
Determinising Parity Automata�

Sven Schewe and Thomas Varghese

University of Liverpool

Abstract. Parity word automata and their determinisation play an im-
portant role in automata and game theory. We discuss a determinisation
procedure for nondeterministic parity automata through deterministic
Rabin to deterministic parity automata. We prove that the intermediate
determinisation to Rabin automata is optimal. We show that the result-
ing determinisation to parity automata is optimal up to a small constant.
Moreover, the lower bound refers to the more liberal Streett acceptance.
We thus show that determinisation to Streett would not lead to better
bounds than determinisation to parity. As a side-result, this optimality
extends to the determinisation of Büchi automata.

1 Introduction

The quest for optimal complementation [19,21,14] and determinisation
[11,12,9,15,3] of nondeterministic automata has been long and fruitful. The quest
for optimal Büchi complementation techniques seems to have been settled with
matching upper [14] and lower [21] bounds. A similar observation might, on first
glance, be made for Büchi determinisation, as matching upper [15] and lower [3]
bounds were established shortly after those for complementation. However, while
these bounds are tight to the state, they refer to deterministic Rabin automata
only, with exponentially many Rabin pairs in the states of the initial automaton.

Choosing Rabin automata as targets is not the only natural choice. The dual
Streett acceptance condition is a similarly natural goal, and determinising to par-
ity automata seems to be an even more attractive target, as emptiness games for
parity automata have a lower computational complexity compared to emptiness
games for Streett or Rabin automata. For parity and Streett automata, however,
no similarly tight result is known. Indeed, the best known algorithm [9] provides
an O(n!2) bound on the states [15] (for state-based acceptance; the bound can be
improved to O(n!(n− 1)!) when transition based acceptance is used) of a deter-
ministic parity automaton obtained from a nondeterministic Büchi automaton
with n states, as compared to the approximately (1.65n)n states of deterministic
Rabin automaton [15,3].

Another argument for using parity or Streett conditions is that determinisa-
tion constructions are often nested. E.g., in distributed synthesis [10,7,5], several
co-determinisation (determinisation of the complement language) steps are used.
Using Rabin automata as a target in one step, one has to use a determinisation
� A full version with proofs is available at http://arxiv.org/abs/1401.5394.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 486–498, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Determinising Parity Automata 487

technique for Streett automata in the next. Streett determinisation, however, is
significantly more involved and expensive [13,9].

In this paper, we introduce determinisation procedures for nondeterministic
parity automata (NPA) to deterministic Rabin and parity automata (DRA and
DPA). Using an algorithmic representation that extends the determinisation pro-
cedures from [15], we show that the number of states used in the determinisation
of nondeterministic Büchi automata cannot be reduced by a single state, while
we establish the tightness of our parity determinisation procedure to below an
approximation factor of 1.5, even if we allow for Streett acceptance. This also
shows that determinising parity automata to Rabin automata leads to a smaller
blow-up than the determinisation to parity or Streett. As a special case, this
holds in particular for Büchi automata.

Transition-Based Acceptance. We use a transition based acceptance mecha-
nism for various reasons, but most importantly, cleaner results. Transition-based
acceptance mechanisms have proven to be a more natural target of automata
transformations. Indeed, all determinisation procedures quoted above have a
natural representation with an acceptance condition on transitions, and their
translation to state-based acceptance is by multiplying the acceptance from the
last transition to the statespace. A similar observation can be made for other
automata transformations, like the removal of ε-transitions from translations
of μ-calculi [20,16] and the treatment of asynchronous systems [17], where the
statespace grows by multiplication with the acceptance information (e.g., maxi-
mal priority on a finite sequence of transitions), while it can only shrink in case
of transition based acceptance. Similarly, tools like SPOT [4] translate LTL for-
mulas to more concise automata with a transition-based acceptance mechanism.
Related Work. Besides the work on complementing [19,21,14] and determin-
ising [11,12,9,15,3] Büchi automata, tight bounds have been obtained for gen-
eralised Büchi automata [18], and specialised algorithms for complementing [2]
and determinising Streett [13,9] automata have been studied. The construction
of deterministic CoBüchi automata with a one-sided error, which is correct for
CoBüchi recognisable languages [1], and decision procedures that use emptiness
equivalent Büchi [8] or safety [6] automata have also been studied.

2 Preliminaries

We denote the set of non-negative integers by ω, i.e., ω = {0, 1, 2, 3, ...}. For a
finite alphabet Σ, we use Σ∗, Σ+, and Σω to denote the set of finite, non-empty
finite, and infinite sequences over Σ, respectively. An infinite word α : ω → Σ
is an infinite sequence of letters α0α1α2 · · · from Σ. We use [k] to represent
{1, 2, . . . , k}.

ω-automata are finite automata that are interpreted over infinite words and
recognise ω-regular languages L ⊆ Σω. Nondeterministic ω-automata are quin-
tuples N = (Q,Σ, I, T,F), where Q is a finite set of states with a non-empty
subset I ⊆ Q of initial states, Σ is a finite alphabet, T ⊆ Q × Σ × Q is a
transition relation that maps states and input letters to sets of successor states,

488 S. Schewe and T. Varghese

and F is an acceptance condition. A run ρ of a nondeterministic ω-automaton
N on an input word α is an infinite sequence ρ : ω → Q of states of N , also
denoted ρ = q0q1q2 · · · ∈ Qω, such that the first symbol of ρ is an initial state
q0 ∈ I and, for all i ∈ ω, (qi, αi, qi+1) ∈ T is a valid transition. For a run
ρ on a word α, we denote with ρ : i �→

(
ρ(i), α(i), ρ(i + 1)

)
the transitions

of ρ. Let infin(ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q} denote
the set of all states that occur infinitely often during the run ρ. Likewise, let
infin(ρ) = {t ∈ T | ∀i ∈ ω ∃j > i such that ρ(j) = t} denote the set of all
transitions that are taken infinitely many times in ρ.

In this paper, we use acceptance conditions over transitions. Acceptance mech-
anisms over states can be defined accordingly. Rabin automata are ω-automata,
whose acceptance is defined by a family of pairs {(Ai, Ri) | i ∈ J}, with
Ai, Ri ⊆ T , of accepting and rejecting transitions for all indices i of some index
set J . A run ρ of a Rabin automaton is accepting if there is an index i ∈ J ,
such that infinitely many accepting transitions t ∈ Ai, but only finitely many
rejecting transitions t ∈ Rj occur in ρ. That is, if there is an i ∈ J such that
infin(ρ)∩Ai 	= ∅ = infin(ρ)∩Ri. Streett automata are ω-automata, whose accep-
tance is defined by a family of pairs {(Gi, Bi) | i ∈ J}, with Gi, Bi ⊆ T , of good
and bad transitions for all indices i of some index set J . A run ρ of a Streett
automaton is accepting if, for all indices i ∈ J , some good transition t ∈ Gi or
no bad transition t ∈ Bj occur infinitely often in ρ. That is, if, for all i ∈ J ,
infin(ρ) ∩Gi 	= ∅ or infin(ρ) ∩Bi = ∅ holds.

Parity automata are ω-automata, whose acceptance is defined by a priority
function pri : T → [c] for some c ∈ N. A run ρ of a parity automaton is accepting
if lim supn→∞ pri

(
ρ(n)

)
is even, that is, if the highest priority that occurs in-

finitely often is even. Parity automata can be viewed as special Rabin or Streett
automata. In older works, the parity condition was referred to as Rabin chain:
one can represent it by choosing Ai and Ri as the set of transitions with priority
≤ 2i and ≤ 2i− 1, respectively. This results in a chain Ai ⊆ Ri ⊆ Ai+1 ⊆

One-pair Rabin automata R1 =
(
Q,Σ, I, T, (A,R)

)
are of special technical

interest in this paper. They are Rabin automata with a singleton index set, such
that we directly refer to the only pair (A,R). Büchi automata can be viewed as
one-pair Rabin automata with an empty set of rejecting states R = ∅.

For all types of automata, a word α is accepted by an automaton A iff it has
an accepting run, and its language L(A) is the set of words it accepts.

We call an automaton (Q,Σ, I, T,F) deterministic if I is singleton and T
contains at most one target node for all pairs of states and input letters. Deter-
ministic automata are denoted (Q,Σ, q0, δ,F), where q0 is the only initial state
and δ is the partial function with δ : (q, α) �→ r ⇔ (q, α, r) ∈ T .

3 Determinisation

We will tackle the determinisation of parity automata in three steps. Firstly, we
will recall history trees, the data structure for determinising Büchi automata.
Secondly, we will adjust this data structure and adapt the Büchi determinisation

Determinising Parity Automata 489

procedure to determinise one-pair Rabin automata. Finally, we will show that
this data structure can be nested for the determinisation of parity automata.

In [15,18], we use ordered labelled trees to depict the states of the determi-
nistic automaton. The ordered labelled trees are called history trees in [15,18].

A history tree is an ordered labelled tree (T , l), where T is a finite, prefix
closed subset of finite sequences of natural numbers ω. Every element v ∈ T is
called a node. Prefix closedness implies that, if a node v = n1 . . . njnj+1 ∈ T is
in T , then v′ = n1 . . . nj is also in T . We call v′ the predecessor of v, denoted
pred(v). The empty sequence ε ∈ T is called the root of the ordered tree T . ε has
no predecessor. We further require T to be order closed with respect to siblings:
if a node v = n1 . . . nj is in T , then v′ = n1 . . . nj−1i is also in T for all i ∈ ω
with i < nj . In this case, we call v′ an older sibling of v (and v a younger sibling
of v′). We denote the set of older siblings of v by os(v).

A history tree is a tree labelled with sets of states. That is, l : T → 2Q � {∅}
is a labelling function, which maps nodes of T to non-empty sets of automata
states. For Büchi automata, the labelling is subject to the following criteria.

1. The label of each node is a subset of the label of its predecessor:
l(v) ⊆ l(pred(v)) holds for all ε 	= v ∈ T .

2. The intersection of the labels of two siblings is disjoint:
∀v, v′∈T . v 	=v′ ∧ pred(v)=pred(v′) ⇒ l(v)∩l(v′) = ∅.

3. The union of the labels of all siblings is strictly contained in the label of
their predecessor: ∀v ∈ T ∃q ∈ l(v) ∀v′ ∈ T . v = pred(v′) ⇒ q /∈ l(v′).

Determinising One-Pair Rabin Automata. For one-pair Rabin automata,
it suffices to adjust this data structure slightly. A root history tree (RHT) satisfies
(1) and (2) from the definition of history trees, and a relaxed version of (3) that
allows for non-strict containment of the label of the root, ∀v ∈ T �{ε} ∃q ∈
l(v) ∀v′ ∈ T . v = pred(v′) ⇒ q /∈ l(v′), and the label of the root ε equals the
union of its children’s labels, l(ε) =

⋃
{l(v) | v ∈ T ∩ ω}.

Let R1 = (Q,Σ, I, T, (A,R)) be a nondeterministic one-pair Rabin automaton
with |Q| = n states. We first construct a language equivalent deterministic Rabin
automaton D1 = (D,Σ, d0, Δ, {(Ai, Ri) | i ∈ J}) where, D is the set of RHTs
over Q, d0 is the history tree ({ε, 0}, l : ε �→ I, l : 0 �→ I), J is the set of nodes
	= ε that occur in some RHT of size n + 1 (due to the definition of RHTs, an
RHT can contain at most n + 1 nodes), and for every tree d ∈ D and letter
σ ∈ Σ, the transition d′ = Δ(d, σ) is the result of the sequence of the transition
mechanism described below. The index set is the set of nodes, and, for each
index, the accepting and rejecting sets (defined later) refer to this node.

Transition Mechanism. We determine Δ:
(
(T , l), σ

)
�→ (T ′, l′) as follows:

1. Update of node labels (subset constructions). The root of a history tree d
collects the momentarily reachable states Qr ⊆ Q of the automaton R1. In
the first step of the construction, we update the label of the root to the set
of reachable states upon reading a letter σ ∈ Σ, using the classical subset
construction. We update the label of every other node of the RHT d to

490 S. Schewe and T. Varghese

reflect the successors reachable through accepting or neutral transitions. For
ε, we update l to the function l1 by assigning l1 : ε �→ {q′ ∈ Q | ∃q ∈
l(ε). (q, σ, q′) ∈ T }, and for all ε 	= v ∈ T , we update l to the function l1 by
assigning l1 : v �→ {q′ ∈ Q | ∃q ∈ l(v). (q, σ, q′) ∈ T �R}.

2. Splitting of run threads / spawning new children. We spawn new children for
every node in the RHT. For nodes other than the root ε, we spawn a child
labelled with the set of states reachable through accepting transitions; for the
root ε, we spawn a child labelled like the root. Thus, for every node ε 	= v ∈ d
with c children, we spawn a new child vc and expand l1 to vc by assigning
l1 : vc �→ {q′ ∈ Q | ∃q ∈ l(v). (q, σ, q′) ∈ A}. If ε has c children, we spawn a
new child c of the root ε and expand l1 to c by assigning l1 : c �→ l1(ε). We
use Tn to denote the extended tree that includes the new children.

3. Removing states from labels – horizontal pruning. We obtain a function l2
from l1 by removing, for every node v with label l(v) = Q′ and all states q ∈
Q′, q from the labels of all younger siblings of v and all of their descendants.

4. Identifying breakpoints – vertical pruning. We denote with Te ⊆ Tn the set
of all nodes v 	= ε whose label l2(v) is now equal to the union of the labels
of its children. We obtain Tv from Tn by removing all descendants of nodes
in Te, and restrict the domain of l2 accordingly. Nodes in Tv ∩ Te represent
the breakpoints reached during the infinite run ρ and are called accepting,
that is, the transition of D1 will be in Av for exactly the v ∈ Tv ∩ Te. Note
that the root cannot be accepting.

5. Removing nodes with empty label. We denote with Tr = {v ∈ Tv | l2(v) 	= ∅}
the subtree of Tv that consists of the nodes with non-empty label and restrict
the domain of l2 accordingly.

6. Reordering. To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the num-
ber of (still existing) older siblings of v, and map v = n1 . . . nj to v′ =
‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v). For T ′ = rename(Tr), we
update a pair (Tr, l2) from Step 5 to d′ =

(
T ′, l′

)
with l′ : rename(v) �→ l2(v).

We call a node v ∈ T ′∩T stable if v = rename(v), and we call all nodes in J
rejecting if they are not stable. That is, the transition will be in Rv exactly
for those v ∈ J , such that v is not a stable node in T ∩ T ′.

Note that this construction is a generalisation of the same construction for
Büchi automata: if R = ∅, then the label of 0 is always the label of ε in this
construction, and the node 1 is not part of any reachable RHT. (We would
merely write 0 in front of every node of a history tree.) The correctness proof of
this construction follows the same lines as the proof of the Büchi construction.

Lemma 1. L(R1) ⊆ L(D1)

Notation. For a state q of R1 and an RHT d = (T , l), we call a node v the host
node of q, denoted host(q, d), if q ∈ l(v), but not in l(vc) for any child vc of v.

The proof idea is the same as for Büchi determinisation [15]: the state of each
accepting run is eventually ‘trapped’ in the same node of the RHT, and this
node must be accepting infinitely often. Let d0, d1 . . . be the run of D1 on α and
q0, q1, . . . an accepting run of R1 on α. We then define the sequence v0, v1, . . .
with vi = host(qi, di), which contains a longest eventually stable prefix v.

Determinising Parity Automata 491

An inductive argument can then be exploited to show that, once this prefix v
is henceforth stable, the index v cannot be rejecting. The assumption that v is
eventually stable but never again accepting leads to a contradiction. Once the
transition (qi, α(i), qi+1) is accepting, qi+1 ∈ li+1(vc) for some c ∈ ω and for
di+1 = (Ti+1, li+1). As v is never again accepting or rejecting, we can show for
all j > i that, if qj ∈ lj(vcj), then qj+1 ∈ lj+1(vcj+1) for some cj+1 ≤ cj . This
monotonicity contradicts the assumption that v is the longest stable prefix.

Lemma 2. L(D1) ⊆ L(R1)

For the run d0d1 . . . of D1 on α, we fix an ascending chain i0 < i1 < i2 . . .
of indices, such that v is not rejecting in any transition (dj−1, α(j − 1), dj) for
j ≥ i0 and such that (dij−1, α(ij−1), dij)∈Av for all j ≥ 0. The proof idea is the
usual way of building a tree of initial sequences of runs: we build a tree of initial
sequences of runs of R1 that contains a sequence q0q1q2 . . . qij for any j ∈ ω iff

– (qi, α(i), qi+1) ∈ T is a transition of R1 for all i < ij ,
– (qi, α(i), qi+1) /∈ R is not rejecting for all i ≥ i0 − 1, and
– for all k < j there is an i ∈ [ik, ik+1[s.t. (qi, α(i), qi+1) ∈ A is accepting.

This infinite tree has an infinite branch by König’s Lemma. By construction,
this branch is an accepting run of R1 on α.

Corollary 1. L(R1) = L(D1).

Let #ht(n) and #rht(n) be the number of history trees and RHTs, respec-
tively, over sets with n states. First, #rht(n) ≥ #ht(n) holds, because the sub-
tree rooted in 0 of an RHT is a history tree. Second, #ht(n + 1) ≥ #rht(n),
because adding the additional state to l(ε) turns an RHT into a history tree.
With an estimation similar to that of history trees [15], we get:

Theorem 1. inf
{
c | #rht(n)∈O

(
(cn)n

)}
= inf

{
c | #ht(n)∈O

(
(cn)n

)}
≈ 1.65.

The full version shows that #rht(n) is only a constant factor bigger than #ht(n).

Determinising Parity Automata. Having outlined a determinisation con-
struction for one-pair Rabin automata using root history trees, we proceed to de-
fine nested history trees (NHTs), the data structure we use for determinising par-
ity automata. We assume that we have a parity automaton P = (Q,Σ, I, T, pri :
T → [c]), and we select e = 2�0.5c�.

A nested history tree is a triple (T , l, λ), where T is a finite, prefix closed subset
of finite sequences of natural numbers and a special symbol s (for stepchild),
ω ∪ {s}. We refer to all other children vc, c ∈ ω of a node v as its natural
children. We call l(v) the label of the node v ∈ T , and λ(v) its level.

A node v 	= ε is called a Rabin root, iff it ends in s. The root ε is called a
Rabin root iff c > e. A node v ∈ T is called a base node iff it is not a Rabin root
and λ(v) = 2. The set of base nodes is denoted base(T).

– The label l(v) of each node v 	= ε is a subset of the label of its predecessor:
l(v) ⊆ l(pred(v)) holds for all ε 	= v ∈ T .

– The intersection of the labels of two siblings is disjoint:
∀v, v′∈T . v 	=v′ ∧ pred(v)=pred(v′) ⇒ l(v)∩l(v′) = ∅.

492 S. Schewe and T. Varghese

– For all base nodes, the union of the labels of all siblings is strictly contained
in the label of their predecessor:
∀v∈base(T) ∃q∈l(v) ∀v′∈T . v=pred(v′) ⇒ q /∈l(v′).

– A node v ∈ T has a stepchild iff v is neither a base-node, nor a Rabin root.
– The union of the labels of all siblings of a non-base node equals the union of

its children’s labels: ∀v∈T � base(T)
l(v) = {q ∈ l(v′) | v′ ∈ T and v = pred(v′)} holds.

– The level of the root is λ(ε) = e.
– The level of a stepchild is 2 smaller than the level of its parent:

for all vs ∈ T , λ(vs) = λ(v) − 2 holds.
– The level of all other children equals the level of its parent:

for all i ∈ ω and vi ∈ T , λ(vi) = λ(v) holds.

While the definition sounds rather involved, it is (for odd c) a nesting of RHTs.
Indeed, for c = 3, we simply get the RHTs, and λ is the constant function with
domain {2}. For odd c > 3, removing all nodes that contain an s somewhere in
the sequence again resemble RHTs, while the sub-trees rooted in a node vs such
that v does not contain a s resemble NHTs whose root has level c− 3.

The transition mechanism from the previous subsection is adjusted accord-
ingly. For each level a (note that levels are always even), we define three sets of
transitions for the parity automaton P : the rejecting transitions Ra = {t ∈ T |
pri(t) > a and pri(t) is odd}; the accepting transitions Aa = {t ∈ T | pri(t) ≥ a
and pri(t) is even}, and the (at least) neutral transitions, Na = T �Ra.

Construction. Let P =
(
P,Σ, I, T, {pri : P → [c]

)
be a nondeterministic parity

automaton with |P | = n states. We construct a language equivalent deterministic
Rabin automaton DR = (D,Σ, d0, Δ, {(Ai, Ri) | i ∈ J}) where,

– D is the set of NHTs over P (i.e., with l(ε) ⊆ P) whose root has level e,
where e = c if c is even, and e = c− 1 if c is odd,

– d0 is the NHT we obtain by starting with ({ε}, l : ε �→ I, λ : ε �→ e), and
performing Step 7 from the transition construction until we obtain an NHT.

– J is the set of nodes v that occur in some NHT of level e over P , and
– for every tree d ∈ D and letter σ ∈ Σ, the transition d′ = Δ(d, σ) is the

result of the sequence of transformations described below.

Transition Mechanism. Note that we do not define the update of λ, but use λ.
This can be done because the level of the root always remains λ(ε) = e; the
level λ(v) of all nodes v is therefore defined by the number of s occurring in v.
Likewise, the property of v being a base-node or a Rabin root is, for a given c,
a property of v and independent of the labelling function.

Starting from an NHT d = (T , l, λ), we define the transitions Δ : (d, σ) �→ d′

as follows:

1. Update of node labels (subset constructions): For the root, we continue to
use l1(ε) = {q′ ∈ Q | ∃q ∈ l(ε). (q, σ, q′) ∈ T }.
For other nodes v ∈ T that are no Rabin roots, we use l1(v) = {q′ ∈ Q |
∃q ∈ l(v). (q, σ, q′) ∈ Nλ(v)}.

Determinising Parity Automata 493

For the remaining Rabin roots vs ∈ T , we use l1(vs) = {q′ ∈ Q | ∃q ∈
l(vs). (q, σ, q′) ∈ Nλ(v)}. That is, we use the neutral transition of the higher
level of the parent of the Rabin node.

2. Splitting of run threads / spawning new children. We spawn new children
for every node in the NHT. For nodes v ∈ T that are no Rabin roots, we
spawn a child labelled with the set of states reachable through accepting
transitions. For a Rabin root v ∈ T , we spawn a new child labelled like
the root. Thus, for every node v ∈ T which is no Rabin root and has c
natural children, we spawn a new child vc and expand l1 to vc by assigning
l1 : vc �→ {q ∈ Q | ∃q′ ∈ l(v). (q′, σ, q) ∈ Aλ(v)}. If a Rabin root v has c
natural children, we spawn a new child vc of the Rabin root v and expand
l1 to vc by assigning l1 : vc �→ l1(v). We use Tn to denote the extended tree
that includes the new children.

3. Removing states from labels – horizontal pruning. We obtain a function l2
from l1 by removing, for every node v with label l(v) = Q′ and all states q ∈
Q′, q from the labels of all younger siblings of v and all of their descendants.
Stepchildren are always treated as the youngest sibling, irrespective of the
order of creation.

4. Identifying breakpoints – vertical pruning. We denote with Te ⊆ Tn the set
of all nodes v 	= ε whose label l2(v) is now equal to the union of the labels
of its natural children. We obtain Tv from Tn by removing all descendants
of nodes in Te, and restrict the domain of l2 accordingly.
Nodes in Tv ∩ Te represent the breakpoints reached during the infinite run
ρ and are called accepting. That is, the transition of DR will be in Av for
exactly the v ∈ Tv ∩ Te. Note that Rabin roots cannot be accepting.

5. Removing nodes with empty label. We denote with Tr = {v ∈ Tv | l2(v) 	= ∅}
the subtree of Tv that consists of the nodes with non-empty label and restrict
the domain of l2 accordingly.

6. Reordering. To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the
number of (still existing) older siblings of v, and map v = n1 . . . nj to
v′ = ‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v).
For To = rename(Tr), we update a pair (Tr, l2) from Step 5 to d′ =

(
To, l′

)

with l′ : rename(v) �→ l2(v).
We call a node v ∈ To ∩T stable if v = rename(v), and we call all nodes in J
rejecting if they are not stable. That is, the transition will be in Rv exactly
for those v ∈ J , such that v is not a stable node in T ∩ T ′.

7. Repairing nestedness. We initialise T ′ to To and then add recursively for
– Rabin roots v without children a child v0 to T ′ and expand l′ by assigning

l′ : v0 �→ l′(v), and for
– nodes v, which are neither Rabin roots nor base-nodes, without children

a child vs to T ′ and expand l′ by assigning l′ : vs �→ l′(v)
until we have constructed an NHT d′ = (T ′, l′, λ′).

494 S. Schewe and T. Varghese

Lemma 3. L(P) ⊆ L(DR)

Notation. For a state q of P , an NHT d = (T , l, λ) and an even number a ≤ e,
we call a node v′ the a host node of q, denoted hosta(q, d), if q ∈ l(v′), but not
in l(v′c) for any natural child v′c of v′, and λ(v′) = a.

Let ρ = q0, q1, q2 . . . be an accepting run of the NPA P with even a =
lim infi→∞ pri

(
qi, α(i), qi+1

)
on an ω-word α, let d0d1d2 . . . be the run of DR

on α, and let vi = hosta(qi, di) for all i ∈ ω.
The core idea of the proof is again that the state of each accepting run is even-

tually ‘trapped’ in a maximal initial sequence v of a-hosts, with the additional
constraint that neither v nor any of its ancestors are infinitely often rejecting,
and the transitions of the run of P are henceforth in Na.

We show by contradiction that v is accepting infinitely often. For λ(v) = a,
the proof is essentially the same as for one-Rabin determinisation. For λ(v) > a,
the proof is altered by a case distinction, where one case assumes that, for some
index i > 0 such that, for all j ≥ i, v is a prefix of all vj , (qj−1, α(j−1), qj) ∈ Na,
and (dj−1, α(j−1), dj) /∈ Rv∪Av, qi is in the label of a natural child vc of v. This
provides the induction basis – in the one-pair Rabin case, the basis is provided
through the accepting transition of the one-pair Rabin automaton, and we have
no corresponding transition with even priority ≥ λ(v) – by definition. If no such
i exists, we choose an i that satisfies the above requirements except that qi is
in the label of a natural child vc of v. We can then infer that the label of vs
also henceforth contains qi. As a Rabin root whose parent is not accepting or
rejecting, vs is not rejecting either.

Lemma 4. L(DR) ⊆ L(P)

The proof of this lemma is essentially the proof of Lemma 2 where, for the
priority a = λ(v) chosen to be the level of the accepting index v, Aa takes the
role of the accepting set A from the one-pair Rabin automaton.

Corollary 2. L(P) = L(DR).

Determinising to a Deterministic Parity Automata D. Deterministic par-
ity automata seem to be a nice target when determinising ω-automata [9,15,18]
given that algorithms that solve parity games (e.g., for acceptance games of al-
ternating and emptiness games of nondeterministic tree automata) have a lower
complexity when compared to solving Rabin games. For applications that involve
co-determinisation, the parity condition also avoids the Streett condition.

Safra’s determinisation construction (and younger variants) intuitively en-
forces a parity-like order on the nodes of history trees. By storing the order
in which nodes are introduced during the construction, we can capture the In-
dex Appearance Records construction that is used to convert Rabin or Streett
automata to parity automata. To achieve this, we augment the states of the de-
terministic automaton (RHTs or NHTs) with a later introduction record (LIR),
an abstraction of the order in which the non-Rabin roots of the ordered trees
are introduced. (Rabin roots provide redundant information and are omitted.)

Determinising Parity Automata 495

For an ordered tree T with m nodes that are no Rabin roots, an LIR is a
sequence v1, v2, . . . vm that contains the nodes of T that are no Rabin roots
nodes, such that, each node appears after its ancestors and older siblings. For
convenience in the lower bound proof, we represent a node v ∈ T of an NHT
d = (T , l, λ) in the LIR by a triple (Sv, cv, Pv) where Sv = l(v), is the label of v,
cv = λ(v) the level of v, and Pv = {q ∈ Q | v = hostcv(q, d)} is the set of states
cv hosted by v. The v can be reconstructed by the order and level. We call the
possible sequences of these triples LIR-NHTs. Obviously, each LIR-NHT defines
an NHT, but not the other way round.

A finite sequence (S1, c1, P1)(S2, c2, P2)(S3, c3, P3) . . . (Sk, ck, Pk) of triples is
a LIR-NHT if it satisfies the following requirements for all i ∈ [k].

1. Pi ⊆ Si,
2. {Pi} ∪ {Sj | j>i, ci=cj , and Sj∩Si 	=∅} partitions Si.
3. {Sj | j > i, ci = cj + 2, and Sj ∩ Pi 	= ∅} partition Pi.
4. If the highest priority of P is even, then ci = e implies Si ⊆ S1. (Then, the

lowest level construction is Büchi and the first triple refers to the root.)
5. For ci < e, there is a j < i with Si ⊆ Pj .

To define the transitions of D, we can work in two steps. First, we identify,
for each position i of a state N = (S1, c1, P1)(S2, c2, P2)(S3, c3, P3) . . . of D, the
node vi of the NHT d = (T , l, λ) for the same input letter. We then perform the
transition

(
d, σ, (T ′, l′, λ′)

)
on this Rabin automaton. We are then first interested

in the set of non-rejecting nodes from this transition and their indices. These
indices are moved to the left, otherwise maintaining their order. All remaining
vertices of T ′ are added at the right, maintaining orderedness.

The priority of the transition is determined by the smallest position i in
the sequence, where the related node in the underlying tree is accepting or
rejecting. It is therefore more convenient to use a min-parity condition, where
the parity of lim infn→∞ pri(ρ) determines acceptance of a run ρ. As this means
smaller numbers have higher priority, pri is representing the opposite of a priority
function, and we refer to the priority as the co-priority for clear distinction.

If the smallest node is rejecting, the transition has co-priority 2i − 1, if it is
accepting (and not rejecting), then the transition has co-priority 2i, and if no
such node exists, then the transition has co-priority ne+ 1.

Lemma 5. Given an NPA P with n states and maximal priority c, we can
construct a language equivalent deterministic parity automaton D with ne + 1
priorities for e = 2�0.5c�, whose states are the LIR-NHTs described above.

Lemma 6. The DPA resulting from determinising a one-pair Rabin automaton
R1 has O(n!2) states, and O

(
n!(n− 1!)

)
if R1 is Büchi.

Lower Bound. We finally show that our determinisation to Rabin automata
is optimal, and that our determinisation to parity automata is optimal up to
a small constant factor. What is more, this lower bound extends to the more
liberal Streett acceptance condition. The technique we employ to establish the

496 S. Schewe and T. Varghese

lower bound for determinisation to Rabin is similar to [3,18], in that we use the
states of the Rabin automaton in a language game. Such a language game is an
initialised two player game G = (V,E, v0,L), which is played between a verifier
and a spoiler on a star-shaped directed labelled simple multi-graph (V,E). It
has a finite set V of vertices, but a potentially infinite set of edges.

The centre of the star, which we refer to by c ∈ V , is the only vertex of the
verifier, while all other vertices are owned by the spoiler. Besides the centre, the
game has a second distinguished vertex, the initial vertex v0, where a play of
the game starts. The remaining vertices W = V � {v0, c} are called the working
vertices. Like v0, they are owned by the spoiler.

The edges are labelled by finite words over an alphabet Σ. Edges leaving the
centre vertex are labelled by the empty word ε, and there is exactly one edge
leaving from the edge to each working vertex, and no outgoing edge to the initial
vertex. The set of these outgoing edges is thus {(c, ε, v) | v ∈ W}. The edges
that lead to the centre vertex are labelled with non-empty words.

The players play out a run of the game in the usual way by placing a pebble
on the initial vertex v0, letting the owner of that vertex select an outgoing edge,
moving the pebble along it, and so forth. This way, an infinite sequence of edges is
produced, and concatenating the finite words by which they are labelled provides
an infinite word w over Σ. The verifier has the objective to construct a word in
L, while the spoiler has the antagonistic objective to construct a word in Σω

�L.

Theorem 2. [3] If the verifier wins a language game for a language recognised
by a DRA R with r states, then he wins it using a strategy with memory r.

To prove optimality of determinising to Rabin, we expand the hardness proofs
[3,18] based on full automata to the determinisation of parity automata.

The words from each vertex is the language for the Rabin automaton where
we have some well defined progress, either some index which occurs accepting
but not rejecting, or an index which occurs not rejecting with the target NHT
either growing or shrinking.

It is easy to establish that the verifier wins these games. To prove that the
minimal DRA that recognises the language of a full parity automaton cannot be
smaller than a DRA obtained with our construction, we show that the verifier
needs all edges to win these games. The techniques to establish this are similar
to those for previous hardness proofs [3,18].

The surprising result is that this technique can be extended to establish opti-
mality for determinisation to parity automata. This can be achieved by aiming
for Streett automata that accept the complement language. This technique is
successful, because the parity construction proves to be optimal (up to a factor
of 1.5) for determinisation to Streett automata.

Theorem 3. The DPA that we construct has less than 1.5 times as many states
as the smallest deterministic Streett (or parity) automaton that recognises the
language of an NPA recognising the hardest possible language.

State sizes for two parameters are usually not crisp to represent. But for the
simple base cases, Büchi and one pair Rabin automata, we get very nice results:

Determinising Parity Automata 497

the known upper bound for determinising Büchi to parity automata [15] are tight
and Piterman’s algorithm for it [9] is optimal modulo a factor of 3n, where 2n
stem from the fact that [9] uses state based acceptance. With Lemma 6 we get:

Corollary 3. The determinisation of Büchi automata to Streett or parity au-
tomata leads to θ(n!(n − 1)!) states, and the determinisation of one-pair Rabin
automata to Streett or parity automata leads to θ(n!2) states.

References

1. Boker, U., Kupferman, O.: Co-ing Büchi made tight and useful. In: Proc. of LICS,
pp. 245–254 (2009)

2. Cai, Y., Zhang, T.: Tight upper bounds for Streett and parity complementation.
In: Proc. of CSL, pp. 112–128 (2011)

3. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of Büchi
automata. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 151–162. Springer,
Heidelberg (2009)

4. Duret-Lutz, A.: LTL translation improvements in SPOT. In: VECoS, pp. 72–83.
BCS (2011)

5. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. of LICS 2005,
pp. 321–330 (2005)

6. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software
Tools for Technology Transfer, online-first: 1–12 (2012)

7. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. of LICS
2001, pp. 389–398 (2001)

8. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. of FOCS 2005,
pp. 531–540 (2005)

9. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Journal of LMCS 3(3:5) (2007)

10. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. of FOCS 1990, pp. 746–757 (1990)

11. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Transaction of the AMS 141, 1–35 (1969)

12. Safra, S.: On the complexity of ω-automata. In: Proc. of FOCS 1988, pp. 319–327
(1988)

13. Safra, S.: Exponential determinization for omega-automata with strong-fairness
acceptance condition. In: Proc. of STOC 1992, pp. 275–282 (1992)

14. Schewe, S.: Büchi complementation made tight. In: Proc. of STACS 2009, pp.
661–672 (2009)

15. Schewe, S.: Tighter bounds for the determinisation of büchi automata. In: de Alfaro,
L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)

16. Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time μ-calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp.
591–605. Springer, Heidelberg (2006)

17. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Puebla, G. (ed.)
LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)

18. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementa-
tion of generalised büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, vol. 7561, pp. 42–56. Springer, Heidelberg (2012)

498 S. Schewe and T. Varghese

19. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

20. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (May 2001)

21. Yan, Q.: Lower bounds for complementation of omega-automata via the full au-
tomata technique. Journal of LMCS, 4(1:5) (2008)

	Determinising Parity Automata
	1 Introduction
	2 Preliminaries
	3 Determinisation
	References

