
Chapter 8

Similarity of Sensitivity Functions

Abstract If a model is strongly autocatalytic and very different timescales are

present, both of which are characteristic features of many reaction kinetic models,

then the calculated local sensitivity functions are usually similar to each other. An

implication of this is that in many cases, by changing a number of input parameters

simultaneously according to certain ratios, almost identical simulation results can

be obtained for output variables of kinetic models, over quite wide ranges of

concentrations or reaction conditions. The similarity relations can be sorted into

categories of local similarity, scaling relationships and global similarity. Such

similarity relations have been found in models of combustion systems (explosions

and flames) and molecular biological models. The theory of the origin of all these

similarity relations is discussed in this chapter. The similarity of sensitivity func-

tions is related to several important topics, such as discrimination between models,

uniqueness of a model and robustness of biological systems.

8.1 Introduction and Basic Definitions

Solutions of models using detailed reaction mechanisms are nonlinear functions of

parameters. In nonlinear models, we might intuitively expect that each parameter

plays a different role in driving the predicted outputs. In such cases, when one of the

parameters is changed, it is not possible to return all variables back to their original

values at all times simply by changing the values of other parameters. However, in

some cases, similarities exist between the sensitivities of model outputs to different

parameters, and hence, the influence of modifying one parameter may be counter-

balanced by tuning others. This has important implications for situations where

attempts are made to tune parameter sets in order to improve agreement between

model simulations and experiment. For example, when certain similarities exist, it

may be possible to choose different parameter sets that lead to exactly the same

numerical solution of the model equations. In these situations, using experimental

results to constrain the values of certain parameters may not be possible. Such

similarities may also have implications for the dynamical dimension of the equation
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system as discussed in Sect. 6.5. For these reasons, it is valuable to study the

similarity relations between sensitivity functions in a model, and this will be

covered in the present chapter.

According to the kinetic system of differential equations, the production rates

are linear functions of the rate coefficients, and therefore, changing a rate coeffi-

cient during a short period of time linearly changes the calculated concentrations

and temperature. However, the changes in concentrations and temperature interact

with each other, causing nonlinear deviations. If a reaction mechanism contains

only first-order reactions, then the concentration–time functions are sums of expo-

nential functions (as discussed in Sect. 6.3). If at least one of the reaction steps is

second-order, then the analytical solution may contain very complicated

concentration–time functions, even if the rate coefficients are constant. In systems

with changing temperature and pressure, the temperature dependence (Arrhenius

equation, modified Arrhenius equation; see Sect. 2.2.1) and pressure dependence

(e.g. equations of Lindemann and Troe; see Sect. 2.2.2) of the rate coefficients have

to be calculated, and these are also nonlinear functions of the parameters. There-

fore, it might be expected that the simulated outputs of reaction kinetic models are

usually nonlinear functions of the parameter values.

However, there are other features of the kinetic system of differential equations

that may simplify the situation. The application of kinetic simplification principles

(see Sect. 2.3) may result in the situation where it is not that the individual

parameters have an influence on the solution, but only some combinations of

these parameters. A simple example occurs when species B is a QSS-species within

the A!B!C reaction system, and its concentration depends only on ratio k1/k2.
Also, when the production rate of species C is calculated using the pre-equilibrium

approximation (see Sect. 2.3.2) within reaction system AÆB!C, it depends only

on equilibrium constant K¼ k1/k2 and does not depend on the individual values of

k1 and k2.
In addition to these simple examples, several studies have suggested that by

changing a number of input parameters simultaneously according to certain ratios

may result in almost identical simulation results for all output variables of kinetic

models over quite wide ranges of variable concentrations. Given the nonlinearity of

the models, this is perhaps surprising and implies that a highly nonlinear chemical

kinetic model can behave linearly for some parameter changes. This feature, which

occurs for some reaction kinetic models, is linked to the existence of relationships

between the local sensitivity functions. Rabitz et al. (Reuven et al. 1986; Smooke

et al. 1988; Rabitz and Smooke 1988; Vajda et al. 1990; Vajda and Rabitz 1992;

Mishra et al. 1994) calculated the sensitivity–distance functions of stationary flame

models and discovered several interesting relationships. Zsély et al. (Zsély

et al. 2003; Zsély and Turányi 2003; Zádor et al. 2004; Zsély et al. 2005; Lovrics

et al. 2008) detected the similarities of sensitivity functions in other chemical

systems and provided an interpretation of these features.

The similarity of sensitivity functions has been detected in one-dimensional

stationary flames (where the independent variable is distance) and in spatially

homogeneous systems (where the independent variable is time). To provide a
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unified notation of these two types of systems, the independent variable (distance or

time) will be represented by z. The local sensitivity function is given as follows:

sij zð Þ ¼ ∂yi
∂xj

: ð8:1Þ

Similarities of the sensitivity functions can then be sorted into the following

categories:

1. Local similarity
The ratio

λij zð Þ ¼ sik zð Þ
sjk zð Þ ; ð8:2Þ

changes with independent variable z (time or distance); λij depends on the selection
of model outputs Yi and Yj, but it is independent of which parameter xk is changed.

2. Scaling law
The equation

dYi=dzð Þ
dYj=dz
� � ¼ sik zð Þ

sjk zð Þ ; ð8:3Þ

is valid for all parameters xk. Since the derivatives of concentrations with respect to
z are always independent of the parameters, the local similarity condition is always

valid if the scaling law is valid.

3. Global similarity
The ratio

μkm ¼ sik zð Þ
sim zð Þ ; ð8:4Þ

does not depend on the independent variable z (time or distance) in the interval

(z1, z2), and it is also independent of the selection of the parameter.

An example of a reaction kinetic model that exhibits all the laws described above

is the adiabatic explosion of hydrogen–air mixtures (Zsély et al. 2003). Figures 8.1,

8.2 and 8.3 are related to the adiabatic explosion of stoichiometric hydrogen–air

mixtures with an initial temperature of T0¼ 800 K and a constant pressure of p¼ 1

atm.
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8.2 The Origins of Local Similarity and Scaling

Relationships

In this section, we show that the scaling relation emerges in situations where there is a

1D manifold in the space of variables and where changing a parameter may change

the speed of the trajectory along the manifold, but negligibly shifts its location.

The 1D manifold can be defined (at least locally) by a function Fi that gives the

values of all variables in the system as a function of an arbitrary variable Y1:

Yi z; xð Þ ¼ Fi Y1 z; xð Þð Þ; ð8:5Þ

where z is the independent variable (time or distance). The particular case of slow

manifolds was discussed in Sect. 6.5. If the system of differential equations is

Fig. 8.1 An example of the local similarity of sensitivity functions. Figure (a) shows the local

sensitivity coefficients belonging to the calculated H-atom concentration as a function of T, where
the investigated parameters are Arrhenius parameters A of the reaction steps. Figure (b) shows

similar results belonging to the sensitivity functions of the H2O concentrations. In figures (a) and

(b), the two largest sensitivity functions are indicated by red dashed and green dotted lines.
Figure (c) presents the ratios of the sensitivity functions belonging to the same pair of variables,

but to different parameters (e.g. the red dashed “a” curve is divided by the red dashed “b” curve,

the green dotted “a” curve is divided by the green dotted “b” curve, etc.). It is well visible that all
ratios of these sensitivity functions coincide [see Eq. (8.2)]. Adapted with permission from Zsély

et al. (2003). Copyright (2003) American Chemical Society
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autonomous (which is valid for most chemical kinetic systems), then the function Fi

does not depend directly on z. If we assume that the manifold is not shifted as a

result of changing a parameter, then we may claim that Fi does not depend directly

on the parameter vector x. If we differentiate Eq. (8.5) first with respect to z and
then independently with respect topk, we get

Fig. 8.2 An example of a scaling law in a model of the adiabatic explosion of hydrogen–air

mixtures. Figure (a) shows the ratios of sensitivity functions belonging to the concentration of OH

and temperature as a function of temperature. All ratios coincide; therefore, local similarity is

valid. Figure (b) shows the ratio of the production rate of OH and the time derivative of

temperature, also as a function of temperature. The two curves coincide; therefore, the scaling

relation is also valid [see Eq. (8.3)]. Adapted with permission from Zsély et al. (2003). Copyright

(2003) American Chemical Society

Fig. 8.3 An example of the global similarity of sensitivity functions. Figure (a) shows the

sensitivity functions of the H2O concentrations, when the investigated parameters are Arrhenius

parameters A of the reaction steps. Figure (b) shows that if each sensitivity function is divided by

the sensitivity function having the highest maximum, then the ratios will be different from each

other, but these ratios are constant across a wide range of the independent variable, which means

that the global similarity criterion is valid [see Eq. (8.4)]. Adapted with permission from Zsély

et al. (2003). Copyright (2003) American Chemical Society
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∂Yi z; xð Þ
∂z

¼ ∂Fi

∂Y1

∂Y1 z; xð Þ
∂z

; ð8:6Þ

∂Yi z; xð Þ
∂xk

¼ ∂Fi

∂Y1

∂Y1 z; xð Þ
∂xk

: ð8:7Þ

A comparison of the two equations yields

∂Yi zð Þ
∂xk

¼ ∂Y1 zð Þ
∂xk

∂Yi

∂z
∂Y1

∂z

� ��1

: ð8:8Þ

This equation is valid for both time-dependent spatially homogeneous and spatially

1D stationary systems. Equation (8.8) leads to the emergence of the scaling law,

since by applying it to Yj, it can be easily converted to Eq. (8.3). Equation (8.3) does
not contain variable Y1, which emphasises that the selection of variable Y1 is

arbitrary. Equation (8.3) also means that any row of the sensitivity matrix can be

obtained by multiplying any other row containing nonzero values with a scalar.

This means that the rank of the sensitivity matrix is one, if the state of the system is

close to a one-dimensional manifold. This relation makes a close connection

between the dimension of the manifold of the dynamical systems and the rank of

the sensitivity matrices.

It can be demonstrated in a similar way that the dimension of the slow manifold

sets an upper limit on the rank of the sensitivity matrix. An n-dimensional manifold

can be parameterised with n variables:

Yi z; xð Þ ¼ Fi Y1 z; xð Þ,Y2 z; xð Þ, . . . ,Yn z; xð Þð Þ: ð8:9Þ

Differentiating both sides of the equation with respect to pj gives

∂Yi

∂xj
¼ ∂Fi

∂Y1

� �
∂Y1

∂xj

� �
þ ∂Fi

∂Y2

� �
∂Y2

∂xj

� �
þ � � � þ ∂Fi

∂Yn

� �
∂Yn

∂xj

� �
: ð8:10Þ

The multiplying factors ∂Fi/∂Y1, ∂Fi/∂Y2, . . . are identical for each parameter xj;
therefore, Eq. (8.10) can be written in the following vector equation form:

si ¼ λi1s1 þ λi2s2 þ � � � þ λinsn: ð8:11Þ

This means that if the trajectory of a simulation is close to an n-dimensional

manifold, and the perturbation of the parameters negligibly shifts the location of

the manifold, then the rank of the local sensitivity matrix is not higher than n. Even
if the rank of the sensitivity matrix n is lower than the number of species, it does not

mean that local similarity is valid for any pairs of the sensitivity vectors. The other

extreme case is when all sensitivity vectors are locally similar except for n vectors.
The relationships among the dimension of the slow manifold, the rank of the

sensitivity matrix, the local similarity and the scaling relations can also be
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demonstrated using geometric reasoning. Figure 8.4a shows a schematic drawing of

a 1D manifold in a closed, adiabatic system. The full space of variables of a

chemical reaction system is usually multidimensional. For example, that of a

homogeneous adiabatic explosion of hydrogen–air mixtures is 10 dimensional,

since the independent variables are the concentrations of nine species and temper-

ature. The variable space in Fig. 8.4a is depicted in three dimensions for ease of

visualisation. Point C denotes the actual state of the system, and point E0 denotes

the equilibrium point belonging to a specific enthalpy h0. Point C moves in the

space of variables with velocity _Y. The projections of this velocity vector onto the

axes are equal to the production rates of the species or the time derivative of

temperature. It is clear that the direction of the velocity vector is equal to the

direction of the tangent of the slow manifold at point C. We assume that a small

change of parameter xk does not change the location of the slow manifold in the

space of variables, but changes the location of the system along the manifold. This

means that after time t, the system will not be at point C, but at a nearby point C0.

The direction of vector CC
0!
is along the tangent of the manifold at point C and is

identical for the perturbation of any parameter xk. The direction of this vector is

identical to the direction of all sensitivity vectors ∂Y/∂xk, and the projections of

this vector onto the axes are the sensitivity coefficients (see Fig. 8.4b). If the

directions of two vectors are identical, then the ratios of their projections onto the

axes are identical, even if the lengths of the vectors are different. This explains the

scaling law and also why any sensitivity vector can be obtained by multiplying any

other nonzero sensitivity vector belonging to a different parameter by an appropri-

ate scalar.

For the simulation of adiabatic systems, the enthalpy of the system is always

constant, even if the parameters of the kinetic model are changed. On the other

hand, when changing the kinetic parameters for the simulation of fixed temperature

profile systems, the calculated enthalpy of the system may change. At time t, we
denote the specific enthalpy for the adiabatic model and the model with a fixed

temperature profile as h0 and that for the model with a fixed temperature profile but

modified parameters as h1. At time t, the modified system is at point C0, that is, near
to the 1D manifold belonging to specific enthalpy h1. On changing another param-

eter, the system will be at point C00, near to the 1D manifold belonging to specific

enthalpy h2 (see Fig. 8.4c). It is clear that the scaling relation will not emerge in

calculations that apply a fixed temperature profile.

If the dimension of the manifold is two, then any row of the sensitivity matrix

can be obtained as a linear combination of two independent sensitivity vectors:

si tð Þ ¼ λij tð Þsj tð Þ þ λil tð Þsl tð Þ: ð8:12Þ

This means that two independent sensitivity vectors determine the tangent plane of

the manifold belonging to point C (see Fig. 8.4d).
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Fig. 8.4 (a) A one-dimensional manifold (solid curve) belonging to specific enthalpy h0 in the

space of variables. E0 is the equilibrium point and point C shows the actual state of the system; its

velocity is _Y. Projections of the velocity vector on the axes are the right-hand sides of the system of

differential equations (in reaction kinetics, these are the production rates). (b) Points C and C0

represent the state of the system after a given elapsed time since the beginning of the simulation

using the original set of parameters and when the value of parameter xk has been changed,

respectively. Since the system may evolve only along the 1D manifold, the directions of vectors

_Y, CC
0!
and ∂Y/∂xk are identical, and hence, the ratios of the coordinates of these vectors are

identical for any parameter xk and for any pair of variables Yi and Yj. (c) One-dimensional

manifolds, belonging to different specific enthalpies h0, h1 and h2. If a parameter change includes

the change of the specific enthalpies of the reacting mixture, then the directions of vectors ∂Y/∂xk
will be different for the different parameters. (d) A 2D manifold belonging to specific enthalpy h0.

Point C represents the actual state of the system, and _Y is its velocity. If two parameters are

changed without changing the specific enthalpy of the system, then after some time, the state of the

system can be represented by points C0 and C00. In this case, the direction of the velocity vector _Y
does not coincide with the directions of the sensitivity vectors, but all the three vectors are on the

tangent plane of the 2D manifold. Adapted with permission from Zsély et al. (2003). Copyright

(2003) American Chemical Society
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The relation between the dimension of the manifold and the rank of the sensi-

tivity matrix was also discovered later by Ren and Pope (2006). They suggested that

the minimum dimension of the attracting manifold can be determined by the

investigation of the sensitivity matrices.

If local similarity exists among the sensitivity vectors, then any sensitivity vector

can be obtained by multiplying another nonzero sensitivity vector with a nonzero

scalar:

si tð Þ ¼ λij tð Þsj tð Þ; ð8:13Þ

where si(t) and sj(t) are the sensitivity vectors at a given time. This means that local

similarity implies the correlation of the elements of vectors si(t) and sj(t). The
correlation of the elements of two vectors can be calculated (Zádor et al. 2004) by

the following equation:

eρxy ¼ xy

xk k yk k; ð8:14Þ

where kxk and kyk are the Euclidean lengths of the two vectors. The calculated

value eρxy is the cosine of the angle θxy between the two vectors:

eρxy ¼ cos θxy ð8:15Þ

Thus, �1 � eρ � þ1, as expected from a correlation function.

The correlation function eρ defined by Eq. (8.14) is a good measure (Zádor

et al. 2004) of the similarity of the sensitivity functions. Two sensitivity functions

are locally similar, if they point in the same direction (or exactly the opposite

direction) in the space of parameters. In this case, the angle of the two vectors is

0� (or 180�) corresponding to the case ofeρij ¼ þ1 (oreρij ¼ �1). If the value ofeρij is
not close to �1, then the sensitivity vectors are not locally similar.

The advantage of the correlation function (8.14) is that it characterises the local

similarity of two sensitivity functions with a single number and it allows the

investigation of the extent of local similarity as a function of the independent

variable.

Zádor et al. (2004) investigated the local similarity of the sensitivity functions in

a model of the adiabatic explosion of hydrogen–air mixtures at several equivalence

ratios. The correlation of the sensitivity vector of H2O with all other sensitivity

vectors [belonging to temperature (T ) and the concentrations of species H, O2,

H2O2, H, O, OH, HO2 and N2] was studied. The results, presented in Fig. 8.5, show

the almost perfect local similarity of the sensitivity functions.
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8.3 The Origin of Global Similarity

It was shown in Sect. 5.2 that the sensitivity functions can also be calculated via the

Green function:

∂Y
∂xk

tð Þ ¼
ð t

0

G t; t0ð Þ ∂f
∂xk

t0ð Þ dt0: ð8:16Þ

Let us calculate the sensitivity of variablesY in time intervals (0, t1) and (t1, t) using
the relationship G(t, t0)¼G(t, t1)G(t1, t

0):

∂Y
∂xk

tð Þ ¼
ðt1
0

G t; t1ð ÞG t1; t
0ð Þ ∂f
∂xk

t0ð Þdt0 þ
ð t

t1

G t; t1ð ÞG t1; t
0ð Þ ∂f
∂xk

t0ð Þdt0: ð8:17Þ

The local sensitivity matrix can be calculated using the following initial value

problem [see Eq. (5.7)]:

_S ¼ JSþ F, S 0ð Þ ¼ 0; ð8:18Þ

where J¼∂f/∂Y is the Jacobian and F¼∂f/∂x. Assume that ∂f/∂xk� 0 in the time

interval (t1, t), which means that this equation is pseudo-homogeneous in this time

interval, that is, the second term on the right-hand side of Eq. (8.18) can be

neglected compared to the first one. As a consequence, the second term on the

right-hand side of Eq. (8.17) is also negligible compared to the first one. The matrix

G(t, t1) is not a function of variable t0; therefore, for any t> t1

Fig. 8.5 Correlation

between the sensitivity

vector of the concentration

of H2O and the sensitivity

vectors of the other

variables as a function of

temperature in a model of

the adiabatic explosion of

stoichiometric hydrogen–

air mixtures (Zádor

et al. 2004)
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∂Y
∂xk

tð Þ ¼ G t; t1ð Þ
ðt1
0

G t1; t
0ð Þ ∂f
∂xk

t0ð Þdt0 ¼ G t; t1ð Þ ∂Y
∂xk

t1ð Þ: ð8:19Þ

The sensitivity of variable Yi with respect to parameter xk can be calculated in the

following way:

∂Yi

∂xk
tð Þ ¼

XN
j¼1

gij t; t1ð Þ∂Yj

∂xk
t1ð Þ: ð8:20Þ

If the sensitivity functions are locally similar at time t1, then the ratios of any two

sensitivity coefficients are independent of the selection of the modified parameter.

Let us select another variable Yh and substitute Eq. (8.2) that defines the local

similarity into Eq. (8.20):

∂Yi

∂xk
tð Þ ¼ ∂Yh

∂xk
t1ð Þ

XN
j¼1

gij t; t1ð Þλjh t1ð Þ; ð8:21Þ

∂Yi

∂xk
tð Þ

� �
=

∂Yh

∂xk
t1ð Þ

� �
¼

XN
j¼1

gij t; t1ð Þλjh t1ð Þ: ð8:22Þ

A similar equation can be obtained for parameter xm:

∂Yi

∂xm
tð Þ

� �
=

∂Yh

∂xm
t1ð Þ

� �
¼

XN
j¼1

gij t; t1ð Þλjh t1ð Þ: ð8:23Þ

The right-hand sides of Eqs. (8.22) and (8.23) are identical, and the combination of

these two equations yields

∂Yi

∂xk
tð Þ

∂Yi

∂xm
tð Þ ¼

∂Yh

∂xk
t1ð Þ

∂Yh

∂xm
t1ð Þ ¼ μkm: ð8:24Þ

Equation (8.24) shows that the ratio of two sensitivity coefficients at any time

t> t1 is independent of the selection of the model result Yi and time. Therefore, the

corresponding sensitivity functions are globally similar. The meaning of Eqs. (8.16)

to (8.24) can be summarised as follows. If the sensitivity differential equations are

pseudo-homogeneous in the time interval (t1, t2) and the sensitivity coefficients are

locally similar at time t1, then the sensitivity functions are globally similar in the

time interval (t1, t2). The ratio μkm is independent of the selection of model output Yi
and therefore Eq. (8.21) implies the presence of global and local similarity at the

same time.
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The proof above is based on the derivation of Vajda and Rabitz (1992), which

was generalised by Zsély et al. (2003) for an arbitrary number of variables. The

main difference between the two derivations is that Vajda and Rabitz assumed that

one of the variables is dominant. If variable Yh is dominant, then

gih t; t1ð Þ∂Yh

∂xk
t1ð Þ �

XNþ1

j¼1, j6¼h

gij t; t1ð Þ∂Yj

∂xk
t1ð Þ: ð8:25Þ

This means that all terms but the one belonging to the dominant variable can be

neglected in Eq. (8.16):

∂Yi

∂xk
tð Þ ¼ gih t; t1ð Þ∂Yh

∂xk
t1ð Þ: ð8:26Þ

If the derivation is also applied for parameter xm, then the combination of the two

equations yields again Eq. (8.21):

∂Yi

∂xk
tð Þ

∂Yi

∂xm
tð Þ ¼

∂Yh

∂xk
t1ð Þ

∂Yh

∂xm
t1ð Þ ¼ μkm: ð8:27Þ

Thus, the result of this derivation is identical to the previous one.

According to the reasoning in Zsély et al. (2003), if in the time interval (t1, t2),
the system of sensitivity differential equations is pseudo-homogeneous and local

similarity is present, then the sensitivity functions are globally similar. According

to the derivation of Vajda and Rabitz (1992), if in the time interval (t1, t2) the system
of sensitivity differential equations is pseudo-homogeneous and one of the vari-

ables is dominant, then the sensitivity functions are locally and globally similar.

Vajda and Rabitz considered that temperature is a dominant variable in ignition

systems. Zsély et al. (2003) investigated the reason behind the global similarity of

sensitivity functions for simulations of the adiabatic explosion of hydrogen–air

mixtures. Figure 8.6 shows that in the region of global similarity, the inhomo-

geneous term of the sensitivity differential equation is negligible compared to the

homogeneous term. That means that the sensitivity system of differential equations

(8.18) is pseudo-homogeneous. They also demonstrated that in this system, none of

the variables are dominant.

Derivation of the condition of global similarity for spatially one-dimensional,

stationary systems is similar, but not identical. Due to causality, in temporal

systems, parameter changes affect only later events. In 1D reaction–diffusion

systems, a parameter change may modify the concentrations in both spatial direc-

tions. The adaption of the derivation above to reaction–diffusion systems is

discussed in the article of Zsély et al. (2003).
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8.4 Similarity of the Sensitivity Functions of Biological

Models

Rabitz et al. in their first articles assumed (Reuven et al. 1986; Smooke et al. 1988;

Rabitz and Smooke 1988; Vajda et al. 1990; Vajda and Rabitz 1992; Mishra

et al. 1994) that the similarity of sensitivity functions is characteristic for flame

models. Zsély et al. (Zsély and Turányi 2003; Zsély et al. 2003, 2005; Zádor

et al. 2004) also found the similarity of sensitivity functions for models of homo-

geneous explosions for several chemical systems. More recently, the similarity of

sensitivity functions was detected in several biological models. Lovrics

et al. (2008), for example, found such similarities in the Chen et al. (2000) model

of the cell cycle of budding yeast. Danis and Turányi (2011) found such similarities

in the Rao et al. (2004) model of the chemotaxis of bacteria E. coli and B. subtilis.
In the following, the results of Lovrics et al. will be discussed in detail.

The cell cycle of budding yeast (Saccharomyces cerevisiae) is the best under-

stood among the eukaryotes. The main events during a cell cycle are the duplication

of the DNA content, the division of the nucleus, the migration of the nuclei towards

opposite corners of the cell and the splitting of the cell. The cell cycle is a highly

regulated process, since one event (like the duplication of the DNA) has to end

before the start of the next process (e.g. spindle formation). The Cdk (cyclin-

dependent protein kinase) molecules regulate DNA synthesis, bud formation, the

Fig. 8.6 The inhomogeneous term on the right-hand side of differential equation (8.18) is much

smaller than the homogeneous term between temperatures 900 K and 2,000 K in a model of the

adiabatic explosion of hydrogen–air mixtures. The ratio of these two terms is near zero in this

region of temperature. Adapted with permission from Zsély et al. (2003). Copyright (2003)

American Chemical Society
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separation of the nucleus and the separation of the cells. At first, the new cell is just

growing (phase G1), and the next phase is DNA synthesis (phase S/G2). Finally,

two identical nuclei and then two new cells are formed (mitosis, phase M).

The Chen model of the budding yeast cell cycle (Chen et al. 2000) consists of a

system of ordinary differential equations with 13 variables and coupled algebraic

equations. One of the variables is the mass of the cell that increases exponentially

between two cell divisions. Three of the variables define the state of the cell, whilst

the other nine variables are the concentrations of nine proteins. The Chen model is

basically a reaction kinetic model, since the core of the model describes the

synthesis and interactions of proteins. The model has 73 parameters.

Lovrics et al. (2006) carried out a timescale and dimension analysis of the Chen

model as presented in Fig. 6.8. The cell mass continuously grows, and therefore,

one of the real parts of the eigenvalues Re(λi) of the Jacobian is always positive. The
other Re(λi) eigenvalues are usually negative, except for during certain time

domains of the cell cycle. If at least one of the other Re(λi) eigenvalues is positive
(the time domain is indicated by the grey shading in Fig. 6.8), then the dynamical

dimension of the model is increasing; otherwise, it is decreasing. Lovrics

et al. (2006) gave a detailed explanation as to the biological background of these

grey excitation periods.

Timescale and dimension analysis revealed that during several time domains of

the cell cycle, the dynamic dimension of the model is low and that during the cell

cycle excitation and relaxation periods, it alternates between higher and lower

dimensions. According to Sect. 8.3, these two features together may trigger the

global similarity of the sensitivity functions. Therefore, Lovrics et al. investigated

the sensitivity functions of the Chen model (2008) .

Figure 8.7 shows the sensitivity functions of the concentration of protein Cln2
during a full cycle. Similar functions were obtained for the sensitivity functions of

all other variables. It is clear that the sensitivity functions of Cln2 usually increase

in the excitation (grey) periods. The reason is that a parameter change after a certain

time causes a shift in the values of variables, and this shift becomes amplified, thus

increasing the sensitivity functions. In the relaxation (white) periods, all Re(λi)
eigenvalues are negative; therefore, the difference between the original and the

perturbed solution decreases and the sensitivity functions tend to zero.

Figure 8.7 demonstrates that the shapes of some sensitivity functions are similar

to those of others. Obviously, several groups of sensitivity functions can be

separated so that each group contains functions of a similar shape. Within each

group, any sensitivity function can be obtained by multiplying any other function

by a positive or negative scalar, that is, the sensitivity functions are globally similar.

The sensitivity functions were sorted in the following way. First, each function

was divided by its maximum with the result that similar functions almost coincided.

Figure 8.8 shows such normalised sensitivity functions for the species Cln2. It is
clear that most of the functions follow either the shape indicated by the solid line

(“shape A”) or that indicated by the dotted line (“shape B”). For the model

simulating the explosion of hydrogen–air mixtures, all sensitivity functions were
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Fig. 8.7 Sensitivity functions of enzyme Cln2 (Lovrics et al. 2008). The excitation periods are

denoted by grey shading. Time zero is the time of cell division. The sensitivity functions are

labelled with the names of the parameters; these parameter names are identified in the article of

Chen et al. (2000)

Fig. 8.8 Sensitivity functions of enzyme Cln2 normalised to unit maximum. The thick solid line
indicates 10 coinciding functions having shape A, whilst the dotted line shows 38 coinciding

functions having shape B. The shapes of other 9 sensitivity functions (thin solid line) are not

similar to either shapes A or B (Lovrics et al. 2008)
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globally similar. On the other hand, for the cell cycle model, most of the sensitivity

functions can be sorted into one of the two groups, but several functions do not

follow either of these two shapes.

Similar sorting of all 73 sensitivity functions belonging to each of the 13 vari-

ables was automated using cluster analysis. The shapes of the sensitivity functions

were investigated between two cell divisions, that is, in the time interval [t1, t2]. As
discussed above, the sensitivity functions were normalised first to unit maximum:

s
_
ik tð Þ ¼ sik tð Þ=max sik tð Þj j: ð8:28Þ

Next, the integral of the square of the difference of two sensitivity functions was

calculated during the interval [t1, t2]. Mathematically speaking, the L2 distance of

the normalised sensitivity functions was calculated:

Ci k; lð Þ ¼
ðt2
t1

s
_
ik tð Þ � s

_
il tð Þ

� �2

dt; ð8:29Þ

Ci(k, l ) is a non-negative value that shows the distance of the shapes of two

sensitivity functions belonging to variable i and parameters k and l. If there is a

perfect global similarity between the two sensitivity functions, then Ci(k, l )¼ 0.

Non-similar sensitivity functions are related to large Ci(k, l ) values. Values of

Ci(k, l ) can be arranged into a matrix Ci, and this distance matrix can be investi-

gated using cluster analysis.

Cluster analysis (Everitt et al. 2001) is a tool for grouping various objects on the
basis of their distance in a multidimensional space. In chemistry, cluster analysis is

used for the interpretation of analytical results. For example, in food or drink

samples, the concentrations of many chemicals are measured, and the question is

which of the samples are similar on the basis of the analytical results. The first step

is always the transformation of the raw measurement data into a distance matrix.

The general features of a distance matrix are that the diagonal elements are zero

(everything is at zero distance from itself), all matrix elements are non-negative

(negative distance cannot be interpreted) and the matrix is symmetrical (to and from

distances are identical). It is clear that the distance matrix defined by Eq. (8.29)

fulfils these requirements.

One of the cluster analysis methods is the agglomerative method (Everitt

et al. 2001). Using this approach, a distance threshold parameter is continuously

increased. At the first step, the two nearest objects are identified, and at this stage,

only their distance is below the threshold. These two objects are united and the

location of the unified object is the arithmetic mean of the coordinates. By increas-

ing the threshold further and further, objects are united until only one object

remains. The similarity of the objects is indicated by the order of the aggregations.
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Figure 8.9 shows the result of cluster analysis for the grouping of sensitivity

functions of the enzyme Sic1T. The two main groups are labelled as 30 and 15. The

cluster analysis also identifies two groups (labelled X) containing functions that are

not similar to the of groups 30 or 15, but show some qualitative similarity to these

functions. The fifth group found contains constant zero sensitivity functions (group

0). The corresponding parameters in this group therefore have no effect on the

calculated concentration of Sic1T.
The local similarity of the sensitivity functions was also investigated in this

study. Not all parameters exhibited local similarity, but a local similarity group did

exist that was composed of parameters kasbf, kisbf0, esbfn3, BCK0, CLN3MAX, Dn3
and Jn3. The correlation between the sensitivity vectors of all species with those of
species Cln2 was investigated using Eq. (8.14), where only parameters in the above

group were included. Figure 8.10 shows that the calculated cos θ is close to �1 for

all pairs of sensitivity vectors, confirming the presence of local similarity.
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Fig. 8.9 Grouping of the sensitivity functions of the enzyme Sic1T using cluster analysis. The two

main shapes are labelled with 30 and 15; the shape of many sensitivity functions is not globally

similar (label X) to any of these. Sensitivity functions with label 0 are constantly zero
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8.5 The Importance of the Similarity of Sensitivity

Functions

At the start of the chapter, we suggested that in nonlinear models, we might expect

that each parameter plays a different role in driving the predicted outputs. However,

we have demonstrated through examples that there are many cases when sensitivity

functions are globally similar. A consequence of the global similarity of sensitivity

functions is that the effect of changing one of several parameters can be

counterbalanced by changing a different sensitive parameter. This means that by

modifying a second parameter, the temporal (or spatial) profile of all variables can

be shifted back to the original trajectory. If the global similarity relation is valid for

the sensitivity functions of only some of the variables, then only these concentration

profiles can be shifted back by changing the appropriate parameters.

Zsély et al. (2003) performed numerical experiments to investigate this conse-

quence of global similarity. Initially the concentration profiles were calculated for

simulations of the adiabatic explosion of a stoichiometric hydrogen–air mixture

using a nominal parameter set based on the values recommended by Baulch

et al. (2005). Local sensitivity analysis was then used to select those parameters

with the largest influence on the simulated species concentrations based on a study

of A-factors for the reaction rate coefficients. Five reactions were selected as

dominating the influence on the calculated concentrations. At the next stage, the

Fig. 8.10 The correlation of the sensitivity vector of enzyme Cln2 with the sensitivity vectors of

all other variables of the cell cycle model . The investigated parameters were the following: kasbf,
kisbf0, esbfn3, BCK0, CLN3MAX, Dn3 and Jn3. It is clear that cos θ is close to �1 during most of

the time period of the simulated cycle and for most variables, indicating that these sensitivity

vectors are locally similar (Lovrics et al. 2008)
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A-factors of four reaction steps (O2 +H+M!HO2+M, H+HO2!H2+O2,

O2 +H!OH+O, H2O+H!H2+OH) were increased by 1 % and the

concentration–time curves were recalculated. When the A-factor of the fifth reac-

tion step (H +HO2! 2OH) was also increased by 0.5 %, then the concentration–

time profiles of all species returned to the original trajectories. Figure 8.11 shows

the concentration profiles of species H and H2O obtained using the original mecha-

nism, the modified mechanism, and after tuning the A-factor of the fifth reaction.

Lovrics et al. (2008) carried out a similar numerical experiment for the cell cycle

model discussed above . The calculations indicated that the sensitivity functions of

the parameters kisbf0 and BCK0 are globally similar for all variables. The ratio of

the maxima of the two sensitivity functions was �1.10/1.22. Both were important

parameters, i.e. a small change of any of the two, significantly changed the

concentration–time curves. When parameter kisbf0 was increased by 10 %, then

the calculated concentration profile of species Cln2 changed significantly. Subse-

quently the value of BCK0 was increased by 22 %, resulting in almost identical

Cln2 curves when compared to the original model. As expected, all concentration–

time curves were almost identical after the dual parameter changes (see Figs. 8.12

and 8.13).

There are important implications of this type of behaviour for the development

of models. The main aim of empirical models is the accurate description of

experimental observations. The parameters of these models may not have any

physical meaning and have usually been derived by fitting to limited sets of

experimental observations. If the sensitivity functions of such a model are globally

similar, this means that several parameter sets may give an equivalent description of

the same experimental data. If the model is to be applied only under conditions

where the original fitting was achieved, then this may not present too many

problems. However, if the aim is to develop a model which can be extrapolated

Fig. 8.11 Calculated mass fraction–time profiles of species H and H2O for the simulation of the

adiabatic explosion of hydrogen–air mixtures. Solid line: profiles calculated using the original

parameter set. Dashed line: calculated concentrations when the rate parameters of four important

reactions are changed. Dotted line, usually not visible under the solid line: calculated concentra-

tions when the rate parameter of a fifth reaction is also changed in an optimal way. Adapted with

permission from Zsély et al. (2003). Copyright (2003) American Chemical Society
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to conditions where no experimental data exists, then problems could arise. There-

fore, the parameter values that have been fitted or tuned under limited sets of

conditions may not be able to be extrapolated to new situations. Ideally for a

Fig. 8.12 Calculated concentration profiles of protein Cln2 in the original model (solid line),
when parameter kisbf0 is increased by 10 % (	signs) and when parameters kisbf0 and BCK0 are

increased simultaneously by 10 % and 22 %, respectively (dots) (Lovrics et al. 2008)

Fig. 8.13 The simulated concentration–time curves of all proteins during a cell cycle (solid lines)
and the curves simulated by a modified model (	legends) when parameters kisbf0 and BCK0 were
increased by 10 % and 22 %, respectively (Lovrics et al. 2008)

332 8 Similarity of Sensitivity Functions



model to be general, it should be able to be extrapolated, and therefore, more

physically based approaches to model development are becoming common as

opposed to purely empirical models.

Physical models contain parameters that are developed at a more fundamental

level and are thought to have “real” physical meaning. They are often derived from

different sources, e.g. experimental measurements that attempt to isolate a single

parameter, or theoretical calculations (see Chap. 3). A physical model is usually

considered to be “validated” if the model reproduces all experimental data within

their uncertainty limits across a wide range of values of the independent variables.

Assuming there is perfect agreement between the model simulations and experi-

mental data, we may be tempted to interpret the parameters of the “validated”

model as physically correct values. However, the results of the numerical experi-

ments above show that if one or some of the parameter values in a physical model

are incorrect, this may be disguised by setting other parameters to incorrect values.

If the errors are perfectly balanced, the model may still reproduce all experimental

data quite well. Therefore, it is dangerous to determine rate coefficients within a

complex mechanism, by fitting one or several rate parameters to experimental data,

whilst fixing the other parameters within the model at their literature values, when

in fact these fixed parameters may be uncertain to varying degrees (see Sect. 5.6.1).

Small inaccuracies in the fixed values may result in large deviations in the fitted

values, whilst the model still describes the experimental data well. This could be

one reason why complex chemical kinetic models suggested by different authors

provide descriptions of experimental data with similar accuracy, even though the

applied rate coefficients are very different. Parameters of globally similar sensiti-

vity functions are in a kind of cooperative relationship, since if the value of one

parameter is changed, then its effect can be compensated by an appropriate change

in the other parameter. The identification of such cooperative parameters promotes

a better understanding of the model.

The comments above are valid for all types of models. However, there are some

aspects of the global similarity of sensitivity functions that are especially interesting

and important for biological models. Gutenkunst et al. (2007) highlighted that many

systems biology models have sensitivity coefficients of similar magnitude and

fitting all these parameters simultaneously to the experimental data results in

unrealistically large parameter uncertainties. They investigated 17 published

models and called such sensitivities as “universally sloppy parameter sensitivities”.

Gutenkunst et al. identified that the main reason for this behaviour is that only

parameter groups, and not the individual parameters, influence the model solution

in most systems biology models. Note that such parameter groups can be a result of

global similarity and that these parameter groups can be identified by the principal

component analysis of the local sensitivity matrix (see Sect. 5.3).

A general feature of living organisms is that the error of a part of an organism

can often be compensated for by another part. Evolution has promoted the emer-

gence of such features, and hence, this error-correcting feature of living organisms

is general and is present in the anatomy of several organs (Wagner 2013). Also,

most regulating mechanisms contain parallel pathways. In this way, a failure of one
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pathway can be compensated for by a backup system. There are also similar parallel

pathways in cell cycle regulation, and if one route is eliminated by a mutation, the

other pathways may take over its role. However, this may not account for all error

correction mechanisms.

The global similarity of sensitivity functions indicates the possibility for a novel

error correction mechanism. A change of activity of an important enzyme can be

fully compensated for by the change of activity of another enzyme, thereby

restoring the concentration profiles of important species at all times. This error

correction mechanism can be used not only once, but unlimited times, since later

there are further possibilities for small adjustments. This feature is quantitatively

different to those of other error correction mechanisms when, e.g., backup parallel

pathways are used. The groups of enzymes that can be partners in this process can

be identified by the inspection of the sensitivity functions of detailed chemical

kinetics (systems biology) models of biological systems with implications for the

treatment of disease.

The cause of some diseases is that the parameters of certain chemical reactions

become different from those parameters which are characteristic for a healthy body.

A possible aim of treatment is to restore the original parameters using medical

drugs, but this can be difficult in some cases. However, if parameters which are

globally similar to the original parameters are changed using drug therapy, then

healthy functioning could be restored in a different way. This second option offers

wider possibilities, and the rates of other biological processes can be influenced in

an easier way. Therefore, an emerging trend in the pharmaceutical industry is to

apply drug therapies to fix not the direct cause of the disease, but to restore healthy

functioning in an indirect way. As more and more detailed models are developed for

biological systems, the investigation of similarities in the sensitivity functions may

provide a theoretical background for this new approach to the development of

medical drugs.

The similarity of sensitivity functions may also have a role in genetic error

correction. Let us assume that in a biochemical regulatory system, the protein

concentration profiles have been refined by evolution and are nearly ideal for a

given task. However, errors may occur during DNA replication, for example,

resulting in lower enzyme activity. This error can either be lethal or can result in

damaged functioning of the cell in the surviving organism. In the latter case, a

further mutation may correct the previous error. It is very unlikely that the next

mutation exactly corrects the functioning of the same enzyme. However, if the

sensitivity functions of the regulatory system are globally similar, then within a

group of enzymes, the activity change of any other enzyme may correct the

functioning of the regulation. If a second mutation of this type yields a fit cell, it

is evolutionary advantageous, and therefore, such a correction may remain

permanent.

It is clear from these discussions that the development of detailed models of

biochemical processes and the investigation of their sensitivity relationships may

have important applications in improving our understanding of disease and in

developing treatments. Not surprisingly, therefore, a great detail of effort is being
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invested into the development of systems biology models with increasing levels of

detail as discussed in Chap. 3. The types of behaviour indicated by the models

discussed in this chapter indicate that this will be a fruitful area of research.
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