
Advances in Parametric Real-Time Reasoning�

Daniel Bundala and Joël Ouaknine

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. We study the decidability and complexity of the reachability
problem in parametric timed automata. The problem was introduced
20 years ago by Alur, Henzinger, and Vardi in [1], where they showed
decidability in the case of a single parametric clock, and undecidability
for timed automata with three or more parametric clocks.

By translating such problems as reachability questions in certain ex-
tensions of parametric one-counter machines, we show that, in the case
of two parametric clocks (and arbitrarily many nonparametric clocks),
reachability is decidable for parametric timed automata with a single
parameter, and is moreover PSPACENEXP-hard. In addition, in the case
of a single parametric clock (with arbitrarily many nonparametric clocks
and arbitrarily many parameters), we show that the reachability prob-
lem is NEXP-complete, improving the nonelementary decision procedure
of Alur et al.

1 Introduction

The problem of reachability in parametric timed automata (PTA) was introduced
over two decades ago in a seminal paper of Alur, Henzinger, and Vardi [1]: given
a timed automaton in which some of the constants appearing within guards on
transitions are parameters, is there some assignment of integers to the parame-
ters such that an accepting location of the resulting concrete timed automaton
becomes reachable?

In this framework, a clock is said to be nonparametric if it is never compared
with a parameter, and parametric otherwise. Alur et al. [1] showed that, for timed
automata with a single parametric clock, reachability is decidable (irrespective of
the number of nonparametric clocks). The decision procedure given in [1] however
has provably nonelementary complexity. In addition, [1] showed that reachability
becomes undecidable for timed automata with at least three parametric clocks.

The decidability of reachability for PTAs with two parametric clocks (and
arbitrarily many nonparametric clocks) was left open in [1], with hardly any
progress (partial or otherwise) that we are aware of in the intervening period.
The problem was shown in [1] to subsume the question of reachability in Ibarra
et al.’s “simple programs” [9], also open for over 20 years, as well as a decision
problem for a fragment of Presburger arithmetic with divisibility.

� Full version of the paper is available at: http://www.cs.ox.ac.uk/people/

joel.ouaknine/publications/advances parametric14abs.html

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 123–134, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/advances\protect _parametric14abs.html
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/advances\protect _parametric14abs.html

124 D. Bundala and J. Ouaknine

Our main results are as follows: (i) We show that, in the case of two parametric
clocks (and arbitrarily many nonparametric clocks), reachability is decidable for
PTAs with a single parameter. Furthermore, we establish a PSPACENEXP lower
bound on the complexity of this problem. (ii) In the case of a single parametric
clock (with arbitrarily many nonparametric clocks and arbitrarily many param-
eters), we show that the reachability problem is NEXP-complete, improving the
nonelementary decision procedure of Alur et al.

Our results rest in part on new developments in the theory of one-counter
machines [5], their encodings in Presburger arithmetic [4], and their application
to reachability in (ordinary) timed automata [6,3]. We achieve this by restricting
our attention to PTAs with closed (i.e. non-strict) clock constraints. As param-
eters are restricted to ranging over integers1, standard digitisation techniques
apply [7,15], reducing the reachability problem over dense time to discrete (in-
teger) time. (Alternatively, our results also apply directly to timed automata
interpreted over discrete time, regardless of the type of constraints used.) The
restriction to integer time enables us, among others, to keep track of the values of
two parametric clocks using a single counter, in effect reducing the reachability
problem for timed automata with two parametric clocks to a halting problem
for parametric one-counter machines.

Related Work. The decidability of reachability for PTAs can be achieved
in certain restricted settings, for instance by bounding the allowed range of the
parameters [10] or by requiring that parameters only ever appear either as upper
or lower bounds, but never as both [8]: in the latter case, if there is a solution
at all then there is one in which parameters are set either to zero or infinity.
The primary concern in such restricted settings is usually the development of
practical verification tools, and indeed the resulting algorithms tend to have
comparatively good complexity.

Miller [14] observed that over dense time and with parameters allowed to range
over rational numbers, reachability for PTA becomes undecidable already with
a single parametric clock. In the same setting, Doyen [2] showed undecidability
of reachability for two parametric clocks even when using exclusively open (i.e.
strict) time constraints.

A connection between timed automata and counter machines was previously
established in nonparametric settings [6], and used to show that reachability for
(ordinary) two-clock timed automata is polynomial-time equivalent to the halting
problem for one-counter machines, even when constants are encoded in binary.
Unfortunately, it is not obvious how to extend and generalise this construction to
PTA, specifically in the case of two parametric clocks and an arbitrary number
of nonparametric clocks, as we handle in the present paper. The reduction of [6]
was used in [3] to show that halting for bounded one-counter machines, and

1 Other researchers have considered variations in which parameters are allowed to
range over rationals, yielding different outcomes as regards the decidability of reach-
ability; see, e.g., [14,2], discussed further below.

Advances in Parametric Real-Time Reasoning 125

hence reachability for two-clock timed automata, is PSPACE-complete, solving
what had been a longstanding open problem.

Finally, parametric one-counter machines without upper bounds imposed on
the value of the counter were studied in [5], where reachability was shown to be
decidable. The techniques used in [5] make crucial use of the unboundedness of
the counter and therefore do not appear applicable in the present setting.

2 Preliminaries

We now give definitions used throughout the rest of the paper. A timed automa-
ton is a finite automaton extended with clocks; each clock measuring the time
since it was last reset. A parametric timed automaton is obtained by replacing
the known constants in the guards by parameters.

Formally, let P be a finite set of parameters. An assignment for P is a
function γ : P → N assigning a natural number to each parameter. A paramet-
ric timed automaton (PTA) A = (S, s0, C, P, F,E) is a tuple where S is the
set of states, s0 ∈ S is the initial state, C is the set of clocks, P is the set of
parameters, F ⊆ S is the set of final states and E ⊆ S×S× 2C ×G(C,P) is the
set of edges where G(C,P) is the set of guards of the form x ≤ v, x ≥ v where x
is a clock and v ∈ N ∪ P . An edge (s, s′, R,G) is from state s to state s′. Set R
specifies which clocks are reset. A clock is parametrically constrained if it is
compared to a parameter in some guard. The class of PTAs with k parametrically
constrained clocks is denoted k-PTA. If γ is an assignment to parameters then
Aγ denotes the automaton obtained by setting each parameter p ∈ P to γ(p).

A configuration (s, ν) of Aγ consists of state s and function ν : C → N

assigning a value to each clock. A transition exists from configuration (s, ν)
to (s′, ν′) in Aγ , written (s, ν) → (s′, ν′), if either there is t ∈ N such that
ν(c) + t = ν′(c) for every clock c ∈ C or there is an edge e = (s, s′, R,G) ∈ E
such that G is satisfied for current clock values and if c ∈ R then ν′(c) = 0 and
if c �∈ R then ν′(c) = ν(c).

The initial clock valuation ν0 assigns 0 to every clock. A run of a machine is
a sequence π = c1, c2, . . . , ck of configurations such that ci → ci+1 for each i.
A run is called accepting if c1 is the initial configuration (s0, ν0) and ck is
in a final state. The existential halting problem , also known as parametric
reachability or the emptiness problem, asks whether there is some parameter
valuation γ such that Aγ has an accepting run. From here onwards, we omit
“existential” and write simply “halting problem”. We say that two automata A1

and A2 have equivalent halting problem if A1 halts if and only if A2 halts.
Given a run π, we use start(π) = c1 and end(π) = ck to denote the first and

the last configuration of the run, respectively. If τ is a run, we write π → τ if
the runs can be connected by a transition, i.e. end(π) → start(τ).

A parametric timed 0/1 automaton [1] A = (S, s0, C, P, F,E) is a timed
automaton such that each edge e ∈ E is labeled by a time increment t ∈ {0, 1}.
A transition from (s, ν) to (s′, ν′) is valid only if ν′(c)− ν(c) = t for each c ∈ C
not reset by the edge giving rise to the transition.

126 D. Bundala and J. Ouaknine

A one-counter machine is a finite-state machine equipped with a single
counter. Each edge is labelled by an integer, which is added to the counter when-
ever that edge is taken. The counter is required to be nonnegative at all times.
E.g., subtracting c ∈ N in one transition and adding c in the next transition leaves
the counter unchanged but can be performed only if the counter is at least c.

A bounded one-counter machine also allows ≤ x edges. Such an edge
can be taken only when the counter is at most x. Reachability in these two
classes of counter machines are respectively known to be NP-complete [5] and
PSPACE-complete [3] if the numbers are encoded in binary.

Parametric machines are obtained by replacing the known constants by pa-
rameters. A parametric bounded one-counter machine (PBOCA) C =
(S, s0, F, P,E, λ) is a tuple where S is the set of states, s0 is the initial state,
F ⊆ S are the final states, P is the set of parameters, E ⊆ S × S is the set of
edges and λ : E → Op assigns an operation to each edge and has codomain Op:
{+c,−c,+p,−p,≤ c,= c,≥ c,≤ p,= p,≥ p,+[0, p],≡ 0 mod c : c ∈ N, p ∈ P}.

A parametric one-counter machine allows only operations:±c,±p,≥ c,≥
p,= 0. Note that parametric one-counter machines are a subclass of parametric
bounded one-counter machines.

y ≥ 5 x ≥ 7

y ≤ p

x ≥ p, x← 0

+7 ≤ q ≥ q

+q +1

Fig. 1. A parametric timed automaton (left) and a parametric bounded one-counter
machine (right). The final states are reachable if, for example, p = 10 and q = 11.

A configuration (s, x) of C consists of a state s ∈ S and counter value
x ∈ N. Thus, the counter is always nonnegative. Machine C starts in state s0
and counter equal to 0 and then takes individual edges updating the counter.
We use counter(s, x) = x to denote the counter value in a configuration. We
extend the definition to runs componentwise and write counter(π) ≤ C (resp.
counter(π) ≥ C) if the comparison holds for every element: ∀i . counter(π(i)) ≤
C (resp. ∀i . counter(π(i)) ≥ C).

Let Z be a (nonparametric) one-counter machine. For configurations c,d of
Z and numbers x, y ∈ N, we write (c,d) ∈ Z(x, y) if there is a run π : c → d
such that the counter stays between x and y, i.e. x < counter(π) < y.

For a parameter assignment γ, configuration (s′, x′) is directly reachable from
(s, x) (written (s, x) → (s′, x′)) in Cγ if an edge e = (s, s′) ∈ E exists such that
– if λ(e) = ±c, c ∈ N then x± c = x′

– if λ(e) = ±p, p ∈ P then x± γ(p) = x′

– if λ(e) = ∼ c, c ∈ N then x = x′ and x ∼ c where ∼ ∈ {≤,≥}
– if λ(e) = ∼ p, p ∈ P then x = x′ and x ∼ γ(p) where ∼ ∈ {≤,≥}
– if λ(e) = +[0, p], p ∈ P then x ≤ x′ ≤ x+ γ(p)
– if λ(e) = ≡ 0 mod c, x ∈ Z then x = x′ and x ≡ 0 mod c

Advances in Parametric Real-Time Reasoning 127

The existential halting problem asks whether there is a parameter valua-
tion γ such that Cγ has an accepting run.

2.1 Presburger Arithmetic

Presburger Arithmetic with Divisibility is the first-order logical theory of
〈N, <,+, |, 0, 1〉. The existential fragment (formulae of the form ∃x1, x2, . . . , xk.ϕ
where ϕ has no quantifiers) is denoted as ∃PAD . The satisfiability of ∃PAD for-
mulae was shown decidable in [12] and in NP [13]. Given a set S ⊆ N

k we
say that S is ∃PAD definable if there is a finite set R of ∃PAD formulae,
each formula with free variables x1, . . . xk such that (n1, . . . , nk) ∈ S ⇐⇒∨

ϕ∈R ϕ(n1, . . . , nk). Note that ∃PAD sets are closed under finite union, inter-
section and projection. It was shown in [4,5] that the reachability relation of
parametric one-counter machines is ∃PAD definable.

Lemma 1 ([4], Lemma 4.2.2). Given a parametric one-counter machine B
and states s, t, the relation Reach(B, s, t) = {(x, y, n1, . . . , nk) | (s, x) →∗ (t, y)
in Bγ where γ(pi) = ni} is ∃PAD definable.

2.2 Nonparametric Clock Elimination

Let A be a PTA. By modifying the region construction, we show how to build a
PTA with equivalent halting problem without nonparametric clocks.

Once the value of a nonparametric clock c is above the largest constant ap-
pearing in A, the precise value of c does not affect any comparison. Now, the
value of c is always a natural number. Hence, we eliminate nonparametric clocks
by storing in the state space of C the values of the clocks up to the largest
constant. However, we must ensure that the eliminated clocks progress simulta-
neously with the remaining parametric ones. This motivates 0/1 timed automata
where the +1 updates correspond to the progress of time whereas the +0 updates
correspond to taking an edge in A. Formally:

Lemma 2 ([1]). Let A = (S, s0, C, P, F,E) be a PTA. Then there is a paramet-
ric 0/1 timed automaton A′ = (S′, s′0, C

′, P ′, F ′, E′) such that C′ ⊆ C contains
only parametrically constrained clocks of C and A and A′ have equivalent halting
problem. Moreover, |A′| = O(2|A|).

3 One Parametric Clock

For the rest of the section, fix a 1-PTA A. We show how to decide the halting
problem for A. By Lemma 2, there is an exponentially larger parametric 0/1 au-
tomaton B with one (parametrically constrained) clock and equivalent halting
problem. In Lemma 4 we show how to eliminate clock resets from B by introduc-
ing −1 edges, thereby turning B into a PBOCA. Hence, to decide the halting
problem for A it suffices to decide the halting problem for a PBOCA with only
−1, 0,+1 counter updates. We establish such a result in Theorem 5. Hence:

128 D. Bundala and J. Ouaknine

Theorem 3. The halting problem for 1-PTAs is decidable in NEXP.

Decidability of the halting problem 1-PTAs originally appeared in [1], albeit
with nonelementary complexity. We give a completely different proof using one-
counter machines yielding a NEXP algorithm. Later we show that the problem is
also NEXP-hard. In the full version of the paper we prove the technical lemma:

Lemma 4. Let B be a parametric 0/1 timed one-clock automaton. Then there
is a PBOCA C such that B and C have equivalent halting problem. Further, all
updates in C are either −1, 0 or +1 and |C| = O(|B|).

3.1 Decidability for Counter Machines with Constant Updates

We now show how to decide the halting problem for PBOCAs with all counter
updates either −1, 0 or +1. Fix such a machine C. To show that C halts, we have
to find an assignment γ and an accepting run π in Cγ . Even without knowing
γ, we show that π splits into subruns of a simple form independent of γ the
existence of which is reducible to satisfiability of certain ∃PAD formulae.

Let γ be a parameter assignment and assume that we guessed the order of
parameters, let’s say, γ(p1) < γ(p2) < . . . < γ(pk), but not their precise values.
Let c1 and c2 be arbitrary configurations of Cγ such that c1 →∗ c2 in Cγ and
consider a shortest run π : c1 → c2. There is a constant M ∈ N, determined in
Lemma 7, such that the run π can be factored into subruns between successive
parameters and subruns around individual parameters. Formally, π = π0 →
π1 → π2 → · · · → πl such that (π0 can be possible empty)
– Even-indexed runs: γ(p)−M ≤ counter(π2i) ≤ γ(p) +M for a parameter p,
– Odd-indexed runs: γ(pr) +M < counter(π2i+1) < γ(pr+1) −M for some

consecutive parameters γ(pr) < γ(pr+1),
– For every i, the runs πi and πi+1 are joined by an edge end(πi) → start(πi+1).

Notice that every edge in C changes the counter by at most 1. Hence, we have
counter(start(π2i+1)) = pr +M + 1 or counter(start(π2i+1)) = pr+1 −M − 1.
Thus, start(πi) is always of the form start(πi) = (si, pf(i) + xi) for some state
si, some |xi| ∈ {M,M + 1} and parameter pf(i). Hence, start(πi) is uniquely
determined by the triple (si, f(i), xi). Similarly, end(πi) is uniquely determined
by some triple (ti, g(i), yi) with |yi| ∈ {M,M + 1}.

By minimality, π visits every configuration only once. Hence an odd-indexed
run can start in only one of 2nk configurations (n states, k parameters). Hence,
the number of odd-indexed runs, and hence the total number of runs is O(nk).

To show that there is a run from c1 to c2 we guess a factoring of the above
form. We shall show (justifying the choice of M) in Lemma 8 that the odd-
indexed runs π2i+1 correspond to runs in some one-counter machine Ch(2i+1).
By Lemma 1, the existence of a run in Ch(2i+1) is ∃PAD expressible as: ϕ2i+1 =
Reach(Ch(2i+1), s2i+1, t2i+1)(nf(2i+1) + x2i+1, ng(2i+1) + y2i+1, n1, . . . , nk).

In Lemma 9, we show that the even-indexed runs are independent of γ, can
be precomputed and the reachability relation can be hardwired into the formula.
Thus, we express the existence of a particular factoring from c1 to c2 as ϕ =

Advances in Parametric Real-Time Reasoning 129

∧
i ϕ2i+1 ∧ ψ(f, g, h,−→s ,−→t ,−→x ,−→y) ∧

∧
i(ni +M < ni+1) where the middle term

encodes that the odd- and even-indexed runs are adjacent (directly computable)
and that the even-indexed runs are valid (Lemma 9). The last conjunct encodes
the technical restriction γ(pi) +M < γ(pi+1) imposed in Lemmas 8 and 9.

The restriction is relaxed as follows. First, if the parameters are not in the
increasing order γ(pi) < γ(pi+1) then we relabel the parameters and build the
appropriate formula. If γ(pi) ≤ γ(pi+1) < γ(pi)+M thenM depends only on |C|
(Lemma 7) and so only finitely many possibilities exist for γ(pi+1)−γ(pi). Hence
we replace each occurrence of pi+1 in C by pi + w for the appropriate w < M .

Theorem 5. Given states s, t ∈ C the set G(C, s, t) = {(x, y, n1, . . . , nk) |
(s, x) →∗ (t, y) in Cγ where γ(pi) = ni} is ∃PAD definable.

Recall that satisfiability of ∃PAD formulae is in NP [13] and that |C| is expo-
nential in |A| (Lemmas 2 and 4). Hence, Theorem 3 follows. We have also proved
the corresponding lower bound, in fact, already for a single parameter.

Theorem 6. The halting problem for 1-PTAs with one parameter is NEXP-
hard.

The proof of ∃PAD definability relied on two lemmas that we prove now. First,
we show how to calculate the odd-indexed runs. Let c1, c2 be configurations of Cγ

between two successive parameters: γ(pi) < counter(c1), counter(c2) < γ(pi+1).
Consider the counter machine Ci obtained from C by evaluating all compar-

isons as if the counter was between γ(pi) and γ(pi+1). Formally, Ci is obtained
from C by removing all ≥pj and ≤pk edges for k ≤ i < j and all ≤pj and ≥pk
edges for k ≤ i < j are replaced by +0 edges. Further, for i > 0 and c ∈ N we
also remove all ≤c edges from Ci. Note that the definition of Ci’s depends only
on the order of parameters in γ.

During a run π : c1 → c2 in Ci, the counter can become less than γ(pi) or
greater than γ(pi+1). So π does not necessarily correspond to a run in C. How-
ever, notice that Ci is a one-counter machine without parameters or ≤ x com-
parisons, i.e. an ordinary one-counter machine and thus has the following prop-
erty [11]: If there is a run between two configurations then there is a run where
the counter does not deviate much from the initial and the final counter value:

Lemma 7 ([11], Lemma 42). Let Ci be as above. There is a constant M
(polynomial in |Ci|) s.t. for any configurations c1 and c2 of Ci if c1 →∗ c2 then
there is a run π : c1 → c2 such that U −M ≤ counter(π) ≤ V + M where
U = min(counter(c1), counter(c2)) and V = max(counter(c1), counter(c2)).

So as long as γ(p1) +M < counter(c1), counter(c2) < γ(p2) −M , the runs
c1 → c2 in Ci correspond to runs in C. See the full version for the proof:

Lemma 8. Let γ be an assignment with γ(pi) +M < γ(pi+1) for all i. Let c,d
be configurations with γ(pi)+M < counter(c), counter(d) < γ(pi+1)−M . Then
(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ c →∗ d in Cγ

i .

130 D. Bundala and J. Ouaknine

For the even-indexed runs, the reachability around individual parameters, i.e.
in intervals (γ(pi)−M,γ(pi)+M), can be precomputed. Suppose that γ(pi−1) <
γ(pi)−M < γ(pi)+M < γ(pi+1) so that the interval (γ(pi)−M,γ(pi)+M) does
not contain γ(pi−1) or γ(pi+1). Let −M < x, y < M and let π be a run from
(s, γ(pi) + x) to (t, γ(pi) + y) such that γ(pi) −M ≤ counter(π) ≤ γ(pi) +M .
Then for every component π(i), we can write counter(π(j)) = γ(pi) + zj for
some −M ≤ zj ≤ M . But now, the run π is valid for any specific value of γ(pi)
as only zj determines which edges are enabled in Cγ . (See the full version)

Lemma 9. Let γ, δ be parameter assignments with γ(pi)+M < γ(pi+1), δ(pi)+
M < δ(pi+1) for all i. Let s, t ∈ c be states and −M < x, y < M integers. Then

((s, γ(pi) + x), (t, γ(pi) + y)) ∈ Cγ(γ(pi)−M,γ(pi) +M) ⇐⇒
((s, δ(pi) + x), (t, δ(pi) + y)) ∈ Cδ(δ(pi)−M, δ(pi) +M)

Furthermore, it is decidable in polynomial time whether ((s, γ(pi)+x), (t, γ(pi)+
y)) ∈ Cγ(γ(pi)−M,γ(pi) +M) for any (and all) such assignment γ.

4 Two Parametric Clocks

We now show that the halting problem for 2-PTAs is equivalent to the halting
problem for PBOCAs. The equivalence is used in Section 4.2 to show decidability
of the halting problem in certain classes of 2-PTAs.

First, observe that a counter can be stored as a difference of two clocks, which
can be used (see the full version) to show the easier direction of the equivalence.

Theorem 10. Let C be a PBOCA. Then there is a 2-PTA A such that A and C
have equivalent halting problem. Moreover, if C has no ‘≡ 0 mod c’ edges then
A has no nonparametric clocks. Otherwise, A has one nonparametric clock.

4.1 Reduction to Parametric Bounded One-Counter Machines

For the converse, fix A to be a 2-PTA. We reduce A to a PBOCA C. To be-
gin, we construct (Lemma 2) a parametric 0/1 timed automaton B with two
parametrically constrained clocks, denoted x and y, with the halting problem
equivalent to A. We then transform B to C. Denote the counter of C by z.

For the time being, we need to relax the assumption that z stays nonnegative.
That is, subtracting 5 when the counter is 2 results in the counter being −3. In
Remark 12 we later show how to restore the nonnegativity of the counter.

The idea of the reduction is that, after a clock of B is reset, that clock equals
zero, so we use z to store the value of the other clock. We construct C in such
a way that after a reset of y, counter z stores the value of x and after a reset of
x, counter z stores −y. Initially C starts with the counter equal to 0.

Machine C then operates in phases. Each phase corresponds to a run of B
between two consecutive resets of some (possibly different) clock.

Suppose y was the last clock to reset. After the reset, the configuration of B is
(s, (z, 0)) for some state s ∈ B and the counter z = x. We show how C calculates
the configuration after the next clock reset in B.

Advances in Parametric Real-Time Reasoning 131

After time Δ, the clocks go from configuration (z, 0) to (z + Δ,Δ). Based
on the guards, different edges in Bγ are enabled as time progresses. Precisely,
suppose we know the order of the parameters p1 < p2 < . . . < pk. Then let
region R(i,j) be the set of clock valuations [pi, pi+1]× [pj , pj+1]. Then the set of
enabled edges depends only on the region R(i,j) the clocks (x, y) lie in.2

Therefore, machine C guesses the regions R(i0,j0), R(i1,j1), . . . , R(im,jm) in the
order in which they are visited by the clocks (x, y) and it also guesses the states
s0, s1, . . . , sm of B when each region Rl is visited for the first time, the state t
in which the next reset occurs and which clock is reset next (see Fig 2).

Machine C checks that the sequence is valid as follows. First, C checks, that
(z, 0) lies in R0. Second, it checks that the regions are adjacent: il+1 − il =
1∧ jl+1 = jl or il+1 = il ∧ jl+1 − jl = 1 or il+1 − il = jl+1 − jl = 1. The last case
corresponds to the clocks hitting a corner of a region. Then, C checks that start-
ing in clock configuration (z, 0), the regions can be visited in the guessed order.

Consider region R(u,v) for some u, v. When the region is visited for the first
time, then either clock x equals pu or clock y equals pv. In the former case,
the clock configuration is (pu, pu − z), in the latter case, it is (pv + z, pv). The
configuration depends on the direction in which R(u,v) is visited. See Fig. 2.
– If il+1−il = 1 then C checks that clock x reaches pil+1

before clock y reaches
pjl+1. That is, pil+1

− z ≤ pjl+1. Equivalently, pil+1
≤ z + pjl+1, which can

be easily tested by a PBOCA. In Fig. 2 this corresponds to region R(1,0),
which is visited before R(2,0).

– Similarly, if jl+1 − jl = 1. E.g, in Fig. 2 region R(2,1) is visited before R(2,2).
We say R(u,v) was reached from left in the first and that R(u,v) was reached
from bottom in the second case. See Fig. 2 for the intuition behind the names.

0 z p1p2 p3

p1
p2

p3

Fig. 2. Regions for parameters p1 < p2 < p3.
The dotted line shows an evolution
of clock configuration, which visits
R(0,0), R(1,0), R(2,0), R(2,1), R(2,2), R(3,2), R(3,3).

Finally, C checks reachability
within individual regions. For l =
(u, v), let cl be the configuration in
which the region Rl is visited for the
first time. Then C checks that a run
from cl to cl+1 exists in Rl.

Now, with each R(i,j), we intro-
duce a one-counter machine B(i,j)

obtained from B assuming clock x ∈
[pi, pi+1] and clock y ∈ [pj , pj+1], in-
stantiating all comparisons accord-
ingly and by removing all edges reset-
ting a clock. Each B(i,j) corresponds
to the region R(i,j) in the same way
automata Ci corresponded to one-
dimensional regions in Section 3.

2 Our definition of rectangular regions differs slightly from the one usually given in
the literature. However, as all inequalities are nonstrict the regions are sufficient. For
ease of presentation, we also use the convention p0 = 0 and pk+1 =∞.

132 D. Bundala and J. Ouaknine

Notice that B(i,j)’s are 0/1 automata without resets or comparisons, i.e. one-
counter machines. In particular, the reachability relation for B(i,j)’s is semilinear.
For a pair of states s and t of a one-counter machine X define Π(X, s, t) to be
the set of counter values reachable at t by a run starting in state s and counter
equal to 0: Π(X, s, t) = {v | ∃π ∈ X. start(π) = (s, 0) ∧ end(π) = (t, v)}.
Lemma 11. Let X be a one-counter machine with 0/1 updates. Then for any
states s, t ∈ X the set Π(X, s, t) is effectively semilinear: Π(X, s, t) = N ∪
⋃j=r

j=1{aj + bjN} where N ⊆ N is finite and aj , bj ∈ N.

Now, to check that a run from cl to cl+1 exists in Rl, machine C distin-
guishes whether Rl and Rl+1 are reached from bottom or from left and uses the
semilinearity of the reachability relation of the corresponding B(i,j).

The translation is mundane and is given in the full version of the paper. For
example, supposeRl = R(px,py) for parameters px and py. Then cl = (sl, (px, px−
z)) or cl = (sl, (py+z, py)) depending on the direction. IfRl was reached from left
and Rl+1 from bottom then C checks that (sl+1, (py+1 + z, py+1)) is reachable
from (sl, (px, px − z)). That is, that z + py+1 − px ∈ Π(Bl, sl, sl+1). All such
constraints can be checked using ‘≡ 0 mod c’ edges (see Fig. 3).

Finally note that once the value of a clock becomes larger than pk its exact
value is irrelevant to any future comparison. Hence, C tracks x and y only up
to pk and remembers which clocks exceed it. Hence, we can assume that the
counter of C is always inside [−pk, pk].

+px −py −a ≡ 0 mod b +a +py −px

Fig. 3. Gadget testing that for given a, b ∈ N there is k ∈ N such that z + px − py =
a+ kb,i.e. z + px − py − a ≡ 0 mod b. Letter z denotes the current counter value.

Next, we modify C to ensure that the counter is always nonnegative. Let C′

be obtained from C by adding a new initial state and a +pk edge from the new
to the original initial state. Further, any comparison edge (s,G, t) (e.g., where G
is ≤pi) is replaced by a gadget of three edges (s,−pk, q), (q,G, q′) and (q′,+pk, t)
which subtract pk from the counter, perform the original check and then add pk
to the counter thereby offsetting the counter by pk.

Remark 12. We can assume that the counter of C is always inside [0, 2pk].

Note that the construction depends on the order of parameters. However, we
can build an automaton for each possible order, check the order of parameters
and then transition into the automaton for the appropriate order.

Theorem 13. Given a 2-PTA there is a PBOCA with equivalent halting prob-
lem.

The reduction was inspired by [6] (see Related Work). Unlike [6], we exploit
semilinearity in individual regions and perform one phase in a single stage of C.

Advances in Parametric Real-Time Reasoning 133

4.2 The One-Parameter Case

Suppose that the 2-PTA A uses only a single parameter p and consider the
corresponding PBOCA C. We show that all ‘≡ 0 mod c’ and ‘+[0, p]’ edges can
be eliminated from C. Using Remark 12, we show in Lemma 15 how to decide
the halting problem in the resulting class of PBOCAs.

Inspecting the detailed proof of the reduction from A to C (as found in the
full version), observe that ‘+[0, p]’ edges are introduced only when two successive
regions are both visited from left or both visited from bottom. For a single
parameter, only regions [0, p]× [0, p], [0, p]× [p,∞], [p,∞]× [0, p], [p,∞]× [p,∞]
exist. Simple case analysis shows that this can occur only when the counter starts
at 0—this can be treated separately thereby eliminating ‘+[0, p]’ edges from C.

Next, we also eliminate ‘≡ 0 mod c’ edges from C. Intuitively, C shall store in
its state space the counter modulo ci for each c1, . . . , cr appearing as ‘≡ 0 mod ci’
in C. The construction depends on the value of p mod ci for each i.

Given D = (d1, . . . , dr), let CD be the one-counter machine obtained from C
which tracks the counter modulo each ci assuming p ≡ di mod ci. Formally, the
states of CD are S×Zc1 × . . .×Zcr where S are the states of C and Zci denotes
the ring of integers modulo ci. The machine CD contains all comparison edges
of C. Further, let (v1, . . . , vr) ∈ Zc1 × . . .× Zcr . Let E be the edges of C, then
CD also contains the following edges:
– ((q, v1, . . . , vr),±c, (q′, v1 ± c, . . . , vr ± c) if (q,±c, q′) ∈ E,
– ((q, v1, . . . , vr),±p, (q′, v1 ± d1, . . . , vr ± dr) if (q,±p, q′) ∈ E,
– ((q, v1, . . . , vr),+0, (q′, v1, . . . , vr)) if vi = 0 and (q,≡ 0 mod ci, q

′) ∈ E.
Notice that there are no ‘≡ 0 mod c’ edges in CD. By construction, runs in Cγ

D

are equivalent to runs Cγ provided di ≡ γ(p) mod ci. That is:

Lemma 14. Let γ be an assignment such that γ(p) = di mod ci for each i. Let
(s, x), (t, y) be configurations of C. Then (s, x) →∗ (t, y) in Cγ if and only if
((s, x mod c1, . . . , x mod cr), x) →∗ ((t, y mod c1, . . . , y mod cr), y) in C

γ
D.

For givenD, finding an accepting run π such that counter(π) ≤ 2·γ(p) suffices
(Remark 12) to decide the halting problem for CD. For any such run π and index
i we can write counter(π(i)) = aγ(p) + b where a ≤ 2 and b < γ(p).

Since a is bounded, we can build a one-counter machine G keeping a in the
state space and b in the counter. We do not enforce b < γ(p) (or any other ≤x
constraint) in G. Instead, we use Lemma 7 on G and split π into subruns close to
and far from a multiple of γ(p). We write π = τ0 → π1 → τ1 . . . πl → τl such that
for every τi the value counter(τi) mod γ(p) ∈ [0, . . . ,M] ∪ [γ(p)−M,γ(p)). For
every πi we have counter(πi) mod γ(p) ∈ (M,γ(p)−M). Then we use techniques
on factoring of runs analogous to those used for one 1-PTAs (Section 3.1). In
general, we have: (See the full version)

Lemma 15. Given C with one parameter p, no ‘≡ 0 mod c’ and no ‘+[0, p]’
edges, k ∈ N and states s, t ∈ C the set G(C, s, t, k) = {(x, y, q) | ∃π : (s, x) →
(t, y) ∈ Cγ s.t. counter(π) ≤ k · q where q = γ(p)} is ∃PAD definable.

Theorem 16. The halting problem is decidable for 2-PTAs with one parameter.

134 D. Bundala and J. Ouaknine

This settles the case of 2-PTAs with a single parameter. However, even the
case of only two parameters is open. On the other hand, already for a single
parameter, we have the following lower bound. (See the full version)

Theorem 17. The decidability of the halting problem for 2-PTAs with a single
parameter is PSPACENEXP-hard.

Acknowledgments. This research was financially supported by EPSRC.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the 25th Annual Symposium on Theory of Computing. ACM Press
(1993)

2. Doyen, L.: Robust parametric reachability for timed automata. Information Pro-
cessing Letters 102(5), 208–213 (2007)

3. Fearnley, J., Jurdziński, M.: Reachability in two-clock timed automata is PSPACE-
Complete. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 212–223. Springer, Heidelberg (2013)

4. Haase, C.: On the Complexity of Model Checking Counter Automata. PhD thesis,
University of Oxford (2012)

5. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

6. Haase, C., Ouaknine, J., Worrell, J.: On the relationship between reachability prob-
lems in timed and counter automata. In: Finkel, A., Leroux, J., Potapov, I. (eds.)
RP 2012. LNCS, vol. 7550, pp. 54–65. Springer, Heidelberg (2012)

7. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

8. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 189–203. Springer, Heidelberg (2001)

9. Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning
two-way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson,
R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 313–324. Springer, Heidelberg (1993)

10. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 401–415. Springer, Heidelberg (2013)

11. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational
theories with homomorphisms. In: Research Report LSV-04-16, LSV, ENS de
Cachan (2004)

12. Lipshitz, L.: The Diophantine Problem for Addition and Divisibility. Transactions
of the American Mathematical Society, 235 (1978)

13. Lipshitz, L.: Some remarks on the diophantine problem for addition and divisibility,
vol. 33 (1981)

14. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear
hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790,
pp. 296–310. Springer, Heidelberg (2000)

15. Ouaknine, J., Worrell, J.B.: Universality and language inclusion for open and closed
timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623,
pp. 375–388. Springer, Heidelberg (2003)

	Advances in Parametric Real-Time Reasoning
	1 Introduction
	2 Preliminaries
	2.1 Presburger Arithmetic
	2.2 Nonparametric Clock Elimination

	3 One Parametric Clock

	3.1 Decidability for Counter Machines with Constant Updates

	4 Two Parametric Clocks
	4.1 Reduction to Parametric Bounded One-Counter Machines
	4.2 The One-Parameter Case

	References

