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Abstract. We introduce and study a new complexity function on words,
which we call cyclic complexity, which counts the number of conjugacy
classes of factors of each given length. We extend the famous Morse-
Hedlund theorem to the setting of cyclic complexity by showing that a
word is ultimately periodic if and only if it has bounded cyclic complex-
ity. Unlike most complexity functions, cyclic complexity distinguishes be-
tween Sturmian words having different slopes. More precisely, we prove
that if x is a Sturmian word and y is a word having the same cyclic
complexity of x then y is Sturmian and, up to renaming letters, it has
the same language of factors of x.

Keywords: Cyclic complexity, factor complexity, Sturmian words, min-
imal forbidden factor.

1 Introduction

The usual notion of complexity of a discrete system counts the number of distinct
patterns of the same size that the system can generate. In the case of sequences
(words), this is the number of distinct blocks (factors) of each given length. This
measure of complexity is usually called factor complexity (or block complexity).
The words with the “simplest” structure are the periodic ones. They are of the
form x = uω (i.e., an infinite concatenation of a same finite block u) called purely
periodic, or of the form x = vuω, called ultimately periodic. The non-periodic
words are called aperiodic. The factor complexity distinguishes between periodic
and aperiodic words. In fact, a fundamental result dating back to the late 30’s is
the famous theorem of Morse and Hedlund [14] stating that a word is aperiodic if
and only if it has at least n+1 factors of length n for every n. From this result, it is
natural to consider those aperiodic words which have minimal factor complexity,
i.e., those having exactly n + 1 distinct factors of length n for every n. These
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are called Sturmian words and a vast bibliography exists showing their interest
both from the theoretical viewpoint and in applications. For example, Sturmian
words code the digital approximations in the plane of Euclidean straight lines
with irrational slope, with the property that two Sturmian words have the same
slope if and only if they have the same language of factors.

There exist many other measures of complexity of words in literature. For ex-
ample, a lot of attention has recently been given (see for instance [3,10,16,18,19])
to the abelian complexity, which is the function counting the number of factors
of each given length up to permutations. Other new measures of complexity of
words have been introduced over the time, which are intermediate between fac-
tor and abelian complexity (e.g. maximal pattern complexity [7], k-abelian com-
plexity [8], binomial complexity [17]) or involve different definitions that appear
naturally in the study of sequences (e.g. periodicity complexity [12], minimal
forbidden factor complexity [13], palindromic complexity [5], etc.) For most of
these measures, Sturmian words are those aperiodic words of lowest complexity.
However, they do not distinguish between two Sturmian words having different
slopes.

In this paper we propose a new measure of complexity, cyclic complexity, which
consists in counting the factors of each given length of a word up to conjugacy.
The notion of conjugacy is a basic notion in Combinatorics on Words. Two words
are said conjugate if they are equal when read on a circle1. That is, the cyclic
complexity of a word is the function counting the number of conjugacy classes
of factors of each given length.

One of the main results of this paper is that cyclic complexity distinguishes
between periodic and aperiodic words. In fact, we prove the following theorem.

Theorem 1. A word is ultimately periodic if and only if it has bounded cyclic
complexity.

That is, the Morse-Hedlund theorem can be extended to the setting of cyclic
complexity. Note that a word is (purely) periodic if and only if there exists
an integer n such that all the factors of length n are conjugate. Therefore, the
minimum value that the cyclic complexity of an aperiodic word can take is 2.
We will prove that Sturmian words have the property that the cyclic complexity
takes value 2 infinitely often.

Since the Sturmian words are characterized by having n+ 1 factors of length
n for every n, the factor complexity does not distinguish between two Sturmian
words with different languages of factors. In contrast, for cyclic complexity, two
Sturmian words with different languages of factors have different cyclic complex-
ity. Indeed, we prove something stronger:

Theorem 2. Let x be a Sturmian word. If a word y has the same cyclic com-
plexity as x then, up to renaming letters, y is a Sturmian word having the same
slope of x.

1 More formally, u and v are conjugate if and only if one can write u = w1w2 and
v = w2w1 for some words w1, w2.
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That is, not only two Sturmian words with different languages of factors
cannot have the same cyclic complexity, but the only words which have the
same cyclic complexity of a Sturmian word x are those Sturmian words with the
same slope of x.

These two results suggest that cyclic complexity can be considered as an
interesting refinement of the classical notion of factor complexity and can open
new perspectives in the study of complexity of discrete systems.

Note that factor complexity, abelian complexity and cyclic complexity can
all be viewed as actions of different subgroups of the symmetric group on the
indices of a finite word (respectively, the trivial subgroup, the whole symmetric
group and the cyclic subgroup). Since factor and abelian complexity are very
well studied, looking at other subgroups of the symmetric group seems a very
natural way of investigation.

2 Basics

Given a finite non-empty ordered set A (called the alphabet), we let A∗ and AN

denote respectively the set of finite words and the set of (right) infinite words
over the alphabet A. The order on the alphabet A can be extended to the usual
lexicographic order on the set A∗.

For a finite word w = w1w2 · · ·wn with n ≥ 1 and wi ∈ A, the length n
of w is denoted by |w|. The empty word is denoted by ε and we set |ε| = 0.
We let An denote the set of words of length n and A+ the set of non-empty
words. For u, v ∈ A+, |u|v is the number of occurrences of v in u. For instance
|0110010|01 = 2. The Parikh vector of w is the vector whose components are the
number of occurrences of the letters of A in w. For example, if A = {a, b, c},
then the Parikh vector of w = abb is (1, 2, 0). The reverse (or mirror image) of
a finite word w is the word obtained by reading w in the reverse order.

Given a finite or infinite word ω = ω1ω2 · · · with ωi ∈ A, we say a word
u ∈ A+ is a factor of ω if u = ωiωi+1 · · ·ωi+n−1 for some positive numbers i and
n. We let Fact(ω) denote the set of all factors of ω, and Alph(ω) the set of all
factors of ω of length 1. If ω = uν, we say that u is a prefix of ω, while ν is a
suffix of ω. A factor u of ω is called right special (resp. left special) if both ua
and ub (resp. au and bu) are factors of ω for distinct letters a, b ∈ A. The factor
u is called bispecial if it is both right special and left special.

For each factor u of ω, we set

ω
∣
∣
u
= {n ∈ N | ωnωn+1 · · ·ωn+|u|−1 = u}.

We say ω is recurrent if for every u ∈ Fact(ω) the set ω
∣
∣
u
is infinite. We say

ω is uniformly recurrent if for every u ∈ Fact(ω) the set ω
∣
∣
u
is syndedic, i.e.,

of bounded gap. A word ω ∈ AN is (purely) periodic if there exists a positive
integer p such that ωi+p = ωi for all indices i, while it is ultimately periodic if
ωi+p = ωi for all sufficiently large i. Finally, a word ω ∈ AN is called aperiodic
if it is not ultimately periodic. For a finite word w = w1w2 · · ·wn, we call p a
period of u if wi+p = wi for every 1 ≤ i ≤ n− p.
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Two finite or infinite words are said to be isomorphic if the two words are
equal up to a renaming of the letters.

A (finite or infinite) word w over A is balanced if and only if for any u, v factors
of w of the same length and for every letter a ∈ A, one has ||u|a − |v|a| ≤ 1.
More generally, w is C-balanced if there exists a constant C > 0 such that for
any u, v factors of w of the same length and for every letter a ∈ A, one has
||u|a − |v|a| ≤ C. For example, the word 010111 is not balanced, but it is 2-
balanced. Note that if w is C-balanced, then it is C′-balanced for any C′ ≥ C.

The factor complexity of an infinite word ω is the function

pω(n) = |Fact(ω) ∩ An|,

i.e., the function that counts the number of distinct factors of length n of ω,
for every n ≥ 0. The factor complexity is a standard measure of the complexity
of an infinite word. By Morse-Hedlund theorem, words with bounded factor
complexity are precisely ultimately periodic words and aperiodic words with
minimal factor complexity have linear factor complexity. In the binary case,
aperiodic words with minimal factor complexity have factor complexity equal to
n+1, i.e., they are Sturmian words. An example of word achieving maximal factor
complexity over an alphabet of size k > 1 can be obtained by concatenating the
k-ary expansions of non-negative integers. For example, if k = 2, one obtains the
so called Champernown word 0110111001011101111000 · · ·

The factor complexity counts the factors appearing in the word. A dual point
of view consists in counting the shortest factors that do not appear in the word.
This leads to another measure of complexity, described below.

Let w be a (finite or infinite) word over an alphabet A. A finite non-empty
word v is a minimal forbidden factor for w if v does not belong to Fact(w)
but every proper factor of v does. We denote by MF(w) the set of all minimal
forbidden words for w. The minimal forbidden factor complexity of an infinite
word ω is the function

mfω(n) = |MF(ω) ∩ An| ,
i.e., the function that counts the number of distinct minimal forbidden factors
of length n of ω, for every n ≥ 0.

We now introduce a new measure of complexity. The idea is to count the
factors of each given length that are different up to a rotation. Recall that two
finite words u, v are conjugate if there exist words w1, w2 such that u = w1w2 and
v = w2w1. The conjugacy relation is an equivalence over A∗, which is denoted
by ∼, whose classes are called conjugacy classes. Note that two words belonging
to the same conjugacy class must have the same Parikh vector.

The cyclic complexity of an infinite word ω is the function

cω(n) =

∣
∣
∣
∣

Fact(ω) ∩ An

∼
∣
∣
∣
∣
,

i.e., the function that counts the number of distinct conjugacy classes of factors
of length n of ω, for every n ≥ 0.
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Observe that, by the definition, cω(n) ≤ pω(n) for every n. Moreover, if a word
ω has maximal cyclic complexity, then it has maximal factor complexity. In fact,
let w ∈ A∗ be any word. We want to show that w ∈ Fact(ω). Consider the word
ww. From the maximality of the cyclic complexity of ω, some conjugate of ww is
an element of Fact(ω). But every conjugate of ww contains w as a factor, hence
w ∈ Fact(ω).

Since a word having maximal factor complexity clearly also has maximal cyclic
complexity, we have the following proposition.

Proposition 1. An infinite word has maximal cyclic complexity if and only if
it has maximal factor complexity.

The cyclic complexity, as well as the other mentioned complexity functions,
can be naturally extended to any factorial language. Recall that a language is
any subset of A∗. A language L is called factorial if it contains all the factors of
its words, i.e., if uv ∈ L ⇒ u, v ∈ L. The cyclic complexity of L is defined by

cL(n) =

∣
∣
∣
∣

L ∩An

∼
∣
∣
∣
∣
.

The cyclic complexity is an invariant for several operations on languages. For
example, it is clear that if two languages are isomorphic (i.e., one can be obtained
from the other by renaming letters), then they have the same cyclic complexity.
Furthermore, if L is a language and L̃ is obtained from L by reversing (mirror
image) each word in L, then L and L̃ have the same cyclic complexity.

3 Cyclic Complexity Distinguishes between Periodic and
Aperiodic Words

In this section we give a proof of Theorem 1. The following lemma connects
cyclic complexity to balancedness.

Lemma 1. Let ω ∈ AN and suppose that there exists a constant C such that
cω(n) ≤ C for every n. Then ω is C-balanced.

Proof. For every n, there are at most C conjugacy classes of factors of length
n in ω. This implies that there are at most C different Parikh vectors for the
factors of ω of length n, that is, ω has abelian complexity bounded by C. It can
be proved (see [16]) that this implies that the word ω is C-balanced. �	
Lemma 2. Let ω ∈ AN be aperiodic and let v ∈ A+ be a factor of ω which
occurs in ω an infinite number of times. Then, for each positive integer K there
exists a positive integer n such that ω contains at least K +1 distinct factors of
length n beginning in v.

Proof. Suppose to the contrary that for some K, ω has at most K distinct
factors of each length n which begin in v. Since ω is aperiodic and v occurs
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infinitely often in ω, there exist K + 1 distinct suffixes of ω (say y0, y1, . . . , yK)
beginning in v. By the pigeonhole principle, for each positive integer n there
exist 0 ≤ i < j ≤ K such that yi and yj begin in the same prefix of length n.
Again by the pigeonhole principle, there exist 0 ≤ i < j ≤ K such that yi and
yj begin in the same prefix of length n for infinitely many distinct values of n.
Hence, yi = yj, a contradiction. �	

Proof of Theorem 1. If ω is ultimately periodic, then it has bounded fac-
tor complexity by Morse-Hedlund theorem, hence it must have bounded cyclic
complexity.

Let us now prove that if ω is aperiodic, then for any fixed positive integer M ,
cω(n) ≥ M for some n. Short of replacing ω by a suffix of ω, we can suppose
that each letter occurring in ω occurs infinitely often in ω. First, suppose that
for each positive integer C, ω is not C-balanced. Then, by Lemma 1, the cyclic
complexity of ω is unbounded and we are done. Next, suppose that each u ∈ A+

is a factor of ω. In this case, ω would have full complexity, whence the cyclic
complexity of ω is again unbounded. Thus, we can suppose that ω is C-balanced
for some positive integer C, and that some u ∈ A+ is not a factor of ω. Since ω is
C-balanced, there exists a positive integer N such that each factor of ω of length
N contains an occurrence of each a ∈ Alph(ω). As u is a forbidden factor of ω, it
follows that u is a forbidden factor of each suffix of ω. Since each letter occurring
in ω occurs infinitely often, it follows there exist a suffix ω′ of ω, a letter a ∈ A
and a word v ∈ A+ such that av is a forbidden factor of ω′ and v occurs in ω′

infinitely often. By Lemma 2, there exists a positive integer n0 ≥ 2|v| such ω′

contains at least MN distinct factors of length n0 beginning in v. We denote
these factors by u1, u2, . . . , uMN . There exist v1, v2, . . . , vMN , each in AN , such
that uivi are factors of ω′ (of length n0 + N) for each 1 ≤ i ≤ MN. Since
each vi contains an occurrence of a, it follows there exists n ≥ n0 such that ω′

contains at least M distinct factors of length n beginning in v and terminating
in a. Since av is a forbidden factor of ω′, no two of these factors are conjugate
to one another. Hence, cω′(n) ≥ M and thus cω(n) ≥ M . �	

4 Cyclic Complexity Distinguishes between Sturmian
Words with Different Languages

In this section we exhibit results on the cyclic complexity of Sturmian words and
give a sketch of the proof of Theorem 2.

There exists a vast bibliography on Sturmian words (see for instance the
survey papers [1, 2], [9, Chap. 2], [15, Chap. 6] and references therein).

A Sturmian word is an infinite word having exactly n + 1 distinct factors of
length n, for every n ≥ 0. That is, a word x is Sturmian if and only if px(n) = n+1
for every n ≥ 0. Note that an immediate consequence of the definition is that
|Alph(x)| = 2, so a Sturmian word is a binary word. In this section we fix the
alphabet A = {0, 1}.

A very well known instance of Sturmian words is the Fibonacci word F =
010010100100101001 · · · , obtained as the limit of the substitution 0 
→ 01, 1 
→ 0.
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Sturmian words have a multitude of combinatorial properties that make them
fundamental objects in the field of Combinatorics on Words. By Morse-Hedlund
Theorem, Sturmian words are those aperiodic words with minimal factor com-
plexity. We recall some other characterizations in the next proposition.

Proposition 2. Let x ∈ AN. The following conditions are equivalent:

1. x is Sturmian;
2. x is balanced and aperiodic;
3. x has exactly one right (resp. left) special factor for each length.

Recall that the slope of a finite binary word w over the alphabet A is defined

as s(w) = |w|1
|w| . The slope of an infinite binary word, when it exists, is the limit

of the slopes of its prefixes. A Sturmian word can also be defined by considering
the intersections with a squared-lattice of a semi-line having a slope which is
an irrational number. A horizontal intersection is denoted by the letter 0, while
a vertical intersection is denoted by the letter 1. Note that the slope of the
Sturmian word is exactly the slope of such a semi-line. For example, the slope
of the Fibonacci word is (1 + φ)−1, where φ = (1 +

√
5)/2 is the golden ratio.

An important property of Sturmian words is that their factors depend on
their slope only, i.e., we have the following result (see [14]).

Proposition 3. Let x, y be two Sturmian words. Then Fact(x) = Fact(y) if and
only if x and y have the same slope.

A fundamental role in the study of factors of Sturmian words is played by
the central words. A word is central if it has coprime periods p and q and length
p + q − 2. There are several characterizations of central words (see [1] for a
survey). Here we recall the following ones.

Proposition 4. Let w be a word over A. The following conditions are equiva-
lent:

1. w is a central word;
2. 0w1 and 1w0 are conjugate;
3. w is a bispecial factor of some Sturmian word;
4. w is a palindrome and the words w0 and w1 are balanced;
5. 0w1 is balanced and is the least element (w.r.t. the lexicographic order) in

its conjugacy class;
6. w is a power of a letter or there exist central words p1, p2 such that w =

p101p2 = p210p1. Moreover, in this latter case |p1| + 2 and |p2| + 2 are
coprime periods of w and min(|p1|+ 2, |p2|+ 2) is the minimal period of w.

Let w be a central word with coprime periods p and q and length p+ q − 2.
The words 0w1 and 1w0, which, by Proposition 4, are conjugate, are called
Christoffel words. Let r = |0w1|0 and s = |0w1|1. It can be proved that r and s
are the multiplicative inverses of p and q modulo p+ q, respectively. Moreover,
the conjugacy class of 0w1 and 1w0 contains exactly |w| + 2 words. If we sort
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these words lexicographically and arrange them as rows of a matrix, we obtain a
square matrix with remarkable combinatorial properties (see [4, 6, 11]). We call
this matrix the (r, s)-Christoffel array and denote it by Ar,s (see Figure 1 for an
example). Two consecutive rows of Ar,s differ only by a swap of two consecutive
positions. Moreover, the columns are also conjugate and in particular the first
one is 0r1s, while the last one is 1s0r.

Every aperiodic word (and therefore, in particular, every Sturmian word)
contains infinitely many bispecial factors. If w is a bispecial factor of a Sturmian
word x, then w is central by Proposition 4 and there exists a unique letter a ∈ A
such that w′, the shortest palindrome beginning with wa, is a bispecial factor of
x. Moreover, if p and q are the coprime periods of w such that |w| = p+q−2, then
the word w′ is central and its coprime periods p′ and q′ verifying |w′| = p′+q′−2
satisfy either p′ = p+ q and q′ = p, or p′ = p+ q and q′ = q, depending on the
letter a. For example, 010 is a bispecial factor of the Fibonacci word F and has
coprime periods 3 and 2 (and length 3+ 2− 2). The successive (in length order)
bispecial factor of F is 010010, which is the shortest palindrome beginning in
010 · 0 and has coprime periods 5 and 3 (and length 5+3− 2). There exist other
Sturmian words having 010 as a bispecial factor and for which the successive
bispecial factor is 01010 (i.e., the shortest palindrome beginning with 010 · 1)
whose coprime periods are 5 and 2.

These combinatorial properties of central words and the bispecial factors of a
Sturmian word will be needed in our proof of Theorem 2.

Sturmian words have unbounded cyclic complexity (by Theorem 1) but their
cyclic complexity takes value 2 for infinitely many n. More precisely, we have
the following result.

Lemma 3. Let x be a Sturmian word. Then cx(n) = 2 if and only if n = 1 or
there exists a bispecial factor of x of length n− 2.

The value 2 is the minimal possible for an aperiodic word. In fact, it is well
known that a word ω is (purely) periodic if and only if there exists n ≥ 1 such
that all the factors of length n of ω are conjugate.

Since a Sturmian word contains infinitely many bispecial factors, the previ-
ous result implies that for a Sturmian word x one has that lim inf cx(n) = 2.
However, this is not a characterization of Sturmian words. In fact, there exist
non-Sturmian aperiodic words with minimal cyclic complexity (in the sense of
having limit inferior of the cyclic complexity equal to 2). Consider for example
the morphism μ : 0 
→ 00, 1 
→ 01. It is possible to prove that in the word
μ(F ) = 00010000010001000001 · · · , image of the Fibonacci word F under μ,
there are exactly 2 conjugacy classes of factors of length n for every n that is the
double of a Fibonacci number2, so that lim inf cμ(F )(n) = 2. However, the word
μ(F ) is not Sturmian (it contains the factors 00000 and 10001 and therefore is
not balanced). We show in Table 1 the first values for the cyclic complexity of
F and μ(F ).

2 Recall that Fibonacci numbers are defined by: F0 = 1, F1 = 1, and Fn = Fn−1+Fn−2

for every n > 1.



Cyclic Complexity of Words 167

Table 1. The initial values of the cyclic complexity for the Fibonacci word F and its
morphic image µ(F )

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

cF (n) 2 2 2 3 2 4 4 2 7 4 5 8 2 9 9 4 13 5 9 14 2 16

cµ(F )(n) 2 2 2 2 3 2 3 3 3 2 5 4 5 4 6 2 7 7 7 4 9 5

We now give a sketch of the proof of Theorem 2.

Proof of Theorem 2 (Sketch). Since y has the same cyclic complexity of x, we
have that in particular 2 = cx(1) = cy(1), so y is a binary word. Since x is
aperiodic, by Theorem 1 cx is unbounded. Since x and y have the same cyclic
complexity we have, always by Theorem 1, that y is aperiodic.

We want to prove that y and x have the same factors. By contradiction, let
n+ 2 be the least length for which x and y have different factors. This implies
that x and y have a same bispecial factor w of length n. Let p′ and q′, with
p′ > q′, be the two coprime periods of w such that n = |w| = p′ + q′ − 2. Let wx

(resp. wy) be the successive (in length order) bispecial factor of x (resp. of y).
It can be proved that {|wx|, |wy |} = {2p′ + q′ − 2, p′ +2q′ − 2} and that wx and
wy cannot have the same length.

Suppose |wx| < |wy |. Then, by Lemma 3, y would have cyclic complexity
equal to 2 at length |wx| + 2, which is impossible since between |w| and |wy |
the word y behaves as a Sturmian word and so by Lemma 3 it should have a
bispecial factor of length |wx| + 2. Hence, we can suppose that |wx| > |wy|, so
that wx has periods p′ + q′ and p′ and length 2p′ + q′ − 2, while wy has periods
p′ + q′ and q′ and length p′ + 2q′ − 2.

To ease notation, we set p = p′ + q′ and q = p′, so that |wy | = 2p − q − 2
and |wx| = p + q − 2. Let us consider the set of factors of y of length 2p − q.
Since |w|+2 < 2p− q < |wx|+2, we know by Lemma 3 that cx(2p− q) > 2. So,
cy(2p− q) > 2.

If there was a Sturmian word y′ such that Fact(y′)∩A2p−q = Fact(y)∩A2p−q ,
then 2p− q would be the length of a bispecial factor plus 2 of a Sturmian word
and then, by Lemma 3, we would have cy(2p − q) = 2, a contradiction. This
implies that wy is a bispecial factor of y that behaves differently from a bispecial
factor of a Sturmian word. More precisely, we must have that 0wy and 1wy are
both right special factors of y. Therefore, 0wy0 and 1wy1 are in two different
conjugacy classes and all the other factors of y of length 2p − q are in a third
conjugacy class. In other words, we have cy(2p− q) = 3. Thus, in order to have
a contradiction we are left to prove that cx(2p− q) ≥ 4.

It is known that among the p + q + 1 factors of x of length p + q, there is
one factor with a Parikh vector and the remaining p+ q factors with the other
Parikh vector, these latter being in a same conjugacy class, which is in fact the
conjugacy class of the Christoffel word 0wx1.
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Let r = |0wx1|0 and s = |0wx1|1. Without loss of generality, we can suppose
that r > s, i.e., we can suppose that 11 does not appear as a factor in x.
Therefore, we can build the (r, s)-Christoffel array Ar,s. The factors of length
2p− q of x can be obtained by removing the last 2q − p columns from Ar,s (of
course, in this way some rows can be equal and therefore some factors appear
more than once). We refer to the matrix so obtained as to A′

r,s.
The cases s = 1, 2, 3 can be proved separately. Here we give the sketch of the

proof when s > 3. Recall that {r, s} = {p−1, q−1} mod (p + q). Suppose that
s = p−1 < q−1. In this case, one can prove that the last three rows in A′

r,s are
distinct and start and end with 1. Therefore, each of these rows is unique in
its conjugacy class. Since any other row correspond to a factor with a different
Parikh vector, this implies that there are at least 4 conjugacy classes and we are
done.

The other case is when s = q−1 < p−1. This case can be proved analogously
by considering the first four rows of the matrix A′

r,s. In fact, one can prove
that the factors appearing in the first four rows of the matrix A′

r,s are pairwise
distinct and neither is conjugate to another. �	
Example 1. Consider the Fibonacci word F and its bispecial factor w = 010010,
which has periods p = 5 and q = 3. We have s = q−1 = 3 < 5 = r = p−1. In
Figure 1 we show the (5, 3)-Christoffel array A5,3. The rows are the lexicograph-
ically sorted factors of F with Parikh vector (5, 3). The other factor of length
8 of F is 10100101. The factors of F of length 2p − q = 7 can be obtained by
removing the last column of the matrix. Notice that the first 4 rows (once the
last character has been removed) are pairwise distinct and neither is conjugate
to another.

To end this section, we compare the cyclic complexity to the minimal forbid-
den factor complexity for the special case of Sturmian words.

In [13] the authors proved the following result.

Theorem 3. Let x be a Sturmian word and let y be an infinite word such that
for every n one has px(n) = py(n) and mfx(n) = mfy(n), i.e., y is a word having
the same factor complexity and the same minimal forbidden factor complexity as
x. Then, up to isomorphism, y is a Sturmian word having the same slope as x.

A5,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 1
0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0
1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. The matrix A5,3 for the Fibonacci word F for p = 5 and q = 3
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Note that Theorem 2 is much stronger than Theorem 3, because in this latter
the fact that y is a Sturmian word follows directly from the hypothesis that y
has the same factor complexity as x.

Indeed, the cyclic complexity is more fine than the minimal factor complex-
ity. Let x be an infinite binary word such that MF(x) = {11, 000} and y an
infinite binary word such that MF(y) = {11, 101}. Then x and y have the same
minimal forbidden factor complexity, but it is readily checked that cx(5) = 3
while cy(5) = 4. Note that x contains 7 factors of length 5 corresponding to
3 cyclic classes (00100, 00101, 01001, 10010, 10100, 10101) while y contains the
factors 00000, 10000, 10010, 10001 no two of which are cyclically conjugate.

5 Conclusions and Further Developments

We introduced a new measure of complexity of words, cyclic complexity. We
showed that for this measure of complexity the Morse-Hedlund theorem can be
extended, that is, a word is ultimately periodic if and only if it has bounded cyclic
complexity (Theorem 1). The aperiodic words with minimal cyclic complexity
can be defined as those having exactly 2 conjugacy classes of factors of length n
for infinitely many values of n. Among these we have Sturmian words (which are
the aperiodic words with minimal factor complexity), but we also exhibited a
non-Sturmian example which, however, is a morphic image of a Sturmian word.
We leave as an open problem that of characterizing the aperiodic words with
minimal cyclic complexity.

Contrarily to other measures of complexity, cyclic complexity characterizes
the language of a Sturmian word, in the sense that two Sturmian words with
different languages of factors have different cyclic complexities. More precisely,
we proved that a word having the same cyclic complexity as a Sturmian word
must be Sturmian and have the same slope (Theorem 2). A natural question is
therefore the following: Given two infinite words x and y with the same cyclic
complexity, what can we say about their languages of factors?

First, there exist two periodic words having same cyclic complexity but whose
languages of factors are not isomorphic nor related by mirror image. For ex-
ample, let τ be the morphism: 0 
→ 010, 1 
→ 011 and consider the words
x = τ((010011)ω) and x′ = τ((101100)ω). One can verify that x and x′ have
the same cyclic complexity up to length 17 and, since each has period 18, the
cyclic complexities agree.

Furthermore, it is easy to show that even two aperiodic words can have same
cyclic complexity but different languages of factors. For example, let x be an
infinite binary word such that MF(x) = {000111} and y an infinite binary word
such that MF(y) = {001111}. Then the languages of factors of x and y are not
isomorphic, nor related by mirror image, yet the two words have the same cyclic
complexity. However, we do not know if this can still happen with the additional
hypothesis of linear complexity, for example. In every case, these examples show
that cyclic complexity does not determine, in general, the language of factors.
So, our Theorem 2 is very special to Sturmian words.
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In conclusion, we believe that the new notion of complexity we introduced in
this paper, cyclic complexity, can open new perspectives in the study of com-
plexity of words and languages.
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