
Chapter 6

Timescale Analysis

Abstract A very characteristic feature of chemical kinetic models (in common

with many other models in science) is that they contain a wide range of different

timescales. This may have consequences for model behaviour and also for the

selection of appropriate solution methods for the resulting equation systems. Sev-

eral aspects of timescales of models are therefore discussed within this chapter. The

discussion begins with the definition of various simple quantities used to measure

timescales, such as species half-life and species lifetime, and explores their rela-

tionship to the time-dependent behaviour of the model. Timescales are closely

related to the dynamic behaviour of the model following a perturbation within the

chemical kinetic system, e.g., by suddenly altered concentrations. Systematic

investigation of such perturbations can be achieved for large systems using com-

putational singular perturbation (CSP) theory which is introduced here. Another

common feature of chemical kinetic models is that the chemical kinetics relaxes the

system to lower and lower-dimensional attractors until either a stationary point or

chemical equilibrium (zero-dimensional attractor) or other low-dimensional attrac-

tor (e.g. a limit cycle) is reached. This leads to the importance of slow manifolds in

the space of variables which will be investigated within this chapter. One practi-

cally important consequence of the presence of very different timescales is the

stiffness of reaction kinetic models. Methods for dealing with stiffness within

numerical models are therefore discussed.

6.1 Introduction

As explained in Sect. 2.1, a full description of the time-dependent progress of a

chemical reaction system requires a mechanism containing not just reactants and

products but also important intermediate species. The rate of consumption of the

species within the mechanism can vary over many orders of magnitude depending

on the species type. Radical intermediates, for example, usually react on quicker

timescales than stable molecular species. This can lead to numerical issues when

attempting to solve initial value problems such as that expressed in Eq. (5.1), since

the variation in timescales can lead to a stiff differential equation system which may

become numerically unstable unless a small time step is used or special numerical
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solvers are employed (Sandu et al. 1997a). On the other hand, the separation in

timescales within a chemical model may be a feature that can be exploited within

model reduction strategies. A simple example based on the application of the QSSA

was already discussed in Sect. 2.3. We may also wish to ask questions related to the

dynamic response of a chemical system. For example, we may wish to determine

which species or reactions control the progress of a system towards a steady state.

For these and other reasons, it can be very useful to analyse the timescales present

within a chemical system using a variety of methods discussed in this chapter and in

the following chapter on model reduction.

6.2 Species Lifetimes and Timescales

The simplest way to decompose the timescales of a chemical system is according to

individual species. The half-life τ1/2 of a species is the time during which the

concentration of a species would be halved, estimated by assuming that the inves-

tigated species is not produced, and all rate coefficients and other concentrations

remain at their initial value. More specifically, only those species concentrations

have to remain constant, which influence the consumption rate of the investigated

species. It is clear from this definition that cases where the concentration of the

species is really halved during the half-life may be exceptional ones.

Such exceptional cases usually form the examples given in textbooks. For

example, when the only reaction of species A is its first-order decay A!B with

rate coefficient k, and at initial time t¼ 0, its concentration is a0, the change of its
concentration over time is given by

a tð Þ ¼ a0 exp �ktð Þ ð6:1Þ
a tð Þ
a0

¼ exp �ktð Þ ð6:2Þ

The linearised form of this expression can be obtained by taking the natural

logarithm of both sides:

ln
a tð Þ
a0

� �
¼ �kt ð6:3Þ

After time τ1/2, the concentration of A will be half (a0/2) of the initial value.

ln
a0
2

a0

� �
¼ ln

1

2

� �
¼ ln 2�1

� � ¼ �ln2 ¼ �k τ1=2 ð6:4Þ

τ1=2 ¼ ln2

k
ð6:5Þ

This means that in a first-order decay, the half-life is independent of the initial

concentration.
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If the only reaction of species A is its second-order decay 2A!B with rate

coefficient k0, and the initial concentration is a0 at time t¼ 0, then the corresponding

concentration�time function is

1

a tð Þ ¼
1

a0
þ 2k

0
t ð6:6Þ

Introducing notation k¼ 2k0, the half-life is

1

a0=2
¼ 2

a0
¼ 1

a0
þ k τ1=2 ð6:7Þ

τ1=2 ¼ 1

k a0
ð6:8Þ

Therefore, for a second-order decay, the time to reach half of a given concentration

depends on the actual concentration a0.
These simple textbook examples can be misleading, since in these cases, the

concentration is really halved after time τ1/2. In more general cases, the concen-

tration of a species may increase, decrease or remain constant over a given half-life

as it is produced and consumed in a variety of reaction steps. The calculation of

half-lives can support a useful way of thinking, however, where the species under

investigation is not produced in the system, is not emitted to the system, and its

decay rate does not change over time. For example, in a nuclear accident, two

dangerous isotopes are iodine 131I (half-life 8.05 days) and caesium 137Cs (half-life

30.1 years). After a time period of seven times the half-life, the amount of emitted

isotopes decreases by 27¼ 128 times. This is 56 days for the iodine isotope and

210 years for the caesium isotope. This means that environmental problems caused

by the iodine isotope are eliminated after a few months, but the problems caused by

the radioactive caesium isotope may persist for several centuries. In this case then,

the half-life provides a useful basis for comparison between the two isotopes. Note

that the radioactive half-lives characterise the total amount of the emitted isotope

and not its local concentration in air, soil or water. The decrease in concentration

may be much more significant due to dilution and deposition effects. Thinking in

terms of species half-lives is popular, because it is easy to imagine the amount of a

species being halved, whilst it is much harder to imagine a decrease, e.g., by

2.71828 times.

In the case of many dynamical processes, the rate of change of a quantity is

linearly proportional to the same quantity. Such processes include first-order decays

in chemistry or radioactive decays in physics. The change of the quantity can then

be described by an exponential function as shown in Eq. (6.1), and therefore the rate

of change can be characterised by the time period needed to decrease the original

quantity by e, where e is the basis of the natural logarithm having an approximate

value of 2.71828.

The lifetime of a species is the time period during which its concentration would

decrease to 1/e, calculated on the basis of the actual rates of the processes and by
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assuming that the investigated species is not produced. If species A is consumed in

a single first-order reaction, then its concentration change can be calculated using

Eq. (6.1). If at time τA we obtain that kτA¼ 1, then a(τA)¼ a0/e, that is, the

concentration of species A has decreased to 1/e of the initial value. This means

that the lifetime of species A is τA¼ 1/k. If a species is consumed in first-order

reactions only, then the change in its concentration can be calculated from

a tð Þ ¼ a0 exp �t
X
j

kj

 !
ð6:9Þ

Therefore, the lifetime of A is the reciprocal of the sum of the rate coefficients:

τA ¼ 1=
X
j

kj. This, for example, is how the lifetime of an excited species is

calculated in photochemical systems (see Pilling and Seakins (1995), p 279).

In the atmosphere, the concentrations of radicals are low; thus, the products of

two radical concentrations are very small making the rates of radical�radical

reactions also very small. For this reason, radical�radical reactions are usually

not considered in atmospheric chemical mechanisms with the exception of

peroxy�peroxy radical reactions. The rate coefficients of molecule�molecule

reactions are also usually very small. Therefore, atmospheric chemical mechanisms

(unlike, e.g. combustion mechanisms) usually do not contain reaction steps in

which identical species react with each other (reaction type 2A!B). For this

reason, in atmospheric chemistry, the production rates for most species can be

calculated using the general equation:

dYi=dt ¼ Pi � Li Yi ð6:10Þ

where the production term Pi and the consumption term Li do not depend on

concentration Yi, but may depend on the concentrations of all the other species.

Therefore, in atmospheric chemistry, the usual definition (Hesstvedt et al. 1978) of

the lifetime of species i is τi¼ 1/Li.
In a general kinetic reaction mechanism, there are second-order reactions, and

there may also be reaction steps of the type 2A!B. Therefore, the definition given

in Eq. (6.10) is not applicable. In the general case, the lifetime of species i can be

calculated using the following equation:

τi ¼ � 1

Jii
ð6:11Þ

where Jii is the i-th element of the diagonal of the Jacobian (see Eq. (2.10)). A

consequence of the structure of the kinetic system of differential equations and the

rule of the derivation of the Jacobian is that element Jii is usually negative for any

concentration set, if species i has a consuming reaction. If this species does not have

a consuming reaction, then element Jii is zero. The corresponding element can be
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positive only if the mechanism contains reactions of the type X! 2 X or 2 X! 3

X. These represent lumped one-step autocatalytic reactions and would not therefore

be present in comprehensive reaction schemes representing only elementary reac-

tions. The lifetime defined by equation (6.11) is the generalisation of all previously

introduced definitions. It can be calculated for any reaction mechanism, and is

equivalent to photochemical and atmospheric chemical lifetimes (Turányi

et al. 1993).

The previous statement will now be illustrated for two simple examples. As

previously, the concentrations of a species will be denoted by small italic letters.

The first mechanism to be investigated is the following:

A ! B k1
A ! C k2

The change in concentration of species A over time is a(t)¼ a0 exp(�(k1 + k2) t),
and therefore, its lifetime is τA¼ 1/(k1 + k2). Using atmospheric chemical notation,

da=dt ¼ PA � LA a ¼ 0� k1 þ k2ð Þa ð6:12Þ

The atmospheric chemical lifetime is τA¼ 1/LA¼ 1/(k1 + k2). The corresponding

element of the Jacobian is

JAA ¼ ∂ da=dtð Þ
∂a

¼ � k1 þ k2ð Þ ð6:13Þ

The lifetime calculated from the Jacobian is again τA¼� JAA¼ 1/(k1 + k2).
Let us consider now a mechanism in which species A is consumed in a second-

order reaction:

A ! B k1
Aþ C ! D k2
B ! A k3

Equation τA ¼ 1=
X
j

kj for the calculation of the photochemical lifetime is not

applicable here. Using atmospheric chemical notation, the production rate of

species A is

da=dt ¼ PA � LA a ¼ k3 b� k1 þ k2 cð Þa ð6:14Þ

The calculated atmospheric chemical lifetime, τA¼ 1/LA¼ 1/(k1 + k2 c), depends
on the actual concentration of species C. The corresponding element of the Jacobian

is
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JAA ¼ ∂ da=dtð Þ
∂a

¼ � k1 þ k2 cð Þ; ð6:15Þ

which results in lifetime τA¼�1/JAA¼ 1/(k1 + k2 c).
The lifetime of a species can be used to predict what happens if the concentration

of this species is changed suddenly. Such a sudden concentration change can be

obtained, for example, if a precursor is added to the mixture and the precursor is

decomposed by flash photolysis, inducing a sudden increase of the concentration of

the photolysis products. This type of method becomes useful in the design of

experiments aiming to determine rate coefficients for certain types of gas-phase

reactions, and hence, an example will now be discussed.

Assume that in a given gas mixture, acetone and CO have low reactivity, whilst

the radical CH3 reacts very quickly with the species present in the gas mixture. Put a

different way, CO has a long lifetime, whilst the lifetime of CH3 is short. The

system can be investigated by adding a small amount of acetone so that it does not

perturb the system, and then, by using a laser flash of wavelength 193 nm, a part of

the acetone can be suddenly decomposed. The duration of the laser flash would be a

few nanoseconds (10�9 s), whilst the characteristic time of the concentration

changes in the system is much longer. The chemical equation for the decomposition

of acetone is

CH3COCH3 ! CO þ 2 CH3

This means that the decomposition of acetone results in extra CO and CH3. The

concentration of CO is increased according to a step function, and since the

consumption of CO is slow, this extra CO concentration remains in the system,

i.e. the concentration of CO remains constant. However, the higher CH3 concen-

tration results in a higher consumption rate, and therefore, the concentration of CH3

quickly returns near to the pre-perturbation value. As an example, acetone was

photolysed in the presence of CCl3Br in the gas mixture and the methyl radicals

produced reacted rapidly with the CCl3Br, whilst CO was a chemically inert species

in this mixture (Macken and Sidebottom 1979).

The determination of the lifetime of radical species in the atmosphere has also

been proposed as a method of exploring the discrepancies between atmospheric

field measurements and model outputs. Historically, the concentration of the radical

OH has been overpredicted by tropospheric models even when major hydrocarbon

species concentrations are constrained in the model by relevant field measurements.

Since OH is central to atmospheric oxidation processes, and itself governs the

atmospheric lifetime of most anthropogenic and biogenic trace species, the correct

prediction of its concentration is critical to tropospheric chemical modelling.

The failure to predict its concentration correctly highlights uncertainties in the

description of tropospheric chemical processes and possible missing reaction path-

ways that consume OH. Since the reactions contributing to the consumption of OH

in the troposphere are first order in OH, the lifetime of OH is given by the

expression τOH¼ 1/LOH¼ 1/(∑kj ci), where ci is the concentration of a co-reactant
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of OH and kj is the bimolecular rate coefficient for the reaction between the co-

reactant and OH (Bell et al. 2003). Measuring the lifetime of OH in the troposphere

therefore gives an additional constraint in model/measurement comparison. In

particular, it allows explicit recognition of situations where the full range of

co-reactants has not been fully characterised, i.e. by comparing the modelled and

measured lifetime of OH, one can determine the fraction of OH sinks that are not

being measured in field experiments (Kovacs and Brune 2001). These types of

measurements may also be used for model validation purposes. For this reason,

field instruments which attempt to measure OH lifetime in the atmosphere using

perturbation methods have been under development for several years, as well as

being deployed in both semi-polluted and remote tropical locations (Lee et al. 2009;

Ingham et al. 2009). Another development described in Mao et al. (2009) is the use

of flash photolysis methods where OH is rapidly generated by photolysing water

vapour with 185 nm UV light. The decay of OH in ambient air is then measured

giving the first-order loss rate and hence OH reactivity. The study of Mao et al. was

based in Hawaii and Alaska, and it attempted to explore the reactive transport of

Asian pollution over the Pacific Ocean. The under prediction of OH reactivity by

the chemical transport models was attributed to missing reactions of highly reactive

volatile organic compounds (VOCs) that had HCHO as an oxidation product. OH

lifetime studies over a US forest were also used to indicate the presence of unknown

but reactive biogenic VOCs that were consuming OH (Di Carlo et al. 2004).

Within a chemical system, the long lifetime variables are called slow variables.
For such variables, the distance between the original and the perturbed trajectories

remains almost constant in time, whilst for the short lifetime, the so-called fast

variables, the perturbed trajectory quickly approaches the original trajectory (see

Fig. 6.1) (Klonowski 1983; Lee and Othmer 2010). It is important to note that there

is no relationship between the magnitude of the production rate and the separation

of slow and fast variables. This partition is based only on the rate of response to a

perturbation. A high production rate (quickly changing concentration) may belong

Fig. 6.1 Species A is a fast

variable and following a

rapid change in

concentration, the perturbed

concentration curve quickly

approaches the original one.

Species B is a slow variable;

therefore, the distance

between the original and the

perturbed

concentration�time curve

remains almost constant

in time
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to a slow variable, and an almost zero production rate (stationary concentration)

may belong to a fast variable.

The implication of distinguishing between fast and slow variables is that a short

time after the perturbation, the values of the fast variables are determined by the

values of the slow ones. Appropriate algebraic expressions to determine the values

of the fast variables as functions of the values of the slow ones can therefore be

developed. This is the starting point of model reduction methods based on timescale

analysis. One such method was introduced in Sect. 2.3 where the quasi-steady-state

approximation (QSSA) was demonstrated for the reduction in the number of vari-

ables of a simple example. In this case, the system timescales were directly

associated with chemical species. We shall see in the later discussion that this

need not always be the case.

6.3 Application of Perturbation Theory to Chemical

Kinetic Systems

For equation systems of low dimension, the investigation of the inherent timescales

can be carried out through a non-dimensionalisation process. Small parameters can

then often be identified indicating fast variables. A discussion of

non-dimensionalisation procedures for a simplified 4-variable model describing

the horseradish peroxidase reaction can be found in Chap. 12 of Scott (1990).

The 4-variable model can be described by the following reaction steps:

Aþ Bþ X ! 2X k1
2X ! 2Y k2
Aþ Bþ Y ! 2X k3
X ! P k4
Y ! Q k5
X0 ! X k6
A0 Æ A k7, k�7

B0 ! B k8

In dimensionless form, the rate equations can be written as

da=dt ¼ �abx� γabyþ p2 � p3a ð6:16Þ
dx=dt ¼ abx� 2x2 þ 2γaby� xþ p1 ð6:17Þ
dy=dt ¼ 2x2 � γaby� αy ð6:18Þ
db=dt ¼ ε �abx� γabyþ p0½ � ð6:19Þ

where a, x, y, b are dimensionless concentrations and p0, p3, α, γ, ε are parameters

involving the rate constants. The parameter ε is small relative to the other
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parameters and indicates that b will evolve on a slower timescale than the other

variables. The non-dimensionalisation procedure has therefore revealed a timescale

separation in this system which suggests that the system can be decoupled into a

“fast” 3-variable subset (a,x,y) and a slowly evolving variable b.
For larger systems such as those typically found in complex chemical problems,

non-dimensionalisation may be impractical, and hence, numerical perturbation

methods are generally used to investigate system dynamics and to explore timescale

separation. By studying the evolution of a small disturbance or perturbation to the

nonlinear system, it is possible to reduce the problem to a locally linear one. The

resulting set of linear equations is easier to solve, and information can be obtained

about the local timescales and stability of the nonlinear system. Several books on

mathematics and physics (see e.g. Pontryagin 1962) discuss the linear stability

analysis of the stationary states of a dynamical system. In this case, the dynamical

system, described by an ODE, is in stationary state, i.e. the values of its variables

are constant in time. If the stationary concentrations are perturbed, one of the

possible results is that the stationary state is asymptotically stable, which means

that the perturbed system always returns to the stationary state. Another possible

outcome is that the stationary point is unstable. In this case, it is possible that the

system returns to the stationary state after perturbation towards some special

directions but may permanently deviate after a perturbation to other directions. A

full discussion of stationary state analysis in chemical systems is given in

Scott (1990).

In the following paragraphs, a more complicated system will be investigated,

which is a generalisation of the stability analysis applied to stationary states. The

system we investigate is described by the ODE defined in Eq. (2.9), i.e. it is an

initial value problem where the concentrations are changing in time. We now ask

the following question: how will the system respond, if one or several concen-

trations are changed instantaneously at any point in time? This type of analysis can

be used to investigate inherent timescales within dynamical chemical systems, the

couplings between species, and to determine species which drive the slow, inter-

mediate and fast dynamics of the system (Tomlin et al. 2001).

Let us change the concentrations of several species during the course of the

reaction at an arbitrarily selected time t0¼ 0 according to the vector ΔY0:

eY 0ð Þ ¼ Y 0ð Þ þ ΔY0 ð6:20Þ

The vector of concentrations eY tð Þ at a later time t can be given as the sum of the

original concentrations Y(t) and the effect of the perturbation ΔY(t):

eY tð Þ ¼ Y tð Þ þ ΔY tð Þ ð6:21Þ

The time derivative of eY tð Þ can be calculated in two ways. For the first method

(a linearisation), a Taylor series expansion is used with higher-order terms

neglected:
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deY
dt

¼ d Yþ ΔYð Þ
dt

� f Y; pð Þ þ ∂f
∂Y

ΔY ¼ f Y; pð Þ þ JΔY ð6:22Þ

Alternatively, the derivative of the sum Y +ΔY is calculated as the sum of the

derivatives:

deY
dt

¼ d Yþ ΔYð Þ
dt

¼ f Y; pð Þ þ dΔY
d t

ð6:23Þ

The left-hand sides of Eqs. (6.22) and (6.23) are equal to each other, and therefore,

dΔY
dt

¼ J ΔY ð6:24Þ

During very short time periods, the Jacobian does not change significantly (the

Jacobian J0¼ J(t0) is constant), and therefore, the differential equation (6.24) can

be solved analytically:

ΔY tð Þ ¼ eJ0 t ΔY0 ð6:25Þ

giving the change in concentration at time t due to the perturbation at time t0. We

are used to meeting exponential functions with scalar arguments in science,

whereas here J0 is a matrix. However, an exponential function can be defined as

a series of power functions. Since the product and sum of matrices can be

interpreted, the series of power functions can also be interpreted for matrices.

This series will be convergent for any matrix, and therefore, the exponential

function may have a matrix argument.

The first step in the calculation of the matrix exponential can be (Prasolov 1994)

the decomposition of matrix J0 to its Jordan canonical form J using the invertible

matrix P:

J0 ¼ PJP�1 ð6:26Þ

where

eJ0t ¼ PeJ tP�1 ð6:27Þ

The eigenvalue�eigenvector decomposition of matrix J0 is the following:

J0 ¼ VΛW ð6:28Þ

where matrix Λ is the diagonal matrix of eigenvalues (Λ¼ diag(λ1, . . ., λn)),
matrix V contains the right eigenvectors as column vectors (V ¼ v1 . . . vn½ �)
and matrix W¼V�1 contains the left eigenvectors as row vectors

(W ¼ w1 . . . wn½ �T).
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The recent trend is that very large reaction mechanisms are created either

manually or automatically for the combustion or the atmospheric decomposition

of large organic molecules [see e.g. (Herbinet et al. 2010; Westbrook et al. 2011)],

as discussed in Sect. 3.1. In such mechanisms, only a minority of the reaction steps

has an experimentally measured rate coefficient, and most of the reaction para-

meters are estimated using simple rules. Therefore, it is common that many rate

coefficients are identical within such mechanisms. A numerical consequence can be

that an eigenvalue� eigenvector decomposition of the Jacobian does not exist.

However, even in this case, the effect of concentration perturbations can always

be studied on the basis of the Jordan decomposition of the Jacobian (Nagy and

Turányi 2009), as discussed below.

The eigenvalues of a matrix may have algebraic and may have geometric

multiplicity (Prasolov 1994). The algebraic multiplicity a(λ) of eigenvalue λ is

equal to the multiplicity of root λ of the characteristic polynomial. The geometric

multiplicity g(λ) is equal to the dimension of the eigensubspace belonging to λ,
i.e. equal to the number of linearly independent eigenvectors belonging to eigen-

value λ. An eigenvalue is called degenerate if g(λ)< a(λ). If at least one eigenvalue
of matrix J0 is degenerate, then matrix J0 does not have an eigenvalue�eigenvector

decomposition corresponding to Eq. (6.28). However, in all cases, the Jacobian J0
has a Jordan decomposition according to Eq. (6.26) (Nagy and Turányi 2009b).

If the Jacobian can be diagonalised according to Eq. (6.28), much simpler

equations are obtained:

ΔY tð Þ ¼ eJ0 tΔY0 ¼
Xn
l¼1

eλl tvl wlΔY0
� � ¼Xn

l¼1

eλl t vl∘wlð ÞΔY0

¼
Xn
l¼1

eλl tPlΔY0 ð6:29Þ

where vl is the l-th column of the right eigenvector matrix and wl is the l-th row of

the left eigenvector matrix. The projector matrix Pl can be calculated by the tensor

product (also called dyadic product or outer product) of vectors vl and wl.

The Jacobian is not a symmetric matrix, and therefore the eigenvalues can also

be complex numbers. Let us assume now that the eigenvalues have zero imaginary

components. Rewriting Eq. (6.29) to a form containing scalar valued functions

only, the concentration changes can be described by the sum of exponential

functions, where the arguments of the exponential functions contain the eigen-

values of the Jacobian. The number of eigenvalues is equal to the number of

variables, and each eigenvalue is associated with a different timescale of the locally

linear solution to the full equations. The eigenvalue with the largest negative real

part corresponds to a perturbation which decays very quickly and is therefore

associated with the fastest timescale. However, there is no one-to-one equivalence

between the eigenvalues and the variables (concentrations of species). For

nonlinear systems with species coupling, several different timescales may
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contribute to the decay or growth of each species perturbation, and conversely

several different species may contribute to each timescale. The calculation of

eigenvectors is useful since the off-diagonal terms tell us about the couplings

between species and the contributions of individual species to different timescale

modes (see discussion below). In the general case, however, there is not necessarily

a direct connection between the rate of return after the perturbation and the lifetime

of an individual species defined by Eq. (6.11) as highlighted in the following

discussion.

If the concentration of a single species is changed byΔy0i so that the perturbation
is small enough to induce a linear response (which means that the rate of return is

proportional to the extent of deviation), and so that the change in concentration of

the other species is negligible, then the return of the perturbed concentration can be

described by the following exponential function:

Δyi tð Þ ¼ Δy0i e
Jii t ð6:30Þ

If the perturbed species has a short lifetime (i.e. has a high reactivity), and there is

sufficient separation between the timescales, then the conditions above are usually

fulfilled. The concentrations of these species quickly return to the original trajec-

tory, and the return can be described by a single exponential function. In this case,

the exponent of the exponential is related [see Eq. (6.11)] to the lifetime of the

species.

If the concentrations of several species are perturbed simultaneously, it is still

possible that the return to the original trajectory is described by single exponential

function, if the direction of the perturbation is appropriate. According to the

diagonalisation of the Jacobian,

Λ ¼ WJ0V ð6:31Þ

whereW is the matrix of left eigenvectors (row vectors) and V is the matrix of right

eigenvectors (column vectors). This equation is equivalent to the previous

Eq. (6.28), since

WV ¼ VW ¼ I ð6:32Þ

and thus

J0 ¼ VΛW ð6:33Þ

where I is the identity matrix.

If the values of variables are changed by ΔY0
j ¼ α vj, where α is a small scalar

and vj is the j-th column of matrix V (the j-th right eigenvector), then using

Eq. (6.29), the displacement of the values of variables from the original values as

a function of time can be calculated using the following equation:
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ΔYj tð Þ ¼ ΔY0
j e

λj t ð6:34Þ

This means that, according to a local linear approximation, the approach from

perturbation direction vj to the original trajectory can be characterised by a single

exponential function having parameter λj. The problem is that the Jacobian is not

symmetrical, and therefore, λj can be a complex number.

If λj is a real number (Im(λj)¼ 0), then in the space of concentrations, the point

characterising the actual state of the system is moving along the original trajectory,

and its distance from the trajectory is changing in time according to a real expo-

nential function. If λj is a real number (i.e. if λj¼Re(λj)), then the distance of the

perturbed system from the unperturbed one is exponentially decreasing (λj< 0), is

increasing (λj> 0) or remains constant (λj¼ 0).

If λj is a complex number (Im(λj) 6¼ 0), then the point is moving in a 2D subspace

defined by the real and imaginary parts of the complex eigenvector. This point is

moving with rotational frequency ω¼ Im(λj) (i.e. with period 2π/Im (λj)) in an

ellipse having axes with length exp(Re(λj) t). In the general case, the point of the

system follows an elliptic spiral along the trajectory of the original (unperturbed)

system. If λj is a complex number and its real part (Re(λj)) is negative, then the

average distance (i.e. average over a period) is decreasing with time. The approach

is faster, if Re(λj) is a lower negative number, i.e. if | Re(λj) | is larger and Re(λj) is
negative. If Re(λj) is zero, then the distance averaged over a period is constant. If Re
(λj) is positive, then the average distance between the original and the perturbed

states is increasing and the increase is faster if Re(λj) is larger. The ratio 1/|Re(λj) | is
called the j-th timescale of the dynamical system.

The dynamic behaviour of the system tends to be dominated by the motion

associated with either the positive eigenvalues or the smallest negative ones, since

those with large negative eigenvalues tend to relax to their local equilibria very

quickly and therefore do not influence the slower modes.

If a small amount of a species is added to a reacting mixture, the resulting higher

concentration may increase the rate of the consuming reactions. Consequently, the

difference between the old and new concentration trajectory diminishes. This case

is associated with the presence of negative eigenvalues. If the behaviour of the

system is controlled by an autocatalytic species, then adding the autocatalyst

induces changes that further increase the concentration of the autocatalyst. A

similar behaviour is found when the added species can be converted quickly to

the autocatalyst. In such systems, the Jacobian has at least one positive Re(λj). For
example, in explosions, the highest eigenvalue of the Jacobian is positive during

rapid changes of the concentrations, whilst the real parts of all eigenvalues are

negative before and after this period.

A systematic investigation of explosions based on the eigenanalysis of the

Jacobian is called chemical explosive mode analysis (CEMA) (Lu et al. 2010;

Luo et al. 2012c). An explosion index is defined for the explosive modes, which

is similar to the radical pointer of the CSP method discussed below. This indicates
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the contribution of the various species and temperature to the explosion process and

thus facilitates the distinction between radical and thermal runaways.

It is clear that, based on small perturbations of concentrations, lifetimes can be

related to chemical kinetic systems. These lifetimes do not belong to species,

however, but to combinations of species concentrations defined by the left eigen-

vectors of the Jacobian, called modes. A matrix Jacobian of size NS�NS has NS

eigenvalues, and therefore, the number of modes is identical to the number of

variables. In the case of a linear system (in reaction kinetics, this means that the

mechanism consists of first-order and zeroth-order reactions only), the Jacobian is

constant and does not depend on the values of variables (concentrations). If the

system is nonlinear, which is the case for most reaction kinetic systems, the

Jacobian depends on the values of variables, i.e. the timescales depend on

the concentrations. In other words, the set of timescales belong to a given point in

the space of concentrations (phase space) and are different from location to location

(or from time point to time point if the concentrations change in time).

As Eq. (6.34) shows, concentration perturbations along the directions of the right

eigenvectors of the Jacobian have special importance. Therefore, it is justified to

introduce a new coordinate system. It is called the space of modes, and its axes are

defined by the eigenvectors. Using the left eigenvectors of the Jacobian, a concen-

tration set (point in the space of concentrations) can always be converted to a point

in the space of modes. The vector of modes z can be calculated using the following

equation:

z ¼ W Y ð6:35Þ

The i-th mode coordinate is

zi ¼ wi Y ð6:36Þ

Knowing the vector of modes, the concentration vector (or concentration yi) can be
calculated:

Y ¼ V z ð6:37Þ
yi ¼ vi z ð6:38Þ

The initial value problem (2.9) has been used for the calculation of concentration

changes in time. A similar initial value problem can be used to calculate the change

of modes z in time:

dz

dt
¼ W f Vzð Þ, z0 ¼ W Y0 ð6:39Þ

Since the Jacobian depends on the concentrations for nonlinear chemical kinetic

equations, the transformations above are also different at different points in the

concentration space.

158 6 Timescale Analysis



Let us now follow the consequence of an arbitrary perturbation ΔY in the space

of modes. A concentration perturbation ΔY can be transformed to a mode pertur-

bation Δz in the following way:

Δz ¼ WΔY ð6:40Þ

Using a linear approximation, the change of ΔY in time can be obtained by

solving the following ODE:

dΔY
dt

¼ J0ΔY ð6:41Þ

The equation is then extended by unit matrix VW¼ I, and both sides are multiplied

by matrix W:

W
dΔY
dt

¼ WJ0VWΔY ð6:42Þ

Using eqs. (6.40) and (6.31), the equation above can be rewritten as

dΔz
dt

¼ ΛΔz ð6:43Þ

Since matrix Λ is diagonal, for each mode coordinate, we obtain that

dΔzi
dt

¼ λiΔzi ð6:44Þ

If the initial (belonging to time t¼ 0) perturbation is Δz0¼WΔY0, then

Δzi tð Þ ¼ Δz0i e
λit ð6:45Þ

This means that in the space of modes, perturbations of the mode coordinates

respond independently of each other. What this means physically is that the

transformation matrix W shows us how each species contributes to the modes

associated with each eigenvalue. By ordering the eigenvalues, we can see which

species are associated with the slow and fast modes of the system. This can allow us

to identify species contributing to the fast-decaying modes which locally equilibrate

(i.e. approximately return to their unperturbed values) and those which contribute to

the slower modes which may dominate the longer-term dynamics of the model.

This type of approach was used in the study of mechanisms describing tropo-

spheric chemistry by Tomlin et al. (2001). A simple mechanism describing CO

oxidation and the interaction between ozone and nitrogen species is first used as an

illustrative example. Figure 6.2 illustrates the relationship between timescale

modes and species for this simple system as determined by the left eigenvectors.

In the figure, mode 1 is the fastest mode (λ��8� 108) and can be seen to be
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associated almost exclusively with the species O1D which has an extremely short

lifetime. The second mode (λ��70) is mainly dominated by OH, but the third

mode (λ��8) contains contributions from both OH and HO2. The corresponding

3� 3 submatrix is block triangular, and whilst the radical species are coupled to

each other, they do not couple back to the major species which implies that the

fastest timescales could be separated from the slow modes. For a more complex

tropospheric butane oxidation scheme, the study showed that the intermediate

(i.e. slow but not conserved) modes were dominated by the species NO2, HONO,

NO3, HNO3, PAN (CH3CO3NO2) and by several carbonyl species for most of the

diurnal cycle under high background NOx conditions. These are the species,

therefore, which drive the important dynamics of the system. Since the timescale

analysis was performed at many time points throughout the simulations, it was also

able to highlight that ozone joined this group only at dawn and dusk when

photolysis-driven reaction rates change rapidly.

Reaction mode analysis was also used for the investigation of time hierarchies of

a biochemical kinetic mechanism that describes the carbohydrate uptake and

metabolism of bacterium Escherichia coli (Kremling et al. 2004). The Jacobian

was calculated at the steady-state point of the system, and the analysis revealed

which reaction steps contribute mainly to the reaction modes having different

timescales.

6.4 Computational Singular Perturbation Theory

Lam and Goussis elaborated a detailed theory based on the application of compu-

tational perturbation methods for the investigation of reaction mechanisms. This

family of methods is called computational singular perturbation theory and is often

Fig. 6.2 A schematic

diagram showing the

relative relationships

between species and modes

for a simple six-variable

tropospheric model,

adapted from Tomlin

et al. (2001)
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abbreviated as CSP. In a similar way to that described in Sect. 6.3, CSP uses

variable transformations in order to separate the timescales of complex chemical

models. It was originally designed to enable a user to investigate the presence of

partial equilibrium (Sect. 2.3.2) and quasi-steady-state (Sect. 2.3.4) relationships

within a complex kinetic mechanism without the need for specialist chemical

intuition or expertise by providing appropriate numerical measures. The CSP

theory is summarised below in accordance with the recent article of Kourdis and

Goussis (Kourdis and Goussis 2013).

If the Jacobian of the kinetic system of differential equations has M eigenvalues

with negative real parts that are much larger (i.e. more negative) than the other Re

(λj) values, then the solution is quickly attracted onto an (Ns–M )-dimensional

surface Ω, which is called the slow invariant manifold (SIM) (Fenichel 1979).

Denote TYΩ and TYF as two subspaces, where the slow subspace TYΩ is the space of

movement on Ω and the fast subspace TYF contains the directions of fast

approaches to the manifold. These spaces can be spanned by the following basis

vectors: TYF¼ span(ai, i¼ 1, . . .,M ) and TYΩ¼ span(ai, i¼M+ 1, . . ., Ns). Vectors

ai form matrices Ar¼ [a1, a2, . . ., aM] and As¼ [aM+1, aM+2, . . ., aNs]. On this basis,
the right-hand side of the kinetic ODE can be decomposed as

f ¼ f fast þ fslow ð6:46Þ

Here ffast¼Arz
r and fslow¼Asz

s, and the corresponding amplitudes are defined as

zr¼Brf and zs¼Bsf. Vectors bi are defined by biaj¼ δij.

When the trajectory reaches the SIM, the fast timescales become exhausted;

vector f has no component in the fast subspace TYF, and it is entirely in the slow

subspace TYΩ. These exhausted timescales are termed “dead” or “exhausted”

modes. Once the fast timescales have become exhausted, the solution evolves

along the SIM according to the slow timescales (or “active” modes). This state of

the system is governed by relations zr� 0 and dY/dt� fslow. In the CSP methodo-

logy, an iterative method is used to calculate the vectors that span subspaces TYF
and TYΩ, using the so-called b

r and ar-refinements (Lam and Goussis 1988, 1991;

Zagaris et al. 2004; Valorani et al. 2005b).

In the CSP method, the equation system, zr� 0 represents conservation relations

which could be generalisations of QSSA and partial equilibrium assumptions.

Dormant modes may also exist which have close to zero amplitude for some periods

of the simulation, which may grow at a later time. Conserved modes may also be

present due to element conservation, as discussed in Sect. 2.3.5. Discarding the

dead modes, or replacing them with conservation relations, results in a less stiff

system of equations which could potentially lead to computational savings. How-

ever, if the vectors ar have to be determined numerically, then any savings provided

by reducing stiffness may be outweighed by the cost of determining the new basis

sets at each time point. In reality, CSP has been mainly used for the investigation of

system dynamics and within the context of mechanism reduction. Applications of

the CSP method in the context of mechanism reduction will be discussed in Sects.

7.2.1 and 7.9.
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The number of conserved, dormant, exhausted and active modes can be identi-

fied using CSP along a system trajectory (or in space, e.g. in a stationary flame). The

number of active modes indicates the number of variables required to accurately

represent the system dynamics. For systems proceeding towards a steady-state,

starting from an arbitrary concentration set, the active modes should become

exhausted one after the other. However, during ignition in combustion systems,

for example, positive modes may temporarily grow as illustrated in Fig. 6.3 for the

ignition of dimethyl ether in a rapid compression machine (Mittal et al. 2008).

The first article about the CSP method was published in 1988 (Lam and Goussis

1988), and up until 1994, four further articles (Lam and Goussis 1991, 1994;

Goussis and Lam 1992; Lam 1993) were published by Lam and Goussis. Further

additions to the theory were published by Lam (2006, 2013), whilst Goussis and his

co-workers also published many extensions (Goussis 1996; Hadjinicolaou and

Goussis 1998; Goussis et al. 2003; Valorani et al. 2006) and applications of CSP

in the fields of combustion (Massias et al. 1999a, b; Valorani and Goussis 2001;

Valorani et al. 2003, 2005a, b, 2006, 2007; Goussis and Skevis 2005; Goussis

et al. 2005a; Lee et al. 2005, 2007; Prager et al. 2009), atmospheric chemistry

(Neophytou et al. 2004) and systems biology (Goussis and Najm 2006; Kourdis

et al. 2010; Kourdis and Goussis 2013). Several other researchers also contributed

to the development of the CSP theory (Lu et al. 2001; Zagaris et al. 2004; Adrover

et al. 2006). The method has also been widely utilised by others for the investigation

and reduction of atmospheric models (Løvås et al. 2006; Mora-Ramirez and

Velasco 2011) and in combustion [e.g. Treviño (1991), Treviño and Solorio

(1991), Treviño and Mendez (1991), 1992), Garcı́a-Ybarra and Treviño (1994),

Treviño and Liñan (1995), Fotache et al. (1997), Løvås et al. (2002), Mittal

et al. (2008), Lu and Law (2008a, b), Gupta et al. (2011)].

Fig. 6.3 An example of large amplitude CSP modes obtained from a modelling study of dimethyl

ether auto-ignition in a rapid compression machine (Mittal et al. 2008) for a DME/O2/N2 mixture

(1/4/30 molar composition) initially at 523 Torr and 297 K (Pc¼ 20.1 bar, Tc¼ 720 K). (a)

Temperature (dashed lines) and the highest eigenvalue (solid lines) during the time evolution to

ignition (insert shows results during compression stroke). (b) Spectrum at 0.5 ms before the end of

the compression stroke. Open bars correspond to decaying or exhausted modes (negative eigen-

values), solid bars to explosive modes (positive eigenvalues). Reproduced from Mittal

et al. (2008) with permission from Elsevier
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6.5 Slow Manifolds in the Space of Variables

Roussel and Fraser (1991) also carried out timescale analysis of reaction kinetic

systems. Their approach was to make a comprehensive investigation of the features

of trajectories in the concentration phase space starting from many different initial

conditions using examples of small enzyme kinetic systems, i.e. it was a geometric-

based analysis. They demonstrated that the progress of a reaction can be interpreted

as the point defining the state of the system always moving along certain

multidimensional surfaces, with the dimension of these surfaces being smaller

than the full dimension of the concentration space.

In a closed system, if the simulation is started from an arbitrary point in

concentration space, it will finally end up at the equilibrium point, whilst the values

of conserved variables remain constant. The equilibrium point is determined by the

conserved properties, which are defined by the initial state of the system. If in an

isothermal system there are NS species and NC conserved properties, then the

trajectory of the system will move on a hypersurface with dimension NS�NC. As

time elapses, active modes will collapse, with the fastest mode relating to the largest

negative eigenvalue relaxing first. The trajectory then approaches a hypersurface

with dimension NS�NC�1. The relaxation will be approximately according to an

exponential function as it nears the surface (see Sect. 6.3). Trajectories may start

from different initial points, but eventually approach this surface exponentially,

although they never reach it exactly. The geometric object defined in this way is

called a slow manifold. The word “slow” refers to the fact that the movement along

the manifold is much slower than the approach to the manifold from a point that is

far from it. This implies a timescale separation between the fastest mode and the

other modes. In the following, we make the assumption that the surface

corresponding to the manifold is reached exactly in order to simplify the discussion

and will return to an estimation of errors later in this section.

When the second fastest mode relaxes, the trajectory will reach a surface with

dimension NS�NC�2. In a closed system, this process continues until the trajectory

in the space of concentrations reaches a 3D surface, a 2D surface (a curved plane)

and a 1D “surface” (a curved line) and finally ends up near the 0D equilibrium

point. Therefore, following the ideas of Roussel and Fraser, we can imagine the

system collapsing onto a cascade of manifolds of decreasing dimension with the

fastest modes collapsing first and the slowest last. For a non-isothermal system,

temperature may also be a variable increasing the dimension of the phase space by

1, but the same principles apply. In our discussions, we denote Ns as the dimension

of the full system which may include temperature as a variable.

Figure 6.4 shows trajectories approaching a 1D manifold for an example based

on simulations of a steady, one-dimensional premixed H2/O2 flame (Davis and

Tomlin 2008b), where the different trajectories represent different flame conditions

but all with the same asymptote. The figure shows a projection for a 2D plane where

the axes represent the mass fraction of the oxygen radical and temperature T.
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The trajectories are seen to be attracted to the manifold from all initial conditions

although the approach is steeper from some directions.

From the figure, it appears that the trajectories reach exactly the same manifold,

but it is easy to illustrate that a trajectory always only approaches the

low-dimensional surface (or even the equilibrium point), but never reaches it

exactly. In principle, time is reversible in a system defined by the system of

ODEs (2.9). This means that calculating the trajectory from t0 to t1, and then

continuing the simulation backwards in time from t1 to t0, the same concentration

set should be recovered. This is impossible if trajectories starting from different

initial conditions end up at exactly the same point. However, for most applications,

the approximate nature of the slow manifolds is not a barrier to their use in model

reduction strategies, since where large separations between timescales exist, the

error related to the approximation of the slow manifold should be small.

In applicable situations, apart from the modes belonging to conserved properties

(zero eigenvalues), the modes can be sorted to into fast or slow categories. If there

are two slow modes, then, after some time, the trajectory will move along a 2D

surface. This means that the change of all concentrations can be described by a

two-variable system of differential equations, even if the values of all concen-

trations (and maybe also temperature) are changing in time. The concentrations of

all other species would be determined by algebraic relationships relating them to

the slow variables. Remember, however, as we discussed in Sect. 6.3, that these

slow variables are not necessarily equivalent to specific species concentrations.

Maas and Pope developed an approach for the calculation of slow manifolds

(Maas and Pope 1992a, b, 1994; Maas 1995, 1998, 1999; Maas and Thévenin 1998)

utilising the approach of Roussel and Fraser, as well as the suggestion of Lam and

Goussis, that timescales should be investigated pointwise via the eigen-

value�eigenvector decomposition of the Jacobian. Their approach was to tabulate

these low-dimensional slow manifolds in phase space for several reaction systems

in combustion. They called the slow manifolds intrinsic low-dimensional manifolds
(ILDM).

Fig. 6.4 An example of trajectories (dotted curves) approaching a 1D manifold (solid curve) for a
steady, one-dimensional premixed H2/O2 flame. The figure shows a projection of the trajectories to

the space of oxygen radical mass fraction YO and temperature T. Reprinted with permission from

Davis and Tomlin (2008b). Copyright (2008) American Chemical Society
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Recently, Nicolini et al. (2013a, b) suggested a new approach for the calculation

of low-dimensional slow manifolds in chemical kinetic systems. They transformed

the original system of polynomial differential equations, which describes the

chemical evolution, into a universal quadratic format. A region of “attractiveness”

was found in the phase space, and a state-dependent rate function was defined that

describes the evolution of the system.

The use of the low-dimensional manifold methods in the context of model

reduction is discussed more fully in Sect. 7.10. However, an important question

to arise in this section on timescale analysis is how we can determine for a given

system what the appropriate dimension for the slow manifold should be. As the

stationary point or equilibrium is approached, a 1D manifold may appropriately

describe the dynamics of the system. However, we may be interested in dynamic

behaviour far away from the stationary or equilibrium point where a 1D manifold is

not appropriate. Clearly, in Fig. 6.5a, the behaviour at low temperatures in a steady

H2/O2 flame is not 1D since the trajectories first approach the 2D manifold and

move more slowly along it towards the 1D curve. Similar behaviour is presented in

Fig. 6.5b where simulations of fuel oxidation in a homogeneous reactor are shown

for a range of starting fuels. The trajectories converge onto the 2D manifold shown

by the mesh and eventually reach the same equilibrium point. Making a priori

estimates of the manifold dimension which is appropriate to represent the important

dynamics of the system is not easy. One method might be to calculate

low-dimensional manifolds of different dimensions and then compare the

Fig. 6.5 (a) 2D and 1D manifolds for the hydrogen flame example. Starting from any point in

phase space, the trajectories (dotted lines) quickly approach the 2D manifold (mesh surface) and

then the 1D manifold (bold line) and move along it towards the equilibrium point. Reprinted with

permission from Davis and Tomlin (2008b). Copyright (2008) American Chemical Society. (b)

The collapse of reaction trajectories onto a 2D intrinsic low-dimensional manifold or ILDM (black
mesh) for an iso-octane�air system plotted in a projection of the state space into CO2�H2O�H2

concentration coordinates. 1D ILDM (purple symbols), 0D ILDM (equilibrium, red circle). The
coloured lines are homogeneous reactor calculations for different fuels. Reprinted from

(Blasenbrey and Maas 2000) with permission from Elsevier
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behaviour of the system on these manifolds to trajectories calculated from the full

model. This could be time consuming, however, and hence, approaches have been

developed which attempt to estimate the dimension of the manifold along trajec-

tories based on the analysis of timescale modes. The method of Tomlin et al. (2001)

is based on ordering the eigenvalues for each of the timescale modes and investi-

gating their collapse onto an (Ns-1)-dimensional manifold in an Ns-dimensional

phase space. The dimension calculated this way is in good agreement with the

results of alternative methods for the determination of dynamical dimension (Büki

et al. 2002; Zsély et al. 2005). Valorani et al. (see Eq. (8) in Valorani et al. (2006))

derived a similar equation based on a CSP reasoning.

A consequence of Eqs. (6.25) and (6.44) is that the change of mode i after a
perturbation can be described by the following equation:

dzi
dt

¼ wif ¼ wif Ymð Þ þ wi
dΔY
dt

¼ dΔzi
dt

ð6:47Þ

where wif(Y
m)¼ 0, if point Ym is on the “surface” of the manifold, since the

direction of the movement f is always perpendicular to the surface spanned by

the vectors wi. Here Δzi denotes the size of perturbation along mode i and therefore
gives a measure of the distance of the mode from its associated slow manifold.

By comparing Eqs. (6.44) and (6.47), we get

wif ¼ λiΔzi ð6:48Þ

The distance of the system from the slow manifold towards direction i can therefore
be calculated from

Δzi ¼ wif=λi ð6:49Þ

This gives only the relative distance since the choice of eigenvectors is not

unique and will affect the absolute value. By normalising we can obtain a measure

of the relative distance of each mode from its equivalent slow manifold:

Δezi ¼ wif=λi
1

κ þ wiYj j ð6:50Þ

where κ is a small parameter added to avoid division by zero. This calculated

Δezi distance is not expected to become exactly zero since the trajectory only

approaches the manifold and can never be exactly on the corresponding surface.

However, we can define a threshold zth and state that the actual point has relaxed

to the slow manifold if
��Δezi�� < zth. By estimating the distance of the system

according to the fastest mode from the corresponding Ns�1-dimensional manifold

and comparing it against a tolerance parameter, we can determine at each time

point along a trajectory if the fastest mode has effectively been collapsed. It also

follows that once the fastest mode has collapsed, then the error of assuming an
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Ns�2-dimensional manifold can be estimated by the distance of the next slowest

mode from its equivalent Ns–1 manifold, although there may be some contribution

from the faster modes where timescale separation is weak. If NR is the number of

relaxed modes, that is, the number of non-conserved modes that satisfy the rela-

tionship
��Δezi�� < zth, then the effective dynamical dimension of the system will be

ND¼NS�NC�NR.

The calculated ND is not the actual dimension of the physical or chemical

system, but is rather the minimum number of variables that can be used to model

the system with acceptable accuracy. For example, a model that is described by an

8-variable ODE, but has dynamical dimension of 2, can be replaced by coupled

system of differential and algebraic equations, where the change in values of

2 variables are calculated by ODEs, whilst the values of the other 6 variables can

be calculated from these 2 variables using algebraic equations. The actual form of

the ODEs or other equivalent time-dependent models can be developed in different

ways as will be further discussed in Chap. 7.

Figure 6.6 shows how the dynamical dimension changes during the simulation of

an adiabatic explosion of stoichiometric hydrogen�air mixtures (T0¼ 800 K,

p¼ 1 atm constant). The mechanism contained nine species and 46 irreversible

reaction steps. Temperature was also one of the variables of the model. At about

T¼ 900 K, the autocatalytic processes become dominant, and therefore, the real

part of at least one eigenvalue of the Jacobian becomes positive, and the

corresponding mode(s) push the system away from the low-dimensional manifold.

After the explosion, the real parts of all eigenvalues become negative, the

low-dimensional manifolds become attractive again and the dynamical dimension

gradually decreases. Finally, the state of the system approaches the equilibrium

point along a 1D manifold.

In Fig. 6.7 some of the trajectories that were shown for the hydrogen flame are

now redrawn but coloured according to the estimated dimension of the system at the
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Fig. 6.6 The change of

dimension during the

adiabatic explosion of a

stoichiometric

hydrogen�air mixture. Due

to the autocatalytic process,

the dimension increases up

to seven and then it

decreases to one. The real

part of at least one

eigenvalue is positive

during the autocatalytic

period as indicated by grey

shading
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particular points in phase space (Davis and Tomlin 2008a). The figure shows the

higher intrinsic dimension at the low-temperature points along the trajectories

which eventually collapse onto the 1D manifold as the system approaches its

adiabatic flame temperature. Therefore, different numbers of variables would be

required to model the system depending on whether accurate prediction of the

low-temperature region is necessary.

Using the method above, Lovrics et al. (2006) investigated the model of Chen

et al. (2000) describing the cell cycle of budding yeast. This model contains

73 parameters and 13 variables. The change in model dimension for a typical

time-dependent simulation during a cell division cycle is indicated in Fig. 6.8.

During a cycle, the dimension of the model changes between 1 and 7. The dimen-

sion increases to seven during the excitation (i.e. autocatalytic) periods and

decreases during the relaxation periods. The dimension never reaches zero which

would correspond to a stationary state, because the mass of the cell is continuously

increasing between two cell divisions, and therefore, the smallest dimension of the

model is one. During the period when the dimension is one, the concentrations of

the proteins are continuously changing, but the concentrations of all proteins can be

calculated from cell mass using algebraic equations. It follows that in order to

simulate the whole cycle using a single model, 7 variables may be required in order

to be able to capture the excitation periods.

Fig. 6.7 A series of 16 H2/O2 flames with the same final equilibrium point are generated from the

CHEMKIN program Premix and plotted with a three-dimensional projection. The colours indicate
the intrinsic dimension calculated according to the use of equation (6-50), ND¼ 1 (blue), ND¼ 2

(red), ND¼ 3 (green), ND¼ 4 (black) and ND¼ 5 (yellow). Reprinted with permission from Davis

and Tomlin (2008a). Copyright (2008) American Chemical Society
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6.6 Timescales in Reactive Flow Models

In a reactive flow system, the chemical timescales should not be treated in isolation

from the relevant timescales of the flow processes which may include diffusion,

convection/advection or turbulent mixing (Goussis et al. 2005b). The simple initial

value problem expressed in Eq. (2.9) must therefore be extended to a system of

partial differential equations. Using the notation of Bykov and Maas (2007), the

evolution equation for the scalar field of a reacting flow can be described by

∂ψ
∂t

¼ F ψð Þ � υ! � grad ψþ 1

ρ
divDgrad ψ ð6:51Þ

where ψ¼ (ψ1, ψ2, . . ., ψNSþ2 )
T is the thermokinetic state, which can, e.g., be

expressed by the specific enthalpy h, the pressure P and the mass fractions wi of the

NS chemical species: ψ¼ (h, p, w1,. . ., wNS
)T; F denotes the chemical source term,

υ! the flow velocity, ρ the density and D the matrix of transport coefficients. Two

limiting cases may exist for the above system of equations. The first is for a well-

mixed system where the flow terms are very small compared to the chemical source

term. In this case, the last two terms in Eq. (6.51) could be neglected and the

equation would return to the homogeneous initial value problem expressed in

Eq. (2.9). A slow manifold could therefore be defined based on chemical timescales

alone. The second case would be if the chemical source terms were negligible and

the process becomes diffusion dominated. An example of this second case might be

in the preheating zone of a flame. A discussion of manifolds present for both these

limiting cases is given in Bykov and Maas (2007). In general, however, a mixture of

chemical and flow timescales will be present within a system which could change

over different conditions, e.g. temperatures, composition, etc. Methods which

extend chemical slow manifolds into the region of slow chemistry by defining

Fig. 6.8 Changes in the

dimension of a cell cycle

model (Chen et al. 2000)

during a whole cell division

cycle (from 0 min till

144.92 min). Grey areas

indicate time periods where

the highest eigenvalue is

positive, i.e. periods of

autocatalytic changes

(Lovrics et al. 2006)
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manifolds governed by only convection and diffusion are likely to neglect regions

with strong couplings between the chemical and physical processes (Bykov and

Maas 2007, 2009).

Two different approaches have historically been taken to define slow manifolds

for such coupled systems. In the first, the governing PDEs are reduced to a system

of ordinary differential equations (ODEs), and timescale separation in the resulting

ODEs is exploited in order to find underlying slow manifolds (Mengers and Powers

2013). Such Galerkin-based methods are commonly used within numerical algo-

rithms for solving PDEs describing reactive flows, but these will not be the focus of

the current discussion. The paper of Mengers and Powers (2013) describes an

application of such methods for NO formation during combustion.

In the second approach, the spatially homogeneous chemical slow manifold is

used, and the method must somehow account for reaction–transport coupling. For a

chemical timescale to be defined as fast in a reactive flow system, the Damköhler

number, which is defined as the ratio of the flow timescale τf and the chemical

timescale τc, must be large:

Da ¼ τf
τc

� 1 ð6:52Þ

Usually the range of timescales covered by the chemical processes is wider than

that covered by transport processes (Maas and Pope 1992b; Davis 2006a). As

illustrated in Fig. 6.9, it is common for the fastest chemical timescales to be faster

than the relevant transport timescales allowing local equilibrium arguments to be

applied to the fast chemistry. However, diffusion processes have been shown in

several studies of combustion and enzyme kinetics to affect the use of fast timescale

arguments for reduction on a slow manifold constructed according to the chemical

kinetics alone (Yannacopoulos et al. 1995; Singh et al. 2002; Davis 2006a).

Fig. 6.9 Comparison of

chemical versus physical

timescales in a typical

turbulent combustion

system. Adapted from

(Maas and Pope 1992b)
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The coupling of some chemical modes with relatively fast physical ones may

disturb system trajectories from the low-dimensional manifold (Bykov and Maas

2007). Prüfert et al. (2014) provide a discussion of the comparison of species

lifetimes τi (see Eq. (6.11)), system timescales based on eigenvalues and two

additional timescales called system progress and progress variable timescales for

reactive flow models.

Yannacopoulos et al. (1995) showed for an enzyme kinetics reaction–diffusion

model that because of the spatial dependence of the solution in PDE systems, the

transient dynamics before relaxation to the slow chemical manifold can have a very

important effect on the solution at long times. The use of a singular perturbation

method for the approximation of the transient approach to the slow manifold was

seen to improve the simulation of the long-term dynamics of the reaction–diffusion

model. A higher-order approximation than the QSSA was also required in order to

approximate the slow manifold in this case. Davis et al. (Davis 2006a, b) also

showed that the presence of diffusion can affect the attractiveness of the slow

manifolds present in a reaction–diffusion model of ozone combustion. The situation

for turbulent systems may be even more complex since in such cases rapidly

changing transient flows may need to be captured by the reactive flow model.

However, Van Oijen et al. (2007) have applied slow manifold techniques even in

direct numerical simulations (DNS) of flames. They noted, however, that the 2D

slow manifold generated for the flame differed substantially from the one generated

based on the chemical kinetics alone. Davis and Tomlin (2008b) also noted

differences between the flame manifolds and those based on only chemical kinetics

for a hydrogen oxygen flame, when sufficiently far from the final equilibrium point.

These differences have been attributed to the influence of the non-invariance of the

manifold, the curvature of the manifold (for nonzero diffusion cases), differential

diffusion of the species (Ren and Pope 2006) and thermal diffusion (Maas and

Bykov 2011). It could be possible to solve such problems by using higher-

dimensional chemical manifolds, i.e. only collapsing those timescales which are

much faster than the transport ones, but this is not optimal from the point of view of

reducing the number of variables to solve for in a reduced model. Therefore, more

general approaches have been sought for the application of slow manifolds within

reaction–diffusion systems. These include the reaction–diffusion manifold

(REDIM) method (Bykov and Maas 2009) and methods based on the extension

of composition space to include, for example, diffusive fluxes (Bongers et al. 2002).

Both of these approaches will be discussed further in the context of model reduction

in Sect. 7.10.

6.7 Stiffness of Reaction Kinetic Models

One of the first applications of computers in science was the simulation of the

dislocation of weights interconnected with springs. When the springs were not stiff,

the simulation was easy and no numerical problems were encountered. However,
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when some springs were loose and the others stiff, the numerical solution was far

more difficult, since the ODE solution code only gave sensible results when

extremely short time steps were used (Burden and Faires 1993). Physicists called

such tasks stiff problems and the corresponding ODE was called a stiff system of
differential equations. It was subsequently discovered that very similar problems

occur not only for the simulation of mechanical problems but also for reaction

kinetic models.

The stiffness of a dynamical system can be characterised via its timescales.

Remember that the ratio 1/|Re(λj) | is called the j-th timescale of a dynamical system

(see Sect. 6.3). The most widely used stiffness index is the reciprocal of the shortest
timescale of the system:

L ¼ 1

min
i

τi
¼ max

i

1

τi
¼ max

i
Reλij j ð6:53Þ

where λi is the i-th eigenvalue of the Jacobian of the ODE of the system. However, it

is only possible to judge if such a quantity is large or small by comparing it to

another quantity. The shortest timescale should therefore be compared to the

characteristic timescale of the system.

Each process has a characteristic timescale. This is the time period during which

important events occur that are of interest to us. For example, in the case of a

summer storm, the timescale of temperature change is a few hours. During a

summer holiday, the change of temperature is of interest over a few weeks, whilst

climatologists investigate the change of the average temperature of air for time-

scales of several thousand or even several million years. In these three cases, the

physical system is identical (the atmosphere of Earth), the same quantity (air

temperature) is investigated, but the characteristic timescales of the investigations

are different.

A model is called stiff if its characteristic time T is several orders of magnitude

(typically 8–12 orders of magnitude) longer than its shortest timescale. Stiffness

can be characterised by the following stiffness ratio:

S1 ¼ T

min
i
τi
¼ LT ð6:54Þ

Another possibility is to calculate the ratio of the longest and shortest timescales of

the model:

S2 ¼
max

i
Reλij j

min
i

Reλij j ð6:55Þ

Of course, zero eigenvalues (originating from the conserved properties of the

model) should not be considered.
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It is important to emphasise that stiffness belongs to a model and not to a

physical system. The same physical system can be described, with similar accuracy,

by a very stiff and a non-stiff model. Several mathematics books consider stiffness

ratio S2 as a good indicator for stiffness, but stiffness ratio S1 is a more realistic

characterisation of the stiffness of a physical model. Inserting descriptions of

processes that have timescales much longer than the characteristic timescale into

a model will not affect the simulations. For example, according to the pool chemical
approximation (see Sect. 2.3), if the concentration of a species changes negligibly

during the simulation, it can be considered constant and the equations can be

simplified accordingly. It is clear that adding more, less reactive species to the

model (which changes S2 but not S1) does not cause much change. In general it may

be possible to treat the very slow timescales as approximately conserved variables

by applying a threshold ε (i.e. |Reλi|� ε) and therefore to remove these timescales

from the consideration of S2.
Both stiffness ratios S1 and S2 can be decreased by eliminating very fast

processes from the model or by changing the corresponding differential equations

to algebraic equations. Several sections of the next chapter, dealing with mecha-

nism reduction, discuss methods to modify models so that the fast timescales are

eliminated, hence reducing the stiffness of the model, even though the solution of

the model on the characteristic timescale is almost identical to the original one.

Algorithms for the solution of differential equations can be sorted into many

categories, but an important feature from a practical point of view is whether

these are applicable for the simulation of stiff systems.

A simple rule of thumb is that explicit methods for the solution of ODEs give fast
solutions for each time step but are not always applicable for the solution of stiff

systems. If an explicit method is used for the simulation of a stiff system using large

time steps, the solution obtained is usually not sensible, giving oscillating outputs or

the overprediction of quantities. Accuracy and stability problems can be solved by

selecting extremely short time steps, but then the overall CPU time required

becomes much too long. Using implicit methods for the solution of ODEs requires
much more CPU time for each time step, but the solution is stable even when using

longer time steps.

Explicit methods calculate the solution to Eq. (2.9) at time t+Δ t knowing the

solution at time t using the following general equation:

Y tþ Δtð Þ ¼ F Y tð Þð Þ ð6:56Þ

The general equation for implicit methods contains the solution of the system at

both times t and t+Δ t:

G Y tþ Δtð Þ,Y tð Þð Þ ¼ 0 ð6:57Þ

Equation (6.57) is a nonlinear algebraic equation. Solving it at each time step Δ t
would require much CPU time, and so it is converted to an approximate linear

algebraic equation.
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When an explicit method is used, the solution Y at time t is fed into Eq. (6.56) to
get the solution at time t+Δ t. Using an implicit method, the Jacobian has to be

evaluated at each time step, and then using this matrix, an N-variable linear

algebraic system of equations has to be solved. If using the same time step Δ t for
both methods, the implicit method will require more CPU time unless highly

efficient matrix algebra techniques can be employed. If the ODE is not stiff, then

both explicit and implicit methods give an accurate solution. If the ODE is stiff,

then the explicit method will not give sensible results for large time stepsΔ t, whilst
the implicit method may give an accurate numerical solution. This means that if the

ODE is not stiff, then it is usually not practical (although possible) to use an implicit

method. For the solution of a stiff ODE, it may be more practical to use an implicit

method, although the use of variable time steps can improve the efficiency of

explicit schemes (Sandu et al. 1997b).

A full discussion of the issues involved and comparisons between the appli-

cations of explicit and implicit solvers to five test problems from atmospheric

chemistry is given by Sandu et al. (1997a, b). Typically, the stiffness ratio for

these types of problems is between 106 and 109, and therefore, they pose significant

numerical challenges for long timescale tropospheric modelling. All test cases were

simulated for 5 days with a required accuracy of 1 %. The chemical schemes were

of varying dimensions and in one test case, liquid-phase chemistry and gas–liquid

interactions were included. A range of variable time-step explicit and implicit

schemes were tested, as well as schemes which utilised solutions based on the

QSSA for species with very short lifetimes. For low-dimensional problems, the best

of the implicit solvers outperformed the best of the explicit schemes in terms of

CPU time required for a given accuracy. For larger-dimensional problems, the

implicit schemes outperformed the explicit ones if higher accuracy was required.

However, sparse linear algebra implementations were necessary in order to avoid

large increases in the CPU requirements for the implicit methods, due to their

requirement for Jacobian manipulations. In most cases, the QSSA-based schemes

performed the worst. Explicit methods were found to be unsuitable for the test case

involving liquid-phase chemistry due to the large stiffness ratio present in this

problem. One feature which is notable from this study is that the simple rule of

thumb, which was introduced at the beginning of this section, may not be so simple,

when variable time-stepping, sparse linear algebra and efficient iterative methods

are taken into account. Depending on the dimension of the problem and the

accuracy required, the relative performance of the explicit and implicit schemes

can vary. Sandu et al. recommend the optimisation of different solvers for indi-

vidual applications and in fact offer users the opportunity to automatically select

solvers for each simulation case using their symbolic chemical preprocessor KPP

(Damian et al. 2002; KPP; Sandu et al. 2003; Daescu et al. 2003). Readers who are

particularly interested in optimising solution methods for stiff chemical systems are

recommended to study these benchmarking tests and to try their own problem!

There are several other points that should be kept in mind when the simulation of

stiff models is dealt with. In science (physics, chemistry, biology), almost all
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models based on differential equations are likely to be stiff, because the models

have to take into account much faster processes than the characteristic time of the

simulated system. However, in most practical cases, the modeller does not have to

investigate the stiffness of the model, because modern ODE solvers select an

explicit method for a non-stiff and an appropriate implicit method for a stiff

problem. These solvers may select a different method if the stiffness of the system

changes significantly during the simulation.

Almost all simulation codes require acceptable stepwise absolute and relative

error thresholds as inputs. This is important because it allows the algorithm to use a

variable stepsize and to calculate the largest Δ t that allows the predicted error to be
within the error thresholds. Using an explicit algorithm for the solution of a stiff

ODE, the estimated time step Δ t may be several orders of magnitude (e.g. 108

times) smaller than the characteristic time, whilst using an implicit method Δ t is
typically only 2–3 orders of magnitude smaller than the characteristic time. How-

ever, implicit methods carry the extra burden of the linear algebra required due to

Jacobian manipulations. Sparse linear algebra methods can lead to big efficiency

gains for higher-dimensional problems (Sandu et al. 1997b).

Both explicit and implicit methods have many variations. One of the differences

between these methods is the order of the polynomial that is used for the approx-

imation of the solution. The more sophisticated methods provide more accurate

solutions, but the most important is to use a temporal and/or spatial stepsize that

allows the stability of the method (Higham 1996).

6.8 Operator Splitting and Stiffness

The main discussion of the book is restricted to the solution of ordinary differential

equations (ODEs) which describe the chemical changes in a model. Many situations

involve not only chemical processes but also physical ones, such as convection/

advection, diffusion, turbulent mixing, etc., as described in Sect. 6.6. The discus-

sion of solution methods for the partial differential equations (PDEs) that result

from the inclusion of such physical processes is beyond the scope of this book.

However, it is worthwhile to mention some issues here which relate to timescales

and the inherent stiffness of PDE models, and how these may affect the choice of

solution method. Using the more traditional method of lines approach, the PDEs are

discretised in space only, transforming the PDEs into a set of ODEs for the variables

at the grid nodes. For stiff systems, this may have to be coupled with the use of an

implicit numerical scheme for the time integration, leading to a large number of

algebraic manipulations, since the size of the matrices to be inverted is determined

by the square of the number of chemical species multiplied by the number of grid

cells. Therefore, usually either chemical detail or grid resolution has to be sacrificed

in order to keep the computational times practical for spatially 2D or 3D models.
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In many situations, the method of operator splitting is applied to the solution of

PDEs. In this case, the chemical kinetic step is separated from the transport steps

and solved using ODE methods as described above. One of the advantages of

operator splitting is that by separating the original convection–reaction–diffusion

PDEs into different steps, it is possible to optimise solution methods that have been

specifically developed for each submodel. Even if an implicit method has to be used

for the chemical part, the matrices are far smaller than those resulting from the

method of lines approach.

Splitting methods have been successfully applied in atmospheric chemical

systems (Sportisse 2000) as well as in combustion where the applicability of

splitting may be less obvious since the chemistry feeds back to the transport

terms through heat release (Yang and Pope 1998; Knio et al. 1999; Schwer

et al. 2003; Singer et al. 2006; Ren and Pope 2008). Discussions on the use of

operator splitting in biochemical and developmental biology systems are also given

in Logist et al. (2009), Zhu et al. (2009) and Zhao et al. (2011). Stiffness, however,

does pose some problems for controlling errors due to operator splitting as inves-

tigated by Sportisse using singular perturbation methods (Sportisse 2000).

Berkenbosch et al. discussed similar issues for detonation problems in combustion

(Berkenbosch et al. 1998), which contain a wide range of timescales. Sportisse

suggests that the order of the operator sequence is critical for stiff problems with the

stiff operator being applied last for any time step. This ensures that the solution

relaxes back to the underlying slow manifold at the end of the overall time step,

even though certain sub-steps (e.g. diffusion) may take the solution trajectory away

from the manifold. Yang and Pope (1998) suggest coupling operator splitting

techniques with solutions of the chemical system on the slow manifold in order to

overcome some of these problems. Valorani and Goussis introduce a solution

algorithm based on splitting the slow and fast timescales using CSP and using an

explicit solver for the slow variables with the contribution of the fast variables taken

into account at the end of each integration step as a correction (Valorani and

Goussis 2001). Tomlin et al. (1997) discuss the application of operator splitting at

the level of the nonlinear equations resulting from the discretisation of the PDE

using the method of lines, rather than at the level of the PDE itself. The splitting is

then applied to the approximation of the Jacobian of the full system (Berzins and

Ware 1996) which reduces the size of the matrices to be inverted. In this case, the

splitting affects only the rate of convergence of the solution rather than the solution

accuracy.

In summary, without the use of operator splitting at some level, the discretisation

of a full PDE system containing a very large detailed chemical mechanism can lead

to the use of implicit methods handling very large equation systems. This is a

numerically challenging task that could perhaps be handled using state-of-the-art

linear algebra techniques. However, for stiff systems, care must be taken in how the

splitting algorithm is designed.
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