
Chapter 2
The Symmetry Groups in Three-Dimensional
Space

The theoretical modeling of inorganic nanostructures described in this book is based
on the consideration of 3D-2D-1D three-dimensional objects (three-periodic bulk
crystals, diperiodic nanolayers, monoperiodic nanotubes and nanorods).

First, the structure and properties of a bulk crystal with 3D periodicity are com-
puted. The prototype bulk crystal structure is one of the main factors that influence the
properties of nano-sized systems. This allows one to compare the results calculated
with the existing experimental data and thereby check the validity of the calculation
method used.

Second, the nanolayer structure and properties are calculated, as the structure and
properties of the rolled up nanotubes depend on the slab, used in rolling up procedure.

Finally, the structure and properties of nanotubes and nanorods are calculated
applying the same computational method as was applied for the bulk crystals and
nanolayers.

The symmetry properties of the system are used in 3D-2D-1D calculations allow-
ing one to make a classification of the electron and phonon states and drastically
reduce the computational time.

In this chapter we discuss the following symmetry groups in the three-dimensional
space: (1) space groups G = G3

3—230 types of three dimensional groups with three-
dimensional translations (triperiodic 3D), (2) layer groups DG = G3

2—80 types of
three dimensional groups with two-dimensional translations (diperiodic 2D) and (3)
line groups LG = G3

1—three dimensional groups with one-dimensional translations
(monoperiodic 1D). 75 rod groups (RG) constitute a subset of the infinite number of
line groups.

The description the bulk crystal requires the knowledge of the full symmetry
group of the crystal (space group G) and its irreducible representations. The group G
includes both translations, operations from the point groups of symmetry and com-
bined operations. The application of symmetry transformations means splitting all
space into systems of equivalent points known also as Wyckoff positions in crystals,
irrespective of whether there are atoms in these points or not. The crystal-structure
type is specified when one decides which sets of the Wyckoff positions for the cor-
responding space group are occupied by atoms. To distinguish between different
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10 2 The Symmetry Groups in Three-Dimensional Space

structures of the same type one needs the numerical values of lattice parameters and
additional data if there exist occupied Wyckoff positions with free parameters in the
coordinates.

We briefly discuss the 20 bulk crystal structures (cubic, tetragonal, orthorhom-
bic and hexagonal) which form the basis of nanostructure modeling. Among them
are structures with both symmorphic and nonsymmorphic space groups, structures
with the same Bravais lattice and crystal class but different space groups, struc-
tures described by only lattice parameters or by both the lattice parameters and free
parameters of the Wyckoff positions occupied by atoms.

The site symmetry approach extension to the layer and line groups is considered.
The symmetry of crystalline orbitals in bulk crystals and nanostructures is defined

by the their symmetry group irreducible representations, which are also considered
in this chapter.

2.1 Classification of the Symmetry Groups

Let Gn
m mean the symmetry group of the system in the n-dimensional space

(n-dimensional group) with m-dimensional translation subgroup (m ≤ n) [1].
In this chapter we discuss the symmetry groups in the three-dimensional space

(n = 3): (1) space groups G = G3
3—230 types of three dimensional groups with the

three-dimensional translations (triperiodic 3D, m = 3), (2) layer groups DG = G3
2—

80 types of three dimensional groups with two-dimensional translations (diperiodic
2D, m = 2) and (3) line groups—LG = G3

1 three dimensional groups with one-
dimensional translations (monoperiodic 1D, m = 1). 75 rod groups (RG) constitute
a subset of the infinite number of line groups.

17 plane groups G = G2
2 and 7 frieze groups G = G2

1 are the symmetry groups in
the two-dimensional space (n = 2) being the subsets of the three-dimensional layer
and rod groups, respectively.

2 groups in the one-dimensional space LG = G1
1 are called by line groups in

[2]. However, we use this term for all monoperiodic three dimensional groups with
one-dimensional periodicity. These groups are called in [3] by commensurate line
groups.

Independent study of polymers, or, in more rigorous terms, general 1-periodic
three-dimensional objects, stimulated the analysis of 1-periodic symmetry groups
which could include rotation axes of arbitrary order. Such groups received a collective
name ‘line groups’. There are infinitely many line groups and their classification
may be performed in a number of ways [3, 4]. Rod groups constitute a subset of
the set of line groups but due to their origin enumeration, notations, and geometric
realizations rod groups possess certain specificity as compared with the line groups.
In this section we establish the explicit correspondence between rod groups and
relevant geometric realizations of the corresponding line groups to lay a bridge
between crystallography and symmetry description of stereoregular polymers. It
seems to be of increasing importance due to the very fast developments in the field
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of nanotubes, nanoribbons, and nanowires. These 1-periodic objects originate from
crystalline solids but nanotube symmetry elements may include rotation axes of
arbitrary order.

The three-dimensional triperiodic groups with the three lattice basic translation
vectors a1, a2, a3 are called here space groups. The basic translation vectors define
the primitive unit cell i.e. the minimal volume unit cell used to reproduce the whole
lattice by the tree dimensional basic translations. The so called crystallographic
(conventional) unit cell with the crystallographic translation vectors a, b, and c is
defined as the minimal volume unit cell in the form of a parallelepiped constructed
on vectors of translations and possessing the point symmetry of the lattice.

The layer groups and rod groups are known as subperiodic groups [5]. The three-
dimensional rod and layer groups are considered in the context of a three-dimensional
space along with their concomitant relationships with space groups. These relation-
ships are the basis for the symbols and classification of the subperiodic groups which
are used in [5]. Subperiodic groups are described, as are the space groups, see [2],
by means of a crystallographic coordinate system, consisting of a crystallographic
basis and a crystallographic origin. For subperiodic groups, not all vectors of the
crystallographic basis are lattice vectors. For the three-dimensional layer groups and
rod groups, the basis vectors are labeled a, b, and c. The basis vectors a and b are
chosen as lattice vectors in the case of layer groups, and c is chosen as a lattice vector
in the case of rod groups.

The three-dimensional crystallographic point groups G = G3
0 form 32 crystal

classes of space groups. Excluding 5 cubic point groups one obtains 27 classes of
layer and rod groups. The 10 point symmetry groups G = G2

0 in two-dimensional
space and 2 point symmetry groups G = G1

0 in one-dimensional space are subsets
of the three-dimensional point groups G = G3

0 [1].
The triperiodic (3D) space groups G = G3

3 describe the symmetry of bulk crystals.
The classification of the crystalline electron and phonon states requires the knowl-
edge of the full symmetry group of a bulk crystal (triperiodic space group G) and its
irreducible representations. The group G includes both the three-dimensional trans-
lations, operations from the 32 three-dimensional point symmetry groups G = G3

0
and combined operations.

The diperiodic (layer) groups DG = G3
2 are the symmetry groups of the thin films.

These groups are used to describe the electronic structure of surface states of crystals
in the slab model. In the single-slab model a crystal with a surface is approximated
by a slab of finite thickness. The symmetry group of this model (diperiodic or layer
group) allows the existence of the point symmetry operations that move the atoms out
of the plane of the layer but bring them into positions occupied by other atoms of the
slab. The diperiodic (layer) group DG includes both the two-dimensional translations,
operations from the 27 three-dimensional point symmetry groups G = G3

0 and
combined operations.

The layer groups are subperiodic subgroups of the triperiodic groups.The knowl-
edge of the space 3D groups allows one to generate the layer groups corresponding
to the different surface orientations in the bulk crystal. The layer groups in turn are
used as basic ones in the monoperiodic nanotubes modeling.



12 2 The Symmetry Groups in Three-Dimensional Space

The commensurate line groups LG = G3
1 (also called monoperiodic groups)

are symmetry groups of three-dimensional objects translationally periodic along a
line—stereoregular polymers, nanotubes and nanowires. The symmetry groups of
nanoribbons and nanowires (75 rod groups RG) form a finite subset of an infinite
number of line groups. Rod group includes both the one-dimensional translations,
operations from the 27 three-dimensional point symmetry groups G = G3

0 and
combined operations.

2.2 Space (Triperiodic) Symmetry Groups of Bulk Crystals

2.2.1 Translation and Point Symmetry of Bulk Crystals

The classification of the molecular or the crystalline electron and phonon states
requires the knowledge of the system symmetry group and its irreducible repre-
sentations. In both molecules and bulk crystals the symmetry group is the set of
transformations in three dimensional space that transforms any point of the space
into an equivalent point. The systems of equivalent points are called orbits of points.
In equivalent points the properties of a molecule or a crystal (electrostatic potential,
electronic density, etc.) are all identical.

The symmetry of molecules in the three dimensional space is described by the
three dimensional point groups F = G3

0 without the periodicity. The group F consists
of the orthogonal symmetry operations (rotations through symmetry axes, reflections
in symmetry planes and their combinations) that transform the equilibrium config-
uration of the nuclei of a molecule into itself. They form a group F of molecular
symmetry. There are no restrictions on the rotation axes order so that the number of
point groups is formally infinite.

The space group is the triperiodic group G = G3
3 in the three-dimensional

space and includes both the three-dimensional translations, operations from the point
groups of symmetry (the crystal classes) and combined operations. The condition of
the compatibility of the point and translation symmetry operations restricts the rota-
tion axes by order 1, 2, 3, 4, 6 and therefore the total number of the crystallographic
point groups is 32.

As well as molecules, crystals possess point symmetry, i.e. equivalent points of
space are connected by the point-symmetry transformations. But in a crystal the
number of the point-symmetry elements (the rotation axis or reflection planes) is
formally infinite. Therefore, it is impossible to find such a point of space where all the
point-symmetry elements intersect. It is connected by the fact that, unlike molecules,
in crystals among operations of symmetry there are translations of a group of rather
small number of atoms to space. The presence of translation symmetry means the
periodicity of the perfect crystals structure: translations of the primitive unit cell
reproduce the whole crystal.
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In real crystals of macroscopic sizes translation symmetry, strictly speaking, is
absent because of the presence of borders. If, however, we consider the so-called
bulk properties of a crystal (for example, distribution of electronic density in the
volume of the crystal, determining the nature of a chemical bond) the influence of
borders can not be taken into account (number of atoms near to the border is small,
in comparison with the total number of atoms in a crystal) and we consider a crystal
as a boundless system [6].

In the theory of electronic structure two symmetric models of a boundless crystal
are used: or it is supposed that the crystal fills all the space (model of an infinite
crystal), or the fragment of a crystal of finite size (for example, in the form of a
parallelepiped) with the identified opposite sides is considered. In the second case
we say, that the crystal is modeled by a cyclic cluster which translations as a whole
are equivalent to zero translation (Born–von Karman Periodic Boundary Conditions–
PBC). Between these two models of a boundless crystal there exists a connection:
the infinite crystal can be considered as a limit of the sequence of cyclic clusters with
increasing volume. In a molecule, the number of electrons is fixed as the number
of atoms is fixed. In the cyclic model of a crystal the number of atoms (and thus
the number of electrons) depends on the cyclic-cluster size and becomes infinite in
the model of an infinite crystal. It makes changes, in comparison with molecules,
to a one-electron density matrix of a crystal that now depends on the sizes of the
cyclic cluster chosen. As a consequence, in calculations of the electronic structure of
crystals it is necessary to investigate convergence of results with an increase of the
cyclic cluster that models the crystal. For this purpose, the features of the symmetry
of the crystal, connected with the presence of translations also are used.

Translation symmetry of a perfect crystal can be defined with the aid of three
noncoplanar vectors: a1, a2, a3 basic translation vectors. Translation ta through the
lattice vector

a = n1a1 + n2a2 + n3a3 (2.1)

where n1, n2, n3 are integers, relates the equivalent points r and r ′ of the crystal:

r ′ = r + a (2.2)

Translations ta are elements of the translation group T. If we draw all the vectors a
from a given point (the origin), then their endpoints will form the Bravais lattice, or
“empty” lattice, corresponding to the given crystal. The endpoints of the vectors in
this construction are the lattice points (lattice nodes). Three of the basic translation
vectors define the elementary parallelepiped called the primitive unit cell (PUC).
The PUC contains lattice points only at the eight corners of the parallelepiped. Each
corner belongs to eight PUC, so that by fixing the PUC by one lattice point at the
corner we refer the remaining of the corners to the nearest seven PUC’s. We note
that the basic translation vectors cannot be chosen uniquely. However, whatever
the choice of these vectors, the volume of the PUC is always the same. The PUC
defines the smallest volume whose translations form the whole Bravais lattice (direct
lattice). Usually, the basic vectors are chosen to be the shortest of all those possible.
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Atoms of a crystal are not necessarily located in the direct lattice points. In the
simplest case when all the crystal is obtained by translations of one atom (such
crystals are termed monoatomic, many metals belong to this type) all atoms can be
placed in direct lattice points.

As a set of points, the direct lattice possesses not only translation but also point
symmetry, i.e. lattice points are interchanged when rotations around one of the axes
of symmetry, reflections in planes of symmetry and their combinations are applied.
All the point-symmetry operations of the Bravais lattice are defined when the origin
of the coordinate system is chosen in one of the lattice points. The corresponding
PUC can be defined as the reference unit cell (it is obtained by a zeroth translation
(n1 = n2 = n3 = 0 in (2.5)). Among point-symmetry operations of a direct lattice it
is obligatory to include inversion I in the origin of coordinates since, together with
translation on a vector a the group of translations T also includes translation on a
vector −a. The identity element of group T is t0—a zeroth translation. Elements R
of point group F0 transform each lattice vector into a lattice vector: Ra = a′. The
point group F0 of symmetry of the direct lattice determines the crystal system (or
syngony). There are seven systems (syngonies) of direct lattices. It turns out that not
all point groups can be lattice symmetry groups F0. The requirement that both a
and Ra can simultaneously be lattice vectors restricts the number of possible point
groups. Let us now establish these limitations [7].

To establish the rotations of the group F0, let us take the basic lattice vectors
a1, a2, a3 as the basis unit vectors in the space of the lattice vectors a, and write
down the matrix D(R) of the transformation R in the new basis, in which all the lattice
vectors have integer components. If the matrix of the orthogonal transformation R
in this basis is denoted by D′(R), then D′(R) = U−1 D(R)U , where U is a matrix
of the transformation from the initial orthonormal basis to the basis a1, a2, a3. If R
is a rotation (or mirror rotation) through an angle ϕ the traces of the matrices D(R)

and D′(R) are equal:

SpD′(R) = SpD(R) = ±1 + 2 cos(ϕ) (2.3)

Since, however, R should transform the lattice vector a into the lattice vector a′ = Ra
it follows that all the elements of D′(R) and hence its trace, must be integers. It
follows that cos(ϕ) = cos(2π m

n ) = ±1,±2, 0. Consequently, the group F0 can
contain only two-, three-, four- and sixfold axes. Finally, it can be shown that if the
group F0 contains the subgroup Cn, n > 2, it will also contain the subgroup Cnv .
The above three limitations ensure that the point group of the lattice can only be one
of the seven point groups: S2, C2h, D2h, D3h, D4h, D6h, Oh . This is why there are
only seven syngonies: namely, triclinic, monoclinic, orthorhombic, rhombohedral,
tetragonal, hexagonal and cubic. It is seen that, unlike molecules, in point groups of
symmetry of crystals there is no axis of symmetry of the fifth order (rotations around
such axes are incompatible with the presence of translations).

Two Bravais lattices with the same group of point symmetry F0 fall into one
type if they can be transferred to each other by the continuous deformation that is
not decreasing the point symmetry of a lattice. In three-dimensional space there are
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Table 2.1 Distribution of crystal classes F and Bravais lattices on singonies F0

Syngony F0 Direct Basic translation vectors Bravais

crystal classes F lattice lattice

types param.

Triclinic S2: P Any noncoplanar a, b, c,

C1, S2(Ci ) α, β, γ

Monoclinic C2h : P (0,−b, 0), (a sin γ,−a cos γ, 0), (0, 0, c) a, b, c, γ

Cs , C2, C2h A, B, C (0,−b, 0), (1/2)(a sin γ,−a cos γ,−c),

(1/2)(a sin γ,−a cos γ, c)

Orthorhombic D2h : P (0,−b, 0), (a, 0, 0), (0, 0, c) a, b, c

C2v, D2, D2h A, B, C (1/2)(a,−b, 0), (1/2)(a, b, 0), (0, 0, c)

F (1/2)(a, 0, c), (1/2)(0,−b, c), (1/2)(a,−b, 0)

I (1/2)(a, b, c), (1/2)(−a,−b, c), (1/2)(a,−b,−c)

Tetragonal D4h : P (a, 0, 0), (0, a, 0), (0, 0, c) a, c

S4, D2d , C4, C4v, I (1/2)(−a, a, c), (1/2)(a,−a, c), (1/2)(a, a,−c)

C4h, D4, D4h

Hexagonal D6h : H (a/2,−a/2, 0), (0, a, 0), (0, 0, c) a, c

C3, S6, C3v, C3h, D3,

D3d , D3h, C6, C6h,

C6v, D6, D6h

Rhombohedral D3d : R (a, 0, c), (−a/2, a/2, c), (−a/2,−a/2, c) a, c

C3, S6, C3v, D3, D3d

Cubic Oh : P (a, 0, 0), (0, a, 0), (0, 0, a) a

T, Td , Th, O, Oh F (1/2)(0, a, a), (1/2)(a, 0, a), (1/2)(a, a, 0)

I (1/2)(−a, a, a), (1/2)(a,−a, a)(1/2)(a, a,−a)

14 types of direct lattices whose distribution on syngonies is shown in Table 2.1. In
addition to the translational subgroup T , the space group contains other transforma-
tions whose form depends on the symmetry of the Bravais lattice and the symmetry
of the components of the crystal, i.e. on the symmetry of the PUC as the periodically
repeating set of particles forming the crystal. This last fact frequently ensures that
not all the transformations in the point group F0 are included in the symmetry group
of the crystal. Not all transformations that map the sites on each other need result in
a corresponding mapping of the crystal components. It is therefore possible that the
point group of a crystal F (crystal class) will only be a subgroup of a point group of
an empty lattice. So the real crystal structure point-symmetry group F may coincide
with the lattice point symmetry group F0 or be its subgroup. The distribution of
crystal classes F and Bravais lattices on syngonies is given in Table 2.1.

The lattice types are labeled by P (simple or primitive), F (face-centered), I
(body-centered) and A(B, C) (base-centered). Cartesian coordinates of basic trans-
lation vectors written in units of Bravais lattice parameters are given in the third
column of Table 2.1. It is seen that the lattice parameters (column 4 in Table 2.1) are
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Fig. 2.1 Three-dimensional Bravais lattices

defined only by syngony, i.e. are the same for all types of Bravais lattices with the
point symmetry F0 and all the crystal classes F of a given syngony.

The point symmetry group of a triclinic lattice Γt (Fig. 2.1) consists of only
inversion in the coordinates origin.

Therefore this lattice is defined by 6 parameters—lengths a, b, c of basic trans-
lation vectors and angles α, β, γ between their pairs a2 − a3, a1 − a3 and a1 − a2,
respectively.

In simple Γm and base-centered Γ b
m monoclinic lattices one of the vectors (with

length c, for example) is orthogonal to the plane defined by two vectors with length a
and b (γ is the angle between these vectors not equal to 90 or 120◦). In lattice Γ b

m the
centered face can be formed by a pair of nonorthogonal lattice vectors. For example, in
a C centered monoclinic lattice the lattice point appears on the face formed by a1 and
a2 basic translation vectors. In the base-centered lattice one can consider so-called
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conventional unit cell—the parallelepiped, reflecting the monoclinic symmetry of
the lattice. For a simple monoclinic lattice Γm the conventional and primitive unit
cells coincide, for a base-centered monoclinic lattice Γ b

m the conventional unit cell
contains 2 primitive unit cells (see Fig. 2.1).

All the three translation vectors of a simple orthorhombic lattice Γo are orthogonal
to each other, so that the conventional cell coincides with the primitive cell and
is defined by three parameters—lengths of the basic translation vectors. For base-
centered Γ b

o , face-centered Γ
f

o and body-centered Γ v
o lattices the conventional unit

cell contains two, four and two primitive cells, respectively (see Fig. 2.1).
The tetragonal lattices Γq (simple) and Γ v

q (body-centered) are defined by two
parameters, as two of the three orthogonal translation vectors of a conventional unit
cell have the same length a.

The hexagonal lattice is defined by two parameters: a—length of two equal basic
translation vectors (with the angle 120◦ between them) and c—length of the third
basic translation vector orthogonal two the plane of first two vectors.

In a rhombohedral(triclinic) lattice all three translation vectors have the same
length a, all three angles α between them are equal (but differ from 90◦), so this lattice
is defined by two parameters. There are two possibilities to define the rhombohedral
lattice parameters. In the first case the parameters a and γ are given directly. In the
second case the lengths a and c of the hexagonal unit-cell translation vectors are
given: this cell consists of three primitive rhombohedral cells (so-called hexagonal
setting for rhombohedral Bravais lattice).

Three cubic lattices (simple Γc, face-centered Γ
f

c and body-centered Γ v
c ) are

defined by one lattice parameter a—the length of conventional cubic cell edge (see
Table 2.1 and Fig. 2.1).

The unit cell of a crystal is defined as that volume of space that its translations
allow all the space without intervals and superpositions to be covered. The PUC is
the minimal volume Va = a1[a2 × a3] unit cell connected with one Bravais lattice
point. Conventional unit cells are defined by two, four and two lattice points, for the
base-, face- and body-centered lattices, respectively.

The 32 point groups, enumerated in Table 2.2, are known as crystallographic
point groups and are given in Schönflies (Sch) notation. The Sch notation is used for
molecules. In describing crystal symmetry the international notation (or Hermann–
Mauguin notation) is also of use. In the latter, the point-group notation is determined
from the principal symmetry elements: an n fold axis is denoted by the symbol n,
a reflection mirror plane by symbol m. The symbols n/m and nm are used for the
combinations of an n fold axis with the reflection plane perpendicular to the axis
or containing the axis, respectively. Instead of mirror rotation axes, the international
system uses inversion axes n when a rotation through an angle 2π/n is followed by
the inversion operation. The full international notation of a point group consists of
the symbols of group generators. Abbreviated international notations are also used.
The Sch and international full and abbreviated notations of crystallographic point
groups are given in Table 2.2.
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Table 2.2 Crystallographic point groups: schoenflies and international notations

International International

Schoenflies Full Abbreviated Schoenflies Full Abbreviated

Cn n n D2 32 32

Cs(C1h) m m D4 422 422

Ci (S2) I T D6 622 622

S4 4 4 D2h 2/m 2/m 2/m mmm

S6 3 3 D3h 6m2 6m2

C2h 2/m 2/m D4h 4/m 2/m 2/m 4/mmm

C3h 6 6 D6h 6/m 2/m 2/m 6/mmm

C4h 4/m 4/m D2d 42m 42m

C6h 6/m 6/m D3d 32/m 3m

C2v 2mm 2mm T 23 23

C3v 3m 3m Th 2/m3 m3

C4v 4mm 4mm Td 43m 43m

C6v 6mm 6mm O 432 432

D2 222 222 Oh 4/m 3 2/m m3m

Let us make a linear transformation of PUC translation vectors:

A j =
3∑

i=1

l j i ai , | det l| = L (2.4)

where the integer coefficients l j i form the matrix l. Vectors A j and their integer
linear combinations

An =
3∑

j=1

n j A j (2.5)

define for L > 1 new, “rare” Bravais lattice for which it is possible to consider
various unit cells also. The primitive cell of a new lattice with volume VA = L × Va
will be the so-called large unit cell (supercell), in relation to an initial primitive unit
cell. At L = 1 transformation (2.4) means transferring to other vectors of the basic
translations, to another under the form, but not on the volume primitive cell (see
Fig. 2.2).

The so called crystallographic(conventional) unit cell with the translation vectors
a, b, and c is defined as the minimal volume unit cell in the form of a parallelepiped
constructed on vectors of translations and possessing the point symmetry of the
lattice. The conventional unit cell coincides with the primitive unit cell for the simple
lattices. The conventional unit cell for the centered lattices consists of integer number
of the primitive unit cells forming the supercell of the Bravais lattice.
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Fig. 2.2 Different primitive unit cell choices

Indeed, for simple lattices P of all syngonies, except for hexagonal (H ), the
defining primitive unit cell vectors of the basic translations a1, a2, a3 can be chosen
in such a manner that the primitive cell constructed on them is crystallographic. For
the centered lattices the crystallographic unit cells consist of 2, 4 and 2 primitive cells
for base-, face- and body-centered lattices, respectively (Fig. 2.1). In the description
of symmetry of a trigonal crystal both rhombohedral and hexagonal cells are used.
The latter is defined by transformation (2.4) with a matrix

l =
⎛
⎝

2 1 0
−1 1 0
1 1 1

⎞
⎠ (2.6)

and L = 3. As L = 3 for this matrix the hexagonal unit cell contains 3 rhombohedral
unit cells.

2.2.2 Symmorphic and Nonsymmorphic Space Groups

As considered in the previous section Bravais lattices define the group T of lattice
translations. The general symmetry transformation of a Bravais lattice (“empty”
lattice) can be written in the form ta R. Operations R transform any translation vector
a to another translation vector Ra and form point group F0 (holohedric point group).
The combined operation ta R transforms the point of space with radius-vector r to an
equivalent point r ′ = Rr + a. The identity element of the Bravais lattice symmetry
group is t0 E . The multiplication law for operations ta R is:

ta1 R1ta2 R2r = R1 R2r + a1 + R1a2 = ta1+R1a2 R1 R2r (2.7)
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so that

(ta R)−1r = R−1r − R−1a = t−R−1a R−1r (2.8)

The operations ta and R do not commute. Indeed

ta Rr = Rr + a; ar = R(r + a) = Rr + tRa = tRa Rr (2.9)

so that

ta R = RtR−1a (2.10)

Operations ta R form the space group G0 of an “empty” Bravais lattice. As lattice
translations (also called proper translations) ta and point-symmetry operations R
do not commute the space groups G0 = T ∧ F0 are a semidirect product of the
translation and point groups of lattice symmetry. The point symmetry operations R
form subgroup F0 of space group G0 (such space groups are termed symmorphic
space groups). The group T of pure translations forms an invariant subgroup of G0.
As t−1

a = t−a we have (t a R)−1 t a′ t a R = (t a R)−1 t a+a′ R = t Ra′ .
The group of translations T is a subgroup of the full group symmetry G (space

group) that also contains operations of point group F and their combinations with
translations.

Any symmetry operation g of a crystal with space group G can be written in
the form of gi = tvi +a Ri where vi is the so-called improper (fractional) translation,
depending on element Ri of a point group of a crystal and satisfying the requirements
described below. The operation gi transforms the point of space with radius-vector
r to an equivalent point r ′ = gi r = Ri r + vi . The operations ta are elements of
the group of translations T− translations on the corresponding vector of the Bravais
lattice.

In crystals, unlike molecules, together with rotations through axes of symmetry
and reflections in planes there exist rotations through screw axes (rotation followed
by translation along a rotation axis on a part of a vector of translation) and reflections
in planes with partial translation in a plane (such planes are termed glide planes).
Translation along a screw axis of symmetry cannot be arbitrary and depends on the
order of this axis. Let the order of an axis be equal to n (n rotations through axis
are equivalent to an identity operation). Thus, n translations along an axis should
give a vector of translation of a lattice, i.e. an element of group T that forms a
subgroup of a space group of a crystal. Otherwise, rotation through a screw axis
will not be an operation of symmetry. For example, rotation through an axis of the
fourth order can be accompanied by translation along this axis on a quarter or half
of the vector of translation. A similar requirement is imposed on the operation of
sliding reflection: two sequential reflections in a glide plane should be equivalent to
translation on a vector of a lattice. By definition, any symmetry operation g of a space
group transforms any atom of a crystal to equivalent atom. The equivalent atoms are
always the atoms of the same chemical identity but the latter can be nonequivalent.
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Therefore, fractional (improper) translations can appear only in those crystals that
contain several equivalent atoms in the primitive unit cell. The presence of identical
atoms in a primitive cell—a condition necessary, but insufficient for the occurrence
of fractional translations in the space-group elements. As an example, we consider
in Sect. 2.3 the perovskite CaTiO3 structure with three equivalent oxygen atoms in a
primitive unit cell and symmorphic space group O1

h .
The set of fractional translations v in the space-group elements g = tv R depends

on the choice of origin (with respect to which the space-group elements are written)
and on the labeling of axes (choice of setting) [2].

By definition, the symmorphic space groups contain, together with each element
ta R, the elements R and ta of the point group F and translation group T, respectively.
This means that for a symmorphic space group the origin of the coordinate system
may be chosen in such a way that the local (site) symmetry group of origin coincides
with the point group of the crystal F. This means that all fractional translations v are
zero. Such a choice of origin is accepted for symmorphic space groups in the Inter-
national tables [2]. For nonsymmorphic space groups some fractional translations
will be nonzero for any choice of origin.

The full information on space groups is given in the International Tables for
Crystallography [2] and presented on a site [8]. The knowledge of general principles
of the space-group designations is necessary to use the crystal-structure databases
correctly.

There are three systems of designations of space groups. First, all groups are
numbered from 1 upto 230 in order of increasing point symmetry of the corresponding
Bravais lattice (syngonies from triclinic to cubic). For fixed syngony the ordering is
made over Bravais lattice types and for the fixed Bravais lattice type—over crystal
classes (point group F) beginning from the symmorphic space group. In this list,
the space groups of “empty” lattices appear as the first ones for fixed type of the
lattice. Secondly, the more informative Schönflis symbol is used for space groups.
This contains the Schönflis symbol of point group F of a crystal class and the upper
numerical index distinguishing space groups within the limits of one crystal class.

Thirdly, the most detailed information on a space group is contained in so-called
international (Hermann–Mauguin) designations. In these is there both a symbol of
the Bravais lattice type, and a symbol of a crystal class with the indication of the
elements of symmetry (axes and planes).

For a designation of types of Bravais lattices the following symbols are used: P
simple (or primitive); A, B, C—one face (base-) centered; F—face-centered; I —
body-centered. For hexagonal and trigonal (rhombohedral) lattices symbols H and
R are accepted.

The centering type symbol is followed by a set of characters indicating the sym-
metry elements. These sets are organized in the following way.

The two dimensional (plane) lattice symmetry directions are chosen along the
conventional unit cell translation vectors a and b. The one or two entries refer to one
or two kinds of the plane lattice symmetry directions.

The one, two or three entries after the centring letter refer to the one, two or
three kinds of symmetry directions of the three-dimensional lattice belonging to the
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space group. The three-dimensional lattice symmetry directions are chosen along
the conventional unit cell translation vectors a, b, and c and occur either as singular
directions (as in the monoclinic and orthorhombic crystal systems) or as sets of
symmetrically equivalent symmetry directions (as in the higher-symmetrical crystal
systems).

The (sets of) lattice symmetry directions and their sequence for the different
lattices are summarized in Table 2.3 given in [2] for two-dimensional (plane) and
three-dimensional lattices.Only one representative of each set is required. Accord-
ing to their position in this sequence, the symmetry directions are referred to as pri-
mary, secondary and tertiary directions.This sequence of lattice symmetry directions
is transferred to the sequence of positions in the corresponding Hermann-Mauguin
space-group symbols. Each position contains one or two characters designating sym-
metry elements (axes and planes) of the space group that occur for the corresponding
lattice symmetry direction. Symmetry planes are represented by their normals; if a
symmetry axis and a normal to a symmetry plane are parallel, the two characters
(symmetry symbols) are separated by a slash. The plane lattices have only two lat-
tice symmetry directions as the primary symmetry direction is the rotation point in
plane. The plane lattices are discussed in the next section, where the layer groups
are considered.

The list of 230 three-periodic space groups is given in Appendix A.
The seven holohedric point groups F0 and all their subgroups form 32 crystallo-

graphic point groups (32 crystalline classes). By combining these 32 point groups
with the translation groups of 14 Bravais lattices, 73 symmorphic space groups are
obtained, including 14 space groups of the symmetry of empty Bravais lattices (see
Table A.1). The remaining 157 space groups include point-symmetry operations with
improper (partial) translations, i.e. rotations through screw axes and reflections in
glide planes.

There exist only two triclinic space groups (1, 2) with symbols P1 (no point-
symmetry operations) and P1 (the inversion operation appears, this is the symmetry
group of triclinic Bravais lattice). For monoclinic space groups (3–15) one symbol
is needed that gives the nature of the twofold axis (rotation axis 2 or screw axis
21) or reflection plane (mirror plane m or glide plane c). Two settings are used
for monoclinic space groups: y-axis unique, or, used in Table A.1, z-axis unique.
Primitive and base-centered (z-axis unique) monoclinic Bravais lattices symmetry
groups are P2/m (10) and C2/m (11), respectively.

The symbols of orthorhombic space groups (16–74) contain the three sets. For
symmorphic groups as a symbol of a crystal class the international designation of
point groups corresponding to it serves. In Table A.1 conformity of Schönflies’s sym-
bols (applied for molecules) and international symbols for point groups of symmetry
of crystals is given. For example, N225, O5

h and Fm3m—three symbols of the same
space group of symmetry of a crystal with NaCl structure.

For nonsymmorphic groups in a symbol of the point group it is underlined
also, which axes are screw and which planes are planes of the sliding reflections.
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Table 2.3 Lattice symmetry directions for two and three dimensions

Symmetry direction (position in

Hermann-Mauguin symbol)

Primary Secondary Tertiary

Two dimensions

Oblique Rotation point in plane

Rectangular [10] [01]

Square

{
[10]
[01]

} {
[11̄]
[11]

}

Hexagonal

⎧
⎪⎨

⎪⎩

[10]
[01]
[1̄1̄]

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

[11̄]
[12]
[2̄1̄]

⎫
⎪⎬

⎪⎭

Three dimensions

Triclinic None

Monoclinic [010] (‘unique axis b’)

[001] (‘unique axis c’)

Orthorhombic [100] [010] [001]

Tetragonal [001]

{
[100]
[010]

} {
[11̄0]
[110]

}

Hexagonal [001]

⎧
⎪⎨

⎪⎩

[100]
[010]
[1̄1̄0]

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

[11̄0]
[120]
[2̄1̄0]

⎫
⎪⎬

⎪⎭

Rombohedral (hexagonal axes) [001]

⎧
⎪⎨

⎪⎩

[100]
[010]
[1̄1̄0]

⎫
⎪⎬

⎪⎭

Rombohedral (rhombohedral axes) [111]

⎧
⎪⎨

⎪⎩

[11̄0]
[011̄]
[1̄01]

⎫
⎪⎬

⎪⎭

Cubic

⎧
⎪⎨

⎪⎩

[100]
[010]
[001]

⎫
⎪⎬

⎪⎭

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[111]
[11̄1̄]
[1̄11̄]
[1̄1̄1]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

[11̄0][110]
[011̄][011]
[1̄01][101]

⎫
⎪⎬

⎪⎭

Directions that belong to the same set of equivalent symmetry directions are collected between
braces. The first entry in each set is taken as the representative of that set

For example, for the group of symmetry of rutile structure it is possible to use
designations N136, D14

4h or P42/mnm, where the symbol 42 means that an axis of
the fourth order is a screw axis, with translation on half a period along this axis on
rotation by angle π/2, and a symbol n means that two of the four vertical planes
are planes of sliding reflection. A more detailed explanation of the principles of
international designations can be found in [2].
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2.2.3 Orbits of Triperiodic Groups. Wyckoff Positions

To characterize a space group G an analytical description may be employed, which
states for a space group the coordinates of all points that are equivalent to a chosen
point q with coordinates (xyz). An analytical description of all 230 space groups is
given in the International Tables for Crystallography [2] and is based on the fact that
for a given space group G all points of a three-dimensional space are subdivided into
sets of symmetrically equivalent points called crystallographic orbits (G-orbits).

All the points of a given crystallographic orbit may be obtained from one (arbi-
trary) G-orbit point q (generating point) by applying to the latter all the operations
of space group G. Due to the infinite number of translations (in the model of an
infinite crystal) there is an infinite number of points in each space group crystallo-
graphic orbit. Any one of the crystallographic orbit points may represent the whole
crystallographic orbit, i.e. may be a generating point q of the crystallographic orbit.

All the space group G symmetry operations tvi +a Ri = (Ri |vi + a), i =
1, 2, . . . , nq that satisfy the condition tv+a Rq = q (i.e. map a point q onto itself)
form a finite site-symmetry group Gq of q with respect to G. This finite size group
is called by stabilizer of the G-orbit. The site-symmetry group Gq is isomorphic to
one of the 32 crystallographic point groups. If the origin of the space group is at the
position q, the elements of the site-symmetry group Gq will be of the form t0 R.

The site-symmetry groups G j of different points q j of the same G-orbit are
conjugate groups of G1 = Gq , i.e. the site-symmetry groups G1 and G j of points
q1 = q and q j of the same orbit are related by g j G1g

−1
j = G j (g j ∈ G, g j �∈

G j , g j q1 = q j ). For a point q at a general position the site-symmetry group Gq
consists of only the identity operation t0 E = (E |0); the site-symmetry group of a
point at a special position includes at least one other symmetry operation in addition
to the identity operation.

An infinite number of crystallographic orbits for a given space group G can be
subdivided into sets of so-called Wyckoff positions of G. All the crystallographic
orbits that have the same set of stabilizers (not only isomorphic but the same!)
belong to the same Wyckoff position and can be called by equivalent G-orbits. If the
coordinates of the generating point of a crystallographic orbit do not contain free
parameters, the corresponding Wyckoff position consists of only one crystallographic
orbit; in other cases an infinite number of crystallographic orbits belongs to the same
Wyckoff position with variable parameters.

The different Wyckoff positions are the sets of the non-equivalent G-orbits and
are labeled by small Roman letters. The maximum number of different Wyckoff
positions of a space group is 27 (in the orthorhombic space group D1

2h—Pmmm).
The various possible sets of Wyckoff positions for all the space groups are given in
the International Tables for Crystallography [2] and reproduced on an Internet site
[8]. The oriented site-symmetry symbols are employed to show how the symmetry
elements at a site are related to the symmetry elements of the crystal lattice. The site-
symmetry symbols display the same sequence of lattice symmetry directions as the
space-group symbol (see Table 2.3). Sets of equivalent symmetry directions that do
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not contribute any element to the site symmetry group are represented by a dot. In this
way, the orientation of the symmetry elements at the site is emphasized as illustrated
by the several examples in [2]. We consider here one of these examples—the cubic
space group G = Pn3̄n ( the space group number 222). G-orbit b consists of six points
and has 42.2 as its oriented site-symmetry symbol. This cubic site-symmetry symbol
displays a tetragonal site symmetry. The position of the dot indicates that there is no
symmetry along the four secondary cubic directions. The fourfold axis is connected
with one of the three primary cubic symmetry directions and two equivalent twofold
axes occur along the remaining two primary directions. Moreover, the group contains
two mutually perpendicular (equivalent) twofold axes along those two of the six
tertiary cubic directions [110] that are normal to the fourfold axis. Each pair of
equivalent twofold axes is given by just one symbol 2. (Note that at the six sites of
position 6b the fourfold axes are twice oriented along the simple cubic lattice vector
a, twice along b and twice along c.)

As a second example, Table 2.4 lists the oriented site-symmetry symbols for the
space group D14

4h(P42/m21/n2/m), the symmetry group of a rutile structure (see
Sect. 2.3.3).

For this group there are 11 different Wyckoff positions (11 types of non-equivalent
orbits) denoted by letters from a to k. The number of crystallographic orbit points
in the primitive unit cell (multiplicity) equals nF/nq where nF = 16 is the order of
the point group D4h and nq is the order of the site symmetry group Gq . The number
of points in a Wyckoff position and their coordinates are given in the International
Tables with respect to the conventional unit cell of the lattice (for the space group
D14

4h with a simple Bravais lattice, the conventional unit cell coincides with the prim-
itive unit cell). Use of the Wyckoff general position k(xyz) points allows one to
determine the appropriate Seitz space-group symbols for the coset representatives in
the decomposition

G =
nF∑

i=1

(Ri |vi )T =
nF∑

i=1

tvi Ri T (2.11)

of space group G with respect to the translation group T. In Table 2.4 these symbols
are written under the coordinates of the points obtained from the point r(x, y, z) by
performing the space-group operation tv R. The orientation of the symmetry elements
with respect to the tetragonal lattice translation vectors a1(a, 0, 0), a2(0, a, 0) and
a3(0, 0, c) is shown in Fig. 2.3. In the point group D4h there are four rotations around
twofold axes (Ux , Uy , Uxy , Ux̄y) and four rotations (including the identity operation)
around the main fourfold z-axis (E, C4z, C2

4z = C2z, C3
4z = C−1

4z ).
The remaining 8 symmetry operations are all products of inversion I with rota-

tions: I, reflections σx , σy, σxy, σx̄y, σz in the planes perpendicular to the correspond-
ing twofold axes and z-axis; mirror rotations S−1

4z , S4z . It is seen from Table 2.4
that the elements of the point group D2h(E, C2z, Uxy, Ux̄y, I, σz , σxy, σx̄y) appear
in the cosets decomposition (2.11) without fractional translations. These elements
form the site symmetry group of the coordinate system origin placed at the point
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Table 2.4 Wyckoff positions of space group 136 (P42/mnm)

Multipl. Wyck. Site Coordinates

letter symm.

(x, y, z)(−x,−y, z)(−y + 1/2, x + 1/2, z + 1/2)

(y + 1/2,−x + 1/2, z + 1/2)(−x + 1/2, y + 1/2,−z + 1/2)

(x + 1/2,−y + 1/2,−z + 1/2)(y, x,−z)(−y,−x,−z)

16 k 1 (−x,−y,−z)(x, y,−z)(y + 1/2,−x + 1/2,−z + 1/2)

(−y + 1/2, x + 1/2,−z + 1/2)(x + 1/2,−y + 1/2, z + 1/2)

(−x + 1/2, y + 1/2, z + 1/2)(−y,−x, z)(y, x, z)

(x, x, z)(−x,−x, z)(−x + 1/2, x + 1/2, z + 1/2)

8 j ..m (x + 1/2,−x + 1/2, z + 1/2)(−x + 1/2, x + 1/2,−z + 1/2)

(x + 1/2,−x + 1/2,−z + 1/2)(x, x,−z)(−x,−x,−z)

(x, y, 0)(−x,−y, 0)(−y + 1/2, x + 1/2, 1/2)

8 i m.. (y + 1/2,−x + 1/2, 1/2)(−x + 1/2, y + 1/2, 1/2)

(x + 1/2,−y + 1/2, 1/2)(y, x, 0)(−y,−x, 0)

(0, 1/2, z)(0, 1/2, z + 1/2)(1/2, 0,−z + 1/2)

8 h 2.. (1/2, 0,−z)(0, 1/2,−z)(0, 1/2,−z + 1/2)

(1/2, 0, z + 1/2)(1/2, 0, z)

(x,−x, 0)(−x, x, 0)(x + 1/2, x + 1/2, 1/2)

4 g m.2 m (−x + 1/2,−x + 1/2, 1/2)

(x, x, 0)(−x,−x, 0)(−x + 1/2, x + 1/2, 1/2)

4 f 2.m m (x + 1/2,−x + 1/2, 1/2)

(0, 0, z)(1/2, 1/2, z + 1/2)(1/2, 1/2,−z + 1/2)

4 e 2.m m (0, 0,−z)

(0, 1/2, 1/4)(0, 1/2, 3/4)(1/2, 0, 1/4)

4 d 4.. (1/2, 0, 3/4)

4 c 2/m.. (0, 1/2, 0)(0, 1/2, 1/2)(1/2, 0, 1/2)(1/2, 0, 0)

2 b m.m m (0, 0, 1/2)(1/2, 1/2, 0)

2 a m.m m (0, 0, 0)(1/2, 1/2, 1/2)

Equivalent sets of Wyckoff positions
(ab)(c)(d)(e)(fg)(h)(i)(j)(k)

of Wyckoff position a(0, 0, 0). The second point of this position (1/2, 1/2, 1/2) is
obtained from the first one by application of any symmetry operation from these
eight (C4z, C−1

4z , S4z, S−1
4z , Ux , Uy, σx , σy) that come into the coset representatives

in (2.15) with fractional translation v = (1/2, 1/2, 1/2). We therefore write the
space group D14

4h (for the case when the Wyckoff position a is taken as the origin) as

D14
4h =

∑

R∈D2h

[
(R|0)T + (Ux |1

2

1

2

1

2
)(R|0)T

]
(2.12)

Considering the full international symbol P42/m21/n2/m of the space group
D14

4h , we see that the coset representatives in the decomposition of (2.12) with respect
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Fig. 2.3 Orientation of the
symmetry elements with
respect to the tetragonal
lattice translations

a1

a2

Uxy σxy
_

Uy σx

Ux σy

Uxy σ xy
_

to the translation group T correspond to this symbol. Indeed, in our example of
a tetragonal lattice the three positions in this symbol correspond to the symme-
try directions [001]; [100], [010]; and [11̄0], [110], respectively. Rotation through
the angle π/2 about the z-axis is followed by translation along this axis by one-
half of the translation vector a3 as is seen from the symbol for the element
(C4z|l/2, 1/2, 1/2). The notations 21 and 2 for twofold x- and xy-rotation axes
agree with the fourfold symbols for (Ux | 1

2
1
2

1
2 ) and (Uxy|000). Finally, the nota-

tions m, n, m for the reflection planes perpendicular to the corresponding sym-
metry directions in the international symbol for the space group agree with the
Seitz symbols σz |000), (σx | 1

2
1
2

1
2 ), and (σxy|000), respectively. The space group

D14
4h may also be described by its six generators: three primitive translations tai =

(E |ai )(i = 1, 2, 3) of the simple tetragonal lattice and three generating elements
(C4z|1/2, 1/2, 1/2), (Ux |1/2, 1/2, 1/2), (I |0, 0, 0).

The coordinates of Wyckoff positions a, b, c, d do not contain free parameters
(Table 2.4); those of e, f, g, h positions contain one free parameter; the coordinates of
the positions i and j contain two free parameters. This means that an infinite number
of Wyckoff sets e–f exists in the crystal but the sets a, b, c, d consist of only one
crystallographic orbit. Pairs of Wyckoff positions a–b, f–g, and i–j have isomorphic
site symmetry groups (D2h, C2v and Cs , respectively).

As is seen from the Table pairs of Wyckoff positions a–b and f–g have the same
point-group symmetry and the same orientation of the symmetry elements with
respect to the lattice. The orbits in each pair of these Wyckoff positions form phys-
ically equivalent orbits [9]. The physically equivalent orbits have the different sets
of the stabilizers and therefore refer to the non-equivalent orbits. It becomes evi-
dent if one moves the coordinate system origin from a-point to b-point: the new set
of a- and f- orbit stabilizers differs from the former one by the pure translations.
At the same time the different origin choice can not change the physical properties
of the crystal structure defined by a space group G. For example, the rutile TiO2
structure with the space group D14

4h(P42/m21/n2/m) and two formula units in the
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primitive cell (Z = 2) can be given in two equivalent descriptions: Ti(2a)O(4 f ) or
Ti(2b)O(4g). The physically equivalent sets of Wyckoff positions for all the space
groups can be found on the Internet site [8]. This information will be used in the
next section for the description of different crystal lattice structures. This means that
if equivalent points are occupied by atoms in the crystal lattice there are possible
equivalent descriptions of this structure. For NbOCl3 structure (Z = 4) with the same
space group two equivalent descriptions can be given: Nb(4 f )O(4g)Cl(4g)Cl(8i)
and Nb(4g)O(4 f )Cl(4 f )Cl(8i). In this case, the Cl(8i) position is the same but
Cl(4 f ) and Cl(4g) positions interchange.

The difference between oriented site-symmetry groups of different Wyckoff posi-
tions is due to different orientations of the elements of the site-symmetry group
Gq with respect to the lattice. The difference arises when similar symmetry ele-
ments (reflections in planes and rotations about twofold axes of symmetry) occur
in more than one class of elements of the point group F. Only eleven site groups
[C2(2), Cs(m), C2h(2/m), C2v(2mm), C3v(3mm), D2(222), D3(322), D2d(42m),
D3d(32m), D2h(mmm), and D3A(62m)] can have different orientations with respect
to the Bravais lattice. Oriented site-symmetry symbols show how the symmetry
elements at a site are related to the symmetry elements of a space group. The site-
symmetry symbols display the same sequence of symmetry directions as the space-
group international symbol. Sets of equivalent symmetry directions that do not con-
tribute any element to the site-symmetry group Gq are represented by a dot. In our
example of the space group D14

4h the site-symmetry groups Ga, Gb do not contain
reflection in the planes σx , σy (the dot is at the second position) and the site group
Ge = 2.mm does not contain reflection in the plane σz (a dot is at the first position,
Table A.1).

The Bravais lattice is an infinite set of points generated by three nonparallel basic
translation vectors, such that each point is identical in itself and its surroundings,
see Sect. 2.2.1. With each Bravais lattice point may be associated a number of atoms
(so-called basis). If atomic coordinates relative to the lattice point are given, together
with the lengths and directions of the lattice vectors chosen to define the axes of
reference, the complete structure (crystal lattice) is defined. The Internet page [10]
currently contains links to about 300 structures in more than 90 of the 230 space
groups. A graphical representation as well as useful information about these crystal
lattices can be obtained. Other sources of information can be found at various sites
linked with [11].

The application of symmetry transformations means splitting all space into sys-
tems of equivalent points. The sets of these points for molecules are given in [12].
The sets of equivalent points for crystals are known as Wyckoff positions, irrespec-
tive of whether there are atoms in these points or not. The total number of possible
splittings of the three-dimensional space of a crystal on systems of equivalent points
is finite and for the three-dimensional periodicity case equals 230 (number of space
groups of crystals) [2].

The crystal-structure type is specified when one states which sets of Wyckoff
positions for the corresponding space group are occupied by atoms. To distinguish
different structures of the same type one needs the numerical values of lattice
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parameters and additional data if Wyckoff positions with free parameters in the
coordinates are occupied. The various ways of filling of equivalent points by atoms
generate a huge (hundreds of thousands) number of real crystalline structures.

When describing the crystal-structure type one also gives the value of Z (the num-
ber of formula units in the conventional unit cell). This information is, in principle,
not necessary as Z is defined by the chemical formula of the compound and the mul-
tiplicity of Wyckoff positions in the unit cell occupied by atoms. It is also necessary
to take into account that the primitive unit cell of any crystal contains half the number
of atoms in a body-centered cell, one-quarter the number in a face-centered, and half
the number in an A, B, or C base-centered cell. Trigonal cells contain one-third the
number of atoms in the corresponding hexagonal cell. The Wyckoff-site description
of a crystal-structure type is also origin dependent (see Sect. 2.2.3). It was shown that
equivalent alternatives often arise if two or more sets of sites are physically equivalent
(see Sect. 2.2.3). The crystal lattice structure types can be indexed in different ways
[10]. In Strukturbericht designation symbols A and B are used for monoatomic and
diatomic (with equal numbers of atoms of each type) crystal types, symbols C and
D—for AB2 and An Bm compounds, respectively. Symbols E, F, G, . . . , K specify
more complex compounds, symbols L , O , and S specify alloys, organic compounds
and silicates. The Pearson symbol indicates the crystal symmetry and the number
of atoms in the conventional unit cell. For example, rocksalt NaCl structure has a
face-centered (F) cubic (c) structure with 8 atoms in the cubic (nonprimitive!) unit
cell, so it is designated cF8. The letters m, o, t, h, c are used in Pearson symbols for
monoclinic, orthorhombic, tetragonal, hexagonal, trigonal and cubic Bravais lattice-
types, respectively. Pearson symbols do not necessarily specify a unique structure:
diamond, NaCl and zincblende cF8 structures differ by symbols A, B1 and B3
(numbers in symbols B1 and B3 were assigned in roughly the historical order of
the study of crystal lattices). The prototype index is an index of the various crystal
structures by prototype compound (diamond, rocksalt, zincblende structures). Some
compounds can be associated with more than one prototype: ZnS compound can
be found in zincblende and wurtzite structure. Finally, the space group index of a
structure can be used. Space groups are listed in the order they appear in the Inter-
national Tables [2]. As space groups refer to one of seven syngonies the structures
are ordered as triclinic (space groups 1 and 2), monoclinic (3–15), orthorhombic
(16–74), tetragonal (75–142), trigonal (143–167), hexagonal (168–194) and cubic
(195–230). For example, cubic structures correspond to the three Pearson symbols
cPn, cFn and cI n.

In the next subsections we give short descriptions of those crystal structures which
are basis for the nanotubes and nanowires modeling discussed in Part II Applications.
We use space-group and prototype indexes in subsection titles. In the correspond-
ing tables we give for each structure all the mentioned indexes. These tables show
that the same compound can be found in different structures (C—diamond, graphite,
ZnS—sphalerite, wurtzite, CaTiO3—cubic perovskite, distorted (orthorhombic) per-
ovskite, TiO2—rutile, anatase). Different structures can have the same Bravais lattice
(diamond, NaCl, fluorite, sphalerite) or even the same space group (rocksalt NaCl—
fluorite CaF2). For any structure type we give the prototype, space group (number and
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international symbol), number of formula units in the primitive and conventional unit
cells, the occupation of Wyckoff positions by atoms and the equivalent Wyckoff-site
description.

This possibility of different equivalent descriptions of the crystal-structure types
has to be taken into account when the symmetry of electron and phonon states in
crystals is analyzed. Furthermore, when preparing the input data for modern computer
codes one usually takes crystal-structure data from the database or original papers.
These data often contain information about the structure in the form accepted in
ICSD (Inorganic Crystal Structure Database), see site [13].

As an example, we take the data for rutile structure given in this database (in
brackets some clarifications are given).

COL ICSD Collection Code 82656
DATE Recorded June 26, 1998; updated Nov 30, 1999
NAME Titanium dioxide
MINERAL Rutile—synthetic at 1573 K
REFERENCE Journal of Solid State Chemistry 127 (1996) 240–247
CELL (lattice parameters for simple tetragonal lattice, unit cell volume and num-

ber of formula units in conventional cell): a = 4.594(0) b = 4.594(0) c = 2.959(0)

α = 90.0 β = 90.0 γ = 90.0 V = 62.4 Z = 2
SGR (space group) P 42/m n m (136)—tetragonal
CLAS (point symmetry group F of crystal) 4/mmm (Hermann–Mauguin)—D4h

(Schoenflies)
PRS (Pearson symbol) tP6
PARM (Wyckoff positions occupied by atoms and their parameters)

Atom No Ox Stat Wyck − − −X − −− − − −Y − −− − − −Z − −−
T i 1 4.000 2a 0. 0. 0.

O 1 −2.000 4 f 0.3047(2) 0.3047(2) 0.

As Z = 2 (two formula units in primitive unit cell, the conventional unit cell
coincides with the primitive one as the Bravais lattice is simple tetragonal) one needs
2 sets of coordinates for Ti atom (2a) and four sets for O atom (4f). As is seen for
each Wyckoff position occupied by an atom there are given coordinates of only one
representative. The others can be found on the site [8] for space group 136:

2a : (0, 0, 0)(
1

2
,

1

2
,

1

2
); 4 f : (x, x, 0)(−x,−x, 0)(−x + 1

2
, x + 1

2
,

1

2
)(x + 1

2
, −x + 1

2
,

1

2
)

In this case, x = 0.3047 as follows from the structure data. To the best of our
knowledge only computer code CRYSTAL [14] allows one to include the space-group
information in input data so that any occupied Wyckoff position can be presented
by one representative. In the other computer codes the coordinates of all atoms in
the PUC are introduced and the point symmetry of the structure is found by the
code itself and used in calculations. From this example it is seen that the necessary
information for structures requires the use not only of the database but also IT.
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Obviously, atoms of different chemical elements are always nonequivalent in
a crystal, i.e. cannot be connected by operations of symmetry. But atoms of one
chemical element in a crystal can not to be connected by operations of symmetry.
These atoms are not equivalent in a crystal structure even when they occupy the same
Wyckoff position with different free parameters (examples of such the structures can
be found in the next sections).

In the next section we consider those crystal structures which form the basis of
the nanostructures modeling. As will be seen, the different crystal structures can be
considered as one or another means of the distribution of the atoms between the
Wyckoff positions of the corresponding space group. The crystal structure can also
be described by Pearson symbol indicating the crystal lattice type and the number
of atoms in the conventional (crystallographic) unit cell. The Bravais lattice type
is given at the beginning of Pearson symbol: cP,cI,cF- for cubic lattices, tP,tI- for
tetragonal lattices, oP,oS,oF- for orthorhombic lattices, hP and hR for hexagonal and
rhombohedral lattices. The number of atoms in the crystallographic unit cell follows
the Bravais lattice type.

2.3 Bulk Crystal Structures

2.3.1 Structures with Cubic Lattices

In Table 2.5 we give general information about all the cubic structures under consider-
ation: prototype name, Pearson designation, space group symbol, Wyckoff positions
occupations, and possible equivalent description of the structure. All these structures

Table 2.5 Cubic structures

Prototype Pearsons Cubic lattice Space Wyckoff Equivalent

symbol parameter a (Å) group positions description

Diamond cF8 3.567 Fd3m(227) C(8a) C(8b)

(C)

Fluorite cF12 5.463 Fm3m(225) Ca(4a) Ca(4b)

(CaF2) F(8c) F(8c)

Zincblende cF8 5.409 F43m(216) Zn(4a) Zn(4b)

(ZnS) S(4c) S(4d)

Perovskite cP5 3.795 Pm3m(221) A(1a) Ti(1a)

(cubic) Ti(1b) A(1b)

(ATiO3) O(3c) O(3d)

Equivalent sets of Wyckoff positions for space groups [8]
216 (abcd)(e)(fg)(h)(i)
221 (ab)(cd)(ef)(g)(h)(ij)(kl)(m)(n)
225 (ab)(c)(d)(e)(f)(g)(hi)(j)(k)(l)
227 (ab)(cd)(e)(f)(g)(h)(i)
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Fig. 2.4 Diamond structure

contain one formula unit in the primitive unit cell (Z = 1). For the structures cF
with a face-centered cubic lattice the number of atoms is given for the cubic unit cell
consisting of four primitive unit cells (this is traditional for crystal-structure data-
bases). In computer calculations only the atoms inside the primitive unit cell have to
be included: two atoms for diamond and zincblende, three and five atoms for fluorite
and cubic perovskite structures, respectively.

The third column of Table 2.5 contains the numerical values of the cubic lattice
parameter a, taken from [13].

Diamond structure (Fig. 2.4) is described by nonsymmorphic space group N227
with the face-centered cubic lattice: the macroscopic cubic symmetry of this crystal
appears as the direct product of the first carbon atom site symmetry group Td and
inversion I at the center of C–C bond moving the first carbon to the equivalent second
carbon atom in the primitive unit cell.

The coordinates of the carbon atoms can be given in fractions of primitive lat-
tice vectors (these vectors are nonorthogonal for a face-centered cubic lattice) or in
Cartesian coordinates. The primitive vectors themselves are usually given in Carte-
sian coordinates that for cubic lattices are directed along the translation vectors of
the conventional (cubic) unit cell (see Fig. 2.1). To describe the diamond structure
it is enough to give the numerical value of one parameter—the length of the cubic
unit-cell translation vector (cubic lattice parameter a). One can find [10] the follow-
ing numerical data for diamond structure (for an experimental value of 3.57 Å of the
lattice parameter) in the form:

Primitive vectors a1 = (0.000, 1.785, 1.785) a2 = (1.785, 0.000, 1.785) a3 =
(1.785, 1.785, 0.000) Volume = 11.37482325. These numerical data correspond
to the origin choice 2 for the space group N227 in [2] and the diamond structure
description C(8a) with the shifted origin.

The space group N225 is the symmetry group of the fluorite CaF2 structure
(Ca(4a)F(8c)) (Fig. 2.5).

Some fluorite type compounds form the basis for the nanostructures: TiO2, ZrO2.
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Fig. 2.5 Fluorite structure

Fig. 2.6 Zincblende structure

The Ca atom in the fluorite structure can be placed also in Wyckoff position b (0.5,
0.5, 0.5). The symmorphic space group N225 is given in [2] for one origin choice
(in Wyckoff position a with the site symmetry group Oh).

The point symmetry of the sphalerite(zincblende) ZnS (Fig. 2.6) structure is tetra-
hedral, but the lattice is cubic face-centered.

This structure can be obtained from the diamond structure by exchanging two
carbon atoms with Zn and S atoms, so that the operation of interchange of two atoms
in the primitive unit cell disappears. The zincblende structure is known for different
compounds, which form nanotubes and nanowires (SiC, TiC, GeSi, BN, AlN, GaN).
For an equivalent description of the structure the Zn and S atoms can be interchanged.

The cubic perovskite CaTiO3 structure (Fig. 2.7) is more complicated and found
as the high-temperature modification of different crystals (SrTiO3, BaTiO3, PbTiO3,
SrZrO3, PbZrO3). The structure is defined by one simple cubic lattice parameter a. In
the cubic perovskite structure the Ti–O distance is equal to one half of the translation
vector length. In the equivalent structure description (when Ca and Ti atoms are
interchanged) the three oxygen atoms positions need to be taken as (0.5, 0.5, 0), (0.5,
0, 0.5) and (0, 0.5, 0.5).
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Fig. 2.7 Perovskite structure

The considered different cubic structures are defined by one numerical
parameter—the cubic lattice constant. This is due to the fact that in these structures
atoms occupy Wyckoff positions that have no free parameters. The definition of the
more complicated structures requires the knowledge of both the lattice constants
and the numerical values of the free parameters for the free-parameter-dependent
Wyckoff positions occupied by atoms.

2.3.2 Structures with Tetragonal and Orthorhombic Lattices

In Table 2.6 we give general information about the tetragonal and orthorhombic crys-
tals, being the basis of the nanostructures formation: two modifications (rutile and
anatase) of titanium dioxide, zirconia, ferroelectric phases of the titanates, vana-
dium pentoxide and lepidocrocite. Tetragonal (a,c) and orthorhombic (a,b,c) lattice
parameters are given in Åin the third column of Table 2.6.

Both TiO2 modifications contain 6 atoms (two formula units) in the primitive cell.
The rutile structure (Fig. 2.8) belongs to the P42/mnm nonsymmorphic space

group.
The unit cell of the primitive tetragonal lattice is defined by the lattice vectors

a1 = a2 (in the xy-plane) and c (along z-axis). The rotations through a fourth-order
axis are followed by the improper translations along the z-axis of one half of the
c-vector length to ensure transformation of any of the oxygen atoms to another one,
see Table 2.4. As is seen from Table 2.6 two Ti atoms of the primitive cell occupy
Wyckoff position a(000;1/2, 1/2, 1/2), four oxygen atoms occupy Wyckoff position
f with one free parameter v: (±(v, v, 0); ±(v + 1/2, 1/2 − v, 1/2)). The Wyckoff
positions coordinates are given in units of a, a, c. Thus, the rutile structure is defined
by three parameters: a, c and v. The numerical data for rutile structure are given
in [10].

The anatase structure (Fig. 2.9) belongs to the I4/amd nonsymmorphic space
group.
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Table 2.6 Tetragonal and orthorhombic structures

Prototype Pearsons Lattice parameters Space Wyckoff Equivalent

symbol (a,c) or (a,b,c) in Å group positions description

Rutile tP6 4.587.2.959 P42/mnm(136) Ti(Mg)(2a) Ti(Mg)(2b)

(Ti(Sn)O2, MgF2) O(F)(4f) O(F)(4g)

Anatase tI12 3.764,9.502 I 41/amd(141) Ti(2a) Ti(2b)

(TiO2) O(4e) O(4e)

Zirconia tP6 3.598,5.165 P42/nmc(137) Zr(2a) Zr(2b)

(ZrO2) O(4d) O(4d)

Strontium tI14 5.513,7.807 I4/mcm(140) Sr(4b) Sr(4b)

titanate Ti(4c) Ti(4c)

(SrTiO3) O1(4a) O1(4a)

O2(8h) O2(8h)

Barium(Lead) tp5 4.318,4.106 P4mm(99) Ba(Pb)(1a) Ba(Pb)(1b)

titanate Ti(1b) Ti(1a)

(Ba(Pb)TiO3) O1(1b) O1(1a)

O2(2c) O2(2c)

Barium oS10 4.009,5.621,5.639 Amm2(38) Ba(2a) Ba(2b)

titanate Ti(2b) Ti(2a)

(BaTiO3) O1(2a) O1(2b)

O2(4e) O2(4d)

Vanadium oP14 11.544,3.571,4.383 Pmmn(59) V(4f) V(4f)

pentoxide O1(4 f ) O1(4 f )

(V2O5) O2(4f) O2(4f)

O3(2b) O3(2a)

Lepidocrocite oS16 3.072,12.516,3.873 Cmcm(63) Fe(4c) Fe(4c)

(FeO(OH)) O1(4c) O1(4c)

O2(4c) O2(4c)

H(8f) H(8f)

Equivalent sets of Wyckoff positions for space groups [8]
136 (ab)(c)(d)(e)(fg)(h)(i)(j)(k)
137 (ab)(c)(d)(e)(f)(g)(h)
140 (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)
141 (ab)(cd)(e)(f)(g)(h)(i)
99 (ab)(c)(d)(f)(e)(g)(h)(ij)(k)(l)(m)(n)(o)
63 (ab)(c)(d)(e)(f)(g)(h)
59 (ab)(cd)(e)(f)(g)
38 (ab)(c)(de)(f)

The tetragonal unit cell of a body-centered tetragonal lattice is defined by the
lattice vectors a1 = a2 (in the xy-plane) and c (along the z-axis) and contains
2 primitive unit cells. To describe the primitive unit cell the translation vectors
a1(a, 0, 0), a2(0, a, 0), a3(1/2a, 1/2a, 1/2c) are used. As is seen from Table 2.6.
two Ti atoms of the primitive cell occupy Wyckoff position 2a(0, 0, 0; 0, 1/2, 1/4),
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Fig. 2.8 Rutile structure

Fig. 2.9 Anatase structure

four oxygen atoms occupy Wyckoff position 4e (0, 0, v; 1/2, 0,−v+1/2; 0, 1/2, v+
1/4;1/2, 1/2,−v+1/2). The anatase structure is defined by three parameters: a, c, v.
The numerical data for anatase structure are given in [10]. These data correspond to
the coordinate system origin shifted by (1/8, −1/8, −1/4) (in the units of primitive
translations), in comparison with the origin choice made in [2].

Zirconia is an oxide which exhibits a large variety of polymorphs. The proper-
ties of bulk ZrO2 are well studied experimentally [15]. It was established that ZrO2
has three zero-pressure modifications. At high temperatures (t ≥2,350 C), zirconia
adopts a cubic fluorite structure, see Table 2.5 while at low temperatures (t≤1,150 C),
a monoclinic baddeleyite (P21/c) structure is preferred thus representing a ground
state of zirconia. A tetragonal zirconia phase (see Fig. 2.10) belongs to the nonsym-
morphic space group P42/nmc and exists at intermediate temperatures; it can be
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Fig. 2.10 Tetragonal zirconia structure

viewed as a simple perturbation of the cubic fluorite phase, see Fig. 2.5 in which
the oxygen atoms are displaced alternately along the 42 axis by 0.2 Å. The relative
stability of ZrO2 zero pressure phases can be influenced by the crystallite size. It
is well known that small zirconia particles suspended in a host matrix do not trans-
form from tetragonal to monoclinic, even well below the bulk transition temperature
unless subjected to an external stress field or heating above 700 K [16]. Moreover,
Wang et al. [17] have found that tetragonal zirconia can be obtained in particles with
sizes below 40 nm at room temperature. Structure studies [18] of ZrO2 deposition
on the amorphous silica have shown that the thin ZrO2 film growth starting from the
formation of amorphous phase proceeds with preferential growth of crystallites of
tetragonal and cubic structures in the direction [001]. The structure analysis of the
fabricated zirconia nanotubes (ZNT) also gives evidence that the small particle size
may stabilize the virtually unstable phases. This means that ZNT can possess cubic,
tetragonal or orthorhombic morphology.

The unit cell of the tetragonal zirconia primitive tetragonal lattice is defined by the
lattice vectors a1 = a2 (in the xy-plane) and c (along z-axis). The rotations through a
fourth-order axis are followed by the improper translations along the z-axis of one half
of the c-vector length to ensure transformation of any of the oxygen atoms to another
one. As is seen from Table 2.6 two Zr atoms of the primitive cell occupy Wyckoff
position a(3/4, 3/4, 3/4; 1/4, 3/4, 1/4), four oxygen atoms occupy Wyckoff posi-
tion d with one free parameter v: (1/4, 1/4, v; 1/4, 1/4, v + 1/2; 3/4, 3/4,−v;
3/4, 3/4,−v + 1/2). The Wyckoff positions coordinates are given in units of a, a,
c, the origin choice 2 is chosen, see [8]. Thus, the tetragonal zirconia structure is
defined by three parameters: a, c and v. The numerical data for tetragonal zirconia
structure are given in [13].

The structure of the SrTiO3 low temperature antiferrodistortive (AFD) phase
(Fig. 2.11b) belongs to the nonsymmorphic space group I4/mcm with the
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body-centered tetragonal lattice and contains two formula units in the primirive
unit cell (four formula units in the conventional cell of the body centered tetragonal
lattice). The lattice parameters are: a = 5.511 Å, c = 7.796 Å.

The Sr and Ti atoms atom occupy Wyckoff positions 4b(0, 0.5, 0.25) and 4c (000),
respectively. The nonequivalent oxygen atoms O1 and O2 occupy Wyckoff positions
4a(0, 0, 0.25) and 8h(0.2451, 0.2451.0), respectively. The structure is defined by
two tetragonal lattice parameters (lengths of a1 = a2 primitive translations and of
c—translation vector of the tetragonal unit cell containing two primitive cells) and
v-parameter defining the positions of O2 atoms. The numerical data for this structure
are given [10]. The primitive translation vector a3(1/2,1/2,1/2) is given in units of
a, a, c.

BaT i O3 (BTO) crystallizes either in the perovskite crystal structure or in its
hexagonal modification. The crystal structure of the perovskite polymorph changes
from cubic (Pm3m) to tetragonal (P4 mm) at 403 K, then to orthorhombic (Amm2) at
278 K, and to rhombohedral (R3 m) at 183 K [19]. The cubic phase is paraelectric and
the other phases are ferroelectric. In all four phases, there is one BTO formula unit in
the unit cell so that phase transitions to ferroelectric phases are due to the soft mode

Fig. 2.11 Cubic (a) and tetragonal AFD (b) SrTiO3 structures. Online (Green balls) Sr atoms,
(gray balls) Ti, and (red balls) O atoms
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(a) (b)

Fig. 2.12 Tetragonal (a) and Orthorhombic (b) Barium titanate structures

at Γ point of cubic BTO Brillouin zone (BZ). Lead titanate PbT i O3 (PTO) is one
of the simplest ferroelectrics with the perovskite structure and undergoes successive
phase transitions from tetragonal to monoclinic to rhombohedral under pressure at
low temperetures.

The structure of BaTiO3 and PbTiO3 zero-pressure ferroelectric tetragonal phases
(Fig. 2.12a) belongs to the symmorphic space group P4mm with the simple tetragonal
lattice and contains one formula unit in the primitive unit cell. The structure is defined
by two tetragonal lattice parameters (lengths of a1 = a2 primitive translations and c)
and three v-parameters defining the positions of the Ti, O1 and O2 atoms. The lattice
parameters are: a = 3.9988 Å, c = 4.0222 Å and a = 3.9009 Å, c = 4.1526 Å, for BTO
and PTO, respectively [13]. The unit cell volumes are 64.32 (BTO) and 63.19 (PTO).
The Ba (Pb) and Ti atoms atom occupy Wyckoff positions 1a(0, 0, 0) and 1b(0, 0, uT i ),
respectively. The nonequivalent oxygen atoms O1 and O2 occupy Wyckoff positions
1b(0, 0, u1) and 2c(1/2, 0, u2), (0, 1/2, u2) respectively. The numerical data for these
parameters taken from [13] are the following: vT i = 0.5021(0.5340) for BTO(PTO);
v1 = −0.0153(0.1120) for BTO(PTO); v2 = 0.5130(0.6220) for BTO(PTO).

Table 2.6 also gives the information about the orthorhombic structures of BaTiO3,
vanadium pentoxide V2O5 and lepidocrocite. The vanadium pentoxide contains two
formula units V2O5 in the primitive cell (Z = 2) and forms nanotubes, which are not
considered in this book. The lepidocrocite is used for TiO2-based nanotube modeling
after the change of iron atoms by titanium atoms and removing hydrogen atoms (see
Chap. 7).

2.3.3 Structures with Hexagonal Lattices

In this section we consider hexagonal structures (graphite, BN honeycomb, MoS2,
titanium disulfide and diboride, ZnS (wurtzite), see Figs. 2.13, 2.14, 2.15, 2.16, 2.17
and 2.18, respectively).

http://dx.doi.org/10.1007/978-3-662-44581-5_7
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Fig. 2.13 Graphite structure

Fig. 2.14 Hexagonal BN structure

Table 2.7 shows that the graphite, hexagonal boron nitride BN and molibdenum
disulfide MoS2 structures, see Figs. 2.13, 2.14 and 2.15, belong to the nonsym-
morphic space group P63/mmc. The symmorphic space groups P3m1(164) and
P6/mmm(191) describe the symmetry of TiS2 and TiB2 crystals, respectively.
Wurtzite and α-quartz SiO2 structures symmetry is given by nonsymmorphic groups
P63 mc(186) and P3121(152), respectively. The rhombohedral structure of α boron
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Fig. 2.15 Molybdenite MoS2 structure

Fig. 2.16 Titanium disulfide TiS2 structure

(symmorphic space group R3m(166)) is given in the hexagonal setting (3 primitive
unit cells in the hexagonal cell).

The unit cell of the hexagonal lattice is defined by the lattice vectors a1 = a2
(in the xy-plane) and c (along z-axis). The rotations through a six-order axis are
followed by the improper translations along the z-axis of one half of the c-vector
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Fig. 2.17 TiB2 structure

Fig. 2.18 Wurtzite structure

length. Belonging to the same space group, the three structures in consideration
differ by the atom distribution over Wyckoff positions in the primitive unit cell of the
hexagonal lattice. As it is seen from Table 2.7, the following Wyckoff positions of
the space group P63/mmc are used to describe the structures in consideration: 2b (0
0 1/4, 0 0 3/4), 2c (1/3 2/3 1/4, 2/3 1/3 3/4), 2d (2/3 1/3 1/4, 1/3 2/3 3/4) and 4f (1/3
2/3 z, 2/3 1/3 z+1/2, 2/3 1/3 −z, 1/3 2/3 −z+1/2). All the coordinates of Wyckoff
positions are given in units of the three hexagonal lattice parameters.

In graphite structure four carbon atoms atoms occupy two nonequivalent Wyckoff
positions 2b and 2c. The hexagonal lattice parameters are a = 2.4642 Å, c = 6.7114 Å,
the unit cell volume is 35.29 [13]. The graphite structure consists of atomic layers
separated by a distance larger than the interatomic distance in one layer. Therefore,
the one-layer approximation (graphene layer) is used in nanotubes modeling: only
two carbon atoms in the primitive cell of the plane hexagonal lattice are included
in the graphene structure. In BNhex structure two boron atoms and two nitrogen
atoms occupy nonequivalent Wyckoff positions 2c and 2d. The hexagonal lattice
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Table 2.7 Hexagonal structures

Prototype Pearsons
symbol

Lattice constants
(a,c) in Å

Space group Wyckoff
positions

Equivalent
description

Graphite C hP4 2.464, 6.711 P63/mmc(194) C(2b) –

C(2c)

BN honeycomb hP4 2.489, 6.561 P63/mmc(194) B(2c) B(2d)

N(2d) N(2c)

Molybdenite hP6 3.169, 12.324 P63/mmc(194) Mo(2c) Mo(2d)

2H (MoS2) S(4f) S(4f)

Titanium
Disulfide

hP3 3.312, 5.449 P3m1(164) Ti(1a) Ti(1b)

(T i S2) S(2d) S(2d)

Titanium
Diboride

hP3 3.024, 3.124 P6/mmm(191) Ti(1a) Ti (1b)

(T i B2) B(2d) B(2c)

Wurtzite hP4 3.777, 6.188 P63mc(186) Zn(2b) –

(ZnS) S(2b)

Alpha quartz hP9 4.913, 5.405 P3121(152) Si(3a) Si(3b)

(SiO2) O(6c) O(6c)

Alpha Boron hR12 4.906, 12.566 R3m(166) B1(18h) –

(B) B2(18h)

Equivalent sets of Wyckoff positions for space groups [8]
194 (a)(b)(cd)(e)(f)(g)(h)(i)(j)(k)(l)
164 (ab)(c)(d)(ef)(gh)(i)(j)
191 (ab)(cd)(e)(fg)(h)(i)(jk)(lm)(n)o(pq)
186 (a)(b)(c)(d)
152 (ab)(c)
166 (ab)(c)(de)(fg)(h)(i)

parameters are a = 2.4860 Å, c = 6.5160 Å, the unit cell volume is 34.88 [13]. As
the graphite B Nhex consists of atomic layers separated by a distance larger than the
interatomic distance in one layer. Therefore, the one-layer approximation is used in
BN nanotubes modeling: only two atoms (boron and nitrogen) in the primitive cell
of the plane hexagonal lattice are included in the structure. In molibdenum disulfide
MoS2 structure two molibdenum atoms and four sulfur atoms occupy Wyckoff posi-
tions 2c and 4f, respectively. The hexagonal lattice parameters are a = 3.1690 Å, c =
12.324 Å, the unit cell volume is 107.18 [13]. The sulfur atom position is defined by
parameter z = 0.621. The layered structure of MoS2 is used in nanotubes modeling.

The structure of titanium disulfide (TiS2) belongs to the symmorphic space
group P3m1 and contains one furmula unit in the primitive unit cell of the hex-
agonal lattice, see Fig. 2.16. Metal and sulfur atoms occupy parameter-free Wyckoff
positions 1a (0 0 0) and 2d (1/3 2/3 1/2, 2/3 1/3 1/2), respectively. The structure
of aluminium and titanium diborides (AlB2,TiB2) belongs to the symmorphic space
group P6/mmm and contains one furmula unit in the primitive unit cell of the hexa-
gonal lattice, see Fig. 2.17. Metal and boron atoms occupy parameter-free Wyckoff
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positions 1a (0 0 0) and 2d (1/3 2/3 1/2, 2/3 1/3 1/2), respectively. The structure is
defined by the lengths a and c of the hexagonal lattice translation vectors a1 = a2
(in the xy-plane) and c (along z-axis) for AlB2 (TiB2): a = 3.016(3.024) Å, c =
3.268(3.154) Å, V = 25.74(24.98) [13].

The wurtzite structure of ZnS, see Fig. 2.18, is the hexagonal analog of the
zincblende (sphalerite) structure of ZnS (see Sect. 2.3.1) and belongs to the nonsym-
morphic space group P63mc with a hexagonal lattice. The boron, aluminium and
gallium nitrides (BN, AlN and GaN ) and ZnO bulk crystals have the wurtzite struc-
ture. The primitive unit cell contains two formula units, two metal and two nitrogen
(oxygen) atoms occupy the same Wyckoff position 2b(1/3, 2/3, z; 2/3, 1/3, z+1/2)

with the different values of internal parameter z for metal atom and for sulfur atom.
Thus, the wurtzite structure is defined by 4 parameters—two lattice and two inter-
nal ones. The numerical values of the structure data from [13] are the following
for BN (AlN,GaN): a = 2.538 Å(3.115 Å, 3.221 Å); c = 4.197 Å(4.988 Å, 5.237 Å);
V = 23.41(41.91, 47.05). The internal parameter z1 = 0 for all the three structures,
the internal parameter z2 =0.373(0.305,0.378). The wurtzite structure can also be
described in hexagonal axes.

The figures showing the α-Boron and α-quartz structures are given in Chap. 4
when the based on these structures nanotubes are considered.

2.4 Diperiodic (Layer) Symmetry Groups of Nanolayers

2.4.1 Two Factorizations of the Layer Groups

The diperiodic groups are the symmetry groups of the three-dimensional systems
with translational periodicity in two directions. The diperiodic groups belong to the
so-called subperiodic groups. The latter include 7 frieze groups (two-dimensional
groups with one-dimensional translations), 75 rod groups (three-dimensional groups
with one-dimensional translations), and 80 layer groups (three-dimensional groups
with two-dimensional translations). The information presented about the subperiodic
groups in [5] is in the same format and consists of the same content as that provided
in [2] for space groups G. There are 80 diperiodic groups; 17 of them are plane, i.e.
describe the symmetry of the two-dimensional systems with translational periodicity
in two directions.

Diperiodic groups are subgroups of the three dimensional triperiodic space groups
G. In the single-slab model a crystal with a surface is approximated by a slab of finite
thickness. The symmetry group of this model allows the existence of symmetry
operations that move the atoms out of the plane of the layer but bring them into
positions occupied by other atoms of the slab. These are diperiodic groups (DG) in
three dimensions. They are also called the layer groups. These groups also describe
the symmetry of thin films. In layered crystals the interaction between the nearest
layers is usually weaker than that between nearest atoms in the same layer plane.

http://dx.doi.org/10.1007/978-3-662-44581-5_4
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Therefore, the slab model is a convenient approximation for such crystals. Layer
groups describe the symmetry of this model.

Under standard crystallographic approach any diperiodic group (DG) may be
presented in the form

DG = T(a)F (2.13)

where F is a finite system of representatives of DG decomposition in cosets of two-
dimensional translation group T(a). Choice of representatives in not unique and
any specific set F is, in general, not a subgroup of DG. However, since DG is the
extension of G by T(a), F can be interpreted as a group with multiplication modulo
pure two-dimensional translations. Factorization (2.13) of diperiodic group DG will
be referred to as standard and is used in [5].

Any element of the layer group may be written as (Ri |vi + an), where an and vi

are lattice and improper translations, i = 1, 2.
Let a3 be a vector that does not lie in the layer plane. A set of elements (E |n3a3)

forms a group T3 of one-dimensional translations. Consider the elements

(Ri |vi + an)(E |n3a3), (Ri |vi + an) ∈ DG, i = 1, 2, (E |n3a3) ∈ T3 (2.14)

The set (2.14) of symmetry operations contains a group of three-dimensional trans-
lations (E |an + n3a3) ∈ T. The set (2.14) is some space group provided the trans-
lational symmetry (the group T) is compatible with the point symmetry FDG of the
layer group DG. This condition is fulfilled if the vector a3 is chosen perpendicular to
the layer plane. Indeed, the translations (E |an) ∈ T (2) ⊂ T are compatible with FFD
as they are the elements of DG. The compatibility of the translations (E |n3a3) ∈ T3
with point group FFD follows from the fact that the rotations (proper and improper)
from DG transform the layer into itself and, therefore, the vector perpendicular to
the layer is transformed into a vector also perpendicular to the layer. Thus, the set
of elements (2.14) forms one of the three-periodic space groups G. Moreover, the
translational group T3 is invariant in G: with the translation (E |a3) it contains also
the translation (E |Ri a3) for any Ri from (2.14). Therefore, the group G may be
expressed as a semidirect product

G = T3 ∧ DG (2.15)

and be decomposed into cosets with respect to T3

G =
∑

i

(Ri |vi + an)T3, (Ri |vi + an) ∈ DG, i = 1, 2 (2.16)

Thus, subperiodic layer group DG is isomorphic to factor group G/T3. A relationship
between factor groups of space groups and subperiodic groups is studied in [20, 21].

In [5] a relationship is considered between space (triperiodic) and subperiodic
groups: given a crystal of a specific space-group symmetry and a plane transecting
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the crystal, one can enquire as to what is the layer subgroup of the space group that
leaves this plane invariant. The physical motivation for answering this question is
clear as this problem arises, for example, in the surface modeling by a single slab.
The information about subperiodic groups is followed in [5] by the scanning tables in
which the layer symmetries of sectional planes are tabulated for all crystallographic
orientations and for all positions (locations) of these planes. These tables also contain
explicitly the orbits of these planes (an orbit is defined as a set of planes connected
by the symmetry operations) and implicitly, via the so-called “scanning groups”,
information about the rod symmetries of straight lines that penetrate through the
crystal.

Both the short and the full DG Hermann-Mauguin symbols consist of a letter indi-
cating the centring type of the conventional cell (primitive P or centered rectangular
C) and a set of characters indicating symmetry elements of the subperiodic group. The
one or three entries after the centring letter refer to the one or three kinds of symme-
try directions of the conventional crystallographic basis. Symmetry directions occur
either as singular directions or as sets of symmetrically equivalent symmetry direc-
tions. Only one representative of each set is given. The sets of symmetry directions
and their sequence in the Hermann-Mauguin symbol are summarized in Table 2.8.

Each position in the Hermann-Mauguin symbol contains one or two characters
designating symmetry elements, axes and planes that occur for the corresponding
crystallographic symmetry direction. Symmetry planes are represented by their nor-
mals; if a symmetry axis and a normal to a symmetry plane are parallel, the two
characters are separated by a slash. Crystallographic symmetry directions that carry
no symmetry elements are denoted by the symbol 1, e.g. P3m1 (DG69). If no mis-
interpretation is possible, entries 1 at the end of the symbol are omitted, as in p4
(DG49) instead of P411. Subperiodic groups that have in addition to translations

Table 2.8 Sets of symmetry directions and their positions in the Hermann-Mauguin symbol

Symmetry direction (position in Hermann-Mauguin symbol)

Primary Secondary Tertiary

(a) Layer groups and rod groups

Triclinic None

Monoclinic [100] [010] [001]

Orthorhombic

Tetragonal [001] [100] [11̄0]

[010] [110]

Trigonal [001] [100] [11̄0]

Hexagonal [010] [120]

[1̄1̄0] [2̄1̄0]

(b) Frieze groups

Oblique Rotation point in plane

Rectangular [10] [01]

In the standard setting, periodic directions and their positions are [100] and [010] for the layer
groups, [001] for the rod groups, and [10] for the frieze groups



2.4 Diperiodic (Layer) Symmetry Groups of Nanolayers 47

no symmetry directions or only centres of symmetry have only one entry after the
centring letter. These are the layer-group types P1 (DG1) and p1̄ (DG2).

Table B.1 given in Appendix B, shows the correspondence DG ↔ G/T3 between
three-dimensional diperiodic (DG) and three-periodic (G) space groups. This corre-
spondence was at first given by Wood [22] in the setting that differs for rectangular
diperiodic groups from that given in Table B.1 (the setting in this Table corresponds
to the standard setting of [5]).

The second approach to the diperiodic groups description was suggested in [23]
and is based on the non-standard factorization

DG = ZP (2.17)

where Z is a cyclic generalized translation group, and P is a finite point group.
The non-standard DG factorization was used in [23] for the construction of the DG

irreducible representations as the non-standard factorization allows the simple con-
struction of irreducible representations, involving neither projective representations,
nor the representations of the space supergroups.

Table B.2 is given in Appendix B and presents the non-standard factorization of
the diperiodic space groups.The generalized translational group, Z describes the
periodical arrangement of the elementary motifs along two independent directions
(these two directions are assumed to be in the xy-plane). Therefore, Z can be formed
of the generalized one-dimensional (1D) translational groups leaving the xy-plane
invariant. There are only four generalized 1D translational groups satisfying this
condition: (1) pure translational group T along an axis in the plane, (2) screw axis
group 21 with the C2 axis in the plane, (3) glide plane group Th of the horizontal,
xy, glide plane, (4) glide plane group Tv of the vertical glide plane (containing
z-axis). All these groups are infinite cyclic groups. The first of them is generated by
pure translation; as for the remaining three groups, pure translations are the index-2
subgroup generated by the square of the generator of the glide plane or the screw
axis. The generalized 2D translational groups are direct or weak direct products
of the listed four 1D generalized translations: (1) The pure 2D translational group
T is the direct product of the two 1D translational groups T along independent
directions, with, in general, different translational periods and an arbitrary angle
between the translational directions. (2) The horizontal 2D glide plane group Th =
T Th ; translational periods of T and Th may be different, and their directions form an
arbitrary angle. (3) The 2D screw axis group 21 = T 21 (horizontal screw axis). (4)
The vertical 2D glide plane group Tv = T Tv (vertical glide plane). (5) The product
21Th of the groups 21 and Th generated by (Ux |1/2, 0) and (σh |0, 1/2) In the last
three cases the screw axis (glide plane) can be chosen in the direction orthogonal to
the translations of the group T or Th , while the translational periods of the groups T
and Th are not related to those of 21 (respectively Tv).

These five 2D generalized translational groups form the lattices classified accord-
ing to the four holohedries: the oblique (holohedry C2h ; arbitrary angle between
the translational directions, with different periods), the rectangular (D2h ; orthogo-
nal translational directions with different periods), the square one (D4h ; orthogonal
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translational directions and equal periods) and the hexagonal one (D6h ; the angle
2π /3 between the translational directions with the equal periods) [5]. If together
with the primitive rectangular translations a and b, the lattice contains the vector
(a + b)/2 it is called the centred rectangular, to differ from the primitive ones (these
generalized translational groups are emphasized by primes in the Table B.1). Depend-
ing on the type of the lattice, various orthogonal symmetries can be involved. They
combine into the point factors, being the axial point groups, leaving the z-axis invari-
ant. Since the crystallographic conditions on the order of the principal axis of rota-
tion must be imposed (analogously to the space groups, but in the contrast to the
line groups, see next section), the possible point factors are: Cn , Cnv , Cnh , Dn , Dnh

(for n = 1, 2, 3, 4, 6), Dnd and S2n (for n = 1, 2, 3). These are also the possible
isogonal point groups, which are obtained by adding the orthogonal part of the gen-
eralized translational generators to the point factor (thus the point factor P is either
the isogonal point group, or its index-2 subgroup).

Diperiodic group DG contains a subgroup of two-dimensional translations T (2)

with elements (E |an), where

an = n1a1 + n2a2 (2.18)

is an arbitrary translation vector of the plane lattice, and a1, a2 are unit cell (primitive)
translation vectors. The ends of all vectors an beginning at some origin O form a
two-dimensional Bravais lattice. The point-symmetry group FDG of this lattice must
satisfy the following requirements: symmetry axes of order n (with n > 2) must be
perpendicular to the plane of vectors a1, a2 (layer plane), reflection planes must be
either perpendicular or parallel to this plane. These requirements restrict the number
of possible two-dimensional lattices. The two-dimensional lattice of a layer group
is also a two-dimensional lattice of a plane group (two-dimensional groups with
two-dimensional translations). There exist five plane lattices, distributed over four
crystal systems: oblique, rectangular (2 lattices—primitive and centered), square and
hexagonal.

The point symmetry of the oblique, rectangular, square and hexagonal systems is
given by C2, C2v , C4v and C6v point groups, respectively. Note that in a plane lattice
the inversion at the origin of the coordinate system is equivalent to the rotation through
the second-order axis normal to the plane. Screw axes in layer groups may be only
the second-order axes lying in the layer plane. Improper translations in operations
of reflection in glide planes (parallel or perpendicular to the layer plane) must be
oriented along the layer plane.

One can find the information about subperiodic groups in [5] and on the Bilbao
Crystallographic server [8]. These groups are specified by their number as given in
[5] or by the international symbols. The international symbol of layer group DG
contains, first, the information about the plane Bravais lattice type: P (primitive) or C
(centered). Then the information about symmetry elements is given. The screw axes
(of second order) have the subscript 1. The reflection planes are denoted as follows:
m (mirror planes), n, a, b (glide planes, depending on the direction of the improper
translations). The subperiodic groups are described by means of a crystallographic
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coordinate system consisting of a crystallographic origin, denoted by O , and a crys-
tallographic basis. The conventional basis vectors for the three-dimensional layer
groups are labeled a, b, and c. Unlike triperiodic space groups, not all basis vectors
of the crystallographic basis are lattice vectors (for primitive lattices vectors a and
b coincide with the primitive translations a1, a2).

Like space groups, the crystallographic coordinate system is used to define the
symmetry operations and the Wyckoff positions. The symmetry operations are
defined with respect to the directions of both lattice a, b and nonlattice c basis
vectors. A Wyckoff position, denoted by a coordinate triplet (x, y, z) for the three-
dimensional layer groups, is defined in the crystallographic coordinate system by
O + r , where r = xa + yb + zc.

Like space groups, the term setting will refer to the assignment of the labels a, b,
and c (and the corresponding directions [100], [010] and [001], respectively) to the
basis vectors of the crystallographic basis. In the standard setting, those basis vectors
that are also lattice vectors are labeled for layer groups with their two-dimensional
lattice by a and b. Note that the setting of the layer groups for rectangular lattices
may be chosen different for the same group (symbols P211 or P121 refer to the same
group in two different settings) but at the same time P112 and P211 denote different
layer groups. In the first group the axis of second order (oriented along the z-axis)
is perpendicular to the layer plane, in the second it lies in the layer plane xy and
is directed along the x-direction. In the first case, the second-order axis is oriented
along the plane translation lattice vector, in the second case along the nonlattice
vector. Respectively, the Wyckoff positions for both groups are different, see [8].

For some layer groups of oblique and rectangular crystal systems (DG 1, 2, 8–18)
the vector a3 may be inclined to the layer plane.

In the cases when a space group G may be represented as a semidirect product
(2.15) in two different manners it generates two nonisomorphic layer groups. For
example, the layer groups P112 and P211 are related to one space group P2(C1

2)

with two different settings (the second-order axis is oriented along the z- and x-
directions, respectively). The space group P2/b (C4

2h) generates two layer groups
P112/a and P2/b11. In the first group the rotation axis is perpendicular to the
layer and the layer plane itself is a glide plane with an improper translation on a
half-period along the x-direction. In the second group the rotation axis is directed
along the x-axis; the glide reflection plane is perpendicular to the layer (and to the
rotation axis) and reflection in this plane is followed by improper translation on the
half-period along the y direction. The latter corresponds to the space group, with a
nonconventional setting.

A particular case of layer groups is that of the so-called plane groups mentioned
above. Formally, they are the symmetry groups of diperiodic systems in two dimen-
sions. They correspond to the layer groups that do not contain the rotation axes lying
in the layer plane and the reflection planes coinciding with the layer plane. Semi-
infinite crystals with plane diperiodic surfaces have plane groups as the groups of
symmetry.
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2.4.2 Orbits of Layer Groups

The Wyckoff positions (the sets of non-equivalent orbits of the diperiodic groups
-DG-orbits) for the 80-layer groups can be found in [5, 8]. The Wigner–Seitz (WS)
cell for an arbitrary group DG is a right prism with a directrix lying in the layer
plane. The projection of the Wigner–Seitz (WS) cell on the layer plane is a polygon
constructed from the basis vectors a1 and a2 [6]. The WS cell of the corresponding
triperiodic group G is derived by construction of additional planes perpendicular to
the vectors a3 (and perhaps to their integer combinations with the vectors a1 and a2)
and passing though their midpoints. Thus, the WS of the group G is a part of that for
the corresponding group DG.

The site-symmetry groups of Wyckoff positions for the majority of positions
belonging to both WS cells (of G and of DG) are identical since they are determined
by the same set of symmetry operations. The only exception may be for the points
on the sides of the group G cell that are absent in that of the group DG. The existence
of translational symmetry in the third dimension in the group G may give rise to
additional symmetry operations in site-symmetry groups for these points in the group
G with respect to DG. The part of the WS cell of the layer group DG that has no
common points with the cell of the corresponding group G contains the points of
general position and the points with site symmetry defined by vertical planes and
rotation axes. These types of site symmetry are already represented in the common
part of the cells for G and DG. Therefore, the set of points with different types of
site symmetry in the group G is larger than that in the group DG. Thus, the points of
different types of site symmetry (Wyckoff positions) in DG may be specified by the
same roman letters as in the corresponding groups G [8]. In layer groups the inversion
center and the points of intersection of vertical and horizontal symmetry elements
may be situated only in the layer plane. This means that the symmetry points of the
Wigner–Seitz cell for a layer group DG may appear only in its intersection with the
layer plane. An example illustrating the Wyckoff positions connection in space group
C5

2h and layer DG 18, is given in [6].
Oriented site symmetry symbols for layer groups are used to show how the sym-

metry elements at a site are related to the conventional crystallographic basis. The
site-symmetry symbols display the same sequence of symmetry directions as the sub-
periodic group symbol. Sets of equivalent symmetry directions that do not contribute
any element to the site-symmetry group are represented by a dot. Sets of symmetry
directions having more than one equivalent direction may require more than one
character if the site-symmetry group belongs to a lower crystal system. For example,
for the 2c position of tetragonal layer group P4mm (DG55), the site-symmetry group
is the orthorhombic group 2 mm.. The two characters mm represent the secondary set
of tetragonal symmetry directions, whereas the dot represents the tertiary tetragonal
symmetry direction.
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2.4.3 Slab Models of Nanolayers

The thin films and surface modeling is connected with the basic concepts, introduced
by Tasker [24] in a discussion of the stability of surfaces of ionic or partly ionic
crystals. According to classical electrostatic criteria, the stability of a compound
surface depends on the characteristics of the charge distribution in the structural unit
that repeats itself in the direction perpendicular to the surface. The surface can be
studied by considering the crystal as a stack of atomic planes. Each plane consists of
sublattices of nonequivalent atoms, a sum over each sublattice on each plane gives the
total electrostatic potential. For perpendicular distances z greater than a few interionic
spacings, the contribution from a planar sublattice reduces to the particularly simple
form

V (z) = 2π

S
qz (2.19)

where S is the area of the unit cell in the plane and q is the planar sublattice charge.
This expression is identical to the potential due to an infinite charged plane of charge
density ρ = q

S ; the field E = 2π
S q due to the charged plane is constant. Since

V (z) and E do not diminish with increasing distance z the electrostatic sum must be
over the whole crystal as stacks of planes unless cancellation of these terms occurs.
Although the potential V (z) becomes infinite at infinite distances from the plane, it
should be noted that when the crystal is constructed as a neutral block the infinities
cancel and the potential becomes constant at large distances. In fact, it becomes zero
in all cases except where there is a dipole moment perpendicular to the surface.
Similarly the field E cancels to zero outside a neutral crystal block, irrespective of
the stacking sequence.

The repeat unit of a stack of planes is introduced when analyzing the distribution
of the bulk structure atoms over the atomic planes in the direction z normal to the
surface. This distribution depends on the crystal bulk structure and Miller index,
defining the surface. The three different possible stacking sequences define three
types of surfaces.

As a simplest case of the type-1 surface we can mention the (001) surface of
MgO crystal with the sodium chloride structure. The neutral bulk unit cell consists
of two atoms (Mg and O) and both of them occupy the same atomic plane. Each
atomic plane has overall zero charge since it consists of both anions and cations in
stoichiometric ratio. The potential V (z) cancels on each plane since the contributions
of the sublattices are equal and opposite. Additional planes in the surface of the crystal
make no contribution to the energy of ions in the bulk of crystal, and the lattice sums
required for the Madelung energy at any ion site need include only a few planes
either side of that site.

The diperiodic symmetry groups of the rutile and the anatase and the correspond-
ing 3D space groups are given in Table 2.9.
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Table 2.9 Symmetry of slabs

Crystal Index Space Group International Symbol Layer Group

Even Odd Even Odd Even Odd

Rutile 001 113 65 P−421m Cmmm 58 47

100 31 10 Pm21n P2/m11 32 14

101 14 14 Pm21/b11 P21/b11 17 17

110 51 47 Pmmb Pmmm 41 37

Anatase 001 51 115 Pmmb P−4m2 41 59

100 53 51 Pman Pmam 42 40

101 12 – C2/m11 – 18 –

110 13 21 P112/b C222 7 22

Figure 2.19 shows stacking of densely-packed atomic planes under the (110),
(100), (101) and (101) surfaces of rutile.

In the case of (110) and (101) slabs, the thinnest repeating layers consisting of
three atomic planes each (with Ti atoms positioned in the middle of layer), i.e.,
−O − T i2 O2 − O− (Fig. 2.19a) and −O2 − T i2 − O2− (Fig. 2.19c) are repeated
along the directions of stacking which are inclined from the normal axes of slabs.
Both types of layer units possess the zero dipole moment along the stacking direction
although each of three planes inside the layer unit is charged (Fig. 2.19a, c). In two
other densely-packed rutile slabs, the stacking directions are perpendicular to the slab
surfaces while dipole moments of layer units equal to zero again. Inside the (100) slab
(Fig. 2.19b), the repeating layer units consist of six −O − T i − O − O − T i − O−
atomic planes while inside the (001) slab (Fig. 2.19d), each of two TiO2 atomic
planes per repeating layer unit −T i O2 − T i O2− is electrically neutral. The layer
symmetry groups of the rutile strucure thinnest slabs are the following: (110)-Pmmm;
(100)-Pm21n; (101)-P21/b11; (001)-P-421m.

For the type-2 surface each plane contributes a term in the potential V (z), but a
sum over the planes in repeat units cancels the potential to zero. Addition of extra
neutral repeat units at the type-2 surface of the crystal cannot therefore affect the
energy of ions in the bulk, and again the Madelung sums for the potential at any ion
site are rapidly convergent. The (110) surface of the TiO2 rutile structure (Fig. 2.19a)
is an example of a type-2 surface. Indeed, the bulk crystal unit Ti2O4 atoms are
distributed over three planes with the surface unit cells consisting of one oxygen
atom (two planes) or Ti2O2 units (one plane). The atomic planes in this repeating
unit are charged ( in the ionic model q = −2 for oxygen planes and q = +4 for
Ti2O2 planes). However, the stacking of planes with the repeat unit as O–Ti2O2–
O allows one to obtain zero as its dipole moment along the z-direction. Two other
terminations (O–O–Ti2O2 and Ti2O2–O–O) give the repeat unit that bears a nonzero
dipole moment. This example demonstrates that the surface orientation only is not
always sufficient to refer the surface to the one of three types, especially when various
terminations may be produced. The atomic TiO2 planes in the repeat unit of the (001)
surface of rutile (Fig. 2.19d) are neutral and the dipole moment of any stack of an
integer number of such planes is again zero (type-2 surface). The repeat units for
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Fig. 2.19 Stacking of atomic planes for densely-packed rutile TiO2 surfaces cut from bulk unit
cells by planes imaged using dashed lines. One-two parallel section planes (110) (a), (100) (b) and
(101) (c), crossing unit cells and containing oxygen atoms only are shown additionally. For (001)
slab (d), no additional section plane is necessary. Directions of layer stacking for (110) (a) and (101)
(c) slabs are inclined from the axes normal to slab surfaces, however, they are perpendicular to axes
[110] and [101], respectively. In the cases of (100) (b) and (001) (d) slabs directions of stacking
coincide with the normal to slab surfaces

(100) and (101) type-2 surfaces have also zero dipole moment (O- and O2-terminated
repeat units of 6 and 3 atomic planes, respectively, can be chosen).

For the majority of cases of the oxide surfaces the stacking sequence of charged
planes has a dipole moment perpendicular to the surface. In particular, the stacks of
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alternately charged planes form the repeat unit for (101) surface of TiO2
(Fig. 2.19c).

Figure 2.20 shows stacking of densely-packed atomic planes under the (001),
(101), (110) and (100) surfaces of anatase.
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Fig. 2.20 Stacking of atomic planes for anatase TiO2 surfaces
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In the case of (110) and (101) slabs, the thinnest layers are repeated along the
directions of stacking which are inclined from the normal axes of slabs. In two other
densely-packed slabs, the stacking directions are perpendicular to the slab surfaces.
The thinnest (110) layer consists of two −T i O2−T i O2 atomic planes, see Fig. 2.20c.
The thinnest (001) and (101) layers consist of six −O − T i − O − O − T i − O−
atomic planes each, see Fig. 2.20a, b. At last, the thinnest (110) anatase slab consists
of one plane −T i2 O4−, see Fig. 2.20d. In (100) and (001) densely-packed slabs,
the stacking directions are perpendicular to the slab surfaces. All the four anatase
layer units possess the zero dipole moment along the stacking direction. Each of
six planes inside the (001) and (101) layer units is charged while −T i2 O4− and
−T i O2 − T i O2− planes in (100) and (110) layer units are electrically neutral. The
thinnest layer symmetry groups of the anatase structure are the following: (110)-
P112/b; (100)-Pmam; (101)-C2/m11; (001)-Pmmb.

Figure 2.21 shows the stacking of atomic planes for cubic perovskite ABO3 sur-
faces.

All the surfaces in cubic perovskite structure are type-3 surfaces being stacks
of alternately charged planes. It is less obvious in the case of the (001) surface in
AI I BI V O3 as the repeat unit consists of neutral atomic planes (see below). It is also
seen that the charge of the atomic plane depends both on the oxidation states of A
and B atoms (the sum of oxidation states is in all cases 6) and Miller indexes of the
surface.

For the stacking sequence of alternately charged planes (producing a dipole
moment perpendicular to the surface) the two-plane repeat unit produces a potential
at large distances whose magnitude is given by

V = 2π |q|a

S
(2.20)

where a is the interplanar spacing. Addition of an extra neutral repeat unit of two
planes on the surface of the crystal will affect the energy of ions an infinite distance
below the surface. Consequently, the Madelung sum cannot be truncated and must

Fig. 2.21 Stacking of atomic planes for cubic perovskite ABO3 surfaces
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include contributions from every plane out to the surface. The potential at any ion site
never reaches a constant bulk value, the energy of a neutral pair of ions never reaches
the usual cohesion energy and the surface energy is infinite [24]. The stacking of
planes for rutile (100), (101) and (111) type-3 surfaces is more complicated as it can
not be named as the stacking sequence of alternatively charged planes.

The classification of the surfaces by Tasker is based on the formal ionicities (oxi-
dation states) of metal atoms. As we already noted, the oxidation state and calculated
atomic charges are close only in purely ionic compounds (MgO, for example). In
fact, the transition-metal atoms charges differ essentially from the oxidation states
due to the covalence part of the chemical bonding with oxygen atom.

Type-1 or -2 surfaces have a zero dipole moment in their repeat unit and are thus
potentially stable. By contrast, polar type-3 surfaces have a diverging electrostatic
surface energy due to the presence of a nonzero dipole moment not only on the
outer layers, but on all the repeat units throughout the material [25]. An electro-
static instability of type-3 surfaces results from the presence of that macroscopic
dipole. Type-3 surfaces can be stabilized when the macroscopic field is removed by
surface reconstruction, absorption of charged specks and so on. The modification
of the surface electronic structure due to the reconstruction introduces compensat-
ing charges in the outer planes, stabilizing the surface structure. The absorption of
charged specks is also a very effective mechanism to achieve the stabilization of
polar orientations. Indeed, polar orientations are generally much more reactive than
cleavage planes [25].

The classification of surfaces considered above was introduced for ionic or semi-
ionic metal oxides. In covalent solids, the creation of a surface requires cutting
covalent bonds, which means that dangling bonds would be present at the surface.
The saturation of dangling bonds by chemisorption is important, for example, in
silicates. When a surface is cut out from the bulk, unstable Si–O radicals at the
surface react readily with water to give a fully hydroxylated surface with hydrophilic
character.

Tasker’s classification of surfaces allows some qualitative conclusions to be made
about the surface stability. The quantitative calculations of the surface formation
energy in slab models are considered in the next sections.

The crystals with wurtzite structure are layered compounds. Figure 2.22 shows
the stacking of the atomic planes in the ZnO wurtzite structure for different slabs.
The bulk unit cell consists of two ZnO formula units.

The thinnest (001) layer consists of four Zn − O − Zn − O atomic planes, see
Fig. 2.22a. The (001) surface of wurtzite structure is the most stable and used in the
nanostructures modeling. In the thinnest (110) all four atoms of the bulk unit cell
occupy the same plane forming type-1 surface structure (2.22b). The layers (100) and
(101) consist of two and four atomic planes respectively (see Fig. 2.22c, d). In the
former each of two atomic planes is neutral (2D unit cell contains ZnO formula
unit); in the latter each of four atomic planes O–O–Zn–Zn is monoatomic. The (110)
and (100) surfaces refer to the type 1, while (001) and (101)- to the types 3 and 2,
respectively. The relative stability of the different wurtzite surface structures depends
also on the interlayer distance. In particular the most stable (001) slab in the wurtzite
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Fig. 2.22 Stacking of atomic planes for wurtzite ZnO surfaces

structure consists of two-plane neutral fragments separated by the relatively large
interlayer distance.

Figure 2.23 shows atomic planes for TiS2 structure (space group P3̃m1, hexagonal
3D lattice. The bulk unit cell consists of two formula units. The minimal size (001)
slab consists of three atomic planes: the middle is formed of Ti atoms, while two
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Fig. 2.23 Atomic planes in TiS2 structures

other sheets are from sulfur atoms, see Fig. 2.23. Just this slab is used in the nanotube
rolling for TiS2 structure, see Sect. 3.5.

2.5 Line and Rod Symmetry Groups of Stereo-Regular
Polymers and Monoperiodic Nanostructures

2.5.1 Different Factorization of Line and Rod Groups

Line groups L are divided into two classes: incommensurate and commensurate
[3]. Incommensurate line groups contain rotohelical transformations (Cϕ | f ) with
rotation angles ϕ that are not commensurate with π .

By definition, commensurate line groups (also called monoperiodic groups) are
discrete symmetry groups of three-dimensional objects translationally periodic along
a line: stereo-regular polymers, nanotubes, nanowires, nanoribbons and quasi-one-
dimensional subsystems in the bulk ( threeperiodic) crystals. In the objects mentioned
the basic constituents (monomers) are repeated regularly.

The number of line groups is infinite as the translation axis can be the rotation
or screw axis of any integer order q. The relevance of line groups for polymers
was discussed by Vainstein [1]. The derivation of commensurate line groups as the
symmetry groups of stereo-regular polymer molecules was presented in [4].

Normally the z-axis is chosen as a line group principal axis and with such a con-
vention the elements of pure translation subgroup T(a) are of the form (E |0, 0, na),
n-integer. Here a is a translation period defined as a smallest positive real number
such that (E |0, 0, a) belongs to the group under consideration. For elements of T(a)
the symbol (E |a) instead of (E |0, 0, a) will be used. The symbol T will stand for
the discrete group of pure translations along z-axis when a = 1.

Under the standard for crystallography approach any commensurate line group
may be presented in the form

L = T(�a)F (2.21)

where F is a finite system of coset representatives of line group decomposition in
cosets of T(a)-invariant subgroup of L. The choice of representatives in not unique

http://dx.doi.org/10.1007/978-3-662-44581-5_3
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and any specific set F is, in general, not a subgroup of L. However, since L is the
extension of F by T(a), F can be interpreted as a group with multiplication modulo
pure translations (factor group L/T(a)). The group F is isomorphic to the axial point
group PI known as isogonal point group. Factorization (2.21) of line group L will
be referred to as standard [26].

The derivation of the commensurate line groups is given in [4]. The line groups are
described in the standard factorization (2.21) as an extension of a one-dimensional
translation group by an isogonal point group. The isogonal point group is either
cyclic or a semi-direct product of cyclic groups.

The method of derivation of the line groups consists of first extending by the cyclic
isogonal point groups and then obtaining the rest of the line groups by unification
within the Euclidean group. To this purpose, a simple test is given to decide whether
two line groups multiply into a third one. The method displays the subgroup structure
of the line groups, relevant to the construction of their irreducible representations.
All the commensurate line groups are derived and tabulated in [4].

An alternative method considered in [3] exploits elementary group-theoretical
means (with quite a bit of Number Theory) but embraces both commensurate and
incommensurate line groups. This method is based on the factorization

L = ZP (2.22)

where Z is a cyclic generalized translation group, and P is a finite point group. The
requirement that L contains a subgroup of pure translations immediately implies that
Z must be of one of the following two forms:

Z = Tr
q( f ) = 〈(Cr

q | f )〉 or Z = T′(a) = 〈(σv|a

2
)〉 (2.23)

where f is a fractional translation, r = 0, 1, 2, . . . , q − 1.
If the factorization (2.22) is used, then the structure of line groups may be studied

in several steps.
As the first step it is reasonable to analyze the discrete point groups operating on

cylindrical surfaces. Such an analysis (used also in [4]) is not complicated and gives
7 families of the point groups which leave cylinder invariant (the so-called axial point
groups PI ):

Cq , S2q , Cqh, Dq , Cqv, Dqd , Dqh (2.24)

Then step by step it is necessary to consider the products ZP to find out when
each concrete product is a group, and to ascertain that it has not occurred at previous
steps, probably in a different guise.

The orthogonal transformations of axial point groups PI leave the z-axis invari-
ant (rotations Cq around the z-axis, reflections σv in vertical planes) or reverse the
direction of the z-axis (rotations U around the second order axis perpendicular to the
z-axis, reflections σh in horizontal planes). The former transformations are called
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the positive ones, the latter—the negative ones. As the product of negative elements
is positive, the set of positive elements is either the whole group (positive group
P+

I ) or a halving subgroup, when the group is called negative: P−
I = P+

I +p−P+
I . It

was shown that the isogonal point groups of equivalent line groups are necessarily
conjugated by proper rotations which leave the z-axis invariant.

The construction of the physically distinct line groups in both factorizations is
based on the fact that all isogonal point groups are either cyclic (Cq , S2q) or the
product of cyclic groups: Cqv = Cq ∧C1v; Cqh = Cq ×C1h; Dq = Cq ∧D1; Dqd =
(Cq ∧ C1v) ∧ D1; Dqh = (Cq ∧ C1v) ∧ C1h .

In Table C.1 (given in Appendix C) from [3] the result of such an analysis is
presented: all line groups are divided into 13 families, each family includes infi-
nitely many line groups. Among these families there are 5 symmorphic (families
2, 3, 6, 9, 11) for which factorization (2.22) coincides with the standard one. The
families 1 and 5 contain both incommensurate and commensurate (symmorphic and
nonsymmorphic) line groups.

Table C.1 lists the line groups of 13 families for any order q of the rotation or
screw axis written in the form L = ZP, [3]. The line group decomposition:

L(F) =
NF∑

i=1

l(F)
i L(1) (2.25)

contains the subgroup L(1)—a set of all roto-helical transformations and in the case
of the first family groups L(1) is the line group itself. For families F = 2, 3, . . . , 8 it
is a halving subgroup (NF = 2), for the remaining families F = 9, . . . , 13 the first
family subgroup L(1) is a subgroup of index four (NF = 4). The coset representatives
l(F)
i are given in Table C.1 [3].

In the theory of line groups the 1st family, being one of the simplest, plays nev-
ertheless the most important role. The reason is in the structure of axial groups P
in (2.22): any such group contains Cn as its subgroup and, consequently, admits
decomposition in cosets of Cn .

The main result concerning the line groups of the 1st family may be formulated
as follows [3]:

For a fixed translation period a commensurate line groups of the 1st family are
parametrized by triplets (q̃, n, r) ∈ N

+ × N
+ × K

L = Tr
q̃n(

a

q̃
)Cn = T(a)F (2.26)

where K = {r : 0 ≤ r ≤ q̃ & GCD(q̃, r) = 1}, GCD is the abbreviation for the
greatest common divisor, and N

+ is the set of positive natural numbers. Here

F =
q̃−1⋃

t=0

(
Crt

q |a

q̃
t

)
Cn, q = q̃n (2.27)
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Note that, by definition, GCD(l, 0) = 1 ⇔ l = 1 and, consequently, r = 0
corresponds to the case T0

n(a) = T(a). It is pertinent to emphasize as well that a
(for fixed (q̃, n, k)) is a translation period of the maximal free 1-periodic subgroup
T(a) of the line group (2.26). The analogous subgroup of the generalized group Z of
translations has, in general, greater period ([3]).

Table C.1 shows that some line groups can be given with different factorizations.
Rotations around the z-axis and translations along it commute, which implies that all
the helical operations (CQ | f ) (Q- is the rotation axis order, f is a partial translation)
commute with pure rotations Cn around the z-axis i.e. rotations from the point group
Pn . Therefore any group Pn is compatible with any group TQ( f ) for any Q. Their
products TQ( f )Cn comprise first family line groups L(1) which are subgroups of
all the other line groups. Similarly, all TQ( f ) are compatible with groups Dn since
U (CQ | f )t = (CQ | f )−tU . The products TQ(f)∧Dn comprise the fifth family groups
L(5). Other compatibility relations are as follows [3]. Mirror planes of intrinsic sym-
metry can be retained only if Q is rational, i.e. Q = r/q, where r and q are integers.
It means that only commensurate helical groups allow a mirror plane. These helical
groups are T ( f = a) and T 1

2q ( f = a/2), where q is the order of the principal axis

of a point group. On the other hand, the glide plane group T
′

is compatible with all
axial point groups. The only requirement when a point group contains mirror planes
or U-axes is that the glide plane should either coincide with them or bisect them, and
different groups are obtained in these two cases. As a glide plane is commensurate, so
are all the resulting groups. All the products of the point factor P and the generalized
translation group Z define 11 remaining line group families, given in Table C.1. Thus
one gets 13 infinite families of line groups. Each family includes all groups (with
various parameters Q, f, n) with a fixed type of Z and P. Incommensurate line groups
are either from the first or from the fifth family, while in all the other families the
generalized translation group is either the glide plane reflections group T′, the pure
translation group T, or the zigzag group T1

2n . The products L = ZP are weak direct, Z
is a cyclic group, the intersection of Z and P can only be the identity element. If one or
both subgroups are invariant, this product becomes semi-direct (with the first factor
invariant) or direct, respectively. It is well-known that some subgroups of the group
of Euclidean transformations admit different geometric realizations. For example,
group Cqv(α) = Cq ∪ σαCq , where σα is a reflection in the vertical plane passing
through z-axis and a line in the xy-plane with the direction vector (cos α, sin α, 0)

is a geometric realization of Cqv group defined by the setting angle α. Usually the
setting angle is taken equal to zero which corresponds to choosing xz as a benchmark
reflection plane. In particular, in the theory of line groups the setting angle is usually
chosen equal to zero [3]. On the other hand, groups Cq stipulate a unique geometric
realization as soon as the axis and direction of rotations are chosen.

Not being subgroups of space groups (unlike rod groups), line groups are a
much wider class of symmetries. While rod groups describe only translationally
periodical objects, line groups include symmetries of incommensurate structures. In
the limit q = ∞ each family gives a continuous group P∞. These limiting groups
correspond to the symmetry of linear molecules and also behave as the isogonal
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groups of incommensurate systems. Axial point groups PI are descrete subgroups
of the cylindrical point group P∞.

When used to describe the symmetry of polymer molecules line groups can also be
factorized as a weak direct product of the intrinsic point symmetry P of monomer and
the group of generalized translations Z, arranging these monomers along the direction
of periodicity, see [3] and references therein. The product of two subgroups is a group
if and only if these subgroups commute, i.e. PZ = ZP( it does not mean that Z j Pi

is equal to Pi Z j ). The symmetry operations of polymers are defined as geometrical
transformations leaving the compound unchanged. These operations occur in two
different ways: as periodicity of the regular arrangement of monomers (comprise
group Z) and as the intrinsic symmetry P of a single monomer. However, the intrinsic
symmetry of the monomer Pn is the symmetry of the whole polymer only if it leaves
simultaneously all the monomers unchanged, i.e. if it is compatible with the periodical
arrangement [3]. This fact was used in [27] for a line group classification: after an
independent classification of all the possible arrangements and their symmetries, as
well as of the symmetries of monomers, these two were combined in all possible
compatible ways to get all the possible line groups. Such an approach allows one to
consider the symmetry of both commensurate (one-periodic) and incommensurate
(non-periodic) systems. Moreover, in such a way one can directly obtain important
information on the specific structure of line groups and can use it to explore many
significant physical consequences.

Under the standard approach any commensurate line group may be presented in
the form

L = T(a)F =
np∑

i=1

(Ri|vi)T(a) (2.28)

The choice of coset representatives (Ri |vi ) in the standard factorization in not unique
and any specific set F is, in general, not a subgroup of L. In (2.28) Ri and n p

are the operation and order of the isogonal point group PI , respectively. Improper
translations vi appear only in nonsymmorphic line groups. Such a factorization of
the line group is the same as that of rod groups. However in the former the rotation
axis order q is any positive integer number, in the latter q=1, 2, 3, 4, 6.

The first family commensurate line groups are represented in the standard fac-
torization as L = qp and as L = Tr

q × Cn in factorization (2.22). In the standard

factorization L = (C1
q | p

q ) where C1
q is the rotation by the angle 2π

q around the trans-

lation axis. Evidently L = (Cr
q | r p

q ) so that r p = n+lq ( l is integer, n = GCD(q, r)).
These relations allow the two factorizations of the same line group to be written.

As an example we consider the line group L=q22
28 with q = 28, n = 2, p = 22.

Therefore 22r = 2 + 28l and for l=7 we obtain r=9 so that in the factorization
(2.22) this group is written as T 9

28C2. It will be seen later that such a line group is the
symmetry group of the nanotube with the chirality (4,2) rolled up from the hexagonal
lattice.
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2.5.2 Rod Groups and their Settings as a Special Geometric
Realizations of Line Groups

75 rod groups (RG) are known in crystallography as subperiodic subgroups of space
groups (SG) [5] and form the finite subset of an infinite number of line groups as
the order q of rotation or screw axis can only be 1, 2, 3, 4, 6. By analogy with
a space (three-periodic) and layer (two-periodic) groups rod groups are factorized
RG = TF as an extension of the one-dimensional translations group T (invariant
subgroup of RG) by the factor group F = RG/T. A subperiodic rod group RG
can contain the following elements [28]: translations a in one direction which by
convention is designated as z-axis; a two-, three-, four- or sixfold rotation or screw
axis pointed in this direction; the rotation U around twofold axes perpendicular to
it; reflection planes containing translation vector (vertical planes σv) and reflection
planes perpendicular to it (horizontal planes σh). Every RG is in correspondence
with some three-periodic space group SG: it is a subgroup of SG and has the same
point symmetry group F. To obtain RG, it is sufficient to keep translations only in one
direction in a related SG. The related RG and SG groups have the same international
notations.

Table D.1 (see Appendix D) gives the correspondence between rod and space
groups—their international notation, the number of the corresponding SG and its
Schönflis symbol. This Table can be compared with Table B.1 from Appendix B,
where correspondence between three-dimensional two-periodic (DG) layer groups
and three-dimensional three-periodic space groups (SG) is given. Screw axes in layer
groups only can be the second-order axes, lying in the layer plane. Screw axes in rod
groups are oriented along the translation direction and therefore can be axes of orders
2, 3, 4, 6. One can find information about rod groups on the Bilbao Crystallographic
Server [8]. These groups are specified by their number or by international symbols.
The first symbol P (primitive) is the same for all rod groups as the translations are
made along the principal symmetry axis, formally forming primitive one-periodic
lattice. Then the information about symmetry elements is given. The screw axis of
the order q has subscript p (p = 0, 1, 2, . . . , q − 1). The corresponding symmetry
operations are rotations through 2πp/q about the z-axis. The reflection planes are
denoted by m (mirror planes) and c (vertical glide planes containing the translation
axis). The factor groups F of rod groups (called in crystallography by crystal classes)
are isomorphic to axial point groups Cq , Dq , S2q , Cqv , Cqh , Dqd , Dqh . For q =
1, 2, 3, 4, 6 there are 31 different axial point groups, defining the crystal class of the
related space and rod groups. The point groups D1, D1d , D1h are isomorphic to the
point groups C2,C2h , C2v , respectively; the point groups C1h , C1v are isomorphic to
the point group Cs . This isomorphism is used in crystallographic description of rod
groups distributed over 27 crystal classes. The corresponding space groups are given
in their Schönflis notation in the second column in Table D.1. As can be seen from
Table D.1, some rod groups are related to two different space groups as two possible
RG settings can be chosen. For example, RG 46 (with the third order rotation axis
along z) is related to the space groups D2

3 and D1
3 when the second order axis U is
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directed along the x- and y-coordinate axes, respectively. However, two different rod
groups 15 (Pmm2) and 18 (Pm2m) are subgroups of the same SG 25. Whereas, in
RG 15 the second order rotation axis is directed along the translation direction z, in
RG 18 the second order rotation axis is orthogonal to z. As in the latter case this
axis can be directed along both the x and y Cartesian axes, RG 18 has two settings
−P2mm and Pm2m, respectively. 75 rod groups can be distributed over 13 families,
as is shown in Table D.2 (see Appendix D).

Family 1 consists of rod groups belonging to classes Cq and containing rotations q
or qp, p= 0, 1, . . . , q −1 (in international notations) around q-order (q = 2, 3, 4, 6)
rotation or screw axis. Family 5 consists of rod groups belonging to classes Dq and
containing rotations q or qp around the q-order rotation or screw axis and rotations
U. The symmorphic rod groups of classes S2q , Cqh , Cqv , Dqd and Dqh are related
to families 2, 3, 6, 9 and 11, respectively. The remaining 6 families are formed
by nonsymmorphic rod groups and include rotations around screw axes (2q)q with
q = 1, 2, 3 (families 4, 8, 13) or reflections in vertical glide planes (families 7, 10,
12). As can be seen from Table D.2, rod groups 15 and 18 refer to families 6 (crystal
class C2v) and 11 (crystal class D1h), respectively.

Table D.3 (see Appendix D) is taken from [3] and presents rod groups in the form
accepted for a line group classification.

For the symmorphic RG a crystallographic factorization RG = TF coincides with
that used for line groups (RG = TPI). For nonsymmorphic RG difference appears:
compare Tables D.2 and D.3.

The first family rod groups (T r
q Cn) are represented in the standard factorization as

qp, q= 1, 2, 3, 4, 6; p= 0, 1, . . . , q − 1. In the standard factorization L = (C1
q | p

q )

where C1
q is the rotation by the angle 2π

q around the translation axis. Evidently

L = (Cr
q | r p

q ) so that r p = n + lq (l is integer, n = GCD(q, r)). These relations
allow the two factorizations of the same rod group to be written. As an example we
consider the rod group 57 (L64) of the first family: q = 6, n = 2, p = 4. Therefore
4r = 2 + 6l, r = 2 (for l=1) and the rod group 57 in the factorization (2.22) is
written as T 2

6 C2, see Table D.3.
Let us consider now rod groups belonging to family 4. In the crystallographic

factorization these groups belong to classes Cqh , q= 1, 2, 3, see Table D.3. However,
the factor group F contains rotations around the screw axis of the order (2q)q i.e.
rotations around the translation axis are in fact rotohelical operations, including the
rotation and improper translation by a half of the translation vector. The rod groups of
family 4 can be factorized in such a way that the rotohelical operations are included in
the cyclic group of the generalized translations Z (pure translations form the subgroup
T of the group Z) and pure rotations are included in the point group Pn , see Table
D.3. In this case rod groups of family 4 are written in the form ZP, where Z= T 1

q and
Pn = Cnh . Next we consider the example of the rod groups of family 12, belonging
to crystallographic class Dqh and containing reflections in the vertical glide planes,
see Table D.3. Now Z=T′ and contains all the pure translations and reflections in
glide planes while Pn = Cnh , see Table D.3.
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Rod groups being a special case of the line groups, arise as 1-periodic subgroups
of space groups and it comes as no surprise that space groups may contain different
geometric realizations of the same line group. Rod groups settings as a special geo-
metric realizations of line groups are considered in [26]. For each of the 8 families
of non-symmorphic line groups the explicit correspondence between rod groups and
relevant geometric realizations of the corresponding line groups is established. The
settings of rod groups and line groups are taken into account.

In crystallography different realizations of the same rod group are called set-
tings. In the theory of line groups crystallographic settings manifest themselves as
geometric realizations with specially chosen setting angles. Besides infinitely many
geometric realizations of line groups containing reflections in vertical planes or Umk-
lapp transformations there exist realizations which differ in the choice of a horizontal
reflection plane. For example, instead of the point group Cnh = Cn ∪ σhCn it is pos-
sible to take the group C′

nh = Cn ∪ (σh | a
2 )Cn which corresponds to selection as

the reflection plane the affine plane parallel to the xy-plane but passing through the
point (0, 0, a

4 ).
As we already mentioned, the rod groups are distinguished among general line

groups by the orders q of principal axes of the isogonal groups which can take the
values q = 1, 2, 3, 4, 6. For q = 3, 6 in tables of rod groups [5] the hexagonal coor-
dinate system is used. The hexagonal coordinate system is obtained by the rotation
of the y axis counter-clockwise by π

6 angle in the xy-plane. Basis vectors of the
hexagonal coordinate system are connected with the Cartesian ones by the relations:

h1 = e1, h2 = −1

2
e1 +

√
3

2
e2, h3 = e3 (2.29)

To compare line and rod group realizations one should be able to proceed from
the usual mathematical notation of affine transformations to that accepted in crystal-
lography [5]. Symmetry elements (reflexion planes, axes, etc.) are defined in crys-
tallography parametrically. For example, in Cartesian coordinates a triplet x, 0, z
defines a plane as a locus {xe1 + ze3 : x, z ∈ R}. It is clear that the normal
vector of this plane is e2 = (0, 1, 0). A triplet x + s,−x, z defines the affine
plane {(x + s)e1 − xe2 + ze3 : x, z ∈ R} passing through the point (s, 0, 0)

and with the normal vector e1 + e2 = (1, 1, 0). A triplet x,−x, 0 defines a line
{xe1 − xe2 : x ∈ R} in the xy-plane. A triplet x,−x, a

4 is a line in the affine plane
passing through the point (0, 0, a

4 ) in parallel with the xy-plane. The analogous con-
vention is used in the case when the hexagonal coordinate system is used. For exam-
ple, lines in the xy-plane having with the x-axis angles −π

3 ,−π
6 , 0, π

6 , π
3 , π

2 , 2π
3 and

passing through the origin have the following parametric presentation in hexagonal
coordinate system: 0, y, 0; x,−x, 0; x, 0, 0; 2x, x, 0; x, x, 0; x, 2x, 0; 0, y, 0.

Basic symmetry operations of rod groups in crystallography have the following
designation: rotation (C±n |0) around the z-axis is designated as n± 0, 0, z, screw rota-
tion (C±n| f )—as n±( f ) 0, 0, z, reflection (σ0|0) with respect to the xz-plane—as
m x, 0, z, reflection (σπ

4
|0)—as m x, x, z, reflection (σh |0)—as m x, y, 0. Glide plane

reflections of the type (σ0| a
2 ) are encoded as c x, 0, z, transformations (σh | a

2 )—as
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m x, y, a
4 . Umklapp transformations are interpreted as rotations: for example, trans-

formation (U π
2
|0) is designated as 2 0, y, 0, and transformation (U π

2
| a

2 )—as 2 0, y, a
4 .

The notation for transformations of the type (σhC±n| f ) is slightly more cumbersome
and not unique: operation (σhC±n|0) is designated as n̄± 0, 0, z; 0, 0, 0, and operation
(σhC±n| a

2 )—either as n̄±( a
2 ) 0, 0, z; 0, 0, 0 or as n̄± 0, 0, z; 0, 0, a

4 . In the last exam-
ple ambiguity is connected with existence of two equivalent presentation of the trans-
formation under consideration: (σhC±n| a

2 ) = (σh | a
2 )(C±n|0) = (C±n| a

2 )(σh |0).
Inversion at the origin is encoded as 1̄ 0, 0, 0.

Line groups of the first family do not depend on the setting angle because their
geometric realization is uniquely defined by the choice of the rotation axis and a
convention about the direction of rotation (normally counter-clockwise). Therefore,
each rod group of the first family should appear in the unique setting.

For each of the seven families of nonsymmorphic line groups the explicit
correspondence between rod groups and relevant geometric realizations of the corre-
sponding line groups is established in [29]. The settings of rod groups and line groups
are taken into account. The results are presented in a table of 75 rod groups listed (in
international and factorized notation) by families of the line groups according to the
order of the principal axis q (q=1, 2, 3, 4, 6) of the corresponding isogonal point
group.

2.5.3 Orbits with Respect to Line and Rod Groups

Orbits are useful both in theory of molecules, polymers, and solids. Indeed, for
arbitrary group G its orbit G.x contains points that should be occupied by atoms
of the same element if at least one point, say x, is occupied by an atom of this
type. In theory of molecules implicit subdivision of space into the union of orbits
is performed as the first step in construction of symmetry adapted basis functions.
Actual construction is performed either by application of certain projection operators
or by diagonalization of specially selected matrices. It is normally assumed that
irreducible matrix representations are tabulated and ready for use. Therefore the
conception of stabilizer is not very fruitful here. The situation is different in line
group theory. Stabilizers are used for site symmetry analysis and for construction
of Frobenius induced representations. Line groups operate on the cylindrical (Cyl)
surfaces of fixed radius and the corresponding orbits also lie on these surfaces. Type,
or symmetry of orbit is defined by the set of stabilizers of its points: orbits of the
same type have identical sets of stabilizers. Such orbits are called equivalent. Since
non-degenerate cylindrical surfaces with fixed ρ �= 0 are of dimension 2, sets of
equivalent orbits as topological spaces can be of dimensions 2, 1, and 0 (isolated
orbits). For ρ = 0 sets of equivalent orbits may be of dimension 1 and 0. It is
convenient to introduce the notation xρ(α +β, z) = (ρ cos(α +β), ρ sin(α +β), z)
for general point belonging to Cylρ where α will play the role of the setting angle
and β angle will be used for orbit parametrization (along with the z- coordinate).
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L-orbits and their types can not depend upon line group factorization. But it is possible
to construct in a certain sense minimal sets of representatives of line group orbits
which (i) uniquely define the orbit type, and (ii) can be used for easy generation
of the whole L-orbit. These sets may depend on the line group factorization. It is
clear that F-orbits can play a role of such sets of representatives in the case when
the standard factorization is used. If the factorization L = ZP is exploited then,
as can be shown [3], either P or P+-orbits satisfy the aforementioned requirements
(i) and (ii) in almost all situations. Here P+ is a subgroup of group P formed by
orthogonal transformations leaving unchanged z- coordinate of any point. Ambiguity
may arise in the case when the type of P(P+)-orbit depends on the parity of n but
the corresponding L-orbits turn out to be equivalent for all values of n. For example,
if P = Cnv(α) then Cnv(α) - orbits Cnv(α)xρ(α, z) and Cnv(α)xρ(α + π

n , z) are
equivalent for odd and non-equivalent for even values of n. But the corresponding
T1

2n(a)Cnv(α)-orbits (line groups of family 8) are equivalent without dependence on
the parity of n. The analogous situation takes place for the line groups of family 13.
And the second nuance is connected with the fact that even for symmorphic groups
there may exist P+-orbits whose actual type (symmetry) is determined by subgroups
including transformations with non-zero translational parts. In more rigorous terms,
if x is a point of P+-orbit then it is possible that the stabilizer P+

x turns out to be only
a proper subgroup of the full stabilizer Lx.

It is easy to see that P(P+)-orbits are always the subsets of the corresponding F-
orbits. The major difference between them is the following. L-orbit is obtained from
the corresponding F-orbit by application to its points all possible pure translations
along the z-axis. If the factorization (2.22) is used then either the screw axis group
or the glide plane group must be applied to the points of the P(P+)-orbit to get
the whole L-orbit. Unfortunately in general there is no one-to-one correspondence
between symmetry labels of orbits with respect to Line and Rod groups.

2.5.4 Nanotube Rolling Up from 2D Systems

The simplest description of nanotube symmetry and structure is based on so-called
layer folding. Let a and b be the primitive translation vectors a1 and a2 of the two-
periodic (2D) lattice of the layer and γ -the angle between them. Layer folding means
the construction of the cylindrical surfaces of nanotubes by rolling up 2D crystalline
layers. To specify the symmetry of nanotubes as monoperiodic (1D) systems, it is
necessary to define the finite 1D translation vector L = l1a + l2b along the nanotube
axis and normal to the chiral vector R = n1a + n2b (l1, l2, n1 and n2 are integers).
The nanotube of the chirality (n1, n2) is obtained by folding the layer in a way that
the chiral vector R becomes circumference of the tube. The orthogonal vectors R and
L are connected with the 2D lattice translation vectors a and b by the transformation

(
R
L

)
= Q

(
a
b

)
(2.30)
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The determinant q =
∣∣∣∣
n1 n2
l1 l2

∣∣∣∣ of the matrix Q =
(

n1 n2
l1 l2

)
is equal to the number

of 2D lattice points in the plane lattice supercell formed by the chirality R and
translation L vectors. The orthogonality relation RL = 0 can be written in the form:

l1
l2

= −n2b2 + n1ab cos γ

n1a2 + n2ab cos γ
(2.31)

where a = |a| and b = |b|. If n is the greatest common devisor of n1 and n2
(ñ1 = n1/n, ñ2 = n2/n), one can introduce the reduced chirality vector R̃ along the
direction of the vector R:

R̃ = 1

n
R;

(
R̃
L

)
= Q̃

(
a
b

)
; Q̃ =

(
ñ1 ñ2
l1 l2

)
; q̃ = det(Q̃) (2.32)

The comparison of (2.31), (2.32) shows that q = nq̃ where q̃ is the number of
the lattice points in the supercell formed by the reduced chirality R̃ and translation
L vectors.

Commensurate nanotubes, being monoperiodic systems, have a line group sym-
metry L =ZP [30, 31], where P is the point factor and Z is the generalized translation
group. The point factor P is a subgroup of the axial point group PI belonging to one
of the axial symmetry point groups. The group Z is infinite and cyclic, describing
either the glide plane reflections T ′ = (σv| 1

2 ) or the screw axis rotations by 2π
nq̃ (for

q̃ > 1) generated by helical operations T r
q = (Cr

q | 1
q̃ ) where r = 0, 1, . . . , n − 1.

For n > 1, pure rotations appear and form a subgroup of the point symmetry group
PI. The smallest helical vector H is defined as H = h1a + h2b = r

nq̃ R + 1
q̃ L and

satisfies the following conditions: ñ1h2−ñ2h1 = 1; h1l2−h2l1 = r . The projections
of the helical vector H on the chiral vector R and translation vector L (Fig. 2.24)
define the rotational and translational parts of the helical rotation T r

q , respectively. It
is evident that the translational part of the helical vector H is the same for the ray of
the nanotubes (n1, n2) = n(ñ1, ñ2), differing by n.

The symmetry of a nanotube is defined by: (i) the nanotube chirality (n1, n2),
(ii) translation vector components (l1, l2) found from the orthogonality relation
(2.31), (iii) the point symmetry of the rolled 2D lattice (see below).

The orthogonality relation has different forms for different 2D lattices:
-rectangular primitive (cos γ = 0; a �= b);

l1
l2

= −n2a2

n1b2 , or l1n1b2 = −l2n2a2; (2.33a)

- rectangular centered (cos γ �= 0, 1
2 ; a = b);

l1
l2

= −n2 + n1 cos γ

n1 + n2 cos γ
; (2.33b)
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Fig. 2.24 Chirality vectors of the nanotubes from graphene layer

- square (cos γ = 0; a = b);

l1
l2

= −n2

n1
or l1n1 + l2n2 = 0; (2.33c)

- hexagonal (cos γ = 1
2 ; a = b);

l1
l2

= −2n2 + n1

2n1 + n2
. (2.33d)

It is readily seen from (2.33) that the translational symmetry of the nanotube can
exist for any arbitrary chirality (n1,n2) if the nanotube is obtained by folding the
layer with square or hexagonal 2D lattices. However, there are restrictions on the
possible chiralities for rectangular lattices: (n,0), (0,n) for rectangular primitive and
(−n,n), (n,n) for rectangular centered ones.

The translations of the layer become rotohelical operations T r
q on the nanotube,

giving the first family subgroup L(1) = ZP(P = Cq) of the nanotube line group L.
The latter has the same parameters for the ray of the nanotubes (n1, n2) = n(ñ1, ñ2),
differing by n.

Apart from the translational invariance, the layer groups have rotational symmetry
generated by the rotations around the z-axis perpendicular to the layer. For rectan-
gular, square and hexagonal lattices the order of these rotation axes is 2, 4 and 6,
respectively. In addition, non-oblique 2D lattices have both vertical mirror and glide
planes. In the layer groups some of the 2D lattice symmetry operations are absent.
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The symmetry operations matrices G(3) = (F (3)|t(2)), corresponding to the layer
group, consist of orthogonal F (3) and translational t(2) parts. Let the Cartesian axes
x, y and z be directed along the chiral vector R, the nanotube translation vector L
and the layer principal axis perpendicular to the layer, respectively.

During the folding procedure after the transformation described by (2.30) of the
2D lattice the orthogonal symmetry operations survive if they do not change the
z-coordinate (the layer is rolled up to the tube) and do not mix or interchange the x
and y coordinates (chirality and translation vectors are assumed to be fixed). It means
that after folding the layer, only those layer group symmetry operations survive which
had the diagonal 2 × 2 submatrices

F Q =
(±1 0

0 ±1

)

E =
(

1 0
0 1

)
, U =

(−1 0
0 −1

)
, σv =

(−1 0
0 1

)
, σh =

(
1 0
0 −1

)
(2.34)

The transformations (2.34) include the rotation U by π around the second order
axis, normal to the tube, and reflections in planes, orthogonal to the 2D lattice plane
and parallel to the tube axis, directed along the translation vector L(σv) or orthog-
onal to it (σh). In particular among the normal-to-layer rotation axes only the two-
fold U-axes survive, being compatible with the monoperiodic symmetry. Therefore
whenever the order of the principal axis of the layer is 2, 4 or 6, the symmetry of the
nanotube is at least the fifth family line group L(5) = ZP(P = Dq).

The transformed translations tQ can be written in the components of the vectors
R and L as:

tQ = (
0 0

)
,

(
1

2n 0
)
,

(
0 1

2

)
,

(
1

2n
1
2

)
(2.35)

where n = 1 for the reduced chirality vector R̃, while 1/2 in the second position
produces the non-symmorphic line groups containing the helical rotation T 1

2n =
(C1

2n| 1
2 ) or the reflection in glide plane T ′ = (σv| 1

2 ). The nanotube symmetry groups
are formed by the point symmetry operations (2.34) and translations (2.35) survive
the folding and combined in such a way that they form the line group L = ZP.

The procedure described can be applied for finding the nanotube symmetry if the
symmetry of the layer group used for folding is known [31]. A helical axis and pure
rotations are always present in the line group of a nanotube, while mirror and glide
planes appear only for special chiral vectors of rectangular, square and hexagonal
lattices. Table 2.10 presents the rolling up correspondence of the line and diperiodic
(layer) groups. For each family F of the line groups the roto-helical subgroup L(1)

and the isogonal group PI
q (for irrational Q in families 1 and 5, q is infinite)are given

in columns 2 and 3. The corresponding diperiodoc groups enumerated according
to [5] follow: for an arbitrary chiral vector the rolling gives either the first or the
fifth family line group (when the order of the orthogonal to the lattice plane axis is
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Table 2.10 Rolling up correspondence of the line and diperiodic (layer) groups

F L(1) PI
q Diperiodic groups

1 TQCn Cq 1,2,4,5,8,9,10,11,12,13,14,15,16,17,18,27,28,29,30,

31,32,33,34,35,36,65,66,67,68,69,70,71,72,74,78,79

5 TQCn Dq 3,6,7,19,20,21,22,23,24,25,26,37,38,39,40,41,42,43,44,45,46,47,48,

49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,73,75,76,77,80

2 TCq S2q a:17,33,34; b:12,16,29,30

3 TCq Cqh a:11,14,15,27,31,32; b:28

4 T1
2q Cq C2qh e:13,18,35; d:36; h:69,72,78; g:70,71,79

6 TCq Cqv a:28; b:11,14,15,27,31,32

7 TCq Cqv a:12,16,29,30; b: 17,33,34

8 T1
2q Cq C2qv e:36; d:13,18,35; h:70,71,79; g:69,72,78

9 TCq Dqd a:42,45; b:24,38,40

10 TCq Dqd c:25,39,43,44,56,60,62,63

11 TCq Dqh c:23,37,41,46,55,59,61,64

12 TCq Dqh a:24,38,40; b:42,45

13 T1
2q Cq D2qh f:26,47,48,55,56,57,58,61,62,63,64; i:77,80

2, 4, 6). The underlined diperiodic groups (following after the corresponding special
chiral vectors) give other line group families below. The corresponding special chiral
vectors are the following: a = (n, 0), b = (0, n), c ∈ {(n, 0), (0, n)}, d = (n, n),

e = (−n, n), f ∈ {(n, n),(−n, n)}, g ∈ {(n, 0),(0, n),(−n, n)}, h∈{(n, n), (−n, 2n),

(−2n, n)}, i ∈ {(n, 0), (0, n), (−n, n), (n, n), (−n, 2n), (−2n, n)}.

2.5.5 Hexagonal and Square Lattices

Different types of nanotubes can be rolled up from layers with a hexagonal plane
lattice. We call them nanotubes with hexagonal morphology. Figure 2.25 shows the
supercells of a graphene layer defining armchair (3,3), zigzag (3,0) and chiral (6,3)
nanotubes.

The first reports on synthesis of carbon nanotubes [32] were followed by exten-
sive symmetry investigation [3, 33] of the nanotubes with hexagonal morphology.
Equation (2.33d) ensures the orthogonality of the chiral and translation vectors. From
(2.32) we find the matrix Q̃, its determinant q̃ , the components h1, h2 of the smallest
helical vector H and r = h1l2 − h2l1 for the special chiral vectors R.

R(n, n) : l1/ l2 = −1; Q̃ =
(

1 1
−1 1

)
; q̃ = 2; H(0, 1), r = 1 (2.36a)

R(−n, n) : l1/ l2 = 1; Q̃ =
(−1 1

−1 −1

)
; q̃ = 2; H(−1, 0), r = 1 (2.36b)
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zigzag (3,0

armchair (3,3)

chiral (6,3) 

Fig. 2.25 Supercells of graphene layer defining armchair (3,3), zigzag (3,0) and chiral (6,3) nan-
otubes

R(n, 0) : l1/ l2 = −1/2; Q̃ =
(

1 0
−1 2

)
; q̃ = 2; H(0, 1), r = 1 (2.36c)

R(−n, 2n) : l1 = 1, l2 = 0; Q̃ =
(−1 2

−1 0

)
; q̃ = 2; H(−1, 1), r = 1

(2.36d)

R(−2n, n) : l1 = 0, l2 = −1; Q̃ =
(−2 1

0 −1

)
; q̃ = 2; H(−1, 1), r = 1

(2.36e)

As q̃ = 2 for all the special chiral vectors, the rototranslational part of the corre-
sponding line group is T 1

2n = (C1
2n| 1

2 ) while q = nq̃ and L = T1
2nPn . For the general

chiral vector R(n1, n2)(n1 �= 0, n2 �= 0; n2 �= ±n1,−2n1,− 1
2 n1) we have

Q̃ =
(

ñ1 ñ2
−(2ñ2 + ñ1) (2ñ1 + ñ2)

)
, q̃ = 2(ñ2

1 + ñ1ñ2 + ñ2
2); ñ1h2 − ñ2h1 = 1;

(2ñ1 + ñ2)h1 + (2ñ2 + ñ1)h2 = r

In this case the rotohelical operations are T r
q = (Cr

q | 1
q̃ ), q = nq̃ is the order of the

screw axis, r = 0, 1, 2 . . . , q − 1.
Keeping in mind these results let us analyze Table 2.10. The hexagonal lattice

defines layer groups 65–80 (see Table in Chap. 11). In groups 65–68 and 74 the order
3 axes are orthogonal to the lattice plane and mirror planes are absent. Therefore
these groups belong to Family one and the tubes rolled up from the corresponding
layers have the same symmetry for any chiral vector R(n1, n2). The tubes rolled
up from layers with diperiodic groups 69, 72, 78, 70, 71, 79 belong to families 4,
8 depending on the setting of the special chiral vector relative to the mirror planes.



2.5 Line and Rod Symmetry Groups of Stereo-Regular … 73

In all these groups the mirror planes appear that are orthogonal to the x- or y-axis
appear. Finally, the tubes rolled up from the layers with diperiodic groups 77, 80
belong to Family 13: in these layer groups there are mirror planes orthogonal both
to the x- and y-axes.

Perovskite SrTiO3, BaTiO3 nanotubes are synthesized by a low temperature
hydrothermal reaction [34]. These nanotubes have a square morphology, i.e. can
be rolled up from layers with a square plane lattice (cos γ = 0; a = b) [35]. From
(2.33c) it follows that l1n1 + l2n2 = 0. Applying (2.32) we have

R(n, 0) : l1 = 0, l2 = 1; Q̃ =
(

1 0
0 1

)
; q̃ = 1; H(0, 1), r = 0 (2.37a)

R(0, n) : l1 = −1, l2 = 0; Q̃ =
(

0 1
−1 0

)
; q̃ = 1; H(−1, 0), r = 0 (2.37b)

As in (2.37a), (2.37b) r = 0, no screw axis appears either for R(n, 0) or R(0, n)

special chiral vectors.

R(n, n) : l1 = −1, l2 = 1; Q̃ =
(

1 1
−1 1

)
; q̃ = 2; H(0, 1), r = 1 (2.37c)

R(−n, n) : l1 = −1, l2 = −1; Q̃ =
(−1 1

−1 −1

)
; q̃ = 2; H(−1, 0), r = 1

(2.37d)

As in (2.37c), (2.37d) q̃ = 2, the rototranslational part of the corresponding line
groups is T 1

2n = (C1
2n| 1

2 ) while q = nq̃ = 2n and L = T1
2nPn .

For the general chiral vector R(n1, n2), (n1 �= 0, n2 �= 0; n2 �= ±n1) we have

Q̃ =
(

ñ1 ñ2
−ñ2ñ1

)
, q̃ = ñ2

1 + ñ2
2; ñ1h2 − ñ2h1 = 1; ñ1h1 + ñ2h2 = r;

h1 = 1

q̃
(r ñ1 − ñ2); h2 = 1

q̃
(r ñ2 + ñ1) (2.37e)

In this case the rotohelical operations are T r
q = (Cr

q | 1
q̃ ), q = nq̃ is the order of

the screw axis, r = 0, 1, 2, . . . , q − 1.
Now let us analyze Table 2.10 for layer groups 49–64 with a square lattice. In all

these groups the order four axis is orthogonal to the lattice plane. Therefore the tubes
with the general chiral vector R(n1, n2) belong to the fifth family. In groups 49–54
there are no mirror planes orthogonal to the lattice plane. Therefore the line group of
the corresponding nanotubes belong to the fifth family. As no screw axis appears for
the tubes with the special chiral vectors R(n, 0) and R(0, n), see (2.37a), (2.37b),
the corresponding line groups 56, 60, 62, 63 and 55, 59, 61, 64 are symmorphic and
belong to families ten and eleven, respectively. These two sets of groups differ in the
type of the mirror plane: in the former the orthogonal to the x-axis plane is a glide
plane, in the latter this plane is a mirror plane. In layer groups 57, 58 there are no
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mirror or glide planes orthogonal to the x-axis. The special chiral vectors R(n, n) and
R(−n, n), see (2.37c), (2.37d) generate tubes with line groups belonging to Family
13 with a rotochelical tube axis of the order q = 2n.

2.5.6 Rectangular Lattices

The layers with rectangular lattices are used for inorganic TiO2 nanotube modeling
[36–38].

For the primitive rectangular lattice (cos γ = 0; a �= b) we have l1n1b2 =
−l2n2a2, see (2.33a). For commensurate nanotubes a/b has to be a rational number
as it defines l1/ l2 (l1, l2 are integers). It means that the nanotubes are commensurate
only for the special chiral vectors.

R(n, 0) : l1 = 1, l2 = 0; Q̃ =
(

1 0
0 1

)
; q̃ = 1; H(0, 1), r = 0 (2.38a)

R(0, n) : l1 = 0, l2 = 1; Q̃ =
(

0 1
−1 0

)
; q̃ = 1; H(−1, 0), r = 0 (2.38b)

It is seen that for a primitive rectangular lattice the screw axis is absent (r = 0).
For the rectangular centered lattice (cosγ �= 0, 0.5; a = b), see (2.33b), we have:

l1
l2

= −n2 + n1 cos γ

n1 + n2 cos γ
;

The corresponding nannotubes are commensurate for the following special chiral
vectors:

R(n, n) : l1 = −1, l2 = 0; Q̃ =
(

1 1
−1 1

)
; q̃ = 2; H(0, 1), r = 1 (2.39a)

R(−n, n) : l1 = −1, l2 = −1; Q̃ =
(−1 1

−1 −1

)
; q̃ = 2; H(−1, 0), r = 1

(2.39b)
In this case the rotohelical operations are T r

q = (Cr
q | 1

q̃ ), q = 2n is the order of the
screw axis, r = 0, 1, 2, . . . , q − 1.

Now let us analyze Table 2.10 for layer groups 8–48 with rectangular primitive
and centered lattices. In groups 8–10 there are no U axis or mirror planes and these
groups generate nanotubes belonging to the first family. The two-fold axis orthogonal
to the layer plane appears in layer groups 19–22, so that the corresponding nanotube
symmetry belongs to the fifth family. The line groups generated by the rolling vec-
tors R(n, 0) and R(0, n) are both symmorphic (families 2,3,6,9) or contain a glide
plane (families 7,9,12). The line groups generated by the rolling vectors R(n, n) and
R(−n, n) are nonsymmorphic (families 4,8,13).
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For arbitrary single-walled nanotubes, the algorithm of rolled up nanotubes con-
struction, described here theoretically within the formalism of line groups, is also
implemented for composition of inputs in CRYSTAL code [14, 39] and is now
actively used in LCAO calculations of the different inorganic nanotubes. Nanotubes
of any size and order of symmetry can be built automatically by rolling up a 2D
slab [40]. That is done by specifying a pair of integers to define a roll-up vector in
terms of the slab unit vector components. The rolling vector is perpendicular to the
nanotube axis and its modulus is the nanotube circumference.

2.5.7 Symmetry of Double and Multiwall Nanotubes

The symmetry groups of doublewall and multiwall nanotubes are considered in
[3, 30, 41]. The symmetry of SW NTs is described by line group L = ZP, which
is a product of axial point group P and the infinite cyclic group Z of generalized
translations (see Subsection 2.5.1). The latter consists of rotations by 2πr/q around
the q-order screw axis, translations (n/q)a (a denotes the translational period) or
reflections in the glide plane (σv|a/2). Here n = G(n1, n2) is the greatest common
divisor and (n1, n2) define the chiral vector of SW NT.

The line symmetry group of a double-wall nanotube can be found as the inter-
section L2 = Z2P2 = (L ∩ L′) of the symmetry groups L and L′ of its single-wall
constituents [41]. The intersection P2 = (P ∩ P′) of the point groups is chosen
independently of the generalized translational factor Z2 [30].

Let (n1, n2) and (n′
1, n′

2) define the chiral vectors of the single-wall constituents
of a double-wall nanotube. Its axial point group P2 = CN is the principal axis
subgroup of the DW NT line group L2 with N = G(n, n′) = G(n1, n2, n′

1, n′
2). Only

nanotubes composed exclusively of either (n, n) (armchair) or (n, 0) (zigzag) SW
constituents can have additional mirror or glide planes, as well as a rotoreflectional
axis. The translational factor Z2 is completely absent for incommensurate DW NT,
i.e. when the ratio a/a′ is not rational [30]. As an example, we can mention DW NT
formed from the hexagonal SW NTs with different types of chirality, both armchair
and zigzag, i.e., (n1, n1)@(n2, 0), where the ratio a/a′ = √

3 (a, a′ are lengths of
the translation vectors of SW constituents).

The coaxial hexagonal DW NTs with (n1, n1)@(n2, n2) and (n1, 0)@(n2, 0) chi-
ralities are commensurate: their translation period is the same as for the constituents:
L = −a + b ((n,n)-chirality), L = −a + 2b ((n,0)-chirality), as described by (2.33d).
For the square lattice period of such DW NTs is the same as for the constituents:
L = a − b ((n,n)-chirality), L = b ((n,0) chirality), as described by (2.33c). For
the commensurate DWNT the translational factor Z2 contains rotations around the
screw axis, common to both SW components. Two possibilities for periodic DW
NTs have been considered in [30]: (i) both n1/N and n2/N are odd—L2 contains
the screw axis (2N )N ; (ii) either one or both n1/N and n2/N are even—L2 contains
the rotation axis of order the N . As an example of the first possibility one has hexag-
onal DW NT (6, 6)@(10, 10): N = 2, n1/N = 3, n2/N = 5, the screw axis 42.
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For DW NT (12, 0)@(18, 0), we have N = 6, n1/N = 2, n2/N = 3, the rotation
axis of order 6.

In the particular case of commensurate armchair (n1, n1)@M(n1, n1) and zigzag
(n1, 0)@M(n1, 0) DW nanotubes with hexagonal morphology (i.e., n2 = Mn1), the
symmetry group can be found from the results obtained in [30] for the full symmetry
of multiwall nanotubes. For armchair and zigzag DW NTs with odd M , the line sym-
metry groups are the same as for their SW constituents—(2n)n/m (Family 4, point
symmetry C2nh) and (2n)nmc (Family 8, point symmetry C2nv), respectively. For an
even M , the rotations about the screw axis of the order 2n are replaced by rotations
around the pure rotation axis of the order n so that DW NT line symmetry groups
become n/m (family 3, point symmetry Cnh) and nm (family 6, point symmetry
Cnv), for armchair and zigzag chiralities, respectively.

For each SW NT, the coordinate system can be chosen with its origin fixed in
the initial nanosheet (slab) which the folding procedure has to be applied to. The
normal to the slab plane passing through the origin can be defined as x axis in the
SW NT coordinate system. Because of the coaxiality, the two parameters completely
determine the relative positions of SW constituents in DW NT: the angle ϕ and length
Δz by which the outer tube is rotated around z and translated along z, respectively
(in regard to the initial configuration with the coinciding x and x′ axes of both
shells) [30, 41]. Thus, the initial position of both SW constituents in DW NTs is
characterized by ϕ = 0 and Δz = 0. In this case the maximum possible number
of symmetry elements for both SW NTs coincide, and the symmetry of the initial
DW NT structure is described by one of the line groups considered above. After
atomic relaxation the values of ϕ and Δz can differ from zero. Presumably, the
roto-translational part of DW NT symmetry group (independent of the relative SW
NT positions) is not changed after the relaxation. However, other common symmetry
elements of SW NTs (second-order U axes normal to the translation vector, reflection
and glide planes) can be lost. Thus, the total symmetry of DW NT is reduced. The
symmetry of DWNT with hexagonal and square morphology is considered in more
detail in next subsections dealing with for BN, TiO2 and SrTiO3 nanotubes.

For multiwall nanotubes the following symmetry can be found [30]. If at least one
of the single-wall constituents is chiral, there are two possibilities in the commen-
surate case: Tr

qCN , corresponding to the general mutual position; and Tr
qDN in the

special mutual positions with the common U axis. Similarly, the tube built of incom-
mensurate components has a symmetry described by the point groups CN or DN . If
the nanotube is built of either single-wall (n, 0),(n′, 0)…tubes or single wall (n, n),
(n′, n′),…tubes, the order of the principal rotational axis is N = G(n, n′ . . .). If the
tube contains single-wall tubes of both types, no translational periodicity appears
and its symmetry is described by a point group. On the other hand, for a tube com-
posed of components of the same type, the translational period is equal to that of the
components. Two different situations can occur: if all the integers n/N , n′/N ,…are
odd (“odd” case), the translations are refined by the screw axis T1

2N ; otherwise, if at
least one of these integers is even (“even” case), no screw axis emerges. Note that
owing to the various arrangements of the components, any of the line and axial point
groups can be the resulting symmetry for the commensurate and incommensurate
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Table 2.11 Symmetry of the multiwall (n, 0) (zigzag) and (n, n) (armchair) tubes

Relative Line group Isogonal group Point group

position Odd Even Odd Even

General T1
2nCN (1) TCN (1) C2N CN CN

σh T1
2nCNh (4) TCNh (3) C2Nh CNh CNh

σv T1
2nCNv (8) TCNv (6) C2Nv CNv CNv

σ ′
v T1

2nCNv (8) TcCNv (7) C2Nv CNv CN

(U, U ′) T1
2nDN (5) TDN (5) D2N DN DN

σh, σv T1
2nDNh (13) TDNh (11) D2Nh DNh DNh

σh, σ ′
v T1

2nDNh (13) TcCNh (12) D2Nh DNh CNh

(σh, σ ′
h) T1

2nCNh (4) TS2N (2) C2Nh S2N S2N

(σh, σ ′
h), σv T1

2nDNh (13) TDNd (9) D2Nh DNd DNd

(σh, σ ′
h), σ ′

v T1
2nDNh (13) TcS2N (10) D2Nh DNd S2N

components, respectively. The analysis of the special arrangements of constituents
with common horizontal axes, mirror or glide planes, that increase the symmetry
of the total system is summarized in Table 2.11. For periodic tubes, the line groups
(and families) and the isogonal groups are in the “odd” columns if all the ratios n/N ,
n′/N , . . . are odd, and in the “even” columns otherwise. The point groups of the tubes
with both zigzag ((n, 0)—chiralities) and armchair ((n, n)—chiralities) components
are in the last column. In the first column the relative positions of the component
tubes are characterized by coinciding symmetry elements (beside the common prin-
cipal axis in the general position). Here (U, U ′) denotes the horizontal axis, which
is the U axis in some of the constituents, and the U ′ axis in the remaining ones (thus,
additional mirror or glide planes are excluded). Also, (σh, σ ′

h) is a plane which is σh

in some of the constituents (with n necessarily even) and σ ′
h in the remaining tubes;

in the incommensurate case, the same groups are obtained when they have commom
σ ′

h planes.
A single-wall MeS2 nanotube is three layer sandwich and a building block for a

multi-wall tubes. The symmetry analysis of these nanotubes is given in [42]. Depend-
ing on chirality, the symmetry group of NT belongs to one of three different fam-
ilies: chiral (n1, n2)-T r

q ( f )Cn ; achiral(n, n)-T 1
2n( f )Cnh ; achiral (n, 0)-T 1

2n( f )Cnv .
Regardless of chirality, single-wall MeS2 nanotube is a three-orbit system:each S-
Me-S sheet is generated by the action of the transformations from the group T r

q ( f )Cn

on a single atom arbitrary chosen to represent the orbit. For achiral tubes this is the
halving subgroup of the symmetry group, while for the chiral ones it is a complete
group.

2.5.8 The Nanowires Construction

The symmetry of a nanowire is described by one of 75 rod groups (RG) considered
above. As we have seen the order of the main rotation or screw axis in line groups
can be any integer number while in RGs this order can only be the same as in a
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bulk crystal, i.e., 1, 2, 3, 4, and 6. This circumstance causes specific conditions of
NW geometry construction depending on morphology and symmetry of crystalline
lattice. The NW symmetry is defined both by the structure of the prototype bulk
crystal and by the direction of the one-dimensional translation periodicity.

The geometric constructions of possible atomic arrangments for inorganic
nanowires are suggested in [43]: the nanowires are considered as fragments of bulk
crystals (nanocrystalline nanowires). The basic idea of this approach is (1) choose
a maximally linear, charge-neutral, and (if possible) dipole-free atomic cluster con-
taining a single formula unit, and (2) using if possible the symmetry axis of this linear
cluster as the nanowire growth axis, distributed by translations and screw rotations
the atomic clusters to give a stoichiometric nanowire with some symmetry around
the growth axis and minimal surface polarity. This approach is demonstrated in [43]
for: (1) wurtzite structure (which occurs in [001] nanowires based on GaN and ZnO);
(2) fluorite structure CaF2 based nanowires, growing in [111] orientation; (3) rutile
based nanowires growing in [001] and [110] directions and anatase based nanowires
oriented along [001] direction. In both cases the charge neutral and dipole free linear
TiO2 units are chosen to construct the nanowire; (4) based on perovskite BaTiO3
structure nanowires oriented along [111] dirextion.

Since nanowires can be described as infinite prisms of different diameters, their
stability depends on stability of lateral facets, according to Wulff’s construction
formalism [44]. Lateral facets of nanowire can be constructed basing on the two-
periodic slab model used in the surface calculations. There are two approaches to
such a construction: (1) choosing the slab in such away that its surface is normal to
the chosen NW periodicity direction with subsequent removal of the slab translations
and restoring the translation for NW; (2) choosing the nanowire periodicity along
the one of the slab 2D translation vectors with subsequent removal of the second
translation vector. The first approach is considered in Chap. 7 for the rutile TiO2
based nanowires construction. Let us consider in more detail the second approach.

Let the nanowire periodicity direction L is defined by the set of integer numbers
[l1,l2,l3] in units of the bulk lattice translations a1, a2, and a3. One constructs the
slab with the nanowire periodicity along the one of the slab 2D translation vectors
with subsequent removal of the second translation vector. The rod symmetry group
of such a nanowire is subgroup of the slab layer group. The slab surface becomes a
facet of the rod obtained, being parallel to the nanowire periodicity direction L. All
the possible slab surfaces (possible nanowire facets), parallel to L, are defined by the
integer solutions of the equation

l1k1 + l2k2 + l3k3 = 0 (2.40)

where the integer numbers k1, k2, k3 are Miller indexes of the slab surface and
equal to 0, ±1 for the low index surfaces. In this case the reciprocal lattice vectors
have only two independent integer components m and n for each of seven possible
nanowires directions [l1, l2, l3] : [001]→(m,n,0), [010]→(n,0,m), [100]→(0,m,n),
[110]→(m,−m,0), [101]→(−m,n,m), [011]→(n,m,−m), [111]→(m,n,−m−n).

http://dx.doi.org/10.1007/978-3-662-44581-5_7
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Table 2.12 Low index facets of nanowires cut from triclinic, monoclinic and orthorhombic lattices

Nanorod Facets, k Orthogonality, (±)

direction A B Triclinic Monoclinic Orthorhombic

[001] (100) (010) − + +
(110) (110) − − −

[010] (001) (100) − − +
(101) (101) − − −

[100] (010) (001) − + +
(011) (011) − − −

[110] (001) (110) − − +
(111) (111) − − −

[101] (010) (101) − + +
(111) (111) − − −

[011] (100) (011) − − +
(111) (111) − − −

[111] (110) (112) − − −
(101) (121) − − −
(011) (211) − − −

The existence of (2.40) solutions depends on the nanowire periodicity direction
and Miller indexes of the surfaces in consideration. The sign + in Tables 2.12 and
2.13 means that for a given nanowire direction and the crystal system chosen the
orthogonality (2.40) is satisfied for A and B low index surfaces (facets). For mono-
clinic lattice β �= 90. These tables allow to construct the nanowire models for the
crystals with the different Bravais lattices.

Let us consider the NWs facets for the rutile TiO2 structure with the primitive
tetragonal lattice [45]. For the [001]-oriented NWs one can expect the {110} facets

Table 2.13 Low index facets of nanowires cut from tetragonal, hexagonal and cubic lattices

Nanorod Facets, k Orthogonality, (±)

direction A B Tetragonal Hexagonal Cubic

[001] (100) (010) + − +
(110) (110) + + +

[100] (010) (001) + +
(011) (011) − −

[110] (001) (110) + + +
(111) (111) − − −

[101] (010) (101) + −
(111) (111) − −

[111] (110) (112) + + +
(101) (121) − − +
(011) (211) − − +
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Fig. 2.26 Cross sections of the [001]-oriented TiO2 NWs with diameters of about 3.9 nm (the top
panel) and of the [110]-oriented TiO2 NWs with diameters of 2.9 nm (the bottom panel) display-
ing three possible morphology (the rhomb, the polyhedron, and the square). The large, light-blue
(gray) balls stand for Ti atoms, the small, red (dark) balls represent O atoms. All facets are indi-
cated (Reprinted figure with permission from Migas et al. [45], Copyright (2010) by the American
Chemical Society)

to characterize their surface (the rhomb case in Fig. 2.26) and this morphology has
been observed experimentally [46]. One can also consider NWs in which the {110}
and {100} facets are close in size (the polyhedron case in Fig. 2.26) and where the
{100} facets dominate with small in size {110} facets playing the role of edges (the
square case in Fig. 2.26). The unit cell parameter along the NWs axis (a||) is equal
to cbvlk .

In the case of NWs with axis along the [110] directions, the facets the {110} and
{001} are predicted to appear (the square case in Fig. 2.26). Some other possible
morphology can be the polyhedron (the {110}, {001}, and {112} facets are close
in size) and the rhomb (only the {112} facets are present), which are also shown
in Fig. 2.26. Unfortunately, there is no information about the (112) surface and it
is quite possible that such a surface is unstable as far as it has not been observed
experimentally.

As a next example let us consider the construction of the nanowire with the
periodicity direction L = [101] for the primitive tetragonal lattice. It is seen that the
Miller indexes of the surfaces (010) and (101) satisfy (2.40). As the next step we
construct the slab parallel to the surface (101) and after this remove the periodicity
along the direction [010]. For the body centered tetragonal lattice the preliminary
supercell transformation has to be made to obtain the teragonal direct lattice unit
cell.

All the models in consideration are characterized by the TiO2 stoichiometry.
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The computer code CRYSTAL-14 [39] contains the option which allows the
nanowire construction basing on the described above approach. To build nanowire
starting from the corresponding 3D bulk structure one needs give in the code input
the information about the crystal plane, termination and thickness of the two crystal
planes defining the nanowire. The corresponding NW direction is then easily defined
from the two tables given above [40]. At this stage, a nanowire can exhibit sharp and
unphysical edges that can be smoothed out by further cutting the rod along additional
crystal planes parallel to the periodic direction. The origin of the nanowire cell is
shifted automatically to maximize symmetry of the rod group.

The NANOCUT code used recently for construction of TiO2 nanowires with
anatase and rutile structures [47] requires to introduce the cut-off radii along the
cutting directions orthogonal to direction of NW periodicity. The choice of the cutting
distance used as a parameter in that code could be simplified if the preliminary slab
consideration is made.

2.6 Symmetry of Crystalline Orbitals in Periodic Systems:
Space, Layer and Line Groups

2.6.1 Symmetry of Molecular and Crystalline Orbitals

The aim of the first-principles approaches in quantum chemistry is to calculate
the properties of molecules and crystals without the use of empirical parameters.
In principle, all the particles—electrons and nuclei—should be involved in such
calculations. In fact, the solution of this complicated task is simplified in the Born–
Oppenheimer approximation (also called the adiabatic approximation). In the first
stage the electronic subsystem is studied for different nuclear configurations to cal-
culate the potential-energy surface and to find the optimized atomic positions cor-
responding to the minimal total energy per primitive cell. The nuclear motion can
be studied a posteriori, by considering the electronic energy surface as an external
potential.

Quantum chemistry of solids concerns mainly those physical and chemical prop-
erties of solids that depend on the electronic structure. The problem of nuclear motion
is solved in approaches using molecular-dynamics method. The calculations of the
electronic subsystem in the adiabatic approximation are always connected with the
choice of the electronic Hamiltonian. Formally, the symmetry of the electronic Hamil-
tonian may differ from the symmetry of the nuclear configuration. However, in the
case of crystalline solids the approximate electronic Hamiltonians are usually chosen
in such a way that the translational and point symmetry of a crystal is maintained. In
this chapter we consider in more detail two of the mostly popular approximate meth-
ods of many-electron systems description—Hartree-Fock method and the density-
functional theory. In both approaches the approximate many-electron function is
introduced in such a way that the electron subsystem calculations are made for one-
electron wavefunctions. The latter are known as molecular orbitals in molecules and
crystalline orbitals in crystals.
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The symmetry of the electronic Hamiltonian Ĥ ensures that orbitals (one-electron
functions for many-electron systems) can be classified according to the irreducible
representations of point groups for molecules and space groups for crystals.

In the symmetry-adapted basis the diagonalizing of the Hamiltonian matrix H is
reduced to the diagonalizing of its diagonal blocks. Every eigenvalue of the matrix
H (α) is repeated nα times in the total list of the eigenvalues of the operator Ĥ. The
eigenfunctions of the Hamiltonian Ĥ corresponding to the same eigenvalue are the
basis functions of an irrep of the symmetry group G of Ĥ (in the absence of accidental
degeneracy that is not due to the symmetry) and the degeneracies of eigenvalues are
equal to dimensions of the irreps of G (also in the absence of accidental degeneracy).
Thus, the eigenstates ϕ(r) and their eigenvalues may be labeled by the irreps of the
symmetry group G of the Hamiltonian Ĥ.

The symmetry properties of molecular orbitals and the degeneracy of the cor-
responding eigenvalues are defined by the irreducible representations of the point
groups. The tables of these irreps characters are published in many books and their
notations are well known and as a rule unambiguous. The energy-level degeneracy is
usually 1 (a, b irreps), 2 (e irreps) and 3 (t or f irreps). As an exclusion, the icosahe-
dral point symmetry group of the fullerene molecule C60 has 4- and 5-dimensional
representations (g and h irreps, respectively).

For crystalline solids the translation symmetry of the Hamiltonian is taken into
account in any electronic-structure calculations as it allows calculations to be made
for the basis connected only with the primitive unit cell. In the translation-symmetry-
adapted basis the matrix H has a quasidiagonal structure with identical blocks related
to an irrep k of the translation symmetry group T. As the latter is Abelian its irreps are
one-dimensional. The translation symmetry adapted functions are known as Bloch
functions and numbered by wavevector k. Use of the point symmetry of a crystal
allows the number of Bloch functions calculated to be decreased and further block-
diagonalization of Hamiltonian of a crystal to be made.

The numbering of the translation symmetry adapted functions (Bloch func-
tions) remains when the trnslations become two-dimensional (layer groups) or one-
dimensional (line groups).

The space symmetry of crystalline orbitals is defined by irreducible representa-
tions of space, layer or line groups. The structure of these irreps is more complicated
than in the case of point groups. The dimensions of the space, layer and line group
irreps and the corresponding degeneracy of energy levels are also different from
those for point groups.

The time-reversal symmetry of the crystalline Hamiltonian introduces an addi-
tional energy-level degeneracy. Let the Hamiltonian operator Ĥ be real. The transition
in the time-dependent Schrodinger equation to a complex-conjugate equation with
simultaneous time-inversion substitution

i
∂ϕ(r, t)

∂t
= Ĥϕ(r, t), i

∂ϕ∗(r,−t)

∂t
= Ĥϕ∗(r,−t) (2.41)
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shows that the functions ϕ(r, t) and ϕ∗(r,−t) are solutions of the same time-
dependent Schrodinger equation. This combined operation (complex conjugation +
time inversion) is called the time-reversal transformation. Applying this opera-
tion to the time-independent Schrödinger equation for the time-independent part
of stationary-state wavefunctions

Ĥϕ(r) = Eϕ(r), Ĥϕ∗(r) = Eϕ∗(r) (2.42)

we see that ϕ(r) and ϕ∗(r) are the eigenfunctions of the same real operator Ĥ
belonging to the same eigenvalue E . So with respect to the time-independent part
of stationary states ϕ(r) the time-reversal operator reduces to a simple complex
conjugation

K̂ϕ(r) = ϕ∗(r) (2.43)

Let ϕi (i = 1, 2, . . . , n) be eigenfunctions of a real Hamiltonian Ĥ belonging to
an eigenvalue E and also be the basis of a unitary irrep D(g) of its symmetry group
G(g ∈ G). The functions K̂ϕi = ϕ∗

i are also eigenfunctions of Ĥ belonging to the
same eigenvalue E , but transforming according to the irrep D∗(g). The irreps D(g)
and D∗(g) may be either equivalent or inequivalent. The functions ϕi and ϕ∗

i may be
linearly dependent or linearly independent. There are three cases: (1) the functions
ϕi and ϕ∗

i are linearly dependent and are bases of equivalent irreps ; (2) the functions
ϕi and ϕ∗

i are linearly independent and transform according to inequivalent irreps;
(3) the functions ϕi and ϕ∗

i are linearly independent and are bases of equivalent
irreps. In cases 2 and 3 the eigenvalue E belongs to 2n states ϕi and ϕ∗

i . They form
a basis of the rep of the group G that is the sum of two irreps D(g) and D∗(g)
of the same dimension n. Thus, the degeneracy of the eigenvalue E doubles with
respect to that caused by the symmetry group in the space. In case 1, there is no
additional degeneracy. In tables of irreps of space, layer and line groups the complex
conjugate irreps are usually united in one so-called physically irreducible rep. When
analyzing the degeneracy of one-electron energy levels in crystals it is necessary to
take into account the time-reversal symmetry. In particular, even in the case when
the point-symmetry group F of a crystal does not include inversion the complex
conjugated crystalline orbitals with wavevectors k and −k correspond to the same
energy eigenvalue.

2.6.2 Irreducible Representations of Space Groups. Symmetry
of Crystalline Orbitals of Bulk Crystals

The group T of pure translations ta of an infinite lattice is a group of infinite
order. By introducing cyclic boundary conditions one assumes that the infinite
crystal consists of equivalent blocks in the form of parallelepipeds having sides
A1 = N1a1, A2 = N2a2, A3 = N3a3. It is assumed that the points of different
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blocks connected by translations are physically equivalent, i.e. t
N j

A j
= t0. The large

positive number N = N1 N2 N3 defines the size of each block, also called the main
region of a crystal (this block contains N primitive unit cells in the cyclic model
of a crystal). Only the finite-order group T(N ) (modulo translations Al , A2, A3) of
N translations an = ∑3

i=1 ni ai inside the main region is considered when gen-
erating the irreps of the translation group. Because this group is Abelian all its
irreps are one-dimensional. Moreover, the group T(N ) is a direct product of groups
T(N1), T(N2) and T(N3), as all the translations tan commute. Each group T(Ni ) of Ni

translations tni ai has Ni one-dimensional irreps D j (tni ai ), j = 1, 2, . . . , Ni , satis-

fying the condition
[
D j (tan )

]N j = D j (tN j an ) = D j (t0) = 1. Taking D j (tai ) =
exp(−2π ip j/N j ) (where p j is an integer) one satisfies this condition. The integer
p j = 0, 1, . . . , N j − 1(i = 1, 2, 3) denotes different irreps of the translation group
T(Ni ). The irrep D(p1 p2 p3)(tan ) of the translation group T(N ) can be written as

D(p1 p2 p3)(tan ) = exp [−2π i(p1n1/N1 + p2n2/N2 + p3n3/N3)] (2.44)

There are N = N1 N2 N3 sets of integers p1, p2, p3 (pi = 0, 1, . . . , Ni − 1) that are
used to label N different irreps of the translation group T(N ).

Introducing the primitive translation vectors B1, B2, B3 of the reciprocal lattice
by

(ai · B j ) = 2πδi j , (i, j = 1, 2, 3) (2.45)

one may define allowed k vectors (wavevectors) by k = κ1 B1 + κ2 B2 + κ3 B3,
where κi = pi/Ni (i = 1, 2, 3). Thus

(k · an) = 2π(n1 p1/N1 + n2 p2/N2 + n3 p3/N3) (2.46)

so that

D(k)(tan ) = exp(−ik · an) (2.47)

The N irreps of T(N ) are now labeled by the N allowed k vectors. The point sym-
metry of reciprocal lattice coincides with that of the direct one. However, the type
of reciprocal lattice may differ from that of the direct lattice.

Adding the reciprocal lattice vector

Bm =
∑

i

mi Bi (2.48)

to the allowed k vector we have

exp(−i(k + Bm) · an)) = exp(−ik · an) exp(−iBm · an)

= exp(−ik · an) (2.49)
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A pair of vectors k and k′ = k + Bm is said to be equivalent since the irrep of
T(N ) described by k can be equally well described by k′. Therefore, the label k is
determined up to within a reciprocal lattice vector and can be changed by vectors
Bm of the reciprocal lattice.

The basis functions for the irreps of the translation group T(N ) are known as Bloch
functions ϕ(k, r) and may be written in the form

ϕ(k, r) = exp(ik · r)U (k, r) (2.50)

where U (k, r) = U (k, r + an). Indeed

tnϕ(k, r) = exp(−ik · an) exp(ik · r)U (k, r − an)

= exp(−ik · an)ϕ(k, r). (2.51)

The Bloch functions are also called the k basis.
Applying a space group operator g ≡ tv R(g ∈ G) to the Bloch function ϕ(k, r)

we obtain a Bloch function ϕ̃(k, r). Indeed

tan tv Rϕ(k, r) = tv RtR−1an
ϕ(k, r)

= exp(−ik · R−1an)tv Rϕ(k, r)

= exp(−iRk · an)tv Rϕ(k, r) (2.52)

i.e.
tv Rϕ(k, r) = ϕ̃(Rk, r) (2.53)

As follows from (2.49) from the point of view of determining all the irreducible
representations of a space group it is only necessary to consider the wavevectors in
one unit cell of reciprocal space (k space) and the unit cell that is chosen is referred
to as the first Brillouin zone (BZ). For most space groups it is not a primitive unit
cell in k space. Instead, the unit cell of k space is the Wigner–Seitz unit cell. The
latter is defined as consisting of all those points of k space that lie closer to k = 0
than to any other reciprocal lattice point. Its boundaries are therefore the planes that
are the perpendicular bisectors of the lines joining the point k = 0 to the nearest
and sometimes to the next-nearest reciprocal lattice nodes (the planes bisecting the
line from k = 0 to k = Bm have the equation kBm = |Bm |2/2). For some direct
lattices (simple cubic, for example, see Fig. 2.27) only nearest-neighbor reciprocal
lattice points are involved in the construction of the Brillouin zone but for others
next-nearest neighbors are involved as well, see Fig. 2.28.

The advantage of this choice is that the Wigner–Seitz unit cell manifests the point-
group symmetry F0 of the appropriate crystal system. The disadvantage is that for
certain Bravais lattices the appearance of BZ may be different for different values of
lattice parameters. For all Bravais lattices except those of extremely low symmetry
the advantage of this definition outweighs the disadvantage [48]. For monoclinic
and triclinic space groups the problem of drawing of Brillouin zones for all possible
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Fig. 2.27 Primitive unit cell (a) and Brillouin zone (b) for simple cubic lattice

Fig. 2.28 Primitive unit cells (a, c) and Brillouin zones (b, d) for face-centered and body- centered
cubic lattices

relative values of lattice parameters is so complicated that the primitive unit cell of
the reciprocal lattice is used for the Brillouin zone. In [49] one can find Brillouin
zones representations for all the Bravais lattices and for each set of possible restric-
tions on the lattice parameters. For cubic, hexagonal, simple tetragonal and simple
orthorhombic lattices the shape of the Brillouin zone is unique, while for trigonal,
body-centered tetragonal, body-, base- and face-centered orthorhombic lattices there
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are two or more possible shapes depending on the relative lengths of the primitive
translations and the angles between them.

By construction, the BZ contains N allowed k vectors when N primitive unit
cells are included in the main region of a crystal. As the number N is assumed to
be arbitrarily large, in the limiting case of N = ∞ the allowed k vectors take all
values inside the BZ. In the electronic- structure calculations of crystals finite (and
relatively small) numbers of k points are considered. However, the interpolation
procedure used after calculation allows the one-electron energies to be shown as
continuous functions of wavevectors (see, for example, Figs. 2.29 and 2.30 for band
structures of SrZrO3 and silicon, respectively).

Two vectors k and k′ are said to be equivalent if k′ = k + Bm . By definition,
no two interior points of a Brillouin zone can be equivalent; but every point on the
surface of the Brillouin zone has at least one equivalent also on the surface of the
Brillouin zone. For each BZ there is a basic domain Ω such that

∑
R RΩ is equal to

the whole BZ, where R are the elements of the holosymmetric point group F0 (F0 is
the point- symmetry group of the Bravais lattice and defines the appropriate crystal
system). For each space group there is a representation domain Φ of the appropriate
BZ (it is also called the irreducible part of the Brillouin zone), such that

∑
R RΦ is

equal to the whole BZ, where the sum over R runs through the elements of the point-
symmetry group F ⊆ F0 (F is also called the isogonal point group and is obtained

Γ R X M Γ

-28.0

-24.0

-20.0

-16.0

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

k

E
ne

rg
y,

 e
V

Fig. 2.29 Hartree-Fock energy bands for SrZrO3 crystal



88 2 The Symmetry Groups in Three-Dimensional Space

Γ L W X Γ

-16.0

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

16.0

k

E
ne

rg
y,

 e
V

-20.0

Fig. 2.30 Hartree-Fock energy bands for silicon crystal

by taking all the distinct elements R that are found in the elements tv R of space
group G). For each holosymmetric space group (for which the set of all the distinct
rotational parts of the space-group symmetry operations forms the holosymmetric
point group F0 of the appropriate crystal system) Φ can be taken to be identical
with Ω . But for the remaining space groups the volume of Φ is some small-integer
multiple of the volume of Ω . This multiple is equal to nF0/nF, i.e. is defined by orders
nF0 and nF of the holosymmetric point group nF0 and crystal structure point group F.
The majority of crystal structures considered in Sect. 2.3 have holosymmetric point
groups. The exclusions refer to the structures of sphalerite and wurtzite with point
groups Td and C6v being subgroups of cubic and hexagonal lattices point groups
Oh and D6h . In two cases under consideration (BZ for face-centered and hexagonal
lattices, Figs. 2.28 and 2.31) the basic domain volumes are equal to 1/48 and 1/24 of
the Brillouin-zone volume, the representation domains are two times larger.

Those elements of the point-symmetry group F0 of the reciprocal lattice that
transform a point k into itself or into some equivalent k point form the wavevector
point-symmetry group Fk ⊂ F0. For example, for the direct face-centered cubic
lattice (F0 = Oh) BZ points Γ (0,0,0), X (1/2,1/2,0), L(1/2,1/2,1/2),W(1/4,1/2,3/4)
(see Fig. 2.28) have point symmetry groups Oh , D4h , D3d , D2d , respectively. The
point group Fk of the k vectors F, Z , M, A (Fig. 2.32) for a simple tetragonal lattice
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Fig. 2.31 Primitive unit cell (a) and Brillouin zone (b) for hexagonal lattice

Fig. 2.32 Primitive unit cell (a) and Brillouin zone (b) for simple tetragonal lattice

coincides with the D4h point group of the tetragonal lattice itself; the point group
D2h of the k vectors X and R is a subgroup of D4h .

All the mentioned points of the BZ are called points of symmetry. By definition,
k is a point of symmetry if there exists a neighborhood of k in which no point
k′ has the same symmetry group Fk and Fk′ ⊂ Fk. The Γ (k = 0) point of the
Brillouin zone is usually a symmetry point; exceptions here are the space groups of
the crystallographic classes Cs, Cnv, Cn . All the other symmetry points are situated
on the surface of the Brillouin zone and are usually denoted in a more or less unique
way by capital Roman letters as in Fig. 2.32 for a simple tetragonal lattice.

If, in any sufficiently small neighborhood of k, there is a line (plane) of points
passing through k and having the same point group Fk then k is said to be on
a line (plane) of symmetry. The lines of symmetry are denoted both by Roman
(on the surface of the Brillouin zone) and Greek (inside the Brillouin zone) capital
letters. A symmetry line may be denoted by two symmetry points at the ends of this
line: � − Γ L(C3v),� − Γ M(C2v),Δ − Γ X (C2v) (Fig. 2.28a); the corresponding
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Fk groups are in parentheses. It is evident that the point groups C2v of different
wavevectors, being isomorphic to each other, do not coincide for all symmetry lines.
For example, the second-order symmetry axis C2 is along the X -coordinate axis for
the Γ X line and along the XY symmetry axis for the Γ M line.

Tables of k vector types for BZ symmetry points and symmetry lines can taken
from the site [8]. In fact, for all the space groups referring to the same crystal class
and the same lattice type the k vector types are the same. This follows from the
fact that in reciprocal space only the point-symmetry operations R transform the k
vectors.

The representation theory of space groups uses a theorem that the translation group
T is an invariant subgroup of G. Therefore, the little-group method [6] may be used
for the generation of irreps of space group G from irreps of translation subgroup T.
The one-dimensional irreps of translation group T transform under point-symmetry
operations R of space group G according to relation (2.53) i.e. the Bloch function
with wave vector k transforms to a Bloch function with wavevector Rk.

Let us suppose that D(g) is an irrep of G acting in a space L of dimension n.
The operators D(g) for g = ta ∈ T form a rep of T that is in general reducible. Let
it contain irreps of T characterized by the vectors k = k1, k2, . . . , kn . Therefore a
basis can be found in space L that consists of Bloch functions ϕ(k1, r), . . . , ϕ(kn, r).
With respect to this basis, the elements of T are represented in the irrep D(g) by
diagonal matrices with elements exp(−ik pa), p = 1, 2, . . . , n. The fact that D(g)
is a rep of G implies that if we start with ϕ(k, r) and generate the Bloch functions
tv Rϕ(k, r) = ϕ̃(Rk, r), where tv R ∈ G then we obtain some linear combination
of n Bloch functions of the initial basis. This means that Rk is one of the vectors
k, k2, . . . , kn .

In n-dimensional space L there are no nonzero subspaces invariant with respect
to D(g) for all g ∈ G.

Therefore, as we run over all elements of G operating on ϕ(k, r) by D(g), we gen-
erate the entire space L, i.e. each of the vectors k1, . . . , kn appears as the transform
of k under some element of the point group F (point group of the space group G).
It may be that the vectors k1, . . . , kn are not all different. A set of ns distinct (non-
equivalent) k vectors chosen from the set k1, . . . , kn is called the star of wavevector
k and is denoted as ∗k. A star can be generated from one of its members by operating
on it by elements of point group F. The Γ point of BZ forms one-ray star for any
space group as it is a coordinate system origin for all the point- symmetry group F
transformations in reciprocal space. The stars ∗ X , ∗L and ∗W (see Fig. 2.28 of the
Brillouin zone for the fcc direct lattice) consist of 3, 4 and 6 rays, respectively.

The point group of the wavevector k (little cogroup of k) Fk ⊆ F , by definition,
consists of all the rotations or reflections Rk(i = 1, 2, ..., nk) that rotate k into itself
or an equivalent vector Rk = k + Bm .

By definition, the basic and representation domains in Brillouin zone include
one representative of all wave vector stars defined by point groups F0 and F ⊂ F0,
respectivelly.

The space-group irreps generation is described, for example, in [7, 26, 49]. It
is shown that the dimension of a space-group representation (degeneracy of energy
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levels in a crystal) for a given k is equal to the product of the number of rays in the
star k∗ and the dimension of the point group Fk irreducible representation (ordinary
for symmorphic space groups or projective for nonsymmorphic space groups at
the points on the surface of Brillouin zone). As to each of the degenerated states
corresponds the same one-electron energy it is enough to identify energy levels only
for one ray of the wavevector star as it is made in the figures showing the electronic
band structure. To identify the one-electron energies at the symmetry lines the group-
subgroup compatibility relations are used.

When the space group is realized in a crystalline structure the atomic states
included in the LCAO basis define the symmetry of crystalline orbitals appearing
in the electronic-structure calculations. The symmetry connection of atomic and
crystalline orbitals is given by induced representations of space groups.

2.6.3 Site Symmetry and Induced Representations of Space
Groups

In the previous section we examined the use of space-group irreducible representa-
tions for the classification of the delocalized (Bloch-type) crystalline states. In this
traditional approach the crystal is considered as a whole system and the symmetry
properties of the environment of constituent atoms are ignored. This results in a loss
of information about the connection between the atomic and crystalline states. This
information is widely used in the quantum chemistry of solids as it allows the crys-
talline properties to be explained from the knowledge of the chemical nature of the
constituent atoms and their interactions. In the plane-waves methods of electronic-
structure calculations the Bloch-type delocalized states are not directly connected
with the states of the separate atoms. However, in the LCAO methods the Bloch-type
delocalized functions are represented as the linear combination of the functions of
separate atoms. Therefore, the symmetry connection between the delocalized Bloch
and localized atomic states appears to be important. If we use not only the space
symmetry of a crystal as a whole but also the site symmetry of different groups of
constituent atoms we can considerably extend the possibilities of the group-theory
applications. To study this in more detail the reader is referred to our previous book [6]
where we examined the theory and the applications of the site-symmetry approach to
the electron, phonon, magnetic properties of crystals and in the theory of phase transi-
tions. In this section, we examine only those theoretical aspects of the site-symmetry
approach that concern the electron states and allow analysis of the symmetry connec-
tion between the delocalized Bloch-type and localized Wannier-type electron states
in crystals. This symmetry connection is described using representations of space
groups induced by the irreps β of the site-symmetry subgroup Gq of point q in the
direct lattice space (β ↑ G). This type of induced rep of space groups was considered
in [6].

All elements of the space group G can be written in the form tvR+an R, where vR

is a fractional lattice translation associated with the F point-group element R and an

is a direct lattice translation vector.
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The elements of the site-symmetry group Gq ⊆ G of the point q in the direct lattice
space are those elements of G for which gq q = tvR+an Rqq = q. The space-group
elements gq are supposed to be given in the coordinate system whose origin is at one
of the Wyckoff positions. The site-symmetry group elements for the other Wyckoff
positions are mapped by the space-group elements with the point-symmetry operators
R. Thus the site-symmetry group Gq ⊆ G is isomorphic with the point group Fq
formed by Rq. When the coordinate system origin is moved to the other Wyckoff
position q1 the site-symmetry group elements of this new origin are elements of
the point group Fq1 but the site-symmetry group elements gq of the former origin
q contain translations. As an example we consider the space group O7

h for the two
origin choices given in the International Tables for Crystallography [2]. The site-
symmetry group of Wyckoff position a(000) is mapped to the pure point-symmetry
operations of the group for the first origin choice and to the set of operations with
the translational part for the second origin choice.

Let the representatives g jn( j = 1, 2, . . . , nq = nG/nF ) in the decomposition

G =
∑

j,n

g jnGq, g jn = tv j +an R j (2.54)

be chosen so that the points
q j = tv j R j q (2.55)

occupy the positions within the smallest unit cell (primitive or Wigner–Seitz). The
operations g jn generate from the point q sublattices q j + an( j = 1, 2, . . . , nq ).

Let the local functions W (β)
i1 (r) ≡ Wi (r − q), (i = 1, 2, . . . , nβ) be centered at

point q of the direct lattice and span the space of the irrep β of the site-symmetry
group Gq ⊂ G with matrices d(β)(gq) and characters χ(β)(gq)(gq ∈ Gq). The
nature of these functions depends on the physical problem under consideration. In
the electron-band theory of crystals W (β)

i (r − qA) are atomic functions of atom A.

In phonon spectroscopy applications W (β)
i (r − qA) mean the components of atomic

displacements of an atom A, in magnetically ordered crystals these functions are the
magnetic moments of atoms [6].

To specify the induced rep β ↑ G in the basis of local functions W (β)
i j (r −an) one

has to indicate the symmetry center q of local functions by its Wyckoff position and
the irrep β of the site-symmetry point group Gq. Thus, in the q basis the induced rep
β ↑ G is specified by the index (q, β).

As an example, we consider oxygen atom 2s functions in the perovskite CaTiO3
structure. The oxygen atoms occupy Wyckoff position c of the space group O1

h with
the site-symmetry D4h . The 2s-functions of an oxygen atom transform over a1g
irrep of the point group D4h . Thus, the induced representation in q basis (c, a1g) is
three-dimensional at each k point (d(β) = a1g, nβ = 1, nq = 3).

The labels of the induced rep (q, β) can be given in the k basis corresponding to
those in the q basis, i.e. the results of the reduction of the induced rep over irreps of
the group Gk. All the information obtained can be specified by listing the symmetry



2.6 Symmetry of Crystalline Orbitals in Periodic Systems … 93

(the labels of irreps) of the Bloch states with wavevectors k corresponding only
to a relatively small number of k points in the Brillouin zone forming a set K .
The set K contains the inequivalent symmetry points of the Brillouin zone and one
representative point from each inequivalent symmetry element (symmetry line or
symmetry plane) if the latter does not contain the points of higher symmetry [26].

The symmetry properties of basis functions with other vectors k can be determined
with the use of the compatibility relations.

Reducing the induced rep requires the characters of the irreps of the little group
Gk (tabulated in [48] and on site [8]) and gives the induced rep index in the k-basis.
At the site [8] this procedure is programmed so that user can find the induced rep
index in the k-basis for any Wyckoff positions of 230 space groups.

Let us consider the induced representation (c, a1g) of the space group O1
h formed

by 2s functions of oxygen atoms in the perovskite structure. Using the site-symmetry
option at the site [8] one obtains the induced band representation (c, a1g) in the k basis
in the form Γ (1+3+)R(5+)M(4+5−)X(1+3−4−). The labels of the small irreps of
the little groups are taken from [48].

The theory of induced representations of space groups gives the answer to the ques-
tion of whether it is possible to generate in the space of states of a given energy band
the basis of localized functions? The answer to this question allows the symmetry
connection between delocalized Bloch-type and localized Wannier-type crystalline
orbitals to be obtained.

The following qualitative discussion should explain some features of band reps
corresponding to real energy bands in crystals. Let a crystal be formed from iso-
lated constituent atoms by decreasing the interatomic distances from very large ones
to those corresponding to real crystalline structure. The crystal field may split the
degenerate one-electron atomic levels due to symmetry requirements, leading to
quite narrow energy bands, because of the interatomic interactions. The interatomic
distances are sufficiently large that the crystalline orbitals corresponding to these
bands are localized quite well at the atomic sites and are close to atomic functions.
The Bloch states of these narrow energy bands span the spaces of some band reps
that certainly have q basis, i.e. are induced representations. These reps are induced
by those irreps of site-symmetry groups of atoms that describe the transformation
properties of atomic states generating the energy bands. The further decrease of
the interatomic distances may considerably transform the energy bands (join them
together into more complicated ones and later split them up again into other simple
ones) but a new electronic state of arbitrary symmetry cannot arise nor can any state
disappear. At the same time, the wavefunctions of all possible symmetry types may
change and corresponding one-electron energies may shift along the energy scale.
Thus, an energy band corresponding to a band rep without a q basis (i.e. that is
not an induced rep) may arise. However, this band, in joining with one or several
neighboring ones, forms an energy band corresponding to a composite induced rep
with q basis. In the joint space of these band states one can generate the basis of
localized functions. Thus, the calculated one-electron energy band spectra of crys-
tals may always be divided into bands connected with some simple or composite
induced reps. When the interatomic distances are decreased to those in a real crystal
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the atomic functions undergo more or less extensive modifications and become the
Wannier functions of a crystal. When the latter arise directly from atomic functions
one can use for them the same notation (s, p, d and so on). Let the atoms be at
Wyckoff positions with the site symmetry group Gq . Localized functions transform-
ing according to irreps of the group Gq correspond to the bands arising from atomic
levels split by a crystalline field. If, when the interatomic distances are decreased, the
energy bands cross one another then the states of the resultant composite band also
span the space of a composite induced rep. However, it may happen that this new
band splits into several subbands related to localized functions that have centers of
localization somewhat displaced from the atomic positions for further decreases in
the interatomic distances. This case is typical for the electronic structure of crystals
with covalent chemical bonding.

The space symmetry of crystalline orbitals generated by atomic orbitals of the
LCAO basis can be found from induced representations of space groups. The
knowledge of space symmetry of crystalline orbitals allows the pictures of elec-
tronic bands given as a result of electronic-structure calculations to be understood.
It is also useful in localized crystalline orbitals generation. As an example, we
show the energy bands for MgO (Fig. 2.33), silicon (Si) (Fig. 2.30) and SrZrO3
crystals (Fig. 2.29). The LCAO calculations of these crystals were made using
the Hartree-Fock LCAO method (see Chap. 3). MgO crystal has rocksalt structure
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Fig. 2.33 Hartree-Fock energy bands for MgO crystal
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with symmorphic space group O5
h , Si crystal has diamond structure with non-

symmorphic space group O7
h and SrZrO3 crystal has perovskite structure with

symmorphic space group O1
h , see Sect. 2.3. The translation symmetry of the first

two crystals is described by the same face-centered cubic lattice, of the third one—
by the simple cubic lattice. The point group F = Oh of all the three crystals is
holosymmetric (coincides with point group F0 of the cubic lattice). For the first two
crystals the wavevector belongs to the same Brillouin zone (Fig. 2.28), the represen-
tation domain coincides with the basic domain, the symmetry points of BZ are the
same: Γ (0, 0, 0), X (1/2, 1/2, 0), L(1/2, 1/2, 1/2) and W (1/4, 1/2, 3/4) with the
wavevector point groups Oh, D4h, D3d and D2d , respectively. For the third crystal,
the wavevector belongs to the simple cubic lattice Brillouin zone (Fig. 2.27), the rep-
resentation domain also coincides with basic domain, the symmetry points of BZ are:
Γ (0, 0, 0), R(1/2, 1/2, 1/2), X (1/2, 0, 0) and M(1/2, 1/2, 0) with the wavevector
point groups Oh, Oh, D4h and D4h , respectively. For the symmorphic space groups
O5

h and O1
h the small representations of little groups of symmetry points of BZ

coincide with the ordinary (vector) irreducible representations of the corresponding
wavevector point groups. For nonsymmorphic space group O7

h and the Γ and L the
corresponding small representations are p-equivalent to ordinary representations of
point groups Oh and D3d . For the X and W points the small representations are not
p-equivalent to ordinary irreducible representations of point groups D4h and D2d ,
respectively.

Let us connect the pictures of the calculated band structures with the symmetry
of crystalline orbitals. As for MgO and silicon crystals the dimensions of the corre-
sponding small representations are different at the X and W points, the splitting of
the valence band to one-sheet and three-sheet subbands takes place for MgO, but for
Si crystal the valence band is not split. In the symmetry directions of the Brillouin
zone the compatibility relations are used to explain the energy-level splittings.

For the symmetry directions in the Brillouin zone Δ(Γ X),�(Γ L),� (see
Fig. 2.28) the small representations of both space groups are p-equivalent to ordi-
nary irreducible representations of point groups C4v, C3v and C2v . The notations
of these representations are taken from [48]. For symmetry directions on the sur-
face of the Brillouin zone Z(X W ), S small representations of space group O5

h are
p-equivalent to ordinary irreducible representations of point group C2v , for the sym-
metry direction Q – to ordinary irreducible representations of group Cs . For the
nonsymmorphic space group O7

h small representations in the symmetry direction Z
are not p-equivalent to ordinary irreducible representations of point group C2v .

In Tables 2.14 and 2.15 we give the notations of induced representations in k-basis
for symmetry points of the Brillouin zone. We include only the band representations
for upper valence bands of all the crystals under consideration.

These bands are induced by the oxygen atom 2s, 2p states in MgO, by the silicon
atom 3s, 3p states in silicon, by the strontium atom 4p states and oxygen atom 2s, 2p
states in SrZrO3. For all three crystals the short symbol of the band representation
in k -basis contains only the indices of the small IR s for the most symmetrical
points of the BZ, because the indices for all other IR s contained in the BR are
determined with the help of compatibility relations. These are the states responsible
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Table 2.14 Band representations of space groups O5
h and O7

h for upper valence bands of MgO and
Si crystals

� X L W

MgO − O5
h

b(1/2, 1/2, 1/2) a1g 1+ 1+ 2− 4

t1v 5− 2−5− 1+3+ 1 5

Si − O7
h

a(0 0 0) a1 1+2− 1 1+2− 1

t2 4−5+ 1 3 4 1+2−3+3− 1 2 2

Table 2.15 Band representations for upper valence bands in SrZrO3 crystal induced from Sr 4p−,
O 2s− and O 2p− atom-like states

Atom states q-basis Γ R M X

Sr 4p− (b, t1v) 4− 5+ 2−5− 1+5+

O 2s− (d, a1g) 1+3+ 4− 1+5− 1+2+3−

O 2pz− (d, a2v) 4− 1+3+ 1+2+3− 1+5−

O 2px,y− (d, ev) 4−5− 4+5+ 3+4+5± 3−4−5±

for four-sheet valence bands in the first two crystals (Figs. 2.33 and 2.30) and for the
6- and 9-sheet valence bands in Sr Zr O3 crystal (Fig. 2.29)

Due to the considered symmetry difference of crystalline orbitals in MgO and
Si crystals the nature of chemical bonding in these crystals is also different. Indeed,
in ionic MgO crystal the splitting of the valence band allows the crystalline orbitals
localized on an oxygen atom to be generated and transformed over a1g and t1v
irreducible representations of the oxygen site-symmetry group Oh . In covalent Si
crystal all four sheets of the valence band have to be included in localization so that
the localized orbitals found are centered at the middle of the Si − Si bond.

In SrZrO3 crystal oxygen 2s functions transform according to β = a1g IR of the
oxygen site-symmetry group Gq = D4h and generate a 3-sheeted BR. The symmetry
of states in this band is fully determined by the 2s function of one of three oxygens in
the primitive cell and may be labeled by the symbol (d, a1g) as oxygen atoms occupy
Wyckoff position d in space group O1

h . In Table 2.15 this band, with the symbol of
the BR (d, a1g), is given in k-basis (Γ, R, M, X are the symmetry points of the BZ).

Analysis of the space symmetry of crystalline orbitals is used to consider the
possible centers of localization of chemical bonding in crystals.

2.6.4 Irreducible Representations of Layer Groups. Symmetry
of Crystalline Orbitals

It can be shown that all the irreps of DG are contained in the irreps of the related space
group G. The simple connection between the irreps of G and DG may be established
using (2.15), i.e. isomorphism DG ↔ G/T3: every irrep of DG is related to a definite
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irrep of G (of the same dimension). In these irreps of G all the elements of the coset
(Ri |vi + an)T3 are mapped by the same matrix. In particular, all the translations in
T3 (coset (E |0)T3) are mapped by unit matrices. We refer the reader to Chap. 6 in [6]
for details. The same approach can be used to connect irreps of space group G with
those of subperiodic rod group RG ↔ G/T (2) (T (2) is the two-dimensional group
of translations in a plane that does not contain the one-dimensional translations of
a rod group), [28]. The two-dimensional plane groups and the corresponding layer
groups are isomorphic (see Table B.2) and therefore have the same sets of irreps.
The theory of induced reps described above for triperiodic space groups G may be
easily applied to diperiodic groups DG. The tables of simple induced reps of DG may
be directly constructed by using this theory [6]. The induced reps of layer groups
are useful when analyzing electron-density localization on a crystal surface. Such
analysis is important in the study of chemisorption of atoms and molecules.

In order to understand the principal features of the origin of surface states it is
important to know how the energy bands of a crystal look in terms of the diperiodic
specification. The comparison of bulk and surface states according to the symmetry
is based on the relation between the irreps of the corresponding tri- and diperiodic
groups G and DG. The bulk states are specified by the wavevector k(3) in the three-
dimensional BZ (BZ-3) for the group G. The surface states are classified by k(2) in
the two-dimensional BZ (BZ-2) of the layer (plane) group DG. The choice of the
translation vectors a1 and a2 in the surface plane defines its orientation relative to
the primitive translation vectors a(3)

i (i = 1, 2, 3) of the corresponding space group
G. The surface is identified by three integers (hkl)—Miller indices, specifying the
atomic planes in the crystal by means of the components of a vector perpendicular
to that plane. Planes perpendicular to crystallographic axes X, Y, Z are indicated
(h00), (0k0) and (00l), respectively. In particular, the planes closest to the origin are
identified with indices (100), (010) and (001). Planes parallel to one of the three axes
X, Y, Z are indicated (0kl), (h0l) and (hk0), respectively. When the surface recon-
struction effects (change of the surface plane translational symmetry with respect to
that of the perfect crystal) may be neglected, the symmetry group DG of a crystal
with a surface is a subgroup of the bulk crystal group G. However, the BZ-2 depends
on the indices of the surface plane.

Consider, for example, crystals with face-centered cubic Bravais lattices. For
the (001), (110) and (111) sections the plane lattices are square, rectangular and
hexagonal, respectively. The basic translation vectors of the direct and reciprocal
lattices for these three cases are given in Table 2.16 (a1 and a2 are given in units
a/2, Bi in units 2π/a, where a is the cubic lattice parameter). Note that for a cubic
lattice the planes (100), (010) and (001) are equivalent. The equivalence takes place
also for (110), (101), and (011) planes. We see that the vectors Bi (i = 1, 2) are now
not the translation vectors of the three-dimensional reciprocal lattice. Therefore, the
boundaries of BZ-2 do not coincide with those of BZ-3.

Figure 2.34 shows the Brillouin zones corresponding to the surface (001), (110)
and (111) inscribed in the three-dimensional Brillouin zone for a face-centered cubic
lattice.

Note that some nonequivalent points of BZ-3 become equivalent in BZ-2 (for
example, the points X for the surface (001) and the points L for the (110) surface).
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Table 2.16 Vectors of basis translations for three sections of a face-centered cubic Bravais lattice

Surface translation vectors (001) (110) (111)

a1 110 −110 1 − 10

a2 1–10 002 10 − 1

B1 110 −110 2/3,−4/3, 2/3

B2 1–10 001 2/3, 2/3,−4/3

Fig. 2.34 Brillouin zones for a face-centered cubic lattice and surfaces a (001), b (110), c (111)

Some points of BZ-2 have higher symmetry than in BZ-3 (for example, the vertices
of BZ-2 for the (111) surface). These properties of BZ-2 arise because the unit-cell
vectors in the two-dimensional reciprocal space Bi are not the lattice vectors of the
three-dimensional reciprocal lattice.

To obtain the crystal energy band structure in terms of a diperiodic specification
it is necessary to represent the dispersion law E = En(k(3)) in the form

Es
n(ks‖) = En(ks‖ + k⊥ − Bn) (2.56)

where ks‖ is a projection of the three-dimensional wavevector k(3) onto the surface
and k⊥ is its component perpendicular to the surface. The vector Bn is assumed to
be chosen so that the wavevector ks‖ = k‖ + Bn takes values in the limits of BZ-2.
In the projection of the energy bands of the three-dimensional crystal on the two-
dimensional Brillouin zone forbidden energy lacunas can appear. When the surface
is taken into account, a band of surface states appears inside the energy lacuna. These
surface states are analogous to the local energy levels of point defects that appear in
the forbidden energy gap of a perfect crystal. The energy levels of surface states may
arise in the continuous energy spectrum of a bulk three-dimensional perfect crystal.
These are the so-called resonance surface states. They are analogous to the point
defect states in the spectrum of bulk-crystal states.

2.6.5 Irreducible Representations of Line Groups

The consideration the triperiodic translation group and its irreducible representations
can easily be extended to the monoperiodic groups.
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The one dimensional direct a and reciprocal B lattice translations are now one-
dimensional vectors, satisfying the orthogonality relation (aB)=2π . Let the one-
dimensional translations ta be directed along z Cartesian axis.

In the standard factorization L = T F the translations form the invariant subgroup
of L and the factor group PI = L/T (isogonal point group) is isomorphic to one
of the axial point groups Cq , S2q ↔ C2q , Dq ,Cqv ,Cqh ,Dqd ,Dqh . In Line groups the
rotation axis order q is any integer number ( for Rod groups q=1, 2, 3, 4, 6). The point
groups PI (isogonal point groups) of monoperiodic nanostructures can be considered
as an analog of the crystal class introduced for the space and layer groups. The line
groups from families 2, 3, 6, 9, 11 are symmorphic as these groups do not contain
helical rotations or the reflections in the glide planes. The Line groups of families
1 and 5 can be both symmorphic and nonsymmorphic. For the symmorphic Line
groups PI are axial point groups; for nonsymmorphic Line groups PI is isomorphic
to the factor group L/T .

As in the case of the space groups the little-group method may be used for the
generation of irreps of line group L from one-dimensional irreps of the translation
subgroup T.

As in the case of 3D translations the Bloch function with wave vector k transforms
to a Bloch function with wavevector Rk. Here R is the operation of the isogonal point
group.

The point group of the wavevector k (little cogroup of k) Fk ⊆ F , by definition,
consists of all the rotations or reflections Rk(i = 1, 2, . . . , nk) that rotate k into
itself or an equivalent vector Rk = k + B. The number of rays in the wave vector
star is equal to nF/nk where nF is the number of the elements in the group F.

The one-dimensional Brillouin zone is the segment connecting the reciprocal
lattice points π/a and −π/a. The symmetry points of BZ are Γ (0) and Z(1/2) (in
units 2π/a) with the one ray in the wave vector star. The number of rays in the
star of other (general) k-points depends on the axial point group. The general k-
points form one-ray stars for the isogonal point groups Cn, Cnv which do not contain
the operations transforming k to −k. For all the rest axial point groups the general
k-points form two-rays stars, including both k and −k -points.

By definition, the little group Lk of wavevector k consists of all elements lk
j =

t
v

(k)
j +a

R(k)
j , j = 1, 2, . . . , nk , where R(k)

j ∈ Fk. The group Lk ⊆ L is a group of

order N · n j
k where N is the number of one-dimensional translations in the main

region of a monoperiodic crystal.
The dimension of a Line group full representation (degeneracy of energy levels in

a monoperiodic structure) for a given k is equal to the product of the number of rays
in the star k∗ and the dimension of the axial point group Fk irreducible representation
(ordinary or projective).

The ordinary irreps of axial point groups are well known, the characters of
their irreps can be found on the site [50]. These representations are one and two-
dimensional. The projective irreps of these groups are not tabulated, their knowledge
is necessary only for Z(1/2) point of the one-dimensional BZ for the line group
families 4, 5, 10, 12, 13.
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The irreducible representations of the commensurate line groups are found and
tabulated in [51–53] using the standard factorization. In order to obtain a complete
set of non-equivalent representations of any line group of L+ type it is sufficient to
know all the reps of the corresponding isogonal point group Cq or Cqv , q=1,2,...
The representations of line group of L− type are induced from those of its invariant
subgroup L+. The factorization (2.22) is used in [3] for the construction of irreps
both for the commensurate and noncommensurate line group irreps. The construction
of the line groups irreps starts with the first family group. In this case the line group
is the direct product L = Z × P, both factors Z and P = Cn are the cyclic groups
with the one-dimensional irreps exp(ilx), lx is a multiple of 2π , l is the order of the
cyclic group.

The helical group Z irreps are classified with the help of the helical quasimomen-
tum k̃ changing in the helical Brillouin zone - the segment connecting the reciprocal
lattice points π/ f and −π/ f where f is the partial translation. For the commensurate
line groups the partial translation f = ra

q , r=1,2,...q−1, so that the helical Brillouin

zone is q
r times larger than that of the quasimomentum k introduced in the standard

line group factorization. Analogously, for the rotational subgroup Cn there are n
different one-dimensional irreducible representations, given by the integer m̃. Thus
the irreps of the first family line groups have the form

k̃ Am̃ = exp(ik̃ f ) exp(
im̃2π

n
) (2.57)

In the both classifications the irreducible representations are grouped into the so
called bands, the property which will be inherited by all the other families. Namely,
for fixed m̃, representations differ only by k̃. When k̃ varies within the helical Bril-
louin zone one obtains a series of representations to be referred to as a helical or
m̃-band. Analogously, for commensurate groups, fixing m one gets series of the rep-
resentations with k from the Brillouin zone, which is called linear or m-band [3].
The representations of the first family line groups have been used in [3] to construct
the irreps of other groups. It is seen from Table D.2 that the first family group L(1) is
the halving subgroup of the line groups of the families 2,...8. Therefore the induction
procedure from a halving subgroup was used in [3] to construct the representations
of the families 2,...,8. In the third step the representations of the families 9,...13 have
been found using the reps of the positive families 6,7,8 and the induction procedure
from a halving subgroup.

As an example we briefly describe how to construct irreducible representations
of line groups belonging to the families 4 and 8. But to begin with, we remind the
definition of a conjugate representation. If H is a normal subgroup of a group G
and ρ is some matrix representation of H then for any s ∈ G the representation
ρs(h) = ρ(s−1hs) is called s - conjugate of ρ.

Family 4. L = T1
2n( a

2 )Cnh = H ∪ sH where H = T1
2n( a

2 )Cn is a zigzag group
with generators (C2n| a

2 ), (Cn|0) ∈ H, and s = (σh |0). Irreps of the normal subgroup
H are 1-dimensional:
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k Am(C2n|a

2
) = eik a

2 eim π
n , k Am(Cn|0) = eim 2π

n (2.58)

where k ∈ (−π
a , π

a

]
and m ∈ (−n, n]. It is easy to ascertain that s-conjugate irreps

of H are

k As
m(C2n|a

2
) =−k Am(C2n|a

2
) = e−ik a

2 eim π
n , k As

m(Cn|0) = eim 2π
n (2.59)

In the case under discussion irrep of H is identical to its s-conjugate if and only if

eik a
2 = e−ik a

2 ⇔ k
a

2
= −k

a

2
+ 2πl (2.60)

and relevant solution of this equation is k = 0. Thus, 1-dimensional irreps of L are

k A±
m(C2n|a

2
) = eik a

2 eim π
n , k A±

m(Cn|0) = eim 2π
n , k A±

m(σh |0) = ±1 (2.61)

For k �= 0 irreps k Am and k As
m of H are non-equivalent and the induced representa-

tions k Em = I ndL
H(k Am) are irreducible:

k Em(C2n|a

2
) =

(
ei(k a

2 +m π
n ) 0

0 ei(−k a
2 +m π

n )

)

k Em(Cn|0) =
(

eim 2π
n 0

0 eim 2π
n

)

k Em(σh |0) =
(

0 1
1 0

)
(2.62)

It is easy to see that for k ∈ (−π
a , π

a ) the induced irreps with k and −k are
equivalent and therefore the range of k reduces to (0, π

a ) with m ∈ (−n, n] for each
k. The case k = π

a requires special attention because for this value of k the interval
of m values reduces to (0, n].

Family 8. L = T1
2n( a

2 )Cnv = H ∪ sH where H = T1
2n( a

2 )Cn is a zigzag group
with generators (C2n| a

2 ), (Cn|0) ∈ H, and s = (σv|0). Irreps of normal subgroup H
are 1-dimensional and are given by (2.58). In this case s-conjugate irreps are

k As
m(C2n|a

2
) = k A−m(C2n|a

2
) = eik a

2 e−im π
n

k As
m(Cn|0) = k As−m(Cn|0) = e−im 2π

n (2.63)

and irrep of H is identical to its s-conjugate if and only if

m
π

n
= −m

π

n
+ 2πl (2.64)
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It is easy to see that the relevant solutions of this equation are m = 0, n and
1-dimensional irreps of the line group under discussion are

k Am(C2n|a

2
) = eik a

2 eim π
n , k As

m(Cn|0) = 1, k As
m(σv|0) = 1

k Bm(C2n|a

2
) = eik a

2 eim π
n , k Bs

m(Cn|0) = 1, k Bs
m(σv|0) = −1 (2.65)

where k ∈ (−π
a , π

a ] and m = 0, n. It seems pertinent to note that due to tradition 1-
dimensional irreps which accept values +1 or −1 at the element (σv|0) are denoted
by capital letters A and B, respectively. For the remainder values of k and m we
should induce to get

k Em(C2n|a

2
) =

(
ei(k a

2 +m π
n ) 0

0 ei(k a
2 −m π

n )

)

k Em(Cn|0) =
(

eim 2π
n 0

0 e−im 2π
n

)

k Em(σv|0) =
(

0 1
1 0

)
(2.66)

where k ∈ (−π
a , π

a ] and m ∈ (0, n). Note that here the range of m reduces to (0, n)

since 2-dimensional irreps with labels m and −m are equivalent.

2.6.6 Site Symmetry for Line Groups of Families 4 and 8

The site symmetry approach used for the space and layer groups can be extended
to the line groups using the induction procedure from the irreps of the orbit rep-
resentative stabilizer being the subgroup of the line group. The other possibility is
to use the restriction of Line group irreps to orbit stabilizers. As an example we
apply the restriction procedure for the construction of the induced irreps of families
8 and 13 of Line groups. As soon as the induced representations from the irreps
of orbit stabilizers are obtained, it is easy to construct the so-called dynamical rep-
resentations of line groups which are defined as representations induced from the
vector representations of orbit stabilizers (probably with subsequent multiplication
by a certain permutation matrix). The use of the site-symmetry approach in lattice
dynamics allows one to make a quick group theoretical analysis of the phonon sym-
metry not only at the Brillouine zone center but in the entire Brillouine zone. The
knowledge of the symmetry of phonons at K = 0 is necessary for interpretation of
second order infrared and Raman spectra. Furthermore, this information can be used
in the symmetry assignment of vibrational mode branches calculated by numerical
methods
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General character of a point group F we denote by the symbol χ(F). If an irrep
of F is labeled by the symbol m, its character will be denoted as χm(F).

For example, χm(Cn) will stand for the irrep Cl
n �→ eim 2π

n l of Cn group where
integer m ∈ (− n

2 , n
2 ].

The symbol χm(S2n) will stand for the irrep σhCl
2n �→ eim π

n l of the group S2n

with integer m ∈ (−n, n].
For characters of the groups C1v = Cs, C1h, Ci we will use the symbol χ±

0 (F) =
{1,±1}. These groups are just different geometric realizations of the same abstract
group of order 2, but their representations are traditionally labeled as

χ+
0 (Cs) = a1, χ−

0 (Cs) = a2, χ+
0 (C1h) = a′,

χ−
0 (C1h) = a′′, χ+

0 (Ci ) = ag, χ−
0 (Ci ) = av (2.67)

For Cnv group with n > 1 1-dimensional irreps are usually denoted

χ+
0 (Cnv) = a1, χ−

0 (Cnv) = a2

χ+
n
2
(Cnv) = b1, χ−

n
2
(Cnv) = b2 (for even n) (2.68)

The irrep χ0(C1) of the trivial group C1 is denoted by the symbol a.
The restriction of line group irreps to representations of orbit stabilizers is well-

defined and easy procedure. Expressions for the induced from irreps of orbit stabi-
lizers representations of line groups will include integration over linear Brillouine
zone or summation over finite set of k values if the periodic boundary conditions are
imposed on the translations along the z axis. Let us consider in more detail the Line
groups of Family 8.

Line groups of the 8th family are L = T1
2n(a)Cnv = T(a)

(
Cnv

⋃
(C π

n
| a

2 )Cnv

)
.

The isogonal group is C2nv and transversal F = Cnv

⋃
(C π

n
| a

2 )Cnv contains 4n
elements being a group modulo pure translations.

For n > 1 line groups from this family generate orbits of 3 types. The number of
types reduces to 2 for n = 1.

For orbits of the type a1 (Rod group label c) their representatives may be taken
as xρ(α + β, z) with β ∈ (0, π

n ) and arbitrary z value. The stabilizer of orbit points
is trivial and the restriction rules are

k Am ↓ C1 = χ0(C1), k Bm ↓ C1 = χ0(C1) (2.69)

for k ∈ (−π
a , π

a ], m = 0, n, and

k Em ↓ C1 = 2χ0(C1) (2.70)

for k ∈ (−π
a , π

a ], m ∈ (0, n).
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The induction rules give regular representation as could be expected:

χ0(C1) ↑ L =
⊕

k∈(− π
a , π

a ]

⎡

⎣

⎛
⎝2

⊕

m∈(0,n)

k Em

⎞
⎠ ⊕ k A0 ⊕ k B0 ⊕ k An ⊕ k Bn

⎤

⎦ (2.71)

The corresponding dynamical representation is just a threefold regular one.
Orbits with representatives xρ(α, z) are of the type b1 (Rod group label b) and

these representatives have stabilizer C1v(α) = {(0, e), (0, σα)}. The restriction of
the line group irreps to C1v group gives

k Am ↓ C1v = χ+
0 (C1v), k Bm ↓ C1v = χ−

0 (C1v) (2.72)

where k ∈ (−π
a , π

a ], m = 0, n, and

k Em ↓ C1v = χ+
0 (C1v) ⊕ χ−

0 (C1v) (2.73)

where k ∈ (−π
a , π

a ], m ∈ (0, n).
The corresponding induction rules are

χ+
0 (C1v) ↑ L =

⊕

k∈(− π
a , π

a ]

⎡

⎣

⎛
⎝ ⊕

m∈(0,n)

k Em

⎞
⎠ ⊕ k A0 ⊕ k An

⎤

⎦

χ−
0 (C1v) ↑ L =

⊕

k∈(− π
a , π

a ]

⎡

⎣

⎛
⎝ ⊕

m∈(0,n)

k Em

⎞
⎠ ⊕ k B0 ⊕ k Bn

⎤

⎦ (2.74)

Vector representation is 2χ+
0 (C1v) ⊕ χ−

0 (C1v) and

ρdyn(L) = (2χ+
0 (C1v) ⊕ χ−

0 (C1v)) ↑ L

=
⊕

k∈(− π
a , π

a ]

⎡

⎣2(k A0 ⊕k An) ⊕k B0 ⊕k Bn ⊕
⊕

m∈(0,n)

3k Em

⎤

⎦ (2.75)

Points (0, 0, z) represent two-point F-orbits {(0, 0, z), (0, 0, z + a
2 )} with group

Cnv as a stabilizer of their points. We have

k Am ↓ Cnv = χ+
0 (Cnv), k Bm ↓ Cnv = χ−

0 (Cnv) (2.76)

where k ∈ (−π
a , π

a ] and m = 0, n. For 2-dimensional irreps we have

k Em ↓ Cnv = em(Cnv), m ∈ (0,
n

2
)
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k Em ↓ Cnv = em−[ n
2

](Cnv), m ∈ (
n

2
, n) (2.77)

The induction rules are

χ+
0 (Cnv) ↑ L =

⊕

k∈(− π
a , π

a ]
k A0 ⊕ k An

χ−
0 (Cnv) ↑ L =

⊕

k∈(− π
a , π

a ]
k B0 ⊕ k Bn

em(Cnv) ↑ L =
⊕

k∈(− π
a , π

a ]

[
k Em ⊕ k Em+[ n

2

]
]

(2.78)

where m ∈ (0, n
2 ). For even values of n and m = n

2

k E n
2

↓ Cnv = χ+
n
2
(Cnv) ⊕ χ−

n
2
(Cnv) (2.79)

and the induction rules are

χ+
n
2
(Cnv) ↑ L =

⊕

k∈(− π
a , π

a ]
k E n

2
, χ−

n
2
(Cnv) ↑ L =

⊕

k∈(− π
a , π

a ]
k E n

2
(2.80)

Three cases should be analyzed when dynamical representations are constructed.
For n = 1 the vector representation is 2χ+

0 (C1v) ⊕ χ−
0 (C1v) and

ρdyn(L) = (2χ+
0 (C1v) ⊕ χ−

0 (C1v)) ↑ L =
⊕

k∈(− π
a , π

a ]
[2(k A0 ⊕k A1) ⊕k B0 ⊕k B1]

(2.81)
For n = 2 the vector representation is χ+

0 (C1v) ⊕ χ+
1 (C2v) ⊕ χ−

1 (C2v) and

ρdyn(L) = (χ+
0 (C1v)⊕χ+

1 (C2v)⊕χ−
1 (C2v)) ↑ L =

⊕

k∈(− π
a , π

a ]
(k A0 ⊕k A2 ⊕ 2k E1)

(2.82)
For n > 2 we have the vector representation χ+

0 (Cnv) ⊕ e1(Cnv) and

ρdyn(L) = (χ+
0 (Cnv) ⊕ e1(Cnv)) ↑ L =

⊕

k∈(− π
a , π

a ]
(k A0 ⊕k An ⊕k E1 ⊕k En−1)

(2.83)
The case n = 2 is embraced by the last formula and its separate treatment is actually
not required.

As an example we consider TiO2-based nanotubes (NTs) of different morphology
systematically synthesized and carefully studied as promising technological materi-
als, see Chap. 7.

http://dx.doi.org/10.1007/978-3-662-44581-5_7
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As we have seen above in most theoretical simulations on titanium nanotubes, the
model 3D −→ 2D −→ 1D of structural transformations described was applied,
i.e., the bulk (3D) phase first formed a lamellar product (3D −→ 2D) and then
was bent and rolled to a nanotubular form (2D −→ 1D). The lamellar product
is mainly formed by the anatase (101) surface, identified as prevailing in TiO2.
A further geometry optimization of the 3-sheet O–Ti–O layer for 2D −→ 1D
transition results in the formation of titania nanotubes possessing hexagonal fluorite-
like (111) morphology [26].

The three-layer nanosheets cut from the fluorite phase of the bulk TiO2 (the
space group 225 Fm3m) have the symmetry of the layer group 72 P3m1. Using the
rolling up correspondence of the line and layer groups [31], one obtains line groups
for special chiralities of TiO2 nanotubes: (n,n)–Family 4, (n,0)–Family 8 with the
isogonal point groups C2nh and C2nv , respectively. For n=1,2,3 these line groups
coincide with the crystallographic rod groups.

The symmetry of electron and phonon states for rod groups can be found using
the site-symmetry approach [8] for the space groups as the Wyckoff positions of rod
groups form subsets of those for space groups.

The site-symmetry approach described above can be applied to find the symmetry
of phonon and electron d-states for (n,n) and (n,0) nanotubes rolled up from 3-sheet
O–Ti–O layer (n=1, 2, 3). The rod symmetry groups are 2nn /m and 2nnmc and
belong to families 4 and 8, respectively. In this case the tube unit cell contains 6n
atoms occupying three nonequivalent 2n-atom orbits (1 titanium orbit and 2 oxygen
orbits), corresponding to Wyckoff positions d (stabilizer C1h) and b (stabilizer C1v)
for families 4 and 8, respectively.

The corresponding general analytic expressions for the induced representations of
all Line groups can be found in Tables published in [3] and are used in the computer
code, generating the induced representations for any Wyckoff positions, belonging to
Families 4 and 8 of Line groups. This code has been applied to the case of Rod groups
and Wyckoff positions, described above for TiO2 nanotubes. The results obtained by
two different ways, coincide.

2.7 CRYSTAL Program. Use of Symmetry
in First-Principles LCAO Calculations of 3D, 2D, 1D
Systems

CRYSTAL is a general-purpose program for the study of crystalline solids, and
the first which has been distributed publicly [39]. The first version was released
in 1988 and then seven next versions have followed: CRYSTAL92, CRYSTAL95,
CRYSTAL98, CRYSTAL03, CRYSTAL06, CRYSTAL09, CRYSTAL14.

The recent version of the CRYSTAL program -CRYSTAL14- [39] computes
the electronic structure of periodic systems within Hartree-Fock, Density Func-
tional or various hybrid approximations. The Bloch functions of the periodic sys-
tems are expanded as linear combinations of atom centred Gaussian functions
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(LCAO). Powerful screening techniques are used to exploit real space locality.
Restricted (Closed Shell) and Unrestricted (Spin-polarized) calculations can be per-
formed with all-electron and valence-only basis sets with effective core pseudo-
potentials.

The program can automatically handle space symmetry of 230 space groups, 80
layer groups, 75 rod groups (99, if the different rod group settings are taken into
account), 45 point groups. Point symmetries compatible with translation symmetry
are provided for molecules. Helical symmetry of the polymers is available. Input
tools allow the generation of a slab (2D system), or a cluster (0D system), from a
3D crystalline structure, or the creation of a supercell with a defect, nanotubes (1D
system) from a single-layer slab model (2D system), nanorods (1D systems) from
the bulk crystal (3D system).

The code may be used to perform consistent studies of the physical and chemi-
cal properties of molecules, polymers, nanotubes, nanorods, surfaces and crystalline
solids: structural features, vibrational properties, electronic structure, magnetic prop-
erties, dielectric properties (linear and non-linear electric susceptibilities up to forth-
order), elastic, piezoelectric and photoelastic properties [39].

The lack of the crystallographic restrictions for line groups makes translations
just a small part of the full symmetry, in contrast to space and layer groups. While
in the unit cell of a three-dimensional crystal there are typically several to hundred
atoms, the unit cell of a typical nanotube includes hundreds or thousands of atoms.
The majority of the existing ab initio numerical codes do not implement line group
symmetry.

One of the first attempts of such an implementation was made in [54] to calculate
the graphene nanotubes by the method of linear augmented cylindrical waves. Using
the symmetry-adapted version of this method carbon nanotubes containing up to
118804 atoms per translational unit cell (the chiral vector R(100, 99), helical axis
order 59402) were calculated. Even for the largest system with a huge unit cell,
the band structure can be easily calculated and the results can be presented in the
standard form of four curves for the valence band plus one curve for the low-energy
states of the conduction band.

The rototranslational (helical) symmetry was implemented in CRYSTAL09 code,
[14, 55] and used in the first-principles LCAO calculations of carbon nanotubes.
To the best of our knowledge, this is the first complete, tested and documented
implementation of helical point symmetry in a general purpose computer code. It
has been shown that the use of the helical symmetry of nanotubes, usually quite high,
permits one to drastically reduce the computational time and tackle large unit cell
nanotubes with an extended basis set. The code permits one to pass from a 3D object
(bulk crystal) to a 2D slab and then to a 1D nanotube in a fully automatic way.

In the direct space the helical symmetry is exploited for the calculation of mono-
and bi-electronic integrals, so that only a small fraction (the irreducible wedge) of
the Fock (Kohn-Sham) matrix F is explicitly computed. The saving factor in the
computing time can be as large as N , where N is the number of point symmetry
operators that characterize the system.
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The symmetry in the reciprocal space is also exploited, as the matrices corre-
sponding to each irreducible representation (IR) are individually diagonalized for
the considered k points. By transforming the Bloch basis into a symmetry adapted
basis the Fock matrix F(k) becomes block-diagonal, with each block corresponding
to an irreducible representation (IR) of the point group. When the system is periodic
only along one direction (z in our convention) and the rotation part of the symmetry
operators acts on the Cartesian coordinates (x and y) orthogonal to the translation
direction, the point group of each k point is the same, and contains the full set of
point operators. The Fock matrix then factorizes in exactly the same way at each
k point. As the cyclic group Z is Abelian, the number of IRs (and of blocks to be
diagonalized) is equal to the number of rototranslation operators. In this case the
saving factor is much larger than N , due to the third-to-fourth order scaling of the
diagonalization process. As a matter of fact, the dimension of all the diagonalized
matrices is M = m NAO , where NAO is the number of atomic orbitals describing
each atom and m is the number of atoms in the layer unit cell.

Following [55] we consider the use of helical symmetry in the first-principles
calculations of carbon nanotubes. The structure of a carbon nanotube is modelled by
rolling up a single sheet of graphite (i.e. graphene) into a cylinder along the given
translation vector R(n1, n2) in a plane hexagonal lattice with two carbon atoms in the
primitive cell. The symmetry of graphene is given by layer group 80(P6/mmm). It
is seen from Table 2.10 that this layer group generates nanotubes with the symmetry
of the line group L(5) (the fifth family) when the general chiral vector R(n1, n2) is
used for rolling up the tube (chiral carbon nanotubes). Zigzag and armchair achiral
nanotubes are obtained by rolling up the special chiral vectors R(n, 0) and R(n, n),
respectively. The symmetry of these tubes is given by the line group L(13), see
Table 2.10. The isogonal point groups of the carbon chiral and achiral nanotubes
are Dn and D2nh , with the helical symmetry axis orders equal to n and 2n, respec-
tively. The resulting nanotubes contain 2q and 4q atoms, respectively, i.e. dozens
or hundreds of atoms in the unit cell, depending on the chiral vector choice. As an
example, consider the (24,0) nanotube; with the basis set used for calculations in
[55] (a 6-1111G∗ contraction) the size of the Fock matrix in the AO basis is 2112
(22 AOs times 96 atoms); in the symmetry adapted basis there are 48 blocks, each
containing 44 lines. Then 48 44 × 44 - matrices are diagonalized at each k point.

It is clear that the reduction in computational time due to this factorization is
dramatic, in particular, in the case of highly symmetric systems with large unit cells,
for which the diagonalization requires a large fraction of the overall computing
time. Table 2.17 demonstrates the effect of using of the helical point symmetry in
the simulation of carbon nanotubes of increasing size. The results are taken from
[55]. The geometry of a set of carbon zigzag (n, 0) nanotubes was optimized. Struc-
ture optimizations were performed by using analytical energy gradients with respect
to atomic coordinates and unit-cell parameters. Convergence was checked on both
gradient components and nuclear displacements. The hybrid B3LYP functional
was adopted, together with a quite complete basis set containing 1s, 4sp, and 1d
shells, that is 22 AOs per carbon atom (6-1111G∗ contraction). The level of accu-
racy in evaluating the Coulomb and Hartree-Fock exchange series is controlled by
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Table 2.17 Effect of the exploitation of point symmetry in the simulation of carbon nanotubes of
increasing size [55]

R NA NAO NR NŜ tSC F tG ΔE δE

(8,0) 3.137 32 704 15.8 16 72.1 459.6 42.78 1.48

(9,0) 3.529 36 792 17.8 18 65.9 409.2 34.47 0.728

(10,0) 3.921 40 880 19.8 20 63.0 384.3 27.20 0.475

(11,0) 4.313 44 968 21.8 22 60.7 365.0 22.57 0.387

(12,0) 4.705 48 1,056 23.8 24 60.6 355.2 19.50 0.126

(13,0) 5.097 52 1,144 25.8 26 61.4 353.9 16.24 0.117

(14,0) 5.489 56 1,232 27.8 28 62.8 350.1 14.08 0.134

(15,0) 5.881 60 1,320 29.7 30 63.4 352.6 12.65 0.0518

(16,0) 6.273 64 1,408 31.7 32 65.2 346.9 10.88 0.0685

(17,0) 6.665 68 1,496 33.7 34 66.5 344.3 9.70 0.0750

(18,0) 7.058 72 1,584 35.7 36 67.9 341.0 8.93 0.0195

(19,0) 7.450 76 1,672 37.7 38 70.2 344.1 7.86 0.0320

(20,0) 7.842 80 1,760 39.6 40 72.5 344.6 7.14 0.0386

(21,0) 8.234 84 1,848 41.6 42 75.4 344.9 6.68 0.0151

(22,0) 8.626 88 1,936 43.6 44 78.4 347.1 5.97 0.0162

(23,0) 9.018 92 2,024 45.6 46 81.7 348.6 5.49 0.0243

(24,0) 9.410 96 2,112 47.6 48 85.6 351.5 5.20 8.63E-3

five parameters, [14] for which the 8 8 8 8 16 values were used. The threshold on the
SCF energy was set to 10−8Ha. The reciprocal space was sampled according to a reg-
ular sublattice with shrinking factor 10 (6 k vectors). The DFT exchange-correlation
contribution was evaluated by numerical integration over the unit cell volume. In
these calculations, a (75,974) grid was used which corresponds to a pruned grid with
75 radial and 974 angular points; the accuracy in the integration can be estimated by
the error in the integrated electronic charge density in the unit cell (Δe = 810−4|e|
for a total of 576 electrons in the (24,0) nanotube).

Table 2.17 documents the effect of point symmetry use for a set of (n, 0) nanotubes
(all of them share the same rolling direction). In the first two columns, the (n1, n2)

indices of the nanotubes and their radius, R (Å), are reported. NA and NAO are the
number of atoms and atomic orbitals in (6 − 1111G(d)) basis set per unit cell, NR is
the ratio between the number of elements of the complete and irreducible Fock matrix,
NŜ is the number of symmetry operators. The cost of the calculation is documented
in the tSC F and tG columns of Table 2.17; tSC F and tG are given in seconds and mean
the time of a single SCF cycle and of the gradient calculation, respectively (single
processor-Intel Xeon, 1.86 GHz, RAM 8 Gb). ΔE and δE (kJmol−1 per couple of C
atoms) are the energy difference with respect to graphene and the relaxation energy
after rigid rolling, respectively.

In going from (8,0) to (24,0), the number of atoms (NA), basis functions (NAO ),
and symmetry operators (NŜ) increase exactly by threefold (from 32 to 96, from 704
to 2112, and from 16 to 48, respectively). The complete Fock matrix for the largest
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case is then about three times larger than for the (8,0) case, whereas the symmetry
adapted matrix size is roughly constant. The (8,0) nanotube F matrix has about 11,500
elements that diminish to 10,000 for the (24,0) case. The number of elements NR is
extremely close to the number of symmetry operators NŜ . The time required for the
calculation of bi-electronic integrals, the most expensive part of the SCF calculation,
decreases for a while and then remains nearly constant. The same behavior is shown
by the gradient, whose cost from (12,0) to (24,0) varies by less than 1 %. The overall
cost of the SCF cycle increases (slowly) for three reasons. First, the diagonalization
step scales linearly with N (i.e., with the number of symmetry operators and with
the number of atoms). Second, the tSC F and tG AO → Bloch → symmetry adapted
basis transformations, and the back transformations to the AO basis for building the
density matrix, are matrix multiplications. In principle, AO → Bloch and Bloch →
symmetry adapted basis transformations should scale as N 2

AO and N 3
AO , respectively,

with a low prefactor. In practice, the sparsity of all the involved matrices is exploited,
so that the scaling of this stage is closer to N 2

AO than to N 3
AO . Third, the overhead for

the symmetry analysis increases with the number of symmetry operators. Overall,
the total cost increases by less than 50 % for the SCF and remains constant for the
gradient, whereas in a perfect linear scaling code, not exploiting the symmetry, the
cost would increase by a factor of three. The last two columns provide the energy
difference between the relaxed nanotube and graphene, ΔE = Erelaxed − Egraphene,
and the relaxation energy after rigid rolling, δE (energy difference between unrelaxed
and relaxed nanotubes). Roughly speaking, both ΔE and δE decrease regularly as
n increases, as expected and in line with the previous findings. Actually, a finer
analysis shows that δE data belongs to three different curves, describing the (3n, 0),
(3n + 1, 0), and (3n + 2, 0) cases; however, the differences are quite small and
tend to disappear with the increase of the nanotube diameter. The stability of a
nanotube family with respect to graphene calculated at the B3LYP level documents
the feasibility of this kind of calculations, and the accuracy of the implementation
[55].

The rototranslational symmetry subgroup of the line group was implemented in
CRYSTAL09 code. The full line group symmetry was implemented in CRYSTAL14
code and gives the higher efficiency in the calculations of the nanotubes with the
isogonal point groups Cnv , Cnh , Dnd , Dnh .
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52. I.B. Božović, M. Vujičić, J. Phys. A: Math. Gen. 14, 777 (1981)
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