
Chapter 7

Reduction of Reaction Mechanisms

Abstract Increases in both chemical kinetics knowledge and the capacity of

computers have led to the availability of very large detailed kinetic mechanisms

for many problems. These mechanisms may contain up to several thousand species

and several ten thousand reaction steps. For computational reasons, however, large

mechanisms still cannot be used in spatially 2D or 3D computational fluid dynamics

simulations, where the applied mechanism typically requires less than 100 species.

Also, within such large mechanisms, the key processes can be masked by the

presence of many reaction steps of only marginal importance. A first step to

reducing the size of a kinetic mechanism is to identify species and reaction steps

which do not need to be included in order to accurately predict the key target

outputs of the model. Such methods lead to so-called “skeletal” schemes. This

chapter discusses many different methods for the identification of redundant species

and reaction steps within a mechanism, including those based on sensitivity and

Jacobian analyses, the comparison of reaction rates, trial and error and calculated

entropy production. Another family of methods for the development of skeletal

schemes is based on the investigation of reaction graphs. We discuss here the

directed relation graph (DRG) method and its derivatives, and the path flux analysis

(PFA) method. Mechanism reduction may be also based on optimisation methods

which minimise an objective function related to the simulation error between the

full and reduced models, subject to a set of constraints (e.g. numbers of species

required). Integer programming and genetic algorithm-based methods have been

used for such an optimisation and are discussed here. From these skeletal schemes,

subsequent reductions can be achieved via either species or reaction lumping.

Chemical and mathematical approaches to lumping are discussed with applications

in combustion, atmospheric and biological systems. Reduction methods based on

timescale separation are then introduced starting with the classic quasi-steady-state

approximation (QSSA). Computational singular perturbation (CSP) methods are

then described as a means of informing the derivation of analytically reduced

models. Further efficiency gains can also be obtained by using a numerical approx-

imation of a function in place of more traditional descriptions of chemical source

terms within simulation models. The generation of such numerical reduced models

can be based on the original differential equations and the thermodynamics of the

problem or deduced from the simulation results. Using any of these methods, the

applied function has to meet special requirements, such as the need to be evaluated

quickly and to provide an accurate approximation. We discuss a series of
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approaches, tabulation methods, artificial neural networks (ANNs) and various

types of polynomials, that all have been tested and applied within the context of

kinetic modelling.

7.1 Introduction

As discussed in previous chapters, one of the barriers to using complex kinetic

mechanisms within larger models of reactive flows is the computational time

required to solve the resulting rate equations. If the full comprehensive mechanism

is used, then this may lead to compromises being required in modelling other

aspects of the flow. Using a coarser model grid resolution is often a compromise

that has to be made within computational fluid dynamics (CFD) codes. The more

species that are included within the chemical model, the lower the grid resolution

that can be afforded on a given hardware architecture. Simplifications of turbulent

mixing processes may also have to be made. For example, it is unlikely that highly

detailed chemistry could be afforded within a 3D direct numerical simulation of a

problem where attempts are made to resolve all important timescales of turbulent

mixing. It follows that when trying to couple a chemical kinetic model with a

complex physical model, the important dynamics of the chemical system should be

represented as efficiently as possible, i.e. with the lowest number of variables

possible. Chemical model reduction has therefore become an important area of

research as discussed in several review articles (Griffiths 1995; Tomlin et al. 1997;

Okino and Mavrovouniotis 1998; Ross and Vlad 1999; Law et al. 2003; Law 2007;

Lu and Law 2009; Ross 2008; Pope 2013).

This chapter will introduce various methods for the reduction of kinetic reaction

mechanisms. These start with conceptually simple approaches, such as removing

unnecessary species and reactions from a scheme for a particular application. In this

case, the resulting reduced model is still a kinetic scheme which may be represented

by a smaller number of reaction steps and species when compared to the full

scheme. Typically such approaches achieve reductions in the number of species

of up to one to two thirds of the original number. Several techniques for this skeletal
model reduction have been developed including sensitivity analysis, graph-based

and optimisation-based methods, as discussed in the following sections. For some

applications, this may be sufficient, but for CFD calculations, further reductions are

often required. Subsequently, other approaches may be used to reduce the number

of variables in the system of chemical rate equations. The lumping of species into a

smaller number of new variables is one approach, and in this case the new variables

may no longer represent individual species but linear or nonlinear combinations of

species concentrations as discussed in Sect. 7.7. Timescale-based methods may also

be exploited in the context of model reduction so that the dynamics of the reduced

model is restricted to the equivalent slow manifold. Finally, tabulation or equivalent

184 7 Reduction of Reaction Mechanisms



model representation approaches can be taken to find other mathematical represen-

tations of the underlying system dynamics using highly reduced numbers of vari-

ables (see Sects. 7.12–7.13).

7.2 Reaction Rate and Jacobian-Based Methods for Species

Removal

The aim of chemical kinetic modelling is to accurately describe the concentration

profiles of important species and/or important features of the model predictions. An

important species can be any species that the modeller considers important for any

reason and may include, for example, products of the reaction, pollutant concen-

trations, etc. Important features may include non-local outputs such as the time to

ignition for a fuel combustion model, the laminar velocity of a simulated flame or

the time period of an oscillating reaction. To simulate these important species and

features accurately may also require the presence of coupled intermediates within

the reduced mechanism. Such necessary species are defined as those which are

required in order to simulate the important features to the desired degree of

accuracy. All other species can be classified as redundant and therefore can be

removed from the mechanism. It may also be possible to remove redundant reaction

steps which do not affect the prediction of important features. These types of

reduction methods can often be local in nature, i.e. they are applied at specific

sets of concentrations, pressures, temperatures, etc. In this case, the success of the

skeleton scheme when used in a more complex physical model is highly dependent

on the reduction being applied over representative composition and temperature

conditions compared to the intended final application. Local methods therefore tend

to be applied over a range of conditions to give a reduced model of appropriate

validity for the representation of selected model outputs. For example, a high

degree of generality of the skeleton scheme can be obtained by using ignition

simulations to cover low-temperature regions and perfectly stirred reactor (PSR)

or 1D flame simulations to represent high-temperature regimes. The reduction to a

skeleton scheme usually consists of two stages. The first stage is the identification

of species that have a minor effect on selected model outputs and therefore can be

eliminated. The second stage involves the removal of reactions that have only a

minor influence on the kinetics of the remaining species (and maybe temperature).

7.2.1 Species Removal via the Inspection of Rates

Several methods have been suggested for the identification of redundant species.
An early approach was introduced by Frenklach et al. (Frenklach et al. 1986;

Frenklach 1991) who investigated the elimination of species from a detailed
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combustion mechanism where the aim was the accurate simulation of times-to-

ignition and temperature profiles. Reactions were eliminated that were much slower

than the rate-determining steps and which produced much less heat than the main

heat-producing steps. The elimination of these reactions also meant the elimination

of some species. This approach was extended to the reduction of mechanisms for

the conditions of laminar flame simulations (Wang and Frenklach 1991). Whilst the

method was successful for these applications, it was not general, and the list of

important species could not be defined.

In Sect. 4.1, element fluxes were used for the characterisation of the features of a

chemical mechanism that may change in time and space. Another approach to the

application of element fluxes is the calculation of their integral over the whole time

domain of the reaction. These integral fluxes can be calculated for each species and

element, and then redundant species identified as those which are not connected

(directly or indirectly) to the important species considering all fluxes. Several

reduction methods, based on similar principles but differing in details, have been

developed using this integral flux approach within the literature (Nilsson

et al. 1999; Frouzakis and Boulouchos 2000; Németh et al. 2002; Soyhan

et al. 2002; Luche et al. 2004; Androulakis et al. 2004; Mauersberger 2005).

Valorani et al. (2006) used the CSP method (see Sect. 6.4) for the identification

of redundant species. They first define important species and check in which modes

they are present. Reaction steps are then identified that have a significant contri-

bution to these modes. These reaction steps may include further species, which will

be considered as necessary species. Using an iterative procedure, the number of

necessary species is continuously increased until at the end of the process no more

important reactions are found.

7.2.2 Species Elimination via Trial and Error

The redundancy of individual species was also investigated by Turányi (1990b) via

a trial-and-error approach. A series of reduced mechanisms were created where in

each one, all the consuming reactions of the tested species were removed. If the

resulting simulation error (i.e. the deviation between the solutions of the full and

reduced models) was small, then this species could be eliminated from the mecha-

nism. The disadvantage of this method is that it is not able to identify species that

can be eliminated in groups. An extension of this approach to the elimination of

groups of species will be discussed in Sect. 7.6.1.

Fischer and Riedel (2013) suggested a “guided” trial-and-error method for the

detection of redundant reactions and species. A characteristic value is assigned to

each reaction, which is equal to the greatest mole fraction during the simulation of

all species participating in this reaction step. The logic behind it is that if a reaction

step is related to all high mole fraction species, then it is likely not to be redundant.

Small maximummole fraction may be related to a necessary or a redundant species,

which have to be distinguished. Therefore, elimination of reaction groups, formed
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from reaction steps having the lowest characteristic values, is tested. A reduced

mechanism is accepted, if the simulated concentration profiles of the important

species obtained from the reduced mechanism agree within predefined thresholds to

those of the original mechanism. A species is redundant if it is not present in an

accepted reduced mechanism. Many reduced mechanisms are identified in this way,

and the smallest one is considered to be the best.

7.2.3 Connectivity Method: Connections Between the Species
Defined by the Jacobian

The connectivity method (CM) (Turányi 1990c) identifies redundant species via the

investigation of the Jacobian. Element (yi/fj) (∂fj/∂yi) of the normalised Jacobian

shows the percentage change of the production rate of species j due to a 1 % change

in the concentration of species i. If the square of this effect is summed over all

important species, then the value Bi shows the effect of a change in the concen-

tration of each species on the concentrations of all important species:

Bi ¼
X
j

yi=f j

� �
∂f j=∂yi
� �� �2

ð7:1Þ

Species characterised by large Bi values are closely connected to the important

species and therefore are necessary species. In the next step, these necessary species

are also included in the summation, and the Bi values are recalculated. Species

characterised by the largest Bi values are again included in the summation, and this

iteration is continued until all species that have close connection to the important

species, directly or through other species, are identified. The rest of the species are

considered to be redundant.

Figure 7.1 shows that starting from the group of important species, in an iterative

procedure, all species can be identified that are necessary for the simulation of

important species. Groups of species may be identified as redundant and can be

eliminated, even if there are strong interactions between the redundant species. This

type of approach was subsequently used by several other methods for the identifi-

cation of redundant species as discussed later.

Since the Jacobian depends on the actual concentration set for nonlinear models,

this procedure has to be repeated for several concentration sets, e.g. at several points

along a concentration trajectory and at different temperatures and/or pressures.

Species that are redundant over all relevant simulation conditions can be removed

from a general reduced mechanism. All consuming reactions of the redundant

species can also be eliminated from the model at this stage. Further details on the

application of this method can be found in Turányi (1990b), Tomlin et al. (1992)

and Zsély and Turányi (2003). According to a particular version of the method

[encoded in the program KINAL (Turányi 1990a)], at each iteration step, the user
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selects the new species to be included in the summation on the basis of the list of Bi

values. In the version of the method encoded in option CONNECT of the code

KINALC (KINALC)), the list of necessary species is increased by one during each

iteration, i.e. that with the highest Bi value.

Experience suggests that if the mechanism contains not too many species (up to

about 50), then a gap usually appears in the list of Bi values, and the necessary and

redundant species become clearly separated. However, if there are many species in

the mechanism, the Bi values often do not show clear gaps. Another potentially

negative feature of the connectivity method is that after several iterations, the

special role of important species diminishes. Also, the connectivity method does

not make a direct connection between the Bi values and the simulation error of

important targets, i.e. the deviation of a target prediction obtained with the full and

the reduced mechanisms. The latter can only be determined by performing simu-

lations using the reduced mechanism and comparing them to those using the full

scheme. The connectivity method in its basic form offers a single reduced mech-

anism. As discussed below, it is more useful for a method to offer a range of

reduced mechanisms having different simulation errors, so that the user may select

the one that best suits the required simulation time and predictive accuracy.

7.2.4 Simulation Error Minimization Connectivity Method

Such an approach is taken in the Simulation Error Minimization Connectivity
Method (SEM-CM) (Nagy and Turányi 2009; Zsély et al. 2011). Using this method,

several trial reduced mechanisms are created, and the simulation results obtained

important species

necessary species

redundant species

Fig. 7.1 Relationships between species, as handled by several methods for the identification of

redundant species. This is common in the connectivity method, the DRG family and the PFA

methods. Starting from the important species, all other species are identified that are necessary for

the calculation of the concentrations of the important species. The remaining redundant species are

only loosely related to the group of important and necessary species
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guide the further search for the nearly optimal reduced mechanism. Consequently,

the application of the reduction method requires much more computer time than the

simple connectivity method but may find a much smaller reduced mechanism. The

main advantage of the method is that the required accuracy of the reduced mech-

anism (the acceptable simulation error) can be defined a priori.

The aim of the SEM-CM method is that all species within the reduced mecha-

nism be living species. A species is called a living species if its initial concentration
is nonzero, it has an influx (e.g. emission to an atmospheric chemical system) or it is

produced by chemical reactions. Vol’pert (1972) has also used the term reachable
species for such types of species. As the definition indicates, the list of living

species is determined by not only the reaction mechanism itself but also the initial

and boundary conditions. A reaction mechanism is called consistent if all species

within it are living. A complementary set consists of those species that are not yet
selected but would yield at least one additional selected reaction if these were

introduced to the current group of selected species.

The algorithm of the SEM-CM method, as detailed in the article of Nagy and

Turányi (2009), is rather complex, and only a brief summary is given here. First, the

complementary sets of species having the strongest connection to the important

species are searched for. If necessary, the mechanisms obtained are made to be

consistent. Using these mechanisms, simulations are carried out at all investigated

conditions, and the simulation error together with the corresponding mechanism is

stored in a database. Starting from the mechanisms associated with the smallest

simulation errors, the number of species is gradually increased by adding new

complementary sets. In each step, the mechanism obtained is made consistent,

simulations are carried out and new entries are added to the database. The number

of species is increased until the simulation error decreases below a certain thresh-

old. Whilst other species reduction methods use a top-down approach, always

eliminating the species least connected to the important species, the SEM-CM

method is a bottom-up approach, and a series of consistent mechanisms are built

up using the important species as a core. An advantage of the method is that the

generated database contains a wide variety of reduced mechanisms, each belonging

to different simulation error. In this way an almost optimal reduced mechanism can

be obtained to any requested simulation error. Results obtained in a study of the

performance of the SEM-CM method compared with several other methods (CM,

DRG restart, DRGASA) are presented later in Fig. 7.5.

7.3 Identification of Redundant Reaction Steps

Using Rate-of-Production and Sensitivity Methods

So far we have discussed the removal of redundant species from a mechanism. It

may also be useful to reduce the number of reactions for the remaining necessary

species since the calculation of their rates at each time step can be computationally
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time consuming. Several methods exist for reducing the number of reactions within

a mechanism. An early method for the identification of redundant reaction steps is

the use of rate-of-production analysis. Here the percentage contribution of each

reaction step to the production and consumption rate of each species is investigated

at several reaction times during a simulation. A reaction step can be eliminated

from the mechanism (at least at the simulation conditions under investigation) if the

contribution of the reaction step is less than s% to either the production or the

consumption rate of any species at any time. This threshold value is selected by the

user, and a typical value may be, for example, 5 %. The size of the reduced

mechanism (and the simulation error) can be changed by tuning this threshold.

This method is easy to understand and to apply, but not always very effective.

The simulation error depends on the selection of s, but there is no direct relationship
between it and the value of s. Moreover, due to the nonlinearity of chemical kinetic

systems, it is not guaranteed that the simulation error decreases when s decreases.
The method would be made more effective by selecting a different threshold si for
each species. These methods can be applied for the removal of reaction steps as well

as species by basically removing those reaction steps that do not form an important

direct or indirect pathway between species which are to be retained in the

mechanism.

The method of principal component analysis of matrix S (PCAS) was discussed

in Sect. 5.3. The PCAS method allows the identification of the most important

parameters related to selected simulation results. Therefore, if the objective func-

tion includes the concentrations of the important and necessary species (see

Sect. 7.2) and the investigated parameters are the rate coefficients (or A-factors)
of the reaction steps (Vajda et al. 1985; Vajda and Turányi 1986; Turányi 1990b;

Xu et al. 1999; Liu et al. 2005), it is also applicable for the generation of a reduced

mechanism containing less reaction steps. A further development of the PCAS

method is functional principal component analysis (fPCA) (Gokulakrishnan

et al. 2006). This method facilitates the investigation of temporal and spatial

changes in the importance of reaction steps in reaction�diffusion systems.

Another method for removing redundant reaction steps is the principal compo-
nent analysis of matrix F (PCAF), where F¼ {∂fi/∂xk} (Turányi et al. 1989;

Tomlin et al. 1992; Börger et al. 1992; Heard et al. 1998; Carslaw et al. 1999;

Zsély and Turányi 2001; Bahlouli et al. 2014). Here the sensitivity of the net rates of

production of species to changes in the input parameters is investigated. Using the

PCAF method, the objective function has the following form:

e
0 ¼

XNR

i¼1

ef i tð Þ � f i tð Þ
f i tð Þ

 !2

ð7:2Þ

where fi and ef i are the right-hand side of the kinetic system of ODEs (2.9),

calculated at the original parameter vector α¼ ln x and at the modified values of

parameters α+Δα, respectively. This objective function can be approximated

(Turányi et al. 1989) by
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e
0 αð Þ � Δαð ÞTeFTeF Δαð Þ ð7:3Þ

where eF ¼ xk=f ið Þ ∂f i=∂xkð Þf g is the normalised F-matrix and its rows correspond

to the variables present in the objective function (7.2). The elements of the matrix eF
can be calculated algebraically from the concentration vector and therefore

obtained from a single simulation, whilst even the most effective calculation of

the sensitivity matrix eS requires significantly more computer time (see Sect. 5.2). If

fi is the right-hand side of the kinetic system of ODEs for species i (2.9) and

parameter kj is the rate coefficient of the reaction step j, then the elements of matrixeF can be easily calculated (Turányi et al. 1989) as

eFi, j ¼ ∂ln f i
∂lnkj

¼ kj
f i

∂f i
∂kj

¼ νijrj
f i

� �
ð7:4Þ

If temperature is also considered in the objective function, then the enthalpies of

formation of the species and heat capacity of the reaction mixture also have to be

taken into account (Zsély and Turányi 2003).

The eigenvalues of matrix eFTeF indicate the effectiveness of a simultaneous

change of the values of a group of parameters on the production rates of species.

Elements of the eigenvectors show the weight of the individual parameters in the

corresponding parameter group. In common with the PCAS method, the PCAF

method can determine a list of important reactions, if the parameters investigated

are the rate coefficients (or A-factors) of the reaction steps, and the objective

function includes the production rates of the important and necessary species.

Although the PCAS and PCAF methods are similar in form, these two methods

are fundamentally different. The objective function of PCAF contains the produc-

tion rates of species, and the matrix F can be calculated from the right-hand side of

ODE (2.9). The objective function of PCAS contains the concentrations of species

[the solution of ODE (2.9)], and the matrix S has to be obtained from the solution of

the sensitivity differential equations (5.7) and is therefore computationally more

time consuming. Put another way, PCAS investigates the effect of parameter

changes on the solution of the kinetic system of ODEs, whilst PCAF examines

the effect of parameter changes on the right-hand sides of the kinetic system of

ODEs (2.9).

When the importance of reactions is investigated using PCAF over an interval of

time or distance, the analysis has to be carried out at several independent variable

sets. This means that the change in importance of reaction steps over time

(or distance) can be monitored with arbitrary resolution. If two different models

(e.g. an ignition and a flame model) provide identical concentration and tempera-

ture profiles using the same reaction mechanism, then PCAF will provide identical

importance measures for the reaction steps (Zsély and Turányi 2003). On the other

hand, PCAS investigates the local sensitivity matrices, which indicate the effect of

a parameter perturbation on the time-dependent solution, so that very different
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sensitivity functions may belong to the same reaction mechanism and concentra-

tion—time functions. Moreover, PCAS investigates the integrated deviations in

solution (see Eq. 5.15), and therefore, the reaction importance belongs to an interval

of time. Another consequence of the differences is that using PCAF, it may be

important to apply the analysis over many time or distance points along reaction

trajectories in order to ensure that reactions which are only of importance over a

subset of the whole domain are picked up by the analysis. Often a simple model

scenario can be used (e.g. zero-dimensional reactor simulations or a 1D flame

simulation) for the reduction process, and, as long as the concentration, temperature

and pressure profiles match those of the final practical model, the reduced models

generated can be of use in larger modelling scenarios such as 3D simulations. The

use of adaptive reduction where different reduced schemes are utilised over differ-

ent subsets of the domain is discussed below.

7.4 Identification of Redundant Reaction Steps Based

on Entropy Production

All of the previous methods identify redundant reactions via the inspection of the

reaction rates or by the study of sensitivity matrices deduced from the kinetic

system of differential equations. A very different approach is the application of

thermodynamic functions for the identification of redundant reactions. This

approach has common features with the derivation of numerical reduced models

based on thermodynamics reasoning (see Sect. 7.10.4).

Kooshkbaghi et al. (2014) published a systematic approach based on the relative

contribution of each elementary reaction to the total entropy production. In a closed

system, the total entropy production per unit volume is a positive semidefinite

function that can be calculated in the following way:

dS

dt
¼ R

XNR
j¼1

rf, j � rb, j
� �

ln
rf, j
rb, j

� �
ð7:5Þ

The entropy production vanishes at equilibrium. The relative contribution of each

reaction step to the total entropy production is given by

qj ¼ R
XNR
j¼1

rf , j � rb, j
� �

ln
rf , j
rb, j

� �" #
dS

dt

� 	�1

ð7:6Þ

Here R is the gas constant and rf,j and rb,j are the rates of the j-th forward and

backward reaction steps, respectively. Kooshkbaghi et al. (2014) investigated the

effect of eliminating all reaction steps having qj relative entropy production less

than a threshold ε for an example of an n-heptane ignition mechanism. Their
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approach leads to eliminations of both reaction steps and the corresponding species.

They found that the simulation error, i.e. the deviation between the simulation

results obtained with the reduced and the original mechanisms, is a nonlinear

function of the chosen threshold ε. Probing several ε values, an appropriate reduced
mechanism with acceptable simulation error could be obtained.

7.5 Graph-Based Methods

7.5.1 Directed Relation Graph Method

Methods for species and reaction removal based on directed relation graphs (DRGs)

with specified accuracy requirements have been introduced by Lu and Law (2005,

2006c). In their development of the method, Lu and Law suggest that graph-based

methods are highly suited to exploring couplings between species. This means that

such methods may be applied to remove groups of species that may be internally

coupled, through, for example, fast reactions, but are not strongly coupled to

important processes within the mechanism. An example of this type of relationship

is shown in the schematic in Fig. 7.2. Each node in the DRG represents a species

from the mechanism, and an edge from vertex A to vertex B exists if and only if the

removal of species B would directly induce significant error to the production rate

of species A. This means that an edge from A to B means that B has to be kept in the

mechanism to correctly evaluate the production rate of species A. Note the simi-

larity between Figs. 7.1 and 7.2. Like all other methods for species removal, DRG

methods also start from the selection of important species (cf. Sect. 7.2), called

“target species” in the DRG terminology. Using a DRG method, all species closely

connected to the target species are identified.

Fig. 7.2 A directed relation

graph showing typical

relationships between

species. Modified from

(Lu and Law 2005)
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The various DRG-based reduction methods all state a connection weight

between pairs of species. These weights define the directed relation graph structure.

Starting from the target species, an importance coefficient is calculated for all other

species, which quantifies how strongly a given species is connected to the target

species. Then, all species are eliminated from the mechanism (with their reactions)

whose importance coefficient is below a user-defined threshold. The DRG-based

methods differ in their definitions of connection weights and importance coeffi-

cients. Tosatto et al. (2013) compared the various DRG-based methods, and we

follow their notations in the discussion below.

The original DRG method of Lu and Law (2005) defines the connection weight

from species i to species j in the following way:

R
Luð Þ
i!j ¼

X
α2C i;jð Þ νiαrαj jX
α2R ið Þ νiαrαj j ð7:7Þ

where R(i) is the set of reactions that are related to species i, C(i, j) is the set of

reactions in which both species i and j participate, νiα is the stoichiometric coeffi-

cient of species i in reaction α and rα is the net reaction rate (the difference of the

forward and backward rates).

A variant of the DGR method was suggested by Luo et al. (2010a) for the

reduction of reaction mechanisms containing many isomers. Luo

et al. recommended the application of the maximum norm instead of the

summation:

R
Luoð Þ
i!j ¼ maxα2C i;jð Þ νiαrαj j

maxα2R ið Þ νiαrαj j ð7:8Þ

The original DRG method of Lu and Law (2005) defines the importance

coefficient of species i as

I
DRGð Þ
i ¼ 1 if species i is a target species

max
j2S

min Rj!i;I
DRGð Þ
jð Þð Þ otherwise

(
ð7:9Þ

Here S is the full set of chemical species and Rj! i is a connection weight defined in

Eqs. 7.7 and 7.8, and it is implicitly assumed that if two species are not connected,

then Rj! i¼ 0. This approach defines the importance coefficient for species i as the
smallest connection on any path towards a target species. Ii

(DRG) is calculated

iteratively using a minimum-cost graph search algorithm (Lu and Law 2005). A

small threshold value ε can be defined, and if IðDRGÞi < ε, then species i is considered
to be redundant for the simulation of the target species. Hence, in Fig. 7.2, if A is an

important species, then D must be retained within the scheme since although it is

not directly coupled to A, it is part of the dependent set of A by being directly

coupled to B, where B is coupled to A. In this example species E and F are
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interconnected by a pair of fast reversible reactions, since, although they are

strongly coupled to each other, they do not couple to any species in the dependent

set of A. The strong two-way coupling between these species indicates that they

should be removed as a pair.

In common with the connectivity method (CM, Sect. 7.2.3), the DRG method

requires a set of important species (“target species”) to be specified which may

include the main reactants and important products of the starting reaction mecha-

nism. The method then seeks the dependent sets for each important species, and the

skeleton mechanism is formed from the union of these sets. The DRG method is

local in the sense that the reaction rates used are specific to a particular set of

concentrations and temperature. In common with the CM, the graph has to be

computed over a range of conditions relevant to the intended final application. For a

generally applicable reduced scheme, the final model must represent the union of

mechanisms derived for each operating condition. The success of the final reduced

scheme will depend on the relevance of the local conditions chosen for analysis and

the selected value of ε. The size of the skeleton mechanism will reduce as larger and

larger values of ε are chosen. Several thresholds can be applied and the accuracy of
the resulting mechanisms are tested in order to select an appropriate level of

reduction. Lu and Law (2005) state that jumps in the number of required species

may occur quite abruptly, signifying groups with strong internal coupling but weak

intergroup couplings moving out of the skeleton scheme. This is analogous to the

large gaps in Bi values that occur in the Jacobian analysis and in a similar manner

can help with the selection of threshold values for ε. It should be pointed out that in
both the simple connectivity and DRG-based methods, the thresholds only control

the local accuracy of the rates of production of necessary species, which does not

automatically control the potential growth of errors in a time or spatially dependent

model. The impact of local errors could be determined via more expensive methods

or simulations compared to the full model.

Figure 7.3 shows the result of an investigation where the DRG threshold ε was
changed systematically for an example of the reduction of a methane partial

oxidation mechanism (Nagy and Turányi 2009). The number of species remaining

within the reduced mechanism decreased almost linearly on increasing the loga-

rithm of ε. The most interesting result was that the simulation error did not change

monotonically with increasing ε. Also, sudden jumps indicated that sometimes

using only a slightly higher ε gave a much worse reduced mechanism, as explained

above.

The DRG method was first applied to a model system of ethylene combustion

(Lu and Law 2005; Luo et al. 2011) with a full scheme of 70 species. A value of ε of
0.16 gave a skeleton scheme of 33 species, i.e. quite a substantial degree of

reduction. In application to n-heptane and iso-octane combustion using full

schemes of 561 and 857 species (Lu and Law 2006c), ε values of 0.19 and 0.17

resulted in reduced schemes of 188 and 233 species, respectively. DRG methods

have since been widely applied for the reduction of large combustion schemes

including for methane (Sankaran et al. 2007), primary reference fuel (Lu and Law
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2006c, 2008b; Yoo et al. 2011, 2012; Luong et al. 2013), n-dodecane (Luo

et al. 2014) and biodiesel mechanisms (Luo et al. 2010a, 2012a, b).

An improved version of the DRG method was developed called “DRG with

restart”, where the DRG procedure is repeated on the DRG-reduced mechanism

(Lu and Law 2006c). Lu and Law found that for examples of large hydrocarbon

mechanisms, a two-stage reduction using DRG can lead to smaller skeleton mecha-

nisms than a single-stage reduction with a single value for ε. The reason is that the

calculated reaction rates are different at the second stage due to the exclusion of

redundant species. This can result in a change of the graph structure, potentially

allowing the removal of further species at the second stage. The chosen values for ε
are generally larger at the second stage.

Tosatto et al. (2011) introduced the flux-based DRG method. This approach

explicitly considers the effect of transport fluxes in flames which leads to the

coupling of the governing equations among adjacent grid cells. The resulting

numerical scheme operates on a cell-by-cell basis, so that different chemical

submodels are applied in different regions of the flame. The flux-based DRG

method was employed within two-dimensional simulations of steady and unsteady

axisymmetric co-flow flames. Further applications include the work of Ren

et al. (2014b) who applied the DRG reduction method within a dynamic adaptive

chemistry calculation during the simulation of one-dimensional, unsteady, freely

propagating, premixed methane/air laminar flames.

Fig. 7.3 Maximal simulation error and the number of species as a function of ε using the original
DRG method. Reprinted from (Nagy and Turányi 2009) with permission from Elsevier

196 7 Reduction of Reaction Mechanisms



7.5.2 DRG-Aided Sensitivity Analysis

A significant development of the DRG method is DRG-aided sensitivity analysis
(DRGASA) (Zheng et al. 2007). The name of the method is perhaps a little

misleading, because it does not include the calculation of sensitivities, but rather

the DRG estimation for the group of redundant species is checked using simula-

tions. First, the redundant species according to the DRGmethod are selected using a

conservative threshold. Then a second group of species is identified using a tighter

threshold, and these species are included into the reduced mechanism. A series of

simulations are carried out where the consequences of eliminating these species are

investigated one by one. The DRGASA method could be more effective than the

basic DRG approach, because it investigates the simulation error directly. This

simulation error belongs to the group of important species, and therefore, the

DRGASA indicates less species to be necessary than the original method for a

prescribed error limit. Figure 7.4 shows that combining the DRG method with

restart already improves the method compared to DRG. Additional application of

DRGASA significantly improves the mechanism reduction procedure.

Fig. 7.4 Maximal simulation errors of the mechanisms as function of species number, obtained by

applying the original DRG method, and the DRG method with restart and DRGASA extensions.

Reprinted from (Nagy and Turányi 2009) with permission from Elsevier
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7.5.3 DRG with Error Propagation

Pepiot-Desjardins and Pitsch (2005, 2008) noticed that Eq. (7.7) does not distin-

guish between reactions that create or destroy species i and suggested an alternative
definition:

R
Pepð Þ
i!j ¼

X
α2C i;jð Þνiαrα




 



max

X
α2R ið Þ νiαrαð Þþ;

X
α2R ið Þ νiαrαð Þ�

� � ð7:10Þ

The operator (.)+ selects only the positive terms in the summation, and the operator

(.)� selects only the negative terms and makes them positive. Equation (7.10)

calculates the ratio of the sum of the rates belonging to the pair of species (i, j) to
the total rate of formation or destruction of species i. Note that all forward and

backward rates must be considered separately as a single reaction when using the

connection weights (7.10), or else partial equilibrium reactions could result in

artificially low connection weights.

Pepiot-Desjardins and Pitsch (2008) made further extensions to DRG by incorpo-

rating error propagation, called DRG with error propagation (DRGEP). In this

method the assumption that all coupled species are equally important in the mecha-

nism is lost, and errors are damped as they propagate along the graph from the

initially selected important species. The importance index is therefore calculated as

I
DRGEPð Þ
i ¼

1 if species i is a target species

max
j2S

Rj!i � I DRGEPð Þ
j

� �
otherwise

(
ð7:11Þ

The aim of error propagation is to try to eliminate more species using the same

threshold error by better estimating the induced error, rather than using its upper

bound. The approach is combined with an integrity check which aims to avoid

truncated chemical paths that may lead to mass accumulation in intermediate

species whose consumption paths have been removed. However, for chains of

propagating reactions with several fast steps, this may lead to an underestimation

of errors since in this case the fast species can be related to the slow ones through

algebraic expressions (see Chap. 6) leading to a single rate-determining step within

the sequence. According to Lu and Law (2006c), the error propagation method in

such cases should be linked to an investigation of the slow and fast subspaces.

The DRGEP approach has been applied adaptively in order to produce on-the-fly
reduced mechanisms for n-heptane (Shi et al. 2010b) and gasoline surrogate mixtures

(Liang et al. 2009b; Shi et al. 2010a) in simulations of homogeneous charge com-

pression ignition. In Liang et al. (2009b), computational speed-ups of a factor of

70 were achieved when compared to a detailed starting mechanism containing 1,099

species. The number of species required in the locally reduced models varies

throughout the calculations but reaches a maximum of about one third of the number

of initial species. The DRG and DRGEP methods were compared for an example of
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the reduction of n-heptane and iso-octane mechanisms (An and Jiang 2013). Various

graph search algorithms were tested within the DRGEP method by Niemeyer and

Sung (2011). DRGEP has also been coupled with sensitivity analysis in Niemeyer

et al. (2010), Zsély et al. (2011), Ismail et al. (2013), and Niemeyer and Sung (2014),

and the combined method was called DRGEP-ASA.

Other applications of the DRG method and its extensions to skeletal model

reduction include modelling the high-temperature combustion of H2/CO/C1�C4

hydrocarbons (Wang 2013), methane oxidation (Jiang and Qiu 2009), nitrogen

oxide emissions and their control (Lv et al. 2009; Luo et al. 2011), the combustion

of n-heptane (Liang et al. 2009a; Wang et al. 2013; Bahlouli et al. 2014), surrogate

jet fuels (Naik et al. 2010), methyl decanoate (a large methyl ester used as a

surrogate for biodiesel, (Seshadri et al. 2009)), surrogate biofuels (Luo

et al. 2010a, b; Malik et al. 2013) and the oxidation of iso-octane (Kelley

et al. 2011). All DRG variants were compared in a recent article of Poon

et al. (2013). The DRGEP method has also been applied in atmospheric chemistry

to the reduction of a detailed alpha-pinene oxidation mechanism where the aim was

to maintain the ability of the reduced mechanism to represent the ozone and organic

aerosol-forming properties of the original scheme (Xia et al. 2009). Subsequent

application of reaction removal through the principal component analysis of the rate

sensitivity matrix followed by QSSA analysis led to an overall reduction of a factor

of 2.5 in the number of species and reactions in the scheme.

Figure 7.5 shows a comparison of the performance of the connectivity method

(Sect. 7.2.3), DRG with restart (Sect. 7.5.1), DRGEP (Sect. 7.5.3), DRGASA

Fig. 7.5 Comparison of the performance of the connectivity method (CM), DRG with restart,

DRGEP, DRGASA and SEM-CM for the reduction of a methane partial oxidation mechanism.

Maximal simulation errors of the mechanisms are given as function of remaining species numbers

within the reduced schemes. Reprinted from (Nagy and Turányi 2009a) with permission from Elsevier
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(Sect. 7.5.2) and SEM-CM (Sect. 7.2.4) for the reduction of a methane partial

oxidation mechanism (Nagy and Turányi 2009). Method SEM-CM is presented in

two versions, one is faster and less effective (“1”), and the other is slower and more

effective (“256”). For each method, the most effective version was used in the

comparison. In general, a mechanism reduction method is more effective if the

simulation error is smaller for the same number of species or if the same simulation

error can be achieved with a mechanism having less species. For this example, the

SEM-CM method proved to be the most effective; however, we have to keep in

mind that the application of this method requires much more computer time

compared to the other methods.

7.5.4 The Path Flux Analysis Method

Path flux analysis (PFA) is a method, similar to DRG, for the generation of skeletal

mechanisms (Sun et al. 2010; Gou et al. 2013). In the PFA method, the production

and consumption fluxes are used to identify the important reaction pathways. The

first-generation production (PA) and consumption (CA) fluxes of species A are

calculated according to equations

PA ¼
X
i

max νA, iωi, 0ð Þ ð7:12Þ

CA ¼
X
i

max �νA, iωi, 0ð Þ ð7:13Þ

where νA,i is the stoichiometric coefficient of species A in the i-th reaction and ωi is

the net reaction rate of this reaction. The production (PAB) and consumption (CAB)

fluxes of species A via species B are calculated by

PAB ¼
X
i

max νA, iωi δ
i
B, 0

� � ð7:14Þ

CAB ¼
X
i

max �νA, iωi δ
i
B, 0

� � ð7:15Þ

where δiB is unity if species B is involved in the i-th reaction and 0 otherwise. A flux

ratio is introduced to represent the share of a particular production and consumption

path via species B to the total production and consumption flux of species A. The

first-generation flux ratios for the production and consumption of species A via

species B are defined as
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rpro�1st
AB ¼ PAB

max PA;CAð Þ ð7:16Þ

rcon�1st
AB ¼ CAB

max PA;CAð Þ ð7:17Þ

At each time step, production and consumption flux ratios rpro� 1st
AB and rcon� 1st

AB are

calculated. This process only involves the calculation of the reaction rates, and the

CPU time is linearly proportional to the number of species. The reduction starts

from the important species and then identifies whether to retain species B in the

reduced model by evaluating if the flux ratios of species A via species B satisfy the

relation rAB> ε, where ε is a threshold value and rAB¼max(rpro� 1st
AB , rcon� 1st

AB ).

An iterative process is used to find the path fluxes of each selected species.

Starting from the set of important species, using the relation rAB> ε, the set of other
necessary species are identified. These are added to the investigated set, and the

iterative process is continued until no new necessary species are found. Gou

et al. (2013) used the PFA method to create a dynamic adaptive chemistry scheme

for n-heptane and n-decane combustion mechanisms.

7.5.5 Comparison of Methods for Species Elimination

A common feature of the connectivity, PFA, DRG and DRGEP methods (with or

without ASA) is that the list of important species has to be defined. Then, points on

the concentration trajectory are selected, and the analysis is carried out at these

points. The set of necessary species are determined at each of the chosen points, and

the reaction mechanism that is applicable across the whole domain should contain

the union of the species necessary at each point unless adaptive reduction is

employed (see later discussion). The list of necessary species is determined by a

threshold (the threshold Bi value in the connectivity method and parameter ε in the

DRG, DRGEP and PFA methods), which are not linearly related to the simulation

error of the resulting reduced mechanism. In general, a smaller threshold leads to a

larger mechanism with smaller simulation error, but the decrease of the simulation

error is not necessarily monotonic. Using these methods, the efficiency of mecha-

nism reduction has to be judged a posterior: a reduction method being more

efficient if the reduced mechanism contains less species at the same level of

simulation error. We saw that extensions to these methods such as the SEM-CM,

DRGASA and DRGEP-ASA methods include the simulation error as part of the

necessary species selection and can lead to more effective reduction strategies at the

expense of computational cost. Other approaches have also been developed based

on methods from optimisation, and these will be discussed in the next section.
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7.6 Optimisation Approaches

Although sensitivity analysis, DRG and CSP are perhaps the most common

methods for deriving skeletal mechanisms, the application of optimisation methods

such as linear and nonlinear integer programming is increasing for reduction

analysis. One advantage of such methods is that they preserve the nonlinearity of

the reaction system, as opposed to sensitivity analysis, which is in general based on

first-order sensitivity coefficients. These methods are based on solving an optimi-

sation problem, i.e. minimising an objective function subject to a set of constraints.

In mechanism reduction applications, the objective function is related to the model

error between the full and reduced models, which varies between applications, but

is usually based on errors in either rates of production of species or species

concentrations.

7.6.1 Integer Programming Methods

An early application of this type of approach for reaction removal was carried out

by Petzold and Zhu (1999) for several ignition problems. Although this method has

its drawbacks, we discuss it in some detail here since it provides a useful illustration

of how optimisation approaches are applied in practice. The rate of change of

species mass fractions yi is given by

_yi ¼ f yð Þ ¼
XN
j¼1

υijRj yð Þ ð7:18Þ

which in matrix form can be written as

_y ¼ υR yð Þ ð7:19Þ

where υ is a matrix whose columns are the stoichiometric vectors and R is the

vector of nonlinear reaction terms. A similar equation set for the reduced model can

then be described as

_z ¼ υDR zð Þ ð7:20Þ

where D is an N�N diagonal matrix whose diagonal elements dj are either 1 or

0 depending on whether the reaction j is retained in the mechanism or not. Finding

the reduced mechanism can then be expressed as a constrained optimisation

(Petzold and Zhu 1999):

202 7 Reduction of Reaction Mechanisms



min y�zk k
subject to

_y ¼ υR yð Þ, y 0ð Þ ¼ yo
_z ¼ υDR zð Þ, z 0ð Þ ¼ zo 0 � t � bXN
j¼1

dj ¼ k, dj ¼ 0 or 1

ð7:21Þ

where the minimum is over d1, . . ., dN and k<N. Here k is the number of reactions

in the reduced scheme and is chosen by the user. The norm is weighted according to

user supplied relative and absolute tolerances. If one was interested in the overall

error during a simulation time, then the local term min ||y� z|| could be extended to

an integral between initial time ti and final time tf, thus calculating

min

ðtf
ti

y tð Þ � z tð Þ
���� ����. The resulting optimisation becomes an integer nonlinear

programming problem as discussed by Edwards et al. (2000). It is also a combi-

natorial problem. For example, for a 5-reaction starting mechanism, there are 25–1

possible reduced mechanisms. Since the number of possible reduced mechanisms

grows exponentially with reaction size, there is clearly a need to restrict the

optimisation problem where possible. Several variations on the methodology

were proposed by Petzold and Zhu to reduce the computational cost of the method.

The first is based on the fact that it may not be necessary to find the absolute

minimum of ky� zk, and any reduced mechanism with a small enough value may

be good enough. A modified version of Eq. (7.21) is proposed as

min y� zk k
subject to

_y ¼ υR yð Þ, y 0ð Þ ¼ yo
_z ¼ υDR zð Þ, z 0ð Þ ¼ zo 0 � t � b

k1 �
XN
j¼1

dj � k2, 0 � dj � 1

g d1, . . . , dNð Þ � r

ð7:22Þ

where k1 and k2 are upper and lower bounds, respectively, on the number of

reactions in the reduced model, g is a nonlinear function which when equal to

0 forces the dj to take integer values and r is a small positive number that relaxes to

the nonlinear constraint. The restrictions on the possible number of reactions in the

reduced mechanism lower the overall number of combinations within the optimi-

sation. Petzold and Zhu use the following function to describe g:

g ¼
XN
j¼1

dj � dj
2

� �
2 ¼ 0 ð7:23Þ

The optimisation problem described by (7.22) is then solved using sequential

quadratic programming, and in order to obtain the reduced model, the values of dj
are rounded to 0 or 1.
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The method can also be applied to the removal of species, and a two-tier

approach is suggested by Petzold and Zhu (1999) and by Mitsos et al. (2008),

where the search for redundant species is performed prior to reaction removal in

common with several other skeletal reduction approaches as outlined above. Since

the number of species is usually much lower than the number of reactions, a

significant cost saving in the application of the method can be made since all

reactions of redundant species are removed at the first stage, thus reducing the

cost of the reaction removal procedure. In addition, the method proposed by Petzold

and Zhu first applies the so-called “greedy” algorithm for both species and reaction

removal prior to the solution of the full optimisation problem. In the greedy method,

the reactions are removed from the model one by one with those causing the

smallest error under the given norm being dropped first (a trial-and-error approach

as discussed in Sect. 7.2.2). The approach scales as N2, however, which makes it

computationally costly for large reaction mechanisms. In addition, care must be

taken for mechanisms containing fast reversible reactions since, as indicated in

Sects. 7.2 and 7.5, sometimes reactions/species can be more successfully removed

in groups rather than individually.

A slightly different approach to the use of optimisation methods is presented by

Androulakis (2000) based on the minimisation of the number of reactions in the

reduced mechanism subject to constraints on the error of the reduced mechanism

with respect to the full scheme. In this example, a weighted error norm containing

terms involving species mass fractions, temperature and induction time for the

reaction is developed. In common with the approach of Petzold and Zhu (1999), a

pre-processing step is applied in this work to identify a subset of important

reactions with high ranking based on removing the reactions one at a time. This

subset is then excluded from the constraints in the full optimisation problem in

order to improve computational efficiency. Problems with fast reversible reactions

may also be encountered using this approach, and hence, the use of this

pre-processing step will lead to an upper bound on the numbers of reactions within

the final reduced scheme. The application of species removal prior to reaction

removal may help to alleviate this problem.

The integer programming technique applied by Androulakis is a branch-and-

bound algorithm which splits the feasible region of input values into smaller sub-

regions (branching) with the subregions forming a search tree. Upper and lower

bounds on the optimal solution in each subregion can then be determined

(bounding), and if the lower bound for a subregion A from the search tree is greater

than the upper bound for any other (previously examined) subregion, then Amay be

safely discarded from the search (pruning). If an optimal solution is found to a

subregion (e.g. if the upper bound matches the lower bound), it is a feasible solution

to the full problem, but not necessarily globally optimal. It can be used for pruning,

however, since if the lower bound for a node exceeds the best known feasible

solution, no globally optimal solution can exist in the subspace of the feasible

region represented by the node. The procedure stops when all nodes of the search

tree are either pruned or solved. Within the subregions, the relaxation of the integer

problem is solved by successive quadratic programming. The methods are

204 7 Reduction of Reaction Mechanisms



illustrated for a hydrogen combustion model in a stirred reactor where the use of

different objective functions is compared. Androulakis shows that the use of errors

at only the final time point leads to a smaller reaction mechanism when compared to

using a range of reaction times, but does not give a good representation of the

intermediate dynamics. The approach was also applied to species removal by

Androulakis (2000) and Banerjee and Ierapetritou (2003).

Anderson et al. (2011) transformed the original chemical kinetic model of a

mitogen-activated protein kinase (MAPK) signalling pathway to a linear

parameter-varying (LPV) model. This LPV model was then used to identify loosely

connected blocks of the original model, taking into account the uncertainty ranges

of the important parameters. Hannemann-Tamás et al. (2014) considered mecha-

nism reduction as a convex mixed-integer quadratic problem, for which efficient

solvers exist. They discussed the relationship of this approach with the sensitivity

analysis-based mechanism reduction methods (Sect. 7.3). The rate coefficients of

the reduced mechanisms were optimised to give a better reproduction of solutions

of the full mechanisms.

One advantage of integer programming methods is that they can be formulated

in a general way, and the constraints can therefore include any required measure of

the simulation error between the reduced and full models. This means that the

actual simulation error in important species or target outputs can be taken into

account, in contrast to the standard DRG and connectivity methods discussed above

which were based on local approaches. However, for large mechanisms, the number

of possible reduced mechanisms could be huge, and if each were to be tested, then

the methods become very computationally costly. Screening type algorithms have

therefore been included using the so-called greedy approach, but these are really

trial-and-error-based algorithms, and as discussed in Sect. 7.2.1, they ignore the

couplings between species. In order to make reduction algorithms more efficient, it

is sensible to utilise the information on species couplings contained either in the

Jacobian matrix or the DRG, and hence, the combination of the connectivity

approach with error minimisation as used in the Simulation Error Minimization

Connectivity Method (SEM-CM, Sect. 7.2.4) is likely to be more computationally

effective.

A further extension of integer programming methods was also developed in the

work of Bhattacharjee et al. (2003) based on earlier ideas developed in Schwer

et al. (2003). Here the reduction is based on a linear integer programming method

providing computational savings over nonlinear methods. The linearity is achieved

by applying constraints to local rates of production rather than to concentration and

temperature profiles, forcing the error constraints to be linear in the rates of

production. Therefore, similarly to the results of reduction methods based on

DRG or rate sensitivity matrices, the reduced mechanisms are only strictly appli-

cable for the local points at which they were generated. The global error is now also

related to the locally controlled error in a more complex way, since small local

errors in rates of production may grow and propagate during time-dependent

simulations. The derivation of a rigorous quantitative relationship between the
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tolerances used within the optimisation procedure and the resulting simulation

errors in concentration profiles is a significant challenge for all local methods.

7.6.2 Genetic Algorithm-Based Methods

Gradient-based and “branch-and-bound” methods are not guaranteed to find the

global minimum of a function for non-convex problems. Other approaches to

solving optimisation problems in mechanism reduction include binary encoded

genetic algorithms (GAs) as discussed in Edwards et al. (1998), Banerjee and

Ierapetritou (2003), Elliott et al. (2004, 2005, 2006), Montgomery et al. (2006),

Hernández et al. (2010) and Sikalo et al. (2014). Note that several authors also used

genetic algorithms for the optimisation of parameters of reaction mechanisms

(Polifke et al. 1998; Katare et al. 2004; Elliott et al. 2004; Perini et al. 2012).

GAs are a subset of evolutionary algorithms in which a population of abstract

representations (called chromosomes) of candidate solutions (called individuals) to
an optimisation problem evolves towards better solutions. The basic steps of the

process are outlined in Fig. 7.6. Solutions are generally represented as binary

vectors of 0s and 1s. At each step of an iterative process, the behaviour of each

individual solution is evaluated using a fitness function, and the search process

stops when the specified fitness criterion is reached.

In the context of mechanism reduction, a 1 or 0 represents a particular species or

reaction (Hernández et al. 2010) being present or not within the final reduced

Fig. 7.6 Schematic of steps

in GA methodology.

Reproduced from

(Hernández et al. 2010)

with permission from

Elsevier
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model. For example, an initial population of four individuals for a final reduced

model specified to have five species from a full model with ten species may be

written as follows:

Individual 1 1100101010

Individual 2 1100111000

Individual 3 1100100011

Individual 4 1110001010

Important species may also be defined such as fuel, oxidiser or important

products. Species 1 and 2 in the above example are always fixed at 1, i.e. always

present in the mechanism, thus reducing the search space by 2. A reaction is chosen

to be present in the reduced model only if all reactant and product species exist

within the reduced species set. The fitness criterion is then used to determine which

individuals to propagate to the next generation. For example, Elliot et al. (2005) use

a criterion based on a weighted sum of errors in species molar concentrations using

an L2 norm. The fittest individuals are then selected probabilistically using a k-
tournament selection in order to be parents for the next generation. Cross-over and

mutation (genetic operators) are then used to exchange information between parents

in order to develop the next generation of individuals as described in Harris

et al. (2000). The approach involves selecting two parents and identifying those

species common to both parents. A child is formed by keeping common species and

randomly selecting new ones from unused positions in the chromosome. Mutation

is used to avoid local minima. The fitness criterion is then used again, and the fittest

parents and children are selected to form a new generation. After a certain number

of generations, where there is no further improvement, the best chromosome

represents an optimal solution. The method was successfully applied in Elliott

et al. (2005) to the reduction of the GRI methane oxidation mechanism to a

16-species skeleton mechanism, although even when using a fairly large set of

important species, the optimisation process took 2 days of CPU on a 3.2 GHz

Pentium 4 processor. The method was further extended to optimisation of the rate

parameters in the reduced scheme based on an experimental set of 1D laminar flame

profiles. The combined approach of model reduction and parameter selection using

GA-based optimisation methods has also been applied to biochemical networks in

Mauryaa et al. (2006, 2009) and to reduced models for the combustion of aviation

fuels in Elliott et al. (2006).

A slightly different approach was applied in the earlier work of Edwards

et al. (1998) where the search was for the minimum number of reactions/species

needed to satisfy specified error bounds rather than for the best reduced mechanism

for a fixed number of species and a given error tolerance. A heuristic comparison

was made in this work between the computational expense of the GA approach and

global sensitivity-based methods. The number of functional evaluations for the GA

approach was stated to be lower than for global sensitivity analysis, although the

same would not be true for the local rate sensitivity and DRG-based methods

described above. The potential user therefore has the choice between applying

global methods such as optimisation with the associated computational expense
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of acquiring a truly global solution or the use of much more computationally

efficient local methods, with the proviso that they are highly dependent on the

conditions chosen for analysis and the nominal values of the rate parameters. The

application of these types of methods is to a certain extent user driven. The user

may wish to specify a tolerated error in the prediction of a target output. On the

other hand, it may also be useful to use such methods to identify the optimal scheme

for a given number of variables. For example, in complex flow models such as

3-dimensional turbulence problems, a limited number of scalars can usually be

tolerated within the code due to computational costs. In such cases it may be better

to define the allowed number of variables and to use an optimisation approach.

Sikalo et al. (2014) compared several options for the application of genetic

algorithms to mechanism reduction, exploring the trade-off between the size and

accuracy of the resulting mechanisms. Information on the speed of solution was

also taken into account, so that, for example, the least stiff system (Sect. 6.7) could

be selected. An automatic method for the reduction of chemical kinetic mechanisms

was suggested and tested for the performance of reduced mechanisms used within

homogeneous constant pressure reactor and burner-stabilised flame simulations.

The flexibility of this type of approach has clear utility when restrictions are placed

on the number of variables that can be tolerated within a scheme in the compu-

tational sense. However, the development of skeletal mechanisms is rarely the end

point of any reduction procedure since the application of lumping or timescale-

based methods can be applied subsequently. These methods will be discussed in

later sections.

7.6.3 Optimisation of Reduced Models to Experimental Data

Usually, the aim of a reduction algorithm is to produce a skeletal scheme with

minimal error compared to the full scheme over a wide range of conditions.

However, if a large degree of reduction is required, e.g. for use in a spatially 3D

calculation, then simulation errors may creep in. In some circumstances it may

therefore be necessary to make adjustments to the model within the bounds of

uncertainty of its parameters, in order to improve agreement with target experi-

mental data. Apri et al. (2012, 2014) developed such an approach based on

optimisation, where mechanism reduction and parameter estimation were coupled

via comparison to experimental data. In their method they optimise the full model

to experimental data and then try to remove species and reactions from the model,

in order of increasing normalised local sensitivity coefficients. The trial reduced

model is re-optimised to the experimental data, and the mechanism reduction is

considered successful, if the given set of experimental data cannot discriminate

between the full and the reduced mechanisms. If the reduced model generates the

same predictions as that of the full model for any feasible experimental conditions,

then full model can be replaced by the reduced model. The agreement is defined by
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a user-controlled tolerance. The method was successfully applied to biochemical

kinetic systems.

Gokulakrishnan et al. (2013) developed a similar approach for use in combustion

which was tested for several models describing ethylene, Jet-A and methane

oxidation. Their method estimated the Arrhenius parameters and reaction orders

of several-step reduced models by optimising against target data generated either

from a detailed model or by experiment. The procedure uses the simulated

annealing (Kirkpatrick 1983; Ingber and Rosen 1992) optimisation algorithm.

Several types of target data were used, including ignition delay times, blow-out

times, laminar flame speeds, species time-history profiles and species reactivity

profiles. Such types of approaches are clearly useful when large reductions in

species numbers and reactions are required. However, in order for the resulting

mechanism to be used in a predictive way, the optimisation must have been carried

out over as wide a range of conditions as would be encountered in the final model

application, which might, for example, be a spatially 3D reactive flow simulation.

Hence, as wide as possible, a target data set should be used. In Gokulakrishnan

et al. (2013), a simultaneous optimisation was carried out against multiple target

data sets over a wide range of temperatures, pressures and equivalence ratios.

7.6.4 Application to Oscillatory Systems

Oscillatory models pose interesting challenges for model reduction since complex

dynamic behaviour needs to be captured by the reduced model in such cases. The

local variable concentrations may not be an appropriate basis for error criteria since

small shifts in oscillatory period may lead to large local concentration errors.

Instead, the success of a reduced model may be judged on features such as

oscillatory period or phase-shift behaviour. For example, the mammalian circadian

clock controls the timing of many physiological processes, including sleep patterns,

and responds to changes in external conditions such as temperature and light

fluctuations. The ability to model the phase response of such a system to external

signals is therefore critical to the success of a reduced model attempting to describe

its dynamics. The phase response curve (PRC) is commonly used to describe such

behaviour, i.e. depending upon the phase of a signal’s arrival, an oscillator may

advance, delay or maintain its phase (Taylor et al. 2008). Taylor et al. developed a

model reduction strategy based on a nonlinear integer programming optimisation

method to reduce a 61-state model of the mammalian circadian clock to a reduced

model with only 13 states. A nonlinear constraint was imposed on the problem since

the solution was required to show oscillations. Taylor et al. (2008) state that the

landscape of the resulting cost function is therefore likely to lack differentiability

and convexity making the problem less amenable to deterministic optimisation

methods such the branch-and-bound methods introduced above. The cost function

is not defined when the system does not oscillate and such regions are not known a

priori. GA-based methods are therefore used in this study. The reduced model was
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seen to preserve the phase response of the full model, and when coupled with

sensitivity, analysis revealed that four of the feedback loops in the original model

were redundant with respect to the appropriate PRC and the phase relationships

between the reduced model components.

7.7 Species Lumping

The development of skeletal mechanisms as discussed in Sects. 7.2–7.6 may often

provide a significant reduction in the number of species required for modelling a

given application, but for incorporation into complex CFD codes, the number of

variables may still be prohibitive. This is especially true for models involving the

combustion of complex hydrocarbons where comprehensive mechanisms may

contain many isomers with complex multistep pathways, and therefore large num-

bers of intermediate species and reactions. In such cases, other methods are required

for reduction that may involve some reformulation of the chemical model from its

original form of elementary chemical reactions. Species lumping is one available

method, which at the simplest level may involve the use of lumped components that

represent the sum of several isomers of a particular hydrocarbon species. In this

case the different isomers are not distinguished if they have the same chemical

formula and functional groups (Bounaceur et al. 1996; Battin-Leclerc et al. 2000),

and therefore, the resulting reactions are global rather than elementary. Several

approaches for chemical kinetic and thermodynamic lumping are discussed in

Astarita and Sandler (1991).

The crucial issues involved in the application of lumping are (1) to determine

which species are to be lumped; (2) to classify how the selected species should

contribute to the lumped species, i.e. define the lumping transformation; and (3) to

estimate kinetic parameters for the reactions of the lumped species. Developments

in lumping methods can be loosely classified into two categories. In “chemical

lumping”, the chemical structure of species is used to determine appropriate

lumping groups, and rules for combining species and reactions. Such methods

utilise the fact that detailed kinetic mechanisms are often built in a hierarchical

manner, particularly where automatic methods of mechanism generation are used

(Ranzi et al. 1995; Warth et al. 2000). A detailed review of chemical lumping

methods and applications was given in Ranzi et al. (2001) and Stagni et al. (2014),

and these methods will be discussed in Sect. 7.7.1 below.

Algorithmic approaches have also been developed that attempt to define mathe-

matical rules for the selection of lumped groups as well as methods for the

determination of reaction rates for the new reactions of the lumped species. Such

methods have the advantage that they are based on formal principles and therefore

do not rely on chemical knowledge or a priori assumptions about the chemical

reactivity of the original species. They may, however, require the application of

quite stringent mathematical restrictions that make wide application difficult and

may result in a reduced model form that cannot easily be cast in terms of a set of
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kinetic reactions. Approximate methods for algorithmic lumping have been devel-

oped in order to overcome these restrictions and will be discussed in Sect. 7.7.4.

7.7.1 Chemical Lumping

The approach used in chemical lumping is based on the fact that for complex

hydrocarbons with several isomers, the main propagation reactions can be split into

relatively few reaction classes (see discussion in Sect. 3.1). For example, for n-
heptane, the classes of propagation routes are defined in Ranzi et al. (1995) as:

– Decomposition and isomerisation of alkyl radicals R•

– H abstraction with O2 to form HO2 and conjugate olefins

– Direct and reverse O2 addition to R• to form peroxy radicals ROO•

– Internal isomerisation between ROO• and hydroperoxyalkyl radicals •QOOH

– Decomposition of •QOOH radicals to form olefins

– Decomposition of •QOOH radicals to form HO2 and conjugate olefins

– Decomposition of •QOOH to form heterocomponents (cyclic ethers, aldehydes

and ketones) and OH•

– Direct and reverse O2 addition on •QOOH to form hydroperoxyalkyl peroxy

radicals •OOQOOH

– Decomposition of •OOQOOH radicals to form keto-hydroperoxides

A discussion of reaction classes and their potential use in mechanism generation

is given in Sect. 3.1 and the references cited therein. Reference rate parameters

can be defined for each reaction class based on literature data or similarity rules.

For example, values can be defined for the abstraction of a hydrogen radical from a

peroxy radical based on its location at a primary, secondary or tertiary site or for

isomerisation reactions for hydrogen transfer from different sites (Ranzi

et al. 1995). The pathways for each isomer and the resulting intermediate radicals

can then be lumped to give a simplified scheme with only a single pathway

representing degradation to the average products of all the isomers. The rate

parameters for the lumped scheme can be obtained using fitting with respect to

experimental data, by weighted averages for the different component isomers

depending on the relative weights within the initial fuel, or based on the system

of algebraic equations derived from the long chain approximation, i.e. the QSSA

approximation applied only to the propagation steps (Battin-Leclerc et al. 2000;

Fournet et al. 2000).

For example, within the n-heptane scheme described in Battin-Leclerc

et al. (2000) and Fournet et al. (2000), there are 4 alkyl radicals noted by R•
1, R

•
2,

R•
3, R

•
4 giving rise to 4 reactions involving the addition of O2:
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R�
1 þ O2 ! R1OO

�

R�
2 þ O2 ! R2OO

�

R�
3 þ O2 ! R3OO

�

R�
4 þ O2 ! R4OO

�

The lumped alkyl radical is then defined by

R�½ � ¼ R�
1½ � þ R�

2½ � þ R�
3½ � þ R�

4½ �;

with the corresponding lumped reaction given by

R� þ O2 ! ROO�:

The rate coefficient is calculated using the weighted mean of the elementary rate

coefficients for the individual isomers:

k5 ¼
k1
�
R�

1

þ k2
�
R�

2

þ k3
�
R�

3

þ k4
�
R�

4


R�½ �

A full description of the methodology is given in Fournet et al. (2000). Battin-

Leclerc et al. (2000) showed that using such techniques, the primary mechanism for

n-heptane combustion could be reduced from 410 free radicals and 70 molecules in

1,654 reactions to a lumped scheme with only 25 free radicals and 70 molecules in

189 reactions. The lumped mechanism was shown to give a good representation of

the prediction of n-heptane conversion compared to the full scheme in the negative

temperature coefficient regime. The lumping process developed in Battin-Leclerc

et al. (2000) and Fournet et al. (2000) has been included as an integral part of the

automatic reaction generation software EXGAS in order to allow the user to limit

the size and improve the computational efficiency of the generated schemes where

required. A similar methodology was used by Ahmed et al. (2007) for the creation

of a compact n-heptane oxidation model.

A lumped n-heptane scheme was also developed in Ranzi et al. (1995)

containing only four lumped radicals as shown in Fig. 7.7. Here the rate coefficients

for the lumped scheme were obtained by fitting against predictions from the full

scheme. This high degree of lumping leads to reactions with non-integer stoichio-

metries which represent the relative weights of the different product channels. For

example, in the lumped n-heptane scheme represented in Fig. 7.7, one of the

decomposition steps for •Q7OOH is represented by

�Q7OOH ! OH� þ 0:3HCHOþ 0:32C5H10 þ 0:3C4H8 þ 0:35CH3CHO

þ 0:31C3H6 þ 0:35C2H5CHO þ 0:4C2H4 þ 0:06C7H14

Other examples of reduced hydrocarbon mechanisms developed via chemical

lumping include a primary oxidation mechanism for iso-octane containing only five
intermediate lumped radicals (Ranzi et al. 1997), lumped schemes for higher
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n-alkanes up to n-hexadecane (Ranzi et al. 2005) and naphthenes (Granata

et al. 2003).

A second example of chemical lumping has been developed to describe soot

formation in combustion systems. Frenklach (1991) presents a polymer system

where the chemical reactions describing polymer growth are of the same type,

whilst the rate parameters and thermodynamic data vary only slightly between

polymer sizes. For soot formation, the reaction is described by a distribution

function for the degree of polymerisation and a repeating reaction cycle for particle

growth (Frenklach 1985; Warnatz 1992). The structure and rate coefficients for

each repeated cycle are treated as being the same. To illustrate the approach, we

now discuss an example describing the production of polycyclic aromatic hydro-

carbons (PAHs) in flames. A suggested mechanism of PAH growth proceeds by a

replication process involving hydrogen abstraction and the addition of acetylene

(HACA mechanism), so that lumping can be guided by similarities in structure of

the hydrocarbon species in the repeating sequence. Using Frenklach’s example, we

start with the following reaction sequence:

Fig. 7.7 Schematic of the

lumped scheme developed

in Ranzi et al. (1995) for the

primary oxidation of n-
alkanes. Reproduced from

Ranzi et al. (1995) with

permission from Elsevier
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i; 1ð Þ Ai þ H $ A:
i þ H2

i; 2ð Þ A:
i þ C2H2 $ AiCHCH

:

i; 3ð Þ AiCHCH
:þ C2H2 ! Aiþ1 þ H

iþ 1, 1ð Þ Aiþ1 þ H $ A:
iþ1 þ H2

iþ 1, 2ð Þ A:
iþ1 þ C2H2 $ Aiþ1CHCH

:

iþ 1, 3ð Þ Aiþ1CHCH
:þ C2H2 ! Aiþ2 þ H

iþ 2, iþ 3, . . . , nð Þ . . . etc

where Ai is an aromatic molecule containing i fused aromatic rings, Ai˙ is an

aromatic radical formed by H abstraction and AiCHCH˙ is a radical formed by

adding C2H2 to Ai˙. Each replication of the reaction sequence represents complet-

ing the building cycle of one ring continuing in principle to infinity. The building

process is limited by the emergence of solid soot particles. Obviously in this case

the number of species can build up to be very large, leading to a large set of rate

equations which would need to be solved.

In non-lumped form, the reaction system is described by the following set of rate

equations:

d Ai½ �
dt

¼ ro � k1 Ai½ � H½ � þ k�1 A:
i

� 
H2½ �

d A:
i

� 
dt

¼ k1 Ai½ � H½ � � k�1 A:
i

� 
H2½ � � k2 A:

i

� 
C2H2½ � þ k�2 AiCHCH

:½ �
d AiCHCH

:½ �
dt

¼ k2 A:
i

� 
C2H2½ � � k�2 AiCHCH

:½ � � k3 AiCHCH
:½ � C2H2½ �

d Aiþ1½ �
dt

¼ k3 AiCHCH
:½ � C2H2½ � � k1 Aiþ1½ � H½ � þ k�1 A:

iþ1

� 
H2½ �

d A:
iþ1

� 
dt

¼ k1 Aiþ1½ � H½ � � k�1 A:
iþ1

� 
H2½ � � k2 A:

iþ1

� 
C2H2½ � þ k�2 Aiþ1CHCH

:½ �
d Aiþ1CHCH

:½ �
dt

¼ k2 A:
iþ1

� 
C2H2½ � � k�2 Aiþ1CHCH

:½ � � k3 Aiþ1CHCH
:½ � C2H2½ �

. . . etc:

ð7:24Þ

where ro is the rate of formation of Ai by initiation reactions. The rate coefficients kj
are assumed to have the same value for each cycle due to chemical similarities

between the species. This allows chemical lumping to be applied in order to reduce

the number of variables.

If we sum Eq. (7.24), then we get

dMo

dt
¼ ro ð7:25Þ

where Mo¼ [Ai] + [Ai˙] + [AiCHCH˙] + [Ai+1] + . . ., i.e. the sum of all species. This

one-dimensional system describes the evolution of the total PAH concentrationMo.

The details of the dynamics of the system are lost however if such a severe lumping
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is used. Another approach is to multiply each of the equations in (7.24) by an

integer which roughly corresponds to the molecular mass of the species, i.e. the

number of carbon atoms, before summing the terms. Hence, we multiply the first

equation by mo (the number of carbon atoms in Ai), the second by mo and the third

by (mo+ 2), etc., giving a lumped equation system

dM1

dt
¼ mo

d Ai½ �
dt

þ mo

d A:
i

� 
dt

þ mo þ 2ð Þ d AiCHCH
:½ �

dt
þ mo þ 4ð Þ d Aiþ1½ �

dt
þ . . . :

� �
¼ moro þ 2k2 C2H2½ �

X
i

A:
i

� � 2k�2

X
i

AiCHCH
:½ � þ 2k3 C2H2½ �

X
i

AiCHCH
:½ �

whereM1¼mo[Ai] +mo[A
:
i] + (mo+2)[AiCHCH

.] + (mo+4)[A(i+1)] + (mo+4)[A
:
ðiþ 1Þ]

+ � � �, is the total number of carbon atoms accumulated in the PAHs, i.e. the first moment

of the PAH distribution.

In terms of species lumping, we can now see that it is possible to define a new set

of variables which define the lumped species

ĉ 1 ¼
X
i

Ai½ �

ĉ 2 ¼
X
i

A:
i

� 
ĉ 3 ¼

X
i

AiCHCH
:½ �

The corresponding lumped equation system is then given by

dĉ 1

dt
¼ ro � k1 H½ � ĉ 1 þ k�1 H2½ �ĉ 2 þ k3 C2H2½ �ĉ 3

dĉ 2

dt
¼ k1 H½ � ĉ 1 � k�1 H2½ � ĉ 2 � k�2 ĉ 3

dĉ 3

dt
¼ k2 C2H2½ �ĉ 2 � k�2 ĉ 3 � k3 C2H2½ �ĉ 3

The example shows that in this case, lumping based on chemical similarities

results in new variables which are simply linear sums of the original species

concentrations. It is therefore just a special case of linear lumping which will be

discussed further in the following section. One point of caution is that the ability to

specify a new system of lumped equations in exact form relies on the fact that

identical rate coefficients have been used for the same reaction type for PAHs with

different numbers of carbon atoms. Hence, whilst the lumping may be exact, errors

may result from the use of this assumption. The sensitivity of the predictions of soot

volume fraction in ethylene/air flames at high pressure using the above approach

was investigated by Hu et al. (1999). Their work indicated the highest sensitivity to

the acetylene addition step. Moment-based methods were also extended to
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modelling the dynamics of particle systems including coagulation/agglomeration in

Frenklach and Harris (1987), and Kazakov and Frenklach (1998).

Chemical lumping has also been applied within atmospheric mechanisms based

on a number of slightly different approaches. For example, within the tropospheric,

Master Chemical Mechanism (MCM), lumping is used in the case of peroxy

radicals to define the generic species ROO• (Saunders et al. 2003). The full

MCM, however, remains for the most part an explicit, detailed mechanism.

Reduced forms of the MCM were developed in the Common Representative

Intermediates (CRI) mechanism using lumping methods (Jenkin et al. 2008; Wat-

son et al. 2008). At the first stage, a version of structural chemical lumping is

applied based on the assumption that the ozone-forming potential of a volatile

organic compound (VOC) is related to the number of reactive bonds (i.e. C–C and

C–H) it contains. Based on structural similarities, a set of generic intermediates or

“common representatives” is then defined, each containing a large set of species

from the full MCM possessing the same ozone-forming index as the common

representative. At the second stage of reduction, the CRI mechanism uses a

surrogate approach, where the masses of minor VOCs are redistributed into a

much lower number of surrogate compounds. These surrogates are selected in

order to maintain the chemical class of the redistributed VOCs with the aim of

preserving the tropospheric ozone-forming ability of each category. Several differ-

ent levels of reduction were offered in Watson et al. (2008). When coupled with the

first reduction stage, over an order of magnitude reduction was achievable when

compared to the equivalent explicit MCM mechanism.

Lumping based on functional groups was also developed in Whitten

et al. (1980), Gery et al. (1989), Fish (2000), Yarwood et al. (2005) and Kirchner

(2005) as discussed in Sect. 3.1. In these approaches, each carbon atom is given a

type depending on the number of carbon atoms to which it is bonded and a status

depending on its functional group. Structural activity relationships are then used to

generate rate coefficients for the lumped groups, and the fraction of the original

VOCs within the lumped quantities is tracked.

Lumping is also associated with the so-called family method in atmospheric

chemistry (Crutzen 1971; Turco and Whitten 1974; Austin 1991; Jacobson 2005).

Here, the families of chemical species are defined not only on the basis of structural

similarity but also on other chemical reasoning such as reactivity. The approach has

tended to be used mostly in the context of fast numerical methods for solving ODEs

related to atmospheric chemical systems. It is based on the principle that for some

groups or “families” of species, atoms transfer quickly among species within the

family but are lost slowly from it (Jacobson 2005). For example, within the family

odd oxygen [OX]¼ [O] + [O(1D)] + [O3], the O atoms cycle rapidly between the

species atomic oxygen, excited atomic oxygen (O1D) and ozone but are slowly lost

from within this group. Similar groups exist for odd nitrogen (NOy), hydrogen

(HOx), bromine (Bry) and chlorine (Cly) species.

Using families within the solution to ODEs requires several steps. First, the rates

of production and loss of individual species are calculated from the initial concen-

trations, and then summed across a family. The family concentration is then
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advanced to the next time step using something like a forward Euler approximation

(Elliott et al. 1993). In the final stage, individual species concentrations have to be

repartitioned within the family ready for the next time step. Several methods for this

repartitioning (a version of inverse lumping as discussed in the next section) can be

used, and the reader is referred to Jacobson (2005) for detailed examples. It is

important to note, however, that these usually have to invoke some kind of

approximation, such as the use of the QSSA, or a linearisation of the equations,

and hence, the family method can lead to numerical errors if family groupings are

not appropriately chosen. Austin, for example, discovered errors of order 20 % to be

induced in OH radical concentrations within photochemical stratospheric models

when too small a number of families were used (Austin 1991).

The errors induced within methods based on timescale separations will be

discussed in more detail in Sect. 7.8 below. On the other hand, since equilibrations

will exist within the groups, the introduction of such families is likely to lead to

the elimination of fast timescales, thus reducing the stiffness of the reduced system

of differential equations with resultant increases in simulation speed. O1D,

for example, has an atmospheric lifetime of the order of 10�8 s (see Sect. 6.3),

and therefore, its presence within a scheme can lead to large stiffness ratios when

treated as an individual species. Within reactive flow models, further computational

gains may also be made by advecting these families within the transport step rather

than individual species, thereby reducing the number of transported variables.

The family method was applied within an atmospheric chemistry box model to

NOy, HOx, Cly, Ox and Bry families in order to study the effect of increases in

ground level bromine emissions on stratospheric ozone by Ramaroson et al. (1992),

and for simulations of lower stratospheric HCl in Douglass and Kawa (1999). The

nonlinear features of tropospheric ozone production from nitrogen oxides and

VOCs were reproduced using a numerical method based on family methods in

Elliott et al. (1996).

Approaches to lumping in biochemical and systems biology applications tend to

be based on mathematical algorithms and will therefore be discussed after such

algorithms are introduced within the next section.

7.7.2 Linear Lumping

We saw in the previous section that chemical lumping is often based on defining

new species whose concentrations are linear combinations of those of the starting

species within a mechanism. This approach can be generalised within a mathe-

matical framework. The formal definition of lumping is the transformation of the

original vector of variables Y to a new transformed variable vector Ŷ using the

transformation function h:
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Ŷ ¼ h Yð Þ ð7:26Þ

The dimension n̂ of the new variable vector Ŷ is smaller than that of the original

concentration vector ( n̂ < NS ). Due to the transformation above, a new kinetic

system of ODEs is formed:

dŶ

dt
¼ f̂ Ŷ; k̂

� �
, Ŷ t0ð Þ ¼ Ŷ 0: ð7:27Þ

An important feature is the ability to recover the original vector of concentrations

from the transformed variables Ŷ using the inverse transformation function h:

Y ¼ h Ŷ
� � ð7:28Þ

Function h is not unique, since several different functions h may belong to the

same transformation function h. This inverse mapping is as important as the

forward mapping not only because it provides the link between the lumped vari-

ables and the original species concentrations, but because its existence is a neces-

sary condition of exact lumping.

If the function h is linear, then in chemical kinetics, this approach would be

termed linear species lumping and is essentially a formalisation of the chemical

lumping approach described in the previous section. In the linear case the transfor-

mation is simply a matrix multiplication operation:

Ŷ ¼ MY ð7:29Þ

where M is a matrix of size n̂ � NS. Consider, for example, the following matrix:

M ¼ 1

0

0

1

0

1

0

1

� �
: ð7:30Þ

This lumping matrix transforms an original concentration vector (Y1,Y2, Y3,Y4) to

the concentration vector Ŷ1; Ŷ2

� �
of lumped species, where Ŷ 1 ¼ Y1 and

Ŷ 2 ¼ Y2 þ Y3 þ Y4.

Linear species lumping is called proper species lumping (Okino and

Mavrovouniotis 1998), if the concentration of each original species appears in the

transformation function of only one lumped species. If there are lumped species

present in a kinetic reaction mechanism, such a mechanism is called a lumped
reaction mechanism. In some cases, it is possible to regain the exact original

concentration vector after using the transformation in Eq. (7.26), solving the

differential Eq. (7.27) and then using the inverse transformation in Eq. (7.28).

This is the case when the lumping is based on conserved properties, and therefore,
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no information is lost during lumping. This type of lumping is called exact species
lumping (Wei and Kuo 1969; Li and Rabitz 1989; Farkas 1999).

If we assume that the original kinetic system of differential equations contains

first-order reaction steps only, and therefore the concentration changes can be

described by the following initial value problem:

dY

dt
¼ �KY, Y t0ð Þ ¼ Y0 ð7:31Þ

then linear species lumping results in the following different initial value problem:

dŶ

dt
¼ �K̂Ŷ , Ŷ t0ð Þ ¼ Ŷ 0 ð7:32Þ

Wei and Kuo (1969) have shown that the necessary and sufficient condition of

exact linear lumping is the following equation:

MK ¼ K̂M ð7:33Þ

It is always possible to find matrices K̂ and M that fulfil Eq. (7.33), but the

solution is not unique. The equivalent problem is finding invariant subspaces of the

original equations, i.e. invariant subspaces of the transpose of the Jacobian JT(Y) so

that the eigenvalues of JT(Y) and JT(M-1MY) are identical, which is fairly straight-

forward for this linear example where the Jacobian is a constant matrix. However,

this is often a difficult task for more general nonlinear ODEs where applying the

restrictions imposed by exact lumping may limit the level of reduction possible for

the reduced scheme.

We include here a short example of linear lumping taken from Li and Rabitz

(1989) in order to illustrate the approach. Consider the first-order reaction system

involving reversible reactions between three species as follows:

C1ÆC2, k1f ¼ 3, k1b ¼ 2

C2ÆC3, k2f ¼ 10, k2b ¼ 6

C1ÆC3, k3f ¼ 10, k3b ¼ 4

The corresponding kinetic equations are

dc1
dt

¼ �13c1 þ 2c2 þ 4c3 ð7:34Þ
dc2
dt

¼ 3c1 � 12c2 þ 6c3 ð7:35Þ
dc3
dt

¼ 10c1 þ 10c2 � 10c3 ð7:36Þ

where the rate constants are essentially arbitrary numbers.
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In vector form we can write this system as

dc

dt
¼ Kc ð7:37Þ

Where K is the matrix of rate constants and

JT cð Þ ¼
�13 2 4

3 �12 6

10 10 �10

0@ 1A ð7:38Þ

The eigenvector matrix X of JT(c) is given by

X ¼
1 1 0:6
1 1 �0:4
1 �1 0

0@ 1A ð7:39Þ

Any subspace spanned by a subset of these eigenvectors will be JT(c) invariant and

could therefore form a suitable lumping matrix. For example, span (x1, x2) gives the

two-dimensional lumping matrix:

M ¼ 1 1 1

1 1 �1

� �
ð7:40Þ

The lumped form of the equations is given by

dĉ

dt
¼ MKc ð7:41Þ

However, in order to express the right-hand side in terms of the new lumped

variables ĉ, then the generalised inverse M�1 needs to be found. The inverse will

not be unique, but its form does not affect the form of the lumped equations. We can

arbitrarily choose

M�1 ¼
0:5 0

0:5 0

0 1

0@ 1A ð7:42Þ

and the lumped equations become

dĉ

dt
¼ MKM�1 ĉ ¼ �10 10

10 10

� �
ĉ ð7:43Þ

In this simple case, it is possible to interpret this as a lumped kinetic scheme
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Ĉ 1ÆĈ 2

whereĈ 1 ¼ c1 þ c2 þ c3 andĈ 2 ¼ c1 þ c2 � c3. Of course the above example is for

a simple first-order system where an exact linear lumping approach can be applied.

Several developments of the lumping method have been proposed to help to

overcome the restrictions placed by exact linear lumping. The first is constrained
species lumping (Li and Rabitz 1991). Usually we are not interested in predicting

the concentrations of all species in the original kinetic system of ODEs, but only in

important ones such as key products or pollutants. In constrained lumping the

original vector of concentrations is rearranged so that the first n elements consist

of the concentrations of the n important species. Then, transformation h is selected

so that it does not change the first n elements of vector Y. Chu et al. (2011)

suggested a new algorithm for approximate, linear constrained lumping. Some

variables of the original model are selected to be retained in the lumped model,

whilst the other variables are lumped by linear combination. The technique is based

on the Petrov–Galerkin projection, and the projection matrix is computed from

simulation data obtained from the original model. The projection matrix is calcu-

lated in a computationally inexpensive way using a sequential algorithm based on a

modified Gram–Schmidt orthogonalisation procedure.

Other recent advances in the application of algorithmic methods for linear

lumping have attempted to develop methods that are based on formal mathematical

principles but do not lead to the stringent restrictions on the numbers of lumped

species achievable caused by the application of exact linear lumping methods.

Huang et al. (2005) defined a formal lumping procedure for intermediate species

where the fraction of each component within the lump αi (equivalent to the inverse

lumping matrix M ) is defined in terms of the fractional formation rate of the

components of the lump. The intention of the procedure is to suggest suitable

lumped groups whilst maintaining the flexibility required to model the conse-

quences of chemistry arising from reactions of the individual species within each

lump. The selection of suitable lumping groups is determined via the calculation of

the ratio of the normalised formation rates between candidate species i and

j denoted by γi,j. If the ratio is approximately constant over the course of the

simulation, then the two species can be lumped. The method was extended to larger

lumped groups. For example, for a lumped group containing three species A, B

and C, then α is calculated as follows:

αA ¼ RA

RA þ m1RB þ m2RC

αB ¼ m1RB

RA þ m1RB þ m2RC

αC ¼ m2RC

RA þ m1RB þ m2RC

ð7:44Þ

where Ri is the formation rate of species i,m1¼ γA,B,m2¼ γA,C and α1 + α2 + α3¼ 1.
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The method was illustrated with respect to the simulation of higher hydrocarbon

generation during the isothermal oxidation of fuel-rich methane–oxygen mixtures,

where 31 species were lumped into nine groups giving a reduction in the number of

species of 22. In this application, the selection of groups is achieved by first

ordering the maximum gradients of the ratio γi,j over the simulation, given by φi,j.

The first group is then formed by selecting two species that have the lowest φi,j.

Other candidates are then tested for inclusion in this group by comparing φi,j values

with current members compared to a user-defined tolerance. When no further

candidates can be added, then two new starting candidates are selected from the

remaining ordered list, and the operation is continued until no further groups are

achievable. Integer programming methods could potentially be used to extend this

method to defining fully optimal lumped groups.

7.7.3 Linear Lumping in Systems with Timescale Separation

Other algorithmic methods for linear lumping have been developed for atmospheric

chemistry applications (Sportisse and Djouad 2000; Djouad and Sportisse 2002;

Djouad et al. 2003; Whitehouse et al. 2004c) but could potentially be relevant to

other types of chemical kinetic simulations. These methods have exploited a

timescale analysis in order to define lumped groups. For example, in Whitehouse

et al. (2004c), species are grouped according to their chemical lifetimes and

reactivity structures. This work applied the methods to the comprehensive tropo-

spheric Master Chemical Mechanism (MCM). Several large lumped groups were

achievable which were composed of peroxyacyl nitrates, nitrates, carbonates,

oxepins, substituted phenols, oxyacids and peracids with similar lifetimes and

reaction rates with OH. This approach could be considered as a formalisation of

chemical lumping where chemical similarities are not judged by expert opinion but

are calculated on the basis of reaction rates.

Djouad and Sportisse (Sportisse and Djouad 2000; Djouad and Sportisse 2002)

use lumping techniques based on the stoichiometric matrix of the fast subspace of

the system to define the partitioning between slow and fast species. The method is

equivalent to searching for slow species as linear combinations of fast ones and

is therefore aimed at reducing the stiffness of the modelling problem for use

with efficient numerical solvers. The approach also provides information on the

dynamic behaviour of the model and was successfully demonstrated for tropo-

spheric reaction systems including multi-phase applications (Djouad et al. 2003). It

should be pointed out that the wide applicability of simple linear algorithms for

lumping in atmospheric chemistry is in part due to the low-temperature dependence

of reaction rates for these schemes. Extension to non-isothermal systems would

provide an interesting area for further work.

We now briefly provide a formalised framework for linear lumping in systems

with timescale separation which is based on a similar approach to that presented in

Sect. 6.3. We start with the initial value problem
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dY

dt
¼ f Y; kð Þ, Y t0ð Þ ¼ Y0 ð7:45Þ

with the linear approximation to 7.45 given by

dY

dt
¼ JY ð7:46Þ

where J is the Jacobian matrix. We can define new variables Z by choosing an

n� n-dimensional lumping matrix QT such that

Z ¼ QTY ð7:47Þ

The Schur decomposition is defined byQTJQ¼Twhere T is an upper triangular

matrix, QQT¼QTQ¼ I, and

Q ¼ q1 q2 . . . qnð Þ ð7:48Þ

where qi are the Schur basis vectors. The Schur decomposition (Golub and Van

Loan 1983) is used instead of applying the eigenvectors as a basis since it has more

general application to ill-conditioned matrices where degenerate eigenvalues may

exist (Maas and Pope 1992). Q can be chosen such that the eigenvalues of J appear

in any order along the diagonal of T and hence could be ordered according to fast

and slow timescales. If we choose QT such that the eigenvalues appear in

descending order on the diagonal, then

QTJQ ¼ J
0 11ð Þ

J
0 12ð Þ

0 J
0 22ð Þ

 !
ð7:49Þ

where J0(11) corresponds to the n� n̂ most negative eigenvalues (i.e. the fastest

relaxing timescales) and J’(22) corresponds to the n̂ positive or small negative

eigenvalues. Therefore, the local linear system for Z is given by

dZ

dt
¼ J

0 11ð Þ
J

0 12ð Þ

0 J
0 22ð Þ

 !
Z ð7:50Þ

If a gap in timescales exists as discussed in Sect. 6.3, then the lumping matrix

can be partitioned as

QT ¼ QT
f

QT
s

� �
ð7:51Þ

whereQT
f is of dimension n� n̂ð Þ � nand spans the space of the fast timescales.QT

s

is of dimension n̂ � n and defines an n̂ � n lumping matrix which spans the slow

subspace and determines the lumped variables. Z can therefore be partitioned as
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Z ¼ F

S

� �
ð7:52Þ

and the equations describing the linear system become

dF

dt
¼ J

0 11ð Þ
Fþ J

0 12ð Þ
S ð7:53Þ

dS

dt
¼ J

0 22ð Þ
S

The variables in the slow subspace S are therefore decoupled from those in the

fast subspace, and therefore, the lumping allows the definition of a reduced set of

variables S describing the longer timescale dynamics. The connections with the

slow manifold methods described in Sect. 6.5 also become clear since the calcu-

lation of the points on the manifold involves solving the following algebraic set of

equations:

QT
f f Y; kð Þ ¼ 0 ð7:54Þ

We return to a discussion of numerical methods for solving such relationships in

Sect. 7.10.

7.7.4 General Nonlinear Methods

The methods of chemical and linear lumping outlined above can be extremely

effective for large systems where similarities in rate coefficients exist for chemi-

cally similar groups. However, they are difficult to extend in a general sense where

nonlinear couplings exist between groups of species. One solution may be to

consider the system as locally linear so that different lumping schemes are devel-

oped for different regions of composition space. However, one can imagine that for

highly nonlinear problems such as ignition or oscillatory systems, the lumping

transformations may vary rapidly, and the overhead in switching between different

lumped variables may outweigh any benefits gained from reducing the number of

variables. Methods for approximate nonlinear lumping have therefore been devel-

oped as discussed in the earlier review of Tomlin et al. (1997). Development of a

general nonlinear approach to lumping is, however, a non-trivial task. Instead of

simple matrix calculations, global canonical forms are now sought for the chemical

rate equations which separate the variables in a general way for many sets of

conditions. Nonlinear methods therefore may provide a more general approach

which is applicable over wider ranges of external conditions such as temperatures

and pressures, but this may be at the expense of algebraic complexity, since the

transformation from original to lumped variables is now of a nonlinear form.
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The theory of nonlinear lumping has been developed by Li and co-workers who

started first by establishing necessary and sufficient conditions for exact nonlinear

lumping (Li et al. 1994a). Starting with the equation system (7.45), we can define

new lumped variables using a general n̂ -dimensional nonlinear transformation to

new variables Ŷ ¼ h Yð Þ with a new n̂ -dimensional equation system given by

dŶ

dt
¼ f̂ Ŷ tð Þ� � ð7:55Þ

If we define the Jacobian of the transformation h(Y) as Dh,c(Y)¼∂h/∂Y, then

Dh,c Yð Þf Yð Þ ¼ Dh,ch h Yð Þð Þf h h Yð Þð Þ� � ð7:56Þ

is a necessary and sufficient condition for exact lumping. In parallel to the linear

case, exact lumping depends on the existence of the generalised inverse trans-

formation h. Since h is now a nonlinear function, the calculation of h becomes

challenging for high-dimensional or highly coupled systems.

For easier comparison with the linear case, we can redefine the system using a

linear partial differential operator A, which, using index notation, is given by

A ¼
Xn
i¼1

f i Y tð Þð Þ ∂
∂Yi

ð7:57Þ

giving the original system of equations in the form

dY

dt
¼ A Yð Þ ð7:58Þ

Therefore, finding the nonlinear transformation h depends on finding canonical

forms for the original operator A or on finding invariant manifolds of the original

system, i.e. the nonlinear equivalent of searching for canonical forms of the

Jacobian J (e.g. diagonal or upper triangular form) and its invariant subspaces.

The intention is that in the new canonical form, the corresponding differential

equations will be partially or completely decoupled. For example, the diagonal

form of a nonlinear operator with a basis of eigenfunctions φi(Y) and invariants

ωj(Y) would be as follows:

A
Xk
i¼1

λi ωð Þφi Yð Þ ∂
∂φi Yð Þ ð7:59Þ

where the eigenvalues λi(ω) are the equivalent of the diagonal elements in the linear

case. Hence, one approach is to search for the eigenfunctions of A which relate to

eigenvalues which are no longer constant but are functions of Y(t) (Li et al. 1994a).
Li et al. (1994a) have demonstrated that finding a full space of eigenfunctions for a

general nonlinear system is a difficult task. They therefore developed a nonlinear
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lumping approach based on finding approximate canonical forms for

A (Li et al. 1994b, c). Again, if we think about the corresponding linear case, one

way of finding approximate invariant manifolds was to exploit the timescale

separation within the system. Similar approaches can be taken in the nonlinear

case (Li et al. 1993, 1994b) as will be discussed in the following section on

timescale-based reduction methods.

7.7.5 Approximate Nonlinear Lumping in Systems
with Timescale Separation

It was noted in the previous section that the approach taken for lumping based on

timescale separation is to seek a canonical form for the Jacobian which separates

the slow and fast subspaces for the variables. This type of approach can also be

pursued for nonlinear approximate lumping where approximate canonical forms are

now sought for the operator A (see Eq. (7.57)) which separate the slow and fast

variables. The approach is based on the application of algebraic methods in

nonlinear perturbation theory (Bogaevski and Povzner 1991; Li et al. 1993,

1994b, c). The aim is to find a suitable canonical form that separates the nonlinear

right-hand sides of the lumped kinetic equations into slow and fast components.

Therefore, the operator A is defined in the form

A ¼ A0 þ εA1 þ ε2A2 þ � � �; ð7:60Þ

where ε is a small parameter. Then, a special form is sought for the operator which

allows the separation of groups of slow and fast variables as in the case of ILDM

(see Sect. 6.5). If Ao is dominant in magnitude compared to other Ais and the leading
operator Ao is already in a canonical form such as diagonal, triangular or a quasi-

linear one, then finding canonical forms for each of the Ai is an easier task than

finding a general canonical form. The approach developed by Li et al. was based on

algebraic methods in nonlinear perturbation theory (Bogaevski and Povzner 1991;

Li et al. 1993).

Using the algebraic method in nonlinear perturbation theory, it is possible to find

a transformation operator S such that the resultant operator

Â ¼ e�SAeS ð7:61Þ

has a canonical form similar to Ao, and S is similarly expanded

S ¼ εS1 þ ε2S2 þ . . . ; ð7:62Þ

where all the Si operators are linear partial differential operators. The dependent

variables in the corresponding differential equation system for Â will be partially or
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completely decoupled, and hence, the differential equations for the new decoupled

variables form lower-dimensional lumped differential equation systems (Li and

Rabitz 1996b).

The use of nonlinear canonical forms provides advantages over linear lumping

methods since the lumped groups may be valid over large regions of composition/

temperature space. The methods essentially provide higher-order accuracy than

methods such as the QSSA albeit at the cost of potentially complex algebraic

manipulations in order to find the terms of the perturbation expansion. For

constrained nonlinear lumping, the dependent variables of the lumped model are

the same as the original ones. Thus, the solutions of the original variables of interest

can be obtained directly by solving a lower-dimensional lumped differential equa-

tion system. This approach has been successfully demonstrated for H2/O2 combus-

tion system including ignition (Tomlin et al. 1994) and oscillatory behaviour

(Li and Rabitz 1995). The method was further extended for H2/O2 and CO/H2/air

combustion cases in Li and Rabitz (1996a, 1997) to the “special perturbation

method” in an attempt to improve the accuracy of higher-order terms generated

by constrained approximate nonlinear lumping methods, which were shown to be

divergent in some cases. A correction term was added to the first-order term, and a

Shanks transformation (Shanks 1949) was then applied to improve the convergence

of the corrected first-order perturbation series. The method was shown to give very

good accuracy for both the isothermal and non-isothermal case studies in H2/O2 and

CO/H2/air combustion with the advantage of avoiding the derivation of higher-

order terms. The approximation is shown in both examples to be significantly more

accurate than lower-order expressions based on QSSA and pre-equilibrium approxi-

mations, particularly during the initial phase of the reaction trajectories. One of the

disadvantages of these methods is the complex algebraic manipulations that result

from couplings between the variables. In Li and Rabitz (1996b), the approach was

combined with numerical methods for solving the resulting complex algebraic

relationships making the method more applicable for complex, non-isothermal

reaction systems.

7.7.6 Continuous Lumping

Besides the lumping of species using discrete weighted sums, another method for

decreasing the number of species in a model is the introduction of continuous
species (Aris and Gavalas 1966; Bailey 1972; Aris 1989; Astarita and Ocone 1992;
Laxminarasimhan et al. 1996; Zhao et al. 2002). Such techniques are useful in

models of processes involving highly complex hydrocarbon mixtures such as

petroleum feedstocks, for example. Here, extremely large numbers of species

may be present, many of which can be ordered according to one of their chemical

or physical features. This feature then becomes a relatively simple function of the

ordering variable. For example, in a polymerisation system, the melting point and

the reactivity of the oligomers are a smooth function of the number of monomer
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units in the oligomer species. If the kinetic system contains several ten thousands of

oligomers of different sizes, then it is not useful to calculate the concentrations and

properties of each of the oligomers separately. Another example is mixtures of

hydrocarbons containing many similar hydrocarbon molecules. In such systems the

discrete species can be represented by a continuum, and the lumping procedure

becomes a process of integration rather than summation. This approach of conti-

nuous species has found application in models of catalytic cracking (Weekman

1979; Cicarelli et al. 1992; Laxminarasimhan et al. 1996) and modelling the lique-

faction of coal (Prasad et al. 1986).

The reactivity and physical properties of continuous species are defined as a

function of a dimensionless variable x2 [0,1). This variable is usually related to a

measurable physical quantity, such as molecular weight or boiling point. The

fraction of a continuous species belonging to an interval of variable x can be

calculated by integrating the time-dependent probability density function ρ(x, t)
over this interval. According to its definition, the integral of this pdf is unit over the
whole domain of definition of x at any time.

The rate equations for lumped mixtures will now be discussed. If we consider an

isothermal reaction system containing m different reactant types which react irre-

versibly with an n-th order rate, then the resulting rate equations become

dci
dt

¼ �kic
n
i ð7:63Þ

If the reaction order is assumed to be constant for all species, then the only species-

dependent parameter is ki, and hence, a species can be defined by its concentration

ci and its reactivity ki.
For m discrete species, a reactant lump can be expressed as

Ĉ tð Þ ¼
Xm
i

ci ki, tð Þ ð7:64Þ

If m becomes sufficiently large, then k can be treated as a continuous function, and

the lump can be expressed in integral form

Ĉ tð Þ �
ðk
k�
g k; tð Þdk ð7:65Þ

Here k_ and k are the lower and upper limits for the particular mixture. The product

g(k,t)dk is the total concentration of a species with rate constants between k and k
+ dk, and should be interpreted as a concentration distribution function. As the

number of species within the mixture grows and approaches infinity, then the

separation between k_ and k becomes larger, and for convenience, it is assumed

that k_! 0 and k !1. This leads to the conventional form of the lumping

equation for continuous mixtures:
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Ĉ tð Þ �
ð1
0

g k; tð Þdk ð7:66Þ

Chou and Ho (1988) modified this approach slightly so that Eq. (7.66) is expressed

as an integral over reactivity k by taking into account the fact that the number of

reactant types per unit range of k can vary along the k axis. This leads to a modified

expression for the lumped concentration:

Ĉ tð Þ �
ð1
0

c k; tð ÞD kð Þdk ð7:67Þ

with time dependence

dĈ

dt
� �

ð1
0

D kð Þkc k; tð Þndk ð7:68Þ

Here, D(k) acts as a weighting factor which takes into account that in the discrete

system the ki’s may not be equally spaced along the k axis but will depend on the

type of feedstock to the reactor. An advantage of this approach is that rate

coefficients and physical properties can be measured at fixed points, and then the

appropriate function for k can be determined by fitting to these measured values.

If the continuous species participates in first-order reactions only, then it is easy

to calculate (Okino and Mavrovouniotis 1998) the total concentration of the

continuous species at each time point, as well as the pdf belonging to this time

and the mean values of physical properties. If the continuous species participates in

reactions other than first order, then general solutions do not exist, but solutions can

be derived for several special cases (Astarita and Ocone 1986; Ho and Aris 1987;

Astarita 1989; Astarita and Nigam 1989; Ocone and Astarita 1993).

7.7.7 The Application of Lumping to Biological
and Biochemical Systems

Lumping methods have found a number of applications within biological and

biochemical systems although the methods are sometimes referred to as the

“zooming” of states. An overview of the suitability of lumping methods for such

types of models is provided within the review of Maria (2004). Both symbolic and

numerical methods for unconstrained and constrained lumping were developed in

Brochot et al. (2005) and were demonstrated for 2- and 6-compartment physio-

logically based pharmacokinetic (PBPK) models for 1,3-butadiene. Whilst sym-

bolic approaches were deemed to be useful for starting models with a low number

of variables, numerical methods were required for more complex models.
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Sunnaker et al. (2010) developed a linear lumping approach with application to a

model predicting the observed behaviour of fluorescence emission in photo-

synthesis. Their approach was based on timescale separations within the system.

It has strong similarities with the “family” approach developed in atmospheric

systems (see Sect. 7.7.1), since the criteria used for lumping a group of states

include the reactions between them occurring on a much faster timescale than the

overall system timescale. Graph-based methods were used to identify components

within each lump. The approach was generalised for nonlinear systems in Sunnaker

et al. (2011) and includes methods to determine the inverse transformation, i.e. the

functional relationship between the lumped states and the original ones. The authors

claim that this makes the lumped model more easily interpreted from the biological

point of view. The definition of inverse transformations is based on assumptions

regarding the system dynamics that result in a sufficient number of equations being

linear so that an inverse transform can be defined. These assumptions are based on

the QSSA and on conservation relations that typically occur in models based on

mass action kinetics (as discussed in 2.3) and are common in models involving

transporters and enzymes. The method was demonstrated for a model describing

glucose transport across the cell membrane in baker’s yeast.
The exploitation of timescale separation was also performed by Liao and

Lightfoot (1988) within a formal linear lumping approach similar to that outlined

in Sect. 7.7.3. They demonstrated the approach for the red cell glycolysis model for

which the original system has 15 variables. They show that with different degrees of

lumping or “zooming”, the reduced model is able to represent the system dynamics

on different timescales. For example, the lumped 2 variable model describes the

system dynamics for timescales longer than an hour, but 4 additional variables are

needed to capture the dynamics on the timescale of minutes. Such “time hierar-

chies” in biological systems were also discussed by Maria (2006), particularly with

respect to genetic regulatory network (GRN) models (Maria 2008, 2009). Maria

argues that the level of detail within lumped sub-modules should be adjusted

according to the available experimental information which is perhaps important

for parameter estimation problems. Brochot et al. (2005) suggest that the use of

lumping to develop reduced models can assist in overcoming problems of statistical

identifiability within parameter estimation for pharmacokinetic models. For exam-

ple, when model parameters are highly correlated or have multiple peak posterior

distributions, parameter estimation can require a large number of runs in order to

explore the space of possible parameter values. A reduced model is therefore

computationally beneficial. However, Maria warns that the application of lumping

to models of metabolic processes must account for the physical significance of

species and their interactions, as well as the systemic properties of the metabolic

pathway, rather than being based on purely mathematical analysis of system

timescales (Maria 2006). One important aspect of lumping in biological and

biochemical systems therefore, may be the need to relate the lumped parameters

and variables back to those of the original model.

Dokoumetzidis and Aarons (2009b) further highlight the need for variables and

parameters within reduced biological models to retain a specific physiological
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meaning. They develop an approach for proper lumping, where each of the original

species contributes to only one of the pseudo-species within the lumped system,

meaning that the original species form groups which have a clear physical inter-

pretation. Their algorithm is based on a formal lumping approach as outlined in

Sect. 7.7.2. Many possible lumping matrices are explored, and an optimisation

approach is used to select the reduced model with the smallest error when compared

to the original model. To avoid a combinatorial explosion (see Sect. 7.6), the lumps

are added one at a time in a greedy-type approach. However, for a system with

30 variables and 20 lumps, over 8000 model evaluations are still required. The

approach was demonstrated for a model describing the signalling pathways of

NF-κB. A useful development to this approach was made in Dokoumetzidis and

Aarons (2009a) where parameter uncertainties were accounted for. Here a Bayesian

framework was used to produce lumping schemes which, whilst not necessarily

optimal for the nominal parameter values, were optimal on average over the prior

parameter distribution (i.e. incorporating uncertainties). This was compared with a

standard non-Bayesian lumping method which produced a model that was good for

the nominal values but was very poor for other values within the prior distribution.

The approach was demonstrated for a physiologically based pharmacokinetic

(PBPK) model for barbiturates. Their study raises the very important issue of

model reduction under uncertainty which is particularly critical if the reduced

model is to be used within the context of parameter estimation.

An algorithm for lumping coupled with parameter optimisation and variable

elimination was also developed in Dano et al. (2006) and demonstrated for a

20-variable model of yeast glycolytic oscillations. A key aim of their approach is

to ensure that the lumping and reduction procedures preserve the dynamic behav-

iour of the model, an issue which was also discussed more formally in Toth

et al. (1997). The model was first lumped using a method similar to Sunnaker

et al. (2010), and then parameter optimisation was performed in order to preserve

the dynamic properties of the model such as its oscillatory behaviour and the

structure of the bifurcation diagram. Variables are then eliminated from the

dynamic model using QSSA relationships, and an optimisation approach is also

used to test all physically realistic models and to search for the smallest one which

preserves the dynamic behaviour of the model. The combinatorial explosion which

is typically found in optimisation problems (Sect. 7.6) is avoided by sequentially

applying the QSSA to the least important species until the point at which the

oscillatory behaviour is lost upon further elimination. This type of methodology

would be greatly assisted by formalised methods for the selection of QSS-species

which will be discussed in the following section.

7.8 The Quasi-Steady-State Approximation

We hinted in Sect. 2.3.6 that the timescale separation present in most kinetic

systems can be exploited in terms of model reduction. The next sections will

therefore cover the use of timescale analysis for the reduction of the number of
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variables within kinetic models. This can have the added advantage of reducing the

stiffness of the equation systems (see Sect. 6.7), since often the fast variables are

removed from the system of differential equations and determined through alge-

braic relations with respect to the slower variables. We start first with the appli-

cation of the QSSA, which is one of the simplest methods for exploiting timescale

separation and is based on associating fast and slow timescales to individual species

(see Sect. 6.3 for a full discussion of this point).

7.8.1 Basic Equations

Consider the following general initial value problem:

dY

dt
¼ f Y; pð Þ, Y 0ð Þ ¼ Y0 ð7:69Þ

On applying the QSSA, we define non-QSSA variables (the slow variables) and
QSSA variables (the fast variables) as Y¼ (Y(1), Y(2)). The distinction between fast

and slow variables was discussed in Chap. 6. The right-hand side of the system of

ODEs (7.69) can be divided accordingly: f¼ (f(1), f(2)). The concentrations of the

non-QSS-species are calculated by solving the system of ODEs f(1), whilst the

concentrations of the QSS-species are calculated by solving the algebraic system of

equations obtained by setting the right-hand side of equations f(2)to zero:

dY 1ð Þ

dt
¼ f 1ð Þ Y; pð Þ, Y 1ð Þ 0ð Þ ¼ Y

1ð Þ
0 ð7:70Þ

0 ¼ f 2ð Þ Y; pð Þ ð7:71Þ

The system of differential (7.70) and algebraic (7.71) equations is coupled through

common variables and therefore can only be solved together. Various numerical

methods exist for directly solving such differential algebraic equations (DAEs)

(Gear and Petzold 1984), although other tricks can be introduced to improve the

numerical efficiency of employing the QSSA as discussed below.

Application of the QSSA is successful if the solution of ODE (7.69) is almost

identical to the solution of the coupled DAEs (7.70 and 7.71). What is considered as

“almost identical” may depend on the actual problem and the accuracy required, but

in reaction kinetic modelling, a 1 % error for all species at any time is usually

considered acceptable. It was emphasised in Sect. 7.2 that the aim of chemical

kinetic simulations is the accurate calculation of the concentrations of important

species or those of important reaction features. Therefore, the statement above can

be refined so that the application of the QSSA is successful if the solutions of

Eqs. (7.69) and (7.70–7.71) are almost identical considering the concentrations of

important species and the important features.
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7.8.2 Historical Context

The first application of the QSSA is usually attributed to Bodenstein (Bodenstein

1913; Bodenstein and Lutkemeyer 1924), but Chapman and Underhill (1913) and

Semenov (1939, 1943) were also early users of the technique. Further pioneers of

the application of the QSSA are Michaelis and Menten (1913) and Briggs and

Haldane (1925). The history of the application of the QSSA can be divided into

three periods (Turányi et al. 1993b). In the early period (1913–1960), accurate

experimental data for various applications were obtained and compared with

solutions of simple kinetic systems of differential equations that were formulated

to model the experimental behaviour. Due to the limited availability of computer

power during this time, the kinetic ODEs had to be solved analytically and using the

QSSA helped to convert the systems into an analytically solvable form.

From the 1960s onwards, computers became available for many researchers, but

the stiff systems of ODEs that describe many kinetics applications often could not

be simulated using available computer codes during this early period of numerical

analysis. By applying the QSSA, the stiff systems of ODEs could be converted to

non-stiff ones (Snow 1966; Blouza et al. 2000), and numerical solutions to these

ODEs could be obtained using traditional ODE solvers.

The publication of the Gear algorithm (Gear 1971) allowed the numerical

solution of stiff systems of differential equations and facilitated the comparison

of solutions of the kinetic system of differential equations with and without the

application of the QSSA. In early numerical experiments, the two solutions were

often different, and therefore, Edelson et al. demanded the cease of the application

of the QSSA (Edelson 1973; Farrow and Edelson 1974). However, the QSSA is still

widely used (Mendiara et al. 2004; Machrafi et al. 2005; Ströhle and Myhrvold

2006; Ciliberto et al. 2007) for the interpretation and simplification of reaction

mechanisms and speeding up reaction kinetic simulations. Peters et al. (Peters

1985; Paczko et al. 1986; Peters and Kee 1987; Peters and Rogg 1993) simplified

several detailed combustion mechanisms to skeleton mechanisms with only 2� 4

lumped reaction steps by using the QSSA, allowing the early use of combustion

kinetics in 3D computational fluid dynamic (CFD) simulations with complex

geometries. The explicit or hidden application of the QSSA is present in thousands

of articles on chemical kinetic modelling, and there are more than one hundred

articles dealing with the theory of the QSSA (see e.g. Miller and Alberty 1958;

Segel 1988; Segel and Slemrod 1989; Borghans et al. 1996; Tzafriri and Edelman

2004, 2005; Flach and Schnell 2006; Li et al. 2008a; Goussis 2012; Li and Li 2013).

It is a commonly used technique with perhaps a large potential for model reduction,

and therefore, it is worthwhile establishing sound principles on which to base its

application. Early failures of the application of the method are more likely to be due

to its inappropriate use, rather than a breakdown of the technique itself.
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7.8.3 The Analysis of Errors

Several early articles dealt with the applicability of the QSSA for certain groups of

species. Detailed reaction mechanisms were simulated with and without the appli-

cation of the QSSA (see e.g. Farrow and Edelson 1974; Sundaram and Froment

1978; Savage 1990), and the two solutions were compared. This determines the

applicability of the QSSA for a given system at given conditions, but unfortunately

does not provide general conclusions. In other publications, the applicability of the

QSSA was investigated for small skeleton models such as the Michaelis�Menten

scheme (see e.g. Georgakis and Aris 1975) and on the basis of singular perturbation

theory (see the review of Klonowski (1983)). The main result of the latter approach

is that using the Tihonov theorem (Tihonov 1952; Heineken et al. 1967; Vol’pert
and Hudjaev 1985), a necessary condition can be given for the applicability of the

QSSA. However, this theory cannot be applied for the calculation of the error

induced by the application of the QSSA for an arbitrary reaction mechanism which

will be covered below.

An early article on the error caused by the application of the QSSA was written

by Frank-Kamenetskii (1940), who is perhaps better known for theories on reactor

stability and flame modelling. This very brief article received only a few citations

over several decades following its publication (Benson 1952; Sayasov and

Vasil’eva 1955; Rice 1960). Turányi and Tóth (1992) published an English trans-

lation of Frank-Kamenetskii’s article with detailed comments. Further development

and generalisation (Turányi et al. 1993b) of the reasoning of Frank-Kamenetskii

allows the calculation of the error caused by the QSSA and is detailed below.

On the application of the QSSA and using the notation introduced in Sect. 7.8.1,

the Jacobian can be divided into four submatrices:

J ¼ J 11ð Þ J 12ð Þ

J 21ð Þ J 22ð Þ

� �
¼

∂f 1ð Þ

∂Y 1ð Þ
∂f 1ð Þ

∂Y 2ð Þ
∂f 2ð Þ

∂Y 1ð Þ
∂f 2ð Þ

∂Y 2ð Þ

0BB@
1CCA ð7:72Þ

At the beginning of reaction kinetic simulations, usually the concentrations of only

a few species (e.g. reactants, diluent gases, etc.) are defined, and other concen-

trations are set to zero. The QSSA is not usually applicable from the beginning of

the simulation since at this point, the trajectories are quite far from any underlying

slow manifolds (see Sect. 6.5). Hence, the kinetic system of ODEs (7.69) is usually

solved first, and at time t1 is switched to the solution of the DAE system (7.70–

7.71). We denote Y(t1)¼(Y(1)(t1), Y
(2)(t1)) to be the solution of Eq. (7.69) at time t1.

When the system of Eqs. (7.70–7.71) is used, then the concentrations of the

QSS-species are calculated first via the solution of algebraic system of

Eqs. (7.71), and the result is concentration vector y(2)(t1). The concentrations of

the non-QSS-species are identical to the solution of system of ODEs (7.69) at time
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t1, and therefore vector y(t1)¼ (Y(1)(t1), y
(2)(t1)) is the initial value of the DAE

system of Eqs. (7.70–7.71).

The local error of the QSSA at time t1 is given by the following vector (Turányi
et al. 1993b):

Δy 2ð Þ t1ð Þ ¼ y 2ð Þ t1ð Þ � Y 2ð Þ t1ð Þ ð7:73Þ

We now calculate the Taylor expansion of function f(2) at variable values y(t1):

dY
2ð Þ
i

d t
t1ð Þ ¼ f

2ð Þ
i Yð Þ

h i
Y¼y t1ð Þ

þ
X
k

∂f 2ð Þ
i Yð Þ
∂Yk

" #
Y¼y t1ð Þ

ΔY 2ð Þ
k t1ð Þ ð7:74Þ

where the expansion is applied for the QSSA variables only. Since vector y(t1) is a

root of the system of algebraic Eqs. (7.71), then f
2ð Þ
i Yð Þ

h i
Y¼y t1ð Þ

¼ 0 for each i.

The second- and higher-order terms in the Taylor expansion are neglected. This is a

usual step in physical chemical derivations, but in this context it is justified, since if

the mechanism contains not more than bimolecular steps and does not contain

second-order consumption steps such as the reaction type 2A!B, then the third

and higher terms of the Taylor expansion are all zero.

Equation (7.74) can also be written in matrix form:

dY 2ð Þ

d t
¼ J 22ð ÞΔy 2ð Þ ð7:75Þ

where dY(2)/d t is the production rate of the QSS-species at time t1 and J(22) is the

submatrix of the Jacobian belonging to the QSS-species at values y(t1). It is more

practical, however, to evaluate the matrix J(22)for the concentration vector Y(t1),
which results in an almost identical matrix. If the production rate dY(2)/d t of the

QSS-species and matrix J(22)are known, then the local error Δy(2) of the QSSA at

any time t1 can be calculated by solving the algebraic system of Eq. (7.75).

The local error of the QSSA is not equal to the difference between the solution of

the systems of Eqs. (7.69) and (7.70–7.71) at later times, which we call the global
error of the QSSA (Turányi et al. 1993b). If the local error is large at the initial

time, then the initial condition of Eqs. (7.70–7.71) will be wrong, and therefore, the

global error is also expected to become large over time. In addition, if the agree-

ment between Eqs. (7.69) and (7.70–7.71) is good until time t2 and then the local

error suddenly increases, the global error may also become large over time. This

implies that successful application of the QSSA (i.e. where the global error is well

controlled) means that the local error should remain small during the whole interval

of its application.

Using the algebraic system of Eq. (7.75), the local error can be calculated for all

QSS-species. If this equation is used for species i only, the following equation is

obtained:
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dyi
d t

¼ JiiΔyi ð7:76Þ

where Jii is the i-th element of the diagonal of the Jacobian. The local error of the

QSS-species can therefore be calculated as follows:

Δyi ¼ � dyi
d t

� �
� 1

Jii

� �
ð7:77Þ

It was shown in Sect. 6.2 that (�1/Jii) is equal to the lifetime of species i, and
therefore, Eq. (7.77) means that if the QSSA is applied for a single species, then the

absolute value of the local QSSA error is equal to the product of the species lifetime

and its production rate. The local error is therefore small if the species is consumed

in fast reactions and has a short lifetime. In this case the production rate of the

QSS-species can be large, and therefore, it may undergo significant concentration

changes during the simulation. This point is perhaps counter-intuitive since the term

“steady-state” usually implies low rates of change. Tomlin et al. (1992), for

example, showed that in the simulation of oscillatory hydrogen ignitions, the

QSSA can be applied even for species that have a large production rate as long as

they have a short lifetime. The local error of the QSSA can also be small, if the

species is not very reactive, but also its production rate is small. In this case the

QSSA is close to a “real” stationary approximation. This is the case when the QSSA

is applied in polymerisation kinetic systems (Stockmayer 1944).

Figure 7.8 shows a visualisation of Eq. (7.77), i.e. the production rate of a

QSS-species as a function of its concentration. The real production rate fi belongs

QSSA
concentration

real
production
rate

real
concentration

QSSA
error

Fig. 7.8 The relationship

between the concentration

and the production rate of a

species, and the error of

the QSSA
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to the real concentration Yi(t1), whilst the zero production rate belongs to the QSSA
concentration yi(t1), calculated from Eq. (7.71). The figure shows that if function

fi(Yi) is steep, that is, slope �Jii is large (and hence the species lifetime is short),

then the deviation between the real and the approximated concentrations is small.

This means that the local error of the QSSA will be small, even if the real

production rate of the QSS-species is large. If the production rate of the

QSS-species is small, then the local error can be small, even if the slope of function

fi(Yi) is small. If the production rate is zero, then we apply the real steady-state

approximation instead of the QSSA. Several reaction kinetics textbooks claim that

the algebraic system of Eqs. (7.70–7.71) is applicable for the calculation of the

concentration of the QSS-species because the production rate of the QSS-species is

really almost zero. As Fig. 7.8 shows, the quasi-steady-state approximation is

successful if the real and the approximated concentrations are close to each other,

and it might be true even where the production rate is large, if function fi(Yi) is very
steep.

If any of the initial concentrations of intermediate species within the mechanism

are zero, then the QSSA is usually only applicable after a time duration called the

induction period. Using the equations above, the induction period can be estimated

to be about ten times the lifetime of the QSS-species with the longest lifetime

(Turányi et al. 1993b).

The selection of QSS-species is perhaps the most important part of the appli-

cation of the QSSA. The following algorithm was suggested in Turányi

et al. (1993b). First using Eq. (7.77), the local error of the QSSA (related to each

species separately) is calculated across the domain of application. A group of

candidate QSS-species is selected according to a user-defined tolerance. Up to

10 % error has been suggested to be tolerable within applications in combustion

(Hughes et al. 2009). Then local error is calculated for this group of species using

Eq. (7.75). If the approximated local error remains small, then the QSSA is applied

for this group of species (Whitehouse et al. 2004a, b). The selection can be checked

by comparing the solutions of systems of Eqs. (7.69) and (7.70–7.71), for the

important species and important features over selected conditions. DAE solvers

such as DASSL can be used for this purpose (Maly and Petzold 1996).

Due to the local error of the QSSA, the concentrations of the QSS-species

calculated by Eq. (7.70–7.71) are slightly different from the “real” concentrations,

which can be considered as a continuous perturbation of the trajectory of the

non-QSS-species. Using the Green function (see Sect. 5.2.3), or in other words

the initial concentration sensitivities, it is possible to assess (Turányi et al. 1993b)

whether the concentration perturbation causes a significant deviation in the trajec-

tories of the non-QSS-species.
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7.8.4 Further Recent Approaches to the Selection
of QSS-Species

As discussed in Sect. 2.3.5, conserved properties result in the linear combination of

species concentrations or other variables of the system remaining constant through-

out the trajectory. Such constants are called first integrals in mathematics. As

Straube et al. (2005) demonstrated, the presence of QSSA relations leads to further

linear functions of the concentrations being approximately constant during the

solution of the kinetic system of ODEs. Straube et al. called these functions

quasi-integrals. This means that identification of QSS-species can be based on the

identification of the corresponding quasi-integrals. The unique feature of this

approach is that in this case, the identification of the QSSA relations is not directly

based on the investigation of timescales.

The relationship between the QSSA and the calculated concentrations of the

important species was handled in a different way by Løvås and co-workers (Løvås

et al. 2000, 2002a, b; Løvås 2009), who introduced the level of importance (LOI)

index. This index is the product of the lifetime of a species and a local sensitivity

term:

LOIð Þij ¼ ϑi
XNR

l¼1

νjl
∂Yi

∂lnAl
ð7:78Þ

The summation refers to all the NR reaction steps. For the calculation of lifetime ϑi,
not only the chemical lifetime τi is taken into account but also the residence time in

a reactor and the species’ rate of diffusion. The half-normalised local sensitivity

coefficient ∂Yi/∂ lnAl shows the effect of perturbing the A-factor of reaction step

l on concentration Yi, and νij is the corresponding stoichiometric coefficient.

The index (LOI)ij estimates the error of the calculation of the concentration of

species j due to the application of the QSSA on species i.
According to Løvås and co-workers (2002a), a species having a short lifetime is

related to a small local error of the QSSA, but this small error may cause large

errors in the simulated concentrations if these species exhibit large sensitivities. In

several combustion systems, the QSSA error of the H-atom has such a property. In

this case the LOI is large, and the QSSA is not applicable for such a species as found

also in Tomlin et al. (1992). The opposite situation may arise when the species has a

long lifetime, therefore a large local QSSA error, but this large error does not spread

to the simulation results. An example might be that in ethylene/air and ethane/air

premixed flames, the molecule C2H2 can be treated as a QSS-species (Wang and

Rogg 1993). In this case the LOI is small, and the QSSA is applicable for this

species. The LOI seems to be practically useful and has been applied to

several systems. A mathematical derivation of the approach would be a useful

development.
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Montgomery et al. (2006) used a genetic algorithm for the selection of

QSS-species. Based on the difference between the simulation results without and

with the application of the QSSA, the selection of the QSS-species was optimised

until the simulation error decreased below a certain threshold. CSP analysis can

also be used for the selection of QSS-species and is covered in more detail in Sects.

6.4 and 7.9. The validity of the QSSA in solution-phase bimolecular reactions was

also studied in Tzafriri and Edelman (2005).

Vora and Daoutidis (2001) developed a nonlinear model reduction method for

non-isothermal reaction systems that exhibit dynamics on two different timescales.

The method identifies the independent algebraic constraints (possibly of QSSA

origin) that define the low-dimensional state space where the slow dynamics of the

reaction system are constrained to evolve.

7.8.5 Application of the QSSA in Spatially Distributed
Systems

The propagation of errors in spatially distributed systems is also important and has

been the subject of several studies. Yannacopoulos et al. (1996a, b) carried out a

mathematical study of the general case and found that in common with the spatially

homogeneous case, the higher the net rate of production of the QSS-species, the

larger the possible error. Steep spatial gradients in concentrations also led to larger

overall errors. They also state that the higher the minimum diffusion rate of the

species, the lower the possible error, which relates to the idea that steep spatial

gradients (and therefore large errors) are smoothened by strong diffusion processes.

In Yannacopoulos et al. (1995), a method was suggested to describe the transient

relaxation to the slow manifold (i.e. the induction period) based on algebraic sets

and perturbation theory. Its application was demonstrated for a simple enzyme

substrate model and a two-dimensional oscillatory system as well as spatially

distributed systems. The method is equivalent to finding higher-order approxi-

mations to the fast dynamics of the system, whereas the QSSA represents a

zeroth-order approximation. The additional accuracy of the higher-order approxi-

mation was found to reduce the propagation of errors in reaction–diffusion systems.

The main reason for this is a better approximation to the initial stages of the fast

dynamics during the induction period where the QSSA errors may be higher.

Although it was stated above that the QSSA should not be applied during this

induction period, in practice it is often applied during this period for spatially

homogeneous systems with little consequence on the long time errors. However,

because of the spatial dependence of the solution in reaction–diffusion systems,

transient dynamics before relaxation to the slow manifold can have a very impor-

tant effect on the solution at long times. In these types of cases, it is important to

find a reduced system which is a good approximation to the full system almost

everywhere, i.e. it is necessary to take into account the transient dynamics of the
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relaxation to the slow manifold explicitly using higher-order approximations

(Yannacopoulos et al. 1995). Other methods for determining higher-order approx-

imations have been developed based on nonlinear perturbation theory as discussed

in Sect. 7.7.5.

7.8.6 Practical Applications of the QSSA

The classical textbook approach to the application of the QSSA is to describe the

concentrations of QSS-species via explicit algebraic expressions as functions of the

slower species. When the QSSA is used only for a few species or the QSS-species

are not strongly coupled to each other, then it is usually possible to calculate their

concentrations sequentially, in an order that allows explicit equations to be

obtained. Historically the QSSA was applied by directly solving such algebraic

expressions (e.g. Peters and Williams 1987); however, this often resulted in large

simplifications of the starting schemes to facilitate analytical solutions or truncation

of the QSSA expressions. Since we are now moving towards modelling more and

more complex systems, it is unlikely that these traditional methods will find general

application. On the other hand, Hughes et al. (2009) demonstrated that such an

approach based on algebraic equations could be applied to highly complex hydro-

carbon oxidation schemes when algebraic manipulation packages such as MAPLE

(Maple) are employed in order to provide a level of automation to the procedures. In

their approach the use of explicit expressions to describe the concentrations of the

QSS-species was coupled with reaction lumping in order to directly remove the

QSS-species from the reaction scheme. A simple example of this type of reaction

lumping based on the QSSA was demonstrated in Sect. 2.3.4 and showed that the

lumped rate parameters derived in this way are often complicated nonlinear func-

tions of the original rate parameters. They do not necessarily correspond to those of

a single rate-determining step, and hence, the approach is slightly more complex

than that described in Sect. 2.3.3.

Hughes et al. (2009) demonstrated the application of this approach for the

reduction of a skeletal scheme describing the oxidation of n-heptane from 218 spe-

cies to 110 species which is a substantial reduction. This extensive application was

possible since often in hydrocarbon oxidation schemes in both combustion and

atmospheric applications, the QSS-species are present in parallel pathways with

little coupling between them. Therefore, finding analytical solutions is possible

with the aid of algebraic manipulation packages. The types of species which can be

removed tend to be fast radicals such as alkyl radicals, alkyl hydroperoxy radicals

and hydroperoxyalkyl peroxy radicals (Hughes et al. 2009). Peroxy radicals, how-

ever, are shown to have higher QSSA errors and are often rate determining. They

therefore cannot be removed using the QSSA. A similar approach was also taken by

Whitehouse et al. within application to the Master Chemical Mechanism (MCM)

describing tropospheric hydrocarbon degradation (Whitehouse et al. 2004c). It

should be pointed out that such a simple approach is very difficult to apply to
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highly coupled QSS-species and so may not be applicable to all possible

QSS-species.

In fact in general, the QSSA results in implicit nonlinear algebraic equations

(Pantea et al. 2014), the solution of which may require significant CPU time. It is

possible to solve the coupled DAE system using easily available numerical methods

such as DASSL as discussed above, but since this does not lead to substantial CPU

savings, the use of such an approach is usually confined to testing the validity of

applying the QSSA to selected groups of species over limited sets of conditions.

Numerical schemes based on the QSSA have also been developed as discussed in

Sandu et al. (1997a, b) and Jay et al. (1997). However, since the performance of

traditional QSSA solvers was worse than many of the other explicit and implicit

methods for solving the stiff atmospheric systems tested, we do not discuss them in

detail here, and refer the reader to the papers of Sandu and co-workers for further

details. A higher-order extension was also proposed in Jay et al. (1997), which was

shown to improve upon earlier schemes.

In general, larger CPU savings will be made by solving for the QSS-species

separately and substituting their concentrations into the ODEs for the slow species.

Methods based on either inner or fixed point iteration methods (see e.g. Chap. 6 in

Peters and Rogg 1993) or matrix manipulations (Chen 1988) have often been used

in the past. The former of these methods uses iteration cycles to solve the coupled

implicit equations, whereas the latter relies on matrix manipulations. The formu-

lation of these methods is discussed in Jay et al. (1997), and they have been

commonly applied in atmospheric chemistry (Jay et al. 1997) and combustion

(Løvås et al. 2002b). Chen and Tham (2008) elaborated a method for the effective

solution of the system of algebraic equations resulting from the QSSA. They stated

that neither fixed point iteration nor matrix inversion methods are generally effec-

tive. They identified the strongly coupled QSS-species first, and their concen-

trations were calculated using matrix inversion. Fixed point iteration was used for

the calculation of the concentrations of the other QSS-species. Also, if a nonlinear

system of algebraic equations has polynomial equations on the right-hand side, then

a numerically efficient way of solving it is to transform its coefficient matrix to an

upper triangle matrix using a Gröbner basis (Becker and Weispfenning 1993).

Lu and Law (2006c) suggested another approach for the numerically efficient

application of the QSSA. In their approach, the nonlinear algebraic equations for

the QSS-species concentrations are first approximated by a set of linear equations,

and these linearised equations are analytically solved with a directed graph (see

Sect. 7.5), which is abstracted from the couplings between QSS-species. To

improve computational efficiency, groups of strongly connected QSS-species are

first identified. The intergroup couplings are then sorted topologically, and the inner

group couplings are solved using variable elimination by substitution in a near-

optimal sequence. The method was applied to generate a 16-step reduced mecha-

nism for ethylene/air combustion, with the reduced scheme showing good accuracy

for simulations of auto-ignition and perfectly stirred reactors compared to the initial

scheme (Lu and Law 2006c).
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Zambon and Chelliah (2007) also elaborated a method for the explicit, iteration-

free calculation of the QSS concentrations. The method is based on modifications to

the original matrix-based methods of Chen (1988) and is implemented in the Matlab

coding environment utilising its symbolic programming capabilities. The method

was used to develop an 18-step scheme for ethylene/air combustion from a skeletal

scheme containing 31 species and 128 reversible elementary reactions, i.e. a similar

level of reduction to that achieved by Lu and Law (2006c).

Kalachev and Field (2001) reduced a simplified reaction model of tropospheric

chemistry. Using non-dimensionalisation and timescale-based variable reduction, a

simple 4-variable model was obtained. The features of this model were investigated

and compared with other small skeleton tropospheric chemical models.

Radulescu et al. (2008) suggested the application of a series of methods for the

model reduction of biochemical networks. First, linear kinetic models are identified

as subsystems of multi-scale nonlinear reaction networks. For the nonlinear sys-

tems, the solutions of the fast variables are calculated using the quasi-stationarity

equations. The solutions of some of the slow variables are smoothed by averaging.

The method was used for the analysis of a model of the NF-κB pathway. Boulier

et al. (2011) proposed a new method for the derivation of reduced schemes based on

the QSSA by means of differential and algebraic elimination. The approximations

obtained are simpler than the classic equations for the Michaelis–Menten enzymatic

reaction system. Zhang et al. (2013) suggested a hybrid kinetic mechanism reduc-

tion scheme based on on-the-fly reduction and the QSSA. The globally identified

QSS-species were separated from the system of ODEs and solved via a set of

algebraic equations.

7.9 CSP-Based Mechanism Reduction

Computational singular perturbation or CSP analysis also provides information on

the contribution of the rates of the reaction steps to the various timescale modes

within a model. It can therefore be used to identify redundant species and reactions

as part of a model reduction procedure. The CSP methodology has been introduced

in Sect. 6.4, and here we discuss aspects related to mechanism reduction. We

continue the use of notations that were introduced in Sect. 6.4.

In the CSP methodology, several characteristic values (called indices) were

derived (Kourdis and Goussis 2013), which allow the analysis and reduction of

reaction mechanisms.

The fast amplitudes can be calculated by equation

zm ¼ bm f , m ¼ 1, . . . ,M ð7:79Þ

where M is the number of fast modes and f is the right-hand side of the kinetic

system of differential equations. When the solution has reached the slow invariant

manifold (SIM), then the amplitude of the fast modes is nearly zero:
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zm ¼ zm1 þ zm2 þ . . . þ zmNR
� 0 ð7:80Þ

The term zmk can be calculated from

zmk ¼ bmνkð Þ rk ð7:81Þ

where rk is the rate of reaction step k and νk is the k-th column of the stoichiometric

matrix. The term zmk denotes the contribution of the k-th reaction step to them-th fast
amplitude. Usually, only few terms are significant, and these can be identified

(Goussis and Lam 1992) by the CSP Participation Index:

Pm
k ¼ zmkXNR

j

zmj




 


 ð7:82Þ

The sum of the absolute values of Pm
k is equal to unity. A relatively large |Pm

k | value

indicates that the k-th reaction step is a significant participant in the m-th
equilibrium.

The contribution of the k-th reaction step to the evolution on the SIM of the n-th
variable can be evaluated with the help of the CSP Importance Index:

f nslow ¼ f n, 1slow þ f n, 2slow þ . . . þ f n,NR

slow ð7:83Þ

The quantity fn;kslow can be calculated from the following equation

f n,kslow ¼
XNS

j¼Mþ1

an
j bjνk
� �

rk, k ¼ 1, . . . ,NR ð7:84Þ

where rk is the rate of reaction step k, νk is the k-th column of the stoichiometric

matrix and anj denotes the n-th element of column vector aj in matrix As. The CSP

Importance Index is defined as

I nk ¼ f n,kslowXNR

j

f n,kslow



 

 ð7:85Þ

The sum of the absolute values of Ink is equal to unity. A relatively large |Ink | value
indicates that the k-th reaction step has a significant contribution to the change of Yn
on the SIM.

In relation to the M-dimensional fast subspace TYF, there are several variables

(i.e. species concentrations) that have a large contribution to the exhausted modes.
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The number of such variables is greater than or equal to M. These variables can be

identified with the help of the CSP Pointer:

Dm ¼ diag am bm½ � ð7:86Þ

A value of Di
m close to unity indicates that the i-th variable is strongly connected to

them-th mode and its corresponding timescale. In early publications related to CSP,

Di
m was called a “radical pointer”, and it was used for the identification of

QSS-species. Later, Lu and Law (2008a) demonstrated that the radical pointer

identifies not only the QSS-species but also non-QSS-species participating in fast

equilibria.

Using the CSP method, a non-stiff reduced model can be obtained that well

describes the change of modes belonging to the characteristic timescale of the

system (Valorani et al. 2005; Goussis and Valorani 2006). This method has been

used for the reduction of mechanisms describing the production of nitrogen oxides

in premixed methane�air flames (Goussis and Skevis 2005), ignition processes

(Treviño 1991; Treviño and Solorio 1991; Treviño and Mendez 1991, 1992;

Garcı́a-Ybarra and Treviño 1994; Treviño and Liñan 1994; Wu et al. 2013), the

tropospheric carbon bond mechanism (Neophytou et al. 2004; Mora-Ramirez and

Velasco 2011), the Regional Atmospheric Chemistry Mechanism (Løvås

et al. 2006) and biochemical models describing the circadian rhythm (Goussis

and Najm 2006).

In recent papers, Goussis investigated the relationship between the QSSA and

the partial equilibrium approximation (PEA) using CSP (Goussis and Maas 2011;

Goussis 2012). It was shown that the QSSA is a limiting case of the PEA.

Algorithms were reported for the identification of the variables in QSS and/or of

the processes in partial equilibrium. Bykov and Gol’dshtein (2013) also discussed

the relationship between the QSSA and PEA within the framework of the classical

theory of singularly perturbed systems.

7.10 Numerical Reduced Models Derived from the Rate

Equations of the Detailed Model

Several of the mechanism reduction methods discussed so far (see Sects. 7.2–7.6)

result in a smaller reaction mechanism, which is a subset of the original detailed

mechanism obtained by the removal of redundant species and reactions. Other

methods provide a smaller mechanism consisting of lumped species and/or lumped

reaction steps (Sect. 7.7). A further group of methods was then discussed which

identify fast timescales within the model (see Sects. 7.8 and 7.9), and the resulting

reduced model is a new set of differential equations with accompanying algebraic

equations. In some cases these equations can be converted back to a reaction
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mechanism via reaction lumping, but often an easily understandable kinetic struc-

ture is lost.

In the following sections, further methods are presented which result neither in a

smaller reaction mechanism nor in a new set of differential equations. Instead, these

methods provide a numerical relationship between a vector that defines the state of

the model and the outputs of the chemical kinetic model. These reduced models will

be termed here as numerical reduced models. Such relationships can be obtained

directly from the kinetic and thermodynamic equations that define the system (see

this section) or can be deduced by processing simulation results (see Sects. 7.11–

7.13).

7.10.1 Slow Manifold Methods

Several of the numerical-based methods exploit the presence of slow manifolds

within chemical kinetic systems which can help to reduce the dimensionality of the

system (see Sects. 6.5 and 7.7.3) whilst retaining the ability to reproduce the

important system dynamics. A slow manifold is rapidly approached during a

simulation as the fast system timescales collapse. Let us assume that we have

identified a point in the space of variables that is on (or close to) an Nz-dimensional

manifold. The state of the system can then be characterised by the following

variable vector

α1, α2, . . . , αNZ
, g1 αð Þ, g2 αð Þ, . . . , gNZ

αð Þ,Y1, Y1, . . . ,YNS
; ð7:87Þ

Here vector α is the vector of the parameterising variables of the manifold, vector

g(α) is its time derivative, and the N-dimensional vector Y defines chemical

concentrations and other variables of the thermokinetic state of the system, such

as temperature or the enthalpy of the system. Knowing the Nz-dimensional manifold

means that we have at least a numerical approximation of function Y¼ h(α) that
projects the variables of the manifold onto the space of concentrations. The function

α¼h Yð Þ defines the relationship between the concentrations and the coordinates of

the manifold.

If at least one point α0 of the manifold is known, then we can calculate the

progress of the kinetic system using the following system of differential equations

with Nz variables:

dα
dt

¼ g αð Þ α t0ð Þ ¼ α0 ð7:88Þ

This means that the number of equations which needs to be solved is much less than

the original kinetic system as discussed in Sect. 7.7.3. The calculated α values can

be converted to the full concentration vector at any time point using function h. The

initial value problem in Eq. (7.88) contains only Nz	N variables, but the values of
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all concentrations can be obtained as though the original kinetic system of differ-

ential equations had been solved. Reduced models based on low-dimensional

manifolds can usually be simulated faster than the full systems of differential

equations because the resulting dynamical system contains fewer variables and is

usually much less stiff. Explicit integration methods could therefore potentially

be used.

In the derivation above, there is an assumption that the manifold remains

attractive as time progresses. This is not true for explosive or excitable systems,

but it is valid for all other chemical kinetic systems. For explosive systems, the

approach may still be valid, but the dimensionality of the slow manifold chosen

would have to be large enough to contain the explosive modes. This point was

demonstrated in Brad et al. (2007) where a low-dimensional repro-model describ-

ing the oscillatory ignition of CO–H2 mixtures was developed using the ILDM

concept. A manifold dimension of 4 was required in order to capture the complex

dynamics associated with oscillatory ignition, but the initial system dimensionality

was 14, and hence, substantial reductions and computational time savings were

achieved.

Reduced systems modelling based on the initial value problem in Eq. (7.88)

requires the application of three functions. Function _α¼g αð Þ defines the time

derivative of α, function Y¼ h(α) calculates the concentrations from the para-

meters of the manifold (mapping ℜNz!ℜN), whilst function α ¼ h Yð Þ (mapping

ℜN!ℜNz) defines the relationship between the concentrations and the coordinates

of the manifold.

The approach above has several degrees of freedom:

1. Method for the identification of the manifold. There are many different mathe-

matical approaches for the identification of the location of low-dimensional

manifolds and thus for the definition of function h. Several such methods will

be discussed in Sects. 7.10.2 and 7.10.4.

2. Selection of the parameterising variable α. This has implications for the final

description of the function α ¼ h Yð Þ. Usually variables α are selected to be

identical to, or functions of, monotonically changing concentrations. For exam-

ple, in several combustion systems, the concentrations of H2O and CO2 are

continuously increasing, and therefore, the concentrations of these two species

are chosen as the parameters of a two-dimensional manifold. Mathematically

this means that function h truncates the whole concentration vector to the

concentrations of H2O and CO2, i.e. projects the whole concentration vector to

a two-element vector that contains the H2O and CO2 concentrations only. This

approach is not applicable when CO2 is a diluent in high-temperature combus-

tion systems because then the concentration of CO2 may be a maximum function

of the progress of the reaction. In this case, for example, H2O and the sum of the

concentrations of CO and CO2 can be used as the two parameters of the

manifold.

In principle, the function h can be any linear or nonlinear function. The

requirement is that it should provide an unambiguous representation of the
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manifold. In a limited range, the concentration of any species may be a para-

meter of the manifold. A systematic method to define the parameterising vari-

ables was suggested in Najafi-Yazdi et al. (2012). This method is based on a

principal component analysis (PCA) of species mass fractions in composition

space. The method yields the minimum number of linearly independent progress

variables for a user-prescribed desirable accuracy. Niu et al. (2013) discussed

using automated methods for defining progress variables in which all species of a

chemical scheme are involved. The requirement is a monotonic change in their

concentrations and a low gradient in the progress variable space. A set of

weighting coefficients is determined for every species of the detailed chemical

scheme, in order to construct the progress variable space.

3. Representation of functions _α¼g αð Þ and Y¼ h(α). If the parameterising vari-

ables α of the manifold are identical to some of the concentrations, then their

time derivatives can be calculated from the right-hand side of the kinetic system

of differential equations. In general, the function can be obtained from the

transformation function h and the right-hand side of the kinetic system of

differential equations. During the simulations, g can be calculated from h and

the kinetic system of ODEs or, alternatively, g is also pre-calculated and stored

as a fitted function. The requirement is that a mathematical function and its

computational implementation is needed that calculates _α and Y from the vector

α in a fast and accurate way.

7.10.2 Intrinsic Low-Dimensional Manifolds

Using the intrinsic low-dimensional manifold (ILDM) algorithm of Maas and Pope

introduced in Sect. 6.5 and detailed below, the location of the slow manifolds in the

concentration space can be determined. If we denote Nz to be the dimension of the

slow manifold, then Nz variables should be selected for its representation (Golub

and Van Loan 1983; Rhodes et al. 1999), and the concentrations of the other

variables will be determined as a function of these variables.

Usually, the values of the Nz parameterising variables are selected according to a

grid, whilst the values of all other concentrations are calculated by solving the

appropriate system of algebraic equations. The original idea of Maas and Pope

(Maas and Pope 1992) was that if a pointY in the concentration space belongs to the

slow manifold, then the eigenvectorswi
f of the Jacobian belonging to the fast modes

are all orthogonal to the vector of reaction rates f(Y), and therefore

Wf Yð Þ f Yð Þ ¼ 0 ð7:89Þ

The matrix Wf consists of vectors w
i
f . In early applications of the method, it was

found that the angles between vectors wi
f can be small causing numerical problems

or degenerate systems. Therefore, the Schur decomposition (Golub and Van Loan
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1983) of the Jacobian was used instead of the eigenvalue�eigenvector decompo-

sition as discussed in Sect. 7.7.3. We can choose a decomposition QT such that

QTJQ ¼ J
0 11ð Þ

J
0 12ð Þ

0 J
0 22ð Þ

 !
ð7:90Þ

where J0(11) corresponds to the N–Nz most negative eigenvalues (i.e. the fastest

relaxing timescales) and J0(22) corresponds to the Nz positive or small negative

eigenvalues. If the point representing the actual state of the system (e.g. the

concentration set) is on the slow manifold, then the vector of the rate of its change

(e.g. vector of production rates) is perpendicular to the space defined by the fast

modes, and thus, the slow manifold is defined by

QT
f f Y; kð Þ ¼ 0 ð7:91Þ

The slow manifold is therefore defined by points in composition space where the

chemical source term only has a component in the direction of the slow processes.

The slow variables are projected accordingly onto the manifold defined by

Eq. (7.91) yielding

QT
S

dY

dt
¼ QT

S f Y; kð Þ ð7:92Þ

Equation (7.91) is difficult to solve numerically although several methods have

been suggested (Maas and Pope 1992; Maas 1998; Gicquel et al. 1999).

Using the method above, the values of all other variables belonging to the slow

manifold are given as a function of the Nz parameterising variables defined on a

grid. This means that the location of the manifold is given as a function of the

parameterising variables. Also, the changes in the variables (e.g. the production

rates of the species) can be calculated at each grid point. Usually this information is

stored in a look-up table which is then used as a replacement for the original

equation system. An appropriate search code can then be used to retrieve the values

of the Nz parameterising variables, locate the nearest tabulated grid points, and

calculate the values of all variables and the corresponding time derivatives using

linear interpolation between the points. The errors inherent within such an approach

could however be large if a too low a manifold dimension is assumed that is unable

to represent the full dynamics of the system. The higher the tabulation dimension

used, the lower the errors should be, although this has obvious implications for the

computational cost of storage and retrieval algorithms (see Sects. 7.12 and 7.13).

Interpolation errors should be kept small as long as the resolution of the tabulation

grid is small enough.

The high-temperature combustion of several simple fuels has been simulated

using the ILDMmethod (Ishmurzin et al. 2003). The results suggest that for models

of adiabatic combustion in closed systems, the number Nz of necessary
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parameterising variables is one for the combustion of hydrogen (Eggels and de

Goey 1995), two for the combustion of wet carbon monoxide (Maas and Pope 1992)

and three for the combustion of methane (Riedel et al. 1994). This shows that the

chemical kinetics of the combustion of these species can be described by surpris-

ingly few variables for certain applications if the temperature is high (e.g. T
 about

1,000 K). For open systems or systems which attempt to describe the

low-temperature ignition behaviour of fuels, the required dimension may be higher.

For example, Brad et al. (2007) found that modelling the oscillatory ignition of wet

carbon monoxide required four variables. In their paper they also discussed the

problems of fitting/tabulation errors for systems which demonstrate excitability

(i.e. local increases in dimension), where small errors in one part of the variable

phase space may be amplified at later points in the trajectory.

It is worthwhile to compare the application of ILDM-based methods with other

approaches based on timescale analysis. For example, a typical detailed mechanism

for the high-temperature combustion of methane, without the chemistry describing

the reactions of nitrogen- and sulphur-containing species, contains about 30 reac-

tive species. The QSSA has been found to be applicable for about 15 species, and

therefore, even after the application of the QSSA, the kinetic system of differential

equations contains about 15 variables. On the other hand, a manifold-based differ-

ential equation, with similar accuracy over a given range of conditions, may contain

only 3 variables (Riedel et al. 1994). One reason for the difference is that the QSSA

provides analytical expressions that should be applicable within a wide domain of

concentrations of the non-QSS-species and therefore may be more restrictive than

the criteria used for the generation of the ILDM over a restricted domain.

In addition, the application of the QSSA assumes that the fast timescales are related

to single species separately. In Chap. 6, however, we discussed how timescales may

actually relate to linear or nonlinear functions of species concentrations. Therefore,

the restriction of associating each fast timescale with a single species may lead to

too stringent requirements when using dimension reduction strategies. Another

requirement of the QSSA is that these fast timescales should be present for all

investigated concentrations of the non-QSS-species. Using ILDM approaches, the

fast processes can be different in different regions of concentration space. The

combination of these advantageous features can result in dynamical models based

on ILDM methods requiring fewer variables than those based on the QSSA.

Reduced models based on low-dimensional manifolds can usually be simulated

faster than full systems of differential equations because the resulting dynamical

system contains fewer variables and is usually not stiff (see Sect. 6.7). However, the

search and retrieval algorithms required to access the look-up tables can consume

significant amounts of computer time. As an example, the simulation of methane

combustion based on the ILDM method was eight times faster than that using a

detailed mechanism (Riedel et al. 1994). Special algorithms have been developed to

speed up the search and retrieval process (Androulakis 2004). In situ tabulation

methods have also been developed as discussed in Sect. 7.12 below.

Recent developments of methods based on the direct calculation of

low-dimensional manifolds have branched out in several directions. One direction
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has been the application of the method for more complex fuels. The method was

successfully applied for the development of reduced models describing the com-

bustion of high-molecular-weight hydrocarbons, such as iso-octane and n-dodecane
(Blasenbrey and Maas 2000). Nafe and Maas (2003) also showed that the ILDM

created for the description of the oxidation of smaller hydrocarbons can be used as a

first approximation for the ILDM describing model dynamics for the combustion of

larger hydrocarbons. Surovtsova and co-workers (2009) applied the ILDM method

to several biochemical systems and implemented the method (together with a

modified version) within the computer code COPASI (Hoops et al. 2006).

Improvements in the numerical methods for the calculation of low-dimensional

manifolds have also been achieved. The original method of Maas and Pope works

well if there is a clear separation between the fast and slow timescales, and

therefore, the trajectories quickly approach the slow manifold. This is usually the

case for high-temperature combustion. An improved algorithm is needed, if the

manifold is not strongly attracting, i.e. there is weak timescale separation and the

trajectories approach the manifold slowly. This is often the case for

low-temperature combustion and other relatively slow kinetic processes. A further

development of the ILDM algorithm applicable for slower processes was suggested

by Maas and co-workers (Nafe and Maas 2002; Bykov and Maas 2007b; König and

Maas 2009).

Most of the manifold-based methods simulate the slow subspace by solving

differential equations and describe the fast subspace with functional relations.

Using the method of global-quasi-linearisation (GQL) (Bykov et al. 2007), the

fast subsystem is solved by integration (which is less stiff compared to the original

system), and the slow variables are assumed to be linear functions of time during

the local time integration step. The decomposition is based on comparing the values

of the right-hand sides of the original system of equations, leading to the separation

of “fast” and “slow” variables. The hierarchy of the decomposition is allowed to

vary with time. The error between the solutions of the full system and those of the

decomposed system of equations was shown to be negligibly small for practical

applications. The efficiency of this approach was demonstrated on the wet carbon

monoxide combustion system (Bykov et al. 2007; Bykov and Maas 2009a) and

modelling the auto-ignition of a cyclohexane�air mixture (Bykov et al. 2013).

The advantage of the ILDM method is that it allows the modelling of dynamical

systems using a number of differential equations (ODEs or PDEs) which is equal to

the dynamical dimension of the simulated system (see Sect. 6.5). The disadvantage

of the ILDM method is that the creation of the database that contains the manifolds

requires significant human effort for any new detailed mechanism, and a specialised

computer program is needed. When multivariate manifolds are stored in look-up

tables, the database can be extremely large, and retrieval in the database is slow. So

far, Nz¼ 5 is the highest number of parameterising variables that has been used for

the tabulation of an ILDM (Blasenbrey 2000). An alternative approach is to store

the data on the slow manifolds in the form of fitted functions (see Sect. 7.13).

For example, Niemann et al. (1997) developed an approach where the space of
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variables used to parameterise the ILDM was divided into many domains, and the

ILDM was described in each domain using high-order orthonormal polynomials.

A second potential disadvantage of the ILDM is that it does not represent the

exact invariant manifold of the system but rather is an approximation to it. The

exact slow invariant manifold (SIM) is that to which propagated trajectories are

attracted, whereas the ILDM is an approximation based on infinitesimally propa-

gated trajectories (Skodje and Davis 2001). Thus once a trajectory has reached an

invariant manifold, it does not leave it (Gorban et al. 2004b). The SIM is therefore a

global attractor, whereas the ILDM is a local attractor. Several methods for

determining SIMs have been developed using geometric approaches and will be

discussed in Sect. 7.11.

7.10.3 Application of ILDM Methods in Reaction Diffusion
Systems

Available methods for the reduction of reaction mechanisms are usually first tested

on spatially homogeneous systems, but their most important practical application

is the simulation of spatially inhomogeneous reaction�diffusion systems.

In isothermal or adiabatic spatially homogeneous systems, the timescales are

determined exclusively by the chemical reactions. If a chemical reaction occurs

in a spatially inhomogeneous system, then mixing and diffusion timescales are also

present as discussed in Sect. 6.6. Therefore, when using mechanism reduction

methods based on timescales in spatially inhomogeneous systems, the physical

timescales are also important. Maas and Pope discussed this question in one of their

early articles (Maas and Pope 1994). In this early work, they assumed that the

presence of species diffusion does not change the location of the manifold in the

concentration space but rather shifts the point belonging to the actual state of the

system along the manifold. Later investigations by, e.g., Ren and Pope (2007b)

suggested that where clear timescale separations do exist, compositions in the

reaction–diffusion system are perturbed from the chemical ILDM by O(ε) due to

molecular diffusion—the so-called “close-parallel” assumption (Ren and Pope

2006b). Also, whilst convection processes do not have a direct effect on compo-

sition, they can have significant indirect effects via the diffusion process by

changing the gradients of composition. Therefore, in a reactive flow, the enhanced

diffusion caused by convection may further pull the compositions away from the

chemical ILDM (Ren and Pope 2007b). In addition, as discussed in Sect. 6.6, the

chemical slow manifold may not give a good approximation to the full system of

equations in cases where there is little timescale separation between the important

chemical timescales and those related to the flow. One solution may be to use a

higher-dimensional chemical manifold, hence ensuring that only timescales that are

significantly faster than the flow have been equilibrated, but this could lead to too
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high a dimension being required for the chemical ILDM in some cases. More

general approaches have therefore been developed for reactive flow systems.

One such approach is the reaction�diffusion manifold (REDIM) method. Using
the notation of Bykov and Maas (2007a), the evolution equation for the scalar field

of a reacting flow is given by

∂ψ
∂t

¼ F ψð Þ � υ! � gradψþ 1

ρ
divDgradψ ð7:93Þ

where ψ¼ (ψ1, ψ2, . . ., ψNSþ2 )
T is the thermokinetic state, which can, e.g., be

expressed by the specific enthalpy h, the pressure p and the mass fractions wi of the

NS chemical species: ψ¼ (h, p, w1,. . ., wNS
)T, F denotes the chemical source term,

υ! the velocity, ρ the density andD the matrix of transport coefficients (cf. Sect. 6.6).

The assumption that an invariant slow manifold of low dimension exists in the

state space yields

I�ψθ θð Þψþ
θ θð Þ� � � F ψ θð Þð Þ � 1

ρ
div Dψθ θð Þgradθð Þ

� 	
¼ 0; ð7:94Þ

where ψ0(θ) is an initial guess for the manifold in terms of reduced composition

variables θ (e.g. as estimated using the chemical ILDM). (I�ψθψþ) is a projection
operator, which eliminates all components of the evolution of ψ tangent to the

manifold. Here ψθ is a matrix which spans the tangent space of the manifold, and

ψþ is a pseudo-inverse, with the condition thatψþψθ¼ I. Bykov and Maas (2007a,

2009b) describe an approach to solve Eq. (7.94) using a time-stepping method:

∂ψ θ, tð Þ
∂t

¼ I�ψθ θð Þψθþ θð Þ� � � F ψ θð Þð Þ � 1

ρ
div Dψθ θð Þgradθð Þ

� 	
ψ θ; 0ð Þ ¼ ψ0 θð Þ

ð7:95Þ

with initial and boundary conditions given, e.g., by an extended chemical ILDM

manifold (Bykov and Maas 2007a, b). In order to find the manifolds, estimates for

the gradients of θ have to be supplied, although it can be shown that the higher the

dimension of the manifold, the smaller its sensitivity with respect to the gradient

estimate (Bykov and Maas 2007b, 2009b).

Once the manifold has been identified, the governing equation for the scalar field

of the reacting flow can be projected onto the manifold (Bykov and Maas 2007b,

2009a, b; Maas and Bykov 2011):

∂θ
∂t

¼ ψþ
θ F ψ θð Þð Þ � υ!gradθ�ψþ

θ
1

ρ
div Dψθgradθð Þ ð7:96Þ

The REDIM method has been applied to systems with complex transport models

(Maas and Bykov 2011). Its concepts have some similarities to the strategies used in
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flamelet-generated manifolds (van Oijen and de Goey 2000; Verhoeven et al. 2012)

or the flamelet prolongation of ILDMs (Gicquel et al. 2000). The flamelet approach

will be discussed later in Sect. 7.12.4 since it is not specifically derived using the

system equations.

An extended ILDM method was also developed by Bongers et al. (2002) for

specific application in diffusion flames. In their work, the manifold is constructed in

composition phase space (PS) instead of composition space, and hence, the chem-

ical ILDM method is extended to the PS-ILDM method. The composition phase

space includes not only the species mass fractions and enthalpy but also the

diffusive fluxes of species and the diffusive enthalpy flux. The extended equation

system therefore is of dimension 2(NS + 1) where NS is the number of species and

hence is twice the dimension of the original system of equations. However, the

extension allows the resulting ILDM to take account of diffusion processes that

would not be represented by the purely chemical ILDM. Therefore, a

low-dimensional slow manifold may be found, even in regions of the flame

where there are strong interactions between chemistry and flow. The method is

demonstrated for a premixed CO/H2 flame with preferential diffusion.

7.10.4 Thermodynamic Approaches for the Calculation
of Manifolds

The results of a chemical kinetic model can be obtained by solving the corres-

ponding differential equations, and therefore, it is logical that reduced mechanisms

can be deduced from these equations. It is perhaps surprising that successful model

reduction strategies can be developed based on the thermodynamic functions of

high-temperature gas kinetic systems. The rate-controlled constrained equilibrium
(RCCE) method is such an approach and was first proposed by Keck in the 1970s

(Keck and Gillespie 1971) as an alternative formulation for the simulation of

chemical kinetic systems. It has more recently been used for the purposes of

chemical model reduction and, in common with slow manifold, QSSA- and

CSP-based methods, aims to exploit the timescale separation in kinetic systems

(Jones and Rigopoulos 2005a, b). It therefore falls into the class of dimension

reduction methods along with techniques such as ILDM. However, a different

formulation is used in RCCE to derive the low-dimensional models. In RCCE the

kinetically controlled species evolve according to differential equations involving

detailed chemical kinetics, whilst equilibrated species are determined by

minimising the free energy of the mixture, subject to the additional constraints

[i.e. in addition to the conservation of mass, energy and elements (Jones and

Rigopoulos 2007; Rigopoulos 2007)]. A brief description of the concepts involved

in RCCE-based methods is given here as well as a summary of its main applications

for chemical mechanism reduction to date. For a full discussion of the foundations
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of the method, the reader is referred to the reviews of Keck (1990) and Beretta

et al. (2012).

Using the normal formulation for chemical rate equations, the local equilibration

of a species can be expressed by setting the right-hand side of its rate equation

(i.e. its net production rate) to zero (see Sect. 2.3). However, the equilibrium state of

a chemical system can also be determined using the maximum entropy principle of

statistical thermodynamics (Chiavazzo et al. 2007). For a full equilibrium state,

several constraints exist on the system. The first is element conservation as

discussed in Sect. 2.3. Two thermodynamic constraints must also be specified,

which, if expressed in terms of enthalpy and pressure, result in the Gibbs free

energy being minimised for closed systems (Jones and Rigopoulos 2005a). Calcu-

lation of the final equilibrium state therefore does not involve knowledge of a

detailed chemical mechanism. The equilibrium composition can instead be calcu-

lated by minimising its Gibbs free energy subject to constraints imposed by the

mass of each element, and the pressure p and enthalpy being maintained constant at

their specified values. This minimisation can be carried out using the method of

Lagrange multipliers, and the equilibrium molar concentrations Yj
0 can be shown to

satisfy the following expression:

Y
0
j ¼

p

ρRT

�μ⦵
j

RT

 !
exp

XMe

i¼1

ae
ijλ

e
i

� �& ’
j ¼ 1, . . .NSð Þ ð7:97Þ

where λi
e are Lagrange multipliers referred to as element potentials, NS is the

number of species, Me is the number of elements and μj
⦵ is the chemical potential

in the standard state which is a function of temperature (see Jones and Rigopoulos

(2007) for full derivation). The matrix aeij contains the contributions of each element

i in species j. Element constraints can be represented as

Ei ¼
XN
j¼1

ae
ijYj

� �
i ¼ 1, . . . ,Með Þ ð7:98Þ

The conservation of pressure and enthalpy leads to 2 additional constraints.

If we wish to represent the system in a non-equilibrium state, then further

constraints must be introduced. These constraints are usually expressed as linear

combinations of species concentrations:

Ci ¼
XNS

j¼1

ac
ijYj

� �
i ¼ 1, . . . ,Mcð Þ ð7:99Þ

where Mc is the number of additional constraints. The molar concentrations

resulting from constrained equilibrium Yj
* are expressed as
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Y�
j ¼ Y

0
jexp

XMc

i¼1

ac
ijλ

c
i

� �& ’
j ¼ 1, . . . ,Nð Þ ð7:100Þ

where λi
c are additional Lagrange multipliers usually called constraint potentials. In

the constrained equilibrium state, the species mole fractions are determined by Mc

Lagrange multipliers.

In common with slow manifold-type methods, RCCE uses the assumption that

fast reactions exist that relax the chemical system to the associated constrained

equilibrium state on timescales which are shorter than those on which the con-

straints are changing (Tang and Pope 2004). The RCCE therefore comprises two

concepts:

1. The constraints evolve according to chemical kinetics information.

2. At any time point, the state of the system is a constrained thermodynamic

equilibrium state.

The implication of (1.) is an ODE which describes how the constraints evolve in

time:

dCi

dt
¼
XN
j¼1

ac
ijWj

� �
i ¼ 1, . . . ,Mcð Þ ð7:101Þ

where Wj is the production rate for species j (Jones and Rigopoulos 2005a). The

implication of (2.) is that a system of algebraic equations exist which must be

satisfied in order for the composition to remain on the constrained equilibrium

manifold. Equation (7.100) defines such a sub-manifold in composition space, the

constrained equilibrium manifold (CEM), on which the dynamical evolution of the

system is allowed to take place. Equation (7.100) must be satisfied along with

element constraints on the CEM:

Ei ¼
XN
j¼1

ae
ijY

�
j

� �
i ¼ 1, . . . ,Með Þ ð7:102Þ

and further constraints:

Ci ¼
XN
j¼1

ac
ijY

�
j

� �
i ¼ 1, . . . ,Mcð Þ ð7:103Þ

as well as the conservation of pressure and enthalpy. A non-equilibrium closed

system will relax to a final equilibrium through a sequence of RCCE states

expressed by CEMs. Hence, thermodynamic arguments are employed to calculate

the partial equilibrium state through constraints, but chemical kinetics determines
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the dynamic evolution of the system, i.e. how the constraints evolve in time,

through Eq. (7.101).

Equations (7.100–7.103) form a differential algebraic system of equations where

the number of constraints used determines the dimension of the reduced system.

Since the RCCE formulation leads to a general system of ODEs, it is also necessary

to select which variables the constraints should be applied to, since different

selections may lead to different model reduction errors. Most commonly, con-

straints are applied to individual species, but this may be more related to practical-

ities of implementation rather than inherent properties of the system. There is in

principle no reason why constraints should not be applied to combinations of

species (e.g. lumped variables). To summarise (Jones and Rigopoulos 2007), an

RCCE system comprises a set of ODEs or PDEs that describe the dynamics of the

kinetically controlled species taken directly from a detailed mechanism without any

approximations and a set of algebraic equations for the computation of the equil-

ibrated species, derived on a physical basis via the maximum entropy principle of

thermodynamics.

In Jones and Rigopoulos (2005a), RCCE was applied to the simulation of

methane laminar flames. The first two constraints chosen were necessarily CH4

and O2 since initial and boundary conditions must correspond to a constrained

equilibrium state for the set of constraints selected. Further constraints were then

tested on a trial-and-error basis until the reduced model with the lowest error

compared to the full model was obtained. Systems using 9 and 7 constraints were

tested and found to give good agreement with the full model containing 63 species.

The same set of constraints was also found to be satisfactory for the modelling of a

methane ignition problem. The RCCE method was also applied in Ugarte

et al. (2005) to a model of the combustion of a stoichiometric mixture of formal-

dehyde and oxygen which contained 29 species and 139 reactions over a wide range

of temperatures and pressures. Reduced models containing between 1 and 6 RCCE

constraints were tested along with three fixed element constraints (carbon, oxygen

and hydrogen). Overall eight constraints were needed to give good agreement with

ignition delays predicted by the full model, although slightly more were required

for the prediction of minor species.

The selection of constraint species by trial and error, however, could be time

consuming, and it would be useful to be able to automatically select the optimal set

of constraints which minimises the simulation error for a given reduced model

dimension. Hiremath et al. (2010, 2011) address this issue by developing a “greedy”

algorithm to select a “good” set of constrained species. Whilst this may not be the

globally optimal set, it is an improvement on trial-and-error approaches and was

demonstrated for a methane combustion model to produce the lowest reduction

error over a wide range of temperatures and pressures for partially stirred reactor

studies. The selection of constraints was also achieved using an LOI in Rigopoulos

and Løvås (2009) and more recently in Løvås et al. (2011), where the constraints

were selected adaptively in different regions of the composition space. Here a

cross-over between QSSA and RCCE methods occurs since the LOI is related to
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the species lifetime (see Eqn (7.78)), and hence, the constrained species approxi-

mately correspond to non-QSS-species.

One advantage of RCCE is that it provides a consistent framework to derive

equations describing the reduced model based on the second law of thermo-

dynamics. This means that approaches such as tabulation or complex algebraic

manipulations based on the QSSA can be avoided. One drawback of the RCCE

approach, however, as pointed out by Tang and Pope (2004), is that the CEMs are

not inertial manifolds but only approximations to them. What this means is that the

RCCE manifolds produced are not the exact ones to which trajectories approach in

a simulation of the full system. However, the same could be said of the ILDM

formulation which also gives only an approximation to the exact inertial manifold.

For this reason, extensions to RCCE have been proposed (Ren et al. 2007) which

use CEMs as a starting point for trajectory-based methods which calculate the

corresponding inertial manifold (see later discussion in Sects. 7.11 and 7.12).

7.11 Numerical Reduced Models Based on Geometric

Approaches

7.11.1 Calculation of Slow Invariant Manifolds

As pointed out in the previous section, one potential disadvantage of ILDM and

RCCE methods is that they do not represent the exact invariant manifold of the

system but rather an approximation to it. The exact slow invariant manifold (SIM)

is that to which propagated trajectories are attracted, and once a trajectory has

reached an invariant manifold, it does not leave it (Gorban et al. 2004b). Singh

et al. (2002) demonstrate, for example, that an ILDM is not in general a SIM but

approaches one in the limit of large stiffness, i.e. clear timescale separation between

slow and fast dynamics. Several methods for determining such globally attracting

SIMs have been developed which fall into the class of geometric methods. Such

geometric methods include trajectory-based methods, iterative methods and the

invariant constrained equilibrium edge pre-image curve (ICE-PIC) method. Davis

and Skodje (1999) argue that geometric approaches are more general than other

approaches such as ILDM, since motion on a one-dimensional manifold need not

conform to a single exponential or a simple rate law except when close to the final

equilibrium point.

A full mathematical description of the definition of the invariance of an SIM is

given in Chiavazzo et al. (2007). Based on the concept of invariance, it follows that

the SIM can be obtained through the simulation of trajectories rather than via the

algebraic equations defined for the ILDM above. Hence, locating the invariant

manifold can be obtained by simulating the progress of reaction trajectories from

suitable initial conditions as they proceed towards equilibrium. Trajectory-based

methods for converging to the SIM using a predictor corrector algorithm were
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discussed in Davis and Skodje (1999) with application to a hydrogen oxidation

mechanism. They demonstrated a higher degree of accuracy of the SIMs obtained

in this approach compared to QSSA- or ILDM-based reduction methods.

An alternative approach was also formulated by Fraser and co-workers (Fraser

1988; Roussel and Fraser 1990, 1991a, b, 2001; Fraser and Roussel 1994) who

suggested that the slow invariant manifold could be viewed as an attracting fixed

point of a functional mapping. Thus, an initial guess for the slow manifold

(e.g. based on the QSSA) could be iteratively improved. A method based on

functional equation truncation was also developed by Roussel and Tang (2006).

Davis and Skodje (1999) modified this method to allow its use for high-dimensional

systems. Both the trajectory-based approaches and an updated algorithm based on

Fraser’s original work were shown in their work to be more accurate than the ILDM

and QSSA for the test cases studied. A full discussion of the different approaches is

given in Skodje and Davis (2001).

A related approach termed the method of invariant grids (MIG) is also discussed

in Gorban and Karlin (2003), Gorban et al. (2004a, c), Chiavazzo et al. (2007, 2009)

based on the method of invariant manifold (MIM). In MIG, a quasi-equilibrium

approach is used to define a first approximation to the SIM on a grid in concen-

tration space, and then improved estimations of the SIM are obtained using either

Newton iteration or relaxation methods. The MIG was compared to CSP-based

methods, the ILDM method and the entropy-based methods in Chiavazzo

et al. (2007).

Singh et al. (2002) suggested a method where diffusion is taken into account

during the determination of the slow manifold. They called this manifold the

infinite-dimensional approximate slow invariant manifold (ASIM), and it is an

extension of the functional iteration techniques introduced by Roussel and

co-workers (Fraser 1988; Roussel and Fraser 1990, 1991a, b, 2001; Fraser and

Roussel 1994) discussed above. When applied to reactive flow systems, their

method results in an elliptic system of partial differential equations describing

motion on the infinite-dimensional ASIM which are obtained by equilibrating the

fast dynamics of the closely coupled reaction/convection/diffusion system. They

demonstrate the method for a model of ozone decomposition in a premixed laminar

flame and observe smaller errors in the simulation of key flame features than when

using the purely chemical ILDM. Similar approaches based on finding the ASIM

were also developed by Ren and Pope (2005, 2006b, 2007a, b) for

reaction�diffusion systems. A full discussion of the differences between the

ILDM, the close-parallel assumption and ASIM methods for reaction–diffusion

systems is given in Ren and Pope (2007b). The conclusion drawn is that whilst the

full ASIM approach gives accurate predictions of the full composition even close to

the solution boundaries, it is by far the most computationally expensive of the three

approaches. Ren and Pope (2007b) propose some simplifications to the general

approach adopted in Singh et al. (2002) in order to improve the efficiency of the

method based on the formulation of explicit governing PDEs for the reduced

composition (slow variables) rather than the full composition.
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7.11.2 The Minimal Entropy Production Trajectory Method

A geometric-based method for the calculation of one-dimensional manifolds based

on thermodynamic principles was also developed, namely, the minimal entropy
production trajectory (MEPT) method (Lebiedz 2004). This method can be inter-

preted as the demand that under the given constraints, all thermodynamic forces

and dynamic modes of the system remain maximally relaxed except one, the

progress variable, which is parameterised. This is equivalent to finding a trajectory

approaching equilibrium for which the squared deviation of the entropy production

from zero is minimal for a weighted sum of single reaction step contributions,

which is called the MEPT. The approach can be loosely linked with the application

of simple reduction rules such as partial equilibrium or quasi-equilibrium assump-

tions (see Sects. 2.3.2 and 2.3.4) since it can be interpreted as finding the model

configuration with as many elementary reaction steps as possible being close to

quasi-equilibrium in a chemical sense. Such a model is determined using an

optimisation algorithm.

These methods were further extended in Ugarte et al. (2005), Ren et al. (2007)

and Reonhardt et al. (2008) to two-dimensional manifolds which are computed as

families of MEPTs using a multiple shooting method with a range of initial values.

Hence, a discrete grid of initial values of the reaction progress variables is used, and

then optimal trajectories (based on the MEPT principle) are calculated which span

the two-dimensional manifold. However, Al-Khateeb et al. (2009), who investi-

gated the relationship between thermodynamics and a reactive system’s slow

invariant manifold, suggest that such a manifold cannot be a good representation

of the SIM. In their work they conclude that the MEPT is not attractive along its

complete trajectory, and thus does not correspond to the SIM of the system. A

mathematical analysis is provided which shows that equilibrium thermodynamic

potentials do not alone determine reactive systems’ dynamics during their approach

towards the physical equilibrium and are not attractive manifolds describing the

slow dynamics, even near the equilibrium point. It is worth noting the similarities

between the minimal entropy production trajectory (MEPT) method, the RCCE

(Sect. 7.10.4) and the entropy production-based skeletal mechanism reduction

method (Sect. 7.4).

7.11.3 Calculation of Temporal Concentration Changes
Based on the Self-Similarity of the Concentration
Curves

Harstad and Bellan (2010a, b) investigated the concentration�time curves obtained

during the simulation of the ignition of large alkanes. They found that on plotting

the concentration of several species as a function of a selected dominant variable

(e.g. the normalised temperature), the resulting curves were similar to each other,

7.11 Numerical Reduced Models Based on Geometric Approaches 259

http://dx.doi.org/10.1007/978-3-662-44562-4_2#Sec14
http://dx.doi.org/10.1007/978-3-662-44562-4_2#Sec15


which means that one curve can be transformed to the other by a linear projection.

They distinguished local and global self-similarity; the former means that it occurs

only in some regions of the ( p0, T0, φ) space, whilst the latter is valid in the entire

investigated space. The concentrations of the large hydrocarbon intermediates were

calculated with the similarity equations, whilst those of the small radicals were

calculated using the QSSA approximation. This allowed them to create a reduced

model in which differential rate equations were solved for only 11 species. This

approach was used for formulating reduced models for the ignition of n-heptane
(Harstad and Bellan 2010b) and various mixtures of iso-octane, n-heptane and n-
pentane or iso-hexane (Harstad and Bellan 2010a) over a wide range of equivalence
ratios, initial pressures and temperatures. The approach was developed further by

Kourdis and Bellan (Kourdis and Bellan 2014), who improved the numerical

methodology and extended it to further hydrocarbons.

Bellan et al. present the existence of self-similarity as an empirical observation

resulting from the inspection of simulation results, and they do not provide a

mathematical foundation to the method. Similar concentration curves may be a

result of the existence of very different timescales, and the application of QSSA or

partial equilibrium may result in linear relations between the concentrations.

However, in these articles self-similarity was found among long lifetime

(“heavy”) species, and therefore, the existence of self-similarity seems to be a

consequence of possible lumping relationships within the system variables.

Although the self-similarity concept seems to be related to the lumping of species,

it is not equivalent to it, since the derived linear functions contain the concentra-

tions of all heavy species and not only a selection of them.

7.12 Tabulation Approaches

In the previous two sections, several methods for model reduction were discussed

which in some way exploited the inherent low-dimensional manifolds that are

present in kinetic systems. In general, for high-dimensional nonlinear models,

such methods have to be applied numerically rather than by solving coupled set

of algebraic equations symbolically. Further speed-ups can be gained through the

use of storage and retrieval algorithms defining behaviour on the low-dimensional

manifolds. Within this class of methods, the simulations are usually carried out in

two steps. First, the system of equations is solved over many possible reaction

conditions, and the simulation results are stored using an appropriate information

storage and retrieval system. When further simulations are carried out at similar

conditions, the results can be deduced from the stored outputs.

Meisel and Collins were among the first authors who used this principle and

called it the repro-modelling approach. Meisel and Collins suggested that within a

large complex model, it is worth identifying very time-consuming subtasks which

are used frequently, where the results depend only on the values of a few variables

(Meisel and Collins 1973). It is immediately obvious that the presence of
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low-dimensional manifolds in a system will lead to this type of behaviour. These

subtasks can be solved at many possible values of their variables, and the results are

fitted or stored as a function of a reduced number of variables (e.g. the

parameterising variables of the slow manifold). The fitted functions/tables can

then be used several thousand times during the simulation of the complex model,

and solutions are likely to be cheaper to retrieve, compared to the integration of a

stiff set of differential equations. Various strategies for storage and retrieval have

been developed which will be discussed in this and the following section. We start

here with tabulation methods.

7.12.1 The Use of Look-Up Tables

The relationship between the state of a model and the vector of chemical kinetic

information can be stored in tables. Such tables are called look-up tables in the

simulation of turbulent flames. When the simulation code receives the input vector,

it locates points within the table that are close to the input point within a high-

dimensional space. The output vector is composed using linear interpolation

between the output vector elements at the storage points.

During the creation of look-up tables, several aspects have to be taken into

account (Atanga 2012):

1. The information storage structure of the database must be optimised.

2. The CPU time needed to retrieve a stored value must be minimal.

3. The accuracy of the retrieved value has to meet specific criteria.

4. The required memory needed to store all the desired data must be affordable.

However, the search and retrieval algorithms required to access the look-up

tables can consume significant amounts of computational time. Special algorithms

have been developed to speed up the search and retrieval process (Androulakis

2004). The success of the methods is judged by their ability to give accurate

representations of the full kinetic system with the lowest computational calculation

and storage requirements. The time investment in generating the equivalent model

is also important for some applications, although for models used in repeated design

or operational control calculations this may be of lower priority.

Early applications of tabulation methods in turbulent combustion simulations

employed tabulations of large regions of the physically realisable composition or

thermochemical phase space. As a result, they tended to use highly reduced global

mechanisms in order to generate the look-up tables, in order to avoid the dimen-

sionality of the table becoming too large. In early implementations (Taing

et al. 1993; Chen et al. 1995), a regular mesh was used to cover the realisable

region of the composition space, with the reaction mapping determined by offline

integration of a highly reduced model for storage within the look-up table. In such

cases the success of the tabulated model is limited by the accuracy of the reduced

scheme employed to generate it. Examples include tabulations of a 3-step scheme
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describing H2/CO combustion used in pdf calculations of turbulent non-premixed

flames in Taing et al. (1993) and the 1- and 2-step schemes describing the chemistry

of turbulent hydrogen jet flames in Chen et al. (1995). A similar methodology is the

flow-controlled chemistry tabulation (FCCT) method (Enjalbert et al. 2012). Using

this approach, the stored chemistry is based on the simulation results of partially

stirred reactors. For the simple reactor simulations, the mixing, the conditions of the

chemical reaction and the inflow/outflow were selected according to conditions

expected within the turbulent flame to be modelled.

An alternative, and potentially more accurate approach, would be to utilise the

concepts embodied in the low-dimensional manifold methods described in

Sect. 7.10 to identify a reduced number of variables for which the dynamics must

be described. A variety of methods can then be used to generate either tabulations or

training data, and a fitted algebraic model can be developed for the minimal number

of required variables. The advantage over the use of global mechanisms comprising

only a few steps is that full or skeleton chemical mechanisms could potentially be

used to generate the fitting data, bypassing the assumptions made in the generation

of global schemes. This is achievable since often homogeneous simulations can be

carried out using a detailed model, with the input–output relations of only a few key

variables used for tabulating the systems dynamics on the slow manifold which is

usually of a much lower dimension than the full composition space.

Tabulated chemistry was used in the simulation of cool flames (Colin

et al. 2005), which was based on the representation of ignition quantities such as

cool flame ignition delay, fuel consumption and reaction rates. The values used in

the tables were extracted from complex chemistry calculations for n-heptane. The
approach was extended to the variable volume tabulated homogeneous chemistry
(VVTHC) approach in Jay and Colin (2011). This approach provides the evolution
of major species and radicals from the onset of auto-ignition up to the end of the

expansion stroke for compression ignition and spark ignition engine applications. It

was first tested for homogeneous engine cases where it compared very well to

complex chemistry simulations. It was implemented in a piston engine combustion

model and used for the calculation of the burned gases volume variation behind a

propagating flame at constant pressure and in reproducing the subsequent compo-

sition evolution of kinetic differential equations. For this reason, tabulation

approaches are very often utilised within engineering simulations such as, for

example, engine piston simulations (Mosbach et al. 2008).

Tabulation was successfully used for the description of the oxidation of n-
heptane, iso-octane, n-decane and n-dodecane. The agreement was good compared

with the results of detailed chemical calculations for all alkanes when only 20 pro-

gress variable light species were used (Kourdis and Bellan 2014). Tabulation was

applied by Xuan and Blanquart (2014) for the calculation of the concentrations of

polycyclic aromatic hydrocarbons (PAHs) in non-premixed flames.

A special utilisation of the tabulation of the final result of a combustion model

was incorporated into the NO relaxation approach (NORA) method in order to

predict thermal NO in combustion chambers (Vervisch et al. 2011). In the NORA

methodology, the NO reaction rate is written as a linear relaxation towards the
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equilibrium value YeqNO with a characteristic time τ. Both parameters are tabulated as

functions of equivalence ratio, pressure, temperature and dilution mass fraction.

The table is generated on the basis of spatially homogeneous calculations but later

used within turbulent combustion models designed to simulate piston engine

applications. The approach has advantages for simulating NO emissions where

global kinetic models or tabulations have been used to simulate the turbulent fuel

combustion since sometimes radical concentrations may not be available for the

post combustion NOx simulations when using such approaches.

7.12.2 In Situ Tabulation

Early applications of tabulation methods in turbulent combustion simulations

employed tabulations of large regions of the physically realisable composition or

thermochemical phase space, thus necessitating the use of highly reduced global

mechanisms in the generation of the look-up tables. The use of full mechanisms

with potentially higher numbers of independent variables was limited in these early

applications by the storage requirements of the tabulation. This problem was

addressed in later developments of tabulation methods based on in situ tabulation

(Pope 1997), where only accessed regions of composition space are tabulated. This

allows higher-dimensional starting mechanisms to be used since these accessed

regions are substantially smaller than the physically realisable region in most

applications due to the presence of low-dimensional manifolds.

The first application of in situ adaptive tabulation (ISAT) was introduced by

Pope within a particle pdf (probability density function) model for turbulent

combustion (Pope 1997). Operator splitting is commonly used in the solution of

such systems so that the mixing and reaction terms are solved separately for a given

time step Δt (see Sect. 6.8). In practice the time step is chosen to be small in

comparison to the mixing timescale. Following the application of operator splitting,

it is possible to seek efficient methods for the solution of the purely chemical part of

the model equations, i.e. a reduced chemical model. As pointed out by Pope, in a

particle pdf model of turbulent combustion, solution of the chemical reaction term

may be required billions of times, which indicates the need for efficient compu-

tational methods. The same issue may also arise in Eulerian grid codes where

similar chemical compositions may be found within many grid cells during a full

reactive flow simulation (e.g. in atmospheric chemistry models). Both methods

suggest that during reactive flow calculations, regions of composition space may be

revisited many times, a feature which may be exploited in the development of

efficient solution methods.

The basic idea underpinning ISAT is the in situ tabulation of accessed regions of

composition space for a particular model application. The tabulation is achieved by

integrating the chemical source terms when a region is first accessed and then

storing the reaction mapping and sensitivity information in a binary tree data
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structure. Subsequent estimations of the reaction mapping terms for points within a

small distance of the previously tabulated ones are achieved using multilinear

interpolation. Any reaction mapping that cannot be interpolated with sufficient

accuracy is generated by direct integration and added to the table. The method

therefore achieves the tabulation in situ rather than using offline calculations that

were employed within earlier tabulation approaches. It can be linked to the tabu-

lation of low-dimensional manifolds discussed in Sects. 7.10 and 7.11, since in

reality it is this manifold that will be accessed during the integration rather than the

full composition space. This allows significant reduction of the tabulation effort and

facilitates the use of detailed starting mechanisms that were not used within early

implementations of tabulation methods (Taing et al. 1993; Chen et al. 1995). Using

in situ methods, the accessed region is tabulated rather than the physically realisable

region. The presence of low-dimensional manifolds within the chemical system

ensures that the accessed region is usually much smaller than the realisable region.

The interpolation error that is incurred for accessed regions between mesh points

can be controlled by adaptive refinement of the mesh. The need for mesh refinement

is determined by establishing the region of accuracy for the tabulated points within

the mesh. This is defined as the connected region containing initial conditions

φ0 consisting of perturbed points φq for which the local error in the reaction

mapping terms ε does not exceed the specified tolerance εtol. In the ISAT method,

the region of accuracy is assumed to be a hyper-ellipsoid, which is related to the

mapping gradient matrix and the concentration sensitivities over the given time

step. The ISAT table consists of a binary tree: a set of records (one for each leaf of

the tree) and a set of cutting planes (one for each node of the tree) as shown in

Fig. 7.9.

Each record consists of the tabulation point (composition), the reaction mapping,

the mapping gradient matrix and the specification of an ellipsoid of accuracy within

which a linear approximation to the reaction mapping is valid. For each time step

during the calculation, a query is made for the given composition, and if the point

lies within the ellipsoid of accuracy (EOA) of a point within the table, then a linear
approximation to the mapping gradient is retrieved. Otherwise a direct integration

Fig. 7.9 A sketch of a

binary tree used within the

ISAT approach. At each

leaf (filled circle), there is a
record; at each node (empty
circle), there is information

about the cutting plane.

Reprinted from Pope (1997)

by permission of Taylor &

Francis Ltd, www.

tandfonline.com
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of the reaction mapping is made and the actual error measured. If this error is less

than the specified tolerance for an already existing point, then the EOA for this

point is grown. Otherwise a new point is generated.

The approach was initially tested for methane�air combustion with 14 degrees

of freedom in a pairwise-mixing stirred reactor (Pope 1997). In this example the

control of local errors controls the global simulation errors well. The speed-up

factor of the method increases dramatically with the number of queries made to the

chemical source term, with speed-ups of up to 103 achieved for a large number of

queries. Cannon et al. (1999) compared the use of in situ methods to conventional

tabulation techniques for NOx predictions in CO combustion using a 5-step mech-

anism, showing that the storage requirements using the adaptive methods were up

to three orders of magnitude lower than conventional techniques due to the much

smaller size covered by the accessed region of composition space.

The ISAT method has been subsequently applied in a range of applications with

several additional developments to the methodology. In Yang and Pope (1998), a

method based on principal directions (ISATPD) was proposed in order to reduce the

dimensionality of the in situ tabulation. This method is based on the fact that, in the

principal directions of composition space, the trajectory of the composition point is

essentially restricted to a low-dimensional space, even though the original compo-

sition dimension may be very high. The data is therefore projected onto principal

directions (singular vectors) in order to improve the storage requirements leading to

more efficient search and retrieval algorithms. Androulakis (2004) demonstrated

the importance of the leading singular vectors for a range of mechanisms, illu-

strating that the number of leading eigenvectors is much smaller than the full

dimensionality of the problems studied. The use of the method by Yang and Pope

allowed skeletal mechanisms to be used for the tabulation rather than the global

schemes used in earlier applications of tabulation, thus improving the accuracy of

the reduced chemical model.

Further developments include the use of ISAT in a range of turbulent combus-

tion simulations. Pope and co-workers (Saxena and Pope 1999; Xu and Pope 2000;

Tang et al. 2000) have coupled the ISAT method with Monte Carlo joint pdf
calculations of turbulent reacting flows using an operator splitting approach,

allowing the representation of the finite rate kinetics necessary to capture important

features such as local flame extinctions and pollutant formation. Speed-ups of up to

a factor of 60 were reported in Saxena and Pope (1999) compared to conventional

chemistry calculations. Similar speed-ups were reported by Wang and Fox (2003)

in a pdf model for predicting reactive precipitation in time-evolving flows and Xie

et al. (2004) in a finite volume model of multi-phase fluidised beds. Higher speed-

ups (up to 165) have been reported for premixed combustors (James et al. 2001)

indicating that the accessed regions of composition space are smaller for premixed

flames compared to diffusion flames. A detailed analysis of speed-up factors and

possible improvements to the search and retrieval algorithms based on binary
search trees (BSTs) was given by Chen (2004). The method suggested was based

on ensuring that the table entry closest to the inquiry point is retrieved, which

potentially increases the number of retrieval operations compared to directly
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integrated steps. This is achieved by conducting a reverse traversal of the binary

tree structure when a retrieval fails, in order to find a table entry closer to the

inquiry. Speed-ups of up to a factor of 5 compared to conventional BSTs were

reported.

A detailed error analysis of ISAT was performed in Saxena and Pope (1999) for

a pairwise-mixing stirred reactor (PMSR) utilising a reduced 16 species scheme for

methane combustion. The analysis showed a straightforward relationship between

local interpolation errors and global errors for this case study. Slightly larger

relative global errors were incurred for the minor species compared to the major

ones. The conclusion of the work was that the global accuracy can be adequately

controlled for species of interest by suitably choosing a local error tolerance. Liu

and Pope (2005) performed further detailed error analysis of ISAT for turbulent pdf
calculations of a piloted jet methane/air flame using a skeleton methane mecha-

nism. They discussed various methods for growing EOAs with the standard ellip-

soid method giving similar results compared to more conservative methods such as

conical growing. They also discussed possible sources of the large local errors that

occasionally occur during retrieval, citing non-convex regions of accuracy as the

main reason. Again for this example, the global errors are reported to scale linearly

with respect to local errors. Improvements in the search strategies and error

correction algorithms were also suggested in Lu and Pope (2009).

A range of other applications of ISAT to combustion-related problems exist in

the literature. ISAT has also been employed using the Strang operator splitting

methods (Strang 1968) for reaction–diffusion systems (Singer and Pope 2004;

Singer et al. 2006) and for unsteady reacting flows in one and two dimensions

with relevance to potential application in direct numerical simulation (DNS) codes.

Masri et al. (2004) incorporated the ISAT technique into the commercial CFD code

FLUENT using a hybrid Reynolds-averaged Navier–Stokes (RANS) pdf approach
with application to flame lift-off. Their work demonstrated the ability of ISAT to

represent chemistry with sufficient detail to model auto-ignition phenomena within

turbulent jets of H2/N2 mixtures into co-flows of hot gas mixtures. Engine simu-

lations using ISAT were performed in Contino et al. (2011). Mazumder (2005)

adapted the ISAT technique to heterogeneous surface reactions with application to

the catalytic combustion of a methane–hydrogen mixture on platinum using a

19-species reaction mechanism. The heterogeneous part of the problem was differ-

ent from the solution of gas-phase chemistry since it required the solution of

nonlinear algebraic equations instead of a standard initial value problem. In this

case the use of operator splitting was prohibited due to the fact that the surface

processes were kinetically rather than diffusion limited. Transport and surface

chemistry therefore needed to be solved together, leading to coupled nonlinear

algebraic relationships. However, since ISAT can generally be used to map input–

output relationships, the technique was easily adapted by Mazumder to represent

the relationship between input parameters and predicted outputs of the resulting set

of coupled nonlinear equations. In this case the inputs were the diffusion velocities

and concentrations of the gas-phase species and the wall temperature, and the

outputs the wall concentrations of all the species. ISAT was also applied to the
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catalytic combustion of methane on a platinum surface in Kumar and Mazumder

(2011), this time using an unstructured CFD approach. Cunha and da Silva (2014)

also tested the ISAT method, focusing on the issues of accuracy, efficiency and

memory usage in the simulation of homogeneous stirred reactor models using the

GRI 3.0 methane combustion mechanism. They found that the ISAT implemen-

tation had an absolute global error smaller than 1 %, whilst 34 % of the compu-

tational time was saved.

More recent applications of ISAT type methods have been coupled to the types

of dimension reduction techniques described in previous sections in order to exploit

the existence of low-dimensional manifolds in composition space. The use of in situ

tabulation then equates to the tabulation of reaction mappings for the reduced

variables within accessed regions of the low-dimensional manifold, rather than

the tabulation of the whole realisable region of the manifold. To a certain extent, the

issue of dimensionality was addressed in the ISATPD method, although in this case

the reduced representation was in the singular vector space rather than the original

composition or thermochemical space. More recent methods address the adaptive

tabulation of low-dimensional manifolds in the original thermochemical space.

Tang and Pope (2002) developed a method for the tabulation of rate-controlled

constrained equilibrium (RCCE) manifolds as discussed in Sect. 7.10.4. This

allowed detailed rather than reduced kinetic schemes to be used for the in situ

tabulation, since the table is generated for only a small number of constraints or

constraint potentials necessary to describe the chemical system. The method was

tested for the comprehensive methane scheme GRIMech 1.2 (32 variables) using

16 constraint potentials, with the results compared against the tabulation of a

17-variable mechanism reduced by conventional techniques including the QSSA.

The relative accuracy of the two methods depends on the assumptions made with

the conventional mechanism reduction compared to those made in the constrained

equilibrium approach, with comparable results achieved in the pairwise-mixing

stirred reactor case studied by Tang and Pope.

7.12.3 Controlling Errors and the Invariant Constrained
Equilibrium Pre-image Curve (ICE-PIC) Method

An extremely important issue with regard to all tabulation or fitting methods is that

the global errors should not grow beyond an acceptable level during a time-

dependent simulation. Since most of the methods described in this and the next

section are based on controlling the local fitting error, it follows that the relationship

between local and global errors is important. In applications which tend towards an

equilibrium point, one would expect this relationship to be favourable since reac-

tion trajectories tend to converge, at least within a region of the equilibrium point

which may be quite large. The discussion of the ISAT method above indicated that

for most applications tested, the global modelling error scaled linearly with the
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overall tolerance chosen for the ellipsoid of accuracy. However, for systems

exhibiting complex dynamics such as oscillatory or even chaotic behaviour, the

relationship between local and global errors may be more complex. Brad

et al. (2007) demonstrated that for CO/H2 combustion in a continuously stirred

tank reactor (i.e. an open system), trajectories could diverge substantially over short

time intervals during the early stages of ignition, indicating that the local fitting

error had to be more tightly controlled within these low-temperature regions in

order to control the overall modelling error. It may follow therefore that controlling

the local error using the same tolerance in all regions of thermochemical space is

not optimal, since in higher-temperature regions where nearby trajectories rapidly

converge, larger local errors may be tolerated.

Ensuring mass conservation has been reported to be an important feature of

controlling the global error (Tonse et al. 1999; Brad et al. 2007) when using

tabulation/fitting methods. In the context of the use of low-dimensional manifolds,

this involves modelling not only the key variables but also the other variables

(which are usually fast variables) in order to reconstruct the whole composition

space. Several methods can be used to generate concentrations of the fast variables.

If available, algebraic expressions based on the QSSA can be employed. Where

such expressions are highly coupled, then alternative approaches have been

suggested based on ILDM tabulations, RCCE and local repro-models. The recon-

struction of these species should however be achieved locally within the context of

operator splitting, without the need for them to be included in complex flow

calculations.

An alternative method for species reconstruction based on pre-image curves was

developed by Ren and Pope within the invariant constrained equilibrium edge

pre-image curve (ICE-PIC) method (Ren and Pope 2005; Ren et al. 2006; Pope

and Ren 2009). This is a trajectory-based method, where a very good approxima-

tion to the invariant manifold is determined by computing trajectories of the full

system from appropriate initial conditions. The method can be applied to local

reconstruction of species on, or close to, the inertial manifold, since the local initial

conditions of the trajectories are defined using a pre-image curve. The method is

local in nature and therefore may be more computationally efficient than the global

methods used to determine SIMs such as those based on trajectory or functional

iteration methods (see Sect. 7.11.1). Al-Khateeb et al. (2009), however, compared

SIMs with ICE-PIC-generated manifolds for a simple hydrogen–oxygen reactive

system, and showed that the ICE-PIC-generated manifold did not contain the SIM

over its whole range and that the error of the ICE-PIC manifold grew away from the

equilibrium point of the system. Nevertheless, since the ICE-PIC method uses

trajectories, it provides a closer approximation to the SIM than RCCE methods.

The pre-image curve provides the initial conditions for trajectory simulations

and is not necessarily unique, as initial points from a sizeable region of the

pre-image manifold will give rise to reaction trajectories that end up on or very

close to the SIM if the manifold is strongly attractive (Ren and Pope 2005). This is

illustrated in Fig. 7.10 where many trajectories are seen to end up close to the point

A which lies on the SIM. For a given composition of the reduced variables, the
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pre-image curve is generated by first finding the corresponding point on the

constrained equilibrium manifold, i.e. the feasible composition of maximum

entropy (see Sect. 7.10.4). The pre-image curve with the minimum curvature is

then calculated, with the initial direction based on the constrained equilibrium

manifold, and subject to the requirement that each point on the curve is a

pre-image point of the corresponding point on the inertial manifold. Such a curve

is illustrated by C in the schematic in Fig. 7.10.

A reaction trajectory from the boundary end of the pre-image curve is then

calculated until it reaches the appropriate point (i.e. that with the given reduced

variable composition) on or close to the inertial manifold, and the full thermo-

chemical state is determined at this point. The method is shown to achieve signif-

icantly higher accuracy than the RCCE and ILDM methods for the reconstructed

species for a methane ignition problem and a 1D laminar hydrogen�oxygen flame,

particularly at lower temperatures (Ren and Pope 2005). The ICE-PIC method was

extended to a trajectory-based method in the full composition space in Hiremath

and Pope (2013) taking it closer to a global invariant manifold method. Here the

reaction mapping involves solving the full system of rate equations for all species in

the full composition space which is found to give a more accurate representation of

the SIM. The reaction mapping computation is tabulated in this method using the

ISAT algorithm.

Fig. 7.10 A sketch of the composition space where B indicates the represented subspace (reduced

variables (r)) and U , the unrepresented subspace (e.g. fast species, etc.). The dashed line is the

feasible region (F(r)) corresponding to the reduced composition r, and C is the pre-image curve.

The other curves are reaction trajectories, which intersect F(r). There is a strongly attracting

manifold (bold line) so that all trajectories originating in the shaded region intersect F(r) close to
the point “A” which lies at the intersection of the SIM and the feasible region. Reproduced from

Ren and Pope (2005) with permission from Elsevier
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7.12.4 Flamelet-Generated Manifolds

The above approaches to tabulation, whilst mostly applied in the simulation of

combustion problems, have a general foundation that would be relevant to many

kinetic systems. However, a special class of tabulation methods has been developed

for flame simulations. If a fast exothermic reaction takes place between two

components (e.g. a fuel and an oxidiser) of a gaseous system, then flames are

observed. In premixed flames the fuel and the oxidiser are premixed before com-

bustion takes place, whilst in non-premixed (diffusion) flames, the fuel and the

oxidiser diffuse into each other, and the flame occurs at the boundary or flame front.

Premixed and non-premixed flames are two extreme cases, but in many practical

flames, continuous states between these two extremes will exist. Flames can be

classified as laminar or turbulent according to the characteristics of the flow. Flames

are special types of reaction�diffusion systems, characterised by high spatial

gradients in temperature and species concentrations, and consequently reaction

rates will have a high spatial variability.

Often, for the purposes of simplifying the modelling task, the edge of a turbulent

flame is approximated by an ensemble of discrete, steady laminar flames, called

flamelets (Libby and Bray 1980; Liew et al. 1981). The individual flamelets are

assumed to have a similar structure to laminar flames for the same concentration

and temperature conditions so that detailed calculations of the flamelet chemistry

can be obtained from lower-dimensional numerical calculations. Laminar opposed-

flow diffusion flamelets for non-premixed combustion can then be embedded

within a turbulent flame, for example, using statistical pdf methods. This approach

is adopted in the description of the chemical processes in flames through flamelet-
generated manifolds (FGM) (van Oijen et al. 2001), also known as flame-
prolongated ILDMs (FPI) (Gicquel et al. 2000; Pera et al. 2009). In these methods,

spatially one-dimensional, premixed and non-premixed flames are first simulated

using a detailed reaction mechanism. Counter-flow diffusion flame simulations are

often used for this purpose (Verhoeven et al. 2012).

The flamelets are usually computationally cheap to produce, even using detailed

mechanisms containing several hundred reaction steps, since they are based on

one-dimensional simulations. These simulations can therefore be performed over a

wide range of conditions, e.g. using a large number of boundary conditions,

pressures and temperatures, so that the simulations cover the expected conditions

within the three-dimensional turbulent flames of interest. The results of the calcu-

lations are stored in databases, and these empirical manifolds are used for the

simulation of two- and three-dimensional flames, when direct simulation would

require far more computational time. For the simulation of two- and three-

dimensional turbulent flames, the values of only a few variables are usually

calculated such as the local enthalpy and conversion. It is then assumed that the

local structure of a flame having complex geometry is similar to those of a

one-dimensional flame, and the concentrations of the calculated variables are

obtained from the database. A number of applications of flamelet-generated
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manifolds have been published, and the accuracy of this approximation was inves-

tigated over various conditions for modelling the combustion of fuels such as

hydrogen, methane (Bilger 1990; Gicquel et al. 2000, 2006; van Oijen and de

Goey 2000, 2002; van Oijen et al. 2001; de Goey et al. 2003; Bongers

et al. 2005; Fiorina et al. 2005; Godel et al. 2009; Verhoeven et al. 2012), benzene

(Xuan and Blanquart 2014) and even diesel oil (Bekdemir et al. 2011). In another

approach (Michel et al. 2008, 2009, 2010), flamelet-like libraries were generated

based on perfectly stirred reactor (PSR) calculations in terms of auto-ignition

delays and steady-state profiles of the progress variable. Lamouroux et al. (2014)

stored flamelets using the tabulated chemistry approach. The chemical information

is then applied in a turbulent combustion model within the large eddy simulation

(LES) framework. The use of in situ flamelet-generated manifolds was suggested in

Lodier et al. (2011). A procedure for building converged composition space solu-

tions for premixed flamelets was proposed and tested. This method provides the

framework for an efficient in situ calculation of complex chemistry with differential

diffusion to be applied to three-dimensional unsteady flame simulations.

7.13 Numerical Reduced Models Based on Fitting

Although sophisticated methods for the storage and retrieval of tabulated data have

been developed, there is still a computational overhead in using these techniques.

An alternative approach to storage and retrieval is the use of functional represen-

tations of the time-dependent kinetic changes or the look-up table contents, using,

for example, polynomial functions or artificial neural networks. In such represen-

tations, only the coefficients of the functions need be stored rather than the data

itself, and hence, the memory requirements and computational costs of evaluating

the fitted functions should be lower than for standard tabulation methods. However,

the overall accuracy of the operational model will depend on achieving high

accuracy of the fits across the model domain. This repro-modelling principle can

be used for the development of general algorithms for performing fast kinetic

simulations (Turányi 1994, 1995). If a detailed mechanism has been reduced to a

skeletal mechanism, its differential (or algebraic-differential) equation can be

transformed to a difference equation that can be evaluated very quickly. One

disadvantage of these methods is that unlike tabulations, they are not guaranteed

to be completely accurate everywhere and should not be extrapolated beyond the

conditions under which the functional fits were obtained. They have, however, been

successfully applied within repro-modelling approaches for kinetic models, and

several of the most widely used methods will therefore be discussed here.
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7.13.1 Calculation of Temporal Concentration Changes
Using Difference Equations

The characteristic timescale of a system is the time period during which the events

occur that are of interest to us. For the simulation of the same physical system,

several different timescales can be selected according to the purpose of the model-

ling. The requirement is that during this period all interesting changes should be

completed. A mathematical model of a particular phenomenon should represent the

changes to its important features over the characteristic timescale. In the case of

kinetics, this may include changes in species concentrations or temperature. Usu-

ally these changes are simulated by integrating the kinetic differential equations for

the system, but the changes can also be stored and re-accessed.

One possible approach for storing the solution of a kinetic model is according to

the following general algorithm:

1. Time step Δt is selected to achieve good resolution of the characteristic time-

scale of the system.

2. Several thousand, spatially homogeneous simulations are carried out with a

series of initial concentrations and/or temperatures, which are typical for the

circumstances of applications of the final intended model.

3. The Y(t), Y(t+Δt) concentration vector pairs are stored in a database.

4. A function G is fitted to the data and can then be used to predict the change in

concentration after time step Δt : Y(t+Δt)¼G(Y(t)).

In spatially homogeneous simulations, the concentration�time curves (with

resolution Δt) can be obtained via a recursive evaluation of function G. If operator

splitting is used in a reactive flow model (i.e. the solution of the flow and chemistry

steps are separated), then this fitted function can be applied instead of typically

using implicit integration methods to solve the chemical rate equations. Potentially

large savings in computational effort can be achieved.

This method was called the repro-modelling approach in Dunker (1986) and

Turányi (1994). The applicability of repro-modelling depends on the determination

of function G. This function converts n old concentrations to n new concentrations

and thus is an ℜn!ℜn mapping. However, it may be equally good to develop

piecewise fits using n pieces of ℜn!ℜ functions. In order to be successful, the

fitted function has to give an accurate approximation within the domain of appli-

cability for the final intended model. The selection of the initial simulation condi-

tions is therefore critical, since often, fitted functions may exhibit odd behaviour if

utilised outside of the original fitting domain. The function should also be quick to

evaluate, and several possibilities exist for suitable functional representations of

G as discussed later.

An early application of this idea was used by Dunker (1986), who applied it to

the modelling of tropospheric ozone formation. He started from a lumped mecha-

nism containing 47 species and identified 10 parameterising variables (species

concentrations or functions of species concentrations). All in all, 20,736 grid points
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were selected in the 10-dimensional space, and the following equation was used to

calculate the change of concentrations Δy during each time step Δy:

y tþ Δtð Þ ¼ Y tþ Δtð Þ þ
XN
i¼1

∂Y tþ Δtð Þ
∂y0i tð Þ y0i tð Þ � Y0

i tð Þ� �þ
1

2

XN
i¼1

XN
j¼1

∂2
Y tþ Δtð Þ

∂y0i tð Þ ∂y0j tð Þ y0i tð Þ � Y0
i tð Þ� ��

y0j tð Þ � Y0
j tð Þ� ð7:104Þ

where N is the number of parameterising variables, y0i (t) is the concentration of the

i-th parameterising variable and Y0i (t) is the coordinate of the nearest grid point. The
constant term of the Taylor expansion was calculated by solving the original kinetic

system of ODEs, and the other terms used are the appropriate initial concentration

sensitivities [also called Green functions, see Eq. (5.10)]. The use of low-order

polynomials in this application led to different sets of polynomials being required

for neighbourhoods of different nodes in the computational grid. Nevertheless,

using this approach, the ozone concentration�time profiles could be calculated

300 times faster than simulations of the original mechanism.

Using the method outlined above, a repro-model was created (Turányi 1994)

from a skeleton model (Turányi et al. 1993a) of the Belousov�Zhabotinsky oscil-

lating reaction. In order to generate the repro-model, the original model was first

simulated 200 times using different initial concentrations, and the concentration

values were saved in a database after each Δt¼ 0.1 s simulation time. In this way

20 thousand (Y(t), Y(t+Δt)) data sets were collected. These data were fitted by a

trivariate, up to 8th-order polynomial. A single evaluation of this polynomial shows

how the concentration set changes over a Δt¼ 0.1 s time step. The sequential

calling of the polynomials produces concentration time curves, which are in good

accordance with solution of the kinetic system of ODEs (Fig. 7.11). The repro-

modelling-based simulation in this case was 50 times faster than the solution of the

ODEs.
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Fig. 7.11 Simulation of a skeletal model of the Belousov–Zhabotinsky reaction based on the

solution of the kinetic system of ODEs (solid line) and using a repro-model (dots). (a)

Concentration–time curves; (b) the solution in phase space. Reprinted from Turányi (1994) with

permission from Elsevier
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7.13.2 Calculation of Concentration Changes by Assuming
the Presence of Slow Manifolds

An alternative to using in situ tabulation as discussed above was to tabulate the

systems dynamics on the slow manifold which is usually of a much lower dimen-

sion than the full composition space. A related approach is the parameterisation of a

tabulated ILDM as discussed in this section or the fitting of dynamics on

low-dimensional invariant manifolds using trajectory-generated data, i.e. on an

SIM (Lowe and Tomlin 2000a, b; Skodje and Davis 2001; Büki et al. 2002; Brad

et al. 2007). Ideally it would be useful to evaluate the minimum number of variables

required to accurately describe the dynamics within the manifold a priori, so that

different dimensions do not have to be tested. A number of studies of chemical

reaction systems have been carried out using timescale analysis along trajectories in

order to determine the intrinsic dimension of the slow manifolds (Tomlin

et al. 2001; Büki et al. 2002; Zsély et al. 2005; Ren and Pope 2006a; Brad

et al. 2007; Davis and Tomlin 2008a, b). A method for the determination of the

dimension of the manifold was introduced in Sect. 6.5. This dimension can be

surprisingly low (1�3) for models such as those describing the high-temperature

combustion of fuels such as hydrogen (Büki et al. 2002; Ren and Pope 2006a), wet

carbon monoxide (Brad et al. 2007) and hydrocarbons (Ren and Pope 2006a). The

fitted difference equations can therefore be of low dimension.

Yang et al. (2013) discussed the various ways for the determination of manifolds

from simulation data; they call the manifolds identified this way the empirical low-
dimensional manifolds (ELDMs). The simplest ELDM is the plane manifold

obtained from the principal component analysis (PCA) (Sutherland and Parente

2009; Parente et al. 2009, 2011; Bilgari and Sutherland 2012; Coussement

et al. 2012, 2013; Mirgolbabaei and Echekki 2013, 2014; Mirgolbabaei

et al. 2014). A correlation analysis of two-dimensional direct numerical simulation

(DNS) data of a turbulent non-premixed H2/air flame with detailed chemistry was

used to find the ELDMs (Maas and Thévenin 1998). Proper orthogonal decompo-

sition (POD) analysis has also been applied to obtain low-dimensional represen-

tations of DNS data for H2/air flames (Frouzakis et al. 2000; Danby and Echekki

2006) and to simplify an atmospheric chemistry mechanism (Sportisse and Djouad

2000). Yang et al. (2013) applied both PCA and multivariate adaptive spline

regression (MARS) to DNS databases of a non-premixed CO/H2 temporally evolv-

ing jet flame and of an ethylene lifted jet flame.

In such methods a suitable data set for fitting the low-dimensional surrogate

model is generated over a wide range of temperatures, pressures and mixture

compositions, by integrating the system of differential equations from a variety of

initial conditions chosen to include all behavioural properties of the system. Once

the trajectories have settled onto the lower-dimensional manifold, the concen-

trations are stored and can be fitted using the repro-modelling approach (Turányi

1995; Lowe and Tomlin 2000a, b; Büki et al. 2002). The collected data can also be

used to determine the maximum dimension of the slow manifold Nz (see Sect. 6.5).
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The recommended algorithm is similar to the previous one:

1. Time step Δt is selected to achieve good resolution of the characteristic time-

scale of the system.

2. Several thousand, spatially homogeneous simulations are carried out with a

series of initial concentrations and/or temperatures, which are typical for the

circumstances of applications of the final intended model.

3. The Y(t), Y(t+Δt) concentration vector pairs are stored in a database.

4. An analysis of the data (e.g. using methods outlined in Sect. 6.5) leads to the

determination of highest dynamical dimension NZ.

5. Some variables of the model (e.g. concentrations) are selected as the

parameterising variables. These variables are denoted as α1, α2, . . . , αNZ
.

6. Function G1 is fitted to the data and can then be used to predict the change in

parameterising variables after time step Δt : α(t+Δt)¼G1(α(t)).
7. The same set of recorded concentrations is used to obtain fitted function G2 that

relates all concentrations to the parameterising variables: Y¼G2(α). This G2

function is similar to function that was introduced at the beginning of Sect. 7.10.

Functions G1 and G2 can be any appropriate mathematical function, and a

variety of possible choices is discussed below. In spatially homogeneous simu-

lations, the time dependence of the NZ parameterising variables can be obtained via

the sequential calling of function G1, whilst the values of all variables (concen-

trations) can be reconstructed using function G2. In spatially inhomogeneous

calculations using operator splitting (see Sect. 6.8), functions G1 and G2 are part

of the chemical term.

7.13.3 Fitting Polynomials Using Factorial Design

The use of polynomial fits is a possible alternative to the application of tabulations.

If the values of the input variable vector are assumed to be independent from each

other, then for each variable a minimum xmin
i and maximum xmax

i value can be

defined. The (xmin
i , xmax

i ) sets for all variables define a hyper-rectangle in the space

of input variables. This is also called the full factorial design arrangement of the

variable values (Box et al. 1978). Frenklach et al. (1992) suggested the creation of

fitted second-order polynomials for the construction of surrogate models where the

variable vectors used as the independent variables of the fitting were arranged

according to a full factorial design. In this way all possible variable value combi-

nations were well represented. This method has been shown to provide reliable and

accurate response surfaces. However, its application may become computationally

expensive when the number of variables is large. Surrogate models based on

factorial design have been and are routinely used in model optimisation studies

by Frenklach et al. (Frenklach et al. 2004; Feeley et al. 2004, 2006; Russi

et al. 2008, 2010; You et al. 2011, 2012). In the field of model reduction, Marsden
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et al. (1987) suggested a similar method for the creation of a repro-model for ozone

production in the troposphere using a 15-variate polynomial which was fitted to a

series of simulations, arranged according to a factorial design.

7.13.4 Fitting Polynomials Using Taylor Expansions

A kind of cross-over between tabulation and polynomial storage methods is the

application of a collection of Taylor expansions. The exact values are tabulated at

some fixed points x of the input vector, but the values in between the tabulated

points are determined not by linear interpolation but according to the following

Taylor expansion:

Yi xþ Δxð Þ ¼ Yi xð Þ þ
Xm
j¼1

∂Yi

∂xj
Δxj þ 1

2

Xm
k¼1

Xm
j¼1

∂2
Yi

∂xk∂xj
ΔxkΔxj þ . . . ð7:105Þ

Here Yi(x) is the stored exact value,Δx is the deviation of the queried point from the

stored point, and ∂Yi/∂xj and ∂
2Yi/∂xk∂xj are the first-order and second-order local

sensitivity coefficients, respectively. There are several efficient numerical methods

for the calculation of the first-order local sensitivity coefficients (see Sect. 5.2). The

second-order local sensitivity coefficients can be calculated from the first-order

coefficients using a finite-difference approximation. The Taylor series approxi-

mations have the general disadvantage that the accuracy significantly decreases

further from the central point.

Davis et al. proposed the application of a Taylor expansion for constructing

kinetic response surfaces used in the development and optimisation of reaction

kinetic models (Davis et al. 2004). They termed it the sensitivity analysis-based

(SAB) method. Tests indicated that for gas-phase combustion models, the response

surface obtained with the SAB method was as accurate as the factorial design

method previously used in reaction model optimisation, but using the sensitivity

coefficients calculated by the combustion simulation codes allowed significant

computational savings. This method was used in all later mechanism optimisation

studies by Wang et al. and Sheen et al. (Davis et al. 2004; Sheen et al. 2009, 2013;

Sheen and Wang 2011a, b).

7.13.5 Orthonormal Polynomial Fitting Methods

The previous two polynomial fitting methods resulted in second-order polynomials.

In some applications, however, second-order approximations are not accurate

enough, and higher-order polynomials have to be applied. Since general high-

order polynomials will have a large number of coefficients, it follows that the
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approach becomes feasible only if a large number of these can be set to zero.

Methods for the determination of the coefficients of high-order polynomials have to

be suitable for fitting a polynomial function to tens of thousands of data points and

determining coefficients for the effective variables only, usually using a least-

squares-based method. The application of orthonormal polynomials (Turányi

1994) can be advantageous for this task, since their coefficients can be determined

independently from each other. A method for fitting multivariate orthonormal

polynomials for many data points is therefore outlined below.

We first denote xi¼ (xi1, x
i
2, . . ., x

i
m), i¼ 1, . . ., n to be a data set and φj, j¼ 1,. . .,l

to be a set ofℜm!ℜ functions with appropriate weights wi, i¼ 1,. . .,n. The scalar
product of functions φj and φk can be interpreted in the following way:

φj;φk

� � ¼Xn
i¼1

wiφj x
i

� �
φk xi
� � ð7:106Þ

This means that the scalar product is determined not only by functions φj and φk

but also the data set and the values of weights wi. Functions φj and φk are

orthonormal with respect to scalar product (7.106), if

φj;φk

� � ¼ 0 if j 6¼ k
1 if j ¼ k

�
ð7:107Þ

Any function F: ℜm!ℜ can be approximated using the set of orthonormal

functions φj, j¼ 1,. . .,l by a Fourier expansion:

F �
Xl
j¼1

F;φj

� �
φj ð7:108Þ

The deviation between function F obtained from the full model and its approxi-

mation can be characterised by the error r:

r ¼ F�
Xl
j¼1

F;φj

� �
φj

�����
����� ð7:109Þ

where kk denotes the Euclidean norm. This error is also called the root mean square

(r.m.s.) error. For each l� n, the approximation in Eq. (7.108) is the best, according

to the following relationship

r � F�
Xl
j¼1

ajφj

�����
����� ð7:110Þ

where coefficients aj, j¼ 1,. . .,l are arbitrary real numbers.
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The application of Fourier expansion (7.108) requires orthonormal functions,

which can be generated from independent functions using the Gram�Schmidt

orthonormalisation process. We denote fj, j¼ 1,. . ., l to be a set of linearly inde-

pendent functions. Using these functions, orthonormal functions can be generated

as follows:

φ1 ¼ c11 f 1
φ2 ¼ c21 f 1 þ c22 f 2
φ3 ¼ c31 f 1 þ c32 f 2 þ c33 f 3
⋮

φl ¼
Xl
j¼1

cljf j

ð7:111Þ

Coefficients c are calculated using the equations below according to the

Gram�Schmidt process:

φ
0
1 ¼ f 1 φ1 ¼ φ

0
1= φ

0
1

�� ��
φ

0
2 ¼ f 2 � φ1; f 2ð Þφ1 φ2 ¼ φ

0
2= φ

0
2

�� ��
⋮

φ
0
l ¼ f l �

Xl�1

j¼1

φj; f l
� �

φj φl ¼ φ
0
l= φ

0
l

�� ��
c11 ¼ 1= φ

0
1

�� ��
c21 ¼ � φ1; f 2ð Þc11= φ

0
2

�� ��
c22 ¼ 1= φ

0
2

�� ��
clk ¼ �

Xl�1

j¼1

φj; f l
� �

cjk

" #
= φ

0
l

�� �� k 6¼ l

cll ¼ 1= φ
0
l

�� ��

ð7:112Þ

A possible set of linearly independent functions are the monomials of a poly-

nomial. For example, the monomials of a trivariate, second-order polynomial are

the following: 1, x, y, z, x2, xy, xz, y2, zy and z2. The general form of the monomials

is given by

Mj ¼
Ym
k¼1

x
μ k
j

k , μ k
j 2 0, 1, 2, . . . , lf g ð7:113Þ

The order of the monomial is
Xm
k¼1

μ k
j , whilst the order of the polynomial is equal to

the highest-order monomial within the polynomial.

In reaction kinetics simulations, we might wish that the relative accuracy of the

fitted concentrations should be equal for both low and high concentrations

(e.g. radicals and products). For this reason, a weighting function wi¼ 1/F2(xi) is
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normally used. The overall aim is to get a good fit using as few monomials as

possible. Therefore, each polynomial is generated by initially fitting a constant to

the data and calculating the r.m.s. error from Eq. (7.109). A new term is then added,

an orthonormal polynomial is generated and the new r.m.s. error calculated. If the
change in r.m.s. error is greater than a pre-set tolerance, then this term is accepted,

and a new term is tested. In this way, the polynomial is built up with terms of

progressively increasing order – from first-order terms in each variable up to

typically fourth- or fifth-order terms in combinations of variables. The fitting is

stopped when the error becomes lower than a given threshold. This means that the

order of the polynomial need not be selected before the fitting process but rather the

algorithm automatically finds the smallest order polynomial that fulfils the accuracy

requirement.

The final step is the conversion of the appropriate orthonormed polynomial to a

“usual” polynomial:

F �
Xl
j¼1

ajφj ¼
Xl
j¼1

aj
Xj
h¼1

cjhMh ¼
Xl
j¼1

bjMj ð7:114Þ

where aj¼ (F,φj) and bj ¼
Xl
s¼j

ascsj.

The method above has several advantageous features. It provides the best least-

squares fit to the data, and the computational expense increases quadratically with

the number of accepted monomials but only linearly with the number of

rejected ones.

The evaluation of polynomials is more effective using Horner’s rule. For exam-

ple, the evaluation of polynomial a x3 + b x2 + c x+ d requires 6 multiplications and

3 additions, whilst the Horner nested polynomial representation ((ax+ b)x + c)x+ d
requires only 3 multiplications and 3 additions. When using higher-order poly-

nomials with many variables, even larger efficiency gains can be made using

Horner representations. It is therefore worthwhile converting the polynomial

formed in equation (7.114) into its equivalent Horner form since this will speed

up the evaluation of the expression and hence the information retrieval. Symbolic

computer packages (including the Symbolic Math Toolbox of Matlab) are able to

convert a polynomial to its Horner representation. A Fortran program was also

written (Turányi 1994) that produces the Horner representation of a polynomial as

Fortran code from its matrix of coefficients. One possible problem with the Horner

representation is that the error caused by the finite representation of real numbers in

computers is higher in the Horner form, causing values calculated in this way to be

erratic for numerical reasons in some cases. Before using the Horner form, it is

therefore important to evaluate whether the two forms of the polynomial provide

almost identical values.

Repro-modelling using higher-order polynomial fits has found several applica-

tions in complex reactive flowmodelling. Clifford et al. (1998) simulated the spread
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of a detonation wave at 2.5 Mach in hydrogen�oxygen�argon mixtures, its

collision with an obstacle and reflection. The spatially 2D simulations were carried

out using either a detailed reaction mechanism or a repro-model. The repro-model

consisted of 4th-order polynomials, and its variables were the pressure, temperature

and conversion factor β. In spatially homogeneous calculations, application of the

repro-model was 1,500 times faster than the simulation of the detailed model. The

time-dependent density maps obtained in 2D simulations were almost identical

when calculated with a detailed mechanism (Fig. 7.12a) and the repro-model

(Fig. 7.12b), but the repro-model-based simulation was 100 times faster. Imbert

et al. (2008) calculated the ignition times in detonation waves in a similar way using

polynomial approximations over a wide range of conditions.

A similar method was also used for the generation of a repro-model describing

the oscillatory ignition of CO–H2 mixtures in a continuously stirred tank reactor

(CSTR) at very low pressures (Brad et al. 2007). Using a 4-variable repro-model

based on 6th-order polynomials, successful representation of the regions of steady

state, cool flames and large temperature oscillations was achieved based on fits to a

14-variable full model. In this particular example, separate repro-models were

developed for different regions of the concentration/temperature space due to the

need to control fitting errors to a very high degree of accuracy in some regions. For

example, within low-temperature regions at the start of the ignition period, smaller

partitioned sets were required in order to achieve local fitting errors as low as 0.1 %.

It was found that in such regions, small differences in predicted concentrations

could lead to large shifts in the ignition point. However, as a result of achieving low

local fitting errors, only small shifts in the phase of the oscillatory trajectories were

found when using the repro-model as shown in Fig. 7.13. The application demon-

strates, however, that particular care may be required when applying repro-models

to ignition applications.

Fig. 7.12 The upper part of the detonation wave travelled further, whilst the lower part reflected

back from the obstacle. A part of the wave also reflected back from the ceiling. The density maps

were calculated using (a) a detailed mechanism including 9 species and (b) a repro-model. The

latter calculation was one hundred times faster. Reprinted from Clifford et al. (1998) with

permission from Elsevier
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7.13.6 High-Dimensional Model Representations

The method described in the previous section has several advantages; the fitted

function is the best approximation, and most of the coefficients within the high-

order polynomial are likely to be zero. However, in high-dimensional nonlinear

cases with many variables and the requirement of a high-order approximation, the

number of nonzero coefficients can be very large, making the creation and evalu-

ation of multivariate high-order polynomials very expensive. In such cases, rapidly

convergent hierarchical correlated function expansions in the input variables, or

high-dimensional model representations (HDMR), can be used.

The functional form of the HDMR expansion and its use for global sensitivity

analysis was already discussed in Sect. 5.5.5, but a similar approach can also be

taken to develop reduced model representations. The purpose is to create a fast

equivalent operational model (FEOM) based on the HDMR, giving sufficient

accuracy with respect to the full chemical model, but with much lower compu-

tational expense. HDMR builds approximations recursively, based on the assump-

tion that high-order-correlated effects of the inputs are expected to have negligible

impact on the output. Applications have shown that the order of the correlations

between the independent variables dies off rapidly, and therefore, only a few terms

are usually required to represent even highly nonlinear input–output relationships.

Fig. 7.13 Comparison between model simulations based on ordinary differential equations

describing the reduced scheme (solid) and fitted polynomial repro-model (dashed) for oscillatory
ignition of CO–H2 mixtures at p¼ 25 Torr and 0.5 % H2 and initial temperatures (a) 720 K, (b)

735 K, (c) 750 K, (d) 770 K. Reprinted from Brad et al. (2007) with permission from Elsevier
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Tests on several systems including application to a stratospheric chemical model

(Shorter et al. 1999) and a tropospheric alkane oxidation model (Wang et al. 2005)

indicate that the few lowest-order terms are often sufficient to represent the model

in equivalent form to good accuracy. The approach was applied in Li et al. (2008b)

to the simulation of ignition within homogeneous H2/air mixtures over wide ranges

of temperatures and pressures (1,000< T0< 1,500 K, 0.1<P< 100 atm) and in

Gomez and Tchijov (2010) to a 3-dimensional model describing the diffusion and

advection of reactive air pollutants.

The application of HDMR tools can therefore dramatically reduce the compu-

tational effort needed to represent the input–output relationships of a physical

system. One potential advantage of such methods is that only low-order expansion

functions or coefficients must be stored, and therefore, for high-dimensional sys-

tems, storage requirements may potentially be low compared to standard tabulation

and potentially even adaptive tabulation methods. In order to reduce computational

effort, the terms in the expansion are usually represented by fitted orthogonal

polynomial functions (Li et al. 2002). The successful application of these methods

in chemically reactive atmospheric models (Wang et al. 2001) suggests their

potential for success within other applications of chemical kinetic modelling. The

methods could be coupled with ILDM-based or other methods for the selection of

key model variables in order to reduce the number of functional expansions

required (Tomlin et al. 2001). Additional information may also be obtained from

the terms in the expansion which reveal cooperations between variables and

highlight the extent of nonlinearity of the input–output relationships. As with all

operational model representations, the success of the HDMR method depends on

using a large enough region of the input variable phase space so as to be relevant in

the full model. None of these fitting methods should be expected to extrapolate well

to new conditions outside of the fitted region.

7.13.7 Artificial Neural Networks

Artificial neural networks (ANNs) are designed to attempt to recreate the way a

human brain works by constructing a network of neurons or nodes linked to each

other by a series of “synapses”. This artificial model of a brain can then be “trained”

by presenting it with examples and adjusting the effect the neurons have on each

other until the system “recognises” the examples. Through this process, ANNs have

been successfully used in image recognition and for modelling systems where

governing equations are yet to be developed or require excessive computing

power to solve. Therefore, the ANNs should be in principle capable of representing

highly nonlinear functions such as those which arise in chemical kinetic systems. A

schematic diagram of the architecture of an ANN with 2 input neurons, two hidden

layers of 6 neurons each and 3 output neurons is given in Fig. 7.14. The strengths of

connections between the different neurons are stored as weights which are deter-

mined by an appropriate learning algorithm.
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The approach can be summarised mathematically as

y li ¼ f
XKl�1

j¼1

wl
ijy

l�1
j þ φ l

i

 !
i ¼ 1, . . . ,Ki, l, . . . ,L ð7:115Þ

where yli is the output of the i-th neuron of the l’-th layer, wl
ij is the weight value of

connection between the j-th neuron of the (l-1) layer and the i-th neuron of the l’-th
layer and φl

i is the bias value of the i-th neuron of the l’-th layer (Christo et al. 1995,
1996a, b; Blasco et al. 1999, 2000; Chen et al. 2000; Flemming et al. 2000; Ihme

et al. 2008). The nonlinear transfer function f(.) is commonly a sigmoidal or

hyperbolic-tangent function. Through presenting input�output examples to the

system and adjusting the synaptic weights wl
ij in an appropriate manner, the system

can be trained to recognise patterns or replicate complicated functions. The learning

algorithm provides the means of adjusting the weights in order to reduce the fitting

error of the ANN when compared to the training data. Commonly a back-

propagation algorithm is used (Christo et al. 1996a) with a least-squares error

function.

A possible disadvantage of using ANNs is the lack of definitive guidelines for

optimising important features of the network such as the appropriate number of

layers and the number of neurons (elements) in each layer (Christo et al. 1996a).

Optimising the network can therefore become effectively an iterative trial-and-error

procedure. For example, large numbers of weights are capable of providing a highly

accurate fit to training data but can lead to poor results for unseen data (over-fitting),

in perhaps an analogous way to using polynomials of too high order. Since the

ANNs typically use exponential functions, their evaluation requires more computer

time than using polynomials.

Despite these issues, Christo et al. (1996a) successfully applied such an

approach based on a multilayer perceptron architecture in the modelling of a

velocity–scalar joint pdf transport equation for H2/CO2 turbulent jet diffusion

flames. They highlighted the importance of training data in the development of

ANNs and introduced a procedure for the selection of training samples using

dynamic randomisation. This approach aimed to reduce the possibility of the

network being trapped in a local minimum by presenting a random sample of

between 70 % and 80 % of the full training set during each iteration. The algorithm

was shown to improve convergence compared with the use of fixed sets of selected

training samples. Christo et al. used fits to a three-step global scheme for H2/CO2

Fig. 7.14 A schematic of

the architecture of an ANN

with 2 input neurons, two

hidden layers of 6 neurons

each and 3 output neurons
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combustion in their application so that detailed comparisons with the solution of the

kinetic equations and the use of look-up tables could be afforded within the

turbulent calculation. Later applications combine low-dimensional manifold theory

with fitting methods potentially giving greater accuracy for a similar number of

variables since prior assumptions have not been made in allowing reduction to a

global scheme.

Other examples of the application of ANNs include methane combustion in a

zero-dimensional calculation (Blasco et al. 1998) using a four-step global scheme,

where additional ANNs for density and temperature were included. Here a second-

order scaled-conjugate-gradient method was used instead of a back-propagation

algorithm. Again sensitivity to the training set was noted, and particular care was

taken to avoid the inclusion of data points close to steady-state regions. A compar-

ison of different ANN architectures was given in this work with either one or two

hidden layers with up to 20 neurons in each. The error of the test data set was shown

to decrease with the number of hidden neurons up to 20 in two hidden layers for

species composition, but above this the error in some cases increased. The expla-

nation given is that the ANN is more likely to get trapped in a local minimum as the

error surface becomes more complex with increasing numbers of neurons. Again

this demonstrates that care must be taken in the design of the ANN architecture. In

this particular case, tabulated chemistry was shown to give a bigger speed-up than

the ANN with regard to computational effort to solve the chemical submodel,

although at the expense of requiring substantially more memory. Both the ANN

and tabulated models provided significant speed-up compared to integration of the

full chemical rate equations. The work was further developed in Blasco et al. (1999)

where the accuracy of the ANN was improved by fitting separate networks to

subdomains of chemical composition space.

Defining optimal subdomains for which to develop the replacement models is a

key component of balancing accuracy, and storage and retrieval efficiency. In order

to address this problem, Blasco et al. attempted to develop an automatic method for

partitioning thermochemical space into optimal domains based on a self-organising

map (SOM) approach (Blasco et al. 2000). The SOM performs a mapping between

the high-dimensional thermochemical space and a two-dimensional (2D) map

whilst attempting to preserve the topology of the original space. The idea is to

ensure that points which are close to each other in the original space remain so in

the equivalent 2D space. The SOM is then used in the retrieval stage to define which

ANN to be used. Three different resolutions of subdomains with 16, 100 and

400 regions were tested, based on each mass fraction and the time step, as opposed

to just the mixture fraction tested in previous work. A multilayer perceptron

technique was then used to fit ANNs to each subdomain. The use of 100 subdomains

with 10 or 20 hidden neurons was shown to give the lowest overall error. The use of

subdomains was shown to substantially reduce the error compared to a single ANN

across for the whole thermochemical space, as well as the CPU effort required in

training the ANNs. This is analogous to the subdomain strategy used in the

orthonormal polynomial fitting in Brad et al. (2007) discussed above. The CPU
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requirements of retrieval are equivalent for the two approaches suggesting that the

use of subdomains is a successful strategy.

The use of ANNs has been coupled with several other available reduction

methods. For example, in Chen et al. (2000), ANNs were used to fit the outcome

of the ISAT method, the idea being to reduce the storage requirements compared to

the usual look-up tables used in ISAT which is based on tabulated data and linear

interpolation. The use of nonlinear functions incorporated into the ANN approach

therefore facilitates single fits over a wider region than the ellipsoid of accuracy

(EOA) used in the original ISAT method. Here, the trade-off is between the fact that

the ISAT method contains exact solution values at the tabulated points with

potentially small interpolation errors where a small EOA is used, compared to

potentially larger fitting errors but much smaller tabulation requirements of ANNs.

There is also a potential overhead in selecting the optimal ANN architecture. The

CPU requirements of both methods were comparable for the partially stirred reactor

example explored in this work (Chen et al. 2000). In general, the optimal method

may well depend on the individual application and accuracy and memory

requirements.

Shenvi et al. (2004) applied neural networks based on a simple multivariate

polynomial architecture. The accuracy and efficiency of these ridge polynomial

networks were demonstrated by modelling the kinetics of H2–Br2 reaction, form-

aldehyde oxidation and H2–O2 combustion. Choi and Chen (2005) also applied

ANNs for the prediction of ignition delay times in homogeneously charged com-

pression ignition (HCCI) engine combustion for a range of fuels including propane

and iso-octane in a well-mixed reactor. Dyer and Korakianitis (2007) simulated

propane�air detonation by representing heat release and species information during

the reaction via a mapping methodology. Multilayer feedforward neural networks

were used as function approximators to reproduce the parameters extracted from

the detailed integrations and to perform the nonlinear interpolations required

between reaction points. The mapping method results were accurate to within 1–

3 % compared to the results of detailed integrations, and the computational effort

was reduced by two orders of magnitude.

Ihme et al. (2009) carried out large eddy simulations of a methane�hydrogen

flame by employing two chemistry representation methods, the conventional struc-

tured tabulation technique and ANNs. The latter was based on the optimal artificial

neural networks (OANNs) approach (Ihme et al. 2008). It was demonstrated that the

ANN accuracies were comparable with the use of structured tables. Compared to

the tabulation technique, data retrieval from the network was computationally

slightly more expensive. Zhou et al. (2013) applied ANNs for both chemical

kinetics reduction and source term evaluation in direct numerical simulation

(DNS) and large eddy simulation (LES) of reactive flows. The ANNs were trained

with 1D disturbed flames. Then, back-propagation ANNs were used for DNS and

LES modelling of H2/air and C3H8/air premixed flames with various levels of

turbulence. Mirgolbabaei and Echekki (2014) used ANN representation in conjunc-

tion with the reduction of the composition space with kernel principal component

analysis.
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In Chatzopoulos and Rigopoulos (2013), the use of ANNs was combined with

the rate-controlled constrained equilibrium (RCCE) approach (see Sect. 7.10.4) in

models of two non-premixed and non-piloted CH4/H2/N2 turbulent flames. Large

computational speed-ups were reported, with reasonable agreement in the simu-

lation of major chemical species with respect to the full integration of the kinetic

scheme. Some discrepancies were observed for the minor species, but the work

indicates a potential of RCCE–ANN tabulation methodologies for future turbulent

combustion computations.

7.13.8 Piecewise Reusable Maps (PRISM)

The functional mappings used to represent the solution of the chemical kinetic

differential equations (i.e. the surrogate or repro-model) are usually prepared and

fitted prior to the final intended simulations within, for example, complex

multidimensional reactive flow codes. Using the ISAT approach described in

Sect. 7.12.2, the tabulation is achieved during the simulation, with the advantage

that only accessed regions of composition space have to be tabulated. A similar

method, but using polynomial fits, is the PRISM (piecewise reusable imple-

mentation of solution mapping) approach (Tonse et al. 1999) whereby the fitted

polynomial functions are developed during the calculation and then reused when

the region of composition space is revisited in subsequent time steps or different

spatial regions. PRISM uses second-order polynomials so that in order to cover the

realisable region, multiple expressions are used, each valid over a different portion

of composition space. This is achieved by partitioning the chemical composition

space into predetermined non-overlapping adjacent hypercubes, with edges and

corners permitted at regular intervals along the axes allowing for the simple

indexing required for efficient searching during reuse. Integration of the full kinetic

equations then provides the solution at selected points throughout a hypercube, in

order to determine the polynomial coefficients. Factorial design methods are used to

reduce the required number of computed points. Not surprisingly Tonse et al. report

an increase in accuracy with reduced hypercube size. In common with other

methods, however, there is a trade-off between accuracy and the efficiency of

polynomial generation as well as storage and retrieval. The largest hypercubes

achievable should be used to minimise the computational effort required. Improve-

ments to efficiency were suggested in Tonse et al. (2003)and Brown and Tonse

(2004) based on two alternative methods for the a priori identification of hyper-

cubes that will have a high level of reuse. This allows for polynomial construction

only for those hypercubes that are revisited enough times to make the construction

worthwhile. The PRISM method has demonstrated successful application to hydro-

gen ignition, a 1D laminar hydrogen flame, a 2D axisymmetric turbulent jet (Tonse

et al. 1999, 2003) and a turbulent premixed hydrogen flame (Bell et al. 2000). In a

similar way to the other repro-modelling methods, the constructed polynomials

could potentially be stored for other calculations as long as the fitted regions of
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composition space are common. Lee et al. (2005, 2007) approximated the dynamics

on a CSP-derived slow manifold for models describing the ignition of hydrogen–air

and heptane–air mixtures using a large number of low-order polynomials, in a

similar approach to the PRISM method.

7.14 Adaptive Reduced Mechanisms

In the previous sections we discussed that the size and nature of skeletal or reduced

mechanisms derived using automatic reduction methods are likely to be highly

dependent on the local concentration and temperature conditions. If a general

purpose mechanism is required, then it must be made up of the union of the reduced

mechanisms derived for each local condition. On the other hand, the existence of

smaller reduced mechanisms for different local conditions could be exploited,

leading to the possibility of adaptive reduction.

There are two important issues related to the use of adaptive chemistry methods:

1. Definition of the range of applicability. In some cases the range of applicability

of the model can be related to a well-known regime of the reaction. For example,

in combustion, the preflame region, the flame front and the postflame region

have very different characteristics. Also, a homogeneous ignition has different

features before, during and after the ignition has taken place. In atmospheric

models, different regimes may be associated with different temperature and

pressure conditions (e.g. tropospheric vs. stratospheric) or with highly polluted

versus remote regions. A reduced model may belong to a given type of reaction

regime and can be selected for use at the corresponding interval or region of time

or space. A different approach could be to automatically identify the character-

istics of the system from the state vector (species concentrations and tempera-

ture) and to select the corresponding reduced model accordingly, without

resorting to prior definitions of chemically different regimes. This may in fact

lead to better selection of appropriate reduced models since assumptions are not

made about the important chemistry but rather are determined according to the

mathematical principles discussed previously within this chapter.

2. When are the reduced models created? One possible approach to the generation

of adaptive reduced models is that a series of reduced models are created offline

for different domains of applicability. Then during subsequent simulations, at

each time step (and/or spatial coordinate), the appropriate domain is identified,

and the corresponding reduced model is used. In this case, the domain of

applicability for each model needs to be stored. An alternative approach is to

create the reduced models “on the fly” during the simulation. In this case the size

and the features of the reduced model may continuously change during the

simulation. However, there could be a computational overhead in performing

the reduction analysis during the simulation.
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The application of adaptive chemistry has the advantage that the reduced

mechanisms used have to be valid over a narrower range of conditions than a

more general reduced scheme. Therefore, they are likely to be much smaller,

requiring less simulation time. However, the application of adaptive chemistry

may also have disadvantages. If the reduced mechanism is generated “on the fly”,

then the reduction method has to be fast enough for the required computer time for

the reduction and the simulation of the reduced model to be less than the simulation

of the original model. This method has been termed dynamic adaptive chemistry
(DAC) (Liang et al. 2009a, b; Shi et al. 2010b; He et al. 2010; Contino et al. 2011;

Tosatto et al. 2011; Zhang et al. 2013, 2014; Yang et al. 2013; Ren et al. 2014a, b).

Adaptivity is an inherent feature of some model reduction methods, for example,

ISAT and PRISM. However, these methods fall into the category of storage and

retrieval algorithms and hence were discussed in Sects. 7.12 and 7.13 above. For

skeletal reduced mechanisms (i.e. reduced models which retain a kinetic mecha-

nism structure), adaptive reduction is perhaps less commonly applied, although

several recent methodologies have been developed, which will now be discussed.

Usually the types of reduction algorithms that are fast enough to be employed on the

fly are not the most effective at achieving model reduction compared to more

sophisticated methods. Hence, the reduced mechanisms that are obtained may not

be optimal. Flux analysis could be used very rapidly (e.g. He et al. (2010)), although

the more sophisticated DRG-based methods (see Sect. 7.5.1) have also recently

been used in this context (Ren et al. 2014b).

On the other hand, if a “library” of reduced mechanisms is generated in advance,

then the computational costs of the mechanism reduction step are less critical, and

the quality of the reduced models can be ensured by using an effective reduction

methodology. In this case a crucial aspect of using adaptive reduced models is the

ability to select the most appropriate model from the reduced model library during a

full reactive flow simulation. This involves knowing the region of applicability of

each of the reduced models as well as the development of a method to select

representative points to perform the reduction analysis. Operational models used

in design and control often lead to repeated access to identical regions of compo-

sition/temperature space, and hence, for these types of applications, the additional

effort required to establish these regions of validity may provide sufficient

pay back.

In this context, optimisation-based reduction methods have been extended to

provide libraries of reduced models for combustion mechanisms, each with their

own region of applicability based on a linear integer programming approach

(Oluwole et al. 2006) and a GA-based approach (Banerjee and Ierapetritou 2003)

using earlier ideas developed in Schwer et al. (2003). Banerjee and Ierapetritou

(2003) describe an approach where the feasible region for a reduced model is

defined as the region of phase space over which a specified error constraint is

satisfied. The feasible region can be determined by performing simulations of the

full and reduced models over a grid in the major species concentrations and

temperature, although using this method would be quite expensive. A method for

the efficient estimation of the feasible region of a reduced model is therefore
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required that does not involve large numbers of full versus reduced model compar-

isons. For the case of methane oxidation, the feasible region was found to be highly

non-convex, non-smooth and in some cases disjoint. Banerjee and Ierapetritou

developed a GA-based sampling technique which takes advantage of the fact that

typically a small section of the entire parameter space is feasible and hence reduces

the sampling burden typical of grid-based procedures (Banerjee and Ierapetritou

2006). The method is coupled to a surface reconstruction method in order to map

out the entire range of validity of the reduced model. An example of the predicted

feasible region for a reduced methane oxidation scheme is shown in Fig. 7.15. To

save computational costs, a simplified flow model is generally adopted for the

estimation of regions of validity of each reduced model. Banerjee and Ierapetritou

use a pairwise-mixing stirred reactor (PMSR) model for the estimation of the

feasible region since it is shown to access a considerable portion of the temperature

and species composition space realised by the full reactive flow simulation

(Banerjee and Ierapetritou 2006). In addition, data clustering techniques are used

to identify patterns in the species concentration and temperature data sets, and

hence to obtain representative points for the reduction analysis. Depending on the

local condition of the PMSR, different reduced models were chosen by the flow

simulation as illustrated in Fig. 7.16.

Oluwole et al. (2006) based their approach on the method of Taylor model

inclusions. The approach attempts to define the largest hyper-rectangle around the

reduction point that is contained in the non-convex region of validity for the

reduced model. Taylor model inclusions are used to estimate the upper error bounds

for the hyper-rectangle in order to ensure that they are as close to the maximum

allowed error as possible, i.e. the hyper-rectangle is a large as possible. Automatic

differentiation is used to compute the functions required by the Taylor models

symbolically. The method is implemented in the software package RIOT [Range

Identification and Optimization Tool (Schuchardt et al. 2005)]. The methods are

demonstrated for a methane oxidation model (GRI 3.0) and a truncated propane

oxidation scheme, and adaptive use of the model libraries are shown (Oluwole

et al. 2006).

Fig. 7.15 An example of a

predicted feasible region of

a reduced model based on

the GRI-3.0 starting

mechanism for methane

oxidation. Adapted from

Banerjee and Ierapetritou

(2006) with permission

from Elsevier
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Blurock et al. have also published several articles on methods for the identifi-

cation of appropriate reduced models for given simulation conditions. Cluster

analysis was used (Blurock 2004, 2006; Blurock et al. 2010) to determine the

different phases of spatially homogeneous processes. Similar time steps were

clustered together to form the phases of the process, and the number of phases

was also determined by the clustering. He et al. (2008) pre-developed 30 reduced

mechanisms for an n-pentane oxidation mechanism used for adiabatic plug flow

reactor simulations employing a PMSR model. Similarity between flux graphs over

a wide range of accessed conditions was evaluated using graph-based techniques,

and a hierarchical clustering algorithm was implemented in order to group similar

instantaneous flux graphs into clusters. A reduced mechanism was then generated

for each cluster, and a search algorithm was defined to assign a new query point to a

particular flux graph cluster, thus defining the appropriate reduced mechanism.

Several mechanism reduction approaches have been used to create dynamic

adaptive chemistry schemes. Tosatto et al. (2011) used a flux-based DRG method

to select reduced chemical mechanisms on a cell-by-cell basis in 2D steady and

unsteady flame simulations. The largest problem considered was a JP-8 (Jet Pro-

pellant 8) flame, where the full mechanism contained 222 species. The DRGEP

approach was used to produce on-the-fly reduced mechanisms for n-heptane (Shi

et al. 2010b) and gasoline surrogate mixtures (Liang et al. 2009b; Shi et al. 2010a).

Gou et al. (2013) used the PFA method for a similar purpose. Løvås

et al. (Rigopoulos and Løvås 2009; Løvås et al. 2011) applied the LOI method in

an adaptive way. Sportisse and Djouad (2007) used proper orthogonal decomposi-

tion (POD) analysis by dividing the composition space into subdomains and then

applying different representations in the different subdomains.

Ren et al. (2014b) used dynamic adaptive chemistry (DAC) with operator

splitting schemes to solve the equations governing reactive flows. Locally valid

skeletal mechanisms were generated using the DRG reduction method to eliminate

unimportant species and reactions from the full mechanism. The authors investi-

gated one-dimensional, unsteady, freely propagating, premixed methane/air lami-

nar flames with detailed chemical kinetics and realistic transport. They showed that

the number of retained species was significant only near the flame front region, and

speed-up factors of three to five were found. Contino et al. (2011) demonstrated the

Fig. 7.16 Range of

conditions addressed by

different reduced methane

oxidation models.

Reproduced from (Banerjee

and Ierapetritou 2006) with

permission from Elsevier
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coupling of in situ adaptive tabulation and dynamic adaptive chemistry for engine

simulations. Dynamic adaptive chemistry-based models were successfully used in

general turbulent reactive flow simulations (Yang et al. 2013; Ren et al. 2014a).

Lu et al. (2009) identified QSS-species and pre-equilibrium reactions on the fly,

based on the investigation of system timescales. This information was used to

convert the original system of differential equations to a less stiff system of

differential algebraic equations. This dynamic stiffness removal method for accel-

erating simulations was successfully applied for predictions using an n-heptane
oxidation mechanism in 1D and 2D turbulent direct numerical simulations.

Oluwole et al. (2012) developed a new variant of adaptive chemistry called

exact-steady-state adaptive chemistry (ESAC). This method is applicable for fast

reduced model simulations of steady-state problems. Smaller (less accurate, but

faster) reduced models are used when the simulation is far from the steady state,

whilst more accurate (larger and slower) models are used as the simulation

approaches the final steady-state solution. The simulation is completed by applying

the full kinetic model for the calculation of the steady-state solution. ESAC

simulations were found to be a factor of 3–4 times faster than the equivalent full-

model-everywhere simulations. Such techniques could be valuable, for example, in

obtaining solutions for 2D or 3D computational fluid dynamics simulations of

steady problems which are often slow to converge when using highly detailed

chemistry. Oluwole et al. (2012) demonstrated application of the method for 2D

steady methane and ethylene flames.

So far, the use of adaptive reduced models has mainly focused on reaction

removal leading to, at best, linear reductions in computational time (Harris

et al. 2000). In this case the same set of ODEs are solved at each time step, and

the computational savings are made due to the lower number of operations neces-

sary to perform Jacobian evaluations when a large number of the reaction terms

have been removed. Further challenges are presented for species removal since the

number of species may change in each reduced model region. In an operator

splitting environment (see Sect. 6.8), where the flow and chemistry steps are solved

separately, a simple solution is to consider all the species of the detailed mechanism

in the flow step and only those species present in the selected reduced model in the

chemistry step, with the concentration of all the other species unaltered. Banerjee

and Ierapetritou (2003) successfully used this approach for a methane oxidation

mechanism where up to 12 reduced models are accessed during the model simula-

tions with the number of chemically active species varying between 6 and 29.
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Nagy, T., Turányi, T.: Reduction of very large reaction mechanisms using methods based on

simulation error minimization. Combust. Flame 156, 417–428 (2009)

Naik, C.V., Puduppakkam, K.V., Modak, A., Wang, C., Meeks, E.: Validated F-T fuel surrogate

model for simulation of jet-engine combustion. Proc. ASME Turbo Expo 2, 1301–1308 (2010)

Najafi-Yazdi, A., Cuenot, B., Mongeau, L.: Systematic definition of progress variables and

Intrinsically Low-Dimensional. Flamelet Generated Manifolds for chemistry tabulation. Com-

bust. Flame 159, 1197–1204 (2012)
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Vajda, S., Valkó, P., Turányi, T.: Principal component analysis of kinetic models. Int. J. Chem.

Kinet. 17, 55–81 (1985)

Valorani, M., Creta, F., Goussis, D.A., Najm, H.N., Lee, J.C.: Chemical kinetics mechanism

simplification via CSP. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics,

pp. 900–904. Elsevier, Amsterdam (2005)

Valorani, M., Creta, F., Goussis, D., Lee, J., Najm, H.: An automatic procedure for the simplifi-

cation of chemical kinetic mechanisms based on CSP. Combust. Flame 146, 29–51 (2006)

Van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using Flamelet Gener-
ated Manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

Van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed counterflow flames using the flamelet-

generated manifold method. Combust. Theory Model. 6, 463–478 (2002)

Van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems

by using flamelet-generated manifolds. Combust. Flame 127, 2124–2134 (2001)

Verhoeven, L.M., Ramaekers, W.J.S., van Oijen, J.A., de Goey, L.P.H.: Modeling non-premixed

laminar co-flow flames using flamelet-generated manifolds. Combust. Flame 159, 230–241

(2012)

Vervisch, P.E., Colin, O., Michel, J.-B., Darabiha, N.: NO relaxation approach (NORA) to predict

thermal NO in combustion chambers. Combust. Flame 158, 1480–1490 (2011)

Vol’pert, A.I.: Дифференциальные уравнения на графах. Мат. Сборник 88, 578–588 (1972)

Vol’pert, A.I., Hudjaev, S.I.: Analysis in Classes of Discontinuous Functions and Equations of

Mathematical Physics. Martinus Nijhoff, Dordrecht (1985)

Vora, N., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems. AIChE J. 47,

2320–2332 (2001)

310 7 Reduction of Reaction Mechanisms



Wang, Q.-D.: Skeletal mechanism generation for high-temperature combustion of H2/CO/C1�C4

hydrocarbons. Energy Fuels 27, 4021–4030 (2013)

Wang, L.G., Fox, R.O.: Application of in situ adaptive tabulation to CFD simulation of nano-

particle formation by reactive precipitation. Chem. Eng. Sci. 58, 4387–4401 (2003)

Wang, H., Frenklach, M.: Detailed reduction of reaction mechanisms for combustion modeling.

Combust. Flame 87, 365–370 (1991)

Wang, W., Rogg, B.: Premixed ethylene/air and ethane/air flames: reduced mechanisms based on

inner iteration. In: Peters, N., Rogg, B. (eds.) Reduced Kinetic Mechanisms for Applications in

Combustion Systems. Lecture Notes in Physics Monographs, vol. 15, pp. 82–107. Springer,

New York (1993)

Wang, S.W., Georgopoulos, P.G., Li, G., Rabitz, H.: Computationally efficient atmospheric

chemical kinetic modeling by means of high dimensional model representation (HDMR).

Lect. Note Comput. Sci. 2179, 326–333 (2001)

Wang, S.W., Balakrishnan, S., Georgopoulos, P.: Fast equivalent operational model of tropo-

spheric alkane photochemistry. AIChE J. 51, 1297–1303 (2005)

Wang, H., Yao, M., Reitz, R.D.: Development of a reduced primary reference fuel mechanism for

internal combustion engine combustion simulations. Energy Fuels 27, 7843–7853 (2013)

Warnatz, J.: Resolution of gas phase and surface combustion chemistry into elementary reactions.

Proc. Combust. Inst. 24, 553–579 (1992)

Warth, V., Battin-Leclerc, F., Fournet, R., Glaude, P.A., Côme, G.M., Scacchi, G.: Computer
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Zsély, I.G., Nagy, T., Simmie, J.M., Curran, H.J.: Reduction of a detailed kinetic model for the

ignition of methane/propane mixtures at gas turbine conditions using simulation error mini-

mization methods. Combust. Flame 158, 1469–1479 (2011)

312 7 Reduction of Reaction Mechanisms


	Chapter 7: Reduction of Reaction Mechanisms
	7.1 Introduction
	7.2 Reaction Rate and Jacobian-Based Methods for Species Removal
	7.2.1 Species Removal via the Inspection of Rates
	7.2.2 Species Elimination via Trial and Error
	7.2.3 Connectivity Method: Connections Between the Species Defined by the Jacobian
	7.2.4 Simulation Error Minimization Connectivity Method

	7.3 Identification of Redundant Reaction Steps Using Rate-of-Production and Sensitivity Methods
	7.4 Identification of Redundant Reaction Steps Based on Entropy Production
	7.5 Graph-Based Methods
	7.5.1 Directed Relation Graph Method
	7.5.2 DRG-Aided Sensitivity Analysis
	7.5.3 DRG with Error Propagation
	7.5.4 The Path Flux Analysis Method
	7.5.5 Comparison of Methods for Species Elimination

	7.6 Optimisation Approaches
	7.6.1 Integer Programming Methods
	7.6.2 Genetic Algorithm-Based Methods
	7.6.3 Optimisation of Reduced Models to Experimental Data
	7.6.4 Application to Oscillatory Systems

	7.7 Species Lumping
	7.7.1 Chemical Lumping
	7.7.2 Linear Lumping
	7.7.3 Linear Lumping in Systems with Timescale Separation
	7.7.4 General Nonlinear Methods
	7.7.5 Approximate Nonlinear Lumping in Systems with Timescale Separation
	7.7.6 Continuous Lumping
	7.7.7 The Application of Lumping to Biological and Biochemical Systems

	7.8 The Quasi-Steady-State Approximation
	7.8.1 Basic Equations
	7.8.2 Historical Context
	7.8.3 The Analysis of Errors
	7.8.4 Further Recent Approaches to the Selection of QSS-Species
	7.8.5 Application of the QSSA in Spatially Distributed Systems
	7.8.6 Practical Applications of the QSSA

	7.9 CSP-Based Mechanism Reduction
	7.10 Numerical Reduced Models Derived from the Rate Equations of the Detailed Model
	7.10.1 Slow Manifold Methods
	7.10.2 Intrinsic Low-Dimensional Manifolds
	7.10.3 Application of ILDM Methods in Reaction Diffusion Systems
	7.10.4 Thermodynamic Approaches for the Calculation of Manifolds

	7.11 Numerical Reduced Models Based on Geometric Approaches
	7.11.1 Calculation of Slow Invariant Manifolds
	7.11.2 The Minimal Entropy Production Trajectory Method
	7.11.3 Calculation of Temporal Concentration Changes Based on the Self-Similarity of the Concentration Curves

	7.12 Tabulation Approaches
	7.12.1 The Use of Look-Up Tables
	7.12.2 In Situ Tabulation
	7.12.3 Controlling Errors and the Invariant Constrained Equilibrium Pre-image Curve (ICE-PIC) Method
	7.12.4 Flamelet-Generated Manifolds

	7.13 Numerical Reduced Models Based on Fitting
	7.13.1 Calculation of Temporal Concentration Changes Using Difference Equations
	7.13.2 Calculation of Concentration Changes by Assuming the Presence of Slow Manifolds
	7.13.3 Fitting Polynomials Using Factorial Design
	7.13.4 Fitting Polynomials Using Taylor Expansions
	7.13.5 Orthonormal Polynomial Fitting Methods
	7.13.6 High-Dimensional Model Representations
	7.13.7 Artificial Neural Networks
	7.13.8 Piecewise Reusable Maps (PRISM)

	7.14 Adaptive Reduced Mechanisms
	References


