on the semantics of C , similar to the constraint on ready actions
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in the LTS for TG (rule 2TIME3 in § 3). We say that a time transition with label t is spec-
ified if ∀i ∈ {1, ..,n}, νi + t |=∗ rdy(qi) where rdy(qi) is the set {δ j} j∈J of constraints
of the outgoing actions from qi. We say that a semantics is specified if it only allows
specified time transitions. With a specified semantics, A1 from the example above could
not make any time transition before action i j!l〈S〉 occurs.

The correspondence between TGs and CTAs is given as a sound and complete en-
coding. The encoding from T into A , denoted by A(T ), follows exactly the definition
in [11, § 2], but adds clock constraints and resets to the corresponding edges, and sets
the final states to {end}. The encoding of a set of TLs {Ti}i∈I into a network of CTAs,
written A({Ti}i∈I), is the tuple (A(T1), . . . ,A(Tn),

#»ε ). Let G have projections {Ti}i∈I ,
we write A(G) for as (A(T1), . . . ,A(Tn),

#»ε ).
Before stating soundness and completeness we recall, and adapt to the timed setting,

two conditions from [11]: the basic property (timed automata have the same shape as
TLs) and multiparty compatibility (timed automata perform the same actions as a set of
projected TG). More precisely: C is basic when all its timed automata are deterministic,
and the outgoing actions from each (qi,Ci) are all sending or all receiving actions, and
all to/from the same co-party. A state s is stable when all its channels are empty. C is
multiparty compatible when in all its reachable stable states, all possible (input/output)
action of each timed automaton can be matched with a corresponding complementary
(output/input) actions of the rest of the system after some 1-bounded executions (i.e.,
executions where the size of each buffer contains at most 1 message).1

A session CTA is a basic and multiparty compatible CTA with specified semantics.

Theorem 13 (Soundness and completeness). (1) Let G be a (projectable) TG then
A(G) is basic and multiparty compatible. Furthermore with a specified semantics G≈
A(G). (2) If C is a session CTA then there exists G such that C ≈ A(G).

Our characterisation does not directly yield transparency of properties, differently
from the untimed setting [11] and similarly to timed processes (§ 4). In fact, a session
CTA itself does not satisfy progress. In the following we give the conditions that guar-
antee progress and liveness of CTAs. Let s = ((q1,ν1), . . . ,(qn,νn),

#»w) be a reachable
state of C : s is a deadlock state if (i) #»w = #»ε , (ii) for all i ∈ {1, . . . ,n}, (qi,νi) does
not have outgoing send actions, and (iii) for some i ∈ {1, . . . ,n}, (qi,νi) has incoming
receiving action; s satisfies progress if for all s′ reachable from s: (1) s′ is not a deadlock
state, and (2) ∀t ∈ N, ((q1,ν1 + t), . . . ,(qn,νn + t), #»w) is reachable from s in C . We say
C satisfies liveness if for every reachable state s in C , s−→∗ s′ with s′ final.

Progress entails deadlock freedom (1) and, in addition, requires (2) that it is always
possible to let time to diverge; namely the only possible way forward cannot be by
actions occurring at increasingly short intervals of time (i.e., Zeno runs).2

We write TR(C ) for the set of visible traces that can be obtained by reducing C . We
extend to CTAs the trace equivalence≈ defined in § 3.

Theorem 14 (Progress and liveness for CTAs). If C is a session CTA and there exists
a feasible G s.t. C ≈ A(G), then C satisfies progress and liveness.

1 Note that multiparty compatibility allows scenarios with unbounded channels e.g., the channel
from p to q in µt.p→ q : l〈S〉{A}.t .

2 The time divergence condition is common in timed setting and is called time-progress in [3].



432 L. Bocchi, W. Yang, and N. Yoshida

6 Conclusion and Related Work

We design choreographic timed specifications based on the semantics of CTAs and
MPSTs, and attest our theory in the π-calculus. The table below recalls the results for
the untimed setting we build upon (first row), and summarises our results: a decidable
proof system for π-calculus processes ensuring time-error freedom and a sound and
complete characterisation of CTAs (second row), and two decidable conditions ensuring
progress of processes (third row). These conditions also characterise a new class of
CTAs, without restrictions on the topologies, that satisfy progress and liveness. We
verified the practicability of our approach in an implementation of a timed conversation
API for Python. The prototype [1] is being integrated into the OOI infrastructure [17].

TGs π-calculus session CTAs

untimed type safety, error-freedom, Sound, complete characterisation,
progress [13] progress [11]

timed type safety (Theorem 6) Sound, complete characterisation,
error-freedom (Theorem 7) (Theorem 13)

feasible, wait-free progress (Theorems 11 and 12) progress (Theorem 14)

Challenges of Extending MPSTs with Time. The extension of the semantics of types
with time is delicate as it may introduce unwanted executions (as discussed in § 3).
To capture only the correct executions (corresponding to accepted traces in timed au-
tomata) we have introduced a new condition on time reductions of TGs and TLs: satis-
fiability of ready actions (e.g., 2TIME3 in Figure 1). Our main challenge was extending
the progress properties of untimed types [6] and CAs [11] to timed interactions. We in-
troduced two additional necessary conditions for the timed setting, feasibility and wait-
freedom, whose decidability is non trivial, and their application to time-progress is new.
The theory of assertion-enhanced MPSTs [7] (which do not include progress) could not
be applied to the timed scenario due to resets and the need to ensure consistency with
respect to absolute time flowing.

Reachability and verification. In our work, if a CTA derives from a feasible TG then
error and deadlock states will not be reached. Decidability of reachability for CTAs has
been proven for specific topologies: those of the form (A1,A2,w1,2) [14] and poly-
forests [10]. A related approach [2] extends MSCs with timed events and provides ver-
ification method that is decidable when the topology is a single strongly connected
component, which ensures that channels have an upper bound. Our results do not de-
pend on the topology nor require a limitation of the buffer size (e.g., the example in § 2
is not a polyforest and the buffer of A is unlimited). On the other hand, our approach
relies on the additional restrictions induced by the conversation structure of TGs.

Feasibility. Feasibility was introduced in a different context (i.e., defining a not too
stringent notion of fairness) in [4]. This paper gives a concrete definition in the context
of real-time interactions, and states its decidability for infinitely satisfiable TGs. [21]
gives an algorithm to check deadlock freedom for timed automata. The algorithm, based
on syntactic conditions on the states relying on invariant annotations, is not directly
applicable to check feasibility e.g., on the timed automaton derived from a TG.
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Calculi with Time. Recent work proposes calculi with time, for example: [18] includes
time constraints inspired by timed automata into the π-calculus, [5,16] add timeouts,
[12] analyses the active times of processes, and [15] for service-oriented systems. The
aim of our work is different from the work above: we use timed specifications as types
to check time properties of the interactions, rather than enriching the π-calculus syntax
with time primitives and reason on examples using timed LTS (or check channels lin-
earity as [5]). Our aim is to define a static checker for time-error freedom and progress
on the basis of a semantics guided by timed automata. With this respect, our calculus is
a small syntactic extension from the π-calculus and is simpler than the above calculi.
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Abstract. We introduce IH, a sound and complete graphical theory of
vector subspaces over the field of polynomial fractions, with relational
composition. The theory is constructed in modular fashion, using Lack’s
approach to composing PROPs with distributive laws.

We then view string diagrams of IH as generalised stream circuits by
using a formal Laurent series semantics. We characterize the subtheory
where circuits adhere to the classical notion of signal flow graphs, and
illustrate the use of the graphical calculus on several examples.

1 Introduction

We introduce a graphical calculus of string diagrams, which we call circuits,
consisting of the following constants, sequential ; and parallel ⊕ composition.

HA︷ ︸︸ ︷ HAop︷ ︸︸ ︷
x

x

k k︸ ︷︷ ︸
IH

These circuits can be given a stream semantics. The intuition is that wires carry
elements of a field k that enter and exit through boundary ports. In particular, for
circuits built from components in the leftmost three columns, which we hereafter
refer to as being in HA, the signal enters from the left and exits from the right
boundary. Computation in the circuit proceeds synchronously according to a
global “clock”, where at each iteration fresh elements are processed from input
streams on the left and emitted as elements of output streams on the right.

Intuitively, is a copier, duplicating its input signal; its counit accepts

any signal and discards it, producing no output; is an adder that takes two

inputs and emits their sum, and its unit constantly outputs the signal 0;

x is a delay, or 1-place buffer that initially holds the 0 value. Finally, k

is an amplifier, multiplying its input by the scalar k ∈ k. For circuits resulting
from the other three columns, HAop, the signal flows on the opposite direction:
from right to left. The behaviour is symmetric. Formally, the stream semantics
of circuits in HA and HAop consists of linear transformations of streams.
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Circuits in IH built out of all the constants above do not, in general, yield
functional behaviour. Signals no longer flow in a fixed direction, analogously to
how in electrical circuits physical wires are not directed. Indeed, the semantics
of circuits in IH are not linear maps, but rather subspaces, i.e., linear relations.
Passing from functions to relations gives meaning to circuits that contain feed-
backs. We must also use an extended notion of streams, Laurent series, typical in
algebraic approaches [4] to signal processing—roughly speaking, these streams
are allowed to start in the past. Notably, while matrices denoted by circuits in
HA or HAop only contain streams with a finite number of non-zero values, the
subspaces denoted by IH are, in general, generated by vectors of streams with in-
finitely many non-zero values. An example is the Fibonacci circuit (Example 3).

We characterise the stream semantics via both a universal property and an
intuitive inductive definition. Furthermore, we provide a sound and complete
axiomatization for proving semantic equivalence of circuits.

In order to do that, we consider another canonical semantics for circuits, prior
to the stream semantics. We show (Proposition 1) that HA is the theory of k[x]-
matrices, where k[x] is the ring of polynomials with coefficients from field k. A
modular construction [8] that generalises our earlier contribution [7] allows us to
conclude (Theorem 1) that IH is the relational theory of vector subspaces over
the field of fractions of k[x]. Then, the passage to the stream semantics simply
consists in interpreting polynomials and their fractions as streams. Using again
the construction in [8], also this interpretation is given by a universal property.

The study of stream processing circuits has been of significant interest since
at least the 1950s [16] and is known as the theory of signal flow graphs (SFG).
Traditionally only SFGs that yield functional behaviours on ordinary streams
are considered: to ensure this, circuits are restricted so that every feedback loop
passes through at least one delay gate. A well-known theorem (see e.g. [14]) states
that circuits in this form represent all and only the matrices with entries from
k〈x〉, the ring of rational polynomials: those fractions where the constant term
in the denominator is non-zero. A novel proof of this result has been recently
given by Rutten in [18] by using coinductive and coalgebraic techniques.

Signal flow graphs are first class objects of our theory—they are a certain
inductively defined family SF of circuits in IH. Using its inductive definition,
we can give another proof of the aforementioned theorem: SF is the theory of
matrices over k〈x〉 (Theorem 2). The main advantage of our approach is that,
by virtue of our full abstraction result, we are able to use graphical equational
reasoning on signal flow graphs directly without translations to intermediate
linear-algebraic or coalgebraic syntax.

The definition of SFGs given in this paper is very close in spirit to their
classical interpretations as graphical structures, which are typically defined in an
informal and intuitive fashion, before they are translated to a more formal syntax
and abandoned as objects of study. Our main departure from circuit orthodoxy is
that we dispense with all notions of input, output and direction of wires. Indeed,
guided by the mathematics of circuits, we must consider all of these as derivative
notions. By doing so, we are close in spirit to Willems’ behavioural approach in
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control theory [22]. Our approach—using string diagrams, which originated in
the study of free monoidal categories [20], in order to capture physical systems—
can also be considered as a contribution to network theory [2]. Similar ideas lie
behind Span(Graph) [12], the algebra of Petri nets with boundaries [10,21] and
several algebras of connectors [1]. Independently, Baez and Erbele proposed an
equivalent presentation of relational subspaces in their technical report [3], which
appeared after the submission of this paper.

There are also close connections to recent work on graphical languages for
quantum information. In [7] we used a similar modular construction to charac-
terise the free model of the undirected phase-free version of the ZX-calculus [11].
That construction and the construction of IH are both instances of a more gen-
eral result [8] that we sketch in this paper. Indeed, IH can itself be considered
as a flavour of directed ZX, albeit with a very different semantic interpretation.

Structure of the Paper. In §2 we recall the required categorical notions. In §3 we
show that HA is the graphical theory of k[x]-matrices. In §4 we give a modular
account of IH and show that it is the theory of relational vector subspaces over
the field of fractions of k[x]. In §5 we focus on the stream semantics and in §6
we identify an important subclass of IH: the theory of signal flow graphs.

2 Background

C[a, b] is the set of arrows from a to b in a small category C, composition of
f : a→ b, g : b→ c is denoted by f ; g : a→ c. For C symmetric monoidal,⊕ is the
monoidal product and σX,Y : X⊕Y → Y ⊕X the symmetry for X,Y ∈ C. Given
F : C1 → C2, F

op : Cop
1 → Cop

2 is the induced functor on the opposite categories
of C1,C2. If C has pullbacks, its span bicategory has the objects of C as 0-cells,
spans of arrows of C as 1-cells and span morphisms as 2-cells. We denote with
Span(C) the (ordinary) category obtained by identifying the isomorphic 1-cells
and forgetting the 2-cells. Dually, if C has pushouts, Cospan(C) is the category
obtained from the bicategory of cospans.

2.1 PROPs

A (one sorted) symmetric monoidal theory (SMT) is given by a pair (Σ,E) where
Σ is the signature: a set of operations o : n → m with arity n and coarity m.
The set of Σ-terms is obtained by composing operations, the identity id1 : 1→ 1
and symmetry σ1,1 : 2 → 2 with ; and ⊕: given Σ-terms t : k → l, u : l → m,
v : m → n, we construct Σ-terms t ; u : k → m and t ⊕ v : k + n → l + n. The
elements of the set E of equations are pairs of Σ-terms (t, t′:k → l).

To study SMTs we use PROPs [13,15] (product and permutation categories).
A PROP is a strict symmetric monoidal category with objects natural numbers,
where ⊕ on objects is addition. Morphisms between PROPs are strict symmetric
monoidal functors that act as identity on objects: PROPs and their morphisms
form the category PROP. Given an SMT (Σ,E), one (freely) obtains a PROP
where arrows k → l are Σ-terms k → l modulo the laws of symmetric monoidal
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categories and equations t = t′ where (t, t′) ∈ E. There is a graphical represen-
tation of terms as string diagrams (see [20]): we call these diagrams circuits.

For example, let (ΣM , EM ) be the SMT of commutative monoids. ΣM con-
tains two operation symbols: the multiplication — which we depict as a circuit

: 2→ 1 — and the unit, represented as : 0→ 1. Graphically, the gener-

ation of ΣM -terms amounts to “tiling” and together with the circuit

(representing σ1,1 : 2 → 2) and (representing id1 : 1 → 1). Equations
EM assert associativity (A3), commutativity (A2) and identity (A1).

= (A1) = (A2) = (A3)

We call Mw the PROP freely generated by (ΣM , EM ).1 A useful observation
is that to give a circuit c ∈ Mw[n,m] is to give the graph of a function of type
{0, . . . , n − 1} → {0, . . . ,m − 1}. For instance, ⊕ : 2 → 2 describes

the function f : {0, 1} → {0, 1} mapping both elements to 0. This yields an iso
SMw : Mw → F, where F is the PROP with arrows n→ m functions {0, . . . , n−
1} → {0, . . . ,m−1}. Intuitively, F is a “concrete” representation of the theory of
commutative monoids and thus we refer to the morphism SMw as the denotational
semantics of Mw.

For later reference, we introduce two more examples of free PROPs. First, let

K[X] be the PROP freely generated by the signature consisting of p for each
p ∈ k[x] and the following equations, where p1, p2 range over k[x].

1 = (A4) p1 p2 = p1p2 (A5)

Next, let Cb be the PROP of (black) cocommutative comonoids, freely gener-
ated by the signature consisting of circuits , and the following equations.

= (A6) = (A7) = (A8)

Modulo the white vs. black colouring, the circuits of Cb can be seen as those of
Mw “reflected about the y-axis”. This observation yields that Cb ∼= Mwop. More
generally, for T a free PROP, Top can be presented by operations and equations
which are those of T reflected about the y-axis.

PROPs are also objects of a certain coslice category. First, a PRO is a strict
monoidal category with objects the naturals and tensor product on objects addi-
tion. Morphisms of PROs are strict identity-on-objects monoidal functors. There
is a PRO of particular interest: the PRO of permutations P, where P[k, l] is empty
if k 	= l and otherwise consists of the permutations on the set with k elements.
Now PROPs are objects of the coslice P/PRO, where PRO is the category of

1 The notation w emphasizes the white colouring of circuits in ΣM — later on, we
will use the black coloring for another copy of the same PROP.
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PROs. Morphisms of PROPs are thus simply morphisms of PROs that preserve
the permutation structure. Working in the coslice is quite intuitive: e.g. P is the
initial PROP and to compute the coproduct T + S in PROP one must iden-
tify the permutation structures. When T and S are generated by (ΣC , EC) and
(ΣD, ED) respectively, it follows that T+S is generated by (ΣC+ΣD, EC+ED).

2.2 Composing PROPs

In [13] Lack showed that co/commutative bialgebras and separable Frobenius
algebras stem from different ways of “composing” Cb and Mw . Just as small
categories are monads in Span(Set), a PROP is a monad in a certain bicategory,
and PROPs T1 and T2 can be composed via distributive law λ : T2 ;T1 → T1 ;T2.
A key observation is that the graph of λ can be seen as a set of equations. Thus,
if T1 and T2 are freely generated PROPs, then so is T1 ;T2.

As an example, we show how composing Cb and Mw yields the PROP of
co/commutative bialgebras. First observe that circuits of Cb yield arrows of Fop ,
because Cb ∼= Mwop ∼= Fop. Then a distributive law λ : Mw ;Cb ⇒ Cb ;Mw has
type F ;Fop ⇒ Fop ;F, that is, it maps a pair p ∈ F[n, z], q ∈ Fop [z,m] to a
pair f ∈ Fop [n, z], g ∈ F[z,m]. This amounts to saying that λ maps cospans

n
p−→ z

q←− m into spans n
f←− r

g−→ m in F. Defining n
f←− r

g−→ m as the pullback

of n
p−→ z

q←− m makes λ a distributive law [13]. The resulting PROP Cb ;Mw can
be presented by operations — the ones of Cb+Mw — and equations — the ones
of Cb +Mw together with those given by the graph of λ. By definition of λ, one
can read them (in Cb +Mw) out of the pullback squares in F. For instance:

1 1 S−1

Cb
(!1)

		�
��

��

2

¡ 

�����
0

!1
������� �� �� 2

S−1
Mw (¡) 

�����

S−1

Cb
(!2) 		�

��
��

0

0
!2

������� ��
id0



�����
0

S−1
Mw (id0)



�����

yields ; = ; id0

where ¡ : 2→ 1 and !n : 0→ n are given, respectively, by finality of 1 and initiality
of 0 in F, and SCb is the isomorphism Cb ∼= Fop . In fact, all the equations can
be derived from (those of Cb +Mw and) just four pullbacks (cf. [13]) that yield:

= (A9)

= (A11)

= (A10)

= id0 (A12)

Therefore Cb ;Mw is the free PROP of (black-white) co/commutative bialge-
bras, obtained as the quotient of Cb+Mw by (A9)-(A12). As another perspective
on the same result, one can say that the PROP of co/commutative bialgebras is
the theory of Span(F) ∼= Fop ;F and each circuit c : n→ m of this PROP can be
factorised as c = c1 ; c2, where c1 ∈ Cb[n, z] and c2 ∈ Mw[z,m] for some z.
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3 The Theory of k[x] Matrices

In this section we introduce the PROP HA of k[x]-Hopf Algebras and show that
it is isomorphic to the category of matrices over k[x].

Definition 1. The PROP HA is the quotient of Cb+K[X]+Mw by the equations
(A9), (A11), (A10), (A12) and the following, where p, p1, p2 ∈ k[x].

p = p
p

(A13) p = p
p

(A15)
p2

p1
= +p1 p2 (A17)

p = (A14) p = (A16) 0 = (A18)

Remark 1. HA is a Hopf algebra with antipode = −1 . Indeed it inherits

the bialgebra structure of Cb ;Mw and (Hopf) holds by (A4), (A17) and (A18):

= = (Hopf)

Remark 2. There is an important “operational” intuition associated with circuits
in HA. First, the ports on the left are inputs, the ports on the right are outputs.
The circuit constants behave as described in the Introduction, but now wires
carry signals which are elements of k[x], rather than streams.

The theory presented in Definition 1 can be understood in a modular way,
in the sense of §2.2. Reading from left to right, the axioms (A13) and (A14)
present a distributive law σ : Mw ;K[X]⇒ K[X] ;Mw. Similarly, (A15) and (A16)
present a distributive law τ : K[X] ;Cb ⇒ Cb ;K[X]. These laws, together with
λ : Mw ;Cb ⇒ Cb ;Mw which is presented by (A9), (A11), (A10), (A12) (cf. §2.2),
yield the composite Cb ;K[X] ;Mw. We refer to [8, §3] for proofs and further
details. Now, HA is the quotient of Cb ;K[X] ;Mw by (A18) and (A17). As a
consequence, it inherits the factorisation property of Cb ;K[X] ;Mw.

Lemma 1 (Factorisation of HA). Any c ∈ HA[n,m] is equal to s ; r ; t ∈
HA[n,m], where s ∈ Cb[n, z], r ∈ K[X][z, z] and t ∈ Mw[z,m] for some z ∈ N.

Lemma 1 fixes a canonical form s ; r ; t for any circuit c of HA. Furthermore,
by (A17), we can assume that any port on the left boundary of s ; r ; t has at
most one connection with any port on the right boundary, and by (A4),(A5) we

know that any such connection passes through exactly one circuit of shape p .
We say that a factorised circuit s ; r ; t satisfying this additional requirements
is in matrix form. Circuits in matrix form have an intuitive representation as
k[x]-matrices, as illustrated in the following example.



A Categorical Semantics of Signal Flow Graphs 441

Example 1. Consider the circuit t ∈ HA[3, 4] and its rep-
resentation as a 4 × 3 matrix M (on the right). For each
boundary of t, the ports are enumerated from top to bot-
tom, starting from 1. Then the entry Mi,j has value p ∈ k[x]
if, reading the circuit from the left to the right, one finds a
path connecting the jth port on the left to the ith port on

the right passing through a circuit p , and 0 otherwise.

p1

p2

⎛
⎜⎝
p1 0 0
1 0 0
p2 1 0
0 0 0

⎞
⎟⎠

We now make the matrix semantics of circuits in HA formal. For this purpose,
let Mat k[x] be the PROP with arrows n → m the m × n k[x]-matrices, where

; is matrix multiplication and A ⊕ B is defined as the matrix

(
A 0
0 B

)
. The

symmetries are the rearrangements of the rows of the identity matrix.

Definition 2. The PROP morphism SHA: HA→ Mat k[x] is defined inductively:

#→ ! #→ ¡ #→
(
1 1

)
#→

(
1
1

)
p #→

(
p
)

s⊕ t #→ SHA(s)⊕ SHA(t) s ; t #→ SHA(s) ; SHA(t)

where ! : 0→ 1 and ¡ : 1→ 0 are given by initiality and finality of 0 in Mat k[x].
It can be checked that SHA is well defined, as it respects the equations of HA.

Proposition 1. SHA : HA→ Mat k[x] is an isomorphism of PROPs.

Proof. Since the two categories have the same objects, it suffices to prove that
SHA is full and faithful. For this purpose, observe that, for a circuit c in matrix
form, the matrix SHA(c) can be computed as described in Example 1. Since by
Lemma 1 any circuit is equivalent to one of this shape, fullness and faithfulness
follows by checking that the encoding of Example 1 is a 1-1 correspondence
between matrices and circuits of HA in matrix form. ��

4 The Theory of Relational k(x) Subspaces

Let k(x) denote the field of fractions of k[x]. In this section we introduce the
PROP IH, whose axioms describe the interaction of two k[x]-Hopf algebras, and
we show that it is isomorphic to the PROP of k(x)-vector subspaces.

Definition 3. The PROP IH is the quotient of HA + HAop by the following
equations, where p ranges over k[x] \ {0}.
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The notation indicates both the antipodes and : indeed, they
are equal as circuits of IH by virtue of (S5).

= = (S1) = = (S2)

= (S3) = id0 (S4) p p = (S5)

= (S6) = id0 (S7) p p = (S8)

p = (S9) p = (S10) p = (S11) p = (S12)

We now consider the task of giving a semantics to circuits of IH. Recall
that the semantics of a circuit of HA is a matrix, or in other words, a linear
transformation. Indeed, as explained in Remark 2, circuits in HA can be read
from left to right: ports on the left are inputs and ports on the right are outputs.

These traditional mores fail for circuits in IH. Consider : 2 → 0: the

component accepts an arbitrary signal while ensures that the signal is
equal on the two ports. In other words, the circuit is a “bent identity wire” whose
behaviour is relational: the two ports on the left are neither inputs nor outputs
in any traditional sense. Indeed, only some circuits of IH have a functional
interpretation. We now introduce the semantic domain of interest for IH.

Definition 4. Let SVk(x) be the following PROP:

– arrows n→ m are subspaces of k(x)n × k(x)m (as a k(x)-vector space).
– composition is relational: for subspaces G = {(u, v) |u ∈ k(x)n, v ∈ k(x)z}

and H = {(v, w) | v ∈ k(x)z , w ∈ k(x)m}, their composition is the subspace
{(u,w) | ∃v.(u, v) ∈ G ∧ (v, w) ∈ H}.

– The tensor product ⊕ on arrows is given by direct sum of spaces.
– The symmetries n → n are induced by bijections of finite sets, ρ :n → n

is associated with the subspace generated by {(1i, 1ρi)}i<n where 1k is the
binary n-vector with 1 at the k+1th coordinate and 0s elsewhere. For instance

σ1,1 : 2→ 2 is the subspace generated by {(
(
1
0

)
,

(
0
1

)
) , (

(
0
1

)
,

(
1
0

)
)}.

Definition 5. Let [v1, . . . , vn] denote the space generated by the vectors v1 . . . vn.
The PROP morphism SIH : IH → SVk(x) is inductively defined on circuits c of
IH as follows. For the operations of HA2:

2 Here and in Definition 6, () denotes the only element of the space with dimension 0.
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#−→ [(1,

(
1
1

)
)] #−→ [(

(
0
1

)
, 1), (

(
1
0

)
, 1)]

#−→ [(1, ())] #−→ [(() , 0)] p #−→ [(1, p)]

The semantics of an operation c in HAop is symmetric, e.g. is mapped

to [(() , 1)]. For the composite circuits, we define c1 ⊕ c2 #→ SIH(c1) ⊕ SIH(c2)
and c1 ; c2 #→ SIH(c1) ; SIH(c2). The PROP morphism is well-defined since all
the equations of IH are sound w.r.t. SIH .

The circuit discussed above is mapped to {
(
(p, p), ()

)
| p ∈ k(x)} ⊆

k(x)2 × k(x)0. There are similar circuits in IH[2n, 0] for arbitrary n.

ε0 := id0 ε1 := ε2 := ε3 := . . .

For instance, ε2 : 4 → 0 has the subspace {
(
(p, q, p, q), ()

)
| p, q ∈ k(x)} as

semantics. One can define circuits from 0 to 2n symmetrically, starting from

η2 := : 0 → 2. As shown in [8, §5], the ηs and the εs form a (self-dual)
compact closed structure on the category IH. This yields a contravariant
endofunctor (·)� on IH (cf. [19, Rmk 2.1]): for c : n → m a

circuit, c� : m → n is defined as on the right, where
n

is

notation for ηn,
n

for εn and n for the circuit idn.

c
n

n

m
m

For the sequel, we also fix p nn for the n-fold tensor product of p . Using the
equational theory of IH, one can show (see [8, §5]) that c� is just “c reflected

about the y-axis”: for example,
�
= and

�
p = p .

4.1 Soundness and Completeness of IH: The Cube Construction

In this subsection we sketch the proof of the following result, which states that
the axioms of IH (Definition 3) characterise the PROP SVk(x). The details are
in [8, §6-10].

Theorem 1. SIH : IH → SVk(x) is an isomorphism of PROPs.

The proof is interesting in its own right because it is a modular account of the
theory of IH. Its components are summarised by the cube diagram (�) below.

HA+HAop

SHA+S
op
HA 

��					
					

				
�� IHw

��













S
IHb



IHb ��

S
IHb



IH

SIH



Mat k[x] +Mat k[x]
op

�������
����

�� Span(Mat k[x])

��









Cospan(Mat k[x]) �� SVk(x)

(�)
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The PROPs that appear in top face of the cube are “syntactic PROPs”, i.e.,
they are freely generated from operations and equations. The PROPs that ap-
pear in the bottom face are “semantic PROPs.” The vertical morphisms are
“denotational semantics” that map terms to their denotations. For example, as
we showed in §3, HA is the theory of matrices with entries from the polynomial
ring k[x], i.e. there is an isomorphism of PROPs SHA : HA→ Mat k[x].

The theory IHw has the presentation of IH (Definition 3) but with the two
leftmost axioms below replacing (S7), (S8), (S11) and (S12). Dually, IHb is IH
without (S4), (S5), (S9) and (S10), and the addition of the two rightmost axioms
below (the four of them are derivable in IH, see [8]).

p = p
p p

p = p p =
p
p p

p
= p

In fact, IHw and IHb are the theories of (i.e. there are isos SIHb and SIHw)
Span(Mat k[x]) and Cospan(Mat k[x]), respectively. First we focus on IHw and
Span(Mat k[x]). Note that pullbacks in Mat k[x] exist and are computed as in the
category of sets, since k[x] is a principal ideal domain (PID).

The pullback construction gives a distributive law of PROPs in the sense of
Lack [13] and, as we explained in §2.2, pullbacks can be understood as “adding
new equations” to the theory HA + HAop. Indeed, for each of the axioms of
IHw there is a corresponding “witnessing” pullback in Mat k[x]: this argument
confirms the soundness of the theory of IHw for Span(Mat k[x]). The task of
demonstrating the completeness of the axioms is more subtle: one has to prove
that the axioms are sufficient for deriving any equation that arises from a pull-
back in Mat k[x]. The proof amounts to showing that classical linear algebraic
manipulations on matrices that are performed when calculating the kernel of a
linear transformation can be mimicked graphically in IHw. Due to space con-
straints, we refer to our technical report [8, §6] for the details.

Having constructed the isomorphism between IHw and Span(Mat k[x]), we
can use the fact that the transpose operation on matrices induces a duality in
Mat k[x] to yield the isomorphism between IHb and Cospan(Mat k[x]).

Now let us again focus on the top face of (�). It is a pushout diagram in
PROP: as only “syntactic” (freely generated) PROPs are involved, this simply
amounts to saying that the equational theory of IH can be presented as the union
of the equational theories of IHw and IHb. An appealing consequence of this
construction is that IH inherits the factorisation properties of both composed
PROPs IHw and IHb, that is, any circuit of IH can be put (via the equational
theory of IH) in the form of a span or a cospan of circuits of HA.

The final ingredient in the proof is showing that the bottom face of (�) is also
a pushout diagram in PROP. We would like to draw the reader’s attention to the
remarkable fact that subspaces over the field of fractions k(x) of k[x] arise from
pushing out spans and cospans of k[x]-matrices along zig-zags of k[x]-matrices.
This fact holds for an arbitrary PID and its field of fractions: the elementary
proof of this result can be found in [8, §9].

Now, we have a commutative cube in which the top and bottom face are
pushouts, and the three rear vertical morphisms are isomorphisms. The universal
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property of pushouts now ensures that the unique morphism SIH : IH → SVk(x)

is an isomorphism: it is easy to verify that it is the morphism of Definition 5.

5 Stream Semantics

With simple extensions of the semantics morphisms, we can interpret circuits of
HA and IH in terms of streams. First we need to recall some useful notions.

A formal Laurent series (fls) is a function σ : Z → k for which there exists
i ∈ Z such that σ(j) = 0 for all j < i. The degree of σ is the smallest d ∈ Z
such that σ(d) 	= 0. We write σ as . . . , σ(−1), σ(0), σ(1), . . . with position 0

underlined, or as formal sum
∑∞

i=d σ(i)xi. With the latter notation, we define
the sum and product of two fls σ =

∑∞
i=d σ(i)xi and τ =

∑∞
i=e τ(i)xi as

σ + τ =

∞∑
i=min(d,e)

(
σ(i) + τ(i)

)
xi σ · τ =

∞∑
i=d+e

( ∑
k+j=i

σ(j) · τ(k)
)
xi (1)

The units for + and · are . . . 0, 0, 0 . . . and . . . 0, 1, 0 . . . . Fls form a field k((x)),
where the inverse σ−1 of fls σ with degree d is given as follows.

σ−1(i) =

⎧⎪⎪⎨⎪⎪⎩
0 if i < −d

σ(d)−1 if i = −d∑n
i=1

(
σ(d+i)·σ−1(−d+n−i)

)
−σ(d) if i = −s + n for n > 0

(2)

A formal power series (fps) is a fls with degree d ≥ 0. By (1), fps are closed
under + and ·, but not under inverse: it is immediate by (2) that σ−1 is a fps iff
σ has degree d = 0. Therefore fps form a ring which we denote by k[[x]].

We will refer to both fps and fls as streams. Indeed, fls can be thought
of as sequences with an infinite future, but a finite past. Just as a polyno-
mial p can be seen as a fraction p

1 , an fps σ can be interpreted as the fls
. . . , 0, σ(0), σ(1), σ(2), . . . . A polynomial p0 + p1x + · · · + pnx

n can also be re-

garded as the fps
∑∞

i=0 pix
i with pi = 0 for all i > n. Similarly, fractions can be

regarded as fls: we define ·̃ : k(x)→ k((x)) as the unique field morphism mapping
k ∈ k into the stream . . . 0, k, 0 . . . and the indeterminate x into . . . , 0, 0, 1, 0, . . .

Differently from polynomials, fractions can denote
streams with possibly infinitely many non-zero values.
For instance, (1) and (2) imply that x

1−x−x2 is the
Fibonacci series . . . , 0, 0, 1, 1, 2, 3, . . . . Moreover, while
polynomials can be interpreted as fps, fractions need the
full generality of fls: 1

x denotes . . . 0, 0, 1, 0, 0, . . .

k[[x]]
� � �� k((x))

k〈x〉
� �

������
� �

��


k[x]
� 	 ��
�� ��
�

·̂

��

k(x)
� 


·̃

��

These are all ring morphisms and are illustrated by the commutative diagram
on the right. At the center there is k〈x〉, the ring of rationals, i.e, fractions of

polynomials k0+k1x+k2x
2···+knxn

l0+l1x+l2x2···+lnxn where l0 	= 0. Differently from fractions, ratio-
nals denote only fps — in other words, bona fide streams that do not start “in
the past”. Indeed, since l0 	= 0, the inverse of l0+ l1x+ l2x

2 · · ·+ lnx
n is, by (2), a
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fps. The streams denoted by k〈x〉 are well known in literature under the name of
rational streams [6]. Hereafter, we will use polynomials and fractions to denote
the corresponding streams. Moreover,Mat k[[x]] and Mat k〈x〉 denote the PROPs
of matrices over k[[x]] and k〈x〉 defined analogously toMat k[x]. Similarly, SVk((x))

is the PROP of k((x))-vector subspaces defined like SVk(x).

5.1 A Stream Semantics of HA

The semantics SHA : HA → Mat k[x] of Definition 2 allows us to regard the
circuits in HA as stream transformers. Indeed, the interpretation of a polynomial
in k[x] as a fps in k[[x]] can be pointwise extended to a faithful PROP morphism
·̂ : Mat k[x] → Mat k[[x]]. By taking [[·]]HA = SHA ; ·̂, the semantics [[c]]HA of a
circuit c ∈ HA[n,m] consists of a linear map of type k[[x]]n → k[[x]]m.

Remark 3. Recall the operational intuition for circuits in HA given in Remark 2.
This intuition extends to the stream semantics, but rather than carrying elements
of k[x] along the wires, the circuits now carry individual elements of a k-stream,
processing one after the other. Inputs arrive on the left and outputs are emitted

on the right. For instance, [[ x ]]HA =
(
x
)
maps every stream σ ∈ k[[x]] into the

stream σ·x which, by (1), is just 0, σ(0), σ(1), σ(2), . . . Thus x behaves as a de-

lay. Instead, for k ∈ k, [[ k ]]HA =
(
k
)
maps σ into σ·k = kσ(0), kσ(1), kσ(2), . . .

Therefore k acts as an amplifier. Also behaves as an adder and its unit

as the constant stream 0, 0, 0 . . . . The comultiplication acts as copier

and its counit as the trivial transformer taking any stream in input and
giving no output.

One can readily check that this interpretation coincides with the semantics given
in [18, §4.1]. Our approach has the advantage of making the circuits represen-
tation formal and allowing for equational reasoning, as shown for instance in
Example 2 below. Indeed, since [[·]]HA : HA → Mat k[[x]] is faithful, the axioma-
tization of HA is sound and complete.

Example 2. Consider the following derivation in the equational theory of HA,
where (A15) is used at each step.

x
x x
x
x k1

k2
k3

k0

x x
x

x k1
k2
k3

k0

x
x

x
k1
k2
k3

k0

x x x
x x
x k1

k2
k3

k0

(3)

Using the stream interpretation of Remark 3, the circuits above are readily
seen to implement the polynomial stream function f : σ #→ σ · p where p =
k0, k1, k2, k3, 0 . . . Then (3) yields a procedure that reduces the total number of

delays x appearing in the circuit (cf. [18, Prop. 4.12]). The equational theory
of HA allows us to verify that the circuits in (3) really implement f :

x x x
x x
x k1

k2
k3

k0

x k1

k0

k2x
2+k3x

3

k0

k2x
2+k3x

3k1x+
k2x

2+k3x
3k1x+k0+ (4)
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By iteratively applying (A5) and (A17), the circuit is show to be equal to p ,
which clearly has the 1 × 1 matrix (p) as semantics and thus implements f .

Reading (4) in the converse direction, it yields a decomposition of p into an

equivalent circuit with only “basic gates”: amplifiers k (for k ∈ k) and delays

x — in fact, such a decomposition is possible for arbitrary circuits of HA.

5.2 A Stream Semantics of IH

In order to give the stream interpretation of IH, we construct the following cube,
the topmost face of which coincides with the bottom face of (�).

Mat k[x] +Mat k[x]
op

� �



��������
�� Span(Mat k[x])

������
� � �


Cospan(Mat k[x]) ��

� �



SVk(x)


Mat k[[x]] +Mat k[[x]]

op

��������
�� Span(Mat k[[x]])
�������

Cospan(Mat k[[x]]) �� SVk((x))

(5)

The bottom face commutes and is a pushout for the same reasons as the top
face (cf. §4.1), because k[[x]] is a PID and k((x)) is its field of fractions. The
rear map is ·̂ + ·̂op : Mat k[x] + Mat k[x]op → Mat k[[x]] + Mat k[[x]]op . Since ·̂
preserves pullbacks, we can define the righmost vertical morphism as mapping

a span n
V←− z

W−→ m into n
V̂←− z

Ŵ−→ m. The leftmost vertical map is defined
analogously.

One can readily check that all these morphisms are faithful and that the rear
faces commute. Since the top face is a pushout, the universal property induces
the faithful morphism [̃·] : SVk(x) → SVk((x)). This can be concretely defined by
observing that ·̃ : k(x)→ k((x)) can be pointwise extended to matrices and sets
of vectors. For a subspace H in SVk(x), [H̃ ] is the space in SVk((x)) generated by
the set of vectors H̃ . Note that the composition of SIH (Definition 5) with [̃·],
that we call the stream semantics of IH, is also induced by the universal property
of the topmost face of (�).

Definition 6. The stream semantics of IH is the morphism [[·]]IH : IH → SVk((x))

defined as SIH ; [̃·]. It can be presented as follows. For the operations of HA:

#−→ {(σ,
(

σ
σ

)
) | σ ∈ k((x))} #−→ {(

(
σ
τ

)
, σ+τ) | σ, τ ∈ k((x))}

#−→ {(σ, ()) | σ ∈ k((x))} #−→ {(() , 0)} p #−→ {(σ, σ · p) | σ ∈ k((x))}
where 0 and p denote streams. The semantics of an operation c of HAop is the
reverse relations of [[c�]]IH . For composite circuits, we let c1⊕c2 #→ [[c1]]HA⊕[[c2]]HA

and c1 ; c2 #→ [[c1]]HA ; [[c2]]HA.

Since [̃·] is faithful, by Theorem 1, also [[·]]IH is faithful.

Corollary 1 (Completeness). For all c1, c2 ∈ IH, c1 = c2 iff [[c1]]IH = [[c2]]IH .
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6 The Theory of Signal Flow Graphs

In this section we introduce an inductively defined class of circuits SF of IH that
we call signal flow graphs and show that it is the theory of k〈x〉-matrices. The
definition is close in spirit to the classical variations found in the literature sans
inputs, outputs and directions of wires.

We start with a motivating example of a circuit not in HA that nevertheless
gives functional behaviour on k[[x]].

Example 3. The rational x
1−x−x2 denoting the Fibonacci sequence can be suc-

cintly represented in IH as the circuit x ; 1− x− x2 . Indeed, composing the

semantics [(1, x)] of x with the semantics [(1− x− x2, 1)] of 1− x− x2 yields
the k((x))-subspace [(1, x

1−x−x2 )]. The derivation in the equational theory of IH
below shows how we can “implement” the Fibonacci circuit.

x 1− x− x2 x x

x x

x
x x + 1

x

x
x

x

x

x

x
x

x

x

xx + 1

x
x x + 1

First 1− x− x2 is decomposed (using (A17)op from HAop) and then the circuit is
“deformed” in a suitable way by essentially using the Frobenius axioms (S2)-(S1)
and the compact closed structure of IH. The resulting circuit exhibits a feedback
structure. Indeed, using the intuitive operational descriptions of Remark 3 and

the behaviour of , as “bent identity wires” that merely forward
signals from one port to the other, the operational behaviour of the final circuit
in the derivation can be “read off” the final circuit, with inputs entering on
the left and outputs emitted on the right. In particular, the reader will verify
that inputing the stream . . . , 0, 1, 0, . . . yields the Fibonacci sequence as output.
Note that the notions of “input”, “output” and directionality of wires are entirely
derivative.

The Fibonacci circuit belongs to the class of circuits SF. To define it, we first
introduce a particular trace structure [20, §5.1] on IH. It is not the canonical
trace induced by the compact closed structure, but rather a “guarded” version.

Definition 7. For n,m, z ∈ N, c ∈ IH[z + n, z + m], the z-feedback Trz(c) ∈
IH[n,m] is the circuit below, for which we use the indicated shorthand notation:

z

n C

z
z

zz
mx =:

n C

z

mx

It can be verified that Tr(·) actually defines a trace on IH. We have now all the
ingredients to define the theory of signal flow graphs.



A Categorical Semantics of Signal Flow Graphs 449

Definition 8. Let SF be the following, inductively defined set of circuits.

– If c ∈ HA[n,m] then c is in SF.
– If c ∈ SF[z + n, z + m], then Trz(c) ∈ IH[n,m] is in SF.

Circuits in SF inherit the equational theory of IH, that is, we say that c = c′ as
circuits in SF exactly when c = c′ in IH.

One can check that SF is a sub PROP of IH, namely the smallest one con-
taining HA and closed under the trace. This is essential for proving that SF is
the theory of k〈x〉-matrices.

Theorem 2. There is an isomorphism of PROPs between SF and Mat k〈x〉.

Proof. Hereafter,we sketchonedirectionof the isomorphism,namely fromMatk〈x〉
to SF. The main insight is that any (1 × 1 matrix with a) rational of the form
1/(k + xp), with k 	= 0 and p ∈ k[x], corresponds to a circuit in SF, as witnessed
by the following derivation in IH:

k + xp

k

xp

k

xp

k

xp

k

xp
xp

k

kp/k

1/k

x
−1/k

−p/k

Then, every matrix inMat k〈x〉 is obtained by composing these circuits with those
in HA. Such composition is still in SF, since SF is a PROP. ��

7 Conclusions

We introduced IH, a graphical calculus of streams transformers equipped with
a compositional semantics in terms of subspaces and a sound and complete
axiomatisation. We have identified a fragment of IH characterising signal flow
graphs, which are functional streams transformers. To best of our knowledge,
the axioms of IH provides the first sound and complete axiomatisation of signal
flow graphs seen as syntactic entities. Indeed, previous results either restrict the
class of systems (for instance [17] only considers the “closed” ones) or exploit an
intermediate (co)algebraic syntax (see e.g. [5] and the references therein).

However, our interest in IH is not restricted to signal flow graphs: the circuits
of IH are streams transformers which are, in general, relational rather than
functional. Such relational behaviour emerges naturally when studying different
sorts of networks [1, 2, 4, 9–12,21].

Acknowledgements. The first and the third author acknowledge support from
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Generic Forward and Backward Simulations III:
Quantitative Simulations by Matrices

Natsuki Urabe and Ichiro Hasuo

University of Tokyo, Japan

Abstract. We introduce notions of simulation between semiring-weighted au-
tomata as models of quantitative systems. Our simulations are instances of the
categorical/coalgebraic notions previously studied by Hasuo—hence soundness
wrt. language inclusion comes for free—but are concretely presented as matrices
that are subject to linear inequality constraints. Pervasiveness of these formalisms
allows us to exploit existing algorithms in: searching for a simulation, and hence
verifying quantitative correctness that is formulated as language inclusion. Trans-
formations of automata that aid search for simulations are introduced, too. This
verification workflow is implemented for the plus-times and max-plus semirings.

1 Introduction

Quantitative aspects of various systems are more and more emphasized in recent veri-
fication scenarios. Probabilities in randomized or fuzzy systems are a classic example;
utility in economics and game theory is another. Furthermore, now that many computer
systems are integrated into physical ambience—realizing so-called cyber-physical sys-
tems—physical quantities like energy consumption are necessarily taken into account.
Semiring-weighted Automata. It is standard in the concurrency community to model
such quantitative systems by state-transition systems in which weights are assigned to
their states and/or transitions. The semantics of such systems varies, however, depend-
ing on the interpretation of weights. If they are probabilities, they are accumulated by
× along a path and summed across different paths; if weights are (worst-case) costs,
they are summed up along a path and we would take max across different paths.

The algebraic structure of semirings then arises as a uniform mathematical language
for different notions of “weight,” as is widely acknowledged in the community. The
subject of the current study is state-based systems with labeled transitions, in which
each transition is assigned a weight from a prescribed semiring S. We shall call them
S-weighted automata; and we are more specifically interested in the (weighted, finite)
language inclusion problem and a simulation-based approach to it.
Language Inclusion. LetA be an S-weighted automaton with labels from an alphabet
Σ. It assigns to each word w ∈ Σ∗ a weight taken from S—this is much like a (purely)
probabilistic automaton assigns a probability to each word. Let us denote this function
by L(A) : Σ∗ → S and call it the (weighted) language of A by analogy with classic
automata theory. The language inclusion problem L(A) 5 L(B) asks if: L(A)(w) 5
L(B)(w) for each word w ∈ Σ∗, where 5 is a natural order on the semiring S.

It is not hard to see that language inclusion L(A) 5 L(B) has numerous applica-
tions in verification. In a typical scenario, one of A and B is a model of a system and

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 451–466, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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the other expresses specification; and L(A) 5 L(B) gives the definition of “the sys-
tem meeting the specification.” We shall further present three concrete examples. 1)
S represents probabilities; A models a system; and B expresses the specification that
certain bad behaviors—identified with words—occur with a certain probability. Then
L(A) 5 L(B) is a safety statement: each bad behavior occurs in A at most as likely as
in B. 2) S represents profit,A is a specification and B is a system. Then L(A) 5 L(B)
guarantees the minimal profit yielded by the system B. 3) There are other properties
reduced to language inclusion in a less trivial manner. An example is probable inno-
cence [26], a quantitative notion of anonymity. See [15].
Simulation. Direct check of language inclusion is simply infeasible because there are
infinitely many words w ∈ Σ∗. One finitary proof method—well-known for nondeter-
ministic (i.e. possibilistic) systems—is by (forward or backward) simulations, whose
systematic study is initiated in [23]. In the nondeterministic setting, a simulation R is a
relation between states ofA and B that witnesses “local language inclusion”; moreover,
from the coinductive way in which it is defined, a simulation persistently witnesses local
language inclusion—ultimately yielding (global) language inclusion. This property—
existence of a simulation implies language inclusion—is called soundness.
Contribution: Weighted Forward/Backward Simulations by Matrices. In this
paper we extend this simulation approach to language inclusion [23] to the quantitative
setting of semiring-weighted automata. Our notions of (forward and backward) weighted
simulation are not given by relations, but by matrices with entries from a semiring S.

Use of matrices in automata theory is classic—in fact our framework instantiates
to that in [23] when we take as S the Boolean semiring. This is not how we arrived
here; conversely, the current results are obtained as instances of a more general theory
of coalgebraic simulations [11, 12, 14]. There various systems are identified with a
categorical construct of coalgebras in a Kleisli category; and fwd./bwd. simulations are
characterized as lax/oplax morphisms between coalgebras. A generic soundness result
(with respect to language/trace inclusion) is also proved in the general categorical terms.

This paper is devoted to concrete presentations of these categorical notions by ma-
trices, and to their application to actual verification of quantitative systems. Presenta-
tion by matrices turns out to be an advantage: a simulation is now a matrix X that
satisfies certain linear inequalities; and existence of such X—i.e. feasibility of linear
inequalities—is so common a problem in many fields that there is a large body of ex-
isting work that is waiting to be applied. For example linear programming (LP) can
be exploited for the plus-times semiring for probabilities; and there are algorithms pro-
posed for other semirings such as the max-plus (tropical) one.

Our (mostly semiring-independent) workflow is as follows. A verification goal is
formulated as language inclusion L(A) 5 L(B), which we aim to establish by finding
a fwd. or bwd. simulation from A to B. Soundness of simulations follows from the
general result in [11]. A simulation we seek for is a matrix subject to certain linear
inequalities, existence of which is checked by various algorithms that exist for different
semirings. We implemented this workflow for the plus-times and max-plus semirings.

This simulation-based method is sound but not necessarily complete with respect to
language inclusion. Hence we introduce transformations of weighted automata—called
(forward/backward) partial execution—that potentially create matrix simulations.
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Organization of the Paper. In §2 we define semiring-weighted automata, characterize
them in coalgebraic terms and recap the coalgebraic theory in [11]. These are combined
to yield the notion of simulation matrix in §3. In §4 partial execution transformations
of automata are described and proved correct. The framework obtained so far is ap-
plied to the plus-times and max-plus semirings, in §5 and §6, respectively. There our
proof-of-concept implementations and relationship to other known simulation notions
are discussed, too. The appendices referred to in the paper are found at the first author’s
webpage; so is the code of our implementation.

2 Preliminaries

2.1 Semiring-Weighted Automata

The notion of semiring-weighted automaton is parametrized by a semiring S. For our
purpose of applying coalgebraic theory in [11,14], we impose the following properties.

Definition 2.1. A commutative cppo-semiring is a tuple S = (S,+S , 0S ,×S , 1S ,5)
that satisfies the following conditions.

– (S,+S , 0S ,×S , 1S) is a semiring in which ×S , in addition to +S , is commutative.
– A relation 5 is a partial order on S and (S,5) is ω-complete, i.e. an increasing

chain s0 5 s1 5 · · · has a supremum.
– Any element s ∈ S is positive in the sense that 0S 5 s.
– Addition +S and multiplication ×S are monotone with respect to 5.

It follows from positivity and ω-completeness that countable sum can be straightfor-
wardly defined in a comm. cppo-semiring S. We will use this fact throughout the paper.

Example 2.2 (Semirings S+,×,Smax,+,B). The plus-times semiring S+,× =
([0,∞],+, 0,×, 1,≤) is a comm. cppo-semiring, where + and × are usual addition
and multiplication of real numbers. This is the semiring that we will use for modeling
probabilistic branching. Specifically, probabilities of successive transitions are accumu-
lated using ×, and those of different branches are combined with +.

The max-plus semiring Smax,+ = ([−∞,∞],max,−∞,+, 0,≤)—also sometimes
called the tropical semiring [24]—is also a comm. cppo-semiring. Here a number r ∈
[−∞,∞] can be understood as (best-case) profit: they are summed up along a path,
and an optimal one (max) is chosen among different branches. Another possible under-
standing of r is as (worst-case) cost. The unit for the semiring addition max is given
by −∞; since it must also be a zero element of the semiring multiplication +, we de-
fine (−∞) +∞ = −∞. In the two examples S+,× and Smax,+ we added ∞ so that
they become ω-complete. Finally, the Boolean semiring B = ({0, 1},∨, 0,∧, 1,≤) is
an example that is qualitative rather than quantitative.

Definition 2.3 (S-weighted automaton, weighted language). LetS=(S,+S , 0S ,×S ,
1S ,5)be a comm. cppo-semiring. AnS-weighted automatonA= (Q,Σ,M,α, β) con-
sists of a countable state space Q, a countable alphabet Σ, transition matrices M(a) ∈
SQ×Q for all a ∈ Σ, an initial row vector α ∈ SQ and a final column vector β ∈ SQ.
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Let x, y ∈ Q and a ∈ Σ. We write αx and βx for the x-th entry of α and β, respec-
tively, and M(a)x,y for the (x, y)-entry of the matrix M(a). Note that these entries are
all elements of the semiring S.

An S-weighted automaton A = (Q,Σ,M,α, β) yields a weighted language
L(A) : Σ∗ → S. It is given by the following multiplication of matrices and vectors.

L(A)(w) := α ·M(a1) · · · · ·M(ak) · β for each w = a1 · · · ak ∈ Σ∗. (1)

We require a state space Q to be at most countably infinite. This is so that the matrix
multiplications in (1)—by addition and multiplication of S—are well-defined. Recall
that S has countable sum given by supremums of suitable ω-chains.

Our interest is in establishing language inclusion between two weighted automata.

Definition 2.4 (language inclusion). We write L(A) 5 L(B) if, for each w ∈ Σ∗,
L(A)(w) 5 L(B)(w). The last 5 is the order of S.

2.2 Coalgebraic Modeling of Semiring-Weighted Automata

Here we characterize semiring-weighted automata as instances of a generic coalgebraic
model of branching systems—so-called (T, F )-systems with parameters T, F [11, 14].

Definition 2.5 ((T, F )-system). Let T be a monad and F be a functor, both on the
category Sets of sets and functions. A (T, F )-system is a triple

X =
(
X, s : {•} → TX, c : X → TFX

)

of a set X (the state space), and functions s (the initial states) and c (the dynamics).

This modeling is coalgebraic [17] in the sense that c is so-called a TF -coalgebra. In the
definition we have two parameters T and F . Let us forget about their categorical struc-
tures (a monad or a functor) for a moment and think of them simply as constructions on
sets. Intuitively speaking, T specifies what kind of branching the systems in question
exhibit; and F specifies a type of linear-time behaviors. Here are some examples; in the
example F = 1 + Σ × ( ) the only element of 1 is denoted by � (i.e. 1 = {�}).

T “branching”
P non-deterministic
D probabilistic
MS S-weighted

F “linear-time behavior”
1 +Σ × ( ) → � or

a→ (where a ∈ Σ)
(Σ + ( ))∗ words over terminals (a ∈ Σ)

& nonterminals, suited for CFG [13]

The above examples of a monad T—the powerset monad P , the subdistribution monad
D, and the S-multiset monad MS for S—are described as follows.

PX = {X ′ | X ′ ⊆ X} DX = {f : X → [0, 1] | ∑x∈X f(x) ≤ 1}
MSX = {f : X → S | supp(f) is countable} (2)

Here supp(f) = {x ∈ X | f(x) 	= 0S}. Countable support in MS is a technical
requirement so that composition9 of Kleisli arrows is well-defined (Def. 2.7).

A (T, F )-system is a state-based system with T -branching and F -linear-time behav-
iors. For example, when T = P and F = 1+Σ×( ), s : {•} → PX represents initial
states and c : X → P(1 +Σ ×X) represents one-step transitions—� ∈ c(x) means x
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is accepting (x→ �), and (a, x′) ∈ c(x) means there is a transition x
a→ x′. Overall, a

(P , 1 + Σ × ( ))-system is nothing but a nondeterministic automaton.
Analogously we obtain the following, by the definition ofMS in (2).

Proposition 2.6 (weighted automata as (T, F )-systems). Let S be a comm. cppo-
semiring. There is a bijective correspondence between: 1) S-weighted automata
(Def. 2.3); and 2)

(
MS , 1 + Σ × ( )

)
-systems whose state spaces are countable.

Concretely, an S-weighted automatonA = (Q,Σ,M,α, β) gives rise to an
(
MS , 1 +

Σ × ( )
)
-system XA = (Q, sA, cA) defined as follows. sA : {•} → MSQ is given

by sA(•)(x) = αx; and cA : Q → MS(1 + Σ ×Q) is given by cA(x)(�) = βx and
cA(x)(a, y) = M(a)x,y. ��

2.3 Coalgebraic Theory of Traces and Simulations

We review the theory of traces and simulations in [11, 14] that is based on (T, F )-
systems. In presentation we restrict to T =MS and F = 1 + Σ × ( ) for simplicity.
Kleisli Arrows. One notable success of coalgebra was a uniform characterization, in
terms of the same categorical diagram, of bisimulations for various kinds of systems
(nondeterministic, probabilistic, etc.) [17]. This works quite well for branching-time
process semantics. For linear-time semantics—i.e. trace semantics—it is noticed in [25]
that so-called a Kleisli category, in place of the category Sets, gives a suitable base
category for coalgebraic treatment. This idea—replacing functions X → Y with Kleisli
arrows X →� Y and drawing the same diagrams—led to the development in [11, 12,
14] of an extensive theory of traces and simulations. The notion of Kleisli arrow is
parametrized by a monad T : a T -Kleisli arrow X→� T Y (or simply X→� Y ) is defined
to be a function X → TY , hence represents a “T -branching function from X to Y .”

We restrict to T =MS for simplicity of presentation. AnMS-Kleisli arrow f : X→�
Y below is “an S-weighted function from X to Y .” In particular, for each x ∈ X and
y ∈ Y it assigns a weight f(x)(y) ∈ S.

Definition 2.7 (Kleisli arrow). Let X,Y be sets. An MS-Kleisli arrow (or simply a
Kleisli arrow) from X to Y , denoted by X→� Y , is a function from X to MSY .

We list some special Kleisli arrows: ηX , g 9 f and Jf .

– For each set X , the unit arrow ηX : X →� X is given by: η(x)(x) = 1S ; and
η(x)(x′) = 0S for x′ 	= x. Here 0S and 1S are units in the semiring S.

– For consecutive Kleisli arrows f : X→� Y and g : Y→� Z , their composition g9f :
X→� Z is given as follows: (g 9 f)(x)(z) :=

∑
y∈supp(f(x)) f(x)(y) ×S g(y)(z).

Since supp(f(x)) is countable, the above sum in a cppo-semiringS is well-defined.
– For a (usual) function f : X → Y , its lifting to a Kleisli arrow Jf : X→� Y is given

by Jf = ηY ◦ f . Here we identified ηY : Y→� Y with a function ηY : Y →MSY .

Categorically: the first two (η and 9) organize Kleisli arrows as the Kleisli category
K
(MS); and the third gives a functor J : Sets→ K
(MS) that is identity on objects.

In Prop. 2.6 we characterized an S-weighted automaton A in coalgebraic terms.
Using Kleisli arrows it is presented as a triple

XA =
(
Q, sA : {•} �−→ Q, cA : Q �−→ 1 +Σ ×Q

)
. (3)
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Generic Trace Semantics. In [14], for monads T with a suitable order, a final coalge-
bra in K
(T ) is identified. It (somehow interestingly) coincides with an initial algebra
in Sets. Moreover, the universality of this final coalgebra is shown to capture natural
notions of (finite) trace semantics for a variety of branching systems—i.e. for different
T and F . What is important for the current work is the fact that the weighted language
L(A) in (1) is an instance of this generic trace semantics, as we will show in Thm. 2.10.

1 +Σ ×X
=

���1+Σ×(tr(c))
���� 1 +Σ ×Σ∗

X

�c
��

�����
tr(c)

������ Σ∗
�final J([nil,cons]−1)
��

{•}
�s
��

�
tr(X)

��
(4)

We shall state the results in [14] on coalge-
braic traces, restricting again to T = MS and
F = 1 + Σ × ( ) for simplicity. In the di-
agram (4) on the right, composition of Kleisli
arrows are given by 9 in Def. 2.7; J on the
right is the lifting in Def. 2.7; and nil and cons
are the obvious constructors of words in Σ∗. The top arrow 1+Σ×(tr(c)) is the functor
1+Σ× ( ) on Sets, lifted to the Kleisli categoryK
(MS), and applied to the Kleisli
arrow tr(c); its concrete description is found in Def. A.4.

Theorem 2.8 (final coalgebra in K
(MS)). Given any set X and any Kleisli arrow
c : X→� 1 +Σ ×X , there exists a unique Kleisli arrow tr(c) that makes the top square
in the diagram (4) commute. ��
Definition 2.9 (tr(X )). Given an

(
MS , 1 + Σ × ( )

)
-system X = (X, s, c) (this is

on the left in the diagram (4)), its component c induces an arrow tr(c) : X→� Σ∗ by
Thm. 2.8. We define tr(X ) to be the composite tr(c) 9 s (the bottom triangle in the
diagram (4)), and call it the trace semantics of X .

Theorem 2.10 (weighted language as trace semantics). Let A be an S-weighted au-
tomaton. ForXA = (Q, sA, cA) induced byA in (3), its trace semantics tr(XA) : {•}→�
Σ∗—identified with a function {•} → MSΣ∗, hence with a function Σ∗ → S—
coincides with the weighted language L(A) : Σ∗ → S in (1). ��
In the last theorem we need that Σ∗ is countable; this is why we assumed that Σ is
countable in Def. 2.3. Henceforth we do not distinguish L(A) and tr(XA) : {•}→� Σ∗.

Forward and Backward Kleisli Simulations. In [11], the classic results in [23] on for-
ward and backward simulations—for (nondeterministic) labeled transition systems—
are generalized to (T, F )-systems. Specifically, fwd./bwd. simulations are characterized
as lax/oplax coalgebra homomorphisms in a Kleisli category; and soundness—their ex-
istence witnesses trace inclusion—is proved once for all in a general categorical setting.

As before, we present those notions and results in [11] restricting to T = MS and
F = 1+Σ×( ). If T = P and F = 1+Σ×( ) they instantiate to the results in [23].

Definition 2.11 (Kleisli simulation). LetX = (X, s, c) andY = (Y, t, d) be (MS , 1+
Σ × ( ))-systems (cf. Def. 2.5, Prop. 2.6 and (3)).

1. A forward (Kleisli) simulation from X to Y is a Kleisli arrow f : Y →� X such that
s 5 f 9 t and c9 f 5 (1 + Σ × f)9 d. See Fig. 1.

2. A backward simulation fromX toY is a Kleisli arrow b : X→� Y such that s9b 5 t
and (1 + Σ × b)9 c 5 d9 b.

3. A forward-backward simulation from X to Y consists of: a (T, F )-system Z; a
fwd. simulation f from X to Z; and a bwd. simulation b from Z to Y .
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4. A backward-forward simulation from X to Y consists of: a (T, F )-system Z; a
bwd. simulation b from X to Z; and a fwd. simulation f from Z to Y .
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�Ff

��
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�
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��
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���
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�
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�s
�� � t

��

�

FX
�

FZ
�

�Ff
�� �Fb �� FY

X

�c
��

�
Z

�e
��

�
f
��� b

� �� Y

�d
��

� {•}

�s
�� �u

�� � t
��

�

FX
�
�Fb �� FZ

�
FY

�Ff
��

X

�c
��

�
b
� �� Z

�e
��

�
Y

�d
��

f
���

� {•}

�s
�� �u

�� � t
��

�

fwd. sim. bwd. sim. fwd.-bwd. sim. bwd.-fwd. sim.

Fig. 1. Kleisli simulations (here F = 1 +Σ × ( ))

We write X 5F Y , X 5B Y , X 5FB Y or X 5FB Y if there exists a forward,
backward, forward-backward, or backward-forward simulation, respectively.

(Generic) soundness is proved using the maximality of tr(c) in (4) among (op)lax
coalgebra homomorphisms, arguing in the language of enriched category theory [11].

Theorem 2.12 (soundness). Let X and Y be (MS , 1+Σ× ( ))-systems. Each of the
following yields tr(X ) 5 tr(Y) : {•}→� Σ∗ (cf. Def. 2.9).
1. X 5F Y 2. X 5B Y 3. X 5FB Y 4. X 5BF Y ��
Theorem 2.13 (completeness). The converse of soundness holds for backward-
forward simulations. That is: tr(X ) 5 tr(Y) implies X 5BF Y . ��

3 Simulation Matrices for Semiring-Weighted Automata

In this section we fix parameters T =MS and F = 1+Σ × ( ) in the generic theory
in §2.3 and rephrase the coalgebraic framework in terms of matrices (whose entries are
taken from S). Specifically: Kleisli arrows become matrices; and Kleisli simulations
become matrices subject to certain linear inequalities. Such matrix representations ease
implementation, a feature we will exploit in later sections.

Recall that a Kleisli arrow A→� B is a function A→MSB (Def. 2.7).

Definition 3.1 (matrix representation Mf ). Given a Kleisli arrow f : A→� B, its ma-
trix representation Mf ∈ SA×B is given by (Mf )x,y = f(x)(y).
In what follows we shall use the notations f and Mf interchangeably.

Lemma 3.2. Let f, f ′ : A→� B and g : B→� C be Kleisli arrows. We have f 5 f ′ if
and only if Mf 5Mf ′ . Here the former5 is betweenMS-Kleisli arrows, and the latter
order5 is between matrices, defined entrywise. Moreover Mg�f = MfMg, computed
by matrix multiplication. ��
The correspondence from A

f
�−→ B to 1 +Σ ×A

1+Σ×f
�−→ 1 +Σ ×B—used in (4) and

in Fig. 1—can be described using matrices, too. Details are in Appendix A.2.

Lemma 3.3. Let f : A →� B be a Kleisli arrow and Mf be its matrix represen-
tation. Then the matrix representation M1+Σ×f is given by I1 ⊕ (IΣ ⊗ Mf) ∈
S(1+Σ×A)×(1+Σ×B), where ⊕ and ⊗ denote coproduct and the Kronecker product of

matrices: X ⊕ Y =
(

X O

O Y

)
and (xi,j)i,j ⊗ Y = (xi,jY )i,j . ��
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This description of MFf generalizes from F = 1+Σ× ( ) to any polynomial functor
F , inductively on the construction of F . In this paper the generality is not needed.

Using Lem. 3.2–3.3, we can present Kleisli simulations (Def. 2.11) as matrices. Re-
call that a state space of a weighted automaton is assumed to be countable (Def. 2.3);
hence all the matrix multiplications in the definition below make sense.

Definition 3.4 (forward/backward simulation matrix). Let A = (QA, Σ,MA, αA,
βA) and B = (QB, Σ,MB, αB, βB) be S-weighted automata.

– A matrix X ∈ SQB×QA is a forward simulation matrix fromA to B if
αA 5 αBX , X ·MA(a) 5MB(a) ·X (∀a ∈ Σ) , and XβA 5 βB .

– A matrix X ∈ SQA×QB is a backward simulation matrix fromA to B if
αAX 5 αB , MA(a) ·X 5 X ·MB(a) (∀a ∈ Σ) , and βA 5 XβB .

The requirements on X are obtained by first translating Fig. 1 into matrices, and then
breaking them up into smaller matrices using Lem. 3.3. It is notable that the require-
ments are given in the form of linear inequalities, a format often used in constraint
solvers. Solving them is a topic of extensive research efforts that include [2, 6]. This
fact becomes an advantage in implementing search algorithms, as we see later.

We also note that forward and backward simulation matrices have different dimen-
sions. This difference comes from the different directions of arrows in Fig. 1.

Theorem 3.5. Let A and B be S-weighted automata. There is a bijective correspon-
dence between: 1) forward simulation matrices from A to B; and 2) forward Kleisli
simulations from XA to XB . The same holds for the backward variants. ��

In what follows we write5F,5B also between S-weighted automata. Thm. 3.5 yields:
A 5F B if and only if there is a forward simulation matrix.

Here is our core result; the rest of the paper is devoted to its application.

Corollary 3.6 (soundness of simulation matrices). Let A and B be S-weighted au-
tomata. Existence of a forward (or backward) simulation matrix from A to B—i.e.
A 5F B or A 5B B—witnesses language inclusion L(A) 5 L(B).

Proof. ∃ (fwd./bwd. simulation matrix from A to B)
Thm. 3.5⇐⇒ ∃ (fwd./bwd. Kleisli simulation from XA to XB)
Thm. 2.12
=⇒ tr(XA) � tr(XB)

Thm. 2.10⇐⇒ L(A) � L(B) . "#

It is classic to represent nondeterministic automata by Boolean matrices. This corre-
sponds to the special case S = B (the Boolean semiring) of the current framework; and
a simulation matrix becomes the same thing as a (relational) simulation in [23].

Remark 3.7. The opposite of anS-weighted automatonA=(Q,Σ,M,α, β)—obtained
by reversing transitions and swapping initial/final states—can be naturally defined by
matrix transpose, that is, tA := (Q,Σ, tM, tβ, tα). It is easy to see that: if X is a fwd.
simulation matrix from A to B, then tX is a bwd. simulation matrix from tA to tB.
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4 Forward and Backward Partial Execution

We have four different notions of simulation (Def. 2.11): fwd., bwd., fwd.-bwd., and
bwd.-fwd. Our view on these is as (possibly finitary) witnesses of language inclusion.

The combined ones (fwd.-bwd. and bwd.-fwd.) subsume the one-direction ones (fwd.
and bwd.)—simply take the identity arrow as one of the two simulations required. More-
over, bwd.-fwd. is complete (Thm. 2.13). Despite these theoretical advantages, the com-
bined simulations are generally harder to find: in addition to two simulations, we have
to find an intermediate system too (Z in Def. 2.11). Furthermore, since language inclu-
sion for finite S+,×-weighted automata—models of probabilistic systems—is known to
be undecidable [5], existence of a bwd.-fwd. simulation is undecidable too.

Therefore in what follows we focus on the one-directional (i.e. fwd. or bwd.) simu-
lations as proof methods for language inclusion. They have convenient matrix presen-
tations, too, as we saw in §3. However fwd. or bwd. simulations are not necessarily
complete, by a counterexample (Example A.1) or by complexity arguments (§5.1).

In this section we introduce for semiring-weighted automata their transformations—
called forward and backward partial execution—that increase the number of fwd./bwd.
simulation matrices. We also prove some correctness results.

Definition 4.1 (FPE, BPE). Forward partial execution (FPE) is a transformation of a
weighted automaton that “replaces some states with their forward one-step behaviors.”
Concretely, given an S-weighted automaton A = (Q,Σ,M,α, β) and a parameter
P ⊆ Q, the resulting automatonAFPE,P = (Q′, Σ,M ′, α′, β′) has a state space

Q′ =
{
�
∣∣∃x ∈ P. βx 	= 0S

}
+
{
(a, y)

∣∣ ∃x ∈ P.M(a)x,y 	= 0S
}
+ (Q \ P ) , (5)

replacing each x ∈ P with its forward one-step behaviors—� or (a, y)—as new states.
The other data M ′, α′, β′ are suitably defined following the above intuition; see Ap-
pendix A.3. Possible patterns of transformations are illustrated in Fig. 2.

Backward partial execution (BPE) in contrast “replaces states in a parameter P ⊆
Q with their backward one-step behaviors.” For the same A as above, the resulting
automatonABPE,P = (Q′, Σ,M ′, α′, β′) has a state space

Q′ =
{
•
∣∣∃x ∈ P. αx 	= 0S

}
+
{
(a, y)

∣∣ ∃x ∈ P.M(a)y,x 	= 0S
}
+ (Q \ P ) ,

replacing each p ∈ P with its backward one-step behaviors—(a, y) with y
a→ x, and •

if x is initial—as new states. M ′, α′, β′ are defined in Appendix A.3. See also Fig. 2.

Roughly speaking, FPE replaces a concrete state p ∈ P with an abstract state, such
as (a, q) in Q′ of (5) that is thought of as a description “a state that makes an a-transition
to q.” The idea comes from partial evaluation of a program; hence the name.

The use of FPE/BPE is as follows: we aim to es-
tablish L(A) 5 L(B); depending on whether we
search for a forward or backward simulation matrix,
we apply one of FPE and BPE to each of A and B, according to the above table.

We shall now state correctness properties of this strategy; proofs are in Appendix A.4.
Soundness means that discovery of a simulation after transformation indeed witnesses
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Fig. 2. Fwd./bwd. partial execution (FPE, BPE), pictorially. Black nodes need to be in P .

the language inclusion for the original automata. The second property—we call it ade-
quacy—states that simulations that are already there are preserved by partial execution.

Theorem 4.2 (soundness of FPE/BPE). Let P, P ′ be arbitrary subsets. Each of the
following implies L(A) 5 L(B): 1. AFPE,P 5F BBPE,P ′ 2. ABPE,P 5B BFPE,P ′

��
Theorem 4.3 (adequacy of FPE/BPE). Let P, P ′ be arbitrary subsets. We have:
1. A 5F B ⇒ AFPE,P 5F BBPE,P ′ 2. A 5B B ⇒ ABPE,P 5B BFPE,P ′ . ��

We also show that a bigger parameter P yields a greater number of simulations.
In implementation, however, a bigger P generally gives us a bigger state space which
slows down search for a simulation, resulting in a trade-off situation.
Proposition 4.4 (monotonicity). Assume P1 ⊆ P ′

1 and P2 ⊆ P ′
2. We have:

1. AFPE,P1 5F BBPE,P2 ⇒ AFPE,P ′
1
5F BBPE,P ′

2
,

2. ABPE,P1 5B BFPE,P2 ⇒ ABPE,P ′
1
5B BFPE,P ′

2
. ��

In fact we have a coalgebraic characterization of FPE, too, as a partial application of
the functor 1 + Σ × ( ). This characterization generalizes to a large class of (T, F )-
systems, and the above correctness results can be proved generally by categorical ar-
guments. See Appendix A.5 for details. Capturing BPE categorically is still open—it
seems that BPE exists somewhat coincidentally, for the specific functor F = 1+Σ×( )
for which an opposite automaton is canonically defined (cf. Rem. 3.7).

For S = S+,× or Smax,+, we can easily see that the complement problem of lan-
guage inclusion between finite S-weighted automata is semi-decidable. Since language
inclusion itself is undecidable [5, 22], language inclusion is not semidecidable either.
Because existence of a simulation matrix is decidable, it can be the case that however
many times we apply FPE or BPE, simulation matrices do not exist while language
inclusion holds. A concrete example is found in Example A.2.

5 Simulation Matrices for Probabilistic Systems by S = S+,×
In §5 we focus on S+,×-weighted automata which we identify as (purely) probabilistic
automata (cf. Example 2.2). In §5.1 our method by simulation matrices is compared
with other notions of probabilistic simulation; in §5.2 we discuss our implementation.
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5.1 Other Simulation Notions for Probabilistic Systems

×Example
A.1

× [12]

lang. incl. �FB

�HJ

�JL �F or �B

(i.e. by sim. matrices)

Various simulation notions have been in-
troduced for probabilistic systems, ei-
ther as a behavioral order by itself or as
a proof method for language inclusion.
Jonsson and Larsen’s one [18] (denoted
by 5JL) is well-known; it is shown in [12] to be a special case of Hughes and Jacobs’
coalgebraic notion of simulation [16] (5HJ), which in turn is a special case of fwd.-
bwd. (Kleisli) simulation (5FB, Def. 2.11). Comparison of all these notions (observed
in [12]) is as depicted above; it follows from Thm. 2.12 that all these simulation notions
are sound with respect to language inclusion.

We note that language inclusion between finite S+,×-weighted automata is undecid-
able [5] while language equivalence can be determined in polynomial time [19]. The
former result can account for the fact that there seem to be not many proof methods
for probabilistic/quantitative language inclusion. For example, probabilistic simulation
in [3] is possibilistic simulation between systems with both probabilistic and nondeter-
ministic choice and not a quantitative notion like in the current study.

We also note that given finite-state S+,×-weighted automataA and B, if A 5F B or
not is decidable: existence of a solution X of the linear constraints in Def. 3.4 can be
reduced to linear programming (LP) problems, and the latter are known to be decidable.
The same applies to 5B too.

Probabilistic systems are commonly modeled using the monad D (see (2))—with
an explicit normalization condition

∑
x d(x) ≤ 1—instead of MS+,× . However there

is no need to impose normalization on simulations: sometimes only “non-normalized”
simulation matrices are found (Example A.3) and they are still sound.

5.2 Implementation, Experiments and Discussions

Our implementation consists of two components: +×-sim and +×-PE .
The program +×-sim (implemented in C++) computes if a fwd. or bwd. simulation

matrix X between S+,×-weighted automata exists, and returns X if it does exist. It first
combines the constraints in Def. 3.4 into a single linear inequality Ax ≤ b and solves it
with a linear programming solver glpk [1]. We note that the matrix A is sparse, having
n+ anm+m rows, nm columns and at most 2nm+ a(n2m+nm2) non-zero entries.

The program +×-PE (implemented in OCaml) takes an automatonA and d ∈ N as
input, and returns AFPE,P (or ABPE,P , by choice) where P is chosen, by heuristics, to

be P = {x | x
d︷ ︸︸ ︷

→ · · · →�} (or P = {x | •
d︷ ︸︸ ︷

→ · · · →x}, respectively).
The two programs are alternately applied to given automata, for d = 1, 2, . . . , each

time incrementing the parameter d for +×-PE . The experiments were on an Ubuntu
Linux laptop with a Core i5 2.53 GHz processor (4 cores) and 4 GB RAM.

Grades Protocol. The grades protocol is introduced in [19] and is used there as a
benchmark: the protocol and its specification are expressed as probabilistic programs
P and S; they are then translated into (purely) probabilistic automata AP and AS by a
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game semantics-based tool APEX [20]. By establishing L(AP) = L(AS), the proto-
col is shown to exhibit the same behaviors as the specification—hence is verified. The
protocol has two parameters G and S.

Table 1. Results for the grades protocol [19]

param. AP AS direction, time space
G S #st. #tr. #st. #tr. |Σ| fwd./bwd. (sec) (GB)

2 8 578 1522 130 642 11 AP�FAS 1.77 1.21
AP�BAS 1.72 1.22

2 10 1102 2982 202 1202 13 AP�FAS 9.42 4.05
AP�BAS 9.25 4.09

2 12 1874 5162 290 2018 15 AP�FAS 38.60 11.51
AP�BAS 38.34 11.63

3 8 1923 7107 243 2163 20 AP�FAS 44.43 12.26
AP�BAS 44.11 12.64

4 6 1636 7468 196 1924 23 AP�FAS 30.28 10.39
AP�BAS 29.94 10.49

In our experiment we proved L(AP) =
L(AS) by establishing two-way language
inclusion (5 and:). The results are shown
in Table. 1. For all the choices of param-
eters G and S, our program +×-sim was
able to establish, without applying +×-
PE : AP 5F AS (but not 5B) for the 5
direction; and AP :B AS (but not :F)
for the : direction. In the table, #st. and
#tr. denote the numbers of states and tran-
sitions, respectively, and |Σ| is the size of
the alphabet. All these numbers are determined by APEX .

The table indicates that space is a bigger problem for our approach than time. In [19]
four algorithms for checking language equivalence between S+,×-weighted automata
are implemented and compared: two are deterministic [9,27] and the other two are ran-
domized [19]. These algorithms can process bigger problem instances (e.g. G = 2, S =
100 in ca. 10 sec) and, in comparison, the results in Table 1 are far from impressive.
Note however that our algorithm is for language inclusion—an undecidable problem,
unlike language equivalence that is in P, see §5.1—and hence is more general.

Table 2. Results for the Crowds protocol

param. AP AS direction time space d
n c pf #st. #tr. #st. #tr. |Σ| fwd./bwd. (sec) (GB)

5 1 9
10 7 44 7 56 18 AP�FAS 52.48 0.01 2

AP�BAS 0.01 0.01 2
7 1 3

4 9 88 9 118 26 AP�FAS 0.15 0.03 2
AP�BAS 0.02 0.01 2

10 2 4
5 12 224 12 280 54 AP�FAS 802.47 0.35 2

AP�BAS 0.05 0.03 2
20 6 4

5 22 1514 22 1696 238 AP�FAS T/O 2
AP�BAS 1.32 0.78 2

30 6 4
5 32 4732 32 5112 550 AP�FAS S/F

AP�BAS 11.84 5.99 2

Crowds Protocol. Our second exper-
iment calls for checking language in-
clusion, making the algorithms studied
in [19] unapplicable. We verified some
instances of the Crowds protocol [26]
against a quantitative anonymity speci-
fication called probable innocence [21].
We used a general trace-based verifi-
cation method in [15] for probable in-
nocence: language inclusion L(AP) 5
L(AS), from the model AP of a proto-
col in question to AP’s suitable modificationAS, guarantees probable innocence.

The Crowds protocol has parameters n, c and pf . In fact, for this specific protocol, a
sufficient condition for probable innocence is known [26] (namely n ≥ pf

pf−1/2 (c+1));
we used parameters that satisfy this condition. We implemented a small program that
takes a choice of n, c, pf and generates an automaton AP; it is then passed to another
program that generatesAS.

The results are in Table. 2. For each problem instance we tried both5F and5B. The
last column shows the final value of the parameter d for +×-PE —i.e. how many times
partial execution (§4) was applied.

The entry “S/F” designates that +×-PE was killed because of segmentation fault
caused by an oversized automaton. “T/O” means that alternate application of +×-
sim and +×-PE did not terminate within a time limit (one hour).
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We observe that backward simulation matrices were much faster to be found than
forward ones. This seems to result from the shapes of the automata for this specific
problem; after all it is an advantage of our fwd./bwd. approach that we can try two
different directions and use the faster one. Space consumption seems again serious.

6 Simulation Matrices for Smax,+-Weighted Automata

In §6 we discuss Smax,+-weighted automata, in which weights are understood as (best-
case) profit or (worst-case) cost (see Example 2.2). Such automata are studied in [7]
(called Sum-automata there). In fact we observe that their notion of simulation—
formulated in game-theoretic terms and hence called G-simulation here—coincides
with fwd. simulation matrix. This observation is in §6.1; in §6.2 our implementation
is presented.

6.1 G-Simulation by Forward Simulation Matrices

In this section we restrict to finite-state automata, in which case we can also dispose
of the weight ∞. What we shall call G-simulation is introduced in [7], and its sound-
ness with respect to weighted languages over infinite-length words Σω → [−∞,∞) is
proved there. Here we adapt their definition to the current setting of finite-length words.

Definition 6.1 (5G). Let A = (QA, Σ,MA, αA, βA) and B = (QB, Σ,MB, αB, βB)
be finite-state Smax,+-weighted automata. A finite simulation game from A to B is
played by two players called Challenger and Simulator: a strategy for Challenger is a
pair (ρ1 : 1 → QA, τ1 : (QA × QB)

+ → 1 + Σ × QA) of functions; a strategy for
Simulator is a pair (ρ2 : QA → QB, τ2 : (QA ×QB)

+ ×Σ ×QA → QB).
A pair (p0a1 . . . anpn, q0a1 . . . anqn) of runs on A and B is called the outcome of

strategies (ρ1, τ1) and (ρ2, τ2) if:

– ρ1(•) = p0, ρ2(p0) = q0 and τ1((p0, q0) . . . (pn, qn)) = �.
– τ1

(
(p0, q0) . . . (pi, qi)

)
= (ai+1, pi+1) and τ2

(
(p0, q0) . . . (pi, qi), (ai+1, pi+1)

)
=

qi+1, for each i ∈ [0, n− 1].

A strategy (ρ1, τ1) for Challenger is winning if for any strategy (ρ2, τ2) for Simulator,
their outcome (r1, r2) satisfies L(A)(r1) > L(B)(r2). Here the weight L(A)(r) of a
run r is defined in the obvious way.

Finally, we write A 5G B if there is no winning strategy for Challenger.

Theorem 6.2. Let A and B be finite-state Smax,+-weighted automata. Assume that A
has no trap states, that is, every state has a path to � whose weight is not −∞. Then,
A 5F B if and only if A 5G B. ��

The extra assumption can be easily enforced by eliminating trap states through back-
ward reachability check. This does not change the (finite) weighted language.
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�� ��A 5F B

�� ��
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linear inequalities

over Smax,+

[7]�� By def. ��
�� [2] ��

�� Thm. 6.2 ��Now the situation is as shown on the right. It fol-
lows from [7] that the question if A 5G B holds or
not is reduced to a mean payoff game [10], whose de-
cision problem is in NP ∩ co-NP and has a pseudo
polynomial-time algorithm [28]. Moreover it is known
that the decision problem of mean payoff games is equivalent to the feasibility problem
of linear inequalities over Smax,+ [2]. For the latter an algorithm is proposed in [6] that
is shown in [4] to be superpolynomial.

Similarly to S+,×-weighted automata, language inclusion for Smax,+-weighted au-
tomata is undecidable [22]. We note that, by Thm. 6.2, applying FPE or BPE (§4) in-
creases the likelihood of5G (cf. Thm. 4.3). Moreover, by exploiting symmetry of fwd.
and bwd. simulation matrices (Rem. 3.7) we can define “backward G-simulation.”

6.2 Implementation, Experiments and Discussions

We implemented two programs: max+-sim and max+-PE . We have seen that find-
ing simulation matrices can be reduced to some problems that have known algorithms.
Since we did not find actual software available, we implemented (in C++) the algorithm
in [6] as the program max+-sim . It transforms the constraints in Def. 3.4 into an in-
equality Ax ≤ Bx, which in turn is made into a linear equality A′x′ = B′x′ by adding
slack variables. The last equality is solved by the algorithm in [6]. max+-PE is as in
§5. It simply uses the whole state space as the parameter P .

Experiments were done on an Ubuntu Linux laptop with a Core 2 duo processor
(1.40 GHz, 2 cores) and 2 GB RAM. There we faced a difficulty of finding a benchmark
example: although small examples are not hard to come up with by human efforts, we
could not find a good example that has parameters (like G,S in Table 1) and allows for
experiments with problem instances of a varying size.

We therefore ran max+-sim for: 1) the problem if A 5F A for randomly generated
A; and 2) the problem if A 5F B for randomly generated A,B, and measured time
and memory consumption. Although the answers are known by construction (positive
for the former, and almost surely negative for the latter), actual calculation via linear
inequality constraints gives us an idea about resource consumption of our simulation-
based method when it is applied to real-world problems.

The outcome is as shown in Fig. 3. The parameter p is the probability with which an
a-transition exists given a source state, a target state, and a character a ∈ Σ. Its weight is
chosen from {0, 1, . . . , 16} subject to the uniform distribution. “Same” means checking
A 5F A and “difference” means checking A 5F B (see above). The two problem
settings resulted in comparable performance.

We observe that space consumption is not so big a problem as in the S+,× case
(§5.2). Somehow unexpectedly, there is no big performance gap between the sparse case
(p = 0.1) and the dense case (p = 0.9); in fact the sparse case consumes slightly more
memory. Consumption of both time and space grows faster than linearly, which poses
a question about the scalability of our approach. That said, our current implementation
of the algorithm in [6] leaves a lot of room for further optimization: one possibility is
use of dynamic programming (DP). After all, it is an advantage of our approach that
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Fig. 3. Time and max space consumption for max+-sim

a simulation problem is reduced to linear inequality constraints, a subject of extensive
research efforts (cf. §5.1 and §6.1).

7 Conclusions and Future Work

We introduced simulation matrices for weighted automata. While they are instances
of (categorical) Kleisli simulations, their concrete presentation by matrices and linear
inequalities yields concrete algorithms for simulation-based quantitative verification.

There are some directions in which the current matrix-based simulation framework
can be further generalized. Generalizing F from 1+Σ×( ) to any polynomial functor
is mostly straightforward, as we noted after Lem. 3.3. We have not done that mainly for
the space reason. Generalizing T fromMS (for semiring-weighted branching) to others
seems more challenging. For example, in [7] weights can be given from an algebraic
structure S in which an additive unit 0S does not satisfy 0S ×S x = 0S . In this case
operations like matrix multiplication becomes hard to define.

Another direction is to incorporate infinite traces, which is done in [7]. In fact our
current coalgebraic backend [11] fails to do so; the work [8] will be useful here. Finally,
further optimization of our implementation is obvious future work.

Acknowledgments. Thanks are due to Shota Nakagawa and the anonymous referees
for useful discussions and comments. The authors are supported by Grants-in-Aid for
Young Scientists (A) No. 24680001, JSPS.
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Abstract. Graph transformation systems (GTSs) can be seen as well-
structured transition systems (WSTSs), thus obtaining decidability
results for certain classes of GTSs. In earlier work it was shown that
well-structuredness can be obtained using the minor ordering as a well-
quasi-order. In this paper we extend this idea to obtain a general frame-
work in which several types of GTSs can be seen as (restricted) WSTSs.
We instantiate this framework with the subgraph ordering and the in-
duced subgraph ordering and apply it to analyse a simple access rights
management system.

1 Introduction

Well-structured transition systems [2,9] are one of the main sources for decidabil-
ity results for infinite-state systems. They equip a state space with a quasi-order,
which must be a well-quasi-order (wqo) and a simulation relation for the transi-
tion relation. If a system can be seen as a WSTS, one can decide the coverability
problem, i.e., the problem of verifying whether, from a given initial state, one
can reach a state that covers a final state, i.e., is larger than the final state with
respect to the chosen order. Often, these given final states, and all larger states,
are considered to be error states and one can hence check whether an error state
is reachable. Large classes of infinite-state systems are well-structured, for in-
stance (unbounded) Petri nets and certain lossy systems. For these classes of
systems the theory provides a generic backwards reachability algorithm.

A natural specification language for concurrent, distributed systems with a
variable topology are graph transformation systems [19] and they usually gener-
ate infinite state spaces. In those systems states are represented by graphs and
state changes by (local) transformation rules, consisting of a left-hand and a
right-hand side graph. In [11] it was shown how lossy GTSs with edge contrac-
tion rules can be viewed as WSTSs with the graph minor ordering [17,18] and
the theory was applied to verify a leader election protocol and a termination
detection protocol [4]. The technique works for arbitrary (hyper-)graphs, i.e.
the state space is not restricted to certain types of graphs. On the other hand,
in order to obtain well-structuredness, we can only allow certain rule sets, for
instance one has to require an edge contraction rule for each edge label.

� Research partially supported by DFG project GaReV.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 467–481, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



468 B. König and J. Stückrath

In order to make the framework more flexible we now consider other wqos,
different from the minor ordering: the subgraph ordering and the induced sub-
graph ordering. The subgraph ordering and a corresponding WSTS were already
studied in [3], but without the backwards search algorithm. Furthermore, we al-
ready mentioned the decidability result in the case of the subgraph ordering in
[4], but did not treat it in detail and did not consider it as an instance of a
general framework.

In contrast to the minor ordering, the subgraph ordering is not a wqo on
the set of all graphs, but only on those graphs where the length of undirected
paths is bounded [6]. This results in a trade-off: while the stricter order allows
us to consider all possible sets of graph transformation rules in order to obtain a
decision procedure, we have to make sure to consider a system where only graphs
satisfying this restriction are reachable. Even if this condition is not satisfied, the
procedure can yield useful partial coverability results. Also, it often terminates
without excluding graphs not satisfying the restriction (this is also the case for
our running example), producing exact results. We make these considerations
precise by introducing Q-restricted WSTSs, where the order need only be a wqo
on Q. In general, one wants Q to be as large as possible to obtain stronger
statements.

It turns out that the results of [11] can be transferred to this new setting.
Apart from the minor ordering and the subgraph ordering, there are various
other wqos that could be used [8], leading to different classes of systems and
different notions of coverability. In order to avoid redoing the proofs for every
case, we here introduce a general framework which works for the case where
the partial order can be represented by graph morphisms, which is applicable
to several important cases. Especially, we state conditions required to perform
the backwards search. We show that the case of the minor ordering can be seen
as a special instance of this general framework and show that the subgraph
and the induced subgraph orderings are also compatible. Finally we present an
implementation and give runtime results. For the proofs we refer the reader to
the extended version of this paper [15].

2 Preliminaries

2.1 Well-Structured Transition Systems

We define an extension to the notion of WSTS as introduced in [2,9], a general
framework for decidability results for infinite-state systems, based on well-quasi-
orders.

Definition 1 (Well-quasi-order and upward closure). A quasi-order ≤
(over a set X) is a well-quasi-order (wqo) if for any infinite sequence x0, x1, x2, . . .
of elements of X, there exist indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that x ≤ y and x ∈ I implies
y ∈ I. For a subset Y ⊆ X, we define its upward closure ↑Y = {x ∈ X | ∃y ∈
Y : y ≤ x}. Then, a basis of an upward-closed set I is a set IB such that I = ↑IB.
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A downward-closed set, downward closure and a basis of a downward-closed set
can be defined analogously.

The definition of wqos gives rise to properties which are important for the
correctness and termination of the backwards search algorithm presented later.

Lemma 1. Let ≤ be a wqo, then the following two statements hold:

1. Any upward-closed set I has a finite basis.
2. For any infinite, increasing sequence of upward-closed sets I0 ⊆ I1 ⊆ I2 ⊆ . . .

there exists an index k ∈ N such that Ii = Ii+1 for all i ≥ k.

A Q-restricted WSTS is a transition system, equipped with a quasi-order,
such that the quasi-order is a (weak) simulation relation on all states and a wqo
on a restricted set of states Q.

Definition 2 (Q-restricted well-structured transition system). Let S be
a set of states and let Q be a downward closed subset of S, where membership is
decidable. A Q-restricted well-structured transition system (Q-restricted WSTS)
is a transition system T = (S,⇒,≤), where the following conditions hold:

Ordering: ≤ is a quasi-order on S and a wqo on Q.
Compatibility: For all s1 ≤ t1 and a transition s1 ⇒

s2, there exists a sequence t1 ⇒∗ t2 of transitions
such that s2 ≤ t2.

t1 t2

s1 s2
≤ ≤

*

The presented Q-restricted WSTS are a generalization of WSTS and are iden-
tical to the classical definition, when Q = S. We will show how well-known results
for WSTS can be transfered to Q-restricted WSTS. For Q-restricted WSTS there
are two coverability problems of interest. The (general) coverability problem is
to decide, given two states s, t ∈ S, whether there is a sequence of transitions
s ⇒ s1 ⇒ . . . ⇒ sn such that t ≤ sn. The restricted coverability problem is
to decide whether there is such a sequence for two s, t ∈ Q with si ∈ Q for
1 ≤ i ≤ n. Both problems are undecidable in the general case (as a result of [4]
and Proposition 5) but we will show that the well-known backward search for
classical WSTS can be put to good use.

Given a set I ⊆ S of states we denote by Pred(I) the set of direct prede-
cessors of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I : s ⇒ s′}. Additionally, we use
PredQ(I) to denote the restriction PredQ(I) = Pred(I) ∩ Q. Furthermore, we
define Pred∗(I) as the set of all predecessors (in S) which can reach some state
of I with an arbitrary number of transitions. To obtain decidability results, the
sets of predecessors must be computable, i.e. a so-called effective pred-basis must
exist.

Definition 3 (Effective pred-basis). A Q-restricted WSTS has an effective
pred-basis if there exists an algorithm accepting any state s ∈ S and returning
pb(s), a finite basis of ↑Pred(↑{s}). It has an effective Q-pred-basis if there
exists an algorithm accepting any state q ∈ Q and returning pbQ(q), a finite
basis of ↑PredQ(↑{q}).
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Whenever there exists an effective pred-basis, there also exists an effective
Q-pred-basis, since we can use the downward closure of Q to prove pbQ(q) =
pb(q) ∩Q.

Let (S,⇒,≤) be a Q-restricted WSTS with an effective pred-basis and let
I ⊆ S be an upward-closed set of states with finite basis IB. To solve the general
coverability problem we compute the sequence I0, I1, I2 . . . where I0 = IB and
In+1 = In ∪ pb(In). If the sequence ↑I0 ⊆ ↑I1 ⊆ ↑I2 ⊆ . . . becomes stationary,
i.e. there is an m with ↑Im = ↑Im+1, then ↑Im = ↑Pred∗(I) and a state of I is
coverable from a state s if and only if there exists an s′ ∈ Im with s′ ≤ s. If ≤
is a wqo on S, by Lemma 1 every upward-closed set is finitely representable and
every sequence becomes stationary. However, in general the sequence might not
become stationary if Q 	= S, in which case the problem becomes semi-decidable,
since termination is no longer guaranteed (although correctness is).

The restricted coverability problem can be solved in a similar way, if an ef-
fective Q-pred-basis exists. Let IQ ⊆ S be an upward closed set of states with
finite basis IQB ⊆ Q. We compute the sequence IQ0 , IQ1 , IQ2 , . . . with IQ0 = IQB
and IQn+1 = IQn ∪ pbQ(I

Q
n ). Contrary to the general coverability problem, the se-

quence ↑IQ0 ∩Q ⊆ ↑IQ1 ∩Q ⊆ ↑IQ2 ∩Q ⊆ . . . is guaranteed to become stationary

according to Lemma 1. Let again m be the first index with ↑IQm = ↑IQm+1, and
set ⇒Q = (⇒ ∩ Q × Q). We obtain the following result, of which the classical
decidability result of [9] is a special case.

Theorem 1 (Coverability problems). Let T = (S,⇒,≤) be a Q-restricted
WSTS with a decidable order ≤.

(i) If T has an effective pred-basis and S = Q, the general and restricted
coverability problems coincide and both are decidable.

(ii) If T has an effective Q-pred-basis, the restricted coverability problem is
decidable if Q is closed under reachability.

(iii) If T has an effective Q-pred-basis and IQm is the limit as described above,
then: if s ∈ ↑IQm, then s covers a state of IQ in ⇒ (general coverability).
If s /∈ ↑IQm, then s does not cover a state of IQ in ⇒Q (no restricted
coverability).

(iv) If T has an effective pred-basis and the sequence In becomes stationary for
n = m, then: a state s covers a state of I if and only if s ∈ ↑Im.

Thus, if T is a Q-restricted WSTS and the “error states” can be represented
as an upward-closed set I, then the reachability of an error state of I can be
determined as described above, depending on which of the cases of Theorem 1
applies. Note that it is not always necessary to compute the limits Im or IQm,

since ↑Ii ⊆ ↑Im (and ↑IQi ⊆ ↑IQm) for any i ∈ N0. Hence, if s ∈ ↑Ii (or s ∈ ↑IQi )
for some i, then we already know that s covers a state of I (or of IQ) in ⇒.

2.2 Graph Transformation Systems

In the following we define the basics of hypergraphs and GTSs as a special form
of transition systems where the states are hypergraphs and the rewriting rules
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are hypergraph morphisms. We prefer hypergraphs over directed or undirected
graphs since they are more convenient for system modelling.

Definition 4 (Hypergraph). Let Λ be a finite sets of edge labels and ar : Λ→
N a function that assigns an arity to each label. A (Λ-)hypergraph is a tuple
(VG, EG, cG, lEG) where VG is a finite set of nodes, EG is a finite set of edges,
cG : EG → V ∗

G is an (ordered) connection function and lEG : EG → Λ is an edge
labelling function. We require that |cG(e)| = ar (lEG(e)) for each edge e ∈ EG.

An edge e is called incident to a node v (and vice versa) if v occurs in cG(e).

From now on we will often call hypergraphs simply graphs. An (elemen-
tary) undirected path of length n in a hypergraph is an alternating sequence
v0, e1, v1, . . . , vn−1, en, vn of nodes and edges such that for every index 1 ≤ i ≤ n
both nodes vi−1 and vi are incident to ei and the undirected path contains all
nodes and edges at most once. Note that there is no established notion of di-
rected paths for hypergraphs, but our definition gives rise to undirected paths
in the setting of directed graphs (which are a special form of hypergraphs).

Definition 5 (Partial hypergraph morphism). Let G, G′ be (Λ-)hyper-
graphs. A partial hypergraph morphism (or simply morphism) ϕ : G ⇀ G′ con-
sists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that
for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e))
whenever ϕE(e) is defined. Furthermore if a morphism is defined on an edge, it
must be defined on all nodes incident to it. Total morphisms are denoted by an
arrow of the form →.

For simplicity we will drop the subscripts and write ϕ instead of ϕV and ϕE .
We call two graphs G1, G2 isomorphic if there exists a total bijective morphism
ϕ : G1 → G2.

Graph rewriting relies on the notion of pushouts. It is known that pushouts
of partial graph morphisms always exist and are unique up to isomorphism.
Intuitively, for morphisms ϕ : G0 ⇀ G1, ψ : G0 ⇀ G2, the pushout is obtained
by gluing the two graphs G1, G2 over the common interface G0 and by deleting
all elements which are undefined under ϕ or ψ (for a formal definition see [19]).

We will take pushouts mainly in the situation described in Definition 6 below,
where r (the rule) is partial and connects the left-hand side L and the right-hand
side R. It is applied to a graph G via a total match m. In order to ensure that
the resulting morphism m′ (the co-match of the right-hand side in the resulting
graph) is also total, we have to require a match m to be conflict-free wrt. r, i.e.,
if there are two elements x, y of L with m(x) = m(y) either r(x), r(y) are both
defined or both undefined. Here we consider a graph rewriting approach called
the single-pushout approach (SPO) [7], since it relies on one pushout square, and
restrict to conflict-free matches.

Definition 6 (Graph rewriting). A rewriting rule is a partial morphism
r : L ⇀ R, where L is called left-hand and R right-hand side. A match (of r) is
a total morphism m : L → G, conflict-free wrt. r. Given a rule and a match, a
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rewriting step or rule application is given by a pushout diagram as shown below,
resulting in the graph H.

A graph transformation system (GTS) is a finite set of rules R.
Given a fixed set of graphs G, a graph transition system on G gen-
erated by a graph transformation system R is represented by a tu-
ple (G,⇒) where G is the set of states and G ⇒ G′ if and only if
G,G′ ∈ G and G can be rewritten to G′ using a rule of R.

L R

G H

r

m m′

Later we will have to apply rules backwards, which means that it is necessary
to compute so-called pushout complements, i.e., given r and m′ above, we want
to obtain G (such that m is total and conflict-free). How this computation can
be performed in general is described in [10]. Note that pushout complements are
not unique and possibly do not exist for arbitrary morphisms. For two partial
morphisms the number of pushout complements may be infinite.

∅ ⇒
U

(a) Add a new user

1

U2

⇒ 1

U2 O

R/W

(b) Add a new object

U/O

⇒ ∅
(c) Delete user or ob-
ject

1

2

3

U4

U5

O 6
R/W

⇒
1

2

3

U4

U5

O 6

R/W

(d) Trade access rights with other user

1 2

U3 O 4

R/W ⇒ 1 2

U3 O 4

(e) Delete read or write access

1 2

U3 O 4

⇒ 1 2

U3 O 4

R

(f) Obtain read access to object

1 2

U3 O 4

W ⇒ 1 2

U3 O 4

R

(g) Downgrade write to read access

Fig. 1. A GTS modelling a multi-user system

Example 1. To illustrate graph rewriting we model a multi-user system as a
GTS (see Figure 1) inspired by [13]. A graph contains user nodes, indicated by
unary U -edges, and object nodes, indicated by unary O-edges. Users can have
read (R) or write (W ) access rights regarding objects indicated by a (directed)
edge. Note that binary edges are depicted by arrows, the numbers describe the
rule morphisms and labels of the form R/W represent two rules, one with R-
edges and one with W -edges.

The users and objects can be manipulated by rules for adding new users
(Fig. 1a), adding new objects with read or write access associated with a user
(Fig. 1b) and deleting users or objects (Fig. 1c). Both read and write access can
be traded between users (Fig. 1d) or dropped (Fig. 1e). Additionally users can
downgrade their write access to a read access (Fig. 1g) and obtain read access
of arbitrary objects (Fig. 1f).
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U

U

O
W

W

Fig. 2. An undesired
state in the multi-
user system

U

U

O

O

W

W

⇐
Rule 1d

U

U

O

O

W

R

W

⇒
Rule 1f

U

U

O

OW

W

Fig. 3. Example of two rule applications

In a multi-user system there can be arbitrary many users with read access to
an object, but at most one user may have write access. This means especially
that any configuration of the system containing the graph depicted in Figure 2
is erroneous.

An application of the Rules 1d and 1f is shown in Figure 3. In general, nodes and
edges onwhich the rulemorphism r is undefined are deleted and nodes and edges of
the right-hand side are added if they have no preimage under r. In the case of non-
injective rule morphisms, nodes or edges with the same image are merged. Finally,
node deletion results in the deletion of all incident edges (which would otherwise
be left dangling). For instance, if Rule 1c is applied, all read/write access edges
attached to the single deleted node will be deleted as well.

3 GTS as WSTS: A General Framework

In this section we state some sufficient conditions such that the coverability
problems for Q-restricted well-structured GTS can be solved in the sense of
Theorem 1 (in the following we use Q to emphasize that Q is a set of graphs). We
will also give an appropriate backward algorithm. The basic idea is to represent
the wqo by a given class of morphisms.

Definition 7 (Representable by morphisms). Let 5 be a quasi-order that
satisfies G1 5 G2, G2 5 G1 for two graphs G1, G2 if and only if G1, G2 are
isomorphic, i.e., 5 is anti-symmetric up to isomorphism.

We call 5 representable by morphisms if there is a class of (partial) mor-
phisms M� such that for two graphs G,G′ it holds that G′ 5 G if and only if
there is a morphism (μ : G G′) ∈ M�. Furthermore, for (μ1 : G1 G2), (μ2 :
G2 G3) ∈ M� it holds that μ2 ◦ μ1 ∈ M�, i.e., M� is closed under compo-
sition. We call such morphisms μ order morphisms.

The intuition behind an order morphism is the following: whenever there is
an order morphism from G to G′, we usually assume that G′ is the smaller graph
that can be obtained from G by some form of node deletion, edge deletion or
edge contraction. For any graphs G (which represent all larger graphs) we can
now compose rules and order morphisms to simulate a co-match of a rule to some
graph larger than G. However, for this construction to yield correct results, the
order morphisms have to satisfy the following two properties.
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Definition 8 (Pushout preservation). We say that a set of
order morphisms M� is preserved by total pushouts if the fol-
lowing holds: if (μ : G0 G1) ∈ M� is an order morphism and
g : G0 → G2 is total, then the morphism μ′ in the pushout dia-
gram on the right is an order morphism of M�.

G0 G1

G2 G3

μ

g g′

μ′

The next property is needed to ensure that every graph G, which is rewritten
to a graph H larger than S, is represented by a graph G′ obtained by a backward
rewriting step from S, i.e. the backward step need not be applied to H .

Definition 9 (Pushout closure). Let m : L → G be total and conflict-free
wrt. r : L ⇀ R. A set of order morphisms is called pushout closed if the following
holds: if the diagram below on the left is a pushout and μ : H S an order
morphism, then there exist graphs R′ and G′ and order morphisms μR : R R′,
μG : G G′, such that:

1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms μG ◦ m : L → G′ and n : R′ → S are total and μG ◦ m is

conflict-free wrt. r.

L R

G H

S

r

m m′

r′

μ

L R R′

G H

SG′

r μR

m m′

n
r′

μG
s

μ

We now present a generic backward algorithm for (partially) solving both cov-
erability problems. The procedure has two variants, which both require a GTS,
an order and a set of final graphs to generate a set of minimal representatives of
graphs covering a final graph. The first variant computes the sequence IQn and
restricts the set of graphs to ensure termination. It can be used for cases (i), (ii)
and (iii) of Theorem 1, while the second variant computes In (without restric-
tion) and can be used for cases (i) and (iv).

Procedure 1 (Computation of the (Q-)pred-basis).
Input: A set R of graph transformation rules, a quasi-order 5 on all graphs
which is a wqo on a downward-closed set Q and a finite set of final graphs F ,
satisfying:

– The transition system generated by the rule set R is a Q-restricted WSTS
with respect to the order 5.

– The order 5 is representable by a class of morphismsM� (Definition 7) and
this class satisfies Definitions 8 and 9.

– Variant 1. The set of minimal pushout complements restricted to Q with
respect to 5 is computable, for all pairs of rules and co-matches (it is auto-
matically finite).
Variant 2. The set of minimal pushout complements with respect to 5 is
finite and computable, for all pairs of rules and co-matches.
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Preparation: Generate a new rule set R′ from R in the following way: for every
rule (r : L ⇀ R) ∈ R and every order morphism μ : R R add the rule μ ◦ r to
R′. (Note that it is sufficient to take a representative R for each of the finitely
many isomorphism classes, resulting in a finite set R′.) Start with the working
set W = F and apply the first backward step.
Backward Step: Perform backward steps until the sequence of working sets W
becomes stationary. The following substeps are performed in one backward step
for each rule (r : L ⇀ R) ∈ R′:

1. For a graph G ∈ W compute all total morphisms m′ : R → G (co-matches
of R in G).

2. Variant 1. For each such morphism m′ calculate the set Gpoc of minimal
pushout complement objects of m′ with rule r, which are also elements of Q.
Variant 2. Same as Variant 1, but calculate all minimal pushout comple-
ments, without the restriction to Q.

3. Add all remaining graphs in Gpoc to W and minimize W by removing all
graphs G′ for which there is a graph G′′ ∈ W with G′ 	= G′′ and G′′ 5 G′.

Result: The resulting set W contains minimal representatives of graphs from
which a final state is coverable (cf. Theorem 1).

The reason for composing rule morphisms with order morphisms when doing
the backwards step is the following: the graph G, for which we perform the step,
might not contain a right-hand side R in its entirety. However, G can represent
graphs that do contain R and hence we have to compute the effect of applying
the rule backwards to all graphs represented by G. Instead of enumerating all
these graphs (which are infinitely many), we simulate this effect by looking
for matches of right-hand sides modulo order morphisms. We show that the
procedure is correct by proving the following lemma.

Proposition 1. Let pb1() and pb2() be a single backward step of Procedure 1
for Variant 1 and 2 respectively. For each graph S, pb1(S) is an effective Q-
pred-basis and pb2(S) is an effective pred-basis.

4 Well-Quasi Orders for Graph Transformation Systems

4.1 Minor Ordering

We first instantiate the general framework with the minor ordering, which was
already considered in [11]. The minor ordering is a well-known order on graphs,
which is defined as follows: a graph G is a minor of G′ whenever G can be
obtained from G′ by a series of node deletions, edge deletions and edge con-
tractions, i.e. deleting an edge and merging its incident nodes according to an
arbitrary partition. Robertson and Seymour showed in a seminal result that the
minor ordering is a wqo on the set of all graphs [17], even for hypergraphs [18],
thus case (i) of Theorem 1 applies. In [11,12] we showed that the conditions for
WSTS are satisfied for a restricted set of GTS by introducing minor morphisms
and proving a result analogous to Proposition 1, but only for this specific case.
The resulting algorithm is a special case of both variants of Procedure 1.
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Proposition 2 ([11]). The coverability problem is decidable for every GTS if
the minor ordering is used and the rule set contains edge contraction rules for
each edge label.

4.2 Subgraph Ordering

In this paper we will show that the subgraph ordering and the induced subgraph
ordering satisfy the conditions of Procedure 1 for a restricted set of graphs and
are therefore also compatible with our framework. For the subgraph ordering we
already stated a related result (but for injective instead of conflict-free matches)
in [4], but did not yet instantiate a general framework.

Definition 10 (Subgraph). Let G1, G2 be graphs. G1 is a subgraph of G2

(written G1 ⊆ G2) if G1 can be obtained from G2 by a sequence of deletions
of edges and isolated nodes. We call a partial morphism μ : G S a subgraph
morphism if and only if it is injective on all elements on which it is defined and
surjective.

It can be shown that the subgraph ordering is representable by subgraph
morphisms, which satisfy the necessary properties. Using a result from Ding [6]
we can show that the set Gk of hypergraphs where the length of every undirected
path is bounded by k, is well-quasi-ordered by the subgraph relation. A similar
result was shown by Meyer for depth-bounded systems in [16]. Note that we
bound undirected path lengths instead of directed path lengths. For the class of
graphs with bounded directed paths there exists a sequence of graphs violating
the wqo property (a sequence of circles of increasing length, where the edge
directions alternate along the circle).

Since every GTS satisfies the compatibility condition of Definition 2 naturally,
we obtain the following result.

Proposition 3 (WSTS wrt. the subgraph ordering). Let k be a natural
number. Every graph transformation system forms a Gk-restricted WSTS with
the subgraph ordering.

The set of minimal pushout complements (not just restricted to Gk) is always
finite and can be computed as in the minor case.

Proposition 4. Every Gk-restricted well-structured GTS with the subgraph or-
der has an effective pred-basis and the (decidability) results of Theorem 1 apply.

By a simple reduction from the reachability problem for two counter machines,
we can show that the restricted coverability problem is undecidable in the general
case. Although we cannot directly simulate the zero test, i.e. negative application
conditions are not possible, we can make sure that the rules simulating the zero
test are applied correctly if and only if the bound k was not exceeded.

Proposition 5. Let k > 2 be a natural number. The restricted coverability problem
for Gk-restricted well-structured GTS with the subgraph ordering is undecidable.
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Example 2. Now assume that an error graph is given and that a graph exhibits
an error if and only if it contains the error graph as a subgraph. Then we can
use Proposition 4 to calculate all graphs which lead to some error configuration.

For instance, let a multi-user system as described in Example 1 be given.
Normally we have to choose a bound on the undirected path length to guarantee
termination, but in this example Variant 2 of Procedure 1 terminates and we can
solve coverability on the unrestricted transition system (see Theorem 1(iv)). The
graph in Figure 2 represents the error in the system and by applying Procedure 1
we obtain a set of four graphs (one of which is the error graph itself), fully
characterizing all predecessor graphs. We can observe that the error can only be
reached from graphs already containing two W -edges going to a single object
node. Hence, the error is not produced by the given rule set if we start with the
empty graph and thus the system is correct.

Interestingly the backward search finds the leftmost graph below due to the
depicted sequence of rule applications, which leads directly to the error graph.
Thus, the error can occur even if a single user has two write access rights to an
object, because of access right trading.

U O
W

W ⇒
Rule 1a

U

U

O
W

W ⇒
Rule 1d

U

U

O

W

W

The other two graphs computed are shown below and represent states with
”broken” structure (a node cannot be a user and an object). The left graph
for instance can be rewritten to a graph larger than the left graph above, by a
non-injective match of the rule in Figure 1d mapping both nodes 2 and 3 to the
right node.

U U

O

W

W

U

O

WW

4.3 Induced Subgraph Ordering

As for the subgraph ordering in Section 4.2 our backward algorithm can also be
applied to the induced subgraph ordering, where a graph G is considered as an
induced subgraph of G′ if every edge in G′ connecting only nodes also present
in G, is contained in G as well. Unfortunately, this ordering is not a wqo even
when bounding the longest undirected path in a graph, such that we also have
to bound the multiplicity of edges between two nodes. Note that this restriction
is implicitly done in [6] since Ding uses simple graphs.

Furthermore, since we do not know whether the induced subgraph ordering
can be extended to a wqo on (a class of) hypergraphs, we here use only di-
rected graphs, where each edge is connected to a sequence of exactly two nodes.
For many applications directed graphs are sufficient for modelling, also for our
examples, since unary hyperedges can simply be represented by loops.
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At first, this order seems unnecessary, since it is stricter than the subgraph
ordering and is a wqo on a more restricted set of graphs. On the other hand, it
allows us to specify error graphs more precisely, since a graph G ∈ F does not
represent graphs with additional edges between nodes of G. Furthermore one
could equip the rules with a limited form of negative application conditions, still
retaining the compatibility condition of Definition 2.

Definition 11 (Induced subgraph). Let G1, G2 be graphs. G1 is an induced
subgraph of G2 (written G1 � G2) if G1 can be obtained from G2 by deleting a
subset of the nodes and all incident edges. We call a partial morphism μ : G�→S
an induced subgraph morphism if and only if it is injective for all elements on
which is defined, surjective, and if it is undefined on an edge e, it is undefined
on at least one node incident to e.

Proposition 6 (WSTS wrt. the induced subgraph ordering). Let n, k be
natural numbers and let Gn,k be a set of directed, edge-labelled graphs, where the
longest undirected path is bounded by n and every two nodes are connected by
at most k parallel edges with the same label (bounded edge multiplicity). Every
GTS forms a Gn,k-restricted WSTS with the induced subgraph ordering.

Proposition 7. Every Gn,k-restricted well-structured GTS with the induced sub-
graph order has an effective Gn,k-pred-basis and the (decidability) results of The-
orem 1 apply.

The computation of minimal pushout complements in this case is considerably
more complex, since extra edges have to be added, but we also obtain additional
expressiveness. In general GTS with negative application conditions do not sat-
isfy the compatibility condition with respect to the subgraph relation, but we
show in the following example, that it may still be satisfied with respect to the
induced subgraph relation.

Example 3. Let the following simple rule be given, where the negative applica-
tion condition is indicated by the dashed edge, i.e. the rule is applicable if and
only if there is a matching only for the solid part of the left-hand side and this
matching cannot be extended to match also the dashed part.

1 2 3

A

4

A

5

A

⇒

1 2 3

A

4

A

5

A

Applied to a graph containing only A-edges, this rule calculates the transitive
closure and will terminate at some point. This GTS satisfies the compatibility
condition wrt. the induced subgraph ordering, since for instance a directed path
of length two (the left-hand side) does not represent graphs where there is an
edge from the first to the last node of the graph. Therefore we can use the
induced subgraph ordering and our procedure to show that a graph containing
two parallel A-edges can only be reached from graphs already containing two
parallel A-edges.
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The principle described in the example can be extended to all negative ap-
plication conditions which forbid the existence of edges but not of nodes. This
is the case, because if there is no edge between two nodes of a graph, there is
also no edge between these two nodes in any larger graph. Hence if there is no
mapping from the negative application condition into the smaller graph, there
can also be none into the larger graph. Graphs violating the negative applica-
tion condition are simply not represented by the smaller graph. Hence, all graph
transformation rules with such negative application conditions satisfy the com-
patibility condition wrt. the induced subgraph ordering. The backward step has
to be modified in this case by dropping all obtained graphs which do not satisfy
one of the negative application conditions.

4.4 Implementation

We implemented Procedure 1 with support for the minor ordering as well as
the subgraph ordering in the tool Uncover. The tool is written in C++ and
designed in a modular way for easy extension with further orders. The sole
optimization currently implemented is the omission of all rules that are also
order morphisms. It can be shown that the backward application of such rules
produces only graphs which are already represented.

Table 1 shows the runtime results of different case studies, namely a leader
election protocol and a termination detection protocol (in an incorrect as well as
a correct version), using the minor ordering, and the access rights management
protocol described in Figure 1 as well as a public-private server protocol, using
the subgraph order. It shows for each case the restricted graph set Q, the variant
of the procedure used (for the minor ordering they coincide), the runtime and
the number of minimal graphs representing all predecessors of error graphs.

Table 1. Runtime result for different case studies

case study wqo graph set Q variant time #(error graphs)

Leader election minor all graphs 1 / 2 3s 38

Termination detection (faulty) minor all graphs 1 / 2 7s 69

Termination detection (correct) minor all graphs 1 / 2 2s 101

Rights management subgraph all graphs 2 1s 4

Public-private server (l = 5) subgraph path ≤ 5 1 1s 14

Public-private server (l = 6) subgraph path ≤ 6 1 16s 16

5 Conclusion

We have presented a general framework for viewing GTSs as restricted WSTSs.
We showed that the work in [11] for the minor ordering can be seen as an instance
of this framework and we presented two additional instantiations, based on the
subgraph ordering and the induced subgraph ordering. Furthermore we presented
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the management of read and write access rights as an example and discussed
our implementation with very encouraging runtime results.

Currently we are working on an extension of the presented framework with
rules, which can uniformly change the entire neighbourhood of nodes. In this
case the computed set of predecessor graphs will be an over-approximation.
More extensions are possible (possibly introducing over-approximations) and we
especially plan to further investigate the integration of rules with negative ap-
plication conditions as for the induced subgraph ordering. In [14] we introduced
an extension with negative application conditions for the minor ordering, but
still, the interplay of the well-quasi-order and conditions has to be better under-
stood. Naturally, we plan to look for additional orders, for instance the induced
minor and topological minor orderings [8] in order to see whether they can be
integrated into this framework and to study application scenarios.

Related work. Related to our work is [3], where the authors use the subgraph or-
dering and a forward search to prove fair termination for depth-bounded systems.
In [1] another wqo for well-structuring graph rewriting is considered, however
only for graphs where every node has out-degree 1. It would be interesting to
see whether this wqo can be integrated into our general framework. The work
in [5] uses the induced subgraph ordering to verify broadcast protocols. There
the rules are different from our setting: a left-hand side consists of a node and
its entire neighbourhood of arbitrary size. Finally [20] uses a backwards search
on graph patterns in order to verify an ad-hoc routing protocol, but not in the
setting of WSTSs.

Acknowledgements. We would like to thank Roland Meyer, for giving us the
idea to consider the subgraph ordering on graphs, and Giorgio Delzanno for
several interesting discussions on wqos and WSTSs.
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Abstract. We study the reachability problem of a quantum system modeled by
a quantum automaton, namely, a set of processes each of which is formalized as
a quantum unitary transformation. The reachable sets are chosen to be boolean
combinations of (closed) subspaces of the state Hilbert space of the quantum sys-
tem. Four different reachability properties are considered: eventually reachable,
globally reachable, ultimately forever reachable, and infinitely often reachable.
The main result of this paper is that all of the four reachability properties are un-
decidable in general; however, the last three become decidable if the reachable
sets are boolean combinations without negation.

Keywords: Quantum reachability, verification, Skolem’s problem, 2-counter Min-
sky machine, undecidability.

1 Introduction

Recently, verification of quantum systems has simultaneously emerged as an important
problem from several very different fields. First, it was identified by leading physicists
as one of the key steps in the simulation of many-body quantum systems [9]. Secondly,
verification techniques for quantum protocols [11,3] become indispensable as quan-
tum cryptography is being commercialised. Thirdly, verification of quantum programs
[26,27] will certainly attract more and more attention, in particular after the announce-
ment of several scalable quantum programming languages like Quipper [12].

Reachability is a fundamental issue in the verification and model-checking of both
classical and probabilistic systems because a large class of verification problems can
be reduced to reachability analysis [4]. Reachability of quantum systems also started
to receive attention in recent years. For example, Eisert, Müller and Gogolin’s notion
of quantum measurement occurrence in physics [10] is essentially the reachability of
null state; a certain reachability problem [25] lies at the heart of quantum control the-
ory since the controllability of a quantum mechanical system requires that all states
are reachable by choosing the Hamiltonian of the system [1]. Reachability of concur-
rent quantum systems modelled by quantum automata, or more generally by quantum
Markov chains, was studied by the authors [28] with an application in termination anal-
ysis of (concurrent) quantum programs [16,29].

This paper is a continuation of our previous work [28,16,29], where only reach-
ability to a single (closed) subspace of the state Hilbert space of a quantum system
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was considered. In this paper, we consider a class of much more general reachability
properties; that is, we use subspaces of the state space as the basic properties (atomic
propositions) about the quantum system, and then reachability properties can be defined
as certain temporal logical formulas over general properties, which are formalized as
boolean combinations of the subspaces. The reason for using boolean combinations
rather than orthomodular lattice-theoretic combinations in the Birkhoff-von Neumann
quantum logic [6] is that in applications these reachability properties will be used as a
high-level specification language where boolean connectives are suitable; for example,
when a physicist says that a particle will eventually enter region A or region B, the
word “or” here is usually meant to be the boolean “or” but not the orthomodular “or”
(see Example 1). The reachability properties that we are concerned with are:

– eventually reachability denoted by the temporal logic formula Ff ;
– globally reachability denoted by Gf ;
– ultimately forever reachability denoted by Uf ;
– infinitely often reachability denoted by If ,

where f is a boolean combination of the subspaces of the state Hilbert space.
We use quantum automata [14] as a formal model for (concurrent) quantum systems.

Then the reachability problem can be described as: decide whether or not all the exe-
cution paths of a quantum automaton satisfy Ff , Gf , Uf , or If . There are two reasons
for adopting this model. First, unitary operations of quantum automata are widely used
as the mathematical formalism of the dynamics of closed physical systems, e.g., quan-
tum circuits. Second, without probabilistic choices (which occur in other operations
such as quantum measurements and super-operators) it can be seen more clear that the
reachability problem for quantum systems is essentially more difficult than that for clas-
sical systems. In fact, we note that reachability analysis is challenging in the quantum
scenario, since the state space is a continuum where some techniques that have been
successfully used in the classical case will become ineffective.

1.1 Contributions of the Paper

– We prove undecidability of the above reachability problem, even with f in a very
simple form containing the boolean negation. Undecidability of Gf (globally reach-
able), Uf (ultimately forever reachable) and If (infinitely often reachable) comes
from a straightforward reduction from the emptiness problem for quantum au-
tomata [7]. However, undecidability of Ff (eventually reachable) requires a careful
reduction from the halting problem for 2-counter Minsky machines [18]. In par-
ticular, a novel strategy is introduced in this reduction to simulate a (possibly ir-
reversible) classical computation using a quantum automaton which is definitely
reversible. These undecidability results present an impressive difference between
quantum systems and classical systems because the reachability properties consid-
ered in this paper are decidable for classical systems.

– We prove decidability of the reachability problem for Gf , Uf , and If with f being
positive; that is, containing no negation. A key strategy in proving this decidability
is to characterize how a set of states can be reached infinitely often in execution
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paths of a quantum automaton. For the special case where the quantum automa-
ton has only a single unitary operator and f is an atomic proposition, it is shown
based on the Skolem-Mahler-Lech Theorem [24,17,15] that states are reached pe-
riodically, and thus the execution can be represented by a cycle graph. In general,
we show that this execution graph becomes a general directed graph representing
a reversible DFA (deterministic finite automaton), which can be inductively con-
structed.

1.2 Organization of the Paper

The main results are stated in Sec. 2 after introducing several basic definitions. In Sec. 3
we give a brief discussion about Skolem’s problem and relate it to a special case of the
quantum reachability problem. Then in Sec. 4, the undecidability of Gf , Uf and If is
immediately proved from this connection. We also prove the undecidability of Ff in
this section using 2-counter Minsky machines. The proofs of decidable results about
Gf , Uf and If for positive f and related algorithms are presented in Sec. 5. A brief
conclusion is drawn in Sec. 6.

2 Basic Definitions and Main Results

2.1 A Propositional Logic for Quantum Systems

We first introduce a propositional logical language to describe boolean combinations of
the subspaces of a Hilbert space. LetH be the state Hilbert space of a quantum system.
A basic property of the system can be described by a (closed) subspace V of H. In
quantum mechanics, to check whether or not this property is satisfied, a binary (yes-no)
measurement {PV , PV ⊥} would be performed on the system’s current state |ψ〉, where
PV and PV ⊥ are the projection on V and its ortho-complement V ⊥, respectively. The
measurement outcome is generally nondeterministic: V is considered as being satisfied
in |ψ〉 with probability 〈ψ|PV |ψ〉, and it is not satisfied with probability 〈ψ|PV ⊥ |ψ〉 =
1− 〈ψ|PV |ψ〉. A quantitative satisfaction relation can be defined by setting a threshold
λ ∈ [0, 1] to the probability of satisfaction:

V is (λ,�)− satisfied in |ψ〉 if 〈ψ|PV |ψ〉� λ

where � ∈ {<,≤, >,≥}. In this paper, we only consider the qualitative satisfaction,
namely, the (λ,�)−satisfaction with the threshold λ being 0 or 1. Obviously, we have:

– V = {|ψ〉 ∈ H | V is (1,≥)− satisfied in |ψ〉};
– V ⊥ = {|ψ〉 ∈ H | V is (0,≤)− satisfied in |ψ〉}.

Thus, it is reasonable to choose the set of atomic propositions to be

AP = {V | V is a (closed) subspace of H}.

Furthermore, we define a (classical) propositional logic over AP so that we can talk
about, for example, that “the current state of the quantum system is in subspace U , or
in V but not in W ”. The logical formulas are generated from AP by using boolean
connectives ¬, ∧ and ∨, and their semantics are inductively defined as follows: for any
state |ψ〉 ∈ H,
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– If f ∈ AP , then |ψ〉 |= f if |ψ〉 ∈ f ;
– |ψ〉 |= ¬f if |ψ〉 |= f does not hold;
– |ψ〉 |= f1 ∧ f2 if |ψ〉 |= f1 and |ψ〉 |= f2;
– |ψ〉 |= f1 ∨ f2 if |ψ〉 |= f1 or |ψ〉 |= f2.

For a logical formula f , we write ‖f‖ for the set of states that satisfy f . In general, ‖f‖
might not be a subspace ofH. For example, for a subspace V ofH, we have:

– ‖¬V ‖ = {|ψ〉 ∈ H | V is (1, <)− satisfied in |ψ〉};
– ‖¬(V ⊥)‖ = {|ψ〉 ∈ H | V is (0, >)− satisfied in |ψ〉}.

It is clear that these classical connectives are different from their quantum counterparts
interpreted as the operations in the orthomodular lattice of (closed) subspaces ofH [6].

2.2 Reachability of Quantum Automata

Definition 1. A quantum automaton is a 4−tupleA=(H, Act, {Uα |α ∈ Act},Hini),
where

1. H is the state Hilbert space;
2. Act is a finite set of actions of processes;
3. for each process action α ∈ Act, Uα is a unitary operator in H;
4. Hini ⊆ H is the subspace of initial states.

We say that automatonA is finite-dimensional if its state spaceH is finite-dimensional.
Throughout this paper, we only consider finite-dimensional quantum automata.

A path of A is generated by actions of processes, starting in an initial state:

p = |ψ0〉
Uα0→ |ψ1〉

Uα1→ |ψ2〉
Uα2→ · · · ,

where |ψ0〉 ∈ Hini, αn ∈ Act, and |ψn+1〉 = Uαn |ψn〉, for all n ≥ 0. A schedule of
processes is formalized as an infinite sequence α0α1α2 · · · ∈ Actω. For a given initial
state |ψ0〉 and a schedule w ∈ Actω , we write the corresponding path as p = p(|ψ0〉, w).
We further write σ(p) = |ψ0〉|ψ1〉|ψ2〉 · · · for the sequence of states in p. Sometimes,
we simply call σ(p) a path of A.

Now let f be a logical formula defined in the above subsection representing a boolean
combination of the subspaces of the state Hilbert space, and let

σ = |ψ0〉|ψ1〉|ψ2〉 · · ·

be an infinite sequence of states in H. Formally, we define:

– (Eventually reachable): σ |= Ff if ∃i ≥ 0.|ψi〉 |= f ;
– (Globally reachable): σ |= Gf if ∀i ≥ 0.|ψi〉 |= f ;

– (Ultimately forever reachable): σ |= Uf if
∞
∀ i ≥ 0.|ψi〉 |= f ;

– (Infinitely often reachable): σ |= If if
∞
∃ i ≥ 0.|ψi〉 |= f .
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Here,
∞
∀ i ≥ 0 means “∃j ≥ 0, ∀i ≥ j”, and

∞
∃ i ≥ 0 means “∀j ≥ 0, ∃i ≥ j”. These

reachability properties can be directly applied to quantum automata.

Definition 2. Let A be a quantum automaton. Then for Δ ∈ {F, G, U, I}, we define:

A |= Δf if σ(p) |= Δf for all paths p in A.

The reachability of a quantum automatonA can be stated in a different way. For any
action string s = α0α1 · · ·αn ∈ Act∗, we write Us = Uαn · · ·Uα1Uα0 . If Us|ψ0〉 |= f
for some initial state |ψ0〉 ∈ Hini, we say that s is accepted by A with f . The set of
all accepted action strings is called the language accepted byA with f , and denoted by
L(A, f). For any S ⊆ Act∗, we write

ω(S) = {w = α0α1α2 · · · ∈ Actω |
∞
∃n ≥ 0, α0α1 · · ·αn ∈ S},

and say that S ⊆ Act∗ satisfies the liveness (or deadness) property, if ω(S) = Actω (or
ω(S) = ∅).

Lemma 1. Let A be a quantum automaton with dimHini = 1. Then:

1. A |= Ff iff Actω = L(A, f) · Actω;
2. A |= If iff L(A, f) satisfies the liveness;
3. A |= Gf iff L(A, f) = Act∗ (i.e. L(A,¬f) = ∅);
4. A |= Uf iff Act∗ − L(A, f) (i.e. L(A,¬f)) satisfies the deadness.

Here, X · Y in clause 1 is the concatenation of X and Y .

2.3 An Illustrative Example

Example 1. Consider a quantum walk on a quadrilateral with the state Hilbert space
H4 = span{|0〉, |1〉, |2〉, |3〉}. Its behaviour is described as follows:

1. Initialize the system in state |0〉.
2. Perform a measurement {Pyes, Pno}, where Pyes = |2〉〈2|, Pno = I4 − |2〉〈2|.

Here, I4 is the 4× 4 unit matrix. If the outcome is “yes”, then the walk terminates;
otherwise execute step 3.

3. Nondeterministically choose one of the two unitary operators:

W± =
1√
3

⎛⎜⎜⎝
1 1 0 ∓1
±1 ∓1 ±1 0
0 1 1 ±1
1 0 −1 ±1

⎞⎟⎟⎠
and apply it. Then go to step 2.

It was proved in [16] that this walk terminates with a probability less than 1 if and only
if a diverging state (i.e. a state with terminating probability 0) can be reached, and the
set of diverging states is PD1 ∪ PD2, where

PD1 = span{|0〉, (|1〉 − |3〉)/
√
2},

PD2 = span{|0〉, (|1〉+ |3〉)/
√
2}.



(Un)decidable Problems about Reachability of Quantum Systems 487

So, termination of the walk can be expressed as a reachability propertyA |= G¬(PD1∨
PD2). Here, “∨” is obviously boolean disjunction rather than the disjunction in
Birkhoff-von Neumann quantum logic.

2.4 Main Theorems

Now we are ready to present the main problem considered in this paper. For Δ ∈
{F, G, U, I}, the decision problem for the Δ−reachability is defined as follows:

Problem 1. Given a finite-dimensional quantum automatonA and a logical formula f
representing a boolean combination of the subspaces of the state Hilbert space of A,
decide whether or not A |= Δf .

For the algorithmic purpose, it is reasonable to make the convention: we identify a
subspace of H with the projection operator on it, and assume that all the projection
operators and unitary operators in automatonA and formula f are represented by com-
plex matrices in a fixed orthonormal basis. Furthermore, we assume that all complex
numbers have rational real and imaginary parts.

The main results of this paper can be stated as the following two theorems:

Theorem 1. (Undecidability) For Δ ∈ {F, G, U, I}, the problem whether or not A |=
Δf is undecidable.

Theorem 2. (Decidability) For Δ ∈ {G, U, I}, if f contains no negation, then the
problem whether or not A |= Δf is decidable.

3 Relating Quantum Reachability to Skolem’s Problem

3.1 Skolem’s Problem for Linear Recurrence Sequences

For convenience of the reader, we first recall several results about Skolem’s problem. A
linear recurrence sequence is a sequence {an}∞n=0 satisfying a linear recurrence relation
given as follows:

an+d = cd−1an+d−1 + cd−2an+d−2 + · · ·+ c0an, (1)

for all n ≥ 0, where d, c0, c1, · · · , cd−1 are all fixed constants with c0 	= 0. d is called
the order of this relation. Let

Z = {n ∈ N | an = 0} (2)

be the set of indices of null elements of the sequence {an}∞n=0. The problem of charac-
terising Z was first studied by Skolem [24] in 1934, and his result was generalised by
Mahler [17] and Lech [15].

Theorem 3 (Skolem-Mahler-Lech). In a field of characteristic 0, for any linear recur-
rence sequence {an}∞n=0, the set Z of indices of its null elements is semi-linear; that is,
it is the union of a finite set and finitely many arithmetic progressions.
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The above problem was further considered in terms of decidability. The problem
of deciding whether or not Z is infinite was solved by Berstel and Mignotte [5] who
found an algorithm for generating all arithmetic progressions used in Theorem 3. The
problem of deciding the finiteness of the complement of Z was studied by Salomaa and
Soittola [23]. Their results are summarised as the following:

Theorem 4 (Berstel-Mignotte-Salomaa-Soittola). For linear recurrence sequences
{an}∞n=0, it is decidable whether or not

1. Z is infinite;
2. Z = N;
3. Z contains all except finitely many natural numbers.

The following emptiness problem dual to item 2 in Theorem 4 was also considered
in the literature, but it is still open; for details, we refer to [13,22].

Problem 2. Given a linear recurrence sequence {an}∞n=0, decide whether or not Z is
empty.

3.2 Skolem’s Problem in Matrix Form

In this subsection, we show a useful connection between the quantum reachability prob-
lem and Skolem’s problem. The linear recurrence relation Eq. (1) can be written in a
matrix form:

an = uTMnv, (3)

where M is the d× d matrix ⎡⎢⎢⎢⎢⎢⎣
cd−1 cd−2 · · · c1 c0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

. . .
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ,

u = [1, 0, · · · , 0]T and v = [ad−1, ad−2, · · · , a0]
T are d−dimensional column vectors,

and T stands for transpose. On the other hand, if {an}∞n=0 is of form Eq. (3) for general
u,v and M with dimension d, then the minimal polynomial g(x) of M is of order at
most d, g(M) = 0, and a linear recurrence relation of order no greater than d is satisfied
by {an}∞n=0. Therefore, Skolem’s problem can be equivalently considered in the matrix
form Eq. (3).

Let us consider Problem 1 in a special case: (1) |Act| = 1, i.e., there is only one
unitary operator Uα ofA, (2) f = V is a subspace ofH, and (3) dimHini = dimV ⊥ =
1. Let |ψ0〉 ∈ Hini and |ϕ〉 ∈ V ⊥. Then we have L(A, f) = {n ∈ N | 〈ϕ|Un

α |ψ0〉 =
0}. It is actually the set Z in Eq. (2) if we think of Uα, |ϕ〉 and |ψ0〉 as M , u, and v in
Eq. (3). From Lemma 1, the emptiness of Z (Problem 2), and the properties 1, 2 and
3 of Z in Theorem 4 are equivalent to A |= FV , A |= IV , A |= GV , and A |= UV ,
respectively. From this point of view, our decidability for a general f (Theorem 2) is
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somewhat a generalization of the decidable results (Theorem 4) of Skolem’s problem
where f is taken to be a subspace.

Now we consider an undecidable result relevant to Skolem’s problem. Instead of
{Mn | n ∈ N} in Eq. (3), there is a semi-group generated by a finite number of matrices
M1,M2, · · · ,Mk, written as 〈M1,M2, · · · ,Mk〉. Then the emptiness problem can be
generalised as follows:

Problem 3. Provided d × d matrices M1,M2, · · · ,Mk and d-dimensional vectors u
and v, decide whether or not ∃M ∈ 〈M1,M2, · · · ,Mk〉 s.t. uTMv = 0.

The above problem was proved to be undecidable in [20] and [8], through a reduction
from the Post’s Correspondence Problem (PCP) [21]. Similar to the discussion in last
subsection, we can choose Mi as unitary operators and u, v as quantum states, and then
the emptiness of L(A, f) for f = V and dimHini = dim V ⊥ = 1 but with |Act| > 1
being allowed can be regarded as a special case of Problem 3. In fact, this problem was
also proved to be undecidable by Blondel et. al. [7].

Theorem 5 (Blondel-Jeandel-Koiran-Portier). It is undecidable whether or not
L(A, V ) is empty, given a quantum automaton A and a subspace V with dimHini =
dimV ⊥ = 1.

4 Undecidable Results

4.1 Undecidability of A |= Gf , A |= Uf and A |= If

We can use the Theorem 5 to prove the Theorem 1 for Δ ∈ {G, U, I}. We first prove
undecidability of A |= Gf . Let automaton A be the same as in Theorem 5, but put
f = ¬V (not V ). Then according to clause 3 of Lemma 1, A |= Gf is equivalent to
the emptiness of L(A,¬(¬V )) = L(A, V ). The undecidability follows immediately
from Theorem 5. To prove undecidability of A |= Uf and A |= If , we slightly modify
each quantum automaton A = (H, Act, {Uα | α ∈ Act},Hini) by adding a silent
action τ . Assume that τ /∈ Act and Uτ = I (the identity operator in H). Put A′ =
(H, Act ∪ {τ}, {Uα | α ∈ Act ∪ {τ}},Hini). Then we claim:

A |= Gf iff A′ |= Uf iff A′ |= If. (4)

In fact, it is obvious that A |= Gf ⇒ A′ |= Uf ⇒ A′ |= If because Uτ is silent.
Conversely, if A 	|= Gf , then there exists s = α0α1 · · ·αn ∈ Act∗ such that Us|ψ0〉 	|=
f . We consider the infinite sequence of actions w = sτω ∈ (Act ∪ {τ})ω . It is clear
that σ(p(|ψ0〉, w)) 	|= Uf and σ(p(|ψ0〉, w)) 	|= If , and so A′ 	|= Uf and A′ 	|= If .
Finally, undecidability of A |= Uf and A |= If follows immediately from Eq. (4) and
undecidability of A |= Gf . Remarkably, the simple form of f = ¬V is sufficient for
undecidability.

4.2 undecidability of A |= Ff

We separately prove undecidability of A |= Ff . Our strategy is a reduction from the
halting problem for 2-counter Minsky machines to reachability of quantum automata.
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A 2-counter Minsky machine [18] is a programM consisting of two variables (counters)
a and b of natural numbers N, and a finite set of instructions, labeled by l0, l1, · · · , lm.
This program starts at l0 and halts at lm. Each of instructions l0, l1, · · · , lm−1 is one of
the following two types:

increment li : c← c + 1; goto lj ;
test-and-decrement li : if c = 0 then goto lj1 ;

else c← c− 1; goto lj2 ;
where c ∈ {a, b} is one of the counters. The halting problem is as follows: given a 2-

counter Minsky machineM together with the initial values of a and b, decide whether
the computation ofM will terminate or not. This problem is known to be undecidable.

For convenience of relating M to a quantum automaton, we slightly modify the
definition ofM without changing its termination:

1. Without loss of generality, we assume the initial values of a and b to be both 0.
This can be done because any value can be achieved from zero by adding some
instructions of increment at the beginning.

2. For each instruction li of test-and-decrement of c, we rewrite it as

li : if c = 0 then goto l′i; else goto l′′i ;

l′i : goto lj1 ;

l′′i : c← c− 1; goto lj2 ;

(5)

where l′i and li
′′ are new instructions. For c ∈ {a, b}, we write L1c for the set

of all instructions of increment of c; and we write L2c, L′
2c and L′′

2c for the set
of instructions li, the set of instructions l′i and the set of instructions l′′i given in
Eq. (5), respectively. Now the set of all instructions ofM becomes

L = L1a ∪ L1b ∪ L2a ∪ L2b ∪ L′
2a ∪ L′

2b ∪ L′′
2a ∪ L′′

2b ∪ {lm}.

3. We rewrite lm as
lm : goto lm;

and we define thatM terminates if lm is reachable during the computation.

Obviously, the halting problem is also undecidable for 2-counter Minsky machines de-
fined in this way.

We encode 2-counter Minsky machines into quantum automata so that undecidability
of A |= Ff is derived from the undecidability of halting problem. More precisely, for
any given 2-counter Minsky machine M, we will construct a quantum automaton A
and find two subspaces V and W ofH such that

M terminates⇔ A |= F(V ∧ ¬W ). (6)

The procedure of this construction is as follows:

1. A state ofM is of form (a, b, x), where a, b ∈ N are the values of the two counters,
and x ∈ L is the instruction to be executed immediately. We use quantum states
|φn〉 and |l〉 to encode nature numbers n and instructions l, respectively. Then the
corresponding quantum state in A is chosen as the product state |ψ〉 = |φa〉|φb〉|l〉.
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2. The computation ofM is represented by the sequence of its states:

σM = (a0, b0, x0)(a1, b1, x1)(a2, b2, x2) · · · , (7)

where (a0, b0, x0) = (0, 0, l0) is the initial state and (ai+1, bi+1, xi+1) is the suc-
cessor of (ai, bi, xi) for all i ≥ 0. We construct unitary operators of A to encode
the transitions from a state to its successor. Then by successively taking the corre-
sponding unitary operators, the quantum computation

σ0 = |ψ0〉|ψ1〉 · · · , ∀i ≥ 0 |ψi〉 = |φai〉|φbi 〉|xi〉 (8)

is achieved in A to encode σM.
3. Note that σM is terminating if states at lm are reachable. Then from the correspon-

dence between σM and σ0, termination ofM is encoded as a reachability property
σ0 |= FV0, where V0 is the subspace of terminating states, namely,

|φa〉|φb〉|l〉 ∈ V0 ⇔ l = lm.

4. Besides σ0, infinitely many computation paths are achievable in A. So there is still
a gap between reachability of σ0 and that ofA. We construct two subspaces V ′ and
W such that σ |= F(V ′∧¬W ) for all paths σ ofA except σ0. We put V = V ′+V0,
then it can be proved that

A |= F(V ∧ ¬W )⇔ σ0 |= F(V ∧ ¬W )⇔ σ0 |= FV0,

and thus Eq. (6) is obtained from this equivalence.

5 Decidable Results

We prove Theorem 2 in this section. We write f in the disjunctive normal form. As
it contains no negation, for each conjunctive clause fi of f , ‖fi‖ is a subspace of H.
We write Vi = ‖fi‖ ∈ AP , then f can be equivalently written as f =

∨m
i=1 Vi and

‖f‖ =
⋃m
i=1 Vi is a union of finitely many subspaces of the state Hilbert space H of

quantum automatonA.
To decide whether or not A |= Δf , we need to compute the set of all predecessor

states with respect to a reachability property. Formally, for any given quantum automa-
tonA = (H, Act, {Uα | α ∈ Act},Hini) and any |ψ〉 ∈ H, we consider the automaton
A(ψ) = (H, Act, {Uα | α ∈ Act}, span{|ψ〉}) for the paths starting in |ψ〉. Then for
any Δ ∈ {G, U, I}, |ψ〉 is called a (Δ, f)−predecessor state if A(ψ) |= Δf , and we
write the set of all predecessor states as

Y (A, Δ, f) = {|ψ〉 ∈ H | A(ψ) |= Δf}.

ThenA |= Δf can be decided by checking whether or notHini ⊆ Y (A, Δ, f).
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5.1 Decidability of A |= If for Single Unitary Operator

We will prove the decidability of A |= If by constructing the set Y (A, I, f). In this
subsection, we do this for a special case in which |Act| = 1 and m = 1, i.e.,A contains
only a single unitary operator, and f = V is a subspace. It should be pointed out that the
result for this special case was proved in [5] as the decidability of finiteness Skolem’s
problem in the single matrix form. Here, we present our new proof as it would be useful
for us to obtain a general result for finitely many unitary operators in next subsection.
For convenience, we simply write Y for Y (A, I, f) in these two subsections.

Let Act = {α}, and the string αn is simply represented by n. By an algorithm, we
show that Y is a union of finitely many subspaces Y0, Y1, · · · , Yp−1 which forms a cycle
graph under the unitary transformation, namely Yr+1 = UαYr for all 0 ≤ r ≤ p − 2
and Y0 = UαYp−1. Then Y can be written as Y =

⋃p−1
r=0 U r

αY0 and Y0 = Up
αY0. The

following lemma is required for proving correctness of the algorithm.

Lemma 2. For any unitary operator U on H, a positive integer p can be found such
that for any subspace K of H, UpK = K provided UnK = K for some positive
integer n. We call this integer p the period of U .

Now Y can be computed by Algorithm 1. Step 1 can be done as shown in Lemma 2.

Algorithm 1.
1. Compute the period p of Uα;
2. Compute the maximal subspace K of V such that Up

αK = K;
3. Return Y =

⋃p−1
r=0 U

r
αK.

Step 2 can be done as follows: initially put K0 = V , repeatedly compute Kn+1 = Kn∩
Up
αKn until Kn+1 = Kn, and then K = Kn. Sometimes, we write K as K(Uα, V )

to show dependence of K on Uα and V . Correctness of this algorithm is presented as a
lemma:

Lemma 3. If integer p and subspace K are obtained by Algorithm 1, then

Y =

p−1⋃
r=0

U r
αK.

5.2 Decidability of A |= If for General Case

Now, we construct Y = Y (A, I, f) for a general input: A and f =
∨m
i=1 Vi. Like

the case of a single unitary operator, we can prove that Y is a union of finitely many
subspaces. The result can be specifically described as follows:

Lemma 4. Let X = {Y1, Y2, · · · , Yq} be a set of subspaces ofH satisfying the follow-
ing three conditions:
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1. For any Yi and α ∈ Act, there exists Yj such that UαYi = Yj . In other words,
under the unitary transformations, these subspaces form a more general directed
graph than a simple cycle graph in the case of single unitary operator.

2. For any simple loop (namely Yri 	= Yrj for different i and j in the loop)

Yr0
Uα0→ Yr1

Uα1→ · · ·
Uαk−2→ Yrk−1

Uαk−1→ Yr0 ,

there exists some i ∈ {0, 1, · · · , k− 1} and j ∈ {1, 2, · · · ,m} such that Yri ⊆ Vj .
3. Y ⊆ Y1 ∪ Y2 ∪ · · · ∪ Yq .

Then Y = Y1 ∪ Y2 ∪ · · · ∪ Yq .

Therefore, to construct Y we only need to find an algorithm for constructing a set of
subspaces X = {Y1, Y2, · · · , Yq} satisfying the three conditions of Lemma 4. To this
end, we invoke a lemma which is proved in [16]:

Lemma 5. Suppose that Xk is the union of a finite number of subspaces of H for all
k ≥ 0. If X0 ⊇ X1 ⊇ · · · ⊇ Xk ⊇ · · · , then there exists n ≥ 0 such that Xk = Xn for
all k ≥ n.

Now the set X can be computed by Algorithm 2. Step 2 is the key step in the algo-
rithm, in which X can be replaced by a “smaller” one X ′ if it is not available. Due to
Lemma 5, this step can only be executed a finite number of times and thus an output X
satisfying condition 1 and condition 2 of Lemma 4 should be returned by the algorithm.
We also note that condition 3 of Lemma 4 is always satisfied by X during the execution.
So this output is just what we need.

Algorithm 2.
1. Initially put X ← {H} then jump to step 2;
2. If X satisfies condition 1 and condition 2 of Lemma 4, then return X; otherwise

construct a new set X ′ of subspaces of H satisfying Y ⊆ ∪X ′ ⊂ ∪X , and put
X ← X ′, then repeat step 2. Here notation “⊂” is for “proper subset”.

Now we give a detailed description of step 2. It can be properly formalized as a
lemma:

Lemma 6. Given a set X = {Y1, Y2, · · · , Yq} of subspaces in which any two sub-
spaces Yi and Yj do not include each other, if X satisfies condition 3 but does not
satisfy condition 1 or condition 2 of Lemma 4, then we can algorithmically find some
Yi ∈ X and its proper subspaces W1,W2, · · · ,Wl, such that

Y ∩ Yi ⊆W1 ∪W2 ∪ · · · ∪Wl. (9)

From this lemma, we can construct X ′ for any given X as follows. First, we eliminate
all such Yi from X that Yi ⊂ Yj for some Yj ∈ X . Then from Lemma 6 we can find
some Yi ∈ X and its subspaces W1,W2, · · · ,Wl satisfying Eq. (9). We put X ′ =
X ∪ {Wk | 1 ≤ k ≤ l}\{Yi}, and then ∪X ′ ⊂ ∪X . As Y ⊆ ∪X , we also have
Y ⊆ ∪X ′ from Eq. (9).
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5.3 Decidability of A |= Gf and A |= Uf

We now prove Theorem 2 for Δ ∈ {G, U}. We first prove the decidability of A |= Gf
by computing Y = Y (A, G, f). According to clause 3 in Lemma 1, we have

Y = {|ψ〉 ∈ H | L(A(ψ), f) = Act∗}
= {|ψ〉 ∈ H | Us|ψ〉 ∈ ‖f‖, ∀s ∈ Act∗}.

(10)

Then we obtain ∀α ∈ Act, UαY ⊆ Y ⊆ ‖f‖. In fact, Y can be computed by Algo-
rithm 3, and thus Y is the maximal one of sets satisfying ∀α ∈ Act, UαY = Y ⊆ ‖f‖.

Algorithm 3.
1. Y ← V1 ∪ V2 ∪ · · · ∪ Vm;
2. If UαY �= Y , for some α ∈ Act, then Y ← U−1

α Y ∩ Y ; otherwise return Y .

Correctness of Algorithm 3: We write Y0, Y1, · · · for the instances of Y during the
execution of the algorithm. Then Y0 = V1 ∪ V2 ∪ · · · ∪ Vm and Yn+1 = U−1

α Yn ∩ Yn
for some α ∈ Act. It can be proved by induction on n that each Yn is a union of finitely
many subspaces ofH. Note that Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · is a descending chain. According
to Lemma 5, this chain would terminates at some n, and the algorithm output is Yn. We
have UαYn = Yn for all α ∈ Act. Now we prove Yn = Y . First, since Y ⊆ ‖f‖ = Y0

and Y ⊆ U−1
α Y for all α ∈ Act, it can be proved by induction on k that Y ⊆ Yk for all

k, and particularly, Y ⊆ Yn. On the other hand, As UsYn = Yn ⊆ ‖f‖ for all s ∈ Act∗,
we have Yn ⊆ Y from the definition of Y . So Yn = Y . �

Next we prove the decidability of A |= Uf . Indeed, we have the following lemma
from which it follows that Y (A, U, f) = Y (A, G, f).

Lemma 7. A |= Uf iffHini ⊆ Y (A, G, f).

It actually means that the reachabililty properties Uf and Gf are equivalent for f being
positive.

6 Conclusion

We have investigated the decision problem of quantum reachability: decide whether or
not a set of quantum states is reachable by a quantum system modelled by a quantum
automaton. The reachable sets considered in this paper are defined as boolean combina-
tions of (or described by classical propositional logical formula over) the set of (closed)
subspaces of the state Hilbert space of the system. Four types of reachability properties
have been studied: eventually reachable, globally reachable, ultimately forever reach-
able, and infinitely often reachable. Our major contribution is the (un)decidable results:

– All of these four reachability properties are undecidable even for a certain class of
the reachable sets which are formalized by logical formulas of a simple form;
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– Whenever the reachable set is a union of finitely many subspaces, the problem is
decidable for globally reachable, ultimately forever reachable and infinitely often
reachable. In particular, it is decidable when the reachable set contains only finitely
many quantum states.

One of our main proof techniques is to demonstrate that quantum reachability problem
is a generalization of Skolem’s problem for unitary matrices. The undecidable results
for global reachability, ultimately forever reachability and infinitely often reachability
have been derived directly by employing the undecidability of a relevant emptiness
problem. Nevertheless, the celebrated Skolem-Mahler-Lech theorem has been applied
to the development of algorithms showing the decidable results. Another technique we
have employed is to encode a 2-counter Minsky machine using a quantum automaton.
It was used to prove undecidability of the eventually reachable property. This approach
is interesting, since it provides a new way to demonstrate quantum undecidability other
than reduction from the PCP that has been the main technique for the same purpose in
previous works.

The problem whether or not A |= Ff is decidable for ‖f‖ being a finite union of
subspaces has been left unsolved. In fact, this problem is difficult even for a very special
case where |Act| = 1 and ‖f‖ is a single subspace. We have shown that in this case
the quantum reachability problem is actually the emptiness Skolem’s problem, which is
still open for d ≥ 5 [22].

The model of concurrent quantum systems used in this paper is quantum automata.
For further studies, the decidable results can considered using a more general model,
namely quantum Markov chains [28] where actions can be not only unitary transforma-
tions but also super-operators.
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References

1. Altafini, C., Ticozzi, F.: Modeling and control of quantum systems: An introduction. IEEE
Transactions on Automatic Control 57, 1898 (2012)

2. Amano, M., Iwama, K.: Undecidability on quantum finite automata. In: Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing (STOC), pp. 368–375 (1999)

3. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Equivalence checking of quantum protocols.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 478–492. Springer,
Heidelberg (2013)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes linéaires. Bull.
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Abstract. We study temporal logics and automata on multi-attributed
data words. Recently, BD-LTL was introduced as a temporal logic on
data words extending LTL by navigation along positions of single data
values. As allowing for navigation wrt. tuples of data values renders the
logic undecidable, we introduce ND-LTL, an extension of BD-LTL by a
restricted form of tuple-navigation. While complete ND-LTL is still un-
decidable, the two natural fragments allowing for either future or past
navigation along data values are shown to be Ackermann-hard, yet de-
cidability is obtained by reduction to nested multi-counter systems. To
this end, we introduce and study nested variants of data automata as an
intermediate model simplifying the constructions. To complement these
results we show that imposing the same restrictions on BD-LTL yields
two 2ExpSpace-complete fragments while satisfiability for the full logic
is known to be as hard as reachability in Petri nets.

1 Introduction

Executions of object-oriented and concurrent systems can naturally be modeled
using data words. They are composed of labels from a finite alphabet together
with a data value from an infinite domain. They can, for example, be considered
as an interleaving of actions of an unbounded number of objects or processes,
distinguished by identifiers. Recently, several formalisms based on first-order
logic [4,21] or temporal logic [10,9,8] have been proposed to specify properties
over data words. Automata-based models have also been considered [18,13,6,3]
including data automata (DA) [4]. Usually, in these formalisms the data values
can only be compared with respect to equality. More expressive relations like
ordering lead fast to undecidability. The automata/logic connection has been
studied extensively. For example, the satisfiability problem of two-variable first-
order logic over data words was shown decidable by a reduction to the emptiness
problem of DA [4]. They consist of a finite-state letter-to-letter transducer A and
a class automaton B. A changes the labels from the finite alphabet of the input
data word before the data word is projected into class strings (one for each differ-
ent data value) which must all be accepted by B. Emptiness of DA was proven
decidable by a reduction to the reachability problem in multi-counter systems
(Petri nets, VASS) showing a deep connection between data word formalisms
and counter systems (see also [8,22,2]).
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We study multi-attributed data words where, instead of one data value, several
data values are associated to a given position. This important extension allows for
examplemodeling nested parameterized systemswhere a process has subprocesses
which have subprocesses and so on. We built on the logic on multi-attributed data
words basic data LTL (BD-LTL) [14] allowing for navigation wrt. a data value. It
uses the well-known LTL with past-time operators and has additionally a class
quantifier over one data value used to bind a current data value and restrict the
evaluationof the formula to thepositionswhere the samedatavalue appears.Decid-
ability of the satisfiability problem was shown using a reduction to non-emptiness
of DA. Adding a class quantifier over tuples makes BD-LTL undecidable like other
logics over multi-attributed data words with tuple navigation [8,2].

Fig. 1. Overview of the logics studied in this
paper. Lines are drawn downwards to logics
with lower expressiveness. The depicted com-
plexity classes apply over finite as well as in-
finite words except for ND-LTL−, marked by
(∗), which is undecidable over infinite words.

Contributions. We consider first two
fragments of BD-LTL: the class fu-
ture fragment BD-LTL+ (past oper-
ators are disallowed for navigation
wrt. a data value) and the class past
fragment BD-LTL− (restriction of
future operators). Both fragments
are shown 2ExpSpace-complete
using [8] and revisiting the transla-
tion from BD-LTL to DA [14]. In-
stead of going to general DA we
translate BD-LTL+ and BD-LTL−

into pDA and sDA, respectively,
whose emptiness problems are in Ex-

pSpace. In pDA (resp. sDA) the
language of the class automaton is
suffix- (resp. prefix-) closed allowing
to use the ExpSpace-complete cov-
erability problem of multi-counter
systems instead of its reachability problem for which no primitive recursive al-
gorithm is known (cf. [16]). We consider both finite and infinite word semantics
of the fragments.

We then define the new logic ND-LTL allowing for navigation wrt. tuples re-
specting a certain tree-order, i. e., there are several layers of data with nested
access. For example, one can navigate on the first layer and, fixing a value, nav-
igate on the second (see example below). Independent navigation on the whole
second layer is not possible. While even with this restricted navigation ND-LTL
is undecidable we obtain, as for BD-LTL, two natural fragments ND-LTL+ and
ND-LTL−. We can prove their decidability by a translation into nested data
automata (NDA) that we introduce as an appropriate extension of DA. k-NDA
have k class automata and accept data words with k data values at each position.
The i-th class automaton must accept all class strings obtained by projection of
the data word using the same first i data values. Emptiness of k-NDA is undecid-
able, but shown decidable for k-sNDA (where class automata have suffix-closed
languages) and k-pNDA (prefix-closed) using nested multi-counter systems (sim-
ilar to models in [2,17]) which generalize multi-counter systems to several layers
of nested counters. Their emptiness problem is undecidable, but, as they are
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well-structured transition systems [11,1], coverability and control state reacha-
bility are decidable. ND-LTL+ and ND-LTL− are shown Ackermann-hard via
a reduction from the control state reachability problem of reset multi-counter
systems [20]. Finally, ND-LTL+ is decidable over infinite words but ND-LTL−

is not. Figure 1 summarizes some results.

Related Work. The logics LRV� (based on [7]) and the more expressive LRV
over multi-attributed data words studied in [8] built also on LTL and allow to
state that one of the current data values must be seen again in the future. LRV
(LRV�) can be extended to PLRV (PLRV�) with past obligations. PLRV� is less
expressive than BD-LTL1 and we show that LRV� is less expressive than BD-
LTL+. LRV (and LRV�) are 2ExpSpace-complete like BD-LTL+. We use their
hardness result for our logic. The proof of the upper bound is also based on the
coverability problem of multi-counter systems. However, our proof is split into
smaller, structured parts. The handling of infinite word versions of our fragments
is similar to theirs but we have to treat the additional problems coming from the
nested data. Navigation wrt. data tuples was considered and shown undecidable
but no decidable fragments were given. A logic handling data values in a very
natural way is Freeze-LTL [9]. It exhibits a similar future-restriction as BD-
LTL+ and ND-LTL+ and finite satisfiability is decidable and Ackermann-hard.
However, satisfiability over infinite words is undecidable while it is still decidable
for BD-LTL+ and ND-LTL+. In [2], words with nested data values were also
considered. They show undecidability for the two-variable logic with two layers
of nested data and the +1 and < predicates over positions. They introduce
higher-order multi-counter automata, a very similar model to our nested multi-
counter systems. Their proof of Turing completeness could be easily adapted to
nested multi-counter systems. However, the well-structuredness of the model is
not exploited. If the +1 predicate is dropped they obtain decidability, which is
orthogonal to our result as we can express the successor relation in our fragments.
In [22] history register automata (HRA) have been introduced, which can easily
be simulated by our pNDA. A weak variant of HRA is defined which is similar
to our pDA, but only studied over finite words.

2 Preliminaries

Let N = {0, 1, 2, . . . } be the set of natural numbers and [k] := {1, . . . , k} for
k ∈ N, k > 0. We denote the set of finite words over an alphabet Σ by Σ∗, the
set of infinite words by Σω and their union by Σ∞ = Σ∗ ∪ Σω. The empty
word is denoted ε. The shuffle of two words w,w′ ∈ Σ∗ is inductively defined by
ε�w = w�ε = {w} and aw�a′w′ = a(w�a′w′)∪a′(aw�w′) where a, a′ ∈ Σ.
For possibly infinite words u1, u2 ∈ Σ∞ we let v ∈ u1�u2 iff for all prefixes v′ of
v there are prefixes u′1 and u′2 of u1 and u2, respectively, such that v′ ∈ u′1� u′2.
The shuffle of two languages L,L′ ⊆ Σ∞ is L� L′ = {w� w′ | w ∈ L,w′ ∈ L′}
and �(L) =

⋃
{M |M ⊆ L�M} denotes the infinite shuffle of a language with

itself. For two sets M,N we denote by MN the set of all mappings f : N → M
from N to M . Given a partial order (M,5) we write m↓ = {m′ ∈ M | m′ 5 m}
for the downward closure of m ∈ M . We define a tree order (M,≤) to be a

1 In [8] it is stated without proof that PLRV is also less expressive than BD-LTL.
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partial order s. t. for all m ∈ M its downward closure is a linear order (m↓,≤).
Hence, we allow a tree order to contain several minimal elements (roots).

An∞-automaton over a finite input alphabet Σ is a tupleA = (Q,Σ, δ, I, F,B)
where Q is a finite set of states, I, F,B ⊆ Q are sets of initial, final and Büchi-
accepting states, respectively, and δ ⊆ Q × Σ × Q is the transition relation. A
run of A on a word w0w1. . . ∈ Σ∞, wi ∈ Σ is a maximal sequence of transitions
t0t1. . . ∈ δ∞ with ti = (qi, wi, qi+1) and q0 ∈ I. It is accepting if it ends in a final
state qf ∈ F or visits a Büchi-accepting state qb ∈ B infinitely often. A accepts
w if there is an accepting run of A on w and the set of all accepted words is
denoted L(A).

A letter-to-letter transducer is an∞-automaton T = (Q,Σ, Γ, δ, I, F,B) where
Γ is an additional output alphabet and δ ⊆ Q×Σ×Γ ×Q is a transition relation
with output. A word γ ∈ Γ∞ is an output of T if there is an accepting run of T
labeled by γ. For w ∈ Σ∞ we denote T (w) ⊆ Γ∞ the set of possible outputs of
T when reading w.

Data Words and Data Languages. Let Σ be a finite alphabet, Δ an infinite
set of data values and A a finite set of attributes. A multi-attributed data word
is a finite or infinite sequence w = w0w1. . . ∈ (Σ ×ΔA)∞ of pairs wi = (ai,di)
of letters and data valuations di : A → Δ. Given a valuation d ∈ ΔA and a
set of attributes X ⊆ A we denote by d|X the restriction of d to X . We call
str(w) := a0a1 . . . ∈ Σ∞ the string projection of w. The X-class string of w
for a data valuation d ∈ ΔX is the maximal projected subsequence cl(w,d) :=
ai0ai1 . . . ∈ Σ∞ of w with 0 ≤ ij ≤ |w|, ij < ij+1 and dij |X = d. We use natural
numbers 1, 2, 3, . . . as representatives for arbitrary data values. For a data word
w = (a0,d0)(a1,d1). . . we also write

(
a0a1. . .
d0d1. . .

)
. For |A| = 1 we call data words

w ∈ (Σ × ΔA)∞ single-attributed. We may then omit the functional notation
and use Δ instead of ΔA if A is not essential, e. g., writing w ∈ (Σ ×Δ)∞.

Register Automata (RA). A register automaton [13] over Σ and Δ is a tuple R =
(Q,Σ, k, δ, I, F,B) where Q is a finite set of states, I, F,B ⊆ Q are sets of initial,
final and Büchi-accepting states, respectively, k ≥ 1 is the number of registers
and δ ⊆ Q×2[k]×2[k]×Σ×[k]×Q is the transition relation. A configuration ofR
is a pair (q, v) where q ∈ Q and v : [k]→ Δ∪ {⊥} is a valuation of the registers.
A run of R on a single-attributed data word w = (a0, d0)(a1, d1). . . ∈ (Σ×Δ)∞

is a maximal sequence of configurations ρ = (q0, v0)(q1, v1). . . s. t. q0 ∈ I and

for all 0 ≤ i < |w| there is a transition (qi, R
=
i , R �=

i , ai, xi, qi+1) ∈ δ such that
∀r∈R=

i
vi(r) = di, ∀r∈R �=

i
vi(r) 	= di, vi+1(xi) = di and ∀r �=xivi+1(r) = vi(r). A run

ρ of R is accepting if it ends in a final state q ∈ F or it visits a Büchi-accepting
state q ∈ B infinitely often. An RA accepts a single-attributed data word w if it
has an accepting run on w.

Multi-counter Systems. A reset multi-counter system (rMCS) is a tuple
M = (Q,C, δ,Q0) where Q and C are finite sets of (control) states and counters,
respectively, Q0 ⊆ Q is the set of initial states and, for OP := {inc, dec, res},
δ ⊆ Q × OP × C × Q is the transition relation. A run of M is a sequence
ρ ∈ Q0× (OP ×C×Q)∞, s. t. every subsequence (q, op, c, q′) of ρ, with q, q′ ∈ Q,
op ∈ OP , c ∈ C, is an element of δ and counters never become negative,



Ordered Navigation on Multi-attributed Data Words 501

i. e, there is an injection fρ : N → N that maps every position i in ρ with
(ρi, ρi+1) = (dec, c), for c ∈ C, to a position j < i with (ρj , ρj+1) = (inc, c) and
(ρk, ρk+1) 	= (res, c), for all k with j < k < i. An MCS is an rMCS where the
transition relation does not use the reset operation res.

3 Local Navigation in BD-LTL

The temporal logic BD-LTL is based on LTL. Linear-time properties are formu-
lated using temporal operators to navigate along the positions of a word. This
concept is extended analogously to data words by allowing for navigation along
the occurrences of a data value. While the LTL operators express properties on
the global structure of the word, independent of associated data values, navi-
gation along the class strings of a word allows for expressing a local view, e. g.,
modeling the behaviour of a single process.

We now recall syntax and semantics of BD-LTL [14] and define two natural
fragments BD-LTL+ and BD-LTL− where local navigation is restricted to fu-
ture and past operators, respectively. The satisfiability problem of BD-LTL is
decidable. Yet, it is known to be as hard as reachability in Petri nets [14] and
we show that satisfiability in our fragments is still 2ExpSpace-hard. The next
section then sharpens this result by developing a 2ExpSpace decision procedure
based on restricted variants of data automata.

LetAP be a finite set of atomic propositions andA a finite set of attributes. The
syntax of BD-LTL formulae consists of position formulae ϕ and class formulae ψ.
It is defined by the following grammar where p ∈ AP , x, y ∈ A and r ∈ Z.

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Xϕ | Yϕ | ϕUϕ | ϕSϕ | Cr
x ψ

ψ ::= @x | ψ ∧ ψ | ¬ψ | X= ψ | Y= ψ | ψU= ψ | ψ S= ψ | ϕ
The semantics of BD-LTL position formulae ϕ is defined over models (w, i)

consisting of an A-attributed data word w = (a0,d0)(a1,d1). . . ∈ (Σ ×ΔA)∞

over alphabet Σ = 2AP and a position 0 ≤ i < |w|. Class formulae ψ are defined
over models (w, i, d) containing an additional data value d ∈ Δ. Boolean and
LTL operators are defined as usual, ignoring the data values. For the semantics
of the quantifier Cr

x and class formulae ψ, let posd(w) := {i | 0 ≤ i < |w|, ∃x∈A :
di(x) = d} denote the set of positions i in w where some attribute has the value
d ∈ Δ. Then,

(w, i) |= Cr
x ψ if 0 ≤ i + r < |w| and (w, i + r,di(x)) |= ψ,

(w, i, d) |= ϕ if (w, i) |= ϕ,
(w, i, d) |= @x if di(x) = d,
(w, i, d) |= X= ψ if there is j ∈ posd(w), j > i

and, for the smallest such j, (w, j, d) |= ψ,
(w, i, d) |= ψ1 U

= ψ2 if there is j ∈ posd(w), j ≥ i s. t. (w, j, d) |= ψ2

and ∀j′∈posd(w),j>j′≥i : (w, j′, d) |= ψ1.

The operators Y= and S= are furthermore defined as expected and (w, 0) |= ϕ
is abbreviated w |= ϕ. We also use the abbreviations � and F= ϕ := �U= ϕ.

Definition 1 (BD-LTL±). We define the following syntactical fragments: BD-
LTL without operators X= and U= is called BD-LTL−. BD-LTL without opera-
tors Y= and S= is called BD-LTL+.



502 N. Decker et al.

In [8], the Logic of Repeating Values (LRV) was introduced as an extension
of LTL interpreted over multi-attributed data words. The additional operators
are of the form x ≈ Xr y, x ≈ 〈ϕ?〉y and x 	≈ 〈ϕ?〉y. The former expresses that
the current value of attribute x must be equal to the value of attribute y at
the position r steps ahead. Similarly, the latter two express that the value of x
must eventually or never, respectively, be observed as the value of y at a position
where, in addition, a formula ϕ holds. In LRV� only x ≈ Xr y and x ≈ 〈�?〉y
are allowed. x ≈ Xr y and x ≈ 〈ϕ?〉y can easily be translated into BD-LTL+:
x ≈ Xr y is equivalent to Cr

x@y and x ≈ 〈ϕ?〉y is equivalent to C0
xX

= F=(@y∧ϕ)
[14]. On the contrary, LRV cannot express the operator X=.

Proposition 1. BD-LTL+ is strictly more expressive than LRV�.

The satisfiability problem of LRV� (and LRV) was shown to be 2ExpSpace-
hard in [8] by encoding runs of so called chain automata using exponentially
many counters. The proof [8, Lemma 15] can easily be adapted to show that

the variant of LRV� where past instead of future operators are used (x ≈ Yr y,
x ≈ 〈ϕ?〉−1y) is also 2ExpSpace-hard and as BD-LTL− subsumes this variant
we obtain a lower bound for both of our fragments.

Theorem 1 (Hardness). The satisfiability problems of BD-LTL+ and BD-
LTL− are 2ExpSpace-hard over both, finite and infinite data words.

4 Satisfiability of BD-LTL± is 2ExpSpace-Complete

This section is dedicated to an exact characterization of BD-LTL± satisfiability
in terms of complexity. It also provides a basis for Section 6 that follows a similar
structure but is technically more involved.

First, we formally define data automata and give restrictions that reflect the
restrictions on our logic. They allow us to decide emptiness in ExpSpace, as
opposed to full data automata for which emptiness is as hard as reachability in
Petri nets [4]. Second, we briefly recall the (exponential) translation from BD-
LTL to data automata [15] and show that our logical restrictions indeed carry
over to the restrictions on the automata side.

4.1 ExpSpace-Variants of Data Automata

A data automaton (DA) is a tuple D = (A,B) where the base automaton A =
(Q,Σ, Γ, δA, Q0, FA, BA) is a letter-to-letter transducer and the class automaton
B = (S, Γ, δB, I, F,B) is an∞-automaton. A memory function of D is a mapping
f : Δ→ S∪{⊥} and we denote F the set of all memory functions. A configuration
of D is a tuple (q, f) ∈ Q×F consisting of a base automaton state and a memory
function. A run of D on a single-attributed data word w = (a0, d0)(a1, d1). . . ∈
(Σ × Δ)∞ is a maximal sequence ρ = (q0, f0)(q1, f1). . . ∈ (Q × F)∞ such that
q0 ∈ Q0, ∀d∈Δ : f0(d) = ⊥ and for all consecutive positions i, i+1 on ρ there is a
transition (qi, ai, g, qi+1) ∈ δA of the base automaton and a transition (s, g, s′) ∈
δB of the class automaton such that (1) fi+1(di) = s′ and (2) either fi(di) = s,
or fi(di) = ⊥ and s ∈ I, and (3) ∀d′∈Δ,d′ �=di : fi(d′) = fi+1(d

′).
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The run ρ is accepting if (I) it ends in a configuration (q, f) with q ∈ FA is
final and f(Δ) ∩ S ⊆ F , or (II) there are infinitely many configurations (q, fi)
on ρ such that q ∈ BA is Büchi-accepting and for each data value d occurring
last at some position i on w the state fi+1(d) ∈ F is final and for each data
value d′ occurring infinitely often on w there are infinitely many positions j
with dj = d′ and fj+1(d

′) ∈ B is Büchi-accepting. The word w is accepted if
there is an accepting run of D.

Intuitively, the base transducer A reads a letter ai ∈ Σ, performs a transition
and outputs its label g ∈ Γ . The memory function maintains an instance of the
class automaton B for every data value that occurred so far and spawns a new
instance for a fresh data value. The (present or newly spawned) instance of B that
corresponds to the current data value di, reads g and performs a step. For D to
accept, A and every spawned instance of B needs to accept by either terminating
in a final state or visiting some Büchi-accepting state infinitely often.

Definition 2 (Prefix- and suffix-closed DA). A data automaton D = (A,B)
is locally prefix-closed (pDA) if all states of the class automaton B are final and
Büchi-accepting. It is locally suffix-closed (sDA) if all states of B are initial.

The construction to decide emptiness of DA given in [4] translates a DA into
a multi-counter automaton (MCA) that maintains for every class automaton
state the number of instances residing in it. That way, emptiness of DA reduces
(for finite words) to reachability in MCA. Note that technical differences in the
various notions of counter systems (e. g., MCA, MCS, VASS, Petri nets) are
inessential here.

For pDA, where all class automaton states are final and Büchi-accepting,
automaton instances can be dismissed in any state. The corresponding MCS thus
allows for a random decrement of counters. Clearly, in such a lossy system the
problem of reachability reduces to coverability. Regarding infinite words, repeated
coverability is sufficient since every class automaton state is also Büchi-accepting.
Both problems are in ExpSpace [19,12].

For an sDA we can decide if it accepts a finite word by reversing the automata
and checking the resulting pDA for emptiness. In the rest of this section we
address the remaining case of sDA emptiness wrt. infinite words obtaining the
following result.

Theorem 2. Emptiness of pDA and sDA over finite and infinite data words is
decidable in ExpSpace.

Let D = (A,B) be an sDA with A = (Q,Σ, Γ, δA, Q0, ∅, BA) (we omit final
states) and B = (S,Σ, δ, I, F,B). Towards deciding emptiness of D, we consider
an accepting run ρ of D and separate the finite from the infinite behaviour in
terms of transitions t ∈ δ of the class automaton: There is a position i on ρ, such
that t is taken after i iff t is taken infinitely often on ρ.

The idea is now to guess (characteristics of) the configuration at this position
and check that there is a finite run reaching the configuration and that start-
ing from it there is an infinite accepting run. For the former, we construct an
sDA that accepts a finite word iff the configuration is reachable. For the lat-
ter, we now have guaranteed infinite recurrence of all relevant transitions and
can thereby reduce the problem to emptiness of an at most exponentially larger
Büchi automaton.
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For a set T ⊆ δ of transitions of the class automaton B and a state q ∈ Q of
the base automaton A, consider the following three properties.

(A1) After taking any transition in T , B can eventually reach a final state from
F or an accepting state from B, only by taking transitions from T .

(A2) There is a sequence t1t2. . . ∈ Tω with ti = (si, gi, s
′
i) in which each t ∈ T

occurs infinitely often and g1g2. . . ∈ Γω is an output of A starting in q.
(A3) There is a reachable configuration (q, f) such that for all data values d ∈ Δ,

either (i) there is no corresponding instance of B (f(d) = ⊥), or (ii) the cor-
responding instance of B is in an accepting state (f(d) ∈ F ), or (iii) there
is a transition (f(d), g, s) ∈ T for some s ∈ S and some g ∈ Γ .

Lemma 1. The sDA D accepts an infinite data word iff there are T ⊆ δ, q ∈ Q
such that the properties (A1)–(A3) hold.

Verifying (A1) is a reachability problem in the finite graph of B restricted to
T . Further, we can build a Büchi automaton over Γ that is non-empty iff (A2)
holds: InA, take the outputs as inputs and remove all transitions with a label not
occurring on any transition in T . For each transition (s, g, s′) ∈ T , intersect the
automaton with the property GF g. The size of the resulting Büchi automaton is

at most c(|Q|
2) for a constant c. Finally, (A3) can be verified by constructing the

sDA D̂ = (Â, B̂) with Â = (Q,Σ, Γ, δA, Q0, {q}, ∅) and B̂ = (S,Σ, δ, I, F ∪ •T ),
where •T := {s ∈ S | ∃s′∈S,g∈Γ : (s, g, s′) ∈ T }, and checking it for emptiness in
exponential space as above.

Lemma 2. Given T ⊆ δ and q ∈ Q, it is decidable in ExpSpace if properties
(A1)–(A3) are satisfied.

To conclude, using Lemma 1 and 2 we can check the sDA D for emptiness
wrt. infinite words by nondeterministically guessing a state q ∈ Q and a set of
transitions T ⊆ δ and verifying (A1)–(A3) in exponential space.

4.2 From BD-LTL± to Suffix- and Prefix-closed Data Automata

We adopt the construction given in [14] to show that a BD-LTL± formula can
be translated into an at most exponentially larger sDA and pDA, respectively,
that is nonempty iff the formula is satisfiable. First, the formula is translated
into an equisatisfiable formula ϕ over single-attributed data words. Second, a
data automaton Aϕ is constructed that is nonempty iff ϕ is satisfiable.

The basic idea for eliminating multiple attributes in a formula is to encode one
position of an A-attributed data word into a segment of |A| positions in a single-
attributed word. The temporal operators are adjusted by offsets according to
the segment length. For this elimination, given in detail in [15], only additional
Cr
x operators are required. A BD-LTL± formula hence stays in its respective

fragment and grows at most polynomially in size.
The data automaton Aϕ is obtained by constructing a base automaton that

verifies global constraints and a class automaton that verifies local constraints
(those expressed by class formulae in ϕ).

Let rmax := max({|r| | Cr occurs in ϕ}∪ {0}) be the largest (absolute) offset
and APϕ the set of atomic propositions used in ϕ. Consider new, additional

propositions pψj and =j for each −rmax ≤ j ≤ rmax and subformula ψ of ϕ.
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We construct Aϕ s. t. it checks on a data word that a proposition pψj holds at

position i iff ψ holds at position i+ j and that pϕ0 holds at the very first position.
It then verifies that ϕ holds on an input word. If ϕ is satisfiable then any of its
models can be annotated by propositions such that it is accepted by Aϕ.

By straight forward equivalences we assume w. l. o. g. that all and only class
operators in ϕ are preceded by a class quantifier Cr. The base automaton of

Aϕ is constructed such that it verifies the correct occurrence of propositions pψ0
where ψ is a position formula not starting with a Cr quantifier. When evaluating
subformulae of ψ just by referring to the corresponding propositions, these are
regular properties.

To capture the other cases where ψ has the form Cr ψ′ the class automaton
of Aϕ is constructed to verify them. As the class formulae express regular prop-
erties on the class projection they can be translated as usual. Subformulae that
are position formulae are as above evaluated in terms of their corresponding
propositions. If the offset r is nonzero, this shift has to be taken into account by
the class automaton. This is possible since at every positions the information for
rmax steps back and forth is provided by the additional propositions. While in
the original construction from [14], the propositions are not needed, we require
them to obtain suffix or prefix closed class automata. Also due to the possible
global shift r by Cr quantifiers, the class automaton needs to know how many
steps to take on the class projection in order to perform a specific number of
global steps. This information can be derived from the proposition =j that are
assumed to holds at position i iff position i + j carries the same data value.

It is easy to construct a register automaton R that verify this assumption
by maintaining the frame of data values. While it is known that RA can be
translated into DA it is not clear how to adapt the construction from [14] to
obtain sDA and pDA. The following slightly weaker lemma is, however, sufficient.
We only need to verify that the data automaton constructed above accepts a
word where propositions =j hold as assumed.

Lemma 3 (Simulating RA). Given an sDA or pDA D and a register au-
tomaton R, we can construct an sDA or pDA D′, respectively, such that L(D)∩
L(R) = ∅ iff L(D′) = ∅. D′ is of polynomial size in the size of D and R and of
exponential size in the number of registers of R.

Translating LTL formulae into word automata results in a state space that is at
most exponential in the size of the formula and thus the construction gives an
up to exponential overall blowup. Note that we assume a unary encoding for the
offsets r in formulae Cr. By Theorem 2, the translation proves our completeness
result for BD-LTL±.

Theorem 3 (2ExpSpace-completeness). Satisfiability problems of BD-LTL+

and BD-LTL− are 2ExpSpace-complete over finite and infinite data words.

5 Ordered Navigation on Multi-attributed Data Words

As we have seen, multiple attributes do not actually enrich the models of BD-
LTL. They can be eliminated due to the inability of BD-LTL to reason about
their interdependencies. A natural extension is thus to allow for so-called tu-
ple navigation, e. g., by adding an operator Cr

(x,y) binding a tuple instead of
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single values. Class operators such as X= and S= then navigate along the posi-
tions of a multi-attributed data word that carry both values. Unfortunately, it is
well-known that such an extension leads to undecidability. For example, LRV is
known to be undecidable when being extended by tuple navigation [8]. This im-
plies undecidability of such an extension of BD-LTL+ and by similar arguments
BD-LTL−.

Proposition 2. The satisfiability problem of BD-LTL± with tuple navigation is
undecidable.

To overcome the restrictions of BD-LTL while maintaining decidability, at least
for reasonable fragments, we define the logic ND-LTL.

Definition 3 (ND-LTL). The logic Nested Data LTL (ND-LTL) consists of
BD-LTL formulae where the set of attributes A is enriched by a tree order relation
≤⊆ A × A. The fragments ND-LTL+ and ND-LTL− are obtained by the same
restrictions as for BD-LTL+ and BD-LTL−, respectively.

The quantifier Cr
x in ND-LTL binds not only the value of attribute x ∈ A but also

the values of all smaller attributes. Class operators, such as U=, then navigate
according to this tuple of values respecting, however, the attribute order in the
following sense.

For an attribute x ∈ A, with downward-closure x↓ consisting of attributes

x1 < x2 < . . . < xn, a mapping d ∈ Δx↓
induces a vector of data values

(d(x1),d(x2), . . . ,d(xn)). By d > d′ we denote that d and d′ have the same
such vector representation. Note, this can differ from the element-wise equality
of the functions. Using this we define for a data word w ∈ (Σ × ΔA)∞ and

d ∈ Δx↓
the set posd(w) of positions i in w where there is an attribute y ∈ A

such that d > di|y↓ . ND-LTL class formulae are interpreted over models (w, i,d)

where i ∈ N, 0 ≤ i < |w|, is a position in w and d ∈ Δx↓
for some x ∈ A. For

position formulae ϕ, x, y ∈ A and r ∈ Z, we define the semantics of the Cr
x

operator and class formulae ψ as follows.

(w, i) |= Cr
x ψ if 0 < i + r < |w| and (w, i + r,di|x↓) |= ψ,

(w, i,d) |= ϕ if (w, i) |= ϕ,
(w, i,d) |= @x if di|x↓ > d,
(w, i,d) |= X= ψ if there is j ∈ posd(w), j > i,

and, for the smallest such j, (w, j,d) |= ψ,
(w, i,d) |= ψ1 U

= ψ2 if ∃j∈posd(w),j≥i : (w, j,d) |= ψ2

and ∀j′∈posd(w),j>j′≥i : (w, j′,d) |= ψ1.

As before, the operators Y= and S= are defined as expected. The semantics of
boolean and LTL operators in ND-LTL formulae remains as for BD-LTL.

Lemma 4. For every rMCS M = (Q,C, δ,Q0), there is an ND-LTL− formula
ΦM over the set of propositions AP = Q ∪ {inc, dec, res} ∪ C and attributes A
s. t. ΦM is satisfiable iff there is a data word w ∈ (2AP ×ΔA)ω where str(w) =
{p0}{p1}. . . (pi ∈ AP ) and p0p1. . . is a run in M.

Using a pair xc > x̂c of attributes for each counter c ∈ C, a formula
∧
c∈C G((res∧

X c)→ C0
x̂c
¬Y=�) can be used for specifying resets and

∧
c∈C G((dec∧Xc)→
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C0
xc

Y=(inc ∧ X c)) assures non-negative counter values. It is clear that using a
further constraint of the form F q allows for expressing control state reachability
in rMCS, being Ackermann-hard by results on lossy channel systems in [20].
Encoding such finite runs of an rMCS backwards, can be done analogously within
the fragment ND-LTL+.

Theorem 4 (Ack-hardness). Satisfiability of ND-LTL± is Ackermann-hard.

Similarly, GF q expresses repeated control state reachability in rMCS, being
undecidable due to results in [5]. Further, full ND-LTL is already undecidable
over finite words. This can be shown by considering the formula

∧
c∈C G((inc ∧

X c) → C0
xc

X=(dec ∧ X c)) that ensures that for every incrementing operation,
there is a following decrement on the same counter before the next reset on that
counter. Thus, reset operations turn into zero tests, allowing to encode Minski
machine computations where reachability is undecidable.

Theorem 5 (Undecidability). Satisfiability of ND-LTL is undecidable over
finite and infinite data words. Satisfiability of ND-LTL− is undecidable over
infinite data words.

6 Deciding Satisfiability of ND-LTL±

Having established undecidability and hardness results for ND-LTL we finally
turn to decision procedures in this section. We complete our picture by decidabil-
ity results for the remaining cases of ND-LTL− over finite words and ND-LTL+

over finite and infinite words. The structure follows that of Section 4 and we
provide the essential ideas for lifting the constructions as well as additional ar-
guments where needed. To capture the notion of nesting in ND-LTL we extend
data automata and again provide restrictions that carry over from the logic.

We extend data automata to read multi-attributed data words by adding a
class automaton for each attribute. The class automata are linearly ordered in
the sense that the i-th class automaton reads refinements (subwords) of the
input of the (i − 1)-th class automaton. That way they express a linear order
on the attributes which is, however, sufficient since we later show that ND-LTL
formulae over a tree order can be translated into formulae over a linear order.
For that reason, we only consider attribute sets [k] = {1, . . . , k} for k ∈ N.

Definition 4 (Nested data automaton). A k-nested data automaton (k-
NDA) is a (k + 1)-tuple D = (A,B1, . . . ,Bk) where (A,Bi) is a data automaton
for each i ∈ [k]. D is called locally prefix-closed (pNDA) if each (A,Bi) is a
pDA and it is called locally suffix-closed (sNDA) if each (A,Bi) is an sDA.

Let D = (A,B1, . . . ,Bk) be a k-NDA with A = (Q,Σ, Γ, δA, Q0, FA, BA) and
Bi = (Si, Γ, δi, Ii, Fi, Bi). A configuration of D is a tuple c = (q, f1, . . . , fk) ∈
Q× F1 × . . . × Fk where Fi is the set of memory functions f : Δ[i] → Si ∪ {⊥}
(partially) mapping i-tuples of data values to states.

A run of D on an [k]-attributed data word w = (a0,d0)(a1,d1). . . ∈ (Σ ×
Δ[k])∞ is a maximal sequence ρ = (q0, f1,0, . . . , fk,0)(q1, f1,1, . . . , fk,1). . . of con-

figurations where q0 ∈ Q0, fi,0(Δ
[i]) = {⊥} and for each consecutive positions
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n, n + 1 on ρ there is a transition (qn, an, g, qn+1) ∈ δA for g ∈ Γ of the base
automaton and a transition (si, g, s

′
i) ∈ δi for each class automaton Bi such that

(1) fi,n+1(dn|[i]) = s′i and (2) either fi,n(dn|[i]) = si, or fi,n(dn|[i]) = ⊥ and
si ∈ Ii, and (3) ∀d′∈Δ[i],d′ �=dn|[i] : fi,n(d

′) = fi,n+1(d
′).

A run of D on w is (finitely) accepting if it ends in a configuration (q, f1, . . . fk)
with q ∈ FA and ∀i∈[k]fi(Δ

[i]) ⊆ Fi ∪ {⊥}. Moreover, it is accepting if there are
infinitely many configurations (q, f1,n, . . . , fk,n) on ρ such that q ∈ BA is Büchi-

accepting and for each level i ∈ [k] and each data valuation d ∈ Δ[i] there is
either (I) no position m with dm|[i] = d, or (II) a last position m with dm|[i] = d
and the state fi,m+1(d) ∈ F is final, or (III) there are infinitely many positions
m where dm|[i] = d and fi,m+1(d) ∈ Bi is Büchi-accepting.

The idea of deciding emptiness of pNDA and sNDA is, again, to translate
them into multi-counter systems, which this time will be nested. Similar notions
of such nested systems can be found in [17,2].

Definition 5 (k-nMCS). A k-nested multi-counter system (k-nMCS) is a tu-
ple M = (Q, δ, I) with a finite set of states Q, a set of initial states I ⊆ Q, and
a transition relation δ ⊆ (

⋃
i∈[k] Q

i)×Qk.

A multiset over a set S is a mapping m ∈ NS . For a k-nMCSM = (Q, δ, I), the
set of configurations of level i are defined inductively (from k to 0) as Ck = Q
and Ci−1 = Q × NCi . The set of configurations of M is then CM = C0. We
can see an element of C0 as a term constructed over unary function symbols
Q, constants Q and the binary operator +. The terms are considered modulo
associativity and commutativity of the + operator which does not appear on the
top level. For example q0(q1(q3(q5+q5+q6)+q3(q6+q6))+q1(q3(q6+q6)+q3(q6+
q5 + q5)) + q2(q7(q8)) + q2(q7(q8))) corresponds to (q0, {(q1, {(q3, {q5 : 2, q6 : 1}) :
2, (q3, {q6 : 2}) : 2}) : 1, (q2, {(q7, {q8 : 1}) : 1}) : 2}).

Now, the transition relation →⊆ CM × CM on configurations can be eas-
ily defined as a rewrite rule. For ((q0, q1, . . . , qi), (q

′
0, q

′
1, q

′
2, . . . , q

′
k)) ∈ δ, we

have (q0, X1 + q1(X2 + . . . qi(Xi+1). . . )) → (q′0, X1 + q′1(X2 + . . . q′i(Xi+1 +
q′i+1(q

′
i+2. . . q

′
k−1(q

′
k))))) where Xi ∈ NCi . As usual we denote by →∗ the re-

flexive and transitive closure of →.
A well-quasi-ordering (WQO) on a set C is a pre-order � such that, for any

infinite sequence c0, c1, c2, . . . there are i, j with i < j and ci � cj . A WQO � on
a set C induces a WQO �m on multisets over C as follows. Let B = {b1, . . . , bn}
and B′ = {b′1, . . . , b′n′} two multisets over C. Then, B �m B′ iff there is an
injection h from [n] to [n′] with bi � b′h(i). Let �k be the WQO = (equality

relation) on the set of states Q of the k-nMCS M. We iterate the construction
and obtain a WQO �1 on CM. It can be easily seen that the transition relation
→ of k-nMCS is monotonic wrt. �1, i. e., if c1 �1 c2 and c1 → c3 then c2 → c4
for some c4 with c2 �1 c4. A k-nMCS is hence a well-structured transition system
[1] and we obtain the following lemma.

Lemma 5 (Coverability). Let M = (Q, δ, I) be a k-nMCS, c ∈ CM a con-
figuration and q ∈ Q a state. The coverability problem of checking if there is a
configuration c′ ∈ CM with c � c′ such that (q, ∅)→∗ c′, is decidable.

Given a k-NDA D = (A,B1, . . . ,Bk) where A = (Q0, Σ, Γ, δ0, I0, F0, ∅) and
Bi = (Qi, Γ, δi, Ii, Fi, ∅) for i ∈ [k] without Büchi-accepting states, we can con-
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struct a k-nMCSMD = (
⋃k
i=0 Qi, δ, I0) where δ mimics the possible transitions

of A and the Bi. Then D is nonempty iff a configuration can be reached inMD
containing only states from F :=

⋃k
i=0 Fi If all all class automata states are

final (D is a pNDA) this reduces to coverability inMD. The case where D is an
sNDA can be reduced to the case of pNDA as above by reversing the base and
the class automata. As is shown later, emptiness of pNDA with Büchi-accepting
is undecidable. The remaining case of sNDA is addressed in the rest of this sec-
tion. We present conditions that are necessary and sufficient for for an sNDA to
nonempty and sketch how they can be checked.

Let D = (A,B1, . . . ,Bk) be a k-sNDA where A = (Q,Σ, Γ, δA, IA, ∅, BA)
and Bi = (Si, Γ, δi, Si, Fi, Bi). For a configuration c = (q, f1, . . . , fk) of D, a
data valuation d ∈ Δ[1] with f1(d) 	= ⊥ corresponds to an “active” instance
of the class automaton B1. Consider the set m := {d′ ∈ Δ[i] | i ∈ [k], fi(d

′) 	=
⊥,d′(1) = d(1)} of data valuations depending on d. It is prefix-closed wrt. the
linear order on [k] and can hence be considered as a tree with root d (level 1).
Define a labeling s : m →

⋃
i∈[k] Si attaching to each node d′ ∈ Δ[i] (level i) in

m the current state of the corresponding class automaton instance, i. e., s(d′) :=
fi(d

′), and repeatedly delete all leaf nodes of m that are final states. Let Mc be
the (finite) set of all such labeled trees (m, s) for a configuration c.

As done similar in Section 4, we characterize a configuration that splits the
finite from the infinite behaviour on an accepting run ofD. For a set of transitions
T ⊆ δ1 of B1, a state q ∈ Q of A and a finite set M of finite trees labeled by
states from S1 ∪ . . . ∪ Sk, consider the following properties.

(B1) For all t1 ∈ T there is a sequence t1t2. . . ∈ T∞, ti = (si, gi, s
′
i), inducing

an accepting run of B1 and g1g2. . . ∈ �(L(B2) ∩ �(. . . ∩ �(L(Bk−1) ∩
�L(Bk)). . . )).

(B2) There is a sequence t1t2. . . ∈ Tω with ti = (si, gi, s
′
i) in which each t ∈ T

occurs infinitely often and g1g2. . . ∈ Γω is an output of A starting in q.
(B3) There is a reachable configuration c = (q, f1, . . . , fk) with M = Mc such

that for all i ∈ [k] and all d ∈ Δ[i] either (i) fi(d) = ⊥ (there is no
corresponding instance), or (ii) ∀d′∈Δ[k] s. t. d′|[i]=d∀j≥i : fj(d

′|[j]) ∈ Fj
(the corresponding instance and all instances depending on it are in a
final state), or (iii) ∃g∈Γ,s′∈S : (f1(d|[1], g, s′) ∈ T (there is a transition
applicable to the corresponding instance of B1).

(B4) For each tree (m, s) ∈M there is a second labeling γ : m→ Γ∞ such that,
for the root r ∈ m, the label γ(r) is accepted by B1 restricted to T when
starting in state s(r) ∈ S1 and for all nodes v ∈ m on a level i > 1 (i) γ(v)
is accepted by Bi starting in state s(v) ∈ Si and (ii) γ(v) must be a shuffle
of the labels of the direct children of v and a (possibly infinite) number of
words from the shuffle set �(L(Bi+1). . . ∩�(L(Bk−1) ∩�L(Bk)). . . ).

Lemma 6. The sNDA D accepts an infinite data word iff there are T ⊆ δ1,
q ∈ Q and a set M of finite trees labeled by states from S1 ∪ . . . ∪ Sk s. t.
properties (B1)–(B4) hold.

Based on these conditions we obtain a decision procedure by nondeterministically
guessing the state q and the set of transitions T . We verify (B2) as above by
constructing and analyzing a Büchi automaton. Then we compute compute a
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set of candidates for M that satisfy (B3) using the following idea. Construct a

k-sNDA D̃ = (Ã, B̃1, . . . , B̃k), without Büchi-accepting states, from D by taking

q as only final state in Ã. In each step, Ã guesses whether the currently active
instance of B̃1 performs its last step entering a source state s of some transition
(s, g, s′) ∈ T . In that case it marks the current output by some flag. B̃1 simulates

B1 and verifies that Ã guessed correctly. Each other class automaton B̃i (i >
1) simulates Bi. Upon reading the flag it moves to a final copy of the state

they would have moved to otherwise. The configurations in which D̃ can accept
are exactly those configurations reachable by D that satisfy (B3). We apply
the standard saturation algorithm for well-structured transition systems where
constraints are propagated from the target control state backwards along the
edges of the nMCS. After its termination, the algorithm computed the minimal
preconditions for reaching a the target state. On a reversed sNDA, this can
be understood as a forward propagation computing minimal post-conditions.
In this case the target state is q and the minimal post conditions characterize
the minimal configurations (q, f1, . . . , fk) that can be reached. Here, minimal
means with the smallest number of instances of some class automaton. The
post-conditions hence give us all minimal sets M when reaching q. These are the
(finitely many) candidates for (B4) since if none of those satisfies the properties
any larger one will not either. For testing the candidates M to comply (B4) and
T to satisfy (B1), the essential idea is to let the shuffle requirements be checked
by a (k− 1)-sNDA built by modifying the components of D. Such an automaton
is constructed for each (m, s) ∈ M and each t ∈ T , respectively, and can, by
induction, be checked for emptiness.

Theorem 6. Emptiness of sNDA is decidable over finite and infinite data words.
Emptiness of pNDA is decidable over finite data words.

From ND-LTL to NDA. The translation from ND-LTL± to sNDA and pNDA,
respectively, follows closely the one for BD-LTL in Section 4.2. For an ND-LTL
formula over arbitrarily ordered attributes, a word has at every position a tree
of attributes with n maximal paths of length of at most k. The first step is
to translate this formula to a formula over the linearly order set of attributes
[k] and encode each position of such a word by a segment of length n, where
each position within a segment corresponds to a maximal path in the tree order
(A,≤). This step is crucial as NDA only navigate according to linearly ordered
attributes. For translating the obtained formula ϕ into an NDA, the set APϕ of

atomic propositions used by ϕ is extended by propositions pψj and =x
j for each

−rmax ≤ j ≤ rmax and subformula ψ and attribute x of ϕ, where rmax denotes
the largest (absolute) value used by Cr

x operators. As before positional formulae
can be checked by the base automaton. Class formulae of the form Cr

x ψ can be
handled by the local automaton corresponding to attribute x. Propositions =x

j
are checked separately for each attribute x by adapting Lemma 3.

Now, together with Theorem 6, we obtain a decision procedure for ND-LTL±.

Theorem 7. Satisfiability of ND-LTL+ is decidable over finite and infinite data
words. Satisfiability of ND-LTL− is decidable over finite data words.

Corollary 1. Emptiness of pNDA wrt. infinite data words is undecidable.
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reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

21. Schwentick, T., Zeume, T.: Two-variable logic with two order relations. Logical
Methods in Computer Science 8(1) (2012)

22. Tzevelekos, N., Grigore, R.: History-register automata. In: Pfenning, F. (ed.)
FOSSACS 2013. LNCS, vol. 7794, pp. 17–33. Springer, Heidelberg (2013)



Verification for Timed Automata Extended

with Unbounded Discrete Data Structures

Karin Quaas�

Universität Leipzig, Germany

Abstract. We study decidability of verification problems for timed au-
tomata extended with unbounded discrete data structures. More de-
tailed, we extend timed automata with a pushdown stack. In this way, we
obtain a strong model that may for instance be used to model real-time
programs with procedure calls. It is long known that the reachability
problem for this model is decidable. The goal of this paper is to identify
subclasses of timed pushdown automata for which the language inclusion
problem and related problems are decidable.

1 Introduction

Timed automata were introduced by Alur and Dill [4], and have since then
become a popular standard formalism to model real-time systems. An undeniable
reason for the success of timed automata is the PSPACE decidability of the
language emptiness problem [4]. A major drawback of timed automata is the
undecidability [4] of the language inclusion problem: given two timed automata
A and B, does L(A) ⊆ L(B) hold? The undecidability of this problem prohibits
the usage of automated verification algorithms for analysing timed automata,
where B can be seen as the specification that is supposed to be satisfied by the
system modelled by A. However, if B is restricted to have at most one clock,
then the language inclusion problem over finite timed words is decidable (albeit
with non-primitive recursive complexity) [31]. Another milestone in the success
story of timed automata is the decidability of the model checking problem for
timed automata and Metric Temporal Logic (MTL, for short) over finite timed
words [32].

Timed automata can express many interesting time-related properties, and
even with the restriction to a single clock, they allow one to model a large class
of systems, including, for example, the internet protocol TCP [30]. If we want
to reason about real-time programs with procedure calls, or about the number
of events occurring in computations of real-time systems, we have to extend
the model of timed automata with some unbounded discrete data structure. In
1994, Bouajjani et al. [7] extended timed automata with discrete counters and a
pushdown stack and proved that the satisfiability of reachability properties for
several subclasses of this model is decidable. Nine years later, it was shown that
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the binary reachability relation for timed pushdown systems is decidable [14].
Decidability of the reachability problem was also proved for several classes of
timed counter systems [8], mainly by simple extensions of the classical region-
graph construction [4]. The language inclusion problem, however, is to the best of
our knowledge only considered in [18] for the class of timed pushdown systems.
In [18] it is stated that the language inclusion problem is decidable if A is a
timed pushdown automaton, and B is a one-clock timed automaton. The proof
is based on an extension of the proof for the decidability of the language inclusion
problem for the case that A is a timed automaton without pushdown stack [31].
Unfortunately, and as is well known, the proof in [18] is not correct.

In this paper, we prove that different to what is claimed in [18], the language
inclusion problem for the case that A is a pushdown timed automaton and B
is a one-clock timed automaton is undecidable. This is even the case if A is a
deterministic instance of a very restricted subclass of timed pushdown automata
called timed visibly one-counter nets. On the other hand, we prove that the
language inclusion problem is decidable if A is a timed automaton and B is a
timed automaton extended with a finite set of counters that can be incremented
and decremented, and which we call timed counter nets. As a special case, we
obtain the decidability of the universality problem for timed counter nets: given
a timed automaton A with input alphabet Σ, does L(A) accept the set of all
timed words over Σ? Finally, we give the precise decidability border for the
universality problem by proving that the universality problem is undecidable for
the class of timed visibly one-counter automata. We remark that all results apply
to extensions of timed automata over finite timed words.

2 Extensions of Timed Automata with Discrete Data
Structure

We use Z, N and R≥0 to denote the integers, the non-negative integers and the
non-negative reals, respectively.

We use Σ to denote a finite alphabet. A timed word over Σ is a non-empty
finite sequence (a1, t1) . . . (ak, tn) ∈ (Σ×R≥0)

+ such that the sequence t1, . . . , tn
of timestamps is non-decreasing. We say that a timed word is strictly monotonic
if ti−1 < ti for every i ∈ {2, . . . , n}. We use TΣ+ to denote the set of finite timed
words over Σ. A set L ⊆ TΣ+ is called a timed language.

Let X be a finite set of clock variables ranging over R≥0. We define clock
constraints φ over X to be conjunctions of formulas of the form x ∼ c, where
x ∈ X , c ∈ N, and ∼∈ {<,≤,=,≥, >}. We use Φ(X ) to denote the set of all
clock constraints over X . A clock valuation is a mapping from X to R≥0. A
clock valuation ν satisfies a clock constraint φ, written ν |= φ, if φ evaluates
to true according to the values given by ν. For δ ∈ R≥0 and λ ⊆ X , we define
ν + δ to be (ν + δ)(x) = ν(x) + δ for each x ∈ X , and we define ν[λ ··= 0] by
(ν[λ ··= 0])(x) = 0 if x ∈ λ, and (ν[λ ··= 0])(x) = ν(x) otherwise.

Let Γ be a finite stack alphabet. We use Γ ∗ to denote the set of finite words
over Γ , including the empty word denoted by ε. We define a finite set Op of
stack operations by Op ··= {pop(a), push(a) | a ∈ Γ} ∪ {noop, empty?}.
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A timed pushdown automaton is a tuple A = (Σ,Γ,L,L0,Lf ,X , E), where

– L is a finite set of locations,
– L0 ⊆ L is the set of initial locations,
– Lf ⊆ L is the set of accepting locations,
– E ⊆ L× Σ × Φ(X )× Op× 2X × L is a finite set of edges.

A state of A is a triple (l , ν, u), where l ∈ L is the current location, the clock
valuation ν represents the current values of the clocks, and u ∈ Γ ∗ repre-
sents the current stack content, where the top-most symbol of the stack is the
left-most symbol in the word u, and the empty word ε represents the empty
stack. We use GA to denote the set of all states of A. A timed pushdown
automaton A induces a transition relation ⇒A on (GA × R≥0 × Σ × GA) as
follows: 〈(l , ν, u), δ, a, (l ′, ν′, u′)〉∈⇒A, if, and only if, there exists some edge
(l , a, φ, op, λ, l ′) ∈ E such that (ν + δ) |= φ, ν′ = (ν + δ)[λ ··= 0], and (i) if
op = pop(a) for some a ∈ Γ , then u = a · u′; (ii) if op = push(a) for some a ∈ Γ ,
then u′ = a · u; (iii) if op = empty?, then u = u′ = ε; (iv) if op = noop, then
u′ = u. A run of A is a finite sequence

∏
1≤i≤n〈(li−1, νi−1, ui−1), δi, ai, (li, νi, ui)〉

such that 〈(li−1, νi−1, ui−1), δi, ai, (li, νi, ui)〉∈⇒A for every i ∈ {1, . . . , n}. A run
is called successful if l0 ∈ L0, ν0(x) = 0 for every x ∈ X , u0 = ε, and ln ∈ Lf .
With a run we associate the timed word (a1, δ1)(a2, δ1 + δ2) . . . (an, Σ1≤i≤nδi).
The language accepted by a timed automaton, denoted by L(A), is defined to
be the set of timed words w ∈ TΣ+ for which there exists a successful run of A
that w is associated with.

Next we define some subclasses of timed pushdown automata; see Fig. 1
for a graphical overview. We start with timed extensions of one-counter au-
tomata [16,28] and one-counter nets [24,1]. A timed one-counter automaton is a
timed pushdown automaton where the stack alphabet is a singleton. By writing
push and pop we mean that we increment and decrement the counter, respec-
tively, whereas empty? corresponds to a zero test. A timed one-counter net is
a timed one-counter automaton without zero tests, i.e., the empty? operation
is not allowed. We remark that for both classes, the execution of an edge of
the form (l , a, φ, pop, λ, l ′) is blocked if the stack is empty. Next, we consider the
timed extension of an interesting subclass of pushdown automata called visibly
pushdown automata [5]. A timed visibly pushdown automaton is a timed push-
down automaton for which the input alphabet Σ can be partitioned into three
pairwise disjoint sets Σ = Σint ∪ Σcall ∪ Σret of internal, call, and return input
symbols, respectively, and such that for every edge (l , a, φ, op, λ, l ′) the following
conditions are satisfied:

– a ∈ Σint if, and only if, op = noop,
– a ∈ Σcall, if, and only if, op = push(b) for some b ∈ Γ ,
– a ∈ Σret if, and only if, op = empty? or op = pop(b) for some b ∈ Γ .

A timed visibly one-counter automaton (timed visibly one-counter net, respec-
tively) is a timed one-counter automaton (timed one-counter net, respectively)
that is also a timed visibly pushdown automaton. We say that a timed visibly
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one-counter net with no clocks is deterministic if for all e = (l , a, true, op′, ∅, l ′),
e′ = (l , a, true, op′′, ∅, l ′′) ∈ E with e 	= e′ we have either op′ = pop and
op′′ = empty?, or op′ = empty? and op′′ = pop.

Finally, we define the class of timed counter nets, which generalizes timed
one-counter nets, but is not a subclass of timed pushdown automata. A timed
counter net of dimension n is a tuple A = (Σ,n,L,L0,Lf ,X , E), where L,L0,Lf
are the sets of locations, initial locations and accepting locations, respectively,
and E ⊆ L × Σ × Φ(X ) × {0, 1,−1}n × 2X × L is a finite set of edges. A state
of a timed counter net is a triple (l , ν,v), where l ∈ L, ν is a clock valua-
tion, and v ∈ Nn is a vector representing the current values of the counters.
We define 〈(l , ν,v), δ, a, (l ′, ν′,v′)〉∈⇒A if, and only if, there exists some edge
(l , a, φ, c, λ, l ′) ∈ E such that (ν + δ) |= φ, ν′ = (ν + δ)[λ ··= 0], and v′ = v + c,
where vector addition is defined pointwise. Note that, similar to pop operations
on an empty stack, transitions which result in the negative value of one of the
counters are blocked. The notions of runs, successful runs, associated timed words
and the language accepted by A, are defined analogously to the corresponding
definitions for timed pushdown automata.

One-clock timed

pushdown automata

One-clock timed visibly

pushdown automata

One-clock timed visibly

one-counter automata

One-clock timed

one-counter automata

One-clock timed visibly

one-counter nets

One-clock timed

one-counter nets

One-clock timed

counter nets

Fig. 1. Extensions of one-clock timed automata with discrete data structures. The
subclass relation is represented by dashed arrows. The language emptiness problem
is decidable for all classes. The classes in grey boxes have a decidable universality
problem, the classes in white boxes have an undecidable universality problem, where
the corresponding results for classes in boxes with bold line are new and presented in
this paper.

3 Main Results

In this section, we present the main results of the paper. We are interested in
the language inclusion problem L(A) ⊆ L(B), where A and B are extensions of
timed automata with discrete data structure. Recall that according to standard
notation in the field of verification, in this problem formulation B is seen as the
specification, and A is the system that should satisfy this specification, i.e., A
should be a model of B. As a special case of this problem, we consider the univer-
sality problem, i.e., the question whether L(A) = TΣ+ for a given automaton
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A. In general, the two problems are undecidable for timed pushdown automata.
This follows on the one hand from the undecidability of the universality problem
for timed automata [4], and on the other hand from the undecidability of the
universality problem for pushdown automata. In fact, it is long known that the
universality problem is undecidable already for non-deterministic one-counter
automata [22,26].

However, there are interesting decidability results for subclasses of timed push-
down automata: The language inclusion problem is decidable if A is a timed au-
tomaton, and B is a timed automaton with at most one clock [31]. As a special
case, the universality problem for timed automata is decidable if only one clock is
used. The language inclusion problem is also decidable if A is a one-counter net
and B is a finite automaton, and if A is a finite automaton and B is a one-counter
net [27]. The universality problem for non-deterministic one-counter nets has re-
cently been proved to have non-primitive recursive complexity [25]. Further we
know that the universality and language inclusion problems are decidable if A
and B are visibly pushdown automata [6].

Hence it is interesting to consider the two problems for the corresponding
subclasses of timed pushdown automata. It turns out that the decidability status
changes depending on whether the model uses a stack (or, more detailed: a
counter) or not. As a first main result, we have:

Theorem 1. The language inclusion problem is undecidable if A is a timed
visibly one-counter net and B is a timed automaton, even if A is deterministic
and has no clocks, and B uses at most one clock.

We remark that this result corrects a claim concerning the decidability of the
language inclusion problem if A is a timed pushdown automaton and B is a
one-clock timed automaton, stated in Theorem 2 in [18]. In contrast to Theorem
1, we have decidability for the following classes:

Theorem 2. The language inclusion problem is decidable with non-primitive
recursive complexity if A is a timed automaton and B is a one-clock timed counter
net.

As a special case of this result (and with the lower bound implied by the corre-
sponding result for one-clock timed automata [2]), we obtain:

Corollary 1. The universality problem for one-clock timed counter nets is de-
cidable with non-primitive recursive complexity.

The next two sections are devoted to the proofs of Theorems 1 and 2. We will
also give some interesting consequences of these results respectively of their
proofs. Amongst others, we prove the undecidability of model checking problem
for timed visibly one-counter nets and MTL over finite timed words. After this,
in Sect. 5, we will prove the following theorem:

Theorem 3. The universality problem for one-clock timed visibly one-counter
automata is undecidable.
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This is in contrast to the decidability of the universality problem for the two
underlying models of one-clock timed automata [31] and visibly one-counter
automata, which form a subclass of visibly pushdown automata [6]. We also
want to point out that this result is stronger than a previous result on the un-
decidability of the universality problem for one-clock timed visibly pushdown
automata (Theorem 3 in [18]), and our proof closes a gap in the proof of Theo-
rem 3 in [18]. Further, we can infer from Corollary 1 and Theorem 3 the exact
decidability border for the universality problem of timed pushdown automata,
which lies between timed visibly one-counter nets and timed visibly one-counter
automata.

4 Undecidability Results

In this section, we prove Theorem 1. The proof is a reduction of an undecidable
problem for channel machines.

4.1 Channel Machines

Let A be a finite alphabet. We define the order ≤ over the set of finite words
over A by a1a2 . . . am ≤ b1b2 . . . bn if there exists a strictly increasing function
f : {1, . . . ,m} → {1, . . . , n} such that ai = bf(i) for every i ∈ {1, . . . ,m}.

A channel machine consists of a finite-state automaton acting on an un-
bounded fifo channel. Formally, a channel machine is a tuple C = (S, sI ,M,Δ),
where

– S is a finite set of control states,
– sI ∈ S is the initial control state,
– M is a finite set of messages,
– Δ ⊆ S × L × S is the transition relation over the label set L = {!m, ?m |

m ∈M} ∪ {empty?}.

Here, !m corresponds to a send operation, ?m corresponds to a read operation,
and empty? is a test which returns true if and only if the channel is empty.
Without loss of generality, we assume that sI does not have any incoming tran-
sitions, i.e., (s, l, s′) ∈ Δ implies s′ 	= sI . Further, we assume that (sI , l, s

′) ∈ Δ
implies l = empty?. A configuration of C is a pair (s, x), where s ∈ S is the
control state and x ∈ M∗ represents the contents of the channel. We use HC

to denote the set of all configurations of C. The rules in Δ induce a transition
relation →C on (HC × L×HC) as follows:

– 〈(s, x), !m, (s′, x′)〉∈→C if, and only if, there exists some transition (s, !m, s′) ∈
Δ and x′ = x ·m, i.e., m is added to the tail of the channel.

– 〈(s, x), ?m, (s′, x′)〉∈→C if, and only if, there exists some transition (s, ?m, s′) ∈
Δ and x = m · x′, i.e., m is removed from the head of the channel.

– 〈(s, x), empty?, (s′, x′)〉 ∈→C if, and only if, there exists some transition
(s, ε, s′) ∈ Δ and x = ε, i.e., the channel is empty, and x′ = x.
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Next, we define a second transition relation �C on (HC × L × HC). The re-
lation �C is a superset of →C . It contains some additional transitions which
result from insertion errors. We define 〈(s, x1), l, (s, x

′
1)〉∈�C , if, and only if,

there exist x, x′ ∈ M∗ such that 〈(s, x), l, (s′, x′)〉∈→C , x1 ≤ x, and x′ ≤ x′1. A
computation of C is a finite sequence

∏
1≤i≤k〈(si−1, xi−1), li, (si, xi)〉 such that

〈(si−1, xi−1), li, (si, xi)〉∈�C for every i ∈ {1, . . . , k}. We say that a computa-
tion is error-free if for all i ∈ {1, . . . , k} we have 〈(si−1, xi−1), li, (si, xi)〉∈→C .
Otherwise, we say that the computation is faulty.

The proof of Theorem 1 is a reduction from the following undecidable [12,2]
control state reachability problem: given a channel machine C with control states
S and sF ∈ S, does there exist an error-free computation of C from (sI , ε) to
(sF , x) for some x ∈ M∗? We remark that the analogous problem for faulty
computations is decidable [33]. The idea of our reduction is as follows: Given a
channel machine C, we define a timed language L(C) consisting of all timed words
that encode potentially faulty computations of C that start in (sI , ε) and end in
(sF , x) for some x ∈M∗. Then we define a timed visibly one-counter net A such
that L(A) ∩ L(C) contains exactly error-free encodings of such computations.
In other words, we use A to exclude the encodings of faulty computations from
L(C), obtaining undecidability of the non-emptiness problem for L(A) ∩ L(C).
Finally, we define a one-clock timed automaton B that accepts the complement
of L(C); hence the problem of deciding whether L(A) 	⊆ L(B) is undecidable.

4.2 Encoding Faulty Computations

For the remainder of Section 4, let C = (S, sI ,M,Δ) be a channel machine
and let sF ∈ S. Define Σint ··= (S\{sI}) ∪M ∪ L ∪ {#}, Σcall ··= {sI ,+}, and
Σret ··= {−, �}, where +,−,# and � are fresh symbols that do not occur in
S ∪M ∪ L. We define a timed language L(C) over Σ = Σint ∪ Σcall ∪ Σret that
consists of all timed words that encode computations of C from (sI , ε) to (sF , x)
for some x ∈ M∗. The definition of L(C) follows the ideas presented in [32].

Let γ =
∏

1≤i≤k〈(si−1, xi−1), li, (si, xi)〉 be a computation of C with s0 = sI ,
x0 = ε, and sk = sF . For each i ∈ {0, . . . , k}, the configuration (si, xi) is encoded
by a timed word of duration one. This timed word starts with the symbol si at
some time ti. If the content of the channel xi is of the form m1m2 . . .mj , then
si is followed by the symbols m1,m2, . . . ,mj in this order. The timestamps of
these symbols must be in the interval (ti, ti+1). Due to the denseness of the time
domain, one can indeed store the channel content in one time unit without any
upper bound on j. For encoding the computation, we glue together the encodings
of the single configurations as follows: Every control state symbol si−1 is followed
by li after exactly one time unit, and by si after exactly two time units. For every
message symbol m between si−1 and li, there is a copy of m after two time units,
unless it is removed from the channel by a read operation. There are no symbols
between li and si, and the encoding of the last configuration ends with � one time
unit after sk. Note: we do not require that for every message symbol m between
si−1 and li there is a copy of m two time units before. It is the absence of exactly
this condition that causes L(C) to contain encodings of faulty computations.
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For our reduction to work, we change the idea from [32] in some details. As
mentioned above, we will later define a timed visibly one-counter netA to exclude
faulty computations from L(C). The idea is to let A guess the maximum number
n of messages occurring between control state symbols and the following label
symbol. While reading the encoding of the first configuration of a computation,
it increments the counter n times. The automaton does not do any operations on
the counter until it reads the encoding of the last configuration, where it decre-
ments the counter whenever it reads symbols occurring between the control state
and the label symbol. Since it can decrement the counter at most n times, it can
only accept encodings of error-free computations. We define a timed language

(a)
+ + +

1.2 1.7 1.8
!m→C

m # #

3.2 3.7 3.8
!m′→C

m m′ #
5.2 5.7 5.8

?m→C
m′ # #

7.2 7.7 7.8
?m
�C

m′ # # #

9.2 9.7 9.8 9.85

(b)
m m′ m′ m

15.2 15.7 15.8 15.85
!m
�C

m m′ m′ m m

17.2 17.7 17.8 17.85 17.9
?m→C

− − − − −
19.2 19.7 19.8 19.85 19.9

Fig. 2. Examples for the encoding of the channel content for n = 3

L(C, n) for every n ∈ N. For illustrating the definition, we use the examples
in Fig. 2. Since push, pop and noop require symbols from the call, internal,
and return input alphabet, respectively, we use three fresh extra symbols +,#,
and −. In the encoding of the initial configuration, we use n occurrences of the
call symbol + as placeholder for message symbols, see the first timed word in
Fig. 2(a). In the encoding of all following configurations except for the last one
we use the internal symbol # as placeholder. In the encoding of the last config-
uration, we use the return symbol − as placeholder, see the last timed word in
Fig. 2(b). Every time some !m operation occurs, all symbols in the encoding of
the current configuration have a copy after exactly two time units, except for the
first free placeholder symbol, which is replaced by m in the encoding of the next
configuration, see for instance the first two transitions in Fig. 2(a). Every time
an error-free ?m operation occurs, the first message symbol in the encoding of
the current configuration (which should be m) is replaced by a new placeholder
symbol at the end of the encoding of the next configuration, and the timestamps
of the other symbols are shifted one position, see the third transition in Fig. 2(a).
A faulty read operation due to an insertion error is encoded by the insertion of
a new placeholder symbol at the end of the encoding of the next configuration,
see the last transition in Fig. 2(a). We also insert a new symbol if a faulty
send operation due to a too small choice of n is happening (first transition in
Fig. 2(b)). Note, however, that this transition is not faulty due to an insertion
error of the channel machine.

Let w ∈ L(C, n) for some n ∈ N. We use max(w) to denote the maximum
number of symbols in M ∪ {#,+,−} that occur in w between a control state
symbol and a symbol in L ∪ {�}. Let γ =

∏
1≤i≤k〈(si−1, xi−1), li, (si, xi)〉 be a
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computation of C. We use max(γ) to denote the maximum length of the channel
content occurring in γ, formally: max(γ) ··= max{|xi| | 0 ≤ xi ≤ k}.

Lemma 1. For each error-free computation γ of C from (sI , ε) to (sF , x) for some
x ∈ M∗, there exists some timed word w ∈ L(C,max(γ)) such that max(w) =
max(γ).

Lemma 2. For each n ∈ N and w ∈ L(C, n) with max(w) = n, there exists
some error-free computation γ of C from (sI , ε) to (sF , x) for some x ∈M∗ with
max(γ) ≤ n.

4.3 Excluding Faulty Computations

We define a timed visibly one-counter net A over Σ such that for every n ∈ N
the intersection L(A)∩L(C, n) consists of all timed words that encode error-free
computations of C from (sI , ε) to (sF , x) for some x ∈ M∗. The timed visibly
one-counter net A is shown in Fig. 3. It non-deterministically guesses a number
n ∈ N of symbols + and increments the counter each time it reads the symbol +.
When A leaves l1, the value of the counter is n+1. After that, the counter value
is not changed until the state symbol sF is read. Then, while reading symbols
in {−, �}, the counter value is decremented. Note that A can reach the final
location l4 only if the number of the occurrences of symbol − between sF and �
is at most n. Note that A does not use any clock, and it is deterministic.

l0 l1 l2

sI , push

+, push

L, noop

Σ\{sF }, noop

l3 l4

sF , noop

−, pop

�, pop

Fig. 3. The deterministic timed visibly one-counter net A for excluding insertion errors

Lemma 3. C has an error-free computation from (sI , ε) to (sF , x) for some
x ∈ M∗, if, and only if, there exists n ∈ N such that L(C, n) ∩ L(A) 	= ∅.

We finally define L(C) ··=
⋃
n∈N L(C, n).

Corollary 2. There exists some error-free computation of C from (sI , ε) to
(sF , x) for some x ∈M∗ if, and only if, L(A) ∩ L(C) 	= ∅.

4.4 The Reduction

Finally, we define a one-clock timed automaton B such that L(B) = TΣ+\L(C).
The construction of B follows the same ideas as, eg., in [3]: B is the union of
several one-clock timed automata, each of them violating one of the conditions
of the definition of L(C). For instance, the timed automaton in Fig. 4 accepts
the set of timed words over Σ violating the condition that for every control state
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Σ Σ
S\{sF }, x := 0

Σ\S, x < 2 S, x < 2

Σ\S, x = 2

Σ, x > 2

Fig. 4. A timed automaton violating condition 2 of L(C)

symbol different from sF there must be some control state symbol after two time
units.

By Corollary 2, there exists some error-free computation of C from (sI , ε) to
(sF , x) for some x ∈ M∗ if, and only if, L(A)∩L(C) 	= ∅. The latter is equivalent
to L(A) 	⊆ L(B). Hence, the language inclusion problem is undecidable. ��

4.5 Undecidability of the Model Checking Problem for MTL

The proof idea of Theorem 1 can be used to show the undecidability of the
following model checking problem: given a timed visibly one-counter net A, and
an MTL formula ϕ, is every w ∈ L(A) a model of ϕ? Recall that this problem
is decidable for the class of timed automata [32]. We prove that adding a visibly
counter without zero test already makes the problem undecidable. Recall that
MTL only allows to express restrictions on time, and it does not allow for any
restrictions on the values of the counters. In fact, it is known that as soon as we
add to MTL the capability for expressing restrictions on the values of a counter
that can be incremented and decremented, model checking is undecidable [35].
The proof of the following theorem is based on the fact that - like one-clock timed
automata - MTL can encode computations of channel machines with insertion
errors [32].

Theorem 4. The model checking problem for timed visibly one-counter nets and
MTL is undecidable, even if the timed visibly one-counter net does not use any
clocks and is deterministic.

We would like to remark that the proof of Theorem 4 shares some similarities
with the proof of the undecidability of model checking one-counter machines
(i.e., one-counter automata without input alphabet) and Freeze LTL with one

register (LTL↓1, for short) [16]. In [15], it is proved that LTL↓1 can encode com-
putations of counter automata with incrementing errors. Similar to the situation
for MTL and channel machines, LTL↓1 can however not encode error-free com-
putations of counter automata. In [16], a one-counter machine is used to repair
this incapability, resulting in the undecidability of the model checking problem.
The one-counter machine in [16] does not use zero tests; however, we point out
that in contrast to our visibly timed one-counter net the one-counter machine
in [16] is non-deterministic. Indeed, model checking deterministic one-counter

machines and LTL↓1 is decidable [16].



522 K. Quaas

4.6 Energy Problems on Timed Automata with Discrete Weights

Next we will consider an interesting extension of lower-bound energy problems
on weighted timed automata, introduced in [10], which gained attention in the
last years, see, eg., [11,34,9]. In lower-bound energy problems, one is interested
whether in a given automaton with some weight variable whose value can be
increased and decreased, there exists a successful run in which all accumulated
weight values are never below zero. Similar problems have also been considered
for untimed settings, eg., [29,19,20,13].

A timed automaton with discrete weights (dWTA, for short) is syntactically
the same as a timed one-counter net. In the semantical graph induced by a
dWTA, however, we allow the value of the counter (or, the weight variable) to
become negative. Hence the value of the weight variable does not influence the
behaviour of the dWTA, because, different to timed one-counter nets, transitions
that result in negative values are not blocked. We remark that for the simple
reasons that the value of the weight variable does not influence the behaviour of
dWTA and MTL does not restrict the values of the weight variable, the model
checking problem for dWTA and MTL is decidable, using the same algorithm
as for timed automata [32]. We define the energy model checking problem for
dWTA and MTL as follows: given a dWTA A and an MTL formula ϕ, does
there exist some accepting run ρ of A such that the value of the weight variable
is always non-negative, and the timed word w associated with ρ satisfies ϕ?
For the special case ϕ = true, the problem is decidable in polynomial time for
one-clock dWTA [10].

Theorem 5. The energy problem for dWTA and MTL is undecidable, even if
the dWTA uses no clocks.

5 Decidability Result

In this section, we shortly explain the proof idea for the decidability of the
language inclusion problem if A is a timed automaton, and B is a one-clock timed
counter net. The proof is a generalization of the proof for the case where both
A and B are timed automata [31]. The idea is to reduce the language inclusion
problem to a reachability problem on an infinite graph constructed from the
joint state space of A and B. The decidability of the reachability problem on our
infinite graph is implied by the fact that the graph is a downward-compatible
well-structured transition system [21]. For taking into account the additional
information on the values of the counters, we have to define a new well-quasi-
order on the state space of the graph. This new well-quasi-order is based on the
product of the equality order = on a finite alphabet and the pointwise order ≤n

on Nn (where n is the number of counters of B), which is a well-quasi-order by
Dickson’s Lemma [17]. We use several applications of Higman’s Lemma [23] to
prove that our quasi-order is a well-quasi-order.
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6 The Universality Problem for Visibly One-Counter
Automata

We prove that allowing the counter in a one-clock timed visibly one-counter net
to be tested for zero, results in the undecidability of the universality problem.
The undecidability of the universality problem for the more general class of one-
clock visibly pushdown automata was already stated in Theorem 3 in [18]. The
proof in [18] is a reduction of the halting problem for two-counter machines.
Given a two-counter machine M, one can define a timed language L(M) that
consists of all timed words encoding a halting computation ofM. Then a timed
visibly pushdown automaton A is defined that accepts the complement of L(M).
Altogether, L(A) = TΣ+ if, and only if,M does not have a halting computation.
The definition of L(M) is similar to the definition of L(C) in the proof of Theorem
1. Recall that in the definition of L(C) we did not include a condition that
requires every symbol to have a matching symbol two time units before, and,
as we mentioned, this is the reason for L(C) to contain timed words encoding
faulty computations of C. However, in the definition of L(M) in [18], such a
“backward-looking” condition is used. In the proof in [18], it is unfortunately
not clear how the one-clock timed visibly pushdown automaton A can detect
violations of this condition1.

Here, we give a complete proof for the subclass of timed visibly one-counter
automata. Like the proof of Theorem 1, the proof is a reduction of the control
state reachability problem for channel machines. We however remark that one
can similarly use a reduction of the halting problem for two-counter machines.

Proof of Theorem 3. Let C = (S, sI ,M,Δ) be a channel machine, and let
sF ∈ S. Define Σ in the same way as in the proof of Theorem 1. For every
n ∈ N, we define a timed language Lef(C, n) that consists of all timed words
over Σ that encode error-free computations of C from (sI , ε) to (sF , x) for some
x ∈ M∗. Formally, Lef(C, n) is defined using the same conditions as the ones
for L(C, n) in the proof of Theorem 1 plus an additional condition that requires
every symbol in the encoding of a configuration to have a matching symbol two
time units before. As we have mentioned in the proof of Theorem 1, this excludes
encodings of faulty computations. We thus have for Lef(C) =

⋃
n≥1 Lef(C, n):

Lemma 4. There exists some error-free computation of C from (sI , ε) to (sF , x)
for some x ∈ M∗, if, and only if, Lef(C) 	= ∅.

Next, we define a timed visibly one-counter automaton with a single clock such
that L(A) = TΣ+\Lef(C). Hence, by the preceding lemma, L(A) 	= TΣ+ if, and
only if, there exists some error-free computation of C from (sI , ε) to (sF , x) for
some x ∈ M∗.

1 More detailed, it is not clear how to construct one-clock timed automata N¬fr←fc

and N¬gr←gc mentioned on p. 10 in [18]. Recall that in the proof for undecidability
of the universality problem for timed automata with two or more clocks, it is exactly
this backward-looking condition that requires two clocks [3].
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A is the union of several one-clock timed automata and one timed visibly one-
counter automaton with no clocks. We already know from the proof of Theorem
1, that violations of conditions of L(C, n) can be detected by one-clock timed
automata. For detecting violations of the additional condition, we use the visibly
one-counter automaton shown in Fig. 5. The automaton non-deterministically
guesses the maximum number n of occurrences of the symbol +. When leaving
l1, the value of the counter is n + 1. The final location l4, however, can only
be reached while reading − or � if the value of the counter is zero. This means
that there must be some symbol for which there is no matching symbol two time
units before. ��

l0 l1 l2

sI , push

+, push

Q, noop

Σ\{qF }, noop

l3 l4

qF , noop

−, pop

−, �, empty?
Σ

Fig. 5. The timed visibly one-counter automaton for recognizing timed words violating
the additional “backwards-looking” condition of Lef(C)

7 Conclusion and Open Problems

The main conclusion of this paper is that even for very weak extensions of
timed automata with counters it is impossible to automatically verify whether a
given specification is satisfied. On the other hand, we may use one-clock timed
counter nets as specifications to verify timed automata. This increases so far
known possibilities for the verification of timed automata: For instance, the timed
language L = {(ambn, τ̄ ) | m ≥ n} can be accepted by a timed one-counter net
without any clocks, but not by a timed automaton.

An interesting problem is to figure out a (decidable) extension of LTL that is
capable of expressing properties referring to both time and discrete data struc-
tures.

We remark that all our results hold for automata defined over finite timed
words. We cannot expect the decidability of, eg., the universality problem for
one-clock timed counter nets over infinite timed words, as the same problem is
already undecidable for the subclass of one-clock timed automata [2].

Acknowledgements. I would like to thank Michael Emmi and Rupak Ma-
jumdar for helpful discussions on their work on timed pushdown automata. I
further would like to thank James Worrell very much for pointing me to MTL’s
capability of encoding faulty computations of channel machines.
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Abstract. Model checking timed automata becomes increasingly com-
plex with the increase in the number of clocks. Hence it is desirable that
one constructs an automaton with the minimum number of clocks pos-
sible. The problem of checking whether there exists a timed automaton
with a smaller number of clocks such that the timed language accepted
by the original automaton is preserved is known to be undecidable. In
this paper, we give a construction, which for any given timed automaton
produces a timed bisimilar automaton with the least number of clocks.
Further, we show that such an automaton with the minimum possible
number of clocks can be constructed in time that is doubly exponential
in the number of clocks of the original automaton.

1 Introduction

Timed automata [3] is a formalism for modelling and analyzing real time systems.
The complexity of model checking is dependent on the number of clocks of the
timed automaton(TA) [3,2]. Many model checking and reachability problems
use a region graph or a zone graph for the timed automaton whose sizes are
exponential in the number of clocks. Hence it is desirable to construct a timed
automaton with the minimum number of clocks that preserves some property of
interest. It is known that given a timed automaton, checking whether there exists
another timed automaton accepting the same timed language as the original one
but with a smaller number of clocks is undecidable [12]. In this paper, we show
that checking the existence of a timed automaton with a smaller number of clocks
that is timed bisimilar to the original timed automaton is however decidable. Our
method is constructive and we provide a 2-EXPTIME algorithm to construct the
timed bisimilar automaton with the least possible number of clocks. We also note
that if the constructed automaton has a smaller number of clocks, then it implies
that there exists an automaton with a smaller number of clocks accepting the
same timed language.

Related Work: In [9], an algorithm has been provided to reduce the number of
clocks of a given timed automaton and produce a new timed automaton that is
timed bisimilar to the original one. The algorithm detects a set of active clocks
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crosoft Research India under the Microsoft Research India PhD Fellowship Award.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 527–543, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



528 S. Guha, C. Narayan, and S. Arun-Kumar

at every location and partitions these active clocks into classes such that all the
clocks belonging to a class in the partition always have the same value. However,
this may not result in the minimum possible number of clocks since the algorithm
works on the timed automaton directly rather than on its semantics. Thus if a
constraint associated with clock x implies a constraint associated with clock y,
and both of them appear on an edge, then the constraint with clock y can be
eliminated. However, the algorithm of [9] does not capture such implication. Also
by considering constraints on more than one outgoing edge from a location, e.g.

l0
a,x≤3,∅−−−−−→ l1 and l0

a,x>3,∅−−−−−→ l2 collectively, we may sometimes eliminate the
constraints that may remove some clock. This too has not been accounted for
by the algorithm of [9].

In [19], it has been shown that no algorithm can decide the minimality of the
number of clocks while preserving the timed language and for the non-minimal
case find a timed language equivalent automaton with fewer clocks. Also for a
given timed automaton, the problem of finding whether there exists another TA
with fewer clocks accepting the same timed language is undecidable [12].

Another result appearing in [16] which uses the region-graph construction is
the following. A (C,M)-automaton is one with C clocks and M is the largest
integer appearing in the timed automaton. Given a timed automaton A, a set
of clocks C and an integer M , checking the existence of a (C,M)-automaton
that is timed bisimilar to A is shown to be decidable in [16]. The method in [16]
constructs a logical formula called the characteristic formula and checks whether
there exists a (C,M)-automaton that satisfies it. Further, it is shown that a pair
of automata satisfying the same characteristic formula are timed bisimilar. The
problem that we solve in the current paper was in fact left open in [16].

The rest of the paper is organized as follows: in Section 2, we describe timed
automata and introduce several concepts that will be used in the paper. We
also describe the construction of the zone graph used in reducing the number of
clocks. In Section 3, we discuss our approach in detail along with a few examples.
Section 4 is the conclusion.

2 Timed Automata

Formally, a timed automaton (TA) [3] is defined as a tuple A = (L,Act, l0, C, E)
where L is a finite set of locations, Act is a finite set of visible actions, l0 ∈ L is
the initial location, C is a finite set of clocks and E ⊆ L × B(C) × Act × 2C × L
is a finite set of edges. The set of constraints or guards on the edges, denoted
B(C), is given by the grammar g ::= x �( k | g ∧ g, where k ∈ N and x ∈ C
and �( ∈ {≤, <,=, >,≥}. Given two locations l, l′, a transition from l to l′ is of
the form (l, g, a, R, l′) i.e. a transition from l to l′ on action a is possible if the
constraints specified by g are satisfied; R ⊆ C is a set of clocks which are reset
to zero during the transition.

The semantics of a timed automaton(TA) is described by a timed labelled
transition system (TLTS) [1]. The timed labelled transition system T (A) gen-

erated by A is defined as T (A) = (Q,Lab,Q0, {
α−→ |α ∈ Lab}), where Q =
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{(l, v) | l ∈ L, v ∈ R≥0
|C|} is the set of states, each of which is of the form

(l, v), where l is a location of the timed automaton and v is a valuation in |C|
dimensional real space where each clock is mapped to a unique dimension in this
space; Lab = Act∪R≥0 is the set of labels. Let v0 denote the valuation such that
v0(x) = 0 for all x ∈ C. Q0 = (l0, v0) is the initial state of T (A). A transition
may occur in one of the following ways:

(i) Delay transitions : (l, v)
d−→ (l, v + d). Here, d ∈ R≥0 and v + d is the valua-

tion in which the value of every clock is incremented by d.
(ii) Discrete transitions : (l, v)

a−→ (l′, v′) if for an edge e = (l, g, a, R, l′) ∈ E,
v |= g, v′ = v[R←0], where v[R←0] denotes that every clock in R has been reset to

0, while the remaining clocks are unchanged. From a state (l, v), if v |= g, then
there exists an a-transition to a state (l′, v′); after this, the clocks in R are reset
while those in C\R remain unchanged.

For simplicity, we do not consider annotating locations with clock constraints
(known as invariant conditions [15]). Our results extend in a straightforward
manner to timed automata with invariant conditions. In Section 3, we provide
the modifications to our method for dealing with location invariants. We now
define various concepts that will be used in the rest of the paper.

Definition 1. Let A = (L,Act, l0, E, C) be a timed automaton, and T (A) be the
TLTS corresponding to A.

1. Timed trace: A sequence of delays and visible actions d1a1d2a2 . . . dnan is

called a timed trace iff there is a sequence of transitions p0
d1−→ p1

a1−→ p′1
d2−→

p2
a2−→ p′2 · · ·

dn−→ pn
an−−→ p′ in T (A), with p0 being the initial state of the

timed automaton.

2. Zone: A zone Z is a set of valuations {v ∈ R|C|
≥0 | v |= β}, where β is of

the form β ::= x �( k | x − y �( k | β ∧ β, k is an integer, x, y ∈ C and
�( ∈ {≤, <,=, >,≥}. Z ↑ denotes the future of the zone Z. Z ↑= {v + d |
v ∈ Z, d ≥ 0} is the set of all valuations reachable from Z by time elapse. A
zone is a convex set of clock valuations.

3. Pre-stability: A zone Z1 of location l1 is pre-stable with respect to another
zone Z2 of location l2 if Z1 ⊆ preds(Z2) or Z1 ∩ preds(Z2) = ∅ where

preds(Z)
def
= {v ∈ R|C|

≥0 | ∃v′ ∈ Z, ∃l, l′ ∈ L, ∃α ∈ Lab such that (l, v)
α−→

(l′, v′)}. Here l = l′ if α is a delay action.

4. Canonical decomposition: Let g =
∧n
i=1 γi ∈ B(C), where each γi is an

elementary constraint of the form xi �( ki, such that xi ∈ C and ki is a
non-negative integer. A canonical decomposition of a zone Z with respect to
g is obtained by splitting Z into a set of zones Z1, . . . , Zm such that for each
1 ≤ j ≤ m, and 1 ≤ i ≤ n, either ∀v ∈ Zj, v |= γi or ∀v ∈ Zj, v 	|= γi. For
example, consider the zone Z = x ≥ 0 ∧ y ≥ 0 and the guard x ≤ 2 ∧ y > 1.
Z is split with respect to x ≤ 2, and then with respect to y > 1, hence into
four zones : x ≤ 2 ∧ y ≤ 1, x > 2 ∧ y ≤ 1, x ≤ 2 ∧ y > 1 and x > 2 ∧ y > 1.
An elementary constraint xi �( ki induces the hyperplane xi = ki in a zone
graph of the timed automaton.
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5. Zone graph: Given a timed automaton A = (L,Act, l0, C, E), a zone graph
GA of A is a transition system (S, s0, Lep,→), that is a finite representation
of T (A). Here Lep = Act ∪ {ε}. S ⊆ L × Z is the set of nodes of GA, Z
being the set of zones. The node s0 = (l0, Z0) is the initial node such that

v0 ∈ Z0. (li, Z)
a−→ (lj , Z

′) iff li
g,a,R−−−→ lj in A and Z ′ ⊆ ([Z ∩ g]R←0)↑

obtained after canonical decomposition of ([Z ∩ g]R←0). For any Z and Z ′,

(li, Z)
ε−→ (li, Z

′) iff there exists a delay d and a valuation v such that v ∈ Z,

v + d ∈ Z ′ and (li, v)
d−→ (li, v + d) is in T (A). Here the zone Z ′ is called a

delay successor of zone Z, while Z is called the delay predecessor of Z ′. The
relation ε is reflexive and transitive and so is the delay successor relation.
We denote the set of delay successor zones of Z with ds(Z). A zone Z ′ 	= Z
is called the immediate delay successor of a zone Z iff Z ′ ∈ ds(Z) and
∀Z ′′ ∈ ds(Z) : Z ′′ 	= Z and Z ′′ 	= Z ′, Z ′′ ∈ ds(Z ′). We call a zone Z
corresponding to a location to be a base zone if Z does not have a delay
predecessor other than itself.

6. A hyperplane x = k is said to bound a zone Z from above if ∃v ∈ Z [ ∀d ∈
R≥0 [ (v + d)(x) 4 k ⇐⇒ (v + d)(x) /∈ Z ] ], where 4∈ {>,≥}. A zone, in
general, can be bounded above by several hyperplanes. A hyperplane x = k is
said to bound a zone Z fully from above if ∀v ∈ Z [ ∀d ∈ R≥0 [ (v + d)(x) 4
k ⇐⇒ (v + d)(x) /∈ Z ] ]. Analogously, we can also say that a hyperplane
x = k bounds a zone from below if ∃v ∈ Z [ ∀d ∈ R≥0 [ (v − d)(x) ≺ k ⇐⇒
(v−d)(x) /∈ Z ]], where ≺∈ {<,≤}. We can also define a hyperplane bounding
a zone fully from below in a similar manner.
When not specified otherwise, in this paper, a hyperplane bounding a zone
implies that it bounds the zone from above. A zone Z is bounded above if it
has an immediate delay successor zone.

We create a zone graph such that for any location l, the zones Z and Z ′ of any
two nodes (l, Z) and (l, Z ′) in the zone graph are disjoint and all zones of the
zone graph are pre-stable. This zone graph is constructed in two phases in time
exponential in the number of the clocks. The first phase performs a forward
analysis of the timed automaton while the second phase ensures pre-stability in
the zone graph. The forward analysis may cause a zone graph to become infinite
[4]. Several kinds of abstractions have been proposed in the literature [8,4,5]
to make the zone graph finite. We use location dependent maximal constants
abstraction [4] in our construction. In phase 2 of the zone graph creation, the
zones are further split to ensure that the resultant zone graph is pre-stable.
The following lemma states an important property of the zone graph which will
further be used for clock reduction.

Lemma 1. Pre-stability ensures that if the zone Z in any node (l, Z) in the
zone graph is bounded above, then it is bounded fully from above by a hyperplane
x = h, where x ∈ C and h ∈ N.

Some approaches for preserving convexity and implementing pre-stability have
been discussed in [20]. As an example, consider the timed automaton in
Figure 1. The pre-stable zones of location l1 are shown in the right side of the
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Fig. 2. Zone Graph for the TA in Figure 1

figure. In this paper, from now on, unless stated otherwise, zone graph will refer
to this form of the pre-stable zone graph that is described above. An algorithmic
procedure for the construction of the zone graph is given in [13].

A relationR ⊆ Q×Q is a timed simulation relation if the following conditions
hold for any two timed states (p, q) ∈ R.

∀ a ∈ Act, p
a−→ p′ =⇒ ∃q′ : q

a−→ q′ and (p′, q′) ∈ R and

∀d ∈ R≥0, p
d−→ p′ =⇒ ∃q′ : q

d−→ q′ and (p′, q′) ∈ R.
A timed bisimulation relation is a symmetric timed simulation. Two timed au-
tomata are timed bisimilar if and only if their initial states are timed bisimilar.
Using product construction on region graphs, timed bisimilarity for timed au-
tomata was shown to be decidable in EXPTIME [7].

3 Clock Reduction

Unlike the method described in [9], which works on the syntactic structure of the
timed automaton, we use a semantic representation, the zone graph described
in Section 2 to capture the behaviour of the timed automaton. This helps us to
reduce the number of clocks in a more effective way. For a given TA A, we first
describe a sequence of stages to construct a TA A4 that is timed bisimilar to A.
Later we prove the minimality in terms of the number of clocks for the TA A4.
The operations involved in our procedure use a difference bound matrix (DBM)
[6,10] representation of the zones. A DBM for a set C = {x1, x2, . . . , xn} of n
clocks is an (n+1) square matrix M where an extra variable x0 is introduced such
that the value of x0 is always 0. An element Mij is of the form (mij ,≺) where
≺∈ {<,≤} such that xi − xj ≺ mij . The following are important considerations
in reducing the number of clocks.

– There may be some clock constraints on an edge of the TA that are never
enabled. Such edges and constraints may be removed. (Stage 1)

– Splitting some locations may lead to a reduction in the number of the clocks.
(Stage 2)
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– At some location, some clocks whose values may be expressed in terms of
other clock values, may be removed. (Stage 2)

– Two or more constraints on edges outgoing from a location when considered
collectively may lead to the removal of some constraints. (Stage 3)

– An efficient way of renaming the clocks across all locations can reduce the
total number of clocks further. (Stage 4)

Given a TA, we apply the operations described in the following stages in sequence
to obtain the TA A4.

Stage 1: Removing unreachable edges and associated constraints:
This stage involves creating the pre-stable zone graph of the given timed au-
tomaton, as described in Section 2. The edges and their associated constraints
that are never enabled in an actual transition are removed while creating the

zone graph. Suppose there is an edge li
g,a,R−−−→ lj in A but in the zone graph,

a corresponding transition of the form (li, Z)
a−→ (lj , Z

′) does not exist. This

implies that the transition li
g,a,R−−−→ lj is never enabled and hence is removed

from the timed automaton. Since the edges that do not affect any transition get
removed during this stage, we have the following lemma trivially.

Lemma 2. The operations in stage 1 produce a timed automaton A1 that is
timed bisimilar to the original TA A.

The time required in this stage is proportional to the size of the zone graph and
hence exponential in the number of clocks of the timed automaton.

Stage 2: Splitting locations and removing constraints not affecting
transitions: Locations may also require to be split in order to reduce the num-
ber of clocks of a timed automaton. Let us consider the example of the timed
automaton in Figure 1 and its zone graph in Figure 2. There are three base zones
corresponding to location l1 in the zone graph, i.e. Z1 = {0 ≤ y− x < 2, x ≤ 5},
Z2 = {y − x = 2, x ≤ 5} and Z3 = {2 < y − x ≤ 4, y ≤ 7}. This stage splits l1
into three locations l11 , l12 and l13 (one for each of the base zones Z1, Z2 and
Z3) as shown in Figure 3(a). While the original automaton, in Figure 1, contains
two elementary constraints on the edge between l1 and l2, the modified automa-
ton, in Figure 3(a), contains only one of these two elementary constraints on the
outgoing edges from each of l11 , l12 and l13 to l2. Subsequent stages modify it
further to generate an automaton using a single clock as in Figure 3(b).

Splitting ensures that only those constraints, that are relevant for every valua-
tion in the base zone of a newly created location, appear on the edges originating
from that location. Since the clocks can be reused while describing the behaviours
from each of the individual locations created after the split, this may lead to a
reduction in the number of clocks.

We describe a formal procedure for splitting a location into multiple locations
in Algorithm 1.
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Algorithm 1. Algorithm for splitting locations
Input: Timed automaton A1 obtained after stage 1
Output: Modified TA A2 after applying stage 2 splitting procedures
1: A2 := A1 � A1 is the TA obtained from A after the first stage

2: for each location li in A1 do � i is the index of the location

3: Split li into m locations li1 , . . . , lim in A2 � Let m be the number of base zones of li

4: Remove location li and all incoming and outgoing edges to and from li from A2

5: for each j in 1 to m do

6: for each incoming edge lr
a,gr,Rr−−−−−→ li in A1 do

7: � Split the constraints on the incoming edges to li for the newly created locations

8: Z′
ij

:= Zij ↑ ∩ R|C|
≥0 [Rr←0]

� Let Zij
be the base zone corresponding to lij

9: � Let Zrj
is a zone of location lr from which there is an a transition to Zij

10: Let grj be the weakest formula such that
11: gr ∧ free(Z′

ij
, Rr) ∧ Zrj ⇒ grj and grj has a subset of the clocks used

in gr.

12: Create an edge lr
a,grj ,Rr−−−−−−→ lij in A2

13: end for
14: for each outgoing edge li

a,gi,Ri−−−−−→ lr in A1 do
15: if Zij ↑ ∩gi = ∅ then
16: Do not create this edge from lij to lr in A2 since it is never going to

be enabled for any valuation of Zij ;
17: else
18: Let Sr be the set of elementary constraints in gi
19: loop
20: if ∃s′ ∈ Sr, s.t. Zij ↑ ∧ (

∧
s∈Sr\{s′} s) ⇒ Zij ↑ ∧ s′ then

21: Sr = Sr \ {s′}
22: else

23: Create an edge lij
a,gi′ ,Ri−−−−−→ lr in A2, where gi′ =

∧
s∈Sr

24: Break;
25: end if
26: end loop
27: end if
28: end for
29: end for
30: end for
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Note that a zone can be considered to be a set of constraints defining it.
Similarly a guard can also be considered in terms of the valuations satisfying it.
Input of this algorithm, A1 is the TA obtained after stage 1. If there are m base
zones in GA1 corresponding to a location li in A1, then Line 3 and Line 4 split
li into m locations li1 , · · · lim in the new automaton, say A2. For each of these
newly created locations, Line 6 to Line 11 determine the constraints on their
incoming edges.

For each incoming edge lr
a,gr ,Rr−−−−−→ li, there exists a zone Zrj such that Zrj has

an a transition to Zij , the jth base zone of li. Line 8 calculates the lower bounding
hyperplane of Zij by resetting the clocks Rr in the intersection of Zij ↑ with

R|C|
≥0 . In Line 11, free(Z ′

ij , Rr) represents a zone that becomes the same as Z ′
ij

after resetting the clocks in Rr. Further, grj is calculated as the weakest guard
that simultaneously satisfies the constraints gr, Zrj and free(Z ′

ij
, Rr) and has

the same set of clocks as in gr. For our running example, if we consider Zij = Z1

then we have Z ′
ij
= Zij ↑ ∩ R2

[x←0̄] = {x = 0, y < 2}, Zrj = {x = y, x < 2} and

free(Z ′
ij
, {x}) = {x ≥ 0, y < 2}. We can see that x < 2 is the weakest formula

such that x ≤ 4 ∧ x ≥ 0 ∧ y < 2 ∧ x = y ∧ x < 2 ⇒ x < 2 holds and hence
grj = {x < 2}.

Loop from Line 14 to Line 28 determines the constraints on the outgoing edges
from these new locations. Line 15 checks if the zone Zij ↑ has any valuation
that satisfies the guard gi on an outgoing edge from location li. If no satisfying
valuation exists then this transition will never be enabled from lij and hence this
edge is not added in A2. Loop from Line 19 to Line 26 checks if some elementary
constraints of the guard are implied by other elementary constraints of the same
guard. If it happens then we can remove those elementary constraints from the
guard that are implied by the other elementary constraints.

For our running example, the modified automaton of Figure 3(a) does not
contain the constraint x > 5 on the edge from ll1 to l2 even though it was
present on the edge from l1 to l2. The reason being that the future of the zone
of ll1 (that is 0 ≤ y−x < 2) along with the constraint y > 7 implies x > 5 hence
we do not need to put x > 5 explicitly on the outgoing edge from l11 to l2. Such
removal of elementary constraints helps future stages to reduce the number of
clocks. The maximum number of locations produced in the timed automaton as
a result of the split is bounded by the number of zones in the zone graph. This is
exponential in the number of clocks of the original TA A. However, we note that
the base zones of a location l in the original TA are distributed across multiple
locations as a result of the split of l and no new valuations are created. This
gives us the following lemma.

Lemma 3. The splitting procedure described in this stage does not increase the
number of clocks in A2, but the number of locations in A2 may become exponential
in the number of clocks of the given TA A. However, there is no addition of new
valuations to the underlying state space of the original TA A and corresponding
to every state (l, v) of a location l in the original TA A, exactly one state (li, v)
is created in the modified TA A2, where li is one of the newly created locations
as a result of splitting l.
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Splitting locations and removing constraints as described above do not alter the
behaviour of the timed automaton that leads us to the following lemma.

Lemma 4. The operations in stage 2 produce a timed automaton A2 that is
timed bisimilar to the TA A1 obtained at the end of stage 1.

The number of locations after the split can become exponential in the number of
the clocks. The constraints on the incoming edges of l are also split appropriately
into constraints on the incoming edges of the newly created locations. Hence this
stage too runs in time that is exponential in the number of the clocks of the timed
automaton.

Stage 3: Removing constraints by considering multiple edges with
the same action: We consider the example in Figure 4. Note that the con-
straints x ≤ 3 and x > 3 on the edges from l0 to l1 and from l0 to l2 respectively
could as well be merged together to produce a constraint without any clock.

For every action a enabled at any location l, this stage checks whether a
guard enabling that action at l can be merged with another guard enabling
the same action at that location such that timed bisimilarity is preserved. The
transformation made in this stage has been formally described in Algorithm
2. The input to this algorithm is the TA obtained after stage 2, say A2. For
each location li, the algorithm does the following: for every action a ∈ Act, it
determines the zones of li from which action a is enabled. We call this set Zia.
Zone graph construction and splitting of locations in stage 2 ensures that all
zones in Zia form a linear chain connected by ε edges as shown in Figure 5. We
use � to capture this total ordering relation. Let us use ordered indexed variable
1, . . . ,m to name the zones in this total order, i.e. Zi1�· · ·�Zik�Zik+1

· · ·�Zim .
Lemma 1 ensures that for each Zik , k ≥ 1, that is bounded above, there exists
a hyperplane that bounds the zone fully from above and similarly, for each Zik ,
k > 1 there exists a hyperplane that bounds the zone fully from below. For a zone
Z, let LB(Z) and UB(Z) denote these lower and upper bounding hyperplanes
of Z respectively. Further, UB(Z) is ∞ if Z is not bounded from above.

Let Γ(li,a) = {g | li
a,g,R−−−→ l′ ∈ EA2} be the set of guards on the outgoing

edges from li in A2 which are labelled with a. For any g ∈ Γ(i,a), let us define
the following;

– Strt(g)(li,a) = Z ∈ Zia is the zone in Zia which is bounded from below by
the same constraints as the lower bound of the constraints in g.

– End(g)(li,a) = Z ∈ Zia is the zone in Zia which is bounded from above by
the same constraints as the upper bound of the constraints in g.

– Ran(g)(li,a) = {Z ∈ Zia | Strt(g)(li,a)�Z∧Z�End(g)(li,a)}∪{Strt(g)(li,a)}∪
{End(g)(li,a)} is the set of zones ordered by� relation in between Strt(g)(li,a)
and End(g)(li,a).

In Algorithm 2, we use a rather informal notation g := [C1, C2] to denote that
C1 and C2 are the constraints defining the lower and the upper bounds of g
respectively. If g does not have any constraint defining the upper bound then
C2 = ∞. We define a total order ≪ on Γ(i,a) such that for any g, g′ ∈ Γ(i,a),
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g ≪ g′ iff ∃Z ∈ Ran(g)(li,a) such that Z � Z ′ for all Z ′ ∈ Ran(g′)(li,a). Similar
to the zones let us use ordered indexed variable gi1 , . . . , gip to denote gi1 ≪
· · · gik ≪ gik+1

· · · ≪ gip . One such total order on guards is shown in Figure
5. The loop from Line 5 to Line 38 in Algorithm 2 traverses the elements of
Γ(i,a) in this total order with the help of a variable next initialized to 2. In every
iteration of this loop the invariant gcurr ≪ ginext holds. Three possibilities exist
based on whether the set union of zones corresponding to these guards is (i) not
convex (ii) convex but non-overlapping, or (iii) convex as well as overlapping.

If the union is non-convex then both gcurr and index are changed in Line 7
to pick the next ordered pair in this order. For cases (ii) and (iii), new guards
are created by merging corresponding zones as long as the modified automaton
preserves timed bisimilarity. If timed bisimilarity is preserved then the modified
automaton A′ is set as the current automaton which is A3 (Line 13 and Line 29)
and next is incremented to process the next guard. Otherwise the guard gcurr is
set to ginext and next is incremented by 1 (Line 15 and Line 36). Therefore the
only difference in these two cases is in creating the new guard.

For case (ii), convex but non-overlapping zones, a new guard is created from
the lower bound of Strt(gcurr)(li,a) and the upper bound of End(ginext)(li,a). For
case (iii), there are three possibilities of combining guards, mentioned in Line 20,
Line 22 and Line 24. The first possibility is the same as in case (ii). The second
and the third possibilities are replacing the upper bound of gcurr with the lower
bound of Strt(ginext)(li,a) and the lower bound of ginext with the upper bound
of End(gcurr)(li,a) respectively.

A zone graph captures the behaviour of the timed automaton and hence timed
bisimilarity between two TAs can be checked using their zone graphs [21,13]. This
is why we create the pre-stable zone graph as described in Section 2 as it enables
one to directly check timed bisimilarity on this zone graph [13].

Lemma 5. The operations in stage 3 produce a timed automaton A3 that is
timed bisimilar to the TA A2 obtained at the end of stage 2.

As mentioned above, in this stage, while merging the constraints, timed bisimi-
larity is checked and the number of bisimulation checks is bounded by the number
of zones in the zone graph of the TA obtained after stage 2. From Lemma 3, in
stage 2, no new valuations are added to the underlying state space of the original
TA A, and corresponding to every valuation (l, v), exactly one valuation (li, v) is
created, where l and li are as described in Lemma 3. Thus the number of zones
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Algorithm 2. Algorithm for stage 3
Input: Timed automaton A2 obtained after stage 2
Output: Modified TA A3 after applying stage 3 procedures

1: A3 := A2 � A2 is the TA obtained from A after the first two stages

2: for each location li in A2 do � i is the index of the location, the set of locations do not change in this stage

3: for each a ∈ sort(li) do � sort(li) is the set of actions in li that can be performed from li

4: gcurr := gi1 , next := 2
5: while next < |Γ(i,a)| − 1 do
6: if Ran(gcurr)(li,a) ∪ Ran(ginext)(li,a) is not convex then
7: gcurr := ginext , next := next+ 1
8: else if Ran(ginext)(li,a) ∩Ran(gcurr)(li,a) = ∅ then � non-overlapping but contiguous

9: g′curr := [LB(Strt(gcurr)(li,a)), UB(End(ginext)(li,a))]
10: g′inext

:= g′curr
11: Let A′ be the TA obtained by replacing all occurrences of gcurr and

ginext with g′curr and g′inext respectively in A3

12: if A′ is timed bisimilar to A3 then
13: A3 := A′, gcurr := g′inext

, next := next+ 1
14: else
15: gcurr := ginext , next := next+ 1
16: end if
17: else � Ran(gcurr )(li,a) and Ran(ginext

)(li,a) have overlapping zones

18: � There are three ways to combine gcurr and ginext
, and

19: � Resultant new guards should be checked for timed bisimilarity in the following order

20: (i). g′curr := [LB(Strt(gcurr)(li,a)), UB(End(ginext)(li,a))],
21: g′inext

:= g′curr
22: (ii). g′curr := [LB(Strt(gcurr)(li,a)), LB(Strt(ginext)(li,a))],
23: g′inext := [LB(Strt(ginext)(li,a)), UB(End(ginext)(li,a))]
24: (iii). g′curr := [LB(Strt(gcurr)(li,a)), UB(End(gcurr)(li,a))],
25: g′inext

:= [UB(End(gcurr)(li,a)), UB(End(ginext)(li,a))]
26: while 1 ≤ i ≤ 3 do � Corresponding to the three cases above

27: Let A′ be the TA obtained by replacing all occurrences of gcurr
and ginext with the ith g′curr and g′inext respectively in A3

28: if A′ is timed bisimilar to A3 then
29: A3 := A′, gcurr := g′inext

, next := next+ 1
30: Break
31: else
32: i := i+ 1
33: end if
34: end while
35: if i = 4 then � Bisimilarity could not be preserved in any of these three cases

36: gcurr := ginext , next := next+ 1
37: end if
38: end if
39: end while
40: end for
41: end for
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in the zone graph of A2 is still exponential in the number of cocks of the original
TA A. Checking timed bisimilarity is done in EXPTIME [7,17]. A zone graph
is constructed prior to every bisimulation check and the construction is done in
EXPTIME. Hence this entire stage runs in EXPTIME.

Stage 4: Finding Active clocks, clock replacement and renaming:
Given a location l, an iterative method for finding the set of active clocks at
l,denoted act(l), is given in [9]. The method has been modified and stated below
for the case where clock assignments of the form x := y, x, y ∈ C are disallowed.

Determining active clocks : For a location l, let clk(l) be the set of clocks that

appear on the constraints in the outgoing edges of l. Let ρ : (2C × E)→ 2C be

a partial function such that for an edge e = l
g,a,R−−−→ l′, ρ(act(l′), e) gives the set

of active clocks of l′ that are not reset along e. For all l ∈ L, act(l) is the limit
of the convergent sequence act0(l) ⊆ act1(l) . . . such that act0(l) := clk(l) and

acti+1(l) := acti(l) ∪
⋃

e=(l,g,a,R,l′)∈E
ρ(acti(l

′), e).

Removing redundant resets : Once we find the active clocks of a location l, we
remove all resets of clock x on the incoming edges of l if x /∈ act(l).

Partitioning active clocks : Using the DBM representation of the zones, one
can determine from the set of active clocks in every location whether some of
the clocks in the timed automaton can be expressed in terms of other clocks and
thus be removed. Any x, y ∈ act(l) belong to an equivalence class iff the same
relation of the form x − y = k, for some fixed integer k is maintained between
these clocks across all zones of l. This is checked using the DBM of the zones of
l. In this case either x can be replaced by y + k or y can be replaced by x − k.
Let πl be the partition induced by this equivalence relation.

We note that the size of the largest partition does not give the minimum
number of clocks required to represent a TA while preserving timed bisimulation.
An example is shown in Figure 6(a). Though the automaton in the figure has
two active clocks partitioned into two different classes in every location, a timed
bisimilar TA cannot be constructed with only two clocks. Assigning the minimum
number of clocks to represent the timed automaton so that timed bisimilarity is
preserved can be reduced to the problem of finding the chromatic number of a
graph as described below.

Clock graph colouring and clock renaming : A clock graph, GA3 , for the timed
automaton A3 is constructed in the following way. This graph contains a vertex
for each class in the partition πl, for every location l. Let Vl be the set of vertices
corresponding to the classes of πl. For each pair of distinct vertices r1, r2 ∈ Vl,
an edge between r1 and r2 exists denoting that r1 and r2 cannot be assigned the
same colour. This is because two classes in the partition πl cannot be represented
using the same clock.

Moreover, if at least one clock, say c, is common in two classes corresponding
to two different locations without any intervening reset of c then only one vertex
represents these two classes. For example, in Figure 6, clock x is active in both
locations 0 and 1. {x} forms a class in the partition of the active clocks for
each of locations 0 and 1. Thus we create vertices x0 and x1 corresponding to
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these two classes. However, since there is no intervening reset of clock x between
locations 0 and 1, the vertices x0 and x1 are merged together and the resultant
graph is termed the clock graph. Thus after merging some classes into one class,
the resultant class can have active clocks corresponding to multiple locations.
For a class T , let loc(T ) represent the set of locations whose active clocks are
members of T .

Finding the minimum number of clocks to represent the TA A3 is thus equiv-
alent to colouring its clock graph with the minimum number of colours so that
no two adjacent vertices have the same colour. The number of colours gives the
minimum number of clocks required to represent the TA. If a colour c is as-
signed to a vertex r, then all the clocks in the class corresponding to r, say T ,
are renamed c. The value of c can be chosen to be equal to some clock in T
that is considered to be the representative clock for that class. The constraints
involving the rest of these clocks in T are adjusted appropriately and any resets
of the clocks, different from the representative clock, present on the incoming
edges to l such that l ∈ loc(T ) are also removed.

For example, suppose vertex r corresponds to a class T having clocks x, y
and z such that the valuations of the clocks are related as : x − y = k1 and
y − z = k2. If colour c is assigned to vertex r, then the clocks x, y and z in
class T are replaced with c. If the value of clock c is chosen to be the same as
clock y, then every occurrence of x in T is replaced with y + k1, while every
occurrence of z in T is replaced with y − k2 in the constraints involving x and
z. The corresponding resets of clocks x and z are also removed.

In Figure 6(a), a TA with three locations is shown. In locations 0, 1 and 2, the
sets of active clocks are {x, y}, {w, x} and {w, y} respectively. At every location,
in this example, each of the active clocks itself makes a class of the partition.
Since there are six classes in total, we draw initially six vertices. As mentioned
earlier, the vertices x0 and x1 are merged into a single vertex. Similarly w1, w2

and y0, y2 are also merged. We call the resultant vertices x0,1, w1,2 and y0,2.
Adding the edges as described previously, we get the clock graph which is a
triangle as shown in Figure 6(b). Thus the chromatic number of this graph is
3 which translates to the number of clocks obtained through the operations in
stage 4. Since this stage consists of finding the active clocks and renaming them,
we have the following lemma.

Lemma 6. The operations in stage 4 produce a timed automaton A4 that is
timed bisimilar to the TA A3 obtained after stage 3.

We look at the complexity of the operations in this stage. The sequence of
computation of active clocks converges within n iterations and every iteration
runs in time O(|E|), where there are n locations and |E| edges respectively in
the timed automaton after the first three stages. This is due to the fact that
in iteration i, for some location l, its active clocks are updated so as to include
those active clocks of the locations l′ such that there exists a path of length
at most i between l and l′ and these clocks are not reset along this path. In
each iteration, each edge is traversed once for updating the set of active clocks
of the locations. Thus the complexity of finding active clocks is O(n × |E|).
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Partitioning the active clocks of each of the locations too requires traversing the
zone graph and checking the clock relations from the DBM of the zones. This
can be done in time equal to the order of the size of the zone graph times the
size of DBM which is in EXPTIME.

Finally, determining the chromatic number of a graph is possible in time
exponential in the number of the vertices of the graph [18,11]. Since the number
of locations after the splitting operation in stage 2 is exponential in the number
of clocks in A, renaming the clocks using the clock graph runs in time doubly
exponential in the number of the clocks of the original timed automaton A. Thus
we have the following theorem.

Theorem 1. The stages mentioned above run in 2-EXPTIME.

In the presence of an invariant condition, considering an edge l
g,a,R−−−→ l′, a zone

Z ′ of l′ is initially created such that Z ′ = (Z ∩ g)[R←0]↑ ∩I(l′), if (Z ∩ g)[R←0]↑
∩I(l′) 	= ∅, where I(l′) is the invariant on location l′. The edge can be removed
from the timed automaton if for all zones Z of l, (Z ∩ g)[R←0] ↑ ∩I(l′) = ∅. The
invariant condition on location l′ can be entirely removed if for every incoming

edge l
g,a,R−−−→ l′ and for each zone Z of l, (Z ∩ g)[R←0] ↑ ∩I(l′) = (Z ∩ g)[R←0] ↑

holds. Considering the clock relations in the zones of a location, an elementary
constraint in the invariant too is removed if it is implied by the rest of the
elementary constraints in the invariant. In stage 4, clk(l) becomes the union of
the set of clocks appearing in the constraints on the outgoing edges from l and
the set of clocks appearing in I(l).

Proof of Minimality of Clocks: Let A4 be the TA obtained from a TA A
through the four stages described earlier. We can show that for each location l
in A4, for every clock x ∈ act(l), there exists at least one constraint involving
clock x which is indispensable for any TA that preserves timed bisimilarity.

Lemma 7. In the TA A4, for each location l and clock x ∈ act(l), there exists
at least one constraint involving x on some outgoing edge of l or on the outgoing
edge of another location l′ reachable from l such that there is at least one path
from l to l′ without any intervening reset of x. Moreover the TA obtained by
removing the constraint is not timed bisimilar to the given timed automaton A.

Proof sketch : We prove this lemma by induction on the structure of the timed
automaton A4. Let us suppose that we have edges in the timed automaton A4

from location l to locations l1, . . . , lm. By induction hypothesis, the lemma holds

for l1, . . . , lm. Note that act(l) = clk(l) ∪ (

m⋃
i=1, e=(l,g,a,Ri,li)∈E

(act(li) \ Ri)).

Consider a clock c0 ∈ act(l). If c0 ∈ act(li), for some i ∈ {1, . . . ,m}, and c0
is not reset on the edge between l and li, then from the induction hypothesis,
the lemma holds for l trivially. Otherwise, if for each i ∈ {1, . . . ,m}, such that
c0 ∈ act(li) implies c0 is reset on the edge from l to li, we can show that
there exists a constraint on an outgoing edge from l involving c0 that cannot be
removed while preserving timed bisimilarity. ��
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Definition 2. Minimal bisimilar TA: For a given timed automaton D, a
minimal bisimilar TA is one that is timed bisimilar to D and has the minimum
number of clocks possible.

Fact 1. For every TA D, there exists a minimal bisimilar TA.

One can show that the clocks of a TA that is minimal bisimilar to A4 can replace
the clocks of A4 which gives us the following lemma.

Lemma 8. The timed automaton A4 has the same number of clocks as a mini-
mal bisimilar TA for A.

Proof sketch : We consider a minimal bisimilar TA D1 for A and apply the
operations in the four stages on it to produce a TA D. Since D1 is already
minimal, D has the same number of clocks as D1. The transformations ensure
that in the resultant zone graph of D, for each bounded zone in every location,
there exists a hyperplane that fully bounds it. Similarly in the zone graph of A4

too, each bounded zone of every location is fully bounded by a hyperplane.
We use the zone graphs of A4 and D for mapping the clocks of A4 to the

clocks of D. From Lemma 7, for a location lA4 of A4, corresponding to every
clock x ∈ act(lA4), there is a hyperplane of the form x = k corresponding to a
constraint x �( k bounding a zone that cannot be removed if timed bisimulation
has to be preserved. Since A4 and D are timed bisimilar, there is a corresponding
hyperplane, say y = k′, induced by a constraint y �( k′ which too cannot be
removed from the zone graph of D while preserving timed bisimulation. Clock x
in A4 can thus be renamed y. The clock renaming in stage 4 ensures that, any
further renaming cannot reduce the number of clocks in A4. Hence if the clocks
of A4 can be replaced with the clocks of D, we have |CA4 | ≤ |CD|, thus giving
|CA4 | = |CD| since D is a minimal bisimilar TA for A. ��

Theorem 2. There exists an algorithm to construct a TA A4 that is timed
bisimilar to a given TA A such that among all the timed automata that are
timed bisimilar to A, A4 has the minimum number of clocks. Further the algo-
rithm runs in time that is doubly exponential in the number of clocks of A.

4 Conclusion

In this paper, we have described an algorithm, which given a timed automaton
A, produces another timed automaton A4 with the smallest number of clocks
that is timed bisimilar to A. It also follows trivially that A4 accepts the same
timed language as A. The problem solved in this paper was left open in [16].

For reducing the number of clocks of the timed automaton, we rely on a se-
mantic representation of the timed automaton rather than its syntactic form
as in [9]. This helps us to reason about the behaviour of the timed automaton
more effectively. Besides, the zone graph we use in our approach is usually much
smaller in size than the region graph and its size is independent of the constants
used in the timed automaton. There is an exponential increase in the number
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of locations while producing the TA with the minimal number of clocks. How-
ever, there is no addition of new valuations to the underlying state space of the
timed automaton since the splitting of a location l, described in stage 2, involves
distributing the zones of l across the locations l is split into.
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Bounded Rationality�

Krishnendu Chatterjee

IST Austria

Abstract. We study two-player concurrent games on finite-state graphs played
for an infinite number of rounds, where in each round, the two players (player 1
and player 2) choose their moves independently and simultaneously; the cur-
rent state and the two moves determine the successor state. The objectives are
ω-regular winning conditions specified as parity objectives. We consider the
qualitative analysis problems: the computation of the almost-sure and limit-
sure winning set of states, where player 1 can ensure to win with probability 1
and with probability arbitrarily close to 1, respectively. In general the almost-
sure and limit-sure winning strategies require both infinite-memory as well as
infinite-precision (to describe probabilities). While the qualitative analysis prob-
lem for concurrent parity games with infinite-memory, infinite-precision random-
ized strategies was studied before, we study the bounded-rationality problem for
qualitative analysis of concurrent parity games, where the strategy set for player 1
is restricted to bounded-resource strategies. In terms of precision, strategies can
be deterministic, uniform, finite-precision, or infinite-precision; and in terms of
memory, strategies can be memoryless, finite-memory, or infinite-memory. We
present a precise and complete characterization of the qualitative winning sets
for all combinations of classes of strategies. In particular, we show that uni-
form memoryless strategies are as powerful as finite-precision infinite-memory
strategies, and infinite-precision memoryless strategies are as powerful as infinite-
precision finite-memory strategies. We show that the winning sets can be com-
puted in O(n2d+3) time, where n is the size of the game structure and 2d is the
number of priorities (or colors), and our algorithms are symbolic. The member-
ship problem of whether a state belongs to a winning set can be decided in NP
∩ coNP. Our symbolic algorithms are based on a characterization of the winning
sets asμ-calculus formulas, however, our μ-calculus formulas are crucially differ-
ent from the ones for concurrent parity games (without bounded rationality); and
our memoryless witness strategy constructions are significantly different from the
infinite-memory witness strategy constructions for concurrent parity games.

1 Introduction

In this work we consider the qualitative analysis (computation of almost-sure and limit-
sure winning sets) for concurrent parity games. In prior works [15,8] the qualitative
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analysis for concurrent parity games have been studied for the general class of infinite-
memory, infinite-precision randomized strategies. In this work, we study the bounded
rationality problem where the resources of the strategies are limited, and establish a pre-
cise and complete characterization of the qualitative analysis of concurrent parity games
for combinations of resource-limited strategies. We start with the basic background of
concurrent parity games and qualitative analysis.

Concurrent Parity Games. A two-player (player 1 and player 2) concurrent game is
played on a finite-state graph for an infinite number of rounds, where in each round, the
players independently choose moves, and the current state and the two chosen moves
determine the successor state. In deterministic concurrent games, the successor state is
unique; in probabilistic concurrent games, the successor state is given by a probability
distribution. The outcome of the game (or a play) is an infinite sequence of states. These
games were introduced by Shapley [35], and have been one of the most fundamental and
well studied game models in stochastic graph games. We consider ω-regular objectives;
where given an ω-regular set Φ of plays, player 1 wins if the outcome of the game lies
in Φ. Otherwise, player 2 wins, i.e., the game is zero-sum. Such games occur in the
synthesis and verification of reactive systems [13,33,31], and ω-regular objectives (that
generalizes regular languages to infinite words) provide a robust specification language
that can express all specifications (e.g. safety, liveness, fairness) that arise in the analysis
of reactive systems ([1,19,2]). Concurrency in moves is necessary for modeling the
synchronous interaction of components [17]. Parity objectives can express all ω-regular
conditions, and we consider concurrent parity games.

Qualitative and Quantitative Analysis. The player-1 value v1(s) of the game at a state
s is the limit probability with which player 1 can guarantee Φ against all strategies
of player 2. The player-2 value v2(s) is analogously the limit probability with which
player 2 can ensure that the outcome of the game lies outside Φ. The qualitative anal-
ysis of games asks for the computation of the set of almost-sure winning states where
player 1 can ensure Φ with probability 1, and the set of limit-sure winning states where
player 1 can ensure Φ with probability arbitrarily close to 1 (states with value 1); and the
quantitative analysis asks for precise computation of values. Concurrent (probabilistic)
parity games are determined [30], i.e., for each state s we have v1(s) + v2(s) = 1. The
qualitative analysis for concurrent parity games was studied in [15,8] and the quantita-
tive analysis in [18,7,3].

Difference of Turn-Based and Concurrent Games. Traditionally, the special case of
turn-based games has received most attention. In turn-based games, in each round,
only one of the two players has a choice of moves. In turn-based deterministic games,
all values are 0 or 1 and can be computed using combinatorial algorithms [36,34,28];
in turn-based probabilistic games, values can be computed by iterative approximation
[11,14]. Concurrent games significantly differ from turn-based games in requirement of
strategies to play optimally. A pure strategy must, in each round, choose a move based
on the current state and the history (i.e., past state sequence) of the game, whereas, a
randomized strategy in each round chooses a probability distribution over moves (rather
than a single move). In contrast to turn-based deterministic and probabilistic games with
parity objectives, where pure memoryless (history-independent) optimal strategies ex-
ist [21,38,20,12,3], in concurrent games, both randomization and infinite-memory are
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required for limit-sure winning [15] (also see [23] for results on pushdown concurrent
games, [27,16,6] on complexity of strategies required in concurrent reachability games,
and [24,26] on complexity of related concurrent game problems).

Bounded Rationality. The qualitative analysis for concurrent parity games with infinite-
memory, infinite-precision randomized strategies was studied in [15,8]. The strategies
for qualitative analysis for concurrent games require two different types of infinite re-
source: (a) infinite-memory, and (b) infinite-precision in describing the probabilities
in the randomized strategies; (see example in [15] that limit-sure winning in concur-
rent Büchi games require both infinite-memory and infinite-precision). In many appli-
cations, such as synthesis of reactive systems, infinite-memory and infinite-precision
strategies are not implementable in practice. Thus though the theoretical solution of
infinite-memory and infinite-precision strategies was established in [15], the strategies
obtained are not realizable in practice, and the theory to obtain implementable strate-
gies in such games has not been studied before. In this work we consider the bounded
rationality problem for qualitative analysis of concurrent parity games, where player 1
(that represents the controller) can play strategies with bounded resource. To the best of
our knowledge this is the first work that considers the bounded rationality problem for
concurrent ω-regular graph games. The motivation is clear as controllers obtained from
infinite-memory and infinite-precision strategies are not implementable.

Strategy Classification. In terms of precision, strategies can be classified as pure, uni-
formly random, bounded-finite-precision, finite-precision, and infinite-precision (in in-
creasing order of precision to describe probabilities of a randomized strategy). In terms
of memory, strategies can be classified as memoryless, finite-memory and infinite-
memory. In [15] the almost-sure and limit-sure winning characterization under infinite-
memory, infinite-precision strategies were presented. In this work, we present (i) a
complete and precise characterization of the qualitative winning sets for bounded re-
source strategies, (ii) symbolic algorithms to compute the winning sets, and (iii) com-
plexity results to determine whether a given state belongs to a qualitative winning set.

Our Results. Our contributions are summarized below.
1. We show that pure memoryless strategies are as powerful as pure infinite-memory

strategies in concurrent games (Proposition 1). This result is straight-forward, ob-
tained by a simple reduction to turn-based probabilistic games.

2. Uniform memoryless strategies are more powerful than pure infinite-memory
strategies (the fact that randomization is more powerful than pure strategies follows
from the classical matching pennies game), and we show that uniform memoryless
strategies are as powerful as finite-precision infinite-memory strategies (Proposi-
tion 2). Thus our results show that if player 1 has only finite-precision strategies,
then no memory is required and uniform randomization is sufficient. Hence very
simple (uniform memoryless) controllers can be obtained for the entire class of
finite-precision infinite-memory controllers. The result is obtained by a reduction
to turn-based stochastic games, and the main technical contribution is the charac-
terization of the winning sets for uniform memoryless strategies by a μ-calculus
formula. The μ-calculus formula not only gives a symbolic algorithm, but is also in
the heart of other proofs of the paper.
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3. In case of bounded-finite-precision strategies, the almost-sure and limit-sure win-
ning sets coincide (Proposition 2). For almost-sure winning, uniform memoryless
strategies are also as powerful as infinite-precision finite-memory strategies (Propo-
sition 3). In contrast infinite-memory infinite-precision strategies are more pow-
erful than uniform memoryless strategies for almost-sure winning. For limit-sure
winning, we show that infinite-precision memoryless strategies are more power-
ful than bounded-finite-precision infinite-memory strategies, and infinite-precision
memoryless strategies are as powerful as infinite-precision finite-memory strate-
gies (Proposition 4). Our results show that if infinite-memory is not available, then
no memory is required (memoryless strategies are as powerful as finite-memory
strategies). The result is obtained by using the μ-calculus formula for the uniform
memoryless case: we show that a μ-calculus formula that combines the μ-calculus
formula for almost-sure winning for uniform memoryless strategies and limit-sure
winning for reachability with memoryless strategies exactly characterizes the limit-
sure winning for parity objectives for memoryless strategies. The fact that we show
that in concurrent parity games, though infinite-memory strategies are necessary,
memoryless strategies are as powerful as finite-memory strategies, is in contrast
with many other examples of graph games which require infinite-memory. For ex-
ample, in perfect-information multi-dimensional (such as multi-dimensional mean-
payoff) games [9] as well as partial-observation stochastic parity games [10,5]
infinite-memory strategies are necessary and finite-memory strategies are strictly
more powerful than memoryless strategies.

4. As a consequence of the characterization of the winning sets as μ-calculus for-
mulas we obtain symbolic algorithms to compute the winning sets. We show that
the winning sets can be computed in O(n2d+3) time, where n is the size of the
game structure and 2d is the number of priorities (or colors), and our algorithms
are symbolic.

5. The decision problem of whether a state belongs to a winning set lies in NP ∩ coNP.
In short, our results show that if infinite-memory is not available, then memory
is useless, and if infinite-precision is not available, then uniform memoryless
strategies are sufficient. Let P,U, bFP , FP , IP denote pure, uniform, bounded-finite-
precision with bound b, finite-precision, and infinite-precision strategies, respectively,
and M, FM , IM denote memoryless, finite-memory, and infinite-memory strate-
gies, respectively. For A ∈ {P,U, bFP , FP , IP} and B ∈ {M, FM , IM }, let
Almost1(A,B, Φ) denote the almost-sure winning set under player-1 strategies that
are restricted to be both A and B for a parity objective Φ (and similar notation for
Limit1(A,B, Φ)). Our results can be summarized by the following equalities and strict
inclusion:

Almost1(P,M,Φ) = Almost1(P,IM,Φ) = Limit1(P,IM,Φ) � Almost1(U,M,Φ) (1)

=Almost1(FP,IM,Φ)=
⋃
b>0

Limit1(bFP,IM,Φ)=Almost1(IP,FM,Φ)�Almost1(IP,IM,Φ);

and ⋃
b>0

Limit1( bFP , IM , Φ) �Limit1(IP ,M, Φ) = Limit1(IP , FM , Φ)

= Limit1(FP ,M, Φ)=Limit1(FP , IM , Φ)�Limit1(IP , IM , Φ).
(2)
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Comparison with Turn-Based Games and [8]. Our μ-calculus formulas and the cor-
rectness proofs are non-trivial generalizations of both the result of [22] for turn-based
deterministic parity games and the result of [16] for concurrent reachability games.
Our algorithms, that are obtained by characterization of the winning sets as μ-calculus
formulas, are considerably more involved than those for turn-based games. Our proof
structure of using μ-calculus formulas to characterize the winning sets, though simi-
lar to [8], has several new aspects. In contrast to the proof of [8] that constructs witness
infinite-memory strategies for both players from the μ-calculus formulas, our proof con-
structs memoryless witness strategies for player 1 from our new μ-calculus formulas,
and furthermore, we show that in the complement set of the μ-calculus formulas for ev-
ery finite-memory strategy for player 1 there is a witness memoryless spoiling strategy
of the opponent. Thus the witness strategy constructions are different from [8]. Since
our μ-calculus formulas and the predecessor operators are different from [8] the proofs
of the complementations of the μ-calculus formulas are also different. Moreover [8]
only concerns limit-sure winning and not almost-sure winning. Note that in [15] both
almost-sure and limit-sure winning was considered, but as shown in [8] the predeces-
sor operators suggested for limit-sure winning (which was a nested stacked predecessor
operator) in [15] require modification for correctness proof, and similar modification is
also required for almost-sure winning. Thus some results from [15] related to almost-
sure winning require a careful proof.
Techniques. One of the key difficulty in concurrent parity games is that the recursive
characterization of turn-based games completely fail for concurrent games. All results
for concurrent parity games [16,15,18,8] rely on μ-calculus formulas. A μ-calculus
formula is a succinct description of a nested iterative algorithm, and thus provides a
very general technique. The key challenge and ingenuity is always to come up with the
appropriate μ-calculus formula with the right predecessor operators (i.e., the right al-
gorithm), establish duality (complementation of the formulas), and then construct from
μ-calculus formulas the witness strategies in concurrent games (i.e., the correctness
proof). Our results are also based on μ-calculus formula characterization (nested itera-
tive algorithms), however, the predecessor operators and construction of witness strate-
gies (the heart of the proofs) are quite different from the previous results.

2 Definitions
In this section we define game structures, strategies, objectives, and winning modes.

Probability Distributions. For a finite set A, a probability distribution on A is a func-
tion δ : A #→ [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability distribu-

tions on A by D(A). Given δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0}
the support of δ.

Concurrent Game Structures. A (two-player) concurrent stochastic game structure
G = 〈S, A, Γ1, Γ2, δ〉 consists of the following components.

– A finite state space S and a finite set A of moves (or actions).
– Two move assignments Γ1, Γ2 : S #→ 2A \ ∅. For i ∈ {1, 2}, assignment Γi as-

sociates with each state s ∈ S the nonempty set Γi(s) ⊆ A of moves available to
player i at state s. For technical convenience, we assume that Γi(s) ∩ Γj(t) = ∅
unless i = j and s = t, for all i, j ∈ {1, 2} and s, t ∈ S. If this assumption is not
met, then the moves can be trivially renamed to satisfy it.
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– A probabilistic transition function δ : S × A × A #→ D(S), which associates with
every state s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s) a probability distribution
δ(s, a1, a2) ∈ D(S) for the successor state.

Plays. At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultane-
ously and independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds
to the successor state t with probability δ(s, a1, a2)(t), for all t ∈ S. For all states
s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we indicate by Dest(s, a1, a2) =
Supp(δ(s, a1, a2)) the set of possible successors of s given moves a1, a2. A path or
a play is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that for all k ≥ 0,
there exists ak1 ∈ Γ1(sk) and ak2 ∈ Γ2(sk) such that sk+1 ∈ Dest(sk, a

k
1 , a

k
2). We

denote by Ω the set of all paths. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define
Inf (ω) = {s ∈ S | sk = s for infinitely many k ≥ 0} to be the set of states that occur
infinitely often in ω.

Size of a Game. The size of a concurrent game is the sum of the size of the
state space and the number of the entries of the transition function, i.e., |S| +∑

s∈S,a∈Γ1(s),b∈Γ2(s)
|Dest(s, a, b)|.

Turn-Based Stochastic Games and MDPs. A game structure G is turn-based stochas-
tic if at every state at most one player can choose among multiple moves; that is, for
every state s ∈ S there exists at most one i ∈ {1, 2}with |Γi(s)| > 1. A game structure
is a player-2 Markov decision process if for all s ∈ S we have |Γ1(s)| = 1, i.e., only
player-2 has choice of actions in the game.

Equivalent Game Structures. Given two game structures G1 = 〈S, A, Γ1, Γ2, δ1〉 and
G2 = 〈S, A, Γ1, Γ2, δ2〉 on the same state and action space, with a possibly different
transition function, we say that G1 is equivalent to G2 (denoted G1 ≡ G2) if for all s ∈ S
and all a1 ∈ Γ1(s) and a2 ∈ Γ2(s) we have Supp(δ1(s, a1, a2)) = Supp(δ2(s, a1, a2)).

Strategies. A strategy for a player is a recipe that describes how to extend a play.
Formally, a strategy for player i ∈ {1, 2} is a mapping πi : S

+ #→ D(A) that associates
with every nonempty finite sequence x ∈ S+ of states, representing the past history of
the game, a probability distribution πi(x) used to select the next move. The strategy πi
can prescribe only moves that are available to player i; i.e., for all sequences x ∈ S∗

and states s ∈ S, we require that Supp(πi(x · s)) ⊆ Γi(s). We denote by Πi the set
of all strategies for player i ∈ {1, 2}. Given a state s ∈ S and two strategies π1 ∈ Π1

and π2 ∈ Π2, the probabilities of events are uniquely defined [37], where an event
A ⊆ Ω is a measurable set of paths. For an eventA ⊆ Ω, we denote by Prπ1,π2

s (A) the
probability that a path belongs to A when the game starts from s and the players use
the strategies π1 and π2.

Classification of Strategies. We classify strategies according to their use of random-
ization and memory. We first present the classification according to randomization.
1. (Pure). A strategy π is pure (deterministic) if for all x ∈ S+ there exists a ∈ A

such that π(x)(a) = 1. Thus, deterministic strategies are equivalent to functions
S+ #→ A.

2. (Uniform). A strategy π is uniform if for all x ∈ S+ we have π(x) is uniform over
its support, i.e., for all a ∈ Supp(π(x)) we have π(x)(a) = 1

|Supp(π(x))| .

3. (Finite-precision). A strategy π is finite-precision if there exists a bound b ∈ N such
that for all x ∈ S+ and all actions a we have π(x)(a) = i

j , where i, j ∈ N and
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0 ≤ i ≤ j ≤ b and j > 0, i.e., the probability of an action played by the strategy is
a multiple of some 1

j , with j ∈ N such that j ≤ b.

We denote by ΠP
i , ΠU

i , ΠFP
i and ΠIP

i the set of pure (deterministic), uniform, finite-
precision, and infinite-precision (or general) strategies for player i, respectively. Ob-
serve that we have the following strict inclusion in general: ΠP

i � ΠU
i � ΠFP

i � ΠIP
i .

1. (Finite-memory). Strategies in general are history-dependent and can be repre-
sented as follows: let M be a set called memory to remember the history of plays
(the setM can be infinite in general). A strategy with memory can be described as
a pair of functions: (a) a memory update function πu : S ×M #→ M, that given
the memoryM with the information about the history and the current state updates
the memory; and (b) a next move function πn : S ×M #→ D(A) that given the
memory and the current state specifies the next move of the player. A strategy is
finite-memory if the memoryM is finite.

2. (Memoryless). A memoryless strategy is independent of the history of play and
only depends on the current state. Formally, for a memoryless strategy π we have
π(x · s) = π(s) for all s ∈ S and all x ∈ S∗. Thus memoryless strategies are
equivalent to functions S #→ D(A).

We denote by ΠM
i , ΠFM

i and ΠIM
i the set of memoryless, finite-memory, and infinite-

memory (or general) strategies for player i, respectively. Observe that we have the fol-
lowing strict inclusion in general: ΠM

i � ΠFM
i � ΠIM

i .

Objectives. We specify objectives for the players by providing the set of winning plays
Φ ⊆ Ω for each player. In this paper we study only zero-sum games [32,25], where the
objectives of the two players are complementary. A general class of objectives are the
Borel objectives [29]. A Borel objective Φ ⊆ Sω is a Borel set in the Cantor topology
on Sω. In this paper we consider ω-regular objectives [36], which lie in the first 21/2
levels of the Borel hierarchy (i.e., in the intersection of Σ3 and Π3). We will consider
the following ω-regular objectives.

– Reachability and safety objectives. Given a set T ⊆ S of “target” states, the reach-
ability objective requires that some state of T be visited. The set of winning plays
is thus Reach(T ) = {ω = 〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥ 0. sk ∈ T }. Given a set
F ⊆ S, the dual safety objective is defined as Safe(F ) = {ω = 〈s0, s1, s2, . . .〉 ∈
Ω | ∀k ≥ 0. sk ∈ F}.

– Büchi and co-Büchi objectives. Given a set B ⊆ S of “Büchi” states, the Büchi
objective requires that B is visited infinitely often. Formally, the set of winning
plays is Büchi(B) = {ω ∈ Ω | Inf (ω) ∩ B 	= ∅}. Given C ⊆ S, the co-Büchi
objective requires that all states visited infinitely often are in C. Formally, the set
of winning plays is co-Büchi(C) = {ω ∈ Ω | Inf (ω) ⊆ C}.

– Parity objectives. For c, d ∈ N, we let [c..d] = {c, c+1, . . . , d}. Let p : S #→ [0..d]
be a function that assigns a priority p(s) to every state s ∈ S, where d ∈ N.
The Even parity objective requires that the maximum priority visited infinitely of-
ten is even. Formally, the set of winning plays is defined as Parity(p) = {ω ∈
Ω | max

(
p(Inf (ω))

)
is even }. The dual Odd parity objective is defined as

coParity(p) = {ω ∈ Ω | max
(
p(Inf (ω))

)
is odd }. Büchi and co-Büchi objec-

tives are simpler and special cases of parity objectives with two priorities.
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Given a set U ⊆ S we use LTL notations �U,♦U,�♦U and ♦�U to denote
Safe(U), Reach(U), Büchi(U) and co-Büchi(U), respectively.

Winning Modes. Given an initial state s ∈ S, an objective Φ, and a class ΠC
1 of strate-

gies we consider the following winning modes for player 1:
– (Almost). We say that player 1 wins almost surely with the class ΠC

1 if the player
has a strategy in ΠC

1 to win with probability 1, i.e., formally ∃π1 ∈ ΠC
1 . ∀π2 ∈

Π2 . Prπ1,π2
s (Φ) = 1.

– (Limit). We say that player 1 wins limit surely with the class ΠC
1 if the player can

ensure to win with probability arbitrarily close to 1 with ΠC
1 , i.e., for all ε > 0 there

is a strategy for player 1 in ΠC
1 that ensures to win with probability at least 1 − ε.

Formally we have supπ1∈ΠC
1
infπ2∈Π2 Prπ1,π2

s (Φ) = 1.
We abbreviate the winning modes by Almost and Limit, respectively. We call these
winning modes the qualitative winning modes. Given a game structure G, for C1 ∈
{P,U, FP , IP} and C2 ∈ {M, FM , IM } we denote by AlmostG1 (C1, C2, Φ) (resp.
LimitG1 (C1, C2, Φ)) the set of almost-sure (resp. limit-sure) winning states for player 1
in G when the strategy set for player 1 is restricted to ΠC1

1 ∩ΠC2
1 . If the game structure

G is clear from the context we omit the superscript G.

Mu-Calculus, Complementation, and Levels. Consider a mu-calculus expression
Ψ = μX .ψ(X) over a finite set S, where ψ : 2S #→ 2S is monotonic. The least fixpoint
Ψ = μX .ψ(X) is equal to the limit limk→∞ Xk, where X0 = ∅, and Xk+1 = ψ(Xk).
For every state s ∈ Ψ , we define the level k ≥ 0 of s to be the integer such that s 	∈ Xk

and s ∈ Xk+1. The greatest fixpoint Ψ = νX . ψ(X) is equal to the limit limk→∞ Xk,
where X0 = S, and Xk+1 = ψ(Xk). For every state s 	∈ Ψ , we define the level k ≥ 0 of
s to be the integer such that s ∈ Xk and s 	∈ Xk+1. The height of a mu-calculus expres-
sion λX . ψ(X), where λ ∈ {μ, ν}, is the least integer h such that Xh = limk→∞ Xk.
An expression of height h can be computed in h + 1 iterations. Given a mu-calculus
expression Ψ = λX . ψ(X), where λ ∈ {μ, ν}, the complement ¬Ψ = S \ Ψ of λ is
given by λX . ¬ψ(¬X), where λ = μ if λ = ν, and λ = ν if λ = μ.

Mu-Calculus Formulas and Algorithms. As descrived above that μ-calculus formulas
Ψ = μX . ψ(X) (resp. Ψ = νX . ψ(X)) represent an iterative algorithm that succes-
sively iterates ψ(Xk) till the least (resp. greatest) fixpoint is reached. Thus in general,
a μ-calculus formulas with nested μ and ν operators represents a nested iterative algo-
rithm. Intuitively, a μ-calculus formula is a succinct representation of a nested iterative
algorithm.

Distributions and One-Step Transitions. Given a state s ∈ S, we denote by χs1 =
D(Γ1(s)) and χs2 = D(Γ2(s)) the sets of probability distributions over the moves at
s available to player 1 and 2, respectively. Moreover, for s ∈ S, X ⊆ S, ξ1 ∈ χs1,
and ξ2 ∈ χs2 we denote by P ξ1,ξ2

s (X) =
∑

a∈Γ1(s)

∑
b∈Γ2(s)

∑
t∈X ξ1(a) · ξ2(b) ·

δ(s, a, b)(t) the one-step probability of a transition into X when players 1 and 2 play at
s with distributions ξ1 and ξ2, respectively.

Theorem 1 The following assertions hold: (1) [12] For all turn-based stochas-
tic game structures G with a parity objective Φ we have Almost1(P,M,Φ) =
Almost1(IP , IM , Φ) = Limit1(P,M,Φ) = Limit1(IP , IM , Φ). (2) [15] Let G1

and G2 be two equivalent game structures with a parity objective Φ, then we have



552 K. Chatterjee

(1). AlmostG1
1 (IP , IM , Φ) = AlmostG2

1 (IP , IM , Φ); and (2). LimitG1
1 (IP , IM , Φ) =

LimitG2
1 (IP , IM , Φ).

3 Finite-Precision Strategies

In this section we present our results for pure, uniform and finite-precision strategies.
We start with the characterization for pure strategies.

Pure Strategies. The following result shows that for pure strategies, memoryless strate-
gies are as strong as infinite-memory strategies, and the almost-sure and limit-sure sets
coincide.

Proposition 1 Given a concurrent game structure G and a parity objective Φ we have
AlmostG1 (P,M,Φ) = AlmostG1 (P, IM , Φ) = LimitG1 (P, IM , Φ).

Algorithm and Complexity. In the proof of the above proposition we establish a linear
reduction to turn-based stochastic games. Thus the set Almost1(P,M,Φ) can be com-
puted using the algorithms for turn-based stochastic parity games (such as [12]). We
have the following results.

Theorem 2 Given a concurrent game structure G, a parity objective Φ, and a state s,
whether s ∈ Almost1(P, IM , Φ) = Limit1(P, IM , Φ) can be decided in NP ∩ coNP.

Uniform and Finite-Precision Strategies. We will present the characterization for uni-
form and finite-precision strategies. We will also present symbolic algorithms (via μ-
calculus formula characterization) to compute the winning sets, which is the main result
of this section. First note that it follows from the classical matching penny game exam-
ple that Almost1(P,M,Φ) � Almost1(U,M,Φ) We show that uniform memoryless
strategies are as powerful as finite-precision infinite-memory strategies and the almost-
sure and limit-sure sets coincide for finite-precision strategies.

Proposition 2 Given a concurrent game structure G and a parity objective Φ we have
AlmostG1 (U,M,Φ) = AlmostG1 (FP , IM , Φ) =

⋃
b>0 LimitG1 (bFP , IM , Φ).

Computation of Almost1(U,M,Φ). It follows from Proposition 2 that the computation
of Almost1(U,M,Φ) can be achieved by a reduction to a turn-based stochastic game.
We now present the main technical result of this subsection which presents a sym-
bolic algorithm to compute Almost1(U,M,Φ). The symbolic algorithm developed in
this section is crucial for analysis of infinite-precision finite-memory strategies, where
the reduction to a turn-based stochastic game cannot be applied. The symbolic algo-
rithm is obtained via a μ-calculus formula characterization and we now introduce the
predecessor operators for the μ-calculus formula.

Basic Predecessor Operators. The predecessor operators Pre1 (pre) and Apre1
(almost-pre) are defined for all s ∈ S and X,Y ⊆ S by:

Pre1(X) = {s ∈ S | ∃ξ1 ∈ χs1 . ∀ξ2 ∈ χs2 . P ξ1,ξ2
s (X) = 1};

Apre1(Y,X) = {s ∈ S | ∃ξ1 ∈ χs1 . ∀ξ2 ∈ χs1 . P ξ1,ξ2
s (Y ) = 1 ∧ P ξ1,ξ2

s (X) > 0} .
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Intuitively, the Pre1(X) is the set of states such that player 1 can ensure that the next
state is in X with probability 1, and Apre1(Y,X) is the set of states such that player 1
can ensure that the next state is in Y with probability 1 and in X with positive proba-
bility.

Principle of General Predecessor Operators. While the operators Apre and Pre suf-
fice for solving Büchi games, for solving general parity games, we require predecessor
operators that are best understood as the combination of the basic predecessor opera-
tors. We use the operators

⋃
∗ and

⋂
∗ to combine predecessor operators; the operators⋃

∗ and
⋂
∗ are different from the usual union ∪ and intersection ∩. Roughly, let α and β

be two set of states for two predecessor operators, then the set α
⋃
∗ β requires that the

distributions of player 1 satisfy the disjunction of the conditions stipulated by α and β.
We first introduce the operator Apre

⋃
∗ Pre. For all s ∈ S and X1, Y0, Y1 ⊆ S, we define

Apre1(Y1, X1)
⋃
∗ Pre1(Y0) ={

s ∈ S | ∃ξ1 ∈ χs1.∀ξ2 ∈ χs2.

⎡⎣ (P ξ1,ξ2
s (X1) > 0 ∧ P ξ1,ξ2

s (Y1) = 1)∨
P ξ1,ξ2
s (Y0) = 1

⎤⎦} .

Note that the above formula corresponds to a disjunction of the predicates for Apre1
and Pre1. However, it is important to note that the distributions ξ1 for player 1 to
satisfy (ξ2 for player 2 to falsify) the predicate must be the same. In other words,
Apre1(Y1, X1)

⋃
∗ Pre1(Y0) is not equivalent to Apre1(Y1, X1) ∪ Pre1(Y0).

General Predecessor Operators. We first introduce two predecessor operators as
follows:

APreOdd1(i, Yn, Xn, . . . , Yn−i, Xn−i)

= Apre1(Yn, Xn)
⋃
∗ Apre1(Yn−1, Xn−1)

⋃
∗ · · ·

⋃
∗ Apre1(Yn−i, Xn−i);

APreEven1(i, Yn, Xn, . . . , Yn−i, Xn−i, Yn−i−1)

= Apre1(Yn, Xn)
⋃
∗ Apre1(Yn−1, Xn−1)

⋃
∗ · · ·

⋃
∗ Apre1(Yn−i, Xn−i)

⋃
∗ Pre1(Yn−i−1).

We show Theorem 3, and the proof methodology is as follows: (a) we define appropriate
predecessor operators and prove duality with respect to APreOdd and APreEven; (b) we
show that for the set characterized by the μ-calculus formula of Theorem 3 there is a
witness uniform memoryless strategy to ensure the parity objective with probability 1;
(c) we show that in the complement μ-calculus formula with the dual predecessor oper-
ators, for every memoryless strategy for player 1, there is a counter-strategy for player 2
to ensure that the complement of the parity objective is satisfied with positive proba-
bility. Establishing the duality of the predecessor operators, μ-calculus complementa-
tion, and establishing equivalence of the μ-calculus formulas and almost-sure winning
for uniform memoryless strategies by producing appropriate witness strategies from μ-
calculus formula is the heart of the proof. The μ-calculus formulas and the correctness
proof are non-trivial generalizations of the result of [22] for turn-based deterministic
parity games (e.g., the μ-calculus formula of [22] only requires the Pre1 operator and
does not deal with concurrency), and the long and subtle proof is given in complete
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details in [4]. The proof structure is similar to the results of [8] (journal version of [15])
but with many important differences (e.g., the witness strategy we construct is a uni-
form memoryless strategy, as compared to an infinite-memory strategy in [8]). Also
note that in the result below we only focus on uniform memoryless strategies, and the
equivalence to finite-precision strategies and uniform memoryless strategies has been
shown in Proposition 2.

Theorem 3 For all concurrent game structures G over state space S, for all parity
objectives Parity(p) for player 1, with p : S #→ [1..2n] the following assertions hold.
1. We have Almost1(U,M, Parity(p)) = W , where W is defined as follows

νYn−1.μXn−1 . . . νY0.μX0.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B2n ∩ Pre1(Yn−1)
∪

B2n−1 ∩ APreOdd1(0, Yn−1, Xn−1)
∪

B2n−2 ∩ APreEven1(0, Yn−1, Xn−1, Yn−2)
∪
...

B2∩APreEven1(n−2, Yn−1, Xn−1,. . ., X1, Y0)
∪

B1∩APreOdd1(n−1, Yn−1, Xn−1, . . . , Y0, X0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Bi = p−1(i) is the set of states with priority i, for i ∈ [1..2n].

2. The set Almost1(U,M, Parity(p)) can be computed symbolically using the above
expression in time O(|S|2n+1 ·

∑
s∈S 2|Γ1(s)∪Γ2(s)|); and for s ∈ S whether s ∈

Almost1(U,M, Parity(p)) can be decided in NP ∩ coNP.

Intuitively, the μ-calculus formula of Theorem 3 is obtained from the μ-calculus for-
mula for turn-based deterministic parity games of [22] by replacing the predecessor
operator (Pre1) of the μ-calculus formula of [22] appropriately with our new predeces-
sor operators (APreEven1 and APreOdd1) (see detailed description in [4]). Thus from
the understanding of the μ-calculus formula of [22] for turn-based deterministic games
and our predecessor operators, the μ-calculus formula of Theorem 3 can be understood.
The NP ∩ coNP bound follows directly from the μ-calculus expressions as the players
can guess the ranking function (see [4] for the standard definition of ranking function,
also see [22]) of the μ-calculus formula and the support of the uniform distribution at
every state to witness that the predecessor operator is satisfied, and the guess can be
verified in polynomial time. Observe that the computation through μ-calculus formulas
is symbolic and more efficient than enumeration over the set of all uniform memoryless
strategies of size O(

∏
s∈S |Γ1(s) ∪ Γ2(s)|) (for example, with constant action size and

constant d, the μ-calculus formula is polynomial, whereas enumeration of strategies
is exponential). The μ-calculus formulas of [22] can be obtained from the μ-calculus
formula of Theorem 3 by replacing all predecessor operators with the Pre1 predecessor
operator (details in [4]).

Proposition 3 Given a concurrent game structure G and a parity objective Φ we have
Almost1(IP , FM , Φ) = Almost1(U, FM , Φ) = Almost1(U,M,Φ).
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For almost-sure winning uniform memoryless strategies are as powerful as finite-
precision infinite-memory strategies (Proposition 2) as well as infinite-precision
finite-memory strategies (Proposition 3). In contrast, infinite-precision infinite-
memory strategies are more powerful than uniform memoryless strategies, i.e.,
Almost1(U,M,Φ) � Almost1(IP , IM , Φ) (for details see [4]). The propositions and
examples of this section establish all the results for equalities and inequalities (1) of
Section 1. The fact that Limit1(IP , FM , Φ) � Limit1(IP , IM , Φ) was shown in [15].
The fact that we have

⋃
b>0 Limit1(bFP , IM , Φ) = Almost1(U,M,Φ), and the re-

sult of [16] that for reachability objectives memoryless limit-sure winning strategies
exist and limit-sure winning is different from almost-sure winning established that⋃
b>0 Limit1(bFP , IM , Φ) � Limit1(IP ,M, Φ). Thus we have all the results of (1)

and (2), other than Limit1(IP ,M, Φ) = Limit1(IP , FM , Φ) = Limit1(FP ,M, Φ) =
Limit1(FP , IM , Φ) and we establish this in the next section.

4 Infinite-Precision Strategies

The results of the previous section already characterize that for almost-sure win-
ning infinite-precision finite-memory strategies are no more powerful than uniform
memoryless strategies. In this section we characterize the limit-sure winning for
infinite-precision finite-memory strategies. We require a new predecessor operator,
Lpre (limit-pre). For s ∈ S and X,Y ⊆ S, the two-argument predecessor operator
Lpre is defined as follows:

Lpre1(Y,X) = {s ∈ S | ∀α > 0.∃ξ1 ∈ χs1 .∀ξ2 ∈ χs2 .
[
P ξ1,ξ2
s (X) > α·P ξ1,ξ2

s (¬Y )
]
}.

The operator Lpre1(Y,X) is the set of states such that player 1 can choose distributions
to ensure that the probability to progress to X can be made arbitrarily large as compared
to the probability of escape from Y . In other words, the probability to progress to X
divided by the sum of the probability to progress to X and to escape Y can be made
arbitrarily close to 1 (in the limit 1).

Limit-Sure Winning for Memoryless Strategies. The results of [16] show that for
reachability objectives, memoryless strategies suffice for limit-sure winning, and the
limit-sure winning set can be characterized by a μ-calculus formula with Lpre1. We now
show with an example that limit-sure winning for Büchi objectives with memoryless
strategies is not simply limit-sure reachability to the set of almost-sure winning states.
Consider the game shown in Fig 1 with actions {a, b} for player 1 and {c, d, e} for
player 2 at s0. States s1, s2 are absorbing, and the unique successor of s3 is s0. The
Büchi objective is to visit {s1, s3} infinitely often. The only almost-sure winning state
is s1. The state s0 is not almost-sure winning because at s0 if player 1 plays b with
positive probability the counter move is d, otherwise the counter move is c. Hence
either s2 is reached with positive probability or s0 is never left. Moreover, player 1
cannot limit-sure reach the state s1 from s0, as the move e ensures that s1 is never
reached. Thus in this game the limit-sure reach to the almost-sure winning set is only
state s1. We now show that for all ε, there is a memoryless strategy to ensure the Büchi
objective with probability at least 1 − ε from s0. At s0 the memoryless strategy plays
a with probability 1 − ε and b with probability ε. Fixing the strategy for player 1 we
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s0s1 s2

s3

ac

bdad, bc

ae, be

Fig. 1. A Büchi game

obtain an MDP for player 2, and in the MDP player 2 has an optimal pure memoryless
strategy. If player 2 plays the pure memoryless strategy e, then s3 is visited infinitely
often with probability 1; if player 2 plays the pure memoryless strategy c, then s1 is
reached with probability 1; and if player 2 plays the pure memoryless strategy d, then
s1 is reached with probability 1 − ε. Thus for all ε > 0, player 1 can win from s0 and
s3 with probability at least 1− ε with a memoryless strategy.

Limit-Winning Set for Büchi Objectives. We first present the characterization of the
set of limit-sure winning states for concurrent Büchi games from [15] for infinite-
memory and infinite-precision strategies. The limit-sure winning set is characterized
by the following formula: νY0.μX0.[

(
B ∩ Pre1(Y0)

)
∪
(
¬B ∩ Lpre1(Y0, X0)

)
]. Our

characterization of the limit-sure winning set for memoryless infinite-precision strate-
gies would be obtained as follows: we will obtain sequence of sets of states X0 ⊆ X1 ⊆
. . . ⊆ Xk such that from each Xi for all ε > 0 there is a memoryless strategy to ensure
that ♦Xi−1 ∪ (�♦B ∩ �(Xi \ Xi−1)) is satisfied with probability at least 1 − ε. We
consider the following μ-calculus formula:

νY1.μX1.νY0.μX0.

[(
B ∩ Pre1(Y0)

⋃
∗ Lpre1(Y1, X1)

)
∪(

¬B ∩ Apre1(Y0, X0)
⋃
∗ Lpre1(Y1, X1)

)]
Let Y ∗ be the fixpoint, and since it is a fixpoint we have

Y ∗ = μX1.νY0.μX0.

[(
B ∩ Pre1(Y0)

⋃
∗ Lpre1(Y

∗, X1)
)
∪(

¬B ∩ Apre1(Y0, X0)
⋃
∗ Lpre1(Y

∗, X1)
)]

Thus Y ∗ is computed as least fixpoint as sequence of sets X0 ⊆ X1 . . . ⊆ Xk, and
Xi+1 is obtained from Xi as

νY0.μX0.

[(
B ∩ Pre1(Y0)

⋃
∗ Lpre1(Y

∗, Xi)
)
∪(

¬B ∩ Apre1(Y0, X0)
⋃
∗ Lpre1(Y

∗, Xi)
)]

The Lprei(Y
∗, Xi) is similar to limit-sure reachability to Xi, and once we rule out

Lpre1(Y
∗, Xi), the formula simplifies to the almost-sure winning under memoryless

strategies. In other words, from each Xi+1 player 1 can ensure with a memoryless
strategy that either (i) Xi is reached with limit probability 1 or (ii) the game stays in
Xi+1 \Xi and the Büchi objective is satisfied with probability 1. It follows that Y ∗ ⊆
Limit1(IP ,M,�♦B). In other words the Lpre1 operator needs to be combined with the
APreOdd1 and APreEven1 operators with

⋃
∗ to characterize the limit-sure winning set

for memoryless strategies. We will show that in the complement set there exists constant



Qualitative Concurrent Parity Games: Bounded Rationality 557

η > 0 such that for all finite-memory infinite-precision strategies for player 1 there
is a counter strategy to ensure the complementary objective with probability at least
η > 0. The heart of the proof is again in establishing duality of predecessor operators,
complement of μ-calculus formulas, and producing appropriate witness strategies from
the μ-calculus formulas (the detailed proof is in [4]).

The General Principle. The general principle to obtain the μ-calculus formula for
limit-sure winning for memoryless infinite-precision strategies is as follows: we con-
sider the μ-calculus formula for the almost-sure winning for uniform memoryless strate-
gies, then add a νYn+1μXn+1 quantifier and add the Lpre1(Yn+1, Xn+1)

⋃
∗ to every

predecessor operator. Intuitively, when we replace Yn+1 by the fixpoint Y ∗, then we
obtain a sequence Xi of sets of states for the least fixpoint computation of Xn+1, such
that from Xi+1 either Xi is reached with limit probability 1 (by the Lpre1(Y

∗, Xn+1)
operator), or the game stays in Xi+1 \Xi and then the parity objective is satisfied with
probability 1 by a memoryless strategy. The μ-calculus formula and the correctness
proof are non-trivial generalizations of both the result of [22] (for turn-based determin-
istic parity games which uses only Pre1 operator and does not deal with concurrency)
and the result of [16] for concurrent reachability games (that uses only Lpre1 operator
and has only one quantifier alternation of νμ as compared to the general nested fixpoint
characterization required for parity objectives). We have the following result.

Theorem 4 For all concurrent game structures G over state space S, for all parity
objectives Φ = Parity(p) for player 1, with p : S #→ [1..2n], the following assertions
hold.
1. We have Limit1(IP ,M, Φ) = Limit1(IP , FM , Φ), and Limit1(IP , FM , Φ) = W ,

where W is defined as follows

νYn.μXn.νYn−1.μXn−1. · · · νY1.μX1.νY0.μX0.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B2n ∩ Pre1(Yn−1)
⋃
∗ Lpre1(Yn, Xn)

∪
B2n−1 ∩ APreOdd1(0, Yn−1, Xn−1)

⋃
∗ Lpre1(Yn, Xn)

∪
B2n−2 ∩ APreEven1(0, Yn−1, Xn−1, Yn−2)

⋃
∗ Lpre1(Yn, Xn)

∪
B2n−3 ∩ APreOdd1(1, Yn−1, Xn−1, Yn−2, Xn−2)

⋃
∗ Lpre1(Yn, Xn)

∪
...

B2 ∩ APreEven1(n− 2, Yn−1, Xn−1, . . . , Y1, X1, Y0)
⋃
∗ Lpre1(Yn, Xn)

∪
B1 ∩ APreOdd1(n− 1, Yn−1, Xn−1, . . . , Y0, X0)

⋃
∗ Lpre1(Yn, Xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Bi = p−1(i) is the set of states with priority i, for i ∈ [1..2n].

2. The set Limit1(IP , FM , Φ) can be computed symbolically using the above μ-
calculus expression in time O(|S|2n+2 ·

∑
s∈S 2|Γ1(s)∪Γ2(s)|); and for s ∈ S

whether s ∈ Limit1(IP , FM , Φ) can be decided in NP ∩ coNP.

Proposition 4 Given a concurrent game structure G and a parity objective Φ we have
Limit1(IP ,M, Φ) = Limit1(FP ,M, Φ) = Limit1(FP , FM , Φ) = Limit1(FP , IM , Φ)
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Construction of Infinite-Precision Strategies. Note that for infinite-precision strate-
gies we are interested in the limit-sure winning set, i.e., for every ε > 0, there is a
strategy to win with probability 1− ε, but not necessarily a strategy to win with proba-
bility 1. The proof of Theorem 4 constructs for every ε > 0 a memoryless strategy that
ensures winning with probability at least 1− ε.

Independence from Precise Probabilities. The computation of all the predecessor op-
erators only depends on the supports of the transition function, and not on the precise
transition probabilities.

Theorem 5 Let G1 = (S, A, Γ1, Γ2, δ1) and G2 = (S, A, Γ1, Γ2, δ2) be two concurrent
game structures that are equivalent, i.e., G1 ≡ G2. Then for all parity objectives Φ, for
all C1 ∈ {P,U, FP , IP} and C2 ∈ {M, FM , IM } we have (a) AlmostG1

1 (C1, C2, Φ) =

AlmostG2
1 (C1, C2, Φ); and (b) LimitG1

1 (C1, C2, Φ) = LimitG2
1 (C1, C2, Φ).

All cases of the above theorem, other than when C1 = IP and C2 = IM follow
from our results, and the result for C1 = IP and C2 = IM follows from the results
of [15].

Concluding Remarks. In this work we studied the bounded rationality problem for quali-
tative analysis in concurrent parity games, and presented a precise characterization. The
theory of bounded rationality for quantitative analysis is future work, where we believe
our results will be helpful.
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Abstract. Priced timed games (PTGs) are two-player zero-sum games
played on the infinite graph of configurations of priced timed automata
where two players take turns to choose transitions in order to optimize
cost to reach target states. Bouyer et al. and Alur, Bernadsky, and Mad-
husudan independently proposed algorithms to solve PTGs with non-
negative prices under certain divergence restriction over prices. Brihaye,
Bruyère, and Raskin later provided a justification for such a restriction
by showing the undecidability of the optimal strategy synthesis problem
in the absence of this divergence restriction. This problem for PTGs with
one clock has long been conjectured to be in polynomial time, however
the current best known algorithm, by Hansen, Ibsen-Jensen, and Mil-
tersen, is exponential. We extend this picture by studying PTGs with
both negative and positive prices. We refine the undecidability results
for optimal strategy synthesis problem, and show undecidability for sev-
eral variants of optimal reachability cost objectives including reachability
cost, time-bounded reachability cost, and repeated reachability cost ob-
jectives. We also identify a subclass with bi-valued price-rates and give a
pseudo-polynomial (polynomial when prices are nonnegative) algorithm
to partially answer the conjecture on the complexity of one-clock PTGs.

1 Introduction

Timed automata [2] equip finite automata with a finite number of real-valued
variables—aptly called clocks—that evolve with a uniform rate. The syntax of
timed automata also permits specifying transition guards and location (state)
invariants using the constraints over clock valuations, and resetting the clocks
as a means to remember the time since the execution of a transition. Timed au-
tomata is a well-established formalism to specify time-critical properties of real-
time systems. Priced timed automata [3,4] (PTAs) extend timed automata with
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a, x>0, {x} , 0

b, x�1, ∅, 1

a, x>1, ∅, 0

c, x�1, ∅,−1
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a, x<1, {x} , 0

a, x�1, {x} , 0

a, x�1, {x} , 0

Fig. 1. A price timed game arena with one clock

price information by augmenting locations with price-rates and transitions with
discrete prices. The natural reachability-cost optimization problem for PTAs is
known to be decidable with the same complexity [6] as the reachability prob-
lem (PSPACE-complete), and forms the backbone of many applications of timed
automata including scheduling and planning.

Priced timed games (PTGs) extend the reachability-cost optimization prob-
lem to the setting of competitive optimization problem, and form the basis of
optimal controller synthesis [19] for real-time systems. We study turn-based vari-
ant of these games where the game arena is a PTA with a partition of the loca-
tions between two players Player 1 and Player 2. A play of such a game begins
with a token in an initial location, and at every step the player controlling the
current location proposes a valid timed move, i.e., a time delay and a discrete
transition, and the state of the system is modified accordingly. The play stops if
the token reaches a location from a distinguished set of target locations, and the
payoff of the play is equal to the cost accumulated before reaching the target
location. If the token never reaches a target location then the game continues
forever, and the payoff in this case is +∞ irrespective of actual cost of the infi-
nite play. We characterize a PTG according to the objectives of Player 1. Since
we study zero-sum games, the objective of Player 2 is also implicitly defined.
We study PTGs with the following objectives: (i) Constrained-price reachability
objective Reach(�(K) is to achieve a payoff C of the play such that C �( K
where �( ∈ {�, <,=, >,�} and K ∈ N; (ii) Bounded-time reachability objec-
tive TBReach(K,T ) is to keep the payoff of the play less than K while keeping
the total time elapsed within T units; and (iii) Repeated reachability objective
RReach(η) is to visit target infinitely often with a payoff in the interval [−η, η].

An example of PTG with clock variable x and six locations is given in Fig. 1.
We depict Player 1 locations as circles and Player 2 locations as boxes. The
numbers inside locations denote their price-rates, while the clock constraints
next to a location depicts its invariant. We denote a transition, as usual, by an
arrow between two location annotated by a tuple a, g, r, c where a is the label,
g is the guard, r is the clocks reset set, and c is the cost of the transition.

Related Work. PTGs with constrained-price reachability objective Reach(�K)
were independently introduced in [9] and [1], with semi-algorithms to decide the
existence of winning strategy for Player 1 in PTGs with nonnegative prices.
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They also showed that under the strongly non-Zeno assumption on prices the
proposed semi-algorithms always terminate. This assumption was justified in [11]
by showing that, in the absence of non-Zeno assumption, the problem of deciding
the existence of winning strategy for the objective Reach(� K) is undecidable
for PTGs with five or more clocks. This result has been later refined in [7] by
showing that the problem is undecidable for PTGs with three or more clocks and
nonnegative prices. In [5] is showed the undecidability of the existence of winning
strategy problem for Reach(�K) objective over PTGs with both positive and
negative price-rates and two or more clocks.

On a positive side, the existence of winning strategy for Reach(�K) problem
for PTGs with one clock when the price-rates are restricted to values 0 and d ∈ N
has been shown decidable in [11], by proving that the semi-algorithms in [9,1]
always terminate. However, the authors did not provide any complexity analysis
of their algorithm. One-clock PTGs with nonnegative prices are reconsidered
in [10], and a 3-EXPTIME algorithm is given to solve the problem, while the
best known lower bound is PTIME. A tighter analysis of the problem is presented
in [20] that lowered the known complexity of this problem to EXPTIME, namely

2O(n2+m) where n is the number of locations and m is the number of transitions.
A significant improvement over the complexity (m12nnO(1)) was given in [15] by
improving the analysis of the semi-algorithms by [9,1].

Contributions. We consider PTGs with both negative and positive prices. We
show that deciding the existence of a winning strategy for reachability objective
Reach(�(K) is undecidable for PTGs with two or more clocks. In [18], a the-
ory of time-bounded verification has been proposed, arguing that restriction to
bounded-time domain reclaims the decidability of several key verification prob-
lems. As an example, we cite [12] where authors recovered the decidability of
the reachability problem for hybrid automata under time-bounded restriction.
We begin studying PTGs with bounded reachability objective TBReach(K,T )
hoping that the problem may be decidable due to time-bounded restriction.
However, we answer this question negatively by showing undecidability of the
existence of winning strategy problem for PTGs with six or more clocks. We also
show the undecidability for the corresponding problem for repeated reachability
objective RReach(η) for PTGs with three or more clocks.

On the positive side, we introduce a previously unexplored subclass of one-
clock PTGs, called one-clock bi-valued priced timed games (1BPTGs), where the
price-rates of locations are taken from a set of two integers from {−d, 0, d} (with
d any positive integer). None of the previously cited algorithms can be applied
in this case since we do not assume non-Zenoness of prices and consider both
positive and negative prices. After showing a determinacy result for 1BPTGs, we
proceed to give a pseudo-polynomial time algorithm to compute the value and
ε-optimal strategy for both players with Reach(�K) objective. The complexity
drops to polynomial for 1BPTGs if the price-rates are non-negative integers.
This gives a polynomial time algorithm for the one-clock PTG problem studied
in [11]. Due to lack of space, full proofs of the results are given in [13].
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2 Reachability-Cost Games on Priced Game Graphs

PTGs can be considered as a succinct representation of some games on uncount-
able state space characterized by the configuration graph of timed automata.

We begin by introducing the concepts and notations related to such more
general game arenas that we call priced game graphs.

Definition 1. A priced game graph is a tuple G = (V,A,E, π, Vf ) where:
– V = V1 % V2 is the set of vertices partitioned into the sets V1 and V2;
– A is a set of labels called actions;
– E : V ×A → V is the edge function defining the set of labeled edges;
– π : V ×A→ R is the price function that assigns prices to edges; and
– Vf ⊆ V is the set of target vertices.

We call a game graph finite if both V and A are finite and with rational prices.

A reachability-cost game begins with a token placed on some initial vertex
v0. At each round, the player who controls the current vertex v chooses an
action a ∈ A and the token is moved to the vertex E(v, a). The two players
continue moving the token in this fashion, and give rise to an infinite sequence
of vertices and actions called a play of the game. Formally, a finite play r is a
finite sequence of vertices and actions 〈v0, a0, v1, a1, . . . , an−1, vn〉 where for each
0 � i < n we have that vi+1 = E(vi, ai); we write Last(r) for the last vertex
of a finite play, here Last(r) = vn. An infinite play is defined analogously. We
write FPlayG (FPlayG(v)) for the set of finite plays (starting from the vertex v)
of the game graph G. We often omit the subscript when the game arena is clear
form the context. We similarly define Play and Play(v) for the set of infinite
plays. For all k � 0, we let r[k] be the prefix 〈v0, a0, . . . , ak−1, vk〉 of r, and we

denote by Cost(r[k]) =
∑k−1

i=0 π(vi, ai) its cost. We write Stop(r) for the index
of the first target vertex in r, i.e., Stop(r) = inf {k : vk ∈ F}. We define the
cost of an infinite run r = 〈v0, a1, v1, . . .〉 as Cost(r) = +∞ if Stop(r) = ∞ and
Cost(r) = Cost(r[Stop(r)]), otherwise.

A strategy for a Player i (for i ∈ {1, 2}) is a partial function σ : FPlay → A
that is defined for a run r = 〈v0, a0, v1, . . . , an−1, vn〉 if vn ∈ Vi and is such
that E(vn, σ(r)) is defined, i.e., there is a σ(r)-labeled outgoing transition from
vn. We denote by Strati(G) (or Strati when the game arena is clear) the set of
strategies for Player i. Given a strategy profile (σ1, σ2) ∈ Strat1×Strat2 for both
players, and an initial vertex v ∈ V , the unique infinite play Play(v, σ1, σ2) =
〈v0, a0, v1, . . . vk, ak, vk+1, . . .〉 is such that for all k � 0 if vk ∈ Vi, for i =
1, 2, then ak+1 = σi(r[k]) and vk+1 = E(vk, ak+1). A strategy σ is said to be
memoryless (or positional) if, for all finite plays r, r′ ∈ FPlay with Last(r) =
Last(r′) we have that σ(r) = σ(r′). Similarly, finite-memory strategies can be
defined as implementable with Moore machines, see [14] for a formal definition.

We consider optimal reachability-cost games on priced game graphs, where
the goal of Player 1 is to minimize the reachability-cost, while the goal of
Player 2 is the opposite. The standard concepts of upper value and lower value of
the optimal reachability-cost game are defined in straightforward manner. For-
mally, the upper-value ValG(v) and lower value ValG(v) of a game starting from
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a vertex v is defined as ValG(v) = infσ1∈Strat1 supσ2∈Strat2 Cost(Play(v, σ1, σ2))
and ValG(v) = supσ2∈Strat2 infσ1∈Strat1 Cost(Play(v, σ1, σ2)). It is easy to see that

ValG(v) � ValG(v) for every vertex v. We say that a game is determined if the
lower and the upper values match for every vertex v, and in this case, we say that
the optimal value of the game exists and we let ValG(v) = ValG(v) = ValG(v).
The determinacy of these games follow from Martin’s determinacy theorem, and
an alternative proof is given in [14].

In the following, we write Cost(v, σ1) for the value of the strategy σ1 of Player 1
from vertex v, i.e., Cost(v, σ1) = supσ2∈Strat2 Cost(Play(v, σ1, σ2)) . A strategy σ∗1
of Player 1 is said to be optimal from v if Cost(v, σ∗1) = ValG(v) . Optimal
strategies do not always exist, hence we also define ε-optimal strategies. For
ε > 0, a strategy σ1 is an ε-optimal strategy if for all vertex v ∈ V , Cost(v, σ1) �
ValG(v) + ε . In this paper we exploit the following result from [14].

Theorem 1 ([14]). Let G be a finite priced game graph.
1. Deciding ValG(v) = +∞ is in Polynomial Time.
2. Deciding ValG(v) = −∞ is in NP ∩ co-NP, can be achieved in pseudo-

polynomial time1 and is as hard as solving mean-payoff games [21].
3. Given −∞ < ValG(v) < +∞ for every vertex v, optimal strategies exist for

both players. In particular, Player 2 has optimal memoryless strategies, while
Player 1 has optimal finite-memory strategies. Moreover, the values ValG(v),
as well as optimal strategies, can be computed in pseudo-polynomial time.

It must be noticed that, in the presence of negative costs, and even when every
vertex v has a finite value ValG(v) ∈ R, memoryless optimal strategies may not
exist for Player 1, as pointed out in [14, Example 1].

3 Priced Timed Games

In order to formally introduce priced timed games, we need to define the concepts
of clocks, clock valuations, constraints, and zones. Let X be a finite set of real-
valued variables called clocks. A clock valuation on X is a function ν : X → R�0

and we write V (X ) for the set of clock valuations. Abusing notation, we also treat
a valuation ν as a point in R|X |. If ν ∈ V (X ) and t ∈ R�0 then we write ν + t
for the clock valuation defined by (ν + t)(c) = ν(c) + t for all c ∈ X . For C ⊆ X ,
we write ν[C := 0] for the valuation where ν[C := 0](c) equals 0 if c ∈ C and
ν(c) otherwise. A clock constraint over X is a conjunction of simple constraints
of the form c �( i or c− c′ �( i, where c, c′ ∈ X , i ∈ N and �( ∈ {<,>,=,�,�}.
A clock zone is a finite set of clock constraints that defines a convex set of clock
valuations. We write Z(X ) for the set of clock zones over the set of clocks X .

Definition 2. A priced timed game is a tuple A = (L,X , Inv, Σ, δ, ω, Lf) where:
– L = L1 % L2 is a finite set of locations, partitioned into the sets L1 and L2;
– X is a finite set of clocks;

1 Polynomial time if the prices are encoded in unary.
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– Inv : L→ Z(X ) associates an invariant to each location;
– Σ is a finite set of labels;
– δ : L × Σ → Z(X ) × 2X × L is a transition function that maps a location


 ∈ L and label a ∈ Σ to a clock zone ζ ∈ Z(X ) representing the guard on the
transition, a set of clocks R ⊆ X to be reset and successor location 
′ ∈ L;

– ω : L ∪Σ → Z is the price function; and
– and Lf ⊆ L is the set of target locations.

A configuration of a PTG is a tuple (
, ν) ∈ L× V where 
 is a location, ν is
a clock valuation and ν ∈ Inv(
). A timed action is a tuple τ = (t, a) ∈ R�0×Σ
where t is a time delay and a is a label. In the following, for a timed move
τ = (t, a) ∈ R�0 × Σ, we let del(τ) = t be the delay part and lab(τ) = a be the
label part. The semantics of a PTG is given as an infinite priced game graph.

Definition 3 (Semantics). The semantics of a PTG A = (L,X , Inv, Σ, δ, ω,
Lf) is given as a priced game graph [[A]] = (S, Γ,Δ, κ, Sf ) where
– S = {(
, ν) ∈ L× V | ν ∈ Inv(
)} is the set of configurations of the PTG;
– Γ = R�0 ×Σ is the set of timed moves;
– Δ : S × Γ → S is the transition function defined by (
′, ν′) = Δ((
, ν), (t, a))

if δ(
, a) = (ζ, R, 
′) such that ν + t ∈ ζ, ν + t′ ∈ Inv(
) for all 0 � t′ � t,
and ν′ = (ν + t)[R := 0];

– κ : S × Γ → R is such that κ((
, ν), (t, a)) = ω(
)× t + ω(a); and
– Sf ⊆ S is such that (
, ν) ∈ Sf iff 
 ∈ Lf .

The concepts of a play, its cost, and strategies of players for a PTG A is
defined via corresponding objects for its semantic priced game graph [[A]]. In the
previous section we introduced games with reachability-cost objective for priced
game graphs. We also study the following winning objectives for Player 1 in the
context of priced timed games; the objective for Player 2 is the opposite.
1. Constrained-price reachability. The constrained-price reachability ob-

jective Reach(�K) is to keep the payoff within a given bound K ∈ N. Ob-
jectives Reach(�(K) for constrains �( ∈ {<,=, >,�} are defined analogously.

2. Bounded-time reachability. Given constants K,T ∈ N, the bounded-time
reachability objective TBReach(K,T ) is to keep the payoff of the play less
than or equal to K while keeping the total time elapsed within T units.

3. Repeated reachability. For this objective, we consider slightly different
semantics of the game where the play continues forever, and the repeated
reachability objective RReach(η), η ∈ R�0 is to visit target locations in-
finitely often each time with a payoff in a given interval [−η, η].

In Section 4, we sketch the proof of the following negative result regarding the
decidability of PTGs with these objectives. This result is particularly surprising
for bounded-time reachability objective, since bounded-time restriction has been
shown to recover decidability in many related problems [18,12].

Theorem 2. Let A be a priced timed game arena. The decision problems cor-
responding to the existence of winning strategy for following objectives are un-
decidable:
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1. Reach(�(K) objective for PTGs with two or more clocks and arbitrary prices;
2. TBReach(K,T ) objective for PTGs with five or more clocks; and prices 0,1;
3. RReach(η) objective for PTGs with three or more clocks and arbitrary prices.

To recover decidability, we consider a subclass of one-clock PTGs. In this
subclass, the set of clocks X is a singleton {x}, and price-rates of the locations
come from a doubleton set {p−, p+} with p− < p+ two distinct elements of
{−1, 0, 1} (no condition is made on the prices ω(a) of labels a ∈ Σ). We call
these restricted games one-clock bi-valued priced timed games, abbreviated as
1PTG(p−, p+), or 1BPTG if p− and p+ do not matter. All our results may
easily be extended to the case where p− and p+ are taken from the set {−d, 0, d}
with d ∈ N. We devote Section 5 to the proof of the following decidability results.

Theorem 3. We have the following results:
1. 1BPTGs are determined.
2. The value of a 1BPTG can be computed in pseudo-polynomial time.
3. Given that a 1BPTG has a finite value, an ε-optimal strategy for Player 1

can be computed in pseudo-polynomial time.
4. Aforementioned complexities drop to polynomial time for 1PTG(0, 1) with

prices of labels taken from N.

4 Undecidability Results

In this section we provide a proof sketch of our undecidability result
(Theorem 2) by reducing the halting problem for two counter machines
(see [17]) to the existence of a winning strategy for Player 1 for the desired
objective. For all the three objectives, given a two counter machine, we con-
struct a PTG A whose building blocks are the modules for instructions. In these
reductions the objective of Player 1 is linked to a faithful simulation of various
increment, decrement, and zero-test instructions of the machine by choosing ap-
propriate delays to adjust the clocks to reflect changes in counter values. The
goal of Player 2 is then to verify the simulation performed by Player 1. Proofs
of correctness of the reductions, as well as more details can be found in the
appendix.

Constrained-Price Reachability Objectives Reach(�(K). The result in the
case Reach(�K) is a consequence of the result in [5]. Undecidability for other
comparison operators �( is a new contribution. We only consider the objec-
tive Reach(=1) in this section, since proofs for other constraints are similar.
Our reduction uses a PTG with two clocks x1 and x2, arbitrary price-rates
for locations and no prices for labels. Each counter machine instruction (incre-
ment, decrement, and test for zero value) is specified using a PTG module. The
main invariant in our reduction is that upon entry into a module, we have that
x1 = 1

5c17c2 and x2 = 0 where c1 (respectively, c2) is the value of counter C1 (re-
spectively, C2). We outline the simulation of a decrement instruction for counter
C1 in Fig. 2. Let us denote by xold = 1

5c17c2 the value of x1 while entering the
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Fig. 2. Decrement module for the objection Reach(=1)

module. At the location 
k+1 of the module, x1 = xnew should be 5xold to cor-
rectly decrement counter C1. At location 
k, Player 1 spends a non-deterministic
amount of time tk = xnew −xold such that xnew = 5xold+ ε. To correctly decre-
ment C1, ε should be 0, and tk must be 4

5c17c2 . At location Check, Player 2 could
choose to go to Go (in order to continue the simulation of the machine) or go to
the widget WD1, if he suspects that ε 	= 0. If Player 2 spends time t > 0 in the
location Check before proceeding to Go, then Player 1 can enter the location
Abort (to abort the simulation), rather than going to 
k+1. Player 1 spends 1+ t
time in location Abort and reaches a target T1 with cost 1 (and thus achieve
his objective). However, if t = 0 then entering location Abort will make the cost
to be greater than 1 (which is losing for Player 1). If Player 2 decides to enter
widget WD1, then the cost upon reaching the target in the widget WD1 is 1+ ε
which is 1 iff ε = 0.

Bounded-Time Reachability Objective. We sketch the reduction for ob-
jective TBReach(K,T ). Our reduction uses a PTG with price-rates 0 or 1 on
locations, and zero prices on labels, along with five clocks x1, x2, z, a, b. On en-
try into a module for the (k + 1)th instruction, we always have one of the two
clocks x1, x2 with value 1

2k+c13k+c2
and other is 0. Clock z keeps track of the to-

tal time elapsed during simulation of an instruction: we always have z = 1− 1
2k

at the end of simulating kth instruction. Thus, time 1
2 is spent simulating the

first instruction, 1
4 for the second instruction and so on, so that the total time

spent in simulating the main modules is less than 1. The main challenge here is
to ensure that only a bounded time is spent along the entire simulation, along
with updating the counter values correctly. Clocks a, b are used for rough work.
For instance, if the (k + 1)th instruction 
k+1 is an increment of C1, and we
have x1 = 1

2k+c13k+c2
, while a = b = x2 = 0, and z = 1 − 1

2k
, then at the end

of the module simulating 
k+1, we want x2 = 1
2k+1+c1+13k+1+c2

and x1 = 0 and

z = 1− 1
2k+1 .

Repeated Reachability Objective. Finally, we consider the repeated reach-
ability objective RReach(η). Our reduction uses a PTG with 3 clocks, and ar-
bitrary price-rates, but zero prices for labels. On entry into a module, we have
x1 = 1

5c17c2 , x2 = 0 and x3 = 0, where c1, c2 are the values of C1 and C2.
Fig. 3 shows module to simulate decrement C1. Location 
k is entered with
x1 = 1

5c17c2 , x2 = 0 and x3 = 0. To correctly decrement C1, Player 1 should
choose a delay of 4

5c17c2 in location 
k. At location Check, no time can elapse
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Fig. 3. Decrement module for Repeated reachability objective

because of the invariant. If Player 1 makes an error, and delays 4
5c17c2 + ε at 
k

(ε 	= 0) then Player 2 can jump in widget WD1. The cost of going from location
A to F is ε; each time we come back to A, the clock values with which A was
entered are restored. Clearly, if ε 	= 0, Player 2 can incur a cost that is not in
[−η, η] by taking the loop from A to F a large number of times.

5 One-Clock Bi-Valued Priced Timed Games

This section is devoted to the proof of Theorem 3. First of all, let us assume that
all 1BPTGs A we consider are bounded, i.e., that there is a global invariant in
every location, of the form x � MK (where MK denotes the greatest constant
appearing in the clock guards and invariants of A). This restriction comes w.l.o.g
since every 1BPTG arena can be made bounded with a polynomial algorithm.2

Our proof of Theorem 3 is based on an extension of the classical notion of
regions in timed automata, in the spirit of the regions introduced to define the
corner point abstraction [8]. Indeed, to take the price into account, ε-optimal
strategies do not take uniform decisions on the classical regions. That is why we
need to subdivide each classical region into three parts: two small parts around
the corners of the region (that we will call borders in the following, considering
our one-clock setting), and a big part in-between. We will show that considering
only strategies that never jump into those big parts is sufficient (Lemma 1).
Lemma 2, later, shows a stronger result that one can restrict attention to strate-
gies that play closer and closer to the borders of the regions as time elapses.
Finally, we combine these results to show that a finite abstraction of 1BPTGs is
sufficient to compute the value as well as ε-optimal strategies (Lemma 3). This
not only yields the desired result, but also provides us further insight into the
shape of ε-optimal strategies for both players.

5.1 Reduction to η-Region-Uniform Strategies

Since we only consider one-clock PTGs, we need not consider the standard Alur-
Dill regional equivalence relation. Instead, we consider special region equiva-
lence relation characterized by the intervals with constants appearing in guards

2 By introducing auxiliary states in order to reset the clock x at every time unit once
its value goes beyondMk. The polynomial complexity holds only for one-clock PTGs.
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and invariants of A inspired by Laroussinie, Markey, and Schnoebelen construc-
tion [16]. Let 0=M0<M1< · · ·<MK be the integers appearing in guards and
invariants of A. We say that two valuations ν, ν′ ∈ R�0 are region-equivalent
(or lie in the same region), and we write ν ∼ ν′, if for every k ∈ {0, . . . ,K},
ν � Mk iff ν′ � Mk, and ν � Mk iff ν′ � Mk. We define the set of regions
to be the set of equivalence classes of ∼. We extend the equivalence relation ∼
from valuations to configurations in a straightforward manner. We also general-
ize the regional equivalence relation to the plays. For two (finite or infinite) plays
r = 〈(
0, ν0), (t0, a0), . . .〉 and r′ = 〈(
′0, ν′0), (t′0, a′0), . . .〉 we say that r ∼ r′ if the
lengths of r and r′ are equal, and they define sequences of regional equivalent
states (i.e., (
i, νi) ∼ (
′i, ν

′
i) for all i � 0) and follow equivalent timed actions

(i.e., ai = a′i and νi + ti ∼ ν′i + t′i for all i � 0). We also consider a refinement
of region equivalence relation that we call the η-region equivalence relation, and
we write ∼η, for a given η ∈ (0, 1

3 ). Intuitively, ν ∼η ν′ if both valuations are
close or far from any borders of the regions, with respect to the distance η.

Definition 4 (η-regions). For valuations ν, ν′ ∈ R�0 we say that ν ∼η ν′ if
ν ∼ ν′ and for every k ∈ {0, . . . ,K − 1}, |ν −Mk| � η iff |ν′ −Mk| � η, and
ν � MK − η iff ν′ � MK − η. We assume the natural order � over η-regions
by their lower bounds. We call η-regions the equivalence classes of ∼η. We also
extend the relation ∼η to configurations and runs.

For instance, if M1 = 2 and M2 = 3, the set of η-regions is given by {{0}, (0, η],
(η, 2− η), [2− η, 2), {2}, (2, 2+ η], (2+ η, 3− η), [3− η, 3), {3}, (3,+∞)}.We next
introduce the strategies of a restricted shape with the properties that they depend
only on theη-regionabstractionof runs; their decision isuniformover eachη-region;
and they play η-close to the borders of the regions.

Definition 5 (η-region uniform strategies). Let η ∈ (0, 1
3 ) be a constant. A

strategy σ ∈ Strat1 ∪ Strat2 is said to be η-region-uniform if
– for all finite run r ∼η r′ ending respectively in (
, ν) and (
, ν′) (in particular

ν ∼η ν′) we have ν + del(σ(r)) ∼η ν′+ del(σ(r′)) and lab(σ(r)) = lab(σ(r′));
– for every finite run r ending in (
, ν), if ν+del(σ(r)) ∈ (Mk,Mk+1), we have

ν + del(σ(r)) ∈ (Mk,Mk + η] ∪ [Mk+1 − η,Mk+1).
We write UStratη1 and UStratη2 for the set of η-region-uniform strategies for Play-

ers 1 and 2. We also define upper-value UVal
η
(s) when both players are restricted

to use only η-region-uniform strategies. Formally,

UVal
η
(s) = inf

σ1∈UStratη1

sup
σ2∈UStratη2

Cost(Play(s, σ1, σ2)), for all s ∈ S.

Example 1. Consider PTG A1 shown in Fig. 4 (that is not a 1BPTG since there
are three distinct price-rates). A strategy of Player 2 is entirely described by the
time spent in the initial location with initial valuation 0. For example, Player 2
can choose to delay 1/2 time units before jumping in the next location. Indeed,
the lower and upper value of the game is − 1

2 . However, this strategy is not
η-region-uniform. Instead, an η-region-uniform strategy will delay t time units
with t ∈ [0, η] ∪ [1 − η, 1]. Hence, the upper value when players can only use
η-region-uniform strategies is equal to −1.
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Fig. 4. The value in the left-side one-clock PTG A1 with price-rates in {−1, 0, 1} is
− 1

2
, while the value in the right-side PTG A2 is 1

2

Contrary to this example, the next lemma shows that, in 1BPTGs, the up-
per value of the game increases when we restrict ourselves to η-region-uniform
strategies. Intuitively, every cost that Player 2 can secure with general strategies,
it can also secure it with η-region-uniform strategies against η-region-uniform
strategies of Player 1.

Lemma 1. Val(s) � UVal
η
(s) , for every 1BPTG A, s ∈ S and η ∈ (0, 1

3 ),

5.2 Reduction to η-Convergent Strategies

A similar result concerning the lower values of the games can be shown in case
of η-region-uniform strategies. In subsequent proofs, we need a stronger result
to avoid situations detailed in Example 2, where player 2 needs infinite precision
to play incrementally closer to borders (as well as an infinite memory). For this
reason, we restrict the shape of strategies to force them to play at distance η

2n

of borders when playing the nth round of the game. The slight asymmetry in
the definitions for the two players is exploited in proving subsequent results.

Definition 6 (η-convergent strategies). Let η ∈ (0, 1
3 ) be a constant. A strat-

egy σ ∈ Strat1 ∪ Strat2 is said to be η-convergent if σ is η-region-uniform and
for all finite run r of length n ending in (
, ν):
– if σ ∈ Strat1, there exists k such that either |ν + del(σ(r)) −Mk| � η

2n+1 , or
del(σ(r)) = 0 and ν ∈ (Mk +

η
2n+1 ,Mk + η];

– if σ ∈ Strat2, there exists k such that either ν + del(σ(r)) ∈ {Mk +
η

2n+1 } ∪
[Mk − η

2n+1 ,Mk), or del(σ(r)) = 0 and ν ∈ (Mk +
η

2n+1 ,Mk + η].
We let CStratη1 and CStratη2 be respectively the set of η-convergent strategies for
Player 1 and Player 2, and we define, for every configuration s ∈ S, CValη(s) =
supσ2∈CStratη2

infσ1∈CStratη1
Cost(Play(s, σ1, σ2)) .

Example 2. Consider the 1BPTG A3 composed of a vertex per player, on top
of the target vertex. In its vertex, having price-rate 0, Player 1 must choose
between going to the target vertex, or going to the vertex of Player 2 by resetting
clock x. In its vertex, having price-rate −1, Player 2 must go back to the vertex
of Player 1, with a guard x > 0: hence, Player 2 would like to exit as soon as
possible, but because of the guard, he must spend some time before exiting. If
Player 2 plays according to a finite-memory strategy, there must be a bound ε
such that Player 2 always stays in his state for a duration bounded from below
by ε, and Player 1 can exploit it by letting the game continue for an arbitrarily
long time to achieve an arbitrarily small payoff. On the other hand, if Player 2
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plays an infinite-memory η-convergent strategy by staying in his location for a
duration ε/2n in his n-th visit to its location, Player 2 ensures a payoff −ε for
an arbitrarily small ε > 0, resulting in the value 0 of the game.

It is clear from the previous example that Player 2 needs infinite-memory
strategies to optimize his objective. The following lemma formalizes our intu-
ition that the lower value of the game decreases when we restrict ourselves to
η-convergent strategies. Intuitively, every cost that Player 1 can secure with
general strategies, it can also secure it with η-convergent strategies against an
η-convergent strategy of Player 2.

Lemma 2. CValη(s) � Val(s) , for every 1BPTG A, s ∈ S and η ∈ (0, 1
3 ).

Observe that this lemma fails to hold when location price-rates can take more
than two values as exemplified by arena A2 in Fig. 4. It shows a game with
three distinct prices with lower and upper value equal to 1/2. However, when
restricted to η-convergent strategies, the lower value equals 1.

Our next goal is to find a common bound being both a lower bound on
CValη(s) and an upper bound on UVal

η
(s) by studying the value of a reachability-

cost game on a finitary abstraction of 1BPTGs.

5.3 Finite Abstraction of 1BPTGs

We now construct a finite price game graph Ã from any 1BPTG A, as a finite
abstraction of the infinite weighted game [[A]], based on η-regions. Since we have
learned that η-region-uniform strategies suffice, we limit ourselves to playing at
a distance at most η from the borders of regions. Observe that only η-regions
close to the borders are of interest, and moreover η-regions after the maximal
constant MK are not useful since A is bounded. Let IηA be the set of remaining
“useful” η-regions. For example, if constant appearing in the PTG are M1 = 2
and M2 = 3, we have IηA = {{0}, (0, η], [2− η, 2), {2}, (2, 2 + η], [3 − η, 3), {3}}.
We next define the delay between two such η-regions I � J , denoted by d(I, J),
as the closest integer of q′ − q, where q (respectively, q′) is the lower bound
of interval I (respectively, J). For example, d((2, 2 + η], [3 − η, 3)) = 1 and
d({0}, [2− η, 2)) = 2.

Definition 7. For every 1BPTG A we define its border abstraction as a finite
priced game graph Ã = (V = V1 % V2, A,E, π, Vf ) where:
– Vi = {(
, I) | 
 ∈ Li, I ∈ IηA, I ⊆ Inv(
)} for i ∈ {1, 2};
– A = IηA ×Σ;
– E is the set of tuples ((
, I), (J, a), (
′, J ′)) such that I � J and for all I �

K � J we have K ⊆ Inv(
) and J ⊆ ζ and J ′ = J [R := 0] with (ζ, R, 
′) =
δ(
, a)};

– π((
, I), (J, a), (
′, J ′)) = ω(
)× d(I, J) + ω(a); and
– Vf = {(
, I) | 
 ∈ Lf , I ∈ IηA}.

In a border abstraction game Ã, the meaning of action (J, a) is that the player
wants to let time elapse until it reaches the η-region J , then playing label a. It
simulates any timed move (t, a) with t any delay reaching a point in J .
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Fig. 5. Finite weighted game associated with the 1BPTG of Fig. 1

Example 3. Consider the border abstraction of the 1BPTG of Fig. 1 shown in
Fig. 5. Observe that we depict only a succinct representation of the real abstrac-
tion, since we only show the reachable part of the game from (
1, 0), and we
have removed multiple edges (introduced due to label hiding) and kept only the
most useful ones for the corresponding player. For example, consider the location
(
5, {0}). There are edges labelled by (J, a) for every interval J ∈ IηA, all directed
to (
4, {0}) due to a reset being performed there. We only show the best possi-
ble edge—the one with lowest price—since location 
5 belongs to Player 1, who
seeks to minimise cost. Each vertex contains the η-region it represents. Thanks
to Theorem 1, it is possible to compute the optimal value as well as optimal
strategies for both players. Here, the value of state (
1, 0) is 1, and an optimal
strategy for Player 1 is to follow action ({0}, a) (i.e., jump to 
2 immediately),
and then action ({1}, a) (i.e., to delay 1 time unit, before jumping in 
3).

Lemma 3. Let A be a 1BPTG and Ã be its border abstraction. Suppose that for
all 0 � k � K and 
 ∈ L we have that ValÃ((
, {Mk})) is finite. Then, for all ε >

0, there is η > 0 s.t. UVal
η

A((
,Mk))−ε � ValÃ((
, {Mk})) � CValηA((
,Mk))+ε.

Combining this result with Theorem 1 we obtain the following.

Corollary 1. 1BPTGs are determined and we can compute their values in
pseudo-polynomial time. Moreover, in case the values are finite, ε-optimal strate-
gies exist for both players: Player 2 may require infinite memory strategies,
whereas finite memory is sufficient for Player 1. Finally, ε-optimal strategies
can also be computed in pseudo-polynomial time.

Proof. In case of infinite values ValÃ((
, {Mk})), we can show directly that
ValA((
,Mk)) = ValÃ((
, {Mk})) = ValA((
,Mk)) . Otherwise, let ε > 0. By
Lemma 3, we know that there exists η > 0 such that for every location 
 ∈ L
and integer 0 � k � K:

UVal
η

A((
,Mk))− ε � ValÃ((
, {Mk})) � CValηA((
,Mk)) + ε .
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Fig. 6. A two-clock PTG with prices of locations in {0,+1} and value 1/2

Moreover Lemma 1 and 2 show that:

CValη((
,Mk)) � Val((
,Mk)) � Val((
,Mk)) � UVal
η
((
,Mk)) .

Both inequalities combined permit to obtain

ValÃ((
, {Mk}))− ε � Val((
,Mk)) � Val((
,Mk)) � ValÃ((
, {Mk})) + ε .

Taking the limit when ε tends to 0, we obtain that Val((
,Mk)) = Val((
,Mk)) =
ValÃ((
, {Mk})). Therefore, 1BPTG are determined. Moreover, in case of finite
values, the proof of Lemma 3 permits to construct ε-optimal η-region-uniform
strategies σ∗1 (with finite memory) and σ∗2 (which is moreover η-convergent). ��

In the case of 1BPTGs, the finite values are integers. This property fails if
we allow more than one clock, as shows Fig. 6 with a two-clock PTG with
price-rates in {0, 1} and optimal value 1

2 . It also fails if we allow more than
two price-rates as was shown in Fig. 4. However for 1PTG(0, 1) with prices of
labels in N, the value of the game is necessarily nonnegative disallowing the
case −∞. The case +∞ can be detected in polynomial time. If the value is not
+∞, the exact computation in the finite abstraction Ã can be performed in
polynomial time (see [14] or [15]), resulting in a polynomial algorithm for PTGs.
The sketch of Theorem 3 is now complete. Notice that our proof shows that
optimal value functions (as defined in [10,20,15]) of such games have a polynomial
number of line segments, and hence algorithms presented in [10,20,15] are indeed
polynomial time.

6 Conclusion

We revisited games with reachability objective on PTGs with both positive and
negative price-rates. We showed undecidability of all classes of constrained-price
reachability objectives with two or more clocks. We also observed that adding
bounded-time restriction does not recover decidability, even with nonnegative
prices. We also partially answer the question regarding polynomial-time algo-
rithm for one-clock PTGs by showing that for a bi-valued variant the problem
is in pseudo-polynomial time. However, the existence of a polynomial-time al-
gorithm for multi-priced one-clock PTGs with nonnegative price-rates, and the
existence of algorithm for computing ε-optimal strategies for PTGs with arbi-
trary number of clocks remain open problems.
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Abstract. We present a new game-based abstraction technique for
probabilistic automata (PA). The key idea is to use distribution-based ab-
straction – preserving novel distribution-based (alternating) simulation re-
lations – rather than classical state-based abstraction. These abstractions
yield (simple) probabilistic game automata (PGA), turn-based 2 player
stochastic games in which moves of both players – as opposed to classi-
cal stochastic games – yield distributions over states. As distribution-based
(alternating) simulation relations are pre-congruences for composite PGA,
abstraction can bedone compositionally.Our abstraction yields tighter up-
per and lower bounds on (extremal) reachability probabilities than state-
based abstraction. This shows the potential superiority over state-based
abstraction of PA and Markov decision processes.

1 Introduction

Probabilistic automata [1] (PA) extend labelled transition systems by allowing
targets of transitions to be distributions over states rather than simply states. As
transitions emanating from a state can be equally labelled, PA slightly generalize
Markov decision processes (MDPs). This enables a natural way of putting PA
in parallel. Due to the presence of non-determinism and discrete probabilistic
branching, PA are convenient for modelling randomized distributed algorithms
and security protocols. They are also popular semantic models for probabilistic
process algebras and form the backbone of the PIOA language.

To combat the well-known state space explosion problem, abstractions of
PA that go beyond bisimulation have received quite some attention. Whereas
abstract PA [2,3,4] build upon concepts from modal transition systems and
constraint functions, [5] uses three-valued abstraction yielding interval Markov
chains, while [6] aggregates MDPs by separating the non-determinism in the
MDPs from that introduced by abstraction. This naturally yields turn-based
stochastic 2-player games [7,8], where one player controls the non-determinism
in the MDPs, whereas the other is in charge of the non-determinism from
the abstraction. Game-based MDPs abstraction yields upper and lower bounds
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on reachability probabilities, and significantly improves standard MDPs model
checking as evidently shown by several case studies [6]. Besides, this game-based
abstraction is optimal in the sense of abstract interpretation [9].

Although the aforementioned abstraction techniques are different in nature,
they have in common that the abstraction is state-based. That is to say, ab-
stract models simulate concrete models in a step-wise manner [10]. The key
idea in this paper is to treat distributions rather than states as first-class cit-
izens, and relax state-based simulation to distribution-based simulations. Our
abstractions yield (simple) probabilistic game automata (PGA), turn-based 2-
player stochastic games in which moves of both players – as opposed to classical
stochastic games (SGs) [7,8] – yield distributions over states. The new abstrac-
tion technique yields tighter upper and lower bounds on (extremal) reachability
probabilities than state-based abstraction. This shows the potential superiority
over state-based game-based MDP abstraction [6], and puts the optimality result
of [9] in perspective.

Abstract models are probabilistic game automata (PGA), in fact simplified
versions of the games in [11]. These games feature action-labelled transitions, in
which every player non-deterministically makes a move and randomly picks the
next state. We define two distribution-based pre-orders between abstract and
concrete PGA: simulation and alternating simulation relations. Simulation rela-
tions are of interest when both players have identical objectives, whereas alter-
nating simulation relations are useful for competitive objectives. Both relations
are shown to be pre-congruences w.r.t. parallel composition of (a class of) PGA,
enabling compositional abstraction of P(G)A. The pre-orders are the key to
distribution-based abstraction, a technique distinguishing the non-deterministic
behaviour of concrete distributions from that of the distributions induced by
the abstraction. This enables merging concrete distributions having similar be-
haviour in the abstraction.

Put in a nutshell, the major contributions of this paper are: (1) a distribution-
based abstraction framework of PA using a slight generalisation of stochastic
games, (2) elementary results for distribution-based (alternating) simulation re-
lations such as congruence properties and comparison to state-based simulation,
and (3) distribution-based abstraction yields tighter bounds for extremal reach-
ability probabilities than state-based abstraction.

Organization. Section 2 sets the ground for this paper and introduces SGs
and PGA. Section 3 and 4 present (alternating) simulation relations for PGA.
Section 5 treats two abstraction techniques. Section 6 presents game composi-
tion and the fact that abstraction is compositional. Section 7 presents results
on bounding extremal reachability probabilities for PA. Section 8 discusses the
special case of MDPs abstraction and compares to [6] while Section 9 concludes.

2 Preliminaries

Distributions. A distribution μ is a function on a countable set S iff μ : S →
[0, 1] and 0 <

∑
s∈S μ(s) ≤ 1; its support set is given as Supp(μ) = {s ∈ S |
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μ(s) > 0}; and its mass w.r.t. set S′ ⊆ S is given as μ(S′) =
∑

s∈S′ μ(s). Let
|μ| = μ(S) denote the size of the distribution μ; μ is a full distribution iff |μ| = 1,
otherwise, it is a sub-distribution. Let Dist(S) denote the set of distributions over
S. Let ιs ∈ Dist(S) denote the Dirac distribution for s ∈ S, i.e, ιs(s) = 1. A
distribution μ′′ can be split into sub-distributions μ and μ′, say, represented
as μ′′ = μ ⊕ μ′, iff μ′′(s) = μ(s) + μ′(s) for s ∈ S. Since ⊕ is associative and
commutative, we use the notation

⊕
for finite sums. A distribution is sometimes

represented as μ = �μ(s)s | s ∈ Supp(μ)�, where � and � differentiate a set of
probabilities from an ordinary set. For 0 ≤ c ≤ 1, c·μ denotes the distribution
defined by: (c·μ)(s) = c · μ(s). For a distribution μ, the conditional distribution

w.r.t. a set A ⊆ Supp(μ) is given as: μ↓A(s) =
μ(s)
μ(A) for s ∈ A, and μ↓A(s) = 0 if

s /∈ A; if A = Supp(μ), we omit A and simply write μ↓.

Probability Measures and Spaces. Let Ω be a non-empty set and F ⊆ 2Ω.
F is a σ-field on Ω iff: (1) ∅ ∈ F ; (2) A ∈ F ⇒ Ω\A ∈ F ; (3) A1, A2, A3, ... ∈
F ⇒

⋃
i≥1 Ai ∈ F . The elements of F are measurable sets and (Ω,F) is a

measurable space. A function Pr : F → [0, 1] is a probability measure on (Ω,F)
iff Pr(Ω) = 1 and if A1, A2, ... are disjoint elements in F , then Pr(

⋃
i Ai) =∑

i Pr(Ai). (Ω,F ,Pr) is called a measurable space. For any A ⊆ F , there exists
a unique smallest σ-field that contains A [12]; and given that A satisfies certain
conditions [12], a probability measure defined on A can be uniquely extended to
the σ-field containing A.
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Fig. 1. A PA

Probabilistic Automata (PA). PA [1] is an
extension of labelled transition systems (LTS)
in which the target of any action-labelled tran-
sition is a distribution over states instead of
a single state. Let UAct be a countable uni-
verse actions including the internal action τ .
Formally,

Definition 1. A Probabilistic Automaton is
a tuple M = (S,A,Δ, s0) where S is a non-
empty, countable set of states with initial state
s0 ∈ S; A ⊆ UAct; and Δ ⊆ S ×A×Dist(S)
is a set of transitions.

In the sequel, M = (S,A,Δ, s0) is assumed to be a finitely branching PA.

Stochastic Games (SGs). A 2-player SG [7,8] is a game of chance played be-
tween two players, say, player 1 and player 2. The game arena is a bipartite graph
– having, say, S1 and S2 as sets of vertices – in which each player owns a specific
set of vertices; say, the players 1 and 2 own S1 and S2 respectively. The game is
started by player 1 and evolves in a turn-based fashion. Starting from the initial
state in S1, player 1 non-deterministically chooses an action-distribution pair.
Based on the selected distribution a state in S2, say s2, is randomly selected and
control is passed to player 2. Player 2 non-deterministically selects an enabled
action in s2, uniquely picks a successor of s2 and passes control back to player
1. This goes on until some goal is achieved either by player 1 or player 2.
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Fig. 2. A PA M (left) and its embedding G = αPA(M) (right)

Definition 2. A Stochastic Game is a tuple G = (S, {S1, S2}, A,Δ, s0) where S
is a non-empty, countable set of states, partitioned into S1 and S2, with s0 ∈ S1;
A ⊆ UAct; and Δ ⊆ (S1×A×Dist(S2))∪(S2×A×D(S1)) is a set of probabilistic
transitions where D(S1) ⊆ Dist(S1) is the set of Dirac distributions over S1.

We often denote (s, a, μ) ∈ Δ by s
a→ μ and Act(s) as the set of enabled actions

from state s, i.e., Act(s) = {a ∈ A | ∃μ ∈ Dist(S) : s
a→ μ}. We assume that a

game is started by player 1 and |Act(s)| > 0 for s ∈ S. Note that PA are SGs in

which ∀s ∈ S2, a, b ∈ A : (s
a→ μ ∧ s

b→ ν) implies μ = ν and |Supp(μ)| = 1.

Simple Probabilistic Game Automata (PGA). In SGs, player 1 moves
yield distributions over states, while player 2 moves yield states. In PGA, player
2 moves also yield distributions over states.

Definition 3. A Simple Probabilistic Game Automaton is a tuple G = (S, {S1,
S2}, A,Δ, s0) where S, S1, S2, A and s0 are as for SGs, and Δ ⊆ S1+x × A ×
Dist(S2−x) where x is a bit.

Our PGA are simplified versions of the probabilistic game automata in [11]. SGs
are a subclass of PGA in which Dist(S1) is a set of Dirac distributions. In the
sequel, let G = (S, {S1, S2}, A,Δ, s0) be a finitely branching PGA. For depicting
PGA we represent states in S1 and S2 as rectangles and double rectangles re-
spectively. In case of PA, states are circles. In the following, we show how a PA
can be embedded into a PGA. For a state s ∈ S, let s be a copy of s.

Definition 4. For PAM, the bijective embedding function α : S → S′
2 induces

the PGA α(M) = G′ = (S′, {S′
1, S

′
2}, A′, Δ′, s′0) where A′ = A, S′

1 = {s′ | s′ ∈
S′
2} — S′

1 is a copy of S′
2 —, s′0 = α(s0) and for every s′ ∈ S′

2:

1. s′
a→ μ′ iff α−1(s′)

a→ μ and μ′(u′) = μ(α−1(u′)) for all u′ ∈ S′
2,

2. s′
a→ ιs′ iff α−1(s′) ∈ Supp(μ) for some u ∈ S such that (u, a, μ) ∈ Δ in M.
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In the sequel, αPA denotes an embedding function for PA.

Example 1. Let G = αPA(M) (see Fig. 2) with S2 = {t0, . . . , t6} and S1 =
{v0, . . . , v6}, α−1

PA(ti) = si, and ti = vi, for i = 0 to 6. For convenience, the
si states are depicted inside the corresponding states vi and ti. We have e.g.,

v2
b→ μ′ with μ′(t1) =

7
10 and μ′(t3) =

3
10 and t1

b→ v1 and t3
b→ v3, as in PAM

we have s2
b→ μ with μ(s1) =

7
10 and μ(s3) =

3
10 .

Paths. If |Act(s)| > 1 for state s, a non-deterministic choice among the
enabled actions in s occurs. A path in a PGA represents a particular resolu-
tion of non-determinism by players 1 and 2 at each state, as well as a resolu-
tion of the probabilistic choices. Formally, a path from s10 ∈ S1 is given as:

π = s10
a10 ,μ10−−−−−→ s20

a20 ,μ20−−−−−→ s11 ... where sik ∈ Si, aik ∈ Act(sik), μik ∈ Dist(Si),
μ1k(s2k) > 0 and μ2k(s1k+1

) > 0 for all i ∈ {1, 2} and k ≥ 0; if k < k′ for some
k′ ∈ N+, then π is called finite path, otherwise infinite path. For a finite path
πfin, let lasti(πfin) denote the last state in Si for i ∈ {1, 2} in πfin. Let Pathfin(G)
and Pathinf(G) denote the set of finite and infinite paths in a PGA G respec-
tively, and Paths(G) = Pathfin(G) ∪ Pathinf(G).
Schedulers. In order to analyse reachability properties on G, we resolve non-
determinism at all game states by means of a scheduler (also known as policy,
strategy or adversary). Let κi be the scheduler for Si, i ∈ {1, 2}. We consider
deterministic memoryless (DM) schedulers as they suffice for reachability proba-
bilities on PGA [11]. DM-schedulers select an action-distribution pair only on the
basis of the current state. More specifically, for bit x, a deterministic scheduler
κ(1+x) maps a finite path πfin to a pair in Act(last(1+x)(πfin)) × Dist(S(2−x));
and a memoryless scheduler κ(1+x) assures that for finite paths πfin and π′fin,
last(1+x)(πfin) = last(1+x)(π

′
fin) implies κ(1+x)(πfin) = κ(1+x)(π

′
fin).

A path π under a pair of DM-schedulers (κ1, κ2) is of the form π = s10
a10 ,μ10−−−−−→

s20
a20 ,μ20−−−−−→ s11 ... where κi(sik ) = (aik , μik) for i ∈ {1, 2} and k ≥ 0. Let

Pathsκ1
κ2
(G) be the set of paths of PGA G under DM-schedulers (κ1, κ2). The

DM-schedulers (κ1, κ2) on PGA G induce a countably infinite Markov chain.
This allows us to construct a measurable space (Pathsκ1

κ2
(G),Fκ1

κ2
,Prκ1

κ2
) over the

(infinite) paths of G under (κ1, κ2). The problem of computing reachability prob-
abilities on G reduces to a stochastic shortest path problem [13,14] (for details, see
Section 7). As reachability analysis is performed on closed versions of systems,
we define a function that yields closed versions of PGA.

Definition 5. For PGA G, let PGA τ(G) = G′ = (S′, {S′
1, S

′
2}, A′, Δ′, s′0) with

S′ = S, s′0 = s0, A′ = {τ} and Δ′ = {(s, τ, μ) | (s, a, μ) ∈ Δ}.
Combined Hyper Transitions. We adapt hyper and combined transitions
– convex combinations of sets of transitions – for PA [1,15] to PGA which are
later on used in definitions.

Definition 6. For PGA G with s ∈ S and μ ∈ Dist(S), we write:

- μ
a→ η is a hyper transition iff η =

⊕
{μ(s) · ρ | ∃s ∈ Supp(μ) : s

a→ ρ}. Let

Δ(μ, a) = {η | ∃η ∈ Dist(S) : μ
a→ η}.
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- s
a→c η is a combined transition iff there is a finite indexed set {(ci, ηi)}i∈I

such that s
a→ ηi and ci ∈ R≥0 for all i ∈ I,

∑
i∈I ci = 1 and η =

⊕
i∈I ci ·ηi.

- μ
a→c η is a combined hyper transition iff η =

⊕
{μ(s) · ρ | ∃s ∈ Supp(μ) :

s
a→c ρ}.

Simulation. The notion of simulation for probabilistic processes [10] is a pre-
order on the state space requiring that whenever state u simulates state s, then
u can mimic the stepwise behaviour of s but may have more behaviour. This
notion can be lifted to distributions over states using weight functions [10]:

Definition 7. Let S be a finite, non-empty set of states, and let μ, μ′ ∈ Dist(S).
For R ⊆ S × S, μ is simulated by μ′ w.r.t. R, denoted μRμ′, iff there exists a
weight function δ : S×S → [0, 1] such that for all u, v ∈ S:(1) δ(u, v) > 0⇒ uRv,
(2)

∑
s∈S δ(u, s) = μ(u) and (3)

∑
s∈S δ(s, v) = μ′(v).

We now recall Segala’s probabilistic simulation relation [1] for PA.

Definition 8. R ⊆ S×S is a simulation relation for PA M iff for every sRs′,
s

a→ μ implies s′
a→c μ′ with μRμ′. Let ≺pa be the largest simulation relation.

We can lift ≺pa to PA in the usual way: M ≺pa M′ for PA M and M′, with
initial states s0 and s′0, iff s0 ≺pa s′0 in the disjoint union of M and M′. In the
sequel, we will adopt this convention to all simulation relations.

3 Simulation Relations on Stochastic Games

Simulation relations are typically defined over the states of models; however, in
the probabilistic setting, coarser relations have been considered over the distri-
butions over states [1,16,17]. We define simulation relations for PGA, that are
state-based as well as distribution-based, and prove them to be pre-orders. Later
on, these relations form the basis to compare a PGA with its abstraction.

Definition 9. R ⊆
⋃
j∈{1,2} Sj × Sj is a state-based simulation (SBS) relation

on PGA G iff for every sRs′, s
a→ μ implies s′

a→c μ′ with μRμ′. Let ≺sb be the
largest SBS relation.

This asserts that for sRs′, an a-transition from s implies a combined a-transition
from s′ such that the resulting distributions are related as by Def. 7. It is not
difficult to show that ≺sb is a preorder. Moreover, ≺sb = ≺pa for PA.

Definition 10. R ⊆
⋃
j∈{1,2} Dist(Sj)×Dist(Sj) is a distribution-based simu-

lation (DBS) relation on PGA G iff for every μRμ′, (1) μ =
⊕

s′∈Supp(μ′) μs′ :

μ′(s′) = |μs′ | and μs′↓Rιs′ , (2) μ
a→ ρ implies μ′

a→c ρ′ such that |ρ| ≤ |ρ′| and
ρ↓Rρ′↓. Let ≺db be the largest DBS relation. We write s ≺db s′ iff ιs ≺db ιs′ .

By constraint (1), μ splits into sub-distributions as per the support of μ′, i.e.,
for every s′ ∈ Supp(μ′), there exists a sub-distribution μ′s of μ such that the
conditional distribution of μ′s is related to ιs′ . By constraint (2), an a-transition
from μ to some ρ implies a combined a-transition from μ′ to ρ′ such that the
mass of ρ′ is at least that of ρ and their conditional distributions are related.
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Example 2. In Fig. 3, μ = �0.3s3, 0.3s4, 0.4s5� ≺db ιs0 as R = {(ιs1 , ιs1), (ιs2 , ιs2),
(�0.3s3, 0.3s4, 0.4s5�, ιs0 ), (�0.5s1, 0.5s2�, �0.5s1, 0.5s2�)} is a DBS relation. Let us
check the conditions of Def. 10 for μ and ιs0 . The constraint (1) trivially holds
for μ and ιs0 . For the a-transition from μ to ρ = �0.3s1, 0.3s2�, there is an a-
transition from ιs0 to ρ′ = �0.5s1, 0.5s2� such that |ρ| ≤ |ρ′| and ρ↓Rρ′. The
same holds for the b-transitions from μ and ιs0 , thus fulfilling constraint (2).
Note that no SBS relation exists associating s0 with any other state in Fig. 3.

4 Alternating Simulation Relations

s0

s2

s1

s4

s3

s5

a

0.5

0.
5

b μ0.3

0.3

0.
4

a

a

b

Fig. 3. �0.5s3, 0.5s4� ≺db ιs0 but
si �≺sb s0 for i ∈ {3, 4}

To compare two-player stochastic games with
competitive objectives (e.g., if player 1 max-
imises the probability to reach a certain goal
state, her opponent (player 2) will try to min-
imize this quantity), we use alternating sim-
ulation relations. Our state-based alternating
simulation relations are inspired by the no-
tions of alternating simulation [18] and strong
probabilistic game simulation [19].

Definition 11. R ⊆
⋃
j∈{1,2} Sj × Sj is a state-based alternating simulation

(SBAS) relation for PGA G iff for every sRs′ the following holds: (1) if s, s′ ∈
S1, then s′

a→ μ′ implies s
a→c μ such that μRμ′, (2) if s, s′ ∈ S2, then s

a→ μ

implies s′
a→c μ′ such that μRμ′. Let �sb be the largest SBAS relation.

Intuitively, in case of player 1 states, the behaviour of s′ is simulated by that of s;
whereas in case of player 2 states, it is the other way round. The first constraint
asserts that if s, s′ ∈ S1, then an a-transition from s′ implies a combined a-
transition from s and the resulting distributions are related with each other by
Def. 7. The second constraint asserts that if s, s′ ∈ S2, the similar conditions as
in (1) hold for every transition from s. It is easy to show that �sb is a preorder.

Remark 1. The strong probabilistic game simulation relation in [19] [Def. 6.10]
is obtained by merging Def. 9 and 11 and lifting them to player 2 states.

Definition 12. R ⊆
⋃
j∈{1,2}Dist(Sj) × Dist(Sj) is a distribution-based al-

ternating simulation (DBAS) relation for PGA G iff for every μRμ′: (1) μ =⊕
s′∈Supp(μ′) μs′ : |μs′ | = μ′(s′) and μs′↓Rιs′ , (2) if μ, μ′ ∈ Dist(S1), μ′

a→ ρ′

implies μ
a→c ρ such that |ρ| ≥ |ρ′| and ρ↓Rρ′↓, (3) if μ, μ′ ∈ Dist(S2), μ

a→ ρ

implies μ′
a→c ρ′ such that |ρ| ≤ |ρ′| and ρ↓Rρ′↓. Let �db be the largest DBAS

relation. We write s �db s′ iff ιs �db ιs′ .

The constraint (1) is the same as in Def. 10. By constraint (2), if μ, μ′ ∈ Dist(S1),
then an a-transition from μ′ to ρ′ implies a combined a-transition from μ to ρ
such that the mass of ρ is at least the mass of ρ′ and the conditional distribution
of ρ is in relation R with that of ρ′. And by constraint (3), if μ, μ′ ∈ Dist(S2),
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the similar conditions as in (2) hold for every transition from μ. Note that if
the state space is not partitioned (as for PA), then simulation relations coincide
with alternating simulation relations:

Proposition 1. ≺x = �−1
x for PA, where x ∈ {sb, db}.

Theorem 1. ≺db and �db are preorders.

Although a state-based (alternating) simulation relation can be lifted from states
to distributions over states (by Def. 7), an example can be constructed showing
state-based (lifted to distributions over states) and distribution-based (alternat-
ing) simulation relations are not ordered in general but for closed PGA.

Proposition 2. ≺sb/�sb and≺db/�db are incomparable for PGA; and≺sb/�sb

⊆ ≺db/�db for closed PGA.

At the end of this section, we highlight that if PGA are in a state-based or a
distribution-based relation, their closed versions are also in that relation.

5 Game Abstraction

In this section, we show that PGA can act as appropriate abstract models for PA.
We do so by considering abstractions of PGA that are embeddings of PA. Let G
be a PGA with S = {S1, S2}. Intuitively, the state space S2 of G is partitioned
and each partition is represented by a single state in the abstract state space S′

2.
This step induces a partition of S1. We propose two different techniques for the
partition of S1: (a) S1 states having similar behaviour under the player 2 partition
S′
2 are grouped (state-based abstraction); (b) the (sub-)distributions (over S1)

that have similar behaviour are grouped (distribution-based abstraction). In the
sequel, we show that the latter technique is more precise as well as concise than
the former one.

Let (α, γ) be an abstraction-concretization pair such that α : S → S′ is a
surjection and γ : S′ → 2S is the corresponding concretization function. That is,
α(s) is the abstract state of s whereas γ(s′) is the set of concrete states abstracted
by s′. The abstraction of distribution μ is given as α(μ)(s′) = μ(γ(s′)). The
functions α and γ are lifted to sets of states or sets of distributions in a point-
wise manner.

Definition 13. For PGA G, the state-based abstraction function α : S → S′

induces the PGA α(G) = G′ = (S′, {S′
1, S

′
2}, A′, Δ′, s′0) where A′ = A; S′

i = α(Si)
for i ∈ {1, 2}; ∀u′, v′ ∈ S′

1: Δ′(u′) = Δ′(v′) implies u′ = v′; s′0 = α(s0) and for
every s′ ∈ S′:

1. if s′ ∈ S′
1, then: (a) s′

a→ μ′ iff ∀s ∈ γ(s′) : s
a→ μ such that α(μ) = μ′, (b)

∃s ∈ γ(s′) : s
a→ μ implies s′

a→ μ′ such that α(μ) = μ′,

2. if s′ ∈ S′
2, then: (a) s′

a→ μ′ implies ∃s ∈ γ(s′) : s
a→ μ such that α(μ) = μ′,

(b) ∃s ∈ γ(s′) : s
a→ μ implies s′

a→c μ′ such that α(μ) = μ′.
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Fig. 4. For game G (Fig. 2 right), G̃ = αsb(G) (left) and G′ = αdb(G) (right)

In the sequel, (αsb, γsb) denotes a pair of state-based abstraction-concretization
functions for PGA.

By constraint (1) all player 1 states in the concrete model whose transitions be-
come similar after abstraction — that can be found by considering their ordinary
transitions instead of combined transitions — are aggregated; thus every state
in S′

1 has a unique set of transitions enabled from it. Besides, (2) transitions
of player 2 abstract states are derived from their concrete states, whose convex
combination simulate the (abstract) transitions of concrete states.

Example 3. Let G̃ = αsb(G) (Fig. 4 left) where G is the PGA of Fig. 2 (see
page 579) with γsb(t̃0) = {t0}, γsb(t̃1) = {t1, t2, t3}, γsb(t̃2) = {t4, t5} and
γsb(t̃3) = {t6}. Consider v1, v2 and v4, v5 in S1; the transitions of v1 and v2
are the same after abstraction; therefore, they are merged into ṽ1. The same
applies to v4 and v5. Now consider the transitions from t̃1; for each concrete
transition from t1, t2 and t3, there is a corresponding abstract transition from
t̃1; thus, t̃1 simulates (according to Def. 9) t1, t2 and t3 (after abstraction).

Theorem 2. For PGA G, G ≺sb αsb(G) and G �sb αsb(G).

Definition 14. For PGA G, the distribution-based abstraction function α :
S → S′ induces the PGA α(G) = G′ = (S′, {S′

1, S
′
2}, A′, Δ′, s′0) where A′ = A;

S′
i = α(Si) for i ∈ {1, 2}; ∀u′, v′ ∈ S′

1: Δ′(u′) = Δ′(v′) implies u′ = v′; s′0 =
α(s0) and for all μ′ ∈ Dist(S′):

1. ∀μ ∈ γ(μ′) : μ =
⊕

s′∈Supp(μ′) μs′ : μ′(s′) = |μs′ | ∧ α(μs′)↓ = ιs′ ,

2. if μ′ ∈ Dist(S′
1), then:

(a) μ′
a→ η′ iff ∀μ ∈ γ(μ′) : μ

a→ η such that |η| = |η′| and α(η)↓ = η′↓,

(b) ∃μ ∈ γ(μ′) : μ
a→ η implies μ′

a→ η′ such that |η| = |η′| and α(η)↓ = η′↓,
3. if μ′ ∈ Dist(S′

2), then:

(a) μ′
a→ η′ implies ∃μ ∈ γ(μ′) : μ

a→ η such that |η| ≤ |η′| and α(η)↓ = η′↓,

(b) ∃μ ∈ γ(μ′) : μ
a→ η implies μ′

a→c η′ such that |η| ≤ |η′| and α(η)↓ = η′↓.
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In the sequel, (αdb, γdb) denotes a pair of distribution-based abstraction-concr-
etization functions for PGA.

As in a state-based abstraction, all player 1 states in a distribution-based
abstraction of a PGA have a unique set of transitions enabled from them. How-
ever, the distribution-based abstraction differs from the state-based one in sev-
eral ways: (1) asserts the splitting of every concrete distribution μ of μ′ into
sub-distributions as per the support of μ′, i.e., μ =

⊕
s′∈Supp(μ′) μs′ , and the

conditional distribution of μs′ is abstracted by ιs′ . By (2a), when μ′ is defined
over S′

1, then μ′ has an a-transition to some distribution η′ if its every concrete
distribution μ has an a-transition to some distribution η such that the masses
of η and η′ coincide and (the conditional distribution of) η is abstracted by
(that of) η′; moreover, (2b) all transitions from μ are present (after abstraction)
from μ′. In fact, all concrete distributions of μ′ have similar behaviour after ab-
straction, that can be asserted by considering their ordinary transitions instead
of combined transitions. By (3a), when μ′ is defined over S′

2, then μ′ has an
a-transition to some distribution η′ if a concrete distribution μ (of μ′) has an
a-transition to some distribution η such that the mass of η′ is at least that of η
and (the conditional distribution of) η is abstracted by (that of) η′. Moreover,
(3b) the transitions of concrete distributions of μ′ are simulated by the convex
combination of transitions of μ′.

Example 4. Let G′ = αdb(G) (Fig. 4 right) for G in Fig.2 with γdb(t
′
0) = {t0},

γdb(t
′
1) = {t1, t2, t3}, γdb(t

′
2) = {t4, t5} and γdb(t

′
3) = {t6}. As the abstract

state space is the same as for the state-based abstraction in the previous ex-
ample, the transitions of concrete states v1 and v2 are the same after abstrac-
tion; therefore, they are merged into v′1. The same applies to v4 and v5. Now,

consider the transition v′0
a→ �0.5t′1, 0.5t′2� and its corresponding concrete tran-

sition v0
a→ �0.1t1, 0.3t2, 0.1t3, 0.5t4�; note that �0.1t1, 0.3t2, 0.1t3, 0.5t4� can be

split into sub-distributions as per the support of �0.5t′1, 0.5t′2�. Consider the ab-
stract distribution �0.5t′1� and its concrete distribution �0.1t1, 0.3t2, 0.1t3�; for
�0.1t1, 0.3t2, 0.1t3�↓ a→ �0.1v1, 0.3v2, 0.1v3�↓, there is a �0.5t′1�↓ a→c �0.4v′1, 0.1v′2�↓
and �0.1v1, 0.3v2, 0.1v3�↓ ∈ γdb(�0.4v′1, 0.1v′2�↓); and for �0.1t1, 0.3t2, 0.1t3�↓ b→
�0.1v1, 0.1v3�↓, there is a �0.5t′1�↓ b→ �0.25v′1, 0.25v′2�↓ and �0.1v1, 0.1v3�↓ ∈
γdb(�0.25v′1, 0.25v′2�↓). Now consider the b-transition from v′1 to ιt′1 ; we have
two concrete b-transitions: from v1 to ιt1 and from v2 to �0.7t1, 0.3t3�. For

ιt1
b→ ιv1 , there is a ιt′1

b→ ιv′1 ; and for �0.7t1, 0.3t3� b→ �0.7v1, 0.3v3�, there
is a ιt′1

b→c �0.7v′1, 0.3v′2�. Same is the case with a-transitions from ιt1 and
�0.7t1, 0.3t3�.

In the previous example, only those states in S1 whose transitions became the
same after abstraction were aggregated. The next example illustrates that S1

states having different transitions after abstraction can also be aggregated.

Example 5. For PA M (Fig. 1), let G = αPA(M) be its induced game. Let G̃ =
αsb(G) (Fig. 5 left) be the state-based abstract model of G with γsb(t̃0) = {t0},
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Fig. 5. For PA M (Fig. 1), G̃ = αsb(αPA(M)) (left) and G′ = αdb(αPA(M)) (right).
Considering each probabilistic transition as two transitions, |Δ̃| = 20 and |S̃1| = 7;
whereas |Δ′| = 14 and |S′

1| = 5.

γsb(t̃1) = {t5}, γsb(t̃2) = {t1, t2, t3, t4}, γsb(t̃3) = {t6, t7} and γsb(t̃4) = {t8, t9}.
Let G′ = αdb(G) (Fig.5 right) be the distribution-based abstract model of G
with the same partition as above. Consider the distribution �0.8v′1, 0.2v′2� such
that �0.1v1, 0.3v2�↓ and �0.05v3, 0.05v4�↓ are the corresponding distributions for

v′1 and v′2 respectively. Note that v′2
a→ ιt′4 , �0.5t′3, 0.5t′4� iff �0.05v3, 0.05v4�↓ a→

ιt9 , �0.5t7, 0.5t9�. Similarly, v′2
b→ ιt′1 iff �0.05v3, 0.05v4�↓ b→ ιt5 . Moreover, the

concrete distribution ιv5 has the same behaviour as �0.05v3, 0.05v4�↓, therefore,
v3, v4 and v5 are merged into v′2. This example shows that distribution-based
abstraction induces more concise models than state-based abstraction. Note that
for PGA G, R = {(s, αdb(s) | s ∈ S} is not an SBS relation.

Theorem 3. For PGA G, G ≺db αdb(G) and G �db αdb(G).

Both Th. 2 and 3 are of importance when showing (in Section 7) that abstraction
provides upper- and lower-bounds on extremal reachability probabilities in PGA
(and thus PA).

Distribution- vs. State-Based Abstraction. Like for simulation relations,
state-based abstraction is not a special case of distribution-based abstraction. We
observe that for every possible partition of state space, we can have a state-based
abstract model of PGA, but not a distribution-based abstract model; however,
for closed versions of PGA — PGA having A = {τ} —, we can have state-based
as well as distribution-based abstract models.

Proposition 3. αdb(τ(G)) is well-defined for PGA G.

By the above proposition, we mean that for every partition of state space of
a closed PGA, we can construct a distribution-based abstract model, which is
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not the case with other PGA (not closed). However, for some PGA (not closed)
we can have partitions of state space that can define distribution-based abstract
models by aggregating states. Moreover, although we do not aggregate any states
when the partition is S, αdb is defined for this partition. In the sequel, we assume
that αdb(G) is defined for PGA G.

Now we prove that distribution-based abstraction is more precise than state-
based abstraction. In fact, when two abstract models, obtained by a state-based
and a distribution-based abstraction, have the same state space; then the latter
one is at least as precise as the former one. Formally,

Theorem 4. For PGA G, αsb(S) = αdb(S) implies αdb(G) ≺ αsb(G) where
≺∈ {≺sb,�sb}.

6 Composition

We define a composition operator for a class of PGA that can act as abstract
models of PA. The operator is defined in a TCSP-like manner, i.e., it is parametri-
zed by a set of actions that need to be performed simultaneously by both games;
other actions occur autonomously. For distributions μ and μ′, let the point-wise
product μ‖μ′ : S×S → [0, 1] be given as: μ‖μ′(s, s′) = μ(s) ·μ′(s′) for s, s′ ∈ S.

Definition 15. The parallel composition of PGA G and G′ w.r.t. synchro-
nization set Ā ⊆ (A ∩ A′)\{τ} is given as: G ‖Ā G′ = (S × S′, {S1 × S′

1, S ×
S′\S1 × S′

1}, A ∪ A′, Δ̃, (s0, s
′
0)), where for all a ∈ A ∪ A′ and (s, s′) ∈ S × S′,

(s, s′)
a→c μ‖μ′ iff one of the following holds:

1. if (s, s′) ∈ S1 × S′
1, then (i) a ∈ Ā, s

a→c μ and s′
a→c μ′, or (ii) a ∈ A,

s
a→c μ and ιs′ = μ′, or (iii) a ∈ A′, s′

a→c μ′ and ιs = μ,

2. if (s, s′) ∈ S2 × S′
2, then a ∈ Ā, s

a→c μ and s′
a→c μ′,

3. else, (i) s ∈ S2, s
a→c μ and ιs′ = μ′, or (ii) s′ ∈ S′

2, s′
a→c μ′ and ιs = μ.

Note that the state space of our composite game is disjointly dividable based on
the actions which are enabled. Although, we allow composition of S1(S2) states
with that of S′

2(S
′
1) states, but only player 2 can make a move in such a state.

(1) asserts that states in S1 × S′
1 can either synchronize with each other or act

independently. Note that a state in S2 × S′
2 is only reached by a synchronizing

action performed by players of type 1 in some S1×S′
1 state; and (2) asserts that

the next state is reached only by some synchronizing action. (3) tells that for a
state in S(1+x) × S′

(2−x), where x is a bit, no synchronization occurs and only
player 2 can make a move independently. Note that such a state can only be
reached by a non-synchronizing action.

Theorem 5. For any set Ā and x ∈ {sb, db}, ≺x and �x are pre-congruences
w.r.t. ||Ā.

Like for APA [4], our state-based and distribution-based abstractions for PGA
are compositional. Intuitively, the composite PGA may be exponentially larger
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in size as compared to the composing ones. This problem could be avoided by
applying abstraction prior to composition as illustrated by the following theorem.

Theorem 6. For PGA G and G′, synchronization set Ā and abstraction func-
tions αx, α′

x; αx(G) ||Ā α′
x(G′) = (αx×α′

x)(G||ĀG′) up to isomorphism, where
x ∈ {sb, db} and αx×α′

x is defined as (αx×α′
x)(s, s

′) = (αx(s), α
′
x(s

′)).

7 Preservation of Reachability Probabilities

This section presents how optimal (i.e., maximal and minimal) reachability prob-
abilities are preserved under abstraction. We first define some notations and def-
initions. Let Prκ1

κ2
(T ) be the probability of the set of paths from the initial state

s0 that reach some state in T ⊆ S under schedulers (κ1, κ2) for PGA G.

Definition 16. [11] For PGA G, the optimal probabilities of reaching T ⊆ S
for players 1 and 2 are defined as: supκ1

infκ2 Prκ1
κ2
(T ) and infκ1supκ2

Prκ1
κ2
(T ).

Intuitively, the reachability probability to a set T of target states is optimal for
player 1 under scheduler κ iff for every scheduler κ2 of player 2, infκ2 Prκκ2

(T ) =
supκ1

infκ2 Prκ1
κ2
(T ). Similarly, we can define optimal reachability probability for

player 2. For PGA G and T ⊆ S, we write:

- max	(T ) = supκ1
infκ2 Prκ1

κ2
(T ) and max
(T ) = supκ1

supκ2
Prκ1

κ2
(T )

- min	(T ) = infκ1 infκ2 Prκ1
κ2
(T ) and min
(T ) = infκ1supκ2

Prκ1
κ2
(T ).

Note that the values max	(T ) and min
(T ) are the optimal reachability proba-
bilities for players 1 and 2 respectively, which can be achieved by DM-schedulers
[11]. The values max
(T ) and min	(T ) – for which both players collaborate with
each other – can be obtained similarly. For games with finite state spaces these
values can be computed through value iteration [13,14] or by linear programming.

Let w : S → [0, 1] be a probability valuation function mapping a state s to
the probability of reaching target states T ⊆ S from s. The probability valuation
functions W = {w | w : S → [0, 1]} form a complete lattice (W ,≤,⊥,�) with
order ≤, bottom element ⊥ ∈ W and top element � ∈ W . We write w ≤ w′

iff w(s) ≤ w′(s) for s ∈ S. ⊥(s) = 0 and �(s) = 1 for s ∈ S. Moreover, w can
be lifted from states to distributions over states as w(μ) =

∑
s∈S μ(s) · w(s) for

μ ∈ Dist(S).

Definition 17. Let PGA τ(G) and T ⊆ S. For reachability goals 1,2 ∈ {min,
max} for players 1, 2 respectively, the probability valuation transformer Prt12 :
W → W is defined for w ∈ W , s ∈ S and n ∈ N as:

(Prt12)
n(w)(s) =

⎧⎪⎪⎨⎪⎪⎩
1 s ∈ T , n ≥ 0
0 n = 0, s 	∈ T

1{w(μ) | s τ→ μ} s ∈ S1, n > 0

2{w(μ) | s τ→ μ} s ∈ S2, n > 0
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For n > 0, when s ∈ S1, then for the next iteration the reachability probability
from s is the optimal value of the set {w(μ) | s τ→ μ} w.r.t. objective 1; whereas
when s ∈ S2, it is w.r.t. objective 2. Note that Prt12 is a monotonic function
over W and, by Tarski’s theorem [20], has a least and a greatest fixpoint. This
definition provides the basis to compute reachability probabilities. A similar
function has been defined in [11].

The next theorem shows that simulation/alternating simulation relations be-
tween PGA provide bounds on their reachability probabilities when players col-
laborate/compete with each other. In fact, simulation relations between PGA
bound max
 and min	 values, and alternating simulation relations max	 and
min
 values.

Theorem 7. For x ∈ {sb, db}, let PGA G and G′ with G ≺x G′ and G �x G′.
Let T ⊆ S such that T ′ = {s′ ∈ S′ | ∃s ∈ T : s ≺x s′} and T ′′ = {s′ ∈ S′ |
∃s ∈ T : s �x s′}, then: (1) min	(T ′) ≤ min	(T ) and max
(T ) ≤ max
(T ′),
(2) min
(T ) ≤ min
(T ′′) and max	(T ′′) ≤ max	(T )

As abstractions of PGA preserve simulation and alternating simulation relations,
their optimal probabilities are bounded by their abstract models. This is laid
down in the following corollary, a direct consequence of Th. 2, 3 and 7:

Corollary 1. Let G = αPA(M) for PA M, and x ∈ {sb, db} with G′ = αx(G).
Let T ⊆ S2 such that T ′ = αx(T ). Then min	(T ′) ≤ min(T ) ≤ min
(T ′) and
max	(T ′) ≤ max(T ) ≤ max
(T ′).

Note that for every s ∈ T , we have s ≺x αx(s) and s �x αx(s) for x ∈ {sb, db}.
Moreover, the target states are only player 2 states as they represent the par-
titions of the concrete states of PA. Next, as one of the main results of this
work, we show that distribution-based abstraction of PA is more precise than
state-based abstraction. This result is a direct consequence Th. 4 and 7.

Corollary 2. Let G = αPA(M) for PAM, Gsb = αsb(G) and Gdb = αdb(G) with
αsb(S) = αdb(S). Let T ⊆ S2 such that Tsb = αsb(T ) and Tdb = αdb(T ). Then
min(T ) ≤ min
(Tdb) ≤ min
(Tsb) and max	(Tsb) ≤ max	(Tdb)≤max(T ).

Example 6. The minimum probability in PA M (Fig. 2) to reach state s6 is
0.05. By Corollary 1, this probability lies in [0, 0.25] for αsb(G) = G̃ (Fig. 4 left).
Instead, αdb(G) = G′ (Fig. 4 right) yields [0, 0.125].

8 Distribution-Based Game Abstraction of MDP

In [6], abstract models of Markov decision processes (MDP) are given as stochas-
tic games (SG). These abstractions coincide with our state-based abstractions.
The abstract models of MDP induced by our distribution-based abstraction are
PGA that generalize SG. By Th. 4, our distribution-based abstraction induces
more precise abstract models than state-based abstraction. This shows the su-
periority of our distribution-based abstraction technique over [6]. The following
corollary follows from Def. 5 and Th. 4. It asserts that our distribution-based
abstraction induces more precise abstractions than [6].
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Corollary 3. For PA M′, let G = αPA(M′). If αsb(S) = αdb(S), then:
αdb(τ(G)) ≺sb αsb(τ(G)) and αdb(τ(G)) �sb αsb(τ(G)).

One may argue that although PGA-based abstract models of MDP are at least
as precise as SG-based ones this comes at the expense of larger games, — e.g.
more space is required to store the target distributions of player 2 transitions.
The following example shows that for abstracting G — an embedding on MDP
— with αdb(S2) = αsb(S2), αdb(G) is at least as precise as αsb(G) and |αdb(S)| ≤
|αsb(S)|. (Recall that the same partition of player 2 states does not imply the
same partition for player 1 states, as shown in Example 5).

Example 7. The maximum probability in PAM (Fig. 1) to reach states {s8, s9}
equals 0.3. By Corollary 1, this probability lies in [0.25, 0.5] for the state-based
abstraction G̃ (Fig. 5 left). Instead, distribution-based abstraction G′ (Fig. 5
right) yields [0.3, 0.3]. Moreover, ignoring player 2 transitions — such that the
successor states from player 2 states are decided non-deterministically as in [6]
— yields [0.25, 0.5] in G̃ and G′. However, in terms of number of transitions and
states, the size of G′ is smaller than G̃ (see Fig. 5).

As a side result of our achievement, we put the result of [9][Th. 2] in perspec-
tive: game-based abstraction is the optimal state-based abstraction, but not the
optimal abstraction preserving reachability probabilities.

9 Conclusion

We gave two abstraction techniques — state-based and distribution-based — for
PA, and presented PGA as abstract models for PA. We defined a composition
operator for a class of PGA that act as abstract models for PA; and gave two
notions of simulation and alternating simulation relations for PGA that are pre-
congruences w.r.t. composition. Our distribution-based abstraction is more pre-
cise as well as concise than the one in [19]. Future work includes the application
of this work to practical case studies, and the extension of abstraction-refinement
framework, in [19], for PA.

Acknowledgement. We thank the reviewers for the constructive feedback, and
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