Reachability in Pushdown Register Automata*

Andrzej S. Murawskil, Steven J. Ramsayl, and Nikos Tzevelekos?

1 University of Warwick
2 Queen Mary University of London

Abstract. We investigate reachability in pushdown automata over infinite alpha-
bets: machines with finite control, a finite collection of registers and pushdown
stack. First we show that, despite the stack’s unbounded storage capacity, in terms
of reachability/emptiness these machines can be faithfully represented by using
only 3r elements of the infinite alphabet, where r is the number of registers.
Moreover, this bound is tight. Next we settle the complexity of the associated
reachability/emptiness problems. In contrast to register automata, where differ-
ences in register storage policies gave rise to differing complexity bounds, the
emptiness problem for pushdown register automata is EXPTIME-complete in all
cases. We also provide a solution to the global reachability problem, based on
representing pushdown configurations with a special register automaton. Finally,
we examine extensions of pushdown storage to higher orders and show that reach-
ability is undecidable already at order 2, unlike in the finite alphabet case.

1 Introduction

Recent years have seen lively interest in automata over infinite alphabets, driven by
applications in quite diverse areas where abstraction by a finite domain was deemed
unsatisfactory. A case in point are markup languages [18,4], most notably XML, which
permit the use of potentially unbounded data values in documents and allow queries
to perform comparison tests on such data. A similar scenario occurs in reference-based
programming languages, such as object-oriented [6,2,12] or ML-like languages [16,17],
where memory is managed with the help of abstract addresses (reference names) that
can be created afresh, compared for equality but little else. Other examples include
array-accessing programs [1] as well as programs with restricted integer parameters [7].

Such applications call for a robust theory of automata over infinite alphabets, which
will match our understanding of the finite-alphabet setting. Thus the limits will be
exposed and a complexity-theoretic guide established for applications. A lot of the
groundwork, surveyed in [20,3], was already dedicated to uncovering a notion of “reg-
ularity” in the infinite-alphabet case. One way to extend the concept of finite mem-
ory to such a setting consists of introducing a fixed number of registers for storing
elements of the alphabet [13]. Another strand of work aimed to identify the infinite-
alphabet “context-free” languages. Cheng and Kaminski [8] introduced context-free
grammars over infinite alphabets and defined a corresponding notion of pushdown au-
tomata. Segoufin presents a similar definition in [20], albeit couched in a way suitable
to process data words.

* Research supported by the Engineering and Physical Sciences Research Council
(EP/J019577/1) and the Royal Academy of Engineering (RF: Tzevelekos).

E. Csuhaj-Varji et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 464-473, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Reachability in Pushdown Register Automata 465

Our paper is devoted to studying exactly such computational scenarios through a
study of pushdown register systems (PDRS), devices in which registers are integrated
with a pushdown store. Although of foundational nature, the work is largely motivated
by the pertinence of such machines to software model checking [6,2], and in particu-
lar their application to game-semantics-based verification [17]. We present several new
results on the complexity of reachability testing. Altogether they fill a gap in the the-
ory of “context-free” languages over infinite alphabets. More specifically, we make the
following contributions.

Alphabet Distinguishability. A finite-memory automaton [13] with r registers can store
r elements of the infinite alphabet at any instant. In fact, such automata are only capable
of remembering r elements of the infinite alphabet over the course of a run — for any
accepting run one can construct another one involving only r elements of the alphabet.
Even though pushdown register systems have no bound on the number of elements of
the alphabet that can be stored at any instant, we show that, over the course of a run,
they can nevertheless remember at most 3r of them. More precisely, we show that for
any run of a PDRS with r registers there exists an equivalent run involving only 3r
elements. Moreover, no smaller number is enough: we exhibit a family of PDRS whose
runs require remembering at least 37 elements.

Reachability Testing. The above-mentioned result yields an obvious methodology for
reductions to the finite-alphabet setting, which immediately implies decidability of
associated reachability problems, and language emptiness. While the decidability of
emptiness has already been proved in [8] using context-free grammars, we provide ex-
act complexity bounds for the problem, namely, EXPTIME-completeness.

In the pushdown-free setting, language nonemptiness was known to be NL-, NP- and
PSPACE-complete, depending on the register discipline. In contrast, in the pushdown
case, such distinctions do not affect the complexity: even if identical elements can be
kept in different registers, the problem can still be solved in EXPTIME, while it is
EXPTIME-hard already in the case where only distinct elements are allowed. In the
last case, the hardness proof is technically involved since sequences of distinct names
do not provide a supportive framework for representing memory content (as needed in
reduction arguments using computation histories).

We show how to conduct global reachability analysis, which asks for a representation
of all configurations from which a specified set of configurations can be reached. In
the finite-alphabet case, it is well known that, if the target set is regular, the set of
configurations that reach it can be captured by a finite automaton [5]. We prove an
analogous result in the infinite-alphabet setting using a variant of register automata.

Higher-Order. Higher-order pushdown automata [15] take the idea of pushdown stor-
age further by allowing for nesting. Standard pushdown store is considered to be order
1, while the elements stored in an order-k (k > 1) pushdown store are (k—1)-pushdown
stores. In the finite alphabet setting this leads to an infinite hierarchy of decidable mod-
els of computation with a (k—1)-EXPTIME-complete problem at order k. We examine
how the model behaves in the infinite alphabet setting, after the addition of a fixed
number of registers for storing elements of the infinite alphabet.

466 A.S. Murawski, S.J. Ramsay, and N. Tzevelekos

We first observe that one can no longer establish a uniform bound on the number of
symbols of the infinite alphabet that suffice to represent arbitrary runs. The existence of
such a bound would imply decidability of the associated reachability problems, but the
lack of a bound is not sufficient for establishing undecidability: indeed, the decidable
class of data automata from [4] contains an automaton that can recognize all words con-
sisting of distinct letters. Still, we show that the reachability problem for higher-order
register pushdown automata is undecidable, already at order 2 and with one register.

2 Basic Definitions

Let us assume a countably infinite alphabet D of data values or names. We introduce a
simple formalism for computations based on a finite number of D-valued registers and
a pushdown store. Writing [r] for {1,--- ,r}, by an r-register assignment we mean an
injective map from [r] to D. We write Rey,. for the set of all such assignments.

Definition 1. A pushdown r-register system (r-PDRS) is a tuple S = (Q, q;,771,9),
where:

— Q is a finite set of states, with qr € Q) being initial,

— 71 € Reg,. is the initial r-register assignment,

— and 6 C Q x Op, x Q is the transition relation,
with Op, = {i®, push(i), pop(i) | 1 <i <r} U {pop*®}.!

The operations executed in each transition have the following meaning: — the ¢*
operation refreshes the content of the ith register; — push () pushes the symbol currently
in the ith register on the stack; — pop (i) pops the stack if the top symbol is the same as
that stored in the sth register; — pop® pops the stack if the top of the stack is currently
not present in any of the registers. This semantics is given formally below.

Definition 2. A configuration of an r-PDRS S is a triple (¢, 7,5) € @Q X Reg, x D*.
We say that (g2, T2, s2) is a successor of (q1, 71, s1), written (1,71, $1) b (g2, T2, s2),
if (q1, 0p, q2) € 6 for some op € Op,. and one of the following conditions holds.

- op =1* V5. 12(i) £ 11(j), Vi #i.12()) =11(j) and s2 = s1.

— op = push(i), 7o =11 and s = 71(1)s7.

— op = pop(i), 7o = 11 and 11 (i)s2 = s1.

— op = pop®, 7o = 71 and, for some d € D, Vj.11(j) # d and dsa = s1.
A transition sequence of S is a sequence p = ko, - - - , ki, of configurations with r; =
Kj+1, for all 0 < j < k. We say that p ends in a state q if g = q, where qy, is the state
in k. We call p arun if kg = (g1, 77, €).

Remark 3. r-PDRS is meant to be a minimalistic model allowing us to study reachabil-
ity in the infinite-alphabet setting with registers and pushdown storage. Existing related
models [8], [20] feature transitions of a more compound shape, which can be readily
translated into sequences of PDRS transitions.

! For technical reasons, it is convenient to have e-transitions. However, to keep the definition
minimal, we observe that they can be simulated with push(1) followed by pop(1).

Reachability in Pushdown Register Automata 467

For instance, a transition of an infinite-alphabet pushdown automaton [8] typically in-
volves a refreshment (i®) followed by pop (pop(j)) and a sequence of pushes (push(j)).
This decomposition leads to a linear blow-up in size for translations of reachability
questions into the r-PDRS setting. For register pushdown automata [20], an additional
complication is their use of non-injective register assignments. Observe, though, that
transitions in the non-injective framework can be easily mimicked using injective register
assignments provided we keep track of the partitions determined by duplicated values in
the original automaton. The book-keeping can be implemented inside the control state,
which leads to an exponential blow-up in the size of the system, because the number of
all possible partitions is exponential. Note that the number of registers does not change
during such a simulation. Another difference is that register pushdown automata [20]
are tailored towards data languages, i.e. a stack symbol is an element of D paired up
with a tag drawn from a finite set. From this perspective, r-PDRSs use a singleton set
of tags. Still, richer tag sets could be encoded via sequences of elements of D (for ex-
ample, to simulate the ith out of k tags, we could push sequences of the form d‘ ds for
di,ds € D with dy # ds). This reduction is achievable in polynomial time.

Following [13,8,18], we mostly use injective register assignments. This is done to
allow us to explore whether the restriction still leads to asymptotically more efficient
reachability testing, as in the pushdown-free case. On a foundational note, injectivity
gives a more essential treatment of freshness with respect to a set of registers: non-
injective assignments can easily be used to encode PSPACE computations that have
little to do with the interaction between finite control (and pushdown) and freshness.

Name permutations. There is a natural action of the group of permutations of D on
stacks, assignments, runs, etc. For instance, given permutation 7 : D — D and an
assignment 7, the result of applying 7 to 7 is the register assignment 7 - 7 given by
{(#,7(d)) | (i,d) € 7}. Similarly, 7 - s = w(dy,) - - - 7(dy) for any stack s = d, -- - dy
while, on the other hand, 7 - ¢ = ¢ for all states ¢. Hence, 7 - (¢, 7,s) = (¢, 7 7,7 - 5)
and, for p = kg I - - - I Kk, a transition sequence, 7 - p is the sequence - kg, - -+ , T+ Kp,.

Note that, as long as our constructions involve finitely many names, they will always
have a finite support: we say thata set S C D supports some (nominal) element z if, for
all permutations 7, if 7(n) = n for all n € S then 7 - & = . Accordingly, the support
v(x) of x is the smallest set S supporting x. For example, v(7) = {7(¢) | i € [r]}, for
all assignments 7. The supportofarunp = ko - -+ F Ky, is v(p) = U;-L:o v(kj),le. it
consists of all elements of D that occur in it. The finite-support setting can be formally
described by means of nominal sets [11] and closure results such as the following hold.

Fact 4 (Closure Under Permutations). Fix an r-PDRS and let p be a transition se-
quence and 7w : D — D a permutation. Then 7 - p is also a transition sequence.

3 Distinguishability

Devices with r registers but without pushdown storage, such as finite-memory au-
tomata [13], can take advantage of the registers to distinguish r elements of D from
the rest. Consequently, any run can be replaced with a run that ends in the same state,
yet is supported by merely r elements of the infinite alphabet [13, Proposition 4].

468 A.S. Murawski, S.J. Ramsay, and N. Tzevelekos

With extra pushdown storage, an 7-PDRS is capable of storing unboundedly many
elements of D. Nevertheless, the restricted nature of the stack makes it possible to place
a finite bound on the size of the support needed for a run to a given state, which is again
a function of the number of registers.

Lemma 5 (Limited Distinguishability). Fix an r-PDRS. For every transition sequence
p = (qo0,70,€) F" (qn,Tn,€), there is a transition sequence p' = (qo,7),€) F"
(Gn,T), €) with 7y = 1o, 7}, = T, and |v(p")| < 3.

Proof. The proof is by induction on n. For n < 1 the result is trivial. Otherwise,
the difficult case arises when the transition sequence is of the form: (qo, 70, €) F*
(qk, T, €) F"7F (qn, Tn, €) with 0 < k < n. It follows from the induction hypothesis
that there are sequences: p1 = (qo, 75, €) F* (qx, 71, €) and p2 = (qx, 7, €) F*7F
(qn, 7}, €) with 7§ = 10, 7}, = T, 7;, = 71, and which each, individually, use no more
than 37 names. Let N 2 v(79) U v(7) Uv(7,) be a set of names of size 3r. We aim to
map v(p1) and v(p2) into N by injections 7 and j respectively. For ¢ we set i(a) = a
for any a € v(79) Uv () and otherwise choose some distinct b € N \ (v(70) Uv(mg)).
Similarly, for j we set j(a) = a for any a € (v(7) U v(7,)) and otherwise choose
some distinct b € N \ (v(7x) U v(7,)). Note that these choices are always possi-
ble because |v(p1)| < |N| > |v(p2)|. Finally, we extend ¢ and j to permutations
m; and m; on D. Since transition sequences are closed under permutations (Fact 4):
(qo, 7 - T0,€) F* (qu,mi - 71 = Tj * Tk, €) pn—k (gn,mj - Tn,€) is a valid transition
sequence with m; - 79 = 79, 7; - T, = T, and which is supported by a subset of N. O

Corollary 6. Fix an r-PDRS S and a state q of S. If there is a run of S ending in q
then there is a run of S ending in q that is supported by at most 3r distinct names.

The 3r bound given above is optimal in the sense that there exists an r-PDRS such
that all runs to a certain state will have to rely on 3r elements of D.

Lemma 7 (Most Discriminating r-PDRS). There exists an r-PDRS (Q, q1, 71, €) and
q € Q such that |v(p)| = 3r for any run p ending in q.

Proof. Consider the following high-level description of an -PDRS. The machine pro-
ceeds as follows:

1. Push registers in numerical order, twice, to obtain stack 77(r} - 77 (1)77(r) - 77(1).
Refresh registers by performing ¢® for all 1 < ¢ < r. Let the new assignment be 7.
Perform pop® r-times, thus ensuring that, for each 1 < 4, j < r, 77(i) # 71(j).
Push all registers in numerical order, to obtain stack 71 (r) - - - 74 (1) 77 (r) - - - 77 (1).
Refresh all registers. Let the new assignment be 2.

Perform pop® 2r-times, thus, for each 4, , j, 72(i) # 71(j) and 72(2) # 77(j).
Silently transition to state q.

Now observe that the conditions in steps 3 and 6 and the fact that register assignments
are injective ensure that |v(77) U v (1) Uv(m2)| = 3r. Hence, any run reaching q is
supported by exactly 3r distinct names. a

NownswD

Remark 8. The 3r bound given above can be adapted to the automata presentations
of [8,20] yielding bounds 3r + ©(1). An adaptation of Lemma 7 improves upon Exam-
ple 6 of [8], where a language requiring 2r—1 different symbols was presented.

Reachability in Pushdown Register Automata 469

Being able to bound the number of registers is useful for obtaining reachability algo-
rithms as it allows us to remove the complications of the infinite alphabet and reduce
problems to the well-studied finite alphabet setting (e.g. Theorem 9).

4 Reachability is EXPTIME-complete

We consider the following decision problem, call it ~-PDRS REACH:
Given an 7-PDRS S and g € @, is there a run of S ending in ¢?

We shall show that the problem (and its counterparts for all the other closely related ma-
chine models) is EXPTIME-complete. Note that reachability is equivalent to language
non-emptiness in the automata case.

Theorem 9. r-PDRS REACH and language emptiness for infinite-alphabet pushdown
automata [8] and register pushdown automata [20] are solvable in exponential time.

Proof. Lemma 5 yields an exponential-time reduction of -PDRS REACH to the classic
reachability problem for pushdown systems over finite alphabets [5]: one can replace
the r D-valued registers with [3r]-valued registers, and then incorporate them into the
finite control (for a singly-exponential blow-up of the state space). Since the latter prob-
lem is solvable in polynomial time, it follows that r-PDRS REACH is in EXPTIME.
By Remark 3, the emptiness problem for infinite-alphabet pushdown automata [8]
can be reduced to r-PDRS REACH in polynomial time, immediately yielding the EXP-
TIME upper bound?. For register pushdown automata [20] we have an exponential-time
reduction to 7-PDRS REACH, which does not yield the required bound. However, re-
call that the translation into 7-PDRS preserves the number of registers, so Lemma 5
still implies a linear upper bound for the number of D-values needed for finding an
accepting run. Consequently, we can reduce language emptiness of register pushdown
automata to a reachability problem for pushdown systems at an exponential cost. Since
the latter is in P, the former is in EXPTIME. O

The bound given above is tight: we simulate a polynomial-space Turing machine
with a stack (aka polynomial-space auxiliary pushdown automaton [9]), which has an
EXPTIME-complete halting problem?.

Theorem 10. »-PDRS REACH is EXPTIME-hard.

Proof (sketch). For simplicity, let us assume a binary tape alphabet. The main challenge
in the proof is the modelling of n tape cells using p(n) registers, for a polynomial p.
Recall that register assigments are injective, so it is not clear which registers represent
0’s and which represent 1’s. Thus, to encode n bits by, - - - , b,,, we shall use a special en-
coding scheme based on 2n names r1, - - - , ra,, € D stored in registers and an auxiliary

2 Through a careful reading of the argument for emptiness in [8] one can infer an exponential
upper bound, but here Lemma 5 gives a direct argument.

3 A reduction from the more familiar alternating polynomial-space Turing machines would also
be possible, but Cook’s model is closer to r-PDRS, which allows us to concentrate on the main
issue of encoding binary memory content without the need to model alternation.

470 A.S. Murawski, S.J. Ramsay, and N. Tzevelekos

“mask” of names my,--- , ma, € D stored on the stack. The registers and masks will
be related by {r2;_1,r2;} = {ma;_1,ma;} and b; = 0 will be represented by the case
T9j—1 = Maj—_1,T2; = Moj. Note that, due to injectivity, both r;’s and m;’s cannot be
present in registers at the same time and hence the latter will be pushed on the stack.
However, the stack is also needed for pushing and popping ordinary stack symbols by
the Turing machine, so masks will not always be at the top of stack at the time when they
are needed for decoding*. We overcome this obstacle by employing 3 different masks
for encoding memory: one is used whilst simulating push-transitions (push-mode), one
for pops (pop-mode) and an auxiliary one to ensure continuity between the different
instances of masks. Let us call these masks M;, Ms and M3 respectively.

In push-mode, instead of popping M; from the stack in order to compare it with the
registers and hence decode the memory, we will be guessing it and pushing the guess
onto the stack, on the understanding that the correctness of each guess (call it M 1) is to
be verified later in the corresponding pop steps. Moreover, in push-mode we will also
be pushing the mask M so that it is readily available for pop-mode. When it is time to
switch to pop-mode, the tape content so far encoded with mask M7 will be re-encoded
with My so that the forthcoming pop-move can be simulated with Ms. During pop-
transitions, in addition to stack symbols and the mask M used for decoding, we will
also pop the accompanying guessed mask M, and verify its correctness by comparing
it with the last unverified My, which is stored in registers apart from the simulated
memory. Because at the bottom of the stack we have the actual mask M, such equality
comparisons will eventually assert that M, = M, for all guesses M.

A final complication arises when we want to switch from pop-mode to push-mode.
We said that, when popping, we verify the guesses M. Thus, if a push follows a pop,
the mask M, that resides in the registers needs to be pushed back on the stack so that
it can be verified later once we return to pop-mode. At the same time, we need to store
in our registers some content X, so that X and M encode the current tape content.
However, the formation of X destroys M 1 in the registers. To prevent the information

from being lost, we make another guess M, and use the third mask Ms to check that
the guess was correct (more precisely, on the stack we store M3 and some M3 such that

My = M iff Mg = M3). Whether Mg = M3 holds is verified in a later pop step. O

The EXPTIME-hardness carries over to the language emptiness problem associated
with infinite-alphabet pushdown automata [8] and register pushdown automata [20].
Since the latter allows for storage of identical values in different registers, their hardness
can also be established more directly by encoding relative to two fixed data values
for 0 and 1. These different policies for register management are known to lead to
different complexity bounds for emptiness testing in the absence of pushdown store:
NP-completeness [19]° (injective assignment) vs PSPACE-completeness (non-injective
assignment) [10]. Perhaps surprisingly, we have shown the presence of pushdown store
cushions the differences and there is no gap analogous to that between [8] and [20].

* For example, after simulating a push-transition, the mask used for realising the transition will
be hidden by the pushed symbol and thus unavailable to support the next transition.

5 This result is affected by registers initially containing a special undefined value, without which
the emptiness problem is reducible to that for finite automata and, consequently, NL-complete.

Reachability in Pushdown Register Automata 471

5 Global Reachability

We now move on to investigate global reachability for 7-PDRS. We show that, given
an -PDRS S and a representation C of a set of configurations of S, one can construct,
in exponential time, a representation of the set of configurations Pre}, (C) from which
S can reach a configuration in C. To that end we extend the methodology of Bouajjani,
Esparza and Maler [5] to the infinite alphabet setting.

The developments in this section rely on an auxiliary variant of (stack-free) register
automata which feature symbolic transitions representing multiple rearrangements of
registers. In order to describe them, let us introduce r-register manipulations, which
are partial functions R € [r] x [r] < {0, 1} such that R~'{1} is a partial injection. We
denote the set of all such partial functions by RegMan,. and use R? to refer to R~1{b},
forb € {0,1}. Given R, S € RegMan,.,, we define R ; S as follows.

Cavs o1 (SToRY() =
= {0 € [r]. (BN(i) = kA S (k) =) V (R(i) = k A S (k) = j)

Moreover, given i € [r], we shall write R;s for the partial function defined by, for all
Jj €[r], Ris(j,i) = 0and, forall j # 4, Ris(j,7) = 1.

Register manipulations can be seen as abstract predicates on register assignments. In
particular, given two register assignments 7, 7/, we write 7 R 7/ just if, for all (i, j) €
dom R, R(i, j) = 0 implies 7(¢) # 7/(j) and R(4, j) = 1 implies 7(i) = 7/(§).

Definition 11. A register-manipulating r-register automaton (r-RMRA) is a tuple
(Q, F, Ay with Q a finite set of states, F' C Q a subset of final states and A C Q x
OP,. x Q the transition relation, with OP,. = [r] U {e} U RegMan,..

The operations of RMRAs generalise the stack-free operations of PDRSs: i € [r] spec-
ifies reading a name already present in the ith register, ® reads a locally fresh name and

R € RegMan, is an internal action such that if ¢ EiN ¢’ then any configuration (g, 7)
may transition to any configuration (g, 7’) satisfying 7 R 7’. In what follows, we will
start RMRASs from various initial configurations, so we do not include an initial state or
register assignment in their specifications.

Definition 12. Given an r-RMRA A = (Q, F, A), a state ¢ € Q and an r-register
assignment T, we set: L(A)(q, 7) = {w € D* | wis accepted by A from (q, T)}.
Moreover, given an r-PDRS S = (P, q1, 71, 0) such that P C Q, we say that A
represents the S-configuration (p, T, s) whenever s € L(A)(p, 7). We write C(A) for
the set of S-configurations represented by A.

Given an r-RMRA characterising a set of configurations of an r-PDRS S, our aim is
to construct another RMRA that represents exactly those configurations of S that can
reach configurations in C(A), i.e. we aim to construct a representation of Pre}, (C(A)).

We shall do this in the “saturation” style of the classical construction of [5] but we
need more notation in order to deal with the infinite alphabet. Given R € RegMan,., we
say that R is consistent with the statement i = j (respectively i®) just if R(¢, j) # 0
and [i € domR! V j € ran R'] implies R'(i) = j (resp. i ¢ dom R') and in
that case we write R || ¢ = j (resp. R || i®). So, the meaning of R || 4°, is that ¢

472 A.S. Murawski, S.J. Ramsay, and N. Tzevelekos

in the situation before R may be locally fresh with respect to the situation after R. If
R || i = j (resp. R || i*) then we write R[i = j] (resp. R[i*]) for RU {(i, j) — 1}
(resp. RU{ (4, j) — 0| j € [r]}). Note the difference between R;s and R[i*]. We write
q By q just if there is some finite, possibly empty, sequence (¢;);c[n] such that ¢; = ¢

and g, = ¢’ and, foralli € [n — 1], ¢; LN giy1and Ry ;- Rp_1 = R.
Definition 13. Given an r-PDRS S over states P and an r-RMRA A over states () and

transitions A and such that P C Q) and A contains no transitions to states in P, we
construct another r-RMRA SAT (A) by induction (note that op ranges over OP,.):

o ., push(i) , R J /
PP p-p P b SAT(A) 74 SAT(A)
oo, W) Ro O Rli=j] Y
p Ly ——q
SAT(A) b SAT(A) P SAT(A)
push(i) , R . ’ pop(i) pop'>
hﬂ / !
P s T sy I s
. 911 R w ° v
Rl*) |, p———p P01
SAT(A) SAT(A) SATIA)

where we additionally require R || i = j in rule (ii), and R || i® in rule (iii).

The above construction can be carried out in exponential time: consider that there
are at most |@ x OP,. x Q)| many transitions added, which is at most exponential in the
size of the input. For each transition, computation is either trivial or, in (i¢) and (i),
involves computing exponentially many graph reachability queries.

Theorem 14. Given r-PDRS S and r-RMRA A as above, C(SAT(A)) = Prep,(C(A)).

We can thus verify whether one can reach a configuration represented by A4 from a
given configuration: construct the corresponding SAT(.A) and check membership. To
implement the latter in nondeterministic space, given a source configuration (g, 7, w),
we need O(log |Qsat(4)| + p(r) + log |w]) bits to track the state, register assignment
and position in w respectively. This is polynomial space in S, A, w which, along with
the construction of SAT (A), yields an exponential-time reachability testing routine.

Finally, let us remark that RMRAs are no more expressive than register automata
with nondeterministic reassignment [14]. An -RMRA A = (Q, F, A) can be seen
as an r-register automaton with nondeterministic reassignment (r-RA,,,) if A C @ x
OP, x Q,withOP_ = [r]+ { R |t €[r] }.

Lemma 15. Foranyr-RMRA A, one can constructa (2r+1)-RAy; Asuch that, for each
A-configuration k there exists a A-configuration & satisfying L(A)(k) = L(A)(&).

References

1. Alur, R, Cerny, P., Weinstein, S.: Algorithmic analysis of array-accessing programs. ACM
Trans. Comput. Log. 13(3) (2012)

2. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-Bounded Analysis for Concurrent Programs
with Dynamic Creation of Threads. Log. Meth. Comput. Sci. 7(4) (2011)

12.

13.

14.

15.
16.

17.

18.

20.

21.

Reachability in Pushdown Register Automata 473

. Bjorklund, H., Schwentick, T.: On notions of regularity for data languages. Theor. Comput.

Sci. 411(4-5) (2010)

. Bojariczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on

data words. ACM Trans. Comput. Log. 12(4) (2011)

. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-

tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135-150. Springer, Heidelberg (1997)

. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded programs

with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 207-220. Springer, Heidelberg (2007)

. Bouajjani, A., Habermehl, P., Mayr, R.: Automatic verification of recursive procedures with

one integer parameter. Theor. Comput. Sci. 295, 85-106 (2003)

. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3),

245-267 (1998)

. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers.

J. ACM 18(1), 4-18 (1971)

. Demri, S., Lazi¢, R.: LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Log. 10(3) (2009)

. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal

Aspects of Computing 13 (2002)

Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification based on
register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
260-276. Springer, Heidelberg (2013)

Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2) (1994)
Kaminski, M., Zeitlin, D.: Finite-memory automata with non-deterministic reassignment.
Int. J. Found. Comput. Sci. 21(5) (2010)

Maslov, A.N.: Multilevel stack automata. Probl. of Inf. Transm. 12 (1976)

Murawski, A.S., Tzevelekos, N.: Algorithmic nominal game semantics. In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 419-438. Springer, Heidelberg (2011)

Murawski, A.S., Tzevelekos, N.: Algorithmic games for full ground references. In: Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392,
pp. 312-324. Springer, Heidelberg (2012)

Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Log. 5(3) (2004)

. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata.

Theor. Comput. Sci. 231(2) (2000)

Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Esik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, pp. 41-57. Springer, Heidelberg (2006)

Tan, T.: On pebble automata for data languages with decidable emptiness problem. J. Com-
put. Syst. Sci. 76(8) (2010)

	Reachability in Pushdown Register Automata
	1 Introduction
	2 Basic Definitions
	3 Distinguishability
	4 Reachability is EXPTIME-complete
	5 Global Reachability
	References

