
Erzsébet Csuhaj-Varjú
Martin Dietzfelbinger
Zoltán Ésik (Eds.)

 123

39th International Symposium, MFCS 2014
Budapest, Hungary, August 25-29, 2014
Proceedings, Part I

Mathematical
Foundations of
Computer Science 2014LN

CS
 8

63
4

AR
Co

SS



Lecture Notes in Computer Science 8634
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Erzsébet Csuhaj-Varjú
Martin Dietzfelbinger Zoltán Ésik (Eds.)

Mathematical
Foundations of
Computer Science 2014

39th International Symposium, MFCS 2014
Budapest, Hungary, August 25-29, 2014
Proceedings, Part I

13



Volume Editors

Erzsébet Csuhaj-Varjú
Eötvös Loránd University
Faculty of Informatics
Budapest, Hungary
E-mail: csuhaj@inf.elte.hu

Martin Dietzfelbinger
Technische Universität Ilmenau
Fakultät für Informatik und Automatisierung
Ilmenau, Germany
E-mail: martin.dietzfelbinger@tu-ilmenau.de

Zoltán Ésik
Szeged University
Institute of Informatics
Szeged, Hungary
E-mail: ze@inf.u-szeged.hu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44521-1 e-ISBN 978-3-662-44522-8
DOI 10.1007/978-3-662-44522-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945809

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The series of MFCS symposia has a long and well-established tradition. The
MFCS conferences encourage high-quality research into all branches of theo-
retical computer science. Their broad scope provides an opportunity to bring
together researchers who do not usually meet at specialized conferences. The
first symposium was held in 1972. Until 2012 MFCS symposia were organized
on a rotating basis in Poland, the Czech Republic, and Slovakia. The 2013 edi-
tion took place in Austria, and in 2014 Hungary joined the organizing countries.
The 39th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2014) was held in Budapest during August 25–29, 2014.

Due to the large number of accepted papers, the proceedings of the conference
were divided into two volumes on a thematical basis: Logic, Semantics, Automata
and Theory of Programming (Vol. I) and Algorithms, Complexity and Games
(Vol. II). The 95 contributed papers were selected by the Program Committee
(PC) out of a total of 270 submissions. All submitted papers were peer reviewed
and evaluated on the basis of originality, quality, significance, and presentation
by at least three PC members with the help of external experts. The PC decided
to give the Best Paper Award, sponsored by the European Association of Theo-
retical Computer Science (EATCS), to the paper “Zero Knowledge and Circuit
Minimization”written by Eric Allender and Bireswar Das. In addition, the paper
entitled “The Dynamic Descriptive Complexity of k-Clique” by Thomas Zeume
earned the Best Student Paper Award.

The scientific program of the symposium included seven invited talks by:

– Krishnendu Chatterjee (IST Austria, Klosterneuburg, Austria)
– Achim Jung (University of Birmingham, UK)
– Dániel Marx (MTA SZTAKI, Hungary)
– Peter Bro Miltersen (Aarhus University, Denmark)
– Cyril Nicaud (Université Paris-Est Marne-la-Vallé, France)
– Alexander Sherstov (University of California, Los Angeles, USA)
– Christian Sohler (Technische Universität Dortmund, Germany)

We are grateful to all invited speakers for accepting our invitation and for
their excellent presentations at the symposium. We thank all authors who sub-
mitted their work for consideration to MFCS 2014. We deeply appreciate the
competent and timely handling of the submissions of all PC members and ex-
ternal reviewers.

The members of the Organizing Committee were Erzsébet Csuhaj-Varjú
(chair, Budapest), Zsolt Gazdag (Budapest), Katalin Anna Lázár (Budapest)
and Krisztián Tichler (Budapest).

The website design and maintenance were carried out by Zoltán L. Németh
(University of Szeged). The publicity chair was Szabolcs Iván (University of
Szeged).



VI Preface

The editors express their gratitude to Zsolt Gazdag, Katalin Anna Lázár,
and Krisztián Tichler for their valuable contribution to the technical edition of
the two volumes of proceedings.

We thank Andrej Voronkov for his EasyChair system, which facilitated the
work of the PC and the editors considerably.

June 2014 Erzsébet Csuhaj-Varjú
Martin Dietzfelbinger

Zoltán Ésik
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Fratani, Séverine
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Živný, Stanislav



Invited Contributions



Every Graph is Easy or Hard: Dichotomy

Theorems for Graph Problems

Dániel Marx�

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI),

Budapest, Hungary

dmarx@cs.bme.hu

Abstract. Given a family of algorithmic problems, a dichotomy theo-
rem characterizes each member of the family either as “easy”or as “hard.”
A classical example is the result of Hell and Nešetřil classifying the com-
plexity of H-Coloring for every fixed H : it is polynomial-time solvable
if H is bipartite and NP-hard for every nonbipartite graph. Some di-
chotomy theorems characterize the complexity of a family of problems in
a more general setting, where a problem in the family is defined not just
by fixing a single graph H , but by fixing a (potentially infinite) class of
graphs. For example, a result of Yannakakis characterizes the complex-
ity of node deletion problems for any hereditary class of graphs, while
a result of Grohe characterizes the complexity of graph homomorphisms
when the left-hand side graph is restricted to be a member of a fixed
class of graphs. In the talk, we survey classical and recent dichotomy
theorems arising in the context of graph problems.

* Research supported by the European Research Council (ERC) grant
“PARAMTIGHT: Parameterized complexity and the search for tight complexity
results,” reference 280152 and OTKA grant NK105645.



Computer Poker and Computational Game

Theory�

Peter Bro Miltersen

Aarhus University
Department of Computer Science

Åbogade 34, 8200 Århus N

pbmiltersen@cs.au.dk

Abstract. Computationally solving two-player zero-sum games (of var-
ious kinds and with various representations) is a classical topic of com-
putational game theory, going back at least to von Neumann’s work on
the relationship between linear programming and matrix games and ar-
guably even to Zermelo’s 1913 treatment of chess. Nowadays, there are
at least two communities within computer science who provide an on-
going stream of interesting algorithmic problems concerning two-player
zero-sum games. These are the formal methods community and the AI
community. In this invited talk I survey work of a subcommunity of the
latter – the computer poker community – that I think is not well known
in the formal methods and algorithms communities, but should be of
interest to those communities as well. I also present original joint work
with Troels Bjerre Sørensen concerning the computation of asymptoti-
cally optimal push-fold strategies for heads-up no-limit Texas Hold’Em
poker tournaments, as the stack sizes approach infinity.

* Work supported by The Danish National Research Foundation and The National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish
Center for the Theory of Interactive Computation and by the Center for Research in
the Foundations of Electronic Markets (CFEM), supported by the Danish Strategic
Research Council.
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Marinella Sciortino



XVIII Table of Contents – Part I

Subword Complexity and Decomposition of the Set of Factors . . . . . . . . . 147
Julien Cassaigne, Anna E. Frid, Svetlana Puzynina, and
Luca Q. Zamboni

Cyclic Complexity of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Julien Cassaigne, Gabriele Fici, Marinella Sciortino, and
Luca Q. Zamboni

Classifying Recognizable Infinitary Trace Languages Using Word
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Namit Chaturvedi and Marcus Gelderie

Bounded Variable Logic, Parameterized Logarithmic Space, and
Savitch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Yijia Chen and Moritz Müller

An Algebraic Characterization of Unary Two-Way Transducers . . . . . . . . 196
Christian Choffrut and Bruno Guillon

Size-Change Abstraction and Max-Plus Automata . . . . . . . . . . . . . . . . . . . 208
Thomas Colcombet, Laure Daviaud, and Florian Zuleger

Alternating Vector Addition Systems with States . . . . . . . . . . . . . . . . . . . . 220
Jean-Baptiste Courtois and Sylvain Schmitz

Information Rate of Some Classes of Non-regular Languages:
An Automata-Theoretic Approach (Extended Abstract) . . . . . . . . . . . . . . 232

Cewei Cui, Zhe Dang, Thomas R. Fischer, and Oscar H. Ibarra

Relating Nominal and Higher-Order Rewriting . . . . . . . . . . . . . . . . . . . . . . . 244
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Table of Contents – Part II XXIII

Intersection Graphs of L-Shapes and Segments in the Plane . . . . . . . . . . . 299
Stefan Felsner, Kolja Knauer, George B. Mertzios, and
Torsten Ueckerdt

Autoreducibility and Mitoticity of Logspace-Complete Sets for NP and
Other Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Christian Glaßer and Maximilian Witek

Editing to a Connected Graph of Given Degrees . . . . . . . . . . . . . . . . . . . . . 324
Petr A. Golovach

Circuit Complexity of Properties of Graphs with Constant Planar
Cutwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Kristoffer Arnsfelt Hansen, Balagopal Komarath, Jayalal Sarma,
Sven Skyum, and Navid Talebanfard

On Characterizations of Randomized Computation Using Plain
Kolmogorov Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Shuichi Hirahara and Akitoshi Kawamura

New Results for Non-Preemptive Speed Scaling . . . . . . . . . . . . . . . . . . . . . . 360
Chien-Chung Huang and Sebastian Ott

Lower Bounds for Splittings by Linear Combinations . . . . . . . . . . . . . . . . . 372
Dmitry Itsykson and Dmitry Sokolov

On the Complexity of List Ranking in the Parallel External Memory
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Riko Jacob, Tobias Lieber, and Nodari Sitchinava

Knocking Out Pk-free Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
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Partial-Observation Stochastic

Reachability and Parity Games�

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Abstract. We consider two-player zero-sum partial-observation
stochastic games on graphs. Based on the information available to the
players these games can be classified as follows: (a) general partial-
observation (both players have partial view of the game); (b) one-sided
partial-observation (one player has partial-observation and the other
player has complete-observation); and (c) perfect-observation (both
players have complete view of the game). The one-sided partial-
observation games subsumes the important special case of one-player
partial-observation stochastic games (or partial-observation Markov
decision processes (POMDPs)). Based on the randomization available
for the strategies, (a) the players may not be allowed to use ran-
domization (pure strategies), or (b) they may choose a probability
distribution over actions but the actual random choice is external and
not visible to the player (actions invisible), or (c) they may use full
randomization. We consider all these classes of games with reachability,
and parity objectives that can express all ω-regular objectives. The
analysis problems are classified into the qualitative analysis that asks for
the existence of a strategy that ensures the objective with probability 1;
and the quantitative analysis that asks for the existence of a strategy
that ensures the objective with probability at least λ ∈ (0, 1).

In this talk we will cover a wide range of results: for perfect-
observation games; for POMDPs; for one-sided partial-observation
games; and for general partial-observation games.

1 Basic Description of Results

We present a very basic and informal description of the results to be covered in
the talk. Below we discuss about pure strategies and randomized strategies with
full randomization. Later we remark about randomized strategies with actions
invisible.

1. Perfect-observation stochastic games. The decision problems for qualita-
tive and quantitative analysis for partial-observation stochastic games with
reachability and parity objectives lie in NP ∩ coNP [16,13,14,3]. More-
over, pure and memoryless optimal strategies exist for both players in such
games [16,13,14,3].

� The research was partly supported by Austrian Science Fund (FWF) Grant No P
23499- N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307:
Graph Games), and Microsoft faculty fellows award.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 1–4, 2014.
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2. POMDPs. The quantitative analysis problem is undecidable both for infinite-
memory and finite-memory strategies for POMDPs with reachability objec-
tives [18]. The qualitative analysis problem for POMDPs with reachabil-
ity objectives is EXPTIME-complete, and belief-based (subset-construction)
based strategies are sufficient for randomized strategies [9,1]. The qual-
itative analysis problem for POMDPs with parity objectives is undecid-
able for infinite-memory strategies (with or without randomization) [1,8].
The qualitative analysis problem for POMDPs with parity objectives is
EXPTIME-complete for finite-memory strategies (with or without random-
ization), and belief-based strategies are not sufficient for pure or randomized
strategies [15,4].

3. One-sided partial-observation games. The quantitative analysis problem
is undecidable both for infinite-memory and finite-memory strategies for
one-sided partial-observation games with reachability objecives [18]. The
qualitative analysis problem for one-sided partial-observation games with
reachability objectives is EXPTIME-complete, and belief-based (subset-
construction) based strategies are sufficient for randomized strategies [11],
but not for pure strategies [6]. The qualitative analysis problem for one-sided
partial-observation games with parity objectives is undecidable for infinite-
memory strategies (with or without randomization) [1,8]. The qualitative
analysis problem for one-sided partial-observation games with parity objec-
tives is EXPTIME-complete for finite-memory strategies (with or without
randomization), and belief-based strategies are not sufficient for pure or ran-
domized strategies [17,12].

4. General partial-observation games. The lower bound results for POMDPs
and one-sided partial-observation games carry over to the case of general
partial-observation games. However the general case is more complicated.
For qualitative analysis of reachability objectives with randomized strate-
gies, the problem is 2EXPTIME-complete and belief-based strategies are
sufficient [2], however, in contrast, for qualitative analysis of reachability
objectives with pure strategies, the lower bound on memory requirement is
non-elementary [6] and the decidability of the problem is open.

Table 1. Computational complexity results for reachability objectives

Qualitative analysis Quantitative analysis

Randomized Pure Rand./Pure

Perfect-observation NP ∩ coNP NP ∩ coNP NP ∩ coNP

POMDP EXPTIME-c EXPTIME-c Undec.

One-sided EXPTIME-c EXPTIME-c Undec.

Two-sided 2EXPTIME-c Open Undec.
(General case) (non-elementary mem. reqd.)
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Table 2. Computational complexity results for parity objectives

Qualitative analysis Quantitative analysis

Fin. mem. Inf. mem. Fin./Inf. mem.

Perfect-observation NP ∩ coNP NP ∩ coNP NP ∩ coNP

POMDP EXPTIME-c Undec. Undec.

One-sided EXPTIME-c Undec. Undec.

Two-sided (General case) Open Undec. Undec.

Remark 1. For qualitative analysis with reachability objectives, finite-memory
strategies are always sufficient [6], however the results are quite different for
pure vs randomized strategies, and the results are summarized in Table 1. For
POMDPs pure strategies are as powerful as randomized strategies, and for qual-
itative analysis of one-sided and general partial-observation games the results for
pure strategies and randomized action-invisible strategies coincide [6,17,12]. For
parity objectives, there is quite an important distinction between finite-memory
and infinite-memory strategies, and the results are summarized in Table 2.

For qualitative analysis, we focus on existence of strategies that are almost-
sure winning (winning with probability 1), and for other notions of qualitative
analysis, such as sure winning (winning with certainty) or limit-sure winning
(winning with probability arbitrarily close to 1) we refer the readers to sur-
veys [5,10].

Acknowledgements. The talk is based on joint work with several collabora-
tors, namely, Martin Chmelik, Laurent Doyen, Hugo Gimbert, Thomas A. Hen-
zinger, Marcin Jurdzinski, Sumit Nain, Jean-Francois Raskin, Mathieu Tracol,
and Moshe Y. Vardi.
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Abstract. In this article, we consider deterministic automata under the
paradigm of average case analysis of algorithms. We present the main re-
sults obtained in the literature using this point of view, from the very
beginning with Korshunov’s theorem about the asymptotic number of
accessible automata to the most recent advances, such as the average
running time of Moore’s state minimization algorithm or the estima-
tion of the probability that an automaton is minimal. While focusing on
results, we also try to give an idea of the main tools used in this field.

This article is dedicated to the memory of Philippe Flajolet.

1 Introduction

Automata theory [30] is a fundamental field of computer science, which has
been especially useful in classifying formal languages, while providing efficient
algorithms in several field of applications, such as text algorithms [17]. In this
article, we consider deterministic automata under the paradigm of average case
analysis of algorithms. We present the main results obtained in the literature
with this approach, from the very beginning with Korshunov’s theorem [35] to
the most recent advances. We do not claim to be exhaustive, but hope to give a
fair overview of the current state of this research area.

Following Knuth’s seminal approach [33, Ch. 1.2.10], the area of analysis of
algorithms aims at a more thorough analysis of algorithms by gaining insight
on their running time in the best case, the worst case and the average case.
Establishing that an algorithm behaves better in average than in the worst case
is often done in two steps. First, one looks for properties of the inputs that makes
the algorithm run faster. Then, using precise quantifications of various statistics,
these properties are proved to hold with high probability1 for random inputs.

To assist the researcher in spotting these properties, the community of analysis
of algorithms also developed algorithms that randomly and uniformly generate
a large variety of combinatorial structures. As we will see in the sequel, there
several solutions available that are both efficient and quite generic. These ran-
dom samplers are also very useful as substitutes for benchmarks for studying

� This work is supported by the French National Agency (ANR) through ANR-10-
LABX-58 and through ANR-2010-BLAN-0204.

1 i.e., with probability that tends to 1 as the size tends to infinity.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 5–23, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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algorithms experimentally. A random generator is considered good if structures
of size thousand can be generated in a few seconds. A very good generator can
generated objects of size one billion within the same amount of time.

The two main mathematical tools for analyzing the average running time of
algorithms are discrete probabilities [23] and analytic combinatorics [25]. The
latter is a field of computer science that aims at studying large combinatorial
structures (such as permutations, trees, . . . ) using their combinatorial properties.
The analysis starts from an enumerative description of these objects, encoded
into generating series, that is, the formal series

∑
n≥0 cnz

n, where cn denote
the number of objects of size n. When possible, these series are interpreted as
analytic functions from C to C. A precise analysis of these functions then pro-
vides information on the initial combinatorial structures, especially approximate
estimations of various parameters, such as the expected number of cycles in a
permutation, the typical height of a tree, and so on.

Under the impulsion of Flajolet, efforts were made to systematize the approach
as much as possible. It was done in two main directions. First, by providing
techniques to directly characterize the generating series from a combinatorial
description of the structures of interest. Then, by stating theorems that yield
useful and general results, while hiding the technical complex analysis methods
within their proofs. Though its main domain of application is the average case
analysis of algorithms and the design of efficient random generators, analytic
combinatorics has also proved useful in various fields such as statistical physics
or information theory.

As an example, consider the set of total maps from [n] to itself.2 If f is such
a map, its functional graph is the directed graph with vertex set [n] and with
an edge from x to y whenever f(x) = y. Such a graph may consist of several
components, each a cycle of trees (a forest whose roots are connected by a cycle).
For n and k two positive integers, let mn,k denote the number of maps from [n]
to itself having exactly k cyclic points, where x is a cyclic point of f when there
exists a positive i such that f i(x) = x. Intuitively, cyclic points are the vertices
of the functional graph belonging to a cycle. Assume we want to estimate the
proportion of cyclic points in a random map from [n] to [n], for large values of n.
The symbolic method [25, Ch. II] allows to directly translate the combinatorial
specification “maps = set of cycles of trees” into the equality

M(z, u) :=
∑
n≥1

∑
k≥1

mn,k

n!
znuk =

1

1− u T (z)
with T (z) = z eT (z) .

At this point, M(z, u) is viewed as an analytic function and the singularity
analysis techniques [25, Ch. VI] yield that the average number of cyclic points
is asymptotically equivalent to

√
π n/2.

Since a random deterministic automaton has a lot of useless states with high
probability, we focus on the combinatorics of accessible automata in Section 2.
We give some combinatorial bijections between automata and other combina-
torial structures, as well as asymptotic results on the number of automata.

2 For any positive integer n, [n] denote the set {1, . . . , n}.
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In Section 3, we present on a toy example a useful technique, which is widely
used in the analysis of random automata. With this technique, one can export
a probabilistic property of random automata to random accessible automata at
low cost, avoiding the difficulty of dealing with accessible automata directly. We
investigate the problem of generating accessible automata uniformly at random
in Section 4. In Section 5, we briefly explained an important result, which states
that a non negligible ratio of accessible automata are minimal. We then present
the average case analysis of an algorithm, namely Moore’s state minimization
algorithm, in Section 6. In Section 7, we state some recent results about the ran-
dom synchronization of automata and present some open problems that seem to
be relevant for further studies.

Though not always explicitly mentioned, analytic combinatorics and discrete
probabilities are used to establish most of the results presented in this article.3

2 Combinatorics of Automata

We start our presentation by studying the combinatorics of deterministic au-
tomata. As a guideline, we will answer the following question:4

Question 1: What is the asymptotic number of accessible deterministic
and complete automata with n states?

Let us formalize the question first. Let A be a fixed alphabet with k ≥ 2 letters.5

For any n ≥ 1, an n-state transition structure T on A is a pair (q0, δ), where
q0 ∈ [n] is the initial state and δ is a total map from [n] × A to [n] called the
transition function of T . Since δ is a total map, a transition structure is a classical
deterministic and complete automaton with set of states [n], with q0 as initial
state, but with no final states. An n-state deterministic and complete automaton
on A is a tuple (q0, δ, F ), where (q0, δ) is an n-state transition structure and F ⊆
[n] is the set of final states. Let Tn and An denote the set of n-state transition
structures and n-state automata respectively. Obviously, we have |Tn| = n · nkn

and |An| = n · nkn · 2n. Since we will only consider deterministic and complete
automata, we simply call them automata in the sequel.

Recall that a word u is recognized by the automaton A when it labels a path
from the initial state to a final state. To define it formally, we extend δ to words
in A∗ by setting inductively that for every p ∈ [n], u ∈ A∗ and a ∈ A, δ(p, ε) = p
and δ(p, ua) = δ(δ(p, u), a). A word u is recognized by A when δ(q0, u) ∈ F . Let
L(A) denote the language recognized by A, i.e., the set of words it recognizes.

A state p of an automaton or a transition structure is accessible when there
exists u ∈ A∗ such that δ(q0, u) = p. An automaton or a transition structure is
accessible when all its states are accessible. Similarly, a state p of an automaton is

3 For instance, the probabilistic study of the number of cyclic points in a random map,
presented above, is one of the cornerstone of [10,19,20,42].

4 For the exact number of automata, see Remark 7.
5 Automata on alphabets with only one letter are very specific. See [40] for information
on their typical behavior when taken uniformly at random.
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2

1

3

a

b

b

a

b, a

1 2 3

→ 1 a−→ 1 b−→ 2 a−→ 2 b−→ 3 a−→ 3 b−→

Fig. 1. An accessible automaton and its associated surjection φ: a transition p
a−→ q

indicates that φ(p
a−→) = q and φ(→) designates the initial state

co-accessible when there exists u ∈ A∗ such that δ(p, u) ∈ F , and an automaton
is co-accessible when all its states are co-accessible.

States that are not accessible or not co-accessible are useless, since they can
be removed without changing the recognized language. We will see that from a
probabilistic point of view, an accessible automaton is co-accessible with high
probability (see Remark 9). The number of automata with no useless states is
therefore asymptotically equivalent to the number of accessible automata. This
justifies the choice of Question 1, and we now turn our attention to the set Cn

of n-state transition structures that are accessible.
In a transition structure, the action of each letter a ∈ A, i.e, the map p �→

δ(p, a), is a total map from [n] to [n]. Using for instance techniques of analytic
combinatorics [25], it is not difficult to establish that the expected number of
elements with no preimage by a random map from [n] to [n] is e−1n (see [24]).
Hence, roughly speaking, in a random element of Tn on a two-letter alphabet,
there are around e−1n states with no incoming transition labelled by a and
e−1n states with no incoming transition labelled by b. “Therefore”, there are
around e−2n states with no incoming transition. This informal argument can be
turned into a proof. It establishes that with high probability an element of Tn

is not accessible, as only the initial state can have no incoming transition in an
accessible structure. Hence, |Cn| is asymptotically much smaller than |Tn|.

The idea of Korshunov [35] is to consider elements Tn whose states have at
least one incoming transition, except possibly the initial state. Let T′

n denote
the set of such transition structures. Of course, an element of T′

n is not always
accessible: two strongly connected components that are totally disjoint form a
non-accessible element of T′

n. But we will see in the sequel that it is a reasonable
approximation of Cn. Let En = [n]×A ∪ {→} and let Sn denote the set of sur-
jections from En onto [n]. To each element T = (q0, δ) of T′

n one can associate
bijectively an element f of Sn, by setting f(→) = q0 and f((p, a)) = δ(p, a) (an
example is depicted in Fig. 1). Hence |T′

n| is equal to the number S(kn+ 1, n) of
surjections from a set with kn+1 elements onto a set with n elements. Good [27]
used the saddle point method (see [25, Ch. VIII]) to obtain an asymptotic equiv-
alent of S(n,m) when m = Θ(n). Using his result we get that the number of
surjections from [kn + 1] onto [n] satisfies
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1

2 4

3

a

b

a, b

a

b

b

a 1a 1b 2a 2b 3a 3b 4a 4b

1

2

3

4

Fig. 2. An accessible automaton and its associated diagram, as introduced in [7].
The states are labelled following a breadth-first traversal of the automaton, taking
a-transitions before b-transitions. Every column of the diagram corresponds to a tran-
sition p

a−→ q. The height of a column is the number of states discovered so far in the
traversal, and there is a cross in the row corresponding to the target q of the tran-
sition. For example, 3 states were discovered when considering the transition 3

a−→ 1.
Therefore, the associated column has height 3 and there is a cross in the first row, as
1 is the target state of this transition.

S(kn + 1, n) ∼ αk β
n
k nkn+1 ,

where αk > 0 and βk ∈ (0, 1) are two computable constants.

Remark 1. The quantity αkβ
n
k is exactly the probability that a mapping from

[kn + 1] to [n] is a surjection. By Good’s result, this probability is hence expo-
nentially small.

The main result of Korshunov in [35] is that, asymptotically, the number of
accessible transition structures differs from |T′

n| by a multiplicative constant: if
|A| ≥ 2 then |Cn| ∼ γk |T′

n|, where γk > 0 is an explicit constant. The proof is
too complicated to be sketched here. It relies on a precise combinatorial study of
the shape of a random element of T′

n. Using Good’s estimation for the number
of surjections, we therefore get the answer to Question 1:

|Cn| ∼ γk αk β
n
k nkn+1 2n .

Remark 2. If ρk is the smallest positive solution of the equation x = k(1− e−x),

then βk = kk(eρk−1)

ekρk
k

. Numerically, we have β2 ≈ 0.836 and β3 ≈ 0.946.

Remark 3. Korshunov gave a complicated formula for γk, using limits of con-
verging series. Lebensztayn greatly simplified it with the theory of Lagrange
inversion [36].

Remark 4. Korshunov also proved that the number of strongly connected tran-
sition structures has the same order of growth: it is asymptotically equivalent to
δk β

n
k nkn+1, for some positive δk.
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1

2

3

a, b

b
a

b

a 1

2

3

a
b

b a

b

a

Fig. 3. On the left, an automaton with inner symmetries: there are only 3 different
ways to label this shape. The automaton on the right is accessible; hence it has no
inner symmetry and there are 3! different ways to label it.

Remark 5. In [7], Bassino and the author used another encoding for elements
of T′

n. Instead of surjections, these transition structures are represented by dia-
grams obtained during a breadth-first traversal, as shown on Fig. 2. They have
the advantage that there is a simple characterization of diagrams that corre-
spond to accessible transition structures. These diagrams were used by Bassino,
David and Sportiello to count the asymptotic number of minimal automata [6].
This result is presented in Section 5.

The answer we gave to Question 1 may seem to be unsatisfactory, since we
consider two automata that only differ by their state labels as different. An iso-
morphism of transition structures is a bijection φ from the states of a transition
structure T = (q0, δ) to those of T ′ = (q′0, δ

′) such that φ(q0) = q′0 and for
every state p and every letter a, δ′(φ(p), a) = φ(δ(p, a)). For the definition of
isomorphism of automata we also require that φ(p) is final if and only if p is. It
can seem more relevant to count the number of isomorphic classes rather than
the number of transition structures or automata.

There is not the same number of automata in every isomorphic class, as
depicted in Fig. 3. Such situations can make the counting of the number of classes
quite difficult. Fortunately, the situation is easier when considering only the
number of accessible structures: each state p of an n-state accessible automaton
(or transition structure) is completely characterized by the smallest word u for
the radix order,6 also called the length-lexicographic order, such that δ(q0, u) =
p. Hence, every bijection from the set of those words to [n] define a different
labelling for the automaton. Each isomorphic class of an accessible automaton or
transition structure therefore contains exactly n! elements. Thus, using Stirling
formula, we can give the final answer to Question 1:

Answer 1: The number of isomorphic classes of accessible automata
with n states is asymptotically equivalent to γ′

k β
′n
k n(k−1)n+1/2 2n, where

γ′
k = γkαk√

2π
and β′

k = e · βk are two computable positive constants.

6 Compare the length first, and use the lexicographic order if they have same length.
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4

2

5

1

3

a, b

b
a

b

a

a, b

b

a 2

1

3

a
b

b a

b

a

Fig. 4. On the left, a transition structure T with 5 states. Its states 1 and 3 are not
accessible. The accessible part of T is depicted on the right. It is obtained by removing
1 and 3, and by normalizing the remaining state labels while preserving their relative
order: 2 �→ 1, 4 �→ 2 and 5 �→ 3.

3 From Automata to Accessible Automata

Our next goal is to obtain information on the typical properties of random
accessible automata. However, we saw in the previous section that working with
accessible structures can be quite complicated. In particular, we do not know
any useful formula for their generating series. We therefore cannot directly use
well-established techniques, such as analytic combinatorics, in order to obtain
statistics on accessible automata. In this section we will explain how, in some
situations, we can establish a property on random accessible automata by first
proving it on random automata. We illustrate this technique on Question 2
below, which is a toy question we use to emphasize the method. More important
applications will be presented in the following sections. Recall that a state p is
a sink state if for every a ∈ A, δ(p, a) = p.

Question 2: Does a random accessible automaton often has a sink state?

The question is easy if we remove the accessibility condition. A random automa-
ton with n states for the uniform distribution can be seen as choosing the initial
state uniformly in [n], then, independently, choosing δ(p, a) uniformly in [n] for
every p ∈ [n] and every a ∈ A. Assume for this section that A = {a, b}. The
probability that a given state p is a sink state is therefore 1

n2 . Hence, by the
union bound, the probability that there is a sink state is7 at most 1

n : a uni-
form random automaton has no sink state with high probability. We will now
show how to use this simple result to establish a similar statement for random
accessible automata.

For any T ∈ Tn, the accessible part of T is the accessible transition structure
obtained by removing the states that are not accessible. If the accessible part
has m states, we relabel them with [m] while preserving their relative order, as
depicted in Fig. 4.

Let m be an integer with 1 ≤ m ≤ n and let T be an element of Cm. We
want to compute the number of elements of Tn whose accessible part is T .

7 In fact, it is exactly 1− (1− 1
n2 )

n.
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To build such a transition structure, we first choose one of the
(
n
m

)
possible size-

m subsets of [n] for labelling the states of T . Then observe that the transitions
outgoing from an accessible state are already defined by the choice of T and
that the other transitions can end anywhere without changing the accessible
part. Therefore, there are exactly

(
n
m

)
nk(n−m) elements of Tn whose accessible

part is T . A crucial observation here is that this quantity only depends on n
and m: two elements of Cm are the accessible part of a random element of Tn

with the same probability. Using the vocabulary of probability: conditioned by
its size m, the accessible part of a uniform random element of Tn is a uniform
random element of Cm.

Let #acc(An) be the random variable associated with the number of states of
the accessible part of a random element An of Tn. By summing the contribution
of all T ∈ Cm, and since |Tn| = nkn+1, we get that

P
(
#acc(An) = m

)
=

1

n

(
n

m

)
|Cm|n−km . (1)

This is the starting point of the study of #acc(An) done by Carayol and the
author in [13]. Thanks to Korshunov’s result presented in Section 2, a fine anal-
ysis of the distribution of #acc(An) is possible. In particular, we proved that
there exists a computable constant vk ∈ (0, 1) such that E[#acc(An)] ∼ vk n.
Numerically, v2 ≈ 0.7968, meaning that about 80% of the states are accessible
in a typical automaton over a two-letter alphabet. The distribution is also con-
centrated around its mean: for any ε > 0 the accessible part has size between
(1−ε)vk n and (1+ε)vk n with high probability. Moreover, there exists a positive
constant ωk such that

P
(

#acc(An) = vk n�
)
∼ ωk√

n
. (2)

Remark 6. The main contribution of [13] is that the sequence of random vari-
ables #acc(An) is asymptotically Gaussian, of expectation and standard devi-
ation asymptotically equivalent to vk n and σk

√
n respectively, where vk and

σk are two computable positive constants. Hence once properly normalized, it
converges in distribution to the normal law.

We can now give an answer to Question 2. Let An denote a random ele-
ment of Tn, let acc(An) denote its accessible part and let #acc(An) denote
the number of states in acc(An). We first use the fact that conditioned by
its size, the accessible part of an automaton is a uniform accessible automa-
ton: the probability that an element of Cm has a sink state is equal to the
probability that an element of Tn has a sink state in its accessible part given
the accessible part has size m. Therefore, we aim at studying the quantity
P(acc(An) has a sink state | #acc(An) = m). But if there is a sink state in
the accessible part, there is a sink state in the automaton. Hence,

P
(
acc(An) has a sink state | #acc(An) = m

)
≤ P

(
An has a sink state | #acc(An) = m

)
.
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Using the definition of conditional probability, we get

P
(
An has a sink state | #acc(An) = m

)
=

P
(
An has a sink state, #acc(An) = m

)
P
(
#acc(An) = m

)
≤ P(An has a sink state)

P
(
#acc(An) = m

) .

We already proved that the numerator is at most 1
n at the beginning of the

section. Moreover, by Equation (2), if we choose n such that m = vk n�, then
n = Θ(m) and the denominator is in Θ( 1√

m
). Therefore, the probability that an

element of Cm has a sink state is in O( 1√
m

). This gives the answer to Question 2:

Answer 2: With high probability, a random accessible automaton has
no sink state.

Remark 7. Equation (1) rewrites in nkn+1 =
∑n

m=1

(
n
m

)
|Cm|nk(n−m). This is a

way to calculate the values of |Cm| using a computer. The first values of the
number 1

m! |Cm| of accessible transition structures up to isomorphism are,8 for
k = 2,

1, 12, 216, 5248, 160675, 5931540, 256182290, . . .

This formula for |Cm| was given by Liskovets [37]. See also Harrison [28] for the
first formulas that enumerate several kind of automata.

Remark 8. The answer to Question 2 we gave follows the article [13], but the idea
we used is already in Korshunov’s paper [35]. To apply the method and prove
that a property P does not hold with high probability for Cn, it is sufficient that
(i) the probability P holds for Tn is in o( 1√

n
) and that (ii) if T ∈ Cn satisfies P ,

then any transition structure whose accessible part is T also satisfies P .

Remark 9. By moving randomly the initial state and by using our result on the
size of the accessible part, we can observe that a random automaton should have
a unique stable9 strongly connected component with high probability, which has
size around vk n. This implies that for any state p, there exists a path from p to
this stable connected component. Moreover this component has a final state with
high probability. Using the same technique as for sink states, this “proves” that
an accessible automaton is co-accessible with high probability. By controlling
the error terms, this informal argument can be turned into a full proof [20].

Remark 10. In the classical Erdős-Rényi model, a random graph with n vertices
has an edge between any two vertices with probability pn, independently. The
phase transition result [11] states that there are three phases for the connected-
ness of such a graph: if pn � 1

n then a typical graph is completely disconnected,

8 This is the sequence A006689 of the Online Encyclopedia of Integer Sequences.
9 A set S is stable when there is no transition p → q for p ∈ S and q /∈ S.
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with very small connected components; if 1
n � pn � logn

n , there is a giant con-
nected component of linear size and the other connected components are much
smaller; if logn

n � pn, the graph is connected with high probability. This result
have been extended by Karp to directed graphs [31]. One could think that by tak-
ing pn = k

n , one would obtain a good approximation of the underlying structure
of an automaton over a k-letter alphabet. In particular, the expected number
of edges is kn. However, this is not really the case since random automata have
a unique component with high probability according to the previous remark,
whereas random graphs with pn = k

n do not.

4 Random Generation of Accessible Automata

As explained in the introduction, random generation is an important subfield
of analysis of algorithms. Given a combinatorial class C, the goal is to build an
algorithm that efficiently generates elements of C of size n with the required
distribution (usually the uniform distribution, in which all elements of size n
have equal probability). Most basic structures, such as permutations or binary
trees, have their own ad-hoc random generators. But researchers of this field
also developed generic methods that translate combinatorial specifications into
random samplers. They can directly be applied for objects like set partitions,
partial injections, and so on. For more intricate structures, such as accessible
automata, some additional work is usually required. But these general techniques
form a guideline to design advanced generators, as we will see by addressing the
following question:

Question 3: Is there an efficient algorithm to generate accessible au-
tomata with n states uniformly at random?

A first idea could be to use a rejection algorithm: repeatedly generate a random
automaton until it is accessible. Unfortunately, the probability pn that an au-
tomaton is accessible is exponentially small. Since the number of iterations of
this process follows a geometric law of parameter pn, the average running time
of this generator is exponential in n.

A second idea is to use the encoding into surjections of [kn + 1] to [n] pre-
sented in Section 2. If we can generate efficiently such a surjection, then we can
successfully use the idea of a rejection algorithm. Indeed, by Korshunov’s result,
the probability that a random surjection corresponds to an accessible automa-
ton tends to a positive constant. The average number of rejections is therefore
in O(1). Moreover, using appropriate data structures, building the automaton
from the surjection and testing whether it is accessible can be done in linear
time. Hence, the limiting factor of this approach is the efficient generation of a
random surjection from [kn + 1] onto [n].

Such a generator can be built using the recursive method, which has been
introduced by Nijenhuis and Wilf [43] and developed by Flajolet, Zimmermann
and Van Cutsem [26]. Let us illustrate this method on our example. Recall
that S(m,n) denote the number of surjections from [m] onto [n]. In such a



Random Deterministic Automata 15

surjection f we distinguish two cases, depending on whether f(m) has one or
more preimage by f (m is of course one of these preimages). If f(m) has only one
preimage, then the restriction of f to [m − 1] is a surjection onto [n] \ {f(m)};
since there are n choices for f(m), there are nS(m− 1, n− 1) such surjections.
Similarly, there are nS(m− 1, n) surjections such that f(m) has more than one
preimage. Hence, adding the correct initial conditions, we have the recursive
formula S(m,n) = nS(m − 1, n − 1) + nS(m − 1, n). The recursive method
consists of two steps. First, all the values S(i, j) are computed, for i ∈ [kn + 1]
and j ∈ [n]. Then, we use the formula to build the surjection inductively: we
randomly generate the image of m by f , then decide whether it has one or more

preimage. It has one preimage with probability nS(m−1,n−1)
S(m,n) , in which case we

remove f(m) from the possible images. We then switch to m−1, and so on. The
running time of the preprocess is O(n2) and then each surjection is generated
in linear time. But this analysis holds for a RAM model, where each arithmetic
operation and each random choice is done in constant time. This is not realistic,
since we saw that S(kn + 1, n) grows extremely fast. In practice, it is hard to
generate accessible automata with more than a few thousand states using this
method. We have to find a better solution.

Remark 11. Following [21], it is possible to use floating point approximations to
avoid the computation and the storage of O(n2) big integers. Assume that we
have an approximate value p≈ of a probability p, with |p− p≈| ≤ ε. To draw a
Bernoulli law of parameter p, we generate an element x of [0, 1]. If x < p≈ − ε
we return 1, if x > p≈ + ε we return 0, and if x is in the unknown zone, i.e.,
|x − p≈| ≤ ε, we compute a more precise estimation of p. This idea is classical
in random generation but requires a careful implementation.

Remark 12. Instead of generating the surjections and rejecting those that are not
valid (not associated to an accessible automaton), we can directly work on valid
surjections. Indeed, valid surjections satisfies the same recurrence formula as
surjections, but with different border conditions. This is the technique developed
in [16,41], using valid diagrams of Remark 5 instead of valid surjections.

Remark 13. The algorithm designed by Almeida, Moreira and Reis [2] is another
example of using the recursive method for generating accessible automata. The
encoding is different, as they use string representations for accessible automata.

Boltzmann samplers were introduced in [22] and quickly became very popular
in the field. This is an elegant technique that proved very efficient in many
situations. Boltzmann samplers are parameterized by a positive real number x.
They do not generate objects of fixed size, and the value of x has to be tuned so
that the expected size of a generated object is near n. However, two objects of the
same size always have the same probability to be generated. If the distribution
of sizes is concentrated enough, the algorithm produces objects of size around n
with high probability. The main idea of this method is thus to allow variations
on the sizes in order to obtain more efficient samplers.
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In our setting, the Boltzmann samplers for surjections onto [n] consists of
the following steps. First generates the sizes s1, . . . , sn of the preimage of each
element of [n]. Each preimage size is generated independently using a non-zero
Poisson law10 of parameter x. Then fill every preimage with elements of [m]
where m =

∑n
i=1 si. This can be done by generating a random permutation of [m]

once and taking the elements in that order. The law for the si’s guarantees that
we sample surjections onto [n] following a Boltzmann distribution of parameter
x. For x correctly chosen, the value of m is concentrated around kn+ 1. But we
need m to be exactly kn + 1 for our transformation into automata to doable.
This can be achieved by doing an extra rejection step: if m �= kn + 1 we start
the process again from the beginning. Every construction can be done in linear
time, and it can be shown that the average number of rejections is in Θ(

√
n). All

in all, it results in an efficient random sampler for accessible automata of size n
with an average running time in Θ(n3/2).

Remark 14. The correct value for the Boltzmann parameter x is the ρk of Re-
mark 2. It also satisfies ρk = k + W0(−k e−k), where W0 is the Lambert-W

function. The series expansion of W0 is W0(z) =
∑

n≥1
(−n)n

n! zn, which can be

used to compute a good approximation of ρk, as −k e−k is small. This approxi-
mation is necessary for the algorithm, in order to generate the si’s.

The third approach to random generation consists in using the result on the
accessible part of a random automaton [13], which has been presented in Sec-
tion 3. Recall that if m ≤ n, then conditioned by its size m, the accessible part
of a random automaton is a uniform accessible automaton with m states. Since
the size of the accessible part is concentrated around vk n, one can simply build
a random sampler for size-m accessible automata by generating an automaton
of size n

vk
and extracting its accessible part. This is particularly efficient if we

allow approximate sampling: if we use rejections until the resulting accessible
automaton has size in [(1 − ε)m, (1 + ε)m], the average running time is linear.
To generate an accessible automaton of size exactly m, we use a rejection algo-
rithm once again, and the average running time of the process is Θ(m3/2). It is
therefore competitive with the previous method and much simpler to implement.

Remark 15. Computing vk is not difficult, as vk = ρk

k , where ρk can be approx-
imated as explained in Remark 14.

The story is not over yet. In a recent preprint [8], Bassino and Sportiello
presented a new method to achieve the random generation of surjections. It is
based on the recursive method, mixed with the idea presented in Remark 11:
probabilities are estimated more precisely only when needed. Using their method,
the random generation of a surjection from [kn + 1] onto [n] can be done in
linear expected time, yielding a linear expected time algorithm for generating
accessible automata. Remark that implementing completely this technique seems

10 That is, P(s = i) = xi

i!(ex−1)
, for any i ≥ 1.
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to be quite challenging. We therefore choose to state the answer to Question 3
as follows.

Answer 3: Using simple algorithms, one can randomly generate acces-
sible automata with n states in expected time Θ(n3/2), and accessible
automata having between (1− ε)n and (1 + ε)n states in linear expected
time. Advanced techniques under development will soon allow the gener-
ation of accessible automata with n states in linear expected time.

Remark 16. Some implementations of these algorithms are available, such as
Regal [3] for the method using Boltzmann samplers and Fado [1] that uses the
recursive method on string representations (see Remark 13). The algorithm that
consists in extracting the accessible part of a random automaton can be easily
implemented: the random generation of an automaton is elementary, the acces-
sible part is computed using a depth-first traversal and a good evaluation of
vk = ρk

k is obtained by truncating the series of Remark 14.

5 Proportion of Minimal Automata

Let A = (q0, δ, F ) be an n-state automaton. For every state p ∈ [n], let Lp(A) =
{u ∈ A∗ : δ(p, u) ∈ F}, i.e., the words recognized when the initial state is
moved to p. Two states p and q of A are equivalent when Lp(A) = Lq(A). We
write p ∼ q when p and q are equivalent. An automaton is minimal when its
states are pairwise non-equivalent. Minimal automata are important in automata
theory. In particular, up to isomorphism, there is a unique minimal automata
that recognizes a given regular language L. Moreover, it is the deterministic
automaton recognizing L that minimizes the number of states.

Experimentations done at the end of the nineties [41] suggested that the
proportion of minimal automata amongst accessible automata is not negligible.
This motivate the question of this section:

Question 4: What is the probability that a random accessible automaton
is minimal?

Bassino, David and Sportiello gave the answer to this question [6]. Their proof
is complicated, we will just give the main ideas here. Two states p and q are
strongly equivalent when both are in F or both are not in F , and for all a ∈
A, δ(p, a) = δ(q, a). Clearly, if p and q are strongly equivalent then they are
equivalent, and the automaton is not minimal.

The first step of their proof is to establish that if a random accessible automa-
ton is not minimal, then with high probability it contains two states that are
strongly equivalent. To do so, they used the technique we presented in Section 3
and proved it for random automata first. It is easier but still quite involved.

They then estimated precisely the probability of having no pair of strongly
equivalent states. The critical case is for two-letter alphabets, for which this
probability tends to a positive constant. Intuitively, in a random automaton, the
probability that 4 given states p, p′, qa and qb are such that δ(p, a) = δ(p′, a) = qa
and δ(p, b) = δ(p′, b) = qb is 1

n4 . Since there are Θ(n4) choices for these 4



18 C. Nicaud

states, this indicates that there should be a positive probability that a random
automaton is not minimal. Turning this intuition into a formal proof is difficult,
especially since we have to deal with accessible automata. To do so, they use the
diagram encoding depicted in Fig. 2. The main theorem of [6] is a very beautiful
result, which answers Question 3:

Answer 4: If |A| = 2, then the probability that an accessible automaton
is minimal tends to a computable constant c2 ∈ (0, 1). If |A| ≥ 3, the
probability that a random accessible automaton is minimal tends to 1 as
the number of states tends to infinity.

Remark 17. There is a related work of Berend and Kontorovich where they
study the size of the minimal automaton of the language recognized by a ran-
dom automaton [9]. They mostly rely on discrete probabilities to establish that
when minimizing a random automaton, one obtains an automaton with vkn +
O(
√
n logn) states with high probability.

Remark 18. Thanks to the answer to Question 4, the algorithms of Section 4 can
be directly used to generate minimal automata with a given number of states. We
just need to add a rejection step where we test whether the accessible automaton
is minimal, and start again from the beginning if it is not. Testing minimality
can be done in time O(n log n) and the average number of rejections is bounded.
The average running time is therefore O(n3/2) or O(n logn) depending on the
algorithm used for generating accessible automata.

6 Average Case Analysis of Minimization Algorithms

A minimization algorithm computes the minimal automaton of a regular lan-
guage, which is usually given by an automaton. Minimal automata are important
in automata theory, and there is a rich literature on the topic, with many algo-
rithms, experimental studies, worst-case running time analysis, and so on. The
best known solution to the minimization problem is Hopcroft’s algorithm [29],
whose worst-case running time is O(n logn). This algorithm can be viewed as
a tight optimization of Moore’s algorithm [39], whose worst-case running time
is O(n2). Amongst the many other solutions, the most famous one is probably
Brzozowski’s algorithm [12], which is based on a different idea11 and which also
works if the input is a non-deterministic automaton. However, the running time
of this elegant algorithm is exponential in the worst case, even for deterministic
automata.12

Despite its quadratic worst-case running time, authors of libraries that im-
plements classical algorithms for automata13 noticed that Moore’s minimization

11 This is not entirely true, there are works that explain how it is related to the other
minimization algorithms [15].

12 For non-deterministic automata, the exponential blow up cannot be prevented in
the worst case.

13 Such as Vaucanson [38].
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algorithm behaves well in practice. This motivates the question of this section,
which is the following.

Question 5: What is the average running time of Moore’s minimization
algorithm?

Recall that two states p and q of an automaton are equivalent when the
languages Lp and Lq are equal, where Lp is the language recognized if the initial
state is moved to p. If p is a state and � ≥ 0 is an integer, let L≤�

p = Lp ∩ A≤�

denote the set of words of length at most � that are in Lp. Two states p and q
are �-equivalent, p ∼� q, when L≤�

p = L≤�
q . It can be shown that if ∼�=∼�+1,

then ∼j=∼ for every j ≥ �. Moreover, in an n-state automaton we always have
∼n−2=∼. Based on this facts, Moore’s algorithm iteratively computes ∼0, ∼1,
. . . until ∼�=∼�−1. Using appropriate data structures, each iteration can be done
in linear time. Hence, the running time of the algorithm is O(n�), where � is the
number of iterations, that is, the smallest � such that ∼�=∼�−1. The minimal
automaton is then built by merging states that are in the same equivalence class.

Let A be an automaton such that ∼� �=∼�−1 and ∼�+1=∼� for some given � ≥
1. Then there exists two states p and q that are distinguished after � iterations,
but not before: p ∼�−1 q and there exists a word u of length � such that u ∈ Lp

and u /∈ Lq (or u /∈ Lp and u ∈ Lq). Thus for every prefix v of u that is not
equal to u, δ(p, v) and δ(q, v) are both final or both not final. Let G be the
undirected graph whose vertices are the states of A and with an edge between
δ(p, v) and δ(q, v) for any prefix v of u that is not equal to u. In the conference14

paper [4], Bassino, David and the author proved that this graph is acyclic and
has exactly � edges. Observe that in a connect component of this graph, either
all the states are final or none of them is final. But for fixed p, q and u, the graph
only depends on the transition structure of A: if we randomly choose the set of
final states, the probability that the connected components satisfy the property
is 2−�. For a good choice of � ∈ Θ(log n), this proves that the average running
time of Moore’s algorithm is in O(n logn).

Importantly, the proof we just sketched does not depend on the shape of the
automaton: if we consider a probabilistic model where a transition structure
with n states is chosen following any distribution and then a set of final states
is added uniformly at random, then the result still holds. In particular it holds
for subclasses of automata such as acyclic automata, group automata, and so
on. David [18] proved that for the uniform distribution of automata, the average
running time of Moore’s algorithm is in Θ(n log logn). The proof is too involved
to be presented here, but this gives the answer to Question 5:

Answer 5: For the uniform distribution, the average running time of
Moore’s algorithm is in O(n log logn). For any distribution on transition
structures, if final states are added uniformly at random then the average
running time of Moore’s algorithm is in O(n logn).

14 In the journal version [5] there is no reference to this graph, the proof is done on
partitions directly.
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Remark 19. The proofs of [5,18] also work if each state is final with fixed prob-
ability p ∈ (0, 1) independently. David’s result, though stated for random au-
tomata, is still valid for the uniform distribution on accessible automata, using
the technique presented in Section 3 (see [6,13]).

Remark 20. The proofs do not work for distributions with few final states, such
as the uniform distribution on accessible automata with exactly one final state.
See Section 7 for a discussion on such models.

Remark 21. Hopcroft’s algorithm maintains a set of tasks to be performed. This
set can be implemented in many ways (queue, stack, . . . ) without affecting its
worst-case running time. David [18] proposed a structure for this set of tasks that
guarantees that the algorithm performs at least as well as Moore’s algorithm.
Hence, using this implementation for the set of tasks, the average running time
of Hopcroft’s algorithm satisfies the same bounds as those stated in Answer 5
for Moore’s algorithm.

Remark 22. De Felice and the author proved that not only Brzozowski’s algo-
rithm is inefficient in the worst case, but also that its running time is super-
polynomial15 with high probability [19]. It is thus also super-polynomial on
average. This result uses a famous theorem of Erdős and Túran, which states
that the order of a random permutation of [n] is super-polynomial with high
probability.16

7 Recent Results, Ongoing Works and Open Questions

An automaton is synchronizing when there exists a word that maps every state
to the same state. Such a word is called a synchronizing word. In 1964, Černý [14]
gave a family of synchronizing n-state automata whose smallest synchronizing
word has length (n − 1)2 and asked whether this bound is tight: does every
synchronizing n-state automaton admit a synchronizing word of length at most
(n− 1)2? The question, now known as the Černý conjecture, is still open and is
one of the most famous conjecture in automata theory.

The probabilistic version of this conjecture is to ask whether random au-
tomata are often synchronizing, and whether the Černý conjecture holds with
high probability. In a recent preprint [10], Berlinkov proved that a random au-
tomaton is synchronizing with probability 1 − Θ( 1

n ) on a two-letter alphabet.
This is a deep and difficult result, which was expected for quite some time, since
simulations clearly shows that automata are synchronizing with high probability.
Berlinkov’s proof is based on classical techniques developed around the Černý
conjecture and uses advanced properties of random maps from [n] to [n], fol-
lowing the approach of [34]. In another preprint [42], the author uses a different
method to establish that with high probability17 there exists a synchronizing

15 i.e., grows faster that any polynomial in n.
16 Their result is much more precise, giving a limit law for the random variable logOn,

where On is the order of a random permutation of [n].
17 Contrarily to Berlinkov’s result, there is no tight bound on the error term with this

technique.
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word of length O(n1+ε), for any positive ε. Hence, the Černý conjecture holds
with high probability. There is still room for sharper results in this direction, as
experimentations [32] seem to indicate that the expected length of the smallest
synchronizing word grows in

√
n.

Automata taken uniformly at random tends to have too many final states, as
in practice automata with few final states are not uncommon. Unfortunately, as
stated in Remark 20, most results presented in this article cannot be adapted to
automata with, say, one final state. The only exception is the recent analysis of
Brzozowski’s algorithm for that kind of distributions [20]. One of the interesting
open questions here is to confirm experimental studies that indicates that a
random automaton with one final state should be minimal with non-negligible
probability.

An other series of questions that is widely open is the study of the average state
complexity of the classical operations on regular languages. The state complexity
of a regular language is the number of states of its minimal automaton. A typical
question in this area is “What is the average state complexity of the intersection
of two languages of state complexities n?”. The only known results are for unary
alphabets [40] and for the reverse operation [19].

In this article, we presented different results about random deterministic
automata. It is natural to try to answer the same kind of questions for non-
deterministic automata too. Unfortunately, it is quite challenging to define
distributions on non-deterministic automata that are both meaningful and math-
ematically tractable. For instance, a non-deterministic automaton taken uni-
formly at random recognizes all the words with high probability. The uniform
model is therefore not relevant. Proving formally the experimental results such
as those presented in [44], where non-deterministic automata are drawn under
the Erdős-Rényi model for random graphs [11], would be an important first step
in the analysis of the typical properties of random non-deterministic automata.

Acknowledgments. The author would like to thank Arnaud Carayol for his
precious help during the preparation of this article.
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Abstract. The set disjointness problem features k communicating par-
ties and k subsets S1, S2, . . . , Sk ⊆ {1, 2, . . . , n}. No single party knows all
k subsets, and the objective is to determine with minimal communication
whether the k subsets have nonempty intersection. The important special
case k = 2 corresponds to two parties trying to determine whether their
respective sets intersect. The study of the set disjointness problem spans
almost four decades and offers a unique perspective on the remarkable
evolution of communication complexity theory. We discuss known results
on the communication complexity of set disjointness in the deterministic,
nondeterministic, randomized, unbounded-error, and multiparty models,
emphasizing the variety of mathematical techniques involved.

Keywords: Set disjointness problem, communication complexity, com-
munication lower bounds.

1 Introduction

Communication complexity theory, initiated by Andrew Yao [52] thirty-five years
ago, is a central branch of theoretical computer science. The theory studies the
minimum amount of communication, measured in bits, required in order to com-
pute functions whose arguments are distributed among several parties. In addi-
tion to the basic importance of studying communication as a bottleneck resource,
the theory has found a vast number of applications to other research areas, in-
cluding mechanism design, streaming algorithms, machine learning, data struc-
tures, pseudorandom generators, and chip layout. Communication complexity
theory is an abundant source of fascinating research questions that can be easily
explained to a high school graduate but require deep mathematics and decades
of collective effort to resolve. Progress in this area over the years has been truly
remarkable, both in the depth and volume of research results obtained and in
the diversity of techniques invented to obtain them.

Our survey focuses on a single communication problem, whose study began
with the theory’s inception in 1979 and actively continues to this day, with much
left to discover. This problem is set disjointness. Its simplest version features two
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parties who are each given a subset of {1, 2, . . . , n} and asked to determine with
minimal communication whether the two subsets intersect. One can interpret the
problem as scheduling a meeting subject to the availability of the two parties—or
rather, checking whether such a meeting can be scheduled. The study of set dis-
jointness has had a significant impact on communication complexity theory and
has in many ways shaped it. First and foremost, the difficulty of determining the
communication requirements of set disjointness in all but the simplest models
has fueled a rapid development of the field’s techniques. Moreover, set disjoint-
ness has acquired special status in communication complexity theory in that it
often arises as an extremal example or as a problem separating one communica-
tion model from another. In what follows, we survey some of the highlights of
this story, from basic models such as nondeterminism to advanced formalisms
such as unbounded-error and multiparty communication.

2 Deterministic Communication

The simplest model of communication is the two-party deterministic model.
Consider a function f : X × Y → {0, 1}, where X and Y are finite sets. The
model features two cooperating parties, traditionally called Alice and Bob. Alice
receives an input x ∈ X, Bob receives an input y ∈ Y, and their objective is
to compute f(x, y). To this end, Alice and Bob communicate back and forth
according to an agreed-upon protocol. The cost of a given communication pro-
tocol is the maximum number of bits exchanged on any input pair (x, y). The
deterministic communication complexity of f, denoted D(f), is the least cost of
a communication protocol for f. In this formalism, the set disjointness problem
corresponds to the function DISJn : P({1, 2, . . . , n})×P({1, 2, . . . , n}) → {0, 1}
given by

DISJn(A,B) =

{
1 if A ∩B = ∅,

0 otherwise,

where P refers as usual to the powerset operator.
We start by reviewing some fundamental notions, which are easiest to explain

in the deterministic model and become increasingly important in more advanced
models. A combinatorial rectangle on X × Y is any subset R of the form R =
A × B, where A ⊆ X and B ⊆ Y. For brevity, we will refer to such subsets
as simply rectangles. Given a communication problem f : X × Y → {0, 1}, a
rectangle R is called f -monochromatic if f is constant on R. Rectangles play
a central role in the study of communication complexity due to the following
fact [29], which shows among other things that an efficient deterministic protocol
for a given function f partitions the domain into a disjoint union of a small
number of f -monochromatic rectangles.
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Fact 1. Let Π : X × Y → {0, 1} be a deterministic communication protocol of
cost at most c. Then there exist pairwise disjoint rectangles R1, R2, R3, . . . , R2c

such that
2c⋃
i=1

Ri = X × Y

and Π is constant on each Ri.

Fooling Set Method. A straightforward technique for proving communication
lower bounds is the fooling set method [29], which works by identifying a large
set of inputs no two of which can occupy the same f -monochromatic rectangle.
Formally, a fooling set for f : X×Y → {0, 1} is any subset S ⊆ X×Y with the fol-
lowing two properties: (i) f is constant on S; and (ii) if (x, y) and (x′, y′) are two
distinct elements of S, then f is not constant on {(x, y), (x, y′), (x′, y), (x′, y′)}.
A moment’s reflection reveals that an f -monochromatic rectangle can contain
at most one element of S. Therefore, any partition (or even cover!) of X × Y
by f -monochromatic rectangles must feature a rectangle for each point in the
fooling set S, which in light of Fact 1 means that the deterministic communi-
cation complexity of f is at least log2 |S|. We summarize this discussion in the
following theorem.

Theorem 2 (Fooling set method). Let f : X × Y → {0, 1} be a given commu-
nication problem. If S is a fooling set for f, then

D(f) � log2 |S|.

The fooling set method works perfectly for the set disjointness problem. Indeed,
the set {(A, {1, 2, . . . , n}\A) : A ⊆ {1, 2, . . . , n}} is easily seen to be a fooling set
for DISJn, whence D(DISJn) � n. A somewhat more careful accounting yields
the tight bound D(DISJn) = n + 1.

Rank Bound. A more versatile technique for deterministic communication
complexity was pioneered by Mehlhorn and Schmidt [33], who took an algebraic
view of the question. These authors associated to every communication problem
f : X×Y → {0, 1} its characteristic matrix Mf = [f(x, y)]x∈X,y∈Y and observed
that any partition of X × Y into 2c f -monochromatic rectangles gives an upper
bound of 2c on the rank of the characteristic matrix over the reals. In view
of Fact 1, this gives the so-called rank bound on deterministic communication
complexity.

Theorem 3 (Mehlhorn and Schmidt). For any f : X × Y → {0, 1},

D(f) � log2(rkMf).

This method, too, works well for set disjointness. Indeed, the characteristic ma-
trix of DISJn is the Kronecker product of n matrices[

1 1
1 0

]
⊗
[
1 1
1 0

]
⊗ · · · ⊗

[
1 1
1 0

]
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and therefore has full rank. As a result, D(DISJn) � n by the rank bound.

Log-Rank Conjecture. It is an instructive exercise [29] to prove that the
rank bound subsumes the fooling set method, in that every communication lower
bound obtained using the fooling set method can be rederived up to a constant
factor using the rank bound. As a matter of fact, the log-rank conjecture due
to Lovász and Saks [32] asserts that the rank bound is approximately tight for
every function:

D(f) � (log2(rkMf))c1 + c2

for some universal constants c1, c2 > 0 and all f. This conjecture remains one
of the most intriguing open questions in the area. An earlier, stronger version
of the log-rank conjecture with c1 = 1 has been disproved. One counterexample,
due to Nisan and Wigderson [37], is a function f : {0, 1}n×{0, 1}n → {0, 1} with
D(f) = Ω(n) but log2(rkMf ) = O(n0.631...). As the reader might have guessed
from the title of our survey, Nisan and Wigderson’s construction crucially uses
results [40] on the communication complexity of the set disjointness function!

3 Nondeterminism

Nondeterminism plays an important role in the study of communication, both
as a natural model in its own right and as a useful intermediate formalism. In
a nondeterministic protocol for a given function f : X × Y → {0, 1}, Alice and
Bob start by guessing a bit string, visible to them both. From then on, they
communicate deterministically. A nondeterministic protocol for f must output
the correct answer for at least one guess string when f(x, y) = 1 and for all
guess strings when f(x, y) = 0. The cost of a nondeterministic protocol is de-
fined as the worst-case length of the guess string, plus the worst-case cost of
the deterministic phase. The nondeterministic communication complexity of f,
denoted N(f), is the least cost of a nondeterministic protocol for f. As usual,
the co-nondeterministic communication complexity of f is the quantity N(¬f).

The nondeterministic communication complexity of a given function f is es-
sentially characterized by the cover number of f, which is the smallest number
of f -monochromatic rectangles whose union is f−1(1). Indeed, it follows easily
from Fact 1 that any nondeterministic protocol of cost c gives rise to such a col-
lection of size at most 2c. Conversely, any size-2c collection of f -monochromatic
rectangles whose union is f−1(1) gives rise to a nondeterministic protocol for f
of cost c+ 2, in which Alice and Bob guess one of the rectangles and check with
two bits of deterministic communication whether it contains their input pair.

Fooling Set Method. The fooling set method, reviewed in the previous section,
generalizes to the nondeterministic model. Indeed, as we have already observed,
no two points of a fooling set S ⊆ f−1(1) can reside in the same f -monochromatic
rectangle, which means that any cover of f−1(1) by f -monochromatic rectan-
gles must contain at least |S| rectangles. In the language of nondeterministic
communication complexity, we arrive at the following statement.
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Theorem 4 (Fooling set method). Let f : X × Y → {0, 1} be a given commu-
nication problem. If S ⊆ f−1(1) is a fooling set for f, then

N(f) � log2 |S|.

Since the set disjointness function has a fooling set S ⊆ DISJ−1
n (1) of size 2n,

we obtain N(DISJn) � n. Set disjointness should be contrasted in this regard
with its complement ¬DISJn, known as set intersection, whose nondeterministic
communication complexity is a mere log2 n + O(1). Indeed, Alice and Bob need
only guess an element i ∈ {1, 2, . . . , n} and verify with two bits of communication
that it belongs to their respective sets.

Rectangle Size Bound. The most powerful method for lower bounds on non-
deterministic communication complexity is the following beautiful technique,
known as the rectangle size bound [29].

Theorem 5 (Rectangle size bound). Let f : X×Y → {0, 1} be a given function.
Then for every probability distribution μ on f−1(1),

N(f) � log2

(
1

maxR μ(R)

)
,

where the maximum is over all rectangles R ⊆ f−1(1).

The rectangle size bound is a generalization of the fooling set method. Indeed,
letting μ be the uniform distribution over a given fooling set S ⊆ f−1(1), we
immediately recover Theorem 4. The proof of Theorem 5 is straightforward: any
cover of f−1(1) by f -monochromatic rectangles must cover a set of μ-measure 1,
which means that the total number of rectangles in the cover must be no less than
the reciprocal of the largest μ-measure of a rectangle R ⊆ f−1(1). Theorem 5 is of
interest in two ways. First of all, it characterizes nondeterministic communication
complexity up to a small additive term [29]. Second, as we will see in the next
section, ideas analogous to the rectangle size bound play a key role in the study
of randomized communication complexity.

It is instructive to rederive the nondeterministic lower bound for set disjoint-
ness using the rectangle size bound. One approach is to simply consider the uni-
form distribution over the fooling set {(A, {1, 2, . . . , n} \A) : A ⊆ {1, 2, . . . , n}},
which gives N(DISJn) � n. A more revealing choice [29] is to let μ be the uniform
distribution over DISJ−1

n (1), so that

μ(A,B) =

{
3−n if A ∩B = ∅,

0 otherwise.

Now, let R = A ×B be any rectangle in DISJ−1
n (1). Then it is straightforward

to check that the larger rectangle P(S) × P(T ), where S =
⋃

A∈A A and

T =
⋃

B∈B B, must also be contained in DISJ−1
n (1). It follows that S ∩ T = ∅

and therefore |R| � |P(S)×P(T )| � 2n. In summary, we have shown that every
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rectangle R ⊆ DISJ−1
n (1) contains at most 2n inputs, whence μ(R) � (2/3)n.

Applying the rectangle size bound, we arrive at N(DISJn) � n log2(3/2). While
this bound is weaker than the previous bound N(DISJn) � n, the analysis just
given is more broadly applicable and is good preparation for the next section on
randomized communication.

Complexity Classes. In a seminal paper, Babai, Frankl, and Simon [5] ini-
tiated a systematic study of communication from the standpoint of complexity
classes. Analogous to computational complexity, the focus here is on the asymp-
totic communication requirements of a family of functions, one function for
each input size. Specifically, one considers families {fn}∞n=1 where fn : {0, 1}n×
{0, 1}n → {0, 1}. Among the complexity classes defined in [5] are Pcc,NPcc, and
coNPcc, corresponding to function families with efficient deterministic, nonde-
terministic, and co-nondeterministic protocols, respectively. Formally, Pcc is the
class of all families {fn}∞n=1 for which D(fn) � logc n+c for some constant c > 0
and all n. The classes NPcc and coNPcc are defined analogously with respect to
the requirements N(fn) � logc n + c and N(¬fn) � logc n + c. Set disjointness
is helpful in characterizing the relations among these classes. Indeed, recall that
D(DISJn) � N(DISJn) � n and N(¬DISJn) � log2 n + O(1). An immediate
consequence is that Pcc � NPcc, with an exponential gap between deterministic
and nondeterministic complexity achieved for ¬DISJn. One analogously obtains
NPcc �= coNPcc, with an exponential gap for DISJn. The significance of set dis-
jointness in the study of nondeterminism is no accident: Babai et al. show that
it is a complete problem for the class coNPcc.

We conclude with yet another use of set disjointness. A fundamental result
due to Aho, Ullman, and Yannakakis [2] states that D(f) � cN(f)N(¬f) for
some absolute constant c > 0 and every function f. In particular, one obtains
the surprising equality Pcc = NPcc ∩ coNPcc. A variant of the set disjointness
problem, known as k-set disjointness [39], shows that the upper bound of Aho
et al. is tight up to a constant factor.

4 Randomized Communication

In many ways, the randomized model is the most realistic abstraction of two-
party communication. As usual, consider a function f : X × Y → {0, 1}, where
X and Y are finite sets. Alice receives an input x ∈ X, Bob receives an input
y ∈ Y, and their objective is to compute f(x, y) by communicating back and
forth according to an agreed-upon protocol. In addition, Alice and Bob share an
unlimited supply of uniformly random bits, which they can use in deciding what
messages to send. The cost of a randomized protocol is the maximum number
of bits exchanged on any input pair (x, y). Since the random bits are shared,
they do not count toward the protocol cost. A protocol is said to compute f with
error ε if on every input pair (x, y), the output of the protocol is correct with
probability at least 1− ε. The ε-error randomized communication complexity of
f, denoted Rε(f), is the least cost of a randomized protocol that computes f
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with error ε. The canonical quantity to study is R1/3(f). This setting of the error
parameter is without loss of generality. Indeed, for any constants ε, ε′ ∈ (0, 1/2),
the error of a communication protocol can be reduced from ε to ε′ by running
the protocol constantly many times and outputting the majority answer.

There are several other ways to formalize randomized communication, all of
which turn out to be equivalent [29]. Most notably, one can consider a model
where Alice and Bob each have a private source of random bits, known as the
private-coin model. A fundamental theorem due to Newman [34] shows that
whether the random bits are shared or private affects the communication com-
plexity of any given function f : {0, 1}n×{0, 1}n → {0, 1} by at most an additive
term of O(log n).

Corruption Bound. The randomized communication complexity of a function
can be vastly smaller than its deterministic or nondeterministic complexity. For
example, the problem of checking two n-bit strings for equality has randomized
communication complexity O(1), in contrast to its Ω(n) complexity in the deter-
ministic and nondeterministic models. The fact that randomized protocols can
be so powerful means that proving lower bounds in this model is correspondingly
more difficult. The most common method for lower bounds on randomized com-
munication complexity the corruption bound due to Yao [53]. As we shall soon
see, this technique is strong enough to yield the celebrated Ω(n) lower bound
for set disjointness.

Theorem 6 (Corruption bound). Let f : X × Y → {0, 1} be a given function,
α, β > 0 given parameters. Let μ be a probability distribution on X × Y such
that every rectangle R obeys

μ(R ∩ f−1(0)) � αμ(R)− β.

Then for all ε > 0,

Rε(f) � log2

(
αμ(f−1(1))− ε

β

)
.

The technical details of this theorem are somewhat tedious, but the intuition is
entirely straightforward. Fix a probability distribution μ on the domain of the
given communication problem f. The hypothesis of the theorem states that with
respect to μ, the “0” entries make up at least an α fraction of any rectangle—
except for particularly small rectangles, with measure on the order of β. As a
result, any cover of f−1(1) by rectangles that are “almost” f -monochromatic
requires roughly μ(f−1(1))/β rectangles, for a communication cost of roughly
log2(μ(f−1(1))/β). It is not too difficult to turn this informal discussion into a
rigorous proof of the corruption bound, by using Fact 1 and viewing a randomized
protocol of a given cost as a probability distribution on deterministic protocols
of the same cost.
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An Ω(
√
n) Lower Bound. The randomized communication complexity of set

disjointness has been extensively studied. A variety of proof techniques have been
brought to bear on this question, including Kolmogorov complexity, information
theory, matrix analysis, and approximation theory. The first strong result in
this line of work is an Ω(

√
n) lower bound on the randomized communication

complexity of DISJn, due to Babai, Frankl, and Simon [5]. Their proof, presented
below in its entirety, uses nothing but basic combinatorics and is exceedingly
elegant.

Theorem 7 (Babai, Frankl, and Simon). R1/3(DISJn) � Ω(
√
n).

Proof. Without loss of generality, we may assume that n is a perfect square
divisible by 12. We will work with a restriction of the set disjointness problem,
in which Alice and Bob’s inputs are sets of size exactly

√
n. Let μ denote the

uniform probability distribution over all such inputs. Then

μ(DISJ−1
n (1)) =

(n−√
n√

n

)(
n√
n

) = Ω(1).

The crux of the proof is the following purely combinatorial fact:

Claim. Let R = A ×B be any rectangle with P(A,B)∈R[A ∩ B = ∅] � 1 − α

and |A | � 2−δ
√
n
(

n√
n

)
, where α > 0 and δ > 0 are sufficiently small absolute

constants. Then

|B| � 2−δ
√
n

(
n√
n

)
.

Let us finish the proof of the theorem before moving on to the claim itself.
The claim is logically equivalent to the following statement: there exist absolute
constants α > 0 and δ > 0 such that any rectangle R with μ(R) � 2−δ

√
n

satisfies
μ(R ∩DISJ−1

n (0)) > αμ(R).

Applying the corruption bound (Theorem 6) with β = 2−δ
√
n, we conclude that

Rε(DISJn) = Ω(
√
n) for sufficiently small ε = ε(α, δ) > 0. By error reduction,

this implies the conclusion of the theorem.

Proof of Claim. Consider the matrix M = [DISJn(A,B)]A∈A ,B∈B. By hypoth-
esis, the “0” entries make up at most an α fraction of M. Without loss of gen-
erality, we may assume that the fraction of “0” entries is at most 2α in every
row of M (if not, simply remove the offending rows, which reduces the size of A
by at most a factor of 2). Now, abbreviate k =

√
n/3 and inductively find sets

A1, A2, . . . , Ak ∈ A that are well separated, in the sense that for all i,

|Ai \ (A1 ∪ A2 ∪ · · · ∪Ai−1)| �
√
n

2
.

That such sets must exist is a straightforward exercise in counting, with α > 0
small enough.
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Recall that the “0” entries make up at most a 2α fraction of the entries in
[DISJn(Ai, B)]i=1,2,...,k; B∈B. In particular, at least half of the sets B ∈ B must
satisfy

P
i=1,2,...,k

[Ai ∩B �= ∅] � 4α.

But by the well-separated property of A1, A2, . . . , Ak, the number of such sets

B is at most
(

k
4αk

)(n−(1−4α)k
√
n/2√

n

)
. (Verify this!) For α > 0 and δ > 0 small

enough, this estimate does not exceed 1
2 · 2−δ

√
n
(

n√
n

)
, which gives the claimed

upper bound on |B|.

This lower bound on the randomized communication complexity of set dis-
jointness has an important implication for communication complexity classes.
Analogous to Pcc,NPcc, coNPcc, Babai et al. [5] defined BPPcc as the class of
all communication problems {fn}∞n=1 for which R1/3(fn) � logc n + c for some
constant c > 0 and all n. Theorem 7 shows that {DISJn}∞n=1 /∈ BPPcc, thus
separating the classes NPcc and coNPcc from BPPcc.

Tight Lower Bound. The problem of determining the randomized communi-
cation complexity of set disjointness remained open for several years after the
work of Babai et al. It was finally resolved by Kalyanasundaram and Schnit-
ger [24], who used Kolmogorov complexity to obtain the tight lower bound
R1/3(DISJn) = Ω(n). Shortly thereafter, Razborov [40] gave a celebrated alter-
nate proof of the linear lower bound for set disjointness. In fact, Razborov consid-
ered an easier communication problem known as unique set disjointness, in which
Alice and Bob’s input sets A,B ⊆ {1, 2, . . . , n} are either disjoint or intersect in
a unique element. He studied the probability distribution μ that places weight
3/4 on disjoint pairs (A,B) of cardinality |A| = |B| = n/4�, and weight 1/4 on
uniquely intersecting pairs again of cardinality |A| = |B| = n/4�; in both cases,
each such pair is equally likely. He proved that μ(R∩DISJ−1(0)) � αμ(R)−2−δn

for some constants α > 0 and δ > 0 and every combinatorial rectangle R, from
which the tight lower bound R1/3(DISJn) = Ω(n) follows immediately by The-
orem 6. Razborov’s analysis is based on an entropy argument along with an
ingenious use of conditioning.

Razborov’s result as well as his proof inspired much follow-up work. The fact
that the lower bound holds even for unique set disjointness was a crucial ingre-
dient in Nisan and Wigderson’s counterexample to the “strong” log-rank conjec-
ture (see Section 3). The linear lower bound on the randomized communication
complexity of set disjointness has found several surprising applications, includ-
ing streaming algorithms [4] and combinatorial auctions [35]. In a testament
to the mathematical richness of this problem, Bar-Yossef et al. [7] discovered a
simpler yet, information-theoretic proof of the linear lower bound. This line of
work is still active, with a recent paper by Braverman et al. [13] determining
the randomized communication complexity of set disjointness up to lower-order
terms.
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5 Unbounded-Error Communication

The unbounded-error model, due to Paturi and Simon [38], is a fascinating model
of communication with applications to matrix analysis, circuit complexity, and
learning theory [38,3,11,19,20,28,31,43,46,42]. Let f : X × Y → {0, 1} be a com-
munication problem of interest. As usual, Alice and Bob receive inputs x ∈ X
and y ∈ Y, respectively, and their objective is to compute f(x, y) with minimal
communication. They each have an unlimited private source of random bits.
Their protocol is said to compute f in the unbounded-error model if on every
input (x, y), the output is correct with probability strictly greater than 1/2. The
unbounded-error communication complexity of f, denoted U(f), is the least cost
of a protocol that computes f.

Observe that the unbounded-error model is the same as the private-coin ran-
domized model discussed in Section 4, with one exception: in the latter case the
protocol must produce the correct answer with probability at least 2/3, whereas
in the former case the probability of correctness merely needs to exceed 1/2, by
an arbitrarily small amount. This difference has far-reaching implications. For
example, the fact that the parties in the unbounded-error model do not have a
shared source of random bits is crucial: it is a good exercise to check that allowing
shared randomness in the unbounded-error model would make the complexity
of every function a constant. This contrasts with the randomized model, where
making the randomness public has almost no effect on the complexity of any
given function.

There are several reasons why the unbounded-error model occupies a spe-
cial place in communication complexity theory. To start with, it is vastly more
powerful than the deterministic, nondeterministic, randomized, and quantum
models [42]. Another compelling reason is that unbounded-error communication
complexity is closely related to the fundamental matrix-theoretic notion of sign-
rank, which is defined for a Boolean matrix M = [Mij ] as the minimum rank of
a real matrix R = [Rij ] such that sgnRij = (−1)Mij for all i, j. In other words,
the sign-rank of a Boolean matrix M is the minimum rank of real matrix R that
sign-represents it, with negative and positive entries in R corresponding to the
true and false entries in M, respectively. We let rk±M denote the sign-rank of
M. Paturi and Simon [38] proved the following beautiful theorem, which shows
that unbounded-error communication and sign-rank are equivalent notions.

Fact 8 (Paturi and Simon). For some absolute constant c and every function
f : X × Y → {0, 1},

U(f)− c � log2(rk± Mf) � U(f) + c.

Proving lower bounds on sign-rank is difficult. Indeed, obtaining a strong
lower bound on the unbounded-error communication complexity of any explicit
function was a longstanding problem until the breakthrough work of Forster [19]
several years ago. Fortunately, the unbounded-error complexity of set disjoint-
ness is easy to analyze. The following two theorems give a complete answer, up
to an additive constant.
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Theorem 9 (Folklore). U(DISJn) � log2 n + O(1).

Proof. Consider the following randomized protocol, where A and B denote Alice
and Bob’s input sets, respectively. The players pick an index i ∈ {1, 2, . . . , n}
uniformly at random and verify with two bits of communication whether i ∈
A∩B. If so, they output 0. In the complementary case i /∈ A∩B, they output 1
with probability n/(2n−1) and 0 otherwise. It is easy to verify that this protocol
is correct with probability at least n/(2n− 1) > 1/2 on every input. Moreover,
it clearly has cost at most log2 n + O(1) in the private-coin model.

Theorem 10 (Paturi and Simon). U(DISJn) � log2 n−O(1).

Proof. We will give a linear-algebraic proof of this result, as opposed to the
geometric argument of Paturi and Simon [38]. By Fact 8, it suffices to show
that the characteristic matrix of set disjointness has sign-rank at least n. We
will actually prove the claim for the submatrix M = [xi]x∈{0,1}n,i=1,2,...,n, whose
rows are the 2n distinct Boolean vectors of length n.

For the sake of contradiction, assume that rk±M � n − 1. Then there are
vectors u1, u2, . . . , un−1 ∈ Rn such that every σ ∈ {−1,+1}n is the (compo-
nentwise) sign of some linear combination of u1, u2, . . . , un−1. Let w ∈ Rn be a
nonzero vector in the orthogonal complement of span{u1, u2, . . . , un−1}. Define
σ ∈ {−1,+1}n by

σi =

{
sgnwi if wi �= 0,

1 otherwise.

Then σ = sgn(
∑n−1

i=1 λiui) for some reals λ1, . . . , λn−1, where the sign function is

applied componentwise. In particular, 〈w,
∑n−1

i=1 λiui〉 > 0. But this is impossible
since w was chosen to be orthogonal to u1, u2, . . . , un−1.

The above theorem was in fact the first lower bound on unbounded-error com-
munication complexity.

6 Multiparty Communication

We now move on to multiparty communication, a topic that is particularly re-
warding in its mathematical depth and its applications to many other areas of
theoretical computer science. In this setting, k communicating parties need to
compute a Boolean-valued function f(x1, x2, . . . , xk) with k arguments. Each
party knows one or more of the arguments to f, but not all. The more informa-
tion the parties have available to them, the less communication is required. In the
extreme setting known as the number-on-the-forehead model, each party knows
exactly k−1 arguments, namely x1, . . . , xi−1, xi+1, . . . , xk in the ith party’s case.
One can visualize this model by thinking of the k parties as seated in a circle,
with x1, x2, . . . , xk written on the foreheads of parties 1, 2, . . . , k, respectively.
Any given party sees all the arguments except for the one on the party’s own
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forehead, hence the terminology. The number-on-the-forehead model, introduced
by Chandra, Furst, and Lipton [16], is the most powerful model of multiparty
communication and is therefore the standard setting in which to prove commu-
nication lower bounds.

In this model, the parties communicate via a broadcast channel, with a bit
sent by any party instantly reaching everyone else. They also share an unlimited
supply of random bits. Analogous to the two-party case, a multiparty commu-
nication protocol computes f with error ε if on every input (x1, x2, . . . , xk), it
outputs the correct answer f(x1, x2, . . . , xk) with probability at least 1− ε. The
cost of a protocol is the total number of broadcasts on the worst-case input; as
usual, the shared randomness does not count toward the communication cost.
The ε-error randomized communication complexity of f, denoted Rε(f), is the
least cost of an ε-error communication protocol for f in this model. Again, the
canonical quantity to study is R1/3(F ), where the choice of 1/3 is largely arbi-
trary and can be replaced by any other constant in (0, 1/2) without affecting the
theory in any way.

Multiparty Set Disjointness. The multiparty set disjointness problem is by
far the most studied problem in this line of work. In the k-party setting, the
inputs to the problem are sets S1, S2, . . . , Sk ⊆ {1, 2, . . . , n}, and the ith party
knows all the inputs except for Si. Their goal is to determine whether the sets
have empty intersection: S1 ∩S2 ∩ · · · ∩Sk = ∅. When specialized to k = 2, this
definition is entirely consistent with the two-party set disjointness problem in
Sections 1–4. It is common to represent the input to multiparty set disjointness
as a k×n Boolean matrix X = [xij ], whose rows correspond to the characteristic
vectors of the input sets. In this notation, set disjointness is given by the simple
formula

DISJk,n(X) =
n∧

j=1

k∨
i=1

xij . (1)

Progress on the communication complexity of set disjointness for k � 3 par-
ties is summarized in Table 1. In a surprising result, Grolmusz [22] proved an
upper bound of O(log2 n + k2n/2k). Proving a strong lower bound, even for
k = 3, turned out to be difficult. Tesson [51] and Beame et al. [9] obtained a
lower bound of Ω

(
1
k logn

)
for randomized protocols. Four years later, Lee and

Shraibman [30] and Chattopadhyay and Ada [18] gave an improved result. These
authors generalized the pattern matrix method of [44,45] to k � 3 parties and

thereby obtained a lower bound of Ω(n/22
kk)1/(k+1) on the randomized commu-

nication complexity of set disjointness. Their lower bound was strengthened by

Beame and Huynh-Ngoc [8] to (nΩ(
√

k/ logn)/2k
2

)1/(k+1), which is an improve-
ment for k large enough. All lower bounds listed up to this point are weaker
than Ω(n/2k

3

)1/(k+1), which means that they become subpolynomial as soon as
the number of parties k starts to grow. Three years later, we obtained [47] a
lower bound of Ω(n/4k)1/4 on the randomized communication complexity of set
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Table 1. Communication complexity of k-party set disjointness

Bound Reference

O

(
log2 n+

k2n

2k

)
Grolmusz [22]

Ω

(
log n

k

)
Tesson [51]
Beame, Pitassi, Segerlind, and Wigderson [9]

Ω

(
n

22kk

) 1
k+1 Lee and Shraibman [30]

Chattopadhyay and Ada [18]

(
nΩ(

√
k/ log n)

2k2

) 1
k+1

Beame and Huynh-Ngoc [8]

Ω
( n

4k

)1/4
Sherstov [47]

Ω

(√
n

2kk

)
Sherstov [49]

disjointness, which remains polynomial for up to k ≈ 1
2 logn and comes close to

matching Grolmusz’s upper bound. Most recently [49], we improved the lower
bound quadratically to Ω(

√
n/2kk), which is the strongest bound known. This

lower bound also holds for quantum multiparty protocols, in which case it is
tight. However, it is conceivable that the classical randomized communication
complexity of set disjointness is Ω(n/ck) for some constant c > 1. Proving such
a lower bound, or showing that it does not hold, is a fascinating open problem.

The lower bound from [49] is too demanding to discuss in this survey. In what
follows, we will instead focus on the next best lower bound Ω(n/4k)1/4.

Anatomy of Multiparty Protocols. Recall that the building blocks of two-
party communication protocols are combinatorial rectangles. The corresponding
objects in k-party communication are called cylinder intersections [6]. For a k-
party problem with domain X1 × X2 × · · · × Xk, a cylinder intersection is an
arbitrary function χ : X1 ×X2 × · · · ×Xk → {0, 1} of the form

χ(x1, . . . , xk) =

k∏
i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1 × · · · × Xi−1 × Xi+1 × · · · × Xk → {0, 1}. In other words, a k-
dimensional cylinder intersection is the product of k Boolean functions, where the
ith function does not depend on the ith coordinate but may depend arbitrarily
on the other k − 1 coordinates. As one would expect, combinatorial rectangles
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are cylinder intersections for k = 2. The following fundamental result is the
multiparty analogue of Fact 1.

Fact 11 (Babai, Nisan, and Szegedy). Let Π : X1 × X2 × · · · × Xk → {0, 1}
be a deterministic k-party communication protocol with cost c. Then there exist
cylinder intersections χ1, . . . , χ2c with pairwise disjoint support such that

Π =

2c∑
i=1

χi.

By viewing a randomized protocol with cost c as a probability distribution on
deterministic protocols of cost at most c, one obtains the following corollary,
where ‖ · ‖∞ denotes as usual the �∞ norm.

Corollary 12. Let f : X1 ×X2 × · · · ×Xk → {0, 1} be a given communication
problem. If Rε(f) = c, then there exists a linear combination Π =

∑
χ aχχ of

cylinder intersections with
∑

χ |aχ| � 2c such that

‖f −Π‖∞ � ε.

Analytic Preliminaries. For the past few years, analytic tools have played an
increasingly important role in communication complexity theory. We will need
two such tools, the Fourier transform and polynomial approximation theory.
Consider the real vector space of functions φ : {0, 1}n → R. For S ⊆ {1, 2, . . . , n},
define χS : {0, 1}n → {−1,+1} by χS(x) =

∏
i∈S(−1)xi . Then every function

φ : {0, 1}n → R has a unique representation of the form φ =
∑

S φ̂(S)χS , where

φ̂(S) = 2−n
∑

x∈{0,1}n φ(x)χS(x). The reals φ̂(S) are called the Fourier coeffi-

cients of φ, and the mapping φ �→ φ̂ is the Fourier transform of φ.
The ε-approximate degree of a function φ : {0, 1}n → R, denoted degε(φ), is

the least degree of a multivariate real polynomial p that approximates φ within ε
pointwise: ‖φ−p‖∞ � ε. We also define E(φ, d) = minp ‖φ−p‖∞, where the min-
imum is over multivariate real polynomials p of degree at most d. Thus, E(φ, d)
is the least error to which φ can be approximated pointwise by a polynomial of
degree at most d. In this notation, degε(φ) = min{d : E(φ, d) � ε}. The approx-
imate degree is an extensively studied complexity measure of Boolean functions.
The first result in this line of work is due to Nisan and Szegedy [36], who studied
the function ANDn(x) =

∧n
i=1 xi.

Theorem 13 (Nisan and Szegedy). deg1/3(ANDn) = Θ(
√
n).

The Ω(n/4k)1/4 Lower Bound. We are now in a position to present the
lower bound on the randomized communication complexity of multiparty set
disjointness from [47]. The technical centerpiece of this result is the following
lemma, which analyzes the correlation of cylinder intersections with the XOR of
several independent copies of set disjointness.
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Lemma 14 (Sherstov). Let k and r be given parameters. Then there is a prob-
ability distribution μ on the domain of DISJk,r such that

μ(DISJ−1
k,r(0)) = μ(DISJ−1

k,r(1))

and

∣∣∣∣∣ E
X1,...,Xn∼μ

[
χ(X1, . . . , Xn)

n∏
i=1

(−1)DISJk,r(Xi)

]∣∣∣∣∣ �
(

2k−1

√
r

)n

for every n and every k-party cylinder intersection χ.

A few general remarks are in order before we delve into the proof of the com-
munication lower bound for set disjointness. The proof is best understood by
abstracting away from the set disjointness problem and considering arbitrary
composed functions. Specifically, let G be a k-party communication problem,
with domain X = X1×X2×· · ·×Xk. We refer to G as a gadget. We are interested
in the communication complexity of functions of the form F = f(G,G, . . . , G),
where f : {0, 1}n → {0, 1}. Thus, F is a k-party communication problem with
domain Xn = Xn

1 × Xn
2 × · · · × Xn

k . The motivation for studying such com-
positions is clear from the defining equation (1) for multiparty set disjointness,
which shows that DISJk,nr = ANDn(DISJk,r, . . . ,DISJk,r). A recent line of re-
search [45,50,30,18,8,17,47,49] gives communication lower bounds for composi-
tions f(G,G, . . . , G) in terms of the approximate degree of f. For the purpose
of proving communication lower bounds for set disjointness, the gadget G needs
to be representable as G = DISJk,r with r = r(n, k) as small as possible. This
miniaturization challenge quickly becomes hard.

Theorem 15 (Sherstov). Let f : {0, 1}n → {0, 1} be given. Consider the k-party
communication problem F = f(DISJk,r , . . . ,DISJk,r) Then for all ε, δ � 0,

2Rε(F ) � (δ − ε)

(
degδ(f)

√
r

2ken

)degδ(f)

. (2)

Proof. Let μ be the probability distribution from Lemma 14. Let μ0 and μ1 stand
for the probability distributions induced by μ on DISJ−1

k,r(0) and DISJ−1
k,r(1),

respectively. Consider the following averaging operator L, which linearly sends
real functions χ on ({0, 1}k×r)n to real functions on {0, 1}n:

(Lχ)(z) = E
X1∼μz1

· · · E
Xn∼μzn

[χ(X1, . . . , Xn)] .
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Observe that LF = f. When χ is a k-party cylinder intersection, the Fourier
coefficients of Lχ obey

|L̂χ(S)| =

∣∣∣∣∣ E
z∈{0,1}n

E
X1∼μz1

· · · E
Xn∼μzn

[
χ(X1, . . . , Xn)

∏
i∈S

(−1)zi

]∣∣∣∣∣
=

∣∣∣∣∣ E
X1,...,Xn∼μ

[
χ(X1, . . . , Xn)

∏
i∈S

(−1)DISJk,r(Xi)

]∣∣∣∣∣
�
(

2k−1

√
r

)|S|

, (3)

where the second equality uses the fact that μ places equal weight on DISJ−1
k,r(0)

and DISJ−1
k,r(1), and the final step follows by Lemma 14.

Fix a randomized protocol for F with error ε and cost c = Rε(F ). Approximate
F as in Corollary 12 by a linear combination of cylinder intersections Π =∑

χ aχχ, where
∑

χ |aχ| � 2c. For any positive integer d, the triangle inequality
gives

E(f, d− 1) � ‖f − LΠ‖∞ + E(LΠ, d− 1). (4)

We proceed to bound the two terms on the right-hand side of this inequality.

(i) By the linearity of L,

‖f − LΠ‖∞ = ‖L(F −Π)‖∞ � ε, (5)

where the last step uses the bound ‖F −Π‖∞ � ε from Corollary 12.

(ii) Discarding the Fourier coefficients of LΠ of order d and higher gives

E(LΠ, d− 1) � min

⎧⎨⎩1,
∑
χ

|aχ|
∑
|S|�d

|L̂χ(S)|

⎫⎬⎭
� min

{
1, 2c

n∑
i=d

(
n

i

)(
2k−1

√
r

)i
}

� 2c
(

2ken

d
√
r

)d

, (6)

where the second step uses (3).

Substituting the newly obtained estimates (5) and (6) into (4),

E(f, d− 1) � ε + 2c
(

2ken

d
√
r

)d

.

For d = degδ(f), the left-hand side must exceed δ, forcing (2).
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As an immediate consequence, we obtain the claimed lower bound on the mul-
tiparty communication complexity of set disjointness [47]:

Corollary (Sherstov).

R1/3(DISJk,n) � Ω
( n

4k

)1/4
. (7)

Proof. Recall that DISJk,nr = ANDn(DISJk,r, . . . ,DISJk,r) for all integers n, r.
Theorem 13 guarantees that deg1/3(ANDn) > c

√
n for some constant c > 0.

Thus, letting f = ANDn, δ = 1/3, ε = 1/4, and r = 4k+2�
√
n/c�2 in Theorem 15

gives

R1/4(DISJk,4k+2n�
√
n/c2)

= R1/4(ANDn(DISJk,4k+2�√n/c2 , . . . ,DISJk,4k+2�√n/c2)) � Ω(
√
n),

which is logically equivalent to (7).

7 Other Gems

We have only focused on a small sample of results on the set disjointness problem.
Prominently absent in our survey is the fascinating and influential body of work
on the quantum communication complexity of set disjointness [14,41,1,45,50].
Much can also be said about deterministic, nondeterministic, and Merlin-Arthur
multiparty protocols [25,21,47,49]. Another compelling topic is the multiparty
communication complexity of the set disjointness problem in the number-in-hand
model [7,15,12], where each party sees only one of the input sets S1, S2, . . . , Sk

as opposed to all but one. Lower bounds for such multiparty protocols play
an important role in the study of streaming algorithms. Finally, we have not
discussed XOR lemmas and direct product theorems, which deal with the com-
munication complexity of simultaneously solving several independent copies of
set disjointness [27,9,10,23,26,48,47,49].

Acknowledgments. I am thankful to the organizers of MFCS 2014 and Zoltán
Ésik in particular for this opportunity to share my passion for the set disjointness
problem.
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3. Alon, N., Frankl, P., Rödl, V.: Geometrical realization of set systems and prob-
abilistic communication complexity. In: Proceedings of the Twenty-Sixth Annual
IEEE Symposium on Foundations of Computer Science, FOCS, pp. 277–280 (1985)

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

5. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complex-
ity theory. In: Proceedings of the Twenty-Seventh Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pp. 337–347 (1986)

6. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)

7. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statis-
tics approach to data stream and communication complexity. J. Comput. Syst.
Sci. 68(4), 702–732 (2004)

8. Beame, P., Huynh-Ngoc, D.T.: Multiparty communication complexity and thresh-
old circuit complexity of AC0. In: Proceedings of the Fiftieth Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS, pp. 53–62 (2009)

9. Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A strong direct product the-
orem for corruption and the multiparty communication complexity of disjointness.
Computational Complexity 15(4), 391–432 (2006)

10. Ben-Aroya, A., Regev, O., de Wolf, R.: A hypercontractive inequality for matrix-
valued functions with applications to quantum computing and LDCs. In: Proceed-
ings of the Forty-Ninth Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 477–486 (2008)

11. Ben-David, S., Eiron, N., Simon, H.U.: Limitations of learning via embeddings in
Euclidean half spaces. J. Mach. Learn. Res. 3, 441–461 (2003)

12. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight
bound for set disjointness in the message-passing model. In: Proceedings of the
Fifty-Fourth Annual IEEE Symposium on Foundations of Computer Science,
FOCS, pp. 668–677 (2013)

13. Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: From information to exact
communication. In: Proceedings of the Forty-Fifth Annual ACM Symposium on
Theory of Computing, STOC, pp. 151–160 (2013)

14. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and
computation. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC, pp. 63–68 (1998)

15. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-
party communication complexity of set disjointness. In: Proceedings of the
Eighteenth Annual IEEE Conference on Computational Complexity, CCC,
pp. 107–117 (2003)

16. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC,
pp. 94–99 (1983)

17. Chattopadhyay, A.: Circuits, Communication, and Polynomials. Ph.D. thesis,
McGill University (2008)

18. Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness.
In: Electronic Colloquium on Computational Complexity (ECCC), report TR08-
002 (January 2008)

19. Forster, J.: A linear lower bound on the unbounded error probabilistic communi-
cation complexity. J. Comput. Syst. Sci. 65(4), 612–625 (2002)



42 A.A. Sherstov

20. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.:
Relations between communication complexity, linear arrangements, and computa-
tional complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001.
LNCS, vol. 2245, pp. 171–182. Springer, Heidelberg (2001)

21. Gavinsky, D., Sherstov, A.A.: A separation of NP and coNP in multiparty commu-
nication complexity. Theory of Computing 6(10), 227–245 (2010)

22. Grolmusz, V.: The BNS lower bound for multi-party protocols in nearly optimal.
Inf. Comput. 112(1), 51–54 (1994)

23. Jain, R., Klauck, H., Nayak, A.: Direct product theorems for classical communica-
tion complexity via subdistribution bounds. In: Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, STOC, pp. 599–608 (2008)

24. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

25. Klauck, H.: Rectangle size bounds and threshold covers in communication complex-
ity. In: Proceedings of the Eighteenth Annual IEEE Conference on Computational
Complexity, CCC, pp. 118–134 (2003)

26. Klauck, H.: A strong direct product theorem for disjointness. In: Proceedings
of the Forty-Second Annual ACM Symposium on Theory of Computing, STOC,
pp. 77–86 (2010)
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Sci. 68(2), 303–318 (2004)

29. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press
(1997)

30. Lee, T., Shraibman, A.: Disjointness is hard in the multiparty number-on-the-
forehead model. Computational Complexity 18(2), 309–336 (2009)

31. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures
of sign matrices. Combinatorica 27(4), 439–463 (2007)
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Abstract. The local k-neighborhood of a vertex v in an unweighted
graph G = (V,E) with vertex set V and edge set E is the subgraph
induced by all vertices of distance at most k from v. The rooted k-
neighborhood of v is also called a k-disk around vertex v. If a graph has
maximum degree bounded by a constant d, and k is also constant, the
number of isomorphism classes of k-disks is constant as well. We can
describe the local structure of a bounded-degree graph G by counting
the number of isomorphic copies in G of each possible k-disk. We can
summarize this information in form of a vector that has an entry for
each isomorphism class of k-disks. The value of the entry is the number
of isomorphic copies of the corresponding k-disk in G. We call this vector
frequency vector of k-disks. If we only know this vector, what does it tell
us about the structure of G?

In this paper we will survey a series of papers in the area of Property
Testing that leads to the following result (stated informally): There is a
k = k(ε, d) such that for any planar graph G its local structure (described
by the frequency vector of k-disks) determines G up to insertion and
deletion of at most εdn edges (and relabelling of vertices).

1 Introduction

Very large networks like social networks, the web graph, transportation networks
and road maps appear in many applications. Analyzing huge networks is already
a difficult task and things become even more involved when we want to analyze a
collection of very large networks or learn certain concepts from it. An illustrative
example is the question, if one can learn from the Facebook graph of a country,
whether it is a democracy or a totalitarian state. In order to answer this question
one has to design learning algorithms that extract information from very large
graphs. One possible approach is to extract features from these graphs and use
standard learning methods on the extracted feature vectors. In order to make
this approach work, we want to extract many features from a set of very large
graphs, i.e. we have a problem that is severely time-constraint. One approach to
this problem is to use random sampling to approximately extract features. Such
random sampling approaches can be studied using the framework of Property
Testing.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 44–49, 2014.
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2 Property Testing

Property Testing provides a framework to study sampling approaches to ap-
proximately decide if a given object has a property or is far away from it. The
notion of ”far away” is parametrized by ε, which typically measures the fraction
of the object’s description that has to be modified to obtain an object that has
the studied property. The concept of Property Testing has first been formulated
by Rubinfeld and Sudan in the context of program checking [12]. It has then
been extended to graphs by Goldreich, Goldwasser and Ron [5]. In this paper,
we consider Property Testing in the bounded degree graph model, which has
been introduced by Goldreich and Ron [7]. In this model, an algorithm is given
oracle access to a graph G = (V,E) with vertex set V = {1, . . . , n} and edge
set E and maximum degree bounded by d. Furthermore, the algorithm is given
the values n and d. It can query the oracle about the i-th neighbor of vertex
j for i ∈ {1, . . . , d} and j ∈ {1, . . . , n} and the answer is either this neighbor
or a special symbol that indicates that such a neighbor does not exist. Next we
define the notion of ε-far.

Definition 1. A graph is ε-far from a property Π in the bounded degree graph
model, if one has to insert or delete more than εdn edges to obtain a graph that
has property Π and maximum degree at most d.

A Property Testing algorithm or property tester for a property Π must accept
every graph with property Π with probability at least 3/4 and reject every graph
that is ε-far from Π with probability 3/4. If a graph neither has Π nor is ε-far
from it, the algorithm may answer arbitrarily.

The goal of Property Testing is to find algorithms that approximately decide
a property in the above sense without looking at the whole input. In fact, there
are many examples for Property Testing algorithms that make only a constant
number of queries to the input graph (assuming ε to be constant). In order to
study these properties we define testable graph properties as follows.

Definition 2. A graph property Π is called testable, if there exists a function
q(ε, d) such that for every n, d and ε there is an algorithm Aε,d,n that gets as
input a graph G with n vertices, makes at most q(ε, d) queries to G, accepts with
probability at least 3/4, if G has Π and rejects with probability at least 3/4, if G
is ε-far from Π.

Note that the above notion allows to have different property testers for dif-
ferent values of ε, d and n. This is required if one wants to obtain results of a
generality as presented later in this survey.

3 Property Testing of Planar Graphs

The first properties shown to be testable in the bounded degree graph model
included connectivity, k-connectivity, cycle-freeness and being Eulerian [7]. How-
ever, no results of testable classes of properties were known. The first result in
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this direction was proved by Czumaj, Shapira and Sohler [3] who studied Prop-
erty Testing when the input graph is restricted to be a planar graph of maximum
degree at most d. Under this assumption they could prove that every hereditary
property, i.e. any property that is closed under vertex removal, is testable. The
property tester is very simple: It samples a set of vertices S and checks whether
the subgraph induced by S has the studied property. If it does, the tester accepts
and otherwise it rejects. By closedness under vertex removal, the tester accepts
every hereditary graph property.

It remains to prove that the tester rejects, if the graph is ε-far from Π . The
proof exploits the fact that every planar graph has a small vertex separator:

Theorem 1. [10] Let G = (V,E) be a planar graph with n vertices. Then V
can be partitioned into three sets A,B,C such that there is no edge between the
sets A and B. Furthermore, |A|, |B| ≤ 2

3 · n and |C| ≤ 2
√

2n.

Repeatedly applying this theorem leads to a set of, say, at most εn/2 vertices
whose removal partitions G into connected components of size O(1/ε2). Since G
has degree at most d we can achieve the same effect by removing the at most
εdn/2 edges incident to the vertices in the separator. This implies that any graph
that is ε-far from having a property Π is still ε/2-far from Π after removing this
set of edges. This essentially reduces testing a property of a graph G to testing
the property in a graph G that only has connected components of constant size.
This implies (and here we are simplifying a bit) that there are Ω(n) connected
components that do not have property Π (assuming ε to be a constant). If
we choose our value of k sufficiently large, i.e. larger than the diameter of the
connected components, then sampling a vertex inside such a component will
lead to the discovery of a subgraph that contains the component (recall that the
sampling is done in the original graph). By closedness under vertex removal this
subgraph does not have Π and the tester rejects.

4 Testing Planar Graph Properties

Given that many properties in planar graphs are testable there is the question
if something similar holds for general graphs. Benjamini, Schramm and Shapira
proved that this is indeed the case [1]. They showed that if the frequency vector of
a graph is close to that of a planar graph, then this graph can be partitioned into
small components by removing, say, εdn/2 edges. Furthermore, if a graph can be
partitioned into such a set of small components, we can use arguments similar to
that in [3] to prove that every property that is closed under insertion, deletion
and contraction of edges is testable. Such a property is also called minor-closed.
This implies that every planar and minor-closed graph property is testable (a
graph property Π is planar, if every graph that has Π is also planar). The
arguments can be generalized to prove that every minor-closed graph property
is testable [1].
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5 Local Algorithms to Access a Partition

Another interesting question one can ask in this context is if it is possible to
get local access to a partition of a planar graph into small components that is
obtained by removing at most εdn edges, i.e. whether for a query vertex v one
can locally compute its connected component and the answer is consistent with
some global partitioning. Hassidim, Kelner, Nguyen and Onak [6] introduced a
remarkably simple local algorithm that gives such access. Their algorithm is a
local instantiation of the following global algorithm also given in [6].

GlobalPartitioning (k, ε)
Compute a random permutation v1, . . . , vn of the vertices in V
P = ∅
for i = 1 to n do

if vi is still in the graph then
if there is a connected set S ⊂ V with vi ∈ S and that has at most
ε|S| edges that leave S then Let S be this set
else S = {vi}

P = P ∪ {S}
remove S from G

return P

If we want to locally simulate the algorithm then each vertex computes a
random value between 0 and 1 and the permutation is given by sorting the
vertices increasingly according to these values. It is proved in [6] that in order
to compute the component of a vertex v we typically only need to look at a
constant size neighborhood of v and we only need to instantiate the random
values for this neighborhood. This new algorithm can also be used to simplifiy
and improve some Property Testing results.

Some more efficient constructions in terms of dependency on 1/ε are known
for more restricted classes of graphs [4,9].

6 Approximating a Planar Graph by Its Local Structure

If we consider two planar graphs that are ε-close to being isomorphic, i.e. one has
to change at most an ε fraction of the edges in one graph to obtain an isomorphic
copy of the other graph, then their local structures will also be similar (we here
think of ε being a very small constant). An interesting question is, if the con-
verse is true as well. Based on the previous results, Newman and Sohler proved
that this is indeed the case [11]. They proved that if two graphs on n vertices
have the same distribution of local neighborhoods, then they can be partitioned
into the same set of connected componented by removing at most εdn/2 edges
in each graph. This implies that they are ε-close to being isomorphic. In the
formal statement of the theorem below note that fG(k) denotes the normalized
frequency vector of the k-disks in G, i.e. their distribution. Also, recall that a
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k-disk around v is the rooted subgraph induced by all vertices of distance at
most k from v.

Theorem 2. [11] Let G1, G2 be two planar graphs with maximum degree at
most d on n vertices. Then for every ε, 0 < ε ≤ 1, there exists η = η(ε, ρ, d),
k = k(ε, ρ, d), such that, if |fG1(k)− fG2(k)| ≤ η then G1 is ε-close to (being an
isomorphic copy of) G2.

7 Extensions

Most of the results mentioned above extend to more general classes of graphs,
i.e. to all graphs that, for every ε, 1 > ε > 0, can be partitioned into a set of
small components of size f(ε, d) by removing at most εdn edges.

8 Open Problems

There are several interesting open problems in Property Testing for sparse
graphs. We will mention three of the most interesting ones.

Query Complexity of Planarity Testing. Currently, the best Property Test-
ing algorithm for planarity testing is from [9] and has a query complexity of
(1/ε)O(log 1/ε). Can this be improved to a polynomial? In order to prove such
a result one may need to develop improved local partitioning algorithms or a
different way to approach the problem.

Testable Properties in Expander Graphs. We do not know much about the testa-
bility of properties that contain expander graph. It would be very nice to find
a characterization of a large set of testable properties that contain expander
graphs.

Testable Properties in Bounded Average Degree Graphs. If we do not have a
degree bound, most of the techniques presented in this survey do not work any
more. It would be interesting to prove similar results as in the bounded degree
graph model. So far, we know that bipartiteness is testable in arbitrary planar
graphs [2]. Furthermore, it is known that one can test forst isomorphism [8].
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Abstract. Choiceless Polynomial Time (CPT) is one of the candidates
in the quest for a logic for polynomial time. It is a strict extension of
fixed-point logic with counting (FPC) but to date it is unknown whether
it expresses all polynomial-time properties of finite structures. We study
the CPT-definability of the isomorphism problem for relational struc-
tures of bounded colour class size q (for short, q-bounded structures).
Our main result gives a positive answer, and even CPT-definable canon-
isation procedures, for classes of q-bounded structures with small Abelian
groups on the colour classes. Such classes of q-bounded structures with
Abelian colours naturally arise in many contexts. For instance, 2-bounded
structures have Abelian colours which shows that CPT captures Ptime
on 2-bounded structures. In particular, this shows that the isomorphism
problem of multipedes is definable in CPT, an open question posed by
Blass, Gurevich, and Shelah.

1 Introduction

The quest for a logical characterisation of Ptime remains an important challenge
in the field of finite model theory [10,12]. A natural logic of reference is fixed-
point logic with counting (FPC) which comes rather close to capturing Ptime.
It can express many fundamental graph properties and algorithmic techniques
including for instance by a recent result of Anderson, Dawar and Holm, the
ellipsoid method for linear programs [1]. Moreover, FPC captures Ptime on
many important classes of graphs such as planar graphs and graphs of bounded
tree-width, and more generally, on every class of graphs which excludes a fixed
graph as a minor [13]. More specifically, the aforementioned classes even admit
FPC-definable canonisation which means that FPC can define, given an input
graph, an isomorphic copy of that graph over a linearly ordered universe. Clearly,
if a class of structures admits FPC-definable canonisations, then FPC captures
Ptime on this class, since by the Immerman-Vardi Theorem (see e.g. [10]) fixed-
point logic can define every polynomial-time query on ordered structures. The
technique of definable canonisation will also play a crucial role in this paper.

On the other hand, FPC fails to capture Ptime in general, which was shown
by the CFI-construction of Cai, Fürer and Immerman [6]. Given our current
knowledge, the two main sources of “hard” problems for FPC are tractable
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cases of the graph isomorphism problem and queries from the field of linear
algebra. First of all, the CFI-construction shows that FPC cannot define the
graph isomorphism problem on graphs with bounded degree and with bounded
colour class size. Recall that a graph of colour class size q is a graph coloured
by an ordered set, say natural numbers, where at most q vertices get the same
colour. On the other hand, the graph isomorphism problem is tractable on graphs
with bounded degree or bounded colour class size [3,11,16]. Secondly, Atserias,
Bulatov and Dawar [2] proved that FPC cannot express the solvability of linear
equation systems over finite Abelian groups. Interestingly, also the CFI-query
can be formulated using a linear equation system over Z2 [7].

This observation motivated Dawar, Holm, Grohe and Laubner [7] to introduce
an extension of FPC by operators which compute the rank of definable matrices.
The resulting logic, denoted as rank logic (FPR), is a strict extension of FPC
and capable of defining the solvability of linear equation systems over finite
fields and the CFI-query. Similar extensions of FPC by operators which solve
linear equation systems over finite rings (and not only over finite fields) have
been studied in [8]. It remains open whether one of these extensions suffices to
capture Ptime and specifically, whether it can define the graph isomorphism
problem on graphs of bounded degree and bounded colour class size.

In this paper we focus on Choiceless Polynomial Time (CPT), an extension
of FPC which has been proposed by Blass, Gurevich and Shelah in [4]. Instead
of extending the expressive power of FPC by operators for certain undefinable
queries (such as the rank of a matrix), the basic idea of CPT is to combine the
manipulation of higher order objects (hereditarily finite sets over the input struc-
ture) with a bounded amount of parallel computations. Technically, Choiceless
Polynomial Time is based on BGS-machines (for Blass, Gurevich and Shelah),
a computation model which directly works on relational input structures (and
not on string encodings of those like Turing machines do). As a matter of fact,
computations of BGS-machines have to respect symmetries of the input struc-
ture. Specifically, the set of states in a run of a BGS-program is closed under
automorphisms of the input structure. More informally this means that BGS-
computations are choiceless : it is impossible to implement statements like “pick
an arbitrary element x and continue” which occur in many high-level descriptions
of polynomial-time algorithms (e.g. Gaussian elimination, the Blossom algorithm
for maximum matchings, and so on). On the other hand, BGS-machines are also
very powerful which is due to their ability to construct and manipulate heredi-
tarily finite sets built over the atoms of the input structure. If one imposes no
further restriction on BGS-logic then every decidable class of structures can be
defined in BGS-logic. Thus, to define CPT, the polynomial-time fragment of
BGS-logic, one clearly has to restrict the amount of access a BGS-program has
to the class of hereditarily finite sets.

Choiceless Polynomial Time is a strict extension of FPC [5]. More strikingly,
Dawar, Richerby and Rossman [9] were able to show that CPT can define the
CFI-query. Their very clever construction uses the power of CPT to avoid ar-
bitrary choices by finding succinct (polynomial-time representable) encodings of
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exponential-sized sets of symmetric objects. However, to date, it is not known
whether CPT suffices to capture Ptime, whether it can express the graph iso-
morphism problem for graphs of bounded colour class size or bounded degree,
and similarly, it is open whether CPT can define the solvability of linear equa-
tion systems over finite fields. As a consequence, the relation between rank logic
FPR and Choiceless Polynomial Time CPT remains unclear.

This paper is motivated by the question whether for every fixed q the isomor-
phism problem for relational structures of colour class size q (for short, q-bounded
structures) can be defined in CPT. Our main result gives a positive answer for
classes of q-bounded structures with Abelian colours, i.e. q-bounded structures
where all colour classes induce substructures with Abelian automorphism groups
(we give the formal definition in Section 4). More generally we establish for every
class of q-bounded structures with Abelian colours a CPT-definable canonisation
procedure which shows that CPT captures Ptime on such classes.

Classes of q-bounded structures with Abelian colours naturally arise in many
contexts. First of all, every class of 2-bounded structures has Abelian colours
which in turn shows that CPT captures Ptime on 2-bounded structures. On
the other hand, FPC fails to capture Ptime on this class, since the CFI-query
can easily be formulated using 2-bounded structures. Moreover, this solves an
open question from [5] where the authors ask whether the isomorphism prob-
lem of multipedes is CPT-definable (cf. Question 24 in [5]). Since multipedes
are 2-bounded structures our result shows that the isomorphism problem for
multipedes is CPT-definable.

Another important example arises from generalising the CFI-query for other
Abelian groups than Z2. In particular, in [15] Holm uses such generalisations
(called C-structures) to define a query which separates certain fragments of rank
logics from each other. Interestingly, C-structures are q-bounded structures with
Abelian colours which means that CPT can define the queries used by Holm
which separates CPT from the fragments of FPR considered in [15].

Choiceless Polynomial Time. In this paper, we consider finite structures
A = (A,RA

1 , . . . , R
A
k ) over relational signatures τ = {R1, . . . , Rk}. To define

CPT compactly, we follow Rossman [17]. For a vocabulary τ we define τHF =
τ �{∅,Atoms,Pair,Union,Unique,Card} as the extension of τ by the set-theoretic
function symbols ∅,Atoms (constant symbols), Union,Unique,Card (unary func-
tion symbols) and Pair (binary function symbol). For a set A we denote by HF(A)
the class of hereditarily finite sets over the atoms A, i.e. HF(A) is the least set
with A ⊆ HF(A) and x ∈ HF(A) for every x ⊆ HF(A). A set x ∈ HF(A) is
transitive if for all z ∈ y ∈ x we have z ∈ x. The transitive closure of x ∈ HF(A)
is the least transitive set TC(x) with x ⊆ TC(x).

For a τ -structure A, its hereditarily finite expansion HF(A) is the following
τHF-structure over the universe HF(A) where relations R ∈ τ are interpreted as
in A and the set theoretic functions in τHF \ τ are interpreted as follows:

– ∅HF(A) = ∅, AtomsHF(A) = A, and
– PairHF(A)(x, y) = {x, y}, UnionHF(A)(x) = {y ∈ z : z ∈ x}, and
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– UniqueHF(A)(x) =

{
y, if x = {y}
∅, else,

and CardHF(A)(x) =

{
|x|, x �∈ A

∅, else.
,

where |x| is the cardinality of x encoded as a von Neumann ordinal.

A bijection π : A → A extends to a bijection π′ : HF(A) → HF(A) in a natural
way. If π is an automorphism of A, then π′ is an automorphism of HF(A). BGS-
logic is evaluated over hereditarily finite expansions HF(A) and is defined using
three syntactic elements: terms, formulas and programs.

– Terms are built from variables and functions from τHF using the standard
rules. For an input structure A, terms take values in HF(A). Additionally
we allow comprehension terms : if s(x̄, y) and t(x̄) are terms, and ϕ(x̄, y) is
a formula then r(x̄) = {s(x̄, y) : y ∈ t(x̄) : ϕ(x̄, y)} is a term (in which y is
bound). The value rA(ā) of the term r(x̄) under an assignment ā ⊆ HF(A)
is the set rA(ā) = {sA(ā, b) : b ∈ tA(ā) : HF(A) |= ϕ(ā, b)} ∈ HF(A).

– Formulas can be built from terms t1, t2, . . . , tk as t1 = t2 and R(t1, . . . , tk)
(for R ∈ τ), and from other formulas using the Boolean connectives ∧,∨,¬.

– Programs are triples Π = (Πstep, Πhalt, Πout) where Πstep(x) is a term, and
Πhalt(x) and Πout(x) are formulas. On an input structure A a program Π
induces a run which is the sequence (xi)i≥0 of states xi ∈ HF(A) defined
inductively as x0 = ∅ and xi+1 = Πstep(xi). Let ρ = ρ(A) ∈ N ∪ {∞} be
minimal such that A |= Πhalt(xρ). The output Π(A) of the run of Π on
A is undefined (Π(A) = ⊥) if ρ = ∞ and is defined as the truth value of
A |= Πout(xρ) otherwise.

BGS-programs transform states (objects in HF(A)) until a halting condition
is reached, and produce their output from the ultimately constructed state. To
obtain CPT-programs we put polynomial bounds on both, the complexity of
states and the length of a run. To measure the complexity of objects in HF(A)
we use the size of their transitive closure.

Definition 1. A CPT-program is a pair C = (Π, p(n)) of a BGS-program Π
and a polynomial p(n). The output C(A) on an input structure A is C(A) = Π(A)
if the following resource bounds are satisfied (otherwise we set C(A) = false):

– the length ρ(A) of the run of Π on A is at most p(|A|) and
– for each state in the run (xi)i≤ρ(A) of Π on A it holds that |TC(xi)| ≤ p(|A|).

The main difference to fixed-point logics like FPC is that CPT can manipulate
higher-order objects from HF(A) which have polynomial size. These objects can
be, for example, clever data structures which succinctly encode exponential-sized
sets, or just exhaustive search trees on small parts of the input. In contrast, FPC
can access only (constant-sized) lists of elements.

Algebra and Permutation Groups. For a set V , we denote by Sym(V ) the
symmetric group acting on V . As usual we use cycle notation (v1 v2 · · · v�) to
specify permutations in Sym(V ). For a permutation group Γ ≤ Sym(V ) and
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v ∈ V we write Γ (v) = {γ(v) : γ ∈ Γ} to denote the orbit of v under the action
of Γ . The set of Γ -orbits {Γ (v) : v ∈ V } yields a partition of V . We say that
Γ acts transitively on V if Γ (v) = V for some (equivalently each) v ∈ V . We
read group operations from right to left and use the notation γσ as a shorthand
for σγσ−1 whenever this makes sense (hence (γσ)τ = γτσ). Likewise, we let
σΓ = {σγ : γ ∈ Γ} and Γ σ = {γσ : γ ∈ Γ}.

For a τ -structure A we let Aut(A) ≤ Sym(A) denote the automorphism group
of A. In this paper, Aut(A) will often be Abelian. Recall that every finite Abelian
group is an inner direct sum of cyclic groups of prime power order. For a group
Γ and γ ∈ Γ we denote by 〈γ〉 the cyclic subgroup of Γ generated by γ.

We define linear equation systems over finite rings Zd where d = pk is a
prime-power. Let V be a set of variables over Zd. By ZV

d we denote the set of
(unordered) Zd-vectors x : V �→ Zd with indices in V . An atomic linear term
is of the form z · v for z ∈ Zd, v ∈ V . A linear term is a set of atomic linear
terms. An assignment is a map α : V → Zd. The value t[α] ∈ Zd of an atomic
linear term t = z · v under α is t[α] = z · α(v). The value t[α] ∈ Zd of a term t
under α is t[α] =

∑
s∈t s[α]. A linear equation is a pair (t, z) where t is a linear

term and z ∈ Zd. An assignment α : V → Zd satisfies e = (t, z) if t[α] = z. A
linear equation system is a set S of linear equations. A linear equation system
S is solvable (or consistent) if an assignment α : V → Zd satisfies all equations
in S. For more background on (linear) algebra and permutation groups see [14].

2 Relational Structures of Bounded Colour Class Size

We describe a procedure to define, given an input structure of bounded colour
class size, an isomorphic copy over an ordered universe (a canonical copy or
canonisation). The idea is to split the input structure into an ordered sequence
of small substructures which can be canonised easily. We then combine these
small canonised parts to obtain a canonisation of the full structure. To guarantee
consistency, we maintain a set of isomorphisms between (the canonised part of)
the input structure and its (partial) canonisation.

A (linear) preorder � of width q ≥ 1 is a reflexive, transitive and total binary
relation where the induced equivalence x ∼ y := (x � y and y � x) only contains
classes of size ≤ q. A preorder � on A induces a linear order on the equivalence
classes A/∼ and we write A = A1 � · · · � An if Ai is the i-th equivalence class
with respect to this linear order. A preorder �′ refines � if x �′ y implies x � y.

Definition 2. Let τ = {R1, . . . , Rk}. A q-bounded τ -structure H is a τ � {�}-
structure H = (H,RH

1 , . . . , RH
k ,�) where � is a preorder on H of width ≤ q. We

write H = H1 � · · · � Hn and denote by qi := |Hi| ≤ q the size of the i-th colour
class Hi. We set H<

i = {(i, 0), . . . , (i, qi−1)} and write O(Hi) to denote the set of
bijections between Hi and H<

i , that is O(Hi) = {π : Hi → H<
i , π is a bijection}.

For a class of q-bounded structures we always assume a fixed vocabulary τ .
Thus the arity of all relations is bounded by a constant, say by r. Let P =
P(n, r) denote the set of non-empty subsets I ⊆ {1, . . . , n} of size ≤ r. We can
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define P together with a linear order in CPT (as r is fixed). For I ∈ P we set
HI =

⊎
i∈I Hi and denote by HI ⊆ H the substructure of H induced on HI .

Since r bounds the arity of relations in τ we have H =
⋃

I∈P HI .
We set O(H) = O(H1) × · · · × O(Hn) and O(HI) = O(Hi1 ) × · · · × O(Hi�)

for I = {i1, . . . , i�} ∈ P . Given C ⊆ O(HI) the extension of C to O(H) is the
set ext(C) = {(σ1, . . . , σn) ∈ O(H) : (σi1 , . . . , σi�) ∈ C}.

Every σ ∈ O(H) defines a bijection between H and the ordered set H< =
{(i, j) : 1 ≤ i ≤ n, 0 ≤ j < qi}. The preorder � on H translates to the preorder
σ(�) on H< which is defined as (i, j)σ(�)(i′, j′) if, and only if, i ≤ i′. Specifically,
σ ∈ O(H) defines an isomorphism between the input structure H and the struc-
ture σ(H) = (H<, σ(RH

1 ), . . . , σ(RH
k ), σ(�)). Of course we can apply σ ∈ O(H)

also to substructures of H. In particular for I ∈ P , every σ ∈ O(HI) defines
an isomorphism between HI and σ(HI) = (H<

I , σ(RHI
1 ), . . . , σ(RHI

k ), σ(�HI ))
where H<

I = {(i, j) ∈ H< : i ∈ I}. We want to construct, givenH, an isomorphic
copy σ(H) which we call the canonisation or the canonical copy of H.

In general, for different σ, τ ∈ O(H) we have σ(H) �= τ(H). Since the struc-
tures σ(H) and τ(H) are defined over an ordered universe we can distinguish
them in CPT. Moreover, σ(H) = τ(H) holds if, and only if, τ−1σ ∈ Aut(H).

Lemma 3. {τ : τ(H) = σ(H)} = σAut(H) = Aut(σ(H))σ for σ ∈ O(H).

Let I1 < I2 < · · · < Im be the enumeration of P according to the definable
order. We denote by H[1 · · · s] ⊆ H the (not necessarily induced) substructure
of H that consists of the first s components, i.e. H[1 · · · s] = HI1 ∪ · · · ∪ HIs .

Definition 4. An s-canonisation is a canonisation of H[1 · · · s], i.e. a structure
σ(H[1 · · · s]) = σ(HI1)∪· · · ∪σ(HIs) for σ ∈ O(H). A non-empty set C ⊆ O(H)
witnesses an s-canonisation if τ(HIj ) = σ(HIj ) for all σ, τ ∈ C and j = 1, . . . , s.

Since H =
⋃

I∈P HI , an m-canonisation of H also is a canonisation of H. To
describe our generic CPT-canonisation procedure for q-bounded structures, we
assume that we have already preselected for each colour class Hi a set of linear
orderings σiΓi ⊆ O(Hi) where Γi ≤ Sym(Hi) and σi ∈ O(Hi). The group Γ =
Γ1× · · ·×Γn acts on O(H) in the obvious way and for σ = (σ1, . . . , σn) ∈ O(H)
we have σΓ = τΓ for every τ ∈ σΓ . For an index set I = {i1, . . . , i�} ∈ P we
write ΓI to denote the group ΓI = Γi1 × · · · × Γi� and (σΓ )I to denote the set
(σΓ )I = σi1Γi1×· · ·×σi�Γi� ⊆ O(HI). The extension of a set of partial orderings
C ⊆ (σΓ )I to σΓ is the set ext(C) = {(τ1, . . . , τn) ∈ σΓ : (τi1 , . . . , τi�) ∈ C} ⊆
σΓ . The canonisation procedure for q-bounded structures is given below.

Given: q-bounded structure H and sets σiΓi ⊆ O(Hi) for Γi ≤ Sym(Hi), σi ∈ O(Hi)

C0 := σΓ and H<
0 := ∅

for s = 1 to m do

Set I := Is and define Δ := Aut(HI ) ∩ ΓI and D := {τΔ : τ ∈ (σΓ )I}
Fix τΔ ∈ D such that Cs−1 ∩ ext(τΔ) �= ∅ (possible by Lemma 3)

Set Cs := Cs−1 ∩ ext(τΔ) and H<
s := H<

s−1 ∪ τ ′(HI ) for some (all) τ ′ ∈ τΔ

end for

Return: The canonisation H< := H<
m of H
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To express this procedure in CPT, the difficulty is to find suitable represen-
tations for the sets Cs. Clearly, storing them explicitly is impossible as their
size is exponential in the size of the input structure. In the following sections
we establish suitable representations based on linear algebra. We summarise the
requirements for such representations in the following definition.

Definition 5. For explicitly given sets σiΓi ⊆ O(Hi), a CPT-definable rep-
resentation of sets τΔ with Δ ≤ Γ and τ ∈ σΓ is suitable if the following
operations are CPT-definable.

(i) Consistency. Given a representation of τΔ, it is CPT-definable whether
τΔ �= ∅.

(ii) Intersection. Given two representations of sets τ1Δ1 and τ2Δ2, a represen-
tation of the set τ1Δ1 ∩ τ2Δ2 is CPT-definable.

(iii) Representation of basic sets. Given τΔ with τ ∈ (σΓ )I and Δ ≤ ΓI for
I ∈ P, a representation of ext(τΔ) ⊆ σΓ can be defined in CPT.

3 Cyclic Linear Equation Systems over Finite Rings

We proceed to show that the solvability of cyclic linear equation systems (CESs)
over finite rings Zd, where d = pk is a prime power, can be defined in CPT. In
Section 4, we will see that solution spaces of CESs can be used to represent sets
of witnessing isomorphisms as required in Definition 5. Having this connection
a consistency check corresponds to deciding the solvability of a linear equation
system, the intersection operation corresponds to combining the equations of two
linear systems, and the representation of basic sets corresponds to constructing
a linear equation systems over a small set of variables.

Definition 6. Let V be a set of variables over Zd where d is a prime power.

(a) A cyclic constraint on W ⊆ V is a consistent set C of linear equations with
variables in W which contains for every pair v, w ∈ W an equation of the
form v − w = z for z ∈ Zd.

(b) A cyclic linear equation systems (CES) over Zd is a triple (V, S,�) where �
is a preorder on V = V1 � · · · � Vn and S is a linear equation system which
contains for every block Vi a cyclic constraint Ci.

In the definition we do not require that � is of bounded width. However, given
the cyclic constraints Ci ⊆ S we can assume that |Vi| = d for all 1 ≤ i ≤ n.

Lemma 7. Given a CES (V, S,�) over Zd, we can define in CPT a CES
(V ′, S′,�′) over Zd such that V ′ = V ′

1 �′ · · · �′ V ′
n and |V ′

i | = d for all i,
together with a bijection between the set of assignments that satisfy the two CESs.

For z ∈ Zd and v ∈ Vi we denote by v+z ∈ Vi the (unique) variable such that
Ci contains the constraint v+z−v = z. There are precisely d different assignments
α : Vi → Zd with α |= Ci and each one is determined by fixing the value of a
single variable v ∈ Vi. The crucial ingredient of our CPT-procedure for solving
CESs over Zd is the notion of a hyperterm which is based on the CPT-procedure
of Dawar, Richerby and Rossman for expressing the CFI-query [9].



CPT on q-Bounded Structures 57

Definition 8. Let A be the set of assignments that satisfy all cyclic constraints
Ci, i.e. A := {α : V → Zd : α |= Ci for i = 1, . . . , n}. We inductively define

(i) hyperterms T and associated shifted hyperterms T+z for z ∈ Zd such that
T+(z1+z2) = (T+z1)+z2 for z1, z2 ∈ Zd, and T+d = T ,

(ii) for assignments α ∈ A the value T [α] ∈ Zd such that T+z[α]− T [α] = z,
(iii) and the coefficient c(Vi, T ) = c(Vi, T

+z) ∈ Zd of variable block Vi in the
hyperterms T, T+1, . . . , T+(d−1).

– For z ∈ Zd we define the hyperterm T = z and set T+y = z + y for y ∈ Zd.
We let c(Vi, T ) = c(Vi, T

+y) = 0 for each variable block Vi and all y ∈ Zd

and let T [α] = z and T+y[α] = z + y for all assignments α ∈ A and y ∈ Zd.
Moreover, for v ∈ Vi, T = v is a hyperterm where T+y = v+y for y ∈ Zd. We
set c(Vj , T ) = c(Vj , T

+y) = 1 for y ∈ Zd if j = i and c(Vj , T ) = c(Vj , T
+y) =

0 otherwise. Finally, we let T [α] = α(v). Then T+y[α] = α(v+y) = α(v) + y.
– Let Q,R be hyperterms. Then T = Q ⊕ R := {〈Q+z1 , R+z2〉 : z1 + z2 = 0}

is a hyperterm with shifted hyperterm T+y = {〈Q+z1 , R+z2〉 : z1 + z2 = y}
for y ∈ Zd. We set c(Vi, T ) = c(Vi, T

+y) = c(Vi, Q) + c(Vi, R), T [α] :=
Q[α] + R[α] and we have T+y[α] = Q[α] + R[α] + y for α ∈ A.

– Let Q be a hyperterm, z ∈ Zd. Then a new hyperterm T = z Q := Q⊕· · ·⊕Q
results by applying the ⊕-operation z-times to Q (where we implicitly agree
on an application from left to right). The definitions of T+y, c(Vi, T ) and
T [α] follow from the definition of ⊕.

Definition 9. For α ∈ A, 1 ≤ i ≤ n and z ∈ Zd we define the assignment
αi:+z ∈ A which results from a semantical z-shift of variable block Vi which
means that αi:+z(v) = α(v) + z for v ∈ Vi and αi:+z(v) = α(v) for v �∈ Vi.
Moreover we let πi:+z : Vi → Vi be the syntactic z-shift on the set Vi which is
defined as πi:+z(v) := v+z for v ∈ Vi lifted to a permutation acting on HF(V ).

There is a tight correspondence between the syntactic structure and the in-
tended semantics for hyperterms as expressed in the following lemma.

Lemma 10. Let 1 ≤ i ≤ n, z ∈ Zd, let T be a hyperterm and let c = c(Vi, T ) ∈
Zd be the coefficient of variable block Vi in T .

(a) Then πi:+z(T ) = T+c·z. In particular if c = 0 then πi:+z(T ) = T .
(b) For any assignment α ∈ A we have T [αi:+z] = πi:+z(T )[α].

Intuitively, a hyperterm is a succinct encoding of a class of linear terms that
are (given the cyclic constraints) equivalent. Using the preorder � it is possible
to define in CPT a linearly ordered partition S =

⊎m
i=1 Si of S, correspond-

ing hyperterms T1, . . . , Tm and constants z1, . . . , zm ∈ Zd such that for every
equation (t, z) ∈ Si and α ∈ A we have t[α] = Ti[α] and z = zi (or the CES
is inconsistent). This means that the system S∗ consisting of the ordered set of
hyperequations (Ti, zi) is equivalent to the given CES. Given the linear order on
S∗, we want to use Gaussian elimination in order to determine the solvability of
S∗. As a simple preparation we observe that elementary transformations can be
applied to systems of hyperequations.



58 F. Abu Zaid et al.

Lemma 11. Let S∗ be a system of hyperequations, and let (T, z), (T ′, z′) ∈ S∗.
Then S∗ and (S∗ \ {(T, z)})∪ {(T ⊕T ′, z + z′)} have the same solutions (in A).

We assign the m × n-matrix M [S∗] : {1, . . . ,m} × {1, . . . , n} → Zd to the
system S∗ of hyperequations defined as M [S∗](i, j) := c(Vj , Ti). Applying ele-
mentary operations to S∗ as in Lemma 11 corresponds to applying elementary
row operations to M [S∗]. Using a slightly adapted version of Gaussian elimina-
tion (Zd is a ring, not a field) it is possible to transform S∗ such that M [S∗] is
in Hermite normal form. This transformation can be expressed in CPT.

We say that a hyperterm T is atomic if c(Vi, T ) = 0 for every variable block Vi.
By Lemma 10 this means T [α] = T [α′] for all α, α′ ∈ A, hence, T has a constant
value cT = T [α] for some (all) α ∈ A. By exploiting the fact that M [S∗] is in
Hermite normal form it can be shown that the solvability of S∗ can be char-
acterised by determining the consistency of a set of hyperequations (T, z) with
atomic hyperterms T , which is to check whether cT = z.

It remains to express the consistency of hyperequations (T, z) for atomic hy-
perterms T in CPT. This is easy if T is built from constants in Zd.

Lemma 12. The value of a hyperterm T ′ ∈ HF(Zd) can be defined in CPT.

Given an atomic hyperterm T , it remains to construct in CPT an equiva-
lent hyperterm T ′ ∈ HF(Zd). To this end, we crucially make use of the strong
connection between syntax and semantics of hyperterms as stated in Lemma 10.

Lemma 13. Let T ∈ HF(V ) be an atomic hyperterm. Then we can define in
CPT an equivalent hyperterm T ′ ∈ HF(Zd).

Theorem 14. The solvability of CESs over Zd can be defined in CPT.

4 Canonising q-Bounded Structures with Abelian
Colours

We apply the CPT-procedure for solving CESs to show that q-bounded struc-
tures with Abelian colours can be canonised in CPT. Recall that we denote by
Hi the substructure of H induced on the colour class Hi.

Definition 15. A class K of q-bounded τ-structures has Abelian colours if
Aut(Hi) ≤ Sym(Hi) is Abelian for all H ∈ K and colour classes Hi ⊆ H.

Moreover, we say that K allows (CPT-)constructible transitive Abelian sym-
metries if there are CPT-programs which define, given H ∈ K, on each colour
class Hi ⊆ H a transitive Abelian group Γi ≤ Sym(Hi) together with a linear
order on {σΓi : σ ∈ O(Hi)} and a linear order on Γi.

We proceed to show that classes of q-bounded structures with Abelian colours
can be reduced to classes with constructible transitive Abelian symmetries.
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Theorem 16. Let K be a class of q-bounded τ-structures with Abelian colours.
There is a CPT-program which defines, given H ∈ K, a refinement �H

r of the
preorder �H on H such that the class K′ of structures H′ = H[�H \ �H

r ] (which
result from substituting �H by its refinement �H

r ) allows constructible transitive
Abelian symmetries.

The translation H ∈ K �→ H′ ∈ K′ only refines the preorder on H , hence a
canonisation of H′ yields a canonisation of H. Thus, CPT-definable canonisa-
tion procedures on classes of q-bounded structures with constructible transitive
Abelian symmetries provide CPT-definable canonisation procedures on classes
of q-bounded structures with Abelian colours.

Fix a class K of q-bounded structures with constructible transitive Abelian
symmetries. Let H ∈ K with colour classes H = H1 � · · · � Hn and let
Γi ≤ Sym(Hi) denote the associated Abelian transitive groups. To express our
generic canonisation procedure from Section 2 in CPT, it suffices to find CPT-
definable representations of sets τΔ where Δ ≤ Γ and τ ∈ O(H) which satisfy
the requirements of Definition 5. Let us first find appropriate representations for
the basic sets σΔ ⊆ O(Hi) with Δ ≤ Γi and σ ∈ O(Hi) for each colour class Hi.

Lemma 17. Given a set B ⊆ HF(H) with |B| ≤ q and an Abelian transitive
group Γ ≤ Sym(B) which is the direct sum of k cyclic subgroups of prime-power
order, i.e. Γ = 〈δ1〉 ⊕ · · · ⊕ 〈δk〉 for δ1, . . . , δk ∈ Γ where |δi| = di is a prime-
power, and given a set σΓ ⊆ O(B) for σ ∈ O(B) we can define in CPT

– sets W1, . . . ,Wk ⊆ HF(B) with |Wi| = di, an order W1 < W2 < · · · < Wk,
– and if we set Li := ZWi

di
and let ei ∈ Li denote the Li-unit vector which

is ei(w) = 1 for all w ∈ Wi, then we can define in CPT an embedding
ϕ : σΓ → L1×· · ·×Lk which respects the action of Γ on σΓ in the following
way. For all τ ∈ σΓ and γ = �1 · δ1 ⊕ · · · ⊕ �k · δk ∈ Γ we have that

ϕ(τ ◦ γ) = ϕ(τ) + (�1 · e1, · · · , �k · ek).

Using the linear order on {σΓi : σ ∈ O(Hi)} we fix for every colour class Hi

a set σiΓi ⊆ O(Hi). Let σΓ = σ1Γ1 × · · · × σnΓn. Using Lemma 17 we write
Γi = 〈δi1〉 ⊕ · · · ⊕ 〈δiki

〉 where |δij | = dij is a prime-power and define in CPT

– sets W i
1 < W i

2 < · · · < W i
ki

of size |W i
j | = dij and for Li

j := Z
W i

j

di
j

embeddings

ϕi : σiΓi → Li
1 × · · · × Li

ki
,

– such that for the Li
j-unit vectors eij ∈ Li

j, each γ = �1 ·δi1⊕· · ·⊕ �ki ·δiki
∈ Γi

and each τ ∈ σiΓi it holds that ϕi(τ ◦ γ) = ϕi(τ) + (�1 · ei1, . . . , �ki · eiki
).

We let L = L1
1×· · ·×L1

k1
×· · ·×Ln

1×· · ·×Ln
kn

and combine the mappings ϕi to
get a CPT-definable mapping ϕ : σΓ → L, (τ1, . . . , τn) �→ (ϕ1(τ1), . . . , ϕn(τn)).
Since Γ = Γ1 × · · · × Γn = 〈δ11〉 ⊕ · · · ⊕ 〈δ1k1

〉 × · · · × 〈δn1 〉 ⊕ · · · ⊕ 〈δnkn
〉 we also

obtain a definable group embedding ψ : Γ → L as the homomorphic extension
of setting ψ(δij) = eij. For all τ ∈ σΓ and γ ∈ Γ we have ϕ(τ ◦ γ) = ϕ(τ) +ψ(γ).



60 F. Abu Zaid et al.

Next we analyse for σiΓi the image under ϕ restricted to a component Li
j , i.e.

the set (ϕ(σiΓi) � Li
j) ⊆ Li

j. If we denote by Ei
j := {� · eij : 0 ≤ � ≤ dij − 1} ⊆ Li

j ,

we get Oi
j := (ϕ(σiΓi) � Li

j) = (ϕ(σi) � Li
j) + Ei

j . This means that for two

vectors x, y ∈ Oi
j it holds that x − y ∈ Ei

j . This in turn implies that for all

vectors x, y ∈ Oi
j and indices w,w′ ∈W i

j we have x(w) − x(w′) = y(w)− y(w′).

Hence we can define a cyclic constraint Ci
j on the set W i

j such that Oi
j precisely

corresponds to the set of assignments α : W i
j → {0, . . . , dij − 1} with α |= Ci

j .

Let P := {p1, . . . , ps} be the set of all primes pi such that Γ contains elements
of order pi. For p ∈ P let Γ p

i ≤ Γi denote the subgroup of Γi which consists of
all elements γ ∈ Γi whose order is a power of p. Then Γi = Γ p1

i ⊕ · · · ⊕ Γ ps

i . In
particular we have ψ(Γi) = ψ(Γ p1

i ) + · · ·+ ψ(Γ ps

i ).
Similarly, for any subgroup Δ ≤ Γ and prime p ∈ P we let Δp ≤ Δ denote

the subgroup of Δ which consists of elements δ ∈ Δ whose order is a p-power.
Then Δ = Δp1 ⊕ · · · ⊕Δps and Δp ≤ Γ p

1 × Γ p
2 × · · · × Γ p

n =: Γ p.
We also obtain a corresponding decomposition of L. For p ∈ P we let L[p] =

{(v11 , . . . , v1k1
, . . . , vn1 , . . . , v

n
kn

) ∈ L : if vij �= 0 then dij is a p-power}. Then
ψ(Γ p) ≤ L[p] and L = L[p1]⊕ · · · ⊕ L[ps].

For τ ∈ O(H) and Δ ≤ Γ we let ϕ(τ)L[p] denote the projection of ϕ(τ) ∈ L
onto the component L[p]. Then we have

ϕ(τΔ) = ϕ(τ)L[p1 ] + ψ(Δp1 )⊕ · · · ⊕ ϕ(τ)L[ps] + ψ(Δps) ⊆ L[p1]⊕ · · · ⊕ L[ps].

To represent ϕ(τΔ) it thus suffices to represent each individual component
ϕ(τ)L[p] + ψ(Δp) ⊆ L[p] as the set of solutions of a CES Sp over Zd where d is
a p-power. Using the cyclic constraints Ci

j from above, this is indeed possible.
Altogether we represent a set τΔ with Δ ≤ Γ and τ ∈ σΓ as a sequence of
CESs (Sp1 , . . . ,Sps) where the solutions of Sp correspond to ϕ(τ)L[p] + ψ(Δp).
This representation is suitable with respect to Definition 5:

(i) Consistency. To express whether (Sp1 , . . . ,Sps) represents a non-empty set
we check each Sp for consistency. This is CPT-definable by Theorem 14.

(ii) Intersection. Given two representations of sets τ1Δ1 and τ2Δ2 as sequences
of CESs (Sp1 , . . . ,Sps) and (Tp1 , . . . , Tps), we represent τ1Δ1 ∩ τ2Δ2 by the
sequence (Sp1 ∪Tp1 , . . . ,Sps ∪Tps) where Sp∪Tp is the CPT-definable CES
which results from combining the linear equations of Sp and Tp.

(iii) Representation of basic sets. Given a set ρΔ with ρ ∈ (σΓ )I and Δ ≤ ΓI for
I ∈ P , we get a sequence of CESs (Sp1 , . . . ,Sps) which represents ext(ρΔ)
of ρΔ simply by trying all possible sequences of CESs (this is definable in
CPT since the set of relevant variables is bounded by a constant).

Theorem 18. CPT captures Ptime on classes of q-bounded structures with
constructible transitive Abelian symmetries.

Corollary 19. CPT captures Ptime on classes of q-bounded structures with
Abelian colours, and specifically, on 2-bounded structures.
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5 Discussion

We showed that CPT captures Ptime on classes of q-bounded structures with
Abelian colours. It remains open whether this holds for every class of q-bounded
structures. A natural way to proceed would be to allow more complex groups
acting on the colour classes, for example solvable groups. In fact, we can modify
our techniques to show that 3-bounded structures can be canonised in CPT.

Another question is whether CPT can define the solvability of linear equation
systems over finite rings. A positive answer would render rank logic FPR [7] and
solvability logic [8] a fragment of CPT, and otherwise, we would have a candidate
for separating CPT from Ptime. It is also interesting to investigate how far our
canonisation procedures for CPT can be expressed in such extensions of FPC by
operators from linear algebra. For example, it is easy to see that our canonisation
procedure for 2-bounded structures can be expressed in FPR.

We also want to study CPT on other classes of graphs with polynomial-time
canonisation algorithms on which FPC fails to capture Ptime. Important exam-
ples are graphs of bounded degree or graphs of moderately growing treewidth.
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Abstract. We define the class of sofic-Dyck shifts which extends the
class of Markov-Dyck shifts introduced by Krieger and Matsumoto. The
class of sofic-Dyck shifts is a particular class of shifts of sequences whose
finite factors are unambiguous context-free languages. We show that it
corresponds exactly to shifts of sequences whose set of factors is a visibly
pushdown language. We give an expression of the zeta function of a sofic-
Dyck shift which has a deterministic presentation.

1 Introduction

Shifts of sequences are defined as sets of bi-infinite sequences of symbols over a
finite alphabet avoiding a given set of finite blocks (or factors) called forbidden
blocks. Well-known classes of shifts of sequences are shifts of finite type which
avoid a finite set of forbidden factors and sofic shifts which avoid a regular set of
forbidden blocks. Sofic shifts may also be defined as labels of bi-infinite paths of
a finite-state labelled graph where there are no constraints of initial or infinitely
repeated states. They are used to model constrained sequences in the framework
of constrained coding The goal of this paper is to define and start the study of a
new class of subshifts going beyond the sofic shifts, called the class of sofic-Dyck
shifts.

In [11], [15], [12], Inoue, Krieger, and Matsumoto introduced and studied
several classes of shifts of sequences whose set of factors are not regular but
context-free. The simplest class is the class of Dyck shifts whose finite factors are
factors of well-parenthesized words, also called Dyck words. Markov-Dyck shifts
generalize Dyck shifts. Such shifts are accepted (or presented) by a finite-state
graph equipped with a graph inverse semigroup. The graph can be considered
as an automaton which operates on words over an alphabet which is partitioned
into two disjoint sets, one for the left parentheses, the other one for the right
parentheses. In [12], Inoue and Krieger introduced an extension of Markov-Dyck
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E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 63–74, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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shifts by constructing shifts from sofic systems and Dyck shifts. Their class
contains the Motzkin shifts. In [14] (see also [10]) Krieger considers subshift
presentations, called R-graphs, with word-labelled edges partitioned into two
disjoint sets of positive and negative edges equipped with a relation R between
negative and positives edges, and such a positive edge starting at p and ending
in q may be matched with a negative edge going back from q to p.

In this paper, we introduce a class of subshifts which strictly contains the
above ones. We consider shifts of sequences accepted by a finite-state automaton
(a labelled graph) equipped with a graph semigroup (which is no more an inverse
semigroup) and a set of pairs of matched edges which may not be consecutive
edges of the graph. We call such structures Dyck automata. The labelled graph
does not necessarily present a Markov shift as for the case of Markov-Dyck
shifts. The automaton operates on words over an alphabet which is partitioned
into three disjoint sets of symbols, the call symbols, the return symbols, and
internal symbols (for which no matching constraints are required).

We call the shifts presented by Dyck automata sofic-Dyck shifts. We prove
that this class is exactly the class of shifts of sequences whose set of factors is
a visibly pushdown language of finite words. So these shifts could also be called
visibly pushdown shifts.

Visibly pushdown languages [1,2] are embeddings of context-free languages
which are rich enough to model many program analysis questions. They form
a natural and meaningful class in between the class of regular languages and
the class of context-free languages extending the parenthesis languages [18], the
bracketed languages [9], and the balanced languages [4]. Visibly pushdown lan-
guages are accepted by the so-called visibly pushdown automata. The class of
these languages is moreover tractable and robust. For instance the intersection
of two visibly pushdown languages is a computable visibly pushdown language.

In a second part of the paper, we compute the zeta function of a sofic-Dyck
shift accepted by a deterministic Dyck automaton. The zeta function counts
the number of periodic sequences of a subshift. It is a conjugacy invariant for
subshifts. Two subshifts which are conjugate (or isomorphic) have the same
zeta functions. The invariant is not complete and it is not known, even for
shifts of finite type, whether conjugacy is a decidable property [16]. The issue
of the restriction to deterministic presentations of the shift is not adressed in
this paper. It is shown in [3] that the formula can be obtained also with reduced
presentations and thus holds for all sofic-Dyck shifts.

The formula of the zeta function of a shift of finite type is due to Bowen
and Lanford [7]. Formulas for the zeta function of a sofic shift were obtained by
Manning [17] and Bowen [6]. Proofs of Bowen’s formula can be found in [16] An
N-rational expression of the zeta function of a sofic shift has been obtained in [19]
The zeta functions of the Dyck shifts were determined by Keller in [13]. For the
Motzkin shifts where some unconstrained symbols are added to the alphabets of
a Dyck shift, the zeta function was determined by Inoue in [11]. In [15], Krieger
and Matsumoto obtained an expression for the zeta function of a Markov-Dyck
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shift by applying a formula of Keller and using a clever encoding of periodic
sequences of the shift.

We give an expression of the zeta function of a sofic-Dyck which has a deter-
ministic presentation by combining techniques used to compute the zeta function
of a (non Dyck) sofic shift and of a Markov-Dyck shift. We implicitly use the
fact that the intersection of two visibly pushdown languages is a visibly push-
down language. With this result, sofic-Dyck shifts constitute now the largest
class of shifts of sequences for which a general formula of the zeta function can
be obtained.

The paper is organized as follows. A quick background on subshifts is given in
Section 2.1. The notion of Dyck automata and sofic-Dyck shift is introduced in
Section 2.2. In Section 3, we prove that the class of sofic-Dyck shifts is the class of
visibly pushdown shifts. The definition and the computation of the zeta function
of a sofic-Dyck shift is done in Section 4. The computation of the formula is given
on a simple example in Section 4.4. Most proofs are omitted in this conference
article.

2 Sofic-Dyck Shifts

In the section we define the class of sofic-Dyck shifts. We start with basic notions
of symbolic dynamics which can be found in [16].

2.1 Subshifts

Let A be a finite alphabet. The set of finite sequences or words over A is denoted
by A∗ and the set of nonempty finite sequences or words over A is denoted by
A+. More generally, if L is a set of words over an alphabet A, then L∗ is the
set of concatenations of words of L, the empty word included. A prefix u of a
word v is called strict if u is distinct from v and from the empty word. The set
of bi-infinite sequences over A is denoted by AZ.

Let F be a set of finite words over the alphabet A. We denote by XF the set of
bi-infinite sequences of AZ avoiding each word of F . The set XF is called a shift
(or also a subshift since it is a shift included in the full shift AZ = X∅). When
F can be chosen finite (resp. regular), the shift XF is called a shift of finite type
(resp. sofic).

The set of finite factors of the bi-infinite sequences belonging to a shift X is
denoted B(X), its elements being called blocks (or allowed blocks) of X .

Let L be a language of finite words over a finite alphabet A. The language is
extensible if for any u ∈ L, there are letters a, b ∈ A such that aub ∈ L. It is
factorial if any factor of a word of the language belongs to the language.

If X is a subshift, B(X) is a factorial extensible language. Conversely, if L
is a factorial extensible language, then the set B−1(L) of bi-infinite sequences x
such that any finite factor of x belongs to L is a subshift [16]. The shift B−1(L)
is called the subshift defined by the factorial extensible language L.
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2.2 Dyck Automata and Sofic-Dyck Shifts

We consider here an alphabet A which is partitioned into three disjoint sets of
letters, the set Ac of call letters, the set Ar of return letters, and the set Ai of
internal letters.

A (finite) Dyck automaton over A is a pair (A,M) of an automaton (or a
directed labelled graph) A = (Q,E,A) over A where Q is the finite set of states
or vertices, E ⊂ Q × A × Q is the set of edges, and with a set M of pairs of
edges ((p, a, q), (r, b, s)) such that a ∈ Ac and b ∈ Ar. The edges labelled by call
letters (resp. return, internal) letters are also called call (resp. return, internal)
edges and are denoted by Er (resp. Ec, Ei). The set M is called the set of
matched edges. We define the graph semigroup S associated to (A,M) as the
free semigroup generated by the set E ∪{xpq | p, q ∈ Q}∪ {0} quotiented by the
following relations.

0s = s0 = 0 s ∈ S, (1)

xpqxqr = xpr p, q, r ∈ Q, (2)

xpqxrs = 0 p, q, r, s ∈ Q, q �= r, (3)

(p, �, q) = xpq p, q,∈ Q, � ∈ Ai, (4)

(p, a, q)xqr(r, b, s) = xps ((p, a, q), (r, b, s)) ∈M, (5)

(p, a, q)xqr(r, b, s) = 0 ((p, a, q), (r, b, s)) ∈ (Ec × Er) \M, (6)

(p, a, q)(r, b, s) = 0, q �= r, a, b ∈ A, (7)

xpp(p, a, q) = (p, a, q) p, q ∈ Q, a ∈ A, (8)

(p, a, q)xqq = (p, a, q) p, q ∈ Q, a ∈ A, (9)

xpq(r, a, s) = 0 a ∈ A, q �= r. (10)

(r, a, s)xtu = 0 a ∈ A, s �= t. (11)

Note that we will consider here only Dyck automata with a finite number of states
and thus a Dyck automaton will always be finite in the sequel. The semigroup
S is in general infinite.

Informally speaking, the element 0 represents a forbidden path in the automa-
ton and the element xpq stands as a surrogate for an allowed path from p to q
whose label is well-matched, as if it were a ”path of zero length” from p to q.
For instance, Equation 5 expresses the fact that a path made of a path with
a well-matched label and extended left and right by matched edges, is again a
path with a well-matched label. Equation 6 expresses the fact that a path made
of a path with a well-matched label and extended left and right respectively by
a call and a return edges which are not matched, is forbidden. Note that a path
made of consecutive internal edges is a path with a well-matched label.

If e is an edge of A, we denote by f(e) its image in the graph semigroup S.
If π is a finite path of A, we denote by f(π) the product in S of the images of
its consecutive edges in S. A finite path π of A such that f(π) �= 0 is said to be
an admissible path of (A,M). A finite word is admissible for (A,M) if it is the
label of some admissible path of (A,M). A bi-infinite path is admissible if all its
finite factors are admissible.
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The sofic-Dyck shift presented by (A,M) is the set of labels of bi-infinite
admissible paths of (A,M) and (A,M) is called a presentation of the shift.

A finite word w labeling an admissible path π such that f(π) = xpq for some
states p, q is called a Dyck word (or a well-matched word) of (A,M). Any Dyck
word which has no Dyck word as strict prefix is called a prime Dyck word.

Note that an admissible word may not be a block of X since it is not always
possible to extend it to a bi-infinite sequence whose all factors are admissible.

Lemma 1. The sofic-Dyck shift accepted by a Dyck automaton (A,M) is exactly
the set of bi-infinite sequences x such that each finite factor of x is an admissible
word of (A,M).

Proposition 1. A sofic-Dyck shift is a subshift.

Proof. Let X be a sofic-Dyck shift defined by an automaton (A,M) and its graph
semigroup. Then X = XF where F is the set of non admissible finite words for
(A,M). Thus X is a subshift. "#

The full-Dyck shift over the alphabet A = (Ac, Ar, Ai), denoted XA, is the
set of all sequences accepted by the one-state Dyck automaton A containing a
single state q and all loops (p, a, p) for a ∈ A, and where each edge (p, a, p) is
matched with each edge (p, b, p) when a ∈ Ac, b ∈ Ar. Thus XA is the set of all
sequences over Ar ∪ Ac ∪ Ai.

Example 1. Consider the sofic-Dyck shift over A presented by the Dyck automa-
ton (A,M) shown in the left part of Fig. 1 and with the following matched edges.
The (-labelled edge is matched with the )-labelled edge and the [-labelled edge
is matched with the ]-labelled edge. This shift is called the Motzkin shift. A se-
quence is a block (or is allowed) if it is a factor of a well-parenthesized word, the
internal letters being omitted. For instance ”( i [ i i ] [ i ] ( (” is a block while the
patterns ”( ]” or ”( i i ]” are forbidden. The block ”( i [ i ] )” is a prime Dyck word
of the Motzkin shift while ”( [ ] ) ( )” is a Dyck word (or a well-matched block)
which is not prime and ”( ) [ [” is a block which is not well-matched.

Consider now the sofic-Dyck shift over A presented by the Dyck automaton
(B, N) in the right part of Fig. 1 and with the following matched edges. The
(-labelled edge is matched with the )-labelled edge and the [-labelled edge is
matched with the ]-labelled edge. We call this shift the even-Motzkin shift. The
constraint is now stronger than the constraint described by the Dyck automaton
(A,M). An even number of internal letters i is required between each pair of
parenthesis symbols. The even-Motzkin shift is a subshift of the Motzkin shift
and is not in any of the classes of nonsofic shifts mentioned earlier.

A Dyck automaton is deterministic1 if there is at most one edge starting in a
given state and with a given label. Sofic shifts (see [16]) have deterministic pre-
sentations. Although visibly pushdown languages are accepted by deterministic
visibly pushdown automata [2], sofic-Dyck shifts may not be presented by any
deterministic Dyck automaton.

1 Deterministic presentations are also called right-resolving in [16].
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Fig. 1. On the left, a presentation (A,M) of the Motzkin shift on the alphabet A =
(Ac, Ar, Ai) with Ac = {(, [}, Ar = {), ]} and Ai = {i}. The (-labelled edge is matched
with the )-labelled edge and the [-labelled edge is matched with the ]-labelled edge.
On the right, a presentation (B, N) of the even-Motzkin shift on the same alphabet.
Again the (-labelled edge is matched with the )-labelled edge and the [-labelled edge
is matched with the ]-labelled edge.

3 Characterization of Sofic-Dyck Shifts

In this section we give a characterization of sofic-Dyck shifts based on their
sets of blocks (or allowed factors). We start with some background on visibly
pushdown languages (see [2]).

3.1 Visibly Pushdown Languages

Visibly pushdown languages are unambiguous context-free languages of finite
words accepted by visibly pushdown automata defined as follows.

Let A be an alphabet partitioned into three disjoint sets of call symbols, return
symbols, and internal symbols. A visibly pushdown automaton on finite words
over A = (Ac, Ar, Ai) is a tuple M = (Q, I, Γ,Δ, F ) where Q is a finite set of
states, I ⊆ Q is a set of initial states, Γ is a finite stack alphabet that contains
a special bottom-of-stack symbol ⊥, Δ ⊆ (Q×Ac ×Q× (Γ \ {⊥})∪ (Q×Ar ×
Γ ×Q)∪ (Q×Ai×Q), and F ⊆ Q is a set of final states. A transition (p, a, q, γ),
where a ∈ Ac and γ �= ⊥, is a push-transition. On reading a, the stack symbol γ
is pushed onto the stack and the control changes from state p to q. A transition
(p, a, γ, q) is a pop-transition. The symbol γ is read from the top of the stack
and popped. If γ = ⊥, the symbol is read but not popped. A transition (p, a, q)
is a local action.

A stack is a nonempty finite sequence over Γ ending in ⊥. A run of M labelled
by w = a1 . . ak is a sequence (p0, σ0) · · · (pk, σk) where pi ∈ Q, σj ∈ (Γ \ {⊥})∗⊥
for 0 ≤ j ≤ k and such that, for 1 ≤ i ≤ k:

– If ai ∈ Ac, then there are γi ∈ Γ and (pi−1, ai, pi, γi) ∈ Δ with σi = γi ·σi−1.
– If ai ∈ Ar, then there are γi ∈ Γ and (pi−1, ai, γi, pi) ∈ Δ with either γi �= ⊥

and σi−1 = γi · σi or γi = ⊥ and σi = σi−1 = ⊥.
– If ai ∈ Ai, then (pi−1, ai, pi) ∈ Δ and σi = σi−1.

A run is accepting if p0 ∈ I, σ0 = ⊥, and the last state is final, i.e. pk ∈ F . A
word over A is accepted if it is the label of an accepting run. Visibly pushdown
languages have also the following grammar-based characterization (see [2]). They
are accepted by visibly pushdown grammar.
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A context-free grammar G = (V, S, P ) over A is a visibly pushdown grammar
with respect to the partitioning A = (Ac, Ar, Ai) if the set V of variables is
partitioned into two disjoint sets V 0 and V 1, such that all the the productions
in P are of one of the following forms

– X → ε;
– X → aY , such that if X ∈ V 0, then a ∈ Ai and Y ∈ V 0;
– X → aY bZ, such that a ∈ Ac, b ∈ Ar, Y ∈ V 0, and if X ∈ V 0, then Z ∈ V 0.

The variables in V 0 derive only well-matched words (i.e. where there is a one-
to-one correspondence between symbols a and matching b).

3.2 Visibly Pushdown Shifts

In this section we show that the class of sofic-Dyck shifts is the class of visibly
pushdown shifts, i.e. the class of subshifts XF such that F is a visibly pushdown
language.

Proposition 2. The language of finite admissible words of a Dyck automaton
is a visibly pushdown language.

Proof. Let (A = (Q,E,A),M) be a Dyck automaton over A. We define a visibly
pushdown automaton V = (Q, I, Γ,Δ, F ) over A, where I = F = Q and Γ is
the set of edges of A. The set of transitions Δ is obtained as follows.

– If (p, a, q) ∈ E with a ∈ Ac, then (p, a, q, (p, a, q)) ∈ Δ.
– If (p, a, q) ∈ E with a ∈ Ar, then (p, a, γ, q) ∈ Δ for each call edge γ which

is matched with the return edge (p, a, q).
– If (p, a, q) ∈ E with a ∈ Ai, then (p, a, q) ∈ Δ.

Let w be a finite word over A. There is a run (p0, σ0) · · · (pk, σk) in V labelled
by w such that σ0 = ⊥ if and only if w is the label of a path π of (A,M) such
that f(π) �= 0. Thus w is the label of an admissible path of (A,M) if and only
if it is the label of an accepting run of V , which proves the proposition. "#

Let L be a language of finite words over A. We denote by E(L) the set of
words w ∈ L where, for any integer n, there are words u, v of length greater
than n such that uwv ∈ L. Note that E(L) is a factorial language. This set is
called in [8] the bi-extensible subset of L.

In order to prove that the set of blocks of a sofic-Dyck shift accepted by (A,M)
is a visibly pushdown language, we have to prove that the bi-extensible subset
of a factorial visibly pushdown language is also a factorial visibly pushdown
language. It is shown in [8] that it is not true that the bi-extensible subset of a
context-free language is a context-free language but the result holds for factorial
context-free language. We have a similar result for factorial visibly pushdown
languages which allows one to get the following characterization of the class of
sofic-Dyck shifts.
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Theorem 1. The set of blocks of a sofic-Dyck shift is a visibly pushdown lan-
guage. Conversely, the subshift defined by a factorial extensible visibly pushdown
language is a sofic-Dyck shift.

Since visibly pushdwon languages are closed by complementation, sofic-Dyck
shifts are the class of shifts XF such that F is a visisbly pushdown language.

4 Zeta Functions of Sofic-Dyck Shifts

Zeta functions count the periodic orbits of subshifts and constitute stronger
invariants by conjugacies than the entropy (see [16] for these notions).

In this section, we give an expression of the zeta function of a sofic-Dyck
shift which extends the formula obtained by Krieger and Matsumoto in [15] for
Markov-Dyck shifts.

4.1 Definitions and General Formula

Every shift space is invariant by the shift transformation σ defined by
σ((xi)i∈Z) = (xi+1)i∈Z. The zeta function ζX(z) of the shift X is defined as
the zeta function of its set of periodic patterns, i.e.

ζX(z) = exp
∑
n≥1

pn
zn

n
,

where pn the number of sequences of X of period n, i.e. of sequences x such that
σn(x) = x. This definition is extended to σ-invariant sets of bi-infinite sequences
which may not be shifts (i.e. which may not be closed subsets of sequences).

Let X be a sofic-Dyck shift presented by a deterministic Dyck automaton
(A,M) over A, where Q is the set of states.

We define the following matrices.

– C = (Cpq)p,q∈Q where Cpq is the set of prime Dyck words labeling an ad-
missible path of (A,M) going from p to q.

– Mc = (Mc,pq)p,q∈Q (resp. Mr = (Mr,pq)p,q∈Q) where Mc,pq (resp. Mr,pq) is
the set of labels of paths going from p to q and made only of consecutive
edges of A labelled by call letters (resp. return letters).

– Cc = CMc
∗ (resp. Cr = Mr

∗C) .

In the sequel H will denote one of the matrices C,Cc,Mc, Cr,Mr. We denote
by XH the σ-invariant set containing all orbits (shifted sequences) of sequences
x ∈ AZ which are labels of bi-infinite paths (pi, wi, pi+1)i∈Z, where wi ∈ Hpipi+1 .

We denote by H(z) the matrix (Hpq(z))p,q∈Q where Hpq(z) is the ordinary
generating series of Hpq, i.e. Hpq(z) =

∑
n≥0 card(Hpq ∩ An)zn. Whenever u ∈

Hpq ∩ Hpq′ , v ∈ Hqr ∩Hq′r, one has q = q′. This unambiguous property comes
from the determinism of the Dyck automaton A. As a consequence, for any
nonnegative integer k, the series Hk

pq(z) is the ordinary generating series of the
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language of words w0 · · ·wk−1 where wi ∈ Hpipi+1 for 0 ≤ i ≤ (k − 1), p0 = p
and pk = q.

We say that the matrix (Hpq)p,q∈Q, where each Hpq is a set of nonempty
words over A is circular if for all n,m ≥ 1 and x1 ∈ Hp0,p1 , x2 ∈ Hp1,p2 , . . . , xn ∈
Hpn−1p0 , y1 ∈ Hq0,q1 , y2 ∈ Hq1,q2 , . . . , ym ∈ Hqm−1q0 and p ∈ A∗ and s ∈ A+, the
equalities

sx2x3 · · ·xnp = y1y2 · · · ym, (12)

x1 = ps (13)

imply n = m, p = ε and xi = yi for 1 ≤ i ≤ n.
This notion extends the classical notion of circular codes (see for instance [5]).

Proposition 3. Let (A,M) be a deterministic Dyck automaton. The matrices
C, Cc and Cr defined from (A,M) are circular matrices.

In order to count periodic sequences of sofic-Dyck shifts, we need some ma-
chinery similar to the one used to count periodic sequences of sofic shifts (see
for instance [16]).

Let (A,M) be a deterministic Dyck automaton where A = (Q,E). Let �
be a positive integer. We fix an ordering on the states Q. We define the Dyck
automaton (A⊗�,M⊗�) over a new alphabet A′ where A⊗� = (Q⊗�, E⊗�) as
follows.

– We set A′ = (A′
c, A

′
r, A

′
i) with A′

c = Ac ∪ {−a | a ∈ Ac}, A′
r = Ar ∪ {−a |

a ∈ Ar}, and A′
i = Ai ∪ {−a | a ∈ Ai}.

– We denote by Q⊗� the set of ordered �-uples of distinct states of Q.

– Let P = (p1, . . . , p�), R = (r1, . . . , r�), be two elements of Q⊗�. Thus p1 <
· · · < p� and r1 < · · · < r�. There is an edge labelled by a from P to R in
A⊗� if and only if there are edges labelled by a from pi to p′i for 1 ≤ i ≤ �
and R is an even permutation of (p′1, . . . , p

′
�). If the permutation is odd we

assign the label −a. Otherwise, there is no edge with label a or −a from P
to R.

– We define M⊗� as the set of pairs of edges ((p1, . . . , p�), a, (p
′
1, . . . , p

′
�)), and

((r1, . . . , r�), ±b, (r′1, . . . , r′�)) ofA⊗� such that each edge (pi, a, p
′
i) is matched

with (ri, b, r
′
i) for 1 ≤ i ≤ �.

We say that a path of A⊗� is admissible if it is admissible when the signs of
the labels are omitted, the sign of the label of a path being the product of the
signs of the labels of the edges of the path.

We denote by C⊗�,PP ′ the set of signed prime Dyck words c labeling an admis-
sible path in A⊗� from P to P ′. We denote by C⊗� the matrix (C⊗�,PP ′)P,P ′∈Q⊗�

whose coefficients are sums of signed words of A+. More generally, if H denotes
one of the matrices C,Cc,Mc, Cr,Mr defined from (A,M) in this section, we
denote by H⊗� the matrix defined from (A⊗�,M⊗�) similarly.
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4.2 Zeta Functions of XH

Let H be one of the matrices C,Cc, Cr,Mc,Mr. We denote by XH the σ-
invariant subset of X containing all orbits of sequences labels of bi-infinite paths
(pi, wi, pi+1)i∈Z, where wi is a prime Dyck word in Hpipi+1 .

Denoting by pn the number of sequences of XH of period n, the zeta function
of the invariant set XH is defined by

ζXH (z) = exp
∑
n>0

pn
n
zn.

The zeta function of XH has the following formula.

Proposition 4. The zeta function of XH , where H is one of the matrices
C,Cc,Mc, Cr,Mr is

ζXH (z) =

|Q|∏
�=1

det(I −H⊗�(z))(−1)� .

4.3 Zeta Function of X

The following proposition is an extension of a similar result of Krieger and
Matsumoto [15] for Markov-Dyck shifts.

Proposition 5. The zeta function ζX(z) of a sofic-Dyck shift satisfies

ζX(z) =
ζXCc

(z)ζXCr
(z)ζXMc

(z)ζXMr
(z)

ζXC (z)
, (14)

where XC , XCc , XCr , XMc , XMr are the σ-invariants subsets of subshifts defined
above.

It is based on the following proposition realizing an encoding of the periodic
patterns of X .

Proposition 6. Let p(Y ) denotes the periodic points of a σ-invariant set Y . We
have p(X) = p(XMc) ∪̇ p(XMr ) ∪̇(p(XCc)∪p(XCr )) and p(XCc)∩p(XCr ) = p(XC),
where ∪̇ denotes a disjoint union.

The previous computations allow us to obtain the following general formula
for the zeta function of X .

Theorem 2. The zeta function of a sofic-Dyck shift accepted by a deterministic
Dyck automaton (A,M) is given by the following formula.

ζX(z) =
ζXCc

(z)ζXCr
(z)ζZc(z)ζZr (z)

ζXC (z)

=

|Q|∏
�=1

det(I − Cc,⊗�(z))(−1)� det(I − Cr,⊗�(z))(−1)�

det(I − C⊗�(z))(−1)�+1 det(I −Mr,⊗�(z))(−1)� det(I −Mc,⊗�(z))(−1)� .
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Corollary 1. The zeta function of a sofic-Dyck shift with a deterministic pre-
sentation is Z-algebraic.

Although sofic-Dyck shifts may not have deterministic presentations in gen-
eral, it is shown in [3] that one can overcome this difficulty with reduced presen-
tations so that the above formula holds for all sofic-Dyck shifts. It is also proved
in [3] that for the subclass of sofic-Dyck shifts called finite-type-Dyck shifts, the
zeta function is an N-algebraic function, i.e. that it is the generating series of
an unambiguous context-free language. We conjecture that the result also holds
for sofic-Dyck shifts.

4.4 Example

Let X be the even-Motzkin shift of Example 1. It is presented by the Dyck
automaton (A,M) pictured on the left part of Figure 2. The Dyck automaton
A⊗1 is the same as A. The Dyck automaton A⊗2 is pictured on the right part
of Figure 2. Let us first compute the zeta function of XC for this automaton.

1 2

(
)

[
]

i

i

1, 2

−i

Fig. 2. The Dyck automaton (A,M) over A = ({(, [}, {), ]}, {i}) (on the left) and the
Dyck automaton A⊗2 on the right

We have C =
[
C11 C12

C21 C22

]
, C⊗2 =

[
C(1,2),(1,2)

]
, with C11 = (D11 ) + [ D11 ], C22 =

0, C12 = i, C21 = i, and D11 = ( D11 ) D11 + [ D11 ] D11 + iiD11 + ε. We get

C11(z) = 2z2D11(z) =
1− z2 −

√
1− 10z2 + z4

2
.

We have C22(z) = 0, C12(z) = C21(z) = z. We also have C(1,2),(1,2) = −i and
thus C(1,2),(1,2)(z) = −z. We obtain

ζXC (z) =

2∏
�=1

det(I − C⊗�(z))(−1)� =
1 + z

1− z2 − 1−z2−
√
1−10z2+z4

2

.

For H = Mc,Mr, we have
∏2

�=1 det(I −H⊗�(z))(−1)� = 1
1−2z . We also have

Cc = CMc
∗ =

[
C11{(, [}∗ i
i{(, [}∗ 0

]
, Cr = Mr

∗C =

[
{), ]}∗C11 {), ]}∗i

i 0

]
.

2∏
�=1

det(I − Cc,⊗�(z))(−1)� =
(1 + z)(1− 2z)

1− 2z − z2 − 1−z2−
√
1−10z2+z4

2

.
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The same equality holds for Cr. We finally get

ζX(z) =
(1 + z)(1− z2 − 1−z2−

√
1−10z2+z4

2 )

(1− 2z − z2 − 1−z2−
√
1−10z2+z4

2 )2
.
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Abstract. CLTLoc (Constraint LTL over clocks) is a quantifier-free ex-
tension of LTL allowing variables behaving like clocks over real numbers.
CLTLoc is inPSPACE [9] and its satisfiability can polynomially be reduced
to a SMT problem, allowing a feasible implementation of a decision proce-
dure. We used CLTLoc to capture the semantics of metric temporal logics
over continuous time, such as Metric Interval Temporal Logic (MITL), re-
sulting in the first successful implementation of a tool for checking MITL
satisfiability [7]. In this paper, we assess the expressive power of CLTLoc,
by comparing it with various temporal formalisms over dense time. When
interpreted over timed words, CLTLoc is equivalent to Timed Automata.
We also define a monadic theory of orders, extending the one introduced
by Kamp, which is expressively equivalent to CLTLoc. We investigate a
decidable extension with an arithmetical next operator, which allows the
expression of timed non-ω-regular languages.

1 Introduction

Linear Temporal Logic (LTL) is one of the most popular descriptive languages
for modeling temporal behavior. Its time model is the structure (N, <), allow-
ing the expression of positional orders of events, e.g., “if a query is received,
then a reply will be delivered within 5 positions from now”, but now allowing
the formulation of real time constraints, that typically require a dense time do-
main. The absence of real time constitutes a major limitation of LTL, which
has been addressed by adding variables, primitive operations or suitable modal-
ities embedding real time, e.g., [19,12]. The reference model in this field is MTL
(Metric Temporal Logic) [17,3], an extension of LTL that allows a temporal
modality UI (and SI), over a real time interval I. On a dense time domain,
both satisfiability and model checking for MTL are undecidable [4], but var-
ious decidable fragments have been defined. MITL [2] restricts intervals I in
UI to be non punctual, e.g., a punctual eventuality such as trueU[a,a]φ is not
allowed. MITL is EXPSPACE-complete and it is closed under all Boolean oper-
ations. A smaller fragment of MTL, called QTL [15], is obtained by restricting
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the temporal modalities to U(0,∞) and to F(0,1), but it is actually equivalent to
MITL. For many years, punctual eventualities were considered the main source
of undecidability over dense time. In [10,20] this result has been revised: decid-
ability has been shown not to solely depend on banning punctual intervals. For
instance, Flat-MTL [10] and Safety MTL [20] allow both punctual eventualities
and invariance properties, but they add some syntactical restrictions on the Until
modality. They are not closed under negation, but their satisfiability is decidable.
However, satisfiability of Safety-MTL formulae is non-elementary, while for Flat-
MTL is EXPSPACE-complete. The dual version of Flat-MTL (i.e., consisting of
the negation of formulae in Flat-MTL) is called coFlat-MTL: unfortunately, its
satisfiability is undecidable (although model checking is EXPSPACE-complete).

The above research on MTL fragments, although also considered satisfiability,
was mainly focused on devising logics that are suitable for model-checking of
timed automata, while the interest in satisfiability has been quite limited. On the
other hand, the need for full descriptive formalisms specifying reactive systems,
and possibly with tractable complexity, is widely accepted [21].

Operational models, such as Büchi Automata (BA), are the most adopted
and widely used alternative to temporal logic. Timed Automata (TA) [1] are the
standard operational formalism for real time modeling. In [24], Büchi’s famous
result about the equivalence of Monadic Second-order Logic (MSO) and BA
automata was extended to real time, by showing that the Monadic second-order
logic Ld (augmenting MSO with a function measuring time between positions)
is equivalent to TA. Because of its undecidability, MTL is not the proper logical
formalism to capture TA, whose emptiness is decidable. Also, MTL does not
embed explicit clocks, which are instead essential resources in TA: their absence
makes the relationship between the expressiveness of clock constraints in TA and
the syntactical restrictions of the various MTL fragments far from being evident.

In general, real time logics such as MTL are well suited to be interpreted
with the continuous-time semantics, where atomic formulae are interpreted as
state predicates, i.e., continuous flows or signals (i.e., mappings associating val-
ues in R+ with states). On the other hand, TA are naturally defined on the
pointwise semantics, where atomic formulae are interpreted as instantaneous
events associated with a timestamp, hence leading to an interpretation over
timed words (sequences of timestamped events). TA can precisely be captured
over the continuous-time semantics by various logic formalisms, such as quanti-
fied MITL [13] and Second-order real-time Sequential Calculus [2]. However, no
temporal logic has so far been shown equivalent to TA in the pointwise semantics,
where the construction of [2] cannot be applied.

In this paper, we bridge the gap between TA and temporal logic over the
pointwise semantics. We consider Constraint LTL over clocks (CLTLoc), a quan-
tifier-free extension of LTL that still considers discrete positions, but it has
also a finite set of variables over a dense time domain, behaving like clocks
of TA, to measure time elapsing among events occurring at discrete positions.
Unlike MTL, clocks are explicit resources in CLTLoc and, as in TA, they can
be compared with constants over N (or Q). In [7], we prove that satisfiability of
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CLTLoc is PSPACE-complete, by combining results on the decidability of CLTL
[11],[5] over R with Region Graphs [1] capturing time behavior of variables.
Moreover, the satisfiability of CLTLoc can be reduced to an instance of a SMT
(satisfiability Modulo Theory) problem. A decision procedure was then easily
devised and implemented (http://code.google.com/p/zot), by adopting SMT
solvers such as Z3 [18]. CLTLoc has been successfully employed to reduce MITL
over continuous semantics [6,8], allowing us to implement the first effective tool
solving the satisfiability of MITL (http://code.google.com/p/qtlsolver).

In this paper, we prove the equivalence of CLTLoc and TA over timed se-
quences, and that CLTLoc is expressively complete with respect to an extension
of the monadic first-order logic used by Kamp in [16], called Timed Monadic
First-Order logic (T-MFO). This result extends the Kamp’s equivalence between
LTL and MFO to timed models. T-MFO is similar to logic LT of [3], but it uses a
restriction on atomic formulae and suitable time behavior functions to represent
clocks of CLTLoc. As a consequence, as it is the case for LTL, CLTLoc with
past modalities is equivalent to CLTLoc with only future operators. In analogy
to TA, the number of clocks that are allowed in CLTLoc formulae determines
the expressiveness of the language. We prove, in fact, that there is an infinite
hierarchy of languages based on the number of clocks. An arithmetical “next”
modality may also be allowed, e.g., to state formulae such as Xx = y, meaning
that the value of clock x at the next position and the current value of clock y are
equal. This modality allows the expression of properties of the length of intervals
between two positions, e.g., timed non-regular behaviors where the period can
be any real number, which cannot be defined by any temporal logic over dense
time so far investigated. The paper is organized as follows: Sect. 2 introduces
CLToc, MTL, MITL and TA; Sect. 3 shows the equivalence of CLTLoc and TA;
Sect 4 defines the logic T-MFO. showing its equivalence with CLTLoc. Sect. 5
investigates CLTLoc extended with the next arithmetical modality.

2 Languages

Constraint LTL over clocks [7] (CLTLoc) is a semantic fragment of CLTL [11]
where formulae are defined with respect to a finite set AP of atomic propositions,
a finite set V of clocks and a pair D = (R, {<,=}).

Temporal terms α are defined by the syntax α := c | x | Xα, where c is a
constant in N and x ∈ V . Operator X only applies to temporal terms, with the
meaning that Xα is the value of temporal term α in the next position.

Formulae are defined as follows:

φ := p | α ∼ α | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where ∼ is a relation of {<,=} and X, Y, U and S are the usual “next”,
“previous”, “until” and “since” operators of LTL, with the same meaning.

For n ∈ N, n ≥ 0, let CLTLoc(Xn) denote the class of CLTLoc formulae
allowing atomic formulae of the form Xhx ∼ y, Xhx ∼ c, where x, y are clocks,
c is constant and h is an integer with 0 ≤ h ≤ n and let CLTLocX denote the

http://code.google.com/p/zot
http://code.google.com/p/qtlsolver
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class of formulae defined as
⋃

n∈N CLTLoc(Xn). Throughout the paper, we write
CLTLoc instead of CLTLoc(X0). For convenience, one can still use in CLTLoc
the operator X in formulae of the form Xx ∼ c, as a shorthand for X (x ∼ c).
Sections 3 and 4 study the expressiveness of CLTLoc, while Section 5 deals with
CLTLocX. The semantic definitions of CLTLocX in the remainder of this section
also apply to its syntactic fragment CLTLoc.

The semantics of CLTLocX is defined with respect to a strict linear order
(N, <) representing positions in time.

The valuation of clocks can be defined by a mapping σ : N×V → R, assigning,
for every position i ∈ N, a value σ(i, x) to each clock x ∈ V . Intuitively, a clock
x measures the time elapsed since the last time when x = 0, i.e., the last “reset”
of x. To ensure that time progresses at the same rate for every clock, σ is called
a valuation when satisfies the following condition: for every position i ∈ N, there
exists a “time delay” δi > 0 such that for every clock x ∈ V :

σ(i + 1, x) =

{
σ(i, x) + δi, time progress

0 reset x.

By definition of the sequence of δi, it follows that time progress is strongly
monotonic and, moreover, resets in a valuation are represented by value 0, leading
to a very simple definition of CLTLocX: there is no distinction between the action
of resetting a clock x and of testing whether x = 0 in the current valuation. To
consider monotonic time progress instead, i.e., allowing δi ≥ 0, CLTLocX must
be enriched with a special operator to represent clock resets whose semantics is
different from the one of tests x ∼ c.

We assume that at every position there is at least one clock which is not
reset: if this is not the case, just add a new clock Now, which is never reset.
Hence, the time delay δi is uniquely defined in each position i > 0 as σ(i +
1,Now)−σ(i,Now). The initial value of clocks, σ(0, x) may be any non-negative
value. When comparing CLTLoc with MTL and TA, other assumptions may be
introduced to deal with some specific cases, e.g., requiring that clocks start from
0 at position 0 (which is obtained by syntactically imposing x = 0 at 0).

An interpretation for a CLTLocX formula φ is a pair (π, σ), where σ is a val-
uation and π : N→ ℘(AP ) maps every position to a set of atomic propositions.
The semantics of φ at position i ∈ N over (π, σ) is defined in Table 1. The only
case requiring an explanation is the clause for interpreting α1 ∼ α2. Given a
temporal term α containing an occurrence of a variable xα let the depth |α| of
α be the total amount of temporal shift needed in evaluating α: |xα| = 0 and
|Xα| = |α| + 1. The value σ(i, α) is then defined as: σ(i, α) = σ(i + |α|, xα). If
α has an occurrence of a constant cα then σ(i, α) = cα. Hence, we can always
assume that X does not appear in front of a constant. A CLTLocX formula φ is
satisfiable if (π, σ), 0 |= φ, for some (π, σ); in this case, (π, σ) is called a model
of φ, and we write (π, σ) |= φ.

To compare the expressiveness of CLTLocX with other formalisms, we in-
troduce the satisfiability of CLTLocX formulae over timed ω-words (or timed
ω-sequences). A timed ω-word over ℘(AP ) is a pair (π, τ) where π : N→ ℘(AP )
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Table 1. Semantics of CLTLocX (propositional connectives are omitted)

(π, σ), i |= p ⇔p ∈ π(i) for p ∈ AP

(π, σ), i |= α1 ∼ α2 ⇔σ(i+ |α1|, xα1) ∼ σ(i+ |α2|, xα2)

(π, σ), i |= X (φ) ⇔(π, σ), i+ 1 |= φ

(π, σ), i |= Y (φ) ⇔(π, σ), i− 1 |= φ ∧ i > 0

(π, σ), i |= φUψ ⇔∃ j ≥ i : (π, σ), j |= ψ ∧ ∀ i ≤ n < j, (π, σ), n |= φ

(π, σ), i |= φSψ ⇔∃ 0 ≤ j ≤ i : (π, σ), j |= ψ ∧ j < n ≤ i, (π, σ), n |= φ

and τ is a monotonic function τ : N → R such that ∀i τ(i) < τ(i + 1) (strong
monotonicity). Without loss of generality, to simplify some of the proofs that
follow, we depart slightly from the standard definition of timed words, consider-
ing the first position 0 as “special”. Given a CLTLocX interpretation (π′, σ), let
τ and π be such that: τ(0) = 0, π(0) = ∅ and for every i ≥ 0

τ(i + 1) = σ(i,Now), π(i + 1) = π′(i).

Then, (π, τ) is called the timed ω-word associated with (π′, σ) and it is denoted
by [(π′, σ)]. A relation |= can be defined for every timed ω-word (π, τ) and
CLTLocX formula φ as follows. Let (π, τ) |= φ hold if there exists an interpreta-
tion (π′, σ) such that (π′, σ) |= φ and (π, τ) = [(π′, σ)]. A CLTLocX formula φ
is satisfiable over timed ω-words, if (π, τ) |= φ, for some (π, τ).

3 Equivalence of CLTLoc and Timed Automata

This section shows that the set of timed ω-words satisfying a CLTLoc formula
is timed ω-regular, i.e., it is accepted by a Timed Automaton. In particular,
CLTLoc is an extension of LTL capturing exactly timed ω-regular languages.

We recall the basic definitions of Timed Automata. Let X be a finite set of
clocks with values in R. Γ (X) is the set of clock constraints over X of the form
x ∼ c | ¬γ | γ ∧ γ, where ∼∈ {<,=}, x ∈ X and c ∈ N. A clock valuation is a
function v : X → R. We write v |= γ when the clock valuation satisfies γ. For
t ∈ R, v + t denotes the clock valuation mapping clock x to value v(x) + t, i.e.,
(v + t)(x) = v(x) + t.

A Timed Automaton is a tuple A = (Σ,Q, T, q0, B) where Σ is a finite al-
phabet, Q is a finite set of control states, q0 ∈ Q is the initial state, B ⊆ Q
is a subset of control states (corresponding to a Büchi condition) and T ⊆
Q×Q× Γ (X)×Σ × 2X is a set of transitions.

A transition has the form q
γ,a,S−−−→ q′ where q, q′ ∈ Q, γ is a clock constraint

of Γ (X), a is a symbol of Σ, and S is a set of clocks to be reset. Two transitions

q
γ,a,S−−−→ q′ and p

γ′,b,P−−−−→ p′ of T are consecutive when q′ = p. A (finite or infinite)
sequence of consecutive transitions in T is a path in A. A pair (q, v), where
q ∈ Q and v : X → R is a clock valuation, is a configuration of A. A run ρ of A
over a timed ω-word (π, τ) ∈ (Σ × R)ω is an infinite sequence of configurations
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(q0, v0)
π(1)−−−→
τ(1)

(q1, v1)
π(2)−−−→
τ(2)

. . . , where q0 ∈ I, v0(x) = 0 for all x ∈ X , vi(x)

is either 0 or vi−1(x) + τ(i) − τ(i − 1) for all x ∈ X and i > 0; moreover, the

sequence q0
γ1,π(1),S1−−−−−−→ q1

γ2,π(2),S2−−−−−−→ q2 . . . , such that vi−1 + τ(i)− τ(i − 1) |= γi
and x ∈ Si iff vi(x) = 0, must be a path of A. Let inf (ρ) be the set of control
states q ∈ Q such that q = qi for infinitely many positions i ≥ 0 in ρ. A run is
accepting when a Büchi condition holds, i.e., inf (ρ) ∩B �= ∅.

Since we consider strictly monotonic time sequences τ , a transition with a
guard x = 0 can never be taken (hence, it can be replaced with false): such
a transition would be fired at i only when a transition at i − 1 resets x, thus
entailing τ(i) = τ(i − 1), contradicting strict monotonicity. From now on, we
assume that guards of the form x = 0 are not allowed in a TA.

3.1 From Timed Automata to CLTLoc

Following a rather standard approach, we provide a CLTLoc formula which cap-
tures the semantics of a TA. To this end, we introduce a set of fresh clocks XQ

representing the control states ofA. More precisely, a clock cq ∈ XQ is associated
with each control state q ∈ Q; the value of cq is 0 whenever A is in q, and it is left
to grow (i.e., cq > 0) otherwise. Since in CLTLoc, unlike in TA, a clock cannot be
read and reset at the same time, following the approach of [7] for each x ∈ X we
introduce two CLTLoc clocks, x1 and x2, which are alternately reset. In addition,
we introduce a third clock, x12, which is used to keep track of whether x1 < x2

(x12 is 0 if, and only if, x1 < x2). We define a set of formulae whose conjunction φA
describes a given TAA. The first formula (whereG (φ) = ¬(trueU¬φ)) is globally
quantified and states that if x1 is reset then it cannot be reset again, unless x2 is
reset before it; in addition, x12 = 0 until x2 is reset:

x1 = 0 ⇒ ¬X ((x2 > 0)U(x1 = 0)) ∧ x12 = 0 ∧X

(
G (x12 = 0 ∧ x2 > 0) ∨
(x12 = 0)U(x2 = 0)

)
.

A symmetrical formula is defined also for x2, but evaluated at position 1 rather
than at the origin. A clock constraint x ∼ c for a clock x of A is expressed by
the formula (x12 = 0∧ x1 ∼ c) ∨ (x12 > 0∧ x2 ∼ c). For all q ∈ Q, the following
formula translates the transition relation of A:

G(cq = 0 ⇒
∨

q
γ,a,S−−−→q′∈T

X (a ∧ cq′ = 0 ∧ φγ ∧ φS)) (1)

where φγ is the CLTLoc formula that captures the clock constraint γ and φS is
the conjunction of formulae of the form x1 = 0 ∨ x2 = 0 for each x ∈ S. The
first transition from the initial state must be dealt with separately, because at
that position all clocks in the TA are set to 0, by the following formula, to be
evaluated at the initial position:∨

q0
γ,a,S−−−→q′∈T

a ∧ cq′ = 0 ∧ φγ ∧ φS . (2)
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To represent valid runs of A, suitable formulae are introduced that guarantee
the uniqueness of the control state and of the input symbol at each position i.
The Büchi acceptance condition is obtained by enforcing that at least one final
control state qj ∈ B is visited infinitely often. These formulae are rather trivial
and are not shown here for brevity. Finally, let φA be the conjunction of all
previous CLTLoc formulae that capture the semantics of A.

Theorem 1. Let A be a TA with k ≥ 1 clocks and n ≥ 1 control states, and
let (π, τ) be a timed word over alphabet Σ. Then, (π, τ) is accepted by A if, and
only if, (π, τ) |= φA. Moreover, φA has 3k + n clocks.

3.2 From CLTLoc to Timed Automata

The timed automaton recognizing the language of timed words that are models
of a given CLTLoc formula is easily obtained by exploiting the Vardi-Wolper
construction [23] for LTL formulae. We take care of clock constraints that are
handled as atomic formulae and, in particular, all formulae of the form x = 0 are
converted into resets. Observe that, with the assumption of strictly monotonic
time sequence, CLTLoc formulae x = 0 are equivalent to resets of TA.

Theorem 2. Let φ be a CLTLoc formula with k clocks. Then, there exists a
k-clock TA Aφ recognizing the timed language defined by φ: for all timed words
(π, τ) over alphabet ℘(AP ), (π, τ) |= φ if, and only if, (π, τ) is recognized by Aφ.

From the equivalence of CLTLoc and TA some results follow immediately.
The first statement derives from the universality problem for TA.

Corollary 1. The validity problem for CLTLoc is Π1
1 complete.

Let CLTLocX,U be the set CLTLoc formulae with no past operators S and Y.

Corollary 2. CLTLoc is equivalent to CLTLocX,U.

The number of clocks plays a crucial role for the expressiveness of TA. In fact,
timed regular languages can be arranged in a strict hierarchy, determined by the
minimum number of clocks necessary for accepting a given language.

Theorem 3. [14] For all k ≥ 0, the class of timed languages accepted by TA with
k clocks is strictly included in the class of timed languages accepted by TA with k+1
clocks.

Example 1. Consider the family of timed languages {Lk}k>0 where Lk is the
set of timed words over the alphabet {a} of the form (π, τ), such that π : N →
{∅, {a}}, π(i) = {a} for all i > 0 and there exist at least k distinct pairs (i, j),
0 < i < j ∈ N, such that τ(j) − τ(i) = 1 (i.e., there are at least k distinct pairs
of a’s at exactly distance 1). In [22], it was shown that every Lk is accepted by
a TA with k clocks, but it cannot be accepted by any TA with k − 1 clocks.

The above hierarchy result can easily be extended to CLTLoc. Let CLTLock be
the set of CLTLoc formulae where at most k clocks occur, i.e., |V | ≤ k.

Theorem 4. For all integers k > 0, CLTLock is strictly more expressive than
CLTLock−1.
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4 Timed Monadic First Order Logic of Orders

We define the logic T-MFO, an extension of the monadic first order logic of
order (MFO) that Kamp [16] showed to be equivalent to LTL. We then prove
that CLTLoc is expressively complete with respect to T-MFO. T-MFO has two
kinds of elements: monadic predicates whose domain is N, and monotonic unary
functions N→ R relating positions in N to timestamps in R. Similarly to the logic
LT of [3], T-MFO includes a special function, denoted as t : N→ R, associating
each discrete position with its absolute timestamp. For simplicity and without
loss of generality, in this section we assume that, given a CLTLoc formula, all
clocks that appear in it are reset in position 0.

(N, <) is the theory of discrete positions, whereas (R, <,=,+) is the structure
where timestamps are evaluated. The elements of T-MFO are:

– a set AP of monadic predicates over the set N of discrete positions;
– relation < and function +1 on discrete positions;
– a set T of unary functions N → R from discrete positions to timestamps;

one of them is called t;
– relations <,= and function +1 on timestamps.

In (N, <), the constant 0 and the successor function +1 can be defined by means
of < and first-order quantification, but we introduce them as primitive to over-
come the syntactic restrictions introduced next. Let tx and ty be unary functions
of T from discrete positions to timestamps. We restrict the atomic formulae on
timestamps to be of the form tx(i) ∼ ty(j)+ c, where ∼∈ {<,=} and +c (c ∈ N)
corresponds to the application c times of function +1. In addition, we impose
that atomic formulae only have one free variable. As a consequence, the atomic
formulae that can be written on timestamps have the form

β(i) := tx(i + h) ∼ ty(i + k) + c

where either tx or ty may be t and h, k are constants in N and ∼∈ {<,=} (the
case where both are t is straightforward, because β reduces to either true or false
based on ∼, h and k).

Function t of T captures the passing of time, and is similar to function f used
in [3]. Hence, the following constraint holds: ∀i t(i + 1) > t(i). The functions
of set T are intended to capture the timestamps when clocks are reset – more
precisely, tx(i) is the last timestamp where clock x is reset. As a consequence,
the functions obey the following constraints: tx(0) = t(0) and

∀i ((tx(i + 1) = tx(i) ∨ tx(i + 1) = t(i + 1))) .

Finally, formulae of T-MFO are defined by the following grammar (where
p ∈ AP and i, j are variables over N):

φ := p(i) | β(i) | i < j | ¬φ | φ ∧ φ | ∀iφ.

We consider only formulae of T-MFO that do not contain free individual vari-
ables. The semantics for T-MFO formulae is defined with respect to a structure
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MI = (N, <, I) (or simply I) where interpretation I specifies the sets pI ⊆ N
for each p ∈ Σ and the behavior of all functions of T . The satisfaction relation
|= is defined in the standard way. A T-MFO formula φ is satisfiable if there is I
such that I, 0 |= ψ; in this case, we say that I is a model of φ.

Given an interpretation I, define the corresponding timed word (π, τ) as:

– For all p ∈ AP , p ∈ π(i) iff i ∈ pI .
– For all i ∈ N, τ(i) = t(i).

Relation |= can be extended to timed words. Let (π, τ) be a timed word and φ
be a T-MSO formula. We write (π, τ) |= φ if there exists an interpretation I
that is a model for φ such that (π, τ) is obtained from I.

4.1 From CLTLoc to T-MFO

Every CLTLoc formula φ can be translated into a T-MFO formula by introducing
a monadic predicate p(i) for each CLTLoc proposition p, and a function tx(i) for
each clock x. The following definition of translation r, mapping CLTLoc formulae
to T-MFO formulae, follows [3] and is defined inductively on the structure of the
CLTLoc formula. First, we introduce mapping ri, for i ≥ 0, which is the same
as Fi of [3] for p ∈ AP , ¬, ∧, X and U, plus the following:

ri(x ∼ c) = t(i) ∼ tx(i) + c.

Let φ be a CLTLoc formula. Then, r0(φ) is the corresponding T-MFO formula.

Theorem 5. Let φ be a CLTLoc formula and (π, σ) be a CLTLoc interpreta-
tion. If (π, σ) |= φ then there exists an interpretation I such that I, 0 |= r0(φ).
Conversely, let I be an interpretation such that I, 0 |= r0(φ). Then, there is an
interpretation (π, σ) such that (π, σ) |= φ.

4.2 From T-MFO to CLTLoc

To obtain the opposite equivalence, we again exploit Kamp’s results proving the
equivalence between MFO and LTL. To extend the result to T-MFO, we have
to show how atomic formulae β(i) can be translated into CLTLoc, since MFO
does not have formulae in this form.

Theorem 6. Let φ be a T-MFO formula. There exists a CLTLoc formula φ′

such that, for all timed words (π, τ), (π, τ) |= φ if, and only if, (π, τ) |= φ′.

As a consequence of Theorem 6, formulae of the form t(i) ∼ ty(i + h) + c
and t(i + h) ∼ ty(i) + c (i.e., where one of tx, ty in terms β is t) are enough
to characterize timed ω-languages; in fact, by exploiting the equivalence with
CLTLoc, one can always remove formulae β where neither tx nor ty is t.

Corollary 3. Let φ be a T-MFO formula. Then, there is a T-MFO formula φ′

without instances of formula tx(i+h) ∼ ty(i+k) + c, with tx �= t �= ty, such that
for each timed word (π, τ), it is (π, τ) |= φ if, and only if, (π, τ) |= φ′.
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5 Timed Non-regular Languages

Many extensions of the class of TA have been proposed with the goal of increas-
ing its expressiveness. For instance, [1] introduced diagonal constraints, i.e., of
the form x ∼ y + c, as guards of transitions. They proved, however, that this
extension does not augment the expressiveness of TA, since the construction of
the region graph can be generalized to consider diagonal constraints, by refining
the equivalence relation & on clock valuations.

In CLTLoc one can also allow diagonal constraints, but as in the case of TA,
they do not augment the expressiveness of the language; the occurrence of a
formula x ∼ y+ c, with c ∈ N a constant in and x, y two clocks, can equivalently
be rewritten in CLTLoc as (x > 0 ∧ y > 0)S(y = 0 ∧ x ∼ c). In fact, since time
progression is the same for both clocks x and y, the formula x ∼ y+c is satisfied
at a position i ∈ N if there exists a position j ≤ i such that at j both y = 0 and
x ∼ c hold, and from position j + 1 up to i, neither x nor y are reset. Therefore,
x > 0 ∧ y > 0 holds in every position in the interval [j + 1, i].

When considering CLTLocX, i.e., when temporal terms include also X, the
expressive power increases. Notice that atomic formulae of the form Xnx ∼
Xmy, for m ≤ n, may be ignored since they can equivalently be rewritten as
Xm(Xn−mx ∼ y).

Example 2. Let L be the set of timed ω-words over the alphabet {a} such that
a is periodical. Formally, an ω-word (π, τ) is in L if, and only if, π : N→ {{a}}
and for all i ∈ N, τ(i+ 2)− τ(i+ 1) = τ(i+ 1)− τ(i). L is defined in CLTLoc(X)
with two clocks x, y as: y = 0 ∧ x > 0 ∧G(a ∧ Xy = x ∧ Xx = y). Condition
Xx = y states that for all i ≥ 0 the value of x at position i + 1 is the same
of y at position i. Similarly for Xy = x. The formula imposes that at position
0 y = 0 and x may assume any real value α > 0. Therefore, for all i ∈ N,
if i is even then σ(i, y) = 0, σ(i, x) = α, else σ(i, y) = α, σ(i, x) = 0. Hence,
σ(i + 1,Now) − σ(i,Now) = α. It is now obvious that (π, σ) is a model of the
formula if, and only if, [(π, σ)] is a timed ω-word of L.

Theorem 7. The language of Ex. 2 is not timed regular, but it is in CLTLoc(X).

The following immediate property of operator X is crucial in showing that the
timed non-regular language L of Example 2 is in CLTLoc(X).

For a clock z ∈ V , for a position m ∈ N, let R(z,m) = max{j | 0 ≤ j ≤
m ∧ σ(j, z) = 0}, i.e., the largest position between 0 and m where z is reset.

Statement 1. Let σ : N × V → R be a valuation such that all clocks are reset
at least at position 0. For i > 0, x, y ∈ V , let Rx = R(x, i+n), and Ry = R(y, i).
Then, σ(i,Xnx) = σ(i, y) if, and only if, Ry < Rx and:

σ(Rx,Now)− σ(Ry ,Now) = σ(i + n,Now)− σ(i,Now)

In fact, σ(i,Xnx) = σ(i + n, x) = σ(i + n,Now) − σ(Rx,Now), and σ(y, i) =
σ(i,Now) − σ(Ry ,Now): it follows that σ(i,Xnx) = σ(i, y) ⇔ σ(i + n,Now) −
σ(Rx,Now) = σ(i,Now) − σ(Ry ,Now). Hence, a formula of the form Xnx = y
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compares the time distance of positions i and i + n with the time distance of
positions Ry and Rx (where y and x were last reset). A special case is when
Rx = i + n and Ry = i, which entails that σ(i,Xnx) = σ(y, i) = 0.

For all k ≥ 0, let CLTLoc(Xn, k) be the class of CLTLoc(Xn) formulae
with at most k clocks. The number of clocks induces an infinite hierarchy over
CLTLoc(Xn, k):

Theorem 8. For all k, n ≥ 1, the class of languages in CLTLoc(Xn, k − 1) is
strictly included in the class of languages in CLTLoc(Xn, k).

We notice that CLTLoc(Xn, k) �⊆ CLTLoc(k + 1) for k ≥ 2, since the exam-
ple of Theorem 7 can be defined with just two clocks, and the language Lk in
the proof of Theorem 8 is the same of Ex. 1, which obviously is in CLTLock.
Therefore, operator X cannot be used to replace some of the clocks:

Corollary 4. For all k ≥ 2, the class of languages in CLTLoc(k + 1) is incom-
parable with the class of languages in CLTLoc(Xn, k).

The operator Xn also induces an infinite hierarchy:

Theorem 9. For all k, n ≥ 1, the class of languages in CLTLoc(Xn−1, k) is
strictly included in the class of languages in CLTLoc(Xn, k).

6 Conclusions

This paper studies the expressiveness of Constraint LTL over clocks (CLTLoc),
whose main interest of CLTLoc is that its decidability procedure, based on SMT
solvers, has actually been implemented, allowing the verification of real time
logics such as MITL or QTL.

CLTLoc is equivalent to Timed Automata in the pointwise semantics and it
is expressively complete with respect to an extension of Kamp’s monadic first-
order logic. Its family of languages is organized in an infinite hierarchy based on
the number of clocks. When an arithmetical “next” operator is allowed, CLTLoc
defines also timed non-ω-regular languages, while still being decidable.
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Abstract. In this paper we introduce so-called asymptotic logics, logics
that are meant to reason about weights of elements in a model in a way
inspired by topology. Our main subject of study is Asymptotic Monadic
Second-Order Logic over infinite words. This is a logic talking about ω-
words labelled by integers. It contains full monadic second-order logic
and can express asymptotic properties of integers labellings.

We also introduce several variants of this logic and investigate their
relationship to the logic MSO+U. In particular, we compare their ex-
pressive powers by studying the topological complexity of the different
models. Finally, we introduce a certain kind of tiling problems that is
equivalent to the satisfiability problem of the weak fragment of asymp-
totic monadic second-order logic, i.e., the restriction with quantification
over finite sets only.

1 Introduction

In this paper we consider logics that are able to express asymptotic properties
about structures whose elements are labelled by weights. We call such logics
‘asymptotic logics’. In general, these logics refer to a structure A together with
a labelling function d, called the ‘weight map’, that maps elements or tuples of
elements to non-negative reals. A typical example of such an object is a metric
structure, i.e., a structure A equipped with a distance map d : UA×UA → [0,∞).
In general, we refer to such structures as ‘weighted structures’.

We are interested in the formalisation of properties of asymptotic nature over
weighted structures. Typical examples, in the case of a metric structure, are:

– Continuity of a function f :

(∀x)(∀ε > 0)(∃δ > 0)(∀y)
[
d(x, y) < δ → d(f(x), f(y)) < ε

]
.
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– Uniform continuity of f :

(∀ε > 0)(∃δ > 0)(∀x)(∀y)
[
d(x, y) < δ → d(f(x), f(y)) < ε

]
.

– Cauchy convergence of a sequence (ai)i∈N:

(∀ε > 0)(∃k)(∀i, j > k)
[
d(ai, aj) < ε

]
.

– Density of a set Y : (∀x)(∀ε > 0)(∃y ∈ Y )
[
d(x, y) < ε

]
.

Inspecting the syntax of these formulae, we note the following properties. First,
there are two sorts: the objects that live in the universe of the structure, such
as elements, series, functions, etc.. . . , and the objects living in R that are used
to refer to distances. The map d is the only way to relate these two sorts, and
all tests in which elements of R are involved are comparisons with variables
ε, δ. More interesting is the remark that if a variable, say ε, ranging over R+ is
quantified universally, it is always used as an upper bound, i.e, positively in a test
of the form d(−) < ε (positively in the sense that an even number of negations
separate the quantifier from its use). Dually, if it is quantified existentially, it is
always used as a lower bound, i.e., positively in a test of the form d(−) ≥ ε. In
particular, this is the case for the test d(x, y) < δ in the sentences expressing
continuity and uniform continuity, since it occurs in the left hand-side of an
implication.

This syntactic property witnessed in the above examples can be turned into a
definition. An asymptotic formula is a formula in which it is possible to quantify
over quantities ∃ε, ∀δ, and the only way to use the map d is in tests of the form
d(−) ≥ ε positively below ∃ε and d(−) < δ positively below ∀δ.

This restriction captures the intuition that variables ranging over R+ are
always thought as ‘tending to 0’ or ‘to be very small’. In other words, they
are only used to state properties of a topological nature. Our objective is to
understand the expressive power and the decidability status of logics to which
we have added this asymptotic capability.

Link with Topological Logics. Of course, logics as described above are related to
topological notions, and as such these logics are not very far from the topological
logics as studied in the seventies and eighties. These were logics (variants of first-
order logic) in which it is possible to quantify over open sets. There are several
variants. Flum and Ziegler introduced a logic in which it is possible to quantify
over open sets, but it is only allowed to test the membership in these sets under
a positivity assumption with respect to the quantifier [11] (in a way very similar
to our case). Rabin proved, as a consequence of the decidability of the theory of
the infinite binary tree that the theory of the real line (R, <) with quantification
over open sets is decidable [14]. On the other hand, Shelah and Gurevich showed
that monadic formulas over Cantor space equipped with an ‘is open’ predicate
is undecidable [12].

Our approach is slightly different. Our base object is not, as above, a topology
of open sets, but a weight map d. Of course, if d is required to be a distance,
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it induces a topology. However, there is no such assumption in general (and d
may even be non-binary). Nevertheless, we can consider the topology over the
non-negative reals in which the open sets are the neighbourhoods of 0 (as well
as ∅ of course). Then the quantifiers ∀ε, ∃δ,. . . can be replaced by quantifiers
ranging over open sets, and tests of the form d(−) < ε by membership tests of
d(−) in an open set. Furthermore, these tests respect the positivity assumption
as defined by Flum and Ziegler. However, this relationship of our logic with those
from the literature does not seem to help with solving the questions raised in
the present paper.

Monadic Second-Order Logic and Asymptotic Monadic Second-Order Logic. In
this paper, we consider the asymptotic variant of monadic second-order logic,
though certainly this notion of asymptoticity can be combined with other for-
malisms. Let us recall that monadic second-order logic is the extension of first-
order logic by set quantifiers. There is a long history of works dealing with the
decidability of monadic second-order logic over some classes of structures, the
prominent examples being the results over ω by Büchi [7] and over the infinite
binary tree by Rabin [14]. These results can be regarded as foundations for a
theory of ‘regular languages’ of infinite words and trees. We are interested in
knowing whether this logic can be ‘made asymptotic’ while keeping these strong
decidability properties. We have good hopes that – at least some of – these re-
sults can be generalised to more general ones, in which monadic logic is extended
with asymptotic capabilities.

Before continuing, let us formalise what is ‘asymptotic monadic second-order
logic’ (AMSO for short). The first aspect is that weight maps range over the
elements of the structure, and not tuples. This is a design choice, our goal be-
ing to concentrate our attention on the simplest situation. The second aspect is
cosmetic: instead of considering quantities ranging over R+, we consider quan-
tities ranging over N. Essentially, this amounts for weights to exchange d(−)
with �1/d(−)� and, for quantifiers ∃ε, ∀δ ranging over R+, to exchange them
for ∃r, ∀s ranging over N. As a consequence, existentially quantified numbers
are used as upper bounds, while universally quantified ones are used as lower
bounds. Hence, the syntax of ‘asymptotic monadic second-order logic’ is the one
of MSO, extended by number quantifiers ∃r, ∀s ranging over N and by predicates
of the form d(x) < r and d(x) ≥ s, where x is a first-order variable, under the
assumption that there is an even number of negations between the quantifier
and the use.

Let us give some examples. The structure here is ω and f : ω → N is a weight
map. The convention is that variables x, y, z range over elements of ω, upper
case variables X,Y, Z over subsets of ω, and r, s over N.

– f is bounded: ∃s∀x[f(x) ≤ s].
– f tends to ∞: ∀r∃x(∀y > x)[f(y) > r].
– f takes infinitely many values infinitely many times:
∀r∃s∀x(∃y > x)[r ≤ f(y) < s] .

The subject of this paper is to analyse the expressive power of AMSO, as well
as its variants, and study its decidability status.
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Link with MSO+U. A logic closely related to AMSO is MSO+U [1,3]. MSO+U is
monadic second-order logic extended by a quantifier UXϕ(X) stating that ‘there
are arbitrarily large finite sets X satisfying ϕ(X)’, i.e., UXϕ(X) is equivalent
to ∀s∃X [|X | ≥ s ∧ ϕ(X)]. Thus, MSO+U can be regarded as a fragment of an
asymptotic logic, if the weight map is chosen to be ‘the cardinality map’ that
associates to each set its size (and, say, 0 for infinite sets).

So far, the precise decidability status of MSO+U is unknown. The most
expressive decidable fragment over infinite words corresponds (essentially) to
Boolean combination of formulas in which the U-quantifier occurs positively [3]
(in fact a bit more). On the negative side, it is known that over infinite trees
MSO+U is undecidable [4] under the set-theoretic assumption V = L. This proof
is inspired from the undecidability proof of MSO over the real line by Shelah
[15], and it is absolutely not adaptable to infinite words as such. Hence, there
is a very large gap in our knowledge of the decidability of MSO+U. The case
of the weak fragment of MSO+U, i.e., where set quantifiers do only range over
finite sets, has been positively settled in [5,6] over infinite words and trees. In
terms of the expressive power, this weak fragment still falls in the classes that
are understood from [3].

In some sense, this paper can be seen as an attempt to better understand the
logic MSO+U. This is also the subject of another branch of research: the theory
of regular cost functions [8,10,9]. However, that approach concentrates on how to
measure the cardinality of sets (the quantifier U involves such a computation),
and does not give any asymptotic analysis of quantities.

Contributions of the Paper. In this paper, we study AMSO and some of its
variants over infinite words. These variants are: BMSO in which number quan-
tifiers are replaced by a boundedness predicate; EAMSO which extends AMSO
with quantification over weight functions; and EBMSO that combines these two
modifications. We also study the weak fragment WAMSO of AMSO, and its
‘number prenex’ fragment AMSOnp. The contributions are in several directions:
expressive power, topological complexity, and decidability.

Concerning the expressive power we show that EAMSO is equivalent to
EBMSO, AMSO is equivalent to BMSO, and WAMSO is equivalent to AMSOnp.
All other pairs of logics can be separated. However, more interestingly, we can
show that as far as the decidability of satisfiability is concerned, AMSO, BMSO,
EAMSO, EBMSO and MSO+U are all equivalent, and WAMSO is equivalent to
AMSOnp. We are hence confronted with only two levels of difficulty.

Concerning topological complexity, we perform an analysis in terms of de-
scriptive set theory. We prove that AMSO reaches all levels of the projective
hierarchy, while WAMSO reaches all finite levels of the Borel hierarchy. This
separates the two classes. In particular, this shows that – as far as topological
complexity is concerned – WAMSO is far simpler than AMSO, and at the same
time far more complex than any variant of MSO known to be decidable (for
instance the weak fragment of MSO+U remains at the third level of the Borel
hierarchy).
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On the decidability front, the case of MSO+U is notoriously open and difficult,
and as explained above (in particular, it is known to be undecidable over infinite
trees, though this gives no clue about the infinite word case). AMSO is not easier.
In this paper, we advocate the importance of the weak fragment WAMSO as a
logic of intermediate difficulty. Though we have to leave its decidability status
open as well, we are able to disclose new forms of tiling problems that are
equivalent to the decidability of the satisfiability of WAMSO. This provides a
promising line of attack for understanding the decidability status of AMSO and
MSO+U.

We believe that these numerous results perfectly describe how the asymptotic
notions relate to other notions from the literature, the prominent one being
MSO+U. In particular we address and answer the most important questions:
expressive power, topological complexity, and – in some very preliminary form –
decidability. We are finally convinced that the tiling problems that we introduce
deserve to be studied on their own.
Structure of the Paper. In Section 2, asymptotic monadic second-order logic is
introduced as well as several fragments. Some first results are proved: the weak
fragment is introduced and it is shown to be equivalent to the number prenex-
form of AMSO. The extended version of asymptotic monadic second-order logic
(EAMSO) is introduced and its relation to MSO+U is established. Section 2.3
characterises our logics in terms of Borel complexity. In Section 3, we introduce
certain tiling problems and we show their equivalence with the satisfiability
problem for WAMSO.

2 Asymptotic Monadic Second-Order Logic and Variants

In this section, we quickly recall the definition of monadic second-order logic
and we introduce the new asymptotic variant AMSO (which happens to be
equivalent to another formalism, called BMSO, see below). We then introduce
the weak fragment WAMSO, mention some of its basic properties. We conclude
with a comparison of the expressive power of these logics.

We assume that the reader is familiar with the basic notions of logic. We
consider relational structures A = 〈U , R1, . . . , Rk〉 with universe U and relations
R1, . . . , Rk. A word (finite or infinite) over the alphabet Σ is regarded as a
structure whose universe is the set of positions and where the relations consist
of the ordering ≤ of positions and unary relations a, for each a ∈ Σ, containing
those positions carrying the letter a.

Monadic second-order logic (MSO) is the extension of first-order logic (FO)
by set variables X,Y, . . . ranging over sets of positions, quantifiers ∃X , ∀X over
such variables, and membership tests x ∈ Y .

2.1 Weighted Structures and Asymptotic Monadic Second-Order
Logic

The subject of this paper is asymptotic monadic second-order logic. This logic ex-
presses properties of structures whose elements have a weight which is a natural
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number. Formally, a weighted structure is a pair 〈A, f̄〉 consisting of a relational
structure A with universe U and a tuple of functions fi : U → N called weight
functions. A weighted finite word (resp. a weighted ω-word) corresponds to the
case where A is a finite word (resp., an ω-word).

Asymptotic monadic second-order logic (AMSO) extends MSO with the fol-
lowing constructions:

– quantifiers over variables of a new type, number variables (written r, s, t, . . . )
that range over natural numbers, and

– atomic formulae f(x) ≤ r where x is a first-order variable and r a number
variable. These formulae must appear positively inside the existential quan-
tifier binding r, i.e., the predicate and the quantifier are separated by an
even number of negations. As a commodity of notation, the dual predicate
f(x) > r can be used positively below the universal quantifier ∀r.

Example 1. It is possible to express in AMSO that:

– the weights in a structure are bounded: ∃r∀x[f(x) ≤ r] ,
– an ω-word has weights tending to infinity: ∀s∃x(∀y > x)[f(y) > s] ,
– infinitely many weights occur infinitely often in a weighted ω-word:

∀s∃r∀x(∃y > x)[f(y) > s ∧ f(y) ≤ r] .

On the other hand, the formula ∀r∃x[f(x) ≤ r] is ill-formed since it does not
respect the positivity constraint separating the introduction of r and its use.

There is an alternative way to define this logic, in a spirit closer to MSO+U:
the logic BMSO extends MSO with boundedness predicates of the form f [X ] <∞
where X is a set variable. Such a predicate holds if the function f restricted to
the set X is bounded by some natural number. Hence f [X ] < ∞ can be seen
as a shorthand for the AMSO formula ∃r(∀x ∈ X)[f(x) ≤ r]. It follows that
BMSO is a fragment of AMSO. In fact, both logics are equivalent, as shown by
the following theorem.

Theorem 2. AMSO and BMSO are effectively equivalent over all weighted
structures.

Finally, let us mention an important invariance of the logic AMSO. Two functions
f, g : U → N are equivalent, noted f ≈ g, if they are bounded over the same subsets
of their domain (this is expressible in BMSO as ∀X(f [X ] <∞↔ g[X ] <∞)). We
extend this equivalence to weighted structures by 〈A, f̄〉 ≈ 〈B, ḡ〉 if A and B are
isomorphic, and fi ≈ gi for all i.

Proposition 3. ≈-equivalent weighted structures have same AMSO-theory.

This is obviously true for the logic BMSO, and hence also for AMSO according to
Theorem 2. In fact, Proposition 3 also holds for the logic EAMSO introduced in
Section 4 below and, more generally, for every logic that would respect syntactic
constraints similar to AMSO in the use of weights. An immediate consequence
is that there is no formula defining f(x) = f(y) in AMSO or its variants. This
rules out all classical arguments yielding undecidability in similar contexts of
‘weighted logics’.
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2.2 The Weak and the Number Prenex Fragments of AMSO

The use of quantifiers over infinite sets combined with number quantifiers in-
duces intricate phenomena (the complexity analysis performed in Section 2.3
will make this obvious: AMSO reaches all levels of the projective hierarchy).
There are two ways to avoid it. Either we allow only quantifiers over finite sets,
thus obtaining WAMSO (which defines only Borel languages), or we prevent the
nesting of monadic and number quantifiers by requiring all number quantifiers
to be at the head of the formula, thereby obtaining the number-prenex fragment
of AMSO, named AMSOnp. We will see that these two logics have the same ex-
pressive power. To avoid confusion, let us immediately point out that WAMSO
and WMSO+U, the weak fragment of MSO+U, are very different logics. This
is due to the fact that the syntax of AMSO is not the one of MSO+U, and as
a consequence assuming the sets to be finite has dramatically different effects.
In particular, we will see that WAMSO inhabits all finite levels of the Borel
hierarchy, while it is known that WMSO+U is confined in the third level [13].

Weak asymptotic monadic second-order logic (WAMSO) is obtained by re-
stricting set quantification to finite sets (the syntax remains the same). We will
write ∃wX and ∀wX when we want to emphasize that the quantifiers are weak,
i.e., range over finite sets. Let us remark that, as usual, the weak logic is not
strictly speaking a fragment of the full logic since, in general, AMSO is not able
to express that a set is infinite. However, on models such as words, ω-words, or
even infinite trees, the property of ‘being finite’ is expressible, even in MSO.

It turns out that, in a certain sense, weak quantifiers commute with number
quantifiers.

Lemma 4. There exists a WAMSO-formula ψ(X, r) such that, for every se-
quence Q̄t̄ of number quantifiers, every WAMSO-formula Q̄t̄ ϕ(X, t̄), and all
weighted ω-words w,

w |= ∃wXQ̄t̄ϕ(X, t̄) iff w |= ∃rQ̄t̄∃wX [ϕ(X, t̄) ∧ ψ(X, r)] .

By this lemma, it follows that we can transform every WAMSO-formula into
number-prenex form, i.e., into the form Q̄t̄ϕ, where Q̄t̄ is a sequence of number
quantifiers while ϕ does not contain such quantifiers. However, this translation
adds new number variables in the formula. The fragment of AMSO-formulae in
number prenex form is denoted AMSOnp. For weak quantifiers, we obtain the
logic WAMSOnp in the same way.

Theorem 5. The logics WAMSO, AMSOnp and WAMSOnp effectively have the
same expressive power over weighted ω-words.

2.3 Separation Results

To separate the expressive power of the logics introduced so far, we employ
topological arguments. One way to show that a logic is strictly more expressive
than one of its fragments is to prove that it can define languages of a topological
complexity the fragment cannot define. In our case we use the Borel hierarchy
and the projective hierarchy to measure topological complexity.
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Theorem 6. Languages definable in AMSO strictly inhabit all levels of the pro-
jective hierarchy, and not more. Languages definable in WAMSO strictly inhabit
all finite levels of the Borel hierarchy, and not more.

This is proved using standard reduction techniques. We obtain the following
picture:

Bool(Σ0
2)︷ ︸︸ ︷

MSO = WMSO �

all Borel levels of finite rank︷ ︸︸ ︷
WAMSO = AMSOnp �

all projective levels︷ ︸︸ ︷
AMSO .

As an immediate consequence, we obtain the corollary that AMSO is strictly
more expressive than WAMSO and AMSOnp, that AMSOnp is strictly more ex-
pressive than MSO, and that WAMSO is strictly more expressive than WMSO.

3 Weak Asymptotic Monadic Second-Order Logic and
Tiling Problems

We have introduced in the previous sections several logics with quantitative capa-
bilities. The analysis performed shows that WAMSO (or equivalently AMSOnp)
offers a good compromise in difficulty in the quest for solving advanced logics like
MSO+U. Indeed, in terms of Borel complexity, it is significantly simpler than
other logics like AMSO and EAMSO, and hence MSO+U. Despite its relative
simplicity, this logic is, still in terms of Borel complexity, significantly more com-
plex than any other extensions of WMSO known to be decidable over infinite
words, e.g., WMSO+U 1 and WMSO+R 2 [2,5]. Both of these logics can define
Boolean combinations of languages at the third level of the Borel hierarchy.

In this section, we develop techniques for attacking the satisfiability problem
of WAMSO over weighted ω-words, though we are not able to solve this problem
itself. Our contribution in this direction is to reduce the satisfiability problem
of WAMSO to a natural kind of tiling problem, new to our knowledge, the
decidability of which is unknown, even in the simplest cases. As a teaser, let us
show the simplest form of such tiling problems:

Open Problem 7. Given two regular languages K and L over an alphabet Σ
where K is closed under letter removal, can we decide whether, for every n,
there exists a Σ-labelled picture of height n such that all rows belong to L and
all columns to K?

Note that this problem would clearly be undecidable if K was not required to
be sub-word closed. In the remainder of the section, we first introduce these
problems in a more general setting (a multidimensional version of it), and give
the essential ideas explaining why the decidability of satisfiability for WAMSO
reduces to such tiling problems.
1 The weak fragment of MSO+U, where set quantifiers range over finite sets.
2 An extension of WMSO with an unusual recurrence operator. Adding this operator

to MSO yields a logic equivalent to MSO+U.
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3.1 Lossy Tiling Problems

A picture p : [h]× [w] → Σ is a rectangle labelled by a (fixed) finite alphabet Σ,
where h ∈ N is the height and w ∈ N the width of the picture. For 0 ≤ i < w,
the ith column of the picture is the word p(0, i)p(1, i) . . . p(h − 1, i). A band
of height m in a picture is obtained by erasing all but m-many rows from a
picture. We regard bands of height m as words over the alphabet Σm. Formally,
for 0 ≤ j1 < j2 < · · · < jm < h, the band for rows j1, . . . , jm is the word
(p(j1, 0), . . . , p(jm, 0)) . . . (p(j1, w−1), . . . , p(jm, w−1)). Our tiling problems have
the following form. Fix an alphabet Σ and a dimension m ∈ N.
Input: A column language K ⊆ A∗ and a row language L ⊆ (Am)∗, both regular.
Question: Does there exist, for all h ∈ N, a picture p of height h such that

– all columns in p belong to K,
– all bands of height m in p belong to L?

Such a picture is called a solution of the tiling system (K,L).
Of course, in general such problems are undecidable, even in dimension m = 1.

Consequently, we consider two special cases of tiling systems: monotone and
lossy ones. A tiling system (K,L) is lossy if K is closed under sub-words: for all
words u, v and all letters a, uav ∈ K implies uv ∈ K. A tiling system (K,L) is
monotone if there exists a partial order ≤ on the alphabet Σ (which we extend
component-wise, i.e., letter-by-letter, to Σ∗ and to (Σm)∗) such that u ≤ v and
u ∈ L implies v ∈ L, and uabv ∈ K implies ucv ∈ K, for some c with c ≥ a
and c ≥ b. Consequently, if we have a solution p of a lossy tiling system, we can
obtain new solutions (of smaller height) by removing arbitrarily many rows of p.
For a monotone tiling system, we obtain a new solution by merging two rows.

Example 8. (a) Consider the one-dimensional lossy tiling problem defined by
L = a∗ba∗ and K = a∗b?a∗. There are solutions of every height n: take a picture
that has label a everywhere but for one b in each row, and at most one b per
column (see Figure 1 (a)). The width of such a solution is at least n.

a b a a a a a
b a a a a a a
a a b a a a a
a a a a a a b
a a a a b a a

b c c c c c c
a b c c c c c
a a b c c c c
a a a a b c c
a a a a a a b

d b a a c b a a c
c a b a d a b a c
c a a b c a a b d

a 1 1 1 1 1 1 1
b 1 1 1 a 1 1 1
b 1 a 1 b 1 a 1
b a b a b a b a

(a) (b) (c) (d)

Fig. 1. Some solutions to tiling problems

(b) A similar example uses the languages L = a∗bc∗ and K = a∗b?c∗. Again,
there exist solutions for all heights n, and the corresponding width is at least n
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too. However, the solution is more constrained since it involves occurrences of b
letters to describe some sort of diagonal in the solution (see Figure 1 (b)).

(c) More complex is the system with L = (ca∗ba∗)∗d(a∗ba∗c)∗ and K =
a∗b?a∗+c∗d?c∗. There are also solutions of all heights, but this time, the minimal
width for a solution is quadratic in its height (see Figure 1 (c)).

(d) Our final example is due to Paweł Parys. It consists of L = a1∗+(b1∗a1∗)+

and K = b∗a?1∗. All solutions of this system have exponential length (see Fig-
ure 1 (d)).

Theorem 9. The satisfiability problem for WAMSO and the monotone tiling
problem are equivalent. Both reduce to the lossy tiling problem.

Conjecture 10. Monotone tiling problems and lossy ones are decidable.

This is the main open problem raised in this paper, even in dimension one. In
the remainder, we will sketch some ideas on how to reduce the satisfiability of
WAMSO to lossy tiling problems.

3.2 From ω-Words to Finite Words

Using Ramsey arguments in the spirit of Büchi’s seminal proof [7], we can reduce
WAMSO over ω-words to the following question concerning sequences of finite
words. Consider a formula Q̄t̄ϕ(t̄) in AMSOnp and a sequence ū = u1, u2, . . . of
weighted finite words. We say that ū (Q̄t̄)-ultimately satisfies ϕ(t̄) if

Q̄t̄[ui |= ϕ(t̄) for all but finitely many i] .

The limit satisfiability problem for AMSOnp is to decide, given a formula Q̄t̄ϕ(t̄),
whether ϕ(t̄) is (Q̄t̄)-ultimately satisfied by some sequence ū.

Lemma 11. The satisfiability problem for AMSOnp and the limit satisfiability
problem for AMSOnp can be reduced one to the other. Furthermore, the prefix of
number quantifiers is preserved by these reductions.

Of course, the interesting reduction is from satisfiability of AMSOnp on infinite
words to limit satisfiability. We follow here an approach similar to Büchi’s tech-
nique or, more precisely, its compositional variant developed by Shelah [15]. It
amounts to use Ramsey’s Theorem for chopping ω-words into infinitely many
pieces that have the same theory. However, in this weighted situation, this kind
of argument requires significantly more care.

A typical example would be to solve the satisfiability of the AMSOnp-formula
ϕ := ∀s∃r∀x(∃y > x)[s < f(y) ≤ r] stating that there are infinitely many
values that occur infinitely often (Example 1). It reduces to solving the limit
satisfiability of the formula ψ := ∀s∃r∃y[s < f(y) ≤ r]. A limit model for this
formula would be the sequence (in which we omit the letters and only mention the
weights) ū = 0, 01, 012, 0123, . . . . Indeed, for all s, fixing r = s + 1, the formula
∃y[s < f(y) ≤ r] holds for almost all ui. If we concatenate this sequence of words,
we obtain the weighted ω-word 0010120123 . . . which satisfies ϕ. Conversely,
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every ω-word satisfying ϕ can be chopped into an infinite sequence of finite
weighted words that satisfy ψ in the limit. In fact, this last reduction is more
complex since it requires us to take care of the values contained in the finite
prefixes. This is just an example, since in general the reduction is ‘one-to-many’
and involves regular properties of the finite prefixes.

4 Extended Asymptotic Monadic Logic

In this section we prove that the decidability problem for AMSO over ω-words
is equivalent to the corresponding problem for MSO+U. To do so we introduce
an extension of AMSO called extended asymptotic monadic second-order logic
(EAMSO). This logic extends AMSO by quantifiers over weight functions. Inside
a quantifier ∃f we can use the function f in the usual constructions of AMSO.
Note that variables for weight functions are not subject to any positivity con-
straint. Only number variables do have to satisfy such constraints.

Example 12. Let LS be the language of ω-words over the alphabet {a, b, c} such
that, either there are finitely many occurrences of the letter b, or the number of a
appearing between consecutive b tends to infinity. Consider the EAMSO-formula

ψ := ∃f∀r∃s∃w∀x∀z
[
(w < x < z ∧ b(x) ∧ b(z)) →
∃y(x < y < z ∧ a(y) ∧ r < f(y) ≤ s)

]
.

This formula defines LS as follows. It guesses a weight function f and expresses
that, for every number r, there exists a number s such that, ultimately, every
two b-labeled positions x < z are separated by an a-labeled position y with
weight in (r, s]. It is easy to see that, if the number of a in an ω-word separating
consecutive b tends to infinity, the weight function f defined by

f(x) =

⎧⎪⎨⎪⎩
0 if the letter at x is not a

r if x is the r-th occurrence of the letter a after the last
occurrence of the letter b or the beginning of the word

witnesses that the ω-word is a model of ψ. One can show that the converse also
holds, i.e., an ω-word satisfies ψ if and only if the number of a occurring between
b tends to infinity (or there are finitely many occurrences of b).

The interesting point concerning EAMSO is that we can prove that, as far as
satisfiability over infinite words is concerned, this logic is essentially equivalent
to both AMSO and MSO+U. Let us recall that MSO+U is the extension of MSO
with a new quantifier UXϕ which signifies that ‘there exists sets of arbitrarily
large finite size such that ϕ holds’. For instance, it is straightforward to define
the above language LS in MSO+U.

Theorem 13. (a) For every MSO+U-sentence, we can compute an EAMSO-
sentence equivalent to it over ω-words. Conversely, for every EAMSO-sentence,
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there effectively exists an MSO+U-sentence such that the former is satisfiable
over ω-words if, and only if, the latter is.

(b) For every EAMSO-sentence, we can compute an AMSO-sentence such
that the former is satisfiable over ω-words if, and only if, the latter is.

To compare the expressive power of EAMSO and AMSO, we again employ
topological arguments. It is easy to show that, over ω-words without weights,
AMSO collapses to MSO and, therefore, defines only Borel sets. However, accord-
ing to Theorem 13, EAMSO is at least as expressive as MSO+U which reaches
all levels of the projective hierarchy [13], even over non-weighted ω-words. Con-
sequently, EAMSO is strictly more expressive than AMSO.
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Abstract. The complete picture of the complexity of answering (unions
of) conjunctive queries under the main guarded-based classes of disjunc-
tive existential rules has been recently settled. It has been shown that the
problem is very hard, namely 2ExpTime-complete, even for fixed sets of
rules expressed in lightweight formalisms. This gives rise to the question
whether its complexity can be reduced by restricting the query language.
Several subclasses of conjunctive queries have been proposed with the
aim of reducing the complexity of classical database problems such as
query evaluation and query containment. Three of the most prominent
subclasses of this kind are queries of bounded hypertree-width, queries
of bounded treewidth and acyclic queries. The central objective of the
present paper is to understand whether the above query languages have
a positive impact on the complexity of query answering under the main
guarded-based classes of disjunctive existential rules.

We show that (unions of) conjunctive queries of bounded hypertree-
width and of bounded treewidth do not reduce the complexity of our
problem, even if we focus on predicates of bounded arity, or on fixed sets
of disjunctive existential rules. Regarding acyclic queries, although our
problem remains 2ExpTime-complete in general, in some relevant set-
tings the complexity reduces to ExpTime-complete; in fact, this requires
to bound the arity of the predicates, and for some expressive guarded-
based formalisms, to fix the set of rules.

1 Introduction

Rule-based languages lie at the core of several areas of central importance to arti-
ficial intelligence and databases, such as knowledge representation and reasoning,
data exchange and integration, and web data extraction. A prominent rule-based
formalism, originally intended for expressing complex recursive queries over rela-
tional databases, is Datalog, i.e., function-free first-order Horn logic. As already
criticized in [28], the main weakness of this language for representing knowledge
is its inability to infer the existence of new objects which are not explicitly stated
in the extensional data set.

Existential rules, a.k.a. tuple-generating dependencies (TGDs) and Datalog±

rules, overcome this limitation by extending Datalog with existential quantifica-
tion in rule-heads; see, e.g., [6, 12–14, 26, 27]. More precisely, existential rules are
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implications among conjunctions of atoms, and they essentially say that some
tuples in a relational instance I imply the presence of some other tuples in I
(hence the name tuple-generating dependencies). Unfortunately, the addition of
existential quantifiers immediately leads to undecidability of conjunctive query
answering [10, 12], which is the main reasoning service under existential rules.
Conjunctive queries (CQs), which form one of the most commonly used language
for querying relational databases, are assertions of the form ∃Yϕ(X,Y), where
ϕ is a conjunction of atoms, and correspond to the select-project-join fragment
of relational algebra [1]. The answer to a CQ w.r.t. a database D and a set Σ
of existential rules consists of all the tuples t of constants such that ∃Yϕ(t,Y)
evaluates to true in every model of (D ∧Σ).

Several concrete languages which ensure the decidability of CQ answering
have been proposed over the last five years; see, e.g., [6, 12, 14, 18, 23, 25–27].
Nevertheless, existential rules are not expressive enough for nondeterministic
reasoning; for example, the statement “each parent of a father is the grandparent
of a boy or a girl” is not expressible via existential rules. Such a statement can
be expressed using the rules

∀X∀Y parentOf (X,Y ) ∧ isfather (Y ) → ∃Z grandparentOf (X,Z)

∀X∀Y grandparentOf (X,Y ) → boy(Y ) ∨ girl(Y ).

Obviously, to represent such kind of disjunctive knowledge, we need to extend
the existing classes of existential rules with disjunction in the head of rules.
Enriching existential rules with disjunction yields the formalism of disjunctive
existential rules, a.k.a. disjunctive TGDs (DTGDs) [17]; henceforth, for brevity,
we adopt the terms (D)TGDs.

Guarded-Based DTGDs. Guardedness is a well-known restriction which
guarantees good model-theoretic and computational properties for first-order
sentences [3]. Recently, inspired by guardedness, the class of guarded TGDs,
that is, rules with a guard atom in the left-hand side which contains (or guards)
all the universally quantified variables, has been defined [12]. Several extensions
and restrictions of guarded TGDs have been proposed [6, 13]; we refer to all
those formalisms by the term guarded-based TGDs, and more details will be
given in Section 2. Guarded-based TGDs can be naturally extended to DTGDs.
For example, the above set of rules is guarded since the atoms parentOf (X,Y )
and grandparentOf (X,Y ) are guards.

The complexity picture for query answering under the main guarded-based
classes of DTGDs has been recently completed for arbitrary CQs [11]. Moreover,
the complexity of answering atomic CQs, i.e., CQs consisting of a single atom, has
been also investigated [2, 22]. However, the complexity picture of the problem
restricted on some important subclasses of CQs, namely queries of bounded
hypertree-width [20], queries of bounded treewidth [16], and acyclic queries [19],
is still foggy, and there are several challenging open questions.

Research Challenges. The above subclasses of CQs have been proposed
with the aim of reducing the complexity of several key decision problems on
CQs such as evaluation of (Boolean) queries and query containment; in fact,
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those problems are NP-complete in general, but become tractable if restricted
to one of the above subclasses [16, 19, 20]. The main objective of this work is to
understand whether the subclasses of CQs in question have an analogous positive
impact on query answering under the main guarded-based classes of DTGDs.

Although we know that our problem is unlikely to become tractable (implicit
in [15]), we would like to understand whether its complexity is reduced. To
achieve this, we focus on the following fundamental questions: (1) What is the
exact complexity of answering queries which fall in one of the above subclasses of
CQs under the main guarded-based classes of DTGDs?; (2) How is it affected if
we consider predicates of bounded arity, or a fixed set of DTGDs, or a fixed set of
DTGDs and a fixed query (a.k.a. the data complexity, where only the database
is part of the input)?; and (3) How is it affected if we consider unions of CQs,
i.e., disjunctions of a finite number of CQs? We provide answers to all these
questions. This allows us to close the picture of the complexity of our problem,
and come up with some general and insightful conclusions.

Our Findings. Our findings can be summarized as follows:

1. We show that (unions of) CQs of bounded hypertree-width and of bounded
treewidth do not reduce the complexity of the problem under investigation.
In particular, we show that for all the guarded-based classed of DTGDs
in question, the problem remains 2ExpTime-complete, even if we focus on
predicates of bounded arity, or on fixed sets of DTGDs, while the data com-
plexity remains coNP-complete. The data complexity results are inherited
from existing works. However, all the other results are obtained by estab-
lishing a remarkably strong lower bound, namely query answering under a
fixed set of DTGDs expressed in a lightweight fragment of guarded DTGDs,
that is, constant-free rules with just one atom in the left-hand side without
repeated variables, is 2ExpTime-hard.

2. Regarding acyclic (unions of) CQs, we show that for all the classes of DTGDs
under consideration, the problem remains 2ExpTime-complete in general,
and coNP-complete in data complexity. Again, the data complexity is inher-
ited from existing results, while the 2ExpTime-completeness is obtained by
establishing a non-trivial lower bound. However, in some relevant cases the
acyclicity of the query reduces the complexity of our problem to ExpTime-
complete. In fact, this requires to focus on predicates of bounded arity, and
for some expressive classes of DTGDs, on fixed sets of DTGDs. The up-
per bounds are obtained by exploiting results on the guarded fragment of
first-order logic, while the lower bounds required a non-trivial proof.

To sum up, queries of bounded hypertree-width and of bounded treewidth,
as well as acyclic queries, do not have the expected positive impact on query
answering under the main guarded-based classes of DTGDs. However, a positive
impact can be observed on some relevant settings of our problem if we consider
acyclic queries.
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2 Preliminaries

General. Let C, N and V be pairwise disjoint infinite countable sets of con-
stants, (labeled) nulls and variables, respectively. We denote by X sequences (or
sets) of variables X1, . . . , Xk. Let [n] = {1, . . . , n}, for n � 1. A term is a con-
stant, null or variable. An atom has the form p(t1, . . . , tn), where p is an n-ary
predicate, and t1, . . . , tn are terms. For an atom a, dom(a) and var(a) are the
set of its terms and the set of its variables, respectively; those notations extend
to sets of atoms. Usually conjunctions and disjunctions of atoms are treated as
sets of atoms. An instance I is a (possibly infinite) set of atoms of the form p(t),
where t is a tuple of constants and nulls. A database D is a finite instance with
only constants. Whenever an instance I is treated as a logical formula, is the
formula ∃X (

∧
a∈I I), where X contains a variable for each null in I.

Conjunctive Queries. A conjunctive query (CQ) q is a sentence ∃Xϕ(X),
where ϕ is a conjunction of atoms. If q does not have free variables, then it
is called Boolean. For brevity, we consider only Boolean CQs; however, all the
results of the paper can be easily extended to non-Boolean CQs. A union of
conjunctive queries (UCQ) is a disjunction of a finite number of CQs. By abuse of
notation, sometimes we consider a UCQ as set of CQs. A CQ q = ∃Xϕ(X) has a
positive answer over an instance I, written I |= q, if there exists a homomorphism
h such that h(ϕ(X)) ⊆ I. The answer to a UCQ Q over I is positive, written
I |= Q, if there exists q ∈ Q such that I |= q. A key subclass of CQs is the class of
CQs of bounded treewidth (BTWCQs) [16], i.e., the treewidth of their hypergraph
is bounded. The hypergraph of a CQ q, denoted H(q), is a hypergraph 〈V,H〉,
where V = dom(q), and, for each a ∈ q, there exists a hyperedge h ∈ H such that
h = dom(a). The treewidth of q is defined as the treewidth of its hypergraph
H(q), that is, the treewidth of the Gaifman graph GH(q) of H(q). The Gaifman
graph ofH(q) is the graph 〈V,E〉, where V is the node set ofH(q), and (v, u) ∈ E
iff H(q) has a hyperedge h such that {v, u} ⊆ h. Another important subclass of
CQs is the class of acyclic CQs (ACQs) [16]. A CQ is acyclic if H(q) is acyclic,
i.e., it can be reduced to the empty hypergraph by iteratively eliminating some
non-maximal hyperedge, or some vertex contained in at most one hyperedge.

Disjunctive Tuple-Generating Dependencies. A disjunctive TGD (or
simply DTGD) σ is a first-order formula ∀X (ϕ(X) →

∨n
i=1 ∃Yi ψi(X,Yi)),

where n � 1, X ∪ Y ⊂ V, and ϕ, ψ1, . . . , ψn are conjunctions of atoms. The
formula ϕ is called the body of σ, denoted body(σ), while

∨n
i=1 ψi is the head

of σ, denoted head(σ). The set of variables var (body(σ)) ∩ var (head(σ)) ⊆ X
is known as the frontier of σ, denoted frontier(σ). If n = 1, then σ is called
tuple-generating dependency (TGD). The schema of a set Σ of DTGDs, denoted
sch(Σ), is the set of all predicates occurring in Σ. For brevity, we will omit the
universal quantifiers, and use the comma (instead of ∧). An instance I satisfies σ,
written I |= σ, if whenever there exists a homomorphism h such that h(ϕ(X)) ⊆
I, then there exists i ∈ [n] and h′ ⊇ h such that h′(ψi(X,Yi)) ⊆ I; I satisfies
a set Σ of DTGDs, denoted I |= Σ, if I |= σ, for each σ ∈ Σ. A disjunctive
inclusion dependency (DID) is a constant-free DTGD with only one body-atom,
the head is a disjunction of atoms, and there are no repeated variables in the body
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or in the head. A DTGD σ is linear if it has only one body-atom. A DTGD σ is
guarded if there exists a ∈ body(σ), called guard, which contains all the variables
in body(σ). Weakly-guarded DTGDs extend guarded DTGDs by requiring only
the body-variables that appear at affected positions, i.e., positions at which a
null value may appear during the disjunctive chase (defined below), to appear
in the guard; see [12]. A DTGD σ is frontier-guarded if there exists a ∈ body(σ)
which contains all the variables of frontier (σ). Weakly-frontier-guarded DTGDs
are defined analogously.

Query Answering. The models of a database D and a set Σ of DTGDs,
denoted mods(D,Σ), is the set of instances {I | I ⊇ D and I |= Σ}. The answer
to a CQ q w.r.t. D and Σ is positive, denoted D ∪ Σ |= q, if I |= q, for each
I ∈ mods(D,Σ). The answer to a UCQ w.r.t. D and Σ is defined analogously.
Our problem is defined as follows: Given a CQ q, a database D, and a set Σ
of DTGDs, decide whether D ∪ Σ |= q. If q is a BTWCQ (resp., ACQ), then
the above problem is called BTWCQ (resp., ACQ) answering. The problem
BTWUCQ (resp., AUCQ) answering is defined analogously. The data complexity
is calculated taking only the database as input. For the combined complexity, the
query and set of DTGDs count as part of the input as well.

Disjunctive Chase. Consider an instance I, and a DTGD σ : ϕ(X) →∨n
i=1 ∃Yψi(X,Y). We say that σ is applicable to I if there exists a homomor-

phism h such that h(ϕ(X)) ⊆ I, and the result of applying σ to I with h is
the set {I1, . . . , In}, where Ii = I ∪ h′(ψi(X,Y)), for each i ∈ [n], and h′ ⊇ h
is such that h′(Y ) is a “fresh” null not occurring in I, for each Y ∈ Y. For
such an application of a DTGD, which defines a single DTGD chase step, we
write I〈σ, h〉{I1, . . . , In}. A disjunctive chase tree of a database D and a set Σ of
DTGDs is a (possibly infinite) tree such that the root is D, and for every node
I, assuming that {I1, . . . , In} are the children of I, there exists σ ∈ Σ and a
homomorphism h such that I〈σ, h〉{I1, . . . , In}. The disjunctive chase algorithm
for D and Σ consists of an exhaustive application of DTGD chase steps in a
fair fashion, which leads to a disjunctive chase tree T of D and Σ; we denote by
chase(D,Σ) the set {I | I is a leaf of T }. It is well-known that, given a UCQ Q,
D ∪Σ |= Q iff I |= Q, for each I ∈ chase(D,Σ).

The Guarded Fragment of First-Order Logic. The guarded fragment
(GFO) has been introduced in [3]. The set of GFO formulas over a schema R is
the smallest set (1) containing all atomic R-formulas and equalities; (2) closed
under the logical connectives ¬, ∧, ∨, →; and (3) if a is an R-atom containing
all the variables of X∪Y, and ϕ is a GFO formula with free variables contained
in (X ∪ Y), then ∀X(a → ϕ) and ∃X(a ∧ ϕ) are GFO formulas. The loosely
guarded fragment (LGFO) is a generalization of GFO where the quantifiers are
guarded by conjunctions of atomic formulas; for details see, e.g., [24].

Alternation. An alternating Turing machine is a tuple M = (S,Λ, δ, s0),
where S = S∀�S∃�{sa}�{sr} is a finite set of states partitioned into universal
states, existential states, an accepting state and a rejecting state, Λ is the tape
alphabet, δ ⊆ (S × Λ) × (S × Λ × {−1, 0,+1}) is the transition relation, and
s0 ∈ S is the initial state. We assume that Λ contains a special blank symbol #.
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Table 1. Complexity of BTW(U)CQ answering. Each row corresponds to a class of
DTGDs; substitute L for linear, G for guarded, F for frontier, and W for weakly. UB
and LB stand for upper and lower bound. The missing references for the upper (lower)
bounds are inherited from the first lower-left (upper-right) cell with a reference.

Combined Bounded Fixed Data
Complexity Arity Rules Complexity

DID 2ExpTime 2ExpTime 2ExpTime coNP

LB: Thm. 1 LB: [15, Thm. 4.5]

L/G 2ExpTime 2ExpTime 2ExpTime coNP

F-G 2ExpTime 2ExpTime 2ExpTime coNP

UB: [11, Thm. 7]

W-G 2ExpTime 2ExpTime 2ExpTime ExpTime

LB: [12, Thm. 4.1]

W-F-G 2ExpTime 2ExpTime 2ExpTime ExpTime

UB: [11, Thm. 1] UB: [11, Thm. 7]

3 Bounded Treewidth Queries

In this section, we focus on answering (U)CQs of bounded treewidth under our
respective classes of DTGDs. Table 1 gives the complete picture of the complex-
ity of our problem. As you can observe, the data complexity for all the classes of
DTGDs under consideration is obtained from existing results. More precisely, the
coNP-hardness for DIDs is obtained from [15, Theorem 4.5], where it is shown
that CQ answering under a single DID of the form p1(X) → p2(X) ∨ p3(X),
is already coNP-hard, even if the input query is fixed (and thus of bounded
treewidth). The coNP upper bound for frontier-guarded DTGDs has been es-
tablished in [11, Theorem 7] by a reduction to UCQ answering under GFO sen-
tences. The ExpTime-hardness for weakly-guarded DTGDs is inherited from [12,
Theorem 4.1], where it is shown that CQ answering under a fixed set of weakly-
guarded TGDs is ExpTime-hard, even if the input query is a single atom. The
ExpTime upper bound for weakly-frontier-guarded DTGDs has be shown in [11,
Theorem 7] again by a reduction to UCQ answering under GFO.

Although the data complexity of our problem can be settled by exploiting
known results, the picture for all the other cases is still foggy. The best known
upper bound is the 2ExpTime upper bound for answering arbitrary UCQs under
weakly-frontier-guarded DTGDs [11, Theorem 1], established by a reduction to
the satisfiability problem of the guarded negation fragment [9], an extension of
GFO. This result, combined with the fact that CQ answering under guarded
TGDs is 2ExpTime-hard in the combined complexity [12, Theorem 6.1], even
for atomic queries of the form ∃Xp(X) (and thus of bounded treewidth), closes
the combined complexity for (weakly-)(frontier-)guarded DTGDs. However, the
above lower bound for guarded DTGDs is not strong enough to complete the
complexity picture of our problem. We establish a strong lower bound which,
together with the above 2ExpTime upper bound, gives us the complete picture
of the complexity of the problem studied in this section.
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Fig. 1. Representation of the computation tree of M in the proof of Theorem 1

Theorem 1. BTWCQ answering under fixed sets of DIDs is 2ExpTime-hard.

Proof (sketch). The proof is by a reduction from the non-acceptance problem of
an alternating exponential space Turing machine M = (S,Λ, δ, s0) on the empty
input. We assume that M uses exactly 2n tape cells, Λ = {0, 1,#}, the initial
configuration is existential, and every universal configuration is followed by two
existential configurations and vice versa. Our goal is to construct a database D,
a fixed set Σ of DIDs, and a BTWCQ q such that D ∪Σ |= q iff M rejects. The
general idea is to construct, by chasing D and Σ, all the trees which may encode a
possible computation tree of M ; in other words, each instance I ∈ chase(D,Σ)
will encode such a tree TI . More precisely, the initial configuration is stored
in the database D as the atom conf ∃(0, 1, c, c1, c2), where {c, c1, c2} ⊂ C are
constants which represent the initial configuration (c), and its two subsequent
configurations (c1 and c2) and 0 and 1 are auxiliary constants that will allow us
to have access to 0 and 1 without explicitly mention them in Σ. Then, starting
from the initial configuration, we construct a tree whose nodes are configurations,
i.e., atoms of the form conf x(0, 1, t, n1, n2), where x ∈ {∃, ∀}. Moreover, on each
configuration node v, which represents the configuration Cv of M , we attach a
configuration tree, that is, a full binary tree of depth n, and thus at its n-th
level there are exactly 2n nodes which represent the cells of the tape of M in
Cv. Furthermore, for each cell we guess its content (0, 1 or #), and also whether
the cursor of M is at this cell, and if so, we attach a chain of length at most
|S|, which encodes the state of Cv. The above informal description is illustrated
in Figure 1. Finally, we construct a BTWCQ q such that, if I ∈ chase(D,Σ)
entails q, then TI is not a valid computation tree of M .

The above strong lower bound closes all the missing cases regarding the com-
plexity of our problem, and the next result follows:

Corollary 1. BTW(U)CQ answering under (weakly-)(frontier-)guarded DTGDs,
linear DTGDs and DIDs is 2ExpTime-complete in the combined complexity. The
same holds for predicates of bounded arity, and for fixed sets of DTGDs.

Another key class of queries is the class of CQs of bounded hypertree-width [20].
The hypertree-width is a measure of how close to acyclic a hypergraph is, analogous
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Table 2. Complexity of answering acyclic (U)CQs

Combined Bounded Fixed Data
Complexity Arity Rules Complexity

DID 2ExpTime ExpTime ExpTime coNP

LB: Thm. 4 LB: Thm. 6 LB: [15, Thm. 4.5]

L/G 2ExpTime ExpTime ExpTime coNP

F-G 2ExpTime 2ExpTime ExpTime coNP

UB: [11, Thm. 1] UB: [11, Thm. 7]

LB: Thm. 5

W-G 2ExpTime ExpTime ExpTime ExpTime

UB: Thm. 2 LB: [12, Thm. 4.1]

W-F-G 2ExpTime 2ExpTime ExpTime ExpTime

UB: [11, Thm. 1] LB: Thm. 5 UB: Thm. 3 UB: [11, Thm. 7]

to treewidth for graphs. The hypertree-width of a CQ is less than or equal to its
treewidth. Since all the upper bounds in Table 1 hold for arbitrary (U)CQs, we
get that arbitrary (U)CQs, (U)CQs of bounded treewidth and (U)CQs of bounded
hypertree-width are indistinguishable w.r.t. to the complexity of query answering
under our DTGDs.

4 Acyclic Queries

In this section, we focus on answering (unions of) acyclic queries under our
respective classes of DTGDs. Table 2 gives the complete picture of the complexity
of our problem. Compared with Table 1, it is immediately apparent that we
can inherit from existing works the same results as for BTW(U)CQ answering,
namely the data complexity in all the cases, and the 2ExpTime upper bound
for answering arbitrary UCQs under weakly-frontier-guarded DTGDs. Therefore,
apart from the data complexity, several non-trivial cases are still missing. As you
can observe in Table 2, the combined and the data complexity do not change if
we restrict our selves to acyclic queries. However, the complexity decreases from
2ExpTime to ExpTime for the non-frontier classes of DTGDs, i.e., DIDs, linear
and (weakly-)guarded DTGDs, in the case of predicates of bounded arity, and
also for all the classes if we consider a fixed set of DTGDs. This is an interesting
finding as, in general, queries of bounded treewidth and acyclic queries behave
in the same way. Let us now proceed with our results.

4.1 Upper Bounds

We start this section by showing that answering acyclic queries under weakly-
guarded sets of DTGDs is in ExpTime in case of bounded arity. This is shown
by a reduction to satisfiability of LGFO. Let us briefly explain the reduction via
a simple example. Consider the database D = {s(a, a), p(a, b, c)} and the set Σ
consisting of

σ1 : t(X,Y ), p(Z,W,X), s(Z, V ) → ∃U p(Y, Z, U) ∨ s(Y, Z),
σ2 : p(X,Y, Z) → ∃W t(Z,W ).
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Observe that the affected positions of sch(Σ), i.e., the positions where nulls may
appear during the construction of chase(D,Σ), are p[3], t[1] and t[2]. Clearly,
t(X,Y ) is the weak-guard for σ1 and p(X,Y, Z) the weak-guard for σ2. Notice
that σ2 is already a GFO (and thus an LGFO) sentence. Thus, we need to
convert σ1 into an LGFO sentence. This can be done by expanding the weak-
guard t(X,Y ) into a conjunction of atoms to guard the variables Z, V and W ,
and obtain the sentence Ψσ1

∀X∀Y ∀Z∀V ∀W
((
t̂(Z, V,X, Y ) ∧ t̂(Z,W,X, Y ) ∧ t̂(V,W,X, Y )

)
→

(p(Z,W,X) ∧ s(Z, V )) → ∃U (p(Y, Z, U) ∨ s(Y, Z))) .

It should not be forgotten to properly generate the atoms with the auxiliary
predicate t̂. Since the variables Z, V and W can be satisfied only with constants
of dom(D) = {a, b, c}, those atoms can be generated via the GFO sentence Ψt̂

∀X∀Y
(
t(X,Y ) → t̂(a, a,X, Y ) ∧ t̂(a, b,X, Y ) ∧ t̂(a, c,X, Y )∧

t̂(b, a,X, Y ) ∧ t̂(b, b,X, Y ) ∧ t̂(b, c,X, Y )∧
t̂(c, a,X, Y ) ∧ t̂(c, b,X, Y ) ∧ t̂(c, c,X, Y )

)
.

It is not difficult to see that, for every acyclic UCQ Q, D∪Σ |= Q iff the sentence
Ψ = (D∧Ψσ1 ∧Ψt̂∧σ2∧¬Q) is unsatisfiable. Notice that Ψ does not immediately
fall into LGFO because of the query Q. However, since Q is acyclic, there exists
an equivalent UCQ Q′ which falls in GFO [21]. Thus, Ψ ′ = (D∧Ψσ1∧Ψt̂∧σ2∧¬Q′)
falls in LGFO and is equivalent to Ψ . Let us clarify that, if the head of σ1 is a
disjunction of conjunctions (instead of atoms as in the above example), then Ψ ′

is “almost” loosely-guarded since the existentially quantified variables are not
necessarily guarded. However, as explicitly remarked in [24], the satisfiability
algorithm for LGFO sentences is general enough to also treat sentences which
are “almost” LGFO without increasing the complexity. From the above informal
discussion we get that:

Theorem 2. AUCQ answering under weakly-guarded sets of DTGDs is in Ex-

pTime in case of predicates of bounded arity.

The above machinery cannot be applied in the case of weakly-frontier-guarded
DTGDs since the variables that we need to guard may appear at affected po-
sitions. However, if we focus on fixed sets of DTGDs, then the complexity is
reduced to ExpTime. This is established by first reducing our problem to UCQ
answering under GFO sentences, and then exploit a result in [8], where the
problem of querying GFO is studied.

Theorem 3. AUCQ answering under fixed weakly-frontier-guarded sets of DT-
GDs is in ExpTime.

We believe that the results of this section can have a practical impact on other
important tasks, such as querying graph databases [5], or querying description
logic ontologies [4], where the attention is usually focussed on unary and binary
predicates.
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4.2 Lower Bounds

We start this section by showing the following non-trivial lower bound:

Theorem 4. ACQ answering under DIDs is 2ExpTime-hard in combined com-
plexity.

Proof (sketch). We follow the same approach as in the proof of Theorem 1.
However, the way that a computation tree of the alternating Turing machine
M = (S,Λ, δ, s0) is represented in that proof is not useful since it will necessar-
ily lead to a cyclic query Q. This is exactly the non-trivial part of the proof,
i.e., to construct, by chasing D and Σ, all the possible trees which may encode a
computation tree of M in such a way that an acyclic query Q can be employed.
To this aim, the configurations of M are represented using atoms of the form
conf [s](b1, . . . , bn, a, h, t, p, n1, n2), where s ∈ S is the state of the encoded con-
figuration (and is part of the predicate), (b1, . . . , bn) ∈ {0, 1}n is an integer of
{0, . . . , 2n−1} in binary encoding which represents the index of the encoded cell,
h ∈ {0, 1} and h = 1 means that the cursor of M is at the encoded cell, and t, p,
n1 and n2 represent the current, the previous and the next two configurations,
respectively. More precisely, using a fixed number of DIDs, one can construct a
tree with nodes of the form conf 0[s](0, 1,#, 02n, 1n, 1, z1, z2, z3, z4); such an atom
is associated with the configuration z1, and contains all the auxiliary constants
that will allow us to generate, via polynomially many DIDs, all the 2n atoms of
the form conf [s](b1, . . . , bn, a, h, z1, z2, z3, z4).

The above lower bound and the 2ExpTime upper bound for weakly-frontier-
guarded sets of DTGDs in combined complexity [11, Theorem 1] imply that:

Corollary 2. A(U)CQ answering under (weakly-)(frontier-)guarded DTGDs,
linear DTGDs and DIDs is 2ExpTime-complete in combined complexity.

Let us now focus on frontier-guarded DTGDs, and show that query answering
is 2ExpTime-hard, even for ACQs and predicates of bounded arity. This is shown
by exploiting the fact that a CQ ∃Xϕ(X) is actually the frontier-guarded TGD
ϕ(X) → p. We thus have a reduction from CQ answering under frontier-guarded
DTGDs, which is 2ExpTime-hard even for predicates of bounded arity [7].

Theorem 5. ACQ answering under frontier-guarded DTGDs is 2ExpTime-
hard, even for predicates of bounded arity.

The above result and the 2ExpTime upper bound for weakly-frontier-guarded
sets of DTGDs in combined complexity [11, Theorem 1] imply that:

Corollary 3. A(U)CQ answering under (weakly-)frontier-guarded DTGDs is
2ExpTime-complete in case of predicates of bounded arity.

We conclude this section by establishing the ExpTime-hardness of ACQ an-
swering when we focus on fixed sets of DIDs. This is done by simulating an
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alternating linear space Turing machine M . The idea of the proof is along the
lines of the proofs of Theorems 1 and 4. In particular, on each configuration node
v, which represents the configuration Cv of M , we attach a cell-chain which mim-
ics the tape in Cv, and a state-chain which encodes the state of Cv.

Theorem 6. ACQ answering under fixed sets of DIDs is ExpTime-hard.

From Theorems 2, 3 and 6 we get the that:

Corollary 4. A(U)CQ answering under (weakly-)guarded DTGDs, linear DT-
GDs and DIDs is ExpTime-complete for predicates of bounded arity. The same
problem under (weakly-)(frontier-)guarded DTGDs, linear DTGDs and DIDs is
ExpTime-complete for fixed sets of DTGDs.

5 Conclusions

We studied the problem of answering (U)CQs under the main guarded-based
classes of DTGDs. We focussed on three key subclasses of (U)CQs, namely
(U)CQs of bounded hypertree-width, (U)CQs of bounded treewidth, and acyclic
(U)CQs. Our investigation shows that the above query languages do not have the
expected positive impact on our problem, and in most of the cases the complexity
of the problem remains 2ExpTime-complete. However, in some relevant settings,
the complexity reduces to ExpTime-complete if we focus on acyclic queries. We
believe that this finding can have a practical impact on crucial tasks such as
querying graph databases and querying description logic ontologies, where the
attention is usually focussed on unary and binary predicates.
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ria North-European Labs 2013-2016, Michael his DOC Fellowship of the Austrian
Academy of Sciences, and Andreas the EPSRC grant EP/J008346/1 (PrOQAW).
We thank the anonymous referees for many helpful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive Datalog with existential
quantifiers: Semantics, decidability, and complexity issues. TPLP 12(4-5), 701–718
(2012)
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Abstract. Higher-Order Modal Fixpoint Logic HFL is a non-regular
extension of the modal μ-calculus by a typed λ-calculus. The model-
checking problem for this logic is decidable over finite structures. We
present an automaton model that captures the semantics of HFL. This
automaton model combines alternating parity automata with the lookup
mechanisms from the Krivine machine.
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1 Introduction

Automata and temporal logics enjoy a tight connection as, for many logics, there
is a class of automata that captures precisely the expressive power of the logic.
Such automata provide operational semantics to the denotational semantics of
their logical counterpart. Exploring and exploiting this connection has a long tra-
dition in mathematical logic: The works of Rabin [1], Büchi [2] and Kupferman,
Vardi and Wolper [3] have used this technique to advance research considerably.
Passing to the operational point of view is particularly useful for finding efficient
algorithms related to the logic.

A common technique in the area of software verification is to reduce a problem
to the model-checking problem of a temporal logic over a labeled transition
system. Many temporal logics are well understood, but can only express regular
properties. Since interesting properties are often non-regular, non-regular logics
have been getting increased attention. Classical examples of such properties are
context-free ones such as “every request is answered exactly once”, counting-
related questions such as “the number of responses never exceeds the number of
requests” or questions related to process equivalence relations [4].

Formalisms developed to express non-regular properties are, e.g., visibly push-
down languages and automata [5,6], Fixpoint Logic with Chop (FLC) [7] or
the Higher-Order Modal Fixpoint Logic HFL [8], which was created to ex-
press assume-guarantee properties for modularized programs. HFL is a very
expressive logic that extends the modal μ-calculus with a typed λ-calculus. Its
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model-checking problem for formulae of order k over finite structures is k-
EXPTIME-complete [9]. The technique used for finite structures, full enumer-
ation of function tables, does not extend to infinite structures, even if these
are finitely presented (e.g., pushdown structures). Since model-checking visibly
pushdown systems against a rather weak fragment of HFL is already undecidable
[10], decidability results for large classes of infinite systems are not possible, but
an automaton model can help to establish the precise boundary of undecidabil-
ity. For finite structures, the high complexity of the model-checking problem asks
for local techniques that, in practice, could mitigate some of this complexity. An
automaton model for HFL could help with that.

This paper presents such a computation model for HFL and its fragments.
HFL’s definition as a fixpoint logic suggests a parity automaton. In order to do
the bookkeeping caused by higher-order λ-expressions, we use the Krivine ma-
chine [11] that was recently used by Salvati and Walukiewicz in the context of
higher-order recursion schemes [12]. The Krivine machine mimics call-by-name
evaluation to do weak head reduction of λ-expressions, an evaluation strategy
that was chosen to keep the space of automaton states finite. We call the re-
sulting automaton model Alternating Parity Krivine Automata (APKA). While
it extends nicely the machinery developed for FLC in [13], the extension is not
quite straightforward, due to the higher-order features: For example, one cannot,
without loss of generality, assume that negation occurs only in front of atomic
formulae, nor is the nesting and alternation of fixpoints as easily treated as in
the modal μ-calculus, in particular with respect to the parity condition.

The paper is structured as follows: In Section 2, we introduce the syntax and
semantics of HFL. In Section 3, we define APKA, prove that they capture the
semantics of HFL, and discuss some peculiarities with respect to the behavior of
the parity conditions of HFL and some of its fragments. In Section 4 we outline
open questions warranting further research. Some proofs have been omitted due
to space constraints.

2 Syntax and Semantics of HFL

The definitions of syntax and semantics of HFL are more complex than e.g., the
μ-calculus, because the incorporation of the λ-calculus demands a type system.
This system also keeps track of negation to guarantee a proper definition of
fixpoints. HFL’s original presentation [8] treats this in greater detail.

Labeled Transition Systems. A labeled transition system (LTS) T over a set P
of atomic propositions and a set R of action names is a set S of states together
with interpretations P T ⊆ S for all P ∈ P and RT ⊆ S×S for all R ∈ R. With
T , s0 we denote the pointed transitions system with distinguished state s0, and
with R[s] we denote the set of R-successors of s.

Syntax. For the remainder of the paper, fix sets P of propositions, R of binary
relations and infinite sets of variables V and F that denote variables bound by
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a λ-expression, respectively a fixpoint quantifier. Separating the latter is usually
not done for HFL, but facilitates technical exposition of APKA. Lower case
letters x, y, . . . denote variables in V , upper case letters X,Y, . . . those in F .

The set of types is defined inductively: Pr is the ground type. If τ, τ ′ are types,
then so is τ → τ ′ and τ0 → τ ′, τ+ → τ ′ and τ− → τ ′ denote the functions of this
type that are monotone, antitone or constant in the argument. The annotations
+,−, 0 are called variances, v denotes an unspecified variance. The operator
→ is right-associative, so any type can be written as τ1 → · · · → τn → Pr.
The order ord is defined inductively via ord(Pr) = 0 and ord(τ1 → · · · τn →
Pr) = max(ord(τ1), . . . , ord(τn)) + 1. The set of types is partially ordered via
τ, τ ′ < τ → τ ′.

Definition 1. HFL-formulae ϕ are defined by the grammar

ϕ ::= P | ♦Rϕ | ϕ ∨ ϕ | ¬ϕ | x | X | λ(xv : τ).ϕ | (ϕϕ) | μ(X : τ).ϕ | ν(X : τ).ϕ

where P ∈ P, R ∈ R, x ∈ V and X ∈ F .

The connectives +,⊥,∧,�R can be added as derived connectives as usual.
The binder λ(xv : τ).ϕ binds x in ϕ, the binder σ(X : τ).ϕ with σ ∈ {μ, ν}

binds X in ϕ. Let sub(ϕ) denote the set of subformulae of ϕ. An HFL-formula
is well-named if, for each X ∈ F , there is at most one subformula of the form
σ(X : τ).ψ. We do not insist in unique occurrences for variables in V but this
can be obtained via renaming, i.e, α-conversion, if desired. A variable from V
or F in a formula ϕ is bound if it is bound by a binder of the respective type,
and free otherwise. A formula is called closed if it has no free variables and open
otherwise. For a well-named formula ϕ and X ∈ F ∩ sub(ϕ), define fpϕ(X) as
the unique subformula ψ of ϕ such that ψ = σX.ψ′ for σ ∈ {μ, ν}. We have
a partial order <fpϕ on the fixpoint variables of ϕ via X <fpϕ Y if Y appears
freely in fpϕ(X). We say that Y is outermore than X . A variable is outermost
among a set of variables if it is maximal in this set with respect to <fpϕ.

A finite set Σ = {Xv1
1 : τ1, . . . , X

vn
n : τn, x

v′
1

1 : τ ′1, . . . , x
v′
m

m : τ ′m} where the Xi ∈
F , xi ∈ V , the τi, τ

′
i are types and the vi, v

′
i are variances is called a context.

The context Σ− is obtained from Σ by reversing the variance in each type:
x : τ+ changes to x : τ− and vice versa, x : τ0 stays fixed. For example, if Σ =
{x : (Prv → Pr)+} then Σ− = {x : (Prv → Pr)−}. Given a context Σ and a
formula ϕ, we say that ϕ has type τ in context Σ if Σ , ϕ : τ can be derived via
the typing rules in Figure 1. If Σ , ϕ : τ for some Σ and τ then ϕ is well-typed.
In particular, a closed formula is well typed if ∅ , ϕ : τ . Typing judgments are
unique if formulae are annotated with the correct types [8]. From now on, we
will often omit the type annotations and tacitly assume that all formulae are
well-typed if the type of the formula in question can be derived from context.

Semantics. Fix an LTS with underlying set S. The semantics of types are par-
tially ordered sets defined inductively via

– �Pr� = (2S,⊆)
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Σ � P : Pr

Σ � ϕ : Pr

Σ � ♦Rϕ : Pr

Σ− � ϕ : Pr

Σ � ¬ϕ : Pr

Σ � ϕ1 : Pr Σ � ϕ2 : Pr

Σ � ϕ1 ∨ ϕ2 : Pr

Σ, x+ : τ � x : τ Σ,X+ : τ � X : τ

Σ, xv : τ � ϕ : τ ′

Σ � λ(xv : τ ).ϕ : τv → τ ′

Σ,X+ : τ � ϕ : τ

Σ � μ(X : τ ).ϕ : τ

Σ,X+ : τ � ϕ : τ

Σ � ν(X : τ ).ϕ : τ

Σ � ϕ : τ+ → τ ′ Σ � ψ : τ

Σ � (ϕψ) : τ ′

Σ � ϕ : τ− → τ ′ Σ− � ψ : τ

Σ � (ϕψ) : τ ′
Σ � ϕ : τ 0 → τ ′ Σ � ψ : τ Σ− � ψ : τ

Σ � (ϕψ) : τ ′

Fig. 1. Typing Rules for HFL

– �τv → τ ′� = (�τ ′�(�τ�v),-τv→τ ′)

where �τ ′�(�τ�v) is the set of monotone, antitone or constant functions from
�τ� to �τ ′�, depending on v. The partial order -τ→τ ′ is defined via pointwise
comparison: For f, g ∈ �τ ′�(�τ�) let f -τ→τ ′ g if and only if for all x ∈ �τ� we
have f(x) -τ ′ g(x). Then -τ+→τ ′ is the order induced by -τ→τ ′ and -τ−→τ ′ is
{(a, b) : (b, a) ∈ {-τ→τ ′}} and -τ0→τ ′ is -τ+→τ ∩ -τ−→τ .

Note that �Pr� is a boolean algebra and, hence, also a complete lattice. This
makes �τv → τ ′� also a complete lattice for all τ, τ ′, v. Let

⊔
τ M and

�
τ M

denote the join and meet, respectively, of the set M ⊆ �τ�, and let +τ and ⊥τ

denote the maximal and minimal elements of �τ�.
Let Σ = X1 : τ1, . . . , Xn : τn, x1 : τ ′1, . . . , xm : τ ′m be a context. An interpreta-

tion η is a partial map from the sets of variables V and F such that η(Xi) ∈ �τi�
for all i ≤ n and η(xj) ∈ �τ ′j� for all j ≤ m. Then η[X �→ f ] is the interpretation
that maps X to f and agrees with η otherwise, similar for η[x→ f ].

We define the semantics of HFL over T inductively as in Figure 2. For well-
typed, well-named ϕ, we write T , s |=η ϕ if s ∈ �∅ , ϕ : Pr�η. We write T , s |= ϕ
if ϕ is closed and η is the empty interpretation. Two formulae are equivalent,
written ϕ ≡ ϕ′, if �Σ , ϕ�η = �Σ , ϕ′�η for all η, Σ.

Example 2. The formula

ϕ = μ(X : (Pr → Pr) → Pr).λ(f+ : (Pr → Pr)).P ∨
(
X (λ(y+ : Pr).f(f y))

)
says that a state where P holds can be reached after 2n applications of f for
some n. When applied to ψ = λ(x+ : Pr).♦Rx the term (ϕψ) has type Pr and
says that a state where P holds can be reached in exactly 2n R-transitions.

Lemma 3. For all well-named, well-typed ϕ, ψ ∈ HFL and for all environments
η, we have that �ϕ[ψ/x]�η = �ϕ�η[x �→�ψ�η ].

Proof. By induction on the syntax of HFL-formulae.
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�Σ � P : Pr�η = P T

�Σ � ϕ ∨ ψ : Pr�η = �Σ � ϕ : Pr�η ∪ �Σ � ψ : Pr�η

�Σ �: ¬ϕ : Pr�η = S \ �Σ � : ϕ�η

�Σ � ♦Rϕ : Pr�η =
{
s ∈ S : ∃s′ ∈ R[s] : s′ ∈ �Σ � ϕ : Pr�η

}
�Σ � λ(xv : τ ).ϕ : τv → τ ′�η = {f ∈ �τv → τ ′� : ∀y ∈ �τ�.

f(y) = �Σ, xv : τ � ϕ : τ ′�η[x �→y]}
�Σ � X : τ ′�η = η(X)

�Σ � x : τ ′�η = η(x)

�Σ � μ(X : τ ).ϕ : τ�η =
�{

d ∈ �τ� : �Σ, (X : τ+) � ϕ : τ�η[X �→d] �τ d
}

�Σ � ν(X : τ ).ϕ : τ�η =
⊔{

d ∈ �τ� : �Σ, (X : τ+) � ϕ : τ�η[X �→d] �τ d
}

�Σ � (ϕψ) : τ ′�η = �Σ � ϕ : τv → τ ′�η(�Σ � ψ : τ�η)

Fig. 2. Semantics of HFL

3 Alternating Parity Krivine Automata

Fix a well-named, well-typed and closed formula ϕ : Pr and an LTS T , s0 with
state set S. We define an Alternating Parity Krivine Automaton (APKA) for ϕ.

Closures and Environments. Closures and environments are defined recursively.
An environment maps variables to closures, a closure is a subformula of ϕ to-
gether with an environment that stipulates how free variables of ϕ are to be
resolved. For convenience of proofs, environments are consecutively numbered.
The first environment e0 is used as a constant for the empty environment.

Definition 4. The constant e0 is the empty environment. If ψ ∈ Sub(ϕ) and e
is an environment, then (ψ, e) is a closure. If ei and ej are environments, (ψ, ei)
is a closure, i, j < k, and x ∈ V then ek = (x �→ (ψ, ei), ej) is an environment.

We write Clos for the set of closures, and Env for the set of environments.
The intuition of a closure (ψ, e) is that ψ is to be evaluated in the context
of e, i.e., free variables of ψ are resolved using e. An environment of the form
ek = (x �→ (ψ, ei), ej) means that in the context of ek, the variable x is bound
to ψ, interpreted in context ei. Other free variables are resolved in ej , with both
i, j < k. The root environment e0 does not bind any variables. A variable lookup
that ends here fails, but invariants of the APKA prevent that this happens.

Let (ψ, ei) be a closure and let E = {e0, . . . , en} be a set of environments such
that i ≤ n. Then ei(ψ) denotes the expression where free variables in (ψ, ei) are
replaced by their value in the environment recursively via

e0(ψ) =ψ

(x �→ (ψ′, ek), ej)(ψ) =ej(ψ[ek(ψ′)/x]).
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Configurations. A configuration of an alternating parity Krivine automaton A
for ϕ over T is of the form C = (s, (ψ, e), Γ, E , p), where s ∈ S, (ψ, e) is a closure,
Γ is a finite stack of closures, E is a set of environments and p ∈ {∃, ∀} denotes
the player that handles branching in the acceptance game (see below). p is the
player opposite to p. We call a configuration well-formed if the following hold:

– E = {e1, . . . , en} for some n ∈ N.
– No free variables: e(ψ) does not have free variables from V , nor does ei(ψi)

for every environment ei = (x �→ (ψi, ej), ek). If Γ = (ψm, eim) · · · (ψ1, ei1),
then for all 1 ≤ k ≤ m we have ik ≤ n and eik(ψk) has no free V-variables.

– Variable types agree with their bound values: If x has type τ , and ei = (x �→
(ψi, ej), ek), then Σ , ej(ψi) : τ where Σ only consists of hypotheses for
variables in F uniquely obtained from their annotations in ϕ.

– Σ , ((· · · ((ψ ψm)ψm−1) · · · )ψ1) : Pr for Σ as before.

We write Conf(A, T ) for the set of well-formed configurations of A over T .
Let C = (s, (ψ, e), Γ, E , p) be a well-formed configuration such that Γ =

(ψn, ein) · · · (ψ1, ei1). Let eik(ψk) = ψ′
k for all 1 ≤ k ≤ n and let e(ψ) = ψ′.

We write [C] for the expression ((· · · ((ψ′ ψ′
n)ψ′

n−1) · · · )ψ′
1) of type Pr. The

configuration C is called positive if T , s |= [C] and p = ∃ or if T , s �|= [C] and
p = ∀. Otherwise, it is called negative.

The function lookup: V × Env → Clos is defined as follows:

lookup(x, e0) = undefined

lookup(x, (x �→ (ϕ, ej), ek)) =(ϕ, ej)

lookup(x, (y �→ (ϕ, ej), ek)) = lookup(x, ek) if y �= x

Given a stack Γ = (ψn, en), · · · (ψ1, e1), define top(Γ ) as (ψn, en) and pop(Γ ) as
(ψn−1, en−1) · · · (ψ1, e1) and push(Γ, (ψ, e)) as (ψ, e)(ψn, en) · · · (ψ1, e1).

Transition Relation. Acceptance for the APKA A for ϕ over T , s0 is defined via
a two-player acceptance game between players ∃ and ∀ playing on Conf(A, T ),
starting from the well-formed configuration (s0, (ϕ, e0), ε, ∅, ∃). The automaton
accepts if and only if ∃ has a winning strategy. The parameter p in a configuration
denotes which player handles branching. We call branching by ∃ nondeterministic
and branching by ∀ universal. Moves that never branch are called deterministic.
If the play encounters a negation, p is changed to p. The transition relation from
configuration C = (s, (ψ, e), Γ, E , p) depends on the form of ψ as follows:

– If ψ is P , then ∃ wins if C is positive, otherwise ∀ wins.
– If ψ is ψ1∨ψ2, then p chooses i ∈ {i, 2} and (s, (ψi, e), Γ, E , p) is the successor.
– If ψ ¬ψ′, then (s, (ψ′, e), Γ, E , p) is the successor.
– If ψ is ♦Rψ1, then p chooses a successor (t, (ψ1, e), Γ, E , p) such that t ∈ R[s].
– If ψ is σX.ψ1, then (s, (ψ1, e), Γ, E , p) is the successor.
– If ψ is (ψ1 ψ2), then (s, (ψ1, e), push(Γ, (ψ2, e)), E , p) is the successor.
– If ψ is λx.ψ1, then the configuration (s, (ψ1, e

′), pop(Γ ), E ∪ {e′ = (x →
(top(Γ ), e))}, p) is the successor.
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– If ψ is x, then (s, lookup(x, e), Γ, E , p) is the successor.
– If ψ is X , then (s, (fpϕ(X), e), Γ, E , p) is the successor.

The automaton performs weak head reduction. It is not hard to see that in-
dividual transitions transform well-formed configurations into well-formed con-
figurations. Moreover, if the automaton transitions deterministically then the
successor configuration is positive if and only if the original configuration is so.
If ∀ moves in C and C is positive then all successors are positive and if C is
negative then so is at least one successor. Conversely, if ∃ moves in C and C is
positive then there is at least one positive successor and if C is negative then no
successor is positive. Because ∃ can enforce that play stays in positive configu-
rations and because she wins finite plays that end in a positive configuration, ∃
wins all finite plays if the initial configuration is positive, i.e., if T , s0 |= ϕ.

The purpose of the call-by-name strategy, as opposed to, e.g., explicit syntactic
β-reduction, is to keep the number of automaton states finite when projected to
the formula component, which stays within the finite set of Sub(ϕ). This makes
the transition relation finitely presentable. The set of environments is not finite,
and, since it is tree-like, it is much more complicated than, e.g., the stack of a
pushdown automaton. This is unavoidable with such an expressive logic.

Unfolding Trees. For the winning condition on infinite plays, we need additional
machinery. The goal is to decide acceptance by a parity condition. Unfortunately,
simply observing which fixpoints occur during the play is not sufficient. Already
in the fragment FLC [13], some fixpoint expansions represent function calls that
return after a finite number of steps. Such expansions are finite approximations
at different arguments and should not be considered for the winning condition,
since we are only interested in fixpoints with infinitely many approximations
at the same argument. In order to filter out these finite approximations, we
present the sequence of configurations of a given play in a tree-like fashion. This
unfolding tree is an infinite, not necessarily finitely branching tree labeled by the
formula component of configurations in the play, i.e., subformulae of ϕ. It is not
to be confused with the game graph itself. This extends results from [13].

From an infinite play (Ci)i∈N = (si, (ψi, ei), Γi, Ei, pi)i∈N in the acceptance
game for ϕ we inductively generate an unfolding tree via the formulae of config-
urations in the path. During the induction, there is always an active node that
is added somewhere in the tree. Each step consists in applying a label to the
active node and then adding a new active node. The induction starts with only
one node labeled by ϕ = ψ0. The active node is added as per below. In the ith
step, the active node is labeled ψi and a new active node is added:

– If ψi is of the form ϕ′
1 ∨ϕ′

2, ♦Rϕ
′, ¬ϕ′, σX.ϕ′, λx.ϕ′, X or (ϕ′

1 ϕ
′
2), then the

active node is added as a left son of the previous active node.
– If ψi = x, then (ψi+1, e

′) equals lookup(x, ei), so there is a node labeled
ψj = (ψ′ ψi+1) such that e′ = ej, because ψi+1 was bound to a variable,
and expressions bound to a variable occur as the operand of an application.
There may already be right sons of the node labeled ψj , add the active node
as a new rightmost son.
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The unfolding tree is the limit of this inductive definition.1 We tacitly identify
a node in the tree labeled ψi with the configuration Ci. We say that a formula
occurs on a node in the tree if that node is labeled by the formula. We say that a
fixpoint variable occurs under an even number of negations if the play so far has
passed an even number of negations, i.e., the parameter p for the configuration
is ∃. If p is ∀, the variable occurs under an odd number of negations.

Finite paths in the unfolding tree represent function calls that return after
finitely many steps. Hence, fixpoint expansions on such paths are not relevant
to the winning condition. An unfolding tree can be infinitely branching in nodes
labeled by an application, but we show that it contains exactly one infinite path,
and only fixpoint expansions on that path are relevant for the winning condition.

Example 5. Consider the formula2((
λf.(μX.λx.(♦Rx ∨�R′((νY.λy.f(X(Y y)))x)))

)
(λz.♦Rz)

)
+,

which holds on the root of a tree such that from the root to the second level, the
transitions are labeled with R′ and labeled with R otherwise. A winning strategy
for ∃ is to choose the second disjunct the first time X is evaluated and the first
disjunct from then on. This strategy induces the unfolding tree in Figure 3, with
the nodes labeled by the number of their configuration. The node labeled 2 is
infinitely branching, and the rightmost branch of its left subtree is an infinite
path. The only fixpoint variable that occurs on the infinite path is Y , while both
X and Y are unfolded infinitely often. Since X occurs only on finite paths, the
variable relevant for the winning condition is the greatest fixpoint variable Y .

Lemma 6. Every infinite unfolding tree contains exactly one infinite path.

This may seem obvious, because an unfolding tree is just a reorganization of
an infinite path. However, we have to rule out the possibility that the tree is
infinitely branching, but does not have a finite path. The proof of this lemma
spans several pages and needs to be omitted due to space reasons.

Lemma 7. On the infinite path in an unfolding tree, there is a unique outermost
fixpoint variable that occurs infinitely often. Moreover it eventually occurs only
under an even or odd number of negations.

Proof. A path in an unfolding tree corresponds to expanding fixpoints and pass-
ing to subformulae. Since the path is infinite, there must be infinitely many
occurrences of fixpoint variables on it, and one variable must occur infinitely
often. For two variables that occur infinitely often, but are incomparable with

1 A referee pointed out that Salvati and Walukiewicz use a similar technique [12] that
can be traced back to [14]. They include the node of creation into the definition of a
closure to facilitate construction of the tree. Since the unfolding tree is not part of
ongoing plays, we do not incorporate this into the definition of closure.

2 This is a modified version of an example from [13].
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1: (
(
λf.(μX.λx.(♦Rx∨�R′ ((νY.λy.f(X(Y y)))x)))

)
(λz.♦Rz))	

2:
(
λf.(μX.λx.(♦Rx∨�R′ ((νY.λy.f(X(Y y)))x)))

)
(λz.♦Rz)

3: λf.(μX.λx.(♦Rx∨�R′ ((νY.λy.f(X(Y y)))x)))

4: μX.λx.(♦Rx∨�R′ ((νY.λy.f(X(Y y)))x))

5: λx.(♦Rx∨�R′ ((νY.λy.f(X(Y y)))x))

6: ♦Rx∨�R′ ((νY.λy.f(X(Y y)))x)

7: �R′ (νY.λy.f(X(Y y)))x

8: νY.λy.f(X(Y y))x

9: νY.λy.f(X(Y y))

10: λy.f(X(Y y))

11: f(X(Y y))

12: f 16: X(Y y)

17: X

18: λx.(♦Rx∨�R′ ((νY.λy.f(X(Y y)))x))

19: (♦Rx∨�R′ ((νY.λy.f(X(Y y)))x))

20: ♦Rx

21: x

22: Y y

23: Y

24: λy.f(X(Y y))

25: f(X(Y y))

26: f ...

13: λz.♦Rz

14: ♦Rz

15: z

...

Fig. 3. The upper part of an infinite unfolding tree

respect to <fpϕ
, there must be a common superformula that also occurs infinitely

often. In particular, there must be a common fixpoint term superformula that
occurs infinitely often. This fixpoint is outermore than the first two.

By the typing rules, an even number of negations occurs between two ex-
pansions of the same instance of a fixpoint variable. Hence, all expansions of a
variable happen with the same p, until the play sees the formula σX.ψ again. For
the outermost fixpoint variable, this happens only finitely often and eventually
all occurrences of this variable on the infinite path are with the same p.

Acceptance Condition. ∃ wins an infinite play in the acceptance game if and
only if the outermost variable that occurs infinitely often on the infinite path in
the play’s unfolding tree is a greatest fixpoint variable occuring with p = ∃ or if
it is a least fixpoint variable occurring infinitely often with p = ∀.

Theorem 8. The APKA for ϕ accepts T , s0 if and only if T , s0 |= ϕ.

The difficult part of the proof is to establish that there is exactly one infinite path
on the unfolding tree of an infinite play (Lemma 6). Together with the preceding
lemma, this allows to adapt the proof of correctness for the FLC-model-checking
game from [13]. Since the correctness proof here proceeds roughly alongside the
same lines, we omit it. The proof idea is that ∃ moves such that the play always
is locally consistent, i.e. the semantics of the current position are positive. In
particular, whenever a play encounters a fixpoint variable that is in ∃’s domain
(e.g., a least fixpoint under an even number of negations), ∃ can restrict herself
to an approximation of the respective fixpoint up to a certain ordinal. She can
play with that approximation in mind, staying in configurations that are positive
even if restricted to the approximations, which is a winning strategy.

Corollary 9. HFL-model-checking is decidable over finite LTS.
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Proof (Sketch). For finite transition systems, the game graph of the acceptance
game for any APKA can be truncated at finite depth: Because all type lattices
are finite (k-fold exponential height3 for types of order k), nested unfolding of
fixpoint variables can be limited to the height of the lattice in question.

The known k-EXPTIME completeness result for HFL-formulae of order at most
k does not follow directly from Corollary 9. Consider the formula ϕ =

(
μX.λf.P∨

(X(λy.f(f y)))
)

(λx.♦Rx) from Example 2, which says that a state where P holds
can be reached in exactly 2n R-transitions for some n. Since X is of order 2, the
maximal number of unfoldings of X in a play is doubly exponential. This leaves
the play with a triply exponential number of Diamonds after fixpoint unfold-
ing is finished, a result not compatible with k-fold exponential time. Criteria to
abort iteration early to avoid such problems are subject of ongoing research.

On Parity Conditions. The acceptance condition for APKA does not consider
all fixpoint variables that are unfolded during a play of the acceptance game,
because this would yield incorrect semantics (cf. Example 5). Consider the μ-
calculus and FLC [7], both fragments of HFL. A computation model for the
μ-calculus are alternating parity automata. FLC does not have an associated
automaton model, but the author of [13] presents a parity game that captures
the semantics of FLC. Since both logics are fragments of HFL, APKA are also
an automaton model for these logics. Clearly, an alternating parity automaton
is just an APKA that does use neither the stack nor environment features.
Consequently, the unfolding tree for a run is degenerate, i.e., a straight path.
If one considers the FLC-model-checking game as the acceptance game of an
APKA, such an APKA does not use the environment feature either, so function
parameters are used in a last-in-first-out fashion due to the stack mechanics.

These differences are reflected in the parity conditions for the respective au-
tomata. For the μ-calculus, if a play in the acceptance game unfolds a fixpoint
variable, this variable will count against the player responsible for this type of
variable, e.g., against ∃ for least fixpoints under an even number of negations. In
the FLC-model-checking game, an occurrence of a fixpoint variable only counts
towards the winning condition if it is stack-increasing, i.e., if the elements on the
stack at the moment of occurrence are never read (cf. also the so-called stair-
parity conditions [6]). For FLC, being a stack-increasing variable coincides with
being on the infinite path of the unfolding tree. Since for FLC, the unfolding tree
has at most binary branching and the infinite path can be obtained by always
choosing the rightmost branch, it is not a priori known whether an occurrence
of a variable does count towards the winning condition. If it does not count, the
players will know after finitely many steps, the occurrence can be discarded, and
the winner of the play can be obtained from the remaining occurrences with-
out explicitly constructing the unfolding tree. For full HFL, however, it is not
possible to tell whether an occurrence of a fixpoint counts towards the winning
condition until after the game is finished. This is because here, the location of the

3 Precise bounds can be found in Lemma 3.5 in [9].
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infinite path in the unfolding tree is not subject to any constraints. In particular,
it cannot be obtained by always choosing the rightmost branch, (cf. Example 5).
Hence, the tree has to be explicitly constructed to find the winner of a play.

4 Further Work

Further research is needed into conditions to stop to explore a given path in
the game graph of the APKA-acceptance game over finite LTS. As seen in the
discussion after Corollary 9, just limiting consecutive fixpoint unfoldings via
the height of the respective type lattice is suboptimal. In the μ-calculus model-
checking game, a play is decided once the same combination of subformula and
state occurs twice. Already for FLC, the presence of a stack makes things harder.
For HFL, conditions on the environment structure will also need to be included.

Questions that are settled for the modal μ-calculus, and, to a certain extent,
for FLC, are still open for HFL. Consider syntactic negation: Sometimes negation
is only allowed at the ground level (e.g., [8]), sometimes negation may occur in
front of expressions of arbitrary types, subject to monotonicity conditions (e.g.,
[9]). In both cases, negation cannot be pushed inwards to occur only in front of
atomic expressions. Based on preliminary research we conjecture that it is possi-
ble to obtain a negation normal form at the cost of blowup in formula size. The
exact semantics of higher-order negation are also not clear. The game-theoretic
formulation in the context of APKA may help to understand this better.

HFL also differs from the μ-calculus and FLC with respect to alternation. For
both we know how to properly define alternation of fixpoints, and the alternation
hierarchy is strict [15,13]. For HFL, it is not even clear how exactly to define
alternation. In particular, it is possible to syntactically hide alternation by λ-
abstracting away outer fixpoints, trading syntactic alternation for a higher order.
Even if a meaningful alternation hierarchy exists for HFL, it is possible that the
alternation hierarchy of the μ-calculus collapses to a finite level inside HFL.

For both questions, it seems useful to relax the way an APKA is defined very
closely alongside the syntax tree of an HFL-formula. Consider alternating parity
automata, which first were conceived as an alternative presentation of the syntax
tree of μ-calculus- or CTL-formulae. Now they are considered in their own right,
without a specific formula in mind, because they proved to be a useful tool for
a number of problems. While this may not necessarily be the case for APKA,
it might be useful to do the same for APKA to learn properties of APKA not
visible at first glance, and then to apply them back to HFL-formulae.

Finally, the formalism of a Krivine machine is used in the investigation of
higher-order recursion schemes and collapsible pushdown automata. Salvati and
Walukiewicz use the Krivine machine for this in [12], and Carayol and Serre
expand on their work in [16]. The difference to our work is that their work
on higher-order recursion schemes and collapsible pushdown automata concerns
model-checking of a regular logic (e.g., MSO) over higher-order structures, while
we explored model-checking a higher-order logic on finite and, hence, regular,
structures. The relation between the two problems warrants further investiga-
tion, given that the Krivine machine appears on both sides.
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2. Büchi, J.R.: Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly 6(1-6), 66–92 (1960)

3. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)
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Abstract. We study the decidability and complexity of the reachability
problem in parametric timed automata. The problem was introduced
20 years ago by Alur, Henzinger, and Vardi in [1], where they showed
decidability in the case of a single parametric clock, and undecidability
for timed automata with three or more parametric clocks.

By translating such problems as reachability questions in certain ex-
tensions of parametric one-counter machines, we show that, in the case
of two parametric clocks (and arbitrarily many nonparametric clocks),
reachability is decidable for parametric timed automata with a single
parameter, and is moreover PSPACENEXP-hard. In addition, in the case
of a single parametric clock (with arbitrarily many nonparametric clocks
and arbitrarily many parameters), we show that the reachability prob-
lem is NEXP-complete, improving the nonelementary decision procedure
of Alur et al.

1 Introduction

The problem of reachability in parametric timed automata (PTA) was introduced
over two decades ago in a seminal paper of Alur, Henzinger, and Vardi [1]: given
a timed automaton in which some of the constants appearing within guards on
transitions are parameters, is there some assignment of integers to the parame-
ters such that an accepting location of the resulting concrete timed automaton
becomes reachable?

In this framework, a clock is said to be nonparametric if it is never compared
with a parameter, and parametric otherwise. Alur et al. [1] showed that, for timed
automata with a single parametric clock, reachability is decidable (irrespective of
the number of nonparametric clocks). The decision procedure given in [1] however
has provably nonelementary complexity. In addition, [1] showed that reachability
becomes undecidable for timed automata with at least three parametric clocks.

The decidability of reachability for PTAs with two parametric clocks (and
arbitrarily many nonparametric clocks) was left open in [1], with hardly any
progress (partial or otherwise) that we are aware of in the intervening period.
The problem was shown in [1] to subsume the question of reachability in Ibarra
et al.’s “simple programs” [9], also open for over 20 years, as well as a decision
problem for a fragment of Presburger arithmetic with divisibility.
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E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 123–134, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/advances\protect _parametric14abs.html
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/advances\protect _parametric14abs.html


124 D. Bundala and J. Ouaknine

Our main results are as follows: (i) We show that, in the case of two parametric
clocks (and arbitrarily many nonparametric clocks), reachability is decidable for
PTAs with a single parameter. Furthermore, we establish a PSPACENEXP lower
bound on the complexity of this problem. (ii) In the case of a single parametric
clock (with arbitrarily many nonparametric clocks and arbitrarily many param-
eters), we show that the reachability problem is NEXP-complete, improving the
nonelementary decision procedure of Alur et al.

Our results rest in part on new developments in the theory of one-counter
machines [5], their encodings in Presburger arithmetic [4], and their application
to reachability in (ordinary) timed automata [6,3]. We achieve this by restricting
our attention to PTAs with closed (i.e. non-strict) clock constraints. As param-
eters are restricted to ranging over integers1, standard digitisation techniques
apply [7,15], reducing the reachability problem over dense time to discrete (in-
teger) time. (Alternatively, our results also apply directly to timed automata
interpreted over discrete time, regardless of the type of constraints used.) The
restriction to integer time enables us, among others, to keep track of the values of
two parametric clocks using a single counter, in effect reducing the reachability
problem for timed automata with two parametric clocks to a halting problem
for parametric one-counter machines.

Related Work. The decidability of reachability for PTAs can be achieved
in certain restricted settings, for instance by bounding the allowed range of the
parameters [10] or by requiring that parameters only ever appear either as upper
or lower bounds, but never as both [8]: in the latter case, if there is a solution
at all then there is one in which parameters are set either to zero or infinity.
The primary concern in such restricted settings is usually the development of
practical verification tools, and indeed the resulting algorithms tend to have
comparatively good complexity.

Miller [14] observed that over dense time and with parameters allowed to range
over rational numbers, reachability for PTA becomes undecidable already with
a single parametric clock. In the same setting, Doyen [2] showed undecidability
of reachability for two parametric clocks even when using exclusively open (i.e.
strict) time constraints.

A connection between timed automata and counter machines was previously
established in nonparametric settings [6], and used to show that reachability for
(ordinary) two-clock timed automata is polynomial-time equivalent to the halting
problem for one-counter machines, even when constants are encoded in binary.
Unfortunately, it is not obvious how to extend and generalise this construction to
PTA, specifically in the case of two parametric clocks and an arbitrary number
of nonparametric clocks, as we handle in the present paper. The reduction of [6]
was used in [3] to show that halting for bounded one-counter machines, and

1 Other researchers have considered variations in which parameters are allowed to
range over rationals, yielding different outcomes as regards the decidability of reach-
ability; see, e.g., [14,2], discussed further below.
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hence reachability for two-clock timed automata, is PSPACE-complete, solving
what had been a longstanding open problem.

Finally, parametric one-counter machines without upper bounds imposed on
the value of the counter were studied in [5], where reachability was shown to be
decidable. The techniques used in [5] make crucial use of the unboundedness of
the counter and therefore do not appear applicable in the present setting.

2 Preliminaries

We now give definitions used throughout the rest of the paper. A timed automa-
ton is a finite automaton extended with clocks; each clock measuring the time
since it was last reset. A parametric timed automaton is obtained by replacing
the known constants in the guards by parameters.

Formally, let P be a finite set of parameters. An assignment for P is a
function γ : P → N assigning a natural number to each parameter. A paramet-
ric timed automaton (PTA) A = (S, s0, C, P, F,E) is a tuple where S is the
set of states, s0 ∈ S is the initial state, C is the set of clocks, P is the set of
parameters, F ⊆ S is the set of final states and E ⊆ S×S× 2C ×G(C,P ) is the
set of edges where G(C,P ) is the set of guards of the form x ≤ v, x ≥ v where x
is a clock and v ∈ N ∪ P . An edge (s, s′, R,G) is from state s to state s′. Set R
specifies which clocks are reset. A clock is parametrically constrained if it is
compared to a parameter in some guard. The class of PTAs with k parametrically
constrained clocks is denoted k-PTA. If γ is an assignment to parameters then
Aγ denotes the automaton obtained by setting each parameter p ∈ P to γ(p).

A configuration (s, ν) of Aγ consists of state s and function ν : C → N
assigning a value to each clock. A transition exists from configuration (s, ν)
to (s′, ν′) in Aγ , written (s, ν) → (s′, ν′), if either there is t ∈ N such that
ν(c) + t = ν′(c) for every clock c ∈ C or there is an edge e = (s, s′, R,G) ∈ E
such that G is satisfied for current clock values and if c ∈ R then ν′(c) = 0 and
if c �∈ R then ν′(c) = ν(c).

The initial clock valuation ν0 assigns 0 to every clock. A run of a machine is
a sequence π = c1, c2, . . . , ck of configurations such that ci → ci+1 for each i.
A run is called accepting if c1 is the initial configuration (s0, ν0) and ck is
in a final state. The existential halting problem , also known as parametric
reachability or the emptiness problem, asks whether there is some parameter
valuation γ such that Aγ has an accepting run. From here onwards, we omit
“existential” and write simply “halting problem”. We say that two automata A1

and A2 have equivalent halting problem if A1 halts if and only if A2 halts.
Given a run π, we use start(π) = c1 and end(π) = ck to denote the first and

the last configuration of the run, respectively. If τ is a run, we write π → τ if
the runs can be connected by a transition, i.e. end(π) → start(τ).

A parametric timed 0/1 automaton [1] A = (S, s0, C, P, F,E) is a timed
automaton such that each edge e ∈ E is labeled by a time increment t ∈ {0, 1}.
A transition from (s, ν) to (s′, ν′) is valid only if ν′(c)− ν(c) = t for each c ∈ C
not reset by the edge giving rise to the transition.
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A one-counter machine is a finite-state machine equipped with a single
counter. Each edge is labelled by an integer, which is added to the counter when-
ever that edge is taken. The counter is required to be nonnegative at all times.
E.g., subtracting c ∈ N in one transition and adding c in the next transition leaves
the counter unchanged but can be performed only if the counter is at least c.

A bounded one-counter machine also allows ≤ x edges. Such an edge
can be taken only when the counter is at most x. Reachability in these two
classes of counter machines are respectively known to be NP-complete [5] and
PSPACE-complete [3] if the numbers are encoded in binary.

Parametric machines are obtained by replacing the known constants by pa-
rameters. A parametric bounded one-counter machine (PBOCA) C =
(S, s0, F, P,E, λ) is a tuple where S is the set of states, s0 is the initial state,
F ⊆ S are the final states, P is the set of parameters, E ⊆ S × S is the set of
edges and λ : E → Op assigns an operation to each edge and has codomain Op:
{+c,−c,+p,−p,≤ c,= c,≥ c,≤ p,= p,≥ p,+[0, p],≡ 0 mod c : c ∈ N, p ∈ P}.

A parametric one-counter machine allows only operations:±c,±p,≥ c,≥
p,= 0. Note that parametric one-counter machines are a subclass of parametric
bounded one-counter machines.

y ≥ 5 x ≥ 7

y ≤ p

x ≥ p, x ← 0

+7 ≤ q ≥ q

+q +1

Fig. 1. A parametric timed automaton (left) and a parametric bounded one-counter
machine (right). The final states are reachable if, for example, p = 10 and q = 11.

A configuration (s, x) of C consists of a state s ∈ S and counter value
x ∈ N. Thus, the counter is always nonnegative. Machine C starts in state s0
and counter equal to 0 and then takes individual edges updating the counter.
We use counter(s, x) = x to denote the counter value in a configuration. We
extend the definition to runs componentwise and write counter(π) ≤ C (resp.
counter(π) ≥ C) if the comparison holds for every element: ∀i . counter(π(i)) ≤
C (resp. ∀i . counter(π(i)) ≥ C).

Let Z be a (nonparametric) one-counter machine. For configurations c,d of
Z and numbers x, y ∈ N, we write (c,d) ∈ Z(x, y) if there is a run π : c → d
such that the counter stays between x and y, i.e. x < counter(π) < y.

For a parameter assignment γ, configuration (s′, x′) is directly reachable from
(s, x) (written (s, x) → (s′, x′)) in Cγ if an edge e = (s, s′) ∈ E exists such that
– if λ(e) = ±c, c ∈ N then x± c = x′

– if λ(e) = ±p, p ∈ P then x± γ(p) = x′

– if λ(e) = ∼ c, c ∈ N then x = x′ and x ∼ c where ∼ ∈ {≤,≥}
– if λ(e) = ∼ p, p ∈ P then x = x′ and x ∼ γ(p) where ∼ ∈ {≤,≥}
– if λ(e) = +[0, p], p ∈ P then x ≤ x′ ≤ x + γ(p)
– if λ(e) = ≡ 0 mod c, x ∈ Z then x = x′ and x ≡ 0 mod c
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The existential halting problem asks whether there is a parameter valua-
tion γ such that Cγ has an accepting run.

2.1 Presburger Arithmetic

Presburger Arithmetic with Divisibility is the first-order logical theory of
〈N, <,+, |, 0, 1〉. The existential fragment (formulae of the form ∃x1, x2, . . . , xk.ϕ
where ϕ has no quantifiers) is denoted as ∃PAD . The satisfiability of ∃PAD for-
mulae was shown decidable in [12] and in NP [13]. Given a set S ⊆ Nk we
say that S is ∃PAD definable if there is a finite set R of ∃PAD formulae,
each formula with free variables x1, . . . xk such that (n1, . . . , nk) ∈ S ⇐⇒∨

ϕ∈R ϕ(n1, . . . , nk). Note that ∃PAD sets are closed under finite union, inter-
section and projection. It was shown in [4,5] that the reachability relation of
parametric one-counter machines is ∃PAD definable.

Lemma 1 ([4], Lemma 4.2.2). Given a parametric one-counter machine B
and states s, t, the relation Reach(B, s, t) = {(x, y, n1, . . . , nk) | (s, x) →∗ (t, y)
in Bγ where γ(pi) = ni} is ∃PAD definable.

2.2 Nonparametric Clock Elimination

Let A be a PTA. By modifying the region construction, we show how to build a
PTA with equivalent halting problem without nonparametric clocks.

Once the value of a nonparametric clock c is above the largest constant ap-
pearing in A, the precise value of c does not affect any comparison. Now, the
value of c is always a natural number. Hence, we eliminate nonparametric clocks
by storing in the state space of C the values of the clocks up to the largest
constant. However, we must ensure that the eliminated clocks progress simulta-
neously with the remaining parametric ones. This motivates 0/1 timed automata
where the +1 updates correspond to the progress of time whereas the +0 updates
correspond to taking an edge in A. Formally:

Lemma 2 ([1]). Let A = (S, s0, C, P, F,E) be a PTA. Then there is a paramet-
ric 0/1 timed automaton A′ = (S′, s′0, C

′, P ′, F ′, E′) such that C′ ⊆ C contains
only parametrically constrained clocks of C and A and A′ have equivalent halting
problem. Moreover, |A′| = O(2|A|).

3 One Parametric Clock

For the rest of the section, fix a 1-PTA A. We show how to decide the halting
problem for A. By Lemma 2, there is an exponentially larger parametric 0/1 au-
tomaton B with one (parametrically constrained) clock and equivalent halting
problem. In Lemma 4 we show how to eliminate clock resets from B by introduc-
ing −1 edges, thereby turning B into a PBOCA. Hence, to decide the halting
problem for A it suffices to decide the halting problem for a PBOCA with only
−1, 0,+1 counter updates. We establish such a result in Theorem 5. Hence:
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Theorem 3. The halting problem for 1-PTAs is decidable in NEXP.

Decidability of the halting problem 1-PTAs originally appeared in [1], albeit
with nonelementary complexity. We give a completely different proof using one-
counter machines yielding a NEXP algorithm. Later we show that the problem is
also NEXP-hard. In the full version of the paper we prove the technical lemma:

Lemma 4. Let B be a parametric 0/1 timed one-clock automaton. Then there
is a PBOCA C such that B and C have equivalent halting problem. Further, all
updates in C are either −1, 0 or +1 and |C| = O(|B|).

3.1 Decidability for Counter Machines with Constant Updates

We now show how to decide the halting problem for PBOCAs with all counter
updates either −1, 0 or +1. Fix such a machine C. To show that C halts, we have
to find an assignment γ and an accepting run π in Cγ . Even without knowing
γ, we show that π splits into subruns of a simple form independent of γ the
existence of which is reducible to satisfiability of certain ∃PAD formulae.

Let γ be a parameter assignment and assume that we guessed the order of
parameters, let’s say, γ(p1) < γ(p2) < . . . < γ(pk), but not their precise values.
Let c1 and c2 be arbitrary configurations of Cγ such that c1 →∗ c2 in Cγ and
consider a shortest run π : c1 → c2. There is a constant M ∈ N, determined in
Lemma 7, such that the run π can be factored into subruns between successive
parameters and subruns around individual parameters. Formally, π = π0 →
π1 → π2 → · · · → πl such that (π0 can be possible empty)
– Even-indexed runs: γ(p)−M ≤ counter(π2i) ≤ γ(p) +M for a parameter p,
– Odd-indexed runs: γ(pr) + M < counter(π2i+1) < γ(pr+1) −M for some

consecutive parameters γ(pr) < γ(pr+1),
– For every i, the runs πi and πi+1 are joined by an edge end(πi) → start(πi+1).

Notice that every edge in C changes the counter by at most 1. Hence, we have
counter(start(π2i+1)) = pr + M + 1 or counter(start(π2i+1)) = pr+1 −M − 1.
Thus, start(πi) is always of the form start(πi) = (si, pf(i) + xi) for some state
si, some |xi| ∈ {M,M + 1} and parameter pf(i). Hence, start(πi) is uniquely
determined by the triple (si, f(i), xi). Similarly, end(πi) is uniquely determined
by some triple (ti, g(i), yi) with |yi| ∈ {M,M + 1}.

By minimality, π visits every configuration only once. Hence an odd-indexed
run can start in only one of 2nk configurations (n states, k parameters). Hence,
the number of odd-indexed runs, and hence the total number of runs is O(nk).

To show that there is a run from c1 to c2 we guess a factoring of the above
form. We shall show (justifying the choice of M) in Lemma 8 that the odd-
indexed runs π2i+1 correspond to runs in some one-counter machine Ch(2i+1).
By Lemma 1, the existence of a run in Ch(2i+1) is ∃PAD expressible as: ϕ2i+1 =
Reach(Ch(2i+1), s2i+1, t2i+1)(nf(2i+1) + x2i+1, ng(2i+1) + y2i+1, n1, . . . , nk).

In Lemma 9, we show that the even-indexed runs are independent of γ, can
be precomputed and the reachability relation can be hardwired into the formula.
Thus, we express the existence of a particular factoring from c1 to c2 as ϕ =
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i ϕ2i+1 ∧ ψ(f, g, h,−→s ,−→t ,−→x ,−→y ) ∧

∧
i(ni + M < ni+1) where the middle term

encodes that the odd- and even-indexed runs are adjacent (directly computable)
and that the even-indexed runs are valid (Lemma 9). The last conjunct encodes
the technical restriction γ(pi) + M < γ(pi+1) imposed in Lemmas 8 and 9.

The restriction is relaxed as follows. First, if the parameters are not in the
increasing order γ(pi) < γ(pi+1) then we relabel the parameters and build the
appropriate formula. If γ(pi) ≤ γ(pi+1) < γ(pi)+M then M depends only on |C|
(Lemma 7) and so only finitely many possibilities exist for γ(pi+1)−γ(pi). Hence
we replace each occurrence of pi+1 in C by pi + w for the appropriate w < M .

Theorem 5. Given states s, t ∈ C the set G(C, s, t) = {(x, y, n1, . . . , nk) |
(s, x) →∗ (t, y) in Cγ where γ(pi) = ni} is ∃PAD definable.

Recall that satisfiability of ∃PAD formulae is in NP [13] and that |C| is expo-
nential in |A| (Lemmas 2 and 4). Hence, Theorem 3 follows. We have also proved
the corresponding lower bound, in fact, already for a single parameter.

Theorem 6. The halting problem for 1-PTAs with one parameter is NEXP-
hard.

The proof of ∃PAD definability relied on two lemmas that we prove now. First,
we show how to calculate the odd-indexed runs. Let c1, c2 be configurations of Cγ

between two successive parameters: γ(pi) < counter(c1), counter(c2) < γ(pi+1).
Consider the counter machine Ci obtained from C by evaluating all compar-

isons as if the counter was between γ(pi) and γ(pi+1). Formally, Ci is obtained
from C by removing all ≥pj and ≤pk edges for k ≤ i < j and all ≤pj and ≥pk
edges for k ≤ i < j are replaced by +0 edges. Further, for i > 0 and c ∈ N we
also remove all ≤c edges from Ci. Note that the definition of Ci’s depends only
on the order of parameters in γ.

During a run π : c1 → c2 in Ci, the counter can become less than γ(pi) or
greater than γ(pi+1). So π does not necessarily correspond to a run in C. How-
ever, notice that Ci is a one-counter machine without parameters or ≤ x com-
parisons, i.e. an ordinary one-counter machine and thus has the following prop-
erty [11]: If there is a run between two configurations then there is a run where
the counter does not deviate much from the initial and the final counter value:

Lemma 7 ([11], Lemma 42). Let Ci be as above. There is a constant M
(polynomial in |Ci|) s.t. for any configurations c1 and c2 of Ci if c1 →∗ c2 then
there is a run π : c1 → c2 such that U −M ≤ counter(π) ≤ V + M where
U = min(counter(c1), counter(c2)) and V = max(counter(c1), counter(c2)).

So as long as γ(p1) + M < counter(c1), counter(c2) < γ(p2) −M , the runs
c1 → c2 in Ci correspond to runs in C. See the full version for the proof:

Lemma 8. Let γ be an assignment with γ(pi) + M < γ(pi+1) for all i. Let c,d
be configurations with γ(pi)+M < counter(c), counter(d) < γ(pi+1)−M . Then
(c,d) ∈ Cγ(γ(pi), γ(pi+1)) ⇐⇒ c→∗ d in Cγ

i .
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For the even-indexed runs, the reachability around individual parameters, i.e.
in intervals (γ(pi)−M,γ(pi)+M), can be precomputed. Suppose that γ(pi−1) <
γ(pi)−M < γ(pi)+M < γ(pi+1) so that the interval (γ(pi)−M,γ(pi)+M) does
not contain γ(pi−1) or γ(pi+1). Let −M < x, y < M and let π be a run from
(s, γ(pi) + x) to (t, γ(pi) + y) such that γ(pi) −M ≤ counter(π) ≤ γ(pi) + M .
Then for every component π(i), we can write counter(π(j)) = γ(pi) + zj for
some −M ≤ zj ≤ M . But now, the run π is valid for any specific value of γ(pi)
as only zj determines which edges are enabled in Cγ . (See the full version)

Lemma 9. Let γ, δ be parameter assignments with γ(pi) +M < γ(pi+1), δ(pi) +
M < δ(pi+1) for all i. Let s, t ∈ c be states and −M < x, y < M integers. Then

((s, γ(pi) + x), (t, γ(pi) + y)) ∈ Cγ(γ(pi)−M,γ(pi) + M) ⇐⇒
((s, δ(pi) + x), (t, δ(pi) + y)) ∈ Cδ(δ(pi)−M, δ(pi) + M)

Furthermore, it is decidable in polynomial time whether ((s, γ(pi)+x), (t, γ(pi)+
y)) ∈ Cγ(γ(pi)−M,γ(pi) + M) for any (and all) such assignment γ.

4 Two Parametric Clocks

We now show that the halting problem for 2-PTAs is equivalent to the halting
problem for PBOCAs. The equivalence is used in Section 4.2 to show decidability
of the halting problem in certain classes of 2-PTAs.

First, observe that a counter can be stored as a difference of two clocks, which
can be used (see the full version) to show the easier direction of the equivalence.

Theorem 10. Let C be a PBOCA. Then there is a 2-PTA A such that A and C
have equivalent halting problem. Moreover, if C has no ‘≡ 0 mod c’ edges then
A has no nonparametric clocks. Otherwise, A has one nonparametric clock.

4.1 Reduction to Parametric Bounded One-Counter Machines

For the converse, fix A to be a 2-PTA. We reduce A to a PBOCA C. To be-
gin, we construct (Lemma 2) a parametric 0/1 timed automaton B with two
parametrically constrained clocks, denoted x and y, with the halting problem
equivalent to A. We then transform B to C. Denote the counter of C by z.

For the time being, we need to relax the assumption that z stays nonnegative.
That is, subtracting 5 when the counter is 2 results in the counter being −3. In
Remark 12 we later show how to restore the nonnegativity of the counter.

The idea of the reduction is that, after a clock of B is reset, that clock equals
zero, so we use z to store the value of the other clock. We construct C in such
a way that after a reset of y, counter z stores the value of x and after a reset of
x, counter z stores −y. Initially C starts with the counter equal to 0.

Machine C then operates in phases. Each phase corresponds to a run of B
between two consecutive resets of some (possibly different) clock.

Suppose y was the last clock to reset. After the reset, the configuration of B is
(s, (z, 0)) for some state s ∈ B and the counter z = x. We show how C calculates
the configuration after the next clock reset in B.



Advances in Parametric Real-Time Reasoning 131

After time Δ, the clocks go from configuration (z, 0) to (z + Δ,Δ). Based
on the guards, different edges in Bγ are enabled as time progresses. Precisely,
suppose we know the order of the parameters p1 < p2 < . . . < pk. Then let
region R(i,j) be the set of clock valuations [pi, pi+1]× [pj , pj+1]. Then the set of
enabled edges depends only on the region R(i,j) the clocks (x, y) lie in.2

Therefore, machine C guesses the regions R(i0,j0), R(i1,j1), . . . , R(im,jm) in the
order in which they are visited by the clocks (x, y) and it also guesses the states
s0, s1, . . . , sm of B when each region Rl is visited for the first time, the state t
in which the next reset occurs and which clock is reset next (see Fig 2).

Machine C checks that the sequence is valid as follows. First, C checks, that
(z, 0) lies in R0. Second, it checks that the regions are adjacent: il+1 − il =
1∧ jl+1 = jl or il+1 = il ∧ jl+1− jl = 1 or il+1− il = jl+1− jl = 1. The last case
corresponds to the clocks hitting a corner of a region. Then, C checks that start-
ing in clock configuration (z, 0), the regions can be visited in the guessed order.

Consider region R(u,v) for some u, v. When the region is visited for the first
time, then either clock x equals pu or clock y equals pv. In the former case,
the clock configuration is (pu, pu − z), in the latter case, it is (pv + z, pv). The
configuration depends on the direction in which R(u,v) is visited. See Fig. 2.
– If il+1−il = 1 then C checks that clock x reaches pil+1

before clock y reaches
pjl+1. That is, pil+1

− z ≤ pjl+1. Equivalently, pil+1
≤ z + pjl+1, which can

be easily tested by a PBOCA. In Fig. 2 this corresponds to region R(1,0),
which is visited before R(2,0).

– Similarly, if jl+1 − jl = 1. E.g, in Fig. 2 region R(2,1) is visited before R(2,2).
We say R(u,v) was reached from left in the first and that R(u,v) was reached
from bottom in the second case. See Fig. 2 for the intuition behind the names.

0 z p1p2 p3

p1
p2

p3

Fig. 2. Regions for parameters p1 < p2 < p3.
The dotted line shows an evolution
of clock configuration, which visits
R(0,0), R(1,0), R(2,0), R(2,1), R(2,2), R(3,2), R(3,3).

Finally, C checks reachability
within individual regions. For l =
(u, v), let cl be the configuration in
which the region Rl is visited for the
first time. Then C checks that a run
from cl to cl+1 exists in Rl.

Now, with each R(i,j), we intro-
duce a one-counter machine B(i,j)

obtained from B assuming clock x ∈
[pi, pi+1] and clock y ∈ [pj , pj+1], in-
stantiating all comparisons accord-
ingly and by removing all edges reset-
ting a clock. Each B(i,j) corresponds
to the region R(i,j) in the same way
automata Ci corresponded to one-
dimensional regions in Section 3.

2 Our definition of rectangular regions differs slightly from the one usually given in
the literature. However, as all inequalities are nonstrict the regions are sufficient. For
ease of presentation, we also use the convention p0 = 0 and pk+1 = ∞.
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Notice that B(i,j)’s are 0/1 automata without resets or comparisons, i.e. one-
counter machines. In particular, the reachability relation for B(i,j)’s is semilinear.
For a pair of states s and t of a one-counter machine X define Π(X, s, t) to be
the set of counter values reachable at t by a run starting in state s and counter
equal to 0: Π(X, s, t) = {v | ∃π ∈ X. start(π) = (s, 0) ∧ end(π) = (t, v)}.
Lemma 11. Let X be a one-counter machine with 0/1 updates. Then for any
states s, t ∈ X the set Π(X, s, t) is effectively semilinear: Π(X, s, t) = N ∪⋃j=r

j=1{aj + bjN} where N ⊆ N is finite and aj , bj ∈ N.

Now, to check that a run from cl to cl+1 exists in Rl, machine C distin-
guishes whether Rl and Rl+1 are reached from bottom or from left and uses the
semilinearity of the reachability relation of the corresponding B(i,j).

The translation is mundane and is given in the full version of the paper. For
example, suppose Rl = R(px,py) for parameters px and py. Then cl = (sl, (px, px−
z)) or cl = (sl, (py+z, py)) depending on the direction. If Rl was reached from left
and Rl+1 from bottom then C checks that (sl+1, (py+1 + z, py+1)) is reachable
from (sl, (px, px − z)). That is, that z + py+1 − px ∈ Π(Bl, sl, sl+1). All such
constraints can be checked using ‘≡ 0 mod c’ edges (see Fig. 3).

Finally note that once the value of a clock becomes larger than pk its exact
value is irrelevant to any future comparison. Hence, C tracks x and y only up
to pk and remembers which clocks exceed it. Hence, we can assume that the
counter of C is always inside [−pk, pk].

+px −py −a ≡ 0 mod b +a +py −px

Fig. 3. Gadget testing that for given a, b ∈ N there is k ∈ N such that z + px − py =
a+ kb,i.e. z + px − py − a ≡ 0 mod b. Letter z denotes the current counter value.

Next, we modify C to ensure that the counter is always nonnegative. Let C′

be obtained from C by adding a new initial state and a +pk edge from the new
to the original initial state. Further, any comparison edge (s,G, t) (e.g., where G
is ≤pi) is replaced by a gadget of three edges (s,−pk, q), (q,G, q′) and (q′,+pk, t)
which subtract pk from the counter, perform the original check and then add pk
to the counter thereby offsetting the counter by pk.

Remark 12. We can assume that the counter of C is always inside [0, 2pk].

Note that the construction depends on the order of parameters. However, we
can build an automaton for each possible order, check the order of parameters
and then transition into the automaton for the appropriate order.

Theorem 13. Given a 2-PTA there is a PBOCA with equivalent halting prob-
lem.

The reduction was inspired by [6] (see Related Work). Unlike [6], we exploit
semilinearity in individual regions and perform one phase in a single stage of C.
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4.2 The One-Parameter Case

Suppose that the 2-PTA A uses only a single parameter p and consider the
corresponding PBOCA C. We show that all ‘≡ 0 mod c’ and ‘+[0, p]’ edges can
be eliminated from C. Using Remark 12, we show in Lemma 15 how to decide
the halting problem in the resulting class of PBOCAs.

Inspecting the detailed proof of the reduction from A to C (as found in the
full version), observe that ‘+[0, p]’ edges are introduced only when two successive
regions are both visited from left or both visited from bottom. For a single
parameter, only regions [0, p]× [0, p], [0, p]× [p,∞], [p,∞]× [0, p], [p,∞]× [p,∞]
exist. Simple case analysis shows that this can occur only when the counter starts
at 0—this can be treated separately thereby eliminating ‘+[0, p]’ edges from C.

Next, we also eliminate ‘≡ 0 mod c’ edges from C. Intuitively, C shall store in
its state space the counter modulo ci for each c1, . . . , cr appearing as ‘≡ 0 mod ci’
in C. The construction depends on the value of p mod ci for each i.

Given D = (d1, . . . , dr), let CD be the one-counter machine obtained from C
which tracks the counter modulo each ci assuming p ≡ di mod ci. Formally, the
states of CD are S×Zc1 × . . .×Zcr where S are the states of C and Zci denotes
the ring of integers modulo ci. The machine CD contains all comparison edges
of C. Further, let (v1, . . . , vr) ∈ Zc1 × . . .× Zcr . Let E be the edges of C, then
CD also contains the following edges:
– ((q, v1, . . . , vr),±c, (q′, v1 ± c, . . . , vr ± c) if (q,±c, q′) ∈ E,
– ((q, v1, . . . , vr),±p, (q′, v1 ± d1, . . . , vr ± dr) if (q,±p, q′) ∈ E,
– ((q, v1, . . . , vr),+0, (q′, v1, . . . , vr)) if vi = 0 and (q,≡ 0 mod ci, q

′) ∈ E.
Notice that there are no ‘≡ 0 mod c’ edges in CD. By construction, runs in Cγ

D

are equivalent to runs Cγ provided di ≡ γ(p) mod ci. That is:

Lemma 14. Let γ be an assignment such that γ(p) = di mod ci for each i. Let
(s, x), (t, y) be configurations of C. Then (s, x) →∗ (t, y) in Cγ if and only if
((s, x mod c1, . . . , x mod cr), x) →∗ ((t, y mod c1, . . . , y mod cr), y) in Cγ

D.

For given D, finding an accepting run π such that counter(π) ≤ 2·γ(p) suffices
(Remark 12) to decide the halting problem for CD. For any such run π and index
i we can write counter(π(i)) = aγ(p) + b where a ≤ 2 and b < γ(p).

Since a is bounded, we can build a one-counter machine G keeping a in the
state space and b in the counter. We do not enforce b < γ(p) (or any other ≤x
constraint) in G. Instead, we use Lemma 7 on G and split π into subruns close to
and far from a multiple of γ(p). We write π = τ0 → π1 → τ1 . . . πl → τl such that
for every τi the value counter(τi) mod γ(p) ∈ [0, . . . ,M ] ∪ [γ(p)−M,γ(p)). For
every πi we have counter(πi) mod γ(p) ∈ (M,γ(p)−M). Then we use techniques
on factoring of runs analogous to those used for one 1-PTAs (Section 3.1). In
general, we have: (See the full version)

Lemma 15. Given C with one parameter p, no ‘≡ 0 mod c’ and no ‘+[0, p]’
edges, k ∈ N and states s, t ∈ C the set G(C, s, t, k) = {(x, y, q) | ∃π : (s, x) →
(t, y) ∈ Cγ s.t. counter(π) ≤ k · q where q = γ(p)} is ∃PAD definable.

Theorem 16. The halting problem is decidable for 2-PTAs with one parameter.
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This settles the case of 2-PTAs with a single parameter. However, even the
case of only two parameters is open. On the other hand, already for a single
parameter, we have the following lower bound. (See the full version)

Theorem 17. The decidability of the halting problem for 2-PTAs with a single
parameter is PSPACENEXP-hard.

Acknowledgments. This research was financially supported by EPSRC.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-
ceedings of the 25th Annual Symposium on Theory of Computing. ACM Press
(1993)

2. Doyen, L.: Robust parametric reachability for timed automata. Information Pro-
cessing Letters 102(5), 208–213 (2007)
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Abstract. A word w over an alphabet Σ is a Lyndon word if there ex-
ists an order defined on Σ for which w is lexicographically smaller than
all of its conjugates (other than itself). We introduce and study univer-
sal Lyndon words, which are words over an n-letter alphabet that have
length n! and such that all the conjugates are Lyndon words. We show
that universal Lyndon words exist for every n and exhibit combinatorial
and structural properties of these words. We then define particular prefix
codes, which we call Hamiltonian lex-codes, and show that every Hamil-
tonian lex-code is in bijection with the set of the shortest unrepeated
prefixes of the conjugates of a universal Lyndon word. This allows us to
give an algorithm for constructing all the universal Lyndon words.

Keywords: Lyndon word, Universal cycle, Universal Lyndon word,
Lex-code.

1 Introduction

A word is called Lyndon if it is lexicographically smaller than all of its conju-
gate words (other than itself). Lyndon words are an important and well studied
object in Combinatorics. Recall, for example, the fact that every Lyndon word
is unbordered, or the existence of a unique factorization of any word into a non-
decreasing sequence of Lyndon words [5]. The definition of Lyndon word implic-
itly assumes a lexicographic order. Therefore, for different orders, we typically
obtain several distinct Lyndon conjugates of the same word. The motivation of
this paper is to push the idea to its limits, and ask whether there is a universal
Lyndon word, that is, a word of length n! over n letters such that for each of its
conjugates there exists an order with respect to which this conjugate is Lyndon.

Such a word resembles similar objects known in the literature as universal
cycles. A universal cycle [2] is a circular word containing every object of a par-
ticular type exactly once as a factor. Probably the most prominent example
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of universal cycles are de Bruijn cycles, which are circular words of length 2n

containing every binary word of length n exactly once.
The set represented by a universal Lyndon word is the set of all total orders on

n letters or, equivalently, all permutations of n letters. The most convenient way
is to represent the order a1 < a2 < · · · < an by its “shorthand encoding”, which
is the word a1a2 · · ·an−1. Jackson [4] showed that the corresponding universal
cycles exist for every n and can be obtained from an Eulerian graph in a manner
similar to the generation of de Bruijn cycles. Ruskey and Williams [6] gave
efficient algorithms for constructing shorthand universal cycles for permutations.
Our paper can be seen as a generalization of this concept. Indeed, it is easy
to note that every shorthand universal cycle for permutations is a universal
Lyndon word (see [3] for more details), but the opposite is not true—that is,
there exist universal Lyndon words such that the Lyndon conjugate for some
order a1 < a2 < · · · < an does not start with a1a2 · · · an−1.

We study the structural properties of universal Lyndon words and give com-
binatorial characterizations. We then develop a method for generating all the
universal Lyndon words. This method is based on the notion of Hamiltonian
lex-code, which we introduce in this paper.

2 Notation

Given a finite non-empty ordered set Σ (called the alphabet), we let Σ∗ denote
the set of words over the alphabet Σ. Given a finite word w = a1a2 · · ·an, with
n ≥ 1 and ai ∈ Σ, the length n of w is denoted by |w|. The empty word will
be denoted by ε and we set |ε| = 0. We let Σn denote the set of words of
length n and by Σ+ the set of non-empty words. For u, v ∈ Σ+ we let |u|v
denote the number of (possibly overlapping) occurrences of v in u. For instance,
|011100|00 = 1 and |011100|11 = 2.

Given a word w = a1a2 · · · an, ai ∈ Σ, we say a word v ∈ Σ+ is a factor of
w if v = aiai+1 · · · aj for some integers i, j with 1 ≤ i ≤ j ≤ n. We let Fact(w)
denote the set of all factors of w and Alph(w) the set of all factors of w of length
1. If i = 1 (resp., j = n), we say that the factor v is a prefix (resp., a suffix ) of
w. We let Pref(w) (resp., Suff(w)) denote the set of prefixes (resp., suffixes) of
the word w. The empty word ε is a factor, a prefix and a suffix of any word. A
factor (resp., a prefix, resp., a suffix) of a word w is proper if it is different from
ε and from w itself.

A border of w is a proper prefix of w that is also a suffix of w. A word is
said to be unbordered if it does not have borders. A word u is a cyclic factor of
w if u ∈ Fact(ww) and |u| ≤ |w|. We let |w|cu denote the number of (possibly
overlapping) occurrences of u as a cyclic factor of w. For instance, |011100|c00 = 2.
We say that a word u is conjugate to a word v if there exist words w1, w2 such
that u = w1w2 and v = w2w1. The conjugate is proper if both w1 and w2 are
non-empty. The conjugacy being an equivalence relation, we can define a cyclic
word as a conjugacy class of words. Note that u is a cyclic factor of a word w if
and only if u is a factor of a conjugate of w.
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Every total order on the alphabet Σ induces a different lexicographic (or
dictionary) order on Σ∗. Recall that the lexicographic order ! on Σ∗ induced by
the order < on the alphabet Σ is defined as follows: u ! v if u is a prefix of v or
za is a prefix of u and zb is a prefix of v, with a < b. We say that a word w over
Σ is a Lyndon word if there exists a total order on Σ such that, with respect
to this order w is lexicographically smaller than all of its proper conjugates (or,
equivalently, proper suffixes). For example, the word w = abcabb is a Lyndon
word, because for the order a < c < b it is the smallest word in its conjugacy
class. Note that a Lyndon word must be primitive (i.e., it cannot be written
as a concatenation of two or more copies of a shorter word), and therefore its
conjugates are all distinct.

A set of words X ⊂ Σ+ is a code if for every x1, x2, . . . , xh, x
′
1, x

′
2, . . . , x

′
k ∈ X ,

if x1x2 · · ·xh = x′
1x

′
2 · · ·x′

k, then h = k and xi = x′
i for every 1 ≤ i ≤ h. For

example, X = {ab, abb} is a code. Every set X ⊂ Σ+ with the property that no
word in X is a prefix of another word in X is a code, and is called a prefix code.

A directed graph (or digraph) is a pair G = (V,E), where V is a set, whose
elements are called vertices, and E is a binary relation on V (i.e., a set of or-
dered pairs of elements of V ) whose elements are called edges. The indegree
(resp., outdegree) of a vertex v in a digraph G is the number of edges incoming
to v (resp., outgoing from v). A walk in a digraph G is a non-empty alternating
sequence v0e0v1e1 · · · ek−1vk of vertices and edges of G such that ei = (vi, vi+1)
for every i < k. If v0 = vk the walk is closed. A closed walk in a digraph G
is an Eulerian cycle if it traverses every edge of G exactly once. A digraph
is Eulerian if it admits an Eulerian cycle. A fundamental property of graphs is
that a connected digraph is Eulerian if and only if the indegree of each vertex is
equal to its outdegree. A closed walk in a digraph G is a Hamiltonian cycle if it
contains every vertex of G exactly once. A digraph is Hamiltonian if it admits
a Hamiltonian cycle.

In the rest of the paper, we let Σn denote the alphabet {1, 2, . . . , n}, n > 0.

3 Universal Lyndon Words

Definition 1. A universal Lyndon word (ULW) of degree n is a word over Σn

that has length n! and such that all its conjugates are Lyndon words.

Remark 1. Since there exist n! possible orders on Σn, a universal Lyndon word
w of degree n has the property that for every order on Σn, there is exactly one
conjugate of w that is Lyndon with respect to this order; on the other hand, from
the definition it follows that a conjugate of a universal Lyndon word cannot be
Lyndon for more than one order.

We consider universal Lyndon words up to rotation, i.e., as cyclic words.

Example 1. The only universal Lyndon word of degree 1 is 1, and the only
universal Lyndon word of degree 2 is 12. There are three universal Lyndon
words of degree 3, namely 212313, 323121 and 131232. Note that these words
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are pairwise isomorphic (i.e., one can be obtained from another by renaming
letters). There are 492 universal Lyndon words of degree 4. There are 41 if we
consider them up to isomorphism, and are presented in Tables 1 and 2.

Remark 2. It is worth noticing that a universal Lyndon word cannot contain a
square (i.e., a concatenation of two copies of the same word) as a cyclic factor.
That is, a universal Lyndon word is cyclically square-free. Indeed, if uu is a
factor of w, then there is a conjugate of w that has u as a border, and it is easily
shown that every Lyndon word must be unbordered, and therefore no conjugate
of a universal Lyndon word can have a border.

The following proposition gives a sufficient condition for a word being a ULW.

Proposition 1. Let n ≥ 2, and w be a word over Σn such that every permuta-
tion of n− 1 elements of Σn appears as a cyclic factor in w exactly once. Then
w is a universal Lyndon word.

Proof. Suppose that every permutation of n − 1 elements of Σn appears as
a cyclic factor in w exactly once. Since there are n! such words, this implies
that w has length n!. Now, for any order a1 < a2 < . . . < an−1 < an over
Σn, there is exactly one conjugate of w beginning with a1a2 · · · an−1, and this
conjugate is Lyndon with respect to this order. So w has exactly n! distinct
Lyndon conjugates and therefore is a universal Lyndon word. "#

Remark 3. One might wonder whether it is sufficient to suppose that each of
w’s factors of length n− 1 appears exactly once in the word w to guarantee
that w is a ULW. This is not the case. For example, let n = 4; the word w =
123412431324134214231432 has n! distinct factors of length n − 1 but is not
a universal Lyndon word, since its conjugate 314321234124313241342142 is not
Lyndon for any order (in fact this is a consequence of the fact that the conjugate
313241342142314321234124 is Lyndon both for the orders 3 < 1 < 2 < 4 and
3 < 1 < 4 < 2).

We now use the result of Proposition 1 to show that there exist universal
Lyndon words for each degree.

Given an integer n > 2, the Jackson graph of degree n, denoted J(n), is a
directed graph in which the nodes are the words over Σn that are permutations
of n − 2 letters, and there is an edge from node u to node v if and only if the
suffix of length n− 3 of u is equal to the prefix of length n− 3 of v and the first
letter of u is different from the last letter of v. The label of such an edge is set
to the first letter of u. In Fig. 1, the Jackson graph J(4) is depicted.

Proposition 2. There exist universal Lyndon words of degree n for every n > 0.

Proof. We can suppose n > 2. Take the Jackson graph J(n). By construction,
this graph is connected and the indegree and outdegree of each vertex are both
equal to 2. Therefore, it contains an Eulerian cycle. Let w denote the word
obtained by concatenating the labels of such an Eulerian cycle. Note that every
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Fig. 1. The Jackson graph J(4) of degree 4. Every Eulerian cycle of J(4) is a universal
Lyndon word.

word that is the permutation of n − 2 letters appears as a cyclic factor in w
exactly twice and the two occurrences are followed by the two letters that do
not appear in the factor. By Proposition 1, w is then a universal Lyndon word
of degree n. "#

A universal Lyndon word that is an Eulerian cycle of a Jackson graph is called
a universal cycle [4], or shorthand universal cycle for permutations [6], but in
this paper we will call it a universal Lyndon word of Jackson type, or simply a
Jackson universal Lyndon word.

The Jackson universal Lyndon words of degree 4 are presented in Table 1 (the
list contains only pairwise non-isomorphic words, in their representation starting
with 1231).

However, there are universal Lyndon words that are not of Jackson type.
In fact, the converse of Proposition 1 is not true. For instance, w =
123431242314132421343214 is a universal Lyndon word of degree 4 but it does
not contain any of 142, 143, 241, 243, 341, 342 as a factor.

4 Order-Defining Words

In this section, we give combinatorial results on the structure of universal Lyndon
words.
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Table 1. The 20 Jackson universal Lyndon words of degree 4, up to isomorphisms

123124132431432142342134 123124132134214324314234

123124314214321324134234 123124134213243214314234

123124132431421432134234 123124314234213214324134

123124314213214324134234 123124321431423421324134

123124132431423421432134 123124134213243143214234

123124314214324132134234 123124132431432134214234

123124132432143142342134 123124321342143142341324

123124132431432142134234 123124132143243142134234

123124314234132134214324 123124132432143142134234

123124314234134214321324 123124134214321324314234

Let w = a1a2 · · · an! be a universal Lyndon word of degree n. Let wi denote
the conjugate of w starting at position i, that is,

wi = aiai+1 · · ·an!a1a2 · · · ai−1 .

Definition 2. We say that a partial order ! on Σn is a partial alphabet order
with respect to I ⊆ Σn if ! is a total order on I, i ! j for each i ∈ I and
j ∈ Σn \ I, and all j, k ∈ Σn \ I are incomparable. The size of ! is set to |I|.

Note that a partial alphabet order of size n− 1 is a total order on Σn.
Every word u ∈ Σ+

n defines a partial alphabet order !u with respect to
Alph(u), defined as follows: i !u j if and only if the first occurrence of i in u
precedes the first occurrence of j in u.

The following proposition shows that in a universal Lyndon word, every con-
jugate is Lyndon with respect to the order it defines. This is an important struc-
tural property of universal Lyndon words, which is not true in general. Take, for
example, the word w = 123122. It is Lyndon with respect to the order 1 < 3 < 2,
but it is not Lyndon with respect to the order it defines, 1 < 2 < 3.

We let !i denote the order defined by wi and by �i the order with respect to
which wi is Lyndon.

Theorem 1. Let w be a word of length n! over Σn. Then w is a ULW if and
only if every conjugate of w is Lyndon with respect to the order it defines. That
is, !i =�i for every i.

Proof. If every conjugate of w is Lyndon, then w is ULW by definition. So we
only have to prove the “only if” part of the statement.

Suppose that !j �=�j for some j, and let k be such that �k= !j. Let z be the
longest common prefix of wj and wk. Then za is a prefix of wj and zb a prefix
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of wk, where a �= b are letters. We have a �j b and b �k a. Therefore, also b !j a,
which implies that there exists u ∈ Σ∗

n such that bua is a suffix of za and bub
is a suffix of zb. Let w� be the conjugate starting with bua. Obviously, b �� a,
since b is the first letter of w�. But then we have that bub �� bua, and therefore
w� has a conjugate smaller than itself for the order ��, a contradiction. "#

Proposition 3. Let w be a universal Lyndon word, and u a cyclic factor of w.
Then for every conjugate wi of w, we have that u is a prefix of wi if and only if
!u ⊆�i.

Proof. By Theorem 1, we have !u ⊆�i for each i such that u is a prefix of wi.
Choose one such wi (which exists since u is a cyclic factor of w). Let !u ⊆�j

and suppose that za is a prefix of u and zb a prefix of wj for two distinct letters
a and b and some z ∈ Σ∗

n. Then a �i b, and, since a ∈ Alph(u), we deduce
that a !u b. This implies that a �j b, since !u ⊆�j. Therefore, wi �j wj , a
contradiction. "#

Proposition 3 states that the cyclic factors of a ULW are in one-to-one corre-
spondence with the orders they define. As an example, if 1 < 2 and, say, 212 is
a cyclic factor of a universal Lyndon word w, then every other occurrence of 21
in w must be followed by 2.

Corollary 1. Let w be a universal Lyndon word of degree n, and u a cyclic
factor of w of length k > 0. Then u is the lexicographically smallest cyclic factor
of w of length k with respect to any total order � on Σn such that !u ⊆�.

We now give a combinatorial characterization of universal Lyndon words.

Theorem 2. Let w be a word over Σn. Then w is a universal Lyndon word if
and only if for every cyclic factor u of w, one has

|w|cu = (n− |Alph(u)|)! (1)

Proof. Suppose that w is a ULW. There are (n− |Alph(u)|)! many total orders
� on Σn such that !u ⊆�. Hence, (1) follows from Corollary 1.

Suppose now that (1) holds for every cyclic factor u of w and let us prove that
w is a ULW. For every letter a ∈ Σn, one has |w|a = |w|ca = (n − 1)! , so that
|w| =

∑
a∈Σn

|w|a = n!. Moreover, w is primitive, since |w|cw = 1. We show that
w is a Lyndon word with respect to !w. Let v be a proper conjugate of w and
let z be the longest common prefix of w and v. Let a and b be the letters that
follow the prefix z in w and v respectively. Since both za and zb occur in w, we
have |w|cz > |w|czb which implies b /∈ Alph(z) by (1). Because za is a prefix of w
and b /∈ Alph(z), one has a !w b, and therefore w !w v. This proves that w is a
Lyndon word. By a similar argument, all conjugates of w are Lyndon words, so
that w is a ULW. "#

Corollary 2. The reversal of a ULW is a ULW.
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Note that the fact that the set of universal Lyndon words is closed under
reversal is not an immediate consequence of the definition. This property is not
true for Lyndon words, e.g. the word 112212 is Lyndon but its reversal is not.

Definition 3. We say that u is a minimal order-defining word if no proper
factor of u defines !u.

Proposition 4. Given a universal Lyndon word w of degree n, for each partial
alphabet order ! on Σn there is a unique minimal order-defining word with respect
to ! that is a cyclic factor of w.

Proof. Let ! be a partial alphabet order with respect to I. Let wi be such that
! ⊆�i, and let u be the shortest prefix of wi such that Alph(u) = I. Note that
!u = ! by Theorem 1. Clearly, u is a minimal order-defining word, and the
uniqueness is a consequence of Proposition 3. "#

Let w be a universal Lyndon word. We let MT (w) denote the minimal total
order-defining words of w, i.e., the set of cyclic factors of w that are minimal
order-defining words with respect to a total order on Σn. The next proposition
is a direct consequence of the definitions and of the previous results.

Proposition 5. Let w be a universal Lyndon word of degree n, and u a cyclic
factor of w. The following conditions are equivalent:

1. u ∈ MT (w);
2. |Alph(u)| = n− 1, and |Alph(u′)| < n− 1 for each proper prefix u′ of u;
3. there exists a unique conjugate wi of w such that u is the shortest unrepeated

prefix of wi.

The shortest unrepeated prefix of a word is also called its initial box [1].

In what follows, we exhibit a structural property of ULW.

Definition 4. We say that a cyclic factor v of a word w is a stretch if w
contains a cyclic factor avb with a, b ∈ Σn \Alph(v). Let u be a cyclic factor of
w. We say that a cyclic factor v of w is a stretch extension of u in w if u is a
factor of v, Alph(u) = Alph(v), and v is a stretch.

Of course, a stretch is always a stretch extension of itself.

Example 2. Let w = 123412431324134214231432. Then 31 has two stretch ex-
tensions in w, namely 313 and itself.

Lemma 1. Each cyclic factor u of a ULW w has a unique stretch extension in
w. Moreover, it has a unique occurrence in its stretch extension.

Proof. Let v be a stretch extension of u in w. Then u and v have the same
number of cyclic occurrences in w by Theorem 2. "#

Theorem 3. If asa is a cyclic factor of a ULW w, with a ∈ Σn \Alph(s), then
bsb is a cyclic factor of w for each b ∈ Σn \Alph(s).
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Proof. Proceed by induction on |s|. The claim trivially holds for |s| = 0, since
aa is not a cyclic factor of w. Let now |s| > 0. We first show that if bs is a cyclic
factor of w, then also bsb is a cyclic factor of w. Let therefore bs be a cyclic
factor of w, where b �= a is a letter, and let j be such that !bsa ⊆�j. By Lemma
1, the word bsa is not a prefix of wj . Let therefore bs′e be a prefix of wj and
bs′f a prefix of bsa where e and f are distinct letters. Suppose first that e = b.
If s′ = s, then bsb is a cyclic factor of w as required. If, on the other hand, the
word s′ is a proper prefix of s, then the induction assumption for the word bs′b
implies that as′a is a cyclic factor of w. This is a contradiction with Proposition
3 since !as′a ⊆ !asa. Let now e �= b. Note that then !s′e ⊆ !sa since !bsa ⊆�j.
But we have also !s′f ⊆ !sa, a contradiction with Proposition 3.

The proof is concluded by a counting argument. Theorem 2 implies that, for
any b /∈ Alph(s), the word s has m times more cyclic occurrences in w than bsb,
where m is the cardinality of Σn \Alph(s). "#

The previous result shows the combinatorial structure of universal Lyndon
words. Note that the factors of the form asa, a ∈ Σn \Alph(s), with |Alph(s)| <
n− 2, only appear in non-Jackson universal Lyndon words. In fact, they can be
viewed as premature repetitions of the letter a.

5 Universal Lyndon Words and Lex-Codes

Proposition 1 implies that an Eulerian cycle in a Jackson graph is a universal
Lyndon word. However, there exist universal Lyndon words that do not arise
from a Jackson graph, as we showed at the end of Section 3.

The non-Jackson universal Lyndon words of degree 4 are presented in Table
2 (the list contains only pairwise non-isomorphic words, in their representation
starting with 2123).

We now exhibit a method for constructing all the universal Lyndon words.
This method is based on particular prefix codes, whose definition is given below.

Definition 5. A set X ⊆ Σ∗
n is a lex-code of degree n if:

1. for any x ∈ X, there exists a unique ordering of Σn such that x is the
lexicographical minimum of X;

2. if u is a proper prefix of some word of X, then u is a prefix of at least two
distinct words of X.

A lex-code X of degree n is Hamiltonian if the relation

SX = {(x, y) ∈ X ×X | ∃a ∈ Σ, x is a prefix of ay}

has a Hamiltonian digraph.

Notice that Condition 1 in the previous definition ensures that a lex-code is
a prefix code.

The following theorem shows the relationships between Hamiltonian lex-codes
and universal Lyndon words.
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Table 2. The 21 non-Jackson universal Lyndon words of degree 4, up to isomorphisms

212313243134212414234143 212313241432124313414234

212313241423414321243134 212313241432124313423414

212313421243132414234143 212313414234212431324143

212313241421243134234143 212341423132414321243134

212313241423414313421243 212313212414324313414234

212313243134142342124143 212313212414324313423414

212313212432414234143134 212313414234212414313243

212313212414234143243134 212313212432414313423414

212313212431342341432414 212313243212414313423414

212313241431342341421243 212313212432414313414234

212313212431341432414234

Theorem 4. Let w be a ULW. Then the set MT (w) is a Hamiltonian lex-code.
Conversely, if X ⊆ Σ∗

n is a Hamiltonian lex-code, then there exists a ULW w
such that X = MT (w).

Proof. We assume that w is a ULW and show that MT (w) verifies the defi-
nition of lex-code. Since there is a bijection between the elements of MT (w),
the conjugates of w (Proposition 5) and the total orders on Σn (Theorem 1),
Condition 1 is a direct consequence of Corollary 1. Always from Proposition 5,
any proper prefix x′ of a word x in MT (w) contains less than n − 1 distinct
letters. From Theorem 2, x′ has at least two occurrences as a cyclic factor of w.
Therefore, there exist at least two distinct conjugates wi and wj of w beginning
with x′. Then x′ is a proper prefix of the shortest unrepeated prefixes of wi and
wj respectively. By Proposition 5, we conclude that Condition 2 holds.

Now, we show that the lex-code X is Hamiltonian. For every 0 ≤ i ≤ n!−1, let
ai be the first letter of the conjugate wi of w. Notice that for every 0 ≤ i ≤ n!−2
one has aiwi+1 = wiai. By Proposition 5, every word in MT (w) is the shortest
unrepeated prefix xi of a conjugate wi. As xi+1 is an unrepeated prefix of wi+1,
the word v = aixi+1 is an unrepeated prefix of aiwi+1 = wiai. Thus, either
v = wiai or v is an unrepeated prefix of wi. In both cases, xi is a prefix of v and
therefore (xi, xi+1) ∈ SX . Similarly, one has (xn!−1, x0) ∈ SX . We conclude that
(x0, x1, . . . , xn!−1, x0) is a Hamiltonian cycle in the digraph of SX .

Conversely, we assume that X is a Hamiltonian lex-code and show that X =
MT (w) for a suitable ULW w. Let (x0, x1, . . . , xk−1, x0) be a Hamiltonian cycle
in the digraph of SX . By Condition 1, one has k = n! and X is a prefix code.
Since (xi, xi+1) ∈ SX , 0 ≤ i < k (where xk = x0) one has

xiui = aixi+1 (2)
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for suitable ai ∈ Σn, ui ∈ Σ∗
n, 0 ≤ i < k.

Set wi = ai · · · ak−1a0 · · · ai−1, 0 ≤ i < k. By iterated application of (2), one
obtains that xi is a prefix of a power of wi. Now let 0 ≤ i, j < k and i �= j. For a
sufficiently large m, xi, xj are prefixes of wm

i , wm
j , respectively. Thus, taking into

account that X is a prefix code, for every total order ! on Σn, one has wi ! wj

if and only if xi ! xj . From this remark, in view of Condition 1, one derives that
w = w0 is a ULW.

To complete the proof, it is sufficient to show that xi is the shortest unrepeated
prefix of wi, 0 ≤ i < k. In fact, this implies that X = MT (w). Suppose that the
shortest unrepeated prefix hi of wi is a proper prefix of xi. Then by Condition
2, hi is also prefix of xj and consequently of wj , for some j �= i. But this
contradicts Proposition 5. Thus xi is a prefix of hi. Now, suppose xi �= hi.
Since by Proposition 5, hi is a shortest word containing n − 1 distinct letters,
|Alph(xi)| < n−1 and, by Theorem 2, xi has at least another occurrence starting
at a position j �= i. So we have that the words xi and xj are one a prefix of the
other, against the fact that X is a prefix code. "#

From Theorem 4, in order to produce a ULW, one can construct a lex-code
and check whether it is Hamiltonian. Let Sn be the set of the total orders on Σn.
All lex-codes of degree n can be obtained by a construction based on iterated
refinements of a partition of Sn as follows:

1. set X = {ε} and Cε = Sn;
2. repeat the following steps until Cx is a singleton for all x ∈ X :

(a) select x ∈ X such that Cx contains at least two elements;
(b) choose Γ ⊆ Σn;
(c) for any a ∈ Γ , let Cxa be the set of the orders of Cx such that a = minΓ ;
(d) replace X by (X \ {x}) ∪ {xa | a ∈ Γ, Cxa �= ∅}.

An example of execution of the previous algorithm is presented in Ex. 3.
One can verify that after each iteration of loop 2, X is a prefix code, (Cx)x∈X

is a partition of Sn, and any x ∈ X is the lexicographic minimum of X for all
orders of Cx. It follows that the procedure halts when X is a lex-code. Moreover,
one can prove that any lex-code X may be obtained by the procedure above,
choosing conveniently Γ at step (b) of each iteration.

Clearly, not all lex-codes are Hamiltonian. Thus, the main problem is to un-
derstand which limitations the Hamiltonianicity of the lex-code imposes to the
construction above. For example, the words in a lex-code can be arbitrarily long.
But by Theorem 4, if X is a lex-code of degree n and u ∈ X is longer than n!,
then X cannot be Hamiltonian.

Example 3. Let n = 3. At the beginning of the algorithm, X = {ε} and Cε =
S3 = {123, 132, 213, 231, 312, 321}. The first choice of a word x in X is forced,
we must take x = ε. Let us choose Γ = {1, 2}. We then get C1 = {123, 132, 312},
C2 = {213, 231, 321} and X becomes {1, 2}. Let us now choose x = 1 and
Γ = {1, 3}. We get C11 = {123, 132}, C13 = {312} and therefore X = {2, 11, 13}.
Next, take x = 2 and Γ = {2, 3}; now C22 = {213, 231}, C23 = {321} and
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X = {11, 13, 22, 23}. Then pick x = 11 and Γ = {2, 3}, so that C112 = {123},
C113 = {132} and X = {13, 22, 23, 112, 113}. Finally, the last choice of a word in
X is forced, x = 22 (since C22 is the only set of cardinality greater than 1 left).
We choose Γ = {1, 3} and get C221 = {213} and C223 = {231}. The lex-code
obtained is thus X = {13, 23, 112, 113, 221, 223}. The reader can verify that this
lex-code is not Hamiltonian.

The following choices of x and Γ lead to the Hamiltonian lex-code X =
{12, 13, 21, 23, 31, 32}: x = ε, Γ = {1, 2, 3}; x = 1, Γ = {2, 3}; x = 2, Γ = {1, 3};
x = 3, Γ = {1, 2}.

6 Conclusion and Open Problems

We introduced universal Lyndon words, which are words over an n-letter alpha-
bet having n! Lyndon conjugates. We showed that this class of words properly
contains the class of shorthand universal cycles for permutations. We gave com-
binatorial characterizations and constructions for universal Lyndon words. We
leave open the problem of finding an explicit formula for the number of ULW of
a given degree.

We exhibited an algorithm for constructing all the universal Lyndon words
of a given degree. The algorithm is based on the search for a Hamiltonian cycle
in a digraph defined by a particular code, called Hamiltonian lex-code, that we
introduced in this paper. It would be natural to find efficient algorithms for
generating (or even only counting) universal Lyndon words.

Finally, universal Lyndon words have the property that every conjugate de-
fines a different order, with respect to which it is Lyndon. We can define a
universal order word as a word of length n! over Σn such that every conjugate
defines a different order. Universal Lyndon words are therefore universal order
words, but the converse is not true, e.g. the word 123421323121424314324134 is
a universal order word but is not ULW. Thus, it would be interesting to investi-
gate which properties of universal Lyndon words still hold for this more general
class.
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Abstract. In this paper we explore a new hierarchy of classes of lan-
guages and infinite words and its connection with complexity classes.
Namely, we say that a language belongs to the class Lk if it is a subset
of the catenation of k languages S1 · · ·Sk, where the number of words
of length n in each of Si is bounded by a constant. The class of infinite
words whose set of factors is in Lk is denoted by Wk. In this paper we
focus on the relations between the classes Wk and the subword complex-
ity of infinite words, which is as usual defined as the number of factors of
the word of length n. In particular, we prove that the class W2 coincides
with the class of infinite words of linear complexity. On the other hand,
although the class Wk is included in the class of words of complexity
O(nk−1), this inclusion is strict for k > 2.

1 Preliminaries

The complexities of infinite words and languages is a widely studied area in
formal languages theory. We follow the general approach where the complexity
is measured as the number of fragments of a given size. Applied to words, it
means that the complexity of a language L (or an infinite word u) is the function
pL(n) (resp., pu(n)) counting the number of elements of L (resp., factors of u) of
length n. This function was introduced by Morse and Hedlund in 1938 [9] under
the name block growth as a tool to study symbolic dynamical systems. The name
subword complexity was given by Ehrenfeucht, Lee, and Rozenberg [4]; as the
term “factor” replaces “subword”, the term “factor complexity” is more and more
popular [3].

An infinite word is ultimately periodic if and only if its complexity is ul-
timately constant, and it is a classical result that the smallest complexity of
aperiodic words is p(n) = n+1 [9]. The words of this complexity are called Stur-
mian and form a very interesting and well-explored family (see, e.g., Chapter 2
in [8]). Results on the complexity usually belong to one of the two families: they
give either conditions or formulas on the complexity of words from given families
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(see, e.g., [10]), or conditions on words with given restrictions on the complexity.
As an example of a complicated problem of that kind, we mention the S-adic
conjecture on words of linear complexity (see [7] and references therein). For a
recent survey and deep results on subword complexity, see [3].

In the paper we relate the subword complexity to local conditions of factor-
ization type. Namely, we are interested in the following question: What is the
relation between the complexity of the word and the condition that each its fac-
tor can be decomposed into a product of a finite number k of words belonging to
a language of a bounded complexity? In a related paper [5] instead of languages
of bounded complexity we considered the language of palindromes. Note that in
both cases we need the language of factors to be a subset of the concatenation of
these languages and not the concatenation itself. For another family of problems
where the equality to the concatenation is needed, see e.g. [1,6].

2 Classes and Basic Hierarchy

We consider finite and infinite words over a finite alphabet Σ, i.e., finite or infinite
sequences of elements from the set Σ. A factor or a subword of an infinite word
is any sequence of its consecutive letters. The factor ui · · ·uj of an infinite word
u = u1 · · ·un · · · , with uk ∈ Σ, is denoted by u[i..j]. As usual, the set of factors
of a finite or infinite word u is denoted by Fac(u). A factor s of a right infinite
word u is called right (resp., left) special if sa, sb ∈ Fac(u) (resp., as, bs ∈ Fac(u))
for distinct letters a, b ∈ Σ. The length of a finite word s is denoted by |s|, and
the number of occurrences of a letter a in s is denoted by |s|a. The empty word
is denoted ε and we define |ε| = 0. An infinite word u = vwwww · · · = vwω

for some non-empty word w is called ultimately (|w|-)periodic. In the paper we
mostly follow the terminology and notation from [8].

Denote by P(α) the set of infinite words of complexity O(nα).
Let us introduce the classes Lk of languages and Wk of infinite words as

follows: a language L (infinite word u) belongs to the class Lk (resp., Wk) if

L ⊆ S1 · · ·Sk

(resp., Fac(u) ⊆ S1 · · ·Sk) for some languages Si with pSi(n) = O(1). In other
words, u ∈ Wk if and only if Fac(u) ∈ Lk, and the condition pSi(n) = O(1)
means exactly that for some constant C we have pSi(n) ≤ C for all n. We also
have P(0) = W1.

By a simple cardinality argument, we have the following inclusion:

Lemma 2.1. For each integer k > 0, we have Wk+1 ⊆ P(k).

Proof. Suppose a word u is in Wk+1 and consider the factors of length n of u.
There is

(
n+k
k

)
= O(nk) ways to decompose a positive integer n to k + 1 non-

negative summands in a given order: n = n1 + n2 + . . . + nk+1. If the summand
ni is the length of the ith factor in a decomposition of a word of length n to k+1
factors, and there are at most C words of length ni in the set Si, it means that
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in total, there are not more than Ck+1 decompositions of words corresponding
to a given decomposition of n. Taking all the factors of u of length n together,
we see that they are not more than Ck+1

(
n+k
k

)
= O(nk), which means exactly

that u ∈ P(k). �
Example 2.2. Now we are going to show that the Thue-Morse word t =
01101001 · · · , defined as the fixed point starting with 0 of the morphism ϕ : 0 →
01, 1 → 10, belongs to W2. For each n the Thue-Morse word consists of words
tn = ϕn(0) and tn = ϕn(1), both of them of length 2n: t = tntntntntntntntn · · · .
Defining S1 to be the set of suffixes of all tn and tn, and S2 to be the set of their
prefixes, we see that S1 and S2 contain exactly two words of length k each. To
cut each factor w of t, we just choose any of its occurrences and a position m in
it divided by the maximal power n of 2: w = t[i..j] = t[i..m]t[m + 1..j]. By the
definition of m, t[i..m] is a suffix of tn or tn, and t[m + 1..j] is a prefix of one of
them, and thus, w ∈ S1S2. So, t ∈ W2. This construction can be generalized to
any fixed point of a primitive morphism but obviously not to fixed points whose
complexity is higher than linear (see [10] for examples).

Example 2.3. Sturmian words, which can be defined as infinite words with com-
plexity n + 1 for each n, also belong to W2. These words have exactly one right
and one left special factor of each length. One of the ways to construct the sets
S1 and S2 for a Sturmian word s is the following:

S1 = {va|a ∈ {0, 1}, v is a right special factor of s} ∪ {ε},
S2 = {av|a ∈ {0, 1}, v is a left special factor of s} ∪ {ε}.

Remark that in fact the set S2 is the set of reversals of factors from S1, and
#S1(n) = #S2(n) = 2 for each n > 0. The fact that every factor of s belongs
to S1S2 follows from the properties of Sturmian words: it can be proved that
every factor w of s has an occurrence [i..j] with i ≤ 0, j ≥ 0 in the biinfinite
characteristic Sturmian word u of s, where either u = cR01c or u = cR10c, with
c the right infinite characteristic word (i.e., the infinite left special word).

Now let us introduce the accumulative complexity function gL(n) (resp., gu(n))
of a language L (resp., a word u) as

gL(n) =
n∑

i=1

pL(i) (resp., gu(n) =
n∑

i=1

pu(i)).

As above, we introduce the classes L′
k of languages and W ′

k of infinite words as
follows: a language L (resp., infinite word u) belongs to the class L′

k (resp., W ′
k)

if
L ⊆ S1 · · ·Sk

(resp., Fac(u) ⊆ S1 · · ·Sk) for some languages Si with gSi(n) = O(n).
As above, u ∈ W ′

k if and only if Fac(u) ∈ L′
k. The condition gSi(n) = O(n)

means exactly that for all n we have gSi(n) ≤ Kn for some constant K.
Clearly, Lk ⊆ L′

k, since pSi(n) ≤ C for all n implies gSi(n) ≤ Cn. As for an
opposite inclusion, we can only can prove the following theorem and its corollary.
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Theorem 2.4. L′
1 ⊆ L2.

Proof. Consider a language L ∈ L′
1, by definition this means that gL(n) ≤ Kn

for some K. We shall construct inductively the sets S and T of complexity
pS(n), pT (n) ≤ 2K + 1 such that L ⊆ ST .

Let us order the elements of L according to their length: L = {v1, . . . , vn, . . .}
with |vn| ≤ |vn+1|. The sets S and T are constructed inductively: we choose any
S1 = {s1} and T1 = {t1} so that v1 = s1t1 and then do as follows. Suppose that
we constructed the sets Sn−1 and Tn−1 of cardinality less than or equal to n− 1
each so that {v1, . . . , vn−1} ⊆ Sn−1Tn−1 and the number of words of each length
l in each of Sn−1, Tn−1 is bounded by 2K + 1.

Consider the word vn and denote its length by m. It admits m+1 factorizations
vn = st. If for a given factorization we have s ∈ Sn−1 and t ∈ Tn−1, we do not
need to add anything to these sets and can take Sn = Sn−1, Tn = Tn−1. If for
example s /∈ Sn−1, we can construct Sn by adding s to Sn−1: Sn = Sn−1 ∪ {s}
if the words of length |s| in Sn−1 are at most 2K (and symmetrically for Tn−1).
But the number N of lengths l such that pSn−1(l) > 2K (resp., pTn−1(l) > 2K)
and thus no more of words of length l can be added to Sn−1 (resp., Tn−1) is
bounded by N ≤ (n− 1)/(2K), since the total number of words in Sn−1 (resp.,
Tn−1) is at most (n− 1).

So, to assure that at least one of m + 1 factorizations is admitted and we (if
necessary) can add new words sn and tn: Sn = Sn−1 ∪ {sn}, Tn = Tn−1 ∪ {tn}
such that vn = sntn, we should check that m + 1 > 2(n− 1)/(2K). But since m
is the length of the word number n in L, we have n ≤ gL(m) ≤ Km and thus
2(n− 1)/(2K) ≤ (2Km− 2)/(2K) < m + 1, which was to be proved. �
Corollary 2.5. For each k > 0, we have L′

k ⊆ L2k.

Proof. Take a language L ∈ L′
k: by the definition, L ⊆ S1 . . . Sk with Si ∈ L′

1

for all i. Due to the theorem above, all Si ∈ L2, that is, Si ⊆ S
(l)
i S

(r)
i where the

complexities of S(l)
i , S(r)

i are bounded. Clearly, we have L ⊆ S
(l)
1 S

(r)
1 . . . S

(l)
k S

(r)
k ,

which proves the corollary. �
So, for all k > 0 we have Lk ⊆ L′

k ⊆ L2k and thus Wk ⊆ W ′
k ⊆ W2k.

3 Linear Complexity and W2

In this section, we prove the main result of this paper, namely,

Theorem 3.1. An infinite word is of linear complexity if and only if its language
of factors is a subset of the catenation of two languages of bounded complexity:
W2 = P(1).

The ⊆ inclusion has been proven in Lemma 2.1. Since for periodic words the
statement is obvious, it remains to find the languages S, T of bounded complexity
for a given infinite word u of linear complexity pu(n) ≤ Cn such that the set of
factors of u is a subset of ST .

The construction of the sets S and T is based on so-called markers which we
define below.
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3.1 Markers and Classification of Occurrences

Let u be an infinite word. Given a length n, we say that a subset M of the set of
factors of u of length n is a set of markers, or, more precisely, of D-markers for
a constant D, if each factor of u of length Dn contains at least one word m ∈M
as a factor.

Recall that a factor v of u is called right special if va, vb ∈ Fac(u) for at least
two different symbols a, b.

Lemma 3.2. The set of right special factors of u of length n is a set of (C +1)-
markers, where pu(n) ≤ Cn.

Proof. Consider a factor v of u of length (C + 1)n and suppose that none of
its factors of length n is right special. It means that each factor of v of length n,
whenever it occurs in u, uniquely determines the next factor of length n, shifted
by one letter. But there are Cn + 1 occurrences of factors of length n in v. So,
at least two of them correspond to the same factor, and what happens after its
second occurrence repeats what happens after the first one. So, the word u is
ultimately periodic, a contradiction. �

The number of right special factors of u of length n is uniformly bounded by
a constant R which is a polynomial of C, where pu(n) ≤ Cn, due to a result of
Cassaigne [2,3]. Thus, we have the following

Corollary 3.3. For each length n, there exists a set of cardinality R of (C +1)-
markers of length n in u.

Remark that the set of right special factors is just one the possible ways to
build the set of markers. For the proof below it does not matter how the set of
markers was constructed, the only thing we use is that the set of markers of each
length is bounded.

Consider a factor w = w1 · · ·wn of u and denote by p(w) its minimal period,
that is, the minimal positive integer such that wi = wi+p(w) for all i > 0 and
i+p(w) ≤ n. The word w[1..p(w)], also called the minimal period of w, is denoted
by P (w); each time it will be clear from the context whether the period means
the word or the number.

An occurrence w = u[j + 1..j+n] of w in u is called internal if two conditions
hold. First, uj+p = uj+p−p(w) for all p such that 1 ≤ p ≤ p(w) and j+p−p(w) ≥
1; second, symmetrically, uj+p = uj+p+p(w) for all p such that n − p(w) + 1 ≤
p ≤ n. In other words, due to the definition of p(w), for an internal occurrence of
w in the infinite word u we have u[j + p(w) + 1..j + p(w) +n] = w and, provided
that j ≥ p(w), u[j − p(w) + 1..j − p(w) + n] = w.

An occurrence which is not internal is called extreme. More precisely, if uj+i �=
uj+i−p(w) for some i such that max(1, p(w)−j+1) ≤ i ≤ p(w), it is called initial,
and if uj+i �= uj+i+p(w) for some i such that n− p(w) + 1 ≤ i ≤ n, it is called
final. Clearly, an occurrence of a word in u can be initial and final at the same
time.

Since u is not ultimately periodic, each its factor w admits a final occurrence,
otherwise u would be ultimately p(w)-periodic.
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3.2 Construction and Proof

For each k ≥ 1, consider the set of D-markers of length 2k whose cardinality
is bounded by R. Due to Corollary 3.3, such a set exists and we shall call its
elements markers of order k.

Consider a factor v of length n ≥ 2D of u. Our goal is to construct two words
s ∈ S and t ∈ T such that u = st. By the definition of markers, v contains a
marker of order one; now consider the largest k such that it contains a marker m
of order k. Choose an occurrence of v in u: v = u[i+1..i+n]. If all occurrences of
m in u[i+1..i+n] are internal, take one of them (say, the first one). If not, choose
an extreme occurrence of m in u[i+ 1..i+n] (again, the first of them if they are
several). In both cases, we denote the chosen occurrence m = u[j + 1..j + 2k];
here j ≥ i and j + 2k ≤ i + n.

Now we define s = s(v) = u[i+1..j+2k−1] and t = t(v) = u[j+2k−1+1..i+n].
Clearly, v = st. Note that the marker m is cut exactly in the middle of an
occurrence: m = mlmr with |ml| = |mr| = 2k−1. Here s ends by ml and t starts
with mr.

At last, let us define

S = (Fac(u) ∩Σ<2D) ∪ {s(v)|v ∈ (Fac(u) ∩Σ≥2D)},
T = {ε} ∪ {t(v)|v ∈ (Fac(u) ∩Σ≥2D)},

where ε is the empty word, Σ<n =
⋃n−1

k=0 Σ
k and Σ≥n = Σ∗\Σ<n.

It follows immediately from the definitions that Fac(u) ⊆ ST . It remains to
prove that the cardinalities of S ∩Σn and T ∩Σn are uniformly bounded.

Consider a length l ≥ 2D. Let us count the words from T ∩Σl.
What can be the length of a marker m used to construct a word t ∈ T ∩Σl?

It is equal to 2k, where the word mr of length 2k−1 is a prefix of t and thus
2k−1 ≤ l. On the other hand, since k was chosen to be maximal and by the
definition of D, we have l < D2k+1. These two inequalities can be rewritten as

l

2D
< 2k ≤ 2l, (1)

which means that k can take at most log2 D + 2 values for a given l.
Since we use a construction with at most R markers of each order k, in total

there are at most R(log2 D + 2) markers which are used to construct the words
from T∩Σl. Exactly the same counting works for the words from S∩Σl. They can
be a bit shorter with respect to k in average, since we choose the first occurrence
of a longest marker whenever we have a choice, and since the factor which we
decompose can be close to the beginning of u. However, the same bounds hold,
and the same R(log2 D+2) (or less) markers can be used to construct the words
from S ∩Σl.

Now let us consider separately the cases when the occurrence of a marker used
for a decomposition is internal, initial or final.

Lemma 3.4. Consider an occurrence of a factor v of length n ≥ 2D in u and
a longest marker m in it. If all the occurrences of m to the chosen occurrence of
v are internal, then v is p(m)-periodic.
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Proof. Follows from the definition of an internal occurrence. �
Let us fix a length l ≥ 2D. Clearly, for a given marker m of a suitable length

2k, there is exactly one possible word in Σl which can belong to T because
of internal occurrences of m: It is p(m)-periodic and obtained from the prefix
of length l + 2k−1 of P (m)ω by deleting the first 2k−1 symbols. Symmetrically,
there is exactly one possible word in Σl which can belong to S because of internal
occurrences of m.

It follows that for each l ≥ 2D, each of at most R(log2 D+2) possible markers
for this length, its internal occurrences can give at most one word of length l in
T and at most one word in S. Now let us consider words arising from extreme
occurrences.

For the sake of convenience, define a new symbol z /∈ Σ and fix un = z for n ≤
0. So, instead of u, we can now consider a bi-infinite word u′ = · · · zzzu1u2u3 · · · .

Let us fix a marker m of length 2k and a length l satisfying (1) and consider
the set Tf(m, l) of words from T of length l arising from final occurrences of m to
u. For any word t ∈ Tf (m, l) consider a place in u which gives rise to it, that is, fix
a position j ≥ 0 such that m = u[j+1..j+2k] and t = u[j+2k−1+1..j+2k−1+l].
Now for each i such that 0 ≤ i < 2k−1 define the word ef (m, t, j, i) of length
l + 2k as ef (m, t, j, i) = u[j + 1 − i..j + l + 2k − i] (see Fig. 1). Note that if
j + 1 < 2k, the word ef (m, t, j, i) for sufficiently large i-s starts with one or
several (but not more than 2k−1 − 1) symbols z.

j+2
k−1

j+2
k

j+1
k−1

i 2  −i
k−1

f

m t

e (m,t,j,i)

j+2 +l

Fig. 1. Construction of ef (m, t, j, i)

Lemma 3.5. If ef (m, t, j, i) = ef(m, t′, j′, i′) with |t| = |t′| = l, then t = t′ and
i = i′.

Proof. Denote ef (m, t, j, i) = ef (m, t′, j′, i′) = e. Note also that k can be
uniquely reconstructed from m.

Suppose that i = i′; then t = t′ = e[i + 2k−1 + 1..i + 2k−1 + l].
Suppose that i < i′. Then the word e[i + 1..i′ + 2k] has m as a prefix and

a suffix and thus is (i′ − i)-periodic. In particular, m is (i′ − i)-periodic. Since
p(m) is the minimal period of m, we have p(m) ≤ i′ − i < 2k−1 = |m|/2.
So, for each h = 1, . . . , 2k − p(m) + i′ − i both symbols ei+h and ei+h+p(m)

belong to either the prefix copy of m or to the suffix copy of m (or to both).
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So, ei+h = ei+h+p(m) for all h from 1 to 2k−p(m)+ i′− i ≥ 2k, and in particular
for all h such that 2k − p(m) + 1 ≤ h ≤ 2k. This contradicts to the fact that
u[j + 1..j + 2k] = e[i + 1..i + 2k] is a final occurrence of m to u. �

So, the number of possible words ef(m, t, j, i) for a given marker m and a
given length l of t is minorized by the number of pairs (t, i); here t is a word
from T ∩Σl arising from a final occurrence of a marker m, and for each m, t and
j, the parameter i takes exactly 2k−1 values. On the other hand, all ef (m, t, j, i)
are words of length l + 2k, which are either factors of u or its prefixes preceded
by at most 2k−1 new symbols z: the number of factors of u of length l + 2k is
pu(l+2k), the number of words with z is at most 2k−1, and the number of words
ef (m, t, j, i) is majorized by pu(l + 2k) + 2k−1 ≤ C(l + 2k) + 2k−1. So, we have

2k−1tf (m, l) ≤ C(l + 2k) + 2k−1,

where tf (m, l) is the contribution to T ∩ Σl of all the final occurrences of a
marker m of length 2k.

Since l < 2k+1D, the latter inequality can be rewritten as

tf (m, l) <
C(2D + 1)2k + 2k−1

2k−1
= 2C(2D + 1) + 1.

In other words,
tf (m, l) ≤ 2C(2D + 1).

Exactly the same upper bound can be symmetrically proved for the contri-
bution to T ∩ Σl of initial occurrences of a marker m: ti(m, l) ≤ 2C(2D + 1).
So, each of R(log2 D + 2) possible markers for the length l can contribute at
most for the following number of words to T ∩ Σl: one word arising from its
internal occurrences, plus 2C(2D + 1) words arising from final occurrences, plus
2C(2D + 1) words arising from initial occurrences. This gives the desired upper
bound: the total number of words in the set T ∩Σl is bounded by the constant

R(log2 D + 2)[1 + 4C(2D + 1)].

The proof for S∩Σl is similar and gives the same constant as the upper bound. �
Note that the analogous fact for general languages is not true: there exists a

language of linear complexity not belonging to any Lk. However, this language
(which we do not describe here because of the lack of space) is not closed under
taking a factor.

4 Word of Quadratic Complexity

Lemma 2.1 and Theorem 3.1 imply thatW2 = P(1), and in generalWk+1 ⊆ P(k)
for all k. So, the following natural question arises: is it true that Wk+1 = P(k)
for all k?

The answer is negative, and, since Wk ⊆ W ′
k, to show it we just point an

example of a word of quadratic complexity which does not belong to W ′
3.
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Consider the word u = ababbabbb · · · =
∏∞

i=1 ab
i. Its complexity pu(n) =

Θ(n2): this can be either proved directly or derived from the famous paper by
Pansiot [10], since u is obtained by erasing the first letter c from the fixed point
starting with c of the morphism c �→ cab, a �→ ab, b �→ b.

Lemma 4.1. The word u does not belong to W ′
3.

Proof. Suppose the opposite: Fac(u) ⊆ XY Z with gX(n), gY (n), gZ(n) = O(n).
Now for each word v ∈Fac(u) of length at most n fix some its decomposition
v = x(v)y(v)z(v) = xyz with x ∈ X , y ∈ Y , z ∈ Z. We shall estimate the
number of words v which can be decomposed like that.

Now for each k, l > 0 define the word wk,l = ablabl+1 · · · abl+k−1a. Clearly,
wk,l is a factor of u of length k(l + (k + 1)/2) + 1.

Claim. Let E(n) be the set of pairs (k, l) such that |wk,l| ≤ n, k ≥ 3 and l ≥ √n.
Then #E(n) = Θ(n log n).

Proof. Note that the condition |wk,l| = k(l + (k + 1)/2) + 1 ≤ n implies the

inequality l ≤ n− 1

k
− k + 1

2
. So,

#E(n) =

∞∑
k=3

#

{
l ∈ N :

√
n ≤ l ≤ n− 1

k
− k + 1

2

}
.

Observe that this set is empty for k ≥
√

2n: indeed, if k ≥
√

2n, then
n− 1

k
− k + 1

2
≤ n√

2n
−
√

2n + 1

2
< 0. So,

#E(n) =

�
√
2n�∑

k=3

(
n− 1

k
− k + 1

2
−
√
n + 1

)
.

Here
�
√
2n�∑

k=3

n− 1

k
= (n− 1)

�
√
2n�∑

k=3

1

k
= Θ (n lnn)

and
�
√
2n�∑

k=3

(
k + 1

2
+
√
n− 1

)
= Θ(n).

The claim follows. �
Let us say that a factor v of u is of type (k, l) if v = biwk,lb

j for some i and
j. Clearly, each factor of u either is of some type (k, l), or contains at most one
letter a.

Denote by F (n) the set of pairs (k, l) with k ≥ 3 and l ≥
√
n such that there

exists a factor v of u of length at most n and of type (k, l) whose decomposi-
tion is xyz with |x|a ≤ 1, |z|a ≤ 1. There were k+1 ≥ 4 letters a in v, and at least
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k − 1 ≥ 2 of them stay in the word y. The type of y is thus one of the four
following: (k, l), (k − 1, l + 1), (k − 1, l), (k − 2, l + 1). But the total number
of words in Y of length at most n is gY (n) = O(n), and each word y can give
rise to at most four types from F (n). So, #F (n) ≤ 4gY (n) = O(n), and due
to the previous claim, there are still #E(n)\F (n) = Θ(n logn) pairs (k, l) with
k ≥ 3 and l ≥

√
n such that each word v of type (k, l) and of length at most n

is decomposed so that its middle part y(v) contains at most one letter a. Since
there are k + 1 ≥ 4 letters a in v, we see that either x(v) or z(v) contains at
least two letters a.

We denote this set of pairs by H(n) = E(n)\F (n). The number of all factors
v of u whose types are in H(n) is denoted by s(n).

Consider a factor v of u of length at most n whose type is in H(n). Suppose
first that the word x(v) contains more than one letter a. Then the word v is
uniquely determined by x(v) and the length |v| ≤ n. So, the number of words v
of length ≤ n admitting such a decomposition is bounded by ngX(n) = O(n2).

Symmetrically, the number of words v such that z(v) contains more than one
letter a is bounded by ngZ(n) = O(n2).

So, the number s(n) of words whose types are in H(n) is O(n2). But on the
other hand, the number of types in H(n) is Θ(n logn), and for each type (k, l),
the number of words of this type is l(l+k+1): indeed, such a word is of the form
biwk,lb

j , where i can take l values from 0 to l− 1 and j can take l+ k + 1 values
from 0 to l+k. Since we restricted ourselves to the case of l ≥

√
n, the number of

words of each type is l(l+ k+ 1) > n. In total, we have that s(n) ≥ nΘ(n log n),
that is,

s(n) = Ω(n2 log n).

A contradiction to the previous condition s(n) = O(n2). �

Since W3 ⊆ W ′
3, we get also the following

Corollary 4.2. There exists a word of quadratic complexity which does not be-
long to W3.

5 Belonging to Some Wk

The word u of quadratic complexity considered in the previous section does not
belong to W ′

3, but it can be proved that it belongs to W ′
4. We omit this proof

here since it does not add much to the theory. However, this result suggests the
following question: given a word of complexity majorated by a polynomial, is it
true that it belongs to Wk for some k?

As we show in the next proposition, the answer to this question is negative.

Proposition 5.1. For any growing integer function f(n) such that f(1) ≥ 1,
f(n) ≤ n and f(n) →∞, there exists an infinite word w of complexity O(n2f(n))
which does not belong to Wk for any k.
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Proof. First we describe the construction of the word w, then we prove that
w does not belong to Wk for any k, and after that we prove that the word has
complexity O(n2f(n)).

Define the infinite word w as follows:

w =
∞∏
p=1

f(p)∏
q=1

(apbq)k(p,q),

where k(p, q) is a growing function: k(p, q) ≤ k(p, q+1) and k(p, f(p)) ≤ k(p+1, 1)
for all p and q.

Let us prove that w /∈ Wk for any k. Suppose by contrary that
w ∈ Wk: Fac(w) ⊆ S1 · · ·Sk with pSi(n) ≤ Mi for all i. Define S = ∪iSi; then
pS(n) ≤

∑
i pSi(n) ≤

∑
i Mi = M for an appropriate constant M . Consequently,

gS(n) ≤Mn for all n.

Claim. For every pair of integers (p, q), such that p + q < n−2
2k−1 , q ≤ f(p) and

k(p, q) ≥ 2k − 1, there exists a word sp,q ∈ S, |sp,q| ≤ n, such that sp,q contains
bapbqa as a factor, and all those words sp,q are distinct.

Proof. Consider the word b(apbq)2k−1a. Since k(p, q) ≥ 2k − 1 and q ≤ f(p),
it is a factor of w, and since p + q < n−2

2k−1 , its length is at most n. However we
cut the word b(apbq)2k−1a into at most k pieces, at least one piece will contain
bapbqa as a factor. The claim follows. �

Let us estimate the number of words bapbqa for p + q < n−2
2k−1 , q ≤ f(p) and

k(p, q) ≥ 2k − 1. Since the function k(p, q) is growing, there exists a constant pk
such that k(p, q) ≥ 2k − 1 for all p ≥ pk and all q ≤ f(p). Since f(p) ≤ p for all
p, we have p + q ≤ p + f(p) ≤ 2p, and thus the number of pairs (p, q) is bounded

from below by the sum

n−2
2(2k−1)∑
p=pk

f(p). Since f(p) →∞ as p− >∞, and since gS(n)

is bounded from below by the number of pairs (p, q) due to Claim 5, we have

gS(n) ≥

n−2
2(2k−1)∑
p=pk

f(p) > Mn

for some sufficiently large n. A contradiction to the fact that gS(n) ≤Mn.

Now let us check that the complexity of the word w is O(n2f(n)). The word
w contains factors of the following types:

1. Factors of a block (apbq)k for some p, q and k.
2. Factors of a concatenation of blocks (apbq)k1 (apbq+1)k2 .
3. Factors of a concatenation of blocks (apbf(p))k1(ap+1b)k2 .
4. Factors containing some complete block (apbq)kp,q as a factor.
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Remark that some of these families intersect, but this is not a problem since we
only need a bound. So, let us estimate the number of words of length n in each
family.

In the family 1, we have O(n) words of the form aibn−i or bian−i, plus
O(n2) words of the form aibqan−q−i (uniquely determined by 0 < i, q < n)
or biapbn−p−i (uniquely determined by 0 < i, p < n), plus words containing a
factor bapbqa or abqapb. The latter words are uniquely determined by p < n,
q ≤ f(p) and the position of the first occurrence of ap, which takes values from
0 to p+ q < n. So, the number of such words (and thus of all the words in family
1) is O(n2f(n)).

Treating the other three families analogously, we see that the complexity of
each of them is at most O(n2f(n)) too. So, the complexity pw(n) = O(n2f(n)),
which completes the proof. �

6 Conclusion

We finalize this paper by suggesting the following open problem: What is the
minimal possible complexity of a word which does not belong to any Wk?

Remark that Theorem 3.1 and Proposition 5.1 imply that this complexity is
strictly bigger than linear and is at most quadratic.

Supported in part by RFBR grants 12-01-00089 and 12-01-00448, as well as
by the Academy of Finland under a FiDiPro grant and under grant 251371.
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Abstract. We introduce and study a new complexity function on words,
which we call cyclic complexity, which counts the number of conjugacy
classes of factors of each given length. We extend the famous Morse-
Hedlund theorem to the setting of cyclic complexity by showing that a
word is ultimately periodic if and only if it has bounded cyclic complex-
ity. Unlike most complexity functions, cyclic complexity distinguishes be-
tween Sturmian words having different slopes. More precisely, we prove
that if x is a Sturmian word and y is a word having the same cyclic
complexity of x then y is Sturmian and, up to renaming letters, it has
the same language of factors of x.

Keywords: Cyclic complexity, factor complexity, Sturmian words, min-
imal forbidden factor.

1 Introduction

The usual notion of complexity of a discrete system counts the number of distinct
patterns of the same size that the system can generate. In the case of sequences
(words), this is the number of distinct blocks (factors) of each given length. This
measure of complexity is usually called factor complexity (or block complexity).
The words with the “simplest” structure are the periodic ones. They are of the
form x = uω (i.e., an infinite concatenation of a same finite block u) called purely
periodic, or of the form x = vuω, called ultimately periodic. The non-periodic
words are called aperiodic. The factor complexity distinguishes between periodic
and aperiodic words. In fact, a fundamental result dating back to the late 30’s is
the famous theorem of Morse and Hedlund [14] stating that a word is aperiodic if
and only if it has at least n+1 factors of length n for every n. From this result, it is
natural to consider those aperiodic words which have minimal factor complexity,
i.e., those having exactly n + 1 distinct factors of length n for every n. These
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are called Sturmian words and a vast bibliography exists showing their interest
both from the theoretical viewpoint and in applications. For example, Sturmian
words code the digital approximations in the plane of Euclidean straight lines
with irrational slope, with the property that two Sturmian words have the same
slope if and only if they have the same language of factors.

There exist many other measures of complexity of words in literature. For ex-
ample, a lot of attention has recently been given (see for instance [3,10,16,18,19])
to the abelian complexity, which is the function counting the number of factors
of each given length up to permutations. Other new measures of complexity of
words have been introduced over the time, which are intermediate between fac-
tor and abelian complexity (e.g. maximal pattern complexity [7], k-abelian com-
plexity [8], binomial complexity [17]) or involve different definitions that appear
naturally in the study of sequences (e.g. periodicity complexity [12], minimal
forbidden factor complexity [13], palindromic complexity [5], etc.) For most of
these measures, Sturmian words are those aperiodic words of lowest complexity.
However, they do not distinguish between two Sturmian words having different
slopes.

In this paper we propose a new measure of complexity, cyclic complexity, which
consists in counting the factors of each given length of a word up to conjugacy.
The notion of conjugacy is a basic notion in Combinatorics on Words. Two words
are said conjugate if they are equal when read on a circle1. That is, the cyclic
complexity of a word is the function counting the number of conjugacy classes
of factors of each given length.

One of the main results of this paper is that cyclic complexity distinguishes
between periodic and aperiodic words. In fact, we prove the following theorem.

Theorem 1. A word is ultimately periodic if and only if it has bounded cyclic
complexity.

That is, the Morse-Hedlund theorem can be extended to the setting of cyclic
complexity. Note that a word is (purely) periodic if and only if there exists
an integer n such that all the factors of length n are conjugate. Therefore, the
minimum value that the cyclic complexity of an aperiodic word can take is 2.
We will prove that Sturmian words have the property that the cyclic complexity
takes value 2 infinitely often.

Since the Sturmian words are characterized by having n + 1 factors of length
n for every n, the factor complexity does not distinguish between two Sturmian
words with different languages of factors. In contrast, for cyclic complexity, two
Sturmian words with different languages of factors have different cyclic complex-
ity. Indeed, we prove something stronger:

Theorem 2. Let x be a Sturmian word. If a word y has the same cyclic com-
plexity as x then, up to renaming letters, y is a Sturmian word having the same
slope of x.

1 More formally, u and v are conjugate if and only if one can write u = w1w2 and
v = w2w1 for some words w1, w2.
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That is, not only two Sturmian words with different languages of factors
cannot have the same cyclic complexity, but the only words which have the
same cyclic complexity of a Sturmian word x are those Sturmian words with the
same slope of x.

These two results suggest that cyclic complexity can be considered as an
interesting refinement of the classical notion of factor complexity and can open
new perspectives in the study of complexity of discrete systems.

Note that factor complexity, abelian complexity and cyclic complexity can
all be viewed as actions of different subgroups of the symmetric group on the
indices of a finite word (respectively, the trivial subgroup, the whole symmetric
group and the cyclic subgroup). Since factor and abelian complexity are very
well studied, looking at other subgroups of the symmetric group seems a very
natural way of investigation.

2 Basics

Given a finite non-empty ordered set A (called the alphabet), we let A∗ and AN

denote respectively the set of finite words and the set of (right) infinite words
over the alphabet A. The order on the alphabet A can be extended to the usual
lexicographic order on the set A∗.

For a finite word w = w1w2 · · ·wn with n ≥ 1 and wi ∈ A, the length n
of w is denoted by |w|. The empty word is denoted by ε and we set |ε| = 0.
We let An denote the set of words of length n and A+ the set of non-empty
words. For u, v ∈ A+, |u|v is the number of occurrences of v in u. For instance
|0110010|01 = 2. The Parikh vector of w is the vector whose components are the
number of occurrences of the letters of A in w. For example, if A = {a, b, c},
then the Parikh vector of w = abb is (1, 2, 0). The reverse (or mirror image) of
a finite word w is the word obtained by reading w in the reverse order.

Given a finite or infinite word ω = ω1ω2 · · · with ωi ∈ A, we say a word
u ∈ A+ is a factor of ω if u = ωiωi+1 · · ·ωi+n−1 for some positive numbers i and
n. We let Fact(ω) denote the set of all factors of ω, and Alph(ω) the set of all
factors of ω of length 1. If ω = uν, we say that u is a prefix of ω, while ν is a
suffix of ω. A factor u of ω is called right special (resp. left special) if both ua
and ub (resp. au and bu) are factors of ω for distinct letters a, b ∈ A. The factor
u is called bispecial if it is both right special and left special.

For each factor u of ω, we set

ω
∣∣
u

= {n ∈ N | ωnωn+1 · · ·ωn+|u|−1 = u}.

We say ω is recurrent if for every u ∈ Fact(ω) the set ω
∣∣
u

is infinite. We say

ω is uniformly recurrent if for every u ∈ Fact(ω) the set ω
∣∣
u

is syndedic, i.e.,

of bounded gap. A word ω ∈ AN is (purely) periodic if there exists a positive
integer p such that ωi+p = ωi for all indices i, while it is ultimately periodic if
ωi+p = ωi for all sufficiently large i. Finally, a word ω ∈ AN is called aperiodic
if it is not ultimately periodic. For a finite word w = w1w2 · · ·wn, we call p a
period of u if wi+p = wi for every 1 ≤ i ≤ n− p.
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Two finite or infinite words are said to be isomorphic if the two words are
equal up to a renaming of the letters.

A (finite or infinite) word w over A is balanced if and only if for any u, v factors
of w of the same length and for every letter a ∈ A, one has ||u|a − |v|a| ≤ 1.
More generally, w is C-balanced if there exists a constant C > 0 such that for
any u, v factors of w of the same length and for every letter a ∈ A, one has
||u|a − |v|a| ≤ C. For example, the word 010111 is not balanced, but it is 2-
balanced. Note that if w is C-balanced, then it is C′-balanced for any C′ ≥ C.

The factor complexity of an infinite word ω is the function

pω(n) = |Fact(ω) ∩ An|,

i.e., the function that counts the number of distinct factors of length n of ω,
for every n ≥ 0. The factor complexity is a standard measure of the complexity
of an infinite word. By Morse-Hedlund theorem, words with bounded factor
complexity are precisely ultimately periodic words and aperiodic words with
minimal factor complexity have linear factor complexity. In the binary case,
aperiodic words with minimal factor complexity have factor complexity equal to
n+1, i.e., they are Sturmian words. An example of word achieving maximal factor
complexity over an alphabet of size k > 1 can be obtained by concatenating the
k-ary expansions of non-negative integers. For example, if k = 2, one obtains the
so called Champernown word 0110111001011101111000 · · ·

The factor complexity counts the factors appearing in the word. A dual point
of view consists in counting the shortest factors that do not appear in the word.
This leads to another measure of complexity, described below.

Let w be a (finite or infinite) word over an alphabet A. A finite non-empty
word v is a minimal forbidden factor for w if v does not belong to Fact(w)
but every proper factor of v does. We denote by MF(w) the set of all minimal
forbidden words for w. The minimal forbidden factor complexity of an infinite
word ω is the function

mfω(n) = |MF(ω) ∩ An| ,

i.e., the function that counts the number of distinct minimal forbidden factors
of length n of ω, for every n ≥ 0.

We now introduce a new measure of complexity. The idea is to count the
factors of each given length that are different up to a rotation. Recall that two
finite words u, v are conjugate if there exist words w1, w2 such that u = w1w2 and
v = w2w1. The conjugacy relation is an equivalence over A∗, which is denoted
by ∼, whose classes are called conjugacy classes. Note that two words belonging
to the same conjugacy class must have the same Parikh vector.

The cyclic complexity of an infinite word ω is the function

cω(n) =

∣∣∣∣Fact(ω) ∩ An

∼

∣∣∣∣ ,
i.e., the function that counts the number of distinct conjugacy classes of factors
of length n of ω, for every n ≥ 0.
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Observe that, by the definition, cω(n) ≤ pω(n) for every n. Moreover, if a word
ω has maximal cyclic complexity, then it has maximal factor complexity. In fact,
let w ∈ A∗ be any word. We want to show that w ∈ Fact(ω). Consider the word
ww. From the maximality of the cyclic complexity of ω, some conjugate of ww is
an element of Fact(ω). But every conjugate of ww contains w as a factor, hence
w ∈ Fact(ω).

Since a word having maximal factor complexity clearly also has maximal cyclic
complexity, we have the following proposition.

Proposition 1. An infinite word has maximal cyclic complexity if and only if
it has maximal factor complexity.

The cyclic complexity, as well as the other mentioned complexity functions,
can be naturally extended to any factorial language. Recall that a language is
any subset of A∗. A language L is called factorial if it contains all the factors of
its words, i.e., if uv ∈ L⇒ u, v ∈ L. The cyclic complexity of L is defined by

cL(n) =

∣∣∣∣L ∩An

∼

∣∣∣∣ .
The cyclic complexity is an invariant for several operations on languages. For

example, it is clear that if two languages are isomorphic (i.e., one can be obtained
from the other by renaming letters), then they have the same cyclic complexity.
Furthermore, if L is a language and L̃ is obtained from L by reversing (mirror
image) each word in L, then L and L̃ have the same cyclic complexity.

3 Cyclic Complexity Distinguishes between Periodic and
Aperiodic Words

In this section we give a proof of Theorem 1. The following lemma connects
cyclic complexity to balancedness.

Lemma 1. Let ω ∈ AN and suppose that there exists a constant C such that
cω(n) ≤ C for every n. Then ω is C-balanced.

Proof. For every n, there are at most C conjugacy classes of factors of length
n in ω. This implies that there are at most C different Parikh vectors for the
factors of ω of length n, that is, ω has abelian complexity bounded by C. It can
be proved (see [16]) that this implies that the word ω is C-balanced. "#

Lemma 2. Let ω ∈ AN be aperiodic and let v ∈ A+ be a factor of ω which
occurs in ω an infinite number of times. Then, for each positive integer K there
exists a positive integer n such that ω contains at least K + 1 distinct factors of
length n beginning in v.

Proof. Suppose to the contrary that for some K, ω has at most K distinct
factors of each length n which begin in v. Since ω is aperiodic and v occurs
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infinitely often in ω, there exist K + 1 distinct suffixes of ω (say y0, y1, . . . , yK)
beginning in v. By the pigeonhole principle, for each positive integer n there
exist 0 ≤ i < j ≤ K such that yi and yj begin in the same prefix of length n.
Again by the pigeonhole principle, there exist 0 ≤ i < j ≤ K such that yi and
yj begin in the same prefix of length n for infinitely many distinct values of n.
Hence, yi = yj, a contradiction. "#

Proof of Theorem 1. If ω is ultimately periodic, then it has bounded fac-
tor complexity by Morse-Hedlund theorem, hence it must have bounded cyclic
complexity.

Let us now prove that if ω is aperiodic, then for any fixed positive integer M ,
cω(n) ≥ M for some n. Short of replacing ω by a suffix of ω, we can suppose
that each letter occurring in ω occurs infinitely often in ω. First, suppose that
for each positive integer C, ω is not C-balanced. Then, by Lemma 1, the cyclic
complexity of ω is unbounded and we are done. Next, suppose that each u ∈ A+

is a factor of ω. In this case, ω would have full complexity, whence the cyclic
complexity of ω is again unbounded. Thus, we can suppose that ω is C-balanced
for some positive integer C, and that some u ∈ A+ is not a factor of ω. Since ω is
C-balanced, there exists a positive integer N such that each factor of ω of length
N contains an occurrence of each a ∈ Alph(ω). As u is a forbidden factor of ω, it
follows that u is a forbidden factor of each suffix of ω. Since each letter occurring
in ω occurs infinitely often, it follows there exist a suffix ω′ of ω, a letter a ∈ A
and a word v ∈ A+ such that av is a forbidden factor of ω′ and v occurs in ω′

infinitely often. By Lemma 2, there exists a positive integer n0 ≥ 2|v| such ω′

contains at least MN distinct factors of length n0 beginning in v. We denote
these factors by u1, u2, . . . , uMN . There exist v1, v2, . . . , vMN , each in AN , such
that uivi are factors of ω′ (of length n0 + N) for each 1 ≤ i ≤ MN. Since
each vi contains an occurrence of a, it follows there exists n ≥ n0 such that ω′

contains at least M distinct factors of length n beginning in v and terminating
in a. Since av is a forbidden factor of ω′, no two of these factors are conjugate
to one another. Hence, cω′(n) ≥M and thus cω(n) ≥M . "#

4 Cyclic Complexity Distinguishes between Sturmian
Words with Different Languages

In this section we exhibit results on the cyclic complexity of Sturmian words and
give a sketch of the proof of Theorem 2.

There exists a vast bibliography on Sturmian words (see for instance the
survey papers [1, 2], [9, Chap. 2], [15, Chap. 6] and references therein).

A Sturmian word is an infinite word having exactly n + 1 distinct factors of
length n, for every n ≥ 0. That is, a word x is Sturmian if and only if px(n) = n+1
for every n ≥ 0. Note that an immediate consequence of the definition is that
|Alph(x)| = 2, so a Sturmian word is a binary word. In this section we fix the
alphabet A = {0, 1}.

A very well known instance of Sturmian words is the Fibonacci word F =
010010100100101001 · · · , obtained as the limit of the substitution 0 �→ 01, 1 �→ 0.



Cyclic Complexity of Words 165

Sturmian words have a multitude of combinatorial properties that make them
fundamental objects in the field of Combinatorics on Words. By Morse-Hedlund
Theorem, Sturmian words are those aperiodic words with minimal factor com-
plexity. We recall some other characterizations in the next proposition.

Proposition 2. Let x ∈ AN. The following conditions are equivalent:

1. x is Sturmian;
2. x is balanced and aperiodic;
3. x has exactly one right (resp. left) special factor for each length.

Recall that the slope of a finite binary word w over the alphabet A is defined

as s(w) = |w|1
|w| . The slope of an infinite binary word, when it exists, is the limit

of the slopes of its prefixes. A Sturmian word can also be defined by considering
the intersections with a squared-lattice of a semi-line having a slope which is
an irrational number. A horizontal intersection is denoted by the letter 0, while
a vertical intersection is denoted by the letter 1. Note that the slope of the
Sturmian word is exactly the slope of such a semi-line. For example, the slope
of the Fibonacci word is (1 + φ)−1, where φ = (1 +

√
5)/2 is the golden ratio.

An important property of Sturmian words is that their factors depend on
their slope only, i.e., we have the following result (see [14]).

Proposition 3. Let x, y be two Sturmian words. Then Fact(x) = Fact(y) if and
only if x and y have the same slope.

A fundamental role in the study of factors of Sturmian words is played by
the central words. A word is central if it has coprime periods p and q and length
p + q − 2. There are several characterizations of central words (see [1] for a
survey). Here we recall the following ones.

Proposition 4. Let w be a word over A. The following conditions are equiva-
lent:

1. w is a central word;
2. 0w1 and 1w0 are conjugate;
3. w is a bispecial factor of some Sturmian word;
4. w is a palindrome and the words w0 and w1 are balanced;
5. 0w1 is balanced and is the least element (w.r.t. the lexicographic order) in

its conjugacy class;
6. w is a power of a letter or there exist central words p1, p2 such that w =

p101p2 = p210p1. Moreover, in this latter case |p1| + 2 and |p2| + 2 are
coprime periods of w and min(|p1|+ 2, |p2|+ 2) is the minimal period of w.

Let w be a central word with coprime periods p and q and length p + q − 2.
The words 0w1 and 1w0, which, by Proposition 4, are conjugate, are called
Christoffel words. Let r = |0w1|0 and s = |0w1|1. It can be proved that r and s
are the multiplicative inverses of p and q modulo p + q, respectively. Moreover,
the conjugacy class of 0w1 and 1w0 contains exactly |w| + 2 words. If we sort
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these words lexicographically and arrange them as rows of a matrix, we obtain a
square matrix with remarkable combinatorial properties (see [4, 6, 11]). We call
this matrix the (r, s)-Christoffel array and denote it by Ar,s (see Figure 1 for an
example). Two consecutive rows of Ar,s differ only by a swap of two consecutive
positions. Moreover, the columns are also conjugate and in particular the first
one is 0r1s, while the last one is 1s0r.

Every aperiodic word (and therefore, in particular, every Sturmian word)
contains infinitely many bispecial factors. If w is a bispecial factor of a Sturmian
word x, then w is central by Proposition 4 and there exists a unique letter a ∈ A
such that w′, the shortest palindrome beginning with wa, is a bispecial factor of
x. Moreover, if p and q are the coprime periods of w such that |w| = p+q−2, then
the word w′ is central and its coprime periods p′ and q′ verifying |w′| = p′+q′−2
satisfy either p′ = p + q and q′ = p, or p′ = p + q and q′ = q, depending on the
letter a. For example, 010 is a bispecial factor of the Fibonacci word F and has
coprime periods 3 and 2 (and length 3 + 2− 2). The successive (in length order)
bispecial factor of F is 010010, which is the shortest palindrome beginning in
010 · 0 and has coprime periods 5 and 3 (and length 5 + 3− 2). There exist other
Sturmian words having 010 as a bispecial factor and for which the successive
bispecial factor is 01010 (i.e., the shortest palindrome beginning with 010 · 1)
whose coprime periods are 5 and 2.

These combinatorial properties of central words and the bispecial factors of a
Sturmian word will be needed in our proof of Theorem 2.

Sturmian words have unbounded cyclic complexity (by Theorem 1) but their
cyclic complexity takes value 2 for infinitely many n. More precisely, we have
the following result.

Lemma 3. Let x be a Sturmian word. Then cx(n) = 2 if and only if n = 1 or
there exists a bispecial factor of x of length n− 2.

The value 2 is the minimal possible for an aperiodic word. In fact, it is well
known that a word ω is (purely) periodic if and only if there exists n ≥ 1 such
that all the factors of length n of ω are conjugate.

Since a Sturmian word contains infinitely many bispecial factors, the previ-
ous result implies that for a Sturmian word x one has that lim inf cx(n) = 2.
However, this is not a characterization of Sturmian words. In fact, there exist
non-Sturmian aperiodic words with minimal cyclic complexity (in the sense of
having limit inferior of the cyclic complexity equal to 2). Consider for example
the morphism μ : 0 �→ 00, 1 �→ 01. It is possible to prove that in the word
μ(F ) = 00010000010001000001 · · · , image of the Fibonacci word F under μ,
there are exactly 2 conjugacy classes of factors of length n for every n that is the
double of a Fibonacci number2, so that lim inf cμ(F )(n) = 2. However, the word
μ(F ) is not Sturmian (it contains the factors 00000 and 10001 and therefore is
not balanced). We show in Table 1 the first values for the cyclic complexity of
F and μ(F ).

2 Recall that Fibonacci numbers are defined by: F0 = 1, F1 = 1, and Fn = Fn−1+Fn−2

for every n > 1.
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Table 1. The initial values of the cyclic complexity for the Fibonacci word F and its
morphic image μ(F )

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

cF (n) 2 2 2 3 2 4 4 2 7 4 5 8 2 9 9 4 13 5 9 14 2 16

cμ(F )(n) 2 2 2 2 3 2 3 3 3 2 5 4 5 4 6 2 7 7 7 4 9 5

We now give a sketch of the proof of Theorem 2.

Proof of Theorem 2 (Sketch). Since y has the same cyclic complexity of x, we
have that in particular 2 = cx(1) = cy(1), so y is a binary word. Since x is
aperiodic, by Theorem 1 cx is unbounded. Since x and y have the same cyclic
complexity we have, always by Theorem 1, that y is aperiodic.

We want to prove that y and x have the same factors. By contradiction, let
n + 2 be the least length for which x and y have different factors. This implies
that x and y have a same bispecial factor w of length n. Let p′ and q′, with
p′ > q′, be the two coprime periods of w such that n = |w| = p′ + q′− 2. Let wx

(resp. wy) be the successive (in length order) bispecial factor of x (resp. of y).
It can be proved that {|wx|, |wy |} = {2p′ + q′ − 2, p′ + 2q′ − 2} and that wx and
wy cannot have the same length.

Suppose |wx| < |wy |. Then, by Lemma 3, y would have cyclic complexity
equal to 2 at length |wx| + 2, which is impossible since between |w| and |wy |
the word y behaves as a Sturmian word and so by Lemma 3 it should have a
bispecial factor of length |wx| + 2. Hence, we can suppose that |wx| > |wy|, so
that wx has periods p′ + q′ and p′ and length 2p′ + q′ − 2, while wy has periods
p′ + q′ and q′ and length p′ + 2q′ − 2.

To ease notation, we set p = p′ + q′ and q = p′, so that |wy | = 2p − q − 2
and |wx| = p + q − 2. Let us consider the set of factors of y of length 2p − q.
Since |w|+ 2 < 2p− q < |wx|+ 2, we know by Lemma 3 that cx(2p− q) > 2. So,
cy(2p− q) > 2.

If there was a Sturmian word y′ such that Fact(y′)∩A2p−q = Fact(y)∩A2p−q ,
then 2p− q would be the length of a bispecial factor plus 2 of a Sturmian word
and then, by Lemma 3, we would have cy(2p − q) = 2, a contradiction. This
implies that wy is a bispecial factor of y that behaves differently from a bispecial
factor of a Sturmian word. More precisely, we must have that 0wy and 1wy are
both right special factors of y. Therefore, 0wy0 and 1wy1 are in two different
conjugacy classes and all the other factors of y of length 2p − q are in a third
conjugacy class. In other words, we have cy(2p− q) = 3. Thus, in order to have
a contradiction we are left to prove that cx(2p− q) ≥ 4.

It is known that among the p + q + 1 factors of x of length p + q, there is
one factor with a Parikh vector and the remaining p + q factors with the other
Parikh vector, these latter being in a same conjugacy class, which is in fact the
conjugacy class of the Christoffel word 0wx1.
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Let r = |0wx1|0 and s = |0wx1|1. Without loss of generality, we can suppose
that r > s, i.e., we can suppose that 11 does not appear as a factor in x.
Therefore, we can build the (r, s)-Christoffel array Ar,s. The factors of length
2p− q of x can be obtained by removing the last 2q − p columns from Ar,s (of
course, in this way some rows can be equal and therefore some factors appear
more than once). We refer to the matrix so obtained as to A′

r,s.
The cases s = 1, 2, 3 can be proved separately. Here we give the sketch of the

proof when s > 3. Recall that {r, s} = {p−1, q−1} mod (p + q). Suppose that
s = p−1 < q−1. In this case, one can prove that the last three rows in A′

r,s are
distinct and start and end with 1. Therefore, each of these rows is unique in
its conjugacy class. Since any other row correspond to a factor with a different
Parikh vector, this implies that there are at least 4 conjugacy classes and we are
done.

The other case is when s = q−1 < p−1. This case can be proved analogously
by considering the first four rows of the matrix A′

r,s. In fact, one can prove
that the factors appearing in the first four rows of the matrix A′

r,s are pairwise
distinct and neither is conjugate to another. "#

Example 1. Consider the Fibonacci word F and its bispecial factor w = 010010,
which has periods p = 5 and q = 3. We have s = q−1 = 3 < 5 = r = p−1. In
Figure 1 we show the (5, 3)-Christoffel array A5,3. The rows are the lexicograph-
ically sorted factors of F with Parikh vector (5, 3). The other factor of length
8 of F is 10100101. The factors of F of length 2p − q = 7 can be obtained by
removing the last column of the matrix. Notice that the first 4 rows (once the
last character has been removed) are pairwise distinct and neither is conjugate
to another.

To end this section, we compare the cyclic complexity to the minimal forbid-
den factor complexity for the special case of Sturmian words.

In [13] the authors proved the following result.

Theorem 3. Let x be a Sturmian word and let y be an infinite word such that
for every n one has px(n) = py(n) and mfx(n) = mfy(n), i.e., y is a word having
the same factor complexity and the same minimal forbidden factor complexity as
x. Then, up to isomorphism, y is a Sturmian word having the same slope as x.

A5,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 1
0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0
1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. The matrix A5,3 for the Fibonacci word F for p = 5 and q = 3
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Note that Theorem 2 is much stronger than Theorem 3, because in this latter
the fact that y is a Sturmian word follows directly from the hypothesis that y
has the same factor complexity as x.

Indeed, the cyclic complexity is more fine than the minimal factor complex-
ity. Let x be an infinite binary word such that MF(x) = {11, 000} and y an
infinite binary word such that MF(y) = {11, 101}. Then x and y have the same
minimal forbidden factor complexity, but it is readily checked that cx(5) = 3
while cy(5) = 4. Note that x contains 7 factors of length 5 corresponding to
3 cyclic classes (00100, 00101, 01001, 10010, 10100, 10101) while y contains the
factors 00000, 10000, 10010, 10001 no two of which are cyclically conjugate.

5 Conclusions and Further Developments

We introduced a new measure of complexity of words, cyclic complexity. We
showed that for this measure of complexity the Morse-Hedlund theorem can be
extended, that is, a word is ultimately periodic if and only if it has bounded cyclic
complexity (Theorem 1). The aperiodic words with minimal cyclic complexity
can be defined as those having exactly 2 conjugacy classes of factors of length n
for infinitely many values of n. Among these we have Sturmian words (which are
the aperiodic words with minimal factor complexity), but we also exhibited a
non-Sturmian example which, however, is a morphic image of a Sturmian word.
We leave as an open problem that of characterizing the aperiodic words with
minimal cyclic complexity.

Contrarily to other measures of complexity, cyclic complexity characterizes
the language of a Sturmian word, in the sense that two Sturmian words with
different languages of factors have different cyclic complexities. More precisely,
we proved that a word having the same cyclic complexity as a Sturmian word
must be Sturmian and have the same slope (Theorem 2). A natural question is
therefore the following: Given two infinite words x and y with the same cyclic
complexity, what can we say about their languages of factors?

First, there exist two periodic words having same cyclic complexity but whose
languages of factors are not isomorphic nor related by mirror image. For ex-
ample, let τ be the morphism: 0 �→ 010, 1 �→ 011 and consider the words
x = τ((010011)ω) and x′ = τ((101100)ω). One can verify that x and x′ have
the same cyclic complexity up to length 17 and, since each has period 18, the
cyclic complexities agree.

Furthermore, it is easy to show that even two aperiodic words can have same
cyclic complexity but different languages of factors. For example, let x be an
infinite binary word such that MF(x) = {000111} and y an infinite binary word
such that MF(y) = {001111}. Then the languages of factors of x and y are not
isomorphic, nor related by mirror image, yet the two words have the same cyclic
complexity. However, we do not know if this can still happen with the additional
hypothesis of linear complexity, for example. In every case, these examples show
that cyclic complexity does not determine, in general, the language of factors.
So, our Theorem 2 is very special to Sturmian words.
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In conclusion, we believe that the new notion of complexity we introduced in
this paper, cyclic complexity, can open new perspectives in the study of com-
plexity of words and languages.
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Abstract. We address the problem of providing a Borel-like classifica-
tion of languages of infinite Mazurkiewicz traces, and provide a solution
in the framework of ω-automata over infinite words – which is invoked via
the sets of linearizations of infinitary trace languages. We identify trace
languages whose linearizations are recognized by deterministic weak or
deterministic Büchi (word) automata. We present a characterization of
the class of linearizations of all recognizable ω-trace languages in terms
of Muller (word) automata. Finally, we show that the linearization of any
recognizable ω-trace language can be expressed as a Boolean combination
of languages recognized by our class of deterministic Büchi automata.

1 Introduction

Traces were introduced as models of concurrent behaviors of distributed systems
by Mazurkiewicz, who later also provided an explicit definition of infinite traces
[7]. Zielonka demonstrated the close relation between traces and trace-closed
sets of words, which can be viewed as “linearizations” of traces, and established
automata-theoretic results regarding recognizability of languages of finite traces
[11] (cf. also [3,6]). Later, [4,2,8] enriched the theory of recognizable languages of
infinite traces (recognizable ω-trace languages), by introducing models of com-
putations viz. asynchronous Büchi automata and deterministic asynchronous
Muller automata. Being closely related to word languages, a set of infinite traces
is recognizable iff the corresponding trace-closed set of infinite words is.

In the case of ω-regular word languages, there exists a straightforward charac-
terization of languages recognized by deterministic Büchi automata, and a result
due to Landweber states that it is decidable whether a given ω-regular language
is deterministically Büchi recognizable [9, Chapter 1]. However, analogous re-
sults over recognizable ω-trace languages have only recently been established in
terms of “synchronization-aware” asynchronous automata [1].

While asynchronous automata are useful in implementing distributed moni-
tors and distributed controllers, their constructions are prohibitively expensive
even by automata-theoretic standards. On the other hand, for applications like
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model-checking and formal verification, word automata recognizing trace-closed
languages would already allow for analysis of most of the interesting properties
pertaining to distributed computations.

Therefore, in this paper, we study classes of ω-regular word languages that
allow us to “transfer” interesting results to the corresponding classes of recog-
nizable ω-trace languages. In particular, motivated by the Borel hierarchy for
regular languages of infinite words, our main contribution is a new setup for a
classification theory for recognizable ω-trace languages in terms of trace-closed,
ω-regular word languages.

Recall that in the sequential setting, reachability languages and determin-
istically Büchi recognizable languages – constituting the lowest levels of the
Borel hierarchy – can be obtained via natural operations over regular languages
K ⊆ Σ∗ in the following ways:

– ext(K) = K ·Σω = {α ∈ Σω | α has a prefix in K}
– lim(K) = {α ∈ Σω | α has infinitely many prefixes in K}

These operations, which we call the infinitary extension and the infinitary
limit of K, can be generalized to obtain infinitary extensions ext(T ) and infini-
tary limits lim(T ) of regular trace languages T .

In this paper, given the trace-closed word language K corresponding to a
regular trace language T , we firstly show that K can be modified to KI such
that ext(KI) is also trace-closed and corresponds to the linearization of ext(T )
(here I denotes the independence relation over the alphabet Σ). Building on
this, we are able to characterize the class of Boolean combinations of languages
ext(T ) as precisely those whose linearizations are recognized by the class of “I-
diamond” deterministic weak automata (DWAs).

Next, we consider infinitary limits. Here the situation is different, in that
there exist regular trace languages T such that although the trace-closed word
language L corresponding to lim(T ) is ω-regular, it is not recognized by any
I-diamond deterministic Büchi automaton (DBA). We therefore introduce the
class of limit-stable word languages K – and by extension limit-stable trace
languages T – such that the correspondence of Fig. 1b holds, and lim(K) can be
characterized in terms of I-diamond DBA.

It is well known that every trace-closed ω-regular language is recognized by
an I-diamond Muller automata [2]. We characterize these languages in terms of
a well defined class of I-diamond Muller automata. And lastly, justifying our

T

K

ext(T )

KI ext(KI)

(a) The correspondence of infinitary ex-
tensions for all regular trace languages T .

T

K

lim(T )

lim(K)

(b) The correspondence of infinitary lim-
its for all limit-stable trace languages T .

Fig. 1. From trace-closed regular languages to trace-closed ω-regular languages
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definitions, we show that every trace-closed ω-regular word language (that is,
the linearization of any recognizable ω-trace language) can be expressed as a
finite Boolean combination of languages lim(K), with K limit-stable.

In related work, Diekert & Muscholl [2] consider a form of “deterministic”
trace languages. It is shown that every recognizable language of infinite traces is
a Boolean combination of these deterministic languages. However, in the attempt
to characterize the corresponding “deterministic” trace-closed word languages in
terms of I-diamond automata, it is necessary to extend the Büchi acceptance
condition beyond what we know from standard definitions [8]. It had been left
open in [8] whether there exists a class of deterministic asynchronous Büchi
automata for deterministic trace languages.

We begin with presenting the basic definitions and notations. In Sec. 3, we
present the operations ext and lim that allow for construction of recognizable
ω-trace languages from regular trace languages. In particular, we exhibit rec-
ognizable ω-trace languages whose linearizations are recognized by I-diamond
DWA, and those whose linearizations are I-diamond DBA recognizable. Finally,
we establish our main result demonstrating the expressiveness of I-diamond
DBA recognizable trace-closed languages.

2 Preliminaries

We denote a recognizable language of finite words, or simply a regular language,
with the upper case letter K and a class of such languages with K. Finite words
are denoted with lower case letters u, v, w etc. Infinite words are denoted by
lower case Greek letters α and β, and a recognizable language of infinite words,
or simply an ω-regular language, by upper case L. For a word u or α, we denote
its infix starting at position i and ending at position j by u[i, j] or α[i, j], and
the ith letter with u[i] or α[i]. For a language K, we define K := Σ∗ \K.

We assume the reader is familiar with the notions of Deterministic Finite
Automata (DFAs) and Deterministic Büchi Automata (DBAs). We say that a
language is DBA recognizable if it is recognized by a DBA. For the class REG
of regular languages, the class lim(REG) coincides with the DBA recognizable
languages. Further, the class BC(lim(REG)) of finite Boolean combinations of
languages from lim(REG) is also the class of ω-regular languages, and it coincides
with the class of languages recognized by nondeterministic Büchi or deterministic
Muller automata.

Recall that a Deterministic Weak Automaton (DWA) is a DBA where every
strongly connected component of the transition graph has only accepting states
or only rejecting states. For a regular language K, the minimal DFA recognizing
K also recognizes lim(K) as a DBA. Given the minimal DFA A = (Q,Σ, q0, δ, F )
recognizing K, a DWA A′ := (Q′, Σ, q0, δ

′, F ′) recognizing ext(K), respectively
ext(K), can be constructed as follows:

1. For a symbol ⊥ /∈ Q and define Q′ := (Q \ F ) ∪ {⊥}.

2. For each q ∈ Q′, a ∈ Σ, define δ′(q, a) :=

{
δ(q, a) if q �= ⊥ and δ(q, a) /∈ F,

⊥ otherwise.
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3. Define F ′ := {⊥}, respectively F ′ := Q′ \ {⊥}.

The family of DWAs is closed under Boolean operations. For an ω-language
L, define a congruence ∼L⊆ Σ∗ × Σ∗ where u ∼L v ⇔ ∀α ∈ Σω, uα ∈ L iff
vα ∈ L. If L is recognized by a DWA then this congruence has a finite index. We
say that an ω-language is weakly recognizable if it is recognized by a DWA. The
class BC(ext(REG)) of finite Boolean combinations of languages in ext(REG) is
exactly the set of weakly recognizable languages [10].

Remark 1 (The minimal DWA [5]). For a weakly recognizable language L, if M
is the index of the congruence defined above, then L is recognized by a DWA
A = (Q,Σ, q0, δ, F ) with |Q| = M . Also, for every q ∈ Q there exists a word
uq ∈ Σ∗ such that for each u ∈ Σ∗, δ(q0, u) = q iff u ∈ [uq]∼L . �

Turning to traces, let I ⊆ Σ × Σ denote an irreflexive1, symmetric inde-
pendence relation over an alphabet Σ, then D := Σ2 \ I is the reflexive, sym-
metric dependence relation over Σ. We refer to the pair (Σ, I) as the inde-
pendence alphabet. For any letter a ∈ Σ, we define Ia := {b ∈ Σ | aIb} and
Da := {b ∈ Σ | aDb}. A trace can be identified with a labeled, acyclic, di-
rected dependence graph [V,E, λ] where V is a set of countably many vertices,
λ : V → Σ is a labeling function, and E is a countable set of edges such that,
firstly, for every v1, v2 ∈ V : λ(v1)Dλ(v2) ⇔ (v1, v2) ∈ E∨ (v2, v1) ∈ E; secondly,
every vertex has only finitely many predecessors. M(Σ, I) and R(Σ, I) repre-
sent the sets of all finite and infinite traces whose dependence graphs satisfy the
two conditions above. We denote finite traces with the letter t, and an infinite
trace with θ; the corresponding languages with T and Θ respectively. For a trace
t = [V,E, λ], define alph(t) := {a ∈ Σ | ∅ �= λ−1(a) ⊆ V }, and similarly for a
trace θ. For an infinite trace, define alphinf(θ) := {a ∈ Σ | |λ−1(a)| = ∞}.

For two traces t1, t2, t1 - t2 (or t1 	 t2) denotes that t1 is a (proper) prefix of
t2. We denote the prefix relation between words similarly. The least upper bound
of two finite traces, whenever it exists, denoted t1#t2 is the smallest trace s such
that t1 - s and t2 - s. Whenever it exists, one can similarly refer to the least
upper bound

⊔
S of a finite or an infinite set S of traces. The concatenation

of two traces is denoted as t1  t2. Note that for any t, θ the concatenation
t θ ∈ R(Σ, I). However, θ  t ∈ R(Σ, I) iff alphinf(θ)Ialph(t).

The canonical morphism Γ : Σ∗ →M(Σ, I) associates finite words with finite
traces, and the inverse mapping Γ−1 : M(Σ, I) → 2Σ

∗
associates finite traces

with equivalence classes of words. The morphism Γ can also be extended to
a mapping Γ : Σω → R(Σ, I). For a (finite or infinite) trace t, the set Γ−1(t)
represents the linearizations of t. Two words u, v are equivalent, denoted u ∼I v,
iff Γ (u) = Γ (v). We note that for finite traces the relation ∼I coincides with
the reflexive, transitive closure of the relation {(uabv, ubav) | u, v ∈ Σ∗ ∧ aIb}.
For a word w, define the set [w]∼I

:= Γ−1(Γ (w)). Finally, we say that a word
language K is trace-closed iff K = [K]∼I , where [K]∼I

:=
⋃

u∈K [u]∼I .

1 A relation R is irreflexive if for no x we have xRx.
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Definition 2. A trace language T ⊆ M(Σ, I) (resp. Θ ⊆ R(Σ, I)) is called
recognizable iff Γ−1(T ) (resp. Γ−1(Θ)) is a recognizable word language.

We denote the classes of recognizable languages of finite and infinite traces
with Rec(M(Σ, I)) and Rec(R(Σ, I)) respectively.

Asynchronous cellular automata have been introduced [2,4] as acceptors of
recognizable ω-trace languages. However, a global view of their (local) transition
relations yields a notion of automata that recognize trace-closed word languages.
Throughout this paper, we take this global view of asynchronous automata.
Formally, a deterministic asynchronous cellular automaton (DACA) over (Σ, I)
is a 4-tuple a = (

∏
a∈Σ Qa, (δa)a∈Σ , q0, F ), consisting of sets Qa of local states

for each letter a ∈ Σ, and where q0 ∈
∏

a∈Σ Qa, δa :
∏

b∈Da
Qb → Qa and

F ⊆
∏

a∈Σ Qa. Given a state q ∈
∏

a∈Σ Qa and a letter b ∈ Σ, the unique
b-successor δ(q, b) = q′ = (q′a)a∈Σ ∈

∏
a∈Σ Qa is given by q′b = δb((qa)a∈Db

)
and q′a = qa for all a �= b. That is, the only component that changes its state is
the component corresponding to b. Given a word u ∈ Σ∗ the run ρu of a on u
is given as usual by ρu(0) = q0 and ρu(i + 1) = δ(ρu(i), u[i]). This definition
extends naturally to infinite runs ρα on infinite α ∈ Σω. Define occa(ρ) of
(a finite or an infinite) run ρ to be the set {ρ(0)a, ρ(1)a, . . .} ⊆ Qa. Likewise,
infa(ρ) = {q ∈ Qa | ∃∞n : ρ(n)a = q}.

A deterministic asynchronous cellular Muller automaton [2] (a DACMA) is
an asynchronous automaton a = (

∏
a∈Σ Qa, (δa)a∈Σ , q0,F) with the acceptance

table F ⊆
∏

a∈Σ P(Qa), where P(Qa) denotes the power set of Qa. A DACMA
accepts α ∈ Σω if for some F = (Fa)a∈Σ ∈ F we have ∀a ∈ Σ : infa(ρα) = Fa.
A deterministic asynchronous cellular Büchi automaton (a DACBA) is a tuple
a = (

∏
a∈Σ Qa, (δa)a∈Σ , q0,F), F ⊆

∏
a∈Σ P(Qa). A DACBA accepts α ∈ Σω

if for some F = (Fa)a∈Σ ∈ F we have Fa ⊆ infa(ρα).
While it is known that the class of DACMAs characterize precisely the class

of recognizable ω-trace languages [2], no such correspondence is known for the
class of languages recognized by DACBAs [8].

A word automaton A = (Q,Σ, q0, δ) is called I-diamond if for every (a, b) ∈
I and every state q ∈ Q, δ(q, ab) = δ(q, ba). Every T ∈ Rec(M(Σ, I)) (resp.
Θ ∈ Rec(R(Σ, I))) is recognized by a DACA [3] (resp. a DACMA). Via their
global behaviors, asynchronous automata accept the corresponding trace-closed
languages, and in particular, every regular trace-closed language (resp. trace-
closed ω-regular language) is recognized by an I-diamond DFA (resp. I-diamond
Muller automaton). In fact for every trace-closed K ∈ REG, the minimal DFA
AK accepting K is I-diamond.

3 From Regular Trace Languages to ω-Regular Trace
Languages

We wish to extend the well-studied relations between regular and ω-regular
languages to trace languages. We first look at reachability languages and their
Boolean combinations, i.e. the weakly recognizable languages, and study how
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they can be obtained as a result of infinitary operations on regular trace lan-
guages. After this, we observe that the case of Büchi recognizability is not as
straightforward and provide a resolution.

3.1 Infinitary Extensions of Regular Trace Languages

In the classification hierarchy of ω-regular languages, reachability and safety
languages occupy the lowest levels. For trace languages we have the following.

Definition 3. Let T ∈ Rec(M(Σ, I)). The infinitary extension of T is the ω-
trace language given by ext(T ) := T  R(Σ, I).

Extrapolating the definition of E-automata for word languages, we define E-
automata for trace languages where a run is accepting if for each a ∈ Σ some
predefined local states from Qa are reached. Formally, a deterministic asyn-
chronous E-automaton (a DAEA) is a tuple a = (

∏
a∈Σ Qa, (δa)a∈Σ , q0,F) with

F ⊆
∏

a∈Σ P(Qa). The DAEA a accepts α ∈ Σω if for some F = (Fa)a∈Σ ∈ F
we have that occa(ρα) ∩ Fa �= ∅. Note that given a DACA A with L(A) = T , in
order to accept ext(T ) any DAEA a must infer the “global-state reachability” of
A by referring only to “local-state reachability” in a. A simple counterexample
suffices to show that this is a difficult task.

Proposition 4. There exist languages T ⊆ Rec(M(Σ, I)) such that ext(T ) is
not recognized by any DAEA.

A similar argument can be drawn against a possible definition of deterministic
asynchronous weak automata, defined in terms of SCCs that occur locally within
Qa for each a ∈ Σ. This means that the class of reachability languages resists
characterization in terms of deterministic asynchronous cellular automata. We
therefore concentrate on the classes of I-diamond automata and trace-closed
reachability languages in the hope of finding reasonable characterizations.

First we note that the definition of infinitary extensions of a trace-closed
languages is not sound with respect to trace equivalence of ω-words; i.e. if T ∈
Rec(M(Σ, I)) and K = Γ−1(T ), then, in general, ext(K) �= Γ−1(ext(T )).

Example 5. Let Σ = {a, b, c}, and bIc. Define K := [ab]∼I . Clearly K is trace-
closed and, moreover, acb /∈ K. Let T = Γ (K). Clearly abcω, acbcω, accbcω, . . .
are equivalent words since they induce the same infinite trace which belongs to
ext(T ). However, while abcω ∈ ext(K), ac+bcω � ext(K). �

Definition 6. Let K ⊆ Σ∗ be trace-closed. Define the I-suffix extended trace-
closed language (or I-suffix extension) of K as KI := K ∪

⋃
a∈Σ [Ka−1aI∗a ]∼I .

Due to the closure of Rec(M(Σ, I)) under concatenation and finite union [3],
we know that KI is regular whenever K is regular.

Proposition 7. For a language T ∈ Rec(M(Σ, I)), let K = Γ−1(T ), and let
KI be the I-suffix extension of K. Then it holds that Γ−1(ext(T )) = ext(KI).
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Remark 8. In general KI �= (KI)I . However, iterated I-suffix extensions pre-
serve the infinitary extension languages, i.e. ext(K) ⊆ ext(KI) = ext((KI)I) =
ext(((KI)I)I) . . . and so on. �

Proposition 7 provides us the basis for generating the class of weakly rec-
ognizable trace-closed languages corresponding to the recognizable subset of
BC(ext(M(Σ, I))). Henceforth, whenever we speak of the language Γ−1(ext(T ))
we refer to ext(Γ−1(T )I). Similarly, for a trace-closed language K we always
mean ext(KI) whenever we say ext(K).

Theorem 9. A trace-closed language L ⊆ Σω is recognized by an I-diamond
DWA iff L ∈ BC(ext(K)) for a set K ⊆ 2Σ

∗
of trace-closed regular languages.

3.2 Infinitary Limits of Regular Trace Languages

We now consider the infinitary limit operator. In the case of word languages, this
operator extends regular languages to the family ω-regular languages that are
DBA recognizable. This is not straight forward for traces, and here we seek an
effective characterization of languages T ∈ Rec(M(Σ, I)), such that Γ−1(lim(T ))
is recognized by an I-diamond DBA.

Definition 10 ([2]). Let T ∈ Rec(M(Σ, I)), the infinitary limit lim(T ) is the
ω-trace language containing all θ ∈ R(Σ, I) such that there exists a sequence
(ti)i∈�, ti ∈ T satisfying ti 	 ti+1 and

⊔
i∈� ti = θ.

It is open whether there exists any characterization for the class of languages
recognized by the family of DACBAs, however there do exist regular languages
T ⊆M(Σ, I) such that lim(T ) is not recognized by any DACBA [8]. In fact, even
when relying on trace-closed word languages and I-diamond automata, we can-
not hope to characterize these languages in the manner of infinitary extensions
as demonstrated previously in Section 3.1.

Example 11. Let Σ = {a, b}, and aIb. Define K := [(aa)+(bb)+]∼I as the trace-
closed language with even number of occurrences of a’s and b’s. The minimal
DFA accepting this language is shown in Figure 2. If T = Γ (K), then

lim(T ) = Θ :=

{
θ ∈ R(Σ, I)

∣∣∣∣∣∣
|θ|a even, |θ|b = ∞, or
|θ|a = ∞, |θ|b even, or
|θ|a = |θ|b = ∞

⎫⎬⎭
The trace-closed language L = Γ−1(Θ) consists of all infinite words α ∈ Σω

that satisfy the same conditions as θ ∈ Θ above. �

It is easy to verify that the DFA of Figure 2 does not accept L when equipped
with a Büchi acceptance condition. For instance, the automaton can loop forever
in states 4, 6, and 7, thereby witnessing infinitely many a’s and b’s, without ever
visiting state 8.
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Fig. 2. The minimal DFA recognizing language K of Example 11

Proposition 12. There exists no I-diamond deterministic parity automaton,
and therefore no I-diamond deterministic Büchi automaton, that recognizes the
language L ⊆ Σω as described in Example 11.

Corollary 13. There exists a family K of regular trace-closed languages, namely
K := {[(am)+(bn)+]∼I | m,n ≥ 2} over Σ = {a, b}, such that given T = Γ (K)
for any K ∈ K, there exists no I-diamond DBA recognizing Γ−1(lim(T )).

Definition 14. A trace-closed language K ⊆ Σ∗ is I-limit-stable (or simply
limit-stable) if lim(K) is also trace-closed. By extension, T ⊆ M(Σ, I) is limit-
stable if Γ−1(T ) is.

Given an automaton and its states p, q, we write p
u−→ q if some u ∈ Σ∗ leads

from p to q, and p
u
=⇒ q if a final state is also visited.

Definition 15. Given (Σ, I), let A = (Q,Σ, q0, δ, F ) be an I-diamond automa-

ton. A is F, I-cycle closed, if for all u ∼I v and all q we have q
u
=⇒ q iff q

v
=⇒ q.

We can now give an effective characterization of limit-stable languages.

Theorem 16. For any T ∈ Rec(M(Σ, I)) and K = Γ−1(T ), the following are
equivalent:

(a) K, and therefore T , is limit-stable.
(b) For all sequences (ti)i = t0 	 t1 	 t2 · · · ⊆ T and all sequences (ui)i with

ui ∈ Γ−1(ti), there exists a subsequence (uji)i and a sequence (vji)i of proper
prefixes vji 	 uji with |vji | < |vji+1 | and vji ∈ K for all i ∈ �.

(c) Any DFA A recognizing K is F, I-cycle closed.

Proof. (a) =⇒ (b): If (b) is false, then we may choose a sequence (ti)i of traces
in T with the property that for some sequence (ui)i of linearizations of (ti)i,
every subsequence (uni)i, and every sequence (vni)i of proper prefixes vni 	
uni , vni ∈ K, we have supi |vni | < ∞. Since |Σ| < ∞ we have that Σ∞ is a
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compact space. Hence (ui)i has a converging subsequence (umi)i. Because every
subsequence of (ui)i has the properties given in the previous sentence, so does
(umi)i. Let α = limi→∞ umi . Then α ∼I β for some β = x · y1 · y2 · · · with
x · y1 · · · yi ∈ Γ−1(tmi). Hence, β ∈ lim(L). But, by construction, α /∈ lim(K)
because for some n ∈ � no prefix of length > n of α is in K.

(b) =⇒ (a): Let θ =
⊔

i ti for traces ti ∈ T . We may assume that ti 	 t 	 ti+1

implies t /∈ T . Let α ∈ Γ−1(θ). Then we pick prefixes (wi)i of α, such that wi is
of minimal length with ti - Γ (wi). Consider the subsequence (t2i)i of (ti)i. Each
w2i+1 is a prefix of some linearization of t2(i+1), say u2(i+1). We apply (b) to the
sequence (t2i)i and get a sequence (v2i)i of proper prefixes of the u2i, such that
supi |v2i| = ∞ and v2i ∈ K. We now have to show that v2i is already a prefix of
w2i−1. Suppose not, i.e. w2i−1 	 v2i 	 u2i. Then this would give a trace t ∈ T
with t2i−1 	 t 	 t2i.

(a) =⇒ (c): Suppose A is not F, I-cycle closed. Then there exists q ∈ Q and

u ∼I v with q
u
=⇒ q but not q

v
=⇒ q. Since A is I-diamond, this means that the

run q
v−→ q exists, but does not visit a final state. Now pick x ∈ Σ∗ with q0

x−→ q.
Then α = x · uω ∈ lim(K) and β = x · vω /∈ lim(L). But clearly α ∼I β implies
that lim(K) is not trace-closed.

(c) =⇒ (a): Let α ∼I β and let α ∈ lim(K). Take A = AK and consider
extended transition profiles τw ⊆ Q×{0, 1}×Q for w ∈ Σ∗ defined by (p, 1, q) ∈
τw iff p

w
=⇒ q and (p, 0, q) ∈ τw iff p

w−→ q but not p
w
=⇒ q. Then we can factorize

α = uv0v1v2 · · · for finite words u, v0, v1, . . . with τu ·τvi = τu and τvi ·τvi+1 = τvi .
Likewise we can factorize β = u′v′0v

′
1 · · · .

Next, we observe that we find r ∈ � with Γ (u′v′0) - Γ (uv0 · · · vr). This
gives x ∈ Σ∗ with u′v′0 · x ∼I uv0 · · · vr. Conversely, there exists m ∈ �

with Γ (uv0 · · · vr+1) - Γ (u′v′0 · · · v′m) and therefore y ∈ Σ∗ with u′v′0 · · · v′m ∼I

uv0 · · · vrvr+1y ∼I u′v′0xvr+1y, which implies xvr+1y ∼I v′1 · · · v′m.

Notice that if q0
u−→ q and q0

u′
−→ q′, then (by trace equivalence and the fact

that A is I-diamond) we have q′
x−→ q. Likewise we have q

y−→ q′ and q′
xvr+1y−−−−→ q′.

Now we can apply (c) to see that q′
xvr+1y
====⇒ q′ iff q′

v′
1···v

′
m====⇒ q′. However, since

α ∈ lim(K), since τvr+1 = τvi for all i, and since q
vr+1
===⇒ q, we have q′

xvr+1y
====⇒ q′.

Hence, q′
v′
1···v

′
m====⇒ q′. Since furthermore τv′

1···v′
m

= τv′
i
, we have for all i, q′

v′
i=⇒
F

q′

whence β ∈ lim(K). 


Corollary 17. Let K = Γ−1(T ) for some T ∈ Rec(M(Σ, I)). Given the au-
tomaton AK , it is decidable in time O(|Q|2 · |Σ|(|Σ|+ log |Q|)) whether or not
K is limit-stable.

3.3 Characterization of Regular Infinitary Trace-Closed Languages

In [2], it was shown that for every recognizable ω-trace language Θ ⊆ R(Σ, I) the
corresponding ω-regular trace-closed language L = Γ−1(Θ) is recognized by an
I-diamond deterministic Muller automaton (DMA). On the other hand, it is not
the case that every I-diamond DMA recognizes a trace-closed language. Similar
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to the property of F, I-cycle closure for DBAs, we present a condition over the
acceptance component F of I-diamond DMAs to enable a characterization.

Given an automaton, two of its states p, q, and a word u ∈ Σ∗, we denote
with occ(p

u−→ q) the set of states occurring in the run from p to q over u.

Definition 18. Given (Σ, I), an I-diamond DMA A = (Q,Σ, q0, δ,F) is said
to be F , I-cycle closed if for all u, v ∈ Σ∗ such that u ∼I v, and all q ∈ Q, we
have occ(q

u−→ q) ∈ F iff occ(q
v−→ q) ∈ F .

F , I-cycle closure was mentioned in [8, Chapter 7] under a different term. We
obtain an independent proof of the following result by using an approach very
similar to that we used to show the equivalence Theorem 16:(a) ⇔ (c).

Theorem 19 (also cf. [8]). For any language Θ ⊆ R(Σ, I) of infinite traces, Θ
is recognized by a DACMA if and only if the trace-closed language L = Γ−1(Θ)
is recognized by an F , I-cycle closed DMA.

4 A Borel-Like Classification

Any I-diamond DWA recognizing a trace-closed language is trivially F, I-cycle
closed since for any word u ∈ Σ∗ and any q ∈ Q, it holds that q

u
=⇒ q if and if all

states in the path taken by u are accepting. This is because a path from q back
to itself also implies an SCC, and therefore any v ∼I u will also remain in the
same SCC which comprises solely of accepting states.

It is also straightforward that for a limit-stable language K, the complement
language lim(K) of K’s infinitary extension is also recognized by an F, I-cycle
closed deterministic co-Büchi automaton (DcBA). The following result is then a
consequence of Theorem 9, Theorem 16, and the definitions.

Theorem 20. A trace-closed language L ⊆ Σω is recognized by an I-diamond
DWA if and only if it is recognized by both an F, I-cycle closed DBA and an
F, I-cycle closed DcBA.

This result is in nice correspondence with the classical Borel level where
weakly recognizable languages are precisely those that lie in the intersection
of deterministic Büchi and deterministic co-Büchi recognizable languages. Fi-
nally, we now demonstrate that the class of limit-stable languages is expressive
enough to generate all ω-regular trace-closed languages.

In [2], it was shown using algebraic arguments that every recognizable ω-trace
language can be expressed as a finite Boolean combination of “restricted” lim-
languages. This result also extends to the corresponding trace-closed lineariza-
tion languages. Our characterization of limits of limit-stable languages allows for
a first automata-theoretic equivalence result.

Theorem 21. Let L be a trace-closed ω-language. L is ω-regular iff L is a finite
Boolean combination of infinitary limits of limit-stable languages, i.e. a finite
Boolean combination of F, I-cycle closed DBA recognizable languages.
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Proof. Recall the definition of DACMAs (cf. Sec. 2), and the result that every
recognizable ω-trace language is recognized by a DACMA [2].

Let L ⊆ Σω be recognizable, trace-closed. Pick a DACMA a recognizing L.
Recall that the global transition behavior of a gives an I-diamond DFA, and
we denote this DFA by A = (

∏
a∈Σ Qa, Σ, q0, δ). Given q ∈ Qa we obtain a

DBA Aq = (
∏

a∈Σ Qa, Σ, q0, δ, Fq), where Fq = {q} ×
∏

b�=a Qb. Note that Aq is

Fq, I-cycle closed, because for any q′ ∈
∏

a∈Σ Qa and all u ∼I v with q′
u−→ q′

and q′
v−→ q′ we have2 occa(q′

u−→ q′) = occa(q′
v−→ q′). Now:

L =
⋃

(Fa)a∈Σ∈F

⋂
a∈Σ

⋂
q∈Fa

L(Aq) ∩
⋂

q/∈Fa

L(Aq)




We therefore obtain a Borel-like classification for recognizable ω-trace lan-
guages where the lowest level is occupied by reachability and safety languages.
At the next level, we have infinitary limits of limit-stable languages and their
complements. And the Boolean combinations of these languages generate the
class of all recognizable ω-trace languages.

5 Conclusion

The infinitary extension operator ext and the infinitary limit operator lim offer
natural mechanisms for obtaining ω-languages by expressing reachability and
liveness conditions over regular languages. While in the case of word languages,
these ω-languages have well-known characterizations in terms of specific classes
of ω-automata, it is not easy to generalize these observations to trace languages.
Analogous characterizations of recognizable ω-trace languages in terms of classes
of deterministic asynchronous automata either do not exist (reachability condi-
tions) or impose a high technical complexity (liveness conditions).

The results of this paper demonstrate that a classification of recognizable ω-
trace languages in terms of trace-closed word languages is both meaningful and
efficient. Once in the realm of words, for any trace language T ∈ Rec(M(Σ, I))
we investigated the relationship between its infinitary extension ext(T ) and the
infinitary extension ext(K), where K = Γ−1(T ). We showed that any such K can
be modified to KI such that ext(KI) is also trace-closed and thus corresponds to
the linearizations of ext(T ). We also showed that Boolean combinations of trace-
closed languages Γ−1(ext(T )), T ∈ Rec(M(Σ, I)), are precisely the languages
recognized by the class of I-diamond DWAs. In a similar vein, a trace-closed
language K ∈ Rec(Σ∗) is limit-stable precisely when lim(K) is also trace-closed
and recognized by F, I-cycle closed DBA, which can be obtained from any DFA
recognizing K. Moreover, we showed that it is efficiently decidable whether or
not a trace-closed word language K, and therefore T = Γ (K), is limit-stable.

2 This can be proven by an induction on the number of swapping operations needed
to obtain v from u.
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It must be noted that if the independence relation I over the alphabet is
empty, then we obtain the well-known theorems for ω-regular word languages
as special cases of our results. In this manner, our characterizations have two
interesting consequences. First, that I-diamond DWA recognizable languages
are precisely those that are both I-diamond det. Büchi and I-diamond det. co-
Büchi recognizable. Second, that every recognizable language of infinite traces
can be expressed as a Boolean combination of languages lim(T ) for limit-stable
languages T . This, in turn, gives rise to a Borel-like classification hierarchy for
trace languages in terms of trace-closed word languages.

As a next step, we would like to investigate whether these classes of languages
can also be characterized in terms of logic. Such a characterization will allow for
a direct comparison with Borel levels. Also, in the manner of Landweber’s result
for ω-regular word languages in general, we would like to have the ability to
decide whether or not a given trace-closed word language is recognized by an
F, I-cycle closed deterministic Büchi automaton.

Acknowledgement. We would like to thank Wolfgang Thomas and Christof
Löding for encouragement and numerous fruitful discussions.
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Abstract. We study the parameterized space complexity of model-
checking first-order logic with a bounded number of variables. By re-
stricting the number of the quantifier alternations we obtain problems
complete for a natural hierarchy between parameterized logarithmic
space and FPT. We call this hierarchy the tree hierarchy, provide a
machine characterization, and link it to the recently introduced classes
PATH and TREE. We show that the lowest class PATH collapses to pa-
rameterized logarithmic space only if Savitch’s theorem can be improved.
Finally, we settle the complexity with respect to the tree-hierarchy of
finding short undirected paths and small undirected trees.

1 Introduction

The model-checking problem for first-order logic FO asks whether a given first-
order sentence ϕ holds true in a given relational structure A. The problem
is PSPACE-complete in general and even its restriction to primitive positive
sentences and two-element structures stays NP-hard. However, Vardi [24] showed
in 1995 that the problem is solvable in polynomial time when restricted to a
constant number of variables.

In database theory, a typical application of the model-checking problem, we
are asked to evaluate a relatively short query ϕ against a large database A.
Thus, it has repeatedly been argued in the literature (e.g. [23]), that measuring
in such situations the computational resources needed to solve the problem by
functions depending only on the length of the input (ϕ,A) is unsatisfactory. Pa-
rameterized complexity theory measures computational resources by functions
taking as an additional argument a parameter associated to the problem in-
stance. For the parameterized model-checking problem p-MC(FO) one takes
the length of ϕ as parameter and asks for algorithms running in fpt time, that
is, in time f (|ϕ|) · |A|O(1) for some computable function f . Sometimes, this re-
laxed tractability notion allows to translate (by an effective but often inefficient
procedure) the formula into a form, for which the model-checking can be solved
efficiently (see [14] for a survey). For example, algorithms exploiting Gaifman’s
locality theorem solve p-MC(FO) on structures of bounded local treewidth [12]
in fpt time, and on bounded degree graphs even in parameterized logarithmic

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 183–195, 2014.
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space [10]. Parameterized logarithmic space, para-L, relaxes logarithmic space
in much the same way as FPT relaxes polynomial time [4,10].

Note that Vardi’s result mentioned above implies that p-MC(FOs) can be
solved in fpt time, where FO

s denotes the class of first-order sentences using at
most s variables. The starting point of this paper is the question whether one
can solve p-MC(FOs) in parameterized logarithmic space. We show that both a
negative as well as a positive answer would imply certain breakthrough results
in classical complexity theory. We now describe our results in some more details.

A first guess could be that when s increases, so does the space complexity of
p-MC(FOs). But it turns out that there is a parameterized logarithmic space re-
duction from p-MC(FOs) to p-MC(FO2) (implicit in Theorem 8 below). On the
other hand, one can naturally stratify p-MC(FOs) into subproblems p-MC(Σs

1),
p-MC(Σs

2), . . . , according to the number of quantifier alternations allowed in
the input sentences. It leads to a hierarchy of classes TREE[t] consisting of the
problems reducible to p-MC(Σs

t ).
The lowest TREE[1] coincides with the class TREE introduced in [5]. The

class TREE stems from the complexity classification of homomorphism problems
under parameterized logarithmic space reductions, which refines Grohe’s famous
characterization of those homomorphism problems that are in FPT [13]. As
shown in [5], they are either in para-L, or PATH-complete, or TREE-complete.
The class PATH here had already been introduced by Elberfeld et al. [9].

All mentioned classes line up in the tree hierarchy:

para-L ⊆ PATH ⊆ TREE[1] ⊆ TREE[2] ⊆ · · · ⊆ TREE[∗] ⊆ FPT, (1)

with p-MC(FOs) being complete for TREE[∗].
The classes PATH and TREE deserve some special interest. They can be

viewed as parameterized analogues of NL and LOGCFL (cf. [25]) respectively,
and capture the complexity of some parameterized problems of central impor-
tance. For example,

p-DiPath

Instance: A directed graph G and k ∈ N.
Parameter: k.

Problem: Is there a directed path of length k in G?

is complete for PATH [9,5], and here we show (Proposition 17) that

p-DiTree

Instance: A directed graph G and a directed tree T.
Parameter: |T|.

Problem: Is there an embedding of T into G?

is complete for TREE. We always assume that paths are simple, i.e. without
repeated vertices. And by a directed tree we mean a directed graph obtained
from a tree by directing all edges away from the root.
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A negative answer to our question whether p-MC(FOs) ∈ para-L is equiv-
alent to para-L �= TREE[∗] and, in particular, implies L �= P.1 In contrast, a
positive answer would imply para-L = PATH, a hypothesis we study in some
detail here. Recall that Savitch’s seminal result from 1969 can be equivalently
stated as NL ⊆ DSPACE(log2 n). In Lipton’s words [18] “one of the biggest
embarrassments of complexity theory [. . .] is the fact that Savitch’s theorem has
not been improved [. . . ]. Nor has anyone proved that it is tight.” Hemaspaandra
et al. [16, Corollary 2.8] showed that Savitch’s theorem could be improved if
there were problems of sublogarithmic density o(logn) and Turing hard for NL.
We refer to [20] for more on this problem. Here we show:

Theorem 1. If para-L = PATH, then NL ⊆ DSPACE

(
o(log2 n)

)
.

The hypothesis para-L �= PATH is hence implied by the hypothesis that Savitch’s
Theorem is optimal, and in turn implies L �= NL (see the discussion before
Proposition 6).

Finally, we settle the complexity of two more problems with respect to the
tree-hierarchy. First we show that the undirected version

p-Path
Instance: An (undirected) graph G and k ∈ N.

Parameter: k.
Problem: Is there a path of length k in G?

of p-DiPath is in para-L. To the best of our knowledge this has not been known
before despite the considerable attention p-Path has gained in parameterized
complexity theory (e.g. [6,1,7]). It answers a question of [5]. Second, and in
contrast to the just mentioned result, we prove that the undirected version

p-Tree

Instance: An (undirected) graph G and a tree T.
Parameter: |T|.

Problem: Is there an embedding of T into G?

of p-DiTree stays TREE-complete.

2 Preliminaries

Structures and Logic. A vocabulary τ is a finite set of relation, function
and constant symbols. Relation and function symbols have an associated arity,
a positive natural number. A τ-term is a variable, a constant or of the form
f (t1, · · · , tr) where f is an r-ary function symbol and t1, . . . , tr are again τ -
terms. A τ-atom has the form t = t′ or R(t1, . . . , tr) where R is an r-ary relation
symbol and t, t′, t1, . . . , tr are τ -terms. τ-formulas are built from atoms by means
of ∧,∨,¬ and existential and universal quantification ∃x, ∀x. The vocabulary τ

1 In fact, general results from [10] imply that the hypotheses para-L �= FPT,
TREE[∗] �= FPT and L �= P are all equivalent.
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is called relational if it contains only relation symbols. A (finite) τ-structure A
consists in a finite nonempty set A, its universe, and for each r-ary relation
symbol R ∈ τ an interpretation RA ⊆ Ar and for each r-ary function symbol
f ∈ τ an interpretation fA : Ar → A and for each constant symbol c ∈ τ
an interpretation cA ∈ A. We view digraphs as {E}-structures G for a binary
relation symbol E such that EG is irreflexive. A graph is a digraph G with
symmetric EG. If G is a (di)graph, we refer to elements of G as vertices and to
elements of EG as (directed) edges.

Let τ be a relational vocabulary and A, B two τ -structures. A homomor-
phism from A to B is a function h : A→ B such that for every r-ary R ∈ τ we
have

(
h(a1), . . . , h(ar)

)
∈ RB whenever (a1, . . . , ar) ∈ RA. We understand that

there do not exist homomorphisms between structures interpreting different (re-
lational) vocabularies. As has become usual in our setting, we understand that
an embedding is an injective homomorphism.

Parameterized Complexity. A (classical) problem is a subset Q ⊆ {0, 1}∗,
where {0, 1}∗ is the set of finite binary strings; the length of a binary string x
is denoted by |x|. As model of computation we use Turing machines A with a
(read-only) input tape and several worktapes. For definiteness, let us agree that
a nondeterministic Turing machine has special states c∃, c0, c1 and can nonde-
terministically move from state c∃ to state cb with b ∈ {0, 1}, and we say A
existentially guesses the bit b. An alternating Turing machine additionally has a
state c∀ allowing to universally guess a bit b. For c : {0, 1}∗ → N, the machine
is said to use c many nondeterministic (co-nondeterministic) bits if for every
x ∈ {0, 1}∗ every run of A on x contains at most c(x) many configurations with
state c∃ (resp. c∀).

A parameterized problem is a pair (Q, κ) of a classical problem Q and a log-
arithmic space computable parameterization κ : {0, 1}∗ → N, mapping any
instance x ∈ {0, 1}∗ to its parameter κ(x) ∈ N. For a class A of structures we
consider the parameterized homomorphism problem

p-Hom(A)
Instance: A structure A ∈ A and a structure B.

Parameter: |A|.
Problem: Is there a homomorphism from A to B?

Here, |A| denotes the size of a reasonable encoding of A. Similarly, the pa-
rameterized embedding problem p-Emb(A) asks for an embedding instead of a
homomorphism.

The class FPT contains those parameterized problems (Q, κ) that can be
decided in fpt time (with respect to κ), i.e. in time f (κ(x)) · |x|O(1) for some
computable function f : N → N. The class para-L (para-NL) contains those
parameterized problems (Q, κ) such that Q is decided (accepted) by some (non-
deterministic) Turing machine A that runs in parameterized logarithmic space
f (κ(x)) + O(log |x|) for some computable f : N → N. A pl-reduction from
(Q, κ) to (Q′, κ′) is a reduction R : {0, 1}∗ → {0, 1}∗ from Q to Q′ such that
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κ′(R(x)) ≤ f (κ(x)) and |R(x)| ≤ f (κ(x)) · |x|O(1) for some computable f : N→ N,
and R is implicitly pl-computable, that is, the following problem is in para-L:

p-Bitgraph(R)
Instance: (x, i, b) with x ∈ {0, 1}∗, i ≥ 1, and b ∈ {0, 1}.

Parameter: κ(x).
Problem: Does R(x) have length |R(x)| ≥ i and ith bit b?

PATH and TREE. The class PATH (resp. TREE) contains those parame-
terized problems (Q, κ) such that Q is accepted by a nondeterministic Turing
machine A which runs in parameterized logarithmic space, and for some com-
putable function f : N→ N uses f (κ(x)) · log |x| many nondeterministic bits (and
additionally f (κ(x)) many co-nondeterministic bits).

The class PATH has been discovered by Elberfeld et al. [9]. It captures the
complexity of the fundamental problem:

p-Reachability

Instance: A directed graph G, two vertices s, t ∈ G, and k ∈ N.
Parameter: k.

Problem: Is there a (directed) path of length k from s to t in G?

Theorem 2 ([9,5]). p-Reachability is PATH-complete (under pl-reductions).

The class TREE has been introduced in [5] for the purpose of a classification
of the complexities of homomorphism problems up to pl-reductions:

Theorem 3 ([15,13,5]). Let A be a decidable class of relational structures of
bounded arity. Then

1. if the cores of A have bounded tree-depth, then p-Hom(A) ∈ para-L;
2. if the cores of A have unbounded tree-depth but bounded pathwidth, then

p-Hom(A) is PATH-complete;
3. if the cores of A have unbounded pathwidth but bounded treewidth, then

p-Hom(A) is TREE-complete;
4. if the cores of A have unbounded treewidth, then p-Hom(A) is not in FPT

unless W[1] = FPT.

Here, bounded arity means that there is a constant bounding the arities of
symbols interpreted in structures from A.2 Understanding in a similar way the
complexities of the embedding problems p-Emb(A) is wide open (see e.g. [11,
page 355]). We know:

Theorem 4 ([5]). For A as in Theorem 3 we have p-Emb(A) ∈ para-L in case
(1), p-Emb(A) ∈ PATH in case (2), and p-Emb(A) ∈ TREE in case (3).

Note p-Path and p-Tree are roughly the same as p-Emb(P) and p-Emb(T ),
where P and T denote the classes of paths and trees, respectively. The complex-
ities of these important problems are left open by Theorems 3 and 4.

2 We do not recall the notion of core nor the width notions here because we do not
need them.
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3 Model-Checking Bounded Variable First-Order Logic

The tree hierarchy. Following [5] we consider machines A with mixed nonde-
terminism. Additionally to the binary nondeterminism embodied in the states
c∃, c∀, c0, c1 from Section 2 they use jumps explained as follows. Recall our Tur-
ing machines have an input tape. During a computation on an input x of length
n := |x| the cells numbered 1 to n of the input tape contain the n bits of x. The
machine has an existential and a universal jump state j∃ resp. j∀. A successor
configuration in a jump state is obtained by changing the state to the initial
state and placing the input head on an arbitrary cell holding an input bit; the
machine is said to existentially resp. universally jump to the cell.

Observe that of the number of the cell to which the machine jumps can be
computed in logarithmic space by moving the input head stepwise to the left.
Intuitively, a jump should be thought as a guess of a number in [n] := {1, . . . , n}.
Acceptance is defined as usual for alternating machines. Call a configuration uni-
versal if it has state j∀ or c∀, and otherwise existential. The machine A accepts
x ∈ {0, 1}∗ if its initial configuration on x is accepting. The set of accepting con-
figurations is the smallest set that contains all accepting halting configurations,
that contains an existential configuration if it contains some of its successors,
and that contains a universal configuration if it contains all of its successors.

Each run of A on some input x contains a subsequence of jump configurations
(i.e. with state j∃ or j∀). For a natural number t ≥ 1 the run is t-alternating if this
subsequence consists in t blocks, the first consisting in existential configurations,
the second in universal configurations, and so on. The machine A is t-alternating
if for every input x ∈ {0, 1}∗ every run of A on x is t-alternating.

Let f : {0, 1}∗ → N. The machine A uses f jumps (bits) if for every input
x ∈ {0, 1}∗ every run of A on x contains at most f (x) many jump configurations
(resp. configurations with state c∃ or c∀).

As for a more general notation, note that every run of A on x contains a
sequence of nondeterministic configurations, i.e. with state in {j∃, j∀, c∃, c∀}.
The nondeterminism type of the run is the corresponding word over the alphabet
{j∃, j∀, c∃, c∀}. For example, being 2t-alternating means having nondeterminism
type in ({j∃, c∃, c∀}∗{j∀, c∃, c∀}∗)t. Here, we use regular expressions to denote
languages over {j∃, j∀, c∃, c∀}.

Definition 5. A parameterized problem (Q, κ) is in Tree[∗] if there are a com-
putable f : N→ N and a machine A with mixed nondeterminism that accepts Q,
runs in parameterized logarithmic space, and uses f ◦ κ jumps and f ◦ κ bits.
Furthermore, if A is t-alternating for some t ≥ 1, then (Q, κ) is in Tree[t].

The definition of TREE[t] is due to Hubie Chen.

It is straightforward to verify PATH ⊆ TREE = TREE[1] (cf. [5, Lem-
mas 4.5, 5.4]). Obviously, para-L ⊆ PATH ⊆ para-NL, and all classes are equal
if L = NL (see [10]). Conversely, Elberfeld et al. [9] observed that L = NL if
PATH = para-NL. In fact, using general results from [10] one can show:

Proposition 6. 1. para-NL ⊆ TREE[∗] if and only if NL = L.
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2. FPT ⊆ TREE[∗] if and only if P = L.

We shall need the following technical lemma.

Lemma 7 (Normalization). Let t ≥ 1. A parameterized problem (Q, κ) is in
Tree[t] if and only if there are a computable f : N → N and a t-alternating
machine A with mixed nondeterminism that accepts Q, runs in parameterized
logarithmic space (with respect to κ) and such that for all x ∈ {0, 1}∗ every run
of A on x has nondeterminism type:(

(j∃c∀)f (κ(x))(j∀c∃)f (κ(x))
)�t/2�

(j∃c∀)f (κ(x))·(t mod 2). (2)

Model-Checking. For s ∈ N let FO
s denote the class of (first-order) formulas

over a relational vocabulary containing at most s variables (free or bound). For
t ∈ N we define the classes Σt and Πt as follows. Both Σ0 and Π0 are the class
of quantifier free formulas; Σt+1 (resp. Πt+1) is the closure of Πt (resp. Σt) under
positive Boolean combinations and existential (resp. universal) quantification.
We use Σs

t and Πs
t to denote FO

s ∩ Σt and FO
s ∩ Πt respectively.

For a class of formulas Φ we consider the parameterized problem:

p-MC(Φ)
Instance: A sentence ϕ ∈ Φ and a structure A.

Parameter: |ϕ|.
Problem: A |= ϕ ?

It is well known [24] that for all s ∈ N the problem p-MC(FOs) is in FPT,
indeed, the underlying classical problem is in P.

Theorem 8. Let t ≥ 1 and s ≥ 2. Then p-MC(Σs
t ) is Tree[t]-complete.

Proof. The containment p-MC(Σs
t ) ∈ Tree[t] is straightforward. To show that

p-MC(Σ2
t) is hard for Tree[t], let (Q, κ) ∈ Tree[t] be given and choose a

computable f and a t-alternating machine B with f ◦κ jumps and f ◦κ bits that
accepts Q and runs in space f (κ(x)) + O(log |x|).

Given x ∈ {0, 1}∗ compute an upper bound s = f (κ(x)) + O(log |x|) on the
space needed by B on x; since κ is computable in logarithmic space, the number
f (κ(x)) and hence s can be computed in parameterized logarithmic space. We can
assume that B on x always halts after at most m = 2f (κ(x)) ·|x|O(1) steps. Note that
the binary representation of m can be computed in parameterized logarithmic
space. For two space s configurations c, c′ of B on x, we say that B reaches c′

from c if there is a length ≤ m computation of B leading from c to c′ that neither
passes through a nondeterministic configuration nor through a configuration of
space > s. We assume B reaches a nondeterministic configuration from the initial
configuration, i.e. the computation of B on x is not deterministic.

We define a structure A whose universe A comprises all
(
length O(s) binary

codes of
)

nondeterministic space s configurations of B on x. The structure A
interprets a binary relation symbol E, unary function symbols s0, s1 and unary
relation symbols S, F, J∃, J∀, C∃, C∀ as follows. A pair (c, c′) ∈ A2 is in EA if
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there exists a successor configuration c′′ of c such that B reaches c′ from c′′.
The symbol S is interpreted by SA = {cfirst} where cfirst is the (unique) first
configuration in A reached by B from the initial configuration of B on x. The
symbols J∃, J∀, C∃ and C∀ are interpreted by the sets of configurations in A
with states j∃, j∀, c∃ and c∀ respectively. Obviously these sets partition A. The
symbol F is interpreted by the set of those c ∈ A such that

– c ∈ CA
∃ ∪ JA

∃ and B reaches a space s accepting halting configuration from
at least one successor configuration of c.

– c ∈ CA
∀ ∪ JA

∀ and B reaches a space s accepting halting configuration from
all successor configurations of c.

The function symbols s0 and s1 are interpreted by any functions sA0 , sA1 : A→ A
such that for every c ∈ CA

∃ ∪ CA
∀ with {d ∈ A | (c, d) ∈ EA} �= ∅ we have:

{sA0 (c), sA1 (c)} = {d ∈ A | (c, d) ∈ EA}.

It is easy to check that A is implicitly pl-computable from x. For example, to
check whether a given pair (c, c′) ∈ A2 is in EA we simulate B starting from c
for at most m steps; if the simulation wants to visit a configuration of space > s
or a nondeterministic configuration �= c′, then we stop the simulation and reject.

For a word w of length |w| ≥ 1 over the alphabet {j∃, j∀, c∃, c∀} we define
a formula ϕw(x) with (free or bound) variables x, y as follows. We proceed by
induction on |w|. If |w| = 1, define ϕw(x) := Fx. For |w| ≥ 1 define:

ϕc∀w(x) := C∀x ∧
(
ϕw(s0(x)) ∧ ϕw(s1(x))

)
,

ϕc∃w(x) := C∃x ∧
(
ϕw(s0(x)) ∨ ϕw(s1(x))

)
,

ϕj∃w(x) := J∃x ∧ ∃y
(
E(x, y) ∧ ∃x(x = y ∧ ϕw(x))

)
,

ϕj∀w(x) := J∀x ∧ ∀y
(
¬E(x, y) ∨ ∀x(¬x = y ∨ ϕw(x))

)
.

Let |w| ≥ 1 and assume that c ∈ A is a configuration such that every run of B
on x starting at c has nondeterminism type w; then (recall the definition of an
accepting configuration from page 188)

c is accepting ⇐⇒ A |= ϕw(c). (3)

This follows by a straightforward induction on |w|. Now we look for A′ and ϕ′
w

with this property but in a relational vocabulary.
By the Normalization Lemma 7 we can assume that all runs of B on x have

nondeterminism type w of the form (2). For such a w we observe that ϕw(x)
is in Σ2

t and all its atomic subformulas containing some function symbol are of
the form E(sb(x), y), J∃(sb(x)), or J∀(sb(x)). For b ∈ {0, 1} we introduce binary
relation symbols Eb and unary relation symbols J∀b and J∃b, and then replace the
atomic subformulas E(sb(x), y), J∃(sb(x)), J∀(sb(x)) in ϕw(x) by Eb(x, y), J∃b(x),
J∀b(x) respectively. This defines the formula ϕ′

w(x). Note that ϕ′
w(x) ∈ Σ2

t .
To define A′ we expand A setting EA′

b := {(c, d) | (sAb (c), d) ∈ EA}, JA′
∃b :=

{c | sAb (c) ∈ JA
∃ }, and JA′

∀b := {c | sAb (c) ∈ JA
∀ }. Then we have for all c ∈ A:

A |= ϕw(c) ⇐⇒ A′ |= ϕ′
w(c).
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As the assumption of (3) is satisfied for cfirst, and cfirst is accepting if and only if
B accepts x, that is, if and only if x ∈ Q, we get

x ∈ Q⇐⇒ A′ |= ϕ′
w(cfirst)

Then x �→
(
∃x(Sx ∧ ϕ′

w(x)),A′
)

is a reduction as desired. �

Now, the following are derived by standard means.

Corollary 9. Let t′ > t ≥ 1. If Tree[t] is closed under complementation, then
Tree[t′] = Tree[t].

Corollary 10. Let s ≥ 2. Then p-MC(FOs) is Tree[∗]-complete. In particular,
TREE[∗] ⊆ FPT.

Remark 11. It is not known whether PATH or TREE are closed under comple-
mentation (cf. [5]). Their classical counterparts NL and LOGCFL are (cf. [2]),
but both proofs break under the severe restrictions on nondeterminism in the
parameterized setting.

4 PATH and Classical Complexity Theory

Savitch’s Theorem [22] is a milestone result linking nondeterministic space to
deterministic space. It states that the problem

Reachability

Instance: A directed graph G and two vertices s, t ∈ G.
Problem: Is there a (directed) path from s to t in G?

is in DSPACE(log2 n). It is a long-standing open problem whether this can be
improved. We prove the following stronger version of Theorem 1:

Theorem 12. Assume whether (G, s, t, k) ∈ p-Reachability can be decided
in deterministic space f (k) + O(log |G|) for a function f : N → N (which is not
necessarily computable). Then Reachability ∈ DSPACE

(
o(log2 n)

)
.

Proof. (Sketch) Let A be an algorithm deciding whether (G, s, t, k) ∈ p-Reacha-
bility in space f (k) + O(log |G|). We can assume that f (k) ≥ k for every k ∈ N.
Then let ι : N→ N be nondecreasing and unbounded such that

f (ι(n)) ≤ logn, and hence ι(n) ≤ logn (4)

for all n ∈ N. Note that we might not know how to compute ι(n). Now let
G = (G,EG) be a directed graph, s, t ∈ G, n := |G|, and k ≥ 2. We compute in
space O(log k + logn) the minimum � := �(k) such that

k� ≥ n− 1, and hence � = O(logn/ logk). (5)
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We define a sequence of directed graphs (Gk
i )i≤� with self-loops. Each Gk

i has

vertices Gk
i := G and a directed edge (u, v) ∈ EGk

i if there is a directed path

from u to v in G of length at most ki. In particular, EGk
0 is the reflexive closure

of EG; and by (5) there is a path from s to t in G if and only if there is an edge
from s to t in Gk

� . Furthermore, for every i ∈ [�] and u, v ∈ Gk
i = Gk

i−1 = G there

is an edge from u to v in Gk
i if and only if there is a path from u to v in Gk

i−1 of
length at most k. The following recursive algorithm C decides, given a directed

graph G, k, i ∈ N, and u, v ∈ G, whether (u, v) ∈ EGk
i .

1. if i = 0 then output whether
(
u = v or (u, v) ∈ EG

)
and return

2. simulate A on
(
Gk

i−1, u, v, k
)

3. if A queries “(u′, v′) ∈ EGk
i−1?” then call C(G, k, i−1, u′, v′).

For every k ≥ 2 let Ck be the algorithm which, given a directed graph G
and s, t ∈ G, first computes � = �(k) as in (5) and then simulates C(G, k, �, s, t).
Thus, Ck decides whether there is a path from s to t in G. We analyse its
space complexity. First, the depth of the recursion tree is �, as Ck recurses
on i = �, � − 1, . . . , 0. As usual, Ck has to maintain a stack of intermediate
configurations for the simulations of

A(Gk
� , , , k),A(Gk

�−1, , , k), . . . ,A(Gk
0 , , , k).

These are space f (k) + O(logn) configurations, so by (5) Ck runs in space

O
(

log k + logn + � ·
(
f (k) + logn

))
= O

(
log k +

f (k) · logn + log2 n

log k

)
.

By (4) this is o(log2 n) for k := ι(n). We would thus be done if we could com-
pute ι(n), say, in space O(logn). In particular, this can be ensured under the
hypothesis para-L = PATH of Theorem 1 which allows to choose f space-
constructible. The general case needs some additional efforts. It can be handled
using the strategy underlying Levin’s optimal inverters [17,8], namely to simulate
all C2,C3, . . . in a diagonal fashion. �

The trivial brute-force algorithm (cf. [5, Lemma 3.11]) decides p-MC(Σ2
1)(

indeed, the whole p-MC(FO)
)

in space O
(
|ϕ|2 · log |A|

)
. Assuming the opti-

mality of Savitch’s Theorem, this is space-optimal in the following sense:

Corollary 13. If Reachability /∈ DSPACE(o(log2 n)), then whether (ϕ,A) ∈
p-MC(Σ2

1) cannot be decided in deterministic space o
(
f (|ϕ|) · log |A|

)
for any f .

We close this section by characterizing the collapse of PATH to para-L simi-
larly as analogous characterizations of W[P] = FPT [3], or BPFPT = FPT [19].

Definition 14. Let c : N → N be a function. The class NL[c] contains all
classical problems Q that are accepted by some nondeterministic Turing machine
which uses c(|x|) many nondeterministic bits and runs in logarithmic space.

Theorem 15. para-L = PATH if and only if there exists a space-constructible
function c(n) = ω(log(n)) such that NL[c] = L.
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5 Embedding Undirected Paths and Trees

As mentioned in the Introduction it is known that (see [5, Theorem 4.7]):

Proposition 16. p-DiPath is PATH-complete.

A straightforward but somewhat tedious argument shows:

Proposition 17. p-DiTree is TREE-complete.

The following two results determine the complexities of the undirected ver-
sions of these two problems. Somewhat surprisingly, the complexity of the former
drops to para-L while the latter stays TREE-complete:

Theorem 18. p-Path ∈ para-L.

Theorem 19. p-Tree is TREE-complete.

Theorem 18 answers a question posed in [5, Section 7]. Its proof is based on
the well-known color-coding technique. Specifically, we shall use the following
lemma from [11, page 349]:

Lemma 20. For every sufficiently large n ∈ N, it holds that for all k ≤ n and
for every k-element subset X of [n], there exists a prime p < k2 · logn and q < p
such that the function hp,q : [n] → {0, . . . , k2 − 1} given by hp,q(m) := (q · m
mod p) mod k2 is injective on X.

Proof of Theorem 18. Let G =
(
[n], EG

)
be a graph and 0 < k < n. Assume n

is large enough for Lemma 20 to apply. Using its notation we set

F :=
{
g ◦ hp,q

∣∣∣ g : {0, . . . , (k + 1)2 − 1} → [k + 1] and q < p < (k + 1)2 logn
}
.

For f ∈ F let G(f ) be the graph obtained from G by deleting all edges
(u, v) ∈ EG with |f (u) − f (v)| �= 1. By Lemma 20 one readily verifies that G
contains a path of length k if and only if there are f ∈ F and u, v ∈ [n] such
that f (u) = 1, f (v) = k + 1, and there is a path from u to v in G(f ).

To decide whether (G, k) ∈ p-Path we cycle through all tuples (g, p, q, u, v)
with g : {0, . . . , (k + 1)2 − 1} → [k + 1], q < p < (k + 1)2 logn, and u, v ∈ [n],
and test whether g(hp,q(u)) = 1, g(hp,q(v)) = k + 1, and there is a path from u
to v in G(g ◦ hp,q). For every such test we simulate Reingold’s logarithmic space
algorithm [21] for Reachability on (undirected) graphs. The simulation relies
on the fact that G(g ◦ hp,q) is implicitly pl-computable from (g, p, q) and G. �
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An Algebraic Characterization
of Unary Two-Way Transducers

Christian Choffrut and Bruno Guillon

LIAFA, CNRS and Université Paris 7 Denis Diderot, France

Abstract. Two-way transducers are ordinary finite two-way automata
that are provided with a one-way write-only tape. They perform a word
to word transformation. Unlike one-way transducers, no characterization
of these objects as such exists so far except for the deterministic case. We
study the other particular case where the input and output alphabets are
both unary but when the transducer is not necessarily deterministic. This
yields a family which extends properly the rational relations in a very
natural manner. We show that deterministic two-way unary transducers
are no more powerful than one-way transducers.

1 Introduction

In the theory of words, two different terms are more or less indifferently used to
describe the same objects: transductions and binary relations. The former term
distinguishes an input and an output, even when the input does not uniquely
determine the output. In certain contexts it is a synonym for translation where
one source and one target are understood. The latter term is meant to suggest
pairs of words playing a symmetric role.

Transducers and two-tape automata are the devices that implement the trans-
ductions and relations respectively. The concept of multitape- and thus in par-
ticular two-tape automata was introduced by Rabin and Scott [8] and also by
Elgot and Mezei [3] almost fifty years ago. Most closure and structural properties
were published in the next couple of years. As an alternative to a definition via
automata it was shown that these relations were exactly the rational subsets of
the direct product of free monoids. On the other hand, transductions, which are
a generalization of (possibly partial) functions, is a more suitable term when the
intention is that the input preexist the output. The present work deals with two-
way transducers which are such a model of machine using two tapes. An input
tape is read-only and is scanned in both directions. An output tape is write-
only, initially empty and is explored in one direction only. The first mention of
two-way transducers is traditionally credited to Shepherdson.

Our purpose is to define a structural characterization of these relations in
the same way that the relations defined by multi-tape automata are precisely
the rational relations. However we limit our investigation to the case where the
input and output are words over a one letter alphabet, i.e., to the case where
they both belong to the free monoid a∗ generated by the unique letter a. Our

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 196–207, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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technique does not apply to non-unary alphabets. The input is written over one
tape and is delimited by a left and a right endmarker which prevents the reading
head to fall off the input. An output is written on a second write-only tape.

We now state our main result more precisely. Given a binary relation R ⊆
X × Y where X and Y are two arbitrary subsets and an element x ∈ X we put
R(x) = {y | (x, y) ∈ R}. Now assume that X and Y are two monoids and recall
that R is rational if it belongs to the smallest family of subsets of X × Y which
contains the finite subsets and which is closed under set union, componentwise
concatenation and Kleene star. We are able to prove the following

Theorem 1. A relation of the monoid a∗×a∗ is defined by a two-way transducer
if and only if it is a finite union of relations R satisfying the following condition:
there exist two rational relations S, T ⊆ a∗ × a∗ such that for all x ∈ a∗ we have

R(x) = S(x)T (x)∗

The relation {(an, akn) | n, k ≥ 0} is a simple example. It is of the previous
form, however it is not rational. Indeed, identifying a∗ with the additive monoid
of integers N this relation defines the relation “being a multiple of”. However
rational subsets of N are first-order definable in Presburger arithmetics, i.e.,
arithmetics with addition only.

We quickly review the few results which to the best of our knowledge are
published on two-way transducers when considering them for their own sake.
Engelfriet and Hoogeboom showed that a function on the free monoid is defined
by a deterministic two-way transducer if and only if it is the set of models of an
MSO formula, [4]. In [5] the authors show that given a transducer accepting a
function, it is decidable whether or not it is equivalent to a one-way transducer,
and when it is, an equivalent one-way transducer is computable.

We now turn to a short presentation of the content of our manuscript. In the
next section we recall all the basic concepts concerning rational subsets, rational
relations, the different types of automata and transducers. We also introduce
a few notions which are indispensable for guaranteeing rigorous proofs of the
results. Binary relations over free monoids can be viewed as functions of the first
component into the semiring of subsets of the second component. In section 3
we revisit the notion of formal series and show how binary relations can fit into
this setting. Important closure properties are established that are instrumental
for the proof of our result. The actual proof of our result is done in section 4 by
decomposing general two-way transductions into simpler ones. The conclusion
contains remarks on interesting consequences of our results that, were it not for
the space restriction, could be drawn using our approach.

2 Preliminaries

We assume the reader is familiar with language and automata theory. For the
sake of completeness we recall some notions and fix some notation.

An alphabet Σ is a finite set of symbol. The free monoid it generates is denoted
by Σ∗, and its elements are words over Σ including the empty word ε. The length



198 C. Choffrut and B. Guillon

of a word u is |u|. The concatenation of two words u and v is denoted uv. A
language is a set of words i.e., a subset of Σ∗.

Given a monoid M , the family of rational subsets denoted Rat(M) is the
least family F of subsets, containing the finite sets and closed under set union:
X, Y ∈ F ⇒ X ∪ Y ∈ F , set concatenation: X, Y ∈ F ⇒ XY ∈ F and Kleene
star: X ∈ F ⇒ X∗ ∈ F (recall that XY = {xy | x ∈ X, y ∈ Y } and that
X∗ = {1} ∪ X ∪ · · · X i · · · where 1 is the unit of the monoid). Here we are
mainly interested in the case where M is a free monoid or a direct product of
free monoids.

2.1 Finite Automata

We fix an alphabet Σ, called input alphabet, and let � and � be two special
symbols which do not belong to Σ, called respectively left and right endmarkers.
The set Σ ∪ {�, �} is denoted by Σ.

Definition 1. A finite automaton over Σ is a tuple (Q, q−, Q+, δ), where Q is
a finite set whose elements are called states, q− is the initial state, Q+ is the
set of accepting states and δ is the set of transitions, included in Q × Σ ×
{−1, 0, +1} × Q, with the restriction that it does not contain any transition of
the form (_, �, −1, _), (_, �, +1, _) and (q, �, _, _) for q ∈ Q+.

We recall the dynamics of the device. Given an input word u = u1 · · · un

on Σ we augment it to ũ = u0 · u1 · · · un · un+1 where u0 = � and un+1 = �.
The automaton starts the computation with the word ũ written on the tape,
the input head positioned on the leftmost cell scanning u0, and in state q−. At
each step, the automaton reads the input symbol a ∈ Σ scanned by the head,
and according to its current state q chooses a direction d and a state q′ with
(q, a, d, q′) ∈ δ. Then it enters the state q′ and moves its head according to d. The
automaton accepts the input word u if it eventually enters an accepting state at
the rightmost position. Because of the restrictions on transition set, the input
head cannot move out of ũ. The set of all words accepted by the automaton
is the language accepted. Two automata are equivalent if they accept the same
language.

Now we consider some restricted versions of finite automata. An automaton
is one-way (resp. restless) if no transition is of the form (_, _, −1, _) (resp.
(_, _, 0, _)). It is deterministic if for each pair (q, a) in Q × Σ, there exists at
most one pair (d, q′) in {−1, 0, +1} × Q with (q, a, d, q′) ∈ δ, in other words δ is
a (partial) function from Q × Σ into {−1, 0, +1} × Q. It is well-known that all
versions accept the same family, that of regular languages, [8,10].

2.2 Configurations, Runs, Traces

The description of the system at a fixed time is given by the current state and the
input head position: a configuration of A over a word u of length n is a pair (q, p)
where q is a state and p is a position of ũ i.e., an integer such that 0 ≤ p ≤ n+1.
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The initial configuration is the configuration (q−, 0). An accepting configuration
is any configuration (q, n + 1) with q ∈ Q+. We call border configuration, any
configuration whose position is equal to 0 or n + 1. We speak of left- and right-
border configurations respectively.

From the transition set follows the successor relation on configurations on u.
A pair of configurations ((q, p), (q′, p′)) belongs to the successor relation, written
(q, p) → (q′, p′), if the automaton may enter (q′, p′) from (q, p) in one step that
is, (q, up, (p′ − p), q′) belongs to δ. In particular (p′ − p) has to be equal to −1,
0 or 1. Observe that the relation depends on the input word. Due to the last
restriction on transition sets in Definition 1, an accepting configuration has no
successor.

Definition 2. A run of A on u is a sequence c0, c1, . . . , c� of successive config-
urations of A on u i.e., for each 0 ≤ i < �, ci → ci+1.

A run is accepting if it starts from the initial configuration and halts in some
accepting configuration.

An input word u is accepted by an automaton A if there exists an accepting
run of A on u.

The following notion is probably superfluous when dealing with automata but
it is instrumental when working with transducers.

Definition 3. The trace of a run r = (q0, p0), (q1, p1), . . . , (q�, p�) of A on u is
the sequence tr = t1, . . . , t� of transitions such that for each 0 < i ≤ �, ti is the
witness of (qi−1, pi−1) → (qi, pi) i.e., ti = (qi−1, upi−1 , pi − pi−1, qi).

We are now interested in some particular runs. We view the set of configura-
tions on u as an alphabet, the runs as words and the sets of runs as languages.
Similarly, traces of runs are viewed as words over the transition set of A. Con-
sequently, commas between successive letters in runs and traces are no longer
necessary.

Given two runs r = c0 · · · c� and r′ = d0 · · · dk with c� = d0 we consider their
composition r@r′ = c0 · · · c�d1 · · · dk by deleting d0. Its trace is the word trtr′

where tr and tr′ are the traces of r and r′. The composition is a partial operation
and is thus different from the concatenation.

A run r is central if none of its configurations is border. A hit is a run c0c1 · · · c�

such that c0 and c� are border configurations and c1 · · · c�−1 is central, i.e., it
is a run between two visits of endmarkers. Because the initial and accepting
configurations are border, every accepting run is a composition of finitely many
hits. We distinguish a hit by a pair of border points which are of the form (q, �)
or (q, �) for some q ∈ Q with the natural meaning. For two border points b0 and
b1, we speak of a b0 to b1 hit on u.

A loop of A on u is a run c0 . . . c� where c0 = c�. When the first configuration
(or its state component) is fixed and equal to c (resp. to q), we speak of a c-
(or q-) loop. Trivially if c is a configuration of A on u, and r and r′ are two
c-loops then r@r′ exists and is a c-loop. We consider a run reduced to a single
configuration as a trivial loop.
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We need a last particular type of run which is crucial in our work: a run of A
on u is loop-free if it contains no nontrivial loop. Loop-free runs have in particular
bounded length (depending on the length of u), since the set of configurations
on u is finite. The following technical result is more or less trivial but happens
to be useful.

Lemma 1. Every run on u can be factored into λ(c0)λ(c1) · · · λ(c�) such that
c0c1 · · · c� is a loop-free run on u and λ(c) is a c-loop.

2.3 Transducers

In this section, Σ and Δ are two fixed input and output alphabets. Transducers
are finite automata, which are provided with the ability to output symbols during
the computation. A natural way to define such machines, is to add a function
that maps every transition into some kind of output. At each step, the machine
performs a transition, and produces an output.

Definition 4. A transducer is a pair T = (A, φ) where A is an automaton over
Σ with transition set δ and where φ is an output function which is a mapping
of δ into the set of nonempty rational subsets of Δ∗.

Let u be a word in Σ∗ and let r be a run on u of trace t1 · · · t�. The word
v ∈ Δ∗ is produced by r if it belongs to the subset φ(t1) · · · φ(t�). We will also
use the notation ΦT (r) = φ(t1) · · · φ(t�) or simply Φ(r) when the transducer T is
understood.

A pair (u, v) ∈ Σ∗ × Δ∗ is accepted by the transducer if v is produced by an
accepting run on u. The relation accepted by T is the set of all such (u, v) and
is denoted by ||T ||.

The transducer T is deterministic, if A is deterministic and φ is single valued.
It is one-way (resp. restless) if A is. Each transducer is equivalent to a transducer
of some simpler forms:

Lemma 2. Let T be a transducer. There exists a computable equivalent trans-
ducer which is restless and whose output function maps δ into Δ ∪ {ε} (in par-
ticular δ is single valued).

It is well known that the family of relations accepted by one-way transducers
is the family of rational relations, e.g., [1, Theorem III. 7.1] [2,9].

Theorem 2. One-way transducers accept exactly the family of rational rela-
tions.

The family of rational relations is strictly smaller than the family of relations
accepted by general transducers, even when the alphabets are unary.

Example 1. The relation MULT =
⋃

k∈N MULTk =
{

(an, akn) | n, k ∈ N
}

is
accepted by the three-state two-way restless sweeping transducer:

({−→q , ←−q , q+} , ←−q , {q+} , δ), φ)
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where:
δ =

{
(−→q , a, +1, −→q ) (←−q , a, −1, ←−q ) (q+, a, +1, q+)
(−→q , �, −1, ←−q ) (←−q , �, +1, −→q ) (←−q , �, +1, q+)

}

and φ maps (−→q , a, +1, −→q ) to a and all other transitions to ε (see Figure 1).

←−q−→q q+

%, ε,+1 %, ε,+1

a, ε,−1!, ε,−1a, a,+1 a, ε,+1

Fig. 1. A two-way transducer accepting the relation MULT (an edge (q, q′) is labeled
(s, w, d) if φ maps the transition (q, s, d, q′) to w.)

This relation is not rational as observed in the introduction. It follows from
Theorem 2 that no one-way transducer accept it. As a consequence of Corollary 1,
no deterministic transducer can accept the relation.

3 Formal Series

Here K denotes a semiring of subsets of a free monoid such as Rat(Δ∗) or P(Δ∗).
Many of the properties stated below can be extended but this is not the place
to make a general theory.

3.1 General Definitions

A (formal) series over Σ∗ with coefficients in K is a function from Σ∗ to K. The
set of series over Σ∗ with coefficients in K is denoted by K 〈〈Σ∗〉〉. For a series
s in K 〈〈Σ∗〉〉 and a given element u ∈ Σ∗, the image of u by s is denoted by
〈s, u〉. A series is a polynomial if there are finitely many words with non-zero
image, i.e., the set {u | 〈s, u〉 �= 0} is finite.

The set K 〈〈Σ∗〉〉 is provided with the usual binary operations of restriction
to a subset (〈sX , u〉 = 〈s, u〉 if u ∈ X and = 0 otherwise), sum (〈s + t, u〉 =
〈s, u〉 + 〈t, u〉), Cauchy product (〈st, u〉 =

∑
u=vw 〈s, v〉 〈t, w〉) and Kleene star

(〈s∗, u〉 =
∑

u=u1···un,n≥0 〈s, u1〉 · · · 〈s, un〉). We need two operations which we
called Hadamard- or simply H-operations. The first one is usual the second hap-
pens to be new.

– the Hadamard product (or H-product): sH t : ∀u ∈ Σ∗, 〈s H t, u〉 = 〈s, u〉 〈t, u〉
– the Hadamard star (or H-star): sH� : ∀u ∈ Σ∗,

〈
sH�, u

〉
= 〈s, u〉∗.

Convention. We can take advantage of the properties of formal series in order
to study the relations R ⊆ Σ∗×Δ∗. Such a relation can be viewed as the function
x → fR(x) = {y | (x, y) ∈ R} of Σ∗ into the power set of Δ∗, or equivalently as a
formal series with coefficients in the semiring K = P(Δ∗). We will thus identify
R with fR by speaking of the formal series associated with the relation. In the
same spirit we will speak of formal series accepted by a transducer.
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3.2 Rational Series and Beyond

The family of rational series over the serimiring K, denoted RatK 〈〈Σ∗〉〉, is
the smallest family of series over Σ∗ with coefficients in the semiring K which
contains the polynomials and which is closed under sum, Cauchy product and
star. The following theorem is a reformulation of Theorem 2.

Theorem 3. The family of series in P(Δ∗)〈〈Σ∗〉〉 accepted by one way trans-
ducers is equal to the family of rational series over Σ∗ with coefficients in
Rat(Δ∗).

The family RatK 〈〈Σ∗〉〉 is not closed under H-operations for an arbitray semiring.
However when K is commutative the following holds, [9, Thm III. 3.1]

Theorem 4. If K is commutative then RatK 〈〈Σ∗〉〉 is closed under H-product.

The H-star of a rational series is not necessarily rational, even when Σ is unary.
Therefore the following defines a broader family.

Definition 5. The family of Hadamard series, denoted HadK 〈〈Σ∗〉〉 is the set
of finite sums of Hadamard products of the form α H βH� with α, β ∈ RatK 〈〈Σ∗〉〉.

This family enjoys nice closure properties whose routine proof is left to the
reader.

Proposition 1. If K is commutative, the family HadK 〈〈Σ∗〉〉 is closed under
finite sum, H-product and H-star.

The following is general but provides, when restricted to the case where Δ is
unary, one direction of our main theorem 5.

Proposition 2. If s and t are series accepted by two-way transducers, so are
the series the s H t and sH�.

4 Unary Two-Way Transductions

From now on we concentrate on unary two-way transducers, i.e., on those with
input and output alphabets reduced to the letter a and characterize the relations
they define. We fix a transducer (A, φ).

The following is a reformulation of Theorem 1 in terms of series (remember
that binary relations in a∗ × a∗ are identified with formal series in P(a∗) 〈〈a∗〉〉
as observed by the convention of paragraph 3.1).

Theorem 5. Let K denote the semiring Rat(a∗). A series s ∈ P(a∗) 〈〈a∗〉〉 is
accepted by some two-way finite transducer if and only if s ∈ HadK 〈〈a∗〉〉, i.e.,
there exist a finite collection of rational series αi, βi ∈ RatK 〈〈a∗〉〉 such that:

s =
∑

i

αi H βH�
i
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The fact that the condition is sufficient is a direct consequence of Theorem
3 and Proposition 2. The other direction is more involved. We proceed as fol-
lows. We first show that if the transducer performs a unique hit, i.e., it never
visits endmarkers except at the beginning and at the end of the computation,
it defines a rational relation. Then we use the closure properties of paragraph
3.2 to prove that the full binary relation with the possibility of performing an
arbitrary number of hits, belongs to HadK 〈〈a∗〉〉.

4.1 One-Way Simulation of Hits

We fix two border points b0 and b1 and we consider the set of pairs (u, v) such
that v is produced by some b0 to b1 hit on u. The idea of the proof can be
explained as follows where some technicalities are ignored.

We adapt Lemma 1 by saying that a b0 to b1 hit over an input u is of the
form c0λ(c1) · · · λ(c�−1)c� where c0c1 · · · c� is a loop-free b0 to b1 hit and λ(ci) is
a central ci-loop for i = 1, . . . , � − 1. Then the set produced on all possible b0 to
b1 hits on u is the union over all loop-free b0 to b1 hits c0c1 · · · c� of the following
subset (recall the notation of Definition 4).:

Φ(c0c1)Φ(λ(c1)) · · · Φ(λ(c�−1))Φ(c�−1c�) (1)

Since the output alphabet is unary, the above terms commute and may be
rewritten as as many products as there are positions in u. For each position
0 ≤ p ≤ n + 1 we group 1) the Φ(λ(ci)) around all the configurations in position
p and 2) all Φ(cici+1) involving a transition occurring at position p. The former
product leads us to investigate all outputs of central loops and the latter product
leads us to adapt the notion of crossing sequences for loop free runs.

Loop-Free Hits. We adapt the traditional notion of crossing sequences, e.g.,
[6, pages 36-42], to our purpose.

Fix a position 0 ≤ p ≤ n on the input u. The crossing sequence of a run at
position p is the record, in the chronological order, of all the destination states
in the transition performed between positions p and p + 1, i.e., the states at
position p+1 in a left to right move and the states at position p in a right to left
move, see Figure 2. The following is general and does not assume any condition
on the run:

Definition 6. Let r = ((qi, pi))0≤i≤� be a run over some input word u of length
n and let 0 ≤ p ≤ n be a position on u. The crossing sequence of r at p, denoted
Xr(p), is the ordered state sequence extracted from the sequence q0, . . . , q� as
follows: for each 1 ≤ i ≤ �, qi is selected if and only if:

(
pi−1 = p and pi = p + 1

)
or

(
pi−1 = p + 1 and pi = p

)
In the run r there exist two types of states, those which are entered from the
left and those which are entered from the right. These two types alternate.
Which type occurs first depends on whether the initial border is left or right.
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•
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•
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•
y2

������� φ1 ∪ φ2

Fig. 2. Two different runs producing the same crossing sequence

In particular, if r is an accepting run, then for each position p, the first and
last state of Xr(p) correspond to left to right moves. If r is loop-free, then for
all crossing sequences q = q0, q1, . . . and for all integers 0 ≤ i < j of the same
parity we have qi �= qj .

The following technical result implies that the set of all pairs (u, v) ∈ Σ∗ ×Δ∗

such that v is the output of a b0 to b1 loop-free hit on u is a rational relation. It
works because the output alphabet is unary.

Lemma 3. Given a restless transducer T = (A, φ) and two border points b0 and
b1 of A, there exists a computable one-way transducer T ′ = (A′, φ′) satisfying
the following condition:

Let r = c0 · · · c� be a b0 and b1 loop free hit on u in A, let v ∈ ΦT (r) and let
r′ = Xr(0), Xr(1) . . . , Xr(|u|) the associated crossing sequences. Then r′ is an
accepting run in T ′ with v ∈ ΦT ′(r′).

Conversely, if r′ = r′
0, . . . , r′

|u| is a run on u in T ′ with v ∈ ΦT ′(r′), then there
exists a b0 and b1 loop free hit r on u in T with crossing sequences r′ such that
v ∈ ΦT (r).

Computing the Outputs of Central Loops. As said previously we now turn
to the investigation of central loops. We show that there are only finitely many
different sets of words produced by central loops. Intuitively for an initial config-
uration (q, p) the set of outputs does not depend on p provided it is sufficiently
far away from each endmarker.

Given a central loop r = (q0, p0), . . . , (qk, pk), and two elements � and r in
N∪ {∞}, we say that r is (�, r)-limited if for all 0 ≤ i ≤ k we have p0 − � ≤ pi ≤
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p0+r. Observe that if �′ ≥ � and r′ ≥ r, every (�, r)-limited loop is (�′, r′)-limited.
Any central loop is (∞, ∞)-limited.

We denote by O(q)
�,r the union of all Φ(r) where r is a (�, r)-limited q-central

loop (observe that it does not depend on the initial position since no endmarker
is visited). In particular, for each �′ ≥ � and each r′ ≥ r, O(q)

�,r is included in O(q)
�′,r′ .

The language O(q)
∞,∞ is the set of all outputs of q-central loops. For any �, r and q,

O(q)
�,r contains in particular the empty word ε, since for any central configuration

(q, p), the run reduced to (q, p) is a trivial central-loop. The following shows
that each language O(q)

�,r is rational via Parikh’s Theorem [7] and that there exist
finitly many different such languages:

Lemma 4. Let (A, φ) be a transducer. For any � and r in N ∪ {∞}, and any
state q of A there exists a computable one-way automaton accepting the language
O(q)

�,r . It follows that the language is rational.
There exists a computable N , such that for each r ≥ N , each � ≥ N and each

state q, O(q)
�,r = O(q)

N,N = O(q)
∞,∞.

Putting Things Together. We are now able to simulate all hits:

Proposition 3. Given two border points b0 and b1, we can compute a one-way
transducer accepting the set of pairs (u, v) such that v is produced by a b0 to b1
hit on u. The relation accepted is thus rational.

Proof. Let T = (A, φ) be a transducer that we suppose thanks to Lemma 2
restless. We denote by N + 1 the integer computed from Lemma 4.

We define the following two one-way restless automata which share the same
state set QB = {0, 1, . . . , N, ∞}. The first one BL = (QB, 0, QB, δL) counts the
distance to the left endmarker up to N . The second one BR = (QB, ∞, {0} , δB)
guesses whether the distance to the right endmarker is greater than N or is equal
to some integer less than or equal to N and checks this guess by counting down
until reaching the right endmarker. The transition sets δL and δR are defined as
follows with the convention N + 1 = ∞ + 1 = ∞ and ∞ − 1 = ∞

– δL = {(q, s, +1, q + 1)} where s ∈ Σ
– δR = {(∞, �, +1, i) | i ∈ QB} ∪ {(∞, a, +1, N)} ∪ {(q, a, +1, q − 1) | q �= 0}
We build a one-way restless transducer (A′, φ′) from T as in Lemma 3. Because

A′, BL and BR are one-way restless, we can take the product automaton A′′ =
A′ × BL × BR. Let us now consider a transition t = ((q, �, r), a, +1, (q′, �′, r′))
of A′′ performed at position p. The states appearing in q (resp. q′) correspond
to states entered by T in position p − 1 or p (resp. p or p + 1). In any case,
this difference can be determined from the initial border point and the parity
of the index of the state in the crossing sequence. In particular, we may extract
from both crossing sequences q and q′ the set St of states that are entered by
T in position p. Hence, we can add for each such state q, the possible output of
(�, r)-limited central q-loops. Formally, the image of t by φ′′ is defined by:
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φ′′(t) = φ′(t)

⎛
⎝ ⋃

q∈St

O(q)
�,r

⎞
⎠

By construction, the one-way restless transducer (A′′, φ′′) simulates any b0 to b1
hit of T . Hence, the relation of pairs (u, v) such that v is produced by some b0
to b1 hit of T on u is rational. ��

4.2 Unlimited Number Hits

We prove Theorem 5 by considering an unlimited number of hits. We show that
the series associated with the relation defined by a two-way transducer can be
expressed via a transitive closure of a square matrix with entries in HadK 〈〈Σ∗〉〉.
More precisely, if a run r is accepting, then there exists a sequence of composable
hits r0, r1, . . . , rk such that r = r0@r1@ . . . @rk.

We first adapt the matrix multiplication to the Hadamard product. Given an
integer N and two matrices X, Y ∈ (K 〈〈Σ∗〉〉)N×N we define their H-product
as the matrix Z = X H Y ∈ (K 〈〈Σ∗〉〉)N×N where

Zi,j =
N∑

k=1
Xi,k HYk,j

Also, the H-star of the matrix X is defined as the infinite sum

(X)H� =
∞∑

k=0

k times︷ ︸︸ ︷
X H · · · H X

Proposition 4. If the matrix X is in (HadK 〈〈Σ∗〉〉)N×N then so is (X)H�.

Proof. Let Ξ be the alphabet consisting of the letters xi,j for 1 ≤ i, j ≤ N and
let X be the N ×N -matrix whose (i, j)-entry is the symbol xi,j . Each (i, j)-entry
of X ∗ is a rational subset over the alphabet Ξ: (X ∗)i,j ∈ Rat(Ξ∗). Consider the
morphism h : Ξ∗ → K 〈〈M〉〉 defined by h(xi,j) = Xi,j . Then h((X ∗)i,j) is an
expression involving the entries of X and the three operations of set union, H-
sum and H-product. We conclude by Proposition 1. ��
Proof (Theorem 5). In one direction this is an immediate consequence of the fact
that the family of series associated with a two-way transducer is closed under
sum, Hadamard product and Hadamard star, see Proposition 2.

It remains to prove the converse. Let T be transducer. Consider a matrix X
whose rows and columns are indexed by the pairs Q × {�, �} of border points.
For all pairs of border points b0 and b1, its (b0, b1) entry is, by Proposition 3, the
rational series associated to b0 to b1 hits. The series accepted by T is the sum
of the entries of XH� in positions ((q−, �), (q, �)) for q ∈ Q+. Since all rational
series are also Hadamard series, we conclude by Proposition 4. ��
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5 Conclusion

Our main result of Theorem 1 gives a characterization of relations (series) ac-
cepted by two-way unary transducers. A key point is that crossing sequences
of loop-free runs have bounded size. In consequence, any loop-free run can be
simulated by a one-way transducer as done in Lemma 3. We point that this
simulation does not require any hypothesis on the size of the input alphabet.

We fix a transducer T = (A, φ) accepting a relation R ⊆ Σ∗ × Γ ∗, with
|Γ | = 1. If A is deterministic or unambiguous (i.e., for each input word u, there
exists at most one accepting run of A on u), then every accepting run is loop-
free. Therefore, by Lemma 3, T is equivalent to some constructible one-way
transducer. Another interesting case is when R is a function. Then for each u,
all the accepting runs on u produce the same output word. Hence, considering
only loop-free runs preserves the acceptance of T .
Corollary 1. Let R ⊆ Σ × Δ with |Δ| = 1 be accepted by some two-way trans-
ducer T = (A, φ). If A is unambiguous or if R is a function then R is rational.

A rational uniformization of a relation R ⊆ Σ∗×Γ ∗, is a rational function F ⊆
R, such that the domain of F is equal to the one of R. Under the hypothesis |Γ | =
1, it is possible to build, from Lemma 3, a one-way transducer accepting such a
F . Since the transducer obtained from Lemma 3 is not necessarily functional, the
construction involves a result of Eilenberg [2, Prop. IX 8. 2] solving the rational
uniformization problem for rational relation.

Corollary 2. There exists a computable one-way transducer accepting a rational
uniformization of R.

As a consequence of Proposition 3, in the case of unary transducers, the change
of direction of the input head can be restricted to occur at the endmarkers only.
In the literature such machines are known as sweeping machines.
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Abstract. Max-plus automata (over N ∪ {−∞}) are finite devices that
map input words to non-negative integers or −∞. In this paper we
present (a) an algorithm allowing to compute the asymptotic behaviour
of max-plus automata, and (b) an application of this technique to the
evaluation of the computational time complexity of programs.

1 Introduction

The contributions of this paper are two-fold. First, we provide an algorithm that
given a function computed by a max-plus automaton over N ∪ {−∞} computes
the asymptotic minimal behaviour of the automaton as a function of the length of
the input. We then apply this result for characterizing the asymptotic complexity
bounds that can be obtained by the size-change abstraction, which is a widely
used technique in automated termination analysis. These two contributions are
of independent interest. Let us introduce them successively.

Weighted Automata, and the Main Theorem

Max-plus automata belong to the wider family of weighted automata, as in-
troduced by Schützenberger [8]. The principle of weighted automata is to con-
sider non-deterministic automata that produce values in a semiring (S,⊕,⊗, 0, 1)
(i.e., a ring in which the addition is not required to have an inverse). Weighted
automata interpret the non-determinism of the automaton as the sum in the
semiring and the sequence as the product. Standard non deterministic automata
correspond to the case of the Boolean semiring ({0, 1},∨,∧, 0, 1). Probabilis-
tic automata correspond to the case ([0, 1],+,×, 0, 1) (with a stochasticity re-
striction). Distance automata (or min-plus automata) correspond to the case
(N ∪ {∞},min,+, 0,∞}.

In this paper, we concentrate our attention to max-plus automata, which
correspond to the semiring (N ∪ {−∞},max,+, 0,−∞). Such automata have
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transition with weights in N. Over a given input, they output the maximum
over all accepting runs of the sum of the weights of transitions (and −∞ if there
is no accepting run). Such automata are natural candidates for modelling worst
case behaviours of systems, as shown in the subsequent application. Remark that
max-plus automata share a lot of common points with min-plus automata, and
indeed, many results for max-plus automata can be converted into results for
min-plus automata and vice-versa1.

We seek to analyse the asymptotic behaviour of such automata. More pre-
cisely, fix a max-plus automaton computing a function f from the words in A∗

to N ∪ {−∞}. We study the asymptotic evolution of c(n) defined for n ∈ N as:

c(n) = inf{f(w) : w ∈ A∗, |w| ≥ n} .

We show that this quantity either is −∞ for all n, or it is in Θ(nβ) for a com-
putable rational β ∈ [0, 1]. Our main theorem, Theorem 2, expresses this prop-
erty in a dual, yet equivalent, way as the asymptotic behaviour of the longest
word that happens to have a value smaller than n.

From a logical perspective, it has to do with a quantifier alternation since the
quantity studied is computed as a minimum (inf) of a function which, itself, is
defined as a maximum (as a max-plus-automaton). In particular, in our case, it
is immediately PSPACE hard (using reduction of the universality problem for
non-deterministic automata). Such quantifier alternations are often even more
complex when weighted automata are considered. For instance, a natural ques-
tion involving such an alternation is to test whether f(u) < |u| for some u, and
it turns out to be undecidable [5]. On the other side, the boundedness question
for min-plus automata (determining if there exists n such that f(u) ≤ n for
all words u), which also has a similar quantifier alternation flavour, turns out
to be decidable [4]. The work of Simon [10] has the most similarities with our
contribution. It shows that, for a min-plus automaton computing a function g,
the dual quantity d(n) = sup{g(w) : w ∈ A∗, |w| ≤ n} has a behaviour that is
asymptotically between n1/(k+1) and n1/k for some non-negative integer k. Our
result differs in two ways. First, the results for min-plus automata and for max-
plus automata cannot be converted directly into results over the other form of
automata. Second, our main result is significantly more precise since it provides
the exact asymptotic coefficient. The proof of this theorem is the subject of the
first part of this paper.

Program Analysis and Size Change Abstraction

The second contribution in this work consists in applying Theorem 2 for char-
acterizing the asymptotic complexity bounds that can be obtained by the size-
change abstraction, which is a popular program abstraction for automated
1 Indeed, if we allow negative weights, then negating all weights turns max-plus au-

tomata into min-plus automata and vice-versa, while preserving the semantics. How-
ever, such kind of reductions can get more complicated, if not impossible, when
negative values are forbidden, as it is in our case.
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termination analysis (e.g. [6,7]). This question was the primary reason for this
investigation.

We start with definitions needed to precisely state our contribution. We fix
some finite set of size-change variables Var . We denote by Var ′ the set of primed
versions of the variables Var . A size-change predicate (SCP) is a formula x % y′

with x, y ∈ Var , where % is either > or ≥. A size-change transition (SCT) T is
a set of SCPs. A size-change system (SCS) S is a set of SCTs.

We define the semantics of size-change systems by valuations σ : Var → [0..N ]
of the size-change variables to natural numbers in the interval [0..N ], where N
is a (symbolic) natural number. We write σ, τ ′ |= x%y′ for two valuations σ, τ , if
σ(x) % τ(y) holds over the natural numbers. We write σ, τ ′ |= T , if σ, τ ′ |= x % y′

holds for all x%y′ ∈ T . A trace of an SCS S is a sequence σ1
T1−→ σ2

T2−→ · · · such
that Ti ∈ S and σi, σ

′
i+1 |= Ti for all i. The length of a trace is the number of

SCTs that the trace uses, counting multiple SCTs multiple times. An SCS S is
terminating, if S does not have a trace of infinite length.

We note that in earlier papers, e.g. [6], the definition of a size-change system
includes a control flow graph that restricts the set of possible traces. For the
ease of development we restrain from adding control structure but our result
also holds when we add control structure. Moreover, earlier papers, e.g. [6],
consider SCSs semantics over the natural numbers, i.e., valuations σ : Var → N.
In contrast, we restrict values to the interval [0, N ] in order to guarantee that the
length of traces is bounded for terminating SCSs: no valuation σ ∈ Var → [0..N ]
can appear twice in a trace (otherwise we would have a cycle, which could be
pumped to an infinite trace); thus the length of traces is bounded by (N + 1)k

for SCSs with k variables.
Problem Statement: Our goal is to determine a function hS : N→ N such

that the length of the longest trace of a terminating SCS S is of asymptotic
order Θ(hS(N)). This question has also been of interest in a recent report [1],
which claims that SCSs always have a polynomial bound, i.e., a bound Θ(Nk)
for some k ∈ N. However, this is not the case (see example below). We believe
that the development in [1] either contains a gap or that the results of [1] have
to be stated differently.

Example 1. The length of the longest trace of the SCS S = {T1, T2, T3} with
T1 = {x1 > x′

1, x2 ≥ x′
2, x3 > x′

3, x4 ≥ x′
4},

T2 = {x1 > x′
1, x2 ≥ x′

2, x2 ≥ x′
3, x2 > x′

4, x3 > x′
4, x4 > x′

4} and
T3 = {x2 > x′

2, x2 > x′
3, x2 > x′

4, x3 > x′
2, x3 > x′

3, x3 > x′
4, x4 > x′

2, x4 >

x′
3, x4 > x′

4} is of asymptotic order Θ(N
3
2 ). For comparison, [1] considers SCSs

bounded in terms of the initial state; we can make S bounded in terms of the
initial state by adding a new variable xN to S, and adding the constraints {xN ≥
x′
N , xN ≥ x′

1, xN ≥ x′
2, xN ≥ x′

3, xN ≥ x′
4} to each of T1, T2, T3.

The asymptotic order Θ(N
3
2 ) of S can be established by Theorem 1 stated

below (a corresponding max-plus automaton is stated in Example 2). For il-
lustration purposes, we sketch here an elementary proof. For the lower bound

we consider the sequence sN = ((T

√
N
2 −1

1 T2)
√

N
2 −1T3)

√
N
2 −1. For example, for
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N = 36 we have sN = T1T1T2T1T1T2T3T1T1T2T1T1T2T3. Note that sN is of
length lN =

√
N
2 ·

√
N
2 · (

√
N
2 − 1) = Ω(N

3
2 ). We define valuations σi, with

0 ≤ i ≤ lN , that demonstrate that sN belongs to a trace of S: given some in-
dex 0 ≤ i ≤ lN , let t3 denote the number of T3 before index i in the sequence
sN , let t2 denote the number of T2 before index i since the last T3, and let
t1 denote the number of T1 before index i since the last T2 (note that we have
0 ≤ t1, t2, t3 <

√
N
2 by the shape of sN ); we set σi(x1) = N−t2 ·

√
N
2 −t1, σi(x2) =

N − t3 ·
√
N, σi(x3) = N − t3 ·

√
N − t1, σi(x4) = N − t3 ·

√
N −

√
N
2 − t2. It is

easy to verify that the valuations σi satisfy all constraints of sN .
We move to the upper bound. Let S be a sequence of SCTs that belongs

to a trace of S. We decompose S = S1T3S2T3 · · · into subsequences Si that
do not contain any occurrence of T3. We define ai to be the maximal number
of consecutive T1 in Si, and bi to be the total number of T2 in Si. We set
ci = max{ai, bi}. We start with some observations: We have |Si| ≤ ci(ci+1)+ci =
ci(ci + 2) (i) by the definition of the ci. We have |Si| ≤ N (ii) because the
inequality x1 > x′

1 is contained in T1 as well as in T2 and the value of x1 can only
decrease N times in Si. Combining (i) and (ii) we get |Si| ≤ min{ci(ci + 2), N}
(iii). We have

∑
i ci ≤ N (iv); this holds because there is a chain of inequalities

from the beginning to the end of S that for every i either uses all inequalities
x3 > x′

3 of the consecutive T1 or all inequalities x4 > x′
4 of the T2 in Si, and this

chain can only contain N strict inequalities. Finally, by the definition of the Si

we have |S| ≤
∑

i |Si| + 1. With (iii) we get |S| ≤
∑

i min{ci(ci + 2), N} + 1 ≤
5
∑

i min{c2i , N} (v). Using associativity and commutativity we rearrange the
sum

∑
i ci =

∑
i di +

∑
i ei + r, where the di are summands ci >

√
N and

the ei and r are the sum of summands ci ≤
√
N with

√
N
2 ≤ ei ≤

√
N and

r <
√
N
2 ; we denote ei =

∑
j cij for some cij . By (iv) there are at most

√
N of

the di and at most 2
√
N of the ei. Using these definitions in (v) we get |S| ≤

5(
∑

i min{d2i , N}+
∑

i,j min{c2ij , N}+min{r2, N}) ≤ 5(
√
N ·N+

∑
i,j c

2
ij +N) ≤

5(
√
N ·N +

∑
i e

2
i + N) ≤ 5(

√
N ·N + 2

√
N ·N + N) = O(N

3
2 ).

In this paper we establish the fundamental result that the computational time
complexity of terminating SCA instances is decidable:

Theorem 1. Let S be a terminating SCS. The length of the longest trace of S is
of order Θ(Nα), where α ≥ 1 is a rational number; moreover, α is computable.

We highlight that our result provides a complete characterization of the com-
plexity bounds arising from SCA and gives means for determining the exact
asymptotic bound of a given abstract program. Our investigation was motivated
by previous work [11], where we introduced a practical program analysis based
on SCA for computing resource bounds of imperative programs; in contrast to
this paper, [11] does not study the completeness of the proposed algorithms and
does not contain any result on the expressivity of SCA.

Organization of the Paper. In Section 2, we give the automata definitions
and sketch the proof of Theorem 2. In Section 3 we provide a reduction from



212 T. Colcombet, L. Daviaud, and F. Zuleger

size-change systems to max-plus automata that allows to prove Theorem 1 from
Theorem 2.

2 Max-Plus Automata

In this section, we first define max-plus automata (section 2.1), and then sketch
the proof of Theorem 2 (section 2.2).

2.1 Definition of Max-Plus Automata

A semigroup (S, ·) is a set S equipped with an associative binary operation ‘·’.
If the product has furthermore a neutral element 1, (S, ·, 1) is called a monoid.
The monoid is said to be commutative if · is commutative. An idempotent in
a semigroup is an element e such that e ·e = e. Given a subset A of a semigroup,
〈A〉 denotes the closure of A under product, i.e., the least sub-semigroup that
contains A. Given X,Y ⊆ S, X · Y denotes {a · b : a ∈ X, b ∈ Y }.

A semiring (S,⊕,⊗, 0S, 1S) is a set S equipped with two binary operations
⊕ and ⊗ such that (S,⊕, 0S) is a commutative monoid, (S,⊗, 1S) is a monoid,
0S is absorbing for ⊗ (for all x ∈ S, x⊗0S = 0S⊗x = 0S) and ⊗ distributes over
⊕. We shall use the max-plus semiring ({−∞} ∪ N,max,+,−∞, 0), denoted
N, and its extension R+ = {−∞, 0} ∪ {x : x ∈ R, x ≥ 1}, that we name the
real semiring. This semiring will be used instead of N during the computations.
The operation over matrices induced by this semiring is denoted ⊗. Remark that
0N = −∞, and 1N = 0.

Let S be a semiring. The set of matrices with m rows and n columns over S is
denoted Mm,n(S), or simply Mn(S) if m = n. As usual, A⊗B for two matrices
A,B (provided the width of A and the height of B coincide) is defined as:

(A⊗B)i,j =
⊕

0<k≤n

(Ai,k ⊗Bk,j)

(
= max

0<k≤n
(Ai,k + Bk,j) for S = N or R+

)
.

It is standard that (Mn(S),⊗, In) is a monoid, whose neutral element is the
diagonal matrix In with 1S (i.e., 0 for N) on the diagonal, and 0S (i.e., −∞ for
N) elsewhere. For a positive integer k, we set M0 = In, and Mk = Mk−1 ⊗M .
For λ ∈ R+, we denote by λA the matrix such that (λA)i,j = λAi,j for all i, j
(this matrix has non-negative real coefficients, which might not be over R+ if
λ ≤ 1). Finally, we write A ≤ B if for all i, j, Ai,j ≤ Bi,j .

A max-plus automaton over the alphabet A (with k states) is a map δ
from A to Mk(N) together with initial and final vectors I, F ∈ M1,k({0,−∞}).
The map δ is uniquely extended into a morphism from A∗ to Mk(N), that we
also denote δ. The function computed by the automaton maps each word
u ∈ A∗ to tI ⊗ δ(u)⊗ F ∈ N where tI denotes the transpose of I.
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Example 2. We consider the following automaton, over the alphabet {a, b, c}, for
k = 6 and defined by (where −∞ is not written for readability):

δ(a) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0

1 0
0 0

1 0
0 0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , δ(b) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0

1 0
0 0 1 0

1 0
1 0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

δ(c) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0

0
1 1 1 0
1 1 1 0
1 1 1 0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , and I = F =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is sometimes convenient to see such matrices as a weighted automaton [8].
Such a presentation is provided in Figure 1. The states of the automaton are
q1, . . . , q6 and correspond respectively to the lines and the columns 1 to 6 of the
matrices. There is a transition from qi to qj corresponding to letter x = a, b, c
if the entry i, j of the matrix δ(x) is z �= −∞. In this case, the transition is
weighted by z. The initial states are the states qi such that Ii = 0. The final
states are the states qj such that Fj = 0. A run over the word w is a path (a
sequence of compatible transitions) in the graph labelled by w. Its weight is the
sum of the weights of the transitions. Finally the weight of a given word w is the
maximum of the weights of the runs labelled by w and going from an initial state
to a final state. The weight of w, given by the graph representation is exactly
the value tI ⊗ δ(w) ⊗ F , given by the matrix presentation.

More details about weighted automata can be found in [3].

2.2 Main Theorem

Theorem 2. Given a max-plus automaton computing f : A∗ → N ∪ {−∞},
there exists an algorithm that computes the value α ∈ {+∞}∪{β ∈ Q : β ≥ 1}
such that

g(n) = Θ(nα)

where g(n) = sup{|w| : f(w) ≤ n}, with the convention that n+∞ = +∞.

Example 3. The algorithm applied on the automaton given in exemple 2 outputs
value 2/3. A sequence of words that witness this growth is (((anb)n)cn)n∈N.

The Semigroup of Weighted Matrices. Our goal is to analyse the relation-
ship between the output of the automaton and the length of the input. Thus
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q3

q2

q4

q5

q1

q6

a, b : 1

a, b : 0, c : 1

b : 0

c : 1

c : 1

b : 1

a, c : 1

c : 1

b : 1

a : 0, b, c : 1

a, b, c : 0

a, b, c : 0

where:
– there are edges from state
q1 to every state labelled by
every letter with weight 0,
– there are edges from every
state to state q6 labelled by
every letter with weight 0,
– every state is initial and
final.

Fig. 1. A weighted automaton over the semiring (N,max,+)

we use weighted matrices that are pairs of a matrix representing the behaviour
of the automaton with a value standing for the length of the input. Formally, a
weighted matrix is an ordered pair (M,x) where M ∈Mk(R+) and x ≥ 1 is a
real number called the weight of the weighted matrix. They are useful to repre-
sent pairs (δ(w), |w|). The set of weighted matrices is denoted by Wk. Weighted
matrices have a semigroup structure (Wk,⊗), where (M,x) ⊗ (N, y) stands for
(M ⊗ N, x + y). By definition, the function w �→ (δ(w), |w|) is a morphism of
semigroups. As in the general case, we use ⊗ over subsets ofWk. Given A ⊆ Wk,
〈A〉 is the closure under ⊗ of A. Our goal is to study the set

{(δ(w), |w|) | w ∈ A∗} = 〈{(δ(a), 1) | a ∈ A}〉

and more precisely to give a finite representation of it up to some approximation.
The key to our algorithm is the ability to (a) finitely represent infinite sets
of weighted matrices and (b) define a notion of approximation between such
sets. Then our algorithm computes using such sets, and guarantees that, up
to the approximation, it is consistent with the behaviour of the automaton.
We present these notions below. From now we fix a max-plus automaton with
k states computing a function f and defined by the morphism δ. Let us first
introduce another semiring useful for defining finite representation.

The R+
� and Small Semirings, and the Semigroup of Weighted Matrices.

We have seen the semirings N and R+. We use another semiring over the same
ground set R+ but with a different product,  . For all x, y ∈ R+ set x y to be:

x y =

{
−∞ if either x = −∞ or y = −∞,
max(x, y) otherwise.
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Again, (R+,max, ,−∞, 0) is a semiring, denoted R+
�. As before, this induces a

product operation  for matrices. The product operation  is a good approxi-
mation of ⊗ as shown by the following key lemma that follows from the similar
property for real number and monotonicity of max and plus.

Lemma 1. Given matrices M1, . . . ,Mq, q ≥ 1 over R+, then

M1  · · ·  Mq ≤M1 ⊗ · · · ⊗Mq ≤ q(M1  · · ·  Mq) .

The last semiring we use is the small semiring (S,max, ,−∞, 0), simply
denoted S, which is the restriction of R+

� to {−∞, 0, 1}. There is a natural map
ϕ from R+ to S obtained by collapsing all elements above or equal to 1 to 1. It
happens that ϕ is at the same time a morphism of semirings from R+ to S and
from R+

� to S. Matrices over the small semiring are called small matrices.
The morphism ϕ is also extended to weighted matrices by ϕ((M,x)) = ϕ(M).

Our goal is, given a finite set of weighted matrices A, to compute a presentation
of 〈A〉 up to approximation (Lemma 7). The notion of presentation of sets of
weighted matrices and the notion of approximation are the subject of the two
subsequent sections.

Presentable Sets of Weighted Matrices. We introduce now the notion of
presentable sets of matrices, i.e., sets of matrices that we can manipulate via their
finite presentation. Our sets of weighted matrices are presented in ‘exponential
form’, i.e., given a weight x ≥ 1, an entry of the matrix will be of the form xα.
In fact, some special cases have to be treated, that results in the use of α = ⊥
or −∞.
Exponents and exponentiations The semiring of exponents (the choice of this
name will be explained when defining exponentiation in the next paragraph) is
(Exps ,max,max�,⊥,−∞) where

Exps = {⊥,−∞}∪ [0, 1] ,

where max is defined with respect to the order ⊥ < −∞ < x < y for all
x < y ∈ [0, 1], and where max�(α, β) for α, β ∈ Exps is defined by:

max�(α, β) =

{
⊥ if α = ⊥ or β = ⊥,
max(α, β) otherwise.

This semiring will be simply denoted Exps , and the induced operation over ma-
trices (we will see that this notation is not ambiguous). We take the convention
to denote by α, β exponents, and by X,Y, Z vectors and matrices of exponents.

We define now the exponentiation operation. For x ≥ 1 and α ∈ Exps , set

xα =

⎧⎪⎨⎪⎩
−∞ if α = ⊥,
0 if α = −∞,

xα otherwise, i.e., if α ∈ [0, 1], for the usual exponent.
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Lemma 2. For all x ≥ 1, α �→ xα is a semiring morphism from Exps to R+
�.

Note that this morphism can be applied to vectors (or matrices). In this case,
given a matrix Y ⊆ Expsk×k, and some x ≥ 1, we denote by Y [x] ∈ R+

k×k
the

matrix such that (Y [x])i,j = xYi,j for all i, j = 1 . . . k. According to the previous
lemma, the map Y �→ Y [x] is a morphism from matrices over Exps to matrices
over R+

�.
It is also sometimes convenient to send the small semiring to the exponent

semiring. It is done using the following straightforward lemma.

Lemma 3. The function γ that maps −∞ to ⊥, 0 to −∞, and 1 to 0 is a
semiring morphism from S to Exps such that xγ(a) = a for all a ∈ S and x ≥ 1.

Polytopes and presentable sets. Our goal it to describe finitely some infinite sets
of matrices over R+. We start from the notion of polytope. For this, we rely on
the definition of polytopes in Rk: a polytope (in Rk) is a convex hull of finitely
many points of Rk. We would like to use this definition for subsets of Expsk. For
that we send Exps to R by t(⊥) = −2, t(−∞) = −1 and t(s) = s if s is real.

A subset of Expsk is called a polytope if its image under t is a polytope in
Rk. In particular, we can use this definition for matrices of exponents, yielding
polytopes of matrices.

We can now define presentable sets of matrices over R+. Essentially, a set
of matrices over R+ is presentable if it is the image under exponentiation of a
finite union of polytopes of exponent matrices. Let us define precisely how this is
defined. A set of weighted matrices A ⊆ Wk is presentable if it is of the form:

A = {(M, 1) : M ∈ S} ∪ {(Y [x], x) : Y ∈ P, x ≥ 1} ,

where S is a set of small matrices of dimension k × k, and P is a finite union
of polytopes of Expsk×k. The pair (S, P ) is called the presentation of A. A
presentation is said small if P = ∅. It is said asymptotic if S = ∅. Obviously,
any presentable set is the union of a set of small presentation with a set of
asymptotic presentation. Of course presentable sets are closed under union.

The Approximation and Simulation Scheme. We describe now the notion
of approximation that we use. Indeed, our goal is to compute the set of weighted
matrices {(δ(w), |w|)}. We cannot expect to do it in general, and, at any rate,
presentable sets of matrices cannot capture exactly the behaviour of the automa-
ton. That is why we reason about sets of matrices up to some approximation
relation that is sufficiently precise for our purpose, and at the same time is suf-
ficiently relaxed for allowing to approximate the behaviour of the automaton by
a presentable set of weighted matrices.

Given some a ≥ 1 and two weighted matrices (M,x) and (N, y), we write

(M,x) �a (N, y) if M ≤ aN, y ≤ ax and ϕ(M) = ϕ(N) .

This definition extends to sets of weighted matrices as follows. Given two such
sets A,B, A �a B if for all (N, y) ∈ B, there exists (M,x) ∈ A such that
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(M,x) �a (N, y). We write A ≈a B if A �a B and B �a A and say that A is
a-equivalent to B. We drop the a parameter when not necessary, and simply
write A ≈ B if A ≈a B for some a.

A first consequence of this definition is that every weighted matrix (M,x) is
a-equivalent to the weighted matrix (ϕ(M), 1) where a is the maximum of the
entries of M and x. This justifies that, in the definition of a presentable set, the
weighted matrices of the finite part are of this form.

Let us give some intuition why this approximation may help. For instance
consider some exponent matrix M , and let us show:

{(M [x], x) : x ≥ 1} ≈2 {(M [y], y) : y ∈ N, y ≥ 1} .

Indeed, one inclusion is obvious, yielding �1. For the other direction, consider
some x ≥ 1, and take y = x�, then 2y ≥ x and M [y] ≤M [x], thus (M [y], y) �2

(M [x], x). More generally imagine the y’s would be further constrained to be
multiples of some value, say 2, then the same arguments would work. Hence this
equivalence relation allows to absorb a certain number of phenomena that can
occur in an automaton and are irrelevant for our specific problem. In particular,
if the least growing rate is achieved for words of length n for n even only, then
this ‘computing modulo 2’ can be ‘hidden’ thanks to the ≈-approximation.

The following lemma establishes some essential properties of the �a relations
(as a consequence, the same properties hold for ≈a).

Lemma 4. Given A,A′, B,B′, C sets of weighted matrices and a, b ≥ 1,

1. if A �a B and b ≥ a , then A �b B,
2. if A �a A′ and B �a B′, then A ∪B �a A′ ∪B′,
3. if A �a B and B �b C then A �ab C,
4. if A �a A′ and B �a B′ then A⊗B �a A′ ⊗B′,
5. if A �a B then 〈A〉 �a 〈B〉.

The Main Induction: The Forest Factorization Theorem of Simon.
The forest factorization theorem of Simon [9] is a powerful combinatorial tool
for understanding the structure of finite semigroups. In this short abstract, we
will not describe the original statement of this theorem, in terms of trees of
factorizations, but rather a direct consequence of it which is central in our proof
(the presentation of the theorem was used in a similar way in [2]).

Theorem 3 (equivalent to the forest factorization theorem [9]). Given
a semigroup morphism ϕ from (S,⊗) (possibly infinite) to a finite semigroup
(T, ), and some A ⊆ S, set B0 = A and for all n ≥ 0,

Bn+1 = Bn ∪Bn ⊗Bn ∪
⋃
e∈T

is idempotent

〈Bn ∩ ϕ−1(e)〉 ,

then 〈A〉 = BN for N = 3|T | − 1.
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This theorem teaches us that, for computing the closure under product in the
semigroup S, it is sufficient to be able to know how to compute (a) the union of
sets, (b) the product of sets, and (c) the restriction of a set to the inverse image
of an idempotent by ϕ, and (d) the closure under product of sets of elements
that all have the same idempotent image under ϕ. Of course, this proposition is
only interesting when the semigroup T is cleverly chosen.

In our case, we are going to use the above proposition with (S,⊗) = (Wk,⊗),
and (T, ) = (Mk(S), ), and ϕ the morphism which maps each weighted matrix
(M,x) to ϕ(M). Our algorithm will compute, given a presentation of a set of
weighted matrices A, an approximation of 〈A〉 using the inductive principle of
the factorization forest theorem. This is justified by the two following lemmas.

Lemma 5. For all presentable sets of weighted matrices A,A′, there exists ef-
fectively a presentable set of weighted matrices product(A,A′) such that

A⊗A′ ≈ product(A,A′) .

Lemma 6. For all presentable sets A such that ϕ(A) = {E} for E an idempo-
tent, there is effectively a presentable set idempotent(A) such that

〈A〉 ≈ idempotent(A) .

Assuming that Lemmas 5 and 6 hold, it is easy to provide an algorithm which,
given a presentable set A computes a presentable set closure(A) as follows:

– Set A0 = A and for all n = 0 . . .N − 1 (N taken from Theorem 3), set

An+1 = An ∪product(An, An)∪
⋃

E ∈ Mk(S)
idempotent

idempotent(An ∩ϕ−1(E)) .

– Output closure(A) = AN .

The correctness of this algorithm is given by the following lemma. It derives
from the good properties of ≈ given in Lemma 4.

Lemma 7. For all presentable sets of weighted matrices closure(A) ≈ 〈A〉 .

This allows us to conclude the proof of Theorem 2. The algorithm takes an
automaton δ, I, F as input, then it computes thanks to the above Lemma 7 a
presentable set B that is ≈-equivalent to 〈A〉 where A is the set of weighted
matrices corresponding to basic letters (i.e., {(δ(a), 1) : a letter}). Set (S, P ) a
presentation of B. Then the algorithm outputs inf{tI  X  F | X ∈ P} that is
computable since P is a finite union of polytopes. This coefficient is the answer
of the algorithm: the minimal exponent such that the presentable set witnesses
the existence of a behaviour of the automaton that has this growth-rate.
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3 From Size-Change Systems to Max-Plus Automata

For proving Theorem 1, we define a translation of SCSs to max-plus automata.
Let S be an SCS with k variables, which we assume to be numbered x1, . . . , xk.
We define an max-plus automaton φ(S) with k+2 states as follows: The alphabet
AS of φ(S) contains a letter aT for every SCT T ∈ S. We define the mapping δ
of AS to Mk+2(N) as follows:

δ(aT )i,j =

⎧⎪⎪⎨⎪⎪⎩
0, i = 1 or j = k + 2
1, xi−1 > x′

j−1 ∈ T
0, xi−1 ≥ x′

j−1 ∈ T
−∞, otherwise

Further, φ(S) has the initial and final vector I = F = 0 ∈ M1,k+2(N). For
example, the SCS from Example 1 is translated to the max-plus-automaton in
Example 2.

The following lemmata relate SCSs and their translations; they allow us to
derive Theorem 1 from Theorem 2.

Lemma 8. Let u be a word of φ(S) with tI⊗ δ(u)⊗F = N . Then S has a trace
with valuations over [0, N ] of length |u|.
Lemma 9. Assume S has a trace with valuations over [0, N ] of length l. Then
there is a word u of φ(S) with tI ⊗ δ(u)⊗ F ≤ N and |u| = l.
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Abstract. Alternating vector addition systems are obtained by equip-
ping vector addition systems with states (VASS) with ‘fork’ rules, and
provide a natural setting for infinite-arena games played over a VASS.
Initially introduced in the study of propositional linear logic, they have
more recently gathered attention in the guise ofmulti-dimensional energy
games for quantitative verification and synthesis.

We show that establishing who is the winner in such a game with a
state reachability objective is 2-ExpTime-complete. As a further appli-
cation, we show that the same complexity result applies to the problem
of whether a VASS is simulated by a finite-state system.

1 Introduction

Vector addition systems with states (VASS) allow to model systems manipulat-
ing multiple discrete resources, for instance bank accounts balances or numbers of
processes running concurrently. Extending their definition to two-players games
is both a very natural endeavour and a tricky problem: the most immediate
definition, where both players can freely update the vector values, leads to an
undecidable game even with the simplest winning condition, namely (control)
state reachability [2].

Facing this difficulty, one might expect to see a flurry of competing definitions
for VASS games that would retain decidability through various restrictions. Sur-
prisingly, this is not really the case: if there is indeed a large number of denom-
inations (e.g. B-VASS games [16], Z-reachability games [5], multi-dimensional
energy games [7]), Abdulla, Mayr, Sangnier, and Sproston [3] noted last year
that they all defined essentially the same asymmetric class of games, where one
player is restricted and cannot update the vector values.

Our contention in this paper is that so many different people coming up
independently with the same model is not a coincidence, but a sure sign of
a fundamental idea deserving investigation in its own right. We find further
arguments in our own initial interest in such games, which comes from the study
of simulation problems between Petri nets and finite-state systems [9, 12] where
they arise naturally—Abdulla et al. [1] recently made a similar observation.
Furthermore the model was already explicitly defined in the ’90s in the study of
substructural logics [13, 10], and appears implicitly in recent proofs of complexity
lower bounds in [8, 4]. We show in this paper that determining the winner of
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an asymmetric VASS game with a state reachability objective is 2-ExpTime-
complete. We extend for this well-known techniques by Rackoff [15] and Lipton
[14] used to establish the complexity of VASS problems, see sections 3 and 4.
We also provide refined bounds when the dimension of the problem is fixed, and
show how to compute the Pareto frontier for such games.

Perhaps more importantly than those technical contributions, we single out in
Sec. 2 a simple definition for alternation in VASS by way of ‘fork’ rules (following
[13]), for which the complexity analyses of sections 3 and 4 are relatively easy,
and establish it as a pivotal definition for VASS games. Indeed, we relate it
to energy games in Sec. 5 (following [3]) and to regular simulation problems
for VASS in Sec. 6. Our lower bound improves on all the published bounds for
those problems, including the ExpSpace-hardness of simulations between basic
parallel processes and finite-state processes due to Lasota [12]. Our upper bound
applies to the simulation of Petri nets by finite-state systems, for which only
decidability was known [9].

Due to page limits, some material is omitted, but can be found in the full
version of the paper at http://hal.inria.fr/hal-00980878.

2 Alternating VASS

VASS were originally called ‘and-branching’ counter machines by Lincoln, Mitchell,
Scedrov, and Shankar [13], and were introduced to prove the undecidability of propo-
sitional linear logic. Kanovich [10] later identified a fragment of linear logic, called
the (!,⊕)-Horn fragment, that captures exactly alternation in VASS, and adopted
a game viewpoint. As discussed in sections 5 and 6, this class of systems has since
reappeared in other contexts, which motivates its study in earnest.

2.1 Basic Definitions

An alternating vector addition system with states (AVASS) is syntactically a
tuple A = 〈Q, d, Tu, Tf 〉 where Q is a finite set of states, d is a dimension in N,
and Tu ⊆ Q × Zd × Q and Tf ⊆ Q3 are respectively finite sets of unary and

fork rules. We denote unary rules (q,u, q1) in Tu with u in Zd by ‘q
u−→ q1’ and

fork rules (q, q1, q2) in Tf by ‘q → q1 ∧ q2.’ A vector addition system with states
(VASS) is an AVASS with Tf = ∅.

Deduction Semantics. Given an AVASS, its semantics is defined by a deduction
system over configurations (q,v) in Q× Nd. For rules q

u−→ q1 and q → q1 ∧ q2,

q,v

q1,v + u
(unary)

q,v

q1,v q2,v
(fork)

where ‘+’ denotes component-wise addition in Nd, and implicitly v + u has no
negative component, i.e. is in Nd. When working with finite deduction trees t,
we define the height h(t) of t as the maximal length among all its branches.
A (multi)-context C is a finite tree with n distinguished leaves labelled with

http://hal.inria.fr/hal-00980878
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n distinct variables x1, . . . , xn; C[t1, . . . , tn] then denotes the tree obtained by
substituting for each 1 ≤ j ≤ n the tree tj for the variable xj .

Game Semantics. The top-down direction of the deduction semantics allows for
potentially infinite deduction trees, and defines in a natural way an asymmetric
VASS game as defined by Kanovich [10] and later by Raskin et al. [16]. Two
players, ‘Controller’ and ‘Environment’, play over the infinite arena Q × Nd. In
a current configuration (q,v), Controller chooses among the applicable rules in

Tu ∪ Tf . In case of a unary rule q
u−→ q′, the next configuration is (q′,v + u),

where by assumption v + u ≥ 0 where ‘0’ denotes the null vector in Nd. In
case of a fork rule q → q1 ∧ q2, Environment then chooses which branch of the
deduction tree to explore, i.e. chooses between (q1,v) and (q2,v) as the next
configuration. Various winning conditions on such plays (q0,v0), (q1,v1), . . . can
then be envisioned, and correspond to conditions that must be satisfied by all the
branches of a deduction tree. As shown by Abdulla et al. [3], such asymmetric
games are closely related to multi-dimensional energy games [7, 5], see Sec. 5.

2.2 Decision Problems and Complexity

We assume when deriving complexity bounds a binary encoding of vectors in Zd.

That is, letting ‖u‖∞ def
= max1≤i≤d |u(i)| denote the norm of the vector u and

defining ‖Tu‖∞ def
= max(q,u,q′)∈Tu

‖u‖∞, then the size of an AVASS 〈Q, d, Tu, Tf〉
depends polynomially on the bitsize log(‖Tu‖∞ + 1). Note that we can reduce
by standard techniques all our decision problems to work with a set of unary
rules T ′

u with effects u = ei or u = −ei—where ‘ei’ is the unit vector with ‘1’
in coordinate i and ‘0’ everywhere else—, but this comes at the expense of an
increase in the dimension by a factor of log(‖Tu‖∞ + 1).

Reachability. The decision problem that originally motivated the definition of
AVASS by Lincoln et al. [13] is reachability: given an AVASS 〈Q, d, Tu, Tf 〉 and
two states qr and q� in Q, does there exist a deduction tree with root labelled
by (qr,0) and every leaf labelled by (q�,0)? Equivalently, does Controller have
a strategy that ensures that a play starting in (qr ,0) eventually visits (q�,0)?

Fact 2.1 (Lincoln et al. [13]). Reachability in AVASS is undecidable.

State Reachability. Our main problem of interest in this paper is (control) state
reachability (aka leaf coverability): given as before an AVASS 〈Q, d, Tu, Tf〉 and
two states qr and q� in Q, we ask now whether there exists a deduction tree
with root labelled by (qr,0) and every leaf label in {q�}×Nd. Equivalently, does
Controller have a strategy that ensures that a play starting in (qr,0) eventually
visits (q�,v) for some v in Nd? We prove in this paper that state reachability is
2-ExpTime-complete, see Thm. 3.1 and Thm. 4.1.

Non-termination. A second problem of interest is non-termination: given an
AVASS 〈Q, d, Tu, Tf 〉 and an initial state qr in Q, does there exist a deduction
tree where every branch is infinite? Equivalently, does Controller have a strategy
to ensure that a play starting in (qr,0) never stops?
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Brázdil, Jančar, and Kučera [5] show in the context of Z-reachability games
that this problem is ExpSpace-hard, and in (d− 1)-ExpTime when the dimen-
sion d is fixed. Our 2-ExpTime lower bound in Thm. 4.1 is the best known lower
bound for this problem, leaving a large complexity gap.

We discuss a few other decision problems related to energy games in Sec. 5
and to regular VASS simulations in Sec. 6.

3 Complexity Upper Bounds

The state reachability problem asks about the existence of a deduction tree with
root (qr,0) and leaves labels in {q�}×Nd, which describes when using the game
semantics a winning strategy for Controller. More generally, we are interested
in deduction trees with root label (q,v) and leaves in {q�} × Nd, which we call
witnesses for (q,v). Let us write A, q� % q,v if such a witness exists in an AVASS
A; then the state reachability problem asks whether A, q� % qr,0.

Following Rackoff [15], the main idea to prove a 2-ExpTime upper bound on
the state reachability problem is to prove a doubly exponential upper bound on
the height of witnesses, by induction on the dimension d; see Sec. 3.1. But let us
first make a useful observation: if A, q� % q,v and (q′,v′) ≥ (q,v) for the product
ordering over Q × Nd, i.e. if q = q′ and v′(i) ≥ v(i) for all 1 ≤ i ≤ d, then
A, q� % q′,v′. This means that the set of root labels that ensure reaching q� is
upward-closed, and since (Q×Nd,≤) is a well partial order, it has a finite set of
minimal elements called its Pareto frontier :

Pareto(A, q�) def
= min{(q,v) ∈ Q× Nd | A, q� % q,v} . (1)

We use in Sec. 3.2 the bounds on the size of witnesses to show that Pareto
frontiers can be computed in doubly exponential time, which in turn proves:

Theorem 3.1. State reachability in AVASS is in 2-ExpTime. It is in ExpTime

when the dimension is fixed, and in PTime when furthermore the bitsize is fixed.

Note that the PTime bound in the case of a fixed dimension and fixed bitsize,
is not trivial, since it still allows for infinite arenas. In essence it shows one can
add a fixed number of counters to a reachability game ‘for free.’

3.1 Small Witnesses

Let us fix an instance 〈A, qr, q�〉 of the state reachability problem with A =

〈Q, d, Tu, Tf〉 and write [d]
def
= {1, . . . , d} for its set of components. For a subset

I ⊆ [d] of the components of A, we write u�I for the projection of a vector u on

I, and define the projection A�I
def
= 〈Q, |I|, Tu�I , Tf 〉 of A on I as the AVASS with

unary rules Tu�I
def
= {(q,u�I , q′) | (q,u, q′) ∈ Tu}. Let WI

def
= {(q,v) ∈ Q × N|I| |

A�I , q� % q,v} be the set of witness roots in A�I . We are interested in bounding
the height h(t) of minimal witnesses t in A�I :

HI
def
= sup

(q,v)∈WI

min{h(t) | t witnesses (q,v)} , (2)

where implicitly HI = 0 if no witness exists.
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A last remark before we proceed is that, if a label (q,v) appears twice along
a branch of a witness t, i.e. if t = C[C′[t′]] for some context C, some non-empty
context C′ with root label (q,v), and tree t′ with root label (q,v), then the
shortening C[t′] of t, obtained by replacing C′[t′] by t′ in t, is also a witness.

Assume that there exists a witness for some root label (q,v). We bound HI

by induction on |I|: for the base case where I = ∅, by repeated shortenings we
see that no branch of a minimal witness can have the same state twice, thus

H∅ ≤ |Q| . (3)

Consider now some non-empty set I and a minimal witness t for (q,v). We would
like to bound HI , assuming by induction hypothesis that we are able to bound
HJ for all J � I by some value H�I = maxJ�I HJ . Define for this a large value

BI
def
= ‖Tu‖∞ · H�I and consider along each branch of t the first occurrence

(starting from the root) of a node with some vector value ≥ BI if one exists.
Let n be the number of such first occurrences in t; then t can be written as
C[t1, . . . , tn] where C is a context where all the vector values are < BI , and each
tj witnesses AI , q� % qj ,vj where vj(ij) ≥ BI for some ij in I.

1. By repeated shortenings, we can bound the height of C by |Q| ·B|I|
I .

2. For each j, let Ij
def
= I \ {ij}. Then tj is also a witness for A�Ij , q� % qj ,vj�Ij ,

and we can replace it by a witness t′j of height at most HIj . Then t′j also
witnesses AI , q� % qj ,vj because BI bounds the maximal total decrease that
can occur along a branch of a deduction tree of height HIj .

Hence t′
def
= C[t′1, . . . , t

′
n] is a witness for (q,v) and

HI ≤ h(t′) ≤ |Q| · B|I|
I + H�I = |Q| · (‖Tu‖∞ ·H�I)|I| + H�I . (4)

Combining (3) with (4), we obtain by induction over d that

H[d] ≤ (|Q| · (‖Tu‖∞ + 1) + 1)(3d)! . (5)

Observe that this bound is doubly exponential in d, but only exponential in the
bitsize log(‖Tu‖∞ + 1), and polynomial in the number of states |Q|.

3.2 Pareto Frontier

Equation (5) yields an algorithm in AExpSpace = 2-ExpTime to decide given
(q,v) in Q × Nd whether A, q� % q,v: it suffices to look for a minimal witness
of height at most H[d], and the vector values in such a witness are bounded by
H[d] · ‖Tu‖∞.

Furthermore, as observed by Yen and Chen [18], a bound like (5) that does
not depend on the initial configuration (q,v) can be exploited to compute the
Pareto frontier: if (q,v) belongs to Pareto(A, q�), then ‖v‖∞ ≤ H[d] · ‖Tu‖∞.
Thus the Pareto frontier can be computed by running the previous algorithm on
at most |Q| · (1 + H[d] · ‖Tu‖∞)d candidates (q,v):
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Proposition 3.2. Let A = 〈Q, d, Tu, Tf〉 be an AVASS and q� be a state in Q.
Then the Pareto frontier Pareto(A, q�) can be computed in doubly exponential
time. If d is fixed it can be computed in exponential time, and if ‖Tu‖∞ is also
fixed it can be computed in polynomial time.

4 Complexity Lower Bounds

In this section, we match the 2-ExpTime upper bound of Thm. 3.1 for state
reachability in AVASS (Sec. 4.1). Regarding the fixed dimensional cases, we also
show in Sec. 4.2 that our ExpTime upper bound is optimal—note that the case
where both the dimension and the bitsize are fixed is trivially PTime-hard by
reduction from the emptiness problem for tree automata. These lower bounds
on decision problems also entail that our bounds in Thm. 3.2 for the complexity
of computing Pareto frontiers are optimal.

4.1 A General Lower Bound

We extend the classical ExpSpace-hardness proof of Lipton [14] for state reach-
ability in VASS to the AVASS case. Instead of reducing from the halting problem
for Minsky machines with counter valuations bounded by 22n , we reduce instead
from the same problem for alternating Minsky machines.

More precisely, a Minsky machine can be defined as a VASS with additional

zero-test rules Tz of the form q
i?=0−−−→ q′ for 1 ≤ i ≤ d with deduction semantics

q,v v(i) = 0

q′,v
(zero-test)

An alternating Minsky machine 〈Q, d, Tu, Tf , Tz〉 can similarly be defined by
allowing fork rules. By adapting the usual encoding of Turing machines into
Minsky machines to the alternating case, the halting problem for alternating
Minsky machines with counter values bounded by 22

n

is hard for AExpSpace =
2-ExpTime. With this in mind, the necessary adaptations of Lipton’s reduction
are straightforward; see the full paper for details.

Proposition 4.1. State reachability and non-termination in AVASS are hard
for 2-ExpTime.

Proposition 4.1 was implicit in the 2-ExpTime lower bound proofs of [8, 4]
for similar questions. Reducing instead from AVASS would simplify these proofs
by separating the extension of Lipton’s arguments from the actual reduction.

4.2 Fixed Dimension

Similarly to Thm. 4.1, proving an ExpTime lower bound in the case where the
dimension d is fixed is rather easy: Rosier and Yen [17, Thm. 3.1] show indeed
that the boundedness problem for VASS of dimension d ≥ 4 is PSpace-hard by
reducing from the acceptance problem in linear bounded automata (LBA). Their
proof easily extends to the state reachability and non-termination problems for
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VASS, and for AVASS by reducing instead from alternating LBA; see the full
paper for details.

Proposition 4.2. State reachability and non-termination in AVASS of fixed di-
mension d ≥ 4 are ExpTime-hard.

5 Energy Games

The asymmetric game semantics described in Sec. 2.1 is easily seen to be equiv-
alent to one-sided VASS games as defined in [16, 3]. Such a game is played on a
VASS with a partitioned state space Q = Q♦ � Q�, where Controller owns the
states in Q♦ and can freely manipulate the current vector value, while Environ-

ment owns the states in Q� and can only change the current state: if q�
u−→ q′

is a rule in Tu and q� ∈ Q�, then u = 0; these restricted Environment rules
correspond to AVASS fork rules.

Abdulla et al. [3] have shown the equivalence of AVASS games with the (multi-
dimensional) energy games of Brázdil et al. [5] and Chatterjee et al. [7], where the
asymmetry between Controller and Environment is not enforced in the structure
of the AVASS or in restricted unary rules for Environment: in such a game,
Environment can use arbitrary unary rules. This would lead to an undecidable
state reachability game when played on the Q×Nd arena [2], but energy games
are played instead over Q × Zd—which means that unary rules can be applied
even if they yield some negative vector components.

Asymmetry appears instead in the winning conditions for Controller. In addi-
tion to a winning condition Win ⊆ Qω ∪Q∗ on the sequence of states q0, q1, . . .
appearing during the play, Controller must also ensure that all the components
of the vectors v0,v1, . . . remain non-negative (positive in [5]). Such games are
motivated by the synthesis of controllers able to ensure that quantitative values
(represented by the integer vectors) are maintained above some critical values.

Various regular winning conditions Win can be employed in this setting: the
simplest one is (state) reachability, i.e. Win = Q∗{q�}, which is in 2-ExpTime

by Thm. 3.1. Non-termination, i.e. Win = Qω, is shown to be in Tower, i.e.
iterated exponential time, by Brázdil et al. [5]. Finally, parity is shown decidable
by Abdulla et al. [3]. Theorem 4.1 furthermore entails that state reachability
and non-termination (and thus parity) multi-dimensional energy games are 2-
ExpTime-hard.

6 Regular Simulations

Jančar and Moller [9] proved in 1995 that the two regular VASS simulation
problems VASS � FS and FS � VASS, which ask whether a VASS is simulated
by a finite-state system (FS) and vice versa, are decidable. They relied however
on well quasi orders in their proofs and no complexity upper bounds have been
published since. Regarding lower bounds, no improvement has appeared in the
general case over the easy ExpSpace-hardness one can derive by reductions
from the state reachability and non-termination problems for VASS and the
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lower bounds of Lipton [14] for these. In the particular case where we restrict
ourselves to basic parallel processes (BPP) instead of VASS, Kučera and Mayr
[11] proved that FS � BPP is PSpace-hard and BPP � FS is co-NPTime-hard,
and both bounds were later improved to ExpSpace-hardness by Lasota [12].

By presenting reductions to and from the state reachability and non termina-
tion problems in AVASS, we improve on all these results:

– BPP � FS and VASS � FS are both 2-ExpTime-complete by Thm. 4.1 and
Thm. 3.1, and

– FS � BPP and FS � VASS are both 2-ExpTime-hard by Thm. 4.1 and in
Tower by the results of Brázdil et al. [5].

Abdulla et al. [1] independently showed similar connections between on the one
hand the (undecidable) simulation problem PDS � VASS between pushdown
systems (PDS) and VASS, and on the other hand energy games played on infinite
pushdown graphs. They show that these problems become decidable when the
PDS has a singleton stack alphabet and the VASS is 1-dimensional.

6.1 Transition Systems and Simulations

Labelled Transition Systems. Operational semantics are often defined through
labelled transition systems (LTS) S = 〈S,Σ,→〉 where S is a set of states, Σ is a
set of actions, and → ⊆ S×Σ×S is a labelled transition relation, with elements
denoted by ‘s1

a−→ s2.’ When S is finite we call S a finite-state system (FS).
For instance, the operational semantics of a VASS V = 〈Q, d, Tu〉 along with

a labelling σ: Tu → Σ using a set of actions Σ is the LTS SV def
= 〈Q×Nd, Σ,→〉

with transitions (q,v)
a−→ (q′,v + u) whenever r = q

u−→ q′ is a unary rule in Tu

with label σ(r) = a (which we write more simply q
u,a−−→ q′ in the following).

Simulations. Given two LTS 〈S1, Σ,→1〉 and 〈S2, Σ,→2〉, a simulation is a
relation R ⊆ S1 × S2 such that, whenever (s1, s2) belongs to R then for each

action a in Σ, if there exists s′1 in S1 with s1
a−→1 s′1, then there also exists s′2

in S2 such that s2
a−→2 s′2 and (s′1, s

′
2) is also in R. A state s1 is simulated by a

state s2, written s1 � s2, if there exists a simulation R such that (s1, s2) is in R.
Simulations can also be characterised by two-player turn-based simulation

games between ‘Spoiler’, who wishes to disprove simulation, and ‘Duplicator’,
who aims to establish its existence, played over the arena S1 × S2. In a posi-
tion (s1, s2), Spoiler first chooses a transition s1

a−→1 s′1 in S1, and Duplicator

must answer with a transition s2
a−→2 s′2 with the same label a, and the game

then proceeds from (s′1, s
′
2). A player loses if during one of its turns no suitable

transition can be found, otherwise the play is infinite and Duplicator wins. Then
s1 � s2 if and only if Duplicator has a winning strategy starting from (s1, s2).

Given two classes of (finitely-presented) systems A and B, the simulation
problem A � B takes as input two systems A in A and B in B with operational
semantics SA and SB, and two initial states sA from SA and sB from SB , and
asks whether sA � sB. In the following we focus on regular VASS simulations,
where one of A and B is the class of labelled VASS and the other the class FS.
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6.2 From Regular VASS Simulations to AVASS

Our two reductions from regular VASS simulations essentially implement the
simulation game as an AVASS game. Given a finite set of actions Σ, a labelled
VASS defined by V = 〈Q, d, Tu〉 and σ:Tu → Σ, a finite-state system A =
〈S,Σ,→A〉, and a pair of states (q0, s0) from Q× S, we construct in both cases

a state space Q′ def
= (Q × S) � (Q × S × Σ) for our AVASS. For convenience we

allow forks of arbitrary finite arity q → q1 ∧ · · · ∧ qr.

VASS � FS. We actually reduce in this case from the complement problem
VASS �� FS to AVASS state reachability from (q0, s0). Controller plays the role
of Spoiler, owns the states in Q × S, and tries to reach the distinguished state
q�. Environment plays the role of Duplicator and owns the states in Q× S ×Σ.
The rules of the AVASS are then:

(q, s)
u−→ (q′, s, a) whenever q

u,a−−→ q′ ∈ Tu (6)

(q′, s, a) → q� ∧
∧

s
a−→As′

(q′, s′) . (7)

Observe that Spoiler has a winning strategy from (q0, s0) in the simulation game
if and only if it can force Duplicator into a deadlock, i.e. a state s and an action
a where no transition s

a−→A s′ exists. This occurs if and only if Environment
can be forced into going to q� in (7) in the AVASS game starting from (q0, s0).

Proposition 6.1. There is a logarithmic space reduction from VASS �� FS to
AVASS state reachability.

FS � VASS. This direction is actually a particular case of [3, Thm.5], who show
the decidability of weak simulation by reducing it to a parity energy game. En-
vironment now plays the role of Spoiler and owns the states in S×Q. Controller
now plays the role of Duplicator, owns the states in S × Q × Σ, and attempts
to force an infinite play. The rules of the AVASS are then:

(s, q) →
∧

s
a−→As′

(s′, q, a) , (8)

(s′, q, a)
u−→ (s′, q′) whenever q

u,a−−→ q′ ∈ Tu . (9)

Then, Duplicator has a winning strategy in the simulation game from (q0, s0) if
and only if Controller has a winning strategy for non-termination in the AVASS
game starting in (q0, s0):

Proposition 6.2. There is a logarithmic space reduction from FS � VASS to
AVASS non-termination.

6.3 From AVASS to Regular VASS Simulations

Basic Parallel Processes. As announced at the beginning of the section, we prove
our lower bounds on the more restricted BPP rather than VASS. Formally, a BPP
net is a Petri net N = 〈P, T,W 〉 where P and T are finite sets of places and
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Fig. 1. Reducing AVASS state reachability to a simulation BPP �� FS

transitions and W : (P×T )∪(T×P )→ N is the weighted flow, where additionally
for all transitions t in T there is exactly one place p in P with W (p, t) = 1 and
for all p′ �= p, W (p′, t) = 0. Given a labelling function σ: T → Σ, its semantics is

defined by the LTS SN def
= 〈N|P |, Σ,→N 〉 where m

a−→N m−W (P, t) +W (t, P ) if
and only if there exists t with σ(t) = a and m ≥W (P, t). In figures we represent
places as circles, transitions as rectangles, and positive flows as arrows.

In both our reductions, we want to implement an AVASS game as a simulation
game where the FS is in charge of maintaining the state information and the
BPP is in charge of maintaining the vector values. We assume we are given an
AVASS 〈Q, d, Tu, Tf〉 in ordinary form, i.e. where the only updates vectors in Tu

are unit vectors, and in binary form, i.e. for each state q of Q, either there is
a fork q → q1 ∧ q2 (and we call q an universal state), or there are exactly two

unary rules q
u1−→ q1 and q

u2−→ q2 with origin q (and we call it an existential
state), or there are no applicable rules at all (and we call it a deadlock state).
We can ensure these two conditions through logarithmic space reductions. Our

action alphabet is then defined as Σ
def
= {∀, ∃, 1, 2} ∪ {inci, deci | 1 ≤ i ≤ d}.

BPP � FS. We actually reduce AVASS state reachability to BPP �� FS and
assume wlog. that the target state q� is a deadlock state, and even the only
deadlock state by adding rules qd → qd ∧ qd for the other deadlock states qd. We

construct a BPP net for Spoiler with places P
def
= {run} ∪ {ci | 1 ≤ i ≤ d} where

run contains a single token at all times and the ci’s encode the current vector
value of the AVASS. Its transitions, labels and flows are depicted on the left of
Fig. 1. Its purpose is to force Duplicator, which is playing on the FS depicted on
the right of Fig. 1, into state q�. Because q� is a deadlock state and Spoiler can
always fire transitions (e.g. ∀), it then wins the simulation game.

Duplicator plays the role of Environment in the original AVASS game and
maintains the AVASS state using its state space, which contains Q. When in
a universal state it can choose the following state, but when in an existential
state Spoiler chooses instead the branch by firing transition 1 or 2. Duplicator
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ensures that the sequence of transitions of Spoiler is indeed valid in the original
AVASS, by punishing invalid transitions by entering state ‘+,’ where it can play
any symbol and thus win the simulation game.

Proposition 6.3. There is a logarithmic space reduction from AVASS state
reachability to BPP �� FS.

FS � BPP. In this direction we reduce from the non-termination problem.
Spoiler now plays in an FS depicted on the left of Fig. 1 and plays for Envi-
ronment in the original AVASS game. It still maintains the current state of the
AVASS in its state space.

Duplicator now plays on a BPP depicted on the right of Fig. 1. It plays the
role of Controller in the original VASS game and maintains the vector values
in its places ci as before. We rely on Duplicator’s choice: using the ‘∃’ label
in existential states, Spoiler leaves the choice to Duplicator, who can punish
Spoiler—if it does not comply with its choice between actions ‘1’ and ‘2’—by
putting a token in place ‘+’, from where it wins.

Proposition 6.4. There is a logarithmic space reduction from AVASS non-
termination to FS � BPP.

7 Concluding Remarks

Alternating VASS provide a unified formalism to reason about VASS games,
along with simple complexity arguments for state reachability objectives. This
allows us to improve on all the previously known complexity bounds for regu-
lar VASS simulations, and show in particular that VASS� FS is 2-ExpTime-
complete.

The main open question at this point is whether the upper bounds for non-
termination and parity objectives on AVASS could be lowered to 2-ExpTime,
and thus to close the gap between 2-ExpTime-hardness and Tower for FS �
VASS. A first step to this end could be to extend the PTime upper bound
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of Chaloupka [6] for the fixed bitsize and unknown initial credit case from di-
mension two to arbitrary fixed dimensions. However, quoting Chaloupka, ‘since
the presented results about 2-dimensional VASS are relatively complicated, we
suspect this problem is difficult.’

Acknowledgements. The authors thank Stefan Göller who drew our attention
to [9, 12] and to the fact that the exact complexities of the two regular simu-
lation problems were unknown. This work also benefited from discussions with
S�lawomir Lasota, Ranko Lazić, Arnaud Sangnier, and Patrick Totzke.
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Abstract. We show that the information rate of the language accepted
by a reversal-bounded deterministic counter machine is computable. For
the nondeterministic case, we provide computable upper bounds. For the
class of languages accepted by multi-tape deterministic finite automata,
the information rate is computable as well.

1 Introduction

A software system often interacts with its environment. The complexity of an
average observable event sequence, or behavior, can be a good indicator of how
difficult it is to understand its semantics, test its functionality, etc. This is par-
ticularly true considering the fact that a modern software system is often too
complex to analyze algorithmically by looking at the source code, line by line.
Instead, the system is treated as a black-box whose behaviors can be observed
by running it (with provided inputs), i.e., testing. One source to obtain all of
the system’s intended behaviors is from the design, though whether an intended
behavior is the system’s actual behavior must still be confirmed through testing.
Despite this, the problem of computing the complexity of an average intended
behavior from the design is important; in particular, the complexity can be used
to estimate the cost of testing, even at the design stage where the code is not
available yet.

In principle, a behavior is a word and the design specifies a set of words, i.e.,
a language L. There has already been a fundamental notion shown below, pro-
posed by Shannon [15] and later Chomsky and Miller [4], that we have evaluated
through experiments over C programs [18], fitting our need for the aforementioned
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complexity. For a number n, we use Sn(L) to denote the number of words in L
whose length is n. The information rate λL of L is defined as

λL = lim
logSn(L)

n
.

When the limit does not exist, we take the upper limit, which always exists for
a finite alphabet. Throughout this paper, the logarithm is base 2. The rate is
closely related to data compression ratio [7] and hence has immediate practical
applications. Information rate is a real number. Hence, as usual, when we say
that the rate is computable, it means that we have an algorithm to compute
the rate up to any given precision (i.e., first n digits, for any n). A fundamental
result is in the following.

Theorem 1. The information rate of a regular language is computable [4].

The case when L is non-regular (e.g., L is the external behavior set of a software
system containing (unbounded) integer variables like counters and clocks) is
more interesting, considering the fact that a complex software system nowadays
is almost always of infinite-state and the notion of information rate has been used
in software testing [18,19]. However, in such a case, computing the information
rate is difficult (sometimes even not computable [10]) in general. Existing results,
such as unambiguous context-free languages [11], Lukasiewicz-languages [16],
and regular timed languages [2], are limited and mostly rely on Mandelbrot
generating functions and the theory of complex/real functions, which are also
difficult to generalize.

In this paper, instead of taking the path of Mandelbrot generating func-
tions, we use automata-theoretic approaches to compute the information rate
for some classes of non-regular languages, including languages accepted by ma-
chines equipped with restricted counters. Our approaches make use of the rich
body of techniques in automata theory developed in the past several decades
and, as we believe, the approaches themselves can also be applied to more gen-
eral classes of languages.

We first investigate languages accepted by reversal-bounded nondeterministic
counter machines [8]. A counter is a nonnegative integer variable that can be incre-
mented by 1, decremented by 1, or stay unchanged. In addition, a counter can be
tested against 0. Let k be a nonnegative integer. A nondeterministic k-counter ma-
chine (NCM) is a one-way nondeterministic finite automaton, with input alphabet
Σ, augmented with k counters. For a nonnegative integer r, we use NCM(k,r) to
denote the class of k-counter machines where each counter is r-reversal-bounded;
i.e., it makes at most r alternations between nondecreasing and nonincreasing
modes in any computation; e.g., the following counter value sequence

0 0 1 2 2 3 3 2 1 0 0 1 1

is of 2-reversal, where the reversals are underlined. For convenience, we some-
times refer to a machine M in the class as an NCM(k,r). In particular, when k
and r are implicitly given, we call M as a reversal-bounded NCM. When M is
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deterministic, we use ‘D’ in place of ‘N’; e.g., DCM. As usual, L(M) denotes the
language that M accepts.

Reversal-bounded NCMs have been extensively studied since their introduc-
tion in 1978 [8]; many generalizations are identified; e.g., ones equipped with
multiple tapes, with two-way tapes, with a stack, etc. In particular, reversal-
bounded NCMs have found applications in areas like Alur and Dill’s [1] time-
automata [6,5], Paun’s [14] membrane computing systems [9], and Diophantine
equations [17].

In this paper, we show that the information rate of the language L accepted
by a reversal-bounded DCM is computable. The proof is quite complex. We
first, using automata-theoretic techniques, modify the language into essentially a
regular language, specified by an unambiguous regular expression that is without
nested Kleene stars, further constrained by a Presburger formula on the symbol
counts in the words of the regular language. We show that the information rate
of L can be computed through the information rate of the constrained language,
where the latter can be reduced to a simple and solvable convex minimization
problem. Unfortunately, we are not able to generalize the technique to reversal-
bounded NCM. However, it is known [3] that a reversal-bounded NCM can be
made to be one with counter values linearly bounded (in input size). Using
this fact, we are able to obtain a computable upper bound on the rate when
a reversal-bounded NCM is considered. We also consider the case when the
reversal-bounded NCM does not make a lot of nondeterministic choices (i.e.,
sublinear-choice). In this case, the rate is shown computable. The result leads
us to study a class of languages accepted by multi-tape DFAs. The information
rate of such a multi-tape language is computable as well.

2 Information Rate of Languages Accepted
by Reversal-Bounded Counter Machines

We now recall a number of definitions that will be used later. Let N be the set
of nonnegative integers and k be a positive number. A subset S of Nk is a linear
set if there are vectors v0,v1, · · · ,vt, for some t, in Nk such that S = {v|v =
v0+b1v1+· · ·+btvt, bi ∈ N}.S is a semilinear set if it is a finite union of linear sets.
Let Σ = {a1, · · · , ak} be an alphabet. For each word α ∈ Σ∗, define the Parikh
map [13] of α to be the vector #(α) = (#a1(α), · · · ,#ak

(α)), where each symbol
count #ai(α) denotes the number of symbol ai’s in α. For a language L ⊆ Σ∗, the
Parikh map of L is the set #(L) = {#(α) : α ∈ L}. The language L is semilinear
if #(L) is a semilinear set. There is a classic result needed in the paper:

Theorem 2. Let M be a reversal-bounded NCM. Then #(L(M)) is a semilinear
set effectively computable from M [8].

Let Y be a finite set of integer variables. An atomic Presburger formula on Y
is either a linear constraint

∑
y∈Y ayy < b, or a mod constraint x ≡d c, where

ay, b, c and d are integers with 0 ≤ c < d. A Presburger formula can always be
constructed from atomic Presburger formulas using ¬ and ∧. It is known that
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Presburger formulas are closed under quantification. Let S be a set of k-tuples
in Nk. S is Presburger definable if there is a Presburger formula P (y1, · · · , yk)
such that the set of nonnegative integer solutions is exactly S. It is well-known
that S is a semilinear set iff S is Presburger definable.

Let M be a reversal-bounded deterministic counter machine. The main result
of this paper shows that the information rate of L(M) is computable. The proof
has four steps. First, we show that the information rate of L(M) can be computed
through the information rate of a counting language (defined in a moment)
effectively constructed from M . Second, we show that the information rate of a
counting language can be computed through the information rate of a counting
replacement language (also defined in a moment) effectively constructed from
the counting language. Third, we show that the information rate of a counting
replacement language can be computed through the information rate of a simple
counting replacement language. Finally, we show that the information rate of a
simple counting replacement language is computable.

NOTE: Because of space limitation, we only provide the full proof of Lemma
1 and give proof sketches of other lemmas. Complete proofs will be given in the
full paper at http://www.eecs.wsu.edu/~zdang/papers/rateFULL.pdf

A counting language L is specified by a regular language and a Presburger for-
mula such that L is exactly the set of all words w in the regular language with the
Parikh map #(w) satisfying the Presburger formula. For instance, {anb2nc3n}
and {w : #a(w) = 2#b(w) = 3#c(w), w ∈ (a + b + c)∗} are counting languages.

Lemma 1. Suppose that M is a reversal-bounded deterministic counter ma-
chine. There is a counting language L, effectively constructed from M , such that
L and L(M) have the same information rate; i.e., λL = λL(M).

Proof. Suppose that M is a DCM(k,r), for some k and r. That is, the counters
in M are, say, x1, · · · , xk. Without loss of generality, we assume that M starts
and accepts with counter values being zero and every counter increments at least
once in between. Furthermore, we need only consider the case when r = 1 (and
every counter makes exactly one reversal). This is because an r-reversal-bounded
counter can be easily simulated by � r2� 1-reversal-bounded counters [8].

We first show that M can be “simulated” by a finite automaton M ′ as follows.
When M runs on an input, every 1-reversal counter xi in M is simulated by two
monotonic (i.e., 0-reversal) counters x+

i and x−
i in M ′ that counts the number

of increments and the number of decrements, respectively, made to xi. During
the run, before the reversal of xi (M ′ “knows” the point of reversal), a counter
test of “xi = 0?” in M is simulated using M ′’s finite memory. After the reversal,
a counter test of “xi = 0?” in M is always simulated as “no” in M ′ until M ′

reads a special symbol ♣i from the input. After reading this special symbol,
the counter test is simulated as “yes” in M ′ and M ′ makes sure that there
are no further counter increments made to x−

i . Hence, the special symbol ♣i

resembles the first “time” when xi decrements to 0 in M . At the end of input,
M ′ accepts when M accepts. Up to now, since the monotonic counters in M ′ does
not contribute to the state transitions in M ′, M ′ is indeed a finite automaton.

http://www.eecs.wsu.edu/~zdang/papers/rateFULL.pdf
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Notice that M ′ runs on input w′ obtained by inserting k (which is a constant)
special symbols ♣1, · · · ,♣k into w. Clearly, if w is accepted by M , then there
is a way to insert the k special symbols into w such that the resulting w′ is
accepted by M ′. However, the inverse is not necessarily true. This is because it
requires the following Presburger test∧

1≤i≤k

x+
i = x−

i (1)

to be successful when M ′ is at the end of w′. We now use a technique that
removes the monotonic counters from M ′.

When M ′ runs on an input, on every input symbol b, M ′ runs from a state
s, reading 0 or more ε symbols, and then actually reading the b and, after this,
entering a state s′. This is called a round. We use a round symbol [s, b, s′] to
denote the round and use P[s,b,s′] to denote the set of vectors of net increments
made to the monotonic counters during the round. The proof of the following
claim is an exercise which constructs a reversal-bounded NCM to accept unary
encoding of vectors in the set and uses Theorem 2:

(Claim 1) P[s,b,s′] is a Presburger definable set.

Consider an input word w′ = b0 · · · bn−1 in L(M ′) for some n. Suppose that,
when M ′ runs on the input, a sequence [w′] of rounds is as follows:

[s0, b0, s1][s1, b1, s2] · · · [sn−1, bn−1, sn] (2)

where s0 is the initial state and sn is an accepting state. The Presburger test
in (1), denoted by Q(Y ), where Y is the vector of the 2k monotonic counters in
M ′, is equivalent to Q(Δ), for some

Δ = Δ[s0,b0,s1] + Δ[s1,b1,s2] · · ·+ Δ[sn−1,bn−1,sn], (3)

where each
Δ[sj−1,bj−1,sj ] ∈ P[sj−1,bj−1,sj ]. (4)

That is, the counter values in (1) are the accumulated counter net increments
Δ in all the rounds as shown in (3) and hence, the Presburger test in (1) can be
performed directly over the Δ.

We now use #[s,b,s′] to denote the number of appearances of the round symbol
[s, b, s′] in (2) and introduce the notation #[s,b,s′] · P[s,b,s′] to denote the set of
all the summations of #[s,b,s′] number of (not necessarily distinct) vectors in
P[s,b,s′]. Clearly, the Δ in (3) can be re-written as

Δ =
∑

[s,b,s′] appearing in (2),
Δ

[s,b,s′]∈#
[s,b,s′]·P[s,b,s′]

Δ[s,b,s′]. (5)

We now claim that
(Claim 2) The formula Δ[s,b,s′] ∈ #[s,b,s′] · P[s,b,s′] is Presburger in Δ[s,b,s′]

and #[s,b,s′].
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The proof of the claim will be shown in a moment. We use # to denote the
vector of the counts #[s,b,s′], noticing that there are totally |S|× |Σ|× |S| round
symbols, where |S| is the number of states in M ′ and |Σ| is the size of its input
alphabet. From the claim, the equation in (5) and hence (3) is a Presburger
formula in Δ and #, after eliminating quantified variables Δ[s,b,s′]’s. We use

Q̂(Δ,#) to denote the formula. Therefore, the Presburger test is equivalent to
the following Presburger formula

∃Δ.Q(Δ) ∧ Q̂(Δ,#),

which is denoted by Q̇(#).
We now define a language L′ to be the set of all round symbol sequences [w′]

in (2) for all w′ accepted by M ′. L′ is regular. Let L′′ be the counting language
obtained from words [w′] in L′ satisfying Presburger formula Q̇(#([w′])).

In summary, we have the following: w is accepted by M iff there is a w′ (after
inserting the aforementioned k special symbols ♣i’s into w) accepted by M ′ and
the acceptance is witnessed by the round symbol sequence [w′] ∈ L′′ shown in
(2). Since M is deterministic, the mapping from w ∈ L(M) to [w′] ∈ L′′ is
one-to-one (while it is not necessarily true for the mapping from w ∈ L(M) to
[w′] ∈ L′). Notice also that the length of [w′] in (2) equals |w′| = |w|+k. Because
k is a constant, directly from definition, λL(M) = λL′′ . The result follows.

To complete the proof, we still need show Claim 2. We first assume a unary
encoding [δ] for integers δ; e.g., 00000 for -5 and 11111 for +5, where the 0 and
1 are the basis. From Claim 1, P[s,b,s′] is therefore a semilinear set. It is known
that, for every semilinear set, one can construct a regular language whose Parikh
map is exactly the semilinear set. This can be shown directly using the definition
of semilinear set; e.g., the semilinear set {(1 + t, t) : t ≥ 0} ∪ {(2 + 2t, 3t) : t ≥
0} corresponds to the regular language a(ab)∗ + aa(aabbb)∗. Let L[s,b,s′] be a
regular language (on alphabet, say, {c1, · · · , c2k}), accepted by an NFA M[s,b,s′],
corresponding to the semilinear set P[s,b,s′]. We construct a reversal-bounded

NCM Ṁ as follows. Working on an input

[#[s,b,s′]]♦[δ1]♦[δ2]♦ · · · [δ2k], (6)

Ṁ uses reversal-bounded counters y0, · · · , y2k, initially being zero. Again, no-
tice that, on the input, the 2k + 1 unary encoding blocks use distinct basis.
Ṁ repeatedly simulates the NFA M[s,b,s′] from the NFA’s initial state to ac-

cepting state. On each simulation, Ṁ guesses an input (one symbol by one
symbol) for the NFA. Along with the simulation, Ṁ uses monotonic counters
y1, · · · , y2k to count, respectively, the number of c1, · · · , c2k that the NFA has
read so far. When a simulation ends, Ṁ increments the counter y0. After a num-
ber of rounds of simulations, Ṁ nondeterministically decides to shut down the
simulation. At this moment, Ṁ checks that the values #[s,b,s′], δ1, · · · , δ2k on
the input (6) are exactly the same as the values stored in counters y0, · · · , y2k,
respectively. The checking can be done by reading through each unary block of
the input while decrementing the counter corresponding to the block to zero.
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In this case, Ṁ accepts the input in (6). Clearly, Ṁ is indeed reversal-bounded
and, Δ[s,b,s′] ∈ #[s,b,s′] · P[s,b,s′] iff the input in (6) is accepted by Ṁ with

Δ[s,b,s′] = (δ1, · · · , δk). Since L(Ṁ) is a semilinear language (Theorem 2), there

is a Presburger formula Q[s,b,s′] such that the input in (6) is accepted by Ṁ
iff Q[s,b,s′](#[s,b,s′], δ1, · · · , δ2k). The claim follows since the desired Presburger
formula is Q[s,b,s′](#[s,b,s′],Δ[s,b,s′]). "#

The proof of Lemma 1 cannot be generalized to the case where M is a reversal-
bounded NCM. This is because, in establishing the one-to-one correspondence
in the proof, one requires that M is deterministic.

The second step of the proof for the main theorem is to establish that a
counting language can be “converted” into a counting replacement language,
which is defined as follows. A replacement system G is specified by k levels, for
some k > 0, where

– for each 1 ≤ i ≤ k, the i-level has a distinct alphabet Σi (i.e., Σi ∩ Σj = ∅
if i �= j);

– the first level contains a finite set of base words w on alphabet Σ1;
– for each 1 < i ≤ k, the i-level contains a finite set of replacement rules in

the form of

a← awa, (7)

where a ∈ Σi−1 and w is a word on alphabet Σi;
– all of the words w’s mentioned above satisfy the following property: there

is no symbol appearing simultaneously in any two such words and, for any
symbol, if it appears in w, it appears only once.

When a replacement rule in (7) is applied on a word u, the result is to replace
an appearance a in u with awa. A word u is generated by G if it is the result
of the following sequence of replacements (in this order): starting from a basic
word in the first level, we apply replacement rules in the second level for zero
or more times, replacement rules in the third level for zero or more times, · · · ,
replacement rules in the k-level for zero or more times. We use L(G) to denote
the set of all u’s generated by G. Clearly, L(G) is a regular language. A regular
replacement language is L(G) for some replacement system G.

For instance, consider a replacement system G with basic word abc, and the
second level replacement rules a ← adea, a ← afa, b ← bgb, and the third level
replacement rules e← ehe. After applying the second level replacement rules for
zero or more times, we obtain words in a(dea+ fa)∗b(gb)∗c. Subsequently, after
applying the third level replacement rules, we finally get L(G) = a(de(he)∗a +
fa)∗b(gb)∗c.

A counting replacement language is a counting language specified by a regular
replacement language and a Presburger formula.

Lemma 2. Suppose that L is a counting language. There is a counting replace-
ment language L′, effectively constructed from the specification of L, such that
λL = 2λL′ .
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The proof of Lemma 2 is intuitively not difficult. Suppose that the counting
language L is specified by a regular language LR and a Presburger formula P .
The proof works on the set of accepting runs (i.e., state-symbol sequences) of
a DFA M accepting the regular language LR. The runs have an unambiguous
way to decompose back to loops, as specified in a replacement system G. This
idea is actually classic, e.g., in the textbook construction from finite automata to
regular expressions. Consequently, the Presburger formula needs to be modified
after the decomposition.

A replacement system is simple if it has at most two levels. A regular replace-
ment language is simple if it is generated by a simple replacement system. A
counting replacement language is simple if it is specified by a simple regular re-
placement language and a Presburger formula. The third step in the proof for the
main theorem establishes that the information rate of a counting replacement
language can be computed through the information rate of a simple counting
replacement language.

Lemma 3. Suppose that L is a counting replacement language. There are a
constant K and a simple counting replacement language L′, constructed from
the specification of L, such that λL = K · λL′ .

The proof of Lemma 3 is difficult. We sketch the ideas used in the proof.
In the lemma, L is a given counting replacement language. Hence, L can be
specified by a regular expression with nested Kleene stars. In order to obtain the
desired simple counting replacement language L′, we must “collapse” the nested
Kleene stars. There is a straightforward way for the collapsing. For instance,
((ab)

∗
c)∗ can be converted into (ab)

∗
c+ + Λ, where the latter one does not have

any nested Kleene star and the two expressions have the same Parikh map.
However, such a straightforward approach, used in computing the Parikh map of
a regular language, has a problem in establishing Lemma 3. Using the approach,
the resulting simple counting replacement language L′ may not preserve the
information rate. Therefore, we need a more sophisticated approach that, roughly
speaking, keeps both the information rate (up to a constant ratio of K) and the
Parikh map. The proof uses a one-to-one encoding that stretches a word in L
(this is where the constant K in the lemma comes from) and moves around the
nested loops in the word so that the resulting word contains at most one level
of loops.

The last step in the proof of the main theorem establishes the following.

Lemma 4. The information rate of a simple counting replacement language is
computable.

The proof of Lemma 4 is a complex reduction from computing the information
rate of a simple counting replacement language to solving a convex minimization
problem, which is well-known computable. (It really says that the information
rate of a simple counting replacement language is the solution of a convex min-
imization problem.)

Directly from Lemmas 1, 2, 3, and 4, we have the following main theorem.
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Theorem 3. The information rate of the language accepted by a reversal-bounded
deterministic counter machine is computable.

We currently do not have a precise time complexity of computing λL(M) where
M is the reversal-bounded DCM in Theorem 3. However, the lower bound of the
complexity is Ω(2m), where m is the number of states in M . The reason is as
follows. Consider an M with no counters and with m−1 nested loops, each with
length 2. That is, the replacement system G obtained in Lemma 2 is of m levels.
Hence, in Lemma 3, after m− 2 rounds of collapsing, G becomes a replacement
system of two levels, where the length of each basic word is at least 2m−2.

Currently, we are not able to generalize the approach used in the above proof
to the case when M is nondeterministic. The reason was already mentioned
right after Lemma 1. However, when M is nondeterministic, a word in L(M)
may correspond to multiple accepting runs. Therefore, λL in the statement of
Lemma 1 now satisfies

λL ≥ λL(M), (8)

and hence, the information rate computed throughout the proof serves as a
computable upper bound of λL(M).

Suppose that M is nondeterministic. Consider the one-to-many mapping from
input word w = a0 · · ·an−1 in M to the “run” w′ (also of length n). We use g(n)
to denote the maximal number of distinct w′ one could possibly obtain. Clearly,
when M is highly nondeterministic, the number g(n) should be large. Clearly,
we have g(n) · Sn(L(M)) ≥ Sn(L). Hence, when

lim
log g(n)

n
= 0, (9)

we have λL ≤ λL(M). Combining (8), we have λL(M) = λL and hence it is
computable when condition (9) holds.

We say that M is f(n)-choice if, during every execution of M over input word
of length n, M makes at most f(n) nondeterministic choices. M is sublinear-

choice if M is f(n)-choice for some f satisfying lim f(n)
n = 0. Suppose that M

contains K instructions (which is a constant). For an input word w ∈ L(M) of
length n, there are at most Kf(n) number of accepting executions that witness
the fact w ∈ L(M). Recalling the definition g(n), we have g(n) ≤ Kf(n), and

therefore, when lim f(n)
n = 0, condition (9) holds. Hence,

Theorem 4. The information rate of the language accepted by a sublinear-
choice reversal-bounded nondeterministic counter machine is computable.

Kuich and Maurer [12] investigate computation of information rate of tuple
languages from pseudolinear tuple grammars that, intuitively, cannot generate
more than one copy of a nonterminal symbol. It is worth studying the relation-
ship between the notion of “pseudolinear” and our notion of “sublinear-choice”,
noticing that our notion essentially limits the nondeterminism in a nondetermin-
istic machine.

Though currently it is open whether the information rate of a reversal-bounded
nondeterministic counter machine is computable, we can compute one more
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upper bound as follows. It is known [3] that if M is a reversal-bounded nonde-
terministic counter machine, we can effectively construct an equivalent reversal-
bounded nondeterministic counter machine M ′ that runs in dn time for some
effectively computable constant d. Without loss of generality, we assume that M
does not stay; i.e., on a move of M ′, it either changes a counter value, or reads
an input symbol. Again, we can also assume that each counter in M ′ makes
exactly one reversal and M ′ accepts with all counters being 0. Let w be an input
word of length n accepted by M ′. That is, there is an accepting run s1b1 · · · stbt
over w, with t = dn. In above, each si is a state, and each bi is either a sym-
bol that M ′ reads from w, or a counter increment or decrement symbol. Even
though M ′ is a nondeterministic machine, the accepting runs can be accepted by
a reversal-bounded deterministic counter machine M ′′. Hence, the information
rate λL(M ′′) is computable. Notice that the accepting run (of length 2dn), after
dropping all states and counter increment or decrement symbols, becomes the
input word w (of length n). Immediately, we have S2dn(L(M ′′)) ≥ Sn(L(M ′)).
Hence, λL(M ′) ≤ 2dλL(M ′′). Recalling that M and M ′ are equivalent (i.e., accept-
ing the same language), we have λL(M) ≤ 2dλL(M ′′) and the latter is computable.

Currently, it is unclear whether this upper bound or the one obtained in (8)
is better.

A 2-tape NFA M is an NFA with two input tapes. If M is a 2-tape NFA, let
T (M) = {(x, y) : M on input (x, y) accepts }. At each step, the transition of M
is of the form q : (a, b) → p, where a, b ∈ Σ ∪ {ε} (ε is the null symbol). The
transition means that M in state q reading a and b on the two tapes enters state
p. A deterministic 2-tape NFA is denoted by 2-tape DFA.

If M is a 2-tape DFA, let R(M) = {xy : (x, y) ∈ T (M)} and S(M) = {xȳ :
(x, y) ∈ T (M)}, where ȳ is the reverse of string y. We first show that if M is a
2-tape DFA, the information rate of R(M) is computable. We describe an NFA
M ′ accepting a regular language that simulates the 2-tape DFA M . If M uses
transition q : (a, b) → p, then M ′ in state q reads a and enters state s (a new
intermediate state), then reads b′ (a marked version of b) in state s and enters
state p (and thus the symbols in the second tape of M are marked). Clearly, the
number of words of length n accepted by M ′ is “almost” the number of words
in R(M) of length n, where “almost” here refers to a ratio of n+ 1 (there are at
most (n+ 1) ways to decode an xy in R(M) back to a pair (x, y) in T (M)); i.e.,

Sn(R(M)) ≤ Sn(L(M ′)) ≤ (n + 1) · Sn(R(M)).

This immediately gives λL(M ′) = λR(M). Similarly, one can obtain λL(M ′) =
λS(M). Since the information rate of the language accepted by the NFA M ′ is
computable, we have

Theorem 5. For 2-tape DFA M , the information rates of R(M) and S(M) are
computable.

The proof ideas can be generalized. Let M be a 2-tape DFA with reversal-
bounded counters. As before, R(M) = {xy : (x, y) ∈ T (M)} and S(M) =
{xȳ : (x, y) ∈ T (M)}. Clearly, we can construct a deterministic reversal-bounded
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counter machine M ′ simulating M by interleaving the symbols in the two tapes
as before. Since the information rate of the language accepted by a determin-
istic reversal-bounded machine is computable (Theorem 3), it follows that the
information rate of R(M) as well as S(M) is computable.

The above can further be generalized to k-tape DFA with reversal-bounded
counters (k ≥ 2), where

T (M) = {(x1, ..., xk) : M on input (x1, ..., xk) accepts},
and

R(M) = {(xop1
1 ...x

opk

k ) : (x1, ..., xk) ∈ T (M)}.
where each opi is either “does nothing” or “reverse xi” (the choice depends only
on R).

From this we can see that there are rather complicated examples of languages
for which the information rate is computable. For example, the language L =
{x#y#xy : x, y ∈ (a + b)∗} has computable information rate, since the set of
triples T = {(x#, y#, xy) : x, y ∈ (a + b)∗} can be accepted by a 3-tape DFA
(even without reversal-bounded counters). Note that L is not even a context-free
language.

As we have shown above, the information rate of the language accepted by a
multi-tape DFA is computable. In contrast, for multi-head DFAs, we have the
following.

A 2-head DFA is a DFA with two one-way heads. The move of the machine
depends on the state and the symbols scanned by the two heads. In a move, the
machine changes state and moves each head (independently) at most one cell to
the right.

Proposition 1. The information rate of the language accepted by a 2-head DFA
is not computable.

Proof. The proof idea follows Kaminger [10]. It is known (using the undecid-
ability of the halting problem for Turing machines) that the emptiness problem
(i.e., is the language accepted empty?) for 2-head DFAs is undecidable. Given
a 2-head DFA M , we modify it to a 2-head DFA M ′ such that L(M ′) = {xw :
x ∈ L(M), w ∈ (a + b)∗}, where a, b are new symbols. M ′ simply simulates M
on x and when M accepts, M ′ reads w and accepts. Hence L(M ′) is empty if
and only if L(M) is empty, and moreover, L(M ′) is infinite (and with rate 1) if
and only if L(M) is not empty. Then information rate λL(M ′) = 0 if and only if
L(M ′) is empty, which is undecidable. "#

3 Conclusions and Discussions

We have shown that the information rate of a language accepted by a reversal-
bounded deterministic counter machine is computable. For the nondeterministic
case, we have provided computable upper bounds. We also considered the cases
when the reversal-bounded NCM is sublinear-choice. For the class of languages
accepted by multi-tape DFAs, the information rate is computable as well, as we
have shown.
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Abstract. We present a translation function from nominal rewriting
systems (NRSs) to combinatory reduction systems (CRSs), transform-
ing closed nominal rules and ground nominal terms to CRSs rules and
terms while preserving the rewriting relation. This result, together with
previous translations from CRSs to NRSs and between CRSs and other
higher-order rewriting formalisms, opens up the path for a transfer of
results between higher-order and nominal rewriting. In particular, tech-
niques and properties of the rewriting relation, such as termination, can
be exported from one formalism to the other.

1 Introduction

Programs and logical systems often include binding operators. First-order term
rewriting systems [1,2] do not provide support for reasoning on binding struc-
tures. This motivated the study of combinations of term rewriting systems with
the λ-calculus [3], which offers a notion of variable binding and substitution.
Combinatory reduction systems (CRSs) [4,5] are well-known examples of higher-
order rewriting formalisms, where a meta-language based on the untyped λ-
calculus was incorporated to a first-order rewriting framework. Other approaches
followed, such as HRSs [6] and ERSs [7,8], for example.

Techniques to prove confluence and termination of higher-order rewriting sys-
tems were studied in [9,5,10] amongst others. However, the syntax and type
restrictions imposed on rules in these systems have prevented the design of com-
pletion procedures for higher-order rewriting systems [11].

More recently, the nominal approach [12,13] has been used to design rewriting
systems with support for binding [14]. Nominal rewriting systems do not rely
on the λ-calculus, instead, two kinds of variables are used: atoms, which can
be abstracted but behave similarly to constants, and metalevel variables or just
variables, which are first-order in that they cannot be abstracted and substitu-
tion does not avoid capture of unabstracted atoms. On nominal terms [15,14]
α-equivalence is axiomatised using a freshness relation between atoms and terms.
Nominal syntax enjoys many useful properties, for instance, unification modulo
α-equivalence is decidable and unitary [15] and nominal matching is linear [16].
Nominal rewriting can be implemented efficiently if we use closed rules.

The availability of efficient algorithms to solve unification problems on nominal
terms motivated the study of the relationship between higher-order and nominal
syntax in a series of papers [17,18,19]. In this paper, we focus on the relationship

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 244–255, 2014.
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between nominal and higher-order rewriting, specifically, we define a translation
function from standard NRS rules and ground nominal terms to CRS rules and
terms, preserving the rewriting relation between NRSs and CRSs, key to the
translation of properties such as confluence and termination. Together with a
previous translation from CRSs to NRSs [18], we now have reduction-preserving
translations in both directions1 so that properties and techniques developed for
one formalism can be exported to the other (e.g., termination techniques based
on the construction of a well-founded reduction ordering). A Haskell implemen-
tation of the translation functions and a tool to prove termination using the
nominal recursive path ordering [20] are available from [21,22].

Related work. In [23,8] CRSs are compared with HRSs and ERSs respectively,
and in [24] CRSs are expressed in terms of the ρ-calculus [25,26]. In [27] a context
calculus is described to represent distinct kinds of meta-variables. A comparison
of various higher-order formalisms, with many interesting examples, is provided
in [28]. In [29] a termination-preserving translation between Algebraic Functional
Systems and other higher-order formalisms is presented. See also [30] for a concise
presentation of higher-order rewrite systems. Although in this paper we focus
on the relationship between NRSs and CRSs, thanks to the existing translations
between CRSs and other higher-order rewriting formalisms, this is sufficient to
obtain a bridge between nominal and higher-order rewriting.

Our work is closely related to the work reported in [17,19]: Cheney [17] repre-
sented higher-order unification as nominal unification, and Levy and Villaret [19]
transformed nominal unification into higher-order unification, providing a trans-
lation that preserves unifiers. Our translation differs from [17,19] since our re-
quirement is to have a mapping of NRS terms and rules to CRS meta-terms and
rules in such a way that reductions are preserved.

The rest of the paper is organised as follows. In section 2 we recall CRSs and
NRS. In section 3 we describe the translation from nominal terms to CRSs meta-
terms, while in section 4 we extend it to take into account rules and substitution.
In Section 5 we prove that nominal rewrite steps can be simulated in CRSs via
the translation function. Section 6 concludes and discusses future work.

2 Preliminaries

We briefly recall the main concepts of NRSs and CRSs — two rewriting for-
malisms that extend the syntax of first-order terms and the notion of first-order
rewriting, to facilitate the specification of systems with binding operators. We
refer the reader to [5,14] for more details and examples.

Nominal Rewriting. A nominal signature Σ is a set of term-formers, or function
symbols, f, g, . . ., each with a fixed arity. We fix a countably infinite set X of

1 The completeness theorem in [18] states that if s −−−→
CRS

t then s′
∗−−−→

NRS
t′, where s′, t′

are the translated terms, but in fact the proof shows s′
+−−−→

NRS
t′.
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variables ranged over by X,Y, Z, . . ., and a countably infinite set A of atoms
ranged over by a, b, c, . . ., and assume that Σ, X , and A are pairwise disjoint. A
swapping is a pair of atoms, written (a b). Permutations π are bijections on A
such that the set of atoms for which a �= π(a) is finite; this is called the support of
π, written as support(π). Permutations are represented by lists of swappings, Id
denotes the identity permutation. We write π−1 for the inverse of π and π◦π′ for
the composition of π′ and π. For example, if π = (a b)(b c) then π−1 = (b c)(a b).

Nominal terms, or just terms, are generated by the grammar

s, t ::= a | π·X | [a]s | fs | (s1, . . . , sn)

and called, respectively, atoms, moderated variables or simply variables, abstrac-
tions, function applications (which must respect the arity of the function symbol)
and tuples (if n = 0 or n = 1 we may omit the parentheses). We abbreviate Id·X
as X if there is no ambiguity. An abstraction [a]t is intended to represent t with
a bound. We call occurrences of a abstracted if they are in the scope of an ab-
straction, and unabstracted (or free) otherwise. For example, f([a]X, [b]b) is a
nominal term, and so is f(X, (a b)·X). For more examples, we refer the reader
to [15,14].

We write V (t) (resp. A(t)) for the set of variables (resp. atoms) in t (we use
the same notation for rules, contexts, etc.). The set A(t) includes the atoms
occurring as subterms of t and, in addition, the atoms in abstractions and in
the support of permutations occurring in t. In particular, A((a b)·X) = {a, b}.
Ground terms have no variables: V (t) = ∅ if t is ground.

The action of a permutation π on a term t, written π·t, is defined by induction:
Id·t = t and (a b)π·t = (a b)·(π·t), where a swapping acts on terms as follows:

(a b)·a = b (a b)·b = a (a b)·c = c (c �∈ {a, b})
(a b)·(π·X) = ((a b) ◦ π)·X (a b)·[c]t = [(a b)·c](a b)·t

(a b)·ft = f(a b)·t (a b)·(t1, . . . , tn) = ((a b)·t1, . . . , (a b)·tn).

Substitutions are generated by the grammar: σ ::= Id | [X �→s]σ. We use
the same notation for the identity substitution and permutation, and also for
composition, since there will be no ambiguity. Substitutions act on variables,
without avoiding capture of atoms. We write tσ for the application of σ on t,
defined as follows: tId = t, t[X �→s]σ = (t[X �→s])σ, and

a[X �→s] = a (π·X)[X �→s] = π·s (π·Y )[X �→s] = π·Y (X �= Y )
([a]t)[X �→s] = [a](t[X �→s]) (ft)[X �→s] = ft[X �→s]

(t1, . . . , tn)[X �→s] = (t1[X �→s], . . . , tn[X �→s])

Definition 1. A freshness (resp. α-equivalence) constraint is a pair a#t (resp.
s ≈α t) of an atom and a term (resp. terms). A freshness context (ranged over by
Δ,∇, Γ ), is a set of constraints of the form a#X. Freshness and α-equivalence
judgements, written Δ , a#t and Δ , s ≈α t respectively, are derived using the
rules below, where a, b denote different atoms and ds(π, π′) = {a | π·a �= π′·a}
(difference set).
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(#ab)
Δ , a#b

π-1·a#X ∈ Δ
(#X)

Δ , a#π·X

Δ , a#s
(#f)

Δ , a#fs

Δ , a#s1 · · · Δ , a#sn
(#tupl)

Δ , a#(s1, . . . , sn)
(#[a])

Δ , a#[a]s

Δ , a#s
(#[b])

Δ , a#[b]s

(≈αa)
Δ , a ≈α a

∀a ∈ ds(π, π′) : a#X ∈ Δ
(≈αX)

Δ , π·X ≈α π′·X
Δ , s ≈α t

(≈αf)
Δ , fs ≈α ft

Δ , s1 ≈α t1 · · · Δ , sn ≈α tn
(≈αtupl)

Δ , (s1, . . . , sn) ≈α (t1, . . . , tn)

Δ , s ≈α t
(≈α[a])

Δ , [a]s ≈α [a]t

Δ , (b a)·s ≈α t Δ , b#s
(≈α[b])

Δ , [a]s ≈α [b]t

Let Pi be a freshness or α-equality constraint (for 1 ≤ i ≤ n). We write Δ ,
P1, . . . , Pn when proofs of Δ , Pi exist (for 1 ≤ i ≤ n), using the derivation
rules above.

Definition 2. A nominal rewrite rule R = ∇ , l → r is a tuple of a freshness
context ∇ and terms l and r such that V (r) ∪ V (∇) ⊆ V (l).

A nominal rewrite system (NRS) is an equivariant set R of nominal rewrite
rules, that is, a set of nominal rules that is closed under permutations. We shall
generally equate a set of rewrite rules with its equivariant closure.

Example 1. The following rules are used to compute prenex normal forms in first-
order logic. The signature has term-formers forall, exists, not, and. We show
only two rules due to space constraints. Intuitively, equivariance means that the
choice of atoms in rules is not important (see [14] for more details), therefore we
could change a to b (i.e., (a b)) for instance.

a#P , and(P, forall([a]Q)) → forall([a]and(P,Q))
, not(exists([a]Q)) → forall([a]not(Q)).

Nominal rewriting [14] operates on ‘terms-in-contexts’, written Δ , s or just
s when Δ = ∅. Below, C[ ] varies over terms with exactly one occurrence of a
distinguished variable Id·-, or just -. We write C[s] for C[- �→s], and Δ , ∇θ for
{Δ , a#Xθ | a#X ∈ ∇}.

Definition 3. A term s rewrites with R = ∇ , l → r to t in Δ, written Δ ,
s→R t (as usual, we assume V (R) ∩ V (Δ, s) = ∅), if s = C[s′] and there exists
θ such that Δ , ∇θ, Δ , lθ ≈α s′ and Δ , C[rθ] ≈α t. Since Δ does not change
during rewriting, a rewriting derivation is written Δ , s1 →R s2 →R . . .→R sn,
abbreviated as Δ , s1 →∗ sn.

When rules are closed, nominal rewriting can be efficiently implemented using
nominal matching (there is no need to consider equivariance).

Closed terms are, roughly speaking, terms without unabstracted atoms and such
that all the occurrences of any given variable are under compatible abstractions.
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Definition 4. A term-in-context Δ , t is closed if

1. every atom a ∈ A(t) that occurs as a subterm of t occurs in the scope of an
abstraction of a;

2. if π · X occurs in the scope of an abstraction of π · a then any occurrence
of π′ · X is in the scope of an abstraction of π′ · a or a#X ∈ Δ (that is, if
one occurrence of a variable π·X captures an atom then either this atom is
captured in all occurrences of π′·X or it is fresh for X);

3. for any pair π1·X, π2·X occurring in t, where a ∈ ds(π1, π2), if a is not in
the scope of an abstraction in one of the occurrences (that is, if a is not
captured in either π1·X or π2·X) then a#X ∈ Δ.

A rewrite rule ∇ , l → r is closed if ∇ , (l, r) is a closed term.

For example, [a]f(X, a) is closed, but f(X, a) and f(X, [a]X) are not, however
a#X , f(X, [a]X) is closed. All the rewrite rules in Example 1 are closed.

Closedness can be easily checked using the nominal matching algorithm [16],
as follows. First, given a term in context ∇ , t, or more generally, a pair P =
∇ , (l, r) (this could be a rule R = ∇ , l → r), let us write P N = ∇ N ,
(l N, r N) to denote a freshened variant of P , i.e., a version where the atoms and
variables have been replaced by ‘fresh’ ones. We shall always explicitly say what
P N is freshened for when this is not obvious. For example, a freshened version
of (a#X , f(X) → X) with respect to itself and to a′#X , a′ is (a′′#X ′ ,
f(X ′) → X ′). We will write A(P ′)#V (P ) to mean that all atoms mentioned in
P ′ are fresh for each of the variables occurring in P . Let ∇ N, t Nbe a freshened
version of ∇ , t. Then ∇ , t is closed if there exists a substitution σ such that
∇, A(∇ N , t N)#V (∇ , t) , ∇ Nσ and ∇, A(∇ N , t N)#V (∇ , t) , t Nσ ≈α t. A
similar check can be done for nominal rewrite rules, or, in general, for tuples
∇ , (t1, . . . , tn).

Combinatory Reduction Systems. A combinatory reduction system [4,5] is a pair
consisting of an alphabet A and a set of rewrite rules.

The alphabet consists of: variables a, b, c, . . .; meta-variables with fixed arities,
written as Zn

i where n is the arity of Zn
i (n is omitted when there is no ambi-

guity); function symbols f, g, . . . with fixed arities; and an abstraction operator
[·]·. Only variables can be abstracted. We write MV (t) (resp. V ar(t)) for the set
of meta-variables (resp. variables) occurring in a term t (the same notation is
used for rules, etc.).

In CRSs a distinction is made between meta-terms and terms. Meta-terms
are the expressions built from the symbols in the alphabet, in the usual way.
Variables that are in the scope of the abstraction operator are bound, and free
otherwise. Meta-terms are defined modulo renaming of bound variables (i.e., a
meta-term represents an α-equivalence class). Terms are meta-terms that do not
contain meta-variables, and are also defined modulo α-equivalence.

A (meta-)term is closed if every variable occurrence is bound. CRSs adopt the
usual naming conventions (also known as Barendregt’s variable conventions): in
particular, all bound variables are chosen to be different from the free variables.
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A rewrite rule is a pair of meta-terms, written l ⇒ r, where l, r are closed,
l has the form f(s1, . . . , sn) where n ≥ 0 (when n = 0 we omit the paren-
theses), MV (r) ⊆ MV (l), and MV (l) occur only in the form Zn

i (a1, . . . , an),
where a1, . . . , an are pairwise distinct bound variables. We call this form a meta-
application.

Example 2. The β-reduction rule for the λ-calculus is written:

app(lam([a]Z(a)), Z ′) ⇒ Z(Z ′)

where Z is a unary meta-variable and Z ′ is 0-ary.

The reduction relation is defined on terms. To generate the rewrite relation,
each meta-variable in a rule is replaced by a special kind of λ-term, and in the
obtained term all β-redexes and the residuals of these β-redexes are reduced (i.e.
a complete development is performed). Formally, the rewrite relation is defined
using substitutes and valuations. An n-ary substitute is an expression of the form
λa1 . . . an.t, where t is a term and a1, . . . , an are different variables. An n-ary
substitute can be applied to a n-tuple s1, . . . , sn of terms, and the result is the
term t where a1, . . . , an are simultaneously replaced by s1, . . . , sn. A valuation
σ is a map that assigns an n-ary substitute to each n-ary meta-variable. It is
extended to a mapping from meta-terms to terms: given a valuation σ and a
meta-term t, first we replace in t all meta-variables by their images in σ and
then we perform the developments of the β-redexes created.

A context is a term with an occurrence of a special symbol [ ] called hole.
A rewrite step is now defined in the usual way: if l ⇒ r is a rewrite rule, σ a
valuation and C[ ] a context, then C[lσ] ⇒ C[rσ].

Example 3. The following is a rewrite step using as example the β-rule given in
Example 2:

app(lam([a]f(a, a)), t) ⇒β f(t, t)

To generate it we use the valuation σ that maps Z to λ(b).f(b, b) and Z ′ to the
term t. Then app(lam([a]Z(a)), Z ′)σ is the term app(lam([a]f(a, a)), t) obtained
by first replacing Z and Z ′ as indicated by σ and then reducing the β-redex
(λ(b).f(b, b))(a). Also, Z(Z ′)σ is the term f(t, t) obtained by replacing Z and
Z ′, which gives (λ(b).f(b, b))(t), and then β-reducing for λ-.

3 Translating Nominal Terms

We start by designing a translation function for nominal terms; we deal with
nominal rewrite rules in the next section.

For each nominal signature Σ, and sets A and X of atoms and variables, we
consider a CRS alphabet containing Σ, variables A and meta-variables X .

First we define an auxiliary function: Λ, to compute, for each variable occur-
ring in a nominal term, the set of atoms that may be captured when a variable
is instantiated.
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Definition 5 (Mapping Λt). For each nominal term t, we define Λt : X →
P(A) such that Λt(X) = {a1, . . . , an} if X ∈ V (t) has k occurrences in t, Ai is
the set of atoms abstracted above the ith occurrence of X, and {a1, . . . , an} =
A1 ∪ . . .∪Ak. In other words, Λt(X) is the set of all the atoms abstracted above
occurrences of X in t. We omit the inductive definition.

Definition 6 (Term Translation). Let Δ , t be a nominal term-in-context
and Λt as in Definition 5. Then T (Δ, t) = �t�ΔΛt

, where �·�ΔΛt
is an auxiliary

function defined by induction over the structure of nominal terms as follows:
(atom) �a�ΔΛt

= a,
(var) �π ·X�ΔΛt

= X(xs) where

xs � π · xs (we omit (xs) if empty)

xs � toAscList2 ([π−1·Λt(X)]− {a | a#X ∈ Δ}),
(abs) �[a]s�ΔΛt

= [a]�s�ΔΛt
,

(fun) �fs�ΔΛt
= f�s�ΔΛt

,
(tuple) �(s1, . . . , sn)�ΔΛt

= (�s1�
Δ
Λt
, . . . , �sn�ΔΛt

).

Example 4. The nominal term , [a][b]X is translated as the CRS meta-term
[a][b]X(a, b) including both variables in the meta-application as they may appear
free in a substitution σ(X). Failure to include them could lead to a renaming of
the bound variables in the meta-term to avoid variable-capture, as defined in [5].
This would subsequently lead to a translation disassociated from its original
input. Freshness constraints also have to be taken into account. For example,
the term a#X , [a][b]X is translated as the meta-term [a][b]X(b), where the
atom a is not included in the meta-application. However, a freshness constraint
does not always discard an atom from inclusion in the list of variable arguments.
This depends on permutations. We adjust our example to show this. Consider
a#X , [a][b](a b)·X . In this case we want to translate the mapping b �→ a but not
a �→ b since a#X ∈ Δ. Our translation outputs the meta-term [a][b]X(a), which
seems to suggest that a may occur free in σ(X) contradicting the constraint
a#X ∈ Δ. However, since σ(X) satisfies Δ, the atom a cannot be free in σ(X) or
in its CRS translation (see Definition 9). Hence the mapping a �→ b is discarded.

Example 5. The nominal term , [a][b](a c)·X includes a mapping a �→c ∈ π from
an abstracted atom a to an unabstracted atom c. Our algorithm is designed to
translate NRSs into CRSs, which are closed by definition. Accordingly, this par-
ticular kind of mapping cannot be explicitly represented at term level thus its
application is shifted to the substitute that instantiates X , if any. This method is
shown in detail in section 4 when describing the translation of rules and substi-
tutions. Our translation function for terms produces the meta-term [a][b]X(b, a)
which effectively takes into account the rest of the mappings in π, in this case
b �→b, c �→a, generating a closed CRS meta-term.

Property 1 (Equivalence Relation). Let Δ , t be a closed term-in-context
and T (Δ, t) = t̂ its CRS translation. If π1 ·X and π2 ·X are two occurrences of

2 List of atoms in ascending lexical order. Any total ordering can be used.
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the same variable X in t, and X(xs1), X(xs2) are their translations in t̂, then
π−1
1 · xs1 ≡ π−1

2 · xs2.

Proof. It is sufficient to prove that, for any atom a if a ∈ xs1 at position i then
a ∈ xs2 at position j such that i = j by application of toAscList, else a#X ∈ Δ
by definition of a closed term (see Definition 4). We omit the proof. �

Next we prove that the translation function produces CRS (meta-)terms where
the arity of each variable is correctly enforced.

Property 2 (Preserving Closedness of Translated Terms).

(a) If Δ , t is a closed nominal term then its CRS translation according to
Definition 6 is a closed CRS meta-term.

(b) If the nominal term t is ground, then its translation is a CRS term.

Proof. This is due to the translation respecting the structure of t. It follows from
Property 1 that every meta-application Xn(xs) respects the arity n = |xs| for
all occurrences of X in its translation t̂. Since every variable a ∈ xs also exists
in Λt(X), thus bound, the term is closed. �

4 Transforming NRS Rules

NRS rules are more general than CRS rules in that free atoms may occur in
rules. In this section, we impose some conditions on NRS rules to obtain a class
of rules that can be translated to CRS rules.

Definition 7 (Standard Nominal Rule). A nominal rule is called standard
if it is closed and the left-hand side has the form fs.

Definition 8 (Rule Translation). Let R ≡ ∇ , l → r be a standard nominal
rule. We define the translation of R as T R(∇, l, r) = T (∇, l) ⇒ T (∇, r) where
T (Δ, t) is given in Definition 6.

Note that if a nominal rule ∇ , l → r is closed (i.e., ∇ , (l, r) is closed), then
∇ , l and ∇ , r are both closed terms.

Lemma 1 (Well-Defined Rule Translation). Let R ≡ ∇ , l → r be a

standard nominal rule. If R′ ≡ l̂⇒ r̂ is its translation according to Definition 8,
then R′ is a CRS rule.

Proof. The proof is straight-forward. �

Example 6. The (closed) nominal rules to compute prenex normal forms (see
Example 1) can be translated to CRS rules by application of our algorithm. We
show the CRS translation for the first rule, computed by our Haskell implemen-
tation (see [21]): and(P, forall([a]Q(a))) ⇒ forall([a]and(P,Q(a))).



252 J. Domı́nguez and M. Fernández

5 Simulating Nominal Rewrite Steps

Translation of a rewrite relation is not as straight-forward as one could expect.
The rewriting relation generated by a set of CRS rules is defined on terms, not
on meta-terms. In order to preserve the rewriting relation, we need to consider
only ground nominal substitutions. Moreover permutations will be applied to
substitutions in the translation, in order to preserve the meaning of the term.
For this reason, we will define a translation function for pairs of a term-in-
context Δ , t and a substitution σ. In other words, some permutations will
be dealt with by applying them directly to the substitution before translation.
These correspond to mappings from atoms to free atoms occurring in the term.
Take for instance the example ( , (a b)·X, [X �→f(a, b)] ) The term , (a b)·X is
trivially closed (no free atoms occur in the term and there is only one variable).
The CRS translation given in Definition 6 for nominal terms and Definition 9
for nominal substitution, given below, produce the pair ( X, [X �→f(b, a)] ) where
the permutation (a b) has been applied directly to the substitute. Accordingly,
the list of bindings added to σ (possibly empty, as in the above example) must
also be modified to preserve the binding structure after application of π to σ.
Further examples are considered after Definition 9.

Definition 9 (Substitution Translation). Let Δ , t be a closed nominal
term-in-context, Λt as in Definition 5, and σ a nominal substitution satisfying
Δ, such that σ = [Xi �→ ti], 1 ≤ i ≤ n where dom(σ) ⊆ V (t) and tσ is ground.

Then T ∫ (Δ, t, σ) = [Xi �→ λ(xsi).si] where xsi and si are defined as follows.
Let πi be the permutation suspended in the leftmost occurrence of Xi in t. Then

– xsi � πi · xsi,
– xsi � toAscList([π−1

i ·Λt(Xi)]− {a | a#Xi ∈ Δ}),
– si � T (Δ,πi · ti).

We denote by (t̂, σ̂) the result of (T (Δ, t), T ∫ (Δ, t, σ)).

Lemma 2 justifies the use of the leftmost occurrence of π ·X in t in Definition 9.

Example 7. Consider the nominal term-in-context and substitution:
(a, c#X , g([a][b][c](a d)(e f)·X, [a][b][c](c d)(e f)·X), [X �→f(b, d, e, f)]).
The term translation function produces a CRS meta-term g([a][b][c]X(b, a),
[a][b][c]X(b, c)) and the substitution translation produces the corresponding sub-
stitutes [X �→λ(b, a).f(b, a, f, e)] and [X �→λ(b, c).f(b, c, f, e)] associated to each
occurrence of X . Note that these substitutes are α-equivalent. Hence the algo-
rithm opts for the leftmost [X �→λ(b, a).f(b, a, f, e)].

Moreover, applying the lexical ordering directly to xs instead of xs would
produce substitutes which are no longer α-equivalent, providing incorrect in-
stantiations.

Lemma 2 (α-equivalence of Substitutes). Let Δ , t be a closed nominal
term-in-context, Λt as defined in Definition 5, and σ a nominal substitution sat-
isfying Δ such that dom(σ) ⊆ V (t) and tσ is ground. Let πi ·X, πj ·X be two oc-
currences of the same variable in t, and let [X �→ λ(xsi).si] and [X �→ λ(xsj).sj ]
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be translations according to Definition 9 but using πi and πj respectively. Then
[X �→ λ(xsi).si] ≈α [X �→ λ(xsj).sj ].

Proof. It easily follows from Property 1 and Definition 4. �

Lemma 3 (Instantiation). Let Δ , t be a closed nominal term-in-context, Λt

as defined in Definition 5, and σ a substitution satisfying Δ such that dom(σ) ⊆
V (t) and tσ is ground.

Assume (�t′�ΔΛt
, T ∫ (Δ, t, σ)) = (t̂′, σ̂), where t′ is any subterm of t (e.g. t′ ≡ t).

Then �t′σ�ΔΛt
= t̂′σ̂.

Proof. The result follows from Lemma 2 and Property 1. �

Note that C[ ] is a term, as explained in the paragraph above Definition 3, and
is translated to Ĉ[ ] using Definition 6.

We can now derive the main result of the paper: the preservation of the rewrite
relation under the translation.

Theorem 1 (Rewrite Step Translation). Let R ≡ ∇ , l → r be a standard
nominal rule. Let t be a ground nominal term and t̂ = T (∅, t).
If t →R u then there exists û such that t̂ ⇒R′ û using R′ ≡ T R(∇, l, r), and
û = T (∅, u).

Proof. If t →R u then there exists C, σ such that t ≈α C[lσ] with σ a ground
nominal substitution satisfying ∇ such that dom(σ) ⊆ V (l).

Also R′ ≡ T R(∇, l, r) ≡ �l�∇Λl
⇒ �r�∇Λr

= l̂⇒ r̂ by Definition 8, where Lemma
1 asserts that the translation is a CRS rule.
If we have, by application of Definition 9, T ∫ (∇, l, σ) = σ̂l then, by Lemma 3

�lσ�∇Λl
= l̂σ̂l. Hence we have t̂ = Ĉ[l̂σ̂l].

Similarly, since u ≡ C[rσ] we have T ∫ (∇, r, σ) = σ̂r, leading to û = Ĉ[r̂σ̂r ]
by application of Definition 9, followed by Lemma 3. Notice that dom(σ̂r) ⊆
dom(σ̂l) and σ̂r(X̂) ≈α σ̂l(X̂) by Lemma 2.

Hence we conclude by stating that if lσ →R rσ then t̂⇒R′ û as expected. �

Corollary 1 (Termination). 3 Termination of the translated CRS implies ter-
mination of the NRS. �

6 Conclusions and Future Work

We have shown two extensions of first-order rewriting, CRSs and NRSs, to
be closely related. We have shown that despite their differences in the meta-
language, it is possible to translate between these formalisms. We have given a
translation function which transforms the class of closed NRSs into CRSs. We
have shown some non-trivial examples to support our work, as well as an imple-
mentation in Haskell for our translation function. Although previous work has

3 The corollary also holds in the other direction (see [18]).
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been done on translating nominal syntax to higher-order syntax [19] and back to
NRSs [17], our work differs from [19] by focusing on a syntax-directed mapping
of NRS terms to meta-terms, extended to rules and preserving the rewriting
relation, which is key to the translation of properties such as confluence and
termination. Since there is also a translation from CRSs to NRSs [18], we now
we have a mechanism to export results on termination of rewriting from one
framework to the other. Nominal terms have good algorithmic properties, which
suggests that we could translate CRSs to NRSs in order to take advantage of ex-
isting nominal procedures (i.e. orderings, completion) then transfer back results.
This could lead to procedures of nominal systems being adapted to suit CRSs
or creation of new procedures by combination of existing ones from both for-
malisms. Nominal typing systems could also be adapted to the (untyped) CRSs.
This is left for future work.
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Abstract. We study the expressive power and succinctness of order-
invariant sentences of first-order (FO) and monadic second-order (MSO)
logic on graphs of bounded tree-depth. Order-invariance is undecidable
in general and, therefore, in finite model theory, one strives for logics
with a decidable syntax that have the same expressive power as order-
invariant sentences. We show that on graphs of bounded tree-depth,
order-invariant FO has the same expressive power as FO, and order-
invariant MSO has the same expressive power as the extension of FO
with modulo-counting quantifiers. Our proof techniques allow for a fine-
grained analysis of the succinctness of these translations. We show that
for every order-invariant FO sentence there exists an FO sentence whose
size is elementary in the size of the original sentence, and whose number
of quantifier alternations is linear in the tree-depth. Our techniques can
be adapted to obtain a similar quantitative variant of a known result that
the expressive power of MSO and FO coincides on graphs of bounded
tree-depth.

Keywords: Expressivity, succinctness, first-order logic, monadic second-
order logic, order-invariance, tree-depth.

1 Introduction

Understanding the expressivity of logics on finite structures—the question of
which properties are definable in a certain logic—plays an important role in
database and complexity theory. In the former, logics are used to formulate
queries; in the latter, they describe computational problems. Moreover, besides
just studying a logic’s expressivity, understanding its succinctness—the question
how complex definitions of properties like queries and problems must be—is a
requirement towards (theoretical) expressivity results of (potential) practical im-
portance. The present work studies the succinctness of first-order logic (FO) as
well as its succinctness compared to extensions allowing for the use of a linear

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 256–266, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Expressivity and Succinctness of Order-Invariant Logics 257

Table 1. Summary of our results: A formula ϕ of quantifier rank q is translated into
a formula ψ that is equivalent to ϕ on graphs of tree-depth at most d

ϕ ∈ ≤-inv-FO MSO ≤-inv-MSO

ψ ∈ FO FO FO+MOD
‖ψ‖ (2d+ 1)-exp(q) O(d2)-exp(qr(ϕ)) non-elementary

qad(ψ) O(d) O(d) O(d)

order and set quantifiers. This extends and refines recent studies on the expres-
sivity of these logics [1,6] on restricted classes of structures. The structures we
consider have bounded tree-depth, which is a graph invariant that measures how
far a graph is from being a star in a similar way as tree-width measures how far
a graph is from being a tree. Our results are summarised in Table 1.

In both database and complexity theory, one often assumes that structures
come with a linear order and formulae are allowed to use this order as long as
the properties defined by them do not depend on the concrete interpretation of
the order in a structure. Such formulae are called order-invariant. Since test-
ing order-invariance for given FO-formulae is undecidable in general, one tries
to find logics that have the same expressive power as order-invariant formu-
lae, but a decidable syntax. Several examples prove that order-invariant FO-
formulae (≤-inv-FO) are more expressive than FO-formulae without access to
orders, cf. [11]. A common feature of these separating examples is that their
Gaifman graphs contain large cliques, making them rather complicated from the
point of view of graph structure theory. For tree structures, on the other hand,
Benedikt and Segoufin [1] showed that the expressivity of FO and ≤-inv-FO co-
incide. We extend and refine this result by showing equal expressivity and suc-
cinctness results for FO and ≤-inv-FO on graphs of bounded tree-depth. The
importance of the expressivity result is highlighted by the fact (proved in the
full version of this paper) that order-invariance is undecidable even on graphs of
tree-depth at most 2.

A logic that is commonly studied from the perspectives of algorithm design
and language theory is monadic second-order logic (MSO), which extends FO-
formulae by the ability to quantify over sets of elements instead of just single
elements. While it has a rich expressivity that exceeds that of FO already on
word structures, the expressive powers of FO and MSO coincide on any class
of structures whose tree-depth is bounded [6]. We refine this by presenting a
translation into succinct FO-formulae.

In [4], Courcelle raised the (still open) question whether ≤-inv-MSO has the
same expressive power on graphs of bounded tree-width as the extension of MSO
by first-order modulo-counting quantifiers (CMSO). We prove a stronger state-
ment for graphs of bounded tree-depth: ≤-inv-MSO has the same expressive power
as FO+MOD, i.e. the extension of FO by arbitrary first-order modulo-counting
quantifiers.

Our results also have implications on FO itself. They imply that that the
quantifier alternation hierarchy for FO of Chandra and Harel [3] collapses on
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graphs of bounded tree-depth, whereas by their result it is strict on trees of
unbounded height. That means, for graphs of bounded tree-depth, we are able
to turn any FO-formula into a formula whose size is bounded by the quantifier
depth of the original formula and whose quantifier alternation depth is bounded
by a linear function in the tree-depth.

Proof techniques and relation to prior works. Our proofs are based on funda-
mental techniques from finite model theory like interpretation arguments, logical
types, and games. Compared to prior works like [6], we enrich the application of
these techniques by a quantitative analysis, which results in succinct translations
instead of just equal expressivity results.

The proofs of [6] use an involved constructive variant of the Feferman–Vaught
composition theorem, which complicates a straightforward analysis of the for-
mula size in the translation from MSO to FO. We also use composition arguments,
but we get along with an easier non-constructive variant. There is another proof
of the result of [6] in [7], but it relies on involved combinatorial insights that
seem unsuited for both a tight analysis of succinctness as well as an adaptation
to the ordered setting.

While our proofs are based on techniques from finite model theory, the results
of [1] about the expressivity of ≤-inv-FO on trees use automata-theoretic and
algebraic methods, which seem unsuited to obtain succinct translations. Due to
the following reason, even our equal expressivity result for ≤-inv-FO and FO on
graphs of bounded tree-depth is interesting: Benedikt and Segoufin [1] proved
that on graphs of bounded tree-width every ≤-inv-FO sentence is equivalent to
an MSO sentence. With the results of [6] this would imply our expressivity result
(not the succinctness result). However, the result from [1] relies on an earlier
proof of how to define tree decompositions of bounded width in MSO whose
correctness has been doubted by Courcelle and Engelfriet [5]. A proof of our
expressivity result for ≤-inv-FO along this lines is nevertheless possible. A direct
FO-construction of a tree decomposition of bounded width and depth for graphs
of bounded tree-depth will appear in the full version of this paper.

Organisation of this paper. The paper continues with a background section and,
then, the results related to ≤-inv-FO, MSO, and ≤-inv-MSO are proved in Sec-
tions 3, 4, and 5, respectively. Due to space restrictions, some parts of the paper,
such as proofs and definitions, are only sketched or omitted.

2 Background

General notation. The sets of natural numbers with and without 0 are denoted
respectively by N and N+. Let [i, j] := {i, . . . , j} for all i, j ∈ N with i ≤ j, and
let [j] := [1, j]. For any d ∈ N, the class of functions that grow at most d-fold
exponentially, denoted by d-exp(n), is made up by all functions f : N→ N with
f(n) ≤ c+ d-exp(nc) for some c ∈ N; where d-exp: N→ N is recursively defined
via 0-exp(n) := n and (d + 1)-exp(n) := 2d-exp(n) for d ∈ N. If we say that a
relation is an order, we implicitly assume that it is linear.
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Logic. For a reference on notation and standard methods in finite model theory,
we refer to the book of Libkin [9]. Besides the standard logics FO and MSO,
we also consider the logic FO+MOD that is obtained from FO by allowing the
use of modulo-counting quantifiers ∃i (mod p) for each i ∈ N, p ∈ N+, where
ψ(ȳ) := ∃i (mod p)xϕ(x, ȳ) means that for a structure A with universe A and a
tuple of its elements ā, A |= ψ(ā) iff |{b ∈ A : A |= ϕ(b, ā)}| ≡ i (mod p).

We write qr(ϕ) for the quantifier rank and ‖ϕ‖ for the size (or length) of
a formula ϕ. The quantifier alternation depth qad(ϕ) of a formula ϕ in nega-
tion normal form (nnf, i.e. all negations of ϕ occur directly in front of atomic
formulae) is the maximum number of alternations between ∃- and ∀-quantifiers
on all directed paths in the syntax tree of ϕ. If ϕ is not in nnf, we first find
an equivalent formula ϕ′ in nnf using a fixed conversion procedure and, then,
define qad(ϕ) := qad(ϕ′).

For any logic L ∈ {FO, FO+MOD,MSO}, we write A ≡L
q B for q ∈ N to denote

that structures A and B over the same signature σ satisfy the same L[σ]-sentences
of quantifier rank at most q. The ≡L

q -equivalence class of A is its (L, q)-type and
denoted by tpL

q (A). For L ∈ {FO,MSO}, each (L, q)-type τ is definable by an L-
sentence ϕτ with qr(ϕτ ) = q, i.e. A |= ϕτ iff tpL

q (A) = τ ; we identify each τ with
one such sentence ϕτ . If the logic L has been fixed (as will be the case in most
parts of this paper) or the concrete logic is not important for the discussion, we
omit it in this and similar notation.

For every signature σ, we define the signature σ≤ := σ ∪ {≤}, where ≤ is a
binary relation symbol. A sentence ϕ ∈ FO[σ≤] is order-invariant exactly if the
following holds for all finite σ-structures G and all linear orders �,�′ on the
universe of G:

(G,�) |= ϕ iff (G,�′) |= ϕ.

The set of all order-invariant ϕ ∈ FO[σ≤] is denoted by ≤-inv-FO[σ], and for such
a ϕ and a σ-structure G we write G |=≤ ϕ if (G,�) |= ϕ for some (equivalently,
for every) linear order � on G; ≤-inv-MSO is defined in the same way by using
MSO instead of FO-formulae.

If ψ is a formula with a free variable z and ϕ is an arbitrary formula, then
ϕ|ψ is the formula ϕ relativised to ψ. We construct ϕ|ψ by replacing subformulae
∃z ϕ and ∀z ϕ by ∃z (ψ ∧ ϕ|ψ) and ∀z (¬ψ ∨ ϕ|ψ), respectively.

Coloured and ordered graphs. The letter C will be used to denote a finite set
of colours, and we define the signature σC := {E} ∪ {Pc | c ∈ C}, where E
is binary and every Pc is unary. A C-coloured graph is a σC -structure G with
universe V (G), symmetric and irreflexive edge relation E(G), and such that the
Pc(G) form a partition of V (G). We will simply speak of graphs when referring
to C-coloured graphs, and write FO for FO[σC ] etc. An order on a graph is an
order on its vertex set. An ordered graph is a σC

≤-structure (G,≤G) where G is
a graph and ≤G is an order on G.

The restriction of a binary relation R on a set M to a subset N ⊆ M is the
relation R|N := {(x, y) ∈ R : x, y ∈ N}. For ease of notation we will sometimes
drop the relativisation for orders on subgraphs and write (H,�) for (H,�|H).
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For two linear orders � and �′ on disjoint sets M1 and M2, respectively, we
define a linear order � · �′ on M1 ∪M2, the concatenation of � and �′, as
� ∪ �′ ∪ (M1 ×M2).

Our formulae often speak about the distance between two vertices of a graph.
To this end, we define existential FO-formulae ϕdist≤�(x, y) by ϕdist≤0(x, y) :=
x = y and ϕdist≤�(x, y) := ∃z (ϕdist≤�−1(x, z) ∧ (Ezy ∨ z = y)) for each � ≥ N+.

Tree-depth. The following inductive definition is one of several equivalent ways
to define the tree-depth td(G) of a graph (see [10] for a reference on tree-depth):

td(G) :=

⎧⎪⎨⎪⎩
1 if |V (G)| = 1

1 + min r∈V (G) td(G \ r) if G is connected and |V (G)| > 1

max i∈[n] td(Ki) if G has components K1, . . . ,Kn.

As an immediate consequence of this definition, each connected graph with
td(G) > 1 contains a vertex r with td(G\r) = td(G)−1. We denote the set of all
such vertices by roots(G). Elements of roots(G) are called tree-depth roots of G.
Furthermore, graphs of tree-depth 1 contain only isolated vertices. Another fact
about tree-depth that we need is that there are only paths of length at most 2d in
graphs G with td(G) ≤ d. In particular, the diameter of such graphs is bounded
by 2d and hence the formula reachd(x, y) := ϕdist≤2d(x, y) defines the relation
containing all pairs (u, v) ∈ V (G)× V (G) such that u and v belong to the same
(connected) component. Using this observation and the inductive definition of
tree-depth, one can write down an FO-sentence ϕtd≤d with ‖ϕtd≤d‖ ∈ O(d) that
defines the class of graphs of tree-depth at most d on the class of all graphs, and
an FO-formula ϕd-roots(x) with ‖ϕd-roots‖ ∈ O(d) that defines the set roots(G)
in a connected graph G with 1 < td(G) ≤ d.

3 Order-Invariant First-Order Logic

We prove the following theorem in the present section.

Theorem 3.1. For every d ∈ N+ and ≤-inv-FO-sentence ϕ with qr(ϕ) = q,
there is an FO-sentence ψ with ‖ψ‖ ∈ (2d + 1)-exp(q) and qad(ψ) ∈ O(d) that
is equivalent to ϕ on (coloured) graphs of tree-depth at most d.

Several definitions and lemmas of this section are given in greater generality
than needed here, because we will reuse them in later sections. In this section,
whenever notation refer to a logic L and we omit it, assume that L = FO. The
main ingredient for the proof of Theorem 3.1 is the following lemma which
states that q-types of q-ordered graphs of tree-depth at most d, i.e. ordered
graphs where the order is a q-order, which we define below, can be defined by
FO-formulae without referring to a linear order. Let TC,q,d denote the set of all
q-types τ over the signature σC

≤ such that there exists a q-ordered graph (G,�)
with td(G) ≤ d and tpq(G,�) = τ .
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Lemma 3.2. For all q, d ∈ N+ and τ ∈ TC,q,d, there is an FO-sentence ϕτ,d

with ‖ϕτ,d‖ ∈ (2d)-exp(q) and qad(ϕτ,d) ∈ O(d) that defines τ on graphs of
tree-depth at most d.

Here an FO-sentence ϕτ defines τ on graphs of tree-depth at most d if for each
graph G with td(G) ≤ d, we have G |= ϕτ iff there exists a q-order � such that
tpq(G,�) = τ .

Before we discuss how to prove Lemma 3.2, let us first sketch how Theorem 3.1
can be proved with its help: For a given ≤-inv-FO-sentence ϕ with qr(ϕ) = q,
we let ψ be the disjunction over all FO-sentences ϕτ,d for τ ∈ TC,q,d that are
types of q-ordered graphs of tree-depth at most d satisfying ϕ. We have ‖ψ‖ ∈
(2d + 1)-exp(q) and qad(ψ) ∈ O(d); since ϕ is order-invariant, ψ is equivalent
to ϕ.

Encoding vertex information in extended colourings. During our proofs, we re-
move single vertices from a graph and encode information about them into
colours of the remaining vertices. This allows us to recover the original graph
using an FO-interpretation. Let C′ := C ×{0, 1}. For a C-coloured graph G and
r ∈ V (G), define a C′-colouring of G\ r by assigning to each vertex v ∈ V (G\ r)
of colour c in G the colour (c, 1) if {r, v} ∈ E(G), and (c, 0), otherwise. The
C′-coloured graph thus obtained is denoted by G[r]. The following lemma is easy
to prove following this definition.

Lemma 3.3. Let L ∈ {FO, FO+MOD}. For every L[σC′ ]-sentence ϕ there is an
L[σC ]-formula I(ϕ)(x) of the same quantifier rank and quantifier alternation
depth such that

G |= I(ϕ)(r) iff G[r] |= ϕ.

for all C-coloured graphs G and r ∈ V (G).

Definition of q-orders. We fix orders �L,q, for any logic L, and �C on, respec-
tively, the set of (L, q)-types and any colour set C.

Definition 3.4 ((L, q)-order). An order � of a graph G is an (L, q)-order if
the following conditions are satisfied:
1. If G is a connected graph, then it contains either only one vertex, or it contains

more than one vertex and the �-least element r is an element of roots(G)

whose colour is �C-minimal among the elements of roots(G), and tpL
q (G[r],�

) �(L,q) tpL
q (G[r′],�) for all r′ ∈ roots(G) of the same colour. Furthermore,

�|V (G\r) is an (L, q)-order of G \ r.
2. Otherwise, if G has components H1, . . . , H�, then, after suitably permuting the

components, � = �|H1
· · · · · �|H�

, where each �|Hi
is an (L, q)-order of Hi,

and tpL
q (Hi,�) �L,q tpL

q (Hj ,�) for i ≤ j.
The least element of a q-order � is denoted by r�.

For each q-ordered C-coloured connected graph (G,�) with td(G) > 1, we define
an ordered C′-coloured graph

G̃� := (G[r],�).



262 K. Eickmeyer, M. Elberfeld, and F. Harwath

Observe that td(G[r]) < td(G) and that G̃� is q-ordered. The following lemma,
which states that G̃� together with the colour of r� determine the q-type of
(G,�), can be proved using standard ef-game-based arguments.

Lemma 3.5. Let L ∈ {FO,MSO} and q ∈ N+. Let (G,�G) and (H,�H) be
(L, q)-ordered connected graphs such that td(G), td(H) > 1 and r�G , r�H have
the same colour. Then G̃�G ≡L

q H̃�H implies (G,�G) ≡L
q (H,�H).

Using this, we can show that while there might be several q-orders of a given
graph, up to ≡L

q they are all equivalent.

Lemma 3.6. Let L ∈ {FO,MSO}, q ∈ N+. For all (L, q)-orders �,�′ of a graph
G, we have (G,�) ≡L

q (G,�′).

Threshold counting of components. We define an equivalence relation ≈q,t on
ordered graphs that counts the number of components of different q-types up
to a threshold value t. We show that there is a t depending on q, such that
each ≡FO

q -equivalence class of q-ordered graphs is a union of ≈q,t-equivalence
classes. Then we show, basically, that these equivalence classes are definable
for graphs of bounded tree-depth. For every logic L and L-sentence ϕ, we let
nϕ(G) denote the number of components K of G such that K |= ϕ and we let
nϕ,t(G) := min{nϕ(G), t}, for each t ∈ N.

Definition 3.7 (≈Φ,t, ≈L,q,t). Let Φ be a set of L-sentences and t ∈ N. We say
that two graphs G and H are (Φ, t)-similar (written G ≈Φ,t H) if

nϕ,t(G) = nϕ,t(H)

for each ϕ ∈ Φ. In the special case that Φ is a set of L-sentences containing one
sentence that defines τ for each (L, q)-type τ , we write ≈L,q,t instead of ≈Φ,t;
whenever L is fixed, we write ≈q,t.

All these definitions are extended to ordered graphs by stipulating that a com-
ponent of an ordered graph (G,�) is an ordered graph (K,�) where K is a
component of G.

We show that in q-ordered graphs FO inherits its component counting ca-
pabilities from its capability to distinguish linear orders of different length. A
proof of the lemma (based on different notation) is contained in the proof of [1,
Thm. 5.5]; it requires only the fact that the components of a q-ordered graph
are ordered according to their q-type.

Lemma 3.8. Let q ∈ N+ and let t := 2q + 1. If (G,�G) and (H,�H) are
q-ordered graphs with (G,�G) ≈q,t (H,�H), then (G,�G) ≡FO

q (H,�H).

The following lemma shows that ≈Φ,t-equivalence classes are definable for graphs
of bounded tree-depth. It will be needed for the formula construction in the proof
of Lemma 3.2 and in later sections.
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Lemma 3.9. Let L ∈ {FO, FO+MOD}. For every d, t ∈ N+, set of L-sentences
Φ := {ϕ1, . . . , ϕ�}, and n̄ := (n1, . . . , n�) ∈ [0, t]�, there is an L-sentence ψΦ

n̄,t

such that for each graph G with td(G) ≤ d, we have G |= ψΦ
n̄,t iff nϕi,t(G) = ni

for each i ∈ [�]. Moreover, the sentence has size ‖ψΦ
n̄,t‖ ∈ � ·O(dmaxi∈[�] n

2
i ‖ϕi‖)

and qad(ψΦ
n̄,t) ≤ maxi∈[�] qad(ϕi) + 1,

Finally, we can proof our main lemma.
Proof of Lemma 3.2. The proof proceeds by induction on the tree-depth d. Let
T conn
C,q,d be defined analogously to TC,q,d for q-ordered connected graphs.

Case 1: Connected graphs. As a first step, we prove the special case of the claim
for connected graphs with a stronger upper bound on the formula size, i.e. we
show that, on connected graphs of tree-depth at most d, each τ ∈ T conn

C,q,d is
defined by an FO-sentence ϕconn

τ,d such that ‖ϕconn
τ,d ‖ ∈ (2(d− 1) + 1)-exp(q) and

qad(ϕconn
τ,d ) ∈ O(d). If d = 1, then any graph G of type τ consists of a single

vertex of some colour c ∈ C; the FO-sentence ϕconn
τ,1 := ∃xPc(x) ∧ ∀y (x = y)

defines τ since there is only one linear order on each such graph. Hence ‖ϕconn
τ,1 ‖

and qad(ϕconn
τ,1 ) are constant.

Now suppose that d > 1 and τ ∈ T conn
C,q,d. For each colour ĉ we define a set

Rĉ ⊆ TC′,q,d−1 that contains a q-type θ iff tpq(H,�) = τ for a q-ordered C′-
coloured connected graph (H,�) with 1 < td(H) ≤ d such that tpq(H̃�) = θ
and r� has colour ĉ. We obtain an FO[σC′ ]-sentence ϕθ,d−1 by induction that
defines θ on q-ordered C′-coloured graphs of tree-depth at most d− 1, and that
has size ‖ϕθ,d−1‖ ∈ (2(d−1))-exp(q) and alternation-depth qad(ϕθ,d−1) ∈ O(d).
Let ϕτ,1 be an FO-sentence with ‖ϕτ,1‖ ∈ 2-exp(q) and qad(ϕτ,1) ∈ O(d), also
given by induction, that defines τ on graphs of tree-depth 1. Now consider the
following FO-sentence

ϕconn
τ,d := (ϕtd≤1 ∧ ϕτ,1) ∨

∨
ĉ∈C, θ∈Rĉ

∃x ϕd-roots(x) ∧ Pĉ(x) ∧ I(ϕθ,d−1)(x),

where I is the operator defined in Lemma 3.3. Note that the size of ϕconn
τ,d is

‖ϕconn
τ,d ‖ ∈ (2(d− 1) + 1)-exp(q) (this is dominated by the maximal size of |Rĉ|)

and that qad(ϕconn
τ,d ) ∈ O(d). Using Lemma 3.3 and Lemma 3.5, it is not too

hard to verify that ϕconn
τ,d defines τ .

Case 2: Disconnected Graphs. Let T conn
C,q,d := {τ1, . . . , τ�}. Let Φ be a set that

contains the formulae ϕi := ϕconn
τi,d

for each i ∈ [�]. For each graph G with
td(G) ≤ d and each component K of G, we have K |= ϕi iff there is a q-order �
of G such that tpq(K,�) = τi; due to Lemma 3.6, this holds iff tpq(K,�) = τi
for each q-order � of G. Thus nϕi(G) = nτi(G,�) for each q-order � of G.
Let t := 2q + 1 as in Lemma 3.8. For any ordered graph (G,�), let n̄(G,�) :=
(nτ1,t(G,�), . . . , nτ�,t(G,�)), i.e. n̄(G,�) ∈ [0, t]�.

Now consider a τ ∈ TC,q,d. Let R ⊆ [0, t]� such that for each n̄ ∈ [0, t]�, n̄ ∈ R
iff there exists a q-ordered graph (G,�) with td(G) ≤ d and tpq(G,�) = τ such
that n̄ = n̄(G,�). For each n̄ ∈ R, let ψΦ

n̄,t(x̄) be the formula of Lemma 3.9.
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Observe that ‖ψΦ
n̄,t(x̄)‖ ∈ � · O(dt2 maxi∈[�] ‖ϕi‖). We hence have ‖ψΦ

n̄,t(x̄)‖ ∈
((2d− 1) + 1)-exp(q) and qad(ψΦ

n̄,t(x̄)) ∈ O(d).
Define the FO-sentence ϕτ,d :=

∨
n̄∈R ψΦ

n̄,t. Since |R| ∈ (2d)-exp(q), also
‖ϕτ,d‖ ≤ |R| ·maxn̄∈R ‖ψΦ

n̄,t‖ ∈ (2d)-exp(q) and qad(ϕτ,d) ∈ O(d).
We prove that ϕτ,d defines τ on graphs of tree-depth at most d. Let G be such

a graph. Suppose first that there is a q-order � such that (G,�) has type τ . By
the definition of Rτ there is a tuple n̄ ∈ Rτ such that n̄ = n̄(G,�), so G |= ψΦ

n̄,t

by Lemma 3.9.
Suppose now that G |= ϕτ,d, i.e. say G |= ψΦ

n̄,t for some tuple n̄ ∈ Rτ . By the
definition of R, an ordered graph (H,�H) with (H,�H) |= τ , td(H) ≤ d and
n̄(H,�H) = n̄ exists. By Lemma 3.9, we have G ≈Φ,t H . It follows from our
choice of Φ that there is a q-order �G on G such that (H,�H) ≈q,t (G,�G).
Now (H,�H) ≡FO

q (G,�G) by Lemma 3.8. "#

4 Monadic Second-Order Logic

The approach towards the results of the previous section can be adapted to
obtain a quantitative variant of the result of [6] that MSO and FO have the same
expressive power on the class of graphs of tree-depth at most d. Let s(d) :=
d(d+1)

2 + 2d for each d ∈ N.

Theorem 4.1. For each d ∈ N+ and MSO-sentence ϕ there is an FO-sentence
ψ with ‖ψ‖ ∈ (s(d) + 1)-exp(qr(ϕ)) and qad(ψ) ∈ O(d) that is equivalent to ϕ
on graphs of tree-depth at most d.

Much of the proof of Theorem 4.1 follows the proof of Theorem 3.1, but we
are spared of the complications that arose in connection with the ordering of
graphs. On the other hand, the proof of an analogue to Lemma 3.8 becomes
more complicated. In Lemma 3.8, we did not use the fact that we consider only
graphs of bounded tree-depth. Here naively ignoring the bounded tree-depth
would lead to a non-elementary dependence of the counting threshold on q. We
use the following lemma to avoid this.

Lemma 4.2. For every d, q ∈ N+, there is a t ∈ d-exp(q) such that, if G and
H are graphs with td(G), td(H) ≤ d and G ≈q,t H, then G ≡MSO

q H.

5 Order-Invariant Monadic Second-Order Logic

It is well-known that for each sentence in modulo-counting MSO (CMSO) there
is an equivalent ≤-inv-MSO-sentence, and a conjecture of Courcelle implies that,
on graphs of bounded tree-width, the converse of this statement is also true. In
the special case where instead of bounded tree-width the graphs have bounded
tree-depth, we show the following stronger result.

Theorem 5.1. For every d ∈ N+ and ≤-inv-MSO-sentence ϕ there exists an
FO+MOD-sentence ψ with qad(ψ) ∈ O(d) that is equivalent to ϕ on graphs of
tree-depth at most d.
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Of course the analogue of this statement for more general classes of graphs is not
true, e.g. graph connectivity is MSO-, but not FO+MOD-definable. In contrast to
the previous sections, we do not analyse the formula size, because it is known
from [8] that (plain) MSO can define the length of orders non-elementarily more
succinct than FO. Again we need to understand ≤-inv-MSO’s capabilities to count
the components of a given q-type in q-ordered graphs. We say that ordered
graphs (G,�G) and (G,�H) are (q, p)-similar, written (G,�G) �q,p (H,�H), if
nτ (G) ≡ nτ (H) (mod p), and nτ (G) ≥ p iff nτ (H) ≥ p, for each q-type τ . The
following lemma shows that MSO inherits its component counting capabilities on
q-ordered graphs from its semilinear spectrum on linear orders.

Lemma 5.2. For each q ∈ N+ a p ∈ N+ exists such that for all q-ordered graphs
(G,�G) and (H,�H), if (G,�G) �q,p (H,�H) then (G,�G) ≡MSO

q (H,�H).

The next lemma is a modulo-counting analogue of Lemma 3.9, and the two
lemmas together can be used to define the �q,p-equivalence class of a graph G
from given sentences that define the q-types of the components.

Lemma 5.3. For each d, p ∈ N+, each set Φ := {ϕ1, . . . , ϕ�} of FO+MOD-
sentences and each tuple of numbers n̄ := (n1, . . . , n�) ∈ [0, p − 1]� there is an
FO+MOD-sentence χΦ

n̄,p such that for each graph G with td(G) ≤ d, we have
G |= χΦ

n̄,p iff, for each i ∈ [�], nϕi(G) ≡ ni (mod p). If qad(ϕi) = O(d) for each
i ∈ [�], then qad(χΦ

n̄,p) ∈ O(d).

To prove the lemma, at first, it is not clear at all how modulo-counting quantifiers
can be used to count the number of components satisfying a given FO+MOD-
sentence. But it is shown in [2, Lem. 7] that the number of tree-depth roots
of each component of a graph is bounded in terms of its tree-depth. For each
component, we can use its roots as FO-definable representatives that allow us
to perform the necessary counting. Using the previous lemmas, we can prove an
analogue to Lemma 3.2, i.e. that each (MSO, q)-type of (MSO, q)-ordered graphs
is FO+MOD-definable on bounded tree-depth graphs, in a very similar way to
Lemma 3.2. This makes it possible to prove Theorem 5.1.

6 Final Remarks

We phrased our results for undirected (coloured) graphs to simplify notation,
but their proofs generalise to structures with higher-arity relations (where the
tree-depth of a structure is defined to be the tree-depth of its Gaifman graph).
Furthermore, all our formula constructions imply algorithms to compute the
formulas. It would be interesting to obtain corresponding lower bounds for our
succinctness upper bounds.

Acknowledgements. We want to thank Isolde Adler for bringing the first two
authors together with the third author, and Nicole Schweikardt for her helpful
suggestions.
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Abstract. This paper introduces and investigates decision problems for
numberless probabilistic automata, i.e. probabilistic automata where the
support of each probabilistic transitions is specified, but the exact values
of the probabilities are not. A numberless probabilistic automaton can
be instantiated into a probabilistic automaton by specifying the exact
values of the non-zero probabilistic transitions.

We show that the two following properties of numberless probabilistic
automata are recursively inseparable:
• all instances of the numberless automaton have value 1,
• no instance of the numberless automaton has value 1.

1 Introduction

In 1963 Rabin [12] introduced the notion of probabilistic automata, which are fi-
nite automata able to randomise over transitions. A probabilistic automaton has
a finite set of control states Q, and processes finite words; each transition consists
in updating the control state according to a given probabilistic distribution de-
termined by the current state and the input letter. This powerful model has been
widely studied and has applications in many fields like software verification [3],
image processing [5], computational biology [6] and speech processing [10].

Several algorithmic properties of probabilistic automata have been considered
in the literature, sometimes leading to efficient algorithms. For instance, func-
tional equivalence is decidable in polynomial time [13,14], and even faster with
randomised algorithms, which led to applications in software verification [9].

However, many natural decision problems are undecidable, and part of the
literature on probabilistic automata is about intractability results. For example
the emptiness, the threshold isolation and the value 1 problems are undecid-
able [11,2,8].

A striking result due to Condon and Lipton [4] states that, for every ε >
0, the two following problems are recursively inseparable: given a probabilistic
automaton A,

� The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 259454
(GALE) and from the French Agence Nationale de la Recherche projects EQINOCS
(ANR-11-BS02-004) and STOCH-MC (ANR-13-BS02-0011-01).
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• does A accept some word with probability greater than 1− ε?
• does A accept every word with probability less than ε?

In the present paper we focus on numberless probabilistic automata, i.e. prob-
abilistic automata whose non-zero probabilistic transitions are specified but the
exact values of the probabilities are not. A numberless probabilistic automaton
can be instantiated into a probabilistic automaton by specifying the exact values
of the non-zero probabilistic transitions (see Section 2 for formal definitions).

The notion of numberless probabilistic automaton is motivated by the fol-
lowing example. Assume we are given a digital chip modelled as a finite state
machine controlled by external inputs. The internal transition structure of the
chip is known but the transitions themselves are not observable. We want to
compute an initialisation input sequence that puts the chip in a particular ini-
tial state. In case some of the chip components have failure probabilities, this can
be reformulated as a value 1 problem for the underlying probabilistic automa-
ton: is there an input sequence whose acceptance probability is arbitrarily close
to 1? Assume now that the failure probabilities are not fixed a priori but we
can tune the quality of our components and choose the failure probabilities, for
instance by investing in better components. Then we are dealing with a number-
less probabilistic automaton and we would like to determine whether it can be
instantiated into a probabilistic automaton with value 1, in other words we want
to solve an existential value 1 problem for the numberless probabilistic automa-
ton. If the failure probabilities are unknown then we are facing a second kind of
problem called the universal value 1 problem: determine whether all instances
of the automaton have value 1. We also consider variants where the freedom to
choose transition probabilities is restricted to some intervals, that we call noisy
value 1 problems.

One may think that relaxing the constraints on the exact transition proba-
bilities makes things algorithmically much easier. However this is not the case,
and we prove that the existential and universal value 1 problems are recursively
inseparable: given a numberless probabilistic automaton C,

• do all instances of C have value 1?
• does no instance of C have value 1?

This result is actually a corollary of a generic construction which constitutes
the technical core of the paper and has the following properties. For every simple
probabilistic automaton A, we construct a numberless probabilistic automaton
C such that the three following properties are equivalent:

(i) A has value 1,
(ii) one of the instances of C has value 1,

(iii) all instances of C have value 1.

The definitions are given in Section 2. The main technical result appears in Sec-
tion 3, where we give the generic construction whose properties are described above.
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In Section 4, we discuss the implications of our results, first for the noisy value 1
problems, and second for probabilistic Büchi automata [1].

2 Definitions

Let A be a finite alphabet. A (finite) word u is a (possibly empty) sequence of
letters u = a0a1 · · ·an−1; the set of finite words is denoted by A∗.

A probability distribution over a finite set Q is a function δ : Q → Q≥0 such
that

∑
q∈Q δ(q) = 1; we denote by 1

3 · q + 2
3 · q′ the distribution that picks q with

probability 1
3 and q′ with probability 2

3 , and by q the trivial distribution picking
q with probability 1. The support of a distribution δ is the set of states picked
with positive probability, i.e., supp(δ) = {q ∈ Q | δ(q) > 0}. Finally, the set of
probability distributions over Q is D(Q).

Definition 1 (Probabilistic automaton). A probabilistic automaton (PA)
is a tuple A = (Q,A, q0, Δ, F ), where Q is a finite set of states, A is the finite
input alphabet, q0 ∈ Q is the initial state, Δ : Q×A→ D(Q) is the probabilistic
transition function, and F ⊆ Q is the set of accepting states.

For convenience, we also use PA(s
u−→ t) to denote the probability of going

from the state s to the state t reading u, PA(s
u−→ S) to denote the probability

of going from the state s to a state in S reading u, and PA(u), the acceptance

probability of a word u ∈ A∗, to denote PA(q0
u−→ F ).

We often consider the case of simple probabilistic automata, where the tran-
sition probabilities can only be 0, 1/2, or 1.

Definition 2 (Value). The value of a PA A, denoted val(A), is the supremum
acceptance probability over all input words

val(A) = sup
u∈A∗

PA(u) .

The value 1 problem asks, given a (simple) PA A as input, whether val(A) = 1.

Theorem 1 ([8]). The value 1 problem is undecidable for simple PA.

Definition 3 (Numberless probabilistic automaton). A numberless prob-
abilistic automaton (NPA) is a tuple A = (Q,A, q0, T, F ), where Q is a finite set
of states, A is the finite input alphabet, q0 ∈ Q is the initial state, T ⊆ Q×A×Q
is the numberless transition function, and F ⊆ Q is the set of accepting states.

The numberless transition function T is an abstraction of probabilistic tran-
sition functions. We say that Δ is consistent with T if for all letters a and states
s and t, Δ(s, a, t) > 0 if, and only if (s, a, t) ∈ T .

A numberless probabilistic automaton is an equivalence class of probabilis-
tic automata, which share the same set of states, input alphabet, initial and
accepting states, and whose transition functions have the same support.
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A NPA A = (Q,A, q0, T, F ) together with a probabilistic transition function
Δ consistent with T defines a PA A[Δ] = (Q,A, q0, Δ, F ). Conversely, a PA
A = (Q,A, q0, Δ, F ) induces an underlying NPA [A] = (Q,A, q0, T, F ), where
T ⊆ Q×A×Q is defined by (q, a, p) ∈ T if Δ(q, a)(p) > 0.

We consider two decision problems for NPA:

– The existential value 1 problem: given a NPA A, determine whether
there exists Δ such that val(A[Δ]) = 1.

– The universal value 1 problem: given a NPA A, determine whether for
all Δ, we have val(A[Δ]) = 1.

Proposition 1. There exists a NPA such that:

– there exists Δ such that val(A[Δ]) = 1,
– there exists Δ′ such that val(A[Δ′]) < 1.

C1

C2

L1

L2

R1

R2

a

f

i, 1
2

a, 1− x
f

a, x

i, a, f

i, 1
2

a, 1− y
f

a, y

i, a, f

Fig. 1. This NPA has value 1 if and only if x > y

In this automaton, adapted from [8,7], the shortest word that can be accepted
is i · f , as i goes from C1 to L1, and f goes from L1 to L2. However, there are
as much chances to go to R2, so the value of i · f is 1/2.

If x is strictly less than y, one can tip the scales to the left by adding a’s
between the i and f : each time, the run will have more chances to stay left than
to stay right. After reading i · an · f , the probability of reaching L2 is equal to
xn, while the probability of reaching R2 is only yn. There is also a very high
chance that the run went back to C1, but from there we can simply repeat our
word an arbitrary number of times.

Let x, y, and ε be three real numbers such that 0 ≤ y < x ≤ 1, and 0 < ε ≤ 1.
There is an integer n such that xn

/(xn+yn) is greater than 1− ε/2, and an integer
m such that (1− xn − yn)

m
is less than ε/2. The word (i · an · f)

m
is accepted

with probability greater than 1− ε.
On the other hand, if x ≤ y, there is no word with value higher than 1/2.
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3 Recursive Inseparability for Numberless Value 1
Problems

In this section, we prove the following theorem:

Theorem 2. The two following problems for numberless probabilistic automata
are recursively inseparable:

– all instances have value 1,
– no instance has value 1.

Recall that two decision problems A and B are recursively inseparable if their
languages LA and LB of accepted inputs are disjoint and there exists no recursive
language L such that LA ⊆ L and L ∩ LB = ∅.

Note that it implies that both A and B are undecidable.
Equivalently, this means there exists no terminating algorithm which has the

following behaviour on input x:

– if x ∈ LA, then the algorithm answers “YES”
– if x ∈ LB, then the algorithm answers “NO”.

On an input that belongs neither to LA nor to LB, the algorithm’s answer can
be either “YES” or “NO”.

3.1 Overall Construction

Lemma 1. There exists an effective construction which takes as input a simple
PA A and constructs a NPA C such that

val(A) = 1 ⇐⇒ ∀Δ, val(C[Δ]) = 1 ⇐⇒ ∃Δ, val(C[Δ]) = 1 .

We first explain how Lemma 1 implies Theorem 2. Assume towards contradic-
tion that the problems “all instances have value 1” and “no instance has value
1” are recursively separable. Then there exists an algorithm A taking a NPA as
input and such that: if all instances have value 1, then it answers “YES”, and if
no instance has value 1, then it answers “NO”. We show using Lemma 1 that this
would imply that the value 1 problem is decidable for simple PA, contradicting
Theorem 1. Indeed, let A be a simple PA, applying the construction yields a
NPA C such that

val(A) = 1 ⇐⇒ ∀Δ, val(C[Δ]) = 1 ⇐⇒ ∃Δ, val(C[Δ]) = 1 .

In particular, either all instances of C have value 1, or no instance of C has value
1. Hence, if it answers “YES” then val(A) = 1 and it if answers “NO” then
val(A) < 1, allowing to decide whether A has value 1 or not. This concludes the
proof of Theorem 2 assuming Lemma 1.
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The construction follows two steps.
The first step is to build from A a family of PA’s Bλ whose transitions are

all of the form q
a−→ (λ · r, (1− λ) · s) in such a way that Bλ has the same value

as A for any value of λ. Note that, while all the Bλ’s belong to the same NPA,
they are not, in general, a NPA: for example, if A were the simple version of the
automaton of Figure 1, the Bλ’s would be the instances where x = y = λ, while
the underlying NPA would also include the cases where x �= y.

The second step is to build from the Bλ’s a NPA C such that, for each proba-
bilistic transition function Δ, there is a λ such that C[Δ] has value 1 if, and only
if Bλ has value 1.

It follows that:

∃Δ, val(C[Δ]) = 1 =⇒ ∃λ, val(Bλ) = 1
=⇒ val(A) = 1
=⇒ ∀λ, val(Bλ) = 1
=⇒ ∀Δ, val(C[Δ]) = 1 .

3.2 The Fair Coin Construction

Let A = (Q,A, q0, Δ, F ) be a simple PA over the alphabet A. We construct a
family of PAs (Bλ)λ∈]0,1[ over the alphabet B = A∪ {'}, whose transitions have
probabilities 0, λ, 1− λ or 1, as follows.

The automaton Bλ is a copy of A where each transition of A is replaced by the
gadget illustrated in Figure 2 (for simplicity, we assume that all the transitions
of A are probabilistic). The initial and final states are the same in A and Bλ.

The left hand side shows part of automaton A: a probabilistic transition from
q reading a, leading to r or s each with probability half. The right hand side
shows how this behaviour is simulated by Bλ: the letter a leads to an intermediate
state qa, from which we can read a new letter '. Each time a pair of '’s is read,
the automaton Bλ goes to r with probability λ·(1−λ), goes to s with probability
(1−λ) · λ, and stays in qa with probability λ2 + (1−λ)2. Reading a letter other
than ' while the automata is still in one of the new states leads to the new sink
state ⊥, which is not accepting. Thus, the probability of going to r is equal to
the probability of going to s, and we can make the probability of a simulation
failure as low as we want by increasing the number of '’s between two successive
“real” letters.

Let u be a word of A∗. We denote by [u]k the word of B∗ where each letter
a ∈ A of u is replaced by a · '2k. Conversely, if w is a word of B∗, we denote by
w̃ the word obtained from w by removing all occurrences of the letter '.

Intuitively, a run of A on the word u is simulated by a run of Bλ on the
word [u]k. Whenever there is a transition in A, Bλ makes k attempts to simulate
it through the gadget of Figure 2, and each attempt succeeds with probability
(1− 2λ · (1− λ)), so each transition fails with probability:

Aλ,k = 1− (1− 2λ · (1 − λ))
k

.
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q
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a, 1
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a, 1
2

q qa
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⊥

�
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�, λ

�, 1− λ
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�

A

A

A

A ∪ {�}

Fig. 2. The fair coin gadget

Proposition 2. The probabilistic automaton Bλ satisfies:

1. For all q, r ∈ Q, a ∈ A, and k ∈ N, PBλ
(q

[a]k−−→ r) = Aλ,k · PA(q
a−→ r) ,

2. For all q, r ∈ Q, u ∈ A∗, and k ∈ N, PBλ
(q

[u]k−−→ r) = A
|u|
λ,k · PA(q

u−→ r) .

3. For all q, r ∈ Q, w ∈ (A ∪ {'})∗, and k ∈ N, PBλ
(q

w−→ r) ≤ PA(q
w̃−→ r) .

It follows from Proposition 2 that for any λ, the value of Bλ is equal to the
value of A.

3.3 The Simulation Construction

All the Bλ’s induce the same NPA, that we denote by B. The problem is that
there are many other instances of B, whose values may be higher than the value
of A (recall the example of Figure 1, where the Bλ have value 1/2, while there
are instances of B with value 1). In this subsection, we construct a NPA C (over
an extended alphabet C) whose instances simulate all the Bλ’s, but only them.

The idea is that the new NPA should only have one probabilistic transition.
An instance of this transition translates to a value for λ. Figure 3 describes a
first attempt at this (notice that our convention is that an non-drawn transition
means a loop, rather than a transition to a sink state).

In this automaton, that we call B′, there are two copies of the set of states, and

a single shared probabilistic transition qR
$−→ (λ · s0, (1− λ) · s1) between them.

In order to make all the probabilistic transitions of B happen in this center area,
we use new letters to detect where the runs come from before the probabilistic
transition, and where it should go afterwards.

For each pair of a letter b in B and a state q in Q, we introduce two new
letters check(b, q) and apply(b, q). The letter check(b, q) loops over each state
except the left copy of q, which goes to qR. The letter apply(b, q) loops over each
state except s0, from where it goes to the λ-valued successor of (q, b) in Bλ, and
s1, from where it goes to the (1 − λ)-valued successor of (q, b) in Bλ. The new
letter next transition sends the run back to the left part once each possible state
has been tested.
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p

q qR

s0

s1

p

p0

p1

next transition

check(b, q)

$, λ

$, 1− λ

apply(b, q)

apply(b, q)

Fig. 3. Naive fusion of the probabilistic transitions

Thus, if we define the morphism ̂ by its action on letters:

b̂=check(b, q0)·$·apply(b, q0) · · · check(b, qn−1)·$·apply(b, qn−1)·next transition ,

where the qi’s are the states of Bλ, we get for any word u on the alphabet B,
PBλ

(u) = PB′
λ
(û).

The problem with this automaton is that one can “cheat”, either by not
testing an unwelcome state, or by changing state and letter between a check
and the subsequent apply. In order to avoid this kind of behaviour, we change
the automaton so that it is necessary to win an arbitrarily large number of
successive times in order to approach the value 1, and we can test whether the
word is fair after the first successful attempt. A side effect is that the simulation
only works for the value 1: for other values, it might be better to cheat. The
resulting automaton is described in Figure 4.

The structure of the automaton of Figure 3 is still there, but it has been
augmented with an extra layer of scrutiny: each time we use the probabilistic
transition, there is now a positive probability (1− θ) to go to a new wait state.
There is also a new letter next word which has the following effect:

– if the run is in an accepting state, it goes to the initial state of the fairness
checker D;

– if the run is in a non-accepting state, it goes to the non-accepting sink state
⊥ of D;

– if the run is in the wait state, it goes back to the initial state.

The fairness checkerD is a deterministic automaton which accepts the language
{û · next word | u ∈ B∗}∗. Its final state is the only final state in all of C.

Intuitively, a run can still cheat before the first next word letter, but the
benefits of doing so are limited: the probability that C[λ, θ] accepts a word at
that point is at most θ (except if the empty word is accepting, but that case is
trivial). After that point, cheating is risky: if the run already reached D, a false
move will send it to the sink.

A more formal proof follows. A simple inspection of the construction of C
yields Proposition 3:
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⊥ qD0

next transition
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next word

next word

$, λ · θ

$, (1− λ) · θ

$, (1− θ)

apply(b, q)

apply(b, q)

apply(b, q)

Fig. 4. The Numberless Probabilistic Automaton C

Proposition 3. Let u be a word of B∗ of length k. We have:

PC[λ,θ](û · next word) = θk · PBλ
(u)

PC[λ,θ]((û · next word)�) = (1− (1− θk)�) · PBλ
(u) .

It follows from Proposition 3 that the value of C[λ, θ] is at least the value of Bλ.

Proposition 4. Let u be a word of (C \ {next word})+. We have:

PC[λ,θ](u) ≤ θ .

Proposition 5 formalises the fact that there is no point in cheating after the
first next word letter:

Proposition 5. Let u1, . . . , uk be k words of (C \ {next word})∗ and w be the

word u1 · next word · · ·uk · next word. Then, for any 1 ≤ i ≤ k, if ui /∈ B̂∗, we
have:

PC[λ,θ](w) ≤ PC[λ,θ](ui · next word · · ·uk · next word) .

Proof. After reading u1 · · ·ui−1 ·next word, a run must be in one of the following

three states: q0, qD0 , and ⊥. As ui /∈ B̂∗, reading it from qD0 will lead to ⊥. Thus,

PC[λ,θ](w) = PC[λ,θ](q0
u1···ui−1·next word−−−−−−−−−−−−→ q0) · PC[λ,θ](ui · · ·uk · next word) ,

and Proposition 5 follows.
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Finally, Proposition 6 shows that C[λ, θ] cannot have value 1 if Bλ does not.

Proposition 6. For all words w ∈ C∗ such that PC[λ,θ](w) > θ, there exists a
word v ∈ B∗ such that

PBλ
(u) ≥

PC[λ,θ](w) − θ

1− θ
.

Proof. Let us write w = u1 · next word · · ·uk · next word with u1, . . . , uk ∈ (C \
{next word})∗. By Proposition 4, k > 1, and by Proposition 5 we can assume

that u2, . . . , uk belong to B̂∗. Let v2, . . . , vk be the words of B∗ such that ui = v̂i.
The C[λ, θ]-value of w can be seen as a weighted average of 1 (the initial cheat,
with a weight of θ) and the Bλ values of the vi’s (the weight of PBλ

(vi) is the
probability that the run enters D while reading ui). It follows that at least one
of the vi’s has a Bλ-value greater than the C[λ, θ]-value of w

Thus, for each λ and θ, the value of C[λ, θ] is 1 if and only if the value of Bλ

is 1. As all the Bλ’s have the same value, which is equal to the value of A, we
get:

∃Δ, val(C[Δ]) = 1 =⇒ ∃λ, val(Bλ) = 1
=⇒ val(A) = 1
=⇒ ∀λ, val(Bλ) = 1
=⇒ ∀Δ, val(C[Δ]) = 1 .

Theorem 2 follows.

4 Consequences

In this section, we show several consequences of the recursive inseparability re-
sults from Theorem 2 and of the construction from Lemma 1. The first is a series
of undecidability results for variants of the value 1 problem. The second is about
probabilistic Büchi automata with probable semantics, as introduced in [1].

4.1 The Noisy Value 1 Problems

Observe that Theorem 2 implies the following corollary:

Corollary 1. Both the universal and the existential value 1 problems are unde-
cidable.

We can go further. Note that the universal and existential value 1 problems
quantify over all possible probabilistic transition functions. Here we define two
more realistic problems for NPA, where the quantification is restricted to prob-
abilistic transition functions that are ε-close to a given probabilistic transition
function:

– The noisy existential value 1 problem: given a NPA A, a probabilistic
transition function Δ and ε > 0, determine whether there exists Δ′ such
that |Δ′ −Δ| ≤ ε and val(A[Δ′]) = 1.
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– The noisy universal value 1 problem: given a NPA A, a probabilistic
transition function Δ and ε > 0, determine whether for all Δ′ such that
|Δ′ −Δ| ≤ ε, we have val(A[Δ′]) = 1.

It follows from Lemma 1 that both problems are undecidable:

Corollary 2. Both the noisy universal and the noisy existential value 1 problems
are undecidable.

Indeed, we argue that the construction from Lemma 1 implies a reduction
from either of these problems to the value 1 problem for simple PA, hence the
undecidability. Let A be a simple PA, the construction yields a NPA C such that:

val(A) = 1 ⇐⇒ ∀Δ, val(C[Δ]) = 1 ⇐⇒ ∃Δ, val(C[Δ]) = 1 .

It follows that for any probabilistic transition function Δ and any ε > 0, we
have:

val(A) = 1 ⇐⇒ (∀Δ′, |Δ′ −Δ| ≤ ε =⇒ val(C[Δ′]) = 1)
⇐⇒ (∃Δ′, |Δ′ −Δ| ≤ ε ∧ val(C[Δ′]) = 1) .

This completes the reduction.

4.2 Probabilistic Büchi Automata with Probable Semantics

We consider PA over infinite words, as introduced in [1]. A probabilistic Büchi
automaton (PBA) A can be equipped with the so-called probable semantics,
defining the language (over infinite words):

L>0(A) = {w ∈ Aω | PA(w) > 0} .

It was observed in [1] that the value 1 problem for PA (over finite words)
easily reduces to the emptiness problem for PBA with probable semantics (over
infinite words).

Informally, from a PA A, construct a PBA A′ by adding a transition from
every final state to the initial state labelled with a new letter '. (From a non-
final state, the letter ' leads to a rejecting sink.) As explained in [1], this simple
construction ensures that A has value 1 if and only if A′ is non-empty, equipped
with the probable semantics.

This simple reduction, together with Theorem 2, implies the following corollary:

Corollary 3. The two following problems for numberless PBA with probable
semantics are recursively inseparable:

– all instances have a non-empty language,
– no instance has a non-empty language.

Acknowledgments. We would like to thank the referees for their helpful
comments.
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Abstract. We study Monadic Second-Order Logic (MSO) over finite
words, extended with (non-uniform arbitrary) monadic predicates. We
show that it defines a class of languages that has algebraic, automata-
theoretic and machine-independent characterizations. We consider the
regularity question: given a language in this class, when is it regular?
To answer this, we show a substitution property and the existence of a
syntactical predicate.

We give three applications. The first two are to give simple proofs of
the Straubing and Crane Beach Conjectures for monadic predicates, and
the third is to show that it is decidable whether a language defined by
an MSO formula with morphic predicates is regular.

1 Introduction

The Monadic Second-Order Logic (MSO) over finite words equipped with the
linear ordering on positions is a well-studied and understood logic. It provides
a mathematical framework for applications in many areas such as program ver-
ification, database and linguistics. In 1962, Büchi [5] proved the decidability of
the satisfiability problem for MSO formulae.

Uniform Monadic Predicates. In 1966, Elgot and Rabin [9] considered ex-
tensions of MSO with uniform monadic predicates. For instance, the following
formula

∀x, a(x) ⇐⇒ x is prime,

describes the set of finite words such that the letters a appear exactly in prime
positions. The predicate “x is a prime number” is a uniform monadic predicate
on the positions, it can be seen as a subset of N.

Elgot and Rabin were interested in the following question: for a uniform
monadic predicate P ⊆ N, is the satisfiability problem of MSO[≤,P] decid-
able? A series of papers gave tighter conditions on P, culminating to two fi-
nal answers: in 1984, Semenov [19] gave a characterization of the predicates P
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such that MSO[≤,P] is decidable, and in 2006, Rabinovich and Thomas [15,17]
proved that it is equivalent to the predicate P being effectively profinitely ulti-
mately periodic.

Further questions on uniform monadic predicates have been investigated. For
instance, Rabinovich [16] gave a solution to the Church synthesis problem for
MSO[≤,P], for a large class of predicates P.

In this paper, we consider non-uniform monadic predicates: such a predicate
P is given, for each length n ∈ N, by a predicate over the n first positions
Pn ⊆ {0, . . . , n − 1}. The set M of these predicates contains the set Munif of
uniform monadic predicates.

Advice Regular Languages. We say that a language is advice regular if
it is definable in MSO[≤,M]. No computability assumptions are made on the
monadic predicates, so this class contains undecidable languages.

Our first contribution is to give equivalent presentations of this class, which
is a Boolean algebra extending the class of regular languages:

1. It has an equivalent automaton model: automata with advice.
2. It has an equivalent algebraic model: one-scan programs.
3. It has a machine-independent characterization, based on generalizations of

Myhill-Nerode equivalence relations.

This extends the equivalence between automata with advice and Myhill-Nerode
equivalence relations proved in [12] for the special case of uniform monadic pred-
icates. We will rely on those characterizations to obtain several properties of the
advice regular languages. Our main goal is the following regularity question:
given an advice regular language L, when is L regular? To answer this question,
we introduce two notions:

– The substitution property, which states that if a formula ϕ together with
the predicate P defines a regular language Lϕ,P, then there exists a regular
predicate Q such that Lϕ,Q = Lϕ,P.

– The syntactical predicate of a language L, which is the “simplest” predicate
PL such that L ∈MSO[≤,PL].

Our second contribution is to show that the class of advice regular languages
has the substitution property, and that an advice regular language L is regular
if and only if PL is regular.

We apply these results to the case of morphic predicates [6], and obtain the
following decidability result: given a language defined by an MSO formula with
morphic predicates, one can decide whether it is regular.

Motivations from Circuit Complexity. Extending logics with predicates
also appears in the context of circuit complexity. Indeed, a descriptive complexity
theory initiated by Immermann [10] relates logics and circuits; it shows that a
language is recognized by a Boolean circuit of constant depth and unlimited
fan-in if and only if it can be described by a first-order formula with predicates
(of any arity, so not only monadic ones), i.e. AC0 = FO[N ].
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This correspondence led to the study of two properties, which amount to
characterize the regular languages (Straubing Conjecture) and the languages
with a neutral letter (Crane Beach Conjecture) in several fragments of FO[N ].
The Straubing Conjecture would, if true, give a deep understanding of many
complexity classes inside NC1. Many cases of this conjecture are still open.
On the other side, unfortunately the Crane Beach Conjecture does not hold
in general, as shown by Barrington, Immermann, Lautemann, Schweikardt and
Thérien [3]. On the positive side, both conjectures hold for uniform monadic
predicates [3,20].

Our third contribution is to give simple proofs of the both the Straubing and
the Crane Beach Conjectures for monadic predicates relying on our previous
characterizations.

Outline. The Section 2 gives characterizations of advice regular languages, in
automata-theoretic, algebraic and machine-independent terms. In Section 3, we
study the regularity question, and give two different answers: one through the
substitution property, and the other through the existence of a syntactical predi-
cate. The last section, Section 4, provides applications of our results: easy proofs
that the Straubing and the Crane Beach Conjectures hold for monadic predicates
and decidability of the regularity problem for morphic regular languages.

2 Advice Regular Languages

In this section, we introduce the class of advice regular languages and give several
characterizations.

Predicates. A monadic predicate P is given by P = (Pn)n∈N, where Pn ⊆
{0, . . . , n − 1}. Since we mostly deal with monadic predicates, we often drop
the word “monadic”. In this definition the predicates are non-uniform: for each
length n there is a predicate Pn, and no assumption is made on the relation
between Pn and Pn′ for n �= n′. A predicate P is uniform if there exists Q ⊆ N
such that for every n, Pn = Q ∩ {0, . . . , n − 1}. We identify P and Q, and see
uniform predicates as subsets of N.

For the sake of readability, we often define predicates as P = (Pn)n∈N with
Pn ⊆ {0, 1}n. In such case we can see P as a language over {0, 1}, which contains
exactly one word for each length. Also, we often define predicates P = (Pn)n∈N

with Pn ∈ An for some finite alphabet A. This is not formally a predicate, but
this amounts to define one predicate Pa for each letter a in A, with Pa

n(i) = 1
if and only if Pn(i) = a. This abuse of notations will prove very convenient.
Similarly, any infinite word w ∈ Aω can be seen as a uniform predicate.

Monadic Second-Order Logic. The formulae we consider are monadic second-
order (MSO) formulae, obtained from the following grammar:

ϕ = a(x) | x ≤ y | P (x) | ϕ ∧ ϕ | ¬ϕ | ∃x, ϕ | ∃X, ϕ
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Here x, y, z, . . . are first-order variables, which will be interpreted by positions
in the word, and X,Y, Z, . . . are monadic second-order variables, which will in-
terpreted by sets of positions in the word. We say that a is a letter symbol, ≤
the ordering symbol and P,Q, . . . are the numerical monadic predicate symbols,
often refered to as predicate symbols.

The notation ϕ(P 1, . . . , P �, x1, . . . , xn, X1, . . . , Xp) means that in ϕ, the pred-
icate symbols are among P 1, . . . , P �, the free first-order variables are among
x1, . . . , xn and the free second-order variables are among X1, . . . , Xp. A formula
without free variables is called a sentence.

We use the notation P to abbreviate P 1, . . . , P �, and similarly for all objects
(variables, predicate symbols, predicates).

We now define the semantics. The letter symbols and the ordering symbol are
always interpreted in the same way, as expected. For the predicate symbols, the
predicate symbol P is interpreted by a predicate P. Note that P is a syntactic
object, while P is a predicate used as the interpretation of P .

Consider ϕ(P , x,X) a formula, u a finite word of length n, P predicates inter-
preting the predicate symbols from P , x valuation of the free first-order variables
and X valuation of the free second-order variables. We define u,P,x,X |= ϕ by
induction as usual, with

u,P,x,X |= P (y) if y ∈ Pn .

A sentence ϕ(P ) and a tuple of predicates P interpreting the predicate sym-
bols from P define a language

Lϕ,P = {u ∈ A∗ | u,P |= ϕ} .

Such a language is called advice regular, and the class of advice regular languages
is denoted by MSO[≤,M].

Automata with Advice. We introduce automata with advice. Unlike classical
automata, they have access to two more pieces of information about the word
being read: its length and the current position. Both the transitions and the
final states can depend on those two pieces of information. For this reason, they
are (much) more expressive than classical automata, and recognize undecidable
languages.

A non-deterministic automaton with advice is given byA = (Q, q0, δ, F ) where
Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ N×N×Q×A×Q is the
transition relation and F ⊆ N×Q is the set of final states. In the deterministic
case δ : N× N×Q×A→ Q.

A run over a finite word u = u0 · · ·un−1 ∈ A∗ is a finite word ρ = q0 · · · qn ∈
Q∗ such that for all i ∈ {0, . . . , n − 1}, we have (i, n, qi, ui, qi+1) ∈ δ. It is
accepting if (n, qn) ∈ F .

One obtains a uniform model by removing one piece of information in the
transition function: the length of the word. This automaton model is strictly
weaker, and is (easily proved to be) equivalent to the one introduced in [12],
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where the automata read at the same time the input word and a fixed word
called the advice. However, our definition will be better suited for some technical
aspects: for instance, the number of Myhill-Nerode equivalence classes exactly
correspond to the number of states in a minimal deterministic automaton.

qa qb qc qF

⊥

a

(3n, n− 1)

c

(3n, 3n− 1)

b

(3n, 2n− 1)

3n

n prime

ca b

b, c

a, c a, b

a, b, c

a, b, c

Fig. 1. The automaton for Example 2.1

Example 2.1. The language {anbncn | n is a prime number} is recognized by a
(deterministic) automaton with advice. The automaton is represented in figure 1.
It has five states, qa, qb, qc, qF and ⊥. The initial state is qa. The transition
function is defined as follows:

δ(i, 3n, qa, a) = qa if i < n− 1
δ(n− 1, 3n, qa, a) = qb
δ(i, 3n, qb, b) = qb if n ≤ i < 2n− 1
δ(2n− 1, 3n, qb, c) = qc
δ(i, 3n, qc, c) = qc if 2n ≤ i < 3n− 1
δ(3n− 1, 3n, qc, c) = qF

All other transitions lead to ⊥, the sink rejecting state. The set of final states is
F = {(3n, qF ) | n is a prime number}.

We mention another example, that appeared in the context of automatic struc-
tures [13]. They show that the structure (Q,+) is automatic with advice, which
amounts to show that the language {x̂ ' ŷ ' ẑ | z = x + y}, where x̂ denotes the
factorial representation of the rational x, is advice regular.

One-scan Programs. Programs over monoids were introduced in the context
of circuit complexity [1]: Barrington showed that any language in NC1 can be
computed by a program of polynomial length over a non-solvable group. Here
we present a simplification introduced in [20], adapted to the context of monadic
predicates.

A one-scan program is given by P = (M, (fi,n : A→M)i,n∈N, S) where M is
a finite monoid and S ⊆M . The function fi,n is used to compute the effect of the
ith letter of an input word of length n. The program P accepts u = u0 · · ·un−1

if f0,n(u0) · · · fn−1,n(un−1) ∈ S.
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Note that this echoes the classical definition of recognition by monoids, where
a morphism f : A → M into a finite monoid M recognizes the word u =
u0 · · ·un−1 if f(u0) · · · f(un−1) ∈ S. Here, a one-scan program uses different
functions fi,n, depending on the position i and the length of the word n.

Myhill-Nerode Equivalence Relations. Let L ⊆ A∗ and p ∈ N, we define
two equivalence relations:

– u ∼L v if for all w ∈ A∗, we have uw ∈ L⇐⇒ vw ∈ L,
– u ∼L,p v if for all w ∈ Ap, we have uw ∈ L⇐⇒ vw ∈ L.

The relation ∼L is called the (classical) Myhill-Nerode equivalence relation. Re-
call that ∼L contains finitely many equivalence classes if and only if L is regular,
i.e. L ∈MSO[≤].

Theorem 2.2 (Advice Regular Languages). Let L be a language of finite
words, the following properties are equivalent:

(1) L ∈MSO[≤,M],
(2) L is recognized by a non-deterministic automaton with advice,
(3) L is recognized by a deterministic automaton with advice,
(4) There exists K ∈ N such that for all i, p ∈ N, the restriction of ∼L,p to words

of length i contains at most K equivalence classes.
(5) L is recognized by a one-scan program,

In such case, we say that L is advice regular.

This extends the Myhill-Nerode theorem proposed in [12], which proves the
equivalence between (3) and (4) for uniform predicates.

3 The Regularity Question

In this section, we address the following question: given an advice regular lan-
guage, when is it regular? We answer this question in two different ways: first
by showing a substitution property, and second by proving the existence of a
syntactical predicate.

Note that the regularity question is not a decision problem, as advice regular
languages are not finitely presentable, so we can only provide (non-effective)
characterizations of regular languages inside the advice regular languages.

In the next section, we will show how these two notions answer the regularity
question: first by proving that the Straubing property holds in this case, and
second by proving the decidability of the regularity problem for morphic regular
languages.
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3.1 A Substitution Property

In this subsection, we prove a substitution property for MSO[≤,M].
We say that a predicate P = (Pn)n∈N is regular if the language P ⊆ {0, 1}∗ is

regular, defining the class Reg1 of regular monadic predicates (as defined in [14]
and in [20]).

Theorem 3.1. For all sentences ϕ(P ) in MSO[≤,M] and predicates P ∈ M
such that Lϕ,P is regular, there exist Q ∈ Reg1 such that Lϕ,Q = Lϕ,P.

The main idea of the proof is that among all predicates Q such that Lϕ,P =
Lϕ,Q, there is a minimal one with respect to a lexicographic ordering, which can
be defined by an MSO formula. The key technical point is given by the following
lemma, which can be understood as a regular choice function.

Lemma 3.2 (Regular Choice Lemma). Let M be a regular language such
that for all k ∈ N, there exists a word w ∈ M of length k. Then there exists
M ′ ⊆ M a regular language such that for all k ∈ N, there exists exactly one
word w ∈M ′ of length k.

3.2 The Syntactical Predicate

In this subsection, we define the notion of syntactical predicate for an advice
regular language. The word “syntactical” here should be understood in the fol-
lowing sense: the syntactical predicate PL of L is the most regular predicate
that describes the language L. In particular, we will prove that L is regular if
and only if PL is regular.

Let L be an advice regular language. We define the predicate PL = (PL,n)n∈N.
Thanks to Theorem 2.2, there exists K ∈ N such that for all i, p ∈ N, the
restriction of ∼L,p to words of length i contains at most K equivalence classes.
Denote Q = {1, . . . ,K} and Σ = (Q × A → Q) � Q, where Q × A → Q is the
set of (partial) functions from Q×A to Q. We define PL,n ∈ Σn.

Let i, n ∈ N. Among all words of length i, we denote by ui,n
1 , ui,n

2 , . . . the
lexicographically minimal representants of the equivalence classes of ∼L,n−i,
enumerated in the lexicographic order:

ui,n
1 <lex ui,n

2 <lex ui,n
3 <lex . . . (1)

In other words, ui,n
� is minimal with respect to the lexicographic order <lex

among all words of length i in its equivalence class for ∼L,n−i. Thanks to The-
orem 2.2, there are at most K such words for each i, n ∈ N.

We define PL,n(i) (the ith letter of PL,n) by:

PL,n(i)(�, a) = k if ui,n
� · a ∼L,n−i−1 ui+1,n

k , for i < n (2)

PL,n(n− 1)(�) if un,n
� ∈ L . (3)

Intuitively, the predicate PL describes the transition function with respect to
the equivalence relations ∼L,p. We now give an example.
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Fig. 2. The predicate PL (here PL,4) for L = (ab)∗ + (ba)∗b

Example 3.3. Consider the language L = (ab)∗ + (ba)∗b. We represent PL,4 in
figure 2. Each circle represents an equivalence class with respect to ∼L,4, inside
words of a given length. For instance, there are three equivalence classes for
words of length 3: a3, aba and bab. Note that these three words are the minimal
representants of their equivalence classes with respect to the lexicographic order.
For the last position (here 3), the equivalence class of (ab)2 (which is actually
reduced to (ab)2 itself) is darker since it belongs to the language L.

Theorem 3.4. Let L be an advice regular language. Then L is regular if and
only if PL is regular.

The proof is split in two lemmas, giving each direction.

Lemma 3.5. Let L be an advice regular language. Then L ∈MSO[≤,PL].

Lemma 3.6. Let L be an advice regular language defined with the predicates P.
Then PL ∈MSO[≤,P].

4 Applications

In this section we show several consequences of Theorem 2.2 (characterization of
the advice regular languages), Theorem 3.1 (a substitution property for advice
regular languages) and Theorem 3.4 (a syntactical predicate for advice regular
predicates).

The first two applications are about two conjectures, the Straubing and the
Crane Beach Conjectures, introduced in the context of circuit complexity. We
first explain the motivations for these two conjectures, and show simple proofs
of both in the special case of monadic predicates.

The third application shows that one can determine, given an MSO formula
with morphic predicates, whether it defines a regular language.
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4.1 The Straubing and Crane Beach Conjectures

We first quickly define some circuit complexity classes. The most important here
is AC0, the class of languages defined by boolean circuits of bounded depth
and polynomial size. From AC0, adding the modular gates gives rise to ACC.
Finally, the class of languages defined by boolean circuits of logarithmic depth,
polynomial size and fan-in 2 is denoted by NC1. Separating ACC from NC1

remains a long-standing open problem.
One approach to better understand these classes is through descriptive com-

plexity theory, giving a perfect correspondence between circuit complexity classes
and logical formalisms. Unlike what we did so far, the logical formalisms involved
here use predicates of any arity (we focused on predicates of arity one). A k-ary
predicate P is given by (Pn)n∈N, where Pn ⊆ {0, . . . , n− 1}k. We denote by N
the class of all predicates, and by Reg the class of regular predicates as defined
in [20].

Theorem 4.1 ([1,4,11]).

(1) AC0 = FO[N ],
(2) ACC = (FO + MOD)[N ].

Two conjectures have been formulated on the logical side, which aim at clar-
ifying the relations between different circuit complexity classes. They have been
stated and studied in special cases, we extrapolate them here to all fragments.
Here the fragment F[P ] is described by a class F of formulae and a class P of
predicates.

The first property, called the Straubing property, characterizes the regular
languages (denoted by REG) inside a larger fragment.

Definition 4.2 (Straubing Property). F[P ] has the Straubing property if: all
regular languages definable in F[P ] are also definable in F[P∩Reg]. In equation,
F[P ] ∩REG = F[P ∩Reg].

This statement appears for the first time in [2], where it is proved that FO[N ]
has the Straubing property, relying on lower bounds for AC0 and an algebraic
characterisation of FO[Reg]. Following this result, Straubing conjectures in [20]
that (FO + MOD)[N ] and BΣk[N ] have the Straubing property for k ≥ 1. It
has been shown that several fragments have the Straubing property, as for in-
stance, Σ1[N ], FO[≤,Munif ] and (FO + MOD)[≤,Munif ] (in [20]). We extend
this result here, as a straightforward corollary of Theorem 3.1.

Theorem 4.3. All fragments F[≤,M] have the Straubing property.

In particular, for all k ≥ 1, BΣk[≤,M] has the Straubing property. This result
is, to the best of our knowledge, the first intermediary result towards a proof of
the Straubing Conjecture for BΣk[N ].

The second property, called the Crane Beach property, characterizes the lan-
guages having a neutral letter, and has been proposed by Thérien for the special
case of first-order logic. We say that a language L has a neutral letter e if for all
words u, v, we have uv ∈ L if and only if uev ∈ L.
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Definition 4.4 (Crane Beach Property). F[P ] has the Crane Beach prop-
erty if: all languages having a neutral letter definable in F[P ] are definable in
F[≤].

Unfortunately, the Crane Beach property does not hold in general.

Theorem 4.5 ([3,18]). There exists a non-regular language having a neutral
letter definable in FO[N ].

A deeper understanding of the Crane Beach property specialized to first-order
logic can be found in [3]. In particular, it has been shown that FO[≤,Munif ]
has the Crane Beach property. Here we obtain the following result as a simple
corollary of Theorem 2.2.

Theorem 4.6. MSO[≤,M] has the Crane Beach property.

4.2 Morphic Regular Languages

In this subsection, we apply Theorem 3.4 to the case of morphic predicates, and
obtain the following result: given an MSO formula with morphic predicates, it
is decidable whether it defines a regular language.

The class of morphic predicates was first introduced by Thue in the context
of combinatorics on words, giving rise to the HD0L systems. Formally, let A,B
be two finite alphabets, σ : A∗ → A∗ a morphism, a ∈ A a letter such that
σ(a) = a · u for some u ∈ A+ and ϕ : A∗ → B∗ a morphism. This defines
the sequence of words ϕ(a), ϕ(σ(a)), ϕ(σ2(a)), . . ., which converges to a finite or
infinite word. An infinite word obtained in this way is said morphic.

We see morphic words as predicates, and denote by HD0L the class of mor-
phic predicates. The languages definable in MSO[≤,HD0L] are called morphic
regular.

Theorem 4.7. The following problem is decidable: given L a morphic regular
language, is L regular?

The proof of this theorem goes in two steps: first, we reduce the regularity
problem for a morphic regular language L to deciding the ultimate periodicity
of PL, and second, we show that PL is morphic. Hence we rely on the following
result: given a morphic word, it is decidable whether it is ultimately periodic. The
decidability of this problem was conjectured 30 years ago and proved recently
and simultaneously by Durand and Mitrofanov [8].

The first step is a direct application of Theorem 3.4. For the second step,
observe that thanks to Lemma 3.6, we have PL ∈MSO[≤,HD0L]. We conclude
with the following result from [7].

Lemma 4.8. HD0L is closed under MSO-interpretations, i.e. if P is an infinite
word such that P ∈MSO[≤,HD0L], then P ∈ HD0L.
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Abstract. It is proved that a two-way alternating finite automaton
(2AFA) with n states can be transformed to an equivalent one-way non-
deterministic finite automaton (1NFA) with f(n) = 2Θ(n logn) states, and
that this number of states is necessary in the worst case already for the
transformation of a two-way automaton with universal nondeterminism
(2Π1FA) to a 1NFA. At the same time, an n-state 2AFA is transformed
to a 1NFA with (2n − 1)2 + 1 states recognizing the complement of the
original language, and this number of states is again necessary in the
worst case. The difference between these two trade-offs is used to show
that complementing a 2AFA requires at least Ω(n log n) states.

1 Introduction

Two-way finite automata are one of the basic models of computation. The study
of their descriptional complexity is important, in particular, because of its rela-
tionship to small-space complexity classes. The question of whether a two-way
nondeterministic finite automaton (2NFA) can be transformed to an equivalent
two-way deterministic automaton (2DFA) with polynomially many states is re-
lated to the L vs. NL problem in the complexity theory [7].

The basic fact about two-way alternating finite automata (2AFA) is that
they can recognize only regular languages: Ladner, Lipton and Stockmeyer [9]
showed how to transform an n-state 2AFA to an equivalent one-way determinis-
tic automaton (1DFA) with 2n2

n

states. Later, Birget [2, Cor. 4.3(2)] developed
another transformation of a halting n-state 2AFA to an equivalent one-way non-
deterministic automaton (1NFA) with 2O(n) states. The descriptional complexity
of 2AFA has been a subject of recent research [3].
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This paper establishes two new simulations of 2AFA by 1NFA. The roots of the
first simulation are in the transformation due to Birget [2], which is described in
Section 3. A more sophisticated transformation, which does not require the 2AFA
to halt on every input, is given in Section 4; it uses a new data structure—two
stratified sets of states—to simulate an arbitrary n-state 2AFA by a 1NFA with
around 2O(n logn) states. The precise number of states is given by a combinatorial
expression, and the same number of states is shown to be necessary for this
simulation in the worst case.

The other construction, presented in Section 5, transforms any given n-state
2AFA to a 1NFA with only (2n− 1)2 + 1 states, which recognizes the complement
of the original language. This number of states is also shown to be precise. A sim-
ilar method for transforming a 2NFA to a 1NFA recognizing the complement was
discovered by Vardi [10]; the contribution of this paper is generalizing it to handle
2AFA and proving that it is optimal with respect to the number of states.

Finally, the two transformations given in this paper are used in Section 6 to
prove that complementing an n-state 2AFA may require a 2AFA with at least
n(log2 n− 2) states.

2 Definitions

Two-way finite automata are equipped with an input tape delimited by end-
markers, a reading head that scans one square at a time and moves by one square
to the left or to the right at each step, and a finite-state control. The possible
transitions of an automaton depend on its current state and the symbol currently
scanned. On top of this, two-way alternating finite automata (2AFA) use alterna-
tion, that is, allow unrestricted existential and universal nondeterminism.

The usual way of defining an alternating model of computation is to separate
its internal states into existential and universal ones. Multiple transitions from an
existential state are then interpreted as a disjunction over the possible transitions
(“at least one of them must lead to acceptance”), whereas a universal state
defines a conjunction (“all of them must lead to acceptance”). This paper adopts
a slightly relaxed definition, where any combination of existential and universal
nondeterminism may be defined within a single transition, expressed as any
monotone Boolean function (that is, not only a disjunction or a conjunction). The
main reason for this extension is that all constructions in this paper naturally
apply to all such automata.

Another minor detail of the definition is the condition for acceptance. Some
authors define acceptance by entering one of several designated states while at
the right end-marker, or while at either end-marker; other authors allow accep-
tance at any position on the tape. Though these details affect the size of the
automaton by at most one state, this difference becomes essential in this paper,
which is concerned with the exact size of automata. In this paper, the definition
of a transition function is powerful enough to define acceptance in any state q
while scanning any symbol a: it is sufficent to let the function f = δ(q, a) be
constant 1.
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Fig. 1. A computation of a 2AFA, where δ(q, ai) gives a function (p,−1) ∧ ((r,+1) ∨
(r′,+1)), which is true on (p,−1) = 1, (r,+1) = 1, (r′,+1) = 0

Let B = {0, 1}. A Boolean function of n variables f : Bn → B is said to
be monotone, if, for any two Boolean n-tuples (x1, . . . , xn), (y1, . . . , yn) ∈ Bn,
if xi � yi for all i, then f(x1, . . . , xn) � f(y1, . . . , yn). For every finite set
of variables X , denote by MF(X) the set of all monotone Boolean functions
f : B|X| → B of the variables in X .

Definition 1. A two-way alternating finite automaton (2AFA) is a quadruple
A = (Σ,Q, q0, δ), in which

– Σ is a finite alphabet with ,,5 /∈ Σ, where the left-end marker , and the
right-end marker 5 are two special symbols;

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– δ : Q× (Σ ∪ {,,5}) →MF(Q× {−1,+1}) is a transition function.

For an input string w = a1 . . . a�, let a0 = , and a�+1 = 5. A configuration is a
pair (q, i) of a state q ∈ Q and a position in the input i ∈ {0, 1, . . . , �, �+ 1}. An
accepting computation is an acyclic graph of configurations, which satisfies the
following conditions:

– the root is the initial configuration (q0, 0);
– for each node (q, i), let (q1, i + d1), . . . , (qk, i + dk) be all its sons; then the

Boolean function f = δ(q, ai) evaluates to 1 on the substitution (qj , dj) = 1
for all j ∈ {1, . . . , k} and (q′, d′) = 0 for all other arguments.

The language L(A) ⊆ Σ∗ recognized by the automaton is the set of all strings,
on which there is at least one accepting computation.

An accepting computation of a 2AFA is illustrated in Figure 1. In this exam-
ple, δ(q, ai) = (p,−1) ∧ ((r,+1) ∨ (r′,+1)). Thus, the transition in state q at ai
gives a function that evaluates to 1 for (p,−1) and (r,+1) true, and hence the
rest of the computation follows these two branches, safely ignoring the branch
using (r′,+1). In every leaf in the graph (that is, a node with no outgoing arcs,
marked in the figure by a star), the function f must be constant 1; in other
words, each branch ends with an accepting configuration. Note that an accept-
ing computation is acyclic, that is, none of its branches may return to an earlier
visited configuration.
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If each transition δ(q, a) gives a Boolean function f that is a disjunction
of some of its arguments, such an automaton is nondeterministic (2NFA, or
2Σ1FA), and its accepting computation is a line graph. If each function is a con-
junction of some of its variables, this is a 2Π1FA. In a deterministic automaton
(2DFA), each function f equals one of its arguments.

This paper is about transforming two-way automata to one-way nondeter-
ministic finite automata. The latter can be defined by restricting 2NFA to move
only to the right, by eliminating the end-markers, and by allowing acceptance
only in the end of the input. This leads to the following simplified definition.

Definition 2. A one-way nondeterministic finite automaton (1NFA) is a quin-
tuple B = (Σ,Q,Q0, δ, F ), in which

– Σ is a finite alphabet;
– Q is a finite set of states;
– Q0 ⊆ Q is the set of initial states;
– δ : Q×Σ → 2Q is a transition function;
– F ⊆ Q is the set of accepting states.

The automaton is said to reach a state q′ ∈ Q from a state q ∈ Q by an input
string w = a1 . . . a�, with � � 0 and ai ∈ Σ, if there exists a sequence of states
q(0), . . . , q(�), where q(0) = q, q(i+1) ∈ δ(q(i), ai) for all i, and q(�) = q′.

The language L(A) ⊆ Σ∗ recognized by the automaton is the set of all strings,
by which one can reach some state in F from some state in Q0.

3 Nondeterministic Simulation of Two-Way Automata

The general idea of simulating a two-way automaton A by a 1NFA, used in the
constructions by Birget [2] and by Kapoutsis [6], is to guess A’s accepting com-
putation. This is done by calculating the crossing sequences of this computation
at each symbol, while reading the input from left to right, guessing the contin-
uation of the computation at each symbol, and linking different branches of the
computation to each other.

Let A = (Σ,Q, q0, δ, F ) be a 2AFA. After reading a prefix a1 . . . ai of a string
a1 . . . aiai+1 . . . a�, the simulating 1NFA shall remember two sets of states P,R ⊆
Q visited by A in its guessed computation at positions i and i+ 1, as illustrated
in Figure 2(left). Here, the letter P stands for provided and R stands for required.
First, the guessed computation of A on the unread suffix ai+1 . . . a�5 is assumed
to lead from each required state at position i+1 to acceptance or to any provided
states at position i. At the same time, on the previously read prefix ,a1 . . . ai,
the computation from each provided state at position i should lead to acceptance
or to any required states at position i+ 1. Finally, from the initial configuration,
each of the branches in the guessed computation must go to any required states
at position i + 1, or halt and accept in the prefix ,a1 . . . ai.

There is a serious complication with this data structure, illustrated in Fig-
ure 2(right). If the computation from a provided state p ∈ P leads to a required
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Fig. 2. Computations of a 2AFA and its crossing sections represented in the sets P
and R

state r ∈ R, and the transition from the latter state goes back to the same
provided state p, then an infinite loop has been formed, and there is no way to
detect that. Then, some computations may be mislead into this infinite loop,
under the wrong assumption that they accept there. In the special case of A
being a 2NFA, where the computation being guessed is a single path rather than
an acyclic graph, Kapoutsis [6] was able to rule out this problematic case by
requiring that |P | + 1 = |R|, and by maintaining a bijection between these two
sets; this, however, cannot be done for an alternating automaton. For a 2AFA,
Birget [2, Thm. 2.3(4)] proved this construction to work under the assumption
that the given 2AFA never loops, that is, cannot revisit the same configuration
twice within a single computation path.

The first contribution of this paper is an extension of this construction to an
arbitrary given 2AFA.

4 Simulation of 2AFA by 1NFA

The idea of the proposed simulation is to stratify the sets of states R and P , so
that different states in R and P may be assigned to different strata, and then
simulate only transitions from lower strata to higher strata. This will ensure that
no cycles are ever formed in the guessed computation.

For that purpose, instead of the two sets R,P , the new construction shall
use finite sequences of sets of states (R1, P1, ..., Rk, Pk), where R1, . . . , Rk ⊆ Q
are pairwise disjoint sets that replace the set R, whereas the pairwise disjoint
sets P1, . . . , Pk ⊆ Q replace P . Then, for each required state r ∈ Rj from a
j-th stratum, the computation on the unread suffix beginning with r at position
i + 1 is assumed lead to acceptance or to any provided states from the j-th or
higher strata, at position i. For each provided state p ∈ Pj from a j-th stratum,
it is known that the computation beginning from state p at position i leads to
acceptance or to any required states from strata j+1 or higher, at position i+1.

For example, the crossing section in Figure 2(left) can be represented with
the first state from R as R1, with the whole P as P1, and with the second state
from R as R2. The last set P2 is empty in this case. On the other hand, the sets
P,R in Figure 2(right) admit no stratified representation.
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Lemma 1. For every 2AFA with a set of states Q, there exists a 1NFA with
the set of states

Q′ =
{

(R1, P1, ..., Rk, Pk)
∣∣k � 0, Ri, Pi ⊆ Q,R1, . . . , Rk �= ∅, P1, . . . , Pk−1 �= ∅,

P1 ∪ . . . ∪ Pk �= Q, Ri ∩Rj = Pi ∩ Pj = ∅ for all i �= j
}
,

which recognizes the same language.

Proof. Let A = (Σ,Q, q0, δ) be the given 2AFA, define a new 1NFA B =
(Σ,Q′, Q′

0, δ
′, F ′). The goal of the construction is that B can reach a state

(R1, P1, . . . Rk, Pk) after reading a prefix a1 . . . am if and only if

– there is an acyclic computation graph beginning with the initial configuration
(q0, 0) and restricted to the prefix ,a1 . . . am, where each branch either ends
in an accepting configuration or in a configuration (r,m + 1), with r ∈
R1 ∪ . . . ∪Rk (the latter case means leaving the prefix from its last symbol
am to the right), and

– for every i and for every state p ∈ Pi, there is an acyclic computation
graph beginning with the configuration (p,m) and restricted to the pre-
fix ,a1 . . . am, where each branch either ends in an accepting configuration
or in a configuration (r,m + 1), with r ∈ Ri+1 ∪ . . . ∪Rk.

The initial states Q′
0, the transition function δ′ and the accepting states F ′

of B are defined by a unified construction. Consider a state (R1, P1, . . . , Rk, Pk),
which represents a guessed computation on a prefix x ∈ {ε} ∪ ,Σ∗, and the
next symbol a ∈ Σ ∪{,,5}. The 1NFA B should guess further fragments of this
computation occurring between the rightmost symbol of x and the symbol a, and
represent the resulting computation on xa as the next state (R′

1, P
′
1, . . . , R

′
�, P

′
�).

For this to be possible, one should first fix a certain alignment between
the sets R1, P1, . . . , Rk, Pk and R′

1, P
′
1, . . . , R

′
�, P

′
� , which determines the order

in which they may refer to each other. This alignment is represented as a se-
quence α of 2k + 2� sets, where all sets R1, P1, . . . , Rk, Pk occur in α in their
original order, and so do all sets R′

1, P
′
1, . . . , R

′
�, P

′
� . Let X be any of the sets

R1, . . . , Rk, P
′
1, . . . , P

′
� (these are the sets of states visited on the symbol a).

Then, for every state q ∈ X , the Boolean function f = δ(q, a) must evaluate to
1 under the following substitution:

– the argument (p,−1) is set to 1 if and only if there is a set Pi that occurs in
α later than X and contains p.

– the argument (r,+1) is set to 1 if and only if there is a set Ri that occurs
in α later than X and contains r.

If these conditions hold, this shall be called a transition from (R1, P1, . . . , Rk, Pk)

to (R′
1, P

′
1, . . . , R

′
�, P

′
�) by a, and denoted by (R1, P1, . . . , Rk, Pk)

a→
(R′

1, P
′
1, . . . , R

′
�, P

′
�).

Then, initial states of the 1NFA B are defined using a transition by the left
end-marker , from the pair ({q0},∅) representing the initial configuration of A.

Q′
0 = { (R1, P1, . . . , Rk, Pk) | ({q0},∅)

�→ (R1, P1, . . . , Rk, Pk) }



Two-Way Alternating versus One-Way Nondeterministic Automata 297

The transition function of B directly uses the above notion of a transition.

δ′((R1, P1, . . . , Rk, Pk), a) =
{

(R′
1, P

′
1, . . . , R

′
�, P

′
�)
∣∣

(R1, P1, . . . , Rk, Pk)
a→ (R′

1, P
′
1, . . . , R

′
�, P

′
�)
}

Finally, accepting states are defined by a transition by the right end-marker
5 to an empty sequence of sets, that is, to (R′

1, P
′
1, . . . , R

′
�, P

′
�) with � = 0.

This sequence means that all A’s transitions have been successfully resolved into
accepting computations.

F ′ = { (R1, P1, . . . , Rk, Pk) | (R1, P1, . . . , Rk, Pk)
�→ empty }

The above correctness statement can be proved by an induction on the length
of the prefix of the string. "#

Lemma 2. For every n � 1, there exists an alphabet Σn and an n-state 2Π1FA
over Σn, for which every 1NFA recognizing the same language must have at
least as many states as there are sequences (R1, P1, ..., Rk, Pk), with k � 0,
Ri, Pi ⊆ {1, . . . , n}, R1, . . . , Rk �= ∅, P1, . . . , Pk−1 �= ∅, P1∪. . .∪Pk �= {1, . . . , n}
and Ri ∩Rj = Pi ∩ Pj = ∅ for all i �= j.

Proof. Let n � 2 and let Q = {q0, . . . , qn−1}. For every sequence
(R1, P1, ..., Rk, Pk), as in the statement of the lemma, the alphabet contains
the symbols aR1,P1,...,Rk,Pk

and bR1,P1,...,Rk,Pk
. In addition, there is a symbol cq

for each state q ∈ Q.
Assume that the states in Q are ordered as q0 < . . . < qn−1. The au-

tomaton to be constructed is designed to accept all strings of the form
cqinitaR1,P1,...,Rk,Pk

bR1,P1,...,Rk,Pk
, where qinit = maxQ \ (P1 ∪ . . . ∪ Pk) and

the subscripts of the symbols a and b match each other. At the same time,
the automaton should reject every string cqinitaR1,P1,...,Rk,Pk

bR′
1,P

′
1,...,R

′
�
,P ′

�
with

mismatched subscripts.
Define a 2Π1FA with the set of states Q = {q0, . . . , qn−1}, of which q0 is the

initial state. The automaton has the following transitions.

δ(q0,,) = (q0,+1)

δ(q0, cq) = (q,+1)

δ(qn−1, cq) = (qn−1,−1)

δ(q, aR1,P1,...,Rk,Pk
) =

⎧⎪⎨⎪⎩
∧

r∈R1∪...∪Rk
(r,+1), if q = minQ \ (P1 ∪ . . . ∪ Pk)∧

r∈Ri+1∪...∪Rk
(r,+1), if q ∈ Ri

(qf ,−1), if q ∈ Pk

δ(r, bR1,P1,...,Rk,Pk
) =

∧
p∈Pi∪...∪Pk

(p,−1) ( unless i = k and Pk = ∅)

δ(r, bR1,P1,...,Rk,Pk
) = (qn−1,+1) (for all r ∈ Rk, if Pk = ∅)

It remains to prove that every 1NFA recognizing the language L(A) must have
the required number of states. The proof is carried out using the standard fooling
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set method, which consists of constructing such a set S ⊆ Σ∗ × Σ∗ of pairs of
strings, that the concatenation uv of every pair (u, v) ∈ S belongs to L(A), but
for every two distinct pairs (u, v), (u′, v′) ∈ S, at least one of the mismatched
concatenations uv′ and u′v is not in L(A). Once such a set is constructed, it is
evident that every 1NFA recognizing this language must have at least as many
states as there are pairs in L(A): indeed, the states entered by the 1NFA after
reading the first component of each pair must be pairwise distinct.

In this case, the fooling set consists of pairs corresponding to different se-
quences (R1, P1, ..., Rk, Pk), as in the statement of the lemma. For every such se-
quence, the set S contains a pair of a string uR1,P1,...,Rk,Pk

= cqinitaR1,P1,...,Rk,Pk
,

where qinit = maxQ \ (P1 ∪ . . . ∪ Pk), and another string vR1,P1,...,Rk,Pk
=

bR1,P1,...,Rk,Pk
.

Consider any two sequences (R1, P1, ..., Rk, Pk) �= (R′
1, P

′
1, ..., R

′
�, P

′
�) with

k, � � 1, and the associated pairs of strings. Let i be the least number, for
which

Ri ∪ . . . ∪Rk �= R′
i ∪ . . . ∪R′

� or

Pi ∪ . . . ∪ Pk �= P ′
i ∪ . . . ∪ P ′

� .

Consider the former case. Then there exists a state q belonging to one of these
unions and not to the other. Assume, without loss of generality, that q ∈ Ri ∪
. . . ∪Rk and q /∈ R′

i ∪ . . . ∪R′
�. Then consider the concatenation

uR1,P1,...,Rk,Pk
vR′

1,P
′
1,...,R

′
�
,P ′

�
= cqinitaR1,P1,...,Rk,Pk

bR′
1,P

′
1,...,R

′
�
,P ′

�
.

Assume that i � 2. In this case, one of the branches of the computation tree
on this string contains a transition from some state in Pi−1 at the symbol
aR1,P1,...,Rk,Pk

to the state q at the symbol bR′
1,P

′
1,...,R

′
�,P

′
�
. If q ∈ R′

1 ∪ . . .∪R′
i−1,

then this transition is followed by a transition to the same state from Pi−1 at
the symbol aR1,P1,...,Rk,Pk

, and this loop in the computation tree shows that the
string is rejected. Otherwise, q /∈ R′

1 ∪ . . . ∪R′
�, and hence the transition from q

at bR′
1,P

′
1,...,R

′
�
,P ′

�
is undefined, and the string is rejected as well.

If i = 1, then there is a transition from the state qinit at aR1,P1,...,Rk,Pk
to the

state q at the symbol bR′
1,P

′
1,...,R

′
�,P

′
�
. Since q /∈ R′

1 ∪ . . . ∪R′
� by the assumption,

the string is rejected.
The second case of a state q belonging to one of the sets Pi ∪ . . . ∪ Pk and

P ′
i ∪ . . . ∪ P ′

� , but not to the other is handled similarly. "#

Having proved that the 2AFA–1NFA tradeoff is exactly the number of
sequences given in Lemma 2, it remains to assess the number of such se-
quences. For every number n � 1, denote by F (n) the number of distinct se-
quences (R1, P1, ..., Rk, Pk), with k � 0, Ri, Pi ⊆ {1, . . . , n}, R1, . . . , Rk �= ∅,
P1, . . . , Pk−1 �= ∅, P1 ∪ . . . ∪ Pk �= {1, . . . , n} and Ri ∩Rj = Pi ∩ Pj = ∅ for all
i �= j. The following lemma gives rough bounds on F (n), which are sufficient to
estimate its growth rate.
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Lemma 3. For every n � 1, the number f(n) is confined within the following
bounds.

(n!)2 � F (n) � 4n(2n)!

Accordingly, F (n) = 2Θ(n logn).

Proof. For the upper bound, first, any two subsets of Q are chosen: these are the
sets R = R1 ∪ . . .∪Rk and P = P1 ∪ . . .∪Pk, and there are 4n possible choices.
Thus, at most 2n elements belonging to R or P are chosen, and they can be
listed in any order; there are (2n)! possible permutations of these elements.

For the lower bound argument, consider any permutation (j1, . . . , jn) of the
first n numbers (there are n! of them) and any permutation (i1, . . . , in−1) of any
n−1 of the first n numbers (n! of them as well). These permutations give rise to
a sequence of singletons (R1, P1, . . . Rn, Pn), where Rt = {jt} for all t, Pt = {it}
for all t �= n, and Pn = ∅. This sequence satisfies the definition, and hence there
are at least as many sequences satisfying the definition as there are such pairs
of permutations.

The function is estimated as 2Θ(n logn) according to Stirling’s approximation
for both the lower and the upper bounds. "#

Altogether, the succinctness tradeoff between 2AFA and 1NFA is character-
ized in the following theorem.

Theorem 1. The number of states in a 1NFA that is sufficient and in the worst
case necessary to represent any language recognized by an n-state 2AFA is exactly
F (n) = 2Θ(n log n). This bound is precise already for a transformation from a
2Π1FA to a 1NFA.

5 Simulating the Complement of a 2AFA by a 1NFA

In the previous section, simulating a two-way automaton by a 1NFA involved
guessing its computation, that is, a certain data object that witnesses acceptance.
A 1NFA recognizing the complement of a language accepted by a two-way au-
tomaton would have to guess a certain witness for rejection. Such a witness was
first found for a 2NFA by Vardi [10], who presented a construction of a 1NFA
with 4n + 2n states recognizing the complement of a given n-state 2NFA.

This paper develops a similar transformation of a 2AFA to a 1NFA recognizing
the complement. The general idea is to reuse the transformation of Birget [1],
as presented in Section 3, which works incorrectly for a looping 2AFA. Once
the goal is to recognize the complement, this incorrect operation is precisely
what is needed, because looping computations can now be handled as if they are
accepting.

Before proceeding with the construction, it is convenient to define a comple-
mentary notion to the accepting computation of a 2AFA: a witness for rejection.
The 1NFA to be constructed is going to guess this object.
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Lemma 4. Let A = (Σ,Q, q0, δ, ) be a 2AFA and let w = a1 . . . a� be an input
string. A witness for rejection of w is a graph of configurations, which satisfies
the following conditions:

– the root is the initial configuration (q0, 0);
– for each internal node (q, i), let (q1, i + d1), . . . , (qk, i + dk) be all its sons;

then the Boolean function f = δ(q, ai) evaluates to 0 on the substitution
(qj , dj) = 0 for all j ∈ {1, . . . , k} and (q′, d′) = 1 for all other arguments.

Then, w is not accepted by A if and only if there exists a witness for rejection
of w.

Note that every path in a witness for rejection either ends in a rejecting
configuration, where f is constant 0, or loops by returning to some earlier node
on this path.

Lemma 5. For every 2AFA A with a set of states Q, there exists a 1NFA with
the set of states

Q′ = { (P,R) | P,R ⊆ Q, P,R �= ∅ } ∪ {qacc.all},

which recognizes the complement of L(A).

Proof. Let A = (Σ,Q, q0, δ) be the given 2AFA. One should define a new 1NFA
C = (Σ,Q′, Q′

0, δ
′, F ′) recognizing L(A).

The goal of the construction is that whenever a state (P,R) is reachable by
C after reading a prefix a1 . . . am,

– there is a computation graph beginning with the initial configuration (q0, 0)
and restricted to the prefix ,a1 . . . am, where each path either ends in a
rejecting configuration, or in a configuration (r,m + 1), with r ∈ R, or
returns to an earlier node on this path, and

– for every state p ∈ P , there is a computation graph beginning with the
configuration (p,m) and restricted to the prefix ,a1 . . . am, where each path
either ends in a rejecting configuration or in a configuration (r,m+ 1), with
r ∈ R, or returns to an earlier node.

The construction resembles that in Lemma 1, but is substantially simpler
due to no stratification. For every two states (P,R) and (P ′, R′), and for every

symbol a ∈ Σ∪{,,5}, define (P,R)
a→ (P ′, R′) by requiring that for every state

q ∈ P ′ ∪ R, the Boolean function f = δ(q, a) evaluates to 0 under the following
substitution: (p,−1) is 0 if and only if p ∈ P , and (r,+1) is 0 if and only if
r ∈ R′, whereas all remaining variables are set to 1.

Then, define

Q′
0 = { (P,R) | (∅, {q0}) �→ (P,R) },

δ′((P,R), a) = { (P ′, R′) | (P,R)
a→ (P ′, R′) } ∪ { qacc.all | if (P,R)

a→ (∅,∅) },
δ′(qacc.all, a) = {qacc.all},

F ′ = { (P,R) | (P,R)
�→ (∅,∅) } ∪ {qacc.all}.
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The following matching lower bound holds for the transformation of a 2NFA
to a 1NFA recognizing the complement.

Lemma 6. For every n � 1 there exists an n-state 2NFA with acceptance only
on the end-markers, for which every 1NFA recognizing the complementary lan-
guage must have (2n − 1)2 + 1 states.

Proof. Let Q = {q0, . . . , qn−1}. For all subsets P,R ⊆ Q, with P,R �= ∅, the
alphabet contains the symbols aP,R and bP,R. For each state q ∈ Q, there is a
symbol cq. The automaton has the following transitions.

δ(q0,,) = (q0,+1)

δ(q0, cq) = (q,+1)

δ(p, aP,R) =
∨
r∈R

(r,+1) (for all p ∈ P )

δ(r, bP,R) =
∨
p∈P

(p,−1) (for all r ∈ R)

All remaining transitions specify immediate acceptance. In order to restrict ac-
ceptance to the end-markers, it is sufficient to define all remaining transitions as
δ(q, cq′) = (qn−1,−1) δ(q, aP,R) = (qn−1,−1) and δ(q, bP,R) = (qn−1,+1), and
let qn−1 be accepting on both end-markers.

The lower bound on the size of every 1NFA recognizing L(A) is obtained
using the fooling set method, as in Lemma 2. Here the fooling set consists of the
following pairs:

– for each P,R ⊆ Q with P,R �= ∅, a pair uP,R = cminP aP,R, vP,R = bP,R.

– one more pair uqacc.all = cq0a{q0},{q0}b{q0},{q0}, vqacc.all = ε.

On a correct concatenation uP,RvP,R, all computations of the 2NFA loop between
aP,R and bP,R. Similarly, on the concatenation uqacc.allvqacc.all , the 2NFA loops
between the last two symbols. Thus, as required by the definition of the fooling
set, the concatenation of each pair is in L(A).

Consider mismatched concatenations between any pairs (uP,R, vP,R) and
(uP ′,R′ , vP ′,R′). If R �= R′, assume, without loss of generality, that there is a
state r ∈ R \ R′; then A accepts the string uP,RvP ′,R′ . If R = R′ and P �= P ′,
let p ∈ P \ P ′; then the string uP ′,RvP,R is accepted.

Finally, for any pair (uP,R, vP,R), the mismatched concatenation uP,Rvqacc.all
is accepted by A. "#

Theorem 2. The number of states in a 1NFA that is sufficient and in the worst
case necessary to represent the complement of any language recognized by an
n-state 2AFA is exactly (2n − 1)2 + 1. The bound is precise already for a trans-
formation from a 2NFA to a 1NFA.
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6 Implications on Complementing 2AFA

Assume that a language is recognized by an n-state 2AFA. How many states are
necessary in the worst case to represent the complement of such a language by
another 2AFA?

Complementing a one-way deterministic automaton (1DFA) is trivial, as it can
be done by inverting the set of states. For other types of automata, this problem
is more interesting. For 2DFA, the known construction for the complementation
uses 4n states, and proceeds by making the automaton halt on every input [5],
or, to be precise, by constructing a reversible 2DFA [8]; no lower bound on com-
plementing 2DFA is known up to date. Complementing a 1NFA in the worst case
requires 2n states [1], that is, requires determinizing it. The problem of comple-
menting a 2NFA is related to the 2NFA–2DFA tradeoff, on which very little is
known; however, for a unary alphabet, a 2NFA can be implemented using n8 states
using inductive counting [5], and there is a lower bound of Ω(n2) states.

This paper contributes the first lower bound on complementing a 2AFA, ob-
tained from the gap between the two precise trade-offs in Theorems 1 and 2.

Theorem 3. For every n � 1, the number of states in a 2AFA needed to repre-
sent the complement of every n-state 2AFA is greater than n(log2 n− 2).
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Abstract. We introduce a general method for proving measurability of
topologically complex sets by establishing a correspondence between the
notion of game tree languages from automata theory and the σ-algebra
of R-sets, introduced by A. Kolmogorov as a foundation for measure
theory. We apply the method to answer positively to an open problem
regarding the game interpretation of the probabilistic μ-calculus.

1 Introduction

Among logics for expressing properties of nondeterministic (including concur-
rent) processes, represented as transition systems, Kozen’s modal μ-calculus [14]
plays a fundamental rôle. This logic enjoys an intimate connection with parity
games, which offers an intuitive reading of fixed-points, and underpins the ex-
isting technology for model-checking μ-calculus properties. An abstract setting
for investigating parity games, using the tools of descriptive set theory, is given
by so-called game tree languages (see, e.g. [2]). The language Wi,k is the set of
parity games with priorities in {i . . . k}, played on an infinite binary tree struc-
ture, which are winning for Player ∃. The (i, k)-indexed sets Wi,k form a strict
hierarchy of increasing topological complexity called the index hierarchy of game
tree languages (see [5,1,2]). Precise definitions are presented in Section 2.

For many purposes in computer science, it is useful to add probability to the
computational model, leading to the notion of probabilistic nondeterministic
transition systems (PNTS’s). In an attempt to identify a satisfactory analogue
of Kozen’s μ-calculus for expressing properties of PNTS’s, the third author has
recently introduced in [18,19] a quantitative fixed-point logic called probabilistic
μ-calculus with independent product (pLμ). A central contribution of [19] is the
definition of a game interpretation of pLμ, given in terms of a novel class of games
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generalizing ordinary two-player stochastic parity games. While in ordinary two-
player (stochastic) parity games the outcomes are infinite sequences of game-
states, in pLμ-games the outcomes are infinite trees, called branching plays,
whose vertices are labelled with game-states. This is because in pLμ some of
the game-states, called branching states, are interpreted as generating distinct
game-threads, one for each successor state of the branching state, which continue
their execution concurrently and independently. The winning set of a pLμ-game
is therefore a collection of branching plays specified by a combinatorial condition
associated with the structure of the game arena.

Unlike winning sets of ordinary two-player (stochastic) parity games, which
are well-known to be Borel sets1, the winning sets of pLμ-games generally be-
long to the Δ1

2-class of sets in the projective hierarchy of Polish spaces [19,
Theorem 4.20]. This high topological complexity is a serious concern because
pLμ-games are stochastic, i.e. the final outcome (the branching play) is deter-
mined not only by the choices of the two players but also by the randomized
choices made by a probabilistic agent. A pair of strategies for ∃ and ∀, repre-
senting a play up-to the choice of the probabilistic agent, only defines a prob-
ability measure on the space of outcomes. For this reason, one is interested in
the probability of a play to satisfy the winning condition. Under the standard
Kolmogorov’s measure-theoretic approach to probability theory, a set has a well-
defined probability only if it is a measurable set2. Due to a result of Kurt Gödel
(see [10, § 25]), it is consistent with Zermelo-Fraenkel Set Theory with the Ax-
iom of Choice (ZFC) that there exists a Δ1

2 set which is not measurable. This
means that it is not possible to prove (in ZFC) that all Δ1

2-sets are measurable.
However it may be possible to prove that a particular set (or family of sets) in
the Δ1

2-class is measurable. In [18] the author asks the following question3:

Question: are the winning sets of pLμ-games provably measurable?

This problem provided the original motivation of our work. We will answer
positively to the question by developing a general method for proving measura-
bility of topologically complicated sets.

This type of questions has been investigated since the first developments of
measure theory, in late 19th century, as the existence of non-measurable sets
(e.g. Vitali sets [10]) was already known. The measure-theoretic foundations of
probability theory are based around the concept of a σ-algebra of measurable
events on a space of potential outcomes. Typically, the σ-algebra is assumed to
contain all open sets. Hence the minimal σ-algebra under consideration consists
of all Borel sets whereas the maximal consists, by definition, of the collection
of all measurable sets. The Borel σ-algebra, while simple to work with, lacks
important classes of measurable sets (e.g. Π1

1-complete sets). On the other hand,
the full σ-algebra of measurable sets may be difficult to work with since there

1 See, e.g., Remark 10.57 in [3] for a discussion about measurability in this context.
2 More precisely, universally measurable, see Section 2.
3 Statement “is mG-UM(Γp) true?”, see Definition 5.1.18 and discussion at the end of

Section 4.5 in [18]. See also Section 8.1 in [19].
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is no constructive methodology for establishing its membership relation, i.e. for
proving that a given set belongs to this σ-algebra.

This picture led to a number of attempts to find the largest σ-algebra, ex-
tending the Borel σ-algebra and including as many measurable sets as possible
and, at the same time, providing practical techniques for establishing the mem-
bership relation. A general methodology for constructing such σ-algebras is to
identify a family F of safe operations on sets which, when applied to measurable
sets are guaranteed to produce measurable sets. When the operations considered
have countable arity (e.g. countable union), the σ-algebra generated by the open
sets closing under the operations in F admits a transfinite decomposition into
ω1 levels, and this allows the membership relation to be established inductively.
The simplest case is given by the σ-algebra of Borel sets, with F consisting of
the operations of complementation and countable union. Other less familiar ex-
amples include C-sets studied by E. Selivanovski [20], Borel programmable sets
proposed by D. Blackwell [4] and R-sets proposed by A. Kolmogorov [13].

The σ-algebra of R-sets is, to our knowledge, the largest ever considered.
Most measurable sets arising in ordinary mathematics are R-sets belonging to
the finite levels of the transfinite hierarchy of R-sets. For example, all Borel
sets, analytic sets, co-analytic sets and Selivanovski’s C-sets lie in the first two
levels [8]. Thus, for most practical purposes, the following principle is valid:

Principle: “ all practically useful measurable sets belong to the finite
levels of the transfinite hierarchy of Kolomogorov’s R-sets.”

Contributions. The definition of R-sets in [13], formulated in terms of op-
erations on sets and transformations on operations (Section 3), is purely set-
theoretical. As a main technical contribution of this work, we provide an alter-
native game-theoretical characterization of the finite levels of the hierarchy of
R-sets in terms of game tree languages Wi,k.

Theorem 1. Wk−1,2k−1 is complete for the k-th level of the hierarchy of R-sets.

As a consequence one can establish the measurability of a given set A⊆X by
constructing a continuous reduction to Wi,k. This can be thought as a coding f
of elements in X in terms of parity games with priorities in {i, . . . , k} such that
x∈A if and only if f(x) is winning for Player ∃. Parity games are well-known
and relatively simple to work with. Thus the proof method allows for easier
applications. Since R-sets exhaust the realm of reasonable measurable sets, and
the sets Wi,k are complete among R-sets, the method should cover most cases.

Additionally, in Section 6, we investigate the special ℵ1-continuity property of
measures on Wi,k with respect to the approximationsWα

i,k, crucially required in
the proof of determinacy of pLμ-games of [19,18]. As observed in [18], the prop-
erty follows from the set-theoretic Martin Axiom at ℵ1 (MAℵ1). The problem
of whether the property (and, as a consequence, the validity of the determinacy
proof) holds in ZFC alone is left open in [18]. We provide a partial positive
answer to this question proving the continuity property for W0,1 in ZFC alone.
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Furthermore, we show that for higher ranks the property follows from a set-
theoretic assumption weaker than MAℵ1 which, unlike MAℵ1 , does not depend
on cardinality assumptions such as the negation of the Continuum Hypothesis.

Applications. As already observed in [18, §5.4], the winning sets of pLμ-games
reduce to game tree languages. Thus Theorem 1 settles the question posed in [18]
about the measurability of pLμ winning sets. More generally, our result can find
applications in solving similar problems. For example, in models of probabilis-
tic concurrent computation (e.g. probabilistic Petri nets [15], probabilistic event
structures [9], stochastic distributed games [21]), executions are naturally mod-
elled by configurations of event structures (i.e. special kinds of acyclic graphs)
and not by sequences. Many natural predicates on executions (e.g. the collection
of well-founded graphs) are of high topological complexity.

Related Work. Beside the original work of Kolmogorov [13], the measure the-
oretic properties of R-sets are investigated with set-theoretic methods by Lya-
punov in [16]. A game-theoretic approach to R-sets, closely related to this work,
is developed by Burgess in [8] where the following characterization is stated as a
remark without a formal proof: (1) every set A⊆X belongs to a finite level of the
hierarchy of R-sets if and only if it is of the form A=�(K), for some set K ⊆ ωω

which is a Boolean combination of Fσ sets, and (2) the levels of the hierarchy of
R-sets are in correspondence with the levels of the difference hierarchy (see [12,
§22.E]) of Fσ sets. The operation � is the so-called game quantifier (see [12,
§20.D] and [6,7,11,17]). Admittedly, our characterization of R-sets in terms of
game tree languages Wi,k, can be considered as a modern variant of the result
of Burgess.4 Having concrete examples of complete sets, however, sheds light
on the concept of R-sets and, in analogy with the study of complexity classes
in computational complexity theory, may simplify further investigations. Lastly,
it is suggestive to think that the origins of the concept of parity games, devel-
oped since the 80’s in Computer Science to investigate ω-regular properties of
transition systems, could be backdated to the original work of A. Kolmogorov.

2 Basic Notions from Descriptive Set Theory

We assume the reader is familiar with the basic notions of descriptive set theory
and measure theory. We refer to [12] as a standard reference on these subjects.

Given two sets X and Y , we denote with XY the set of functions from Y
to X . We denote with 2 and ω the two element set and the set of all natural
numbers, respectively. The powerset of X will be denoted by both 2X and P(X),
as more convenient to improve readability. A topological space is Polish if it is
separable and the topology is induced by a complete metric. A set is clopen if it
4 The fact that Wi,k are R-sets follows from the above formulation of Burgess’ theo-

rem. Also, our Theorem 1 can be easily inferred for k = 1. The case of k = 2 follows
from Burgess’s theorem in conjunction with [17]. Our proof of Theorem 1 yields an
independent and formal argument backing the statement of Burgess’ theorem.
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is both closed and open. A space is zero-dimensional if the clopen subsets form
a basis of the topology. In this work we limit our attention to zero-dimensional
Polish spaces. Let X,Y be two topological spaces and A ⊆ X , B ⊆ Y be two
sets. We say that A is Wadge reducible to B, written as A≤W B, if there exists
a continuous function f : X → Y such that A = f−1(B). Two sets A and B
are Wadge equivalent (denoted A∼W B) if A≤W B and B≤W A hold. Given a
family C of subsets of X , we say a set A∈C is Wadge complete if B≤W A holds
for all B∈C. Given a Polish space X , we denote with M=1(X) the Polish space
of all Borel probability measures μ on X (see e.g. [12, Theorem 17.22]). A set
N ⊆ X is μ-null if there exists a Borel set B ⊇ N such that μ(B) = 0. A set
A⊆ X is μ-measurable if A = B ∪N , for a Borel set B and a μ-null set N . A
set A ⊆ X is universally measurable if it is μ-measurable for all μ∈M=1(X). In
what follows we omit the “universally” adjective.

Given two natural numbers i < k, the set Tri,k of all complete (i.e. without
leaves) binary trees whose vertices are labelled by elements of {∃, ∀}×{i, . . . , k} is
endowed with the standard 0-dimensional Polish topology (see e.g. [2]). Each t ∈
Tri,k can be interpreted as a two-player parity game with priorities in {i, . . . , k},
with players ∃ and ∀ controlling vertices labelled by ∃ and ∀, respectively.

Definition 1. Given two natural numbers i < k, the game tree language Wi,k

is the subset of Tri,k consisting of all parity games admitting a winning strategy
for ∃. The pair (i, k) is called the (Rabin–Mostowski) index of Wi,k.

Clearly, there is a natural Wadge equivalence between the languagesWi,k and
Wi+2,k+2. Therefore, we identify indices (i, k) and (i+ 2j, k + 2j) for every i≤k
and j∈ω. Indexes can be partially ordered by defining (i, k)⊆(i′, k′) if and only
if {i, . . . , k}⊆{i′, . . . , k′}.

3 Definition and Basic Properties of R–sets

As outlined in the introduction, the σ-algebra of R-sets is generated by a family
F of operations on subsets having countable arity. Following Kolmogorov, we
define F as the family generated by the operation

⋃
◦
⋂

and closing under a
transformation co-R. It will be convenient to assume that the countably many
inputs of an operation Γ are indexed by a countable set (called the arena) de-
noted by AΓ . Thus an operation Γ has type Γ :P(X)AΓ → P(X). The operations
of countable union and intersections are denoted by

⋃
and

⋂
, respectively, and

their arena is defined as A⋃ =A⋂= ω.

Definition 2. Given two operations Γ and Θ their composition Θ ◦ Γ is the
operation with arena AΓ × AΘ defined as: Θ ◦ Γ ({As,s′ | s ∈ AΓ , s

′ ∈ AΘ}) =
Θ( { Γ ({As,s′ | s ∈ AΓ }) | s′ ∈ AΘ}).

Definition 3. A basis for an operation Γ is a set NΓ ⊆2AΓ such that

Γ ({As : s ∈ AΓ }) =
⋃

S∈NΓ

⋂
s∈S

As (1)
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Not all operations have a basis but a family N ⊆ 2A uniquely determines
an operation Γ with arena A and basis N . In what follows we only consider
operations Γ with a basis. One can check that N⋃={{n} | n∈ω} and N⋂={ω}.

Definition 4. For a given operation Θ with arena A and basis NΘ, we define a
dual operation co-Θ with the same arena A and basis Nco-Θ defined as Nco-Θ

def
={

S ∈ 2A | ∀T ∈ NΘ T ∩ S �= ∅
}
. One can notice that equivalently we can define

co-Θ({As : s ∈ A}) =
⋂

S∈NΘ

⋃
s∈S As.

As an illustration, the equalities co-
⋃

=
⋂

and co-
⋂

=
⋃

hold.

Definition 5. The R-transformation of an operation Θ with basis NΘ is the
operation RΘ, with arena ARΘ = (AΘ)∗ (finite sequences of elements in AΘ)
uniquely determined by the basis:

NRΘ
def
= {S ⊆ (AΘ)∗ | ∃T ⊆ S. ε ∈ T ∧ ∀t ∈ T {v ∈ AΘ : tv ∈ T } ∈ NΘ} (2)

where ε denotes the empty sequence and tv the concatenation of t∈ (AΘ)∗ with
v∈AΘ. We denote with co-R the composition co-(R(Θ)) and define the iteration

Θk
def
= (co-R)k

(⋃
◦
⋂)

.

Definition 6. For a positive number k≥1, we say that a set A⊆X is an R-set
of k-th level if and only if A = Θk({Us : s ∈ AΘk

}) for some clopen sets Us⊆X.

In what follows by R-sets we mean R-sets of finite levels.

Lemma 1 ([8]). The k–th level of R-sets is closed under pre-images of contin-
uous functions.

We say that an operation Γ preserves measurability if for any family E =
{As}s∈AΓ of measurable sets, the set Γ (E) is measurable. The following property
motivates the notion of R-sets:

Theorem 2 ([16, Theorem 4]). If Γ and Θ preserve measurability then Γ ◦Θ,
RΓ , and co-Γ preserve measurability.

Corollary 1. All R-sets are measurable.

4 Matryoshka Games

In this section we define Matryoshka games, a variant of parity games which make
it easier to establish a connection with the operations Θk defined in Section 3.

A Matryoshka game G is the familiar structure of a two-player parity game
played on an infinite countably branching graph, extended with a labelling func-
tion assigning to each finite play (i.e. every sequence of game-states ending in a
terminal state) a play label. Formally, a Matryoshka game G is a structure:

G = {V G = V G
∃ # V G

∀ , FG , EG , vGI , Ω
G ,AG , labelG},
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such that {V G =V G
∃ #V

G
∀ , FG , EG , vGI , Ω

G} is a standard parity game with initial
state vGI , terminal positions FG⊆V G , and priority assignment ΩG . Additionally,
AG is a set of play labels, and labelG : (V G)∗FG → AG is a function assigning to
finite plays their play labels. We assume that for every v ∈ V G there is at least
one v′ ∈ V G ∪ FG such that (v, v′)∈EG , so that the only terminal game-states
are in FG . As for standard parity games, the pair (i, k) containing the minimal
and maximal values of Ω is called the index of the game. By P ∈ {∃, ∀} we
denote the players of the game. The opponent of P is denoted by P̄ .

A play is defined as usual as a maximal path in the arena, i.e., either as a finite
sequence in

(
V G)∗FG or as an infinite sequence in (V G)ω . Similarly, a strategy

σ for Player P is a function σ :
(
V G)∗V G

P → V G ∪ FG defined as expected.
The novelty in Matryoshka games is given by the set of play labels AG and the

associated labelling function labelG . These are used to define parametric winning
conditions in the Matryoshka game, as we now describe.

A set of play labels X ⊆ AG is called a promise. A finite play π is winning
for ∃ with promise X if label(π) ∈ X . An infinite play π is winning for ∃ if(

lim supn→∞ ΩG(π(n))
)

is even, as usual. If a play is not winning for ∃ then it
is winning for ∀. A strategy σ for Player P is winning in the Matryoshka game
G with promise X if, for every counter-strategy τ of P , the resulting play π(σ, τ)
is winning for P with promise X , in the sense just described. The following
proposition directly follows from the well-known determinacy of parity games.

Proposition 1. If G is a Matryoshka game with play labels AG and X ⊆ AG

then exactly one of the players has a winning strategy in G with promise X.

The point of having parametrized winning conditions in Matryoshka games is
the possibility of defining set-theoretical operations with a direct game interpre-
tation. Given a Polish space X , the operation on sets (see Section 2) associated
with a Matryoshka game G has arena AG and is defined as follows:

G(E)
def
=
{
x ∈X : ∃ has a w. s. in G with promise {s∈AG : x ∈Es}

}
(3)

where E={Es : s ∈ AG} is a family of subsets of X .
We now sketch the definition of a Matryoshka game, called G0, whose as-

sociated operation is precisely the operation (
⋃
◦
⋂

) of Section 2. The struc-
ture of G0 is depicted in Figure 1. This is a simple two-steps game where ∃
chooses a number n and ∀ responds choosing a number m. Every play is finite
and of the form 〈ε, n, n.m〉. The set of play labels AG0 is defined as ω × ω and
labelG(〈ε, n, n.m〉)=(n,m).

We now introduce transformations on games which directly match the cor-
responding transformations on operations defined in Section 2. Due to space
limitations we only sketch the definitions.

For a Matryoshka game G of index (i, k), we define co-G as the game obtained
from G by replacing the sets V∃ ↔ V∀ and increasing all priorities in Ω by 1.
Note that the index of co-G is (i + 1, k + 1), and that the sets of plays in the
two games are equal. We define Aco-G def

= AG and labelco-G(π)
def
= labelG(π).
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G0(∃, 0)

(∀, 0)
0

0 . . .1 . . .2 . . .

(∀, 0)
1

0 . . .1 . . .2 . . .

(∀, 0)
2

0 . . .1 . . .2 . . .

(∀, 0)
3

0 . . .1 . . .2 . . .

. . .

Fig. 1. The game G0 corresponding to the operation
⋃

◦
⋂

We now define the R transformation on games. Let us take a Matryoshka
game G of index (i, k). Let 2j be the minimal even number such that k ≤ 2j.
The game RG is depicted on Figure 2.

RG
G

· · ·

(∀, 2j)

. . .

G
· · ·

(∀, 2j)

. . .

G
· · ·

(∀, 2j)

. . .

· · ·

Fig. 2. The game RG

A play in the game RG starts from a first copy of G. In this inner game, the
play π can either be infinite (in which case π is a valid play in RG and is winning
for Player P iff it is winning for P in G) or terminate in a terminal state of G.
In this latter case, Player ∀ can either conclude the game RG, or start another
session of the inner game G. Observe that if ∀ always chooses to start a new
session, they lose because the even priority 2j is maximal in RG.

The set of play labels ARG is defined as
(
AG)∗, i.e., the set of finite sequences

of play labels in G. Let π be a play in RG that passes through n copies of G and
then ends in a terminal position of RG. In that case π can be decomposed into
n plays π0, . . . , πn−1 in G. We then define the labeling function of RG as follows:

labelRG(π)
def
=
(
labelG(π0), labelG(π1), . . . , labelG(πn−1)

)
. (4)

Given the basic Matryoshka game G0 and the two transformations of games
co- and R, we can construct more and more complex “nested” games. This fact
motivates the name of this class of games. We denote with Gk the game obtained
from G0 by iterating k-times the composed transformation co-R.

By the definition, the game Gk for k > 0 consists of infinitely many copies of
Gk−1 and an additional set of new vertices as depicted on Figure 2. These new
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vertices are called the k-layer of the game. Therefore, by unfolding the definition,
each vertex v of Gk is either a vertex of a copy of G0 or it belongs to a j-layer
for some 1 ≤ j ≤ k. Observe that if v is in a j-layer of Gk then

ΩGk(v) = k+j−1 and v ∈ V Gk

∀ ⇔ k+j−1 ≡ 0 (mod 2). (5)

We are now ready to state the expected correspondence between the operation
Θk of Section 2 and the Matryoshka game Gk.

Theorem 3. For every k∈ω the basis NΘk
of the Θk operation equals the family

promise(Gk)
def
={X⊆ Ak : ∃ has a winning strategy in Gk with promise X}.

Corollary 2. For each k and (Es)s∈Ak
we have Θk

(
(Es)s∈Ak

)
= Gk

(
(Es)s∈Ak

)
.

5 Relation between R–sets and the Index Hierarchy

In this section we prove the main result of this work, that is Theorem 1 stated
in Section 1. As a preliminary step, it is convenient to define a variant of game
tree languages defined on countable trees. This will simplify the connection with
Matryoshka games which are played on countably branching structures. Let Trωi,k
be the space of labelled ω-trees t : ω∗ → {∃, ∀} × {i, . . . , k,+,⊥}. Each t∈Trωi,k
is naturally interpreted as a parity game on the countable tree structure, with
the possibility of terminating at leaves, labelled by + and ⊥, which are winning
for ∃ and ∀, respectively. We also require (1) that in the root there is a vertex
(P, k) where P = ∃ if i is even and P = ∀ if i is odd and (2) that the tree is
alternating, that is ∃ and ∀ make moves in turns.

Definition 7. Wω
i,k ⊆ Trωi,k is the set of ω-trees such that ∃ has a w.s.

An easy argument shows that dropping conditions (1) and (2) gives a Wadge
equivalent language. The following routine lemma establishes the connection
between ω-branching game tree languages Wω

i,k and binary (as in Section 2)
game tree languages Wi,k.

Lemma 2. For i<k the language Wi,k is Wadge equivalent to Wω
i+1,k. In par-

ticular W0,1 ∼W Wω
1,1 and W1,3 ∼W Wω

0,1.

The fact that Wi,k corresponds to Wω
i+1,k reflects the cost of the translation

of ω-branching games into binary games: an extra priority is required to mimic
countably many choices by iterating binary choices. Thanks to this lemma, in
Theorem 1 one can replace the languagesWk−1,2k−1 with the languagesWω

k,2k−1.
First, we show that everyWω

k,2k−1 is indeed an R-set. We will do so by explic-
itly constructing a family Ek ={Es | s ∈ Ak} of clopen sets in Trωk,2k−1 such that
Θk(Ek)=Wω

k,2k−1, where Ak is the arena of the operation Θk. The construction
requires some effort. First we recall, from Section 3 that the arena of the opera-
tion

⋃
◦
⋂

is A0 = {〈n,m〉 : n,m ∈ ω} (pairs of natural numbers) and from the
definition of the transformation R we have Ak =

(
Ak−1

)∗. Thus, for all k∈ω, Ak
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is a set of nested sequences of pairs of natural numbers. For a sequence s ∈ Ak

we define the maps flatten and prioritiesMap such that flatten(s)∈A�
0 and

prioritiesMap(s) ∈ ω∗. The map flatten takes a nested sequence in Ak and
returns the “flattened” sequence, that is all the braces are removed, for example
flatten

(
(((〈2, 15〉)), ((〈7, 5〉), (〈6, 4〉)))

)
= (〈2, 15〉, 〈7, 5〉, 〈6, 4〉). The function

prioritiesMap computes the number of closing brackets after each pair of nat-
ural numbers: e.g., prioritiesMap

(
(((〈2, 15〉)), ((〈7, 5〉), (〈6, 4〉)))

)
= (2, 1, 3).

We also define treeMap(t, s) where t∈Trωk,2k−1 and s∈Ak. Since we limited
our attention to alternating trees, each vertex in the ω-branching tree t can be
identified with a sequence of pairs of natural numbers. Then, if s ∈ Ak, the
function treeMap(t, s) computes first flatten(s) and returns the sequence of
priorities assigned to the vertices along the path of t indicated by flatten(s).
On Figure 3 we have an example of a tree t where

treeMap
(
t, (((〈2, 15〉)), ((〈7, 5〉), (〈6, 4〉)))

)
= (2, 1, 3).

(∀, 3)

(∃, 2)

0

(∃, 2)

1

(∃, 2)

2

(∃, 2)

3 . . .

. . .

(∀, 2)

14

(∀, 2)

16

(∀, 2)

15

. . . . . .

(∃, 1)

6 7 8

. . . . . .

(∀, 1)

4 5 6

. . . . . .

(∃, 3)

5 6 7

. . . . . .

(∀, 3)

3 4 5

. . . . . .
...

Fig. 3. An illustration of treeMap

Define Ek = {Es : s ∈ Ak} such that for
t ∈ Trωk,2k−1 we have t∈Es iff for

– v = prioritiesMap(s),
– b = treeMap(t, s),
– L = min{k ∈ ω : v(k) �= b(k)}

v �=b holds, and either b(L)=+ or

min(b(L), v(L))≡0 (mod 2). (6)

It is simple to verify that the sets Es are
indeed clopen in the space Trωk,2k−1 (for a
definition of the topology see, e.g. [2]).

Theorem 4. ∀k≥1 Θk(Ek) = Wω
k,2k−1.

Proof. The proof is based on Matryoshka
games. Consider a tree t ∈ Trωk,2k−1 and as-
sume that Player P ∈ {∃, ∀} has a winning
strategy σ on the tree t. We claim that P
has a winning strategy in the Matryoshka
game Gk with promise Ek. From this fact
the theorem will follow by an application of
Corollary 2 and Proposition 1. We consider the case P =∃. The opposite case is
analogous.

We will simulate the game on t in the Matryoshka game Gk. A play in Gk
consists of playing pairs of numbers (corresponding to moves in t) in the copies
of G0 and, additionally, deciding whether to exit an j-layer of the game or not.
We say that a play in Gk is fair if whenever the players encounter a priority k+j
in t then they exit exactly j first layers of Gk (i.e. the layer j+1 is reached) and
if they encounter a symbol ⊥ or + then the players exit all the layers of Gk.
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Let ∃ use the original strategy σ in the copies of G0 and play “fairly” as long as
∀ does. If ∀ also plays “fairly” then the play is winning for ∃: either + is reached
in t and ∃ wins since t ∈ Es or the play is infinite and ∃ wins by the parity
condition — the priorities visited in Gk agree with those visited in t, see (5).

If ∀ does not play “fairly” (i.e. when a priority k+j is reached in t they don’t
exit the l-layer of Gk with l ≤ j or they exit the (j+1)-layer of Gk) then ∃ uses
the following counter-strategy: whenever possible ∃ exits the current layer of
Gk. There are two possible developments of such a play. The first case is that
∀ allows to exit the whole game and then ∃ wins thanks to (6). Now assume
that ∀ never allows the game to reach a terminal position. In that case, let j be
maximal such that the j-layer of Gk is visited infinitely often. By (5) we know
that the limit superior of the priorities visited in Gk is k+j−1 and, since ∀ is
the owner of the vertices in the j-layer of Gk, it holds that k+j−1 ≡ 0 (mod 2).
Therefore, ∃ wins the play by the parity condition.

Theorem 5. Let L=Θk(Es) be a set obtained using the Θk operation applied to
a family of clopen subsets (Es)s∈Ak

with Es ⊆ Y in a Polish space Y . Then, there
exists a continuous reduction f : Y → Trωk,2k−1 such that f−1

(
Wω

k,2k−1

)
= L.

Sketch. The operation Θk is presented as the corresponding Matryoshka game
using Theorem 3 and Corollary 2. This is a parametrized family of parity games
and thus continuously reducible to Wω

k,2k−1.

Theorems 4 and 5 imply that the language Wω
k,2k−1 is complete for the k-th

level of the hierarchy of R-sets. Theorem 1 follows from Lemmas 1 and 2.

6 Continuity of measures on Wi,k

For an odd k∈ ω the language Wi,k admits a natural transfinite decomposition
into simpler approximant sets Wα

i,k, for α<ω1 (see [18, §6.2,3]). The proof of de-
terminacy of pLμ games of [18] relies on the following special continuity property:
supα<ω1

μ
(
Wα

i,k

)
=μ
(
Wi,k

)
. Since the increasing chain Wα

i,k is uncountable, the
property does not follow from the standard σ-continuity of measures. As observed
in [18], the property follows from Martin Axiom at ℵ1 (MAℵ1). The problem of
whether the property holds in ZFC alone is left open (see Item 2 of Section 8.2
in [18]). The following theorem gives a partial answer to this problem.

Theorem 6. The continuity property holds in ZFC for W0,1. Let k be an odd
number, i<k. For Wi,k the continuity property holds assuming the determinacy
of Harrington’s games5 with arbitrary analytic winning sets.

6.1 Improvement

After submitting the paper the authors have realised that it is possible to prove
the above theorem without the additional assumption of determinacy. This proof
will be included in the journal version of the paper.
5 See, e.g., [10, Section 33.5] for details about this type of games.
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7 Conclusion

The notion of R-sets is a robust concept and admits natural variations. One can
equivalently work in arbitrary (not zero-dimensional) Polish spaces and start
from a basis of, e.g. Borel sets rather than clopens. The family of operations
Θk = (co-R)k(

⋃
◦
⋂

) can be replaced by, e.g. either (co-R)k(
⋃

) or (co-R)k(
⋂

).
Similarly, one can consider binary rather than countably branching, Matryoshka
games. The notion of R-sets remains unchanged in these alternative setups.
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Abstract. A tower between two regular languages is a sequence of
strings such that all strings on odd positions belong to one of the lan-
guages, all strings on even positions belong to the other language, and
each string can be embedded into the next string in the sequence. It
is known that if there are towers of any length, then there also exists
an infinite tower. We investigate upper and lower bounds on the length
of finite towers between two regular languages with respect to the size
of the automata representing the languages in the case there is no infi-
nite tower. This problem is relevant to the separation problem of regular
languages by piecewise testable languages.

1 Introduction

The separation problem appears in many disciplines of mathematics and com-
puter science, such as algebra and logic [8,9], or databases and query answer-
ing [4]. Given two languages K and L and a family of languages F , the problem
asks whether there exists a language S in F such that S includes one of the
languages K and L, and it is disjoint with the other. Recently, it has been in-
dependently shown in [4] and [8] that the separation problem for two regular
languages given as NFAs and the family of piecewise testable languages is decid-
able in polynomial time with respect to both the number of states and the size
of the alphabet. It should be noted that an algorithm polynomial with respect
to the number of states and exponential with respect to the size of the alpha-
bet has been known in the literature [1,3]. In [4], the separation problem has
been shown to be equivalent to the non-existence of an infinite tower between
the input languages. Namely, the languages have been shown separable by a
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piecewise testable language if and only if there does not exist an infinite tower.
In [8], another technique has been used to prove the polynomial time bound for
the decision procedure, and a doubly exponential upper bound on the index of
the separating piecewise testable language has been given. This information can
then be further used to construct a separating piecewise testable language.

However, there exists a simple (in the meaning of description, not complex-
ity) method to decide the separation problem and to compute the separating
piecewise testable language, whose running time depends on the length of the
longest finite tower. The method is recalled in Section 3. This observation has
motivated the study of this paper to investigate the upper bound on the length
of finite towers in the presence of no infinite tower. So far, to the best of our
knowledge, the only published result in this direction is a paper by Stern [12],

who has given an exponential upper bound 2|Σ|2N on the length of the tower be-
tween a piecewise testable language and its complement, where N is the number
of states of the minimal deterministic automaton.

Our contribution in this paper are upper and lower bounds on the length of
maximal finite towers between two regular languages in the case no infinite towers
exist. These bounds depend on the size of the input (nondeterministic) automata.
The upper bound is exponential with respect to the size of the input alphabet.
More precisely, it is polynomial with respect to the number of states with the
cardinality of the input alphabet in the exponent (Theorem 1). Concerning the
lower bounds, we show that the bound is tight for binary languages up to a
linear factor (Theorem 2), that a cubic tower with respect to the number of
states exists (Theorem 3), and that an exponential lower bound with respect to
the size of the input alphabet can be achieved (Theorem 4).

2 Preliminaries

We assume that the reader is familiar with automata and formal language theory.
The cardinality of a set A is denoted by |A| and the power set of A by 2A. An
alphabet Σ is a finite nonempty set. The free monoid generated by Σ is denoted
by Σ∗. A string over Σ is any element of Σ∗; the empty string is denoted by ε.
For a string w ∈ Σ∗, alph(w) ⊆ Σ denotes the set of all letters occurring in w.

We define (alternating subsequence) towers as a generalization of Stern’s al-
ternating towers [12]. For strings v = a1a2 · · ·an and w ∈ Σ∗a1Σ

∗ · · ·Σ∗anΣ
∗,

we say that v is a subsequence of w or that v can be embedded into w, denoted
by v � w. For languages K and L and the subsequence relation �, we say that
a sequence (wi)

k
i=1 of strings is an (alternating subsequence) tower between K

and L if w1 ∈ K ∪ L and, for all i = 1, . . . , k − 1,

– wi � wi+1,
– wi ∈ K implies wi+1 ∈ L, and
– wi ∈ L implies wi+1 ∈ K.

We say that k is the length of the tower. Similarly, we define an infinite
sequence of strings to be an infinite (alternating subsequence) tower between K
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and L. If the languages are clear from the context, we omit them. Notice that the
languages are not required to be disjoint, however, if there exists a w ∈ K ∩ L,
then there exists an infinite tower, namely w,w,w, . . ..

For two languages K and L, we say that the language K can be embedded
into the language L, denoted K � L, if for each string w in K, there exists a
string w′ in L such that w � w′. We say that a string w can be embedded into
the language L, denoted w � L, if {w} � L.

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q,Σ, δ,Q0, F ),
where Q is the finite nonempty set of states, Σ is the input alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q

is the transition function that can be extended to the domain 2Q × Σ∗. The
language accepted by M is the set L(M) = {w ∈ Σ∗ | δ(Q0, w)∩F �= ∅}. A path
π is a sequence of states and input symbols q0, a0, q1, a1, . . . , qn−1, an−1, qn, for
some n ≥ 0, such that qi+1 ∈ δ(qi, ai), for all i = 0, 1, . . . , n− 1. The path π is

accepting if q0 ∈ Q0 and qn ∈ F . We also use the notation q0
a1a2···an−1−−−−−−−→ qn to

denote a path from q0 to qn under a string a1a2 · · ·an−1.
The NFA M has a cycle over an alphabet Γ ⊆ Σ if there exists a state q and

a string w over Σ such that alph(w) = Γ and q
w−→ q.

We assume that there are no useless states in the automata under considera-
tion, that is, every state appears on an accepting path.

3 Computing a Piecewise Testable Separator 1

We now motivate our study by recalling a “simple” method [5] solving the separa-
tion problem of regular languages by piecewise testable languages and computing
a piecewise testable separator, if it exists. Our motivation to study the length
of towers comes from the fact that the running time of this method depends on
the maximal length of finite towers.

Let K and L be two languages. A language S separates K from L if S contains
K and does not intersect L. Languages K and L are separable by a family F if
there exists a language S in F that separates K from L or L from K.

A regular language is piecewise testable if it is a finite boolean combination
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗akΣ

∗, where k ≥ 0 and ai ∈ Σ,
see [10,11] for more details.

Given two disjoint regular languages L0 and R0 represented as NFAs. We
construct a decreasing sequence of languages . . . � R2 � L2 � R1 � L1 � R0

as follows, show that a separator exists if and only if from some point on all the
languages are empty, and use them to construct a piecewise testable separator.

For k ≥ 1, let Lk = {w ∈ Lk−1 | w � Rk−1} be the set of all strings of
Lk−1 that can be embedded into Rk−1, and let Rk = {w ∈ Rk−1 | w � Lk},
see Fig. 1. Let K be a language accepted by an NFA A = (Q,Σ, δ,Q0, F ),
and let ε(K) denote the language accepted by the NFA Aε = (Q,Σ, δε, Q0, F ),

1 The method recalled here is not the original work of this paper and the credit for this
should go to the authors of [5], namely to Wim Martens and Wojciech Czerwiński.
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L0 R0

w1 ∈ L1

R1

w2 ∈ L2

R2
...

Fig. 1. The sequence of languages; an arrow stands for the embedding relation �

where δε(q, a) = δ(q, a) and δε(q, ε) =
⋃

a∈Σ δ(q, a). Then Lk = Lk−1 ∩ ε(Rk−1)
(analogously for Rk), hence the languages are regular.

We now show that there exists a constant B ≥ 1 such that LB = LB+1 = . . .,
which also implies RB = RB+1 = . . .. Assume that no such constant exists.
Then there are infinitely many strings w� ∈ L� \ L�+1, for all � ≥ 1, as depicted
in Fig. 1. By Higman’s lemma [6], there exist i < j such that wi � wj , hence
wi � Rj−1, which is a contradiction because wi �� Ri and Rj−1 ⊆ Ri.

By construction, languages LB and RB are mutually embeddable into each
other, LB � RB � LB, which describes a way how to construct an infinite tower.
Thus, if there is no infinite tower, languages LB and RB must be empty.

The constant B depends on the length of the longest finite tower. Let (wi)
r
i=1

be a maximal finite tower between L0 and R0 and assume that wr belongs to
L0. In the first step, the method eliminates all strings that cannot be embedded
into R0, hence wr does not belong to L1, but (wi)

r−1
i=1 is a tower between L1 and

R0. Thus, in each step of the algorithm, all maximal strings of all finite towers
(belonging to the language under consideration) are eliminated, while the rests
of towers still form towers between the resulting languages. Therefore, as long
as there is a maximal finite tower, the algorithm can make another step.

Assume that there is no infinite tower (LB = RB = ∅). We use the languages
computed above to construct a piecewise testable separator. For a string w =
a1a2 · · · a�, we define Lw = Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗a�Σ

∗, which is piecewise testable
by definition. Let up(L) =

⋃
w∈LLw. The language up(L) is regular and its NFA

is constructed from an NFA for L by adding self-loops under all letters to all
states, see [7] for more details. By Higman’s lemma [6], up(L) can be written as
a finite union of languages of the form Lw, for some w ∈ L, hence it is piecewise
testable. For k = B,B − 1, . . . , 1, we define the piecewise testable languages
Sk = up(R0 \ Rk) \ up(L0 \ Lk) and show that S =

⋃B
k=1 Sk is a piecewise

testable separator of L0 and R0.
To this end, we show that L0 ∩ Sk = ∅ and R0 ⊆ S. To prove the former,

let w ∈ L0. If w ∈ L0 \ Lk, then w ∈ up(L0 \ Lk), hence w /∈ Sk. If w ∈ Lk

and w ∈ up(R0 \ Rk), then there is v ∈ R0 \ Rk such that v � w. However,
Rk = {u ∈ R0 | u � Lk}, hence v ∈ Rk, a contradiction. Thus L0 ∩ Sk = ∅. To

prove the later, we show that Rk−1 \Rk ⊆ Sk. Then R0 =
⋃B

k=1(Rk−1 \Rk) ⊆ S.
To show this, we have Rk−1 \ Rk ⊆ R0 \ Rk ⊆ up(R0 \ Rk). If w ∈ Rk−1

and w ∈ up(L0 \ Lk), then there is v ∈ L0 \ Lk such that v � w. However,
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Lk = {u ∈ L0 | u � Rk−1}, hence v ∈ Lk, a contradiction. Thus, we have shown
that L0 ∩ S = ∅ and R0 ⊆ S. Moreover, S is piecewise testable because it is a
finite boolean combination of piecewise testable languages.

4 The Length of Towers

Recall that it was shown in [4] that there is either an infinite tower or a constant
bound on the length of any tower. We now establish an upper bound on the
length of finite towers.

Theorem 1. Let A0 and A1 be NFAs with at most n states over an alphabet Σ
of cardinality m, and assume that there is no infinite tower between the languages
L(A0) and L(A1). Let (wi)

r
i=1 be a tower between L(A0) and L(A1) such that

wi ∈ L(Ai mod 2). Then r ≤ nm+1−1
n−1 .

Proof. First, we define some new concepts. We say that w = v1v2 · · · vk is a cyclic
factorization of w with respect to a pair of states (q, q′) in an automaton A,
if there is a sequence of states q0, . . . , qk−1, qk such that q0 = q, qk = q′, and

qi−1
vi−→ qi, for each i = 1, 2, . . . k, and either vi is a letter, or the path qi−1

vi−→ qi
contains a cycle over alph(vi). We call vi a letter factor if it is a letter and
qi−1 �= qi, and a cycle factor otherwise. The factorization is trivial if k = 1.
Note that this factorization is closely related to the one given in [1], see also [2,
Theorem 8.1.11].

We first show that if q′ ∈ δ(q, w) in some automaton A with n states, then w
has a cyclic factorization v1v2 · · · vk with respect to (q, q′) that contains at most
n cycle factors and at most n− 1 letter factors. Moreover, if w does not admit
the trivial factorization with respect to (q, q′), then alph(vi) is a strict subset of
alph(w) for each cycle factor vi, i = 1, 2, . . . , k.

Consider a path π of the automaton A from q to q′ labeled by a string w.
Let q0 = q. Define the factorization w = v1v2 · · · vk inductively by the following
greedy strategy. Assume we have defined the factors v1, v2 . . . , vi−1 such that

w = v1 · · · vi−1w
′ and q0

v1v2···vi−1−−−−−−−→ qi−1. The factor vi is defined as the label of

the longest possible initial segment πi of the path qi−1
w′
−→ q′ such that either πi

contains a cycle over alph(vi) or πi = qi−1, a, qi, where vi = a, so vi is a letter.
Such a factorization is well defined, and it is a cyclic factorization of w.

Let pi, i = 1, . . . , k, be a state such that the path qi−1
vi−→ qi contains a

cycle pi → pi over alph(vi) if vi is a cycle factor, and pi = qi−1 if vi is a letter
factor. If pi = pj with i < j such that vi and vj are cycle factors, then we have

a contradiction with the maximality of vi since qi−1
vivi+1···vj−−−−−−−→ qj contains a

cycle pi → pi from pi to pi over the alphabet alph(vivi+1 · · · vj). Therefore the
factorization contains at most n cycle factors.

Note that vi is a letter factor only if the state pi, which is equal to qi−1 in such

a case, has no reappearance in the path qi−1
vi···vk−−−−→ q′. This implies that there

are at most n− 1 letter factors. Finally, if alph(vi) = alph(w), then vi = v1 = w
follows from the maximality of v1.
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We now define inductively cyclic factorizations of wi, such that the factoriza-
tion of wi−1 is a refinement of the factorization of wi. Let wr = vr,1vr,2 · · · vr,kr

be a cyclic factorization of wr defined, as described above, by some accepting
path in the automaton Ar mod 2. Factorizations wi−1 = vi−1,1vi−1,2 · · · vi−1,ki−1

are defined as follows. Let

wi−1 = v′i,1v
′
i,2 · · · v′i,ki

,

where v′i,j � vi,j , for each j = 1, 2, . . . , ki; note that such a factorization exists
since wi−1 � wi. Then vi−1,1vi−1,2 · · · vi−1,ki−1 is defined as a concatenation of
cyclic factorizations of v′i,j , j = 1, 2, . . . , ki, corresponding to an accepting path
of wi−1 in Ai−1 mod 2. The cyclic factorization of the empty string is defined as
empty. Note also that a letter factor of wi either disappears in wi−1, or it is
“factored” into a letter factor.

In order to measure the height of a tower, we introduce a weight function f
of factors in a factorization v1v2 · · · vk. First, let

g(x) = n
nx − 1

n− 1
.

Note that g satisfies g(x + 1) = ng(x) + (n − 1) + 1. Now, let f(vi) = 1 if vi is
a letter factor, and let f(vi) = g(| alph(vi)|) if vi is a cycle factor. Note that, by
definition, f(ε) = 0. The weight of the factorization v1v2 · · · vk is then defined
by

W (v1v2 · · · vk) =

k∑
i=1

f(vi) .

Let
Wi = W (vi,1vi,2 · · · vi,ki).

We claim that Wi−1 < Wi for each i = 2, . . . , r. Let v1v2 · · · vk be the fragment
of the cyclic factorization of wi−1 that emerged as the cyclic factorization of
v′i,j � vi,j . If the factorization is not trivial, then, by the above analysis,

W (v1v2 · · · vk) ≤ n− 1 + n · g(| alph(vi,j)| − 1) < g(| alph(vi,j)|) = f(vi,j).

Similarly, we have f(v′i,j) < f(vi,j) if | alph(v′i,j)| < | alph(vi,j)|. Altogether, we
have Wi−1 < Wi as claimed, unless

– ki−1 = ki,
– the factor vi−1,j is a letter factor if and only if vi,j is a letter factor, and
– alph(vi−1,j) = alph(vi,j) for all j = 1, 2, . . . , ki.

Assume that such a situation takes place, and show that it leads to an infinite
tower. Let L be the language of strings z1z2 · · · zki such that zj = vi,j if vi,j is a
letter factor, and zj ∈ (alph(vi,j))

∗ if vi,j is a cycle factor. Since wi ∈ L(Ai mod 2)
and wi−1 ∈ L(Ai−1 mod 2) holds, the definition of a cycle factor implies that, for
each z ∈ L, there is some z′ ∈ L(A0)∩L such that z � z′, and also z′′ ∈ L(A1)∩L
such that z � z′′. The existence of an infinite tower follows. We have therefore
proved Wi−1 < Wi.
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1 2 3 4 5 6
a

a
a

a

a a a

b b b b
b

b

Fig. 2. Automaton A0; n− 1 = 6

The proof is completed, since Wr ≤ f(wr) ≤ g(m), W1 ≥ 0, and the bound
in the claim is equal to g(m) + 1. "#

For binary regular languages, we now show that there exists a tower of length
at least n2−O(n) between two binary regular languages having no infinite tower
and represented by automata with at most n states.

Theorem 2. The upper bound n3−1
n−1 on the length of a maximal tower is tight

for binary languages up to a linear factor.

Proof. Let n be an odd number and define the automata A0 and A1 with n− 1
and n states as depicted in Figs. 2 and 3, respectively.

The automaton A0 = ({1, 2, . . . , n − 1}, {a, b}, δ0, 1, {n − 1}) consists of an
a-path from state 1 through states 2, 3, . . . , n− 3, respectively, to state n− 2, of
a-transitions from state 1 to all states but itself and the final state, of self-loops
under b in all but the states n− 2 and n− 1, and of a b-cycle from n− 2 to n− 1
and back to n− 2.

The automaton A1 = ({1, 2, . . . , n}, {a, b}, δ1, 1, {1, n}) consists of a b-path
from state 1 through states 2, 3, . . . , n − 1, respectively, to state n, of an a-
transition from state n to state 1, and of b-transitions going from state 1 to all
even-labeled states.

Consider the string
(bn−1a)n−3(bn−1b) .

This string consists of n − 2 parts of length n and belongs to L(A0). Note
that deleting the last letter b results in a string that belongs to L(A1). Deleting
another letter b from the right results in a string belonging again to the language

1 2 3 4 5 6 7
b

b

b

b b b b b

a

Fig. 3. Automaton A1; n = 7
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L(A0). We can continue in this way alternating between the languages until the
letter a is the last letter, that is, until the string (bn−1a)n−3, which belongs to
L(A1). Now, we delete the last two letters, namely the string ba, which results
in a string from L(A0), and we can continue with deleting the last letters b again
as described above. Moreover, we cannot accept the prefix bn−2 in A0, hence the
length of the tower is at least n(n− 2)− (n− 3)− (n− 2) = n2 − 4n + 5.

To show that there is no infinite tower between the languages L(A0) and
L(A1), we can use the techniques described in [4,8], or to use the algorithm
presented in Section 3. We can also notice that letter a can appear at most n−3
times in any string from L(A0) and that after at most n−1 occurrences of letter
b, letter a must appear in a string from L(A1). As the languages are disjoint, any
infinite tower would have to contain a string from L(A1) of length more than
n · (n− 3) + (n− 1). But any such string in L(A1) must contain at least n− 2
occurrences of letter a, hence it cannot be embedded into any string of L(A0).
This means that there cannot be an infinite tower. "#

In Theorem 2, we have shown that there exists a tower of a quadratic length
between two binary languages having no infinite tower. Now we show that there
exist two quaternary languages having a tower of length more than quadratic.

Theorem 3. There exist two languages with no infinite tower having a finite
tower of a cubic length.

Proof. Let n be a number divisible by four and define the automata A0 and A1

with n− 1 and n states as shown in Figs. 4 and 5, respectively.
The automaton A0 = ({1, 2, . . . , n − 1}, {a, b, c, d}, δ0, 1, {n − 1}) consists of

an a-path through states 1, 2, . . . , n− 2, respectively, of a-transitions from state
1 to all other states but itself and the final state, of self-loops under symbols
b, c, d in all but the final state, and of a b-transition from all, but the final state,
to the final state.

The automaton A1 = ({1, 2, . . . , n}, {a, b, c, d}, δ1, 1, {n2 , n}) consists of two
parts. The first part is constituted by states 1, 2, . . . , n2 with a d-path through
states 1, 2, . . . , n

2 , respectively, by self-loops under b, c in states 1, 2, . . . , n2 − 1,
and by d-transitions from state 1 to all of states 2, 3, . . . , n

2 . The second part
is constituted by states n

2 , . . . , n with a bc-path through states n
2 , . . . , n − 2,

respectively, by a-transitions from state n−1 to states 1 and n, by a c-transition
from state n−1 to state n, and by b-transitions from state n

2 to all odd-numbered
states between n

2 and n− 1.
Note that the languages are disjoint since A0 accepts strings ending with b,

while A1 accepts strings ending with a, c, or d.
Consider the string[(

bd(bc)
n
4

)n
2 −2

bd(bc)
n
4 −1ba

]n−3

·
(
bd(bc)

n
4

)n
2 −2

bd(bc)
n
4 −1bcb .

This string belongs to L(A0) and consists of n−3 parts each of length n2

4 + n
2 −2,

plus one part of length n2

4 + n
2 − 1. We can delete the last letters one by one,
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1 2 3 4 5 6 7
a

a

a

a

a

b, c, d

b

a

b, c, d

b

a

b, c, d

b

a

b, c, d

b

a

b, c, d

b

b

b, c, d

Fig. 4. Automaton A0; n− 1 = 7

obtaining strings alternating between L(A1) and L(A0). Hence the length of this

tower is (n− 2) · (n2

4 + n
2 − 2) + 1, which results in a tower of length Ω(n3).

To show that there is no infinite tower between the languages, we can use the
techniques described in [4,8], or the algorithm presented in Section 3. "#

As the last result of this paper, we prove an exponential lower bound with
respect to the cardinality of the input alphabet.

Theorem 4. There exist two languages with no infinite tower having a finite
tower of an exponential length with respect to the size of the alphabet.

Proof. For every non-negative integer m, we define a pair of nondeterministic
automata Am and Bm over the input alphabet Σm = {a1, a2, . . . , am} ∪ {b, c}
with a tower of length 2m+2 between L(Am) and L(Bm), and such that there is
no infinite tower between the two languages.

The two-state automaton Am = ({1, 2}, Σm, δm, 1, {2}) has self-loops under
all symbols in state 1 and a b-transition from state 1 to state 2. The automaton
is shown in Fig. 6 (left), and it accepts all strings over Σm ending with b.

1 2 3 4 5 6 7 8

b, c

d

d
d

b, c

d

b, c

d b

b

c b a, c

a

Fig. 5. Automaton A1; n = 8 and F = {n
2
, n}
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1 2

Σm

b p q r
b c

Fig. 6. The two-state NFA Am, for m ≥ 0 (left), and the automaton B0 (right)

The automata Bm are constructed inductively as follows. The automaton
B0 = ({p, q, r}, {b, c}, γ0, {p}, {p, r}) accepts the finite language {ε, bc}, and it is
shown in Fig. 6 (right).

Assume that we have constructed the nondeterministic finite automaton Bm =
(Qm, Σm, γm, Sm, {p, r}). We construct the nondeterministic automaton Bm+1 =
(Qm∪{m+1}, Σm∪{am+1}, γm+1, Sm∪{m+1}, {p, r}) by adding a new initial
state m + 1 to Qm, and transitions on a fresh input symbol am+1. The transition
function γm+1 extends γm so that it defines self-loops under all letters of Σm in
the new state m + 1, and adds the transitions on input am+1 from state m + 1 to
all the states of Sm, that is, to all the initial states of Bm. The first two steps of the
construction, that is, automataB1 andB2, are shown in Figs. 7 and 8, respectively.
Note that L(Bm) ⊆ L(Bm+1) since all the initial states of Bm are initial in Bm+1

as well, and the set of final states is {p, r} in both automata.
By induction on m, we show that there exists a tower between the languages

L(Am) and L(Bm) of length 2m+2. More specifically, we prove that there exists

a sequence (wi)
2m+2

i=1 such that wi is a prefix of wi+1 and |wi+1| = |wi| + 1 for
all i = 1, . . . , 2m+2 − 1, w1 = ε, so w1 ∈ L(Bm), and w2m+2 ∈ L(Am). Thus, the
tower is fully characterized by its longest string w2m+2 . Moreover, by definition,
the letter b appears on all odd positions of w2m+2 .

If m = 0, then such a tower is ε, b, bc, bcb, and it is of length 22. Assume that
for some m, we have a sequence of prefixes of length 2m+2 as required above, and
such that the length of its longest string wb is 2m+2− 1. Consider the automata
Am+1 and Bm+1 and the string

wbam+1wb .

The length of this string is 2(m+1)+2 − 1, which results in 2(m+1)+2 prefixes.
By the assumption, every odd position is occupied by letter b, hence every

prefix of an odd length belongs to L(Am+1). It remains to show that all even-
length prefixes belong to L(Bm+1). Let x be such a prefix. If x does not contain
am+1, then it is a prefix of wb and belongs to L(Bm) by the induction hypothesis.

p q r1
b ca1

b, c

Fig. 7. Automaton B1
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p q r12
b ca1

b, cb, c, a1

a2

a2

Fig. 8. Automaton B2

If x = wbam+1y, then Bm+1 reads the string wb in state m + 1. Then, on input
am+1, it goes to an initial state of Bm. From this initial state, the string y is
accepted as a prefix of wb by the induction hypothesis. Thus x is in L(Bm+1).

To complete the proof, it remains to show that there is no infinite tower
between the languages. We can either use the techniques described in [4,8], or
the algorithm presented in Section 3. However, to give a brief idea why it is so, we
can give an inductive argument. Since L(B0) is finite, there is no infinite tower
between L(A0) and L(B0). Consider a tower between L(Am+1) and L(Bm+1).
If every string of the tower belonging to L(Bm+1) is accepted from an initial
state different from m + 1, then it is a tower between L(Am) and L(Bm), so it
is finite. Thus, if there exists an infinite tower, there also exists an infinite tower
where all strings belonging to L(Bm+1) are accepted only from state m + 1.
However, every such string is of the form ({a1, . . . , am} ∪ {b, c})∗am+1y, where
the string y is accepted from an initial state different from m+1. Cutting off the
prefixes from ({a1, . . . , am} ∪ {b, c})∗am+1 results in an infinite tower between
L(Am) and L(Bm), which is a contradiction. "#

5 Conclusions

The definition of towers can be generalized from subsequences to basically any
relation on strings, namely to prefixes, suffixes, etc. Notice that our lower-bound
examples in Theorems 2, 3, and 4 are actually towers of prefixes, hence they give
a lower bound on the length of towers of prefixes as well.

On the other hand, the upper-bound results cannot be directly used to prove
the upper bounds for towers of prefixes. Although every tower of prefixes is also
a tower of subsequences, the condition that there are no infinite towers is weaker
for prefixes. The bound for subsequences therefore does not apply to languages
that allow an infinite tower of subsequences but only finite towers of prefixes.

Finally, note that the lower-bound results are based on nondeterminism. We
are aware of a tower of subsequences (prefixes) showing the quadratic lower
bound for deterministic automata. However, it is an open question whether a
longer tower can be found or the upper bound is significantly different for de-
terministic automata.
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Abstract. We extend the constructive dependent type theory of the
Logical Framework LF with a family of monads indexed by predicates
over typed terms. These monads express the effect of factoring-out, post-
poning, or delegating to an external oracle the verification of a constraint
or a side-condition. This new framework, called Lax Logical Framework,
LaxF, is a conservative extension of LF, and hence it is the appropriate
metalanguage for dealing formally with side-conditions or external ev-
idence in logical systems. LaxF is the natural strengthening of LFP (the
extension of LF introduced by the authors together with Marina Lenisa
and Petar Maksimovic), which arises once the monadic nature of the
lock constructors of LFP is fully exploited. The nature of these monads
allows to utilize the unlock destructor instead of Moggi’s monadic letT ,
thus simplifying the equational theory. The rules for the unlock allow us,
furthermore, to remove the monadic constructor once the constraint is
satisfied. By way of example we discuss the encodings in LaxF of call-by-
value λ-calculus, Hoare’s Logic, and Elementary Affine Logic.

1 Introduction

The system LFP [18] is a conservative extension of LF. It was introduced to factor
out neatly judgements whose justification can be delegated to an external oracle.
This allows us to recover within a Logical Framework many different proof cul-
tures that otherwise can be embedded only very deeply [14] or axiomatically [20].
In particular, recourse in formal proofs to external sources of justification and
external evidence such as diagrams, physical analogies, explicit computations ac-
cording to Poincaré Principle [5], and to external proof search tools can thus be
explicitly invoked and recorded in a LF type-theoretic framework. Methodologi-
cally this is a simple, but quite significant move, since in dealing with logics one
has to rely on external objects more often than one may think. Any adequacy re-
sult or even the very execution of the most obvious rule relies ultimately on some
external unformalizable convention, as captured by Münchausen trilemma [1] or
the story of Achilles and the Tortoise narrated by Lewis Carroll [7].

The idea behind LFP is to express explicitly, by means of a new type con-
structor LP

M,σ[τ ], that in order to obtain a term of type τ it is necessary to

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 327–339, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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verify the constraint P(Γ ,Σ M : σ). This idea grew out of a series of papers,
[6,17,19,18,15], on extensions of LF published by the authors in recent years.

In this paper we introduce a new system, called Lax Logical Framework, LaxF,
which amounts to the natural generalization and strengthening of LFP , once the
monadic nature of the LP

M,σ[N ] constructors is recognized and fully exploited.
Hence LaxF is the extension of LF with a family of monads indexed by predicates
over typed terms, which capture the effect of factoring out and postponing, or
delegating to an external oracle the verification of the constraint or side-condition
P(Γ ,Σ M : σ).

Our basic idea is that any side condition P can be viewed as a monad TP ,
where the categorical natural transformation ηTP : A→ TP(A) expresses the fact
that a judgement can always be asserted weakly, i.e. subject to the satisfaction
of a given constraint. While the other natural transformation characterizing a
monad μTP : T 2

P(A) → TP(A), expresses the fact that it is useless to verify twice
a given constraint.

The main extension with respect to the language of LFP is that, for N : τ ,
the destructor UP

M,σ[N ] of a particular lock-type, can be used freely provided it
is guarded, i.e. it appears within a subterm whose type has the same lock-type
constructor, i.e. LP

M,σ[ρ]. Thereby, checking predicates in locks can be postponed
and, most usefully, functions which output terms of lock-type can be “applied”
also to locked-arguments. The nature of these monads allows us to utilize the
UP
M,σ[N ] destructor instead of the usual monadic letT , thus greatly simplifying

the equational theory. Moreover, as in the case of LFP , but in addition to what
happens with ordinary monads, the rules concerning UP

M,σ[N ] allow us to drop
the monadic constructor if the constraint is satisfied.

We give classical examples of encodings in LaxF of logical systems, thereby
showing that LaxF is the appropriate metalanguage for dealing formally with side-
conditions, and external evidence. Because of the extra expressive power given
by guarded terms of the form UP

M,σ[N ], signatures become much more flexible,
thus achieving the full modularity that we have been looking for in recent years.
We discuss briefly also the intriguing case of Elementary Affine Logic [3].
In conclusion, in this paper we extend:
• the well understood principles of the LF paradigm for explaining a logic, i.e.
judgments as types, and rules or hypothetical judgements as higher order types,
and schemata as higher order functions, and quantified variables as bound met-
alanguage variables, with the new clause: side conditions and external evidence
as monads;
• the capacity of logical systems to combine and relate two software tools using
a simple communication paradigm via “wrappers”.

Related Work. This paper builds on earlier work of the authors [17,19,18,15]
and was inspired by the very extensive work on Logical Frameworks by
[24,27,8,23,25,26]. The term “Lax” is borrowed from [9,21], and indeed our sys-
tem can be viewed as a generalization, to a family of lax operators, of the work
carried out there, as well as Moggi’s partial λ-calculus [22]. A correspondence
between lax modalities and monads in functional programming was pointed out
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Σ ∈ Signatures Σ ::= ∅ | Σ, a:K | Σ, c:σ

K ∈ Kinds K ::= Type | Πx:σ.K

σ, τ, ρ ∈ Families (Types) σ ::= a | Πx:σ.τ | σN | LP
N,σ[ρ]

M,N ∈ Objects M ::= c | x | λx:σ.M | M N | LP
N,σ[M ] | UP

N,σ[M ]

Fig. 1. The pseudo-syntax of LaxF

(λx:σ.M)N →βL M [N/x] (β·O·Main) UP
N,σ[LP

N,σ[M ]] →βL M (L·O·Main)

Fig. 2. Main one-step-βL-reduction rules in LaxF

in [2,12]. In [23,11,10] the connection between constraints and monads in logic
programming was considered, but to our knowledge this is the first paper which
clearly establishes the correspondence between side conditions and monads in a
higher order dependent type theory and logical frameworks.

Synopsis. In Section 2, we present the syntax and the typing system of LaxF.
In Section 3 we discuss the changes in the metatheory of the framework LFP ,
induced by the new typing rule, The conservativity of LaxF both w.r.t. LFP and
to LF is discussed at the end of Section 3. Three case studies are presented in
Section 4. Concluding remarks and directions for future work are in Section 51.

2 LaxF

In this section, we introduce the syntax and the rules of LaxF: in Figure 1, we give
the syntactic categories of LaxF, namely signatures, contexts, kinds, families (i.e.,
types) and objects (i.e., terms), while the main one-step βL-reduction rules
appear in Figure 2. The language of LaxF is the same as that of LFP [18]. In
particular, w.r.t. classical LF, we add the lock-types constructor (L) for building
types of the shape LP

N,σ[ρ], where P is a predicate on typed judgements, and
correspondingly at object level the constructor lock (L) and destructor unlock
(U). The intended meaning of the LP

N,σ[·] constructors is that of logical filters.
Locks can be viewed also as a generalization of the Lax modality of [9,21]. One
of the points of this paper is to show that they can be viewed also as monads.

Following the standard specification paradigm of Constructive Type Theory,
we define lock-types using introduction, elimination, and equality rules. Namely,
we introduce a lock-constructor for building objects LP

N,σ[M ] of type LP
N,σ[ρ],

via the introduction rule (O·Lock). Correspondingly, we introduce an unlock-
destructor UP

N,σ[M ] via the elimination rule (O·Guarded·Unlock). These rules

give evidence to the understanding of locks as monads2. The introduction rule of
lock-types immediately corresponds to the introduction rule of monads, but this

1 A web appendix is available (for interested readers) at
http://www.dimi.uniud.it/scagnett/pubs/MonadixLFP-Appendix.pdf

2 Given a predicate P and Γ �Σ N : σ, the intended monad (TP , η, μ) can be
naturally defined on the term model of LaxF viewed as a category. In particular

ηρ
Δ
= λx:ρ.LP

N,σ[x] and μρ
Δ
= λx:LP

N,σ[LP
N,σ[ρ]]. LP

N,σ[UP
N,σ[x]].

http://www.dimi.uniud.it/scagnett/pubs/MonadixLFP-Appendix.pdf
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Signature rules

∅ sig
(S·Empty)

Σ sig

�Σ K a �∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

Σ sig

�Σ σ:Type c �∈ Dom(Σ)

Σ, c:σ sig
(S·Type)

Context rules

Σ sig

�Σ ∅
(C·Empty)

�Σ Γ

Γ �Σ σ:Type x �∈ Dom(Γ )

�Σ Γ, x:σ
(C·Type)

Kind rules

�Σ Γ

Γ �Σ Type
(K·Type)

Γ, x:σ �Σ K

Γ �Σ Πx:σ.K
(K·Pi)

Family rules

�Σ Γ a:K ∈ Σ

Γ �Σ a : K
(F ·Const)

Γ, x:σ �Σ τ : Type

Γ �Σ Πx:σ.τ : Type
(F ·Pi)

Γ �Σ σ : Πx:τ.K Γ �Σ N : τ

Γ �Σ σ N : K[N/x]
(F ·App)

Γ �Σ ρ : Type Γ �Σ N : σ

Γ �Σ LP
N,σ[ρ] : Type

(F ·Lock)

Γ �Σ σ : K Γ �Σ K′ K=βLK
′

Γ �Σ σ : K′ (F ·Conv)

Object rules

�Σ Γ c:σ ∈ Σ

Γ �Σ c : σ
(O·Const)

�Σ Γ x:σ ∈ Γ

Γ �Σ x : σ
(O·Var)

Γ, x:σ �Σ M : τ

Γ �Σ λx:σ.M : Πx:σ.τ
(O·Abs)

Γ �Σ M : Πx:σ.τ Γ �Σ N : σ

Γ �Σ M N : τ [N/x]
(O·App)

Γ �Σ M : σ Γ �Σ τ : Type σ=βLτ

Γ �Σ M : τ
(O·Conv)

Γ �Σ M : ρ Γ �Σ N : σ

Γ �Σ LP
N,σ[M ] : LP

N,σ[ρ]
(O·Lock)

Γ �Σ M : LP
N,σ[ρ] P(Γ �Σ N : σ)

Γ �Σ UP
N,σ[M ] : ρ

(O·Top·Unlock)

Γ, x:τ �Σ M : LP
S,σ[ρ] Γ �Σ N : LP

S,σ[τ ]

Γ �Σ M [UP
S,σ[N ]/x] : LP

S,σ[ρ[UP
S,σ[N ]/x]]

(O·Guarded·Unlock)

Fig. 3. The LaxF Type System

is not so immediate for the elimination rule which is normally given for monads
using a letT -construct. The correspondence becomes clear once we realize that
letTP(Γ�S:σ)

x = M in N can be safely replaced by N [UP
S,σ[M ]/x] since the LP

S,σ[·]-
monads satisfy the property letTP x = M in N → N if x /∈ FV (N), provided x
occurs guarded in N , i.e. within subterms of the appropriate locked-type.

Finally, to recover the intended meaning of LP
N,σ[·], we need to introduce

in LaxF also (O·Top·Unlock), which allows for the elimination of the lock-type
constructor if the predicate P is verified, possibly externally, on an appropriate
and derivable judgement. Figure 3 shows the full typing system of LaxF. The type
equality rule of LaxF uses a notion of conversion which derives from βL-reduction,
a combination of standard β-reduction, (β·O·Main), with another notion of
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reduction (L·O·Main), called L-reduction. The latter behaves as a lock-releasing
mechanism, erasing the U-L pair in a term of the form UP

N,σ[LP
N,σ[M ]].

Since external predicates affect reductions in LaxF, they must be well-behaved
in order to preserve subject reduction. And this property is needed for decid-
ability, possibly up to an oracle, which is essential in LF’s.

Definition 1 (Well-behaved predicates, [18]). A finite set of predicates
{Pi}i∈I is well-behaved if each P in the set satisfies the following conditions:

– Closure under signature and context weakening and permutation:
1. If Σ and Ω are valid signatures such that Σ ⊆ Ω and P(Γ ,Σ α), then
P(Γ ,Ω α).

2. If Γ and Δ are valid contexts such that Γ ⊆ Δ and P(Γ ,Σ α), then
P(Δ ,Σ α).

– Closure under substitution: If P(Γ, x:σ′, Γ ′ ,Σ N : σ) and Γ ,Σ N ′ : σ′,
then P(Γ, Γ ′[N ′/x] ,Σ N [N ′/x] : σ[N ′/x]).

– Closure under reduction:
1. If P(Γ ,Σ N : σ) and N →βL N ′, then P(Γ ,Σ N ′ : σ).
2. If P(Γ ,Σ N : σ) and σ →βL σ′, then P(Γ ,Σ N : σ′).

3 Metatheory of LaxF

The proofs of the metatheoretic properties of LaxF follow the pattern of [18].

Strong Normalisation and Confluence
The proof of strong normalization relies on that of LF [13]. First, we introduce
the function ·−UL : LaxF → LF, mapping LaxF terms into LF terms by deleting
the L and U symbols3. The proof then proceeds by contradiction, assuming a
term T with an infinite βL-reduction sequence. Next, we prove that only a finite
number of β-reductions can be performed within any given LaxF term T . Whence,
in order for T to have an infinite βL-reduction sequence, it must have an infinite
L-sequence, which is impossible, obtaining the contradiction. We highlight only
the crucial case of the rule (O·Guarded·Unlock). Its conclusion is translated to
LF as follows:

Γ−UL �Σ−UL M−UL[(λxf :σ
−UL.N−UL)S−UL/x] : (λyf :σ

−UL.(ρ[UP
S,σ[N ]/x])−UL)S−UL.

The latter judgment, through standard β-reduction yields:

Γ−UL �Σ−UL M−UL[N−UL/x] : ρ−UL[(λxf :σ
−UL.N−UL)S−UL/x],

3 ·−UL is the identity over constants and variables and it is recur-
sively applied to subterms of Π ,λ and application constructors, pre-
serving their structure. The only interesting cases are those involving

the L and U constructors: (LP
N,σ[T ])

−UL Δ
= (λxf :σ

−UL.T−UL)N−UL and

(UP
N,σ[T ])

−UL Δ
= (λxf :σ

−UL.T−UL)N−UL, where xf is a variable which does
not occur free in T . Its purpose is to preserve the N and σ in the subscript of the
L and U symbols, while being able to β-reduce to T in one step.
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i.e. Γ−UL ,Σ−UL M−UL[N−UL/x] : ρ−UL[N−UL/x]. Thus, only a finite number
of β-reductions can be performed within the translation of any given LaxF term
T and we can proceed by contradiction. Thus we have:

Theorem 1 (Strong Normalization of LaxF).
1. If Γ ,Σ K, then K is βL-strongly normalizing.
2. if Γ ,Σ σ : K, then σ is βL-strongly normalizing.
3. if Γ ,Σ M : σ, then M is βL-strongly normalizing.

Confluence is proved as for LFP , using Newman’s Lemma ([4], Chapter 3), and
showing that the reduction on “raw terms” is locally confluent. Hence, we have:

Theorem 2 (Confluence of LaxF). βL-reduction is confluent, i.e.:
1. If K→→βLK ′ and K→→βLK ′′, then there exists a K ′′′ such that K ′→→βLK ′′′

and K ′′→→βL K ′′′.
2. If σ→→βL σ′ and σ→→βL σ′′, then there exists a σ′′′ such that σ′→→βL σ′′′ and

σ′′→→βL σ′′′.
3. If M→→βLM ′ and M→→βLM ′′, then there exists an M ′′′ such that M ′→→βL M ′′′

and M ′′→→βLM ′′′.

Subject Reduction
Inversion and subderivation properties play a key role in the proof of subject
reduction (SR). However, in LaxF, given a derivation of Γ ,Σ α and a subterm N
occurring in the subject of this judgement, we cannot prove that there always
exists a derivation of the form Γ ,Σ N : τ (for a suitable τ). Consider the
following example. Clearly Γ, x:τ ,Σ LP

S,σ[x] : LP
S,σ[τ ] holds, and assume that

Γ ,Σ N : LP
S,σ[τ ]; we then have

Γ, x:τ �Σ LP
S,σ[x] : LP

S,σ[τ ] Γ �Σ N : LP
S,σ[τ ]

Γ �Σ LP
S,σ[UP

S,σ[N ]] : LP
S,σ[τ ]

(O·Guarded·Unlock)

but if P(Γ ,Σ S : σ) does not hold, and τ is not a lock-type, then we cannot
derive any judgement whose subject is UP

S,σ[N ] : τ . Hence we have to restate
point 6 of Proposition 3.11 (Subderivation, part 1) of [18] as follows:

Proposition 1 (Subderivation, part 1, point 6). Given a derivation D of
the judgement Γ ,Σ α, and a subterm N occurring in the subject of this judge-
ment, we have that either there exists a derivation of a judgement having N as a
subject, or there exists a derivation of a judgment having N ′ as a subject, where
N ≡ UP

S,σ[N ′] (for suitable P, S and σ).

The proof is straightforward. And straightforward is also the extension to LaxF of
the rest of the proof of SR for LFP in [18]. Thus we establish the fundamental:

Theorem 3 (Subject Reduction of LaxF). If predicates are well-behaved, then:
1. If Γ ,Σ K and K →βL K ′, then Γ ,Σ K ′.
2. If Γ ,Σ σ : K and σ →βL σ′, then Γ ,Σ σ′ : K.
3. If Γ ,Σ M : σ and M →βL M ′, then Γ ,Σ M ′ : σ.

The issue of decidability for LaxF can be addressed as that for LFP in [18].
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Conservativity
We recall that a system S ′ is a conservative extension of S if the language of S
is included in that of S ′, and moreover for all judgements J , in the language of
S, J is provable in S ′ if and only if J is provable in S.

Theorem 4 (Conservativity of LaxF). LaxF is a conservative extension of LF.

Proof. (sketch) The if part is trivial. For the only if part, consider a derivation
in LaxF and drop all locks/unlocks (i.e. release the terms and types originally
locked). This pruned derivation is a legal derivation in standard LF.

Notice that the above result holds independently of the particular nature or prop-
erties of the external oracles that we may invoke during the proof development
(in LaxF), e.g. decidability or recursive enumerability of P .

Instead, LaxF is not a conservative extension of LFP , since the new typing rule
allows us to derive more judgements with unlocked-subject even if the predicate
does not hold e.g.

Γ, x:LP
S,σ[τ ] �Σ x : LP

S,σ[τ ] Γ �Σ N : LP
S,σ[LP

S,σ[τ ]]

Γ �Σ x[UP
S,σ[N ]/x] : LP

S,σ[τ [UP
S,σ[N ]/x]]

(O·Guarded·Unlock)

Then, since x does not occur free in τ , LP
S,σ[τ [UP

S,σ[N ]/x]] ≡ LP
S,σ[τ ] and we get

Γ ,Σ UP
S,σ[N ] : LP

S,σ[τ ]. We close this Section on LaxF with a sort of “hygiene”
theorem for the unguarded U-destructor:

Theorem 5 (Soundness of unlock). If Γ ,Σ UP
N,σ[M ] : τ is derived in LaxF

and Γ does not contain variables ranging over lock-types (i.e., x:LP
S,σ[ρ] �∈ Γ ),

then P(Γ ,Σ N : σ) is true.

Proof. The proof can be carried out by a straightforward induction on the deriva-
tion of Γ ,Σ UP

N,σ[M ] : τ .

4 Case Studies

In this section we discuss encodings of logics in LaxF. Of course, all encodings
given in [18] for LFP , carry over immediately to the setting of LaxF, because the
latter is a language extension of the former. So here, we do not present encod-
ings for modal and ordered linear logic. However, the possibility of using guarded
unlocks, i.e. the full power of the monad destructor, allows for significant simpli-
fications in several of the encodings of logical systems given in LFP . We illustrate
this point discussing call-by-value λv-calculus, which greatly benefits from the
possibility of applying functions to locked-arguments, and Hoare’s Logic, which
combines various kinds of syntactical and semantical locks in its rules. We do
not discuss adequacy of these encodings since it is a trivial variant of the one
presented in [18]. Finally we discuss a very subtle natural deduction logic, i.e.
Elementary Affine Logic. That encoding will illustrate how locks can be used
to deal with pattern matching, and terms rewriting, and open up the road to
embedding logic programming in type theory.
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Call-by-value λv-calculus
We encode, using Higher Order Abstract Syntax (HOAS), the syntax of untyped
λ-calculus: M,N ::= x |M N | λx.M as in [18], where natural numbers (through
the constructor free) are used to represent free variables, while bound variables
are rendered as metavariables of LaxF of type term:

Definition 2 (LaxF signature Σλ for untyped λ-calculus).

term : Type nat : Type O : nat

S : nat -> nat free : nat -> term

app : term -> term -> term lam : (term -> term) -> term

Definition 3 (Call-by-value reduction strategy). The call-by-value (CBV)
evaluation strategy is given by:

�CBV M = M
(refl)

�CBV N = M

�CBV M = N
(symm)

�CBV M = N �CBV N = P

�CBV M = P
(trans)

�CBV M = N �CBV M ′ = N ′

�CBV M M ′ = N N ′ (app)

v is a value
�CBV (λx.M) v = M [v/x]

(βv)
�CBV M = N

�CBV λx.M = λx.N
(ξv)

where values are either variables, constants, or abstractions.

The new typing rule (O·Guarded·Unlock) of LaxF, allows to encode naturally the
system as follows.

Definition 4 (LaxF signature ΣCBV for λ-calculus CBV reduction). We
extend the signature of Definition 2 as follows:

eq : term->term->Type
refl : ΠM:term. (eq M M)
symm : ΠM:term.ΠN:term. (eq N M)->(eq M N)

trans : ΠM,N,P:term. (eq M N)->(eq N P) ->(eq M P)
eq app : ΠM,N,M’,N’:term. (eq M N)->(eq M’N’)->(eq (app M M’)(app N N’))

betav : ΠM: (term->term). ΠN:term.LVal
N,term[(eq (app (lam M) N)(M N))]

csiv : ΠM,N:(term->term).(Πx:term.LVal
x,term[(eq (M x)(N x))])->(eq (lam M)(lam N))

where the predicate Val is defined as follows: Val (Γ ,Σ N : term) holds iff
either N is an abstraction or a constant (i.e. a term of the shape (free i)).

Notice the neat improvement w.r.t. to the encoding of LFP , given in [18], as far
as the rule csiv. The encoding of the rule ξv is problematic if bound variables
are encoded using metavariables, because the predicate Val appearing in the
lock cannot mention explicitly variables, for it to be well-behaved. In [18], since
we could not apply the rules unless we had explicitly eliminated the Val -lock,
in order to overcome the difficulty we had to make a detour using constants. In
LaxF, on the other hand, we can apply the rules “under Val ”, so to speak, and
postpone the proof of the Val -checks till the very end, and then rather than
checking Val we can get rid of the lock altogether, since the bound variable of
the rule csiv, is allowed to be locked. Notice that this phrasing of the rule csiv

amounts precisely to the fact that in λv variables range over values. As a concrete
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example of all this, we show how to derive the equation λx.z ((λy.y)x) = λx.z x.
Using “pencil and paper” we would proceed as follows:

−
�CBV z = z

(refl)
x is a value

(λy.y)x = y[x/y]
(βv)

�CBV z ((λy.y)x) = z x
(app)

�CBV λx.z ((λy.y)x) = λx.z x
(ξv)

Similarly, in LaxF, we can derive z:term ,Σ (refl z) : (eq z z) and

Γ, x:term �Σ (betav (λy:term.y) x) : LVal
x,term[(eq (app (lamλy:term.y) x) ((λy:term.y) x))].

This far, in old LFP , we would be blocked if we could not prove that Val (Γ, x:term
,Σ x : term) holds, since eq app cannot accept an argument with a locked-
type. However, in LaxF, we can apply the (O·Guarded·Unlock) rule obtaining the
following proof term (from the typing environment Γ, x:term, z:term):

(eq app z z (app (lam λy:term.y) x) x (refl z) UVal
x,term[(betav (λy:term.y) x)]),

of type LVal
x,term[(eq (app z (app (lam λy:term.y) x)) (app z x))]. And abstract-

ing x, a direct application of csiv yields the result.

Imp with Hoare Logic
An area of Logic which can greatly benefit from the new system LaxF is program
logics, because of the many syntactical checks which occur in these systems. For
lack of space we can discuss only a few rules of Hoare’s Logic for a very simple
imperative language Imp, whose syntax is:

p ::= skip | x := expr | p; p | null | assignment | sequence
if cond then p else p | while cond {p} cond | while

In [18] we presented an encoding of Hoare’s logic for Imp in LFP which delegated
to external predicates the tedious and subtle checks that boolean expressions, in
the if and while commands, are quantifier free (QF predicate) as well as the non-
interference property in the assignment command. These syntactic constraints
on the conditional and loop commands were rendered in LFP as follows:

bool,prog : Type

Iif : Πe:bool.prog -> prog ->LQF
e,bool [prog]

Iwhile : Πe:bool.prog -> LQF
e,bool[prog]

where the predicate QF (Γ ,ΣImp e : bool) holds iff the formula e is closed and
quantifier-free, i.e., it does not contain the forall constructor. We can look
at QF as a “good formation” predicate, filtering out bad programs with invalid
boolean expressions by means of “stuck” terms. Thus, the encoding function ε

prog
X

mapping programs of the source language Imp, with free variables in X , to the
corresponding terms of LFP could be defined very easily as follows4:

εprogX (if e then p else p′) = UQF
ε
exp
X (e),bool

[(Iif εexpX (e) εprogX (p) εprogX (p′))] (*)

εprogX (while e {p}) = UQF
ε
exp
X (e),bool

[(Iwhile εexpX (e) εprogX (p))] (*)

4 For lack of space, we report only the cases of the conditional/loop commands.
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(*) if e is a quantifier-free formula. However the terms on the right hand side
cannot be directly expressed in LFP because if QF (Γ ,ΣImp εexpX (e) : bool)
does not hold, we cannot use the unlock operator. Thus we could be left with
two terms of type LQF

εexpX (e),bool
[prog], instead of type prog. This is precisely the

limit of the LFP encoding in [18]. Since a U-term can only be introduced if the
corresponding predicate holds, when we represent rules of Hoare Logic we are
forced to consider only legal terms, and this ultimately amounts to restricting
explicitly the object language in a way such that QF always returns true.

In LaxF, instead, we can use naturally the following signature for representing
Hoare’s Logic, without assuming anything about the object language terms:

hoare : bool -> prog -> bool -> Type

hoare_Iif : Πe,e’,b:bool.Πp,p’:prog.(hoare (b and e) p e’) ->

(hoare ((not b) and e) p’ e’) ->

LQF
b,bool[(hoare e UQF

b,bool[(Iif b p p′)] e′)]

hoare_Iwhile : Πe,b:bool.Πp:prog.(hoare (e and b) p e) ->

LQF
b,bool[(hoare e UQF

b,bool[(Iwhile b p)] ((not b) and e))]

Moreover, the (O·Guarded·Unlock) rule allows also to “postpone” the verifica-
tion that QF (Γ ,Σ e : bool) holds (i.e., that the formula e is quantifier-free).

Elementary Affine Logic
We provide a shallow encoding of Elementary Affine Logic as presented in [3].
This example will exemplify how locks can be used to deal with syntactical
manipulations as in the promotion rule of Elementary Affine Logic, which clearly
introduces a recursive processing of the context.

Definition 5 (Elementary Affine Logic). Elementary Affine Logic can be
specified by the following rules:

A �EAL A
(V ar)

Γ �EAL B

Γ,A �EAL B
(Weak)

Γ,A �EAL B

Γ �EAL A  B
(Abst)

Γ �EAL A Δ �EAL A  B

Γ,Δ �EAL B
(Appl)

Γ �EAL!A Δ, !A, . . . , !A �EAL B

Γ,Δ �EAL B
(Contr)

A1, . . . , An �EAL A Γ1 �EAL!A1 . . . Γn �EAL!An

Γ1 . . . Γn �EAL!A
(Prom)

Definition 6 (LaxF signature ΣEAL for Elementary Affine Logic).

o : Type T : o -> Type ! : o -> o

c appl : ΠA,B :o. T(A) -> T(A  B) -> T(B)

c abstr : ΠA,B :o. Πx:(T(A) -> T(B)). LLight

x,T(A)->T(B)
[T(A  B)]

c prom : ΠA,A’:o. Πx: T(A).LClosed
x,T(A)[LProm

<x,A,A’>,T(A)XoXo[T(A’)]]

where o is the type of propositions,  and ! are the obvious syntactic construc-
tors, T is the basic judgement, and < x, y, z > denotes any encoding of triples,
whose type is denoted by μXσXτ , e.g. λu:μ→ σ → τ → ρ. u x y z : (μ→ σ → τ
→ ρ) → ρ. The predicates involved in the locks are defined as follows:
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– Light (Γ ,ΣEAL x : T(A) → T(B)) holds iff if A is not of the shape !A then the
bound variable of x occurs at most once in the normal form of x.

– Closed (Γ ,ΣEAL x : T(A)) holds iff there are no free variables of type T(B),
for some B : o in x.

– Prom (Γ ,ΣEAL < x, A, A′ > : T(A)XoXo) holds iff A ≡ (A1  A2  . . .  An)
and A′ ≡ (!A1  !A2  . . . !An) and A1, A2, . . . , An are the arguments of the
c abstr-constructors in the derivation of x.

A few remarks are mandatory. The promotion rule in [3] is in fact a family of
natural deduction rules with an arbitrary number of assumptions. Our encoding
achieves this via a number of application-rules. Adequacy for this signature can
be achieved only in the general formulation of [18], namely:

Theorem 6 (Adequacy for Elementary Affine Logic). A1 . . . An ,EAL A
iff there exists M and A1:o, . . . , An:o, x1:T(A1), . . . , xn:T(An) ,ΣEAL M : T(A) and all
variables xi (1 ≤ i ≤ n) occurring more than once in M have type of the shape
T(!Ai).

The check on the context of the Adequacy Theorem is external to the system LaxF,
but this is in the nature of results which relate internal and external concepts.
E.g. the very concept of LaxF context, which appears in any Adequacy result, is
external to LaxF. This check is internalized if the term is closed.

5 Concluding Remarks

In this paper we have shown how to extend LF with a class of monads which
capture the effect of delegating to an external oracle the task of providing part
of the necessary evidence for establishing a judgment. Thus we have introduced
an additional clause in the LF paradigm for encoding a logic, namely: external
evidence as monads. This class of monads is very well-behaved and so we can
simplify the equational theory of the system. But, in fact, all our metatheoretic
results carry through also in the general case, where we deal with a generic
monad using Moggi’s letT destructor, together with its equational theory. I.e.
we have provided an extension of LF with monads.

In this paper we consider the verification of predicates in locks as purely
atomic actions, i.e. each predicate per se. But of course predicates have a logical
structure which can be reflected onto locks. E.g. we can consistently extend LaxF
by assuming that locks commute, combine, and entail, i.e. that the following
types are inhabited: LP

x,σ[τ ] → LQ
x,σ[τ ] if P(Γ ,Σ x : σ) → Q(Γ ,Σ x : σ),

LP
x,σ[LQ

x,σ[M ]] → LP&Q
x,σ [M ], and LP

x,σ[LQ
y,τ [M ]] → LQ

y,τ [LP
x,σ[M ]].

We encoded call-by-value λ-calculus with Plotkin’s classical notion of value.
But the encoding remains the same, apart from what is delegated to the lock, if
we consider other notions of value e.g. closed normal forms only for K-redexes
[16]. This illustrates how monads handle side-conditions uniformly.

The way we dealt with the promotion rule in Elementary Affine Logic hints
at the way to deal with Pattern Matching in LaxF, and hence opens up the road
to embedding Logic Programming and Term Rewriting Systems in type theory.
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Abstract. We model the behavior of a fifo-queue as a monoid of transformations
that are induced by sequences of writing and reading. We describe this monoid
by means of a confluent and terminating semi-Thue system and study some of
its basic algebraic properties such as conjugacy. Moreover, we show that while
several properties concerning its rational subsets are undecidable, their uniform
membership problem is NL-complete. Furthermore, we present an algebraic char-
acterization of this monoid’s recognizable subsets. Finally, we prove that it is not
Thurston-automatic.

1 Introduction

Basic computing models differ in their storage mechanisms: there are finite mem-
ory mechanisms, counters, blind counters, partially blind counters, pushdowns, Turing
tapes, queues and combinations of these mechanisms. Every storage mechanism natu-
rally comes with a set of basic actions like reading a symbol from or writing a symbol
to the pushdown. As a result, sequences of basic actions transform the storage. The set
of transformations induced by sequences of basic actions then forms a monoid. As a
consequence, fundamental properties of a storage mechanism are mirrored by algebraic
properties of the induced monoid. For example, the monoid induced by a deterministic
finite automaton is finite, a single blind counter induces the integers with addition, and
pushdowns induce polycyclic monoids [10]. In this paper, we are interested in a queue
as a storage mechanism. In particular, we investigate the monoidQ induced by a single
queue.

The basic actions on a queue are writing the symbol a into the queue and reading the
symbol a from the queue (for each symbol a from the alphabet of the queue). Since a
can only be read from a queue if it is the first entry in the queue, these actions are partial.
Hence, for every sequence of basic actions, there is a queue of shortest length that can
be transformed by the sequence without error (i.e., without attempting to read a from a
queue that does not start with a). Our first main result (Theorem 4.1) in section 4 pro-
vides us with a normal form for transformations induced by sequences of basic actions:
The transformation induced by a sequence of basic actions is uniquely determined by
the subsequence of write actions, the subsequence of read actions, and the length of
the shortest queue that can be transformed by the sequence without error. The proof is
based on a convergent finite semi-Thue system for the monoid Q. In sections 3 and 5,
we derive equations that hold in Q. The main result in this direction is Theorem 5.3,
which describes the normal form of the product of two sequences of basic actions in
normal form, i.e., it describes the monoid operation in terms of normal forms.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 340–351, 2014.
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Sections 6 and 7 concentrate on the conjugacy problem in Q. The fundamental no-
tion of conjugacy in groups has been extended to monoids in two different ways: call
x and y conjugate if the equation xz = zy has a solution, and call them transposed if
there are u and v such that x = uv and y = vu. Then conjugacy ≈ is reflexive and
transitive, but not necessarily symmetric, and transposition ∼ is reflexive and symmet-
ric, but not necessarily transitive. These two relations have been considered, e.g., in
[13,16,17,6,18,5]. We prove that conjugacy is the transitive closure of transposition and
that two elements of Q are conjugate if and only if their subsequences of write and of
read actions, respectively, are conjugate in the free monoid. This characterization allows
in particular to decide conjugacy in polynomial time. In section 7, we prove that the set
of solutions z ∈ Q of xz = zy is effectively rational but not necessarily recognizable.

Section 8 investigates algorithmic properties of rational subsets of Q. Algorithmic
aspects of rational subsets have received increased attention in recent years; see [14]
for a survey on the membership problem. Employing the fact that every element of Q
has only polynomially many left factors, we can nondeterministically solve the rational
subset membership problem in logarithmic space. Since the direct product of two free
monoids embeds into Q, all the negative results on rational transductions (cf. [1]) as,
e.g., the undecidability of universality of a rational subset, translate into our setting (cf.
Theorem 8.3). The subsequent section 9 characterizes the recognizable subsets of Q.
Recall that an element of Q is completely determined by its subsequences of write and
read actions, respectively, and the length of the shortest queue that can be transformed
without an error. Regular conditions on the subsequences of write and read actions,
respectively, lead to recognizable sets in Q. Regarding the shortest queue that can be
transformed without error, the situation is more complicated: the set of elements of Q
that operate error-free on the empty queue is not recognizable. Using an approximation
of the length of the shortest queue, we obtain recognizable subsets Ωk ⊆ Q. The an-
nounced characterization then states that a subset of Q is recognizable if and only if it
is a Boolean combination of regular conditions on the subsequences of write and read
actions, respectively, and sets Ωk (cf. Theorem 9.4). In the final section 10, we prove
that Q is not automatic in the sense of Thurston et al. [4] (it cannot be automatic in the
sense of Khoussainov and Nerode [12] since the free monoid with two generators is
interpretable in first order logic in Q).

All missing proofs are contained in the complete version [9] of this paper.

2 Preliminaries

Let A be an alphabet. As usual, the set of finite words over A, i.e. the free monoid
generated by A, is denoted A∗. Let w = a1 . . . an ∈ A∗ be some word. The length
of w is |w| = n. The word obtained from w by reversing the order of its symbols is
wR = an . . . a1. A word u ∈ A∗ is a prefix of w if there is v ∈ A∗ such that w = uv.
In this situation, the word v is unique and we refer to it by u−1w. Similarly, u is a suffix
of w if w = vu for some v ∈ A∗ and we then put wu−1 = v. For k ∈ N, we let
A≤k = {w ∈ A∗ | |w| ≤ k } and define A>k similarly.

Let M be an arbitrary monoid. The concatenation of two subsets X,Y ⊆ M is de-
fined as X · Y = { xy | x ∈ X, y ∈ Y }. The Kleene iteration of X is the set
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X∗ = { x1 · · ·xn | n ∈ N, x1, . . . , xn ∈ X }. In fact, X∗ is a submonoid of M , namely
the smallest submonoid entirely including X . Thus, X∗ is also called the submonoid
generated by X . The monoid M is finitely generated, if there is some finite subset
X ⊆M such that M = X∗.

A subset L ⊆ M is called rational if it can be constructed from the finite subsets of
M using union, concatenation, and Kleene iteration only. The subset L is recognizable
if there are a finite monoid F and a morphism φ : M → F such that φ−1 (φ(L)) =
L. The image of a rational set under a monoid morphism is again rational, whereas
recognizability is retained under preimages of morphisms. It is well-known that every
recognizable subset of a finitely generated monoid is rational. The converse implication
is in general false. However, if M is the free monoid generated by some alphabet A, a
subset L ⊆ A∗ is rational if and only if it is recognizable. In this situation, we call L
regular.

3 Definition and Basic Equations

We want to model the behavior of a fifo-queue whose entries come from a finite set A
with |A| ≥ 2 (if A is a singleton, the queue degenerates into a partially blind counter).
Consequently, the state of a valid queue is an element fromA∗. In order to have a defined
result even if a read action fails, we add the error state ⊥. The basic actions are writing
of the symbol a ∈ A into the queue (denoted a) and reading the symbol a ∈ A from
the queue (denoted a). Formally, A is a disjoint copy of A whose elements are denoted
a. Furthermore, we set Σ = A∪A. Hence, the free monoid Σ∗ is the set of sequences
of basic actions and it acts on the set A∗∪{⊥} by way of the function . : (A∗∪{⊥})×
Σ∗ → A∗ ∪ {⊥}, which is defined as follows:

q.ε = q q.au = qa.u q.au =

{
q′.u if q = aq′

⊥ otherwise
⊥.u = ⊥

for q ∈ A∗, a ∈ A, and u ∈ Σ∗.

Example 3.1. Let the content of the queue be q = ab. Then ab.ac = b.c = bc.ε = bc
and ab.ca = abc.a = bc.ε = bc, i.e., the sequences of basic actions ac and ca behave
the same on the queue q = ab. In Lemma 3.5, we will see that this is the case for any
queue q ∈ A∗ ∪ {⊥}. Differently, we have ε.aa = ⊥ �= ε = ε.aa, i.e., the sequences
of basic actions aa and aa behave differently on certain queues.

Definition 3.2. Two words u, v ∈ Σ∗ are equivalent if q.u = q.v for all queues q ∈ A∗.
In that case, we write u ≡ v. The equivalence class wrt. ≡ containing the word u is
denoted [u].

Since ≡ is a congruence on the free monoid Σ∗, we can define the quotient monoid
Q = Σ∗/≡ and the natural epimorphism η : Σ∗ → Q : w �→ [w]. The monoid Q is
called the monoid of queue actions.

Remark 3.3. Note that the concrete form of Q depends on the size of the alphabet A,
so let Qn denote the monoid of queue actions defined with A = |n|. As a consequence
of Theorems 4.1 and 5.3 below, Qn embeds into Q2 where the generators of Qn are
mapped to [an+iban−ib] and [an+iban−ib], respectively.
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Intuitively, the basic actions a and a act “dually” on A∗ ∪ {⊥}. We formalize this
intuition by means of the duality map δ : Σ∗ → Σ∗, which is defined as follows:
δ(ε) = ε, δ(au) = δ(u)a, and δ(au) = δ(u)a for a ∈ A and u ∈ Σ∗. Notice that
δ(uv) = δ(v)δ(u) and δ(δ(u)) = u (i.e., δ is an anti-isomorphism and an involution).
In the following, we use the term “by duality” to refer to the proposition below.

Proposition 3.4. For u, v ∈ Σ∗, we have u ≡ v if and only if δ(u) ≡ δ(v).

Consequently, the duality map δ can be lifted to a map δ : Q → Q : [u] �→ [δ(u)]. Also
this lifted map is an anti-isomorphism ofQ and an involution.

The second equivalence in the lemma below follows from the first one by duality.

Lemma 3.5. Let a, b ∈ A. We have abb ≡ abb, aab ≡ aab, and if a �= b then ab ≡ ba.

From the first and the last equivalence, we get abc ≡ acb for any a, b, c ∈ A, even when
b = c. Similarly, the second and the third equivalence imply abc ≡ bac.

Our computations in Q will frequently make use of alternating sequences of write-
and read-operations on the queue. To simplify notation, we define the shuffle of two
words over A and over A as follows: Let a1, a2, . . . , an, b1, b2, . . . , bn ∈ A with v =
a1a2 . . . an and w = b1b2 . . . bn. We write w for b1 b2 . . . bn and set

〈v, w〉 = a1b1 a2b2 . . . anbn .

The following proposition describes the relation between the shuffle operation and the
multiplication in Q. Its proof works by induction on the lengths of x and y.

Proposition 3.6. Let u, v, x, y, x′, y′ ∈ A∗.

(1) if xy = x′y′ and |x| = |y′| = |u|, then 〈u, x〉 y ≡ x′
〈
u, y′

〉
.

(2) if xy = x′y′ and |y| = |x′| = |v|, then x 〈y, v〉 ≡ 〈x′, v〉 y′.
(3) If |u| = |v| and |x| = |y|, then x 〈u, v〉 y ≡ 〈xu, vy〉.
(4) If |x| = |y|, then 〈x, y〉 ≡ xy.

The first claim expresses that the sequence of write-operations u can be “moved along”
the sequence of read-operations xy = x′y′, its dual (2) moves a sequence of read-
operations v along a sequence of write-operations. The third claim expresses that write-
operations from the left and read-operations from the right can be “swallowed” by a
shuffle. The last one follows from (3) with u = v = ε.

Corollary 3.7. Let u, v, w ∈ A∗. If |w| = |v|, then uvw ≡ vuw. If |u| = |v|, then
uvw ≡ uwv.

The first claim follows from vw ≡ 〈v, w〉 and the possibility to move v along the
sequence of read-operations uw, the second claim follows dually.

4 A Semi-thue System for Q
We order the equations from Lemma 3.5 as follows (with a �= c):

abb→ abb aab→ aab ac→ ca
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Let R be the semi-Thue system with the above three types of rules. Note that a word
over Σ is irreducible if and only if it has the form u 〈v, v〉 w for some u, v, w ∈ A∗.
When doing our calculations, we found it convenient to think in terms of pictures as
follows:

u v
v w

Here, the blocks represent the words u, v, v, and w, respectively, where we placed
the read-blocks (i.e., words over A) in the first line and write-blocks in the second. The
shuffle 〈v, v〉 is illustrated by placing the corresponding two blocks on top of each other.

Ordering the alphabet such that a < b for all a, b ∈ A, all rules are decreasing in
the length-lexicographic order; hence R is terminating. It is confluent since the only
overlap of left-hand sides have the form abbc. Consequently, for any u ∈ Σ∗, there is
a unique irreducible word nf(u) with u

∗−→ nf(u). We call nf(u) the normal form of u
and denote the set of all normal forms by NF ⊆ Σ∗, i.e.,

NF = { nf(u) | u ∈ Σ∗ } = A
∗ { aa | a ∈ A }∗ A∗ .

By our construction of R from the equations in Lemma 3.5, nf(u) = nf(v) implies
u ≡ v for any words u, v ∈ Σ∗. For the converse implication, let u ≡ v. Because of
u ≡ nf(u), we can assume that u and v are in normal form, i.e., u = u1 〈u2, u2〉 u3 and
v = v1 〈v2, v2〉 v3. Then one first shows u1 = v1 using q.u = q.v for q ∈ {u1, v1}.
The equation u2 = v2 follows from u1 = v1 and q.u = q.v for q ∈ {u1u2a, v1v2a}
for each a ∈ A (here we rely on the fact that |A| ≥ 2). Finally, u3 = v3 follows from
u1 = v1, u2 = v2, and u1.u = u1.v.

Consequently,u≡v and nf(u)=nf(v) are equivalent. Hence, the mapping nf : Σ∗ →
NFcan be lifted to a mapping nf : Q → NF by defining nf([u]) = nf(u). In summary,
we have the following theorem.

Theorem 4.1. The natural epimorphism η : Σ∗ → Q maps the set NF bijectively
ontoQ. The inverse of this bijection is the map nf : Q → NF.

Let π, π : Σ∗ → A∗ be the morphisms defined by π(a) = π(a) = a and π(a) =
π(a) = ε for a ∈ A (i.e., π is the projection of a word over Σ to its subword over A, and
π is the projection to its subword over A, with all the bars deleted). By Theorem 4.1,
these two morphisms can be lifted to morphisms π, π : Q → A∗ by π([u]) = π(u) and
π([u]) = π(u).

Definition 4.2. Let w ∈ Σ∗ be a word and nf(w) = x 〈y, y〉 z its normal form. The
overlap width of w and of [w] is the number ow(w) = ow([w]) = |y|.

By Theorem 4.1, q ∈ Q is uniquely determined by π(q), π(q), and ow(q). Let nf(q) =
x 〈y, y〉 z. Then x is the shortest queuew with w.q �= ⊥. Furthermore, ow(q) = |π(q)|−
|x|. Hence, q is also uniquely described by the two projections and the length of the
shortest queue it transforms without error.
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5 Multiplication

For two words u and v in normal form, we want to determine the normal form of uv.
For this, the concept of overlap of two words will be important:

Definition 5.1. For u, v ∈ A∗, let ol(v, u) denote the longest suffix of v that is also a
prefix of u.

For example, ol(ab, bc) = b, ol(aba, aba) = aba, and ol(ab, cba) = ε. The following
lemma describes the normal form of a word from A∗A

∗
.

Lemma 5.2. Let u, v ∈ A∗ and set s = ol(v, u), r = vs−1 and t = s−1u. Then
uv ≡ r 〈s, s〉 t.

The equation uv ≡ r 〈s, s〉 t can be visualized as follows:

v
u

≡ r ol(v, u)
ol(v, u) t

=
v

u

Our intuition is that the word v tries to slide along u to the left as far as possible. This
movement is stopped as soon as we reach a word in normal form (which, for the first
time, occurs when a suffix of v coincides with a prefix of u).

The proof of Lemma 5.2 first assumes |u| = |v| and proceeds by induction on this
length. The general case follows using Cor. 3.7. Applying Prop. 3.6(4), Cor. 3.7, and
Lemma 5.2, one gets rather immediately the following description of the normal form
of the product of two words in normal form.

Theorem 5.3. Let u1, u2, u3, v1, v2, v3 ∈ A∗ and set s = ol(u2v1v2, u2u3v2), r =
u2v1v2s

−1, and t = s−1u2u3v2. Then

u1 〈u2, u2〉u3 · v1 〈v2, v2〉 v3 ≡ u1r 〈s, s〉 tv3 .

This theorem can be visualized as follows:

u1 u2

u2 u3
·

v1 v2
v2 v3

≡
u1 r ol(u2v1v2, u2u3v2)

ol(u2v1v2, u2u3v2) t v3

=
u1 u2v1v2

u2u3v2 v3

Here, first, v2 moves to the left until it reaches the right border of u3. Then u2 moves to
the right until it reaches the left border of v1. Finally, the united block u2v1v2 tries to
slide to the left along u2u3v2 until a normal form is reached.
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6 Conjugacy

The conjugacy relation in groups has two natural generalizations to monoids, which,
when considered in Q, we determine in this section. Let M be a monoid and p, q ∈M .
Then p and q are conjugate, which we denote by p ≈ q, if there exists x ∈M such that
px = xq. Furthermore, p and q are transposed, denoted by p ∼ q, if there are x, y ∈M

with p = xy and q = yx. Moreover,
∗∼ is the transitive closure of ∼.

Observe that ≈ is reflexive and transitive whereas∼ is reflexive and symmetric, and
∼ ⊆ ≈. If M is actually a group, then both relations coincide and are equivalence
relations, called conjugacy. The same is true for free monoids [15, Prop. 1.3.4] and
even for special monoids [18], but there are monoids where none of this holds.

Example 6.1. Let u, v, w ∈ A∗. Then u 〈v, v〉w ≡ uvvw ≡ vuvw. Consequently,
Q = η(A∗A

∗
A∗) and dually Q = η(A

∗
A∗A

∗
). Furthermore, vuvw

∗∼ uvwv. Hence,
for every q ∈ Q, there exists q′ ∈ η(A

∗
A∗) with q

∗∼ q′, i.e., Q is the closure of
η(A

∗
A∗) under transposition.

Theorem 6.2. For any p, q ∈ Q, the following are equivalent:

(1) p
∗∼ q (2) p ≈ q (3) q ≈ p (4) (π(p) ∼ π(q) and π(p) ∼ π(q))

The implication (1) ⇒ (2) holds in every monoid since≈ is transitive and since∼ ⊆ ≈.
The implication (2) ⇒ (4) holds since π and π are homomorphisms and since≈,∼, and
∗∼ coincide on the free monoid. To show (4) ⇒ (1), we first invoke Example 6.1: we can
assume p = [π(p)π(p)] and similarly for q. The crucial step is to show [xay]

∗∼ [xya]

and [axy]
∗∼ [xay], i.e., that one can rotate a single letter in the read-part or in the write-

part. This ensures the implication (4) ⇒ (1). Since (2) and (4) are equivalent and since
∼ is symmetric on the free monoid, also the equivalence of (2) and (3) follows.

We obtain the following consequence of Theorem 6.2: Given two words u, v ∈ Σ∗, one
can decide in quadratic time whether π(u) ∼ π(v) and π(u) ∼ π(v). Consequently, it
is decidable in polynomial time whether [u] ≈ [v] holds. It remains an open question

whether there is some number k ∈ N such that p
∗∼ q if and only if p

k∼ q.

7 Conjugators

Let M be a monoid and x, y ∈M . An element z ∈M is a conjugator of x and y if xz =
zy. The set of all conjugators of x and y is denoted C(x, y) = { z ∈M | xz = zy }.

Suppose that M is a free monoid A∗ and consider x, y ∈ A∗. It is well-known that
C(x, y) is a finite union of sets of the form u(vu)∗ and hence regular. In contrast, the
set of conjugators of [a] and [a] is not recognizable since η−1(C([a], [a])) ∩ a∗ a∗ =
{ aka� | k ≤ � }. In this section, we prove the following weaker result:



The Monoid of Queue Actions 347

Theorem 7.1. Let x, y ∈ Q. Then the set C(x, y) is rational.

The proof proceeds as follows: First note that, by Theorem 4.1, xz = zy if and only
if π(xz) = π(zy), π(xz) = π(zy), and ow(xz) = ow(zy). The set D(x, y) of all
z ∈ Q satisfying the first two conditions is recognizable (since x and y are fixed) and it
remains to handle the third condition (under the assumption that the first two hold).

The crucial point in the proof of Theorem 7.1 is the regularity of the language

Gk = { nf(z) | z ∈ D(x, y), ow(xz)− ow(z) ≥ k } .

Having this, it follows that the languages

Ek = { nf(z) | z ∈ D(x, y), ow(xz)− ow(z) = k } and

Fk = { nf(z) | z ∈ D(x, y), ow(zy)− ow(z) = k }

are regular. Consequently, the language⋃
0≤k≤|π(x)|

Ek ∩ Fk

is regular. Since one can also show that 0 ≤ ow(xz)−ow(z) ≤ |π(x)| for z ∈ D(x, y),
this language equals the language of all words nf(z) with z ∈ C(x, y). Hence C(x, y)
is the image wrt. the natural epimorphism η of a regular language and therefore rational.

8 Rational Subsets

This section studies decision problems concerning rational subsets ofQ.
Let w ∈ Σ∗. Then, by Theorem 5.3, the number of left-divisors of [w] in Q is

at most |w|3. This allows to define a DFA with |w|3 many states that recognizes the
language [w] = { u ∈ Σ∗ | u ≡ w }. Even more, this DFA can be constructed in loga-
rithmic space. This fact allows to reduce the problem below in logarithmic space to the
intersection problem of NFAs. Hence we get the following result, where completeness
follows since A∗ embeds intoQ:

Theorem 8.1. The following rational subset membership problem forQ isNL-complete:

Input: A word w ∈ Σ∗ and an NFA A over Σ.
Question: Is there a word v ∈ L(A) with w ≡ v?

We do not have a description of the submonoids ofQ, but we get the following embed-
ding of the direct product of two free monoids.

Proposition 8.2. LetR ⊆ Q denote the submonoid generated by {[a], [ab], [b], [abb]}.

(1) There exists an isomorphism α from {a, b}∗×{c, d}∗ ontoR with α((a, ε)) = [a],
α((b, ε)) = [ab], α((ε, c)) = [b], and α((ε, d)) = [abb].

(2) If S ⊆ R is recognizable inR, then it is recognizable in Q.
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The proof makes heavy use of Theorem 4.1. This proposition implies in particular that
rational transductions can be translated into rational subsets of Q, resulting in the fol-
lowing undecidability results:

Theorem 8.3. (1) The set of rational subsets ofQ is not closed under intersection.
(2) The emptiness of the intersection of two rational subsets ofQ is undecidable.
(3) The universality of a rational subset of Q is undecidable.

Consequently, inclusion and equality of rational subsets are undecidable.
(4) The recognizability of a rational subset of Q is undecidable.

We sketch the proof of statement (3), the other claims are proved along similar lines:
Let S ⊆ {a, b}∗ × {c, d}∗ be rational. Then α(S) is rational. Due to Prop. 8.2 (2), the
setR is recognizable inQ. Thus,Q\R is recognizable and therefore, sinceQ is finitely
generated, rational. Consequently, α(S) ∪ Q \ R is rational as well. This rational set
equals Q if and only if α(S) = R, i.e., S = {a, b}∗ × {c, d}∗. But this latter question
is undecidable by [1, Theorem 8.4(iv)].

9 Recognizable Subsets

In this section, we aim to describe the recognizable subsets of Q. Clearly, sets of the
form π−1(L) or π−1(L) for some regular L ⊆ A∗ as well as Boolean combinations
thereof are recognizable. This does not suffice to produce all recognizable subsets: for
instance, the singleton set {[aa]} is recognizable but any Boolean combination of in-
verse projections containing [aa] also includes [aa]. However, we will see in the main
result of this section, namely Theorem 9.4, that incorporating certain sets that can im-
pose a simple restriction on relative positions of write and read symbols suffices to
generate the recognizable sets as a Boolean algebra.

Recall that any q ∈ Q is completely determined by π(q), π(q), and ow(q). Con-
sequently, it would seem natural to incorporate sets which restrict the overlap width.
Unfortunately, this does not work since the set of all q ∈ Q with ow(q) = k is not
recognizable (for any k ∈ N).

Nevertheless, the subsequent definition provides a slight variation of this idea which
conduces to our purpose. To simplify notation, we say two elements p, q ∈ Q have the
same projections and write p ∼π q if π(p) = π(q) and π(p) = π(q).

Definition 9.1. For each k ∈ N, the set Ωk ⊆ Q is given by

Ωk = { q ∈ Q | ∀p ∈ Q : p ∼π q & ow(q) ≤ ow(p) ≤ k =⇒ p = q } .

Observe that Q = Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ . . . . Intuitively, for fixed projections π(q) and
π(q) the set Ωk contains all q with ow(q) ≥ k as well as the unique q with maximal
ow(q) ≤ k.

Example 9.2. (1) The queue action q = [abaaba] satisfies ow(q) = 1 and hence q ∈
Ω1. The only p ∈ Q with p ∼π q and ow(p) ≥ ow(q) is p = [aabbaa]. Since
ow(p) = 3, this implies q ∈ Ω2 but q �∈ Ω3.

(2) For every k ≥ 1, we have [(aa)k] ∈ Ωk−1 \Ωk.
(3) All queue actions of the form q = [uv] with u, v ∈ A∗ satisfy q ∈ Ωk for every

k ∈ N.
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Remark 9.3. We know that q ∈ Q is uniquely described by π(q), π(q), and ow(q).
Somewhat surprisingly, we still have a unique description of q if we replace ow(q) by
the maximal k ∈ N with q ∈ Ωk or the fact that there is no such maximum.

The aforementioned main result characterizing the recognizable subsets of Q is the
following.

Theorem 9.4. For every subset L ⊆ Q, the following are equivalent:

(1) L is recognizable,
(2) L is wrw-recognizable, i.e., the language η−1(L) ∩ A∗A

∗
A∗ is regular,

(3) η−1(L) ∩ A
∗
A∗A

∗
is regular,

(4) L is simple, i.e., a Boolean combination of sets of the form π−1(R) or π−1(R) for
some regular R ⊆ A∗ and the sets Ωk for k ∈ N.

The implication “(1)⇒(2)” is trivial. Regarding wrw-recognizability note that L =
η(η−1(L)∩A∗A

∗
A∗) by Example 6.1, i.e., the language η−1(L)∩A∗A

∗
A∗ describes

the set L completely. This is not the case if we replace A∗A
∗
A∗ by A∗A

∗
: The set

L = { [anaaan] | n ≥ 1 } is not recognizable, since the set of its normal forms is not
regular. However, η−1(L) ∩A∗A

∗
is empty and hence regular.

Note that the implication“(4)⇒(1)” follows easily from the following result:

Proposition 9.5. For each k ∈ N, the set η−1(Ωk) is regular.

The crucial point in its proof is the following characterization of the language η(Ωk):
w ∈ Σ∗ belongs η−1(Ωk) if and only if, for every u ∈ A≤k, one of the following holds:

1. u is no prefix of π(w) or
2. u is no suffix of π(w) or
3. the ith write symbol in w appears before the ith of the last |u| read symbols (for all

1 ≤ i ≤ |u|).

As an illustration, aababaaa belongs to η−1(Ω3) and aababaaa does not. For every u ∈
A≤k the language of words w satisfying one of the above three conditions is regular.
Hence η−1(Ωk) is the intersection of finitely many regular languages and therefore
regular.

The implication “(2)⇒(4)” of Theorem 9.4 is the following:

Proposition 9.6. If L ⊆ Q is wrw-recognizable, then it is simple.

Proof idea. Let k be the number of elements of the syntactic monoid of η−1(L) ∩
A∗A

∗
A∗. Consider the following partition of L:

L =
(
L ∩ π−1

(
A<k

)
∩Ωk

)
∪
(
L ∩ π−1

(
A≥k

)
∩Ωk

)
∪
⋃

0≤�<k

(
L ∩Ω� \Ω�+1

)
.

One can show that all the parts are simple; we indicate how this is done for the first part,
i.e., the set L ∩ π−1

(
A<k

)
∩Ωk:
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Let K = η−1(L) ∩ A∗A
∗
A∗ and φ : Σ∗ → M be a morphism recognizing K .

We further consider the morphisms μ, μ : A∗ → M defined by μ(w) = φ(w) and
μ(w) = φ(w). We show the claim by establishing the equation

L ∩ π−1
(
A<k

)
∩Ωk =

⋃
u∈A<k,m∈M
μ(u)m∈φ(K)

π−1(u) ∩ π−1
(
μ−1(m)

)
∩Ωk .

Let X and Y denote the left and right hand side of this equation, respectively. Clearly,
X,Y ⊆ π−1

(
A<k

)
∩ Ωk. Consider some q ∈ π−1

(
A<k

)
∩ Ωk. It suffices to show

that q ∈ X precisely if q ∈ Y .
To this end, let u = π(q). Then |u| < k. Using u ∈ Ωk, one can show that there is

p ∈ Q such that q = [u] p. Clearly, π(p) = ε, i.e., p = [y] for some y ∈ A∗. Notice that
q = [uy]. Altogether,

q ∈ X ⇐⇒ q = [uy] ∈ L

⇐⇒ φ(uy) = μ (u) μ (π(q)) ∈ φ(K) ⇐⇒ q ∈ Y .

The simplicity of the other sets is shown using similar arguments.
Since the implication “(1)⇒(2)” in Theorem 9.4 is trivial, we have the equivalence

of (1), (2), and (4). Claim (3) can be added using duality arguments.

10 Thurston-Automaticity

Many groups of interest in combinatorial group theory turned out to be Thurston-
automatic [4]. The more general concept of a Thurston-automatic semigroup was in-
troduced in [3]. In this chapter, we prove that the monoid of queue-actionsQ does not
fall into this class.

Let M be a monoid, Γ an alphabet, θ : Γ+ → M a semigroup morphism, and
L ⊆ Γ+. The triple (Γ, θ, L) is an automatic structure for the monoid M if θ maps
L bijectively onto M , if the language L is regular and if the relations

La =
{

(u, v) ∈ L2
∣∣ θ(ua) = θ(v)

}
⊆ L2

are synchronously rational (i.e., accepted by a synchronous transducer, cf. [1,8]) for all
a ∈ Γ .1 A monoid is Thurston-automatic if it has some automatic structure.

Theorem 10.1. The monoid of queue actionsQ is not Thurston-automatic.

Proof idea. Suppose Q is Thurston-automatic. By [7], there exists an automatic struc-
ture (Σ ∪ {ι}, θ, L) for Q with θ(a) = [a], θ(a) = [a] for a ∈ A, and θ(ι) = [ε]. For
m,n ∈ N, let um,n ∈ L be the unique word with θ(um,n) = [aman]. By Theorem 5.3,
there are precisely min(m,n) + 1 many q ∈ Q with [amanb] = q[b]. It follows that
this is the number of words w ∈ L with um,nb ≡ wb. Since the set of pairs (um,n, w)
satisfying this equation (with m,n ∈ N and w ∈ (Σ ∪ {ι})∗) is synchronously rational
[3], one can construct a nondeterministic finite automatonA with min(m,n) + 1 many
runs on any word of the form aman. This then leads to a contradiction. "#

1 This is not the original definition from [3], but it is equivalent by [3, Prop. 5.4].
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Recently, the notion of an automatic group has been extended to that of Cayley graph
automatic groups [11]. This notion can easily be extended to monoids. It is not clear
whether the monoid Q is Cayley graph automatic. A way to disprove this would be to
show that the elementary theory of its Cayley graph is undecidable.

Note that Q is not automatic in the sense of Khoussainov and Nerode [12]: This is
due to the fact that η(A∗) is isomorphic to A∗ and an element of Q is in η(A∗) if and
only if it cannot be written as ras for r, s ∈ Q and a ∈ A. Hence, using the a for a ∈ A
as parameters, A∗ is interpretable in first order logic in Q. Therefore, since A∗ is not
automatic in this sense [2], neither is Q [12].
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Undecidable Properties of Self-affine Sets
and Multi-tape Automata

Timo Jolivet1,2 and Jarkko Kari1
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Abstract. We study the decidability of the topological properties of some
objects coming from fractal geometry. We prove that having empty inte-
rior is undecidable for the sets defined by two-dimensional graph-directed
iterated function systems. These results are obtained by studying a par-
ticular class of self-affine sets associated with multi-tape automata. We
first establish the undecidability of some language-theoretical properties
of such automata, which then translate into undecidability results about
their associated self-affine sets.

1 Introduction

A classical way to define fractals is to use an iterated function system (IFS),
specified by a finite collection of maps f1, . . . , fn : Rd → Rd which are all con-
tracting: there exists 0 � c < 1 such that ‖fi(x) − fi(y)‖ � c‖x − y‖ for all
x, y ∈ Rd. The associated fractal set, called the attractor of the IFS, is the
unique nonempty compact set X such that X =

⋃n
i=1 fi(X). Such a set X al-

ways exists and is unique thanks to a famous result of Hutchinson [10], based
on an application of the Banach fixed-point theorem; see also [7] or [1]. For ex-
ample, the classical Cantor set can be defined as the unique compact set X ⊆ R
satisfying the set equation X = 1

3 X ∪ (1
3 X + 2

3 ). Two other examples are given
in Figure 1.

A question of interest is to determine when the fractal set X has nonempty
interior. This question arises in several areas, including tiling theory, dynamical
systems, number theory and Fourier analysis (see [15,12] and references therein).
A well studied case is when the contracting maps are affine mappings of the form
fi(x) = M−1(x+vi) where vi ∈ Zd and M is an integer expanding matrix which
is common to all the fi, like in the examples of Figure 1. In this case, having
nonempty interior is equivalent with having nonzero Lebesgue measure, and
there are efficient algorithms to decide this [9,3].

Much less is known in the more general case of self-affine attractors, where
the maps fi are only restricted to be affine (of the form fi = Mix + vi where
the Mi are real matrices and vi ∈ Rd). No algorithm is known to decide nonempty
interior in this case, and specific results such as computation of Hausdorff di-
mension are known only for some very specific families of self-affine sets [2,13,8].

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 352–364, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Two self-affine sets defined by X =
⋃

v∈D M−1(X + v), where M = ( 2 0
0 2 ) and

D = {( 0
0 ), ( 1

0 ), ( 0
1 )} (left), and D = {( 0

0 ), ( 1
0 ), ( 0

1 ), ( −1
−1 )} (right). The set on the left is

the Sierpiński triangle and has empty interior. The set on the right is an example of a
self-affine tile with nonempty interior (see [11]).

Our results. We are interested in the following question: to what extent can
we decide if a self-affine set has nonemtpy interior?

We will answer this question by an undecidability result for a natural general-
ization of iterated function systems, which consist of a finite system of equations
instead of just one, hence defining a finite number of attractors. This is for-
malized in the following definition: a d-dimensional graph-directed iterated
function system (GIFS) is a directed graph in which each edge e is labelled
by a contracting mapping fe : Rd → Rd. The attractors of the GIFS are the
unique nonempty compact sets {Xq}q∈Q such that Xq =

⋃
r∈Q

⋃
e∈Eq,r

fe(Xr),
where Q is the set of vertices of the directed graph defining the GIFS, and Eq,r

denote the set of edges from vertex q to vertex r. Again, such a collection of
compact sets {Xq}q∈Q exists and is unique [6]. Fractals defined by GIFS are
widely used to define various self-similar tilings of the plane, the study of which
have applications in physics, dynamics and number theory. Note that the case
of single-vertex graphs corresponds to classical iterated function systems.

Our main result, Theorem 4.2, states that it is undecidable if the attractors
of a 2-dimensional, 3-state affine GIFS have empty interior. We follow an ap-
proach initiated by Dube [5] by associating self-affine sets with finite multi-tape
automata. Then we relate some properties of the automaton with topological
properties of its associated attractor, and we obtain the undecidability of the
latter by proving the undecidability of the former.

In Section 2 we define multi-tape automata and we consider a variant of the
Post correspondence problem in Section 2.1, which we use in Section 2.2 to prove
undecidability results about multi-tape automata. We then relate some language-
theoretical properties of an automaton with some topological properties of its
attractor in Section 3. The main results are stated in Section 4.
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2 Multi-tape Automata

A d-tape automaton M on alphabet A = A1 × · · · × Ad is defined by a finite
set of states Q, and a finite set of transitions R ⊆ Q × Q × (A+

1 × · · · × A+
d ).

A d-tape automaton on state Q is conveniently represented by a directed graph
with vertex set Q and an edge (q, r) labelled by w1| · · · |wd for every transition
(q, r, (w1, . . . , wd)). This is illustrated in Example 2.1.

A configuration is an infinite sequence c ∈ AN = (A1 × · · · × Ad)N. For
k ∈ {1, . . . , d}, the kth tape of c refers to the infinite sequence ((cn)k)n∈N,
which is an infinite concatenation of words in A�

k. For convenience, config-
urations will be denoted by writing the tape components separated by the
symbol “|”. For example, 00 · · · | 11 · · · | 00 · · · denotes the 3-tape configuration
(0, 1, 0), (0, 1, 0), . . . ∈ ({0, 1} × {0, 1} × {0, 1})N.

Let q be a state of M. A configuration c ∈ AN is q-accepted by M if there
exists an infinite sequence of transitions ((qn, rn, (wn,1, . . . , wn,d)))n�1 such that
q1 = q, rn = qn+1 for all n � 1, and for every k ∈ {1, . . . , d}, the infinite word
w1,kw2,k . . . is equal to the kth tape of c (that is, w1,kw2,k . . . = (c1)k(c2)k . . .).
Such an infinite sequence of transitions will sometimes be referred to as a run of
M starting at q. Note that we also forbid ε-transitions as the words w1, . . . , wd

used in transitions are nonempty, so that each infinite run provides an infinite
word on every tape.

Example 2.1. Consider the following 2-tape, 2-state automaton on alphabet
A = {0, 1} × {0, 1, 2}, with state set Q = {X, Y } and transitions given by the
following.

X Y0|22
1|001

20|1

10|11

110|2

It is easy to check that the configuration 00 · · · |22 · · · is not Y -accepted but is
X-accepted by M (by repeatedly using the transition (X, X, (0, 22))). However,
giving a precise description of the set of configurations which are accepted by
M seems difficult.

Remark 2.2. Multi-tape automata are very powerful computational devices
because of the fact that the words w1, . . . , wd in a transition are allowed to have
different lengths. This is the fundamental feature that will allow us to establish
several undecidability results about multi-tape automata later in this section.
On the other hand, if the words w1, . . . , wd all have the same length in every
transition, then it is easy to see that this model is not more powerful than a
classical finite automaton on a product alphabet.

2.1 Post Correspondence Problems

The undecidability results of this article are all derived from the undecidability of
the following decision problems. The Post correspondence problem (PCP)
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is: given n pairs of nonempty words (u1, v1), . . . , (un, vn), decide if there exist
m � 1 and a word i1 · · · im such that ui1 · · · uim = vi1 · · · vim . This is a well-
known undecidable problem [14].

We will need a slight variant of PCP, the prefix Post correspondence
problem (prefix-PCP): given n pairs of nonempty words (u1, v1), . . . , (un, vn),
decide if there exist m, m′ � 1 and two words i1 · · · im and i1 · · · im′ such that
ui1 · · · uim = vi1 · · · vim′ and one of the two words i1 · · · im and i1 · · · im′ is a prefix
of the other.

A positive PCP always yields a positive prefix-PCP instance (by taking m =
m′), but the converse is not always true. For example, the instance (u1, v1) =
(a, abb), (u2, v2) = (bb, aa) admits the prefix-PCP solution given by u1u2u1u1 =
v1v2 = abbaa, that is, m = 4, m′ = 2 and the two words i1i2i3i4 = 1211 and
i1i2 = 12. However, this instance cannot admit any PCP solution because no
pair of words ends by the same symbol.

Lemma 2.3. Prefix-PCP is undecidable.

Proof. We reduce PCP to prefix-PCP. Let (u1, v1), . . . , (un, vn) be an instance
of PCP on alphabet A. Let B = A ∪ {#, *} be a new alphabet, where # and *
are two new symbols not contained in A. We construct a prefix-PCP instance
(A1, B1), . . . , (An, Bn), (U1, V1), . . . , (Un, Vn), (Y, Z) on the new alphabet B,
defined by

Ai = #x1*x2* · · · *xk Ui = *x1*x2* · · · *xk Y = *#
Bi = #y1*y2* · · · *y�* Vi = y1*y2* · · · *y�* Z = #

for all i ∈ {1, . . . , n}, where ui = x1 · · · xn and vi = y1 · · · y� and the xj , yj are in
A. We now prove that the PCP instance has a solution if and only if the prefix-
PCP instance has a solution. Suppose that there exists a solution i1 · · · im to the
PCP instance, that is ui1 · · · uim = vi1 · · · vim . Then clearly the prefix-PCP also
has a solution, given by Ai1 Ui2 · · · UimY = Bi1 Vi2 · · · Vim Z.

Conversely, suppose that the prefix-PCP instance has a solution. By con-
struction, because of # and *, there must exist a prefix-PCP solution of the
form Ai1 Ui2 · · · UimY = Bi1 Vi2 · · · Vim′ Z, where i1 · · · im is a prefix of i1 · · · im′

or vice-versa. But the pairs (Ui, Vi) do not contain any #, so the pair (Y, Z) is
used exactly once, both after mth pair and the m′th pair, so m = m′ and the
PCP instance has a solution. ��

2.2 Undecidable Properties of Multi-tape Automata

Let M be a d-tape automaton on alphabet A, and let q be a state of M. State
q is universal if every sequence in AN is q-accepted by M. A finite sequence
x ∈ A� is a universal prefix for state q if for every infinite sequence y ∈ AN,
the infinite sequence xy is q-accepted by M.

Example 2.4. Let M be a 1-tape, 1-state automaton on alphabet {0, 1} with
three transitions labelled by 1, 10 and 00. The single state of M is not universal
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because every sequence starting with 01 is rejected, but the word 1 is a universal
prefix: any sequence starting with 1 is accepted, because any finite segment 10n1
is accepted by transitions 1, 00 × k, 1 if n = 2k or 10, 00 × k, 1 if n = 2k + 1,
and any infinite tail of 0’s or 1’s is obviously accepted. Hence there exist some
multi-tape automata without universal states but that admit universal prefixes.
The self-affine set associated with this automaton is discussed in Example 3.5.

Theorem 2.5. It is undecidable whether a given state of a given d-tape au-
tomaton is universal. This problem remains undecidable if we restrict to 2-tape
automata with 3 states.

Proof. We reduce prefix-PCP, which is undecidable thanks to Lemma 2.3. Let
(u1, v1), . . . , (un, vn) be an instance of prefix-PCP where the ui, vi are words
over B. We define a 2-tape automaton M on 3 states (denoted by X, U, V ). The
alphabet of M is A1 × A2, with A1 = {1, . . . , n} and A2 = B ∪ {#}, where n is
the size of the prefix-PCP instance, B is the alphabet of words ui, vi and # is a
new symbol not in B. The transitions of M are

(1) X
i|ui−→ U and U

i|ui−→ U for every i ∈ A1;
(2) X

i|vi−→ V and V
i|vi−→ V for every i ∈ A1;

(3) U
i|u−→ X for every i ∈ A1 and u ∈ A+

2 such that
(i) |u| � |ui|,
(ii) u is not a prefix of ui,
(iii) u does not begin with #;

(4) X
i|u−→ X for every i ∈ A1 and u ∈ A+

2 such that (i) and (ii) above hold;
(5) V

i|v−→ X for every i ∈ A1 and v ∈ A+
2 such that

(i) |v| � |vi|,
(ii) v is not a prefix of vi,
(iii) v does not begin with #;

(6) X
i|v−→ X for every i ∈ A1 and v ∈ A+

2 such that (i) and (ii) above hold.

We now prove that the prefix-PCP instance (u1, v1), . . . , (un, vn) has a solution
if and only if state X is not universal in M.

(⇒) Suppose that the prefix-PCP instance admits a solution: there existm, m′ �
1 and two words i1 · · · im and i1 · · · im′ such that ui1 · · · uim = vi1 · · · vim′ and one
of the two words i1 · · · im and i1 · · · im′ is a prefix of the other. Without loss of gen-
erality we can assume that m � m′ and i1 · · · im′ is a prefix of i1 · · · im. We prove
that M cannot accept any infinite sequence in (A1 × A2)N beginning with

i1 · · · im | ui1 · · · uim#

when starting from state X , so M is not universal. Indeed, let us describe the
evolution of M when reading such a sequence.

– We start from X , so M necessarily uses a transition defined in (1) and (2)
and moves to state U or V after having read i1|ui1 or i1|vi1 , respectively. (The
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other transitions (4) and (6) cannot be used because of the conditions (i)
and (ii).) Note that both ui1 and vi1 are prefixes of the content of the second
tape.

– Now if M is in state U , the remaining input starts with some i on the first
tape and starts with ui on the second tape. So M must use transition (1):
stay in state U and read i|ui. (Transition (3) cannot be used because of the
conditions (i) and (ii).) The same holds if M is in state V .

It follows that when M reads i1, . . . , im′ on the first tape, then it is either in
state U and has read ui1 · · · uim′ on the second tape, or it is in state V and
has read vi1 · · · vim′ = ui1 · · · uim on the second tape. In the second case, the
next symbol on the second tape is #, so M is “blocked” on this input (there is
no suitable transition for this sequence because of (iii)). In the first case, the
computation must continue in the same way as before, so eventually M is still
in state U and has read i1 · · · im|ui1 · · · uim , and again, M is blocked because
the next symbol on the second tape is #.

(⇐) Suppose that no solution exists for the prefix-PCP instance. The following
strategy shows that a move by the automaton can always be made, whatever its
tape contents is. If M is in state U or V , make any available move. In state X ,
if no loop in X is possible, then in the current configuration (i1i2 · · · |w), both
ui1 and vi1 must be prefixes of w, otherwise (4) or (6) could have been used.
Write w = ui1 w′ = vi1 w′′. Then:

(a) if ui1 · · · uik
# is a prefix of w for some k, do not go to U by reading i1|ui1 ;

(b) if vi1 · · · vik
# is a prefix of w for some k, do not go to V by reading i1|vi1 ;

The only possible ways to be stuck at this point are:

– M is in state U or V and the next symbol on the second tape is #;
– M is in state X and (a), (b) prevent from moving to U or V .

The second case cannot happen because it implies the existence of a prefix-PCP
solution. If we are in the first case, we can assume by symmetry that we are in
state U . In the last step where M went from X to U , the configuration must
start with i1i2 · · · |ui1 ui2 · · · uik

# · · · for some k, because this is the only way to
get stuck in U some k steps later. However, this contradicts the choice made
in (a) above, because M should have moved to V instead of state U . ��
Theorem 2.6. It is undecidable whether a given state of a given d-tape automa-
ton admits a universal prefix. This problem remains undecidable if we restrict to
2-tape automata with 3 states.

Proof. We modify the prefix-PCP reduction made in the proof of Theorem 2.5.
Let (u1, v1), . . . , (un, vn) be an instance of prefix-PCP where the ui, vi are words
over B�. First we modify the ui, vi by adding a new symbol * not in B after each
letter of each ui and each vi (a word x1x2 · · · xk becomes x1*x2* · · · xk*). This
modified instance is clearly equivalent to the original one, so we denote it again
by (u1, v1), . . . , (un, vn).
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We now define a 2-tape automaton M on 3 states X, U, V . We take the same
alphabet A1 × A2 as in the other reduction, with a new symbol & for both
A1 and A2, and the symbol * for A2. This gives A1 = {1, . . . , n} ∪ {&} and
A2 = B ∪ {#, &, *}, where n is the size of the prefix-PCP instance, B is the
alphabet of the words ui, vi and #, &, * are new symbol not in B. The transitions
of M consist of

– (1) and (2) like in the proof of Theorem 2.5, without allowing any symbol &
or *;

– (3), (4), (5), (6) like in the proof of Theorem 2.5, where symbols & or * are
allowed, except in the first letter of u or v;

plus the following transitions:

(7) X
a|&−→ X , U

a|&−→ X and V
a|&−→ X for every a ∈ A1;

(8) X
&|a−→ X , U

&|a−→ X and V
&|a−→ X for every a ∈ A2 \ {*};

(9) X
a|*b−→ X , U

a|*b−→ X and V
a|*b−→ X for every a ∈ A1 and b ∈ A2.

We now prove that the prefix-PCP instance (u1, v1), . . . , (un, vn) has a solution
if and only if state X does not have any universal prefix.

(⇒) Suppose that the prefix-PCP instance has a solution: there exist m, m′ �
1 and two words i1 · · · im and i1 · · · im′ such that ui1 · · · uim = vi1 · · · vim′ and
one of the two words i1 · · · im and i1 · · · im′ is a prefix of the other. Consider the
following claim.

Claim. Let x ∈ A�
1 and y ∈ A�

2 be such that x&& · · · |y&& · · · is X-
accepted by at most k � 1 different runs of M. Then there exist x′ ∈ A�

1
and y′ ∈ A�

2 such that xx′&& · · · |yy′&& · · · is X-accepted by at most k −1
different runs.

This claim implies that X does not have any universal prefix, i.e., that for every
finite words x ∈ A�

1 and y ∈ A�
2, there exists a configuration starting with x|y

that is not X-accepted. Indeed, for every such x, y, there can be only finitely
many different accepting runs (say k) for x&& · · · |y&& · · · , because M eventually
loops on state X with transition &|&. So it suffices to apply the claim k times to
obtain a configuration starting with x|y which is not X-accepted.

We now prove the claim, using the prefix-PCP solution. Let x ∈ A�
1 and

y ∈ A�
2 be such that x&& · · · |y&& · · · is X-accepted by k different runs. Denote

by R1, . . . , Rk the finite prefixes of the k runs, each cut when M reaches the
&& · · · |&& · · · part. Let s = i1 · · · im ∈ A�

1 and let t = u1 · · · uim , which can be
written in the form t = a1*a2* · · · *a|t|−1* ∈ A�

2, where each ai is in A2 \{#, &, *},
thanks to the modification made to the instance.

Let � be the distance between the two tapes heads when M has completed
the finite run R1. (Note that the first head is always behind the second one
because it can only move by one cell at at time.) Without loss of generality we
can assume that R1 is the run for which such an � is minimal. We now construct
a configuration c which will “block” any run starting with R1, without giving the
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other runs any possibilities for new nondeterministic branching. Let L, L′ � 0
such that s (on the first tape) begins � positions behind t (on the second tape)
in the configuration

c = x&Ls&& · · · | y&L′
t#&& · · · ,

so that during any run starting with R1, M starts reading s and t# exactly at
the same time. It follows that R1 cannot be extended to an accepting run for
c, because s, t corresponds to a prefix-PCP solution, similarly as in the proof of
Theorem 2.5. The same is true for any other run Ri for which such an � is the
same as R1.

Let us now consider another accepting run Ri. By minimality of �, the distance
between the two tapes heads when M first reaches && · · · |&& · · · during run Ri

is strictly larger than �. We now prove that Ri can be extended in a unique way
to an accepting run for c. Indeed, any run of M starting with Ri must evolve in
the following way:

– when t starts being read the second tape, s is not yet being read on the first
tape, so at this time M is reading & on the first tape and a1 on the second
tape;

– the only possible transition is (8), so M moves one step on both tapes, and
is now reading * on the second tape;

– the only possible transition is (9), so M moves one step on the first tape
and two steps on the second, and is again reading * on the second tape;

– this continues until the whole t = a1*a2* · · · *a|t|−1* has been read on the
second tape, and M is deterministically looping on &|&.

From this analysis, it follows that Ri can be extended in a unique way to an
accepting run for c. Hence c is a configuration starting with x|y with at most
k − 1 accepting runs, because every accepting run for c must start with an Ri,
each of which can be extended in at most one way if i ∈ {2, . . . , k}, or in no way
at all if i = 1. Thus the claim is proved by taking x′ = &Ls and y′ = &L′

t#.
(⇐) Suppose that no solution exists for the prefix-PCP instance. The strategy

described in the “⇐” direction of the proof of Theorem 2.5 can be applied to
prove that state X is universal, with the additional case that if the tape begins
by & or *, then the transition (7), (8) or (9) can always be used. ��
Remark 2.7. In the reduction made in the above proof of Theorem 2.6, if state
X has a universal prefix, then in fact X is universal. Also, in this case, it is
easy to see that any finite word satisfying (i), (ii) and (iii) of transition (3) is a
universal prefix for U (and V ), so X , U (and V ) have a common universal prefix
Hence we have the following: given a 2-tape automaton M on 3 states and two
states q, r of M, it is undecidable if q and r have a common universal prefix.

3 Affine GIFS Associated with Multi-tape Automata

Let M be a d-tape automaton on alphabet A = A1 × . . .×Ad. We want to give a
“numerical interpretation” to a finite word u ∈ A� or to an infinite configuration
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c ∈ AN. We must first specify, for each k ∈ {1, . . . , n}, a numerical interpretation
of the letters of Ak by choosing a bijection δk : Ak → {0, . . . , |Ak| − 1}. We then
define Δk : A�

k → R by

Δk(u) =
∑

1�i�|u|
δk(ui)|Ak|−i.

Equivalently, for u = u1 · · · un ∈ An
k , the number Δk(u) is represented by

0.δk(u1) · · · δk(un) in base |Ak|. Finally, let Δ : A+
1 × . . . × A+

d → Rd be de-
fined by Δ(w1, . . . , wd) = (Δ1(w1), . . . , Δd(wd)). The domains of Δk and Δ can
naturally be extended to AN

k and AN, respectively.
In the examples that will follow, if the alphabets Ak are all of the form

{0, . . . , |Ak| − 1} and the maps δk : Ak → {0, . . . , |Ak| − 1} are not specified, we
will assume for convenience that they are identity mappings.

Definition 3.1. Let M be a d-tape automaton on state set Q and alphabet
A = A1 × · · · × An. The GIFS associated with M is the GIFS defined by the
graph G with vertex set Q and, for every transition R = (q, r, (w1, . . . , wd)) of
M, an edge (q, r) labelled by the map fR : [0, 1]d → [0, 1]d defined by

fR(x) =

⎛
⎜⎝

|A1|−|w1| 0
. . .

0 |Ad|−|wd|

⎞
⎟⎠ x + Δ(w1, . . . , wd).

Example 3.2. Let M be a 2-tape automaton on alphabet A = {0, 1} × {0, 1},
and let c ∈ AN be configuration. If M contains a transition R = (q, r, (1011, 11)),
then applying the contracting map fR on Δ(c) = (0.x1x2 . . . , 0.y1y2 . . .) ∈ [0, 1]2
has the following effect:

fR(Δ(c)) =
(

1/16 0
0 1/4

) (
0.x1x2 . . .
0.y1u2 . . .

)
+ Δ(1011, 11)

=
(

0.0000x1x2 . . .
0.00y1u2 . . .

)
+

(
0.1011
0.11

)
=

(
0.1011x1x2 . . .
0.11y1u2 . . .

)
.

This suggests that applying a sequence of mappings fR1 · · · fRn(Δ(c)) corre-
sponds to concatenating the words associated with the transitions Rn in the
numerical interpretation Δ(c) of a configuration c. This is the key idea to es-
tablish a correspondence between the GIFS of an automaton and its accepted
configurations. This is formalized in the next proposition.

Proposition 3.3. Let M be a 2-tape automaton and let q be a state of M. The
GIFS attractor of M associated with q is equal to the set {Δ(c) ∈ Rd : c ∈
AN is q-accepted by M}.

Proof. Let x ∈ [0, 1]d. It follows from a standard fact in the theory of it-
erated function systems [7, Chapter 9] that x ∈ Xq if and only if there is
an infinite run (Rn)n�1 starting at q such that x =

⋂
n�1 fR1 · · · fRn([0, 1]d),
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where fRn is the mapping of the GIFS of M associated with run Rn. Moreover,
by definition of the GIFS of M, for every such run (Rn)n�1, the configuration
c = w1,1w2,1 · · · | · · · | w1,dw2,d · · · is such that x = Δ(c), where the wn,k are
given by the transitions (qn, rn, (wn,1, . . . , wn,d)) for all n � 1, so the proposition
is proved because c is a q-accepted configuration. ��
Example 3.4. Let M be the 1-state, 2-tape automaton on alphabet {0, 1} with
transitions 0|0, 0|1, 1|0. The iterated function system associated with M consists
of the maps x �→ x

2 , x �→ x
2 + (1

2 , 0), x �→ x
2 + (0, 1

2 ) and it can easily be seen
that the associated attractor the Sierpiński triangle (see Figure 1).
Example 3.5. The 1-tape, 1-state automaton M on alphabet {0, 1} with three
transitions 1, 10 and 00 (given in Example 2.4) is an example of a non-universal
automaton which admits universal prefixes. This reflects in the attractor associ-
ated with M in the following way: it is not equal to [0, 1] but it has nonempty
interior. This can be proved either by Proposition 3.7, or by proving directly
that a configuration x ∈ {0, 1}N is accepted by M if and only if it does not
start with 02k+11 for some k � 0, which implies that the attractor is equal to⋃

k�0[2−2k−1, 2−2k].

Remark 3.6. Given a d-tape automaton and a point x ∈ [0, 1]d, if there exists
two configurations c, c′ such that x = Δ(c) = Δ(c′) and such that the tapes
components ck ∈ AN

k and c′
k ∈ AN

k differ for some k ∈ {1, . . . , d}, then ck and c′
k

are both stationary, ending with 0ω or (|Ak| − 1)ω. In particular, Δ : AN → Rd

is finite-to-one.
The next proposition establishes the desired correspondence between word-

theoretical properties of multi-tape automata and topological properties of the
associated self-affine attractors.
Proposition 3.7. Let M be a d-tape automaton on alphabet A, let q be a state
of M, and let Xq be the associated GIFS attractor. We have:
(1) q is universal if and only if Xq = [0, 1]d,
(2) q has a universal prefix if and only if Xq has nonemtpy interior.
Proof. (1) If state q is universal the expansion of every element of [0, 1]d is q-
accepted so Xq = [0, 1]d thanks to Proposition 3.3. Conversely, suppose that
there exists an infinite sequence c that is not q-accepted. By a compactness
argument, there must exist a prefix w of c such that wc′ is not q-accepted for
any infinite sequence c′. Thanks to Remark 3.6, by choosing c′ with no tape
components ending by 0ω or (|Ak| − 1)ω, the sequence wc′ is the only sequence
such that x = Δ(wc′), so Δ(wc′) /∈ Xq because otherwise wc′ would be q-
accepted. It follows that Xq �= [0, 1]d.

(2) For a finite word w ∈ A�, define the cylinder [w] to be equal to the set of
configurations that start with w. If q admits a universal prefix w, then Δ([w]) ⊆
Xq by Proposition 3.3, so Xq has nonempty interior. Conversely, suppose that
there exists a nonempty open set U ⊆ Xq, and let w ∈ A� be a finite word such
that Δ([w]) ⊆ U . By a reasoning similar as in the proof of (1), we can prove
that w is a universal prefix for q. ��
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4 Undecidability Results for Self-affine Sets

Thanks to the undecidability results obtained for multi-tape automata in Theo-
rem 2.5 and to the correspondence between word-theoretical and topological
properties in Proposition 3.7, we obtain the following undecidability results
about topological properties of self-affine attractors.

The first result below states that it is undecidable if an attractor “takes up
the whole space”, that is, equals [0, 1]d. It follows directly from Theorem 2.5 and
Proposition 3.7, (1).

Theorem 4.1. The following problem is undecidable. Instance: a d-dimensional
affine GIFS G specified by maps with rational coefficients, and a state q of G.
Question: is Xq = [0, 1]d? This problem remains undecidable if we restrict to
2-dimensional GIFS with 3 states.

The next result states the undecidability of a fundamental topological prop-
erty for self-affine sets: having empty interior. It is a direct corollary of Theo-
rem 2.6 and Proposition 3.7, (2).

Theorem 4.2. The following problem is undecidable. Instance: a d-dimensional
affine GIFS G specified by maps with rational coefficients, and a state q of G.
Question: does Xq have empty interior? This problem remains undecidable if we
restrict to 2-dimensional GIFS with 3 states.

Remark 4.3. All the undecidability results above have been obtained via a
reduction using affine GIFS associated with a multi-tape automaton. Hence it
follows that undecidability holds even if we restrict to affine GIFS in which the
linear part of the contractions fi are diagonal matrices whose entries are negative
powers of integers. By adding dummy duplicate symbols, undecidability holds
even if the entries are negative powers of two.

Remark 4.4. We can deduce from Remark 2.7 that the following problem is
undecidable. Instance: a d-dimensional affine GIFS G specified by maps with
rational coefficients, and two states q, r of G. Question: does Xq ∩Xr have empty
interior? Indeed, it can be shown that q and r have a common universal prefix
if and only if Xq ∩ Xr has nonemtpy interior, similarly as in Proposition 3.7.

5 Conclusion

We conclude this article by some questions and perspectives for further work. Is
nonempty interior decidable for 1-state GIFS? (That is, for classical affine IFS.)
What about the 1-dimensional case? Using multi-tape automata may lead to an
undecidability result for the 1-state case, but for not for the 1-dimensional case.
Indeed, 1-tape automata are not more powerful than classical finite automata,
for which the properties we used in this article are all decidable. Note that for
1-state multi-tape automata, universality is trivially decidable, but the status of
prefix-universality is not known in this case.
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Also, let us note that having nonempty interior is equivalent to having nonzero
Lebesgue measure in the case of integer self-affine tiles (as mentioned in the
introduction), but not in the more general setting of self-affine (G)IFS (see for
example [4]). How do these properties relate in the case of self-affine sets arising
from multi-tape automata?

Another interesting aspect is the computability of fractal dimension (such as
Hausdorff dimension). For example, can we decide if the Hausdorff dimension
of a 2-dimensional self-affine set is equal to 2? And in the case of a self-affine
set with nonempty interior, can we compute the Hausdorff dimension of its
boundary? Very few results are known in this direction, apart from some very
specific families such as Bedford-McMullen carpets [2,13,8]. A possible approach
towards undecidability would be to adapt the reductions of this article in such
a way that the Hausdorff dimension can be controlled in the reductions, or to
relate the entropy of the automaton language with the Hausdorff dimension of
its attractor and prove that entropy is uncomputable.

Acknowledgements. Research supported by the Academy of Finland Grant
131558 and by project Fractals and Numeration ANR-12-IS01-0002.
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Abstract. Uniform one-dimensional fragment UF=
1 is a formalism ob-

tained from first-order logic by limiting quantification to applications of
blocks of existential (universal) quantifiers such that at most one vari-
able remains free in the quantified formula. The fragment is closed under
Boolean operations, but additional restrictions (called uniformity condi-
tions) apply to combinations of atomic formulas with two or more vari-
ables. UF=

1 can be seen as a canonical generalization of two-variable logic,
defined in order to be able to deal with relations of arbitrary arities. UF=

1

was introduced recently, and it was shown that the satisfiability problem
of the equality-free fragment UF1 of UF=

1 is decidable. In this article we
establish that the satisfiability and finite satisfiability problems of UF=

1

are NEXPTIME-complete. We also show that the corresponding prob-
lems for the extension of UF=

1 with counting quantifiers are undecidable.
In addition to decidability questions, we compare the expressivities of
UF=

1 and two-variable logic with counting quantifiers FOC2. We show
that while the logics are incomparable in general, UF=

1 is strictly con-
tained in FOC2 when attention is restricted to vocabularies with the
arity bound two.

Keywords: Two-variable logics, complexity, expressivity.

1 Introduction

Two-variable logic FO2 was introduced by Henkin in [9] and proved decidable
in [11] by Mortimer. The satisfiability and finite satisfiability problems of FO2

were shown to be NEXPTIME-complete in [6]. The extension of two-variable
logic with counting quantifiers, FOC2, was proved decidable in [7], [12]. It was
subsequently shown to be NEXPTIME-complete in [13]. Research on extensions
and variants of two-variable logic is currently very active. Recent research efforts
have mainly concerned decidability and complexity issues in restriction to partic-
ular classes of structures, and also questions related to different built-in features
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and operators that increase the expressivity of the base language. Recent articles
in the field include for example [3], [4], [10], [15], and several others.

Typical systems of modal logic are contained in two-variable logic, or some
variant of it, and hence investigations on two-variable logics have direct impli-
cations on various fields of computer science, including verification of software
and hardware, distributed systems, knowledge representation and artificial in-
telligence. However, two-variable logics do not cope well with relations of arities
greater than two, and therefore the scope of related research is significantly re-
stricted. In database theory contexts, for example, two-variable logics as such
are usually not directly applicable due to the severe arity-related limitations.

The recent article [8] introduces the uniform one-dimensional fragment, UF=

1 ,
which is a natural generalization of FO2 to contexts with relations of arbitrary
arities. The logic UF=

1 is a fragment of first-order logic obtained by restricting
quantification to blocks of existential (universal) quantifiers that leave at most
one free variable in the resulting formula. Additionally, a uniformity condition
applies to the use of atomic formulas: if n, k ≥ 2, then a Boolean combination of
atoms R(x1, ..., xk) and S(y1, ..., yn) is allowed only if {x1, ..., xk} = {y1, ..., yn}.
Boolean combinations of formulas with at most one free variable can be formed
freely, and the use of equality is unrestricted.

It was established in [8] that already the equality-free fragment UF1 of UF=

1

can define properties not expressible in FOC2 and also properties not expressible
in the recently introduced guarded negation fragment [2], which significantly gen-
eralizes the guarded fragment [1]. The article [8] also shows, inter alia, that the
equality-free logic UF1 is decidable, and furthermore, that minor modifications to
the syntax of UF1 lead to undecidable formalisms. Namely, the non-uniform gen-
eral one-dimensional fragment and the strongly uniform two-dimensional frag-
ment were shown undecidable.

In this article we establish that the satisfiability and finite satisfiability problems
of the uniform one-dimensional fragment with equality (UF=

1 ) are NEXPTIME-
complete. These results are obtained by appropriately generalizing and modify-
ing the construction in [6] that provides small models for satisfiable FO2-formulas
in Scott normal form. The NEXPTIME-completeness of FOC2 raises the natural
question whether the extension UFC=

1 of UF=

1 with counting quantifiers remains
decidable. We answer this question in the negative by showing that the satisfiabil-
ity and finite satisifiability problems of UFC=

1 are complete for Π0
1 and Σ0

1 , respec-
tively. These results are established by tiling arguments that make an appropriate
use of a ternary relation, together with the usual unary relations commonly em-
ployed in similar undecidability proofs.

We also study the expressivity of UF=

1 . We establish that while UF=

1 and
FOC2 are incomparable in expressivity in general, in restriction to vocabularies
with the arity bound two, we have UF=

1 < FOC2.
The uniform one-dimensional fragment UF=

1 canonically extends FO2, and
in fact the equality-free fragments of UF=

1 and FO2 coincide when attention is
limited to binary vocabularies. We believe that UF=

1 is an interesting fragment
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that can be used in order to extend the scope of research on two-variable logics
to the realm involving relations of arbitrary arities.

2 Preliminaries

Let m and n ≥ m be integers. We let [m,n] denote the set of integers i such
that m ≤ i ≤ n. If ϕ and ψ are first-order formulas, then ϕ ≡ ψ indicates that
the formulas are equivalent. If L and L′ are fragments of first-order logic, we
write L ≤ L′ to indicate that for every sentence of L, there exists an equivalent
sentence of L′. We let VAR := { vi | i ∈ N } denote the set of first-order variable
symbols. We mostly use metavariables x, y, z, xi, yi, zi, etc., in order to refer
to symbols in VAR. Notice that for example x1 and x2 may denote the same
variable in VAR, while v1 and v2 are necessarily different variables. The set of
free variables of a formula ψ is denoted by free(ψ).

Let X = {x1, ..., xn} be a finite set of variable symbols. Let R be a k-
ary relation symbol. An atomic formula R(xi1 , ..., xik) is called an X-atom if
{xi1 , ..., xik} = X . A finite set of X-atoms is an X-uniform set. When X is
irrelevant or known from the context, we may simply talk about a uniform
set. For example, if x, y, z are distinct variables, then {T (x, y), S(y, x)} and
{R(x, x, y), R(y, y, x), S(y, x)} are uniform sets, while {R(x, y, z), R(x, y, y)} and
{S(x, y), x = y} are not (uniform sets are not allowed to contain equality atoms).
The empty set is an X-uniform set for every finite subset of VAR, including ∅.

Let Z+ denote the set of positive integers. Let V denote a complete relational
vocabulary, i.e., V :=

⋃
k∈Z+

τk, where τk denotes a countably infinite set of
k-ary relation symbols. Every vocabulary τ we consider below is assumed to be
a subset of V . A k-ary τ-atom is an atomic τ -formula ψ such that |free(ψ)| = k.
For example, if P ∈ τ is a unary and R ∈ τ a binary symbol, then P (x), x = x,
R(x, x) are unary τ -atoms, and R(v1, v2), v1 = v2 are binary τ -atoms. If τ is
known form the context or irrelevant, we may simply talk about k-ary atoms.

Let τ ⊆ V . The set UF=

1 (τ), or the set of τ -formulas of the uniform one-
dimensional fragment, is the smallest set F satisfying the following conditions.

1. Every unary τ -atom is in F . Also ⊥,+ ∈ F .
2. Every identity atom x = y is in F .
3. If ϕ ∈ F , then ¬ϕ ∈ F . If ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F .
4. Let X = {x0, ..., xk} ⊆ VAR. Let U be a finite set of formulas ψ ∈ F whose

free variables are in X . Let V ⊆ X . Let F be a V -uniform set of τ -atoms. Let
ϕ be any Boolean combination of formulas in U ∪ F . Then ∃x1...∃xk ϕ ∈ F
and ∃x0...∃xk ϕ ∈ F .

Let UF=

1 denote the set UF=

1 (V).
Let x denote a tuple of variables, and let χ := ∃xϕ be a UF=

1 -formula formed
by using the rule 4 above. Assume that ϕ is quantifier-free. Then we call ϕ a
UF=

1 -matrix. If ϕ does not contain k-ary atoms for any k ≥ 2, with the possible
exception of equality atoms x = y, then we define Sϕ := ∅. Otherwise we define
Sϕ to be the set V used in the construction of χ (see rule 4). The set Sϕ is the
set of live variables of ϕ.
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Let ψ(x0, . . . , xk) be a UF=

1 -matrix, where (x0, ..., xk) enumerates the variables
of ψ. Let A be a structure. Let a0, . . . , ak ∈ A, where A is the domain of A.
We let live

(
ψ(x0, . . . , xk)[a0, . . . , ak]

)
denote the set T ⊆ {a0, . . . , ak} such that

ai ∈ T iff xi is a live variable of ψ(x0, . . . , xk). We may write live
(
ψ[a0, . . . , ak]

)
instead of live

(
ψ(x0, . . . , xk)[a0, . . . , ak]

)
when no confusion can arise. Notice

that since the elements ai are not required to be distinct, it is possible that
|live(ψ[a0, . . . , ak])| is smaller than the number of live variables in ψ.

Let τ ⊆ V be a finite vocabulary. A 1-type over the vocabulary τ is a maximal
satisfiable set of literals (atoms and negated atoms) over τ with the variable v1.
The set of all 1-types over τ is denoted by α[τ ], or just by α when τ is clear
from the context. We identify 1-types α and conjunctions

∧
α. A k-table over τ

is a maximal satisfiable set of {v1, ..., vk}-atoms and negated {v1, ..., vk}-atoms
over τ . Recall that a {v1, ..., vk}-atom must contain exactly all the variables in
{v1, ..., vk}, and note that a 2-table does not contain equality formulas or negated
equality formulas. We identify k-tables β and conjunctions

∧
β.

Let A be a τ -structure, and let a ∈ A. Let α be a 1-type over τ . We say that
a realizes α if α is the unique 1-type such that A |= α[a]. We let tpA(a) denote
the 1-type realized by a. Similarly, for distinct elements a1, . . . , ak ∈ A, we
let tbA(a1, . . . , ak) denote the unique k-table realized by the tuple (a1, . . . , ak),
i.e., the k-table β(v1, ..., vk) such that A |= β[a1, . . . , ak]. Note that we have
tpA(a) ≡ tbA(a) for every a ∈ A.

Let m be the maximum arity of symbols in τ . We observe that to fully define a
τ -structure A over a known domain A, it is sufficient to consider each set B ⊆ A,
|B| ≤ m, and first choose an enumeration (b1, . . . , b|B|) of the elements of B, and
then specify tbA(b1, . . . , b|B|).

Observation 1. Let ψ(x1, ..., xk) be a UF=

1 -matrix, where (x1, ..., xk) enumer-
ates the variables in ψ. Let A be a τ-structure, where τ is the set of relation
symbols in ψ. Let a1, ..., ak ∈ A be a sequence of (not necessarily distinct) ele-
ments. Whether or not A |= ψ[a1, ..., ak] holds, depends only on (i) the 1-types of
the elements ai, (ii) the list of pairs (ai, aj) such that ai = aj, and (iii) the table
tbA(b1, ..., bl), where (b1, ..., bl) is an arbitrary enumeration of live(ψ[a1, ..., ak]).

3 Complexity of UF=

1

We now introduce a normal form for UF=

1 inspired by the Scott normal form for
FO2 [14]. We say that a UF=

1 -formula ϕ is in generalized Scott normal form if

ϕ =
∧

1≤ i≤m∃

∀x∃y1 . . . ykiϕ
∃
i (x, y1, . . . , yki) ∧

∧
1≤ i≤m∀

∀x1 . . . xliϕ
∀
i (x1, . . . , xli), (1)

where formulas ϕ∃
i and ϕ∀

i are quantifier-free UF=

1 -matrices.

Proposition 1. Each UF=

1 -formula ϕ translates in polynomial time to a UF=

1 -
formula ϕ′ in generalized Scott normal form (over a signature extended by some
fresh unary symbols) such that ϕ and ϕ′ are satisfiable over the same domains.
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Proof. A simple adaptation of a well-known translation given, e.g., in [5]. "#

Let ϕ be the UF=

1 -formula in generalized Scott-normal form given in Equation
1. Assume A |= ϕ. We will build a small τ -model A′ of ϕ, where τ is the set of
relation symbols in ϕ. Our construction modifies and generalizes the construction
of a small model for a satisfiable FO2-formula in Scott normal form from [6].
Let a ∈ A and b1, . . . , bki ∈ A be elements such that A |= ϕ∃

i [a, b1, . . . , bki ]. We
say that the structure B := A�{a, b1, . . . , bki} is a witness structure for a and
ϕ∃
i . The substructure of B restricted to the elements in live(ϕ∃

i [a, b1, . . . , bki ]) is
called the live part of B. If the live part of B does not contain a, then the live
part is called free. Note that |B| may be smaller than ki + 1 (this may be even
imposed by the use of equalities). Also, a may be a member of the live part of
B even if the variable x is not a live variable of ϕ∃

i .

The court. Let n be the width of ϕ, i.e., n = max({ki + 1}1≤i≤m∃ ∪{li}1≤i≤m∀).
We assume, w.l.o.g., that n ≥ 2. A 1-type α realized in A is royal if it is realized
at most n− 1 times in A. The points in A that realize a royal 1-type are called
kings. Let K be the set of all kings in A. Clearly |K| ≤ (n− 1)|α|

We then define a set D ⊆ A. For each pair (α, ϕ∃
i ), where α is a 1-type realized

in A, if it is possible, select an element a ∈ A that realizes the 1-type α such
that there exists a witness structure Bα,i for a and ϕ∃

i whose live part B̄α,i is
free. Add the elements of B̄α,i to D. Since we add at most n − 1 elements for
each pair (α, ϕ∃

i ), the total size of D is bounded by (n− 1)m∃|α|.
For each a ∈ K ∪D and each ϕ∃

i , select a witness structure in A and let Ca,i

denote its universe. Define C := K∪D∪
⋃

a∈K∪D,1≤i≤m∃ Ca,i. We call C := A � C
the court of A. Note that |C| ≤ n|K ∪D| ≤ n((n− 1) + (n− 1)m∃)|α|. We have
|C| ≤ 2|ϕ|32|ϕ|.

Universe. The court C of A will be a substructure of A′. The remaining part
of the universe of A′ consists of three fresh disjoint sets E,F,G. Each of them
contains m∃ + n elements of type α for each non-royal α realized in A. The i-th
element of type α (1 ≤ i ≤ m∃ +n) in E (resp. F , G) is denoted eα,i (resp. fα,i ,
gα,i). The size of each set E, F , G is bounded by (n + m∃)|α| ≤ 2|ϕ|2|ϕ|. Thus
the total size of |A′| is bounded by 8|ϕ|32|ϕ|, which is exponential in |ϕ|.

Witnesses. Our next aim is to provide witness structures for each element of
a ∈ A′ \ (K ∪ D) and each ϕ∃

j . We will choose elements in A′ which will form
the universe (say, of size s) of the live part of a witness structure for a and ϕ∃

j

and define the s-table on these elements. The remaining elements of the witness
structure (elements not in the live part) will then be very easily found in A′.

Let a′ ∈ A′ \ (K ∪ D). We find a pattern element a ∈ A of a′ as follows. If
a′ ∈ C, then the pattern element is a′ itself. If a′ ∈ E ∪ F ∪ G, then we let an
arbitrary a ∈ A such that tpA(a) = tpA′(a′) be the pattern element of a′. For
each 1 ≤ j ≤ m∃, we find a witness structure Ba,j for a and ϕ∃

j , and let B̄a,j be
its live part. If this live part is free, then there is nothing to do; an appropriate
live part for the witness structure of a′ and ϕ∃

j already exists in D := C � D.

Otherwise, let r1, . . . , rk be the kings included in B̄a,j (possibly k = 0), and let
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a, b1, . . . , bl be the non-royal elements of B̄a,j (possibly l = 0). Let αi be the
1-type of bi (1 ≤ i ≤ l). We consider the following cases.

Case 1. If l = 0 and a′ ∈ C, then there is nothing to do; a′ forms the live part
of the desired witness structure together with some elements in K.

Case 2. If l = 0 and a′ �∈ C, then we set tbA′(a′, r1, . . . , rk) := tbA(a, r1, . . . , rk).

Case 3. If l > 0 and a′ ∈ E, then we define b′1 := fα1,j and choose b′2, . . . , b
′
l

to be distinct elements of types α2, . . . , αl from S := {fα,s : m∃ + 1 ≤ s ≤
m∃ + n, α non-royal}. This is possible since l < n and S contains n realizations
of each non-royal 1-type. We set

tbA′(a′, r1, . . . , rk, b
′
1, . . . , b

′
l) := tbA(a, r1, . . . , rk, b1, . . . , bl).

Case 4. If l > 0 and a′ ∈ F (resp. a′ ∈ G ∪ (C \ (K ∪D))), then we proceed as
in the previous case, but we take the elements b′i from G (resp. E).

The described procedure of providing live parts of witness structures can be
executed without conflicts. It is probably worth commenting why we prepared
free live parts of witness structures in D instead of building them using elements
of E ∪ F ∪G in a “regular” way. One of the problematic situations arises, e.g.,
when an element a′ from, say, E builds the live part of its witness structure
for some ϕ∃

i using an element b′ ∈ F and some kings r1, . . . , rk. In this case
tbA′(b′, r1, . . . , rk) is defined. However, it may happen that b′ needs to form
the live part of its witness structure for some ϕ∃

j using precisely the elements
b′, r1, . . . , rk, which can lead to a conflict.

Completion. Let a′1, . . . , a
′
k (a′i �= a′j for i �= j, 1 < k ≤ n) be elements in

A′ such that the table tbA′(a′1, . . . , a
′
k) has not yet been defined. Select dis-

tinct elements a1, . . . , ak of A such that tpA(ai) = tpA′ (a′i) (1 ≤ i ≤ k).
This is always possible due to our strategy of not introducing extra kings. Set
tbA′(a′1, . . . , a

′
k) := tbA(a1, . . . , ak).

It is easy to show that A′ |= ϕ. Thus we have proved:

Theorem 2. UF=

1 has the finite model property. Moreover, every satisfiable UF=

1

formula ϕ has a model whose size is bounded exponentially in |ϕ|.

It is now possible to prove the following theorem.

Theorem 3. The satisfiability problem (= finite satisfiability problem) for UF=

1

is NEXPTIME-complete.

4 Expressivity

In this section we compare the expressivity of UF=

1 with the expressivities of FO2

and FOC2. Clearly UF=

1 contains FO2, and it is not hard to see that the inclusion
is strict; equalities can be used freely in UF=

1 , and for example the property that
there are precisely two elements in a unary relation P is expressible in UF=

1 but
not in FO2. The expressivities of UF=

1 and FOC2 are related as follows.
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Theorem 4. UF=

1 and FOC2 are incomparable in expressivity.

Proof. It is straighforward to establish that FOC2 cannot express the UF=

1 -
sentence ∃x∃y∃zR(x, y, z), and therefore UF=

1 �≤ FOC2. To show that FOC2 �≤
UF=

1 , let R be a binary relation symbol and consider models over the signature
{R}. We claim that UF=

1 cannot express the FOC2-definable condition that the
in-degree (w.r.t. the relation R) at every node is at most one. Assume ϕ(R)
is a UF=

1 -formula that defines the condition. Consider the conjunction ϕ(R) ∧
∀x∃yR(x, y) ∧ ∃x∀y¬R(y, x). It is easy to see that this formula does not have a
finite model, and thereby the assumption that UF=

1 can express ϕ(R) is false. "#

The rest of this section is devoted to the scenario in which the signature
contains only unary and binary relation symbols. We will show that in such a
case the expressivity of UF=

1 lies strictly between FO2 and FOC2.
Let τ be a finite relational vocabulary. Let β be a 2-table over τ , and let x and

y be distinct variables. Let S be the set of atoms obtained from β by replacing
occurrences of the variables v1 and v2 in β by x and y, respectively. We call S
a binary τ-diagram in the variables (x, y), and denote it by β(x, y). We identify
binary diagrams and conjunctions over them. A binary τ-arrow in the variables
x, y is a formula R(x, y) (or R(y, x)), where R ∈ τ . Notice that neither equality
atoms nor atoms of the form R(x, x), R(y, y) are binary τ -arrows. It is easy to
show that if ϕ is a Boolean combination of binary τ -arrows in the variables x, y,
then ϕ is equivalent to the disjunction of τ -diagrams β(x, y) that entail ϕ, i.e.,
β(x, y) |= ϕ. Note that

∨
∅ = ⊥ is a legitimate disjunction of diagrams.

Let {x0, ..., xk} be a (possibly empty) set of distinct variables. An identity
literal over {x0, ..., xk} is a formula of the type xi = xj or ¬xi = xj , where
i, j ∈ [0, k]. An identity literal is non-trivial if the variables in it are different.
An identity profile over {x0, ..., xk}, or a {x0, ..., xk}-profile, is a maximal sat-
isfiable set of non-trivial identity literals over {x0, ..., xk}. We identify identity
profiles and conjunctions over them. We let diff (x0, ..., xk) denote the conjunc-
tion of inequalities xi �= xj , where i, j ∈ [0, k], i �= j. An identity profile is a
discriminate profile if it is the formula diff (x0, ..., xk) for some set {x0, ..., xk}
of distinct variables. Let I be a set of identity literals over {x0, ..., xk}. Let ϕ be
a {x0, ..., xk}-profile. We say that ϕ is consistent with I if ϕ |=

∧
I.

A UF=

1 -formula ϕ is a block formula if ϕ is of the type ∃xψ or ¬∃xψ. Here
∃x denotes a vector of one or more existentially quantified variables. formulas
∃xψ are called positive blocks, while formulas ¬∃xψ are negative blocks. A
UF=

1 -formula is simple if it is a literal or a block formula.
Let τ be a finite relational vocabulary with the arity bound two. Let x0, ..., xk

be distinct variable symbols. Let ϕ := ∃x1...xk ψ be a UF=

1 -formula over τ .
Let x, y ∈ {x0, ..., xk} be distinct variables. We call ϕ a τ-diagram block if the
formula ψ is a conjunction

β(x, y) ∧ diff (x0, ..., xk) ∧ ψ0(x0) ∧ ... ∧ ψk(xk),

where β(x, y) is a binary τ -diagram in the variables (x, y), and each formula
ψi(xi) is a conjunction of simple formulas ψ′ such that free(ψ′) ⊆ {xi}. Further-
more, if χ(x) is a τ -diagram block with the free variable x, then also the formula
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∃xχ(x) is a τ -diagram block. A UF=

1 -formula ϕ is in diagram normal form if for
every positive block formula ϕ′ that occurs as a subformula in ϕ, there is a τ
such that ϕ′ is a τ -diagram block. The following lemma is easy to prove.

Lemma 1. Every positive block formula is equivalent to a disjunction of diagram
blocks.

Corollary 1. Each UF=

1 -formula is equivalent to a formula in diagram normal
form.

Proof. By induction on the structure of formulas, using Lemma 1. "#
Let τ be a finite relational vocabulary with the arity bound 2. Let k ∈ Z+, and

let x0, ..., xk be distinct variable symbols. Let ϕ(x0, ..., xk) := diff (x0, ..., xk)∧ψ,
where ψ is conjunction of τ -literals such that the following conditions hold.

1. The variables of each conjunct of ψ are in {x0, ..., xk}.
2. If ψ has R(x, y) or ¬R(x, y) as a conjunct, where R ∈ τ is a binary relation

symbol and x, y distinct variables, then x0 ∈ {x, y}.
Then we call ϕ(x0, ..., xk) a τ-star formula in the variables (x0, ..., xk). The
variable x0 is called the centre variable of ϕ. Consider then a quantifier-free
τ -formula ψ(x0, ..., xk) := diff (x0, ..., xk) ∧ β ∧ α such that the following
conditions are satisfied.

1. The formula β is a conjunction β1(x0, x1) ∧ ... ∧ βk(x0, xk), where each
βi(x0, xi) is a binary τ -diagram in the variables (x0, xi).

2. The formula α is a conjunction α0(x0) ∧ ... ∧ αk(xk), where each αi(xi) is a
1-type over τ and in the variable xi. (The variable v1 is replaced by xi.)

The formula ψ(x0, ..., xk) is called a τ-star type in the variables (x0, ..., xk). The
variable x0 is the centre variable of the τ -star type. It is straightforward to
show that every τ -star formula in the variables (x0, ..., xk) is equivalent to a
disjunction of τ -star types in the variables (x0, ..., xk).

Let ϕ(x0, ..., xk) be a τ -star formula in the variables (x0, ..., xk). Then the
formula ∃x1...∃xkϕ(x0, ..., xk) is called a τ-star centre formula of the width k.
Let ψ(x0, ..., xk) be a τ -star type in the variables (x0, ..., xk). Then the formula
∃x1...∃xkψ(x0, ..., xk) is called a τ-star centre type of the width k. The following
lemma follows immediately from the fact that every τ -star formula is equivalent
to a disjunction of τ -star types.

Lemma 2. Every τ-star centre formula of the width k is equivalent to a dis-
junction of τ-star centre types of the width k.

A 2-type over τ is a maximal satisfiable set of τ -literals in the variables v1
and v2 (equalities and negated equalities are considered to be τ -literals). If T is
a 2-type over τ and x, y distinct variables, we let T (x, y) denote the set obtained
from T by replacing all occurrences of v1 and v2 in T by x and y, respectively.
Below we identify sets T (x, y) and conjunctions over them.

Let ψ be a τ -star type in the variables (x0, ..., xk). Each pair (x0, xi), where
i ∈ [1, k], is called a ray of ψ. Let T be a 2-type over τ . We say that the ray
(x0, xi) of ψ realizes T if ψ |= T (x0, xi).
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Theorem 5. Let τ be a relational vocabulary with the arity bound 2. Then
UF=

1 (τ) ≤ FOC2(τ). The inclusion is strict if τ contains a binary symbol.

Proof. We have above shown that FOC2(τ) �≤ UF=

1 (τ) if τ contains a binary
relation symbol. Therefore it suffices to show that UF=

1 (τ) ≤ FOC2(τ). The
claim is established by induction on the structure of UF=

1 -formulas in diagram
normal form. We discuss the case involving quantifiers.

Let σ ⊆ τ and consider a σ-diagram block ϕ(x0) := ∃x1...∃xk ψ, where
ψ := β(x0, x1) ∧ diff (x0, ..., xk) ∧ ψ0(x0) ∧ ...∧ ψk(xk). Note that we assume
that the free variable x0 of ϕ(x0) occurs in the σ-diagram β(x0, x1)—unless σ
does not contain binary relation symbols and thus β(x0, x1) = +. The case where
σ contains binary relation symbols and x0 does not occur in the binary σ-diagram
of ψ, is discussed later. Write each formula ψi(xi) in a form δi(xi) ∧ δ′i(xi), where
δi(xi) is a conjunction of the literals that occur as conjuncts in ψi(xi) and δ′i(xi)
is the conjunction of the block formulas of ψi(xi). We have

ψ ≡ β(x0, x1) ∧ diff (x0, ..., xk) ∧
(
δ0(x0) ∧ δ′0(x0)

)
∧ ... ∧

(
δk(xk) ∧ δ′k(xk)

)
.

Let P0, ..., Pk be fresh unary relation symbols. Consider the formula

ψ′ := β(x0, x1) ∧ diff (x0, ..., xk)∧
(
δ0(x0)∧P0(x0)

)
∧ ...∧

(
δk(xk)∧Pk(xk)

)
.

Let σ′ be the set of relation symbols in ψ′. Let us consider the formula χ(x0) :=
∃x1...∃xk ψ

′. By Lemma 2, we have χ(x0) ≡ χ′(x0) := θ0(x0) ∨ ... ∨ θm(x0),
where each θi(x0) is a σ′-star centre type. We shall next show that each σ′-star
centre type can be expressed in FOC2. This will conclude the argument concern-
ing the formula ϕ(x0), as the disjuncts θi(x0) of χ′(x0) can first be replaced by
equivalent FOC2-formulas, and after that, each subformula Pi(z) (0 ≤ i ≤ k)
in the resulting formula can be replaced by an FOC2-formula δ′′i (z) ≡ δ′i(z)
obtained by the induction hypothesis. Here z is either of the variables in the
two-variable formula we are constructing. If necessary, variables in δ′i can be cir-
culated to avoid variable capture. This way we obtain an FOC2-formula equiv-
alent to ϕ(x0).

The notion of a star centre type was of course designed to be expressible in
FOC2. Consider the σ′-star centre type ∃x1...∃xk γ, where γ is the σ′-star type

γ := diff (x0, ..., xk)
∧

i∈{1,...,k}
βi(x0, xk) ∧

∧
i∈{0,...,k}

αi(xi).

For each 2-type T over σ′, let #T denote the number of rays of γ that realize
T . Let T denote the set of all 2-types over σ′. Define

γ′(x0) :=
∧

T ∈T

∃≥#T y T (x0, y).

It is easy to see that the FOC2-formula γ′(x0) is equivalent to the σ′-star centre
type ∃x1...∃xk γ.

Let us then consider a σ-diagram block formula θ(x0) := ∃x1...∃xk η, where
η := β(xi, xj) ∧ diff (x0, ..., xk) ∧ ψ0(x0) ∧ ...∧ ψk(xk), and x0 �∈ {xi, xj}. Let
x denote a tuple containing exactly the variables in {x0, ..., xk} \ {xi}. Consider
the block formula θ′(xi) := ∃x η. In this formula, the free variable xi occurs in
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the part β(xi, xj) of η. Thus, by our argument above, θ′(xi) is equivalent to a
formula θ′′(xi) of FOC2.

By the induction hypothesis, there are FOC2-formulas ψ′
0(x0) ≡ ψ0(x0) and

ψ′
j(xj) ≡ ψj(xj). Let ψ′

j(x0) denote the FOC2-formula obtained from ψ′
j(xj)

by changing the free variable xj to x0, and circulating variables, if necessary.
Let the variables used in ψ′

0(x0) and ψ′
j(x0) be x0 and xi. Define B(xi, x0) :=

β(xi, x0)∧ψ′
j(x0). The original formula θ(x0) is equivalent to the FOC2-formula

ψ′
0(x0) ∧ ∃xi

(
xi �= x0∧θ′′(xi)∧

(
¬B(xi, x0)∨ ∃≥2x0

(
xi �= x0∧B(xi, x0)

)))
.

To conclude the proof, we need to discuss the case involving a block formula
χ := ∃x0...∃xkχ

′ that does not contain a free variable. Assume, w.l.o.g., that
k ≥ 1. Convert the block formula ∃x1...∃xkχ

′ to an FOC2-formula π(x0). Thus
the original formula χ is equivalent to the FOC2-formula ∃x0π(x0). "#

5 Undecidability of UFC=
1

Since FOC2 and UF=

1 are decidable, it is natural to ask whether the extension of
UF=

1 by counting quantifiers, UFC=
1 , remains decidable. Formally, UFC=

1 is ob-
tained from UF=

1 by allowing the free substitution of quantifiers ∃ by quantifiers
∃≥k, ∃≤k, ∃=k. We next show that both the general and the finite satisfiability
problems of UFC=

1 are undecidable.
For the proofs, we use the standard tiling and periodic tiling arguments. A tile

is a mapping t : {R,L, T,B} → C, where C is a countably infinite set of colours.
We use the subscript notation tX := t(X) for X ∈ {R,L, T,B}. Intuitively, tR,
tL, tT and tB are the colours of the right edge, left edge, top edge and bottom
edge of the tile t, respectively.

Let S := (S,H, V ) be a structure with domain S and binary relations H and
V . Let T be a finite nonempty set of tiles. A T-tiling of S is a function f : S → T
that satisfies the following conditions.

(TH) For all a, b ∈ S, if f(a) = t, f(b) = t′ and (a, b) ∈ H , then tR = t′L.
(TV ) For all a, b ∈ S, if f(a) = t, f(b) = t′ and (a, b) ∈ V , then tT = t′B.

The tiling problem for S asks, given a finite nonempty set T of tiles, whether
there exists a T-tiling of S.

The standard grid is the structure G := (N×N, H, V ), where H = {
(
(i, j), (i+

1, j)
)
| i, j ∈ N } and V = {

(
(i, j), (i, j + 1)

)
| i, j ∈ N } are binary relations. It

is well known that the tiling problem for G is Π0
1 -complete. Let n be a positive

integer. Let T := [0, n−1]× [0, n−1]. An (n×n)-torus is the structure (T,H, V )
such that H = {

(
(i, j), (i+1, j)

)
| (i, j) ∈ T } and V = {

(
(i, j), (i, j+1)

)
| (i, j) ∈

T }, where the sum is taken modulo n. The periodic tiling problem asks, given
a finite nonempty set T of tiles, whether there exist an n ∈ Z+ such the (n ×
n)-torus is T-tilable. It is well known that the periodic tiling problem is Σ0

1 -
complete.

We shall below define a UFC=
1 -formula η which axiomatizes a sufficiently

rich class of grid-like structures. In order to encode grids with UFC=
1 -formulas,
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we employ a ternary predicate R and a unary predicate E. Intuitively, E labels
elements that represent the nodes of the even rows of a grid, and R contains
triples (a, b, c) such that b is the horizontal successor of a and c is the vertical
successor of b, or b is the vertical successor of a and c is the horizontal successor of
b. The following figure depicts an initial portion of an infinite structure AG (over
the signature {R,E}) which is our intended encoding of the standard infinite
grid G. An arrow from a node a via b to c means that R(a, b, c) holds.

E

¬E

E

R

Define the formulas ϕH(x, y) := ∃z
(
(R(x, y, z)∨R(z, x, y))∧ (E(x) ↔ E(y))

)
and ϕV (x, y) := ∃z

(
(R(x, y, z)∨R(z, x, y))∧ (E(x) ↔ ¬E(y))

)
. Note that these

are not UF=

1 -formulas. Let A be a structure over the vocabulary {R,E}. We let
A∗ be the structure over the vocabulary {H,V } such that the A∗ has the same
domain A as A, and the relation HA∗

(V A∗
) is the set of pairs (a, a′) ∈ A such

that A |= ϕH [a, a′] (A |= ϕV [a, a′]). Note that A∗
G is the standard grid G.

We next define a UFC=
1 -formula η that captures some essential properties of

AG. Let η be the conjunction of the formulas (2) – (8) below. Note that the
syntactic restrictions of UFC=

1 are indeed met.

∃xE(x) (2)

∀x∃=1y∃z(R(x, y, z) ∧ (E(x) ↔ E(y))) (3)

∀x∃=1y∃z(R(x, y, z) ∧ (E(x) ↔ ¬E(y))) (4)

∀x∃=1z∃yR(x, y, z) (5)

∀x∀y∀z(R(x, y, z) → (E(x) ↔ ¬E(z))) (6)

∀x∃=1y∃z(((E(x) ↔ E(y)) ∧ (R(z, x, y) ∨R(x, y, z))) (7)

∀x∃=1y∃z(((E(x) ↔ ¬E(y)) ∧ (R(z, x, y) ∨R(x, y, z))) (8)

We claim that η has the following properties.

(i) There exists a model A |= η such that A∗ = G.
(ii) For every model A |= η, there is a homomorphism from G to A∗.

Assume we can show that η indeed has the above properties. Let T be an
arbitrary input to the tiling problem, and let PT := {Pt | t ∈ T } be a set of
fresh unary predicate symbols. Construct a UFC=

1 -formula ϕT := ψ0 ∧ ψH ∧ ψV

over the vocabulary {R,E} ∪ PT as follows.

1. ψ0 states that each point of the model is in the interpretation of exactly one
predicate symbol Pt, t ∈ T.

2. ψH ≡ ∀x∀y
∧

t,t′∈T, tR �=t′L
¬
(
ϕH(x, y) ∧ Pt(x) ∧ Pt′(y)

)
. Note that the right

hand side here is not a UFC=
1 -formula, but it can easily be modified so that

the resulting formula is.
3. ψV ≡ ∀x∀y

∧
t,t′∈T, tT �=t′B

¬
(
ϕV (x, y) ∧ Pt(x) ∧ Pt′(y)

)
.
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It is easy to see that η ∧ ϕT has a model iff there exists a T-tiling of G.
It is not difficult to show that η indeed has the properties (i) and (ii) listed

above Thus the satisfiability problem of UFC=
1 is Π0

1 -hard. Since UFC=
1 is a

fragment of first-order logic, the following theorem holds.

Theorem 6. The satisfiability problem of UFC=
1 is Π0

1 -complete.

The above argument leading to Theorem 6 can be used with minor modi-
fications in order to show Σ0

1-completeness of the finite satisfiability problem
of UFC=

1 . The argument uses the periodic tiling problem. Thus the following
theorem holds.

Theorem 7. The finite satisfiability problem of UFC=
1 is Σ0

1 -complete.
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Abstract. We give a general approach to show the closure under com-
plement and decide the emptiness for many classes of multistack visibly
pushdown automata (Mvpa). A central notion in our approach is the vis-
ibly path-tree, i.e., a stack tree with the encoding of a path that denotes
a linear ordering of the nodes. We show that the set of all such trees
with a bounded size labeling is regular, and path-trees allow us to design
simple conversions between tree automata and Mvpa’s. As corollaries of
our results we get the closure under complement of ordered Mvpa that
was an open problem, and a better upper bound on the algorithm to
check the emptiness of bounded-phase Mvpa’s.

1 Introduction

Pushdown automata working with multiple stacks (multistack pushdown au-
tomata, Mpa for short) are a natural model of the control flow of shared-memory
multithreaded programs. They are as much expressive as Turing machines al-
ready when only two stacks are used (the two stacks can act as the two halves
of the tape portion in use). Therefore, the research on Mpa’s related to the
development of formal methods for the analysis of multithreaded programs has
mainly focused on decidable restricted versions of these models (as a sample of
recent research see [2–6, 8, 9, 12, 14–18, 20]).

Formal language theories are a valuable source of tools for applications in other
domains. Robust definitions, i.e., classes with decidable decision problems and
closed under the main language operations (among all the Boolean operations),
are particularly appealing. For instance, in the automata-theoretic approach to
model-checking linear-time properties, the verification problem can be rephrased
as a language inclusion or checking the emptiness of a language intersection,
pattern-matching problems are often rephrased as membership queries. In a
recent paper [10], the authors define a notion of perfect class of languages as a
class that is closed under the Boolean operations and with a decidable emptiness
problem, and investigate perfect classes modulo bounded languages.

Robust theories of Mpa’s introduced in the literature rely on both a restric-
tion on the admitted behaviours [12–14] and the visibility [1] of stack operations
(each symbol of the input alphabet explicitly identifies if a push onto stack
i, or a pop from stack i, or no stack operation must happen on reading it).

� Partially supported by the FARB grants 2011-2013, Università degli Studi di Salerno.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 377–389, 2014.
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The restriction is imposed to gain the decidability of the emptiness problem.
Visibility instead gains the closure under intersection, which does not hold also
for a single stack pushdown automaton (with visibility, stack operations on a
same stack synchronize). It is not a severe restriction for applications, the se-
quence of locations visited in the executions of programs being indeed visible.

In the literature, the results on Mpa’s are shown with different techniques
for the different restrictions. Here, we introduce a unifying approach to show
the two main technical challenges in proving robustness: emptiness decidability
and closure under complement. We introduce the notion of visibly path-tree, that
incidentally also allows us to define a robust class of multistack visibly pushdown
automata (Mvpa) that subsumes the main classes indentified in the literature.

A visibly path-tree is essentially a tree that encodes a visibly multi-stack
word such that: (1) the left child of a node is its linear successor and the right-
child relation captures the relations among matching calls (each causing a push
transition on a specified stack) and returns (each causing a pop transition on a
specified stack) and (2) it has an additional labeling that encodes a traversal of
the tree that reconstructs the corresponding word. This labeling is formed by an
ordered sequence of pairs, each composed of a direction (pointing to a neighbor
in the tree) and an index (denoting the position of the pair to follow in the
pointed neighbor). We define the class Tmvpa by restricting Mvpa to languages
that for a given k > 0, contain only words that can be encoded into a visibly
k-path-tree, i.e., a path-tree with at most k pairs in the labeling of each node.

Our first result is to construct, for an Mvpa A over an n-stack alphabet, two
tree automata Pk and Ak. Pk accepts the set PTk of all visibly k-path-trees and
has size 2O(nk). If the input is a k-path-tree, Ak accepts it iff it encodes a word
accepted by A. Ak has size O(|A|k). Thus, we reduce the emptiness problem
for Tmvpa to checking the emptiness of the intersection of Pk and Ak, that
yields a 2O(k(n+log |A|)) time solution. To show the closure under complement we
first take the tree automaton for the intersection of Pk and the complement of
Ak, and then, from this, we construct Ā that accepts the complement of the
language accepted by A. The size of Ā is exponential in the size of A and doubly
exponential in k. From the effectiveness of these two proofs, we also get the
decidability of containment, equivalence and universality problems.

Our approach is general, in the sense that it indeed works for each class of
Mvpa’s that is defined by a restriction R that refines the bounded path-tree
restriction used to define Tmvpa, i.e., such that there is a bound k that suffices
to encode in k-path-trees all the words satisfying R. This is sufficient for the
complement since the actual restriction is captured by the resulting Mvpa in
the end. Instead for the emptiness, we also need to construct an additional tree
automaton that exactly captures the restriction R on the k-path-trees.

As corollaries of our results, we show the closure under complement for ordered

Mvpa that was open1 and an algorithm in time 2(n+log |A|)2O(d)

to check the

1 A proof via determinization was given in [8], but that is wrong since the language of
all the words (ab)icjdi−jxjyi−j is both accepted by a 2-stack Omvpa and inherently
nondeterministic for Mvpa’s [13].
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emptiness for bounded-phase Mvpa, improving the 2|A|2
O(d)

bound shown in
[11, 12] and matching the bound that can be derived from the results of [9].

Our path-tree representation has been inspired by the tree decomposition of
bounded-phase and ordered words given in [19]. Concerning the closure under
complement, our construction is structured as that from [12] but differs from
it for the tree encoding of runs (path-tree) and thus in the tree automata con-
structions. Further, the approach from [12] does not apply directly to the ordered
restriction and a different encoding would be needed. We give (i) a unifying ap-
proach for bounded-phase and ordered restrictions by a less restrictive limitation,
and (ii) sufficient conditions for applying our constructions to new restrictions
that can be captured by bounded path-trees.

2 Preliminaries

For i, j ∈ N, we let [i, j] = {d ∈ N | i ≤ d ≤ j} and [j] = [1, j].

Words over call-return alphabets. Given a finite alphabet Σ and an integer
n > 0, an n-stack call-return labeling is a labΣ,n : Σ → ({ret , call}× [n])∪{int},
and an n-stack call-return alphabet is Σ̃n = (Σ, labΣ,n). We fix the n-stack

call-return alphabet Σ̃n = (Σ, labΣ,n) for the rest of the paper.
For h ∈ [n], we denote Σh

r = {a ∈ Σ | labΣ,n(a) = (ret , h)} (set of re-
turns), Σh

c = {a ∈ Σ | labΣ,n(a) = (call , h)} (set of calls), and Σint = {a ∈
Σ | labΣ,n(a) = int} (set of internals). Moreover, Σc =

⋃n
h=1 Σ

h
c , Σr =

⋃n
h=1 Σ

h
r

and Σh = Σh
c ∪Σh

r ∪Σint .

A stack-h context is a word in (Σh)∗. For a word w = a1 . . . am over Σ̃n,
denoting Ch = {i ∈ [m] | ai ∈ Σh

c } and Rh = {i ∈ [m] | ai ∈ Σh
r }, the matching

relation ∼h defined by w is such that (1) ∼h⊆ Ch×Rh, (2) if i ∼h j then i < j,
(3) for each i ∈ Ch and j ∈ Rh s.t. i < j, there is an i′ ∈ [i, j] s.t. either i′ ∼h j
or i ∼h i′, and (4) for each i ∈ Ch (resp. i ∈ Rh) there is at most one j ∈ [m] s.t.
i ∼h j (resp. j ∼h i). When i ∼h j, we say that positions i and j match in w. If
i ∈ Ch and i �∼h j for any j ∈ Rh, then i is an unmatched call. Analogously, if
i ∈ Rh and j �∼h i for any j ∈ Ch, then i is an unmatched return.
Multi-stack visibly pushdown languages. A multi-stack visibly pushdown
automaton over an n-stack call-return alphabet pushes a symbol on stack h when
it reads a call of the stack h, and pops a symbol from stack h when it reads a
return of the stack h. Moreover, it just changes its state, without modifying any
stack, when reading an internal symbol. A special bottom-of-stack symbol ⊥ is
used: it is never pushed or popped, and is in each stack when computation starts.
A multi-stack visibly pushdown automaton (Mvpa) A over Σ̃n is (Q,QI , Γ, δ,QF )
where Q is a finite set of states, QI ⊆ Q is the set of initial states, Γ is a finite
stack alphabet containing ⊥, δ ⊆ (Q×Σc×Q× (Γ\ {⊥}))∪ (Q×Σr×Γ ×Q)∪
(Q×Σint ×Q) is the transition function, and QF ⊆ Q is the set of final states.
Moreover, A is deterministic if |QI | = 1, and |{(q, a, q′) ∈ δ} ∪ {(q, a, q′, γ′) ∈
δ} ∪ {(q, a, γ, q′) ∈ δ}| ≤ 1, for each q ∈ Q, a ∈ Σ and γ ∈ Γ .

A configuration of an Mvpa A over Σ̃n is a tuple α = 〈q, σ1, . . . , σn〉, where
q ∈ Q and each σh ∈ (Γ \ {⊥})∗.{⊥} is a stack content. Moreover, α is initial
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if q ∈ QI and σh =⊥ for every h ∈ [n], and accepting if q ∈ QF . A transition

〈q, σ1, . . . , σn〉 a−→A 〈q′, σ′
1, . . . , σ

′
n〉 is such that one of the following holds:

[Push] a ∈ Σh
c , ∃γ ∈ Γ \ {⊥} such that (q, a, q′, γ) ∈ δ, σ′

h = γ ·σh, and σ′
i = σi

for every i ∈ ([n] \ {h}).
[Pop] a ∈ Σh

r , ∃γ ∈ Γ such that (q, a, γ, q′) ∈ δ, σ′
i = σi for every i ∈ ([n]\{h}),

and either γ �=⊥ and σh = γ · σ′
h, or γ = σh = σ′

h =⊥.
[Internal] a ∈ Σint, (q, a, q′) ∈ δ, and σ′

h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of A on w from α0 to αm, denoted
α0

w−→A αm, is a sequence of transitions αi−1
ai−→A αi, for i ∈ [m]. A word

w is accepted by A if there exist an initial configuration α and an accepting
configuration α′ such that α

w−→A α′. The language accepted by A is denoted with
L(A). A language L ⊆ Σ∗ is a multi-stack visibly pushdown language (Mvpl) if

there exist an Mvpa A over Σ̃n = (Σ, labΣ,n) such that L = L(A).

3 Visibly Path-Trees

Trees. A (binary) tree T is any finite prefix-closed subset of {↙,↘}∗. A node
is any x ∈ T , the root is ε and the edge-relation is implicit: edges are pairs of the
form (v, v.d) with v, v.d ∈ T and d ∈ {↙,↘}; for a node v, v.↙ is its left-child
and v. ↘ is its right-child. We also denote with v. ↑ the parent of v, and with
D = {↑,↙,↘} the set of directions. For a finite alphabet Υ , a Υ -labeled tree is
a pair (T, λ) where T is a tree, and λ : T → Υ is a labeling map.

Path-trees. For a tree T , a T -path π is any sequence π = v1, v2, . . . , v� of T
nodes s.t. (1) v1 is the root of T , (2) for i ∈ [�− 1], vi+1 is vi.di for some di ∈ D
(π corresponds to a traversal of T ), (3) for i ∈ [� − 1], v� �= vi (the last node
occurs once in π), (4) π contains at least one occurrence of each node in T , and
(5) for i ∈ [1, �− 1], if vi is the first occurrence of a node v ∈ T that has a left
child, i.e., v. ↙∈ T , then vi+1 is the first occurrence of v. ↙ in π (in the T
traversal, we first visit the left child of any newly discovered node).

ε

(↙, 1) (↘, 1) (↙, 4)

1(↙, 1) (↘, 1) (↑, 2) (↙, 2) 2 (↙, 1) (↑, 3)

3(↑, 2) (↙, 1) 4(↑, 3)

6(�,�)

5 (↑, 2)

Fig. 1. A sample path-tree T1

For the tree T1 in Fig. 1, π1 =
ε, 1, 3, 1, 4, 1, ε, 2, 5, 2, ε, 1, 3, 6 is
a T1-path. By deleting exactly
one occurrence of any node in
π1 or concatenating more occur-
rences, the resulting sequence
would not satisfy one of the
above properties.

We introduce the notion of
path-tree, that is, a labeled tree
(T, λ) that encodes a T -path
in its labels as follows. Denote
dir+

� = dir+∪{(�,�)} where dir = D×N and � �∈ D∪N. Except for one node
that is labeled with (�,�), each other node has a label in dir+. The labeling
is such that by starting from the first pair of the root, we can build a chain of
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pairs ending at (�,�). In such a chain, a pair (d, i) labeling a node u is followed
by the i-th pair labeling u.d (i.e., a child or the parent of u, depending on d).
For example, a pair (↙, 2) at a node u denotes that the next pair in the chain is
the second pair labeling its left child. The sequence of nodes visited by following
such a chain is the path defined by λ in T . To ensure that the defined path is
a T -path, we require some additional properties on λ which are detailed in the
formal below. In Fig. 1, we give a path-tree T1 and emphasize the chain defined
by the labels of T1 by linking the pairs with dashed arrows. The path defined by
the labeling of T1 is the path π1 above, which is a T1-path.

In the following, for a sequence ρ = (d1, i1) . . . (dh, ih) ∈ dir+
�, we let |ρ| = h

and denote with ρ[j] = (dj , ij), for j ∈ [h].

Definition 1. A dir+
�-labeled tree (T, λ) is a path-tree if there is exactly one

node labeled with (�,�) and, for every node v of T with λ(v)=(d1, i1) . . . (dh, ih),
and for every j ∈ [h], the following holds:
1. if ij �= � then v.dj is a node of T and ij ≤ |λ(v.dj)| (pointed pair exists);
2. if v �= ε or j > 1, then there are exactly one node u and one index i ≤ |λ(u)|

s.t. λ(u)[i] = (d, j) and u.d = v (except for the first pair labeling the root,
every pair is pointed exactly from one adjacent node);

3. if v = u.d, for a node u of T and d ∈ {↙,↘}, then there exists i ≤ |λ(u)|
s.t. λ(u)[i] = (d, 1) (except for the root the first pair in a label is always
pointed from the parent);

4. if v. ↙∈ T then λ(v)[1] = (↙, 1) (the first pair in a label always points to
the first pair of the left child, if any);

5. if j < h there is a i > ij s.t. λ(v.dj)[i] is (↑, j + 1), if dj ∈ {↙,↘}, and
λ(v.dj)[i] is (↙, j+1) (resp. (↘, j+1)), if dj =↑ and v is a left (resp. right)
child (if a pair of v points to a pair β of an adjacent node u = v.dj , the next
pair of v is pointed from a pair β′ of u that follows β in the u labeling);
moreover, for all � ∈ [ij + 1, i− 1], λ(v.dj)[�] does not point to a pair of v.

Path-trees define T -paths. We define a function tp that maps each path-tree
(T, λ) into a corresponding sequence of T nodes, and show that indeed tp(T, λ)
is a T -path. Let π = v1, . . . , v�, and d1, . . . , d�, and i1, . . . , i� be the maximal
sequences such that (1) v1 is the root and λ(v1)[1] = (d1, i1), and (2) for j ∈ [2, �],
vj = vj−1.dj−1 and λ(vj)[ij−1] = (dj , ij). We define tp(T, λ) as the sequence π.
Also, we say that, in π, the occurrence v1 corresponds to the first pair of the
root and the occurrence vj+1 of a node v ∈ T corresponds to the ij-th pair of v,
for j ∈ [�− 1]. The following lemma holds:

Lemma 1. For each path-tree T = (T, λ), node u and i ≤ |λ(u)|, the i-th
occurrence of u in tp(T ) corresponds to the i-th pair of u, and tp(T ) is a T -path.

From T -paths to path-trees. For a T -path π, we define pt(π) as the tree whose
labeling defines exactly π. We iteratively construct a sequence of labeling maps
by concatenating a pair at each iteration.
Denote dir∗

� = dir∗ ∪ {(�,�)}. For a T -path π = v1, . . . , v� and i ∈ [�], let
λπ
i : T → dir∗

� be the mapping defined as follows:
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– λπ
1 (v1) = (d1, 1), v2 = v1.d1 and λπ

1 (v) = ε for every v ∈ T \ {v1};
– for i ∈ [2, �− 1], λπ

i (vi) = λπ
i−1(vi).(di, j + 1) where j = |λπ

i−1(vi+1)|, vi+1 is
vi.di and for every v ∈ T \ {vi}, λπ

i (v) = λπ
i−1(v);

– λπ
� (v�) = (�,�), and λπ

� (v) = λπ
�−1(v) for every v ∈ T \ {v�}.

Define pt(π) as (T, λπ
� ). From the definitions we get:

Lemma 2. For any T -path π and path-tree Z, tp(pt(π))=π and pt(tp(Z))=Z.

Visibly path-trees. Let T = (T, (λdir , λΣ)) be such that (T, λdir ) is a path-

tree and λΣ maps each node of T to a symbol from Σ̃n. With wordT we denote
the word λΣ(v1) . . . λΣ(vh) where v1 . . . vh is obtained from tp(T, λdir ) by re-
taining only the first occurrences of each T node. Also, for a node z of T , we
set posT (z) = i if z = vi, that is, posT denotes the position corresponding to z
within wordT .

Intuitively, a visibly path-tree is a path-tree with an additional labeling such
that the right child relation captures exactly the matching relations defined by
the word corresponding to the encoded T -path. Formally, a visibly path-tree T
over Σ̃n is a labeled tree (T, (λdir , λΣ)) such that (1) (T, λdir ) is a path-tree and
(2) v is the right child of u if and only if posT (u) ∼h posT (v) in wordT , for some
h ∈ [n] (right-child relation corresponds to the matching relations of wordT ).

For k > 0, a visibly k-path-tree is a visibly path-tree T = (T, (λdir , λΣ)) such
that each λdir (v) contains at most k pairs.

Tree encoding of words. We can map each word w = a1 . . . a� over Σ̃n to a
visibly path-tree wt(w) = (T, (λdir , λΣ)) as follows. The labeled tree (T, λΣ) is
such that |T | = �, a1 labels the root of T and for i ∈ [2, �]: ai labels the right
child of the node labeled with aj, j < i, if j ∼h i for some h ∈ [n], and labels
the left child of the node labeled with ai−1, otherwise.

a

db

fa

db

fa

cb

e

Fig. 2. The visibly path-tree wt(w) for w =
(ab)3 cd2 ef2

Define a path πw = v1π2 . . . π�

of T such that v1 is the root of T
and for i ∈ [2, �], πi is the ordered
sequence of nodes that are visited
on the shortest path in T from the
node corresponding to ai−1 to that
corresponding to ai (first node ex-
cluded). It is simple to verify that
indeed πw is a T -path. Thus, we
define λdir to encode πw, i.e., such
that tp(T, λdir ) = πw.

A k-path-tree word w over Σ̃n is
s.t. wt(w) is a visibly k-path-tree

over Σ̃n. Fig. 2 gives an example of
the visibly 5-path-tree corresponding to the word (ab)3 cd2 ef2 with call-return
alphabet where a is a call and c, d are returns of stack 1, and b is a call and e, f
are returns of stack 2.

In the following, we denote with Tk(Σ̃n) the set of all k-path-tree words and

with PTk(Σ̃n) the set of all the visibly k-path trees, over Σ̃n.
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4 Two Base Constructions Used in Our Approach

We assume that the reader is familiar with the standard notion of nondetermin-
istic tree automata (see [21]).

Regularity of PTk(Σ̃n). We construct a tree automaton Pk accepting PTk(Σ̃n)
as the intersection of two automata P and R, where, for an input tree T =
(T, (λdir , λΣ)), P checks that (T, λdir ) is indeed a path-tree and R checks that
the right-child relation of T corresponds to the matching relations of wordT .

Note that each property stated in Def. 1 is local to each node and its children.
Thus, P can check them by storing in its states the label of the parent of the
current node. Assuming a bound k on the number of pairs labeling each node,
the size of P is thus exponential in k.

To construct R, we first construct an automaton for the negation of property
(2) of the definition of visibly path-tree and then complement it.

Fix T = (T, (λdir , λΣ)) and for any two nodes u, v of T , define < s.t. u < v
holds iff the first occurrence of u precedes the first occurrence of v in tp(T, λdir ).

We recall property (2): “a node v is the right child of u in T if and only
if posT (u) ∼h posT (v) in wordT , for some h ∈ [n]”. By the definition of ∼h,
h ∈ [n], the negation of property (2) holds iff either:

1. there are u, v ∈ T s.t. v is the right child of u, λΣ(u) ∈ Σh
c (call of stack h)

and λΣ(v) �∈ Σh
r (not a return of stack h); or

2. there are u, v ∈ T s.t. u<v, and (i) λΣ(u)∈Σh
c and u has no right child, and

(ii) λΣ(v) ∈Σh
r and v is not a right child (i.e., by the right-child relation,

there are a call and a return of stack h that are both unmatched); or
3. there are u, v ∈ T s.t. v is the right child of u, λΣ(u)∈Σh

c , and either:
i. there is a w ∈ T s.t. u < w < v and either (a) λΣ(w) ∈ Σh

c and w has
no right child, or (b) λΣ(w)∈Σh

r and w is not a right child (i.e., the right-
child relation leaves unmatched either a call or a return occurring between
a matched pair of the same stack h); or
ii. there are w, z ∈ T s.t. z is the right child of w, λΣ(w)∈Σh

c , and either
w < u < z < v or u < w < v < z (i.e., the right-child relation restricted to
stack h is not nested).

For h ∈ [n] and assuming (T, λdir ) is a path tree s.t. |λdir (u)| ≤ k for each u ∈ T ,
we construct an automaton Bh as the union of four automata, one for each of
the above violations 1, 2, 3.i and 3.ii. Thus, Bh accepts T iff the right-child
relation of T does not capture properly the matching relation ∼h of wordT (i.e.,
property (2) does not hold w.r.t. the matching relation ∼h).

The first automaton nondeterministically guesses a node u and then accepts
iff u has a right child, say v, and the labels of u and v witness violation 1. The
number of states of this automaton is constant w.r.t. k and n.

In the other violations, the < relation is used. We now describe an efficient
construction to capture this relation by a tree automaton on k-path-trees and
then conclude the discussion on the remaining violations.
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Checking u < v. We first assume that the input tree has two marked nodes u
and v. Observe that u < v holds iff either (a) v is in the subtree rooted at u, or
(b) there are a node w with two children and i ≤ |λdir (w)| s.t. u and v are in two
different subtrees rooted at the children of w, and in tp(T ) the i-th occurrence
of w occurs in between the first occurrence of u and the first occurrence of v.

Property (a) can be easily checked by a top-down tree automaton with a
constant number of states. For property (b), we construct a tree automaton S
that nondeterministically guesses the node w, its child wu whose subtree con-
tains u and its child wv whose subtree contains v. Then, denoting λdir (w) =
(d1, i1) . . . (d�, i�), it guesses two pairs (dr, ir), (ds, is) such that r < s, w.dr = wu

and w.ds = wv, with the meaning that: the first occurrence of u must be in be-
tween the r-th and the (r + 1)-th occurrence of w, and the first occurrence of
v must be in between the s-th and the (s+1)-th occurrence of w (if any). By
Lemma 1, this is ensured by checking that u is visited on its first pair by starting
from the ir-th pair of w and before reaching the ir+1-th pair of w, and similarly v
w.r.t. the is-th and is+1-th pairs of w. The guessed ir and the request of search-
ing for the first occurrence of u are passed onto wu, analogously is and v are
passed onto wv. Each such request is then passed along a nondeterministically
guessed path in the respective subtrees, updating the indices according to the
given intuition. S rejects the tree if it can visit the requested node but not on
its first pair, or it reaches a leaf, and either (i) it has not guessed the node w
yet or (ii) is on a selected path and the requested node was not found. In all the
other cases it accepts.

Overall, we can construct S with an initial state (that is used also to store
that w has not being guessed yet), an acceptance state, a rejection state and
states of the form (i, x) where i ∈ [1, k] and x ∈ {u, v} (storing the request after
w is guessed). Thus, in total, it has 3 + 2 k states.
< relations over many nodes. To check Boolean combinations of constraints of
the form u < v, we can of course use the standard construction with unions
and intersections of copies of S, that will yield an automaton with polynomially
many states. A more efficient construction that is linear in k can be obtained by
generalizing the approach used for S to capture the wished relation directly.
Handling the remaining violations. By using an automaton as above to check a
proper ordering of the guessed nodes, we can design the tree automata for the
rest of the violations quite easily. For example, consider the violation 3.ii. Denote
with S′ the automaton that checks w < u < z < v and with S′′ the automaton
that checks u < w < v < z. Assuming that u, v, w, z are marked in the input
tree, the properties v is the right child of u, z is the right child of w, and u,w are
labeled with calls of stack h are local to the nodes u,w and their right children,
thus can be easily checked by a tree automaton M with a constant number of
states. Thus, we construct a tree automaton, that captures the intersection of
M with the union of S′ and S′′. This automaton, by a direct construction of the
automaton equivalent to the union of of S′ and S′′ as observed above, can be
built with a number of states linear in k. From it, the automaton V3ii checking
for violation 3.ii can be obtained by removing the assumption on the marking
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of u, v, w, z as in the usual projection construction. Thus it can be constructed
with a number of states that is linear in k.

Similarly for the other violations we get corresponding tree automata with
O(k) states, and thus also Bh also has O(k) states.

For each tree T ∈ L(P ) that is not accepted by Bh, we get that its right-child
relation does not violate the ∼h relation. Thus, denoting with B̄h the automaton
obtained by complementing Bh, if we take the intersection of all B̄h for h ∈ [n],
we get an automaton checking property (2) of the definition of visibly k-path-
tree provided that the input tree T ∈ L(P ), i.e., (T, λdir ) is a path-tree. Since
complementation causes an exponential blow-up in the number of states, the size
of each B̄h is 2O(k), and the automaton resulting from their intersection has size
2O(nk). Therefore, we get:

Theorem 1. For k ∈ N, there is an effectively constructible tree automaton
accepting PTk(Σ̃n) of size exponential in n and k.

Tree automaton for an Mvpa. By assuming T ∈ PTk(Σ̃n), we can construct a
tree automaton Ak that captures the runs of A over wordT .

Assume that our tree automaton can read the input tree T by moving along
the path tp(T ) (not just top-down but as a tree-walking automaton that moves
by following the encoded path). Also assume that each node labeled with a
call is also labeled with a stack symbol (that is used to match push and pop
transitions). We can then simulate any run of A by mimicking its moves at each
node u when it is visited for the first time (from Lemma 1 this happens when
a node is visited on its first pair). To construct a corresponding top-down tree
automaton we use the fact that on each run of the above automaton we cross
a node at most k times and according to the directions annotated in its labels.
Thus we can use as states ordered tuples of at most k states of A, and design
the transitions as in the standard construction from two-way to one way finite
automata, moving top-down in the tree and matching the state of a node with
the states of its children according to the directions in the labels. When such a
matching is not possible, the automaton halts rejecting the input. On the only
node labeled with (�,�), it accepts iff A accepts. The tree automaton Ak is
then obtained from this automaton by projecting out the stack symbols from
the input, and therefore, its size is O(|A|k).

Lemma 3. For an Mvpa A and a k-path-tree T , Ak accepts T iff wordT ∈
L(A). The size of Ak is O(|A|k).

5 A General Approach for Complement and Emptiness

We first introduce two properties for classes of Mvpl languages by using the
notion of k-path-trees. Given an Mvpl class L, the first property requires that
there is a k s.t. each word in a language of L can be encoded as a visibly k-
path-tree. We show that each class that has such a property is closed under
complement. The second property requires in addition that the language of all
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k-path-trees corresponding to words in the languages of L is regular. We show
that for each such class the emptiness problem is decidable.

Mvpl classes and properties. We consider here a generic notation Xp̄(Σ̃n)

for sets of words over a call-return alphabet Σ̃n, each set being characterized
by a particular restriction, captured by the symbol X , and parameterized over
a possibly empty tuple of integer-valued parameters p̄. For example, we have
already defined the set Tk(Σ̃n) of the k-path-tree words. Another example is

Cb(Σ̃n) that denotes the set of all words w ∈ Σ∗ that can be split into w1 . . . wb,
where wi contains calls and returns of at most one stack, for i ∈ [b] (bounded
context-switching [20]).

We denote with Xmvpl the class of all the languages L ⊆ Σ∗ such that there
exist an n-stack call-return labeling labΣ,n, a valuation of the parameters p̄, and

an Mvpa A over Σ̃n = (Σ, labΣ,n) for which L = L(A) ∩ Xp̄(Σ̃n). For example,

Tmvpl denotes such a class for Xp̄(Σ̃n) = Tk(Σ̃n).
A class Xmvpl is PT-covered if for each n > 0 and p̄, there exists a k > 0

such that Xp̄(Σ̃n) ⊆ Tk(Σ̃n). We refer to such k as the PT-parameter. A class
Xmvpl is PT-definable if it is PT-covered and there is an automaton AXp̄(Σ̃n)

that accepts the set of all trees wt(w) s.t. w ∈ Xp̄(Σ̃n). Clearly, Tmvpl is PT-
definable.

Deterministic Mvpa’s do not capture all Tmvpl. Let L1 be the language
{(ab)i ci−jdj ei−jf j | i ≥ j > 0} and assume the call-return alphabet as in the
example of Fig. 2. An Mvpa A accepting L1 just needs to guess the value of j (by
nondeterministically switching to a different symbol to push onto both stacks)
after reading a prefix (ab)j and then check exact matching with the returns.
Also, notice that for each w ∈ L1, w is also 5-path-tree (see Fig. 2), and since
L1 is inherently nondeterministic for Mvpas [13], we get:

Lemma 4. The class of Mvpa’s that captures Tmvpl is not determinizable.

Complement. Consider a Xmvpl language L over a call-return alphabet Σ̃n.
The complement of L in Xmvpl is L̄ = Xp̄(Σ̃n) \ L.

Despite of Lemma 4, we show that Tmvpl, and in general any PT-covered
Mvpl class, are all closed under complement. For this, consider an Mvpa A, and
denote with Pk the tree automaton accepting PTk(Σ̃n) and Ak, as in Section 4.
We can complement Ak and then take the intersection with Pk, thus capturing
all the trees T ∈ PTk(Σ̃n) s.t. wordT is not accepted by A. The size of the
resulting tree automaton B̄k is exponential in |A| and doubly exponential in k.

The following lemma concludes the proof.

Lemma 5. For any tree automaton H with L(H) ⊆ PTk(Σ̃n), there is an ef-

fectively constructible Mvpa H over Σ̃n such that L(H) is the set of all the
k-path-tree words wordT such that T ∈ L(H). Moreover, the size of H is poly-
nomial in the size of H and exponential in n.

Intuitively, from H, we can construct an Mvpa H that mimics H transitions
as follows: on internal symbols, H moves exactly as H (there is no right child);
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on call symbols, H enters the state that H would enter on the left child and
pushes onto a stack the one that H would enter on the right child; on return
symbols, H acts as if the current state is the one popped from the stack. The
correctness of this construction relies on the fact that for each tree T ∈PTk(Σ̃n),
the successor position in wordT corresponds to the left child in T , if any, or else,
to a uniquely determined node (a right child) labeled with a return matching
the most recent still unmatched call of the stack.

From the above lemma we can construct an Mvpa Ā that accepts all words w
such that wt(w) ∈ L(B̄k). Being the size of Ā polynomial in |B̄k| and exponential

in n, we get (notice that since Xp̄(Σ̃n) ⊆ Tk(Σ̃n), the words in L(Ā) that are

not in Xp̄(Σ̃n) are ruled out by the intersection with this set):

Theorem 2. Any PT-covered class Xmvpl is closed under complement. Also,
for an Mvpa A, there is an effectively constructible Mvpa Ā s.t. L(Ā)∩Xp̄(Σ̃n) =

Xp̄(Σ̃n) \ L(A), and its size is exponential in |A| and doubly exponential in the
PT-parameter.

As corollaries of the above theorem, we get the closure under complement of
two well-known classes of Mvpl: Pmvpl defined by the sets Pd(Σ̃n) of all words
with a number of phases bounded by d [12], and Omvpl defined by the sets

O(Σ̃n) of all words for which when a pop transition happens it is always from
the least indexed non-empty stack [7]. In fact, by the tree-decompositions given
in [19] we get that Omvpl is PT-covered with k = (n + 1)2n−1+ 1, where n is
the number of stacks, and Pmvpl is PT-covered for k = 2d + 2d−1 + 1, where d
is the bound on the number of phases.

Corollary 1. Omvpl (resp. Pmvpl) is closed under complement. Moreover, for

an Mvpa A, there is an effectively constructible Mvpa Ā s.t. L(Ā) ∩O(Σ̃n) =

O(Σ̃n)\L(A) (resp. L(Ā)∩Pd(Σ̃n) = Pd(Σ̃n)\L(A)), and its size is exponential
in the size of A and triply exponential in n (resp. d, where d is the bound on the
number of phases).

Emtpiness. For PT-definable classes Xmvpl, we reduce the emptiness problem
to the emptiness for tree automata by constructing a tree automaton given as
intersection of AXp̄(Σ̃n)

, Pk and Ak, where k is the PT-parameter.

Theorem 3. The emptiness problem for any PT-definable class Xmvpl is de-
cidable in |AXp̄(Σ̃n)

| |A|k 2O(nk) time, where A is the starting Mvpa and n is the

number of stacks.

The size of AXp̄(Σ̃n)
is bounded by the size of Pk in both Omvpl and Pmvpl

(we can construct such automata from simple MSO formulas capturing the re-
strictions and using the linear successor relation, see [12, 19]), thus we get:

Corollary 2. The emptiness problem for Pmvpl (resp. Omvpl) is decidable in

2(n+log |A|)2O(d)

(resp. |A|2O(n log n)

) time, where A is the starting Mvpa, n is the
number of stacks and d is the bound on the number of phases.
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Abstract. We provide new characterizations of the class of regular cost
functions (Colcombet 2009) in terms of first-order logic. This extends
a classical result stating that each regular language can be defined by
a first-order formula over the infinite tree of finite words with a predi-
cate testing words for equal length. Furthermore, we study interpreta-
tions for cost logics and use them to provide different characterizations
of the class of resource automatic structures, a quantitative version of
automatic structures. In particular, we identify a complete resource au-
tomatic structure for first-order interpretations.

1 Introduction

The theory of regular cost functions [1] has emerged in recent years as a gen-
eral theory for extensions of automata and logics that have been studied in the
context of boundedness problems. In these problems, the exact values of the
functions are not of specific interest but rather whether the function is bounded
on specific subsets of the domain. For this reason, two cost functions are con-
sidered to be equivalent if they are bounded on the same subsets of the domain.
It turns out that this coarser view renders decision problems for some classes
of automaton-definable cost functions decidable. The central automaton model
in this setting is the one of B-automata, which associate a value to the input
words using counters that can be incremented or reset by the transitions (the
execution of the transitions, however, does not depend on the counter values).

Together with the development of regular cost functions, several logical for-
malisms appeared. The logics introduced in this area extend normal first- or
monadic second-order logics by special quantitative operators. In this paper, we
are concerned with two such logics, namely cost MSO (CMSO) and cost FO
(CFO). In CMSO (cf. [1]) atomic formulas |X | ≤ N for a set variable X and
a free variable N can be used. The value of a formula is the least value for N
such that the formula becomes true (and infinity otherwise). In CFO (cf. [2])
a quantifier of the form ∀≤Nxϕ(x) can be used, which states that ϕ(x) is true
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for almost all elements with at most N exceptions. As for CMSO, the value of
the formula is the least value for N such that the formula is true. In order to
ensure monotonicity, the newly introduced operators are only allowed to appear
positively in a formula.

In the classical setting of languages, it is known that the regular languages are
precisely those that are definable in MSO over word structures. This correspon-
dence extends to B-automata and CMSO (cf. [1]). The FO definable languages
correspond to the strict subclass of counter-free or aperiodic regular languages.
There is also an analogue of this theorem in the cost setting, which is formulated
using the temporal logic CLTL instead of CFO (cf. [3]) (the connection between
CLTL and CFO was made in [2]).

However, there is a different way of looking at FO-definability of languages,
as taken in [4]. Instead of considering the words as structures (with the word
positions as elements), one can consider the set of all words as the domain of a
structure. On such a structure one can define languages (subsets of the domain)
by using formulas with one free element variable. If one equips the structure
with successor relations for appending a letter to a word, the prefix relation,
and a predicate for testing whether two words have the same length, then it
turns out that the FO-definable languages are precisely the regular ones. Over a
binary alphabet we refer to this structure as T el

2 . More generally, one can show
that T el

2 is complete for the class of automatic structures in the sense that all
automatic structures can be defined (or interpreted) in T el

2 by FO formulas. An
automatic structure is a structure whose domain and relations can be defined by
finite automata (for accepting relations the automata read all the input words
synchronously in parallel). See [5,6] for a more detailed introduction.

In this paper we mainly study this notion of definability and the class of
automatic structures in the quantitative setting of regular cost functions. A
notion of automatic structures with costs has already been introduced in [7].
There, the cost is not coming from specific operators in the logic, but is part of
the structure: a tuple of elements is not simply in relation or not, but a value
is associated to the tuple, which could be interpreted as the cost of being in
relation (where the value infinity means that the tuple is not in the relation
at all). This is achieved by using B-automata instead of classical automata in
the definition of automatic structures. In [7] these costs have been considered
as a model for the consumption of resources, and therefore these structures are
called resource automatic structures and FO is referred to as FO with resource
relations (FO+RR). As first main contribution, we define a complete resource
automatic structure cT el

2 as extension of T el
2 and show that basically FO over

cT el
2 has the same expressive power as CFO over T el

2 .
Another way of obtaining a complete automatic structure is to consider fi-

nite sets of natural numbers as the elements of the structure (represented by
finite words using the characteristic vector of the set) with the standard or-
der of natural numbers on singleton sets, and the subset relation between sets.
This structure can easily be defined in weak MSO over the structure (N, Succ)
of the natural numbers with successor relation (in weak monadic second-order
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logic, set quantification only ranges over finite sets). In this transformation, we
proceed from the structure (N, Succ) to its weak powerset structure (restricted
to finite sets). By definition, WMSO on the original structure corresponds to
FO on the powerset structure. This connection has already been observed in [8]
and has been studied in more detail in [9]. Our second main contribution is a
corresponding result for CWMSO and CFO. Furthermore, we extend the weak
powerset structure by a size predicate for sets, show that this yields a complete
resource automatic structure and establish the correspondence between CWMSO
formulas and FO+RR formulas on this extended weak powerset structure.

The remainder of this paper is structured as follows. In Section 2 we give
basic definitions and results. In Section 3 we characterize the class of regular
cost functions in terms of CFO and FO+RR, thereby also relating these two
logics over the class of resource automatic structures. In Section 4 we show how
to obtain the class of resource automatic structures using CWMSO and establish
a connection between CWMSO and the first-order logics CFO and FO+RR on
the powerset structure. Furthermore, we would like to thank the anonymous
reviewers for their constructive comments that helped us to improve this work.

2 Preliminaries

We start with providing a formal basis for the concepts mentioned before. A cost
function is a function of the form f : A → � ∪ {∞} that maps elements of its
domain to natural numbers or infinity. In order to define the equivalence relation
between cost functions, we first introduce the notion of a correction function. A
correction function α : �∪ {∞} → � ∪ {∞} is a monotone mapping that maps
∞ and only ∞ to ∞. Let f, g : A → � ∪ {∞} be two cost functions. We say f
is α-dominated by g and write f �α g if for all a ∈ A : f(a) ≤ α(g(a)). We call
f and g α-equivalent and write f ≈α g if f �α g and g �α f . Additionally, we
may also drop the annotation α to indicate that there exists an α such that the
relation holds. Then, we have f ≈ g iff they are bounded on the same subsets of
the domain. A proof of this fact can be found in [1]. In this work, we often have
the case α(n) = 2n. We use ≈exp as a shorthand notation for ≈α with this α in
order to provide explicit bounds without too much notational overhead.

The basic model we consider to define regular cost functions are B-automata.
They can be seen as NFAs extended by a finite set of non-negative integer
counters. These counters support three kinds of operations1. First, the counter
can be incremented (i). Second, the counter can be reset to zero (r) and lastly the
counter can be left unchanged (ε). Each transition assigns one of these operations
to every counter. So, formally, we have:

Definition 1. A B-automaton is a tuple A = (Q,Σ, In, Δ,Fin, Γ ). Where the
components Q,Σ, In,Fin are defined as for normal NFAs. The component Γ is a
finite set of counters and Δ is a subset of Q×Σ ×Q× {i, r, ε}Γ .

1 Please note that we do not consider the check operation originally introduced for
B-automata in order to simplify the notation. This does not change their expressive
power.
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A run of a B-automaton is defined as usual as a sequence of (connected) transi-
tions. The counter operations are executed along a run. This way, we associate
the value of a run with the maximal occurring counter value. In total, the B-
automaton induces a function that maps every word w to the inf of the values
of all accepting runs on w. We write �A�(w) to refer to this value. We also con-
sider B-automata that read tuples of words synchronously, and thus defining
a cost function over tuples of words. We call these automata (synchronous) B-
transducers. Formally, they can be seen as standard B-automata whose alphabet
consists of tuples of letters, using a padding symbol to extend all words to the
same length (see, e.g., [7] for a detailed definition).

The logics C(W)MSO and CFO extend usual (W)MSO and FO logic by spe-
cial quantitative operators (with the abbreviations as used in the introduction).
These quantitative operators are only allowed to appear positively in formulas
(within an even number of negations). A C(W)MSO formula is built by the
normal MSO quantifiers and connectives. It additionally may have the atomic
operation |X | ≤ N for set variables X (and a special symbol N later interpreted
as some natural number). For a C(W)MSO formula ϕ we write S, n |= ϕ if
the structure S satisfies ϕ as normal (W)MSO formula when we replace all the
|X | ≤ N by a formula which checks that X is at most of size n. Moreover, we
write �ϕ�S to indicate the infimum over n ∈ � such that S, n |= ϕ. For exam-
ple, the formula ∃X(|X | ≤ N ∧ ∀x(x ∈ X)) counts the number of elements in a
finite structure and evaluates to infinity on infinite structures. A CFO formula
is built by normal FO quantifiers and connectives. It additionally may have the
new quantifier ∀≤Nxψ. Similar to C(W)MSO, we write S, n |= ϕ if S satisfies ϕ
as normal FO formula when we replace all occurrences of ∀≤Nxψ by “ψ is true
for all x with at most n exceptions”. The notation �ϕ�S is used accordingly. For
example, the formula ∀≤Nx(x �= x) counts the number of elements in a structure
as the above CMSO formula. We remark that the restriction to appear positively
ensures the monotonicity of the model relation and thereby that the quantita-
tive semantics is well-defined. As a convention, we use upper case letters for set
variables and lower case variables for element variables.

The two structures that are of main interest to us are the infinite binary
tree with equal level predicate (T el

2 ) and the natural numbers with successor
predicate (�+1). We formally define T el

2 = ({0, 1}∗,�, S0, S1, el). This follows
the idea to identify a node with the word that describes the path leading from
the root to it. The letter 0 indicates that the path in the tree branches to the
left and the letter 1 indicates a branch to the right, respectively. With this view
on the universe, the relation � is the prefix relation on words, the relations S0

and S1 are appending one letter (0 or 1, respectively) and el is the equal length
predicate for a pair of words. The structure �+1 is defined by �+1 = (�, Succ)
where Succ(x, y) holds iff y = x + 1.

In addition to the cost logics, we also consider the logic First-Order+Resource
Relations (for short FO+RR), which is evaluated over quantitative structures.
A resource- or cost-structure is similar to normal relational structures but the
relations have a quantitative valuation.
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Definition 2 ([7]). A resource structure S = (S,R1, . . . , Rn) is a tuple consist-
ing of a universe S and relation symbols R1 up to Rn. The relation symbols are
valuated by functions RS

i : Sk → � ∪ {∞} where k is the arity of the relation Ri.

The syntax of the logic FO+RR is normal first-order logic without negation.
The semantics of the relations is given by the resource structure, the semantics
of complete formulas is given inductively by:

�Rix1 . . . xki�
S := RS

i (x1, . . . , xki)

�x = y�S :=

{
0 if x = y

∞ otherwise
�x �= y�S :=

{
∞ if x = y

0 otherwise

�ϕ ∧ ψ�S := max(�ϕ�S, �ψ�S) �ϕ ∨ ψ�S := min(�ϕ�S, �ψ�S)

�∃xϕ(x)�S := inf
s∈S

�ϕ(s)�S �∀xϕ(x)�S := sup
s∈S

�ϕ(s)�S

Intuitively, the value of a formula is the amount of resources needed to make the
formula true. Interpreting ∞ as false and 0 as true, one obtains the standard
semantics of FO. Therefore, we can interpret classical relations also as resource
relations using the characteristic function operator χ that transforms a relation
R into a function that maps tuples in relation to 0 and all other tuples to ∞.
Moreover, we remark that although negation is not allowed in FO+RR, we
may use negation on relations that are defined as characteristic function of a
normal relation because we can always add the characteristic function of the
complement.

Logical interpretations are a classical tool to represent one relational structure
in another (cf. [10]). The key idea is to use logical formulas with free variables
to define the universe as well as the relations of some structure B in another
structure A. This provides a systematic way to transfer decidability results for
the logic on A to B. One can effectively rewrite questions about formulas on B to
questions about formulas on A by just replacing the relations with their defining
formulas and relativizing quantification to the definition of the new universe.
We extend this basic concept to define resource structures in two ways: We
can either start with a normal relational structure and use a quantitative logic
such as CMSO to define the quantitative relations of a resource structure or we
may start with a resource structure and use FO+RR to define another resource
structure. Moreover, we have to provide an additional formula that describes the
negation of the universe in order to be able to relativize universal formulas.

Definition 3. Let L be a logic with quantitative semantics. A quantitative in-
terpretation I is a tuple (δ, δ, ϕ1, . . . , ϕk) of L formulas. For an interpretation
I and an appropriate structure A = (A,R1, . . . , Rn), we define the resource
structure I(A) = (B,R1, . . . , Rk) where B = {a ∈ A | �δ(a)�A = 0} and

R
I(A)
i (x̄) = �ϕi(x̄)�A. The formulas δ and δ are only allowed to assume the values

0 and ∞ and have to be inverse in the sense that �δ(x)�A = ∞ ⇔ �δ(x)�A = 0.
Moreover, we say a resource structure S is L-interpretable in A if there is an
interpretation I such that S ∼= I(A).
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In the same way as in the classical case, an algorithm to compute the value of
a formula can be transferred with quantitative L-interpretations. However, the
semantics of the logical connectives ∧, ∨ and the quantifications has to coincide
in FO+RR and L. Since this is the case for FO+RR and cost logics, we obtain:

Proposition 4. Let A be a relational or resource structure, L be a logic of
CMSO,CWMSO,CFO,FO+RR, and I be an L-interpretation for A. Then each
FO+RR formula over I(A) can be transformed into an equivalent L-formula
over A.

Proof. As usual, we replace the occurrences of the I(A) relations by their defin-
ing formulas given in the interpretation and relativize existential quantification
by using δ and universal quantification by using δ. The resulting transformed
L formula is then a formula over A. The equivalence of the semantics follows
from a straight forward induction over the structure of ϕ (using an inductive
definition for the semantics of the logic L). Note that the domain of I(A) is, in
general, a subset of the domain of A. For the equivalence statement we view a
cost function over the domain of I(A) as a cost function of the domain of A that
maps all elements in the difference to ∞. "#

We remark that although the formula δ is needed in an interpretation for tech-
nical reasons, we can omit it in most of the cases relevant to us. If L is one of the
cost logics and the formula δ makes no use of the special quantitative operators,
δ can be obtained by taking the normal negation. This also applies to the case
that L is FO+RR and the formula δ only uses relations that are defined using
the χ operator. For the sake of simplicity, we do not define δ explicitly in such
situations.

3 Quantitative First-Order Logics

In the classical setting, it is known that FO formulas with one free variable over
T el
2 characterize the regular languages:

Theorem 5 ([4]). For every regular language L ⊆ {0, 1}∗ there is an FO for-
mula ϕ(x) with one free variable such that w ∈ L iff T el

2 , w |= ϕ.

We aim to show that this result extends in a very natural way to the setting
of CFO and regular cost functions. Moreover, we relate CFO and FO+RR by
introducing cT el

2 as a variant of T el
2 in form of a resource structure and show

that the expressive power of CFO on T el
2 equals FO+RR on cT el

2 despite their
apparent differences. Hence, both formalisms yield a new characterization of
regular cost functions in terms of first-order like logics. We consider this to be
an example for the robustness of the notion of regular cost functions.

With the quantitative semantics of CFO in mind, each formula with one free
variable defines a function from the universe of the structure to � ∪ {∞}. We
claim that the definable functions are exactly the regular cost functions:
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Theorem 6. For every regular cost function f : {0, 1}∗ → � ∪ {∞}, there is

a CFO formula ϕ(x) such that f ≈exp �ϕ�T
el
2 . Moreover, every function �ϕ�T

el
2

defined by a CFO formula ϕ(x) is a regular cost function.

We do not give a direct proof of this fact here but focus on establishing the
above mentioned connection to resource structures and FO+RR. Theorem 6
follows from the translation between CFO and FO+RR (Propositions 8 and 9)
and the characterization of regular cost functions with FO+RR (Theorem 12).
We start with formally defining cT el

2 . It consists of all the relations present in
T el
2 but now valuated with their characteristic function and one new (truly)

quantitative relation | · |1 that counts the number of ones in a word. Formally,
we define cT el

2 by:

Definition 7. Let cT el
2 = ({0, 1}∗,�, S0, S1, el, | · |1) with |w|cT

el
2

1 counting the
number of letters 1 in w and all the other relations valuated by the characteristic
functions of their valuations in T el

2 .

We observe that one can easily define cT el
2 with CFO formulas in T el

2 , which
means by Proposition 4 that FO+RR over cT el

2 can be translated into CFO over
T el
2 . In combination with Theorem 12 this yields one direction of Theorem 6.

Proposition 8. cT el
2 is CFO-interpretable in T el

2 .

Proof. The universe of cT el
2 is identical to T el

2 . Consequently, we can set δ(x) :=
x = x. The relations �, S0, S1, el directly define their quantitative counterparts
because their quantitative semantics is just the characteristic function. So, it
remains to define | · |1 as a CFO formula over T el

2 :

|w|1 := ∀≤Nx(∃y(S0yx ∨ S1yx) ∧ x � w) → ∃yS0yx

The idea behind this formula is that all elements x that are a predecessor of w
(except the empty word) have to be 0-successors with at most N exceptions that
are exactly the 1-positions in w. "#

In order to provide the other direction of Theorem 6, we show how to translate
CFO formulas over T el

2 into equivalent FO+RR formulas over cT el
2 .

Proposition 9. For every CFO formula ϕ, there is an FO+RR formula ϕ̃ such

that �ϕ�T
el
2 ≈exp �ϕ̃�cT

el
2 .

Proof (sketch). We provide an inductive translation from CFO to FO+RR. The
key difficulty here arises from replacing the ∀≤N quantifier with an FO+RR-
expressible equivalent. We do so by approximating the set with the exception
elements in form of one tree element. The path from the root to this tree element
branches to the right in each level such that there are two exception elements
with longest common ancestor in this level. With this idea, we can approximate
the number of exceptions up to one exponential. "#



Definability and Transformations for Cost Logics and Automatic Structures 397

Now that we established the connection between CFO and FO+RR, we show
that FO+RR formulas with one free variable on cT el

2 capture regular cost func-
tions. The translation from FO+RR into B-automata can easily be done with
the concept of resource automatic structures in mind. We recall the definition
from [7] and show that it applies to cT el

2 :

Definition 10. A resource structure S = (S,R1, . . . , Rn) is called resource au-
tomatic if S ⊆ {0, 1}∗ is a regular language and and there are synchronous
B-transducers T1, . . . ,Tn such that RS

i (x̄) := �Ti�(x̄).

Proposition 11. cT el
2 is a resource automatic structure.

Proof. It is known that T el
2 is an automatic structure (cf. [6]). By interpreting

the NFAs defining the classical relations as B-automata in which the counters
are not used, we directly obtain automata for the characteristic functions. The
relation | · |1 can be defined by an automaton that just counts the letters 1. "#

With this result in mind we can now characterize regular cost functions in
terms of FO+RR on cT el

2 :

Theorem 12. For every regular cost function f : {0, 1}∗ → � ∪ {∞}, there is

an FO+RR formula ϕ(x) such that f = �ϕ�cT
el
2 . Moreover, the function �ϕ�cT

el
2

defined by an FO+RR formula with one free variable is a regular cost function.

Proof. We first show the second part. Let ϕ(x) be a FO+RR formula with
one free variable. Since cT el

2 is resource automatic, the inductive automaton

translation from [7] provides us with a B-automaton A such that �ϕ�cT
el
2 ≈α �A�.

For the converse, we encode the run of a B-automaton in cT el
2 . Let A =

(Q,Σ, In, Δ,Fin, Γ ) be a B-automaton with |Q| = n and |Γ | = m. The basic
construction follows the classical approach. We simulate the behavior of A on
a word w with a formula ϕ(w) by existentially guessing a run, verifying that
it is accepting and now additionally computing its value. The state sequence is
encoded along the levels in the tree in the following way: For each of the n states,
we guess a position pi on the same level as w. The path to pi branches to the
right in all levels in which the run is currently in the i-th state. Now we only have
to verify that in every level up to |w| exactly one of the paths branches right and
that there are transitions that enable the respective state change given the letter
of w in the corresponding level. We extend this with 2m additional positions on
the level of w to describe the behavior of the counters. For each counter, there is
a position cii that branches right in every level where the transition increments
the respective counter and a position cri that branches right in every level where
the transition resets the counter. We can then calculate the value of a run by
selecting maximal segments of the path given by cii that are not interrupted by
a right-branch of cri . We use the | · |1 relation on these segments to count the
increments. "#

A Complete Resource Automatic Structure

The study of complete structures for certain classes of logical structures pro-
vides insight into the whole class of structures by looking at a single structure.



398 M. Lang, C. Löding, and A. Manuel

Hence, we are interested in finding a complete structure for resource automatic
structures. This not only provides a characterization of the expressive power of
the formalism but also enables us to better understand the type of quantitative
extension realized by resource automatic structures. First, we formally fix the
notion of completeness:

Definition 13. Let C be a class of resource structures. We call a structure S
complete for C if S ∈ C and for all structures A ∈ C, there is an FO+RR-
interpretation I such that A ∼= I(S).

By Proposition 11, we already know that cT el
2 is a resource automatic struc-

ture. In order to show that it is complete, we have to extend the ideas of Theo-
rem 12 to synchronous B-transducers. Consider an arbitrary resource automatic
structure S. The universe is represented by a regular language. As a conse-
quence, the classical Theorem 5 provides us with a formula δ to encode the
domain. It remains to find formulas that define the relations in cT el

2 . For this
we take the synchronous B-transducer that defines the relation. Since this is
essentially only a B-automaton working over a vector of the original alphabet,
the same approach as in Theorem 12 can be used to obtain the formula ϕ that
defines the relation in cT el

2 . Although this involves some technical difficulties
such as necessary padding when working with synchronous transducers, no new
ideas are required in principle. Altogether, we obtain:

Corollary 14. The structure cT el
2 is complete for resource automatic structures.

This result concisely illustrates the quantitative extension that is provided
by resource automatic structures compared to the standard model. The idea
of characteristic functions provides an embedding that shows that resource au-
tomatic structures extend the classical concept. The quantitative aspect boils
down to a relation that counts the number of letters 1 in the word presentation
of the elements.

4 (Finite)Set Transformations

In the classical setting, it is a well-known fact that (W)MSO formulas over
a structure are equivalent to FO formulas over the (weak) powerset structure
(cf. [11]). We aim at providing a generalization of this fact to the area of cost
logics and resource structures. First, we fix the notation used in this section. Let
A = (A,R1, . . . , Rk) be a relational structure. For a j-ary relation R, let the set
extension of R be given by P (R) := {({x1}, . . . , {xj}) | (x1, . . . , xj) ∈ R}. The
powerset structure of A is P (A) = (P(A), Sing,⊆,P (R1) , . . . ,P (Rk)) where
⊆ is the normal subset relation and Sing is a unary predicate that indicates
singleton sets. Additionally, we also show that there is a correspondence to a
canonical resource extension of the powerset structure. The resource powerset
structure of A is cP (A) = (P(A), Sing, size,⊆,P (R1) , . . . ,P (Rk)) where size
is a unary resource relation mapping a set to its size, the other relations are
valuated with the characteristic functions of their valuations in the classical
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powerset structure. Analogously, we also consider the weak variant with only
finite subsets of A in the universe. We denote the weak variants by an index w.

Proposition 15. The following correspondence holds for all relational struc-
tures A. For every CMSO formula ϕ, there is a CFO formula ϕ1 (respectively
a FO+RR formula ϕ2) and vice versa such that for all X1, . . . , Xk ⊆ A and all
x1, . . . , x� ∈ A it is the case that

�ϕ(X1, . . . , Xk, x1, . . . , x�)�
A ≈exp �ϕ1(X1, . . . , Xk, {x1}, . . . , {x�})�P(A)

�ϕ(X1, . . . , Xk, x1, . . . , x�)�
A = �ϕ2(X1, . . . , Xk, {x1}, . . . , {x�})�cP(A).

The same holds for CWMSO and the respective weak powerset structures.

We obtain the previous result by inductively transforming logical formulas in
a way that preserves the semantics up to α. Most of the translations are rela-
tively straightforward encodings of the missing operators. However, transforming
a CFO formula over the powerset structure back into a CMSO formula over the
original structure involves counting the number of “exceptions” in ∀≤Nxϕ(x)
formulas. Since the x are sets of the original structure, we cannot simply existen-
tially quantify the set of exceptions and bound its size. We solve this by instead
bounding the size of sets that contain only elements with a distinct membership
profile w.r.t. the exception sets, i.e., a pair of element z, z′ can be member in
this set iff there is an exception that contains exactly one of z, z′. For these sets,
we recognize that their size approximates the number of exception sets up to an
exponentiation. This can be seen as a refinement of the approximation idea used
in Proposition 2.1 in [12].

The translation from Proposition 15 has the following immediate consequence
for the definable cost functions:

Corollary 16. Let f be a cost function. The following are equivalent:

1. f is definable in (weak) CMSO over a structure A.
2. f is definable in CFO over (weak) P (A).
3. f is definable in FO+RR over (weak) cP (A).

In order to close our study of logical formalisms for regular cost functions, we
connect our results in the area of first-order logics with CWMSO on �+1. For
this we recognize that cT el

2 is almost cPw

(
�

+1
)
. A word from {0, 1} can be seen

as a set over the natural numbers that contains the positions in the word with
letter 1. Nevertheless, we additionally need WMSO-definable coding in order to
distinguish tree elements with trailing zeros. Hence, we obtain that cT el

2 and
cPw

(
�

+1
)

are FO+RR-interpretable in each other. The connection between
the two first-order logics stated in Theorem 17 below was already established in
Proposition 9 and Proposition 8.

Theorem 17. Logical formulas can be transformed in a semantics preserving
way among CFO on T el

2 , FO+RR on cT el
2 and CWMSO on �+1.
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(�,+1)/CWMSO

cost-automatic structures/FO+RR

T el
2 /CFO cT el

2 /FO+RR

A/CMSO P (A) /CFO

cP (A) /FO+RR

Fig. 1. Cost Logics Correspondences Overview

The interpretations to transform cT el
2 in cPw

(
�

+1
)

and vice versa in the proof
of the previous theorem also yield the following result as immediate consequence.

Corollary 18. cPw

(
�

+1
)

is a complete resource automatic structure.

As an example application of Theorem 17, we settle the open question of the
last section in [7]. Based on the results known at that time, it was unclear whether
the full bounded reachability problem for pushdown systems with B-counters can
be encoded in form of a CWMSO formula on T2. The problem asks, given a
pushdown system with counter operations as in B-automata, and two regular
sets A,B of pushdown configurations, whether there is a uniform upper bound
k ∈ � such that it is possible to reach from all elements in A some element in B
with a configuration sequence whose counter values are bounded by k. In [7] it
was already established that the problem can be encoded in FO+RR over the
configuration graph, which is a resource automatic structure. With Corollary 14
and Theorem 17 we obtain that the problem is expressible in CWMSO over�+1.
Hence, it is also expressible in CWMSO over T2 since �+1 is CWMSO definable
in T2. However, the argument here uses general properties of resource automatic
structures and does not provide the insight of the direct formulation in CWMSO
over T2 given in [7] for the special case of a single counter.

5 Conclusion

In this work we established connections among the different logics that arose
around regular cost functions. Figure 1 provides an overview of the obtained re-
sults. We showed that the two quantitative first-order logics CFO and FO+RR
are essentially equally expressive on the infinite binary tree with equal level predi-
cate despite their rather different mechanisms for defining costs. Their expressive
power on the tree could be summarized on an intuitive level by first-order queries
plus the ability to count elements satisfying first-order properties. Furthermore,
both formalisms provide another characterization for regular cost functions. The
extension of this result to cost functions over tuples of words provided the insight



Definability and Transformations for Cost Logics and Automatic Structures 401

that cT el
2 is a complete structure for the class of resource automatic structures.

These results nicely extend the classical results for regular languages and auto-
matic structures, and can be seen as another sign that the notion of regular cost
functions is a good quantitative generalization of regular languages.

In the second part, we showed extensions of the classical results that allow to
exchange between MSO logic and FO logic over the power set structure. These
results enabled particular transformations among CFO on T el

2 , FO+RR on cT el
2

and CWMSO on �+1.
We are currently working on continuing this research in two directions. First,

we want to extend the ideas of resource automatic structures towards resource
tree automatic structures. This could lead to new decision methods for quantita-
tive WMSO logics over the infinite tree. Second, we try to connect our results to
the world of (W)MSO with the unbounding quantifier (for short (W)MSO+U)
as introduced by Miko�laj Bojańczyk in [13].
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Abstract. We fully characterise the solutions of the generalised Lyndon-
Schützenberger word equations u1 · · ·u� = v1 · · · vmw1 · · ·wn, where ui ∈
{u, θ(u)} for all 1 ≤ i ≤ �, vj ∈ {v, θ(v)} for all 1 ≤ j ≤ m, wk ∈
{w, θ(w)} for all 1 ≤ k ≤ n, and θ is an antimorphic involution. More
precisely, we show for which �, m, and n such an equation has only θ-
periodic solutions, i.e., u, v, w ∈ {t, θ(t)}∗ for some word t, closing an
open problem by Czeizler et al. (2009).

1 Introduction

A word is a power (or repetition) if it can be written as a repeated concatenation of
one of its prefixes. A word w is a pseudo-power (more precisely, f -power) if it can
be written as a repeated concatenation of one of its prefixes t and its image f(t) un-
der a morphic or antimorphic function f , thus w ∈ t{t, f(t)}+. Introduced in [4],
the latter notion is a natural generalisation of the former: when f is the identity
morphism, pseudo-powers are, indeed, classical powers. More interestingly, when
f is the reversal (identity antimorphism), pseudo-powers are repeated concatena-
tions of a word and a reversed version of it, so, in a sense, generalised palindromic
structures. To this end, the study of combinatorial properties of pseudo-powers
supports the development of a generalised periodicity theory.

The initial motivation of studying pseudo-repetitions (according to [4]) came
from two important biological concepts: tandem repeat, i.e., the consecutive rep-
etition of the same sequence of nucleotides in a DNA strand, and the inverted
repeat, i.e., a sequence of nucleotides whose reversed Watson-Crick complement
occurred before in the strand, both occurrences encoding, essentially, the same ge-
netic information. Noting that the Watson-Crick complement can be abstracted
as an antimorphic involution on the DNA-alphabet, pseudo-powers formalise gen-
eralised tandem repeats, in which one sequence is followed by several consecutive
occurrences of either its copy or its reversed complement.

The study of combinatorial properties of pseudo-powers was mostly concerned
with the case when f is an involution; this case seems the most motivated, mod-
elling both the original repetitions and palindromic structures, and in particular
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the Watson-Crick complement. In this context, generalisations of the Fine and
Wilf theorem, avoidability results, and methods to solve word equations were
derived ([4], [1], [2], respectively). Also, efficient methods of testing whether a
word is or contains a pseudo-power were recently developed (see, e.g., [5,11]).

Naturally, the study of pseudo-powers was focused on translating classical
periodicity results into this new and more general setting. Accordingly, Czeizler
et al. [3] investigated a generalisation of Lyndon and Schützenberger’s equations.
Lyndon and Schützenberger [9] showed that in all solutions of an equation u� =
vmwn, with l,m, n ≥ 2, in a free group, u, v, and w are necessarily powers of
a common element. Their result also holds, if u, v and w are elements of a free
semigroup [8]. Its extension of the form xk = zk1

1 zk2
2 · · · zkn

n was studied in [6].
The generalisation by Czeizler et al. [3] is u1 · · ·u� = v1 · · · vmw1 · · ·wn, where
ui ∈ {u, θ(u)} for all 1 ≤ i ≤ �, vj ∈ {v, θ(v)} for all 1 ≤ j ≤ m, wk ∈ {w, θ(w)}
for all 1 ≤ k ≤ n, and θ is an antimorphic involution. Following the classical
case, they studied under which conditions u, v, w ∈ {t, θ(t)}+ for some word t.
In other words, they studied which equations have only solutions where u, v, w
are pseudo-powers, or more precisely, θ-powers of the same word; we call such
solutions θ-periodic.

The results obtained on these generalised equations in [3,7,10] are summarised
in Table 1. One can note from this table that the more problematic equations
are those with � = 3. More precisely, equations which allow non-θ-periodic so-
lutions and equations having only θ-periodic solutions were identified; however,
no precise characterisation was obtained. Hence, this case seems to be especially
intricate and interesting, as the separating border between the cases when the
equation has only θ-periodic solutions and the cases when it may also have
non-θ-periodic solutions is drawn here. Our work closes the gap providing a full
characterisation of the generalised Lyndon-Schützenberger equations having only
θ-periodic solutions. This seems to us a relevant step towards the aforementioned
development of a generalised periodicity theory.

Table 1. Results on the equation u1 · · ·u� = v1 · · · vmw1 · · ·wn

� m n
u, v, w ∈ {t, θ(t)}+?

Answer This paper

≥ 4 ≥ 3 ≥ 3 Yes [3,7]
3 ≥ 12 ≥ 12 Yes [10]
3 5 ≤ min{m,n}, m or n odd Yes [10]

3 5 ≤ min{m,n} < 12, m and n even Open (A) Yes (Thm. 1)
3 4 ≥ 5 and odd Open (B) Yes (Thm. 2)

3 4 ≥ 4 and even No [7]
3 3 ≥ 3 No [7]

one of {�,m, n} equals 2 No [3,7]

Our Results. As mentioned above, we are interested in solutions of the equation

u1u2u3 = v1 · · · vmw1 · · ·wn, (1)
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where 5 ≤ min{m,n} < 12 and m and n are even, or m = 4 and n ≥ 5 is odd,
u1, u2, u3 ∈ {u, θ(u)}, vj ∈ {v, θ(v)} for all 1 ≤ j ≤ m and wk ∈ {w, θ(w)} for
all 1 ≤ k ≤ n, and θ an antimorphic involution.

In [10] it is already shown that if m,n ≥ 5 and u1u2u3 �= uuu or m|v| ≥ 2|u|
then (1) has only θ-periodic solutions. Thus, the open case addressed by our
Theorem 1 regards the θ-periodicity of the solutions of (1) for u1 = u2 = u3

and m|v| < 2|u|. Due to space restrictions, we can not present the complete
proofs for this case in this extended abstract. In the light of the results from [10],
the positive answer we give in this case was somehow expected. We give a brief
overview of our approach in Sect. 3. The following theorem is obtained.

Theorem 1. If � = 3, 5 ≤ min{m,n} < 12, and both m and n even, then (1)
implies that u, v, w ∈ {t, θ(t)}∗ for some word t.

For the open case addressed by our Theorem 2, where � = 3,m = 4, n ≥ 5
and odd, we give here the main proofs. This case seems very interesting to us
for two reasons. Firstly, the fact that (1) has only θ-periodic solutions under
these restrictions seems surprising, as it shows a different behaviour from the
case when the same bounds apply to �,m, and n, but n is even; this shows
exactly where the equations having only θ-periodic solutions are separated from
the ones that may also have other solutions. Secondly, due to the small number
of factors v or θ(v), it seems that a different (at least partly) approach is needed
in this case. Indeed, the common approach in the proofs of the results of [3,7,10]
or in those supporting Theorem 1 was to find a long enough factor of u1u2u3

that reflects an alignment between some of the factors v1, . . . , vm and some of the
factors w1, . . . , wn, and then to apply periodicity results in the lines of Theorems
4 or 5 to get that u, v, and w are all θ-powers of the same word. Employing such
a strategy seems more difficult when we only have few occurrences of v or θ(v)
(or, alternatively, of w or θ(w)). Our proofs show how this can be done. While
the basic techniques we rely on are the usual ones of combinatorics on words,
including detailed case analyses, we also make use of novel arguments regarding
θ-periodic words and exhibit more general ways of applying known θ-periodicity
arguments. We show the following.

Theorem 2. If � = 3, m = 4 and n ≥ 5 odd, then (1) implies that u, v, w ∈
{t, θ(t)}∗ for some word t.

Theorems 1 and 2 and Table 1 fully characterise the θ-periodicity of the
solutions of (1).

Theorem 3. Equation (1) implies that u, v, w ∈ {t, θ(t)}∗ for some word t if
and only if (1) � ≥ 4 and m,n ≥ 3, or (2) � ≥ 3 and m,n ≥ 5, or (3) � = 3,m =
4, and n is an odd number at least 5.

2 Preliminaries

For a finite alphabet Σ, we denote by Σ∗ and Σ+ the set of all words and the set of
all non-empty words over Σ, respectively. The empty word is denoted by ε and the
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length of a word w is denoted by |w|. For a word w = uvz we say that u is a prefix
of w, v is a factor of w, and z is a suffix of w. We denote that by u ≤p w, v ≤f w,
and z ≤s w, respectively. If vz �= ε we call u a proper prefix, and we denote that
by u <p w, and symmetrically for suffixes. Similarly, v is called a proper factor of
w, denoted by v <f w, if u �= ε, z �= ε. A word w is called primitive, if w = uk

implies k = 1, so u = w; otherwise, w is called power or repetition. For a word w,
we define the word wω as the infinite word whose prefix of length n|w| is wn, for
all n ∈ N.

Primitive words are characterised as follows:

Proposition 1. If w is primitive and ww = xwy, then either x = ε or y = ε.

A function f : Σ∗ → Σ∗ is an antimorphism, if f(uv) = f(v)f(u) for all
u, v ∈ Σ∗. Furthermore, f is an involution, if f(f(a)) = a for all a ∈ Σ. A
function that is both and antimorphism and an involution will be called an
antimorphic involution. Let θ be such an antimorphic involution. A word w is
called θ-primitive if w = u1 · · ·uk with ui ∈ {u, θ(u)} for all 1 ≤ i ≤ k implies
k = 1 and hence u ∈ {w, θ(w)}; otherwise, w is a θ-power. A θ-primitive word
is primitive, but the converse does not hold: for instance, the word w = abba
is primitive but w = abθ(ab), for θ being the reversal. Any nonempty word w
admits a unique θ-primitive word t such that w ∈ t{t, θ(t)}∗, and the t is called
the θ-primitive root of w. A word w is a θ-palindrome if w = θ(w).

Kari et al. [7] characterised θ-primitive words similarly to Proposition 1:

Lemma 1. For a θ-primitive word x ∈ Σ+, neither xθ(x) nor θ(x)x can be a
proper factor of a word in {x, θ(x)}3.

Furthermore, Czeizler et al. [4] showed the following:

Lemma 2. Let x ∈ Σ+ be a θ-primitive word, and x1, x2, x3, x4 ∈ {x, θ(x)}. If
x1x2y = zx3x4 for some words y, z ∈ Σ+ with |y|, |z| < |x|, then x2 �= x3.

Two words x, y are conjugates, denoted by x ∼ y, if xz = zy holds for some
word z ∈ Σ∗. Then there exist p, q ∈ Σ∗ such that x = pq, y = qp, and z = (pq)ip
for some i ≥ 0. For this or the next theorem, see, e.g., [8].

Theorem 4. If α ∈ u{u, v}∗ and β ∈ v{u, v}∗ have a common prefix of length
at least |u| + |v| − gcd(|u|, |v|), where gcd denotes the greatest common divisor,
then u, v ∈ {t}+ for a word t.

Czeizler et al. [4] proved the following generalisation of Theorem 4:

Theorem 5. Let u, v ∈ Σ+ with |u| ≥ |v|. If α ∈ {u, θ(u)}+ and β ∈ {v, θ(v)}+
have a common prefix of length at least min{2|u|+ |v|−gcd(|u|, |v|), lcm(|u|, |v|)},
where lcm denotes the least common multiple, then u, v ∈ t{t, θ(t)}+ for some
θ-primitive word t ∈ Σ+.

This theorem immediately solves (1) when v1 · · · vm or w1 · · ·wn is very long.

Corollary 1. If (1) holds with |u1u2| < |v1 · · · vm−1| or |u2u3| < |w2 · · ·wn|,
then u, v, w ∈ {t, θ(t)}+ for some word t.



406 F. Manea et al.

u

u2 = u

u3 = u

1 2

v′i

w′′
p

v1 = v v2 vi−1 vi v′j

v′′j
vj+1 vm

w1 = w w′
k

w′′
k

wk+1 wp wn

ṽ ṽ

Fig. 1. Visualisation of (2), where j = m− i+ 1

We will also make frequent use of the following results from [3]:

Proposition 2 (Prop. 20 and 21 in [3]). Let u, v ∈ Σ+ so that v is θ-
primitive, u1, u2, u3 ∈ {u, θ(u)} and v1, . . . , vm ∈ {v, θ(v)} for some m ≥ 3.
Assume that v1 · · · vm <p u1u2u3 and 2|u| < m|v| < 2|u|+ |v|. Then:

– If m is odd, then u2 �= u1 and v1 = . . . = vm = zθ(z)p, where p = θ(p).
– If m is even, then one of the following holds:

1. u1 �= u2 and v1 = . . . = vm = xzθ(z), where x = θ(x), or
2. u1 = u2, v1 = . . . = vm

2
and vm

2 +1 = . . . = vm = θ(v1) such that

v
m/2
1 θ(v1)m/2 = u2x2 for some θ-palindrome x.

A symmetrical result (i.e., v1 . . . vm <s u1u2u3 in the hypothesis and u1 and u2

replaced by u2 and u3, respectively, in the conclusions) can be easily derived.

3 Basic Proof Strategy for Theorems 1 and 2

Partial results of Theorem 1 were given in [10] as: (1) with m,n ≥ 5 admits only θ-
periodic solutions if u2 or u3 is θ(u) (u1 is fixed to u throughout the paper without
loss of generality) or |u1u2| < |v1 · · · vm| (or symmetrically, |w1 · · ·wn| > |u2u3|).
So, it seems more difficult to handle the case u1 = u2 = u3 = u, that is, to solve
equations of the form:

u3 = v1 · · · vmw1 · · ·wn (2)

under the condition |u| < |v1 · · · vm| < 2|u|. This hardness intuitively stems
from the fact that (2) provides no information about θ(u) and neither v1 · · · vm
nor w1 · · ·wn is long enough to apply Theorem 5. In this section, we present a
strategy to tackle this hard case appearing in our proofs for Theorems 1 and 2.

Note first that u is assumed to be θ-primitive throughout the paper. If not,
the given equation is immediately reduced to the equivalent equation u′

1 · · ·u′
� =

v1 · · · vmw1 · · ·wn for some � ≥ 6 and words u′
1, . . . , u

′
� each of which is either

the θ-primitive root of u or its θ-image. The reduced equation is known to admit
only θ-periodic solutions (see Table 1). Furthermore, we will always assume that
v1 = v and w1 = w in this article: As θ is an involution, the other cases can be
reduced to this one by a simple renaming of v to θ(v) or of w to θ(w). Finally,
as already remarked in [3], if we show that two of the words u, v, and w are
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θ-powers of a word t, then so is the third. Hence we will conclude whenever we
established that two of u, v, w are θ-powers of a common word.

Back to the case above, due to the length condition, the border between vm
and w1 is inside u2 and splits u2 into the prefix, denoted by 1 , and the remaining
suffix, denoted by 2 , as shown in Fig. 1. There exists an index 1 ≤ i ≤ m such
that 1 = v1 · · · vi−1v

′
i = v′′m−i+1vm−i+2 · · · vm for some proper prefix v′i of vi and

proper suffix v′′m−i+1 of vm−i+1 (for clarity, let j = m−i+1 below). With v′i empty,
1 = v1 · · · vi−1 and 2 = vi · · · vj so that u = 1 2 would not be θ-primitive.

Thus, v′i must be nonempty. Likewise, 2 = w1 · · ·wk−1w
′
k = w′′

pwp+1 · · ·wn for
some 1 ≤ k ≤ n and nonempty proper prefix w′

k of wk, where p = n−k+1.

Lemma 3. Let 1 and 2 be as above and |u| < m|v| < 2|u|. If m,n ≥ 3, then
both 1 and 2 are θ-palindromes, and v1 = · · · = vi−1, vj+1 = · · · = vm = θ(v1),
vj = θ(vi), w1 = · · · = wk−1, wp+1 = · · · = wn = θ(w1), and wp = θ(wk).

Proof. The symmetric roles of v1 · · · vm and w1 · · ·wn allow us to assume that
|v1 · · · vm| ≥ |w1 · · ·wn|, that is, | 1 | ≥ | 2 |. This means that v1 <p 1 since
m ≥ 3 and v′i �= ε. In order for u to be θ-primitive, v′i �∈ {ρθ(v), θ(ρθ(v))}+,
where ρθ(v) is the θ-primitive root of v. Regarding v1 · · · vi and vj · · · vm rather
as repeated concatenations of ρθ(v) and θ(ρθ(v)) and taking v1 = v, Lemma 2
implies that v1 · · · vi−1 is a power of v while vj+1 · · · vm is a power of θ(v). In
this way, v1 = · · · = vi−1 = v and vj+1 = · · · = vm = θ(v) were obtained. Hence,
v′i is a suffix of θ(v), that is, θ(v′i) is a prefix of v of the same length as v′′j . Thus,

θ(v′i) = v′′j . Since i ≥ 2 and |v′i| < |v|, now we have that 1 is a θ-palindrome.

As for 2 , the above argument works as long as w1 is its prefix or wn = θ(w1).
If w1 is longer than 2 and wn = w1, then we can let w1 = 2 w′′

1 and wn = w′
n 2

for some w′′
1 , w

′
n and in fact w′

n = θ(w′′
1 ) because they are a prefix and a suffix of

the θ-palindrome 1 . Substituting these into wn = w1 yields a conjugacy 2 w′′
1 =

θ(w′′
1 ) 2 , and as mentioned in Sect. 2, it is solved as 2 = (βα)sβ, w′′

1 = αβ, and
θ(w′′

1 ) = βα for some s ≥ 0 and words α, β. Then w′′
1 = αβ = θ(α)θ(β), and

hence, both α and β are θ-palindromes. Therefore, 2 is a θ-palindrome.
As 1 and 2 are θ-palindromes, it follows that vi = θ(v′′j )θ(v′j) = θ(vj). "#
See Fig. 1 and observe that Lemma 3 aligned wk+1 · · ·wp with the power of

a conjugate ṽ of v. Intuitively speaking, for n large enough, we can apply Theo-
rem 5 to this alignment and obtain ṽ, w ∈ {t, θ(t)}+ for some t. This is quite close
to the actual goal v, w ∈ {t, θ(t)}+ (tools for the purpose are obtained in [10]),
but the final steps are case-specific and omitted due to the page limit. Only the
cases with small m and n remain to be examined. Combinatorial arguments are
required for them, but fortunately, the number of these cases is small. Theorem 1
follows in this manner, without any dependency on the proof of Theorem 2. The
proof of the latter is given next.

4 Proof of Theorem 2

The case (B) from Table 1, left open in [7,10], was that of the equations

u1u2u3 = v1v2v3v4w1 · · ·wn, (3)
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where ui ∈ {u, θ(u)} for all 1 ≤ i ≤ 3, vj ∈ {v, θ(v)} for all 1 ≤ j ≤ 4 and
wk ∈ {w, θ(w)} for all 1 ≤ k ≤ n and n ≥ 5 is odd. Note that there are instances
of (3) with n = 3 that also have non-θ-periodic solutions, by symmetry to the
case � = 3,m = 3, n = 4 (see Example 50 in [7]).

We first remark that we can assume v to be θ-primitive. Otherwise, replacing
v with its θ-primitive root, we end up with an equation involving a larger number
of the factors v or θ(v), and these have only θ-periodic solutions, by Theorem 1.

To solve (3), we analyse all possible values of u2 and u3, and for all these we
look at the different relations between |v1 · · · v4| and |u| separately.

� The case u1u2u3 = uθ(u)u. We actually show a more general result:

Lemma 4. For any n,m ≥ 3, if uθ(u)u = v1 · · · vmw1 · · ·wn, then u, v, w ∈
{t, θ(t)}+ for some word t.

Proof. Applying θ to the equation gives θ(u)uθ(u)=θ(wn)· · · θ(w1)θ(vm)· · · θ(v1),
and we catenate this to the original equation to yield:

(uθ(u))3 = v1 · · · vmw1 · · ·wnθ(wn) · · · θ(w1)θ(vm) · · · θ(v1).

Cyclic shift converts this into x3 =θ(vm)· · · θ(v1)v1 · · · vmw1 · · ·wnθ(wn)· · · θ(w1),
where x is a conjugate of uθ(u). This is an extended Lyndon-Schützenberger
equation of the form x3 = v1 · · · vm′w1 · · ·wn′ , with m′ = 2m ≥ 6 and n′ = 2n ≥
6. The known results displayed in Table 1 (if min{m′, n′} ≥ 12) and Theorem 1
(if 6 ≤ min{m′, n′} < 12) provide a characterisation of the solutions of such
equations, showing that v, w ∈ {t, θ(t)}+. "#

� The case u1u2u3 = uuu. The analysis of this case is split in three subcases
depending on whether 4|v| < |u|, |u| < 4|v| < 2|u|, or 4|v| > 2|u| holds.

Let us begin with the case when 4|v| < |u|. Then there is k ≥ 1 such that the
first u ends on wk. Let u2 = w′′

kwk+1 · · ·wn. If w is θ-primitive, then Proposition 2
implies that n−k+1 is even, and hence, k is also even as n is assumed to be odd.
Thus, w1 · · ·wn is a suffix of u3 and its length is at least 2|u|+ |w|. Theorem 5
concludes u,w ∈ {t, θ(t)}+ for some t. If w is not θ-primitive, then replacing
w1, . . . , wn with the representations as the θ-power of the θ-primitive root of w
reduces the given equation into the one handled in the next lemma.

Lemma 5. If u1u2u3 = uuu, 4|v| < |u|, n ≥ 10, and (3) holds, then u, v, w ∈
{t, θ(t)}+ for some t.

Proof. If the first u ends to the right of w1, then w1 · · ·wn is a long enough
suffix of u3 to apply Theorem 5 as just explained above. As 2|u| < n|w|, what
remains to be examined is the case when it ends on w1. By Proposition 2, n is
even as w is assumed to be θ-primitive, and moreover w1 = · · · = wn/2 = w and
wn/2+1 = · · · = wn = θ(w), and

w1 · · ·wn = wn/2θ(w)n/2 = x2u2 (4)
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for some θ-palindrome x. Since the first u ends on w1, we can let w1 = w = x2z
for some z. Substituting this to (4) gives u = (zx2)n/2−1zx. Now we have

u = (zx2)n/2−1zx = v1 · · · v4x2. (5)

Since n ≥ 10, this means that (zx2)3 ≤p v1 · · · v4 ≤p (zx2)n/2−1zx. Thus, v1 · · · v4
is long enough for Theorem 5 to imply zx2 ∈ {v, θ(v)}+. That is, |zx2| is a multiple
of |v|, but a simple length argument implies |zx2| = |v| in order for (5) to hold.
However, then (5) would give z = x so that w = x2z would not be θ-primitive. "#

Lemma 6. If u1u2u3 = uuu, |u| < 4|v| < 2|u|, and (3) holds, then u, v, w ∈
{t, θ(t)}+ for some word t.

Proof. We either have u2 = v′′3 v4w1 · · ·w′
k or u2 = v′′4w1 · · ·w′

k for some k. By
Lemma 3, we get that 1 and 2 are θ-palindromes. So, w1 · · ·wn = 2 1 2
is also θ-palindrome. As n is odd, we get that wn+1

2
= θ(wn+1

2
) and therefore

w = θ(w). Thus, we have u3 = v1 · · · v4wn, with n ≥ 5.
If |wn| ≥ |u| + |w|, then Theorem 4 implies u,w ∈ {t}+ for some t and we

are done. Hence, we assume |wn| < |u| + |w|, that is, |u| > (n − 1)|w|. Then
| 1 | = 2|u| − n|w| > |u| − |w| > n−2

n−1 |u| >
1
2 |u|. Hence, it suffices to consider

the case u = v1v2v
′
3. Then Lemma 2 implies v4 = θ(v). Also, if v2 = v, we can

apply Theorem 4 to v2 and w̃ω , where w̃ is a conjugate of w, to get that v is
not primitive, a contradiction. So we also assume v2 = θ(v). Now if v3 = v,
then the given equation turns into a classical Lyndon-Schützenberger equation
u3 = (vθ(v))2w5, which is solved as u, vθ(v), w ∈ {t}+ for some t and we are
done. Otherwise, since v1v2v3v4 = 1 2 1 is a θ-palindrome, we get v = θ(v),
and once again we obtain a classical Lyndon-Schützenberger equation u3 = v4w5

and we are done. "#

The next lemma follows easily by Proposition 2, its proof is therefore omitted.

Lemma 7. If u1u2u3 = uuu, 4|v| > 2|u|, and (3) holds, then u, v, w ∈ {t, θ(t)}+
for some word t.

� The case u1u2u3 = uuθ(u). Here, the case when 2|u| < 4|v| is already
covered in [7] in a more general form as follows.

Lemma 8 (Proposition 51 in [7]). For any m,n ≥ 3, if u1u2u3 = uuθ(u),
(1) holds, and m|v| > 2|u|, then u, v, w ∈ {t, θ(t)}+ for some word t.

Lemma 9. If u1u2u3 = uuθ(u), 4|v| < |u|, and (3) holds, then u, v, w ∈
{t, θ(t)}+ for some t.

Proof. By Corollary 1, we can assume that 4|v| < |u| < 4|v| + |w|, that is, the
first u ends inside w1 (i.e., |w1 · · ·wn| > |uθ(u)| > |w2 · · ·wn|). Hence, 2|u| >
(n− 1)|w|, and this means wn−1wn <s θ(u). Thus, θ(wn)θ(wn−1) <p u.

If n ≥ 7, we have |w| < 1
3 |u|, and hence, |v1 · · · v4| > 2

3 |u|. Note that the
argument here does not rely on the parity of n.
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θ(y′)
x y′θ(y′) xy′

u u θ(u)

v1 v2 v3 v4
w w w w w

θ(w) θ(w) y′

Fig. 2. The equation uuθ(u) = v1v2v3v4w1 · · ·wn with n = 5 and 4|v| < |u|

Assume first that 2|w| ≤ |v1v2v3|. Since θ(u) is a suffix of w1 · · ·wn, the prefix
v1 · · · v4 of u is a prefix of θ(wn) · · · θ(w1), which is long enough for Theorem 5
to give v, w ∈ {t, θ(t)}+ for some t.

If 2|w| > |v1v2v3|, then we have |v1v2v3| < 2|w| < |v1 · · · v4|. Proposition 2
gives v1 = v2 = v while v3 = v4 = θ(v). Thus, v1 · · · v4 is a θ-palindrome. It
has a prefix θ(wn) and hence a suffix wn. Now we have that wnw1w2 · · ·wn is a
suffix of uuθ(u) and its length is at least 2|u|+ |w|, enough for Theorem 5.

The case n = 5 (see Fig. 2) remains. We can assume that w is θ-primitive;
otherwise, the examination is reduced to the case when n ≥ 7. Proposition 2
is hence applicable to w1 · · ·w5 and gives w1 = · · · = w5 = w. As shown in
Fig. 2, now we have w = xy for some θ-palindromes x, y such that y = y′θ(y′).
If |y′| ≥ |x|, then we get θ(w)2 ≤p v1 · · · v4, and the same reasoning as in the
previous paragraph applies. Thus, we assume |y′| < |x|. See v1 · · · v4x = θ(w)2y′

in Fig. 2. Since θ(w) = yx, this gives x ≤s xy′, and this implies that xy′ is a
θ-palindrome because |y′| < |x|.

The centre of the prefix θ(w)2 of u is either on v3 or on v4 (it cannot be
to the right of v4 since |w| < 1

2 |u|). If it is inside v3 as depicted in Fig. 2, we
can let θ(w) = v1v2v

′
3 and v′′3v4 ≤p θ(w) for some v′3, v

′′
3 whose catenation is v3.

Lemma 2 implies that v′′3v4 is a θ-palindrome by fixing v4 = θ(v1). Thus, v′′3 v4
is a suffix of w, and this extends the power w1 · · ·w5 of w to the left sufficiently
for Theorem 5 to imply u,w ∈ {t, θ(t)}+ for some t.

To handle the last case when the centre is inside v4, from v1 · · · v4x = θ(w)2y′,
we first derive the equation v1 · · · v4 = y′θ(y′)xy′θ(y′)θ(y′). In order for the
centre to be there, we need |v4| > |y′θ(y′)θ(y′)|, and hence, |y| < |v1|. This has
two consequences. One is that v2v3 is a factor of x, and hence, trivially, that
of the θ-palindrome xy′. In addition, the equation implies that the centre of
v2v3 is at the centre of xy′. Thus, v3 = θ(v2). The other consequence is that
v1v2v3 <p yxy <p v1v2v3v4. Hence, θ(v3)θ(v2)θ(v1) is a proper factor of v1 · · · v4
so that Lemma 1 implies v2 = v3. Consequently, v = θ(v). Now v1 · · · v4 is a
θ-palindrome, and it has θ(w) as a prefix, and hence, w as its suffix. Theorem 5
is now applied to ww1 · · ·w5 to obtain u,w ∈ {t, θ(t)}+. "#

The next result follows by combining arguments used in the corresponding
subcase for u1u2u3 = uuu and in the proof of the previous Lemma.

Lemma 10. If u1u2u3 = uuθ(u), |u| < 4|v| < 2|u|, and (3) holds, then u, v, w ∈
{t, θ(t)}+ for some t.
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� The case u1u2u3 = uθ(u)θ(u). The subcase when 4|v| < |u| is simple. We
just have to apply θ to both sides of the equations and then use Lemma 8.

Lemma 11. If u1u2u3 = uθ(u)θ(u), 4|v| < |u|, and (3) holds, then u, v, w ∈
{t, θ(t)}+ for some t.

Lemma 12. If u1u2u3 = uθ(u)θ(u), |u| < 4|v| < 2|u|, and (3) holds, then
u, v, w ∈ {t, θ(t)}+ for some t.

Proof. We consider two separate main cases: The first is when v′′3 v4 ≤p u2, where
v′′3 is a suffix of v3 = v′3v

′′
3 . As v is assumed to be θ-primitive, |v′3| �= |v′′3 |. In

this case |v| > 1
3 |u| and so 4|v| > 4

3 |u|. It follows that n|w| < 5
3 |u| and since

n ≥ 5, we get that |w| < 1
3 |u| < |v|. Further, we can assume that |u| < 2|v|+ |w|,

otherwise we get the claimed result by Theorem 5. This means that |w| > |v′3|.
We will now prove that v1 = v3 = v4 = v holds, as follows. Suppose, towards

a contradiction, that v4 = θ(v). Since θ(wn) ≤p v, this assumption implies that
v4 ends with wn. Then wnw1 . . . w

′
k ≤s θ(u), where wk = w′

kw
′′
k for some k, and,

thus, wnw1 . . . w
′
k ≤s w1 · · ·wn. By Lemma 1, we get that wn = w1 = . . . = wk−1

and wn−1 = wn. So, by Proposition 1, wn �= wn must hold, a contradiction. Thus,
v4 = v. On the θ-palindrome uθ(u), θ(v4)θ(v3) lies inside v2v3v4 in such a way
that Lemma 1 implies v3 = v4 (recall that |v′3| �= |v′′3 |). Hence, v1 = v3 = v4 = v.

We split the discussion further, according to the relation between |v′3| and |v′′3 |:
If |v′3| > |v′′3 |, then we have also |w| > |v′′3 |, as we already established |w| > |v′3|.

Now, |v| = |v′3| + |v′′3 | and |u| = 3|v′3| + 2|v′′3 |. From this we get that n|w| =
3|u| − 4|v| = 5|v′3|+ 2|v′′3 |. However, |w| > |v′3| and |w| > |v′′3 |, so n must be 5.

Assume 3|w| ≤ 2|v|, that is 6|w| ≤ 4|v|. Now, as |v′3| > |v′′3 |, we have that
5
2 |v| < |u|, and therefore 4|v| < 8

5 |u|. Since 6|w| ≤ 4|v|, we get 6|w| < 8
5 |u|,

hence 5|w| < 8
6 |u|. It follows that 4|v| + 5|w| < 8

5 |u| + 8
6 |u| = 88

30 |u| < 3|u|, a
contradiction. Thus 3|w| > 2|v| must hold, and as θ(w5)θ(w4)θ(w3) ≤p vv2v, we
can apply Proposition 2 to get v2 = θ(v) and w3 = w4 = w5. The fact that w1w

′
2

is a suffix of w3w4w5 leads to w1 = w and w3 = w4 = w5 = θ(w). Now we have
that w5 ≤p v1, so w ≤p v and we have two occurrences of w inside u2 = θ(u):
One (the prefix of v4) is after the prefix of length 3|v| − |u| and the other one
(w1) is after the prefix of length 4|v| − |u|. Both these occurrences fall inside
w3w4w5 = θ(w)3 inside u3 = θ(u). In order for w to be primitive (as assumed),
the length of the factor between those two occurrences must be a multiple of
|w|. This factor is of length |v| though, and since |v| > |w|, but 2|w| > |v| (as
|w| > |v′3| and |w| > |v′′3 |), this is impossible.

We reached the case when |v′3| < |v′′3 |; by Lemma 1 we get that v2 = v3 = v4.
We first establish that v1 = v2 holds as well. Assume towards a contradiction,

that v1 = θ(v2). Then, as θ(wn) ≤p v1, we have wn ≤s v4 = v2 = θ(v1). Now,
if w1 is a factor of u2, the word wnw1 · · ·w′

k for some k ≥ 2 is a suffix of
θ(u). However, also θ(u) = w′′

k · · ·wn. By Lemma 1, we get that wn = w1 =
. . . = wk−1 = w, and also that wn−1 = wn. But then wk−1 = wn appears as
a proper factor inside wn−1wn = wnwn, contradicting the primitivity of w. If
w1 is not a factor of u2, that is, w′

1 ≤s u2, where w1 = w′
1w

′′
1 , then wnw

′
1 is a

suffix of wn−1wn, so xwnw1 = wn−1wny where y = w′′
1 and x is the prefix of
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length |w′′
1 | of wn−1. By Lemma 2 we get that wn �= wn, a contradiction. Thus,

v1 = . . . = v4 = v.
If the prefix of length |v| + |w| of θ(w1 · · ·wn) is a prefix of a word in {w}+

or {θ(w)}+, then we can apply Theorem 4 to get the claimed result. Thus we
assume that wθ(w) or θ(w)w appears as a factor inside vv after a prefix that is
strictly shorter than |v|. Without loss of generality we assume that it is wθ(w)
that occurs there, and we focus on the first occurrence of this factor inside vv.

We first rule out the possibility that wθ(w) is a prefix of vv: We observe that
|u| ≥ 2|w| + |v|. To see this, assume that |u| < 2|w| + |v|. This means that
3|u| < 6|w| + 3|v| < 5|w| + 4|v|, which is a contradiction. Therefore, if wθ(w)
is a prefix of vv, it has another appearance inside u after a prefix of length |v|.
However, as |v| is not divisible by |w| (otherwise v ∈ {w, θ(w)}+ and |v| > |w|,
so v would not be θ-primitive), this other occurrence of wθ(w) is a proper factor
of some word wiwi+1wi+2 inside u3 = θ(u). By Lemma 1 this is impossible if w
is θ-primitive. Hence, we assume that xwθ(w) is a prefix of vv, where x ∈ {w}+.
As |w| > |v′3|, we have an occurrence of wθ(w) in u2 = θ(u) after a prefix of
length |x| − |v′3|. So in u, we have an occurrence of wθ(w) after the prefix of
length |x|, and after the prefix of length |u| − (|x| − |v′3|) − 2|w|. As x ∈ {w}+,
we must have |u| − (|x| − |v′3|) − 2|w| ≥ |x|. Now as u is prefix of θ(w1 · · ·wn),
in order to avoid a contradiction with Lemma 1, the difference between the
lengths of those two prefixes must be divisible by |w|. However, this difference is
|u| − (|x| − |v′3|)− 2|w| − |x| = |u| − 2|x|+ |v′3| − 2|w| and as x ∈ {w}+, the term
|u|+ |v′3| must be divisible by |w|. Now |u| = 2|v|+ |v′3|, thus 2|u| = 4|v|+ 2|v′3|,
and as |w1 · · ·wn| = 3|u|− 4|v|, we have |w1 · · ·wn| = |u|+ 2|v′3|. If now |u|+ |v′3|
is divisible by |w|, then also |v′3| must be divisible by |w|. This however is a
contradiction, as we assumed that |v′3| < |w|.

The other main case is when u1 = u ends on v4. The proof below does not rely
on n being odd so that we can assume that w is θ-primitive. Then, |v1v2v3| <
|u|, that is, |v| < 1

3 |u|. We also have n|w| < 2|u|, that is, |w| < 2
n |u| ≤

2
5 |u|.

Let uθ(u) = v1 · · · v4w1 · · ·wk−1w
′
k for some k and a prefix w′

k of wk. Since
|v1 · · · v4| < 4

3 |u| and |w| ≤ 2
5 |u|, k must be at least 2. Note that w1 · · ·wk−1w

′
k

is a suffix of θ(u), and θ(u) is a suffix of w1 · · ·wn. That is, w1 · · ·wk−1w
′
k <s

w1 · · ·wn. Lemmas 1 and 2 imply w1 = · · · = wk−1 = w, w′
k <p w, and α =

w1 · · ·wk−1w
′
k is a θ-palindrome. Then uθ(u) = v1 · · · v4α. Thus, α is also a prefix

of this θ-palindrome uθ(u), and moreover, α <p v1 · · · v4. We now have that
uθ(u) <p (v1 · · · v4)2. Since u is assumed to be θ-primitive, Proposition 2 gives
v1 = v2 = v3 = v4 = v. Now α <p v4 and α <p wk. For the sake of Theorem 4, it
suffices to prove |α| ≥ |v|+|w|. In fact, from n|w| = 3|u|−4|v| and |α| = 2|u|−4|v|,
we get |α| − (|v|+ |w|) = 2|u| − 4|v| − 3

n |u|+
4
n |v| − |v| =

(
1
3 −

5
3n

)
|u|, which is

at least 0 since n ≥ 5. "#

Lemma 13. If u1u2u3 = uθ(u)θ(u), 2|u| < 4|v| < 2|u|+ |v|, and (3) holds, then
u, v, w ∈ {t, θ(t)}+ for some t.

Proof. By Proposition 2, we have v1 = . . . = v4 = v and v = xzθ(z), for some
words x and z, with x = θ(x). Furthermore, u = vxz = xzθ(z)xz. Therefore,
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θ(u)
· · ·

θ(u)

θ(z) x z θ(z) x

v

x z θ(z)

w1 · · ·wn

Fig. 3. The word θ(u)

the situation in u3 = θ(u) looks as illustrated in Fig. 3. We see that z = θ(z) in
this case. Now θ(u) = zxzzx = zzw1 · · ·wn, and so xz2x = zw1 · · ·wn.

Since both xz2x and z are θ-palindromes and |z| ≤ |w1 · · ·wn|, the equa-
tion implies z ≤s w1 · · ·wn. Hence, there exists an integer k such that z =
w′′

kwk+1 · · ·wn where wk = w′
kw

′′
k for some w′

k, w
′′
k . If w′′

k was empty, we would
get z = wk+1 · · ·wn, but substituting this into θ(u) = zzw1 · · ·wn would make
θ(u) not θ-primitive. Thus, w′′

k �= ε. Then xz2x = w′′
kwk+1 · · ·wnw1 · · ·wn im-

plies w1 = . . . = wn = w. Now we have xz2x = zwn and concatenating z2 to
the left on both sides results in (z2x)2 = z3wn. This is a conventional Lyndon-
Schützenberger equation, and it implies z2x, z ∈ {w}+. Substituting this into
the equation, however, implies z2x ∈ {w}+, and |z2x| ≥ 3|w|. Hence, z2x is not
primitive and neither is its conjugate v, a contradiction. "#
� Conclusion. By the results of Lemmas 4–13 we get that Theorem 2 holds.
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Abstract. We consider the complexity of equivalence and learning for
multiplicity tree automata, i.e., weighted tree automata with weights in
a field. We first show that the equivalence problem for multiplicity tree
automata is logspace equivalent to polynomial identity testing. Secondly,
we consider the problem of learning multiplicity tree automata in An-
gluin’s exact learning model. Here we give lower bounds on the number
of queries, both for the case of an arbitrary and a fixed underlying field.
We also present a learning algorithm in which trees are represented suc-
cinctly as DAGs. Assuming a Teacher that represents counterexamples
as succinctly as possible, our algorithm uses exponentially fewer queries
than the best previously known procedure, leaving only a polynomial
gap with the above-mentioned lower bound. Moreover, fixing the alpha-
bet rank, the query complexity of our algorithm matches the lower bound
up to a constant factor.

1 Introduction

Trees are a natural model of structured data, including syntactic structures in
natural language processing and XML data on the web. Many of those applica-
tions require representing functions from trees into the real numbers. A broad
class of such functions can be defined by multiplicity tree automata, which gener-
alise classical finite tree automata by having transitions with weights in a field.

A fundamental problem concerning multiplicity tree automata is equivalence:
given two automata, do they define the same function. Seidl [13] proved that
equivalence for multiplicity tree automata is decidable in randomised polynomial
time. No finer analysis of the complexity of this problem exists to date.

Our first contribution (Section 3) is to show that the equivalence problem for
multiplicity tree automata is logspace equivalent to polynomial identity testing,
i.e., the problem of deciding whether a polynomial given as an arithmetic circuit
is zero. The latter is known to be solvable in randomised polynomial time whereas
solving it in deterministic polynomial time is a well-studied and longstanding
open problem [3].

Equivalence is closely connected to the problem of learning in Angluin’s exact
learning model [2]. In this model, a Learner actively collects information about
the target function from a Teacher through membership queries, which ask for the

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 414–425, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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value of the function on a specific input, and equivalence queries, which suggest
a hypothesis to which the Teacher provides a counterexample if one exists.

Exact learnability of multiplicity word automata has been extensively stud-
ied. Beimel et al. [4] show that multiplicity word automata can be learned effi-
ciently and apply this to learn various classes of DNF formulae and polynomials.
These results were generalised by Klivans and Shpilka [11] to show learnability
of restricted algebraic branching programs and noncommutative set-multilinear
arithmetic formulae. Bisht, Bshouty, and Mazzawi [5] give an almost tight (up to
a log factor) lower bound for the number of queries made by any exact learning
algorithm for the class of multiplicity word automata.

In Section 5 we give lower bounds on the number of queries needed to learn
multiplicity tree automata in the exact learning model, both for the case of an ar-
bitrary and a fixed underlying field. The bound in the latter case is proportional
to the automaton size for trees of a fixed maximal branching degree.

Habrard and Oncina [9] present an exact learning algorithm for multiplicity
tree automata, using a number of equivalence queries that is bounded by the
number of states in a minimal representation of the automaton being learned,
and a number of membership queries that is proportional to the size of the mini-
mal representation and the length of the longest counterexample returned by the
Teacher. However, the smallest counterexample to an equivalence query may be
exponential in the size of the target automaton, if given explicitly in a standard
representation as a tree. Thus the algorithm of [9] is not polynomial in the size of
the target automaton, even for a Teacher that returns counterexamples of min-
imal size. Moreover, there is an exponential gap between the query complexity
of this algorithm and the above-mentioned lower bound.

Given two inequivalent multiplicity tree automata with n states in total,
Seidl’s algorithm [13] produces a subtree-closed set of trees of cardinality at
most n that contains a tree on which the automata differ. It follows that the
counterexample contained in the set has at most n subtrees, and hence can be
represented as a DAG with at most n nodes. Thus it is natural to consider a
Teacher that can return succinctly represented counterexamples, i.e., trees rep-
resented as DAGs. Tree automata that run on DAG representations of finite
trees were introduced in [7].

In Section 4 we present a new exact learning algorithm for multiplicity tree
automata that achieves the same bound in the number of equivalence queries as
the algorithm of [9], while using polynomially many membership queries in the
counterexample size, even when counterexamples are given succinctly. Assuming
that the Teacher provides minimal succinct representations of counterexamples,
our algorithm therefore makes polynomially many queries in the target size. This
is exponentially fewer queries than the best previously known algorithm [9] and
leaves only a polynomial gap with the above-mentioned lower bound. Moreover,
for a fixed maximal branching degree the number of queries matches the lower
bound to within a multiplicative constant.

Like the algorithm of [9], our algorithm constructs a Hankel matrix of the
target automaton. However on receiving a counterexample tree z, the former
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algorithm adds a new column to the Hankel matrix for every suffix of z, while
our algorithm adds (at most) one new row for each subtree of z. But the number
of suffixes may be exponential in the size of the DAG representation of z, whereas
the number of subtrees is linear.

The full version of this paper is available as [12].

2 Preliminaries

For every n ∈ N, we write [n] for the set {1, 2, ..., n} and In for the identity matrix
of size n. For every i ∈ [n], we write ei for the i-th n-dimensional coordinate
vector. For any matrix A, we write Ai for its ith row, Aj for its jth column,
and Ai,j for its (i, j)th entry. Given nonempty subsets I and J of the rows and
columns of A, respectively, we write AI,J for the submatrix (Ai,j)i∈I,j∈J of A.
For singletons, we denote simply Ai,J := A{i},J and AI,j := AI,{j}.

Let n1, ..., nk ∈ N and (i1, ..., ik) ∈ [n1]×· · ·× [nk]. If a matrix A has n1 · ... ·nk

rows, then we write A(i1,...,ik) for its (
∑k−1

l=1 (il − 1) · (
∏k

p=l+1 np) + ik)th row.

Kronecker Product. Let A be a matrix of dimension m1×n1 and B a matrix
of dimension m2× n2. The Kronecker product of A by B, written as A⊗B, is a
matrix of dimension (m1m2)× (n1n2) where (A⊗B)(i1,i2),(j1,j2) = Ai1,j1 ·Bi2,j2

for every i1 ∈ [m1], i2 ∈ [m2], j1 ∈ [n1], and j2 ∈ [n2].
The Kronecker product is bilinear, associative, and has the following mixed-

product property: Given matrices A, B, C, and D where products A ·C and B ·D
are defined, it holds that (A⊗B)(C ⊗D) = (A · C)⊗ (B ·D).

For every k ∈ N0 we define the k-fold Kronecker product of a matrix A by
itself, written A⊗k, as A⊗0 = I1 and A⊗k = A⊗(k−1) ⊗A for k � 1.

Tree Series. A ranked alphabet is a tuple (Σ, rk) where Σ is a nonempty finite
set of symbols and rk : Σ → N0. For every k ∈ N0, we define the set of all k-ary
symbols Σk := rk−1({k}). The set of Σ-trees (trees for short), written TΣ, is
the smallest set T such that (i) Σ0 ⊆ T and (ii) if k � 1, σ ∈ Σk, t1, ..., tk ∈ T
then σ(t1, ..., tk) ∈ T . A subtree of a tree t is a tree consisting of a node in t and
all of its descendants in t.

Let Σ be a ranked alphabet and F a field. A tree series over Σ with coefficients
in F is a mapping f : TΣ → F. For t ∈ TΣ, f(t) is called the coefficient of t in
f . The set of all tree series over Σ with coefficients in F is denoted by F〈〈TΣ〉〉.

We define tree series height ∈ Q〈〈TΣ〉〉, size ∈ Q〈〈TΣ〉〉, and #σ ∈ Q〈〈TΣ〉〉
where σ ∈ Σ, by (i) if t ∈ Σ0 then height(t) = 0, size(t) = 1, and #σ(t) = �{t=σ},
and (ii) if t = a(t1, ..., tk) where k � 1 then height(t) = 1 + max i∈[k]height(ti),
size(t) = 1 +

∑
i∈[k] size(ti), and #σ(t) = �{a=σ} +

∑
i∈[k] #σ(ti) respectively.

Let � be a nullary symbol not contained in Σ. The set CΣ of Σ-contexts
(contexts for short) is the set of ({�}∪Σ)-trees in which � occurs exactly once.
Given c ∈ CΣ and t ∈ TΣ ∪̇CΣ , we write c[t] for the tree obtained by substituting
t for � in c. A suffix of a Σ-tree t is a Σ-context c such that t = c[t′] for some
Σ-tree t′. We define the Hankel matrix of a tree series f ∈ F〈〈TΣ〉〉 to be the
matrix H : TΣ × CΣ → F such that Ht,c = f(c[t]) for every t ∈ TΣ and c ∈ CΣ .
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Multiplicity Tree Automata. Let F be a field. An F-multiplicity tree automa-
ton (F-MTA) is a quadruple (n,Σ, μ, γ) which consists of the dimension n ∈ N
representing the number of states, a ranked alphabet Σ, for every σ ∈ Σ a

transition matrix μ(σ) ∈ Fnrk(σ)×n, and the final weight vector γ ∈ F1×n.
Let A = (n,Σ, μ, γ) be an F-MTA. We extend μ to TΣ by μ(σ(t1, ..., tk)) :=

(μ(t1) ⊗ · · · ⊗ μ(tk)) · μ(σ) for every σ ∈ Σk and t1, ..., tk ∈ TΣ. The tree series
‖A‖ ∈ F〈〈TΣ〉〉 recognised by A is defined by ‖A‖(t) = μ(t) · γ� for every t ∈ TΣ .
The size of A, written as |A|, is the total number of entries in all transition
matrices and the final weight vector of A, i.e., |A| :=

∑
σ∈Σ nrk(σ)+1 + n.1

We extend μ to CΣ by treating � as a unary symbol and defining μ(�) := In.
This allows to define μ(c) ∈ Fn×n for every c ∈ CΣ inductively as μ(c) :=
(μ(t1)⊗ · · · ⊗ μ(tk)) · μ(σ) for every c = σ(t1, ..., tk) ∈ CΣ . It is easy to see that
for every t ∈ TΣ and c ∈ CΣ , μ(c[t]) = μ(t) · μ(c).

Let A1 = (n1, Σ, μ1, γ1) and A2 = (n2, Σ, μ2, γ2) be F-MTAs. A1 and A2 are
said to be equivalent if ‖A1‖ ≡ ‖A2‖. The Cartesian product of A1 and A2,
written as A1 ×A2, is the F-MTA (n1 · n2, Σ, {μ1(σ)⊗ μ2(σ) : σ ∈ Σ}, γ1⊗ γ2).

Proposition 1. [8, Chapter 9] Let A1 and A2 be Q-multiplicity tree automata
over a ranked alphabet Σ. Then ‖A1×A2‖(t) = ‖A1‖(t) · ‖A2‖(t) for all t ∈ TΣ.
Furthermore, automaton A1 ×A2 can be computed in logarithmic space.

Recognisable Tree Series. A tree series f is called recognisable if it is recog-
nised by some MTA; such an automaton is called an MTA-representation of f .
A minimal MTA-representation of f is one of minimal dimension. The set of all
recognisable tree series in F〈〈TΣ〉〉 is denoted by Rec(Σ,F).

Theorem 1. [9] Let f ∈ F〈〈TΣ〉〉 \ {0} and H be the Hankel matrix of f . Then,
f ∈ Rec(Σ,F) if and only if H has finite rank over F. In case f ∈ Rec(Σ,F),
the dimension of a minimal MTA-representation of f is rank(H) (over F).

The following result of [6, Proposition 4] states that for any recognisable tree
series, its minimal MTA-representation is unique up to change of basis.

Theorem 2. Let f ∈ Rec(Σ,F)\{0} have a Hankel matrix of rank r. Suppose F-
MTA A1 = (r,Σ, μ1, γ1) recognises f . Then for any F-MTA A2 = (r,Σ, μ2, γ2),
A2 recognises f if and only if there exists an invertible matrix U ∈ Fr×r such
that γ2 = γ1 · U� and μ2(σ) = U⊗rk(σ) · μ1(σ) · U−1 for every σ ∈ Σ.

DAG Representations of Trees. A DAG representation of a Σ-tree (Σ-DAG
or DAG for short) is a directed acyclic ordered multigraph whose nodes are
labelled with symbols from Σ such that any node labelled with a k-ary symbol
has outdegree k. Note that Σ-trees are a subclass of Σ-DAGs.

A sub-DAG of a DAG G is a DAG consisting of a node in G and all of its
descendants in G. The size of a DAG G is the number of nodes in G.

1 We measure size assuming explicit rather than sparse representations of the transi-
tion matrices and final weight vector because minimal automata are only unique up
to change of basis; cf. Theorem 2.
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The computation of an MTA on DAGs is as follows. A run of an F-MTA
A = (n,Σ, μ, γ) on a Σ-DAG G = (V,E) is a mapping ρ : V → Fn such that for
every v ∈ V , if v is labelled σ and has successors v1, ..., vk ∈ V with multiplicities
i1, ..., ik respectively, then ρ(v) = (ρ(v1)⊗i1 ⊗ · · · ⊗ ρ(vk)⊗ik) · μ(σ). We define
‖A‖(G) := ρ(v0) · γ� where v0 is the root of G. It is straightforward to show
that the value of an MTA on a DAG is equal to its value on the tree unfolding.

Because each context has exactly 1 occurrence of symbol �, any DAG repre-
sentation of a Σ-context has a unique path from the root to the �-labelled node
and every edge along that path has multiplicity 1.

Arithmetic Circuits. An arithmetic circuit is a finite directed acyclic vertex-
labelled multigraph whose vertices, called gates, have indegree 0 or 2. Vertices
of indegree 0 are called input gates and are labelled with a constant 0 or 1, or
a variable from the set {xi : i ∈ N}. Vertices of indegree 2 are called internal
gates and are labelled with one of the arithmetic operations +, ×, or −. We
assume that there is a unique gate with outdegree 0 called the output gate. An
arithmetic circuit is called variable-free if all input gates are labelled 0 or 1.

The size of an arithmetic circuit C is the number of gates in C. The depth of
a gate v in C, denoted depth(v), is the length of a longest directed path from v
to the output gate of C. The depth of C is the maximal depth of a gate in C.
The output of C, written fC , is the polynomial computed by the output gate of
C. The Arithmetic Circuit Identity Testing (ACIT) problem asks whether the
output of a given arithmetic circuit is equal to the zero polynomial.

Exact Learning Model. Let f be a target function. A Learner (learning algo-
rithm) may, in each step, propose a hypothesis function h by making an equiva-
lence query (EQ) to a Teacher. If h is equivalent to f , then the Teacher returns
YES and the Learner succeeds and halts. Otherwise, the Teacher returns NO
with a counterexample, which is an assignment z such that h(z) �= f(z). More-
over, the Learner may query the Teacher for the value of the function f on a
particular assignment z by making a membership query (MQ) on z. The Teacher
returns the value f(z). We say that the Learner learns a class of functions C , if
for every function f ∈ C , the Learner outputs a hypothesis h that is equivalent
to f and does so in time polynomial in the size of a shortest representation of f
and the length of a longest counterexample returned by the Teacher.

3 MTA Equivalence Is Interreducible with ACIT

In this section we show that the equivalence problem for Q-multiplicity tree au-
tomata is logspace interreducible with ACIT. An analogous result, character-
ising equivalence of probabilistic visibly pushdown automata on words in terms
of polynomial identity testing, has been shown in [10]. On several occasions in
this section, we will implicitly make use of the fact that a composition of two
logspace reductions is again a logspace reduction [3, Lemma 4.17].

First, we give a logspace reduction from the equivalence problem for Q-MTAs
to ACIT. We define T<n

Σ := {t ∈ TΣ : height(t) < n} for any ranked alphabet Σ
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and integer n ∈ N. Seidl [13, Theorem 4.2] gave the following decision procedure
for the equivalence of two F-MTAs with F being an arbitrary field.

Proposition 2. Suppose A and B are multiplicity tree automata of dimension
n1 and n2, respectively, and over a ranked alphabet Σ. Then, A and B are
equivalent if and only if ‖A‖(t) = ‖B‖(t) for every t ∈ T<n1+n2

Σ .

Lemma 1. Given a Q-multiplicity tree automaton A over a ranked alphabet Σ
and n ∈ N one can compute, in logarithmic space in |A| and n, a variable-free
arithmetic circuit that has output

∑
t∈T<n

Σ
‖A‖(t).

Proof. Let A = (r,Σ, μ, γ) and Σ = Σ0 ∪ · · · ∪ Σm. For every i ∈ N, we have
T<i+1
Σ = {σ(t1, . . . , tk) : k ∈ {0, ...,m}, σ ∈ Σk, t1, ..., tk ∈ T<i

Σ } and thus by
bilinearity of Kronecker product

∑
t∈T<i+1

Σ

μ(t) =

m∑
k=0

∑
σ∈Σk

∑
t1∈T<i

Σ

· · ·
∑

tk∈T<i
Σ

(μ(t1)⊗ · · · ⊗ μ(tk)) · μ(σ)

=
m∑

k=0

∑
σ∈Σk

⎛⎝⎛⎝ ∑
t1∈T<i

Σ

μ(t1)

⎞⎠⊗ · · · ⊗
⎛⎝ ∑

tk∈T<i
Σ

μ(tk)

⎞⎠⎞⎠ · μ(σ)

=

m∑
k=0

⎛⎝ ∑
t∈T<i

Σ

μ(t)

⎞⎠⊗k ∑
σ∈Σk

μ(σ). (1)

Since
∑

t∈T<1
Σ

μ(t) =
∑

σ∈Σ0
μ(σ), it follows from (1) that one can compute, in

logarithmic space in |A| and n, a variable-free arithmetic circuit with output∑
t∈T<n

Σ
μ(t). More details of this reduction are given in the full version [12].

The result follows by observing that
∑

t∈T<n
Σ
‖A‖(t) = (

∑
t∈T<n

Σ
μ(t)) · γ�. 


Proposition 3. The equivalence problem for Q-multiplicity tree automata is
logspace reducible to ACIT.

Proof. Let A and B be Q-multiplicity tree automata over a ranked alphabet Σ
and n be the sum of their dimensions. Proposition 1 implies that∑

t∈T<n
Σ

(‖A‖(t)− ‖B‖(t))2 =
∑

t∈T<n
Σ

‖A‖(t)2 + ‖B‖(t)2 − 2‖A‖(t)‖B‖(t)

=
∑

t∈T<n
Σ

‖A×A‖(t) + ‖B ×B‖(t)− 2‖A×B‖(t).

Thus by Proposition 2, automata A and B are equivalent if and only if∑
t∈T<n

Σ

‖A×A‖(t) +
∑

t∈T<n
Σ

‖B ×B‖(t)− 2
∑

t∈T<n
Σ

‖A×B‖(t) = 0. (2)
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We know from Proposition 1 that automata A × A, B × B, and A × B can
be computed in logarithmic space. Thus by Lemma 1, one can compute in loga-
rithmic space in |A| and |B| variable-free arithmetic circuits that have outputs∑

t∈T<n
Σ
‖A×A‖(t),

∑
t∈T<n

Σ
‖B ×B‖(t), and

∑
t∈T<n

Σ
‖A×B‖(t) respectively.

Using (2) we can now easily construct a variable-free arithmetic circuit that has
output 0 if and only if automata A and B are equivalent. 


In the remainder of this section we present a converse reduction: from ACIT
to equivalence testing for Q-multiplicity tree automata.

Allender et al. [1, Proposition 2.2] give a logspace reduction of the general
ACIT problem to the special case of ACIT for variable-free circuits. The latter
can, by representing arbitrary integers as differences of two nonnegative integers,
be reformulated as the problem of deciding whether two variable-free arithmetic
circuits with only + and ×-internal gates compute the same number.

Proposition 4. ACIT is logspace reducible to the equivalence problem for Q-
multiplicity tree automata.

Proof. Let C1 and C2 be two variable-free arithmetic circuits whose internal
gates are labelled with + or ×. By padding with extra gates, without loss of
generality we can assume that in each circuit the children of a depth-i gate both
have depth i + 1, +-gates have even depth, ×-gates have odd depth, and input
gates all have the same even depth d.

In the following we reduce the problem of deciding whether C1 and C2 have
the same output to equivalence testing for Q-MTAs A1 and A2. Automata A1

and A2 are both defined over a ranked alphabet Σ = {σ0, σ1, σ2} where σ0

is a nullary, σ1 a unary, and σ2 a binary symbol. Intuitively, A1 and A2 both
recognise the common ‘tree-unfolding’ of C1 and C2.

We now derive A1 from C1; A2 is analogously derived from C2. Let {v1, ..., vr}
be the set of gates of C1 where vr is the output gate. Automaton A1 has a state
qi for every gate vi of C1. Formally, A1 = (r,Σ, μ, er) where for every i ∈ [r],
μ(σ0)i = 1 if vi is an input gate with label 1, otherwise μ(σ0)i = 0. If vi is
a +-gate with children vj1 and vj2 then μ(σ1)j1,i = μ(σ1)j2,i = 1 if j1 �= j2,
μ(σ1)j1,i = 2 if j1 = j2, and μ(σ1)l,i = 0 for every l �∈ {j1, j2}. If vi is an input
or a ×-gate then μ(σ1)i = 0. If vi is a ×-gate with children vj1 and vj2 then
μ(σ2)(j1,j2),i = 1 and μ(σ2)(l1,l2),i = 0 for every (l1, l2) �= (j1, j2). If vi is an input
or a +-gate then μ(σ2)i = 0.

Define a sequence (tn)n∈N0 ⊆ TΣ by t0 = σ0, tn+1 = σ1(tn) for n odd and
tn+1 = σ2(tn, tn) for n even. It can easily be seen that ‖A1‖(td) = fC1 . (See the
full version [12] for more details.) It is moreover clear by construction that for ev-
ery t ∈ TΣ \{td}, ‖A1‖(t) = 0. Analogously we have that ‖A2‖(td) = fC2 and for
every t ∈ TΣ \ {td}, ‖A2‖(t) = 0. Therefore, automata A1 and A2 are equivalent
if and only if C1 and C2 have the same output. 


4 The Learning Algorithm

In this section we give an exact learning algorithm for multiplicity tree automata.
Over an arbitrary field F, the algorithm can be seen as running on a BSS machine
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that can store field elements and perform arithmetic operations and equality
tests at unit cost [3]. Over Q, the algorithm can be implemented in randomised
polynomial time by representing rationals as arithmetic circuits [1].

Let f ∈ Rec(Σ,F) be the target function. The algorithm learns an MTA-
representation of f using its Hankel matrix H . Note that, by Theorem 1, H
has finite rank over F. At each stage the algorithm maintains the following
data: an integer n ∈ N, a set of n ‘rows’ X = {t1, ..., tn} ⊆ TΣ, a finite set of
‘columns’ Y ⊆ CΣ , and a submatrix HX,Y of H that has full row rank. These
data determine a hypothesis automaton A whose states correspond to the rows
of HX,Y , with the i-th row being the state reached after reading ti. Formally,
algorithm LMTA is given in the following table. Here for any k-ary symbol σ ∈ Σ
we define σ(X, ..., X) := {σ(ti1 , ..., tik) : (i1, ..., ik) ∈ [n]k}.

Algorithm LMTA

Target: f ∈ Rec(Σ,F), where Σ = Σ0 ∪ · · · ∪Σm and F is a field

1. Make an equivalence query EQ(0).
If the answer is YES then halt with output 0.
Otherwise the answer is NO and z is a counterexample. Initialise:
n ← 1, tn ← z, X ← {tn}, Y ← {�}.

2. 2.1. For every k ∈ {0, ..., m}, σ ∈ Σk, and (i1, ..., ik) ∈ [n]k:
If Hσ(ti1 ,...,tik

),Y is not a linear combination of Ht1,Y , ..., Htn,Y then

n ← n+ 1, tn ← σ(ti1 , ..., tik), X ← X ∪ {tn}.
2.2. Define an F-MTA A = (n,Σ, μ, γ) as follows.

2.2.1. γ	 = HX,�.
2.2.2. For every k ∈ {0, ..., m} and σ ∈ Σk:

Define the matrix μ(σ) ∈ Fnk×n by the equation

μ(σ) ·HX,Y = Hσ(X,...,X),Y .

3. 3.1. Make an equivalence query EQ(‖A‖).
If the answer is YES then halt with output ‖A‖.
Otherwise the answer is NO and z is a counterexample. Find a tree
σ(τ1, ..., τk) which is a subtree of z and satisfies:
(i) For every j ∈ [k], Hτj ,Y = μ(τj) ·HX,Y , and
(ii) For some c ∈ Y , Hσ(τ1,...,τk),c �= μ(σ(τ1, ..., τk)) ·HX,c.

3.2. For every j ∈ [k] and (i1, ..., ij−1) ∈ [n]j−1:
Y ← Y ∪ {c[σ(ti1 , ..., tij−1 ,�, τj+1, ..., τk)]}.

3.3. For every j ∈ [k]:
If Hτj,Y is not a linear combination of Ht1,Y , ..., Htn,Y then
n ← n+ 1, tn ← τj , X ← X ∪ {tn}.

3.4. Go to 2.

Correctness. On target f ∈ Rec(Σ,F) algorithm LMTA halts with output f
after at most rank(H) iterations of the main loop. The proof is given in [12].



422 I. Marusic and J. Worrell

Succinct Representations. We assume that the counterexamples are repre-
sented as DAGs. Accordingly, we represent the trees in X as Σ-DAGs and the
contexts in Y as ({�} ∪Σ)-DAGs.

As shown in Section 2, multiplicity tree automata can run directly on DAGs.
Crucially, as explained in the proof of Theorem 3, Step 3.1 can be run directly
on the DAG representation of the counterexample without unfolding. Therefore,
the correctness proof holds for DAG representations as well.

Complexity Analysis. For every n ∈ N, we denote by M(n) the complexity
of multiplying two matrices of dimension n× n.

Theorem 3. Let f ∈ Rec(Σ,F) where Σ has rank m. Let H be the Hankel
matrix of f and r := rank(H) (over F). Let A be a minimal MTA-representation
of f . Then, f is learnable by algorithm LMTA making r + 1 equivalence queries,
|A|2 + |A| · s membership queries and O(|A|2 + r ·M(r) + |A| · r · s) arithmetic
operations, where s denotes the size of a largest counterexample, represented as
a DAG, that is returned during the execution of the algorithm.

Proof. As noted above, LMTA halts with output f after at most r iterations of
the loop consisting of Step 2 and Step 3, thus making at most r + 1 EQs.

Matrix HX,Y has full row rank (see [12] for details). This implies |X | � r.
Note that in each iteration of Step 3.2 the cardinality of Y increases by at most
(nm− 1)/(n− 1). Since the number of iterations of Step 3.2 is at most r− 1, on
completion of the algorithm we have |Y | � rm.

The number of membership queries made in Step 2 over the whole algorithm
is (
∑

σ∈Σ |σ(X, ..., X)| + |X |) · |Y | since we need to ask for the values of the
entries of HX,Y and Hσ(X,...,X),Y for every σ ∈ Σ.

In Step 3.1 the procedure for finding a required sub-DAG of z is as follows:
Check whether Hτ,Y = μ(τ) ·HX,Y for all sub-DAGs τ of z in a nondecreasing
order of height; stop when a sub-DAG τ is found such that Hτ,Y �= μ(τ) ·HX,Y .
Thus, the number of MQs made in one iteration of Step 3 is size(z) · |Y | � s · |Y |
since for every sub-DAG τ of z we need to ask for the values of the entries of
Hτ,Y . From here it follows by a simple calculation that the total number of MQs
is at most |A|2 + |A| · s.

The bound on the number of arithmetic operations is proved in [12]. 

The complexity of LMTA should be compared to the complexity of the algo-

rithm of [9], which makes r + 1 EQs, |A| · s MQs and a number of arithmetic
operations polynomial in |A| and s, where s is the size of the largest counterex-
ample given as a tree. Note that the algorithm of [9] cannot be straightforwardly
adapted to work directly with DAG representations of trees since when given a
counterexample z, every suffix of z is added to the set of columns. However, the
tree unfolding of a DAG can have exponentially many different suffixes.

5 Lower Bounds on Query Complexity of Learning MTA

In this section, we study lower bounds on the query complexity of learning
multiplicity tree automata in the exact learning model. Our results generalise
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the corresponding lower bounds for learning multiplicity word automata [5], and
make no assumption about the computational model of the learning algorithm.

First, we give a lower bound on the query complexity of learning multiplicity
tree automata over an arbitrary field.

Theorem 4. Any exact learning algorithm that learns the class of multiplicity
tree automata of dimension at most r, over a ranked alphabet (Σ, rk) and any
field, must make at least

∑
σ∈Σ rrk(σ)+1 − r2 queries.

Proof. Take an arbitrary exact learning algorithm L that learns the class of
multiplicity tree automata of dimension at most r, over a ranked alphabet (Σ, rk)
and over any field. Let F be any field.

Define an extension field K := F({zσi,j : σ ∈ Σ, i ∈ [rrk(σ)], j ∈ [r]}) of F,

where the set {zσi,j : σ ∈ Σ, i ∈ [rrk(σ)], j ∈ [r]} is algebraically independent over

F. Define a K-multiplicity tree automaton A := (r,Σ, μ, γ) where γ = e1 ∈ F1×r

and μ(σ) = [zσi,j ]i,j ∈ Krrk(σ)×r for every σ ∈ Σ. Define a tree series f := ‖A‖.
It is clear from the structure of A that the Hankel matrix of f has rank r.

We run algorithm L on the target function f . By assumption, the output of L
is an MTA A′ = (r,Σ, μ′, γ′) such that ‖A′‖ ≡ f . Let n be the number of queries
made by L on target f . Let t1, ..., tn ∈ TΣ be the trees which L either made an
MQ on, or received as counterexample to an EQ. Then for every l ∈ [n], there
exists a multivariate polynomial pl ∈ F[(zσi,j)i,j,σ] such that f(tl) = pl.

Note that A and A′ are two minimal MTA-representations of f . Thus by
Theorem 2, there exists an invertible matrix U ∈ Kr×r such that γ� = U · (γ′)�

and μ(σ) = U⊗rk(σ) ·μ′(σ) ·U−1 for every σ ∈ Σ. This implies that the entries of
matrices μ(σ), σ ∈ Σ, are generated by the entries of U and {pl : l ∈ [n]}. Since
the entries of matrices μ(σ), σ ∈ Σ, form an algebraically independent set over F,
their number is at most r2+n. 


Secondly, we give a lower bound on the query complexity of learning multi-
plicity tree automata over a specific field F.

Theorem 5. Let F be an arbitrary field. Any exact learning algorithm that
learns the class of F-multiplicity tree automata of dimension at most r, over
a ranked alphabet (Σ, rk) with at least one unary symbol and maximal rank m,
must make number of queries at least

1

2m+1
·
(∑

σ∈Σ

rrk(σ)+1 − r2 − r

)
. (3)

Proof. Without loss of generality we assume that r is even, and write n := r/2.
Let L be an exact learning algorithm for the class of F-multiplicity tree automata
of dimension at most r, over a ranked alphabet (Σ, rk) with rk−1({1}) �= ∅.
We will identify a family of functions C such that L has to make at least∑

σ∈Σ nrk(σ)+1 − n2 − n queries to distinguish between the members of C.
Let σ0, σ1 ∈ Σ be nullary and unary symbols respectively. Let P ∈ Fn×n be

the permutation matrix corresponding to the cycle (1, 2, ..., n). Define A to be
the set of all F-multiplicity tree automata (2n,Σ, μ, γ) where
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• γ =
[
1 0

]
⊗ e1, μ(σ0) =

[
1 0

]
⊗ e1, and μ(σ1) = I2 ⊗ P ;

• For each k-ary symbol σ ∈ Σ \{σ0, σ1}, there exists B(σ) ∈ Fnk×n such that

μ(σ) =
[
1 1

]
⊗
([

In
−In

]⊗k

·B(σ)

)
.

We define a set of recognisable tree series C := {‖A‖ : A ∈ A}.
In Lemma 2, the proof of which is given in the full version [12], we state some

properties of the functions in C. More precisely, we show that the coefficient of
a tree t ∈ TΣ in any f ∈ C fundamentally depends on whether t has 0, 1, or at
least 2 nodes whose label is not σ0 or σ1. Here for every i ∈ N0 and t ∈ TΣ , we
use σi

1(t) to denote the tree σ1(σ1(...σ1(︸ ︷︷ ︸
i

t)...)).

Lemma 2. The following properties hold for every f ∈ C and t ∈ TΣ.

(i) If t = σj
1(σ0) where j ∈ {0, 1, ..., n− 1}, then f(t) = �{j=0};

(ii) If t = σj
1(σ(σi1

1 (σ0), ..., σik
1 (σ0))) where j, i1, ..., ik ∈ {0, 1, ..., n − 1} and

σ ∈ Σk \ {σ0, σ1}, then f(t) = B(σ)(1+i1,...,1+ik),(1+n−j) mod n;
(iii) If

∑
σ∈Σ\{σ0,σ1} #σ(t) � 2, then f(t) = 0.

Remark 1. As Pn = In, we have μ(σ1)n = I2n. Thus for every f ∈ C, σ ∈
Σk \{σ0, σ1}, and j, i1, ..., ik ∈ N0, it holds that f(σj

1(σ0)) = f(σj mod n
1 (σ0)) and

f(σj
1(σ(σi1

1 (σ0), ..., σik
1 (σ0)))) = f(σj mod n

1 (σ(σi1 mod n
1 (σ0), ..., σik mod n

1 (σ0)))).

Run L on a target f ∈ C. Lemma 2 and Remark 1 imply that when L makes
an MQ on t ∈ TΣ where

∑
σ∈Σ\{σ0,σ1} #σ(t) � 2 then the Teacher returns 0,

while when L makes an MQ on t = σj
1(σ0) the Teacher returns 1 if j mod n = 0

and returns 0 otherwise. In these cases, L does not gain any new information
about f since every function in C satisfies the values returned by the Teacher.

When L makes an MQ on t = σj
1(σ(σi1

1 (σ0), ..., σik
1 (σ0))) where σ ∈ Σk \

{σ0, σ1}, the Teacher returns an arbitrary number in F if f(t) is not already
known from an earlier query. Lemma 2 and Remark 1 imply that L thereby
learns the entry B(σ)(1+(i1 mod n),...,1+(ik mod n)),(1+n−j) mod n.

When L makes an EQ on a hypothesis function h ∈ C, the Teacher finds some
entry B(σ)(i1,...,ik),j that L does not know from previous queries and returns tree

σ1+n−j
1 (σ(σi1−1

1 (σ0), ..., σik−1
1 (σ0))) as counterexample.

With each query, L learns at most one entry of B(σ) for some σ ∈ Σ\{σ0, σ1}.
The number of queries made by L on target f is therefore at least the total
number of entries of B(σ) for all σ ∈ Σ \ {σ0, σ1}, which is bounded below by
the expression (3). 


Note that both lower bounds are exponential in the alphabet rank and poly-
nomial in the automaton size. When the maximal rank is fixed, the lower bound
in Theorem 5 is the same up to a constant factor as for learning over an arbitrary
field. Moreover in this case, and assuming a Teacher that represents counterex-
amples as succinctly as possible, both lower bounds match the query complexity
of algorithm LMTA to within a constant factor.
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6 Future Work

Beimel et al. [4] apply their learning algorithm for multiplicity word automata
to show exact learnability of various classes of DNF formulae and polynomials.
Given that tree automata are more expressive than word automata, a natural
direction for future work is to seek to apply our learning algorithm to derive new
results for exact learning of DNF formulae and polynomials in the commutative
and noncommutative cases.

Acknowledgements. The authors would like to thank Michael Benedikt for
stimulating discussions and helpful advice.
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Monadic Datalog and Regular Tree Pattern
Queries

Filip Mazowiecki, Filip Murlak, and Adam Witkowski
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Abstract. Containment of monadic datalog programs over trees is de-
cidable. The situation is more complex when tree nodes carry labels
from an infinite alphabet that can be tested for equality. Then, it mat-
ters whether descendant relation is allowed or not: descendant relation
can be eliminated easily from monadic programs only when label equali-
ties are not used. With descendant, even containment of linear monadic
programs in unions of conjunctive queries is undecidable and positive
results are known only for bounded-depth trees.

We show that without descendant containment of connected monadic
programs is decidable over ranked trees, but over unranked trees it is
so only for linear programs. With descendant it becomes decidable over
unranked trees under restriction to downward programs: each rule only
moves down from the node in the head. This restriction is motivated by
regular tree pattern queries, a recent formalism in the area of ActiveXML,
which we show to be equivalent to linear downward programs.

1 Introduction

Among logics with fixpoint capabilities, one of the most prominent is datalog,
obtained by adding fixpoint operator to unions of conjunctive queries (positive
existential first order formulae). Datalog originated as a declarative program-
ming language, but later found many applications in databases as a query lan-
guage. Unfortunately, with increased expressive power comes undecidability of
basic properties of queries. Classical static analysis problems of containment
and equivalence are undecidable [18]. It is also undecidable if a given datalog
program is equivalent to some non-recursive datalog program [13] (equivalence
to a given non-recursive program is decidable [10]). Since these problems are
subtasks in important data management tasks, like query minimization, data
integration, or data exchange, the negative results for full datalog fuel interest
in restrictions [5,7,8]. Important restrictions include monadic programs, using
only unary intensional predicates; linear programs, with at most one use of an
intensional predicate per rule; and connected programs, where within each rule
all mentioned nodes are connected with each other.

When the class of considered structures is restricted to words or trees, even
satisfiability is undecidable (see e.g. [1]), but for monadic datalog programs we
regain decidability of containment [14]. This decidability result does not carry
over to the case when tree nodes carry labels from an infinite alphabet that
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can be tested for equality. In this setting it matters whether descendant relation
is allowed or not: descendant relation can be easily eliminated from monadic
programs only if they do not use label equality. In a recent paper by Abiteboul
et al. [1], it is shown that with descendant even containment of linear monadic
programs in unions of conjunctive queries is undecidable. Restriction to bounded-
depth trees restores decidability, even for containment of arbitrary programs in
monadic programs, but this is not very surprising: without sibling order datalog
programs cannot make much of unbounded branching.

In this paper we show that on trees over an infinite alphabet

1. containment is undecidable for child-only monadic programs, but it becomes
decidable (in 3-ExpTime) under restriction to linear programs;

2. with descendant it becomes decidable (in 2-ExpTime) under restriction to
downward programs: each rule only moves down from the node in the head.

To provide a broader background for these results, we first consider ranked trees,
where the number of children is fixed. There, like for words, containment of
monadic programs is decidable without descendant, but with descendant it is
undecidable even for downward linear programs.

While forbidding descendant is a natural restriction (pointed out as an open
problem in [1]), downward programs may seem exotic. But in fact, they were
our initial point of interest. Our original motivation comes from the area of Ac-
tiveXML, where testing equivalence of ActiveXML systems amounts to solving
the containment problem for regular tree pattern queries (RTPQs): essentially,
regular expressions over the set of tree patterns using child and descendant
axes and data equalities. In [3] it is shown that the containment problem is in
ExpTime for RTPQs with restricted data comparisons, mimicking data com-
parisons allowed in XPath (an XML query language used widely in practice and
extensively studied [6,12,16,17]). This result essentially relies on Figueira’s Ex-
pTime-completeness of satisfiability for RegXPath(↓, =), i.e., XPath with child
axis and data equality, extended with Kleene star [12]. We show that RTPQs
are equivalent to linear downward programs (a special case of a more general
correspondence between monadic programs and a natural extension of RTPQs).
Thus, our result on downward datalog can be seen as an extension of Figueira’s
result, immediately giving decidability of the general ActiveXML problem.

Organization. In Section 2 we introduce datalog and RTPQs, and explore the
connections between them. Then, after a brief glance at containment over ranked
trees in Section 3, we move on to unranked trees to discuss our main results in
Section 4. We conclude in Section 5 with possible directions for future research.
All the missing proofs can be found in the appendix, available on-line.

2 Datalog and RTPQs

Both formalisms work over finite unranked trees labeled with letters from an
infinite alphabet Σ. We write nodest for the set of nodes of tree t and labt :
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nodest → Σ for the function assigning labels to nodes. We use standard notation
for axes: ↓, ↓+, ↑, ↑+ stand for child, descendant, parent and ancestor relations.
Binary relation ∼ holds between nodes with identical labels. We also have a
unary predicate a for each a ∈ Σ, holding for the nodes labeled with a.

Many papers on tree-structured databases work with a slightly different data
model, called “data trees”, where each node has a label from a finite alpha-
bet and a data value from an infinite data domain. In that model labels can
be used explicitly in the formulas, but cannot be directly tested for equality,
and data values can be tested for equality, but cannot be used explicitly (as
constants). These two models are very similar, but not directly comparable for
query languages with limited negation. However, we can quite easily incorpo-
rate additional finite alphabet to our setting, obtaining a generalization of the
two settings, and the complexity results do not change. Forbidding the use of
constants from the infinite alphabet may affect some of our lower bounds but it
does not affect decidability. For the undecidable fragments of datalog we give an
additional sketch of the proof for “data trees” in the appendix.

We begin with a brief description of the syntax and semantics of datalog; for
more details see [2] or [9]. A datalog program P over a relational signature S
is a set of rules of the form head ← body , where head is an atom over S and
body is a (possibly empty) conjunction of atoms over S written as a comma-
separated list. There is a designated rule called the goal of the program. All
variables in the body that are not used in the head, are implicitly quantified
existentially. The relational symbols, or predicates, in S fall into two categories.
Extensional predicates are the ones explicitly stored in the database; they are
never used in the heads of rules. In our setting they come from {↓, ↓+,∼} ∪ Σ.
Alphabet Σ is infinite, but programP uses only its finite subset ΣP . Intensional
predicates, used in the heads, are defined by the rules. The program is evaluated
by generating all the atoms (over intensional predicates) that can be inferred
from the underlying structure (tree) by applying the rules repeatedly, to the
point of saturation, and then taking atoms matching the head of the goal rule.
Each inferred atom can be witnessed by a proof tree: an atom inferred by rule
r from intensional atoms A1, A2, . . . , An is witnessed by a proof tree whose root
has label r, and its children are the roots of proof trees for atoms Ai (if r has
no intensional predicates in its body, the root has no children).

Example 1. The program below computes nodes from which one can reach label
a along a path such that each node on the path has a child with identical label
and a descendant with label b (or has label b itself).

P (X) ← X↓Y, P (Y ), X↓Y ′, X ∼ Y ′, Q(X) (p1)

P (X) ← a(X) (p2)

Q(X) ← X↓Y,Q(Y ) (q1)

Q(X) ← b(X) (q2)

p1

q1

q2

p1

q2 p2

c

c b

b a

The intensional predicates are P and Q, and the goal is P . The proof tree shown
in the center witnesses that P holds in the root of the tree on the right.
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In this paper we consider only monadic programs, i.e., programs whose inten-
sional predicates are at most unary. Moreover, throughout the paper we assume
that the programs do not use 0-ary intensional predicates. For general programs
this is merely for the sake of simplicity: one can always turn 0-ary predicate Q
to unary predicate Q(X) by introducing a dummy variable X . For connected
and downward programs (described below) this restriction matters.

A datalog program is linear, if the right-hand side of each rule contains at
most one atom with an intensional predicate (proof trees for such programs are
single branches). For a datalog rule r, let Gr be the graph whose vertices are
the variables used in r and edge is placed between X and Y if the body of r
contains an atomic formula X↓Y or X↓+Y . A program P is connected if for
each rule r ∈ P , Gr is connected. We say that P is downward if for each rule
r ∈ P , Gr is a directed tree whose root is the variable used in the head of r. The
program from Example 1 is connected and downward, but not linear. In fact,
each downward program is connected.

Previous work on datalog on arbitrary structures often considered the case of
connected programs [11,13]. A practical reason is that real-life programs tend
to be connected and linear (cf. [4]). Also, rules that are not connected com-
bine pieces of unrelated data, corresponding to the cross product, an unnatural
operation in the database context. It seems even more natural to assume con-
nectedness, as we work with tree-structured databases. We shall do so.

We write Datalog(↓, ↓+) for the class of connected monadic datalog programs,
and Datalog(↓) for connected monadic programs that do not use the relation ↓+.
For linear or downward programs we shall use combinations of letters L and D,
e.g., LD-Datalog(↓) means linear downward programs from Datalog(↓).

Recall that conjunctive queries (CQs) are existential first order formulas of
the form ∃x1 . . . xkϕ, where ϕ is a conjunction of atoms. Sometimes we will also
speak of unions of conjunctive queries (UCQs), corresponding to programs
with a single intensional predicate (goal), which is never used in the bodies of
rules. Like for datalog we use notation CQ(↓, ↓+), CQ(↓), UCQ(↓, ↓+), UCQ(↓).

We now move to the second formalism. Let Δ = {x1, x2, . . . } be an infinite
set of variables and let τ ⊆ {↓, ↓+, ↑, ↑+} be a non-empty set of axes. A graph
pattern over τ is a directed multigraph with vertices labeled with elements of
Σ ∪Δ and edges labeled with elements of τ . We write verticesπ for the set of
vertices of pattern π and labπ : verticesπ → Σ ∪ Δ for the labeling function.
Additionally, each pattern π has two distinguished nodes: in(π) and out(π).

Definition 1. A homomorphism h : π → t from a pattern π over τ to a tree
t is a function h : verticesπ → nodest such that for all vertices v, w in π

– if labπ(v) ∈ Σ, then labt(h(v)) = labπ(v);
– if labπ(v) = labπ(w) ∈ Δ, then h(v) ∼ h(w); and
– h preserves binary relations from τ .

We write t, v, w |= π if there is a homomorphism from π to t that maps in(π) to
v and out(π) to w. If this is the case we also write t, v |= π and t |= π.
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A tree pattern query (TPQ) over τ is a graph pattern π over τ that is a
directed tree, whose in node is the root. The set of all TPQs over τ is denoted
by TPQ(τ). Let Π = π1 · ... · πn be a word over the alphabet TPQ(τ), with
πi ∈ TPQ(τ). A homomorphism h : Π → t is a sequence of homomorphisms
hi : πi → t for i = 1, . . . , n such that hi(out(πi)) = hi+1(in(πi+1)) for all i < n.
We write t |= Π if there is a homomorphism h : Π → t; t, v |= Π if h maps
in(π1) to v; and t, v, w |= Π if additionally h maps out(πn) to w.

Definition 2. A regular tree pattern query (RTPQ) ϕ over τ is a regular
expression over the alphabet TPQ(τ). L(ϕ) denotes the language generated by ϕ.
We write t, v, w |= ϕ iff there is Π ∈ L(ϕ) such that t, v, w |= Π, and similarly
for t, v |= ϕ and t |= ϕ. The set of all RTPQs over τ is denoted by RTPQ(τ).

Example 2. To illustrate the power of RTPQs, we show how to simulate the n-
bit binary counter, enumerating values from 0 to 2n − 1, with an RTPQ of size
O(n). To increase the counter, we need to find the least significant 0, change
it to 1 and change all less significant bits to 0; all more significant bits remain
unchanged. Skipping ↓ to ease the notation, we can express this with patterns

inci = (X1)inX2 · · ·Xn−i01 · · · 1(X1)outX2 · · ·Xn−i10 · · · 0 for i < n ,

incn = (0)in1 · · · 1(1)out0 · · · 0 .

Then, we combine patterns inci into a counter going from 0 to 2n − 1:

cn = val0 ·
(
inc1 ∪ inc2 ∪ · · · ∪ incn

)∗ · val2n−1

where valk is number k stored in n bits in binary, e.g., val0 = (0)inout0 · · · 0. This
expression works if we run it on a tree consisting of a single branch: if such tree
satisfies cn, then it must contain all values from 0 to 2n−1. Note that by locating
the out node in inci on the (n + 1)-th position, we pass many values between
two consecutive TPQs, because the following nodes must overlap with the initial
n nodes of the next pattern. On arbitrary trees this is no longer the case, but we
can make the expression work by running it up the tree, i.e., replacing ↓ with ↑.

The usual correspondence between patterns and CQs holds also for trees over
infinite alphabet, except that relation ∼ in patterns is not represented explicitly,
but by repeated labels from Δ. Hence, translation from patterns to CQs involves
quadratic blowup. As observed in [15], each satisfiable graph pattern can be
expressed as a union of TPQs reflecting different ways of mapping the pattern
to a tree. While the size of the TPQs can be bounded by the size of the pattern,
their number is exponential. Given this, the following fact is almost immediate.

Proposition 1. The following classes of queries have the same expressive power:
– RTPQ(↓, ↓+, ↑, ↑+) and L-Datalog(↓, ↓+);
– RTPQ(↓, ↓+) and DL-Datalog(↓, ↓+);

– RTPQ(↓, ↑) and L-Datalog(↓);
– RTPQ(↓) and DL-Datalog(↓).

Translations to datalog are polynomial; translations to RTPQs are exponential.



Monadic Datalog and Regular Tree Pattern Queries 431

When rules are translated into patterns, and vice versa, variables correspond
to nodes; the variable in the head corresponds to the in node, and the variable
used in the intensional atom (unique in linear programs) corresponds to the out
node. Thus, we may speak of in or out variables, and head or intensional nodes.

The connection between datalog and patterns goes beyond linear programs.
Consider patterns with an additional relation ε; we indicate the use of ε-edges
by including ε in the signature, e.g., TPQ(↓, ↓+, ε). A homomorphism from such
a pattern π is a family of homomorphisms from all maximal ε-free subpatterns
of π, such that nodes connected by ε-edges are mapped to the same tree node.

Since proof trees of linear programs are single branches, they can be inter-
preted as words of graph patterns (corresponding to rule bodies). Each such
word has a natural representation as a pattern with ε-edges: simply add an ε-
edge from the out node of each pattern to the in node of the following pattern in
the word. This gives a pattern representation for proof trees of linear programs.
To generalize it to non-linear programs, let πr be the graph pattern correspond-
ing to the conjunction of extensional atoms in the body of rule r, and let GP be
the set of all πr ’s. Then, to each proof tree one can associate a graph pattern
by replacing each r-labeled node by the pattern πr together with appropriate
ε-edges between πr’s intensional nodes and its children’s head nodes. Patterns
obtained this way are called witnessing patterns. Note that in witnessing
patterns, each maximal connected ε-free subpattern corresponds to a rule of P .

3 Ranked Trees

Throughout the paper we work with the Boolean variant of containment, i.e.,
satisfiability of P ∧¬Q, where P and Q are treated as Boolean queries, with all
variables quantified out existentially. Using well known methods one can reduce
the unary variant to the Boolean one (not by simply rewriting queries, though).

To warm up, we first look at the case of words, where many ideas can be
illustrated without much of the technical difficulty of trees. Over words, the
relations ↓ and ↓+ are interpreted as “next position” and “following position”.

Over data words and data trees, containment of monadic datalog programs
with descendant is undecidable – even containment of linear monadic programs
in unions of conjunctive queries [1, Proposition 3.3]. As discussed in Section
2, despite obvious similarities between our setting and the setting of data trees,
neither lower bounds nor upper bounds carry over immediately. The reduction in
[1] relies on the presence of finite alphabet and cannot be directly adapted to our
setting, but with a little effort the use of finite alphabet can be eliminated (see
Appendix). Once descendant is disallowed, we immediately regain decidability.

Proposition 2. Containment over words is
1. undecidable for LD-Datalog(↓, ↓+) (even containment in UCQs);
2. in ExpSpace for Datalog(↓) and PSpace-complete for L-Datalog(↓).

Proof. An easy reduction based on the binary counter encoding from Sect. 2
shows that even satisfiability for L-Datalog(↓) programs is PSpace-hard (see
Appendix). Here we show that containment for L-Datalog(↓) is in PSpace.
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Let P ,Q ∈ L-Datalog(↓). Recall that GP is the set of patterns corresponding
to the bodies of P ’s rules and for each π ∈ GP , in(π) and out(π) are the nodes
corresponding to the head variable and the variable in the intensional atom in
the rule giving rise to π. As we work over words and disallow ↓+ (following
position), w.l.o.g. we can assume that patterns in GP are words (with the in
and out nodes placed in arbitrary positions). Since the programs are linear, the
witnessing patterns are essentially words as well: concatenations of words from
GP , decorated with ε-edges connecting the out node of the preceding pattern to
the in node of the subsequent pattern. We denote the set of words corresponding
to witnessing patterns by L(P). We write Lpref (P), Linf (P), Lsuf (P) for the
languages of prefixes, infixes, and suffixes of words from L(P).

Satisfiability of ϕ = P ∧ ¬Q can be verified over finite alphabet Σ0 = Σϕ ∪̇
{a1, a2, . . . , an}, where Σϕ is the set of labels used explicitly by rules in P , Q;
and n is the maximal number of nodes in a pattern in GP ∪ GQ. To relabel a
word satisfying ϕ so that it uses only labels from Σ0, simply process it from left
to right, replacing each letter not in Σϕ with the least recently used letter ai:
when an occurrence of a letter b is to be replaced by ai, first change all later
occurrences of ai to a fresh letter, then replace all later occurrences of b with ai.
This policy ensures that equality of labels within distance n is not affected.

For program P we construct a deterministic automaton AP recognizing words
over alphabet Σ0 satisfying P . Let w be the whole word read by AP and let ws

be the recently read n-letter suffix. States of AP have two components. The first
component is a word from

⋃
k≤n(Σ0)k, corresponding to the suffix ws (initially,

there are less then n letters to remember). The second component is a subset of

{1, 2, . . . , n + 1} × GP × {1, 2, . . . , n + 1} × GP .

For p, p′ ≤ n, each element (p, π, p′, π′) of this set corresponds to a subpattern
Π ∈ Linf (P), which starts from π, ends with π′, and a homomorphism h : Π → w
that maps in(π) to w[|w| − |ws| + p] and out(π′) to w[|w| − |ws| + p′]. The
intended meaning is that the state q stores the information about the first and
last subpattern of Π from GP for every homomorphism from patterns in Linf (P)
to w such that the in node from the first subpattern and the out node from
the last subpattern are mapped to ws. This information is sufficient to build
information about larger patterns by induction.

The additional value n+1 in the first coordinate indicates that the represented
homomorphism is from Π ∈ Lpref (P) to w, and we only remember the informa-
tion about the last part of Π . Similarly, n + 1 in the third component indicates
that Π ∈ Lsuf (P). Thus, tuples with n + 1 at the first and third coordinate
represent Π ∈ L(P); states containing such tuples are accepting.

The automaton starts in state (ε, ∅). When it reads letter a in state (u, Φ),
it moves to state (v, Ψ), where v is the suffix of ua of length at most n and Ψ
is defined as follows. Set Ψ contains all elements of Φ, but the first and third
coordinates that are at most n are decreased by 1 (unless |v| < n). If either
drops below 1, the element is discarded. Moreover, for all π ∈ GP , if there is
a homomorphism η from π to ws and the image contains the new letter, then
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Ψ contains all elements (η(in(π)), π, η(out(π)), π). If π corresponds to a non-
recursive rule, we also add tuple (η(in(π)), π, n + 1, π). If π corresponds to the
goal rule, we add tuple (n+1, π, η(out(π)), π). If both of these hold, we add tuple
(n + 1, π, n + 1, π). Finally, we close Ψ under legal concatenations: if Ψ contains
(p1, π1, p2, π2) and (p3, π3, p4, π4) such that p2 = p3 and π2 · π3 ∈ Linf (ϕi), then
Ψ should also contain (p1, π1, p4, π4).

We construct an analogous automaton for Q. Since the automata are deter-
ministic, we easily get a product automaton equivalent to P ∧ ¬Q. The size of
AP is exponential in size of P , but its states and transitions can be generated on
the fly in polynomial space. To check its emptiness we make a simple reachability
test, which is in NLogSpace. Altogether, this gives a PSpace algorithm. "#

The results for words can be lifted to ranked trees: complexities are higher,
but the general picture remains the same.

Theorem 1. Over ranked trees containment is
1. undecidable for LD-Datalog(↓, ↓+) (even containment in UCQs);
2. in 3-ExpTime for Datalog(↓) and 2 -ExpTime-complete for L-Datalog(↓).

Note that undecidability for LD-Datalog(↓, ↓+) over words immediately gives
undecidability for L-Datalog(↓, ↓+) over trees (ranked or unranked): we simply
run the programs up the tree (when we go up, a tree looks like a word); showing
undecidability for LD-Datalog(↓, ↓+) over ranked trees requires additional effort.

4 Unranked Trees

We have seen in Section 3 that over ranked trees containment is undecidable
for downward programs, but decidable for child-only programs. Over unranked
trees exactly the opposite happens. Containment for general programs, even for
L-Datalog(↓, ↓+), remains undecidable as explained in Section 3, but the reduc-
tion for LD-Datalog(↓, ↓+) in Theorem 1 relies heavily on the fixed number of
children and does not go through for unranked trees. In Section 4.1 we obtain
decidability even for D-Datalog(↓, ↓+). More surprisingly, we lose decidability
for Datalog(↓): using non-linearity and recursion we can simulate ↓+ to a point
sufficient to repeat (upwards) the reduction for words.

Proposition 3. Over unranked trees containment of Datalog(↓) programs in
UCQ(↓) queries is undecidable.

In Section 4.2 we show how to get decidability for linear Datalog(↓) programs.

4.1 Downward Programs

The aim of this section is to sketch out the proof of the following theorem.

Theorem 2. Over unranked trees containment is 2 -ExpTime-complete for
D-Datalog(↓, ↓+), and ExpSpace-complete for LD-Datalog(↓, ↓+).
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In fact, in the non-linear case we do not even need ↓+ to show hardness. This is
not so surprising: already in Proposition 3 we simulate ↓+ using non-linearity.

The proof of the positive claims of Theorem 2 bears some similarity to the
argument showing decidability of containment of datalog programs in UCQs over
arbitrary structures [10]. We show that satisfiability of P ∧ ¬Q can be tested
over special trees, so called canonical models, and the set of suitable encodings
of canonical models satisfying P ∧ ¬Q is recognized by a tree automaton.

So far our decidability results relied on bounding the number of labels in the
models of P∧¬Q; this requires a bound on the number of children. Over unranked
trees we do the opposite: we use the fact that witnessing patterns of downward
programs admit injective (up to ε-edges) homomorphisms into unranked trees,
and we make the labels as different from each other as permitted by P .

Definition 3. A tree is a canonical model for a satisfiable pattern π from
TPQ(↓, ↓+, ε), if it can be obtained in the course of the following procedure:

1. rename variables so that maximal ε-free subpatterns use disjoint sets of vari-
ables (do not change equalities within maximal ε-free subpatterns);

2. unify labels of nodes connected with ε-edges (since π is satisfiable, whenever
end-points of an ε-edge have different labels, at least one is labeled with a
variable: replace all occurrences of this variable with the other label);

3. merge all nodes connected with ε-edges;
4. substitute each variable with a fresh label;
5. replace each ↓+ edge with a sequence of nodes labeled with fresh variables,

connected with ↓ edges.

Note that a pattern from TPQ(↓, ↓+, ε) represents a family of canonical models:
fresh labels and, more importantly, the lengths of ↓+ paths are chosen arbitrarily.

Lemma 1. P ∧ ¬Q is satisfiable over unranked trees iff it is satisfiable in a
canonical model of a witnessing pattern of P.

Let N be the maximal number of variables in a rule in P . Let TPQP(↓, ↓+, ε)
be the class of patterns from TPQ(↓, ↓+, ε) with branching bounded by N and
labels coming from ΣP ⊆ Σ (labels used explicitly in P) or a fixed set Δ0 ⊆ Δ of
size N . As P is downward, its witnessing patterns are elements of TPQP(↓, ↓+, ε).

Patterns in TPQP(↓, ↓+, ε) can be viewed as trees over the alphabet (ΣP ∪
Δ0)×{↓, ↓+, ε}, where the first component is the label of the node in the pattern,
and the second component determines the kind of edge between the node and
its parent (in the root the second component plays no role, we may assume that
is ε). Conversely, each tree over this alphabet corresponds to a pattern from
TPQP(↓, ↓+, ε) (up to the second component of the root label). The technical
core of Theorem 2 is the following lemma.

Lemma 2. The set of patterns π ∈ TPQP(↓, ↓+, ε) such that P ∧¬Q is satisfied
in a canonical model of π is recognized by a double exponential tree automaton,
whose states and transitions can be enumerated in exponential working memory.
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To test satisfiability of P∧¬Q, we generate the automaton and test its empti-
ness. Since emptiness can be tested in PTime, this is a 2-ExpTime algorithm.

If P is linear (Q may be non-linear), we can do better. As proof trees of linear
programs are words, their witnessing patterns have a very particular shape: one
main branch (corresponding to the recursive calls of intensional predicates) and
small subtrees off this branch with at most N branches (fragments of patterns
corresponding P ’s rules). Over such trees emptiness of a given automaton B can
be tested by a non-deterministic algorithm in space O(N log |B|). Indeed, the
claim is well known (and easy to prove) for trees with at most N branches (see
e.g., [17]). In our case, the algorithm can keep guessing the main path bottom-
up, together with the states in the nodes just off the path, and use the previous
result as a subprocedure to test if B can accept from these states.

Generating the automaton from Lemma 2 on the fly in exponential working
memory, we can test its emptiness on trees of special shape in ExpSpace. A
natural generalization of the claim above gives ExpSpace algorithm for nested
linear programs, where any predicate defined by a linear subprogram can be used
freely outside of this subprogram. Nested linear programs are a more robust class
then linear programs, e.g., they are closed under conjunction.

4.2 Linear Child-Only Programs

For child-only programs, we get decidability if we assume linearity.

Theorem 3. Overunranked trees containment forL-Datalog(↓) is in 3 -ExpTime;
containment of L-Datalog(↓) programs inUCQ(↓) queries is 2 -ExpTime-complete.

The general strategy of the proof is as for downward programs, but this time
we face a new difficulty: witnessing patterns are not trees any more and they
need not admit injective homomorphisms into trees. Indeed, rules of L-Datalog(↓)
programs can be turned into tree patterns by merging nodes sharing a child,
and witnessing patterns are sequences of tree patterns connected with ε-edges
between out nodes and in nodes—but this time in nodes need not be roots.

The first step to fix this is to adjust canonical models: in item 3 of Definition 3
we merge not only nodes connected with ε-edges, but also nodes with a common
child; item 5 becomes void. After this modification we can reprove Lemma 1 for
Datalog(↓) programs (linearity plays no role here).

Unlike for downward programs, each witnessing pattern has a unique canonical
model (up to the choice of fresh labels). To test satisfiability of P ∧¬Q we need
to find a witnessing pattern π for P whose canonical model does not satisfy Q.
This is also more involved than for downward programs: nodes arbitrarily far
apart in π may represent the same node of the canonical model. An automaton
cannot compute this correspondence; we need to make it explicit.

One can think of an L-Datalog(↓) program as a tree-walking automaton that
moves from node to node checking some local conditions, until it reaches an
accepting state: a satisfied non-recursive rule. Each time the node to move to is
determined by the spine of the current rule: the shortest path between the in and
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Fig. 1. Encoding of witnessing patterns

out nodes of the corresponding tree pattern. Let Spine(P) be the disjoint union
of the nodes in the spines of P ’s rules. In our encoding of witnessing patterns
(Figure 1), an unranked tree over the alphabet

(
Spine(P)∪{+}

)2 represents the
way the sequence of spines is mapped to the corresponding canonical model (the
remaining nodes can be computed on the fly by the automaton); + is used in
nodes traversed once, only going down or only going up. The proof of Theorem 3
amounts to showing the following lemma.

Lemma 3. The set of encodings of witnessing patterns of P whose canonical
models satisfy P∧¬Q is regular. The recognizing (unranked) tree automaton can
be computed in 3-ExpTime in general, and in 2-ExpTime if Q ∈ UCQ(↓).

5 Conclusions

The containment problem for connected monadic datalog on trees over infinite
alphabet is undecidable. We considered two restrictions: downward programs,
D-Datalog(↓, ↓+), and child-only programs, Datalog(↓). Table 1 summarizes our
results. It is not difficult to extend the algorithm for linear Datalog(↓) over
unranked trees to cover non-connected programs; for the remaining algorithms
this remains an open question.

Table 1. Complexity of containment for datalog fragments

Unranked trees Ranked trees
linear non-linear linear non-linear

D-Datalog(↓, ↓+) ExpSpace 2-ExpTime Undec. Undec.
Datalog(↓) in 3-ExpTime Undec. 2-ExpTime in 3-ExpTime

We also investigated connections between monadic datalog and extensions of
regular tree pattern queries, discovering natural translations between the two
formalisms; translations to RTPQs involve exponential blow-up. Thus, results
on datalog give direct corollaries about corresponding classes of RTPQs. In par-
ticular, the result on linear D-Datalog(↓, ↓+) gives an ExpSpace upper bound
for containment of RTPQ(↓, ↓+), which solves an open problem from [3].

For child-only queries we provide few tight complexity bounds. Some gaps
stand out in Table 1, but we would like to point out one that is less apparent,
but more intriguing. Like all our lower bounds, the ones for Datalog(↓) work
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for containment in UCQs, but these bounds do not carry over to unary queries.
For example, containment over unranked trees of linear Datalog(↓) programs
in UCQ(↓) is 2-ExpTime-complete, but containment of unary linear Datalog(↓)
programs in unary UCQ(↓) queries could have much lower complexity. Also, for
linear D-Datalog(↓) we have only PSpace-hardness.
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Model Checking Concurrent Recursive Programs

Using Temporal Logics

Roy Mennicke

Technische Universität Ilmenau, Germany

Abstract. We consider two bounded versions of the model checking
problem of a fixed temporal logic TL whose modalities are MSO-definable
and which is specifying properties of multiply nested words, i.e., of runs
of pushdown automata with multiple stacks. One of the problems asks,
given a multi-stack system A, a temporal formula F from TL, and a
bound k, whether all nested words ν which are accepted by A and whose
split-width is bounded by k satisfy F . We describe the connection be-
tween the complexity of this problem and the maximal number n of
monadic quantifier alternations in the definitions of the modalities of
TL. In fact, we present almost tight upper and lower bounds for every
natural number n. Regarding the other model checking problem consid-
ered, we require ν to be a k-scope nested word. In this case, we can infer
the same lower and upper bounds.

1 Introduction

Boolean concurrent programs with recursive procedure calls can be modeled by
pushdown automata with multiple stacks. The idea is that there is one stack for
every process resp. thread of the program. A procedure call is then simulated
by a push operation carried out on the appropriate stack, whereas the return of
the same procedure corresponds to the matching pop operation. An individual
execution of such a pushdown automaton can be considered as a word with
multiple nesting relations. There is an edge between two positions of the word
if they represent matching push and pop operations on the corresponding stack.

Since the general model checking problem for multi-stack systems and sim-
ple specification languages is undecidable, several restrictions considering only
a subset of the runs of the system were introduced. For instance, one inves-
tigated nested words (NWs) which can be divided into a bounded number of
contexts [14,3]. The latter is an interval in which all operations refer to the
same stack. Later, the notion of context-bounded NWs was generalized to NWs
consisting of a bounded number of phases [11,4,3]. In contrast to a context, a
phase only requires pops to happen on the same stack. Another restriction is
scope-boundedness [12,1,13]. Here, every nesting edge may only span a bounded
number of contexts. Even more (orthogonal) approaches exist [5,2,7,13]. Re-
cently, the notion of split NWs resp. split-width was introduced [7,6]. Split NWs
are allowed to contain gaps in their linear order. Each interval between two gaps
can be seen as a component. Adjacent components can be merged by closing the

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 438–450, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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gap between them. A new split NW can be obtained by shuffling the components
of two source split NWs. By k-BS, one denotes the set of all split NWs which can
be built from atomic split NWs by repeatedly applying the shuffle and merge
operations such that all intermediate split NWs consist of at most k components.
In [7], the authors showed that the model checking problem for multi-stack sys-
tems restricted to NWs from k-BS and monadic second-order logic can be solved
in non-elementary time. This was done by representing NWs as so-called proof
trees exhibiting an alphabet of exponential size. They asked whether temporal
logics could be used instead in order to gain a reasonable complexity.

This question marks the beginning of our investigations of the model checking
problem of bounded split-width multi-stack systems and temporal logics whose
modalities are MSO-definable. MSO-definable temporal logics go back to Gabbay
et al. [8] and subsume virtually all temporal logics considered so far (see [4] for ex-
amples of MSO-definable modalities). In fact, we resume research by Gastin and
Kuske [9,10] who considered Mazurkiewicz traces and investigations by Bollig,
Kuske, and Mennicke [4] regarding phase-bounded NWs. For this, we extend
and enhance the technique used in [4]. In particular, we drastically reduce the
influence of the size of the temporal formula on the complexity.

If TL is a fixed MSO-definable temporal logic, then the bounded split-width
model checking problem of TL (SW-MC(TL) for short) asks, given a multi-
stack automaton A, a temporal formula F from TL, and a split-width bound
k, whether all NWs from k-BS which are accepted by A satisfy F . In order
to solve SW-MC(TL), we introduce an alternative definition of k-BS. In con-
trast to the proof trees encoding from [7], this allows us to represent split-width
bounded NWs as trees over an alphabet of constant size. This, in turn, enables
us to transform atomic formulas specifying properties of NWs into small tree
automata. Finally, SW-MC(TL) can then be reduced to the emptiness prob-
lem of tree automata. Using the above technique, we are able to show that, if
TL is MΣn-definable, i.e., if its modalities can be defined using formulas from
the n-th level of the monadic quantifier alternation hierarchy, then we can solve
SW-MC(TL) in (n+1)-fold exponential time. Conversely, we prove that, for every
n ≥ 1, there exists an MΣn-definable temporal logic TL such that SW-MC(TL)
is hard for n-fold exponential space.

By exploiting a connection between scope-boundedness and bounded split-width
stated in [7], we can infer the same lower and upper bounds for SCOPE-MC. The
definition of SCOPE-MC can be taken from SW-MC verbatim with the exception
that “split-width” is replaced by “scope”. The consideration of ordered NWs [5] is
left for future work. However, we believe that the corresponding bounded model
checking problem can be solved in at most (n+ 2)-fold exponential time. Unfortu-
nately, in terms of the lower bound, our proof idea cannot be easily transferred to
the setting of ordered NWs.

The missing proofs can be found in a technical report with the same title.
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2 Preliminaries

If n ∈ N, then [n] denotes the set {1, 2, . . . , n}. Furthermore, if R is a binary
relation over the set M , then supp(R) is the set of all elements x ∈M for which
there exists y ∈ M such that (x, y) ∈ R ∪R−1. The function tower : N2 → N is
inductively defined by tower(0,m) = m and tower(� + 1,m) = 2tower(�,m) for all
�,m ∈ N. We let poly(n) denote the set of polynomial functions in one argument.

A word over an alphabet Γ is a structure w = (P,→, λ) such that P is the set
of positions, (P,→∗) is a finite, linearly ordered set, → is the direct successor
relation wrt. →∗, and λ : P → Γ is a mapping. Note that in order to represent
the empty word ε, we allow the empty structure (∅, ∅, ∅). If the alphabet Γ is
clear from the context, we call w a word instead of a word over Γ .

2.1 Split Nested Words

Split nested words were recently introduced in [7]. Intuitively, a k-split nested
word is a nested word split into k components. We first define split words without
nesting relations.

If k ≥ 0, then a k-split word over Γ is a structure w = (P,→, ���, λ) such
that (P,→∪ ���, λ) is a word over Γ , →∩ ��� = ∅, and |���| = k − 1 if k ≥ 1,
and P = → = ��� = λ = ∅ otherwise. If k is clear from the context or if we do
not care about the exact k, then we sometimes omit k and call w a split word.
The minimal (maximal) element of w with respect to (→∪ ���)∗ is denoted by
min(w) (max(w), resp.). If w = (P,→, λ) is a word, then we identify w with the
1-split word (P,→, ∅, λ). Further, we identify isomorphic split words.

Now, we define two different concatenation operations carried out on two split
words w0 and w1. Both result in a split word consisting of the components of
w0 followed by the components of w1. Intuitively, the operation denoted by “ ”
puts (max(w0),min(w1)) into →, whereas “�” inserts (max(w0),min(w1)) into
���. More precisely: Let wi = (Pi,→i, ���i, λi) be a split word for i ∈ {0, 1}. If
Pi �= ∅ for all i ∈ {0, 1}, then we define:

w0  w1 = (P0 � P1,→0 ∪→1 ∪ {(max(w0),min(w1))}, ���0 ∪ ���1, λ0 ∪ λ1)

w0 � w1 = (P0 � P1,→0 ∪→1, ���0 ∪ ���1 ∪ {(max(w0),min(w1))}, λ0 ∪ λ1)

Otherwise, if wi = ε for some i ∈ {0, 1}, then we set w0 w1 = w0�w1 = w1−i.
Let w = (P,→, ���, λ) be a split word and ≤ = (→∪ ���)∗. A nesting relation
� over w is a binary relation such that, for all i, j, i′, j′ ∈ P , the following holds:
(1) if i � j, then i < j and (2) if i � j, i′ � j′, and i ≤ i′, then i < i′ < j′ < j
or i < j < i′ < j′ or (i = i′ and j = j′). If i � j, then we say that i is a
call with matching return j. The idea is that the split word w describes the
execution of some recursive program. Then i � j shall mean that, at time i,
the execution calls some procedure and, at time j, the control is returned to the
calling program. Having this in mind, condition (1) expresses that every return
occurs after its matching call. Condition (2) ensures that no position is both,
a call and a return, every call has exactly one matching return and vice versa,
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a b a b a b b c b a a c aν =

1

1

12
2

2

Fig. 1. The 3-split 2-NW ν = (w,�1,�2) from Example 2.1. Note that the relation
�1 (�2, resp.) is represented by the solid (dashed) edges labeled by 1 (2). Furthermore,
the individual components of ν are depicted by rectangles.

and calls and matching returns are well nested. In the following, we will consider
words with not only one, but with σ ∈ N many nesting relations.

For σ ∈ N and k ≥ 0, a k-split σ-nested word over Γ (k-split σ-NW) is a tuple
ν = (w,�1,�2, . . . ,�σ) such that (1) w is a k-split word over Γ , (2) �s is a
nesting relation over w for all s ∈ [σ], and (3) supp(�s)∩ supp(�s′) = ∅ for all
1 ≤ s < s′ ≤ σ. If ν is a 1-split σ-NW, then we also call it a σ-NW. Note that
the above condition (3) expresses that a position can only be related to at most
one stack. Let us assume that, at every call position of ν, the λ-label of the very
same position is pushed onto the corresponding stack. Then, at every position i,
the current content of stack s is implicitly given by the labels of the call positions
of stack s which are preceding i and whose matching return positions are strict
successors of i (w.r.t. the linear ordering of ν).

In the following, we fix the number of stacks σ ∈ N and the alphabet Γ and
often speak of NWs instead of σ-NWs over Γ (i.e., we omit the number of stacks
σ and the alphabet Γ ).

Example 2.1. Figure 1 shows the 3-split 2-NW ν = ([13],→, ���, λ,�1,�2)
where λ = {(1, a), (2, b), . . .}, → = {(1, 2), (2, 3), . . .}, ��� = {(3, 4), (10, 11)},
�1 = {(1, 3), (5, 10), . . .}, and �2 = {(4, 7), . . .}.

We now define two operations called merge and shuffle which are carried out
on split NWs. Note that the definitions of these operations in [7] are phrased
differently; however, it can be easily checked that they coincide.

The Shuffle Operation. The shuffle operation works by mixing the components of
two split NWs without changing the relative order of the components belonging
to the same split nested word and by taking care of the restrictions regarding
nesting edges (i.e., we may not introduce intersecting nesting edges). If νi =
(wi,1�wi,2�. . .�wi,ki ,�i,1, . . . ,�i,σ) is a ki-split nested word and wi,j is a word
for all i ∈ [2] and j ∈ [ki], then shf(ν1, ν2) is the set of all (k1 + k2)-split nested
words ν = (v1�v2�. . .�vk1+k2 ,�1, . . . ,�σ) where �s = �1,s∪�2,s for all s ∈
[σ] and there exists a bijection f : (({1} × [k1]) ∪ ({2} × [k2])) → [k1 + k2] such
that wi,j = vf(i,j) and f(i, j) < f(i, �) for all i ∈ [2] and 1 ≤ j < � ≤ ki.

The Merge Operation. Intuitively, the merge operation allows to merge two or
more components of a given split NW. More precisely, if ν = (w1 � . . .�wk,�1

, . . . ,�σ) is a k-split NW where w1, . . . , wk are words, then mrg(ν) denotes the
set of all split NWs ν′ = (w′,�1, . . . ,�σ) such that there exists a total function
g : {2, 3, . . . , k} → { ,�} fulfilling the following conditions: (i) there exists i ∈
{2, 3, . . . , k} with g(i) =  and (ii) w′ = w1 g(2) w2 g(3) w3 g(4) . . . g(k) wk.
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Because of (i), at least one pair of adjacent components of ν has been turned
into a single component using the operation  .

A NW ν is atomic if it is of the form a , a b
s

, or a b
s

where a, b ∈ Γ and

s ∈ [σ]. If k ≥ 2, then k-BS is the least set fulfilling the following conditions:
(i) all atomic NWs are contained in k-BS, (ii) if νi ∈ k-BS is a ki-split NW for
i ∈ [2] and k1 + k2 ≤ k, then shf(ν1, ν2) ⊆ k-BS, and (iii) if ν ∈ k-BS, then
mrg(ν) ⊆ k-BS. In contrast to [7], we explicitly add the atomic NW a b

s
to

k-BS in order to keep the following definitions and proofs simple.

2.2 Scope-Bounded NWs

The notion of scope-boundedness goes back to La Torre and Napoli [12]. Here,
we recall a slightly adapted definition used in [7]. Intuitively, a NW is scope-
bounded for some γ ≥ 1 if all nesting edges span at most γ contexts. The
latter is an interval within a NW in which at most one stack is involved. More
precisely, let ν = (P,→, λ,�1, . . . ,�σ) be a NW. If γ ≥ 1, then ν is γ-scope
bounded if for all s ∈ [σ], (i, j) ∈ �s, and x1, x2, . . . , xγ+1 ∈

⋃
s∈[σ] supp(�s)

with i < x1 < x2 < . . . < xγ+1 < j the following holds: there exists k ∈ [γ] and
s′ ∈ [σ] such that xk, xk+1 ∈ supp(�s′).

Example 2.2. Let ν be the split NW from Fig. 1. Consider the edge connecting
the positions 5 and 10. The positions 6, 7, and 9 witness the fact that ν is not
a 2-scope bounded NW. However, it can be shown that it is 3-scope bounded.

Theorem 2.3 ([7]). If ν is a γ-scope (1-split) NW, then ν ∈ (γ + 2)-BS.

The above connection between bounded scope and bounded split-width was es-
tablished in [7]. It should be investigated whether the more permissive definition
of bounded scope given in [13] admits a similar theorem.

2.3 Monadic Second-Order Logic and Temporal Logics

We fix the set {x, y, z, . . .} of individual and the set {X,Y, Z, . . .} of set variables.
By MSO, we denote the set of all monadic second-order formulas which can be
built from the atomic formulas λ(x) = a, x → y, x �s y, calls(x), rets(x),
min(x), max(x), x = y, and x ∈ X where a ∈ Γ and s ∈ [σ]. The set of
all first-order formulas FO ⊆ MSO contains all formulas without second-order
quantification ∃X . We use the usual abbreviations such as ∀xϕ for ¬∃x¬ϕ.

Let ν = (P,→, λ,�1, . . . ,�σ) be a NW and ϕ(X1, . . . , X�, x1, . . . , xk) be
a formula with free variables from {X1, . . . , X�, x1, . . . , xk}. Furthermore, let
I1, . . . , I� ⊆ P and i1, . . . , ik ∈ P . Then we write ν, I1, . . . , I�, i1, . . . , ik |= ϕ
if ϕ evaluates to true when interpreting the variables by I1, . . . , I� ⊆ P and
i1, . . . , ik ∈ P , resp. For instance, we have ν, i |= calls(x) if there exists j ∈ P
with i �s j. The semantics of the remaining formulas are as expected. An MSO-
formula is an m-ary modality definition if it has at most m free set variables
X1, . . . , Xm and one free individual variable x. An MSO-definable temporal logic
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is a tuple TL = (B, arity, �−�) where B is a finite set of modalities, the mapping
arity: B → N specifies the arity of every modality from B, and �−� : B →
MSO is a mapping such that �M� is an m-ary modality definition whenever
arity(M) = m for M ∈ B. The set of all formulas from TL is the least set such
that the following conditions hold: (i) if M ∈ B with arity(M) = 0, then M is a
formula from TL and (ii) if M ∈ B, arity(M) > 0, and F1, F2, . . . , Farity(M) are
formulas from TL, then M(F1, . . . , Farity(M)) is a formula from TL. The size |F |
of a temporal formula F is its number of subformulas.

Let ν = (P,→, λ,�1, . . . ,�σ) be a NW and F be a formula from TL. The
semantics F ν of F in ν is the set of positions from P where F holds. More
formally: If F = M(F1, . . . , Fm) where M ∈ B is of arity m ≥ 0, then F ν =
{i ∈ P | ν, i, F ν

1 , . . . , F
ν
m |= �M�}. We write ν, i |= F for i ∈ F ν and ν |= F for

ν,min(P,→, λ) |= F . Examples of MSO-definable modalities can be found in [4].
Now, let TL be some MSO-definable temporal logic. We define the following

model checking problems for TL where we kindly refer the reader to [4] for a
formal definition of σ-stack automata.

– SW-MC(TL) is the set of triples (A, F, k) where A is a σ-stack automaton,
F is a temporal formula from TL, and k ≥ 2 such that every NW ν ∈ k-BS
accepted by A satisfies F (where k is encoded in unary).

– SCOPE-MC(TL) is the set of triples (A, F, γ) where A is a σ-stack automa-
ton, F is a temporal formula from TL, and γ ≥ 1 such that every γ-scope
NW accepted by A satisfies F (where k is encoded in unary).

Finally, we recall the definition of the monadic quantifier alternation hierarchy.
An MSO-formula ϕ belongs to MΣn if it is of the form ∃X1 ∀X2 . . . ∃/∀Xn ψ
where ψ ∈ FO and the Xi’s are tuples of individual and set variables. In con-
trast, it belongs to MΠn if it is of the form ∀X1 ∃X2 . . . ∀/∃Xn ψ. Let L be
some fragment of MSO such as FO or MΣn etc. An MSO-definable temporal
logic TL = (B, arity, �−�) is L-definable if �M� ∈ L for all modalities M ∈ B.

3 The Model Checking Problem

This section mainly deals with the proof of an upper bound for the model check-
ing problems SW-MC(TL) and SCOPE-MC(TL). A complementing lower bound
can be found at the end of this section.

3.1 An Equivalent Definition of Bounded Split-Width

In order to solve the model checking problems of an MSO-definable temporal
logic TL, we adapt and enhance the technique used in [4]. For this, we represent
split nested words as trees. Our encoding will be in the spirit of the proof trees
defined in [7]. However, proof trees exhibit an alphabet of size exponential in
the split-width bound k. This leads to the undesirable effect that a tree automa-
ton with polynomially many states still exhibits exponentially many transitions;
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Fig. 2. The split NWs ν1, ν2, and the nw-container c = (w0, w1, w2,�1,�2) from
Example 3.2 where w0 is depicted on the left and w1 (w2) on the upper (lower) right

hence, it cannot be constructed in space O(log k). Therefore, we develop an
encoding using trees over an alphabet of size independent from k.

For this, we simulate the merge and shuffle operations defined for split NWs
stepwise. More precisely, given two split nested words ν1 and ν2, a new split NW
ν is obtained as follows: We begin with an empty split NW. In each step one of
the remaining components of ν1 and ν2 is chosen and added to ν. The latter is
done using either the operation  or �. During the whole process, it is ensured
that the relative order of the components of the input split NWs is maintained
and that no intersecting nesting edges referring to the same stack are introduced.
A so-called nw-container represents an intermediate configuration of the above
described iterative process.

Definition 3.1. A k-split nw-container is a structure (w0, w1, w2,�1, . . . ,�σ)
where

(1) wi = (Pi,→i, ���i, λi) is a ki-split word for all i ∈ {0, 1, 2},
(2) k ≥ 1, k0 + k1 + k2 = k, and Pi ∩ Pj = ∅ for all i, j ∈ {0, 1, 2} with i �= j,
(3) �s ⊆ P 2

0 ∪ ((P0 ∪ P1)× P1) ∪ ((P0 ∪ P2)× P2) for all s ∈ [σ],
(4) and, for all i ∈ [2], (w0 wi,�′

1, . . . ,�
′
σ) is a (k0 +ki)-split NW where, for

all s ∈ [σ], �′
s= �s ∩

(
P 2
0 ∪ ((P0 ∪ Pi)× Pi)

)
.

If ν = (w,�1, . . . ,�σ) is a split NW, then, for convenience, we denote by ct(ν)
the nw-container (w, ε, ε,�1, . . . ,�σ).

Example 3.2. Let νi = (wi,1 �wi,2 �wi,3 �wi,4,�i,1,�i,2) be the 4-split 2-NW
from Fig. 2 for i ∈ [2]. Then c = (w0, w1, w2,�1,�2) is the 6-split 2-nw-
container shown in Fig. 2 where w0 = w2,1�w1,1 w2,2 w1,2, w1 = w1,3�w1,4,
w2 = w2,3 � w2,4, �1 = �1,1 ∪�1,2, and �2 = �2,1 ∪�2,2.

We now define three different operations carried out on nw-containers. The first
one is a binary operation called union operation. It can only be applied to con-
tainers c for which there exists a split NW ν with c = ct(ν). Basically, the union
operation puts two split NWs (resp., their nw-containers) into one nw-container
such that, using the not yet defined operations add and madd, their components
can be shuffled and merged.

The union Operation. If ci = (wi, ε, ε,�i,1, . . . ,�i,σ) is a ki-split nw-container,
wi = (Pi,→i, ���i, λi) for all i ∈ [2], and P1 ∩P2 = ∅, then union(c1, c2) denotes
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the (k1+k2)-split nw-container (ε, w1, w2,�1, . . . ,�σ) where �s = �1,s∪�2,s

for all s ∈ [σ].

Now, let k ≥ 1, c = (w0, w1, w2,�1, . . . ,�σ) be a k-split nw-container, m ∈ [2],
and wm = v1 � v2 � . . .� vn where v1, . . . , vn are words and n ≥ 1.

The add Operation. Intuitively, this operation appends either the first compo-
nent of w1 or the first component of w2 to the split word w0 using the � opera-
tion. More formally, consider the structure c′ = (w′

0, w
′
1, w

′
2,�1, . . . ,�σ) where

(1) w′
0 = w0 � v1, (2) w′

m = v2 � v3 � . . . � vn, (3) w′
j = wj , and j = 3 −m is

the other index. If c′ is an nw-container (i.e., if we did not introduce intersecting
nesting edges referring to the same stack), then we set addm(c) = c′. Otherwise,
addm(c) is undefined.

The madd Operation. This operations appends either the first component of w1

or the first component of w2 to the split word w0 by merging it with the last
component of w0 (i.e., the  operation is used). The formal definition can be
taken from the add operation verbatim with the exception that w′

0 = w0 � v1
needs to be replaced by w′

0 = w0  v1 and addm(c) = c′ by maddm(c) = c′.

Example 3.3. Let νi = (wi,1�wi,2�wi,3�wi,4,�i,1,�i,2) be the split NW from
Fig. 2 for i ∈ [2]. Then (madd1 ◦ madd2 ◦ add1 ◦ add2 ◦ union)

(
ct(ν1), ct(ν2)

)
is the nw-container c from Fig. 2. Note that madd1(c) is not defined, because
condition (4) of Def. 3.1 would not be fulfilled. Intuitively, the nesting edges of
stack 1 from w1,1 to w1,3 and from w2,2 to w2,3 would intersect each other. Of
course, the same holds for add1(c).

By Ck, we denote the set of all those nw-containers which can be built from
the atomic split NWs (resp., their nw-containers) by applying the above three
operations and not exceeding the split-width bound k during this process.

Proposition 3.4. For all k ≥ 2, k-BS = {ν | ν is a split NW, ct(ν) ∈ Ck}.

3.2 The Encoding of NWs as Trees

Let the alphabet Λ = Γ ∪{union, add1, add2,madd1,madd2}∪{�s,
m
�s| s ∈ [σ]}

be fixed. We now inductively define the set Ek of trees over Λ representing nw-
containers from Ck and the mapping val specifying the abstract nw-container
represented by a tree from Ek. Intuitively, Ek can be considered the set of parse
trees of the terms over Λ defining split NWs from k-BS.

Definition 3.5. If k ≥ 2, then we define Ek to be the least set such that:

– For all a ∈ Γ , we have a ∈ Ek and set val(a) = ct( a ).
– For all a, b ∈ Γ , s ∈ [σ], we have t = �s(a, b) ∈ Ek and val(t) = ct( a b

s
).

– For all a, b ∈ Γ , s ∈ [σ], we have t =
m
�s(a, b) ∈ Ek and val(t) = ct( a b

s
).

– If t′ ∈ Ek, h ∈ {add1, add2,madd1,madd2}, and h(val(t′)) is defined, then
t = h(t′) ∈ Ek. We set val(t) = h(val(t′)).
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– If t1, t2 ∈ Ek, val(ti) = ct(νi), νi is a ki-split NW for i ∈ [2], and k1+k2 ≤ k,
then t = union(t1, t2) ∈ Ek. We set val(t) = union(val(t1), val(t2)).

Clearly, the leaves of t ∈ Ek represent the positions of val(t). The inner nodes
of t specify the relations between these positions in such a way that they can
be recovered by small tree automata. In order to make this correspondence ex-
plicit, we give the following definitions and the subsequent theorem. The latter
constructs, for instance, a tree automaton B→ that runs on trees t ∈ Ek with
two marked nodes x and y. It accepts such a marked tree if and only if x and y
are leaves (and therefore positions in val(t)) that satisfy x→ y.

In the following, we also consider trees from Ek to be labeled graphs. If t ∈ Ek,
X1, . . . , Xm are sets of nodes, and x1, . . . , xn are nodes of t, then we define
t′ = (t,X1, . . . , Xm, x1, . . . , xn) to be the tree over the alphabet Λ × {0, 1}m+n

which is obtained by extending the labels of the nodes v of t as follows: the label
of v is enriched with m + n bits b1, . . . , bm, c1, . . . , cn such that (1) bi = 1 if and
only if v ∈ Xi for i ∈ [m] and (2) ci = 1 if and only if v = xi for i ∈ [n]. Note
that a tree over the alphabet Λ×{0, 1}m+n is of the above form if and only if, for
all i ∈ [n], there is a unique node whose bit ci is set to 1. Hence, the set of these
trees forms a regular tree language that can be accepted by a tree automaton
with 2n states.

Definition 3.6. If B is a tree automaton over the alphabet Λ×{0, 1}n, then we
define, for every tree t, R(B, t) = {(x1, . . . , xn) | (t, x1, . . . , xn) ∈ L(B)}.

Now, several tree automata are constructed. Intuitively, if t ∈ Ek represents a
container ((Pi,→i, ���i, λi)i∈{0,1,2},�1, . . . ,�σ), then, for all i ∈ {0, 1, 2}, Bwi

recovers Pi, B→ reconstructs→i, B��	 restores ���i, and Ba with a ∈ Γ retrieves
all positions labeled by a. Similarly, Bs is used to obtain �s for all s ∈ [σ].

Theorem 3.7. Given k ≥ 2, one can construct tree automata B→, B��	, Bwi

for every i ∈ {0, 1, 2}, Bs for every s ∈ [σ], and Ba for every a ∈ Γ in space
O(log k) such that, for all t ∈ Ek, val(t) is isomorphic to the nw-container

expvalk(t) =
(
(Pi,→i, ���i, λi)i∈{0,1,2},�1, . . . ,�σ

)
where Pi = R(Bwi

, t), →i = R(B→, t)∩P 2
i , ���i = R(B��	, t)∩P 2

i , λi = {(v, a) |
a ∈ Γ, v ∈ R(Ba, t) ∩ Pi} for all i ∈ {0, 1, 2}, and �s = R(Bs, t) for all s ∈ [σ].

Proof. Concerning the automaton Bs with s ∈ [σ], we have i �s j if and only if

(1) i and j share the same parent node labeled by a symbol from {�s,
m
�s} and

(2) i is a left child and j is a right child. The above two conditions can be easily
checked by a tree automaton of size independent from k.

As another example, consider the automaton B→ which can be constructed in
space O(log k). The idea is that the automaton keeps track of the positions i and
j for which i→ j shall be checked. More precisely, the automaton is in the state
(�,m1, �1,m2, �2) where � ∈ [k], �1, �2 ∈ [k]∪{⊥}, and m1,m2 ∈ {0, 1, 2,⊥} if and
only if the current node represents an nw-container c = (w0, w1, w2,�1, . . . ,�σ)
such that
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– w0 is an �-split word,
– either (a) m1 ∈ {0, 1, 2}, �1 ∈ [k] and position i is the right-most position

of the �1-th component of wm1 or (b) m1 = �1 = ⊥ and there do not exist
i ∈ {0, 1, 2} and � ∈ [k] such that i is the right-most position of the �-th
component of wi, and

– either (a) m2 ∈ {0, 1, 2}, �2 ∈ [k] and position j is the left-most position
of the �2-th component of wm2 or (b) m2 = �2 = ⊥ and there do not exist
i ∈ {0, 1, 2} and � ∈ [k] such that j is the left-most position of the �-th
component of wi.

The automaton B→ is in the state + if and only if the current node represents
an nw-container exhibiting a component which contains the positions i and j
such that i→ j. The sole final state of B→ is +. It is straightforward to specify
a transition relation implementing the above described behavior. "#
Definition 3.8. For all NWs ν, we set treek(ν) = {t ∈ Ek | expvalk(t) = ct(ν)}
where expvalk is the mapping from Theorem 3.7.

3.3 From Temporal Formulas to Tree Automata

Now, our intermediate goals is to directly transform an arbitrary MSO-formula
ϕ(X1, . . . , Xm, x1, . . . , xn) into a tree automaton Bϕ such that, for all NWs ν ∈
k-BS and t ∈ treek(ν), we have ν,X1, . . . , Xm, x1, . . . , xn |= ϕ if and only if
(t,X1, . . . , Xm, x1, . . . , xn) ∈ L(Bϕ).

Proposition 3.9. Given k ≥ 2 and a fixed (possibly negated) atomic MSO-
formula ϕ, one can construct in space O(log k) a tree automaton B with the
following property: If ν = (P,→, λ,�1, . . . ,�σ) is a NW from k-BS, I ⊆ P ,
i, j ∈ P , and t ∈ treek(ν), then (t, I, i, j) ∈ L(B) ⇐⇒ ν, I, i, j |= ϕ.

Proof. We have ν, i |= (λ(x) = a) if and only if i ∈ R(Ba, t) whereBa is the automa-
ton from Theorem 3.7. From the label of i in t one can immediately tell whether
ν, i, I |= x ∈ X or ν, i, j |= (x = y) holds. We have ν, i |= calls(x) if and only

if i is the left child of a node labeled by a symbol from {�s,
m
�s}. Analogously,

one can construct a tree automaton for rets(x). Moreover, ν, i, j |= (x �s y) and
ν, i, j |= (x→ y) can be decided using the automataBs andB→ from Theorem 3.7.

Concerning the formula min(x), we construct a tree automaton B with the
set of states {⊥, 0, 1, 2}. It is in state i ∈ {0, 1, 2} if the current node represents
a container c = (w0, w1, w2,�1, . . . ,�σ) such that x is the minimal position
of wi. Otherwise, it is in state ⊥. The state 0 is the sole accepting state of B.
Analogously, one can construct an automaton for the formula max(x).

The negations of the above atomic formulas can be dealt with similarly. "#
Note that the sizes of all but the tree automata constructed for the formulas
x → y and ¬(x → y) are independent from the split-with bound k. Now, we
give a definition of a second measure of the complexity of formulas from MSO,
namely the full quantifier alternation hierarchy. In contrast to the monadic quan-
tifier alternation hierarchy, we do not only consider monadic quantifiers but also
quantification over individual variables.
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Definition 3.10. By Σn, we denote all formulas ϕ ∈ MSO which are of the
form ∃X1 ∀X2 . . . ∃/∀Xn ψ where X i are tuples of individual and set vari-
ables and ψ is quantifier-free. In contrast, Πn denotes all formulas of the form
∀X1 ∃X2 . . . ∀/∃Xn ψ.

By exploiting the existence of the atomic formulas min(x), max(x), calls(x), and
rets(x) and by using Hanf’s theorem, one can transform every MΣn-formula into
an equivalent Σn+1-formula. The following proposition shows that every formula
of an arbitrary but fixed MΣn-definable temporal logic can be transformed into
an equivalent MSO-sentence of a certain kind in polynomial time:

Proposition 3.11. Let TL = (B, arity, �−�) be some MΣn-definable temporal
logic. From a temporal formula F of TL, one can compute in time poly(|F |) an
MSO-sentence ψ = ∃X

[∧
i∈[|F |]

(
ψ1,i(X) ∧ ∀y ψ2,i(y,X)

)]
(where X is an |F |-

tuple of set variables) such that, for all i ∈ [|F |], ψ1,i ∈ Πn+1, ψ2,i ∈ Σn+1, and,
for all NWs ν, we have ν |= F if and only if ν |= ψ.

Note that the above proposition differs from [4, Proposition 1] where formu-
las ψ1 and ψ2 are constructed whose sizes are linear in |F |. In contrast, the
sizes of our formulas ψ1,i and ψ2,i are independent from |F |. Later, this allows
us to construct a tree automaton for F in space |F | · towern(poly(k)) instead
of towern+1(poly(|F | · log k)), i.e., the influence of the size of F on the space
complexity is vastly reduced.

Using Propositions 3.9 and 3.11, standard automata constructions for Boolean
combinations and projection, and a special handling of formulas of the form ∀y ϕ
(like they occur in the formula ψ from Prop. 3.11), one can show the following:

Theorem 3.12. Let TL be a fixed MΣn-definable temporal logic. From a for-
mula F from TL and k ≥ 2, one can construct in space |F | · towern(poly(k)) a
tree automaton BF with the following property: For all NWs ν from k-BS and
t ∈ treek(ν), we have ν |= F ⇐⇒ t ∈ L(BF ).

3.4 The Decision Procedure

Proposition 3.13. If k ≥ 2 and A is a σ-stack automaton, then we can con-
struct in space O(k · log |A|) a tree automaton BA,k with L(BA,k) = {t | t ∈
treek(ν), ν ∈ k-BS is accepted by A}.

Let TL be some fixed MΣn-definable temporal logic over the fixed alphabet
Γ . Given a σ-stack automaton A, a formula F from TL, and k ≥ 2, one can
construct the automata B¬F and BA,k from Theorem 3.12 and Prop. 3.13,
respectively. Note that the negation ¬ can be easily defined using the FO-
modality �¬�(X1, x) = ¬(x ∈ X1). We have (A, F, k) ∈ SW-MC(TL) if and
only if L(BA,k)∩L(B¬F ) = ∅. The automaton BA,k can be constructed in space
O(k · log |A|) and B¬F can be obtained in space |¬F | · towern(poly(k)). Since the
emptiness problem for tree automata can be solved in polynomial time, the model
checking problem SW-MC(TL) can be decided in time |A||F |·towern(poly(k)). Sim-
ilar arguments hold for SCOPE-MC(TL). Hence, the following holds:
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Theorem 3.14. Let n ≥ 0 and TL be some fixed MΣn-definable temporal logic.
Then SW-MC(TL) and SCOPE-MC(TL) are both solvable in (n+1)-EXPTIME.
More precisely, given a σ-stack automaton A, a formula F from TL, and a
bound k, the decision procedure runs in time |A||F |·towern(poly(k)).

By adapting the technique from [4], we polynomially reduce the satisfiability
problem of temporal logics over labeled grids to the satisfiability problems of
temporal logics over NWs. The following lower bound can then be inferred:

Theorem 3.15. For all n ≥ 1, alphabets Γ with |Γ | ≥ 3, and number of stacks
σ ≥ 2, there is an MΣn-definable temporal logic TL such that SW-MC(TL) resp.
SCOPE-MC(TL) is n-EXPSPACE-hard.
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Abstract. The classification of the fragments of Halpern and Shoham’s
logic with respect to decidability/undecidability of the satisfiability prob-
lem is now very close to the end. We settle one of the few remaining
questions concerning the fragment AĀBB̄, which comprises Allen’s in-
terval relations “meets” and “begins” and their symmetric versions. We
already proved that AĀBB̄ is decidable over the class of all finite linear
orders and undecidable over ordered domains isomorphic to N. In this
paper, we first show that AĀBB̄ is undecidable over R and over the class
of all Dedekind-complete linear orders. We then prove that the logic is
decidable over Q and over the class of all linear orders.

1 Introduction

Even though it has been authoritatively and repeatedly claimed that interval-
based formalisms are the most appropriate ones for a variety of application
domains, e.g., [6], until very recently interval temporal logics were a largely un-
explored land. There are at least two explanations for such a situation: compu-
tational complexity and technical difficulty. On the one hand, the seminal work
by Halpern and Shoham on the interval logic of Allen’s interval relations (HS for
short) showed that such a logic is highly undecidable over all meaningful classes
of linear orders [5], and ten years later Lodaya proved that a restricted fragment
of it, denoted BE, featuring only two modalities (those for Allen’s relations begins
and ends), suffices for undecidability [7]. On the other hand, formulas of interval
temporal logics express properties of pairs of time points rather than of single
time points, and are evaluated as sets of such pairs, that is, binary relations.
As a consequence, there is no reduction of the satisfiability/validity in interval
logics to monadic second-order logic, and thus Rabin’s theorem (the standard
proof machinery) is not applicable here.

In the last decade, a systematic investigation of HS fragments has been carried
out. Their classification with respect to the decidability/undecidability of their
satisfiability problem is now very close to the end. The outcome of the analysis
is that undecidability rules over HS fragments [1, 8], but some meaningful excep-
tions exist [2, 3, 4, 10, 11]. While setting the status of most and least expressive
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interval logics is relatively straightforward, e.g., undecidability of full HS can be
shown by a reduction from the non-halting problem for Turing machines, decid-
ability of the logic of Allen’s relations begins and begun by BB̄ can be proved by
a reduction to the (point-based) linear temporal logic of future and past, deal-
ing with those fragments that lie on the marginal land between decidability and
undecidability is much more difficult. (Un)decidability of HS fragments depends
on two factors: their set of interval modalities and the class of linear orders over
which they are interpreted. While the first one is fairly obvious, the second one is
definitively less immediate. Some HS fragments behave the same over all classes
of linear orders. This is the case with the logic of temporal neighbourhood AĀ,
which is NEXPTIME-complete over all relevant classes of linear orders [3]. A
real character is, on the contrary, the temporal logic of sub-intervals D: its sat-
isfiability problem is PSPACE-complete over the class of dense linear orders [2]
and undecidable over the classes of finite and discrete linear orders [8] (it is still
unknown over the class of all linear orders).

In this paper, we focus our attention on the satisfiability problem for the
logic AĀBB̄, which pairs the decidable fragments AĀ and BB̄. In [11], we proved
that the problem is decidable, but not primitive recursive, over finite linear
orders, and undecidable over the natural numbers. Here, we first show that
undecidability can be lifted to the temporal domain R, as well as to the class of
all Dedekind-complete linear orders. Then, we consider the order Q. We devise
two semi-decision procedures: the first one terminates if and only if the input
formula is unsatisfiable over Q, while the second one terminates if and only if
the input formula is satisfiable over Q. Running the two procedures in parallel
gives a decision algorithm for AĀBB̄ over Q. We conclude the paper by showing
that decidability over the class of all linear orders follows from that over Q.

2 The Logic

We begin by introducing the logic AĀBB̄. Let Σ be a set of proposition letters.
The logic AĀBB̄ consists of formulas built up from letters in Σ using the Boolean
connectives ¬ and ∨ and the unary modalities ⟨A⟩, ⟨Ā⟩, ⟨B⟩, and ⟨B̄⟩. We will
often make use of shorthands like ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), [A]ϕ = ¬⟨A⟩¬ϕ,
[B]ϕ = ¬⟨B⟩¬ϕ, true = a ∨ ¬a, and false = a ∧ ¬a, for a ∈ Σ.

To define the semantics ofAĀBB̄ formulas, we consider a linear orderD = (D,<),
called temporal domain, and we denote by ID the set of all closed intervals [x, y]
over D, with x ≤ y. We call interval structure any Kripke structure of the form
I = (ID, σ,A, Ā,B, B̄), where σ ∶ ID → P(Σ) is a function mapping intervals to
sets of proposition letters andA, Ā,B, and B̄ are the Allen’s relations “meet”, “met
by”, “begun by”, and “begins”, which are defined as follows: [x, y] A [x′, y′] iff y =
x′, [x, y] Ā [x′, y′] iff x = y′, [x, y] B [x′, y′] iff x = x′ ∧ y′ < y, and [x, y] B̄
[x′, y′] iff x = x′ ∧y < y′. Formulas are interpreted over a given interval structure
I = (ID, σ,A, Ā,B, B̄) and a given initial interval I ∈ ID in the natural way, as
follows: I, I ⊧ a iff a ∈ σ(I), I, I ⊧ ¬ϕ iff I, I /⊧ ϕ, I, I ⊧ ϕ1 ∨ ϕ2 iff I, I ⊧ ϕ1 or
I, I ⊧ ϕ2, and, most importantly, for all relations R ∈ {A, Ā,B, B̄},
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I, I ⊧ ⟨R⟩ϕ iff there is J ∈ ID such that I R J and I, J ⊧ ϕ.

We say that a formula ϕ is satisfiable over a class C of interval structures if
I, I ⊧ ϕ for some I = (ID, σ,A, Ā,B, B̄) in C and some interval I ∈ ID.

For example, the formula [B]false (hereafter abbreviated π) hold over all and
only the singleton intervals [x,x]. Similarly, the formula [B][B]false (abbreviated
unit) holds over the unit-length intervals of a discrete order, e.g. over the intervals
of Z of the form [x,x + 1]. The formula [Ā][Ā][A][A]ϕ ([G]ϕ for short) forces
ϕ to hold universally, that is, over all intervals. The formula [G] (¬π → ⟨B⟩¬π )
(ϕdense for short) holds over all and only the interval structures with a dense
domain, e.g., the order Q of the rationals.

Logical Types. We now introduce basic terminology and notation that are
common in the temporal logic setting. The closure of a formula ϕ is defined as
the set closure(ϕ) of all sub-formulas of ϕ and all their negations (we identify
¬¬ψ with ψ, ¬⟨A⟩ψ with [A]¬ψ, etc.). For a technical reason that will be clear
soon, we also introduce the extended closure of ϕ, denoted closure+(ϕ), that
extends closure(ϕ) by adding all formulas of the form ⟨R⟩ψ and [R]ψ, with
R ∈ {A, Ā,B, B̄} and ψ ∈ closure(ϕ).

Let I = (ID, σ,A, Ā,B, B̄) be an interval structure. We associate with each in-
terval I ∈ ID its ϕ-type typeϕ

I
(I), defined as the set of all formulas ψ ∈ closure+(ϕ)

such that I, I ⊧ ψ (when no confusion arises, we omit the parameters I and ϕ).
A particular role will be played by those types F that contain the subformula
[B]false, which are necessarily associated with singleton intervals. When no in-
terval structure is given, we can still try to capture the concept of type by means
of a maximal “locally consistent” subset of closure+(ϕ). Formally, we call ϕ-atom
any set F ⊆ closure+(ϕ) such that (i) ψ ∈ F iff ¬ψ /∈ F , for all ψ ∈ closure+(ϕ), (ii)
ψ ∈ F iff ψ1 ∈ F or ψ2 ∈ F , for all ψ = ψ1 ∨ ψ2 ∈ closure

+

(ϕ), (iii) if [B]false ∈ F
and ψ ∈ F , then ⟨A⟩ψ ∈ F and ⟨Ā⟩ψ ∈ F , for all ψ ∈ closure(ϕ), (iv) if [B]false ∈ F
and ⟨A⟩ψ ∈ F , then ψ ∈ F or ⟨B̄⟩ψ ∈ F , for all ψ ∈ closure(ϕ). We call π-atoms
those atoms that contain the formula [B]false, which are thus candidate types
of singleton intervals. We denote by atoms(ϕ) the set of all ϕ-atoms.

Given an atom F and a relation R ∈ {A, Ā,B, B̄}, we let reqR(F ) be the set
of requests of F along direction R, namely, the formulas ψ ∈ closure(ϕ) such that
⟨R⟩ψ ∈ F . Similarly, we let obs(F ) be the set of observables of F , namely, the
formulas ψ ∈ F ∩closure(ϕ) – intuitively, the observables of F are those formulas
ψ ∈ F that fulfil requests of the form ⟨R⟩ψ from other atoms. Note that, for all
π-atoms F , we have reqA(F ) = obs(F ) ∪ reqB̄(F ) and reqĀ(F ) ⊇ obs(F ).

Compass Structures. Formulas of interval temporal logics can be equivalently
interpreted over the so-called compass structures [14]. These structures can be
seen as two-dimensional spaces in which points are labelled with complete logical
types (atoms). Such an alternative interpretation exploits the existence of a
natural bijection between the intervals I = [x, y] over a temporal domain D and
the points p = (x, y) in the D×D grid such that x ≤ y. It is convenient to introduce
a dummy atom ∅, distinct from all other atoms, and assume that it labels all
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and only the points (x, y) such that x > y, which do not correspond to intervals.
We fix the convention that obs(∅) = ∅ and reqR(∅) = ∅ for all R ∈ {A, Ā,B, B̄}.

Formally, a compass ϕ-structure over a linear order D is a labelled grid G =
(D×D, τ), where the function τ ∶ D×D → atoms(ϕ)⊎ {∅} maps any point (x, y)
to either a ϕ-atom (if x ≤ y) or the dummy atom ∅ (if x > y).

We observe that Allen’s relations over intervals have analogue relations over
points. Figure 1 gives a geometric interpretation of relations A, Ā,B, B̄ (by a

B

B̄
A

Ā

Fig. 1. Geometric interpre-
tation of Allen’s relations

slight abuse of notation, we use the same letters
for the corresponding relations over the points of
a compass structure). Thanks to such an interpre-
tation, any interval structure I can be converted
to a compass one G = (D × D, τ) by simply letting
τ(x, y) = type([x, y]) for all x ≤ y ∈ D. The con-
verse, however, is not true in general, as the atoms
associated with points in a compass structure may
be inconsistent with respect to the underlying geo-
metrical interpretation of Allen’s relations. To ease a
correspondence between interval and compass struc-
tures, we enforce suitable consistency conditions on
compass structures. For this, we introduce two rela-
tions over atoms F,G:

F ↑ G iff F

↰

G iff

⎧

⎪
⎪
⎪

⎨

⎪
⎪
⎪

⎩

reqB̄(F ) ⊇ obs(G) ∪ reqB̄(G)
reqB(G) ⊇ obs(F ) ∪ reqB(F )
reqĀ(F ) = reqĀ(G)

{

reqA(F ) = obs(G) ∪ reqB(G) ∪ reqB̄(G)
reqĀ(G) ⊇ obs(F ).

Note that the relation ↑ is transitive, while

↰

only satisfies

↰

○ ↑ ⊆

↰

. Observe
also that, for all interval structures I and all intervals I, J in it, if I B̄ J (resp.,
I A J), then type

I
(I) ↑ type

I
(J) (resp., type

I
(I)

↰

type
I
(J)). Hereafter, we

tacitly assume that every compass structure G = (D × D, τ) satisfies analogous
consistency properties with respect to its atoms, namely, for all points p = (x, y)
and q = (x′, y′) in D × D, with x ≤ y and x′ ≤ y′, if p B̄ q (resp., p A q), then
τ(p) ↑ τ(q) (resp., τ(p)

↰

τ(q)). In addition, we say that a request ψ ∈ reqR(τ(p))
of a point p in a compass structure G = (D ×D, τ) is fulfilled if there is another
point q such that p R q and ψ ∈ obs(τ(q)) – in this case, we say that q is a
witness of fulfilment of ψ from p. The compass structure G is said to be globally
fulfilling if all requests of all its points are fulfilled.

We can now recall the standard correspondence between interval and compass
structures (the proof is based on a simple induction on sub-formulas):

Proposition 1 ([11]). Let ϕ be an AĀBB̄ formula. For every globally fulfilling
compass structure G = (D×D, τ), there is an interval structure I = (ID, σ,A, Ā,B,
B̄) such that, for all x ≤ y ∈ D and all ψ ∈ closure+(ϕ), I, [x, y] ⊧ ψ iff ψ ∈ τ(x, y).

In view of Proposition 1, the satisfiability problem for a given AĀBB̄ formula
ϕ reduces to the problem of deciding the existence of a globally fulfilling compass
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ϕ̃-structure G = (D×D, τ), with ϕ̃ = ⟨G⟩ϕ (⟨G⟩ϕ is a shorthand for ¬[G]¬ϕ), that
features the observable ϕ̃ in every point, that is, ϕ̃ ∈ obs(τ(x, y)) for all x ≤ y ∈ D.

3 Satisfiability over Finite and Dedekind-Complete
Orders

The satisfiability problem for AĀBB̄ was originally addressed in [11]. We first
proved that AĀBB̄ is decidable if interpreted over finite linear orders, but not
primitive recursive. The decidability result rests on a contraction method that,
given a formula ϕ and a finite compass structure satisfying ϕ, shows that, under
suitable conditions, the compass structure can be reduced in size while pre-
serving consistency and fulfilment properties. This leads to a non-deterministic
procedure that decides whether ϕ is satisfiable by exhaustively searching all
contraction-free compass structures. The proof of termination relies on Dick-
son’s lemma, while non-primitive recursiveness is proved via a reduction from
the reachability problem for lossy counter machines [13]. Then, we showed that
the problem becomes undecidable if we interpret AĀBB̄ over a temporal do-
main isomorphic to N (in fact, this is already the case with the proper fragment
AĀB). The proof is based on a reduction from an undecidable variant of the
reachability problem for lossy counter machines, called structural termination
[9], which consists of deciding whether a given lossy counter machine admits a
halting computation starting from a given location and some arbitrary initial
assignment for the counters. Due to an oversight, in [11] we claimed that such
an undecidability result can be transferred to any class of linear orders in which
N can be embedded. As a matter of fact, Dedekind completeness is a necessary
condition. The following theorem properly states undecidability results for AĀB.

Theorem 1. The satisfiability problem for AĀB interpreted over N, R, and the
class of all Dedekind-complete linear orders is undecidable.

In view of the above theorem and the decidability results in [11], the satisfia-
bility problem for AĀBB̄ over Q, as well as over the class of all interval structures,
remains open. In the next section, we will show that, quite surprisingly, both
problems are decidable with non-primitive recursive complexity.

4 Satisfiability over the Rationals and All Linear Orders

We begin by describing a fairly simple semi-decision procedure for the unsat-
isfiability of AĀBB̄ formulas over interval structures with a dense temporal do-
main. The crucial observation is that, whenever a formula ϕ is unsatisfiable
over Q, this can be witnessed by a finite set of intervals with inconsistent re-
quests. Based on this observation, one can enumerate all finite compass struc-
tures that witness ϕ and are distinct up to isomorphism, following the partial
order induced by the embedding relation (this relation is defined as an isomor-
phism between the smaller structure and the restriction of the larger structure
to a suitable subset of its temporal domain). The only way the enumeration
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Fig. 2. Decomposition of a compass structure

procedure can terminate is when
no refinement is applicable: in this
case, one proves that the input
formula ϕ is not satisfiable. Con-
versely, if the enumeration pro-
cedure does not terminate, then
the formula ϕ is satisfied by some
compass structure that is obtained from the limit of an infinite series of refine-
ments (suitable fairness conditions for the generated refinements guarantee that
the temporal domain of the limit compass structure is isomorphic to Q). We
refer the reader to [12] for the details of the above enumeration procedure of
unsatisfiable formulas over Q.

The rest of the section is devoted to finding a semi-decision procedure that
receives an input formula ϕ and terminates (successfully) iff ϕ is satisfiable
over an interval structure with a dense temporal domain. Differently from the
previous procedure, this one is based on enumerating suitable finite abstractions
of compass structures, which is far from being an easy task.

A first step consists of simplifying the consistency and fulfilment conditions.
More precisely, we show how to turn them into more “local” constraints, so as
to ease, later, the abstraction task. To this end, recall that the rational line is
isomorphic to any countable dense ordering with neither a minimal element nor
a maximal one. This means that, for the purpose of studying satisfiability over
Q, it does not matter if we consider interval structures over Q or over any subset
of it that is dense and contains no extremal elements. Similarly, the complexity
of the satisfiability problem does not change if we add minimal and maximal
elements to the underlying temporal domain – for the sake of brevity, we call the
resulting order a dense order with endpoints. Now, to turn the consistency and
fulfilment conditions into local constraints, we decompose any dense order with
endpoints D into some infinite, finitely-branching tree T whose nodes represent
pairs of elements of D of the form s = (y1, y2), with y1 < y2, and whose edges
connect nodes (y1, y2) ∈ T to tuples of nodes s1 = (z1, z2), ..., sn = (zn, zn+1),
with n ≥ 2 and y1 = z1 < z2 < ... < zn < zn+1 = y2 (see Figure 2). Note that the
domain D is not necessarily entirely covered by the time points that appear in
the nodes of a decomposition T . Moreover, since all dense orders with endpoints
are isomorphic, we will not be concerned with the coordinates of the nodes of T
and we will often overlook them in the constructions that follow.

Using decompositions of temporal domains we can extract “horizontal slices”
of a compass structure. More precisely, given a compass structure G = (D×D, τ)
and a node s = (y1, y2) of a decomposition T of D, we define the slice of G in
s as the induced sub-structure Gs = (D × {y1, y2}, τ). Intuitively, the slice Gs
is obtained from G by selecting the rows with coordinates y1 and y2 and by
restricting the labelling function τ to them (to reduce the notational overload,
we denote such a restriction of the labelling function by τ).

Below, we introduce suitable abstractions, called profiles, for the labels that
can appear in a slice of a compass structure. Intuitively, for each slice Gs =
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(D × {y1, y2}, τ) and each pair of atoms (F,G), where possibly F = ∅ or both
F = ∅ and G = ∅ (dummy atoms), we keep track of the number of coordinates
x ∈ D such that τ(x, y1) = F and τ(x, y2) = G. In particular, in these abstractions,
we forget the occurrence order of the pairs of atoms along the x-axis. To this
end, we make extensive use of multisets. Given a multiset M and an element e in
M , we denote by M(e) the multiplicity, that is, the number of occurrences, of e
in M , and we write M(e) = ∞ when M contains infinitely many occurrences of
e. We freely use set-theoretic notations with multisets. For example, we denote
membership by e ∈M , containment by M ⊆ N , etc. Moreover, given a multiset M
of n-tuples and a set I ⊆ {1, . . . , n} of component indices, we denote by M ∣I the
projection of M onto I, that is, the multiset that contains exactly ∑e∣I=f M(e)
occurrences of each I-tuple f (note that the sum ranges over all n-tuples e
that coincide with f on the components indexed in I). Note that, differently
from set projections, projections of multisets are injective, as they send distinct
occurrences of tuples to distinct occurrences of tuples. In particular, ∣I defines
a bijection from multiset M to multiset M ∣I . Finally, we denote by set(M) the
support of a multiset M , that is, the set of all elements e such that M(e) ≥ 1.

We associate with each slice Gs = (D × {y1, y2}, τ) of a globally fulfilling com-
pass structure G, the multiset M defined by M(F,G) = ∣{x ∈ D ∶ τ(x, y1) =

F, τ(x, y2) = G}∣ for all (F,G) ∈ (atoms(ϕ) ⊎ {∅})2. We call this multiset the
profile of the slice Gs and we denote it by profile(Gs). Note that the projection
profile(Gs)∣1 (resp., profile(Gs)∣2) onto the first (resp., second) component is a
multiset that represents the number of occurrences of each atom along the lower
(resp., upper) row of the slice Gs. Definition 1 below captures a more general
notion of profile that does not refer to a particular compass structure. We will
then introduce trees labelled with profiles as abstractions of compass structures.

Definition 1. A profile is a multiset M of pairs of (possibly dummy) atoms
(F,G) ∈ (atoms(ϕ) ⊎ {∅})2 such that: (i) for all (F,G) ∈ M , if F ≠ ∅, then
G ≠ ∅ and F ↑ G; (ii) for all (F,G), (F ′,G′) ∈ M , reqA(F ) = reqA(F

′
) and

reqA(G) = reqA(G
′
); (iii) M contains infinitely many occurrences of pairs (∅,G)

with G ≠ ∅; (iv) M contains exactly one occurrence of a pair (F,G) with F
π-atom and exactly one occurrence of a pair (∅,H) with H π-atom (for short,
we denote the two pairs (F,G) and (∅,H) by Mπ and Mπ, respectively); (v)
if Mπ = (F,G), then reqĀ(F ) = ⋃(F ′,G′) ∈M obs(F ′); similarly, if Mπ

= (∅,H),
then reqĀ(H) = ⋃(F ′,G′) ∈M obs(G′).

Definition 2. A profile tree is an infinite finitely-branching tree T = (T,N,E),
where T is a decomposition of some dense order with endpoints, N is a function
mapping nodes of T to profiles, and E is a function mapping nodes of T to
multisets of tuples of atoms, such that:

– (profile-match) every node s ∈ T has at least two children, say, s1, . . . , sn,
with n ≥ 2, and E(s) is a multiset of (n + 1)-tuples such that E(s)∣1,n+1 =
N(s) and E(s)∣i,i+1 = N(si) for all 1 ≤ i ≤ n;

– (profile-finite-req) for every node s ∈ T and pair (F1, Fn+1) ∈ N(s), with
F1 ≠ ∅, if N(s)(F1, Fn+1) < ∞, then E(s) contains exactly N(s)(F1, Fn+1)
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occurrences of tuples (F1, . . . , Fn+1) such that reqB̄(F1) = ⋃2≤i≤n+1 obs(Fi)∪

reqB̄(Fn+1) and reqB(Fn+1) = ⋃1≤i≤n obs(Fi) ∪ reqB(F1);
– (profile-infinite-req) for every node s ∈ T and pair (F1, Fn+1) ∈ N(s), with

F1 ≠ ∅, if N(s)(F1, Fn+1) = ∞, then E(s) contains at least one occurrence
of a tuple (F1, . . . , Fn+1) such that reqB̄(F1) = ⋃2≤i≤n+1 obs(Fi)∪ reqB̄(Fn+1)

and reqB(Fn+1) = ⋃1≤i≤n obs(Fi) ∪ reqB(F1);
– (profile-dummy) for every node s ∈ T and pair (∅,G) ∈ N(s), with G ≠ ∅,

E(s) contains at least one occurrence of a π-tuple, i.e., a tuple with a π-atom,
of the form (F1, . . . , Fn+1), with F1 = ∅ and Fn+1 = G.

In addition, if the profile at the root s0 of T contains only the pair Nπ
(s0) =

(F,G), with F π-atom and reqB̄(G) = ∅, and some pairs of the form (∅,H),
with H ≠ ∅ and reqB̄(H) = ∅, then T is said to be a full profile tree.

The first item of Definition 2 enforces the matching conditions between the
pairs in the profile of a node and the pairs in the profiles of its children. The
second item requires that all requests that appear in a pair (F,G) of the profile
of a node s are either “locally fulfilled” by the observables of corresponding pairs
in the profiles of the children or transferred to other nodes of the profile tree at
the same level as s. This condition, however, concerns only those pairs (F,G)
that have finite multiplicity in the profile; for the remaining pairs, we enforce a
similar, but weaker condition (third item of the definition). Finally, the fourth
item requires that for each atom G, if the profile N(s) contains the pair (∅,G),
then at least one occurrence of this pair is “refined” in the multiset E(s) by an
occurrence of a tuple of the form (∅, . . . ,∅, F, . . . ,G) that contains a π-atom F
(such a tuple is called for short π-tuple) and that ends with the atom G (possibly
F = G). We will see later that this condition is necessary for the fulfilment of
the requests along the direction Ā.

Below, we show that full profile trees are correct (though not yet finite) ab-
stractions of globally fulfilling compass structures. We present this result with
two statements showing, respectively, completeness and a weak form of soundness
of profile trees. Note that the two-way correspondence is sufficient for witnessing
satisfiability of AĀBB̄ formulas by means of profile trees.

Proposition 2. For every globally fulfilling compass structure G = (D × D, τ)
over a dense order with endpoints D, there is a full profile tree T = (T,N,E)
such that T is a decomposition of D and, for all nodes s ∈ T , N(s) = profile(Gs).
Conversely, for every full profile tree T = (T,N,E), with T decomposition
of some dense order with endpoints D, there is a globally fulfilling compass
structure G = (D′ × D′, τ), with D′ ⊆ D dense order with endpoints, such that
set(profile(Gs)) = set(N(s)) for all s ∈ T .

Below, we show how to further restrict ourselves to a complete subset of full
profile trees and derive finite representations of them. The general idea is to
normalise profile trees so as to obtain structures that are sufficiently “regular”
to be represented by finite trees. To this end, we introduce a finite variant of the
notion of profile tree, called finite profile tree, that is obtained by enforcing the
conditions of Definition 2 to internal nodes only (accordingly, since the multisets
E(s) that are associated with the leaves s in a finite profile tree are not anymore
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relevant, one can assume that the function E is undefined on the leaves). We also
introduce a strengthening of the containment relation on multisets, denoted by
⊑ and defined as follows: M ⊑ N iff set(M) = set(N) and M(F̄) ≤ N(F̄ ) (resp.,
M(F̄) = N(F̄ )) for all tuples F̄ (resp., π-tuples F̄ ). The following definition
captures precisely the set of profile trees we are interested in.

Definition 3. Let T be a finite or infinite profile tree. We say that T is pseudo-
regular iff for all paths π, there are s, s′ ∈ π, with s proper ancestor of s′, such
that N(s) ⊑N(s′) and N(s)(∅,G) = N(s′)(∅,G) for all atoms G.

In the following, we mainly work with profiles that appear at the roots of
infinite profile trees (feasible profiles for short). We observe that the restriction
of the partial order ⊑ to feasible profiles is a well partial order: indeed, the
definition of profile tree implies that every π-tuple has multiplicity either 0 or
1 in any feasible profile, which in turn means that ⊑ is the conjunction of the
well partial order ⊆ and an equivalence of finite index. Hence, by a combination
of Dickson’s and König’s lemmas, every infinite pseudo-regular tree has a finite
prefix that is also pseudo-regular (a prefix of a tree is any restriction of it to an
upward-closed set of nodes). A converse result also holds:

Proposition 3. For every finite pseudo-regular profile tree T , there is an infinite
profile tree T ′ that has the same profile as T at the root.

The crux of our semi-decision procedure for testing the satisfiability of AĀBB̄
formulas is to enumerate all atoms that appear in feasible profiles. Proposition
3 allows us to use finite pseudo-regular profile trees as witnesses of existence of
some of these atoms. Unfortunately, this is not yet the end of the story, because
not all profile trees are pseudo-regular and hence, a priori, there might exist
atoms that appear only in infinite profile trees that are not pseudo-regular. The
last piece of the puzzle amounts at showing that this is not the case and that we
can indeed safely restrict ourselves to atoms appearing in pseudo-regular profile
trees. We will prove this result by normalizing infinite profile trees via a series
of operations that “inflate” the profiles as much as possible.

An important aspect that must be taken into account while inflating the pro-
files in a tree is that there are matching constraints to satisfy. As a matter of
fact, these constraints induce dependencies between the multiplicities of pairs
(∅, F ) in the profile associated with a node s and the multiplicities of corre-
sponding pairs (F,G) in the profile associated with the right sibling of s. As
a consequence, there will be differences in the treatment of pairs of the form
(∅, F ) and pairs of the form (F,G), with F ≠ ∅. We take a brief interlude to
give an example of the type of dependencies that can be enforced.

Example 1. Consider a formula ϕ that contains, among other conjuncts, the
subformula [G](a → [B]¬a ∧ [B̄]¬a). Figure 3 describes a slice of a compass
structure that may satisfy ϕ, with some distinguished points annotated with
observables and requests. The formula requires that all a-labelled points lie on
distinct vertical axes; on the other hand, it allows arbitrarily many a-labelled
points to be horizontally aligned. This is a representative example because, in
general, forbidding multiple occurrences of an observable along the same hori-
zontal line can be only done using the modal operator [E], which is not available
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⟨B̄⟩a ⟨B̄⟩a ⟨B̄⟩a
⟨Ā⟩a

⟨Ā⟩a
a

[B̄]¬a

a
a

[B̄]¬a [B̄]¬a ⟨B̄⟩a⟨B̄⟩a

Fig. 3. Dependencies between multiplicities

in the logic. As concerns the mul-
tiplicities of the example profile, we
observe that by inserting multiple a-
labelled points along a single hori-
zontal line and by accordingly mod-
ifying the upper part of the compass
structure, one can get as many pairs
of atoms (F,G), where ⟨B̄⟩a ∈ F and
[B̄]¬a ∈ G. On the other hand,to increase the number of pairs (∅, F ), where
⟨B̄⟩a ∈ F , one has to introduce new horizontal lines ending with π-atoms H such
that ⟨Ā⟩a ∈ H : this is not always possible as other conjuncts of ϕ may enforce
bounds to the number of π-atoms H .

As shown by the above example, the simplest way one can inflate a profile,
while preserving its feasibility, is by increasing the multiplicites associated with
the pairs (F,G), where F ≠ ∅. We formalise this in the next lemma.

Lemma 1. If N is a feasible profile and N ′ is a profile such that N ⊑ N ′ and
N(∅,G) =N ′(∅,G) for all atoms G, then N ′ is feasible too. Moreover, a profile
tree with root profile N ′ can be obtained from a profile tree with root profile N
without modifying the underlying decomposition tree.

We describe a second inflation method, which depends on the previous one
and can be used to further simplify the reasoning on the matching conditions of
a profile tree T = (T,N,E). In particular, it shows that w.l.o.g. one can assume
that the finiteness of the multiplicity of any tuple (F1, . . . , Fn+1) in a multiset
E(s) depends only on the multiplicity of the first component F1 in E(s)∣1. This
property is formalized below by the definition of “pointwise fair” profile tree,
followed by a corresponding lemma that shows how to enforce the property.

Definition 4. A multiset E of (n + 1)-tuples is fair if for all (n + 1)-tuples
(F1, . . . , Fn+1) ∈ E, with F1 ≠ ∅, E∣1(F1) = ∞ implies E(F1, . . . , Fn+1) = ∞. A
profile tree T = (T,N,E) is pointwise fair if all multisets E(s) are fair.

Lemma 2. For every feasible profile N , there is an infinite pointwise fair profile
tree that has root profile N ′ ⊒ N . Moreover, one can assume that, for all pairs
of atoms (F,G), if N ∣1(F ) < ∞, then N(F,G) = N ′(F,G).

A third inflation method makes use of the fact that the partial order ⊑ re-
stricted to the set of feasible profiles is ω-complete.

Lemma 3. Every sequence of feasible profiles N0 ⊑ N1 ⊑ ... has a supremum
supiNi, defined by (supiNi)(F,G) = supi∈N (Ni(F,G)) for all atoms F,G, that
is a feasible profile.

We have described three ways of increasing the multiplicities of profiles at the
roots of profile trees. In general, these techniques are not applicable to nodes
that are strictly below the root. This is why we introduce a new partial order ⊴,
incomparable with ⊑, that is defined only over feasible profiles N,N ′ as follows:

N ⊴ N ′ iff

⎧

⎪
⎪
⎪

⎨

⎪
⎪
⎪

⎩

N ⊆ N ′

set(N ∣2) = set(N
′
∣2)

N(F,G) = N ′(F,G) for all atoms F,G ≠ ∅.
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We observe that from any infinite ⊴-chain of feasible profiles, one can extract an
infinite sub-sequence that is also a ⊑-chain. Thus, an immediate consequence of
Lemma 3 is that every ⊴-chain has an upper bound. In its turn, the existence
of upper bounds on ⊴-chains implies the existence of feasible profiles that are
maximal with respect to ⊴ (this can be seen as a consequence of Zorn’s Lemma):

Corollary 1. For all feasible profiles N , there is a ⊴-maximal profile N ′ ⊵ N .

Based on existence of ⊴-maximal profiles, we say that a profile tree is pointwise
⊴-maximal if all its profiles are ⊴-maximal. Below, we show that all atoms of
feasible profiles appear at the roots of some pseudo-regular profile trees.

Proposition 4. For every infinite pointwise fair profile tree with root profile
N , there is an infinite pointwise fair and pointwise ⊴-maximal profile tree with
root profile N ′ ⊵N .

Proposition 5. Every infinite pointwise fair and pointwise ⊴-maximal profile
tree is pseudo-regular.

Wrapping up, we can devise a semi-decision procedure that tests the satisfia-
bility of a formula ϕ over Q. The procedure works as follows. It first transforms ϕ
into an equi-satisfiable formula ϕ

] [
interpreted over a dense order with endpoints

D. Then, the procedure enumerates all finite full pseudo-regular trees, until a tree
is found that contains the formula ⟨G⟩ϕ

] [
as an observable of one of its atoms.

The above semi-decision procedure is correct, namely, it terminates successfully
iff the input formula ϕ is satisfiable over Q. Indeed, if ϕ is satisfiable over Q,
then ϕ

] [
is satisfiable over a dense order with endpoints D, and hence there is a

globally fulfilling compass structure G that contains ⟨G⟩ϕ
] [

as an observable of
all its atoms. By Propositions 4 and 5, there is also an infinite, pseudo-regular
full profile tree T that witnesses ⟨G⟩ϕ

] [
at the root profile. By the remarks that

follow Definition 3, there is also a prefix of T that is a finite pseudo-regular full
profile tree, and eventually this tree must be discovered by the procedure. Con-
versely, if the procedure terminates with a finite pseudo-regular full profile tree
witnessing ⟨G⟩ϕ

] [
, then by Proposition 3 there is an infinite full profile tree T ,

and hence a compass structure G, that witness the satisfiability of ⟨G⟩ϕ
] [

over
D. One can then conclude that ϕ is satisfiable over Q.

A full decision procedure that solves the satisfiability problem for AĀBB̄ over
Q can simply run in parallel the two semi-decision procedures that we described
for unsatisfiability and satisfiability of AĀBB̄ formulas.

As for the satisfiability problem over the class of all interval structures, one
can simply observe the following. The logic AĀBB̄, as any other HS fragment,
can be viewed as a fragment of first-order logic that uses binary relations to
express properties of pairs of elements of the underlying temporal domain. The
relation < of the temporal domain can be easily constrained by a first-order
formula so as to define a linear order, and Allen’s relations can be expressed
in first-order logic in term of <. From Löwenheim-Skolem theorem, it follows
that every interval structure can be assumed to contain only countably many
intervals. Moreover, since every countable linear order can be embedded inside
Q, satisfiability of formulas of a given HS fragment over the class of all linear
orders can be reduced to their satisfiability over Q, provided that the fragment
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is powerful enough to express such an embedding. This is the case with AĀBB̄:
it suffices to introduce a distinguished proposition letter #, to constrain all #-
labelled intervals to be singletons ([G](# → π)), and to relativize all modalities
to intervals with endpoints labelled by # (intervals that satisfy ⟨B⟩# ∧ ⟨A⟩#).
We conclude by establishing the precise complexity of the satisfiability problem.

Theorem 2. The satisfiability problem for AĀBB̄ interpreted over Q, as well as
over the class of all linear orders, is decidable, but not primitive recursive.

5 Conclusions

In this paper we close the open questions concerning the satisfiability problem
for the interval temporal logic AĀBB̄. First, we generalized the undecidability
result from [11] to R and to the class of all Dedekind-complete linear orders, and
then we proved that it is decidable in two interesting cases: Q and the class of
all interval structures. To decide satisfiability of AĀBB̄ formulas over Q we used
a combination of techniques from [4] (tree-shaped decomposition of models) and
[11] (encoding of models by systems with counters), plus new key ingredients
(separation into two semi-decision procedures, Konig’s lemma). As concerns the
second result, the decidability of AĀBB̄ over the class of all interval structures
follows from the decidability over Q and from Löwenheim-Skolem theorem, which
allows us to assume, without loss of generality, that the interval structures are
countable and hence embeddable inside Q. The fact that AĀBB̄ is powerful
enough to express the embedding of a countable order inside Q completes the
reduction. It is worth pointing out that the same technique cannot be applied to
all HS fragments; for instance, the satisfiability problem for the temporal logic
of sub-/super-intervals DD̄ is known to be decidable over Q [2, 10], but it is open
for the class of all interval structures.
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Abstract. We investigate reachability in pushdown automata over infinite alpha-
bets: machines with finite control, a finite collection of registers and pushdown
stack. First we show that, despite the stack’s unbounded storage capacity, in terms
of reachability/emptiness these machines can be faithfully represented by using
only 3r elements of the infinite alphabet, where r is the number of registers.
Moreover, this bound is tight. Next we settle the complexity of the associated
reachability/emptiness problems. In contrast to register automata, where differ-
ences in register storage policies gave rise to differing complexity bounds, the
emptiness problem for pushdown register automata is EXPTIME-complete in all
cases. We also provide a solution to the global reachability problem, based on
representing pushdown configurations with a special register automaton. Finally,
we examine extensions of pushdown storage to higher orders and show that reach-
ability is undecidable already at order 2, unlike in the finite alphabet case.

1 Introduction

Recent years have seen lively interest in automata over infinite alphabets, driven by
applications in quite diverse areas where abstraction by a finite domain was deemed
unsatisfactory. A case in point are markup languages [18,4], most notably XML, which
permit the use of potentially unbounded data values in documents and allow queries
to perform comparison tests on such data. A similar scenario occurs in reference-based
programming languages, such as object-oriented [6,2,12] or ML-like languages [16,17],
where memory is managed with the help of abstract addresses (reference names) that
can be created afresh, compared for equality but little else. Other examples include
array-accessing programs [1] as well as programs with restricted integer parameters [7].

Such applications call for a robust theory of automata over infinite alphabets, which
will match our understanding of the finite-alphabet setting. Thus the limits will be
exposed and a complexity-theoretic guide established for applications. A lot of the
groundwork, surveyed in [20,3], was already dedicated to uncovering a notion of “reg-
ularity” in the infinite-alphabet case. One way to extend the concept of finite mem-
ory to such a setting consists of introducing a fixed number of registers for storing
elements of the alphabet [13]. Another strand of work aimed to identify the infinite-
alphabet “context-free” languages. Cheng and Kaminski [8] introduced context-free
grammars over infinite alphabets and defined a corresponding notion of pushdown au-
tomata. Segoufin presents a similar definition in [20], albeit couched in a way suitable
to process data words.
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Our paper is devoted to studying exactly such computational scenarios through a
study of pushdown register systems (PDRS), devices in which registers are integrated
with a pushdown store. Although of foundational nature, the work is largely motivated
by the pertinence of such machines to software model checking [6,2], and in particu-
lar their application to game-semantics-based verification [17]. We present several new
results on the complexity of reachability testing. Altogether they fill a gap in the the-
ory of “context-free” languages over infinite alphabets. More specifically, we make the
following contributions.

Alphabet Distinguishability. A finite-memory automaton [13] with r registers can store
r elements of the infinite alphabet at any instant. In fact, such automata are only capable
of remembering r elements of the infinite alphabet over the course of a run — for any
accepting run one can construct another one involving only r elements of the alphabet.
Even though pushdown register systems have no bound on the number of elements of
the alphabet that can be stored at any instant, we show that, over the course of a run,
they can nevertheless remember at most 3r of them. More precisely, we show that for
any run of a PDRS with r registers there exists an equivalent run involving only 3r
elements. Moreover, no smaller number is enough: we exhibit a family of PDRS whose
runs require remembering at least 3r elements.

Reachability Testing. The above-mentioned result yields an obvious methodology for
reductions to the finite-alphabet setting, which immediately implies decidability of
associated reachability problems, and language emptiness. While the decidability of
emptiness has already been proved in [8] using context-free grammars, we provide ex-
act complexity bounds for the problem, namely, EXPTIME-completeness.

In the pushdown-free setting, language nonemptiness was known to be NL-, NP- and
PSPACE-complete, depending on the register discipline. In contrast, in the pushdown
case, such distinctions do not affect the complexity: even if identical elements can be
kept in different registers, the problem can still be solved in EXPTIME, while it is
EXPTIME-hard already in the case where only distinct elements are allowed. In the
last case, the hardness proof is technically involved since sequences of distinct names
do not provide a supportive framework for representing memory content (as needed in
reduction arguments using computation histories).

We show how to conduct global reachability analysis, which asks for a representation
of all configurations from which a specified set of configurations can be reached. In
the finite-alphabet case, it is well known that, if the target set is regular, the set of
configurations that reach it can be captured by a finite automaton [5]. We prove an
analogous result in the infinite-alphabet setting using a variant of register automata.

Higher-Order. Higher-order pushdown automata [15] take the idea of pushdown stor-
age further by allowing for nesting. Standard pushdown store is considered to be order
1, while the elements stored in an order-k (k > 1) pushdown store are (k−1)-pushdown
stores. In the finite alphabet setting this leads to an infinite hierarchy of decidable mod-
els of computation with a (k−1)-EXPTIME-complete problem at order k. We examine
how the model behaves in the infinite alphabet setting, after the addition of a fixed
number of registers for storing elements of the infinite alphabet.
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We first observe that one can no longer establish a uniform bound on the number of
symbols of the infinite alphabet that suffice to represent arbitrary runs. The existence of
such a bound would imply decidability of the associated reachability problems, but the
lack of a bound is not sufficient for establishing undecidability: indeed, the decidable
class of data automata from [4] contains an automaton that can recognize all words con-
sisting of distinct letters. Still, we show that the reachability problem for higher-order
register pushdown automata is undecidable, already at order 2 and with one register.

2 Basic Definitions

Let us assume a countably infinite alphabetD of data values or names. We introduce a
simple formalism for computations based on a finite number of D-valued registers and
a pushdown store. Writing [r] for {1, · · · , r}, by an r-register assignment we mean an
injective map from [r] to D. We write Regr for the set of all such assignments.

Definition 1. A pushdown r-register system (r-PDRS) is a tuple S = 〈Q, qI , τI , δ〉,
where:

– Q is a finite set of states, with qI ∈ Q being initial,
– τI ∈ Regr is the initial r-register assignment,
– and δ ⊆ Q×Opr ×Q is the transition relation,

with Opr = { i•, push(i), pop(i) | 1 ≤ i ≤ r } ∪ { pop• }.1

The operations executed in each transition have the following meaning: – the i•

operation refreshes the content of the ith register; – push(i) pushes the symbol currently
in the ith register on the stack; – pop(i) pops the stack if the top symbol is the same as
that stored in the ith register; – pop• pops the stack if the top of the stack is currently
not present in any of the registers. This semantics is given formally below.

Definition 2. A configuration of an r-PDRS S is a triple (q, τ, s) ∈ Q×Regr ×D∗.
We say that (q2, τ2, s2) is a successor of (q1, τ1, s1), written (q1, τ1, s1) , (q2, τ2, s2),
if (q1, op, q2) ∈ δ for some op ∈ Opr and one of the following conditions holds.

– op = i•, ∀j. τ2(i) �= τ1(j), ∀j �= i. τ2(j) = τ1(j) and s2 = s1.
– op = push(i), τ2 = τ1 and s2 = τ1(i)s1.
– op = pop(i), τ2 = τ1 and τ1(i)s2 = s1.
– op = pop•, τ2 = τ1 and, for some d ∈ D, ∀j. τ1(j) �= d and ds2 = s1.

A transition sequence of S is a sequence ρ = κ0, · · · , κk of configurations with κj ,
κj+1, for all 0 ≤ j < k. We say that ρ ends in a state q if qk = q, where qk is the state
in κk. We call ρ a run if κ0 = (qI , τI , ε).

Remark 3. r-PDRS is meant to be a minimalistic model allowing us to study reachabil-
ity in the infinite-alphabet setting with registers and pushdown storage. Existing related
models [8], [20] feature transitions of a more compound shape, which can be readily
translated into sequences of PDRS transitions.

1 For technical reasons, it is convenient to have ε-transitions. However, to keep the definition
minimal, we observe that they can be simulated with push(1) followed by pop(1).
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For instance, a transition of an infinite-alphabet pushdown automaton [8] typically in-
volves a refreshment (i•) followed by pop (pop(j)) and a sequence of pushes (push(j)).
This decomposition leads to a linear blow-up in size for translations of reachability
questions into the r-PDRS setting. For register pushdown automata [20], an additional
complication is their use of non-injective register assignments. Observe, though, that
transitions in the non-injective framework can be easily mimicked using injective register
assignments provided we keep track of the partitions determined by duplicated values in
the original automaton. The book-keeping can be implemented inside the control state,
which leads to an exponential blow-up in the size of the system, because the number of
all possible partitions is exponential. Note that the number of registers does not change
during such a simulation. Another difference is that register pushdown automata [20]
are tailored towards data languages, i.e. a stack symbol is an element of D paired up
with a tag drawn from a finite set. From this perspective, r-PDRSs use a singleton set
of tags. Still, richer tag sets could be encoded via sequences of elements of D (for ex-
ample, to simulate the ith out of k tags, we could push sequences of the form di1d2 for
d1, d2 ∈ D with d1 �= d2). This reduction is achievable in polynomial time.

Following [13,8,18], we mostly use injective register assignments. This is done to
allow us to explore whether the restriction still leads to asymptotically more efficient
reachability testing, as in the pushdown-free case. On a foundational note, injectivity
gives a more essential treatment of freshness with respect to a set of registers: non-
injective assignments can easily be used to encode PSPACE computations that have
little to do with the interaction between finite control (and pushdown) and freshness.

Name permutations. There is a natural action of the group of permutations of D on
stacks, assignments, runs, etc. For instance, given permutation π : D → D and an
assignment τ , the result of applying π to τ is the register assignment π · τ given by
{(i, π(d)) | (i, d) ∈ τ}. Similarly, π · s = π(dn) · · ·π(d1) for any stack s = dn · · · d1
while, on the other hand, π · q = q for all states q. Hence, π · (q, τ, s) = (q, π · τ, π · s)
and, for ρ = κ0 , · · · , κn a transition sequence, π ·ρ is the sequence π ·κ0, · · · , π ·κn.

Note that, as long as our constructions involve finitely many names, they will always
have a finite support: we say that a set S ⊆ D supports some (nominal) element x if, for
all permutations π, if π(n) = n for all n ∈ S then π · x = x. Accordingly, the support
ν(x) of x is the smallest set S supporting x. For example, ν(τ) = {τ(i) | i ∈ [r]}, for
all assignments τ . The support of a run ρ = κ0 , · · · , κn is ν(ρ) =

⋃n
j=0 ν(κj), i.e. it

consists of all elements of D that occur in it. The finite-support setting can be formally
described by means of nominal sets [11] and closure results such as the following hold.

Fact 4 (Closure Under Permutations). Fix an r-PDRS and let ρ be a transition se-
quence and π : D → D a permutation. Then π · ρ is also a transition sequence.

3 Distinguishability

Devices with r registers but without pushdown storage, such as finite-memory au-
tomata [13], can take advantage of the registers to distinguish r elements of D from
the rest. Consequently, any run can be replaced with a run that ends in the same state,
yet is supported by merely r elements of the infinite alphabet [13, Proposition 4].
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With extra pushdown storage, an r-PDRS is capable of storing unboundedly many
elements ofD. Nevertheless, the restricted nature of the stack makes it possible to place
a finite bound on the size of the support needed for a run to a given state, which is again
a function of the number of registers.

Lemma 5 (Limited Distinguishability). Fix an r-PDRS. For every transition sequence
ρ = (q0, τ0, ε) ,n (qn, τn, ε), there is a transition sequence ρ′ = (q0, τ

′
0, ε) ,n

(qn, τ
′
n, ε) with τ ′0 = τ0, τ ′n = τn and |ν(ρ′)| ≤ 3r.

Proof. The proof is by induction on n. For n ≤ 1 the result is trivial. Otherwise,
the difficult case arises when the transition sequence is of the form: (q0, τ0, ε) ,k
(qk, τk, ε) ,n−k (qn, τn, ε) with 0 < k < n. It follows from the induction hypothesis
that there are sequences: ρ1 = (q0, τ

′
0, ε) ,k (qk, τ

′
k, ε) and ρ2 = (qk, τ

′
k, ε) ,n−k

(qn, τ
′
n, ε) with τ ′0 = τ0, τ ′n = τn, τ ′k = τk and which each, individually, use no more

than 3r names. Let N ⊇ ν(τ0)∪ ν(τk)∪ ν(τn) be a set of names of size 3r. We aim to
map ν(ρ1) and ν(ρ2) into N by injections i and j respectively. For i we set i(a) = a
for any a ∈ ν(τ0)∪ ν(τk) and otherwise choose some distinct b ∈ N \ (ν(τ0)∪ ν(τk)).
Similarly, for j we set j(a) = a for any a ∈ (ν(τk) ∪ ν(τn)) and otherwise choose
some distinct b ∈ N \ (ν(τk) ∪ ν(τn)). Note that these choices are always possi-
ble because |ν(ρ1)| ≤ |N | ≥ |ν(ρ2)|. Finally, we extend i and j to permutations
πi and πj on D. Since transition sequences are closed under permutations (Fact 4):
(q0, πi · τ0, ε) ,k (qk, πi · τk = πj · τk, ε) ,n−k (qn, πj · τn, ε) is a valid transition
sequence with πi · τ0 = τ0, πj · τn = τn and which is supported by a subset of N . "#

Corollary 6. Fix an r-PDRS S and a state q of S. If there is a run of S ending in q
then there is a run of S ending in q that is supported by at most 3r distinct names.

The 3r bound given above is optimal in the sense that there exists an r-PDRS such
that all runs to a certain state will have to rely on 3r elements of D.

Lemma 7 (Most Discriminating r-PDRS). There exists an r-PDRS 〈Q, qI , τI , ε〉 and
q ∈ Q such that |ν(ρ)| = 3r for any run ρ ending in q.

Proof. Consider the following high-level description of an r-PDRS. The machine pro-
ceeds as follows:
1. Push registers in numerical order, twice, to obtain stack τI(r)· · ·τI(1)τI(r)· · ·τI(1).
2. Refresh registers by performing i• for all 1 ≤ i ≤ r. Let the new assignment be τ1.
3. Perform pop• r-times, thus ensuring that, for each 1 ≤ i, j ≤ r, τI(i) �= τ1(j).
4. Push all registers in numerical order, to obtain stack τ1(r) · · · τ1(1)τI(r) · · · τI(1).
5. Refresh all registers. Let the new assignment be τ2.
6. Perform pop• 2r-times, thus, for each i, , j, τ2(i) �= τ1(j) and τ2(i) �= τI(j).
7. Silently transition to state q.

Now observe that the conditions in steps 3 and 6 and the fact that register assignments
are injective ensure that |ν(τI) ∪ ν(τ1) ∪ ν(τ2)| = 3r. Hence, any run reaching q is
supported by exactly 3r distinct names. "#

Remark 8. The 3r bound given above can be adapted to the automata presentations
of [8,20] yielding bounds 3r+Θ(1). An adaptation of Lemma 7 improves upon Exam-
ple 6 of [8], where a language requiring 2r−1 different symbols was presented.
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Being able to bound the number of registers is useful for obtaining reachability algo-
rithms as it allows us to remove the complications of the infinite alphabet and reduce
problems to the well-studied finite alphabet setting (e.g. Theorem 9).

4 Reachability is EXPTIME-complete

We consider the following decision problem, call it r-PDRS REACH:

Given an r-PDRS S and q ∈ Q, is there a run of S ending in q?

We shall show that the problem (and its counterparts for all the other closely related ma-
chine models) is EXPTIME-complete. Note that reachability is equivalent to language
non-emptiness in the automata case.

Theorem 9. r-PDRS REACH and language emptiness for infinite-alphabet pushdown
automata [8] and register pushdown automata [20] are solvable in exponential time.

Proof. Lemma 5 yields an exponential-time reduction of r-PDRS REACH to the classic
reachability problem for pushdown systems over finite alphabets [5]: one can replace
the r D-valued registers with r [3r]-valued registers, and then incorporate them into the
finite control (for a singly-exponential blow-up of the state space). Since the latter prob-
lem is solvable in polynomial time, it follows that r-PDRS REACH is in EXPTIME.

By Remark 3, the emptiness problem for infinite-alphabet pushdown automata [8]
can be reduced to r-PDRS REACH in polynomial time, immediately yielding the EXP-
TIME upper bound2. For register pushdown automata [20] we have an exponential-time
reduction to r-PDRS REACH, which does not yield the required bound. However, re-
call that the translation into r-PDRS preserves the number of registers, so Lemma 5
still implies a linear upper bound for the number of D-values needed for finding an
accepting run. Consequently, we can reduce language emptiness of register pushdown
automata to a reachability problem for pushdown systems at an exponential cost. Since
the latter is in P, the former is in EXPTIME. "#

The bound given above is tight: we simulate a polynomial-space Turing machine
with a stack (aka polynomial-space auxiliary pushdown automaton [9]), which has an
EXPTIME-complete halting problem3.

Theorem 10. r-PDRS REACH is EXPTIME-hard.

Proof (sketch). For simplicity, let us assume a binary tape alphabet. The main challenge
in the proof is the modelling of n tape cells using p(n) registers, for a polynomial p.
Recall that register assigments are injective, so it is not clear which registers represent
0’s and which represent 1’s. Thus, to encode n bits b1, · · · , bn, we shall use a special en-
coding scheme based on 2n names r1, · · · , r2n ∈ D stored in registers and an auxiliary

2 Through a careful reading of the argument for emptiness in [8] one can infer an exponential
upper bound, but here Lemma 5 gives a direct argument.

3 A reduction from the more familiar alternating polynomial-space Turing machines would also
be possible, but Cook’s model is closer to r-PDRS, which allows us to concentrate on the main
issue of encoding binary memory content without the need to model alternation.
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“mask” of names m1, · · · ,m2n ∈ D stored on the stack. The registers and masks will
be related by {r2j−1, r2j} = {m2j−1,m2j} and bj = 0 will be represented by the case
r2j−1 = m2j−1, r2j = m2j . Note that, due to injectivity, both rj ’s and mj’s cannot be
present in registers at the same time and hence the latter will be pushed on the stack.
However, the stack is also needed for pushing and popping ordinary stack symbols by
the Turing machine, so masks will not always be at the top of stack at the time when they
are needed for decoding4. We overcome this obstacle by employing 3 different masks
for encoding memory: one is used whilst simulating push-transitions (push-mode), one
for pops (pop-mode) and an auxiliary one to ensure continuity between the different
instances of masks. Let us call these masks M1, M2 and M3 respectively.

In push-mode, instead of popping M1 from the stack in order to compare it with the
registers and hence decode the memory, we will be guessing it and pushing the guess
onto the stack, on the understanding that the correctness of each guess (call it M̂1) is to
be verified later in the corresponding pop steps. Moreover, in push-mode we will also
be pushing the mask M2 so that it is readily available for pop-mode. When it is time to
switch to pop-mode, the tape content so far encoded with mask M1 will be re-encoded
with M2 so that the forthcoming pop-move can be simulated with M2. During pop-
transitions, in addition to stack symbols and the mask M2 used for decoding, we will
also pop the accompanying guessed mask M̂1 and verify its correctness by comparing
it with the last unverified M̂1, which is stored in registers apart from the simulated
memory. Because at the bottom of the stack we have the actual mask M1, such equality
comparisons will eventually assert that M̂1 = M1 for all guesses M̂1.

A final complication arises when we want to switch from pop-mode to push-mode.
We said that, when popping, we verify the guesses M̂1. Thus, if a push follows a pop,
the mask M̂1 that resides in the registers needs to be pushed back on the stack so that
it can be verified later once we return to pop-mode. At the same time, we need to store
in our registers some content X , so that X and M̂1 encode the current tape content.
However, the formation of X destroys M̂1 in the registers. To prevent the information

from being lost, we make another guess ˆ̂
M1 and use the third mask M3 to check that

the guess was correct (more precisely, on the stack we store M3 and some M̂3 such that

M̂1 =
ˆ̂
M1 iff M̂3 = M3). Whether M̂3 = M3 holds is verified in a later pop step. "#

The EXPTIME-hardness carries over to the language emptiness problem associated
with infinite-alphabet pushdown automata [8] and register pushdown automata [20].
Since the latter allows for storage of identical values in different registers, their hardness
can also be established more directly by encoding relative to two fixed data values
for 0 and 1. These different policies for register management are known to lead to
different complexity bounds for emptiness testing in the absence of pushdown store:
NP-completeness [19]5 (injective assignment) vs PSPACE-completeness (non-injective
assignment) [10]. Perhaps surprisingly, we have shown the presence of pushdown store
cushions the differences and there is no gap analogous to that between [8] and [20].

4 For example, after simulating a push-transition, the mask used for realising the transition will
be hidden by the pushed symbol and thus unavailable to support the next transition.

5 This result is affected by registers initially containing a special undefined value, without which
the emptiness problem is reducible to that for finite automata and, consequently, NL-complete.
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5 Global Reachability

We now move on to investigate global reachability for r-PDRS. We show that, given
an r-PDRS S and a representation C of a set of configurations of S, one can construct,
in exponential time, a representation of the set of configurations Pre∗P(C) from which
S can reach a configuration in C. To that end we extend the methodology of Bouajjani,
Esparza and Maler [5] to the infinite alphabet setting.

The developments in this section rely on an auxiliary variant of (stack-free) register
automata which feature symbolic transitions representing multiple rearrangements of
registers. In order to describe them, let us introduce r-register manipulations, which
are partial functions R ∈ [r]× [r] ↪→ {0, 1} such that R−1{1} is a partial injection. We
denote the set of all such partial functions by RegManr and use Rb to refer to R−1{b},
for b ∈ {0, 1}. Given R,S ∈ RegManr, we define R ; S as follows.

(R ; S)(i, j) =

{
1 (S1 ◦R1)(i) = j

0 ∃k ∈ [r]. (R1(i) = k ∧ S0(k) = j) ∨ (R0(i) = k ∧ S1(k) = j)

Moreover, given i ∈ [r], we shall write Ri• for the partial function defined by, for all
j ∈ [r], Ri•(j, i) = 0 and, for all j �= i, Ri•(j, j) = 1.

Register manipulations can be seen as abstract predicates on register assignments. In
particular, given two register assignments τ, τ ′, we write τ R τ ′ just if, for all (i, j) ∈
domR, R(i, j) = 0 implies τ(i) �= τ ′(j) and R(i, j) = 1 implies τ(i) = τ ′(j).

Definition 11. A register-manipulating r-register automaton (r-RMRA) is a tuple
〈Q, F, Δ〉 with Q a finite set of states, F ⊆ Q a subset of final states and Δ ⊆ Q ×
OPr ×Q the transition relation, with OPr = [r] ∪ {•} ∪ RegManr.

The operations of RMRAs generalise the stack-free operations of PDRSs: i ∈ [r] spec-
ifies reading a name already present in the ith register, • reads a locally fresh name and

R ∈ RegManr is an internal action such that if q
R−→ q′ then any configuration (q, τ)

may transition to any configuration (q, τ ′) satisfying τ R τ ′. In what follows, we will
start RMRAs from various initial configurations, so we do not include an initial state or
register assignment in their specifications.

Definition 12. Given an r-RMRA A = 〈Q,F,Δ〉, a state q ∈ Q and an r-register
assignment τ , we set: L(A)(q, τ) = {w ∈ D∗ | w is accepted by A from (q, τ)}.
Moreover, given an r-PDRS S = 〈P, qI , τI , δ〉 such that P ⊆ Q, we say that A
represents the S-configuration (p, τ, s) whenever s ∈ L(A)(p, τ). We write C(A) for
the set of S-configurations represented by A.

Given an r-RMRA characterising a set of configurations of an r-PDRS S, our aim is
to construct another RMRA that represents exactly those configurations of S that can
reach configurations in C(A), i.e. we aim to construct a representation of Pre∗P(C(A)).

We shall do this in the “saturation” style of the classical construction of [5] but we
need more notation in order to deal with the infinite alphabet. Given R ∈ RegManr, we
say that R is consistent with the statement i = j (respectively i•) just if R(i, j) �= 0
and [i ∈ domR1 ∨ j ∈ ranR1] implies R1(i) = j (resp. i �∈ domR1) and in
that case we write R || i = j (resp. R || i•). So, the meaning of R || i•, is that i
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in the situation before R may be locally fresh with respect to the situation after R. If
R || i = j (resp. R || i•) then we write R[i = j] (resp. R[i•]) for R ∪ {(i, j) �→ 1}
(resp. R∪{(i, j) �→ 0 | j ∈ [r]}). Note the difference between Ri• and R[i•]. We write

q
R−→∗ q′ just if there is some finite, possibly empty, sequence 〈qi〉i∈[n] such that q1 = q

and qn = q′ and, for all i ∈ [n− 1], qi
Ri−−→ qi+1 and R1 ; · · · ; Rn−1 = R.

Definition 13. Given an r-PDRS S over states P and an r-RMRAA over states Q and
transitions Δ and such that P ⊆ Q and Δ contains no transitions to states in P , we
construct another r-RMRA SAT(A) by induction (note that op ranges over OPr):

p
op−→
A

p′

p
op−−−−−→

SAT(A)
p′

(N)

p
i•−→
S

p′

p
Ri•−−−−−→

SAT(A)
p′

(i)

p
push(i)−−−−−→

S
p′ p′

R−−−−−→
SAT(A)

∗ q q
j−−−−−→

SAT(A)
q′

p
R[i=j]−−−−−→
SAT(A)

q′
(ii)

p
push(i)−−−−−→

S
p′ p′

R−−−−−→
SAT(A)

∗ q q
•−−−−−→

SAT(A)
q′

p
R[i•]−−−−−→

SAT(A)
q′

(iii)

p
pop(i)−−−−→

S
p′

p
i−−−−−→

SAT(A)
p′

(iv)

p
pop•
−−−→

S
p′

p
•−−−−−→

SAT(A)
p′

(v)

where we additionally require R || i = j in rule (ii), and R || i• in rule (iii).

The above construction can be carried out in exponential time: consider that there
are at most |Q×OPr ×Q| many transitions added, which is at most exponential in the
size of the input. For each transition, computation is either trivial or, in (ii) and (iii),
involves computing exponentially many graph reachability queries.

Theorem 14. Given r-PDRS S and r-RMRAA as above, C(SAT(A)) = Pre∗P(C(A)).

We can thus verify whether one can reach a configuration represented by A from a
given configuration: construct the corresponding SAT(A) and check membership. To
implement the latter in nondeterministic space, given a source configuration (q, τ, w),
we need O(log |QSAT(A)| + p(r) + log |w|) bits to track the state, register assignment
and position in w respectively. This is polynomial space in S,A, w which, along with
the construction of SAT(A), yields an exponential-time reachability testing routine.

Finally, let us remark that RMRAs are no more expressive than register automata
with nondeterministic reassignment [14]. An r-RMRA A = 〈Q, F, Δ〉 can be seen
as an r-register automaton with nondeterministic reassignment (r-RAnr) if Δ ⊆ Q ×
OP−

r ×Q, with OP−
r = [r] + {Ri• | i ∈ [r] }.

Lemma 15. For any r-RMRAA, one can construct a (2r+1)-RAnr Â such that, for each
A-configuration κ there exists a Â-configuration κ̂ satisfying L(A)(κ) = L(Â)(κ̂).
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Abstract. We present a logic-based combinatorial property of classes
of finite structures that allows an effective generalization of the �Loś-
Tarski preservation theorem to hold over classes satisfying the property.
The well-studied classes of words and trees, and structures of bounded
tree-depth are shown to satisfy the property. We also show that starting
with classes satisfying this property, the classes generated by applying
composition operations like disjoint union, cartesian and tensor products,
inherit the property. We finally show that all classes of structures that
are well-quasi-ordered under the embedding relation satisfy a natural
generalization of our property.

1 Introduction

Preservation theorems in first-order logic (henceforth called FO) have been ex-
tensively studied in classical model theory [3]. An FO preservation theorem as-
serts that the collection of FO definable classes closed under a model-theoretic
operation corresponds to the collection of classes definable by a syntactic frag-
ment of FO. A classical preservation theorem is the �Loś-Tarski theorem, which
states that over the class of all structures, the class defined by an FO sentence is
preserved under substructures if, and only if, the sentence is equivalent to a uni-
versal sentence [3]. It was conjectured in [11], and subsequently proved in [10],
that this theorem can be generalized using a simple yet delicate semantic notion
of preservation under substructures modulo k-sized “cruxes” (in [11,10], ‘cruxes’
are called ‘cores’). This notion reduces to the usual notion of preservation un-
der substructures when k equals 0. The generalized �Loś-Tarski theorem, proved
in [10], states that over the class of all structures and for all natural numbers k,
the class defined by an FO sentence is preserved under substructures modulo k-
sized cruxes if, and only if, the sentence is equivalent to an ∃k∀∗ sentence (i.e.,
a prenex sentence having quantifier prefix of the form ∃k∀∗). Since finite struc-
tures are important from a computational perspective, it is interesting to study
preservation theorems over classes of finite structures. Unfortunately, most preser-
vation theorems, including the �Loś-Tarski theorem, fail over the class of all finite
structures. Earlier work [1,5,6,2] has therefore studied preservation theorems over
special classes of finite structures. In this paper, we undertake a similar study for
the generalized �Loś-Tarski theorem. Specfically, we identify a logic-based combi-
natorial property that allows the generalized �Loś-Tarski theorem to hold over any
class of finite structures satisfying the property. We show that several well-studied
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classes satisfy this property. Furthermore, the property permits an effective trans-
lation of an FO sentence defining a class that is preserved under substructures
modulo k-sized cruxes, to an equivalent ∃k∀∗ sentence.

In [1], Atserias, Dawar and Grohe considered classes of finite structures that are
acyclic, of bounded degree (more generally, “wide”) or of bounded tree-width. They
showed that under suitable closure assumptions, each of these classes admits the
�Loś-Tarski theorem. Subsequently, Harwath, Heimberg and Schweikardt [6] stud-
ied the bounds for an effective version of the �Loś-Tarski theorem over bounded de-
gree structures. In [5], Duris showed that the �Loś-Tarski theorem holds for struc-
tures that are acyclic in a more general sense. Unfortunately, as discussed in Sec-
tion 2, none of the above classes, in general, admits the generalized �Loś-Tarski the-
orem. This motivates us to ask: Can we identify properties that allow an effective
version of the generalized �Loś-Tarski theorem to hold, and are also satisfied by inter-
esting classes of finite structures? This paper answers this question affirmatively.
Interestingly, the classes of structures studied here are incomparable to those stud-
ied in [1,6,5].

The primary results of this paper can be summarized as follows.

1. In Section 3, we present a parameterized logic-based combinatorial property
of classes of finite structures, and show that this property entails an effective
version of the generalized �Loś-Tarski theorem. Intuitively, if a class S satisfies
this property for parameter k, denoted Plogic(S, k), then for every natural
number m, given any structure in S and k elements of it, there always exists
an m-equivalent bounded substructure, containing these elements, that is in
S. Further, the bound is a computable function of m.

2. In Sections 4 and 5, we respectively show that the following interesting classes
of structures satisfy Plogic(·, k) for all k: (i) the classes of all words and trees
over a finite alphabet, and (ii) any substructure-closed class of relational
structures whose Gaifman graphs have bounded tree-depth.

3. In Section 6, we show that for all k, the property Plogic(·, k) is preserved un-
der natural composition operators on structures, like disjoint union, cartesian
and tensor products. This allows us to construct additional classes of struc-
tures that satisfy the generalized �Loś-Tarski theorem, from known classes.
Interesting examples of such constructed classes are grids of bounded di-
mension and various classes of co-graphs like all co-graphs, complete graphs,
complete n-partite graphs for each n, threshold graphs etc. It is important
to note that the classes considered in Sections 4, 5 and 6 lie beyond those
studied in [1,6,5], and yet satisfy the �Loś-Tarski theorem.

4. In Section 7, we briefly discuss two other parameterized properties, de-
noted Pwqo(·, k) and Pgen

logic(·, k), each of which entails the generalized �Loś-
Tarski theorem “(not necessarily an effective version though)”. The property
Pwqo(·, k) is based on well-quasi-ordering of the embedding relation on struc-
tures, while Pgen

logic(·, k) is a generalization of Plogic(·, k). An interesting result

is that Pwqo(·, k) is subsumed by Pgen
logic(·, k), yielding a logic-based tool to

show that certain classes are not well-quasi-ordered under the embedding
relation.
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To prove the above results, we use a combination of techniques. For example,
to show that trees and words satisfy Plogic(·, k), we present a composition lemma
for trees in Section 4, and use it to show that certain “prunings” of trees preserve
m-equivalence. In Section 5, to prove that the class of structures with Gaifman
graphs of tree-depth at most n satisfies Plogic(·, k), we introduce the notion of a
twin of a structure with respect to a given element and use inductive reasoning
over n. In Section 6, the proof of closure of Plogic(·, k) under natural composition
operators uses a tree representation of structures generated by applying the
operators, and uses results for trees proved earlier in Section 4. For lack of
space, we defer the full proofs of our results to the journal version of the paper.

2 Notation and Preliminaries

Let N denote the natural numbers including zero. We assume that the reader is
familiar with standard notation and terminology of first-order logic. We consider
only finite vocabularies, represented by τ , that contain only predicate symbols of
positive arity (and no constants or functions), unless explicitly stated otherwise.
We denote by FO(τ) the set of all FO formulae over τ . A sequence (x1, . . . , xk)
of variables is written as x̄. We abbreviate a block of quantifiers Qx1 . . . Qxk by
Qkx̄, where Q ∈ {∀, ∃}. Given k, p ∈ N, let ∃k∀p denote the set of all FO(τ) sen-
tences in prenex normal form whose quantifier prefix has k existential quantifiers
followed by p universal quantifiers. We use ∃k∀∗ to denote

⋃
p∈N ∃k∀p.

Standard notions of τ -structures, substructures and extensions (see [3]) are
used throughout. As in [3], by substructures, we mean induced substructures.
Given a τ -structure A, we use UA to denote the universe of A and |A| to denote
its cardinality. Given τ -structures A and B, we use A ⊆ B to denote that A is
a substructure of B. Given a τ -structure A and an FO(τ) sentence ϕ, if A |= ϕ,
we say that A is a model of ϕ. We focus only on recursive (or decidable) classes
of finite τ -structures in this paper. All classes of τ -structures, and subclasses
thereof, are also assumed to be closed under isomorphisms.

The following notion is central to our work.

Definition 1. Let S be a class of τ-structures and k ∈ N. A subclass C of S is
said to be preserved under substructures modulo k-sized cruxes over S if every
τ-structure A ∈ C has a subset Crux of UA such that (i) |Crux| ≤ k, and (ii) for
every B ∈ S, if B ⊆ A and Crux ⊆ UB, then B ∈ C. The set Crux is called a
k-crux of A with respect to C over S.

As an example, if S is the class of all graphs, then the subclass C of S comprising
graphs containing a k-length cycle as a subgraph is preserved under substruc-
tures modulo k-sized cruxes over S. Like Definition 1, most other definitions,
discussions and results in this paper are stated with respect to an underlying
class S of structures. When S is clear from the context, we omit the mention of
S. Note that Definition 1 is an adapted version of Definition 2 of [11]; the notion
of ‘core’ in the latter is exactly the notion of ‘crux’ in the former when the un-
derlying class S is the class of all structures. We avoid using the word ‘core’ for
a crux to prevent confusion with existing notions of cores in the literature [2].
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Given a class S of structures, let PSC(k) denote the collection of the sub-
classes of S that are preserved under substructures modulo k-sized cruxes over
S, and that are definable over S by FO sentences. We interchangeably talk
of PSC(k) as a collection of classes and as a set of the defining FO sentences.
Similarly, we interchangeably use ∃k∀p (and ∃k∀∗) to denote a set of FO sentences
and the corresponding subclasses of S defined by these sentences. The generalized
�Loś-Tarski theorem, proved in [10], can now be stated as follows.

Theorem 1. Over the class of all structures, for all k ∈ N, PSC(k) = ∃k∀∗.

Note that the notion of cruxes, central to Theorem 1, differs from that of ex-
istential witnesses. If ϕ is an ∃k∀∗ sentence and A |= ϕ, then every witness of
the existential variables of ϕ forms a k-crux of A. The converse, however, need
not be true [11]. Specifically, let τ = {E}, where E is a binary predicate. Con-
sider the FO(τ) sentence ϕ ≡ ∃x∀y E(x, y), and the τ -structure A defined by
UA = {0, 1} and EA = {(0, 0), (0, 1), (1, 1)}. Clearly, A |= ϕ and A has only one
witness for variable x of ϕ, viz. 0. Yet, both {0} and {1} are 1-cruxes of A!

Significantly, Theorem 1 fails, in general, over the classes studied in [1,6,5].
To see why this is so, let S be the class of graphs that are disjoint unions of
undirected paths. Observe that S is closed under substructures and disjoint
unions, is acyclic and has degree bounded by 2. Consider the subclass C of S
comprising graphs containing at least 2 connected components. The subclass C is
definable over S by an FO sentence ψ asserting that any model either has at least
3 end points or has at least 2 isolated vertices. Further, for any graph G in C, any
two vertices belonging to distinct components of G form a 2-crux of G; hence
C is in PSC(2). However, as shown in [11], there exists no ∃2∀∗ sentence that
defines C over S. Likewise, one can show that the class of all directed graphs
of tree-width 1 fails to satisfy PSC(2) = ∃2∀∗. This motivates our quest for
alternative properties of classes of finite structures over which Theorem 1 holds.

3 A Logic Based Combinatorial Property

We begin by recalling from standard FO terminology [7] that if m is a natural
number, two τ -structures A and B are said to be m-equivalent, denoted A ≡m B,
iff A and B agree on the truth of every FO(τ) sentence of quantifier rank at
most m. We can now define a parameterized logic-based combinatorial property
of classes of finite structures as follows.

Definition 2. Let k be a natural number and S be a class of finite structures.
We say that Plogic(S, k) holds if there exists a computable function θk : N→ N
such that for each m ∈ N, for each structure A of S and for each subset W of
UA of size at most k, there exists B ⊆ A such that (i) B ∈ S, (ii) W ⊆ UB, (iii)
|B| ≤ θk(m), and (iv) B ≡m A. We call θk a witness function of Plogic(S, k).

Remark: If Plogic(S, k) holds and if S ′ is a subclass of S that is closed under
substructures over S, then it is easy to see that Plogic(S ′, k) also holds.

We list below two simple examples of classes satisfying Plogic(·, k) for every
k ∈ N. Various non-trivial examples are presented in Sections 4, 5 and 6.
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1. Let S be a finite class of finite structures. Clearly, Plogic(S, k) holds for all
k ∈ N, with θk(m) giving the size of the largest structure in S.

2. Let S be the class of all finite linear orders. Then Plogic(S, k) holds for all
k ∈ N, with θk(m) = max(2m, k).

The next theorem is one of the main results of this paper. Before stating the
theorem, we make two observations. First, given a recursive class S of finite
structures and a natural number n, the subclass of all structures in S of size
at most n is definable by an effectively computable FO sentence in ∃n∀∗. We
call this sentence ξS,n. Second, given a sentence ψ of FO(τ) and any sequence
x̄ of variables, one can effectively compute a quantifier-free FO(τ) formula with
free variables x̄ such that this formula evaluates to true in a τ -structure A with
x̄ interpreted as ā iff ψ holds in the substructure of A induced by ā. Following
notation in [11], we denote this formula as ψ|x̄, read as ψ relativized to x̄.

Theorem 2. Let S be a recursive class of finite structures and k ∈ N be such
that Plogic(S, k) holds. Then PSC(k) = ∃k∀∗ over S, and the translation from
PSC(k) to ∃k∀∗ is effective. Specifically, if a witness function for Plogic(S, k) is
θk, then an FO sentence χ of quantifier rank m in PSC(k) is equivalent (over
S) to the sentence ∃kx̄∀pȳ ψ|x̄ȳ, where p = θk(m) and ψ ≡ (ξS,p → χ).

Proof: It is obvious that ∃k∀∗ ⊆ PSC(k) over S. Towards the converse, consider
a sentence χ, of quantifier rank m, in PSC(k) over S. Consider the sentence
ϕ ≡ ∃kx̄∀pȳ ψ|x̄ȳ, where p and ψ are as stated above. Since χ is in PSC(k) over
S, every model A of χ in S also satisfies ϕ. This is because the elements of any
k-crux of A can serve as witnesses of the existential quantifiers in ϕ. To show
ϕ → χ over S, suppose A is a model of ϕ in S. Let W be a set of witnesses in
A for the k existential variables in ϕ. Clearly, |W | ≤ k. Since Plogic(S, k) holds,
there exists B ⊆ A such that (i) B ∈ S, (ii) W ⊆ UB, (iii) |B| ≤ θk(m) = p, and
(iii) B ≡m A. Since A |= ϕ, by instantiating the universal variables in ϕ with
the elements of UB, we have B |= χ. Since the quantifier rank of χ is m and
B ≡m A, it follows that A |= χ. Therefore, χ is equivalent to ϕ over S. Finally,
since m is effectively computable from χ, so are p, ξS,p and ϕ.

4 Words and Trees over a Finite Alphabet

Given an alphabet Σ, let Words(Σ) and Trees(Σ) denote the set of all finite
words and trees, respectively, over Σ. The key result of this section is as follows.

Theorem 3. For every finite alphabet Σ, both Plogic(Words(Σ), k) and
Plogic(Trees(Σ), k) hold for every natural number k.

For purposes of our discussion, we use a poset-theoretic representation of trees. A
tree is a finite poset P = (A,≤) with a unique minimal element (called “root”),
and for every a, b, c ∈ A,

(
(a ≤ c) ∧ (b ≤ c)

)
→
(
a ≤ b ∨ b ≤ a

)
. Informally,

the Hasse diagram of P is an (inverted) tree with every parent p connected to
its child c. A tree over Σ, henceforth called a Σ-tree, is a pair (P, λ) where
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P = (A,≤) is a tree and λ : A → Σ is a labeling function. The elements of A
are also called nodes (or elements) of the Σ-tree. In the special case where the
underlying poset is a linear order, a Σ-tree is called a Σ-word. We denote trees
by either s or t. A Σ-forest f is a (finite) disjoint union of Σ-trees.

Let τ be the vocabulary {≤} ∪ {Qa | a ∈ Σ}, where ≤ is a binary predicate
and each Qa is a unary predicate. A Σ-tree s = ((As,≤s), λs) has a natural
representation as a structure As over τ . To represent a Σ-forest f as a τ -structure
Af, we use the disjoint union (denoted #) of the τ -structures representing the
Σ-trees in f. For clarity of exposition, we use s (resp. f) to denote both a Σ-tree
s (resp. Σ-forest f) and its corresponding τ -structure As (resp. Af).

We use the standard notions of height, degree and subtree of a given tree.
Given two Σ-trees s = ((As,≤s), λs) and t = ((At,≤t), λt) with disjoint sets of
nodes, and an element e of s, the join of t to s at e, denoted s ·e t, is the Σ-tree
obtained from s by adding t as a new “child subtree” of the element e of s. Given
a Σ-tree s, a Σ-forest f =

⊔n
i=1 ti and an element e of s, the join of f to s at e,

denoted s ·e f, is the Σ-tree ((((s ·e t1) ·e t2) · · · ) ·e tn).
The proof of Theorem 3 uses two key auxiliary lemmas. The first is a com-

position lemma for trees. This lemma intuitively states that if t is a tree, a is a
node of t, and f is a forest, then the ≡m class of t ·a f is completely determined by
the ≡m classes of (t, a) and f. Composition results of this kind were first studied
by Feferman and Vaught, and subsequently by others (see [8] for a survey).

Lemma 1. Let ti be a non-empty Σ-tree containing element ai, and fi be a
non-empty Σ-forest containing element bi, for i ∈ {1, 2}. Let si = ti ·ai fi for
i ∈ {1, 2}. Suppose (t1, a1) ≡m (t2, a2). Then the following hold.

1. If (f1, b1) ≡m (f2, b2), then (s1, a1, b1) ≡m (s2, a2, b2).
2. If f1 ≡m f2, then (s1, a1) ≡m (s2, a2).

The proof of Lemma 1 uses the Ehrenfeucht-Fräıssé theorem [7] and is similar to
the proof of the composition lemma for words. Before stating the next auxiliary
lemma, we introduce some notation. Given an alphabet Σ and a natural number
m, let Δ(m,Σ) denote the set of all equivalence classes of the ≡m relation over
Trees(Σ). Let Alph denote the set of all finite alphabets, and g : N× Alph→ N
be a computable function such that g(m,Σ) ≥ |Δ(m,Σ)|. It is known that g
exists (see proof of Lemma 3.13 in [7]). We now state our next auxiliary lemma.

Lemma 2. Let s be a Σ-tree. For every m ∈ N, each of the following exist.

(a) A subtree t1 of s such that t1 has degree ≤ m · g(m,Σ) and t1 ≡m s.
(b) A subtree t2 of s such that t2 has height ≤ g(m,Σ) and t2 ≡m s.

Proof Sketch: (a) Let d denote m · g(m,Σ). If each node of s has at most d
children, then taking t1 to be s, we are done. Else, let a be a node of s, having
> d children. Let Γ (a) denote the set of all subtrees of s rooted at the children
of a in s, and let f be the forest whose trees are exactly the members of Γ (a).
Let t be the tree such that s = t ·a f. For every δ ∈ Δ(m,Σ), let Γ (a, δ) be the set
consisting of the members of Γ (a) whose ≡m class is δ. Construct the forest f1
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by performing the following operation on f for each δ ∈ Δ(m,Σ): retain Γ (a, δ)
entirely in f if |Γ (a, δ)| < m, else retain exactly (any) m members of Γ (a, δ) in
f and remove the rest. It is easy to see that f ≡m f1. Let s1 = t ·a f1. Then using
Lemma 1, we get that s1 ≡m s. Observe that s1 has strictly fewer nodes that
have > d children, compared to s. Recursing on s1, we are eventually done.

(b) Let A be the underlying set of s. Define the function h : A→Δ(m,Σ) such
that h(a) is the ≡m class of the subtree of s rooted at a, for every a ∈ A. If for
each path in s, no two distinct elements on the path have the same h value, then
the height of s is at most g(m,Σ). Then the desired subtree t2 can be chosen to
be s itself. Otherwise, there exist distinct a, b ∈ A such that (i) s |= (a ≤ b) and
(ii) h(a) = h(b). Let s1 be the subtree of s obtained by ‘replacing’ the subtree
rooted at a with the subtree rooted at b. By Lemma 1, we get s1 ≡m s. Also, s1
has strictly fewer nodes than s. Recursing on s1, we are eventually done.

The proof of Theorem 3 for Trees(Σ) is now completed as follows. Given
m ∈ N, a Σ-tree s = (P, λ) and a set W of at most k elements of s, let s′ = (P, λ′)
be the tree over Σ′ = Σ × {0, 1} such that for every a ∈ P , λ′(a) = (λ(a), 1)
if a ∈ W , and λ′(a) = (λ(a), 0) otherwise. Let n = max(m, k). By Lemma 2,
there exists a subtree t′ of s′ with degree at most n · g(n,Σ′) and height at most
g(n,Σ′), that is n-equivalent to s′. It is easy to check that by dropping the second
component of the labels of all elements of t′, we get a subtree t of s containing W .
In addition, t ≡m s and |t| ≤ θk(m), where θk(m) = (n·g(n,Σ′)+1)g(n,Σ

′)+1 and
n = max(m, k). Then Plogic(Trees(Σ), k) holds with θk as the witness function.
Whence, Plogic(Words(Σ), k) holds by the remark following Definition 2.

5 Structures of Bounded Tree-Depth

Nešetřil and de Mendez introduced the notion of tree-depth of an undirected
graph in [9]. Intuitively, the tree-depth of a graph G, denoted td(G), is a measure
of how far G is from being a star. The following is an inductive definition of tree-
depth, given by Lemma 2.2 of [9]. In this definition, G = (V,E) denotes a graph,
Comp(G) denote the set of all connected components of G, and G \ v denotes
the graph obtained by removing the vertex v from G.

td(G) =

⎧⎪⎨⎪⎩
1 if Ghas a single vertex

1 + min v∈V td(G \ v) if G is connected and has multiple vertices

maxG′∈Comp(G) td(G′) if G is disconnected

The Gaifman graph G(A) of a relational structure A is an undirected graph
whose nodes are the elements of A, and in which two nodes are adjacent if, and
only if, they appear together in some tuple of some relation of A [7]. We say that
a structure A is connected if G(A) is connected, else we say A is disconnected.
A substructure B of A is said to be a connected component of A if G(B) is
a connected component of G(A). We say that A has tree-depth n if G(A) has
tree-depth n. We say that a class S of structures has bounded tree-depth if there
exists a natural number n such that all structures in S have tree-depth at most
n. The main result of this section can now be stated as follows.
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Theorem 4. Let S be a substructure-closed class of finite structures, of bounded
tree-depth. Then Plogic(S, k) holds for every natural number k.

In this section, we allow the vocabulary τ to contain 0-ary predicate symbols. To
prove Theorem 4, we introduce the notion of twin-structures. Given a vocabulary
τ and a predicate R in τ , let #R denote the arity of R. If #R > 0, then for each
subset T of {1, . . .#R}, let RT denote a predicate of arity #R−|T |. Define τ̂ to be
the vocabulary {R | R ∈ τ,#R = 0} ∪ {RT | R ∈ τ,#R > 0, T ⊆ {1, . . . ,#R}}.
Given a τ -structure A and an element a of it, let A\a denote the substructure of
A induced by UA \ {a}. Given a predicate R in τ , a subset T of {1, . . . ,#R} and
a (#R − |T |)-tuple b̄ from A \ a, let exa(b̄, T ) denote the expansion of b̄ with a
at the positions in T . Formally, exa(b̄, T ) is the #R-tuple whose ith component
is a for each i ∈ T , and whose sub-tuple obtained by dropping all the a’s, is
exactly b̄. Then the twin-structure of A with respect to a, denoted twin(A, a),
is a τ̂ -structure defined as: (i) The universe of twin(A, a) is UA \ {a} (ii) For
every 0-ary predicate R in τ , we have twin(A, a) |= R iff A |= R (iii) For every
predicate RT in τ̂ and for every (#R − |T |)-tuple b̄ of elements of twin(A, a),
we have twin(A, a) |= RT (b̄) iff A |= R(exa(b̄, T )). Observe that A and twin(A, a)
uniquely identify each other, upto isomorphism. The following lemma is easy.

Lemma 3. Let A and B be given structures and let a and b be elements of A and
B respectively. Then given m ∈ N, if twin(A, a) ≡m twin(B, b), then A ≡m B.

Let Δ(m, τ) be the set of equivalence classes of the ≡m relation over the class
of all τ -structures. Let Vocab be the set of all finite vocabularies. Consider a
computable function g1 : N × Vocab → N such that g1(m, τ) ≥ |Δ(m, τ)|. It
is known that g1 exists (see proof of Lemma 3.13 in [7]). Define the function
f1 : N×N×Vocab→ N as f1(n,m, τ) = 1 +m · g1(m, τ̂ ) · f1(n− 1,m, τ̂), where
f1(1,m, τ) = 1. We now have the following lemma.

Lemma 4. Given m ∈ N and a τ-structure A that is connected and has tree-
depth n, there exists B ⊆ A such that (i) B ≡m A and (ii) |B| ≤ f1(n,m, τ).

Proof Sketch: The proof is by induction on n. The base case is trivial. Assume
that the result holds for all tree-depths from 1 to n− 1 and for all vocabularies
τ . Let A be as given. Since A has tree-depth n, by definition, there exists a ∈ A
such that G(A)\a has tree-depth at most n−1. Consider twin(A, a). It is easy to

show that for any τ̂ -structure D̂, if D̂ ⊆ twin(A, a), then D̂ = twin(C, a) for some
C ⊆ A, containing a. Then by a “degree reduction” argument similar to the one
in the proof of Lemma 2(a), there exists A′ ⊆ A, containing a such that (i) each
connected component of twin(A′, a) is a connected component of twin(A, a) (ii)
the set Y of the connected components of twin(A′, a) has size ≤ m · g1(m, τ̂),
and (iii) twin(A′, a) ≡m twin(A, a). From Lemma 3, it follows that A′ ≡m A.

Now for D̂ ∈ Y , let C ⊆ A′ be such that C contains a and D̂ = twin(C, a).
Observing that G(C) \ a and G(twin(C, a)) are the same graph, it follows that

the tree-depth of D̂ is at most n− 1. Applying the induction hypothesis on D̂,
there exists D̂1 ⊆ D̂ such that (i) D̂1 ≡m D̂ and (ii) |D̂1| ≤ f1(n − 1,m, τ̂).
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If D̂2 =
⊔

D̂∈Y D̂1, then D̂2 ≡m twin(A′, a). Since D̂2 ⊆ twin(A′, a), there

exists A′′ ⊆ A′ containing a such that D̂2 = twin(A′′, a). Invoking Lemma 3
on twin(A′′, a) and twin(A′, a), it follows that A′′ ≡m A′. Then A′′ ⊆ A and
A′′ ≡m A. It is easy to see that |A′′| ≤ f1(n,m, τ). Taking B as A′′, the proof is
completed.

Proof of Theorem 4 : Let S be a substructure-closed class of τ -structures of
tree-depth at most n. For notational convenience, let f2(n,m, τ) denote m ·
g1(m, τ) · f1(n,m, τ), for all m,n ∈ N and τ ∈ Vocab. We show below that
Plogic(S, k) holds for each k ∈ N, with the witness function given by θk(m) =
f2(n,m, τ) if k = 0, and by θk(m) = f2(n, r, ν) otherwise, where r = max(m, k)
and ν = τ ∪ {P} for a unary predicate P not in τ . The result for k = 0 follows
from Lemma 4 and from the fact that upto m-equivalence, any τ -structure has
at most m · g1(m, τ) connected components. Suppose we are given A ∈ S and a
subset W of at most k elements of A, for k > 0. Then consider the ν-structure A′

whose τ -reduct is A and in which P is interpreted to be exactly W . By the result
for k = 0, there exists B′ ⊆ A′ such that (i) A′ ≡r B

′ and (ii) |B′| ≤ f2(n, r, ν).
It is clear that the τ -reduct of B′, say B, is such that (i) B ⊆ A (hence B ∈ S)
(ii) W ⊆ UB (iii) A ≡m B and (iv) |B| ≤ f2(n, r, ν) = θk(m). Finally, since
g1(·, ·), f1(·, ·, ·) and f2(·, ·, ·) are easily seen to be computable, we are done.

Remark: The classes of bounded tree-depth considered in this section were
not studied earlier in [1]. While these classes in general are not acyclic, nor of
bounded degree (more generally, not wide too), they are certainly of bounded
tree-width [9]. However, [1] talks only about the class of all structures of tree-
width n for each n ∈ N, and not about any subclasses of it.

6 Generating New Classes of Structures

We consider some natural ways of generating new classes of structures from
a base class S of structures. The primary result of this section is that classes
generated by these techniques inherit the Plogic(·, k) property of the base class.

We focus on disjoint union (#), complement (!), cartesian product (×) and
tensor product (⊗) of τ -structures coming from a base class S. The definition of
# is standard. The definitions of !, × and⊗ below are inspired by their definitions
for graphs. Let A and B be τ -structures. The complement of A, denoted !A, is
the τ -structure such that (i) U!A = UA, and (ii) for every n-ary predicate R in
τ , for every n-tuple (a1, . . . an) ∈ Un

A, !A |= R(a1, . . . an) iff A �|= R(a1, . . . an).
The cartesian product of A and B, denoted A ×B, is the structure C defined
as follows: (i) UC = UA × UB, and (ii) for each n-ary predicate R in τ , for each
n-tuple

(
(a1, b1), . . . , (an, bn)

)
of UC, we have C |= R

(
(a1, b1), . . . , (an, bn)

)
iff(

(a1 = · · · = an ∧ B |= R(b1, . . . , bn))
∨

(A |= R(a1, . . . , an) ∧ b1 = · · · = bn)
)
.

The tensor product of A and B, denoted A⊗B, is defined similar to the cartesian
product, except that A⊗B |= R

(
(a1, b1), . . . , (an, bn)

)
iff A |= R(a1, . . . , an) and

B |= R(b1, . . . , bn).
Let Op be the set {#, !,×,⊗}. The following properties of operations in Op

are important for our purposes. Let � be a binary operation in Op and m ∈ N.
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P1) If A1 ⊆B1 and A2 ⊆ B2, then (i) !A1 ⊆ !B1 and (ii) (A1�A2) ⊆ (B1�B2).
P2) If A1 ≡m B1 and A2 ≡m B2, then (i) !A1 ≡m!B1 and (ii) (A1 � A2) ≡m

(B1 �B2).

Given a class S, let !S denote the class {!A | A ∈ S}. Given classes S1 and
S2 and a binary operation � ∈ Op, let S1 � S2 denote the class {A �B | A ∈
S1,B ∈ S2}. We now have the following important lemma.

Lemma 5. Let S1,S2 be classes of structures. Let � be a binary operation in
Op and k ∈ N. If Plogic(Si, k) holds for i ∈ {1, 2}, then each of Plogic(!S1, k),
Plogic(!S2, k) and Plogic(S1 � S2, k) holds. In addition, Plogic(S1 ∪ S2, k) holds.

Given a class S of structures satisfying Plogic(·, k), it follows that any class S ′

of structures obtained by finitely many applications of the operations in Op and
by taking finite unions of the classes obtained thereof, also satisfies Plogic(·, k).
However, there are interesting classes that can be generated only by allowing
infinite unions of these derived classes. For example, the class of all co-graphs
is generated from the class of single vertex graphs by finitely many applications
of # and !, and then taking the infinite union of all the classes of graphs thus
obtained. The rest of this section is motivated by such infinite unions.

Given a class S of structures and O ⊆ Op, an expression tree over (S, O) is
a tree over O whose leaf nodes are labelled with specific structures from S and
internal nodes are labelled with operations from O (i.e. elements of O). 1 If s is
an expression tree over (S, O), let Cs denote the structure naturally represented
by s upto isomorphism. We denote by ZS,O the class of all structures defined by
all possible expression trees over (S, O).

Theorem 5. Let S be a given class of structures and let O = {#, !}. For each
k ∈ N, if Plogic(S, k) holds, then so does Plogic(ZS,O, k).

Proof Sketch: Consider A ∈ ZS,O and m ∈ N. Let W ⊆ UA be a set of size at
most k. Let s be an expression tree of A, i.e. Cs = A. The proof is in two parts:

(I) We first construct a bounded sized sub-expression-tree t of s such that (i)
W is contained in the leaves of t, (ii) Ct ⊆ A and (ii) Ct ≡m A. To do this,
we label each node a of s by the pair (δ, i), where δ is the ≡m class of Csa ,
sa is the subtree of s rooted at a, and i is the number of leaves of sa that
contain any element of W . We then do a “height reduction” as in the proof
of Lemma 2(b) to get t.

(II) We create a tree t1 from t by replacing the leaves of t with m-equivalent
bounded substructures ensuring that Ct1 contains W (using the Plogic(S, k)
assumption). By a hierarchical compositional reasoning (using properties P1
and P2), we show that Ct1 is the ‘right’ substructure of Cs.

We list below examples of classes of structures satisfying Plogic(·, k) that can be
generated by applying the above results to simple classes of structures. In all
these examples, we assume a finite set of colours.

1 We think of a tree in the poset-theoretic sense, as in Section 4. The number of
children of any internal node is equal to the arity of the operation labeling the node.
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1. The class of all coloured co-graphs, obtained using expression trees with #
and ! as operations at the internal nodes and coloured isolated nodes as
leaves. By the remark following Definition 2, any class of coloured co-graphs
closed under induced subgraphs is also an example. Special cases include the
classes of coloured complete graphs, coloured complete n-partite graphs for
any n ∈ N and coloured threshold graphs [4].

2. The class of r-dimensional grid posets for every r ∈ N, where an r-dimensional
grid poset is a tensor product of r linear orders.

Using ideas similar to those in the proof of Theorem 5, it can be shown that
for k = 0 or 1, if Plogic(S, k) holds, then so does Plogic(ZS,Op, k), where Op is
as defined earlier. An interesting corollary of this result is that the class of all
finite dimensional grid posets satisfies Plogic(·, k) when k = 0 or 1.

7 Related Properties: Pwqo(S, k) and Pgen
logic(S, k)

In this section, we investigate some other natural properties which are also suffi-
cient to guarantee a generalization of the �Loś-Tarski theorem. Towards this, we
first introduce the property P gen

logic(S, k).

Definition 3. Let P gen
logic(S, k) be the property obtained by dropping the com-

putability restriction of the witness function θk in the definition of Plogic(S, k).

Clearly, Plogic(S, k) implies P gen
logic(S, k). It is also clear from the proof of The-

orem 2 that P gen
logic(S, k) entails PSC(k) = ∃k∀∗, though the former need not

entail an effective form of the latter. Also, it turns out that the converse of this
entailment is not true in general; the class S of all undirected cycles satisfies
PSC(k) = ∃k∀∗ for all k, but fails to satisfy Pgen

logic(S, k) for any k.
We now turn our attention to another seemingly unrelated property. We be-

gin with some notation. Given a vocabulary τ and k ∈ N, let τk denote the
vocabulary obtained by adding k new constant symbols to τ . Let S be a class of
structures. We use Sk to denote the class of all τk-structures whose τ -reducts are
structures in S. Given A,B ∈ Sk, we say that A embeds in B if A is isomorphic
to a substructure of B. Notationally, we represent this as A ↪→ B. Observe that
(Sk, ↪→) is a pre-order. We now define the property Pwqo(S, k) via the notion of
a pre-order being a well-quasi-order (w.q.o.) [4].

Definition 4. We say that Pwqo(S, k) holds if (Sk, ↪→) is a well-quasi-order.

Basic examples of classes satisfying Pwqo(S, k) are (i) a finite class, and (ii)
the class of all finite linear orders. Let Σ be a finite alphabet. In our notation,
the celebrated results such as Higman’s lemma and Kruskal’s tree theorem [4]
simply say that Pwqo(Words(Σ), 0) and Pwqo(Trees(Σ), 0) respectively hold. A
priori, there is no reason to expect any relation between the w.q.o.-based and the
logic-based properties defined above. Surprisingly, we have the following result.

Theorem 6. For any class S and any k ∈ N, Pwqo(S, k) implies Pgen
logic(S, k).
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It turns out however that Plogic(S, k) and Pwqo(S, k) are mutually incompa-
rable. We will present the proofs of these results in the journal version of the
paper. An important consequence of the above discussion is that Pwqo(S, k) en-
tails PSC(k) = ∃k∀∗. Note that this entailment also need not necessarily give
us an effective generalization of the �Loś-Tarski theorem. This highlights the im-
portance of our central notion, namely Plogic(S, k).

8 Conclusion

The study of preservation theorems over special classes of finite structures has
recently seen a revival of interest. This paper contributes to this line of work by
studying a logic-based combinatorial property that permits an effective version
of the generalized �Loś-Tarski theorem to hold over several well-studied classes of
finite structures. As future work, we wish to understand better the boundaries
of when the generalized �Loś-Tarski theorem, and more importantly, an effective
version of it, holds over classes of finite structures. The notion of well-quasi-
ordering has turned out to be of central importance in several areas of computer
science. In this context, Theorem 6 provides a new logic-based tool for proving
that certain classes are not well-quasi-ordered under the embedding relation on
structures. It also suggests that our formulations of the logic-based properties
might have applications even outside the realm of preservation theorems.
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Determinising Parity Automata�
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Abstract. Parity word automata and their determinisation play an im-
portant role in automata and game theory. We discuss a determinisation
procedure for nondeterministic parity automata through deterministic
Rabin to deterministic parity automata. We prove that the intermediate
determinisation to Rabin automata is optimal. We show that the result-
ing determinisation to parity automata is optimal up to a small constant.
Moreover, the lower bound refers to the more liberal Streett acceptance.
We thus show that determinisation to Streett would not lead to better
bounds than determinisation to parity. As a side-result, this optimality
extends to the determinisation of Büchi automata.

1 Introduction

The quest for optimal complementation [19,21,14] and determinisation
[11,12,9,15,3] of nondeterministic automata has been long and fruitful. The quest
for optimal Büchi complementation techniques seems to have been settled with
matching upper [14] and lower [21] bounds. A similar observation might, on first
glance, be made for Büchi determinisation, as matching upper [15] and lower [3]
bounds were established shortly after those for complementation. However, while
these bounds are tight to the state, they refer to deterministic Rabin automata
only, with exponentially many Rabin pairs in the states of the initial automaton.

Choosing Rabin automata as targets is not the only natural choice. The dual
Streett acceptance condition is a similarly natural goal, and determinising to par-
ity automata seems to be an even more attractive target, as emptiness games for
parity automata have a lower computational complexity compared to emptiness
games for Streett or Rabin automata. For parity and Streett automata, however,
no similarly tight result is known. Indeed, the best known algorithm [9] provides
an O(n!2) bound on the states [15] (for state-based acceptance; the bound can be
improved to O(n!(n− 1)!) when transition based acceptance is used) of a deter-
ministic parity automaton obtained from a nondeterministic Büchi automaton
with n states, as compared to the approximately (1.65n)n states of deterministic
Rabin automaton [15,3].

Another argument for using parity or Streett conditions is that determinisa-
tion constructions are often nested. E.g., in distributed synthesis [10,7,5], several
co-determinisation (determinisation of the complement language) steps are used.
Using Rabin automata as a target in one step, one has to use a determinisation
� A full version with proofs is available at http://arxiv.org/abs/1401.5394.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 486–498, 2014.
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technique for Streett automata in the next. Streett determinisation, however, is
significantly more involved and expensive [13,9].

In this paper, we introduce determinisation procedures for nondeterministic
parity automata (NPA) to deterministic Rabin and parity automata (DRA and
DPA). Using an algorithmic representation that extends the determinisation pro-
cedures from [15], we show that the number of states used in the determinisation
of nondeterministic Büchi automata cannot be reduced by a single state, while
we establish the tightness of our parity determinisation procedure to below an
approximation factor of 1.5, even if we allow for Streett acceptance. This also
shows that determinising parity automata to Rabin automata leads to a smaller
blow-up than the determinisation to parity or Streett. As a special case, this
holds in particular for Büchi automata.

Transition-Based Acceptance. We use a transition based acceptance mecha-
nism for various reasons, but most importantly, cleaner results. Transition-based
acceptance mechanisms have proven to be a more natural target of automata
transformations. Indeed, all determinisation procedures quoted above have a
natural representation with an acceptance condition on transitions, and their
translation to state-based acceptance is by multiplying the acceptance from the
last transition to the statespace. A similar observation can be made for other
automata transformations, like the removal of ε-transitions from translations
of μ-calculi [20,16] and the treatment of asynchronous systems [17], where the
statespace grows by multiplication with the acceptance information (e.g., maxi-
mal priority on a finite sequence of transitions), while it can only shrink in case
of transition based acceptance. Similarly, tools like SPOT [4] translate LTL for-
mulas to more concise automata with a transition-based acceptance mechanism.
Related Work. Besides the work on complementing [19,21,14] and determin-
ising [11,12,9,15,3] Büchi automata, tight bounds have been obtained for gen-
eralised Büchi automata [18], and specialised algorithms for complementing [2]
and determinising Streett [13,9] automata have been studied. The construction
of deterministic CoBüchi automata with a one-sided error, which is correct for
CoBüchi recognisable languages [1], and decision procedures that use emptiness
equivalent Büchi [8] or safety [6] automata have also been studied.

2 Preliminaries

We denote the set of non-negative integers by ω, i.e., ω = {0, 1, 2, 3, ...}. For a
finite alphabet Σ, we use Σ∗, Σ+, and Σω to denote the set of finite, non-empty
finite, and infinite sequences over Σ, respectively. An infinite word α : ω → Σ
is an infinite sequence of letters α0α1α2 · · · from Σ. We use [k] to represent
{1, 2, . . . , k}.

ω-automata are finite automata that are interpreted over infinite words and
recognise ω-regular languages L ⊆ Σω. Nondeterministic ω-automata are quin-
tuples N = (Q,Σ, I, T,F), where Q is a finite set of states with a non-empty
subset I ⊆ Q of initial states, Σ is a finite alphabet, T ⊆ Q × Σ × Q is a
transition relation that maps states and input letters to sets of successor states,
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and F is an acceptance condition. A run ρ of a nondeterministic ω-automaton
N on an input word α is an infinite sequence ρ : ω → Q of states of N , also
denoted ρ = q0q1q2 · · · ∈ Qω, such that the first symbol of ρ is an initial state
q0 ∈ I and, for all i ∈ ω, (qi, αi, qi+1) ∈ T is a valid transition. For a run
ρ on a word α, we denote with ρ : i �→

(
ρ(i), α(i), ρ(i + 1)

)
the transitions

of ρ. Let infin(ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q} denote
the set of all states that occur infinitely often during the run ρ. Likewise, let
infin(ρ) = {t ∈ T | ∀i ∈ ω ∃j > i such that ρ(j) = t} denote the set of all
transitions that are taken infinitely many times in ρ.

In this paper, we use acceptance conditions over transitions. Acceptance mech-
anisms over states can be defined accordingly. Rabin automata are ω-automata,
whose acceptance is defined by a family of pairs {(Ai, Ri) | i ∈ J}, with
Ai, Ri ⊆ T , of accepting and rejecting transitions for all indices i of some index
set J . A run ρ of a Rabin automaton is accepting if there is an index i ∈ J ,
such that infinitely many accepting transitions t ∈ Ai, but only finitely many
rejecting transitions t ∈ Rj occur in ρ. That is, if there is an i ∈ J such that
infin(ρ)∩Ai �= ∅ = infin(ρ)∩Ri. Streett automata are ω-automata, whose accep-
tance is defined by a family of pairs {(Gi, Bi) | i ∈ J}, with Gi, Bi ⊆ T , of good
and bad transitions for all indices i of some index set J . A run ρ of a Streett
automaton is accepting if, for all indices i ∈ J , some good transition t ∈ Gi or
no bad transition t ∈ Bj occur infinitely often in ρ. That is, if, for all i ∈ J ,
infin(ρ) ∩Gi �= ∅ or infin(ρ) ∩Bi = ∅ holds.

Parity automata are ω-automata, whose acceptance is defined by a priority
function pri : T → [c] for some c ∈ N. A run ρ of a parity automaton is accepting
if lim supn→∞ pri

(
ρ(n)

)
is even, that is, if the highest priority that occurs in-

finitely often is even. Parity automata can be viewed as special Rabin or Streett
automata. In older works, the parity condition was referred to as Rabin chain:
one can represent it by choosing Ai and Ri as the set of transitions with priority
≤ 2i and ≤ 2i− 1, respectively. This results in a chain Ai ⊆ Ri ⊆ Ai+1 ⊆ . . ..

One-pair Rabin automata R1 =
(
Q,Σ, I, T, (A,R)

)
are of special technical

interest in this paper. They are Rabin automata with a singleton index set, such
that we directly refer to the only pair (A,R). Büchi automata can be viewed as
one-pair Rabin automata with an empty set of rejecting states R = ∅.

For all types of automata, a word α is accepted by an automaton A iff it has
an accepting run, and its language L(A) is the set of words it accepts.

We call an automaton (Q,Σ, I, T,F) deterministic if I is singleton and T
contains at most one target node for all pairs of states and input letters. Deter-
ministic automata are denoted (Q,Σ, q0, δ,F), where q0 is the only initial state
and δ is the partial function with δ : (q, α) �→ r⇔ (q, α, r) ∈ T .

3 Determinisation

We will tackle the determinisation of parity automata in three steps. Firstly, we
will recall history trees, the data structure for determinising Büchi automata.
Secondly, we will adjust this data structure and adapt the Büchi determinisation
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procedure to determinise one-pair Rabin automata. Finally, we will show that
this data structure can be nested for the determinisation of parity automata.

In [15,18], we use ordered labelled trees to depict the states of the determi-
nistic automaton. The ordered labelled trees are called history trees in [15,18].

A history tree is an ordered labelled tree (T , l), where T is a finite, prefix
closed subset of finite sequences of natural numbers ω. Every element v ∈ T is
called a node. Prefix closedness implies that, if a node v = n1 . . . njnj+1 ∈ T is
in T , then v′ = n1 . . . nj is also in T . We call v′ the predecessor of v, denoted
pred(v). The empty sequence ε ∈ T is called the root of the ordered tree T . ε has
no predecessor. We further require T to be order closed with respect to siblings:
if a node v = n1 . . . nj is in T , then v′ = n1 . . . nj−1i is also in T for all i ∈ ω
with i < nj . In this case, we call v′ an older sibling of v (and v a younger sibling
of v′). We denote the set of older siblings of v by os(v).

A history tree is a tree labelled with sets of states. That is, l : T → 2Q � {∅}
is a labelling function, which maps nodes of T to non-empty sets of automata
states. For Büchi automata, the labelling is subject to the following criteria.

1. The label of each node is a subset of the label of its predecessor:
l(v) ⊆ l(pred(v)) holds for all ε �= v ∈ T .

2. The intersection of the labels of two siblings is disjoint:
∀v, v′∈T . v �=v′ ∧ pred(v)=pred(v′) ⇒ l(v)∩l(v′) = ∅.

3. The union of the labels of all siblings is strictly contained in the label of
their predecessor: ∀v ∈ T ∃q ∈ l(v) ∀v′ ∈ T . v = pred(v′) ⇒ q /∈ l(v′).

Determinising One-Pair Rabin Automata. For one-pair Rabin automata,
it suffices to adjust this data structure slightly. A root history tree (RHT) satisfies
(1) and (2) from the definition of history trees, and a relaxed version of (3) that
allows for non-strict containment of the label of the root, ∀v ∈ T �{ε} ∃q ∈
l(v) ∀v′ ∈ T . v = pred(v′) ⇒ q /∈ l(v′), and the label of the root ε equals the
union of its children’s labels, l(ε) =

⋃
{l(v) | v ∈ T ∩ ω}.

LetR1 = (Q,Σ, I, T, (A,R)) be a nondeterministic one-pair Rabin automaton
with |Q| = n states. We first construct a language equivalent deterministic Rabin
automaton D1 = (D,Σ, d0, Δ, {(Ai, Ri) | i ∈ J}) where, D is the set of RHTs
over Q, d0 is the history tree ({ε, 0}, l : ε �→ I, l : 0 �→ I), J is the set of nodes
�= ε that occur in some RHT of size n + 1 (due to the definition of RHTs, an
RHT can contain at most n + 1 nodes), and for every tree d ∈ D and letter
σ ∈ Σ, the transition d′ = Δ(d, σ) is the result of the sequence of the transition
mechanism described below. The index set is the set of nodes, and, for each
index, the accepting and rejecting sets (defined later) refer to this node.

Transition Mechanism. We determine Δ:
(
(T , l), σ

)
�→ (T ′, l′) as follows:

1. Update of node labels (subset constructions). The root of a history tree d
collects the momentarily reachable states Qr ⊆ Q of the automaton R1. In
the first step of the construction, we update the label of the root to the set
of reachable states upon reading a letter σ ∈ Σ, using the classical subset
construction. We update the label of every other node of the RHT d to
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reflect the successors reachable through accepting or neutral transitions. For
ε, we update l to the function l1 by assigning l1 : ε �→ {q′ ∈ Q | ∃q ∈
l(ε). (q, σ, q′) ∈ T }, and for all ε �= v ∈ T , we update l to the function l1 by
assigning l1 : v �→ {q′ ∈ Q | ∃q ∈ l(v). (q, σ, q′) ∈ T �R}.

2. Splitting of run threads / spawning new children. We spawn new children for
every node in the RHT. For nodes other than the root ε, we spawn a child
labelled with the set of states reachable through accepting transitions; for the
root ε, we spawn a child labelled like the root. Thus, for every node ε �= v ∈ d
with c children, we spawn a new child vc and expand l1 to vc by assigning
l1 : vc �→ {q′ ∈ Q | ∃q ∈ l(v). (q, σ, q′) ∈ A}. If ε has c children, we spawn a
new child c of the root ε and expand l1 to c by assigning l1 : c �→ l1(ε). We
use Tn to denote the extended tree that includes the new children.

3. Removing states from labels – horizontal pruning. We obtain a function l2
from l1 by removing, for every node v with label l(v) = Q′ and all states q ∈
Q′, q from the labels of all younger siblings of v and all of their descendants.

4. Identifying breakpoints – vertical pruning. We denote with Te ⊆ Tn the set
of all nodes v �= ε whose label l2(v) is now equal to the union of the labels
of its children. We obtain Tv from Tn by removing all descendants of nodes
in Te, and restrict the domain of l2 accordingly. Nodes in Tv ∩ Te represent
the breakpoints reached during the infinite run ρ and are called accepting,
that is, the transition of D1 will be in Av for exactly the v ∈ Tv ∩ Te. Note
that the root cannot be accepting.

5. Removing nodes with empty label. We denote with Tr = {v ∈ Tv | l2(v) �= ∅}
the subtree of Tv that consists of the nodes with non-empty label and restrict
the domain of l2 accordingly.

6. Reordering. To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the num-
ber of (still existing) older siblings of v, and map v = n1 . . . nj to v′ =
‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v). For T ′ = rename(Tr), we
update a pair (Tr, l2) from Step 5 to d′ =

(
T ′, l′

)
with l′ : rename(v) �→ l2(v).

We call a node v ∈ T ′∩T stable if v = rename(v), and we call all nodes in J
rejecting if they are not stable. That is, the transition will be in Rv exactly
for those v ∈ J , such that v is not a stable node in T ∩ T ′.

Note that this construction is a generalisation of the same construction for
Büchi automata: if R = ∅, then the label of 0 is always the label of ε in this
construction, and the node 1 is not part of any reachable RHT. (We would
merely write 0 in front of every node of a history tree.) The correctness proof of
this construction follows the same lines as the proof of the Büchi construction.

Lemma 1. L(R1) ⊆ L(D1)

Notation. For a state q of R1 and an RHT d = (T , l), we call a node v the host
node of q, denoted host(q, d), if q ∈ l(v), but not in l(vc) for any child vc of v.

The proof idea is the same as for Büchi determinisation [15]: the state of each
accepting run is eventually ‘trapped’ in the same node of the RHT, and this
node must be accepting infinitely often. Let d0, d1 . . . be the run of D1 on α and
q0, q1, . . . an accepting run of R1 on α. We then define the sequence v0, v1, . . .
with vi = host(qi, di), which contains a longest eventually stable prefix v.
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An inductive argument can then be exploited to show that, once this prefix v
is henceforth stable, the index v cannot be rejecting. The assumption that v is
eventually stable but never again accepting leads to a contradiction. Once the
transition (qi, α(i), qi+1) is accepting, qi+1 ∈ li+1(vc) for some c ∈ ω and for
di+1 = (Ti+1, li+1). As v is never again accepting or rejecting, we can show for
all j > i that, if qj ∈ lj(vcj), then qj+1 ∈ lj+1(vcj+1) for some cj+1 ≤ cj . This
monotonicity contradicts the assumption that v is the longest stable prefix.

Lemma 2. L(D1) ⊆ L(R1)

For the run d0d1 . . . of D1 on α, we fix an ascending chain i0 < i1 < i2 . . .
of indices, such that v is not rejecting in any transition (dj−1, α(j − 1), dj) for
j ≥ i0 and such that (dij−1, α(ij−1), dij )∈Av for all j ≥ 0. The proof idea is the
usual way of building a tree of initial sequences of runs: we build a tree of initial
sequences of runs of R1 that contains a sequence q0q1q2 . . . qij for any j ∈ ω iff

– (qi, α(i), qi+1) ∈ T is a transition of R1 for all i < ij ,
– (qi, α(i), qi+1) /∈ R is not rejecting for all i ≥ i0 − 1, and
– for all k < j there is an i ∈ [ik, ik+1[ s.t. (qi, α(i), qi+1) ∈ A is accepting.

This infinite tree has an infinite branch by König’s Lemma. By construction,
this branch is an accepting run of R1 on α.

Corollary 1. L(R1) = L(D1).

Let #ht(n) and #rht(n) be the number of history trees and RHTs, respec-
tively, over sets with n states. First, #rht(n) ≥ #ht(n) holds, because the sub-
tree rooted in 0 of an RHT is a history tree. Second, #ht(n + 1) ≥ #rht(n),
because adding the additional state to l(ε) turns an RHT into a history tree.
With an estimation similar to that of history trees [15], we get:

Theorem 1. inf
{
c | #rht(n)∈O

(
(cn)n

)}
= inf

{
c | #ht(n)∈O

(
(cn)n

)}
≈ 1.65.

The full version shows that #rht(n) is only a constant factor bigger than #ht(n).

Determinising Parity Automata. Having outlined a determinisation con-
struction for one-pair Rabin automata using root history trees, we proceed to de-
fine nested history trees (NHTs), the data structure we use for determinising par-
ity automata. We assume that we have a parity automaton P = (Q,Σ, I, T, pri :
T → [c]), and we select e = 20.5c�.

A nested history tree is a triple (T , l, λ), where T is a finite, prefix closed subset
of finite sequences of natural numbers and a special symbol s (for stepchild),
ω ∪ {s}. We refer to all other children vc, c ∈ ω of a node v as its natural
children. We call l(v) the label of the node v ∈ T , and λ(v) its level.

A node v �= ε is called a Rabin root, iff it ends in s. The root ε is called a
Rabin root iff c > e. A node v ∈ T is called a base node iff it is not a Rabin root
and λ(v) = 2. The set of base nodes is denoted base(T ).

– The label l(v) of each node v �= ε is a subset of the label of its predecessor:
l(v) ⊆ l(pred(v)) holds for all ε �= v ∈ T .

– The intersection of the labels of two siblings is disjoint:
∀v, v′∈T . v �=v′ ∧ pred(v)=pred(v′) ⇒ l(v)∩l(v′) = ∅.
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– For all base nodes, the union of the labels of all siblings is strictly contained
in the label of their predecessor:
∀v∈base(T ) ∃q∈l(v) ∀v′∈T . v=pred(v′) ⇒ q /∈l(v′).

– A node v ∈ T has a stepchild iff v is neither a base-node, nor a Rabin root.
– The union of the labels of all siblings of a non-base node equals the union of

its children’s labels: ∀v∈T � base(T )
l(v) = {q ∈ l(v′) | v′ ∈ T and v = pred(v′)} holds.

– The level of the root is λ(ε) = e.
– The level of a stepchild is 2 smaller than the level of its parent:

for all vs ∈ T , λ(vs) = λ(v) − 2 holds.
– The level of all other children equals the level of its parent:

for all i ∈ ω and vi ∈ T , λ(vi) = λ(v) holds.

While the definition sounds rather involved, it is (for odd c) a nesting of RHTs.
Indeed, for c = 3, we simply get the RHTs, and λ is the constant function with
domain {2}. For odd c > 3, removing all nodes that contain an s somewhere in
the sequence again resemble RHTs, while the sub-trees rooted in a node vs such
that v does not contain a s resemble NHTs whose root has level c− 3.

The transition mechanism from the previous subsection is adjusted accord-
ingly. For each level a (note that levels are always even), we define three sets of
transitions for the parity automaton P : the rejecting transitions Ra = {t ∈ T |
pri(t) > a and pri(t) is odd}; the accepting transitions Aa = {t ∈ T | pri(t) ≥ a
and pri(t) is even}, and the (at least) neutral transitions, Na = T �Ra.

Construction. Let P =
(
P,Σ, I, T, {pri : P → [c]

)
be a nondeterministic parity

automaton with |P | = n states. We construct a language equivalent deterministic
Rabin automaton DR = (D,Σ, d0, Δ, {(Ai, Ri) | i ∈ J}) where,

– D is the set of NHTs over P (i.e., with l(ε) ⊆ P ) whose root has level e,
where e = c if c is even, and e = c− 1 if c is odd,

– d0 is the NHT we obtain by starting with ({ε}, l : ε �→ I, λ : ε �→ e), and
performing Step 7 from the transition construction until we obtain an NHT.

– J is the set of nodes v that occur in some NHT of level e over P , and
– for every tree d ∈ D and letter σ ∈ Σ, the transition d′ = Δ(d, σ) is the

result of the sequence of transformations described below.

Transition Mechanism. Note that we do not define the update of λ, but use λ.
This can be done because the level of the root always remains λ(ε) = e; the
level λ(v) of all nodes v is therefore defined by the number of s occurring in v.
Likewise, the property of v being a base-node or a Rabin root is, for a given c,
a property of v and independent of the labelling function.

Starting from an NHT d = (T , l, λ), we define the transitions Δ : (d, σ) �→ d′

as follows:

1. Update of node labels (subset constructions): For the root, we continue to
use l1(ε) = {q′ ∈ Q | ∃q ∈ l(ε). (q, σ, q′) ∈ T }.
For other nodes v ∈ T that are no Rabin roots, we use l1(v) = {q′ ∈ Q |
∃q ∈ l(v). (q, σ, q′) ∈ Nλ(v)}.
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For the remaining Rabin roots vs ∈ T , we use l1(vs) = {q′ ∈ Q | ∃q ∈
l(vs). (q, σ, q′) ∈ Nλ(v)}. That is, we use the neutral transition of the higher
level of the parent of the Rabin node.

2. Splitting of run threads / spawning new children. We spawn new children
for every node in the NHT. For nodes v ∈ T that are no Rabin roots, we
spawn a child labelled with the set of states reachable through accepting
transitions. For a Rabin root v ∈ T , we spawn a new child labelled like
the root. Thus, for every node v ∈ T which is no Rabin root and has c
natural children, we spawn a new child vc and expand l1 to vc by assigning
l1 : vc �→ {q ∈ Q | ∃q′ ∈ l(v). (q′, σ, q) ∈ Aλ(v)}. If a Rabin root v has c
natural children, we spawn a new child vc of the Rabin root v and expand
l1 to vc by assigning l1 : vc �→ l1(v). We use Tn to denote the extended tree
that includes the new children.

3. Removing states from labels – horizontal pruning. We obtain a function l2
from l1 by removing, for every node v with label l(v) = Q′ and all states q ∈
Q′, q from the labels of all younger siblings of v and all of their descendants.
Stepchildren are always treated as the youngest sibling, irrespective of the
order of creation.

4. Identifying breakpoints – vertical pruning. We denote with Te ⊆ Tn the set
of all nodes v �= ε whose label l2(v) is now equal to the union of the labels
of its natural children. We obtain Tv from Tn by removing all descendants
of nodes in Te, and restrict the domain of l2 accordingly.
Nodes in Tv ∩ Te represent the breakpoints reached during the infinite run
ρ and are called accepting. That is, the transition of DR will be in Av for
exactly the v ∈ Tv ∩ Te. Note that Rabin roots cannot be accepting.

5. Removing nodes with empty label. We denote with Tr = {v ∈ Tv | l2(v) �= ∅}
the subtree of Tv that consists of the nodes with non-empty label and restrict
the domain of l2 accordingly.

6. Reordering. To repair the orderedness, we call ‖v‖ = |os(v) ∩ Tr| the
number of (still existing) older siblings of v, and map v = n1 . . . nj to
v′ = ‖n1‖ ‖n1n2‖ ‖n1n2n3‖ . . . ‖v‖, denoted rename(v).
For To = rename(Tr), we update a pair (Tr, l2) from Step 5 to d′ =

(
To, l′

)
with l′ : rename(v) �→ l2(v).
We call a node v ∈ To ∩T stable if v = rename(v), and we call all nodes in J
rejecting if they are not stable. That is, the transition will be in Rv exactly
for those v ∈ J , such that v is not a stable node in T ∩ T ′.

7. Repairing nestedness. We initialise T ′ to To and then add recursively for
– Rabin roots v without children a child v0 to T ′ and expand l′ by assigning

l′ : v0 �→ l′(v), and for
– nodes v, which are neither Rabin roots nor base-nodes, without children

a child vs to T ′ and expand l′ by assigning l′ : vs �→ l′(v)
until we have constructed an NHT d′ = (T ′, l′, λ′).
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Lemma 3. L(P) ⊆ L(DR)

Notation. For a state q of P , an NHT d = (T , l, λ) and an even number a ≤ e,
we call a node v′ the a host node of q, denoted hosta(q, d), if q ∈ l(v′), but not
in l(v′c) for any natural child v′c of v′, and λ(v′) = a.

Let ρ = q0, q1, q2 . . . be an accepting run of the NPA P with even a =
lim infi→∞ pri

(
qi, α(i), qi+1

)
on an ω-word α, let d0d1d2 . . . be the run of DR

on α, and let vi = hosta(qi, di) for all i ∈ ω.
The core idea of the proof is again that the state of each accepting run is even-

tually ‘trapped’ in a maximal initial sequence v of a-hosts, with the additional
constraint that neither v nor any of its ancestors are infinitely often rejecting,
and the transitions of the run of P are henceforth in Na.

We show by contradiction that v is accepting infinitely often. For λ(v) = a,
the proof is essentially the same as for one-Rabin determinisation. For λ(v) > a,
the proof is altered by a case distinction, where one case assumes that, for some
index i > 0 such that, for all j ≥ i, v is a prefix of all vj , (qj−1, α(j−1), qj) ∈ Na,
and (dj−1, α(j−1), dj) /∈ Rv∪Av, qi is in the label of a natural child vc of v. This
provides the induction basis – in the one-pair Rabin case, the basis is provided
through the accepting transition of the one-pair Rabin automaton, and we have
no corresponding transition with even priority ≥ λ(v) – by definition. If no such
i exists, we choose an i that satisfies the above requirements except that qi is
in the label of a natural child vc of v. We can then infer that the label of vs
also henceforth contains qi. As a Rabin root whose parent is not accepting or
rejecting, vs is not rejecting either.

Lemma 4. L(DR) ⊆ L(P)

The proof of this lemma is essentially the proof of Lemma 2 where, for the
priority a = λ(v) chosen to be the level of the accepting index v, Aa takes the
role of the accepting set A from the one-pair Rabin automaton.

Corollary 2. L(P) = L(DR).

Determinising to a Deterministic Parity Automata D. Deterministic par-
ity automata seem to be a nice target when determinising ω-automata [9,15,18]
given that algorithms that solve parity games (e.g., for acceptance games of al-
ternating and emptiness games of nondeterministic tree automata) have a lower
complexity when compared to solving Rabin games. For applications that involve
co-determinisation, the parity condition also avoids the Streett condition.

Safra’s determinisation construction (and younger variants) intuitively en-
forces a parity-like order on the nodes of history trees. By storing the order
in which nodes are introduced during the construction, we can capture the In-
dex Appearance Records construction that is used to convert Rabin or Streett
automata to parity automata. To achieve this, we augment the states of the de-
terministic automaton (RHTs or NHTs) with a later introduction record (LIR),
an abstraction of the order in which the non-Rabin roots of the ordered trees
are introduced. (Rabin roots provide redundant information and are omitted.)
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For an ordered tree T with m nodes that are no Rabin roots, an LIR is a
sequence v1, v2, . . . vm that contains the nodes of T that are no Rabin roots
nodes, such that, each node appears after its ancestors and older siblings. For
convenience in the lower bound proof, we represent a node v ∈ T of an NHT
d = (T , l, λ) in the LIR by a triple (Sv, cv, Pv) where Sv = l(v), is the label of v,
cv = λ(v) the level of v, and Pv = {q ∈ Q | v = hostcv(q, d)} is the set of states
cv hosted by v. The v can be reconstructed by the order and level. We call the
possible sequences of these triples LIR-NHTs. Obviously, each LIR-NHT defines
an NHT, but not the other way round.

A finite sequence (S1, c1, P1)(S2, c2, P2)(S3, c3, P3) . . . (Sk, ck, Pk) of triples is
a LIR-NHT if it satisfies the following requirements for all i ∈ [k].

1. Pi ⊆ Si,
2. {Pi} ∪ {Sj | j>i, ci=cj , and Sj∩Si �=∅} partitions Si.
3. {Sj | j > i, ci = cj + 2, and Sj ∩ Pi �= ∅} partition Pi.
4. If the highest priority of P is even, then ci = e implies Si ⊆ S1. (Then, the

lowest level construction is Büchi and the first triple refers to the root.)
5. For ci < e, there is a j < i with Si ⊆ Pj .

To define the transitions of D, we can work in two steps. First, we identify,
for each position i of a state N = (S1, c1, P1)(S2, c2, P2)(S3, c3, P3) . . . of D, the
node vi of the NHT d = (T , l, λ) for the same input letter. We then perform the
transition

(
d, σ, (T ′, l′, λ′)

)
on this Rabin automaton. We are then first interested

in the set of non-rejecting nodes from this transition and their indices. These
indices are moved to the left, otherwise maintaining their order. All remaining
vertices of T ′ are added at the right, maintaining orderedness.

The priority of the transition is determined by the smallest position i in
the sequence, where the related node in the underlying tree is accepting or
rejecting. It is therefore more convenient to use a min-parity condition, where
the parity of lim infn→∞ pri(ρ) determines acceptance of a run ρ. As this means
smaller numbers have higher priority, pri is representing the opposite of a priority
function, and we refer to the priority as the co-priority for clear distinction.

If the smallest node is rejecting, the transition has co-priority 2i − 1, if it is
accepting (and not rejecting), then the transition has co-priority 2i, and if no
such node exists, then the transition has co-priority ne + 1.

Lemma 5. Given an NPA P with n states and maximal priority c, we can
construct a language equivalent deterministic parity automaton D with ne + 1
priorities for e = 20.5c�, whose states are the LIR-NHTs described above.

Lemma 6. The DPA resulting from determinising a one-pair Rabin automaton
R1 has O(n!2) states, and O

(
n!(n− 1!)

)
if R1 is Büchi.

Lower Bound. We finally show that our determinisation to Rabin automata
is optimal, and that our determinisation to parity automata is optimal up to
a small constant factor. What is more, this lower bound extends to the more
liberal Streett acceptance condition. The technique we employ to establish the
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lower bound for determinisation to Rabin is similar to [3,18], in that we use the
states of the Rabin automaton in a language game. Such a language game is an
initialised two player game G = (V,E, v0,L), which is played between a verifier
and a spoiler on a star-shaped directed labelled simple multi-graph (V,E). It
has a finite set V of vertices, but a potentially infinite set of edges.

The centre of the star, which we refer to by c ∈ V , is the only vertex of the
verifier, while all other vertices are owned by the spoiler. Besides the centre, the
game has a second distinguished vertex, the initial vertex v0, where a play of
the game starts. The remaining vertices W = V � {v0, c} are called the working
vertices. Like v0, they are owned by the spoiler.

The edges are labelled by finite words over an alphabet Σ. Edges leaving the
centre vertex are labelled by the empty word ε, and there is exactly one edge
leaving from the edge to each working vertex, and no outgoing edge to the initial
vertex. The set of these outgoing edges is thus {(c, ε, v) | v ∈ W}. The edges
that lead to the centre vertex are labelled with non-empty words.

The players play out a run of the game in the usual way by placing a pebble
on the initial vertex v0, letting the owner of that vertex select an outgoing edge,
moving the pebble along it, and so forth. This way, an infinite sequence of edges is
produced, and concatenating the finite words by which they are labelled provides
an infinite word w over Σ. The verifier has the objective to construct a word in
L, while the spoiler has the antagonistic objective to construct a word in Σω�L.

Theorem 2. [3] If the verifier wins a language game for a language recognised
by a DRA R with r states, then he wins it using a strategy with memory r.

To prove optimality of determinising to Rabin, we expand the hardness proofs
[3,18] based on full automata to the determinisation of parity automata.

The words from each vertex is the language for the Rabin automaton where
we have some well defined progress, either some index which occurs accepting
but not rejecting, or an index which occurs not rejecting with the target NHT
either growing or shrinking.

It is easy to establish that the verifier wins these games. To prove that the
minimal DRA that recognises the language of a full parity automaton cannot be
smaller than a DRA obtained with our construction, we show that the verifier
needs all edges to win these games. The techniques to establish this are similar
to those for previous hardness proofs [3,18].

The surprising result is that this technique can be extended to establish opti-
mality for determinisation to parity automata. This can be achieved by aiming
for Streett automata that accept the complement language. This technique is
successful, because the parity construction proves to be optimal (up to a factor
of 1.5) for determinisation to Streett automata.

Theorem 3. The DPA that we construct has less than 1.5 times as many states
as the smallest deterministic Streett (or parity) automaton that recognises the
language of an NPA recognising the hardest possible language.

State sizes for two parameters are usually not crisp to represent. But for the
simple base cases, Büchi and one pair Rabin automata, we get very nice results:
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the known upper bound for determinising Büchi to parity automata [15] are tight
and Piterman’s algorithm for it [9] is optimal modulo a factor of 3n, where 2n
stem from the fact that [9] uses state based acceptance. With Lemma 6 we get:

Corollary 3. The determinisation of Büchi automata to Streett or parity au-
tomata leads to θ(n!(n − 1)!) states, and the determinisation of one-pair Rabin
automata to Streett or parity automata leads to θ(n!2) states.
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Tight Bounds for Complementing Parity

Automata�

Sven Schewe and Thomas Varghese
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Abstract. We follow a connection between tight determinisation and
complementation and establish a complementation procedure from tran-
sition labelled parity automata to transition labelled nondeterministic
Büchi automata. We prove it to be tight up to an O(n) factor, where
n is the size of the nondeterministic parity automaton. This factor does
not depend on the number of priorities.

1 Introduction

The precise complexity of complementing ω-automata is an intriguing problem
for two reasons: first, the quest for optimal algorithms is a much researched
problem [1,16,11,23,14,10,24,9,7,6,12,26,28], and second, complementation is a
valuable tool in formal verification (c.f., [8]), in particular when studying
language inclusion problems of ω-regular languages. Complementation is also
useful to check the correctness of translation techniques [26,25]. The GOAL
tool [25], for example, provides such a test suite and incorporates recent algo-
rithms [14,24,7,12] for Büchi complementation.

While devising optimal algorithms for complementing nondeterministic finite
automata is simple—nondeterministic finite automata can be determinised using
a simple subset construction, and deterministic finite automata can be comple-
mented by complementing the set of final states [13,16]—devising optimal algo-
rithms for complementing nondeterministic ω-automata is hard, because simple
subset constructions are insufficient to determinise or complement them [10,9].

Given the hardness and importance of the problem, complementation of ω-
automata enjoyed much attention. The initial focus was on the complementation of
Büchi automata with state-based acceptance [1,11,23,10,14,9,24,7,6,26,28,17,25],
resulting in a continuous improvement of its upper and lower bounds.

The first complementation algorithm dates back to the introduction of Büchi
automata in 1962. In his seminal paper “On a decision method in restricted sec-
ond order arithmetic” [1], Büchi develops a doubly exponential complementation
procedure. While Büchi’s result shows that nondeterministic Büchi automata
(and thus ω-regular expressions) are closed under complementation, comple-
menting an automaton with n states may, when using Büchi’s complementa-

tion procedure, result in an automaton with 22
O(n)

states, while an Ω(2n) lower
bound [16] is inherited from finite automata.

� Extended version with omitted proofs at http://arxiv.org/abs/1406.1090.
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In the late 80s, these bounds were improved in a sequence of results, starting
with establishing an EXPTIME upper bound [11,23], matching the EXPTIME
lower bound [16] inherited from finite automata. However, the early EXPTIME

complementation techniques produce automata with up to 2O(n2) states [11,23];
thus, these upper bounds were still exponential in the lower bounds.

This situation changed in 1988, when Safra introduced his famous determini-
sation procedure for nondeterministic Büchi automata [14], resulting in an nO(n)

bound for Büchi complementation, while Michel [10] established a seemingly
matching Ω(n!) lower bound shortly. Together, these results imply that Büchi
complementation is in nθ(n), leaving again the impression of a tight bound.

As pointed out by Vardi [26], this impression is misleading, because the O()
notation hides an nθ(n) gap between both bounds. This gap was narrowed down
in 2001 to 2θ(n) by the introduction of an alternative technique that builds
on level rankings and a cut-point construction [7]. The complexity of the plain
method is approximately (6n)n, leaving a (6e)n gap to Michel’s lower bound [10].

Subseqently, tight level rankings [6,28] were exploited by Friedgut, Kupfer-
man, and Vardi [6] to improve the upper complexity bound to O

(
(0.96n)n

)
, and

by Yan [28] to improve the lower complexity bound to Ω
(
(0.76n)n

)
. Schewe [17]

provided a matching upper bound, showing tightness up to an O(n2) factor.
In recent works, more succinct acceptance mechanism have been studied,

where the most important ones are parity and generalised Büchi automata, as
they occur naturally in the translation of μ-calculi and LTL specifications, re-
spectively. In [21], we gave tight bounds for the determinisation and complemen-
tation of generalised Büchi automata. For Rabin, Streett, and parity automata,
there has been much progress [4,3,2], in particular establishing an nθ(n) bound
for parity complementation with state-based acceptance, which has been a great
improvement and pushed tightness of parity complementation to the level known
from Büchi complementation since the late 80s [14,10].
Contribution. In this paper, we establish tight bounds for the complemen-
tation of parity automata with transition-based acceptance. A generalisation of
the ranking-based complementation procedures quoted above to transition-based
acceptance is straight forward, and the Safra-style determinisation procedures
from the literature [14,15,12,18,21] have a natural representation with an accep-
tance condition on transitions. Their translation to state-based acceptance is by
multiplying the acceptance from the last transition to the state space.

A similar observation can be made for other automata transformations, like
the removal of ε-transitions from translations of μ-calculi [27,19] and the treat-
ment of asynchronous systems [20], where the state-space grows by multiplication
with the acceptance information (e.g., maximal priority on a finite sequence of
transitions), while it cannot grow in case of transition-based acceptance. Sim-
ilarly, tools like SPOT [5] offer more concise automata with transition-based
acceptance mechanism as a translation from LTL. Using state-based accep-
tance in the automaton that we want to complement would also complicate
the presentation of the complementation procedure. But first and foremost, us-
ing transition-based acceptance provides cleaner results. This is the case because
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in state-based acceptance, the role of the states is overloaded. In finite automata
over infinite structures, each state represents the class of tails of the word that
can be accepted from this state. In state-based acceptance, they must account
for the acceptance mechanism itself, while they are relieved from this burden in
transition-based acceptance. In ranking-based complementation techniques, this
results in a situation where states with certain properties, such as final states
for Büchi automata, can only occur with some ranks, but not with all.

As transition-based acceptance separates these concerns, the presentation be-
comes cleaner. The natural downside is that we lose the nO(n) bound [3] for
parity complementation, as the number of priorities in a parity automaton with
transition-based acceptance can grow arbitrarily. But in return, we do get a
clean and simple complementation procedure based on a data structure we call
flattened nested history trees (FNHTs), which is inspired by a generalisation of
history trees [18] to multiple levels, one for each even priority ≥ 2.

In [21], we show a connection between optimal determinisation and comple-
mentation for generalised Büchi automata, where we exploit the nondetermin-
istic power of a Büchi automaton to devise a tight complementation procedure.
In this paper, we follow this connection between tight determinisation [22] and
complementation to devise a tight complementation construction from parity to
nondeterministic Büchi automata.

We show that any procedure that complements full parity automata with
states Q and maximal priority π has at least |fnht(Q, π)|/2 states, where
fnht(Q, π) is the set of FNHTs for a given set Q of states and maximal priority π
of the parity automaton that is to be complemented. Our complementation con-
struction uses a marker in addition for its acceptance mechanism. Essentially,
it is used to mark some position of interest in an FNHT. It accounts for the
O(n) gap between the upper and lower bound. We show that, for π ≥ 2 (and
hence for Büchi automata upwards) the number of states of our complementation
construction is bounded by 4n + 1 times the lower bound.

2 Preliminaries

We denote the non-negative integers by ω = {0, 1, 2, 3, ...}. For a finite alphabet
Σ, an infinite word α is an infinite sequence α0α1α2 · · · of letters from Σ. We
sometimes interpret ω-words as functions α : i �→ αi, and use Σω to denote the
ω-words over Σ.

ω-automata are finite automata that are interpreted over infinite words and
recognise ω-regular languages L ⊆ Σω. Nondeterministic parity automata are
quintuples P = (Q,Σ, I, T, pri : T → Π), where Q is a finite set of states with a
non-empty subset I ⊆ Q of initial states, Σ is a finite alphabet, T ⊆ Q×Σ×Q
is a transition relation that maps states and input letters to sets of successor
states, and pri is a priority function that maps transitions to a finite set Π ⊂ ω.

A run ρ of a nondeterministic parity automaton P on an input word α is an
infinite sequence ρ : ω → Q of states of P , also denoted ρ = q0q1q2 · · · ∈ Qω,
such that the first symbol of ρ is an initial state q0 ∈ I and, for all i ∈ ω,
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(qi, αi, qi+1) ∈ T is a valid transition. For a run ρ on a word α, we denote
with ρ : i �→

(
ρ(i), α(i), ρ(i + 1)

)
the transitions of ρ. Let infin(ρ) = {q ∈

Q | ∀i ∈ ω ∃j > i such that ρ(j) = q} denote the set of all states that occur
infinitely often during the run ρ. Likewise, let infin(ρ) = {t ∈ T | ∀i ∈ ω ∃j >
i such that ρ(j) = t} denote the set of all transitions that are taken infinitely
many times in ρ. Acceptance of a run is defined through the priority function
pri. A run ρ of a parity automaton is accepting if lim supn→∞ pri

(
ρ(n)

)
is even,

that is, if the highest priority that occurs infinitely often in the transitions of ρ
is even. A word α is accepted by a parity automaton P iff it has an accepting
run, and its language L(P) is the set of words it accepts.

Parity automata with Π ⊆ {1, 2} are called Büchi automata. Büchi automata
are denoted B = (Q,Σ, I, T, F ), where F ⊆ T are called the final or accepting
transitions. A run is accepting if it contains infinitely many accepting transitions.

We assume w.l.o.g. that the set Π of priorities satisfies that minΠ ∈ {0, 1}.
If this is not the case, we can simply change pri accordingly to pri′ : t �→ pri(t)−2
several times until this constraint is satisfied. We likewise assume that Π has
no holes, that is, Π = {i ∈ ω | maxΠ ≥ i ≥ minΠ}. If there is a hole h /∈ Π
with maxΠ > h > minΠ , we can change pri to pri′ : t �→ pri(t) if pri(t) < h and
pri′ : t �→ pri(t) − 2 if pri(t) > h. These changes do not affect the acceptance of
any run, and applying finitely many of these changes brings Π into this form.

The different priorities have a natural order �, where i ; j if i is even and j
is odd; i is even and i > j; or j is odd and i < j. For a non-empty set Π ′ ⊆ Π of
priorities, optΠ ′ = {i∈Π ′ | ∀j∈Π ′. i � j} is the optimal priority for acceptance.

The complexity of a parity automaton P = (Q,Σ, I, T, pri : T → Π) is mea-
sured by its size n = |Q| and its set of priorities Π . For a given size n and set
of priorities Π , there is an automaton that recognises a hardest language. This
automaton is referred to as the full automaton PΠ

n = (Q,Σ, I, T, pri : T → Π),
with |Q| = n, I = Q, Σ = Q × Q → 2Π , T = {q, σ, q′) | σ(q, q′) �= ∅, and
pri(q, σ, q′) = optσ(q, q′). Note that partial functions from Q × Q to Π would
work as well as the alphabet. The larger alphabet is chosen for technical conve-
nience in the proofs. Any other language recognised by a nondeterministic parity
automaton P with n states and priorities Π can essentially be obtained by a
language restriction via alphabet restriction from PΠ

n .

3 Complementing Parity Automata

The construction described in this section draws from two main sources of in-
spiration. One source is the introduction of efficient techniques for the deter-
minisation of parity automata in [22]. The nested history trees used there have
been our inspiration for the flattened nested history trees that form the core data
structure in the complementation from Subsection 3.2 and are the backbone of
the lower bound proof from Subsection 3.4. The second source of inspiration is
the connection [21] between the efficient determinisation based on history trees
[18] for Büchi automata and generalised Büchi automata [21] and their level
ranking based complementation [7,6,17,21].
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The intuition for the complementation is to use the nondeterministic power of
a Büchi automaton to reduce the size of the data stored for determinisation. As
usual, this nondeterministic power is intuitively used to guess a point in time,
where all nodes of the nested history trees from parity determinisation [22], which
are eventually always stable, are henceforth stable. Alongside, the set of stable
nodes can be guessed. Like in the construction for Büchi automata, the structure
can then be flattened, preserving the ‘nicking order’, the order in which older
nodes and descendants take preference in taking states of the nondeterministic
parity automaton that is determinised. The complement automaton runs in two
phases: a first phase before this guessed point in time, and a second phase after
this point, where the run starts in such a flattened tree.

We first introduce flattened nested history trees as our main data structure.
While we take inspiration from nested history trees [22], the construction is self-
contained. In the second subsection, we show that Büchi automata recognising
the complement language of the full nondeterministic parity automaton PΠ

n need
to be large by showing disjointness properties of accepting runs for a large class
of words, one for each full flattened nested history tree introduced in Subsection
3.1. This language is also instructive in how the data structure is exploited.

We extend our data structure by markers, resulting in marked flattened trees,
which are then used as the main part of the state space of the natural com-
plementation construction introduced in Subsection 3.2. We show correctness of
our complementation construction in Subsection 3.3 and tightness up to an O(n)
factor in Subsection 3.4. Note that all our constructions assume maxΠ ≥ 2, and
therefore do not cover the less expressive CoBüchi automata.

3.1 Flattened Nested History Trees and Marked Flattened Trees

Flattened nested history trees (FNHTs) are the main data structure used in our
complementation algorithm. For a given parity automaton P = (Q,Σ, I, T, pri :
T → Π), an FNHT over the set Q of states, maximal priority πm = maxΠ and
maximal even priority πe = optΠ , is a tuple (T , ls : T → 2Q, ll : T → 2N, lp :
T → 2Q, lr : T → 2Q), where T (an ordered, labelled tree) is a non-empty, finite,
and prefix closed subset of finite sequences of natural numbers and a special
symbol s (for stepchild), ω ∪ {s}, that satisfies the constraints given below. We
call a node vs ∈ T a stepchild of v, and refer to all other nodes vc with c ∈ ω as
the natural children of v. nc(v) = {vc | c ∈ ω and vc ∈ T } is the set of natural
children of v. The root is a stepchild.

The constraints an FNHT quintuple has to satisfy are as follows:

1. Stepchildren have only natural children and natural children have only
stepchildren.

2. Only natural children and, when the highest priority π is odd, the root may
be leafs.

3. T is order closed: for all c, c′ ∈ ω with c < c′, vc′ ∈ T implies vc ∈ T .

4. For all v ∈ T , ls(v) �= ∅.
5. If v is a stepchild, then lp(v) = ∅.
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6. If v is a stepchild, then ls(v) = lr(v) ∪
⋃

v′∈nc(v) ls(v
′).

The sets ls(v
′) and ls(v

′′) are disjoint for all v′, v′′ ∈ nc(v) with v′ �= v′′, and
lr(v) is disjoint with

⋃
v′∈nc(v) ls(v

′).

7. If v is a natural child, then lp(v)�=∅, ls(v) = lp(v)∪lr(v), and lp(v)∩lr(v) = ∅.
8. If a natural child v is not a leaf, then ls(vs) = lp(v).
9. ll(ε) = πe and, for all v ∈ T , ll(v) ≥ 2.

10. If vs ∈ T , then ll(vs) = ll(v)− 2, and if vc ∈ T for c ∈ ω, then ll(vc) = ll(v).

The elements in ls(v) are called the states, lp(v) the pure states, and lr(v) the
recurrent states of a node v, and ll(v) is called its level. Note that the level follows
a simple pattern: the root is labelled with the maximal even priority, ll(ε) = πe,
the level of natural children is the same as the level of their parents, and the
level of a stepchild vs of a node v is two less than the level of v. For a given
maximal even priority πe, the level is therefore redundant information that can
be reconstructed from the node and πi. For a given set Q and maximal priority
π, fnht(Q, π) denotes the flattened nested history trees over Q. An FNHT is
called full if the states ls(ε) = Q of the root is the full set Q.

To include an acceptance mechanism, we enrich FNHTs to marked flattened
tress (MFTs) that additionally contain a marker vm and a marking set Qm, s.t.
– either vm = (v, r) with v ∈ T is used to mark that we follow a breakpoint

construction on the recurrent states, in this case lr(v) ⊇ Qm �= ∅,
– or vm = (v, p) with v is a leaf in T is used to mark that we follow a breakpoint

construction on the pure states of a leaf v, in this case lp(v) ⊇ Qm �= ∅.
The marker is used to mark a property to be checked. For markers vm = (v, r),

the property is that a particular node would not spawn stable children in a
nested history tree [22]. As usual in Safra like constructions, this is checked with
a breakpoint, where a breakpoint is reached when all children of a node spawned
prior to the last breakpoint die. For markers vm = (v, p), the property is that
all runs that are henceforth trapped in the pure nodes of v must eventually
encounter a priority ll(v) − 1. This priority is then dominating, and implies
rejection as an odd priority. We check these properties round robin for all nodes
in T , skipping over nodes, where the respective sets lr(v) or lp(v) are empty, as
the breakpoint there is trivially reached immediately.

For a given FNHT (T , ls, ll, lp, lr), next(vm) is a mapping from a marker vm
to a marker/marking set pair (v, r), lr(v) or (v, p), lp(v). The new marker is the
first marker after vm in some round robin order such that the set lr(v) or lp(v),
resp., is non-empty.

If (T , ls, ll, lp, lr) is an FNHT and vm and Qm satisfy the constraints for
markers and marking sets from above, then (T , ls, ll, lp, lr; vm, Qm) is a marked
flattened tree. For a given set Q and priorities Π with maximal priority π =
maxΠ , mft(Q, π) denotes the marked flattened trees over Q. A marking is called
full if either vm = (v, r) and Qm = lr(v), or vm = (v, p) and Qm = lp(v).

3.2 Construction

For a given nondeterministic parity automatonP = (Q,Σ, I, T, pri : T → Π) with
maximal even priority πe > 1, we construct a nondeterministic Büchi automaton
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C = (Q′, Σ, {I}, T ′, F ) that recognises the complement language of P as follows.
First we setQ′ = Q1∪Q2 with Q1 = 2Q andQ2 = mft(Q, π), and T ′ = T1∪Tt∪T2,
where

– T1 ⊆ Q1 ×Σ ×Q1 are transitions in an initial part Q1 of the states of C,
– Tt ⊆ Q1 ×Σ ×Q2 are transfer transitions that can be taken only once in a

run, and
– T2 ⊆ Q2 ×Σ ×Q2, are transitions in a final part Q2 of the states of C,

where T1 and T2 are deterministic. We first define a transition function δ for the
subset construction and functions δi for all priorities i ∈ Π , and then the sets
T1, Tt, and T2.

– δ : (S, σ) �→ {q ∈ Q | ∃s ∈ S. (s, σ, q) ∈ T },
– δi : (S, σ) �→

{
q ∈ Q | ∃s ∈ S. (s, σ, q) ∈ T and pri

((
s, σ, q)

)
� i
}

,

– T1 =
{

(S, σ, S′) ∈ Q1 ×Σ ×Q1 | S′ = δ(S, σ)
}

,
where only transitions (∅, σ, ∅) are accepting.

– Tt =
{(

S, σ, (T , ls, ll, lp, lr; vm, Qm)
)
∈ Q1 × Σ × Q2 | ls(ε) = δ(S, σ)

}
and

(T , ls, ll, lp, lr; vm, Qm) is a marked flattened tree.
– T2 =

{(
(T , ls, ll, lp, lr; vm, Qm), σ, s

)
∈ Q2 ×Σ ×Q2 |

• if v is a stepchild, then l′′s (v) = δll(v)+1

(
ls(v), σ

)
• if v is a natural child, then l′′s (v) = δll(v)−1

(
ls(v), σ

)
• if v is a natural child, then l′′r (v) = δll(v)−1

(
lr(v), σ

)
∪ δll(v)

(
ls(v), σ

)
,

• starting at the root, we then define inductively:
∗ l′s(ε) = l′′s (ε),
∗ if vc is a natural child, then l′s(vc) =

(
l′′s (vc)∩ l′s(v)

)
�
⋃

c′<c l
′′
s (vc′),

l′r(vc) = l′′r (vc) ∩ l′s(vc), and l′p(vc) = l′s(vc) � l′r(vc), and
∗ if vs is a stepchild, then l′s(vs) = l′p(v).

• if there exists one, we extend the functions to obtain the unique FNHT
(T , l′s, ll, l′p, l′r) (otherwise C blocks)

• if vm = (v, r) then Q′
m = δll(v)−1(Qm, σ) ∩ l′r(v), and

if vm = (v, p) then Q′
m = δll(v)−3(Qm, σ) ∩ l′p(v),

• if Q′
m = ∅, then the transition is accepting and

s =
(
T , l′s, ll, l′p, l′r; next(vm)

)
,

• if Q′
m �= ∅, then the transition is not accepting and we have that

s = (T , l′s, ll, l′p, l′r; vm, Q′
m).

3.3 Correctness

To show that L(C) is the complement of L(P), we first show that a word accepted
by C is rejected by P and then that a word accepted by P is rejected by C.

Lemma 1. If C has an accepting run on α, then P rejects α.

Proof. Let ρ = S0S1 . . . be an accepting run of C on α that stays in Q1. Thus,
there is an i ∈ ω such that, for all j ≥ i, Sj = ∅. But if we consider any run
ρ′ = q0q1q2 . . . of P on α, then it is easy to show by induction that qk ∈ Sk holds
for all k ∈ ω, which contradicts Si = ∅; that is, in this case P has no run on α.
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Let us now assume that ρ = S0S1 . . . Sisi+1si+2 . . . is an accepting run of C
on α, where (Si, αi, si+1) ∈ Tt is the transfer transition taken. (Recall that runs
of C must either stay in Q1 or contain exactly one transfer transition.)

Let us assume for contradiction that P has an accepting run ρ′ = q0q1q2 . . .
with even dominating priority e = lim supj→∞ pri

(
(qj , αj , qj+1)

)
. Let, for all

j > i, sj = (T , ljs, ll, ljp, ljr; vjm, Qj
m

)
and Sj = ljs(ε). It is again easy to show by

induction that qj ∈ Sj for all j ∈ ω. Let now vj ∈ T be the longest node with

ljl (vj) ≥ e and qj ∈ ljs(vj). Note that such a node exists, as qj ∈ Sj = ljs(ε) holds.
We now distinguish the two cases that the vj do and do not stabilise eventually.

First case. Assume that there are an i′ > i and a v ∈ T such that, for all
j ≥ i′, vj = v. We choose i′ big enough that pri(qj−1, αj−1, qj) ; e + 1 holds for
all j ≥ i′.

If v is a stepchild, then qj ∈ ljr(v) for all j ≥ i′. Using the assumption
that ρ is accepting, there is an i′′ > i′ such that (si′′−1, αi′′−1, si′′ ) is accepting,
and vi

′′
m = (v, r). (Note that qi′′ ∈ li

′′
r (v) implies li

′′
r (v) �= ∅.) But then we have

qi′′ ∈ Qi′′
m = li

′′
r (v), and an inductive argument provides (sj , αj , sj+1) /∈ F and

qj ∈ Qj
m for all j ≥ i′′. This contradicts that ρ is accepting.

If v is a natural child, then we distinguish three cases. The first one is that
there is a j′ ≥ i′ such that qj′ ∈ lj

′
r (v). Then we can show by induction that

qj ∈ ljr(v) for all j ≥ j′ and follow the same argument as for stepchildren, using
i′′ > j′.

The second is that qj ∈ ljp(v) holds for all j ≥ i′. There are now again a few
sub-cases that each lead to contradiction. The first is that ll(v) = e. But in this
case, we can choose a j > i′ with pri

(
(qj , αj , qj+1)

)
= e and get qj+1 ∈ lj+1

r (v)
(contradiction). The second is that ll(v) > e and v is not a leaf. But in that
case, ll(vs) ≥ e holds and qj ∈ ljp(v) implies qj ∈ ljp(vs), which contradicts the
maximality of v. Finally, if ll(v) > e and v is a leaf of T , we get a similar
argument as for stepchildren: Using the assumption that ρ is accepting, there is
an i′′ > i′ such that (si′′−1, αi′′−1, si′′ ) is accepting, and vi

′′
m = (v, p). (Note that

qi′′ ∈ li
′′
p (v) implies li

′′
p (v) �= ∅.) But then we have qi′′ ∈ Qi′′

m = li
′′
p (v), and an

inductive argument provides (sj , αj , sj+1) /∈ F and qj ∈ Qj
m for all j ≥ i′′. This

contradicts that ρ is accepting.

Second case. Assume that the vj do not stabilise. Let v be the longest sequence
such that v is an initial sequence of almost all vj , and let i′ > i be an index such
that v is an initial sequence of vj for all j ≥ i′. Note that qj is in ls(v

′
j) for all

ancestors v′j of vj .
First, we assume for contradiction that there exists some j > i′ with

pri
(
(qj , αj , qj+1)

)
= e′ ; ll(v) (note that the ‘better than’ relation implies that

e′ > ll(v) is even). Then we select a maximal ancestor v′ of v with ll(v
′) = e′;

note that such an ancestor is a natural child, as a stepchild has only natural
children, and all of them have the same level.

As v′ is an ancestor of vj and vj+1, qj ∈ ljs(v′) and qj+1 ∈ lj+1
s (v′) hold,

and by the transition rules thus imply qj+1 ∈ lj+1
r (v′), which contradicts qj+1 ∈

lj+1
s (vj+1). (Note that ll(v

′) > ll(v) ≥ ll(vj+1) holds.)
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Second, we show that pri
(
(qj , αj , qj+1)

)
� ll(v)+1 holds infinitely many times.

For this, we first note that the non-stability of the sequence of vj-s implies that
at least one of the following three events happen for infinitely many j > i′.

1. v is a stepchild, qj ∈ ljs(vc) for some child vc of v, but, for all children vc′ of
v, qj+1 /∈ lj+1

s (vc′),
2. v is a stepchild, qj ∈ ljs(vc) for some child vc of v, and qj+1 ∈ lj+1

s (vc′) for
some older sibling vc′ of vc, that is, for c′ > c, or

3. v is a natural child, qj /∈ ljs(vs), but qj+1 ∈ lj+1
s (vs).

This is just the counter position to “vj stabilises or v is not maximal”. In all
three cases, the definition of T2 requires that pri

(
(qj , αj , qj+1)

)
� ll(v) + 1.

As the first observation implies that there may only be finitely many transi-
tions with even priority > ll(v) and the second observation implies that there are
infinitely many transitions in ρ′ with odd priority > ll(v), they together imply
that lim supj→∞ pri

(
(qj , αj , qj+1)

)
is odd, which leads to a contradiction. "#

Lemma 2. If P has an accepting run on α, then C rejects α. "#

We prove this with a contradiction. We consider the runs of C in two phases. We
assume for contradiction that C has an accepting run ρ′ = S0S1 . . . before the
transfer transition is taken. It is easy to show by induction that no transition
of (Si, αi, Si+1) is accepting. We then guess a point in time where the transfer
transition is taken and we assume for contradiction that C has an accepting run
ρ′ = S0S1 . . . Sisi+1si+2 . . ., where (Si, αi, si+1) ∈ Tt is the transfer transition
taken. It is similarly easy to now show by induction that for all j ∈ ω, qj ∈ Sj

holds. We then choose an iε > i such that, for all k ≥ iε, pri
(
(qk−1, αk−1, qk)

)
≤ e

holds.
We now look at the nodes v ∈ T , such that qj ∈ ljs(v), where j ≥ iε. We

exploit an inductive argument based on our construction for two possible cases
and we reach a point in the run which is stable but not accepting. This leads to
a contradiction.

Corollary 1. C recognises the complement language of P. "#

3.4 Lower Bound and Tightness

In order to establish a lower bound, we use a sub-language of the full automaton
PΠ
n , and show that an automaton that recognises it must have at least as many

states as there are full FNHTs in fnht(Q, π) for n = |Q| and π = maxΠ .
To show this, we define two letters for each full FNHT t = (T , ls, ll, lp, lr) ∈

fnht(Q, π). βt : Q×Q→ 2Π is the letter where:

– if v is a stepchild and p, q ∈ ls(v), then ll(v)+1 ∈ βt(p, q) (provided
ll(v)+1∈Π),

– if v is a stepchild, p ∈ lr(v), and q ∈ ls(vc) for some c ∈ ω, then ll(v) ∈
βt(p, q),

– if v is a stepchild, c, c′ ∈ ω, c < c′, vc′ ∈ T , p ∈ ls(vc
′), and q ∈ ls(vc), then

ll(v) ∈ βt(p, q),
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– if v is a natural child, p ∈ lp(v), and q ∈ lr(v) then ll(v) ∈ βt(p, q).
– if v is a natural child and p, q ∈ lr(v), then ll(v)− 1 ∈ βt(p, q), and
– if v is a natural child and p, q ∈ lp(v), then ll(v)− 1 ∈ βt(p, q).

γt : Q×Q→ 2Π is the letter where i ∈ γt(p, q) if i ∈ βt(p, q) and additionally:

– if v is a natural child, ll(v)−2 ∈ Π , and p, q ∈ lr(v), then ll(v)−2 ∈ γt(p, q),
– if v is a stepchild and p, q ∈ lr(v), then ll(v) ∈ γt(p, q), and
– if v is a natural child, ll(v)−2 ∈ Π , and p, q ∈ lp(v), then ll(v)−2 ∈ γt(p, q).

For a high integer h > |fnht(Q, π)|, we now define the ω-word αt = (βtγt
h−1)ω ,

which consists of infinitely many sequences of length h that start with a letter
βt and continue with h − 1 repetitions of the letter γt, for each full FNHT
t ∈ fnht(Q, π).

We first observe that αt is rejected by PΠ
n .

Lemma 3. αt /∈ L(PΠ
n ).

Proof. By Lemma 1, it suffices to show that the complement automaton C of
PΠ
n , as defined in Section 3.2 accepts αt. The language is constructed such that
C has a run ρ = Q(t; v1m, Q1

m)(t; v2m, Q2
m)(t; v3m, Q3

m) . . ., such that the transition(
(t; vim, Qi

m), αt
i, (t; v

i+1
m , Qi+1

m )
)

is accepting for i > 0 if i mod h = 0. "#

Let B be some automaton with states S that recognises the complement lan-
guage of PΠ

n . We now fix an accepting run ρt = s0s1s2 . . . for each word αt and
define the set At of states in an ‘accepting cycle’ as At =

{
s ∈ S | ∃i, j, k ∈

ω with 1 ≤ j < k ≤ h such that s = sih+j = sih+k

}
holds, and define the

interesting states It = At∩ infin(ρt).

Lemma 4. For t �= t′, It and It′ are disjoint (It ∩ It′ = ∅). "#

The proof idea is to assume that a state s ∈ It ∩ It′ , and use it to construct a
word from αt and αt′ and an accepting run of B on the resulting word from ρt
and ρt′ , and then show that it is also accepted by PΠ

n .

Theorem 1. B has at least one state for each full FNHTs in fnht(Q,maxΠ).

Proof. We prove the claim with a case distinction. The first case is that It �= ∅
holds for all full FNHT t ∈ fnht(Q,maxΠ). Lemma 4 shows that the sets of
interesting states are pairwise disjoint for different trees t �= t′. As none of them
is empty, B has at least as many states as fnht(Q,maxΠ) contains full FNHTs.

The second case is there is a full FNHT t ∈ fnht(Q,maxΠ) such that It = ∅.
By Lemma 3, each ρt = s0s1s2 . . . is an accepting run. Let now i ∈ ω be an index,
such that, for all j ≥ i, sj ∈ infin(ρt), and k ≥ i an integer with k mod h = 0.
It = ∅ implies that sk+j �= sk+j′ for all j, j′ with 1 ≤ j < j′ ≤ h. Then B,
and even infin(ρt), has at least h− 1 different states, and the claim follows with
h > |fnht(Q,maxΠ)|. "#

To show tightness, we proceed in three steps. In a first step, we provide an
injection from MFTs with non-full marking to MFTs with full marking.
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Next, we argue that the majority of FNHTs is full. Taking into account that
there are at most |Q| different markers makes it simple to infer that the states
of our complementation construction divided by the lower bound from Theorem
1 is in O(n).

Lemma 5. There is an injection from MFTs with non-full marking to MFTs
with full marking in mft(Q, π). "#

In Lemma 5, we have shown that the majority of MFTs have a full marking.
Next we show that the majority of FNHTs is full. (Neither mapping is surjective.)

Lemma 6. There is an injection from non-full to full FNHTs in fnht(Q, π). "#

Theorem 2. The complementation construction is tight up to a factor of 4n+1,
where n = |Q| is the number of states of the complemented parity automaton.

Proof. For the number of MFTs, Lemma 5 shows that they are at most twice the
number of MFTs with full marking. Note that the marker (vm, p) can only refer
to leafs where lp(vm) is non-empty and markers (vm, r) can only refer to nodes
where lr(vm) is non-empty. It is easy to see that all sets described in this way are
pairwise disjoint. Consequently, there are at most |Q| such markers. Thus, the
number of MFTs with full marking is at most n times the number of FNHTs.

By Lemma 6, the number of FNHTs is in turn at most twice as high as the
number of all full FNHTs. Thus we have bounded the number of MFTs by 4n
times the number of full FNHTs used to estimate the lower bound in Theorem 1,
irrespective of the priorities.

What remains is the trivial observation that the second part of the state-space,
the subset construction, is dwarfed by the number of MFTs. Consequently, we
can estimate the state-space of the complement automaton divided by the lower
bound from Theorem 1 by 4n + 1. "#
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International Journal of Foundations of Computer Science 17(4), 851–867 (2006)

7. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(2), 408–429 (2001)



510 S. Schewe and T. Varghese

8. Kurshan, R.P.: Computer-aided verification of coordinating processes: the aut-
omata-theoretic approach. Princeton University Press (1994)
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Abstract. We characterize the infinite words determined by indexed
languages. An infinite language L determines an infinite word α if every
string in L is a prefix of α. If L is regular or context-free, it is known
that α must be ultimately periodic. We show that if L is an indexed
language, then α is a morphic word, i.e., α can be generated by iterating
a morphism under a coding. Since the other direction, that every morphic
word is determined by some indexed language, also holds, this implies
that the infinite words determined by indexed languages are exactly the
morphic words. To obtain this result, we prove a new pumping lemma
for the indexed languages, which may be of independent interest.

1 Introduction

Formal languages and infinite words can be related to each other in various
ways. One natural connection is via the notion of a prefix language. A prefix
language is a language L such that for all x, y ∈ L, x is a prefix of y or y is
a prefix of x. Every infinite prefix language determines an infinite word. Prefix
languages were introduced by Book [5] in an attempt to study the complexity
of infinite words in terms of acceptance and generation by automata. Book used
the pumping lemma for context-free languages to show that every context-free
prefix language is regular, implying that any infinite word determined by such a
language is ultimately periodic. Recent work has continued and expanded Book’s
project, classifying the infinite words determined by various classes of automata
[19] and parallel rewriting systems [18].

In this paper we characterize the infinite words determined by indexed lan-
guages. The indexed languages, introduced in 1968 by Alfred Aho [1], fall be-
tween the context-free and context-sensitive languages in the Chomsky hierar-
chy. More powerful than the former class and more tractable than the latter,
the indexed languages have been applied to the study of natural languages [9]
in computational linguistics. Indexed languages are generated by indexed gram-
mars, in which nonterminals are augmented with stacks which can be pushed,

� Due to space constraints, some proofs are omitted or only sketched. The full version
is available at http://arxiv.org/abs/1406.3373.
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popped, and copied to other nonterminals as the derivation proceeds. Two au-
tomaton characterizations are the nested stack automata of [2], and the order-2
pushdown automata within the Maslov pushdown hierarchy [15].

The class of indexed languages IL includes all of the stack automata classes
whose infinite words are characterized in [19], as well as all of the rewriting system
classes whose infinite words are characterized in [18]. In particular, IL properly
includes ET0L [8], a broad class within the hierarchy of parallel rewriting systems
known as L systems. L systems have close connections with a class of infinite
words called morphic words, which are generated by repeated application of
a morphism to an initial symbol, under a coding [3]. In [18] it is shown that
every infinite word determined by an ET0L language is morphic. This raises the
question of whether the indexed languages too determine only morphic words, or
whether indexed languages can determine infinite words which are not morphic.

To answer this question, we employ a new pumping lemma for IL. In Book’s
paper, as well as in [18] and [19], pumping lemmas played a prominent role
in characterizing the infinite words determined by various language classes. A
pumping lemma for a language class C is a powerful tool for proving that certain
languages do not belong to C, and thereby for proving that certain infinite
words cannot be determined by any language in C. For the indexed languages, a
pumping lemma exists due to Hayashi [11], as well as a “shrinking lemma” due
to Gilman [10]. We were not successful in using these lemmas to characterize the
infinite words determined by IL, so instead have proved a new pumping lemma
for this class (Theorem 6), which may be of independent interest.

Our lemma generalizes a pumping lemma recently proved for ET0L languages
[16]. Roughly, it states that for any indexed language L, any sufficiently long word
w ∈ L may be written as u1 · · ·un, each ui may be written as vi,1 · · · vi,ni , and the
vi,js may be replaced with uis to obtain new words in L. Using this lemma, we
extend to IL a theorem about frequent and rare symbols proved in [16] for ET0L,
which can be used to prove that certain languages are not indexed. We also use
the lemma to obtain the new result that every infinite indexed language has an
infinite subset in a smaller class of L systems called CD0L. This implies that every
infinite word determined in IL can also be determined in CD0L, and thus that
every such word is morphic. Since every morphic word can be determined by some
CD0L language [18], we therefore obtain a complete characterization of the infinite
words determined by indexed languages: they are exactly the morphic words.

1.1 Proof Techniques

Our pumping lemma for IL generalizes the one proved in [16] for ET0L. Deriva-
tions in an ET0L system, like those in an indexed grammar, can be viewed
as having a tree structure, but with certain differences. In ET0L, symbols are
rewritten in parallel, and the tree is organized into levels corresponding to the
steps of the derivation. Further, each node in the tree has one of a finite set of
possible labels, corresponding to the symbols in the ET0L system. The proof in
[16] classifies each level of the tree according to the set of symbols which appear
at that level, and then finds two levels with the same symbol set, which are
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used to construct the pumping operation. By contrast, the derivation tree of an
indexed grammar is not organized into levels in this way, and there is no bound
on the number of possible labels for the nodes, since each nonterminal can have
an arbitrarily large stack. We deal with these differences by assigning each node
a “type” based on the set of nonterminals which appear among its descendants
immediately before its stack is popped. These types then play a role analogous
to the symbol sets of [16] in our construction of the pumping operation.

1.2 Related Work

The model used in this paper, in which infinite words are determined by lan-
guages of their prefixes, originates in Book’s 1977 paper [5]. Book formulated
the “prefix property” in order to allow languages to “approximate” infinite se-
quences, and showed that for certain classes of languages, if a language in the
class has the prefix property, then it is regular. A follow-up by Latteux [14]
gives a necessary and sufficient condition for a prefix language to be regular.
Languages whose complement is a prefix language, called “coprefix languages”,
have also been studied; see Berstel [4] for a survey of results on infinite words
whose coprefix language is context-free. In Smith [18], prefix languages are used
to categorize the infinite words determined by a hierarchy of L system classes.
In Smith [19], they are used to characterize the infinite words determined by
several classes of one-way stack automata, and also studied in connection with
multihead deterministic finite automata.

Hayashi’s 1973 pumping lemma for indexed languages is proved in a dense
thirty-page paper [11]. The main theorem states that if a given terminal deriva-
tion tree is big enough, new terminal derivation trees can be generated by the
insertion of other trees into the given one. Hayashi applies his theorem to give
a new proof that the finiteness problem for indexed languages is solvable and to
show that certain languages are not indexed. Gilman’s 1996 “shrinking lemma”
for indexed languages [10] is intended to be easier to employ, and operates di-
rectly on terminal strings rather than on derivation trees. Our lemma general-
izes the recent ET0L pumping lemma of Rabkin [16]. Like Gilman’s lemma, it
is stated in terms of strings rather than derivation trees, making it easier to
employ, while like Hayashi’s lemma and unlike Gilman’s, it provides a pumping
operation which yields an infinity of new strings in the language.

Another connection between indexed languages and morphic words comes
from Braud and Carayol[6], in which morphic words are related to a class of
graphs at level 2 of the pushdown hierarchy. The string languages at this level
of the hierarchy are the indexed languages.

1.3 Outline of Paper

The paper is organized as follows. Section 2 gives preliminary definitions and
propositions. Section 3 gives our pumping lemma for indexed languages. Section
4 gives applications for the lemma, in particular characterizing the infinite words
determined by indexed languages. Section 5 gives our conclusions.
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2 Preliminaries

An alphabet A is a finite set of symbols. A word is a concatenation of symbols
from A. We denote the set of finite words by A∗ and the set of infinite words
by Aω. A string x is an element of A∗. The length of x is denoted by |x|. We
denote the empty string by λ. For a symbol c, #c(x) denotes the number of
appearances of c in x, and for an alphabet B, #B(x) denotes

∑
c∈B #c(x). A

language is a subset of A∗. A (symbolic) sequence S is an element of A∗ ∪Aω .
A prefix of S is a string x such that S = xS′ for some sequence S′. A subword
(or factor) of S is a string x such that S = wxS′ for some string w and sequence
S′. For i ≥ 1, S[i] denotes the ith symbol of S. For a string x �= λ, xω denotes
the infinite word xxx · · · . An infinite word of the form xyω, where x and y are
strings and y �= λ, is called ultimately periodic.

2.1 Prefix Languages

A prefix language is a language L such that for all x, y ∈ L, x is a prefix of y
or y is a prefix of x. A language L determines an infinite word α iff L is infinite
and every x ∈ L is a prefix of α. For example, the infinite prefix language {λ, ab,
abab, ababab, . . . } determines the infinite word (ab)ω . For a language class C,
let ω(C) = {α | α is an infinite word determined by some L ∈ C}. The following
propositions are basic consequences of the definitions.

Remark 1. A language determines at most one infinite word.

Remark 2. A language L determines an infinite word iff L is an infinite prefix
language.

Remark 3. If a language L determines an infinite word α and L′ is an infinite
subset of L, then L′ determines α.

2.2 Morphic Words

A morphism on an alphabet A is a map h from A∗ to A∗ such that for all
x, y ∈ A∗, h(xy) = h(x)h(y). Notice that h(λ) = λ. The morphism h is a
coding if for all a ∈ A, |h(a)| = 1. A string x ∈ A∗ is mortal (for h) if there is
an m ≥ 0 such that hm(x) = λ. The morphism h is prolongable on a symbol a
if h(a) = ax for some x ∈ A∗, and x is not mortal. If h is prolongable on a, hω(a)
denotes the infinite word a x h(x) h2(x) · · · . An infinite word α is morphic if
there is a morphism h, coding e, and symbol a such that h is prolongable on a
and α = e(hω(a)). For example, let:

h(s) = sbaa e(s) = a

h(a) = aa e(a) = a

h(b) = b e(b) = b

Then e(hω(s)) = a1ba2ba4ba8ba16b · · · is a morphic word. See [3] for more on
morphic words. Morphic words have close connections with the parallel rewriting
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systems known as L systems. Many classes of L systems appear in the literature;
here we define only HD0L and CD0L. For more on L systems, including the class
ET0L, see [13] and [17]. An HD0L system is a tuple G = (A, h,w, g) where A
is an alphabet, h and g are morphisms on A, and w is in A∗. The language of
G is L(G) = {g(hi(w)) | i ≥ 0}. If g is a coding, G is a CD0L system. HD0L
and CD0L are the sets of HD0L and CD0L languages, respectively. From [13]
and [8] we have CD0L ⊂ HD0L ⊂ ET0L ⊂ IL. In [18] it is shown that ω(CD0L)
= ω(HD0L) = ω(ET0L), and α is in this class of infinite words iff α is morphic.

2.3 Indexed Languages

The class of indexed languages IL consists of the languages generated by indexed
grammars. These grammars extend context-free grammars by giving each non-
terminal its own stack of symbols, which can be pushed, popped, and copied to
other nonterminals as the derivation proceeds. Indexed grammars come in sev-
eral forms [1,9,12], all generating the same class of languages, but varying with
respect to notation and which productions are allowed. The following definition
follows the form of [12].

An indexed grammar is a tuple G = (N, T, F, P, S) in which N is the
nonterminal alphabet, T is the terminal alphabet, F is the stack alphabet, S ∈ N
is the start symbol, and P is the set of productions of the forms

A→ r A→ Bf Af → r

with A,B ∈ N , f ∈ F , and r ∈ (N ∪ T )∗. In an expression of the form
Af1 · · · fn with A ∈ N and f1, . . . , fn ∈ F , the string f1 · · · fn can be viewed
as a stack joined to the nonterminal A, with f1 denoting the top of the stack
and fn the bottom. For r ∈ (N ∪ T )∗ and x ∈ F ∗, we write r{x} to denote r
with every A ∈ N replaced by Ax. For example, with A,B ∈ N and c, d ∈ T ,
cdAB{f} = cdAfBf . For q, r ∈ (NF ∗ ∪ T )∗, we write q −→ r if there are
q1, q2 ∈ (NF ∗∪T )∗, A ∈ N , p ∈ (N ∪T )∗, and x, y ∈ F ∗ such that q = q1 Ax q2,
r = q1 p{y} q2, and one of the following is true: (1) A → p is in P and y = x,
(2) A → pf is in P and y = fx, or (3) Af → p is in P and x = fy. Let

∗−−→ be the reflexive, transitive closure of −→. For A ∈ N and x ∈ F ∗, let
L(Ax) = {s ∈ T ∗ | Ax

∗−−→ s}. The language of G, denoted L(G), is L(S). The
class IL of indexed languages is {L(G) | G is an indexed grammar}.

See Example 7 and Figure 1 for a sample indexed grammar and derivation
tree. For convenience, we will work with a form of indexed grammar which we
call “grounded”, in which terminal strings are produced only at the bottom of
the stack. G is grounded if there is a symbol $ ∈ F (called the bottom-of-stack
symbol) such that every production has one of the forms

S → A$ A→ r A→ Bf Af → r A$ → s

with A,B ∈ N \ S, f ∈ F \ $, r ∈ (N \ S)+, and s ∈ T ∗. It is not difficult to
verify the following proposition.

Proposition 4. For every indexed grammar G, there is a grounded indexed
grammar G′ such that L(G′) = L(G).
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3 Pumping Lemma for Indexed Languages

In this section we present our pumping lemma for indexed languages (Theorem 6)
and give an example of its use. Our pumping lemma generalizes the ET0L pump-
ing lemma of [16]. Like that lemma, it allows positions in a word to be designated
as “marked”, and then provides guarantees about the marked positions during
the pumping operation.

Let G = (N, T, F, P, S) be a grounded indexed grammar. To prove Theorem
6, we will first prove a lemma about paths in derivation trees of G. A derivation
tree D of a string s has the following structure. Each internal node of D has a
label in NF ∗ (a nonterminal with a stack), and each leaf has a label in T ∗ (a
terminal string). Each internal node has either a single leaf node as a child, or
one or more internal children. The root of D is labelled by the start symbol S,
and the terminal yield of D is the string s.

If the string s contains marked positions, then we will take D to be marked
in the following way. Mark every leaf whose label contains a marked position of
s, and then mark every internal node which has a marked descendant. Call any
node with more than one marked child a branch node.

A path H in D is a list of nodes (v0, . . . , vm) with m ≥ 0 such that for each
1 ≤ i ≤ m, vi is a child of vi−1. For convenience, we will sometimes refer to
nodes in H by their indices; e.g. node i in the context of H means vi. When we
say that there is a branch node between i and j we mean that the branch node
is between vi (inclusive) and vj (exclusive).

We define several operations on internal nodes of D. Each such node v has the
label Ax for some A ∈ N and x ∈ F ∗. Let σ(v) = A and η(v) = |x|. σ(v) gives
the nonterminal symbol of v and η(v) gives the height of v’s stack. We say that a
node v′ is in the scope of v iff v′ is an internal node and there is a path in D from
v to v′ such that for every node v′′ on the path (including v′), η(v′′) ≥ η(v). Let
β(v) be the set of nodes v′ such that v′ is in the scope of v but no child of v′ is in
the scope of v. The set β(v) can be viewed as the “last” nodes in the scope of v.
Notice that for all v′ ∈ β(v), η(v′) = η(v). Finally, we give v a “type” τ(v) based
on which nonterminal symbols appear in β(v). Let τ(v) be a 3-tuple such that:

– τ(v)[1] = {A ∈ N | for all v′ ∈ β(v), σ(v′) �= A}
– τ(v)[2] = {A ∈ N | for some v′ ∈ β(v), σ(v′) = A, and for all marked

v′ ∈ β(v), σ(v′) �= A}
– τ(v)[3] = {A ∈ N | for some marked v′ ∈ β(v), σ(v′) = A}

Notice that for each v, τ(v) partitions N : every A ∈ N occurs in exactly one of
τ(v)[1], τ(v)[2], and τ(v)[3]. So there are 3|N | possible values for τ(v).

Lemma 5. Let H = (v0, . . . , vm) be a path in a derivation tree D from the root

to a leaf (excluding the leaf) with more than (|N | · 3|N |)|N |2·3|N|+1 branch nodes.
Then there are 0 ≤ b1 < t1 < t2 ≤ b2 ≤ m such that

– σ(b1) = σ(t1) and σ(t2) = σ(b2),
– b2 is in β(b1) and t2 is in β(t1),
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– τ(b1) = τ(t1), and
– there is a branch node between b1 and t1 or between t2 and b2.

Proof (Sketch). If H is flat, i.e. if all of the nodes in H have the same stack,
then after |N | · 3|N | branch nodes, there will have been two nodes with the same
σ and τ , with a branch node between them. Then we can set b1 and t1 to these
two nodes and set t2 = b2 = m, since m will be in β(v) for every node v on the
path, because H is flat. If H is not flat, then consider just the “base” of H , i.e.
the nodes in H with the smallest stack. These nodes are separated by “hills” in
which the stack is bigger. The base of H can be viewed as a flat path with gaps
corresponding to the hills. Then at most |N | ·3|N | of the hills can contain branch
nodes. We can then use an inductive argument to bound the number of branch
nodes in each hill. In this argument, each hill is itself treated as a path, which is
shorter than the original path H and so subject to the induction. Since node 0
and node m in H can serve as a potential b1 and b2 for any of the hills, each hill
has fewer configurations of σ and τ to “choose from” if it is to avoid containing
nodes which could serve as t1 and t2. Working out the details of the induction
gives the bound stated in the lemma. "#

We are now ready to state our pumping lemma for indexed languages, which
generalizes the pumping lemma for ET0L languages of [16]. As noted, this lemma
allows arbitrary positions in a word to be designated as “marked”, and then
provides guarantees about the marked positions during the pumping operation.
The only difference between our pumping operation and that of Theorem 15 of
[16] is that in the latter, there are guaranteed to be at least two marked positions
in the vi,j of part 4, whereas in our lemma, this vi,j might not contain any marked
positions and could even be an empty string (which nonetheless maps under φ
to ui, which does contain a marked position).

Theorem 6. Let L be an indexed language. Then there is an l ≥ 0 (which we
will call a threshold for L) such that for any w ∈ L with at least l marked
positions,

1. w can be written as w = u1u2 · · ·un and each ui can be written ui =
vi,1vi,2 · · · vi,ni (we will denote the set of subscripts of v, i.e. {(i, j) | 1 ≤
i ≤ n and 1 ≤ j ≤ ni}, by I);

2. there is a map φ : I → {1, . . . , n} such that if each vi,j is replaced with
uφ(i,j), then the resulting word is still in L, and this process can be applied
iteratively to always yield a word in L;

3. if vi,j contains a marked position then so does uφ(i,j);
4. there is an (i, j) ∈ I such that φ(i, j) = i, and there is at least one marked

position in ui but outside of vi,j.

Proof (Sketch). We take a grounded indexed grammar G with language L and
set the threshold l using the bound from Lemma 5 together with some properties
of the productions of G. Then we take any w ∈ L with at least l marked positions
and take a derivation tree D for w. Some path in D from the root to a leaf then



518 T. Smith

has enough branch nodes to give us the b1, t1, t2, and b2 from Lemma 5. We
then need to construct the map φ and the factors ui and vi,j . To do this, we use
the nodes in β(b1) and β(t1). The nodes in β(b1) will correspond to vi,js and
those in β(t1) will correspond to uis. The operation φ will then map each node in
β(b1) to a node in β(t1) with the same σ, and which is marked if the node being
mapped is marked. This is possible because τ(b1) = τ(t1). The justification for
this construction is that in D, between b1 and t1 the stack grows from x to yx
for some x, y ∈ F ∗, and then shrinks back to x between β(t1) and β(b1). Since
σ(b1) = σ(t1), the steps between b1 and t1 can be repeated, growing the stack
from x to yx to yyx to yyyx, and so on. Then the ys can be popped back off
by repeating the steps between the nodes in β(t1) and β(b1). This construction
gives us parts 1, 2, and 3 of the theorem. Part 4 follows from the fact that there
is a branch node between b1 and t1 or between t2 and b2. In the former case, the
ui in part 4 corresponds to the yield produced between b1 and t1 involving the
branch node, and the vi,j is specially constructed as an empty factor which maps
to ui. In the latter case, since t2 is in β(t1), b2 is in β(b1), and σ(t2) = σ(b2), the
ui in part 4 corresponds to t2 and the vi,j corresponds to b2. "#

S

X$

Xf$

X $

Y $ A $

Yf$ Af$ Af$ Bf$

Y$ A$ A$ B$

ab abb abb b

A$ B$ B$

abb b b

Fig. 1. A derivation tree for the string ab1ab2ab3ab4

Example 7. We now give an example of how our pumping operation works on
a derivation tree of an indexed grammar. Let the nonterminal alphabet N be
{S,X, Y,A,B}, the terminal alphabet T be {a, b}, the stack alphabet F be {f},
and the set of productions P be {S → X$, X → Xf , X → Y A, Y f → Y A,
Y $ → ab, Af → AB, A$ → abb, Bf → B, B$ → b}. Let G be the indexed gram-
mar (N, T, F, P, S). Notice that G is grounded and that L(G) determines the
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infinite word ab1ab2ab3 · · · . Figure 1 depicts a derivation tree of G with terminal
yield ab1ab2ab3ab4. Notice how stacks are copied as the derivation proceeds; for
example, the production X → Y A applied to Xff$ copies X ’s stack ff$ to
both Y and A, yielding Y ff$ Aff$.

Take every position in the terminal yield of the tree to be marked. Let b1 and t1
be the nodes labelled X$ and Xf$, respectively, and let t2 and b2 be the nodes la-
belledAf$ andA$, respectively, in the Y ff$ subtree. We haveσ(b1) = σ(t1) = X ,
σ(t2) = σ(b2) = A, and τ(b1) = τ(t1) = [{S,X}, {}, {Y,A,B}]. Additionally, b2
is in β(b1), which consists of all the nodes labelled A$, B$, or Y $, and t2 is in β(t1),
which consists of all the nodes labelled Af$, Bf$, or Y f$. Also, there is a branch
node between t2 and b2, namely t2 itself. This satisfies the conditions of Lemma

5. We break up the string as ab abb abb b abb b b , where the outer brackets de-
limit the uis and the inner brackets delimit the vi,js. Set φ(1, 1) = 1, φ(1, 2) = 2,
φ(2, 1) = 2, φ(2, 2) = 4, φ(3, 1) = 2, φ(3, 2) = 4, and φ(4, 1) = 4. Applying

the pumping operation yields ab abb abb b abb b b abb b b b = ab1ab2ab3ab4ab5,
which is indeed in L(G). Applying it again yields ab1ab2ab3ab4ab5ab6, and so on.

We now follow [16] in giving a more formal description of the replacement
operation in part 2 of Theorem 6. This operation produces the words w(t) for
all t ≥ 0, where

v
(0)
i,j = vi,j

u
(t)
i = v

(t)
i,1v

(t)
i,2 · · · v

(t)
i,ni

v
(t+1)
i,j = u

(t)
φ(i,j)

w(t) = u
(t)
1 u

(t)
2 · · ·u(t)

n

Notice that w(0) = w. The following lemma states that the number of marked
symbols tends to infinity as the replacement operation is repeatedly applied.

Lemma 8. If L is an indexed language with threshold l, and w ∈ L has at least
l marked symbols, then for all t ≥ 0, w(t) has at least t marked symbols.

Proof. Call each vi,j a v-word and call a v-word marked if it contains a marked
position. We will show by induction on t that for all t ≥ 0, w(t) contains at least
t occurrences of marked v-words. Obviously the statement holds for t = 0. So say
t ≥ 1 and suppose for induction that w(t−1) contains at least t− 1 occurrences
of marked v-words. By part 3 of Theorem 6, for every marked vi,j in w(t−1),

v
(1)
i,j contains a marked position. Then w(t) contains at least t− 1 occurrences of

marked v-words. Now by part 4 of the theorem, there is an (i, j) ∈ I such that
φ(i, j) = i and there is at least one marked position in ui but outside of vi,j .

Then v
(1)
i,j = ui contains at least one more occurrence of a marked v-word than

vi,j . Now since w contains vi,j , w
(t−1) contains vi,j . Then w(t) contains at least

one more occurrence of a marked v-word than w(t−1). So w(t) contains at least
t occurrences of marked v-words, completing the induction. Thus for all t ≥ 0,
w(t) contains at least t occurrences of marked v-words, hence w(t) contains at
least t marked positions. "#
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4 Applications

In this section we give some applications of our pumping lemma for indexed
languages (Theorem 6). We prove for IL a theorem about frequent and rare
symbols which is proved in [16] for ET0L languages. Then we characterize the
infinite words determined by indexed languages.

4.1 Frequent and Rare Symbols

Let L be a language over an alphabet A, and B ⊆ A. B is nonfrequent if there
is a constant cB such that #B(w) ≤ cB for all w ∈ L. Otherwise it is called
frequent. B is called rare if for every k ≥ 1, there is an nk ≥ 1 such that for
all w ∈ L, if #B(w) ≥ nk then the distance between any two appearances in w
of symbols from B is at least k.

Theorem 9. Let L be an indexed language over an alphabet A, and B ⊆ A. If
B is rare in L, then B is nonfrequent in L.

Proof. Suppose B is rare and frequent in L. By Theorem 6, L has a threshold
l ≥ 0. Since B is frequent in L, there is a w ∈ L with more than l symbols from
B. If we mark them all, parts 1 to 4 of the theorem apply. By part 3 of the
theorem, if vi,j contains a marked position then so does uφ(i,j), and by part 4
of the theorem, there is an (i, j) ∈ I such that φ(i, j) = i and there is at least

one marked position in ui but outside of vi,j . Then u
(1)
i contains at least two

marked positions. So take any two marked positions in u
(1)
i and let d be the

distance between them. Let k = d + 1. Since B is rare in L, there is an nk ≥ 1
such that for all w′ ∈ L, if #B(w′) ≥ nk then the distance between any two
appearances in w′ of symbols from B is at least k. By Lemma 8, w(nk) contains
at least nk marked symbols, so #B(w(nk)) ≥ nk. Then the distance between any
two appearances in w(nk) of symbols from B is at least k. Since ui appears in

w and u
(1)
i contains ui, u

(1)
i appears in w(t) for all t ≥ 1. Then u

(1)
i appears in

w(nk) and contains two symbols from B separated by d < k, a contradiction. So
if B is rare in L, then B is nonfrequent in L. "#

Theorem 9 gives us an alternative proof of the result of Hayashi [11] and
Gilman [10] that the language L below is not indexed.

Corollary 10 ([11] Theorem 5.3; [10] Corollary 4). The language L =
{(abn)n | n ≥ 1} is not indexed.

Proof. The subset {a} of {a, b} is rare and frequent in L. So by Theorem 9, L
is not indexed. "#

4.2 CD0L and Morphic Words

Next, we turn to characterizing the infinite words determined by indexed languages.
We show that every infinite indexed language has an infinite CD0L subset, which
then implies that ω(IL) contains exactly the morphic words. This is a new result
which we were not able to obtain using the pumping lemmas of [11] or [10].
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Theorem 11. Let L be an infinite indexed language. Then L has an infinite
CD0L subset.

Proof. By Theorem 6, L has a threshold l ≥ 0. Take any w ∈ L such that |w| ≥ l,
and mark every position in w. Then parts 1 to 4 of the theorem apply. Now for
each (i, j) ∈ I, create a new symbol xi,j . Let X be the set of these symbols. For
i from 1 to n, let xi = xi,1xi,2 · · ·xi,ni . Let x = x1x2 · · ·xn. Let h be a morphism
such that h(xi,j) = xφ(i,j) for all (i, j) ∈ I. Let g be a morphism such that
g(xi,j) = vi,j for all (i, j) ∈ I. Let A be the alphabet of L. Let G be the HD0L
system (X ∪A, h, x, g). Then for all t ≥ 0, g(ht(x)) = w(t). By Lemma 8, for all
t ≥ 0, |w(t)| ≥ t. Then L(G) is an infinite HD0L subset of L. By Theorem 18 of
[18], every infinite HD0L language has an infinite CD0L subset. Therefore L has
an infinite CD0L subset. "#

Theorem 12. ω(IL) contains exactly the morphic words.

Proof. For any infinite word α ∈ ω(IL), some L ∈ IL determines α. Then L is
an infinite indexed language, so by Theorem 11, L has an infinite CD0L subset
L′. Then L′ determines α, so α is in ω(CD0L). Then by Theorem 23 of [18], α
is morphic. For the other direction, by Theorem 23 of [18], every morphic word
is in ω(CD0L), so since CD0L ⊂ IL, every morphic word is in ω(IL). "#

Theorem 12 lets us use existing results about morphic words to show that
certain languages are not indexed, as the following example shows.

Corollary 13. Let L = {0, 0:1, 0:1:01, 0:1:01:11, 0:1:01:11:001, . . . },
the language containing for each n ≥ 0 a word with the natural numbers up to n
written in backwards binary and colon-separated. Then L is not indexed.

Proof. L determines the infinite word α = 0:1:01:11:001:101:011:111: · · · .
By Theorem 3 of [7], α is not morphic. Then by our Theorem 12, α is not in
ω(IL), so no language in IL determines α, hence L is not indexed. "#

5 Conclusion

In this paper we have characterized the infinite words determined by indexed lan-
guages, showing that they are exactly the morphic words. In doing so, we proved
a new pumping lemma for the indexed languages, which may be of independent
interest and which we hope will have further applications. One direction for fu-
ture work is to look for more connections between formal languages and infinite
words via the notion of prefix languages. It would be interesting to see what
other language classes determine the morphic words, and what language classes
are required to determine infinite words that are not morphic. More generally,
for any language class, we can ask what class of infinite words it determines,
and for any infinite word, we can ask in what language classes it can be deter-
mined, yielding many opportunities for future research. It is hoped that work in
this area will help to build up a theory of the complexity of infinite words with
respect to what language classes can determine them.
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Abstract. A two-way nondeterministic finite transducer (2-NFT) is a
finite automaton with a two-way input tape and a one-way output tape.
The generated language of a 2-NFT is the set of all strings it can output
(across all inputs). Whereas two-way nondeterministic finite acceptors
(2-NFAs) accept only regular languages, 2-NFTs can generate languages
which are not even context-free, e.g. {anbncn | n ≥ 0}. We prove a
pumping lemma for 2-NFT languages which strengthens and general-
izes previous results. Our pumping lemma states that every 2-NFT lan-
guage L is k-iterative for some k ≥ 1. That is, every string in L above
a certain length can be expressed in the form x1y1x2y2 · · ·xkykxk+1,
where the ys can be “pumped” to produce new strings in L of the form
x1y

i
1x2y

i
2 · · ·xky

i
kxk+1.

1 Introduction

A pumping lemma for a language class C is a powerful tool for proving that
certain languages do not belong to C, and thus for separating one language class
from another. The pumping lemmas for regular and context-free languages are
well-known, and pumping lemmas have been proved for other language classes
as well. These lemmas differ in their specifics, but have in common that they
subject elements of the language to an iterated pumping operation which yields
new elements in the language. Pumping lemmas come in two strengths: universal
and existential. A universal pumping lemma states that all but finitely many
elements of the language can be pumped, whereas an existential pumping lemma
guarantees only that some element in the language can be pumped. The broader
the class of languages, the harder it is to provide it with a universal pumping
lemma, and the more intricate the pumping operation becomes.

In this paper we prove a universal pumping lemma for two-way finite transduc-
ers. A two-way nondeterministic finite transducer (2-NFT) is a finite automaton
with a two-way input tape and a one-way output tape. At each step, the ma-
chine can read the symbol under its input head, move its input head left or right,
change state, and append a string to the output tape. The final content of the
output tape is the output of the computation. Early studies of two-way finite
transducers include [1] and [12]; for a survey of early results, see [2].

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part I, LNCS 8634, pp. 523–534, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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More recent work connects two-way finite transducers to monadic second-order
(MSO) logic [3,4] and explores the relationship between nondeterministic and se-
quential transducers [15] and between two-way and one-way transducers [5].

As a transducer, a 2-NFT M can be viewed as a relation of input strings
to output strings, and thus as an operation which maps languages to other
languages. In addition to its role as a transducer, M can also be treated as a
language generator, generating a single language L(M), consisting of all strings
it can output (across all inputs). We call L(M) the generated language or range
of M . We denote the class of 2-NFT generated languages by L (2-NFT), and
the deterministic restriction by L (2-DFT).

It is well known that for finite-state acceptors, neither nondeterminism nor
two-way input allows recognition of any additional languages, so that we have:

1-DFA = 1-NFA = 2-DFA = 2-NFA = REG.
For transducers the case is different: 2-DFTs and 2-NFTs can generate lan-

guages which are not even context-free, e.g. {anbncn | n ≥ 0}. In fact, the
class L (2-DFT) equals APL, the languages generated by the absolutely parallel
grammars of [12], while L (2-NFT) equals 1-NCSA, the languages recognized by
one-way nondeterministic checking stack automata [12]. L (2-NFT) also equals
2-NFT(REG), the images of regular languages under 2-NFT transductions. Our
pumping lemma, which we prove for L (2-NFT), therefore holds for all of the
classes L (2-NFT) = 1-NCSA = 2-NFT(REG) and L (2-DFT) = APL.

The pumping operation we use involves the notion of k-iterativity [6]. For
k ≥ 1, a string s is k-iterative for a language L if s = x1y1x2y2 · · ·xkykxk+1

for some strings x1, . . . , xk+1, y1, . . . , yk, and {x1y
i
1x2y

i
2 · · ·xky

i
kxk+1 | i ≥ 0} is

an infinite subset of L. (The condition that the subset be infinite is equivalent
to requiring that y1 · · · yk is not empty.) Notice that if s is k-iterative for L, then
s is i-iterative for L for all i ≥ k. For k ≥ 1, a language L is k-iterative if
there is a c ≥ 0 such that for every s ∈ L where |s| > c, s is k-iterative for L.
L is weakly k-iterative if either L is finite, or some string is k-iterative for L.
Notice that every regular language is 1-iterative and every context-free language
is 2-iterative, due to the pumping lemmas for those classes.

In this paper we show that every language in L (2-NFT) is k-iterative for
some k ≥ 1. Our work strengthens and generalizes the following results, which
were proved for checking stack automata or related models but which apply to
two-way transducers through the equivalence L (2-NFT) = 1-NCSA.

(a) Greibach [8, Lemma 2.1] showed that every language in 1-NCSA over a
single-letter alphabet is 1-iterative.

(b) Rodriguez [13] showed that every reversal-bounded 1-NCSA language is k-
iterative for some k ≥ 1.

(c) As observed in [14, Lemma 3], the results of Greibach [6] imply that every
language in 1-NCSA is weakly k-iterative for some k ≥ 1.

Our result generalizes (a) to alphabets with multiple letters, extends (b) to
automata which are not reversal-bounded, and strengthens (c) to k-iterativity
instead of weak k-iterativity.
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1.1 Proof Techniques

A useful tool for analyzing the behavior of an automaton on a two-way tape
is the notion of a “visiting sequence”. For each square of the tape, the visiting
sequence at that square is the sequence of states in which the square is visited
during the computation. In a pumping argument, one shows that either the
machine visits the same input square twice in the same state, in which case the
intervening computation can be repeated, or else two squares have the same
visiting sequence, in which case the region between them can be pumped.

We extend this argument to work with two-way finite transducers. Here, it is
not enough to show that the input can be pumped to yield new accepting com-
putations; it is also necessary that the outputs of those computations exhibit a
k-iterative pattern. In particular, it is necessary to deal with zigzags (repeated
changes of direction) in the computation path, which tend to fragment the pumped
output. We do so by finding regions of the computation with small zigzags,
occurring near positions of the input string with matching “neighborhoods” of
surrounding input symbols. Zigzags at these positions stay within their neighbor-
hoods, allowing pumping to proceed with a k-iterative output pattern.

1.2 Related Work

The classic paper of Rabin and Scott [10] presented a technique of zigzag elim-
ination to show the equivalence of two-way and one-way finite acceptors. From
an original two-way automaton they define a new derived automaton which per-
forms fewer zigzags, and then repeat this derivation operation until a one-way
automaton is obtained. Recent work of Filiot et al. [5] extends Rabin and Scott’s
proof to a subset of nondeterministic transducers called functional transducers,
in order to build a one-way functional transducer from a two-way functional
transducer whenever one exists. In the present work we take a different ap-
proach: instead of eliminating zigzags, we locate regions of the computation
with small zigzags and identical neighborhoods of surrounding input symbols,
so that zigzags can occur within these neighborhoods without disrupting our
pumping operation.

Greibach [7] defines a notion of strong k-iterativity, which goes beyond k-
iterativity by allowing certain positions of a string to be designated as distin-
guished in the pumping operation. Greibach shows that a certain language L
in 2-DFT(REG) is not strongly k-iterative for any k ≥ 1 (Lemma 5.4 of [7]
and its corollary). It is not difficult to show that this particular language L is
nonetheless k-iterative for some k ≥ 1, in accordance with our main result.

The class of languages MCFL generated by multiple context-free grammars,
a generalization of context-free grammars, has been studied in connection with
k-iterativity. As with L (2-NFT), it was known that every MCFL is weakly k-
iterative for some k ≥ 1, but whether k-iterativity held was not known. Recent
work resolves this question, showing that in fact there is an MCFL which is not
k-iterative for any k [9].
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1.3 Outline of Paper

The paper is organized as follows. Section 2 gives preliminary definitions con-
cerning two-way finite transducers. Section 3 gives a framework for a pumping
argument and explains the challenges to be overcome in applying it to transduc-
ers. Section 4 proves our pumping lemma for L (2-NFT). Section 5 provides an
application of the pumping lemma. Section 6 gives our conclusions.

2 Preliminaries

An alphabet A is a finite set of symbols. A string x is an element of A∗. The
length of x is denoted by |x|. We denote the empty string by λ. For 1 ≤ i ≤ |x|,
x[i] denotes the ith symbol of x. A language is a subset of A∗.

A two-way nondeterministic finite transducer (2-NFT) is a tuple M =
(Q,A,B, P, qin, qout) where Q is a finite set of states, A is the input alphabet, B
is the output alphabet, qin, qout ∈ Q are the initial and final states, respectively,
and P is a finite subset of (Q−{qout})× (A∪{%, !})×B∗×Q×{−1, 0, 1}. The
symbols % and ! are the left and right endmarkers, respectively.

A step I of M is a tuple (q, %x!, y, i) for q ∈ Q, x ∈ A∗, y ∈ B∗, and i an
integer. We call I a visit of i. We write (q, %x!, y, i) , (q′, %x!, ys, i+j) if 1 ≤ i ≤
| % x ! | and (q, (%x!)[i], s, q′, j) is in P . For n ≥ 1, an accepting computation
C with input x and output y is a sequence of steps I1 , I2 , · · · , In where
I1 = (qin, %x!, λ, 1) and In = (qout, %x!, y, i) for some i. By |C| we mean the
number of steps in C and by C[i] we mean the ith step of C.

We call M returning if for every accepting computation C, the last step of
C has the form (qout, %x!, y, 1). Clearly for every 2-NFT M , there is a returning
2-NFT M ′ such that L(M) = L(M ′). (Whenever M would enter qout, M

′ first
moves to the left endmarker, and then enters qout.)

We define 2-NFT transductions over strings, languages, and families of lan-
guages. For a string x, let M(x) = {y | M has an accepting computation with
input x and output y}. For a language L, let M(L) = {y ∈ M(x) | x is in L}.
For a family of languages L , let 2-NFT(L ) = {M(L) |M is a 2-NFT and L is
in L }.

2-NFTs can also be viewed as language generators. Let L(M) = M(A∗).
L(M) is called the “generated language”, or “range” of M . Let L (2-NFT) =
{L(M) | M is a 2-NFT}. Clearly L (2-NFT) = 2-NFT(REG), since the finite-
state control of a 2-NFT can be used to check whether or not an input word in
A∗ is in some particular regular language L.

3 Pumping Framework

In this section we give a framework for a pumping argument on a two-way tape
and explain the challenges to be overcome in applying it to transducers. We keep
the discussion at a high level, giving a more formal treatment in Section 4.
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A useful tool for analyzing the behavior of an automaton on a two-way tape
is the notion of a visiting sequence. For each square of the tape, the visiting
sequence at that square is the sequence of states in which the square is visited
during the computation. In a pumping argument, one shows that either the
machine visits the same input square twice in the same state, in which case the
intervening computation can be repeated, or else two squares have the same
visiting sequence, in which case the region between them can be pumped. By
choosing the original computation to be a shortest computation for its output
string, we ensure that the pumped portion of the path has non-empty output,
and therefore that the pumping operation produces an infinity of new strings.

b
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s 1

s 2

s3

s
4

s5

s 6

s7

s
8

s
9

q1 q2 q3 q4

q1 q2 q3 q4

Fig. 1.

Let us apply this basic idea to a 2-NFT M . Consider a shortest accepting
computation C (i.e., one with fewest steps, and in the case of a tie, with shortest
input) for an output string s. Suppose C has the form shown in Figure 1. The
input tape is represented as a vertical line whose bottom corresponds to the
left end of the tape and whose top corresponds to the right end. The steps of
the computation are depicted as a path winding back and forth along the input
tape. Each si designates the output of the machine during some portion of the
computation, and each qi designates the state of the machine at a particular
point. Thus the output of this computation is the string s = s1s2s3s4s5s6s7s8s9.
The two input positions a and b can be seen to have the same visiting sequence
(q1, q2, q3, q4). This means that the input region r which separates a and b can
be removed, yielding a computation C0 with output s1s3s5s7s9. Alternatively, r
can be duplicated, yielding a computation C2 with output s1s

2
2s3s

2
4s5s

2
6s7s

2
8s9.

In general, with i ≥ 0 copies of region r, we can obtain a computation Ci

with output s1s
i
2s3s

i
4s5s

i
6s7s

i
8s9. Suppose s2s4s6s8 = λ. Then s = s1s3s5s7s9.

But then C0 is a shorter computation for s than C, a contradiction. Therefore
|s2s4s6s8| ≥ 1, making s 4-iterative for L(M).

Problems arise, however, if C instead has a form which zigzags through cross-
ings of r, as in Figure 2. Here, a and b still have the same visiting sequence, so we
can still remove or duplicate r and complete the computation, but the new output
strings will not have the form needed to make the original string s k-iterative for
L(M). For example, if we remove r, we can complete the computation by skipping
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from q1 at a to q1 at b, from q2 at b back to q2 at a, from q3 at a to q3 at b, and
finally from q4 at b to q4 at a. We thereby obtain the output string s1s5s3s7s9.
But in this string, s5 precedes s3, whereas in s, s3 precedes s5. The new string
therefore does not have the right form for showing that s is k-iterative for L(M).
Thus the pumping argument does not go through as it stands.

b + n

b

b − n

a + n

a

a − n

s 1

s2

s3

s 4

s5

s6

s7

s
8

s
9

q1 q2 q3 q4

q1 q2 q3 q4

Fig. 3.

To resolve this issue, we will find input positions a and b which not only
have appropriate visiting sequences, but also have matching “neighborhoods” of
surrounding input symbols large enough to encompass any problematic zigzags.
The zigzags in these neighborhoods can then be retained for the pumping and
shrinking operations. For example, in Figure 3, suppose the input region from
a−n to a+n is identical to the input region from b−n to b+n; that is, a and b have
the same neighborhood out to n symbols above and below. Now when we remove
r, we do not have to skip from q2 at b back to q2 at a as before, but can proceed
from q2 at b to q3 at b, outputting s6. This is possible because the s6 portion of
the computation never leaves the lower neighborhood of b, so with r removed,
it will never leave the lower neighborhood of a, and these two neighborhoods
are the same. We thus obtain a computation C0 with output s1s5s6s7s9. If we
duplicate r, then since the s3 portion of the computation never leaves the lower
neighborhood of a, we can repeat the segments from q1 at a to q1 at b and
from q4 at b to q4 at a, obtaining the output s1(s2s3s4)2s5s6s7s

2
8s9. In general,
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with i ≥ 0 copies of region r, we can obtain the output s1(s2s3s4)is5s6s7s
i
8s9. Now

suppose s2s3s4s8 = λ. Then s = s1s5s6s7s9 and C0 is a shorter computation for
s than C, a contradiction. Hence |s2s3s4s8| ≥ 1, making s 2-iterative for L(M).

In Section 4 we give the details of this argument, showing that if the original
output string is sufficiently long, then there is always a region with visiting
sequences and surrounding neighborhoods fit for shrinking and pumping in a
form which yields k-iterativity. This will allow us to prove our pumping lemma
for L (2-NFT).

4 Pumping Lemma

In this section we prove our pumping lemma for L (2-NFT), formalizing the
high-level approach outlined in Section 3.

Theorem 1. Suppose L is in L (2-NFT). Then L is k-iterative for some k ≥ 1.

Proof. We begin with some definitions. Take M = (Q,A,B, P, qin, qout) to be a
returning 2-NFT such that L(M) = L. We define a function f over the integers

from 1 to  |Q|
2 �+ 1, as follows.

f(i) =

{
1 : i =  |Q|

2 �+ 1

|A|2f(i+1)+1 · |Q|2i + 2f(i + 1) + 2 : 1 ≤ i ≤  |Q|
2 �

Notice that for 1 ≤ i ≤  |Q|
2 �, f(i) > f(i + 1). Let k = |Q|. If L is finite, then

trivially L is k-iterative. So say L is infinite. Let r be the highest i such that for
some (q, d, s, q′, j) ∈ P , |s| = i. This is the length of the longest string that M
can add to its output in a single step. Let c = (f(1) + 2) · |Q| · r + r. Take any
y ∈ L such that |y| > c. We will show that y is k-iterative for L.

Let a shortest computation for y be an accepting computation C with output
y such that for every accepting computation C′ with output y, |C| ≤ |C′| and if
|C| = |C′|, then |x| ≤ |x′|, where x is the input of C and x′ is the input of C′.
Take any shortest computation C for y. Let x be the input of C.

Each step i of the computation C has the form (qi, %x!, si, vi). We will view
C as a path and each step of C as a node on the path. We call each position on
the input tape from 1 to | % x ! | a level and we call vi the level at node i. We
have v1 = v|C| = 1; that is, the path starts at level 1 (the left endmarker) and
also ends at level 1 (since M is returning). The level of each node differs from
that of its predecessor by at most 1.

For 1 ≤ i ≤ j ≤ |C|, we call the sequence C[i], . . . , C[j] a subpath from i to j.
A hill h at level l is a subpath from i to j of length > 2 such that vi = vj = l
and for all m such that i < m < j, vm > l. The top of h is max(vi, . . . , vj) and
the height of h is max(vi, . . . , vj)− l. A valley v at level l is a subpath from
i to j of length > 2 such that vi = vj = l and for all m such that i < m < j,
vm < l. The bottom of v is min(vi, .., vj) and the depth of v is l−min(vi, .., vj).

With these definitions in place, the proof idea is as follows. If some level has
more than |Q| visits, we will see that y is 1-iterative for L. Otherwise, the input
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string x is long enough that it contains a “smooth” region (l to l + f(n) below),
one with small hills and valleys. Within this region we find two levels a and b
with similar neighborhoods and visiting sequences. The smoothness of the region
then permits a pumping argument applied to the area between a and b to show
that y is k-iterative for L.

So suppose some level has more than |Q| visits. Then M visits the same input
position twice in the same state. Suppose M produces no output between these
two visits. Then C could be shortened, a contradiction. So between the two
visits M produces some non-empty output w. Then we can “pump” (repeat)
the intervening computation. Hence y = uwz for some strings u and z, and
{uwiz | i ≥ 0} is an infinite subset of L. Then y is 1-iterative for L, hence
k-iterative for L. So say no level has more than |Q| visits. Notice that we now
have |Q| ≥ 2, since if |Q| = 1, then M can only visit the left endmarker once, so
since C must begin and end at the left endmarker, we have |C| = 1 and y = λ,
which contradicts the fact that |y| > c.

Since no level has more than |Q| visits, |%x! | ≥ |y|
|Q|·r . Hence |x| ≥ |y|

|Q|·r −2 >
c

|Q|·r −2 = (f(1)+2)·|Q|·r+r
|Q|·r −2 > f(1). Every position of x is visited at least once,

otherwise x could be shortened and C would still output y, a contradiction.

Therefore level 1 has a hill of height > f(1). So take the highest n ≤  |Q|
2 �

such that some level has ≥ n hills of height > f(n). We have 1 ≤ n ≤  |Q|
2 �

and f(n) > f(n + 1) ≥ 1. Notice that no level i has ≥ n + 1 hills of height

> f(n + 1), since if n <  |Q|
2 �, then this would contradict the construction of

n, and if n =  |Q|
2 �, then since level i + 1 has at least two visits for each hill of

height > 1 at level i, level i+1 would have more than |Q| visits, a contradiction.
So take any level l with ≥ n hills of height > f(n). Then since f(n) > f(n + 1),
l must have exactly n hills of height > f(n). For the same reason, level l cannot
have a hill whose height is > f(n + 1) but ≤ f(n).

Further, suppose some level i ≤ l + f(n) has a valley v of depth > f(n + 1)
whose bottom is above l. Consider the n hills of height > f(n) at level l. Since
the bottom of v is above l, either v is contained completely by one of these n
hills, or it is not part of any of them. If it is not part of any of them, then it
is part of another hill at level l, but then level l has ≥ n + 1 hills of height
> f(n + 1), a contradiction. If v is contained completely by one of the n hills of
height > f(n) at level l, then this hill contains two hills of height > f(n + 1) at
level i − f(n + 1) (one on each side of v). But then level i − f(n + 1) contains
≥ n + 1 hills of height > f(n + 1), a contradiction. So there is no such level i.

We will refer to the n hills at level l which are of height > f(n) as hill
1, . . . , hill n. For any level i from l + f(n + 1) to l + f(n) − f(n + 1), call
x[i− f(n + 1)] · · ·x[i + f(n + 1)] the neighborhood of i. For j from 1 to n, let
in(i, j) be the first node at level i in hill j, and let out(i, j) be the last node at
level i in hill j. Recall that qm is the state of M at step m of C. Let the pair
list of i be a list of n pairs of states such that for 1 ≤ j ≤ n, the jth pair is
(qin(i,j), qout(i,j)).
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l + f(n)

b + f(n + 1)

b

b − f(n + 1)

a + f(n + 1)

a

a − f(n + 1)

l

in(b, i) out(b, i)

in(a, i) out(a, i)

Fig. 4. An example hill i at level l

There are at most p1 = |A|2f(n+1)+1 distinct neighborhoods, and at most p2 =
|Q|2n distinct pair lists. From l + f(n+ 1) + 1 to l + f(n)− f(n+ 1)− 1 there are
f(n) − 2f(n + 1) − 1 levels. Then since f(n) − 2f(n + 1) − 1 > p1p2, there are
levels a, b such that l + f(n + 1) < a < b < l + f(n)− f(n + 1) and a and b have
the same neighborhood and pair list. See Figure 4 for an example hill i passing
through levels a and b. We make some observations O1, O2, O3 for use below.

O1. For any hill i such that 1 ≤ i < n, the portion of C between out(a, i)
and in(a, i + 1) never reaches level a, since if it did so as part of hill i, then
out(a, i) would not be the last node at level a in hill i, if it did so as part of
hill i + 1, then in(a, i + 1) would not be the first node at level a in hill i + 1,
and if it did so between hills i and i + 1, then level l would have a hill whose
height is > f(n + 1) but ≤ f(n), which we observed to be impossible. Similarly,
the portion of C before in(a, 1) never reaches level a, and the portion of C after
out(a, n) never reaches level a.

O2. For any hill i, the portion of C from in(a, i) to out(a, i) never goes below
the neighborhood of a, since if it did, then a would have a valley of depth
> f(n+ 1) whose bottom is above l (since this portion of the path is in a hill of
l), which we observed to be impossible.

O3. Similarly, for any hill i, the portion of C from in(b, i) to out(b, i) never
goes below the neighborhood of b.

We now break up y into substrings, where each substring designates the out-
put produced during a range of steps of C. Recall that si is the output produced
from step i of C. Let h0 = s1 · · · sin(a,1)−1 and for i from 1 to n, let:
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ei = sin(a,i) · · · sin(b,i)−1

fi = sin(b,i) · · · sout(b,i)−1

gi = sout(b,i) · · · sout(a,i)−1

hi =

{
sout(a,i) · · · sin(a,i+1)−1 if 1 ≤ i < n

sout(a,i) · · · s|C| if i = n

We have y = h0 e1f1g1h1 · · · enfngnhn. For i ≥ 0, let yi = h0 ei1f1g
i
1h1 · · ·

einfng
i
nhn. We will show that {yi | i ≥ 0} is an infinite subset of L, and thus

that y (= y1) is 2n-iterative for L.
First we show that y can be “shrunk”, i.e. that y0 is in L. We construct a

computation C0 with input x[1] · · ·x[a− 1] x[b] · · ·x[|x|] which will follow C, but
skip some steps. C0 proceeds as follows. Follow C until in(a, 1), outputting h0.
This is possible due to O1. For i from 1 to n, continue as follows. Skip to in(b, i),
which is possible because qin(a,i) = qin(b,i). Proceed from in(b, i) to out(b, i),
outputting fi. This is possible because due to O3, in C this portion never went
below the neighborhood of b, so in C0 it will never go below the neighborhood
of a, and these two neighborhoods are equal. Skip from out(b, i) to out(a, i).
This is possible because qout(b,i) = qout(a,i). If i < n, proceed from out(a, i) to
in(a, i + 1), outputting hi (possible due to O1). If i = n, proceed from out(a, n)
to the end of C, outputting hn and finishing in the final state qout (possible due
to O1). C0 is now an accepting computation with output y0, which is therefore
in L.

Next we show that y can be “pumped”, i.e. that ym is in L for each m ≥ 2.
So take any m ≥ 2. We show how to construct a computation Cm with input
x[1] · · ·x[a − 1] (x[a] · · ·x[b − 1])m x[b] · · ·x[|x|] which will follow C, but repeat
some steps. Cm proceeds as follows. Follow C until in(a, 1), outputting h0. This
is possible due to O1. For i from 1 to n, continue as follows. Perform the portion
of C from in(a, i) to in(b, i) m times, each time outputting ei. This is possible
because qin(a,i) = qin(b,i), and because due to O2, in C this portion never goes
below the neighborhood of a (or above level b, since in(b, i) is the first node at
level b in hill i), and in Cm, for j from 1 to m, the neighborhood of a + j(b− a)
equals the neighborhood of a. Now Cm is at level a + m(b − a). Proceed from
in(b, i) to out(b, i), outputting fi. This is possible due to O3. Next, perform
the portion of C from out(b, i) to out(a, i) m times, each time outputting gi.
This is possible because qout(b,i) = qout(a,i), and because in C this portion never
goes above level b (since out(b, i) is the last node at level b in hill i) or below
the neighborhood of a (due to O2). Now if i < n, proceed from out(a, i) to
in(a, i + 1), outputting hi (possible due to O1). If i = n, proceed from out(a, n)
to the end of C, outputting hn and finishing in the final state qout (possible due
to O1). Cm is now an accepting computation with output ym, which is therefore
in L. Hence {yi | i ≥ 2} is a subset of L.

Finally, suppose e1g1 · · · engn = λ. Then y0 = y and C0 is an accepting com-
putation with output y, a contradiction, since |C0| < |C| and C is a shortest
computation for y. So e1g1 · · · engn �= λ. Then {yi | i ≥ 0} is an infinite language.
Hence {yi | i ≥ 0} is an infinite subset of L. Therefore y is 2n-iterative for L.

Then since n ≤  |Q|
2 � and k = |Q|, we have 2n ≤ k, so y is k-iterative for L. So

for any y ∈ L such that |y| > c, y is k-iterative for L. Hence L is k-iterative,
which was to be shown. "#



A Pumping Lemma for Two-Way Finite Transducers 533

5 Application

In this section we apply our pumping lemma to show that a particular language
of interest does not belong to L (2-NFT). Addressing the question of whether
a certain type of “mildly context-sensitive” grammars can generate the class of
natural languages, Radzinksi [11] considers the system of Chinese number-names.
In particular, he examines the set L consisting of number-names composed only
of instances of wu (five) and zhao (trillion):

L = {wu (zhao)k1 wu (zhao)k2 · · · wu (zhao)kn | k1 > k2 > · · · kn > 0}

Radzinski shows that L cannot be generated by the class TAG of tree ad-
joining grammars; we will show that it also cannot be generated by a 2-NFT.
The string wu zhao zhao is 1-iterative for L, since {wu zhao (zhao)i | i ≥ 0}
is an infinite subset of L. The language L is therefore weakly 1-iterative. At
first glance it might seem that L is also 1-iterative, since we can pump the first
zhao in any string. For example, for the string wu zhao zhao wu zhao we have
{wu (zhao)i zhao wu zhao | i ≥ 1}, which is an infinite subset of L. But re-
call that k-iterativity requires the pumping index i to start at 0, not 1, and
{wu (zhao)i zhao wu zhao | i ≥ 0} is not a subset of L. In fact, Radzinski
shows that a related language (K below) is not k-iterative for any k ≥ 1. Our
pumping lemma then gives the following result.

Theorem 2. L is not in L (2-NFT).

Proof. Let K be the language {a bk1 a bk2 · · · a bkn | k1 > k2 > · · · kn > 0}.
The proof of Lemma 2 of Radzinski [11] shows that K is not k-iterative for
any k ≥ 1. Then by our Theorem 1, K is not in L (2-NFT). Suppose L is in
L (2-NFT). Let h be a homomorphism from {w, u, z, h, a, o} to {a, b} such that
h(wu) = a and h(zhao) = b. Then K is the image of L under h. By Lemma
1.1 of [8], L (2-NFT) is closed under substitution. Then K is in L (2-NFT), a
contradiction. So L is not in L (2-NFT). "#

6 Conclusion

In this paper we have proved a pumping lemma for the class L (2-NFT) of lan-
guages generated by two-way nondeterministic finite transducers. Our pumping
lemma strengthens and generalizes previous results for this class. We gave an
example of a language of interest which can be shown using our pumping lemma
not to belong to L (2-NFT), and we hope that our lemma will help to obtain
similar results in other cases. One direction for further research would be to
generalize our lemma to broader classes of languages. For example, recall that
L (2-NFT) = 2-NFT(REG). Where CFL denotes the context-free languages, the
class 2-NFT(CFL) properly contains 2-NFT(REG), since 2-NFT(REG) does not
contain CFL [6, Theorem 4.26]. We can then ask whether our pumping lemma
can be generalized to apply to 2-NFT(CFL). More broadly, it would be inter-
esting to know whether such a lemma holds for all 2-NFT(L ) where L is a
language class such that every language in L is k-iterative.



534 T. Smith

Acknowledgments. I want to thank my advisor, Rajmohan Rajaraman, for
supporting this work, encouraging me, and offering many helpful comments and
suggestions.

References

1. Ehrich, R., Yau, S.: Two-way sequential transductions and stack automata. Infor-
mation and Control 18(5), 404–446 (1971)

2. Engelfriet, J.: Two-way automata and checking automata. In: de Bakker, J.W.,
van Leeuwen, J. (eds.) Foundations of Computer Science III Part 1. Mathematical
Centre Tracts, vol. 108, pp. 1–69. Mathematisch Centrum, Amsterdam (1979)

3. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic 2(2), 216–254 (2001)

4. Engelfriet, J., Hoogeboom, H.J.: Finitary compositions of two-way finite-state
transductions. Fundam. Inf. 80(1-3), 111–123 (2007)

5. Filiot, E., Gauwin, O., Reynier, P.A., Servais, F.: From two-way to one-way finite
state transducers. In: LICS 2013, pp. 468–477. IEEE Computer Society (2013)

6. Greibach, S.A.: One way finite visit automata. Theoretical Computer Science 6(2),
175–221 (1978)

7. Greibach, S.A.: The strong independence of substitution and homomorphic repli-
cation. RAIRO - Theoretical Informatics and Applications 12(3), 213–234 (1978)

8. Greibach, S.: Checking automata and one-way stack languages. J. Comput. Syst.
Sci. 3(2), 196–217 (1969)

9. Kanazawa, M., Kobele, G., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure of
the strong pumping lemma for multiple context-free languages. Theory of Com-
puting Systems, 1–29 (2014)

10. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

11. Radzinski, D.: Chinese number-names, tree adjoining languages, and mild context-
sensitivity. Comput. Linguist. 17(3), 277–299 (1991)

12. Rajlich, V.: Absolutely parallel grammars and two-way finite-state transducers. J.
Comput. Syst. Sci. 6(4), 324–342 (1972)

13. Rodriguez, F.: Une double hiérarchie infinie de langages vérifiables. RAIRO - The-
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Abstract. A temporal constraint language is a relational structure with
a first-order definition in the rational numbers with the order. We study
here the complexity of the Quantified Constraint Satisfaction Problem
(QCSP) for Ord-Horn languages: probably the most widely studied fam-
ily of all temporal constraint languages.

We restrict ourselves to a natural subclass that we call dually-closed
Ord-Horn languages. The main result of the paper states that the QCSP
for a dually-closed Ord-Horn language is either in P or it is coNP-hard.

1 Introduction

One of the most widely studied computational problems in Computer Science
is the Constraint Satisfaction Problem (CSP). An instance of the CSP is a
primitive-positive (pp) sentence of the form: (∃v1 . . .∃vn(R(vi1 , . . . , vik) ∧ . . .)),
where the inner quantifier-free part is the conjunction of relational symbols with
variables. The CSP is NP-hard and therefore one often looks at various restric-
tions of the problem. The one that appears often in the literature and is consid-
ered in this paper is the parametrization CSP(Γ ) of the CSP with a relational
structure Γ . An instance of the CSP(Γ ) is a pp-sentence in which all relational
symbols comes from a signature of Γ .

This framework on one hand allows to define many problems arising naturally
in different branches of computer science such as Artificial Intelligence. On the
other hand, complexity classifications of the flavour of Schaefer’s theorem [1]
these problems tend to display are of theoretical interest. Directly relevant to
this paper are temporal CSPs that are CSP(Γ ) for Γ with a first-order defini-
tion in (Q;<), called temporal (constraint) languages. In [2], nine large classes of
tractable (solvable in polynomial time) temporal CSPs has been identified and it
was proved that all other such problems are NP-complete. The strength of every
such classification can be naturally measured by the number of natural problems
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expressible within the framework under consideration existing in the literature
prior to the classification itself. In this case, there is a great deal of such prob-
lems, e.g., the Betweenness and the Cyclic Ordering Problem mentioned in [3],
and network satisfaction problem for Point Algebra [4]. Furthermore, temporal
CSP(Γ ) has been studied in the literature for so-called Ord-Horn languages [5],
and AND/OR precedence constraints in scheduling [6].

A natural generalization of the CSP is the Quantified Constraint Satisfaction
Problem (QCSP) for a relational structure Γ , denoted by QCSP(Γ ) that next
to existential allows also universal quantifiers in the input sentence. Similarly as
the CSP, this problem has been studied widely in the literature, see e.g. [7,8].
In this paper, we study QCSP(Γ ) for temporal languages. Although a number
of partial results has been obtained [9,10,11,12,13], these efforts did not lead to
a full complexity classification of all temporal QCSP(Γ ). One of the reasons is
that QCSPs are usually harder to classify than CSPs. This also holds in our
case. The hardest temporal QCSPs are PSPACE-complete, as opposed to tem-
poral CSPs that are all in NP. Furthermore, already QCSPs for so-called positive
temporal languages (that are all closed under a constant operation and there-
fore the corresponding CSPs are trivially tractable) classified in [11,12] may be in
LOGSPACE, be NLOGSPACE-complete, be P-complete, be NP-complete, or be
PSPACE-complete. The ultimate goal for temporal QCSPs is to provide a sim-
ilar classification for the entire class. In this paper we look at the complexity of
QCSPs for dually-closed Ord-Horn languages. Ord-Horn languages lie at the in-
tersection of two large CSP-tractable classes (languages preserved by operations
ll and dual-ll, see [2] for details), whereas dually-closed languages (as explained in
Section 2) contain equality languages (with a first-order definition over (N; =))
whose QCSPs has been studied in [9,10]. The main result of the paper is a
dichotomy theorem that reveals the tractability frontier for the complexity of
QCSPs for dually-closed Ord-Horn languages: we show that QCSP(Γ ) for such
languages Γ is either coNP-hard or it is in P . In the second case Γ is a Guarded
Ord-Horn language and the corresponding QCSP can be solved by an algorithm
based on establishing local consistency presented in [13]. In the first case Γ sim-
ulates one of three relations whose QCSP is coNP-hard, defined by formulas:
(1)(x = y → y = z), (2)(x = y → z < v) ∧ (x < z) ∧ (x < v) ∧ (y < z) ∧ (y < v),
and (3)(x = y → z > v) ∧ (x > z) ∧ (x > v) ∧ (y > z) ∧ (y > v). While the first
result comes from [9], the other two are new. The exact complexity in all three
cases remains open.

2 Preliminaries

Formulas and definability. We consider two restricted forms of first-order (fo)-
formulas. Let τ be a signature. A first-order τ -formula is a ∀∃∧-formula if it
has the form Q1v1 . . . Qnvn(ψ1 ∧ · · · ∧ ψm), where each Qi is a quantifier from
{∀, ∃}, and each ψi is an atomic τ -formula of the form R(x1, . . . , xk) where
R ∈ τ . A primitive positive (pp)-formula is a ∀∃∧-formula where all quantifiers
are existential. A ∀∃∧-sentence (a pp-sentence) is a ∀∃∧-formula (pp-formula)
without free variables.
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We say that a relation R is (fo)-definable (∀∃∧-, or pp-definable) in a relational
structure Γ if R has the same domain as Γ , and there is a fo-formula (∀∃∧-, or
pp-formula) φ in the signature of Γ such that φ holds exactly on those tuples
that are contained in R. A relational structure Δ is fo-definable in Γ if every
relation in Δ is fo-definable in Γ .

Temporal languages and formulas. In this paper a temporal formula is a fo-
formula built from quantifiers, logical connectivities and relational symbols: <,≤
, �=,=. A temporal relation is a relation with a fo-definition in (Q;<,≤, �=,=) and
a temporal (constraint) language is a relational structure over a finite signature
consisting of the domain Q and a finite number of temporal relations.

Entailment. For a temporal formula ϕ we write Var(ϕ) to denote the set of
free variables in ϕ. Let ϕ1, ϕ2 be temporal formulas with Var(ϕ1),Var(ϕ2) ⊆
{v1, . . . , vn}. We say that ϕ1 entails ϕ2 if (∀v1 · · · ∀vn(ϕ1 → ϕ2)) is true in (Q;<
,≤,=, �=). We say that an n-ary relation R entails a formula ϕ with Var(ϕ) ⊆
{v1, . . . , vn} if a formula ϕR defining R over variables {v1, . . . , vn} entails ϕ.

QCSPs. Let Γ be a relational structure over a finite signature. The Quantified
Constraint Satisfaction Problem for Γ , denoted by QCSP(Γ ), is the problem to
decide if a given ∀∃∧-sentence over a signature of Γ is true in Γ .

Lemma 1. ([9,7]) Let Γ1, Γ2 be constraint languages. If Γ1 has a ∀∃∧-definition
in Γ2, then QCSP(Γ1) is logarithmic space reducible to QCSP(Γ2).

Polymorphisms. The set of relations with a pp-definition in Γ will be denoted
by [Γ ]pp A polymorphism of a temporal language Γ is a homomorphism from
Γ k to Γ . The set of all polymorphisms of Γ is denoted by Pol(Γ ).

For temporal languages we have Galois correspondence [14].

Theorem 1. Let Γ be a temporal language, then R ∈ [Γ ]pp if and only if
Pol(Γ ) ⊆ Pol(Q;R).

Dually-Closed Temporal Languages. Let − : Q→ Q be the unary operation such
that for every q ∈ Q we have −(q) = −q. Let f : Qn → Q. The dual of f is the
operation −f(−x1, . . . ,−xn) denoted by f . We say that a temporal language Γ
is dually-closed if f ∈ Pol(Γ ) if and only if f ∈ Pol(Γ ). We can now elaborate
on the statement from the introduction that every equality language [9] is in
particular dually-closed. Indeed, every such language has as polymorphisms all
injective operation from Q to Q, hence in particular −. Observe that in general
a dually-closed language does not have to be closed under −. As an example
consider (Q;<).

Let R ⊆ Qn. The dual of R is the relation {(−t[1], . . . ,−t[n]) | t ∈ R} denoted
by R.

Proposition 1. Let Γ be a dually closed temporal language. Then R ∈ [Γ ]pp if
and only if R ∈ [Γ ]pp.
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3 Ord-Horn Languages and the Main Result

Definition 1. An Ord-Horn (OH) clause is a disjunction in one of the following
forms:

1. (x1 �= y1 ∨ · · · ∨ xk �= yk) (called negative),
2. (x1 �= y1 ∨ · · · ∨ xk �= yk ∨ x < y) (called strict), or
3. (x1 �= y1 ∨ · · · ∨ xk �= yk ∨ x ≤ y) (called positive).

We will often write � to denote any element of the set {<,≤}.

Definition 2. A conjunction of OH clauses will be called an OH formula. A
relation is OH if it is definable by an OH formula. A temporal language Γ is OH
if all relations in Γ are OH.

When writing about OH clauses, formulas, relations or languages, we will
often omit ’OH’ if it is clear from the context what a clause, formula, etc., we
have in mind.

Definition 3. We say that an OH clause is basic if it is in one of the following
forms:

– x = y, x ≤ y,
– (x1 �= y1 ∨ · · · ∨ xp �= yp), or
– (x1 �= x2 ∨ · · · ∨ x1 �= xq) ∨ (x1 < y1) ∨ (y1 �= y2 ∨ · · · ∨ y1 �= yq′).

Definition 4. Guarded Ord-Horn (GOH) formulas are defined inductively as
follows.

1. Basic OH formulas are GOH.
2. If ψ1 and ψ2 are GOH formulas, then ψ1 ∧ ψ2 is a GOH formula.
3. If ψ is a GOH formula, then

(x1 ≤ y1) ∧ . . . ∧ (xm ≤ ym)∧
(x1 �= y1 ∨ . . . ∨ xm �= ym ∨ ψ)

is a GOH formula.

Definition 5. We say that an OH relation R is GOH if it can be defined by a
GOH formula and that an OH language Γ is GOH if every R in Γ is GOH.

The complexity of QCSP(Γ ) for GOH Γ is known.

Theorem 2. ([13]) Let Γ be a GOH structure. Then QCSP(Γ ) is solvable in
polynomial time.

On the other hand, dually-closed languages containing one of the following
relations give raise to coNP-hard problems.

Definition 6. We define the following relations.
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– I = {(x, y, z) ∈ Q3 | (x = y → y = z)},
– LeftPointer = {(x, y, z) ∈ Q3 | (x = y → y ≤ z)},
– RightPointer = {(x, y, z) ∈ Q3 | (x = y → y ≥ z)},
– WindMillLeft = {(x, y, z, v) ∈ Q4 | (x = y → z < v) ∧ (x < z) ∧ (x <

v) ∧ (y < z) ∧ (y < v)},
– WindMillRight = {(x, y, z, v) ∈ Q4 | (x = y → z > v) ∧ (x > z) ∧ (x >

v) ∧ (y > z) ∧ (y > v)}
The hardness results we use explicitly in our classification are as follows.

Theorem 3. The problems: QCSP(Q; I) (proved in [9]), QCSP(Q; LeftPointer,
RightPointer), QCSP(Q; WindMillLeft), and QCSP(Q; WindMillRight) are coNP-
hard.

We are now ready to state the main result of the paper.

Theorem 4. Let Γ be a dually-closed OH constraint language. Then Γ is either
GOH and then the problem QCSP(Γ ) is in P or QCSP(Γ ) is coNP-hard.

Proof. In Section 5 in Definition 11 we provide a definition of a blocked OH
structure. In Theorem 6 we show that every blocked OH structure is GOH.
By Theorem 2, in this case QCSP(Γ ) is in P. On the other hand, if Γ is
not blocked, then by Theorem 7 either Γ ∀∃∧-defines one of the following:
WindMillLeft,WindMillRight, I, or Γ pp-defines LeftPointer or RightPointer.
In the first case by Lemma 1 and Theorem 3, the problem QCSP(Γ ) is coNP-
hard. In the second case since LeftPointer and RightPointer are the duals of
each other and the language Γ is dually-closed, it follows by Proposition 1 that
Γ pp-defines both LeftPointer and RightPointer and thus I. Again, by Lemma 1
and Theorem 3, QCSP(Γ ) is coNP-hard. 


4 Representation of Ord-Horn Relations

The following is easy to observe.

Proposition 2. Let R be an n-ary OH relation then R can be defined by a
conjunction of all clauses over variables {v1, . . . , vn} entailed by R.

Indeed, an n-ary OH relation may be defined by a conjunction ϕ of Ord-
Horn clauses over {v1, . . . , vn}. Adding clauses entailed by ϕ does not change
the defined relation. We will represent OH relations by sets of so-called OH types
entailed by R defined in what follows. We need first some auxiliary definitions.

Partitions of variables. Let V be a set of variables. By PV we denote the set
of partitions of V and LV = (PV ,�V ) the lattice of partitions of V . The least
element in LV , that is ({{v1}, . . . , {vn}}) will be denoted by ⊥V , the join and
the meet in LV by #V and "V , respectively. We write P1 ≺V P2 for P1, P2 ∈ PV

if P1 �V P2 and P1 �= P2. An element S ∈ P will be called a component of
P , trivial if |S| = 1 and non-trivial otherwise. Let P ∈ PV , T a non-trivial
component of P and {T1, T2} be a partition of T . By P ↓V{T1,T2} we denote

P ′ := (P \ {T }) ∪ {T1, T2}. Observe that P ′ is a predecessor of P in LV .
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Types of OH clauses. Let ψ be an OH clause over variables V . Then ψ imposes
a partition P of V defined as follows. We say that two variables x, y ∈ V are
linked in ψ if ψ contains a disjunct (x �= y) or there is z ∈ V such that both
pairs x, z and z, y are linked in ψ. Now two variables x and y are in the same
S ∈ P if and only if they are linked in ψ.

Example 1. Let ψ := (v1 �= v2∨v1 �= v3∨v4 �= v5∨v4 < v6) and V = {v1, . . . , v7}.
Then P = {{v1, v2, v3}, {v4, v5}, {v6}, {v7}} is a partition of V imposed by ψ.

We are now ready to define an OH type. Every OH type will represent certain
sets of clauses that differ only syntactically.

Definition 7. Let ψ be an OH clause with Var(ψ) ⊆ V . We define a type of an
OH clause ψ over V in one of the following ways.

1. If ψ is negative, the type of ψ over V is graphically represented by [P ] where
P is a partition of V imposed by ψ.

2. If ψ is strict or positive, that is, of the form (x1 �= y1∨· · ·∨xk �= yk ∨x � y)
with � equal to < in the first and to ≤ in the second case, then the type
of ψ over V is a triple graphically represented by [P, S1,�, S2] where P is a
partition of V imposed by ψ, S1 a component of P containing x and S2 a
component of P containing y.

We say that Typ is an OH type (or simply a type) over V if it is a type of some
OH clause over V . We will omit V if it is clear from the context. We say that
an OH type Typ is negative, positive, strict, or basic if there is an OH clause of
type Typ that is negative, positive, strict, or basic.

Example 2. As an example consider OH clauses (x1 �= x2 ∨ x1 �= x3 ∨ y1 ≤ x1)
and (x2 �= x3 ∨ x1 �= x3 ∨ y1 ≤ x2). Observe that they are both of the same OH
type [{{x1, x2, x3}, {y1}}, {y1},≤, {x1, x2, x3}] over V = {x1, x2, x3, y1}.

Observe that all OH clauses of the same type entail each other. Thus it makes
sense to say that a formula or a relation entails a type. We say that an OH
formula ϕ over variables V entails an OH type Typ over V if ϕ entails an OH
clause, or equivalently all OH clauses of the type Typ over V . We say that an
OH relation entails an OH type Typ over {v1, . . . , vn} if R entails every clause
of the type Typ over {v1, . . . , vn}. We say that an OH type Typ1 (set of OH
types Types1) entails an OH type Typ2 if all OH clauses of the type Typ1

(conjunction of OH clauses of types in Types1) entail an OH clause of the type
Typ2. We say that a formula, a relation, a type or a set of types entails a set of
types Types2 if it entails every type in Types2.

Let R be an n-ary OH relation. By VR we will denote {v1, . . . , vn}. The set of
all OH types over variables VR entailed by an n-ary relation R will be denoted
by Ent(R).

Proposition 3. Let R be an n-ary OH relation. Then the conjunction of all OH
clauses of types in Ent(R) defines R.
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We will now show that for every OH relation R there is a subset EntPr(R) of
Ent(R) with some desirable properties such that the conjunction of clauses of
types in EntPr(R) also defines R. We first mention properties.

Definition 8. Let R be an n-ary OH relation. We say that a non-basic OH type
Typ ∈ Ent(R) is

– falsely non-negative if Typ is of the form [P, S1,�, S2] and Ent(R) contains
also [P ];

– subsumed if Typ is of the form [P, S1,�, S2] and there is [P ′, S′
1,�, S′

2] in
Ent(R) for some P ′ ≺VR P, S′

1 ⊆ S1, and S′
2 ⊆ S2;

– falsely strict if Typ is of the form [P, S1, <, S2], there are P ′ ≺VR P , and
S′
i ⊆ Si for i ∈ [2] such that Ent(R) contains also [P ′, S′

1,≤, S′
2];

– falsely positive if Typ is of the form [P, S1,≤, S2] and Ent(R) contains also
[P, S1, <, S2];

– strictly sandwiched if Typ is of the form [P, S1, <, S2] and Ent(R) contains
also both [P, S1, <, S3] and [P, S3, <, S2] for some S3 ∈ P ;

– positively sandwiched if Typ is of the form [P, S1,≤, S2] and Ent(R) con-
tains also [P ↓VR

{T1,T2}, S1,≤, T1] and [P ↓VR

{T1,T2}, T2,≤, S2] for some prede-

cessor P ↓VR

{T1,T2} of P ;

– falsely non-basic if Typ is of the form [P, S1, <, S2] and for every non-trivial
component S in P there is i ∈ [2] such that Ent(R) contains both [P, Si,≤, S]
and [P, S,≤, Si].

We now prove that the desirable set of types EntPr(R) exists.

Theorem 5. Let R be an OH relation. Then there is a subset EntPr(R) of
Ent(R) that contains no falsely non-negative, no subsumed, no falsely strict, no
falsely positive, no strictly sandwiched, no positively sandwiched, and no falsely
non-basic OH types such that the conjunction of clauses of types in EntPr(R)
defines R.

5 Classification

We will here define a notion of a blocked OH relation and a blocked OH language.
We will then show that every blocked OH relation is GOH and if an OH language
Γ contains R that is not blocked, then QCSP(Γ ) is coNP-hard.

To that end we set an n-ary OH relation R, the set of variables VR =
{v1, . . . , vn}, the set Ent(R) of OH types over VR entailed by R and the set
EntPr(R) from Theorem 5. Beforehand, we need two more auxiliary definitions.

Definition 9. Let Typ := [P, S1,�, S2] be an OH type over variables VR. If �
is equal to ≤, then all non-trivial components in P are called free in Typ. If �
is <, then a non-trivial S ∈ P is called free in Typ if neither both [P, S1,≤, S]
and [P, S,≤, S1] nor both [P, S2,≤, S] and [P, S,≤, S2] are in Ent(R).
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Definition 10. We say that a type Typ := [P, S1,�, S2] over VR is blocked if
for every non-trivial component S ∈ P free in Typ and every partition {T1, T2}
of S the set Ent(R) contains [P ↓VR

{T1,T2}, T1,≤, T2] or [P ↓VR

{T1,T2}, T2,≤, T1].

We will now say what is a blocked OH relation and a blocked OH language.

Definition 11. We say that an OH relation R is blocked if every non-basic OH
type in EntPr(R) is blocked and that OH language Γ is blocked if every relation
in Γ is blocked.

As we show every blocked OH structure is GOH.

Theorem 6. Let Γ be a blocked OH structure, then Γ is GOH.

We will now turn to the case where Γ contains a relation R that is not blocked.
In this case EntPr(R) contains a type Typ which is not blocked. We use R to
∀∃∧-define a relation of arity three or four. Such a relation is again OH. We show
that every time we can reduce from a problem from Theorem 3.

Lemma 2. ([15]) The set of OH relations is closed under pp-definitions.

We now give a sufficient and a necessary condition for a tuple with pairwise
different entries to be in an OH relation.

Lemma 3. ([15]) Let R be an n-ary OH relation. The relation R contains a
tuple t satisfying t[π(1)] < · · · < t[π(n)] for some permutation π of [n] if and
only if it contains a tuple t′ satisfying t′[π[j]] < t′[π[k]] for all j, k in [n] such
that t[j] < t[k].

The next two lemmas provide some information about ternary, four-ary OH
relations we intend to define from non-blocked OH relations of arbitrary arity.

Lemma 4. Let R be an n-ary OH relation. Let VR = {v1, . . . , vn}, and P ∈
PVR , and T0, T3, T4 ∈ P be pairwise different, and {T1, T2} a partition of T0. Let

R1 = {(w1, w2, w3, w4) | ∃v1 · · · ∃vn R(v1, . . . , vn) ∧
∧

S∈P\{T0,T3,T4}

∧
x,y∈S

x = y ∧

∧
x∈T1

x = w1 ∧
∧

x∈T2

x = w2 ∧
∧

x∈T3

x = w3 ∧
∧

x∈T4

x = w4}

We have both of the following:

1. The relation R entails [P, Ti1 ,�, Ti2 ] where i1, i2 ∈ {0, 3, 4} if and only if
R1 entails (v1 �= v2 ∨ vj1 � vj2) where for k ∈ [2] we have that (jk = 1) if
(ik = 0) and jk = ik if ik ∈ {3, 4}.

2. The relation R entails [P ↓VR

{T1,T2}, Ti,�, Tj] where i, j ∈ [4] if and only if R1

entails (vi � vj).
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Lemma 5. Let R be an n-ary OH relation. Let VR = {v1, . . . , vn}, and P ∈
PVR , and T0, T3 ∈ P be different, and {T1, T2} a partition of T0. Let

R1 = {(w1, w2, w3) | ∃v1 · · · ∃vn R(v1, . . . , vn) ∧
∧

S∈P\{T0,T3}

∧
x,y∈S

x = y ∧

∧
x∈T1

x = w1 ∧
∧

x∈T2

x = w2 ∧
∧

x∈T3

x = w3

We have both of the following:

1. The relation R entails [P, Ti1 ,�, Ti2 ] where i1, i2 ∈ {0, 3} if and only if R1

entails (v1 �= v2 ∨ vj1 � vj2 ) where for k ∈ [2] we have that (jk = 1) if
(ik = 0) and jk = ik if ik = 3.

2. The relation R entails [P ↓VR

{T1,T2}, Ti,�, Tj] where i, j ∈ [3] if and only if R1

entails (vi � vj).

We are now ready to prove that a non-blocked OH structure Γ defines one of
the relations from Section 3.

Theorem 7. Let R be an OH relation that is not blocked. Then one of the
following holds:

– R ∀∃∧-defines WindMillLeft, WindMillRight, or I;
– R pp-defines LeftPointer or RightPointer.

Proof. If R is not blocked, then EntPr(R) contains a type Typ which is neither
basic nor blocked. The proof consists of three parts in each of which we consider
a different form of Typ. Before we move on to the first part, we present an
auxiliary lemma.

Lemma 6. Let R be a four-ary OH relation that entails (v1 �= v2 ∨ v3 ≤ v4)
and contains tuples: td such that (td[1] = td[2] < td[3] ≤ td[4]), tl such that
(tl[1] < tl[2] < tl[4] < tl[3]), and tg such that (tg[2] < tg[1] < tg[4] < tg[3]). Then
R ∀∃∧-defines I or WindMillLeft.

Part One. We look at a type Typ of the form [P, T3, <, T4]. Since it is not
blocked there is a free component T0 ∈ P and disjoint T1, T2 with T0 = T1 ∪ T2

such that neither [P ↓VR

{T1,T2}, T1,≤, T2] nor [P ↓VR

{T1,T2}, T2,≤, T1] is in Ent(R).

We consider the relation R1 defined as in Lemma 4. Since Typ is entailed by
R, we have by Lemma 4 that R1 entails (v1 �= v2 ∨ v3 < v4). Since Typ is not
blocked, neither [P ↓VR

{T1,T2}, T1,≤, T2] nor [P ↓VR

{T1,T2}, T2,≤, T1] is in Ent(R). By

Lemma 4, it follows that R1 entails neither (v1 ≤ v2) nor (v2 ≤ v1). Thus, R1

has tuples tBG such that (tBG[1] > tBG[2]) and tBL such that (tBL[1] < tBL[2]).
The type Typ is not strictly sandwiched and therefore EntPr(R) does not

contain either [P, T3, <, T0] or [P, T0, <, T4]. We consider the first situation and
we will show that in this case R ∀∃∧-defines WindMillLeft. The other case may



544 M. Wrona

be treated analogously and it can be shown that WindMillRight has a ∀∃∧-
definition by R. The type Typ is not falsely non-negative and hence Ent(R)
does not contain [P ]. By Lemma 4, it follows that R1 does not entail (v1 �= v2).
Thus it has a tuple t0 such that t0[1] = t0[2]. Since [P, T3, <, T0] is not in Ent(R),
by Lemma 4, the relation R1 does not entail (v1 = v2 → v1 > v3). Thus, R1

has a tuple t1 such that (t1[1] = t1[2] ≤ t1[3] < t1[4]). Furthermore, since T0 is
free in Typ, the relation R1 does not entail either [P, T0,≤, T3] or [P, T3,≤, T0].
Hence R1 contains a tuple t2 such that (t2[1] = t2[2] �= t2[3]). Let ll : Q2 → Q be
a binary operation defined in [2]. Then td = ll(t1, t2), when ll is applied to t1, t2
coordinatewise, satisfies (td[1] = td[2] < td[3] < td[4]).

The type Typ is not falsely strict in Ent(R) and therefore Ent(R) does not
contain [P ↓VR

{T1,T2}, T3,≤, T4]. Thus, the relation R1 contains a tuple t3 such that

(t3[3] > t3[4]). Now, by applying Lemma 3 to tuples tBL, tBG, td, t3, we obtain
that R contains tuples tl such that (tl[1] < tl[2] < tl[4] < tl[3]) and tg satisfying
(tg[2] < tg[1] < tg[4] < tg[3]).

Now, since R1 entails (v1 �= v2 ∨ v3 < v4) (and also (v1 �= v2 ∨ v3 ≤ v4))
and contains td, tl, and tg, by Lemma 6, the relation R1 ∀∃∧-defines either I or
WindMillLeft.

Before we move on to the second case, we present another auxiliary lemma.

Lemma 7. Let R be a ternary OH relation that entails LeftPointer and contains
tuples: (1) tl such that tl(v3) < tl(v1) < tl(v2), (2) tg such that tg(v3) <
tg(v2) < tg(v1), and (3) te such that te(v3) = te(v2) = te(v1). Then R pp-
defines LeftPointer or I.

Part Two. Here, we consider the situation where a non-blocked Typ is of the
form [P, S,≤, T3] and T0 ∈ P , for which there is a partition {T1, T2} such that
neither [P ↓VR

{T1,T2}, T1,≤, T2] nor [P ↓VR

{T1,T2}, T2,≤, T1] is in Ent(R), is equal

to S or T3. We assume that T0 is equal to S and show that in this case R
pp-defines either LeftPointer or I. The other case is analogous and one can
show that then R pp-defines either RightPointer or I. We have therefore that
R entails a type [P, T0,≤, T3]. Consider the relation R1 defined as in Lemma 5.
Since neither [P ↓VR

{T1,T2}, T1,≤, T2] nor [P ↓VR

{T1,T2}, T2,≤, T1] is entailed by R,

it follows by the lemma that neither (v1 ≤ v2) nor (v1 ≥ v2) is entailed by
R1. Thus R1 contains tuples tBG such that (tBG[1] > tBG[2]) and tBL such that
(tBL[1] < tBL[2]). Further, the type Typ is not subsumed in Ent(R). Thus, R
entails neither [P ↓VR

{T1,T2}, T1,≤, T3] nor [P ↓VR

{T1,T2}, T2,≤, T3]. By Lemma 5, the

relation R1 entails neither (v1 ≤ v3) nor (v2 ≤ v3). Thus R2 has tuples t1 such
that (t1[3] < t1[1]) and t2 such that (t2[3] < t2[2]). Now by applying Lemma 3
to tuples tBG, tBL, t1, and t2, we obtain that R2 contains tuples tl such that
(tl[3] < tl[1] < tl[2]) and tg such that (tg[3] < tg[2] < tg[1]). To complete this
part of the proof of the theorem we intend to use Lemma 7. To this end, we
first use Lemma 5 to show that R2 entails (v1 �= v2 ∨ v1 ≤ v3). Indeed, it holds
since R entails Typ. Finally, we argue that a tuple te with all entries equal is
contained in R1. Since Typ is not falsely non-negative, the set EntPr(R) does
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not contain [P ] and hence by Lemma 5 the relation R1 does not entail (v1 �= v2).
Thus R1 contains a tuple t0 such that t0[1] = t0[2]. The type Typ is not falsely
positive and hence R does not entail [P, T2, <, T3]. By Lemma 5, it follows that
R1 does not entail (v1 �= v2 ∨ v1 < v3). Thus, the relation R1 contains a tuple t
such that (t[1] = t[2] ≥ t[3]). Since R1 entails (v1 �= v2 ∨ v1 ≤ v3), it follows that
R2 has a tuple te with all entries equal. Now we can use Lemma 7 and complete
the second part of the proof.

Part Three. Here a non-blocked type from EntPr(R) is of the form [P, T3,≤, T4]
and a component T0 ∈ P for which there is a partition {T1, T2} of T0 such
that neither [P ↓VR

{T1,T2}, T1,≤, T2] nor [P ↓VR

{T1,T2}, T2,≤, T1] belongs to the set

Ent(R), is equal neither to T3 nor to T4. We consider the relation R1 defined
as in Lemma 4. Since neither [P ↓VR

{T1,T2}, T1,≤, T2] nor [P ↓VR

{T1,T2}, T2,≤, T1] is

entailed by R, it follows by the lemma that neither (v1 ≤ v2) nor (v1 ≥ v2) is
entailed by R1. Thus R2 contains tuples tBG such that (tBG[1] > tBG[2]) and
tBL such that (tBL[1] < tBL[2]). Furthermore, since R entails Typ, it follows, by
Lemma 4 that R3 entails (v1 �= v2 ∨ v3 ≤ v4).

We first assume that R1 contains a tuple td such that (td(v1) = td(v2) <
td(v3) ≤ td(v4)) or (td(v3) ≤ td(v4) < td(v1) = td(v2)). We consider only the
first case in which we show that R3 ∀∃∧-define WindMillLeft. (In the other case
one can analogously show that R3 ∀∃∧-defines WindMillRight.) Since Typ is not
subsumed, the relation R does not entail [P ↓VR

{T1,T2}, T3,≤, T4]. By Lemma 4,

the relation R does not entail (v3 ≤ v4). Thus R1 has a tuple th satisfying
(th[3] > th[4]). Now by applying Lemma 3 to tuples td, th, tBG, tBL, we obtain
that R3 has tuples tl such that (tl[1] < tl[2] < tl[4] < tl[3]), and tg such that
(tg[2] < tg[1] < tg[4] < tg[3]). To complete this case, we take use of Lemma 6.

We now assume that R3 entails (v1 = v2 → v3 ≤ v1 = v2 ≤ v4). We will now
show that either R3 contains a tuple ta satisfying ta(v1) < ta(v3) and ta(v2) <
ta(v3) or a tuple tb satisfying tb(v4) < tb(v1) and tb(v4) < tb(v2). Suppose it is
not the case. Then R3 entails (v1 ≥ v3∨v2 ≥ v3)∧ (v4 ≥ v1∨v4 ≥ v2). It follows
that R3 entails (v3 ≤ v4), (v1 ≥ v3 ∧ v4 ≥ v2), (v4 ≥ v1 ∧ v2 ≥ v3). But, the
first case contradicts the fact that Typ is not subsumed, wherever the other two
that Typ is not positively sandwiched. To see it, we use Lemma 4. Indeed, if R1

entails (v3 ≤ v4), then R entails [P ↓VR

{T1,T2}, T3,≤, T4] which implies that Typ is

subsumed. If R1 entails (v1 ≥ v3∧v4 ≥ v2), then R entails both [P ↓VR

{T1,T2}, T3,≤
, T1] and [P ↓VR

{T1,T2}, T2,≤, T4] which implies that Typ is positively sandwiched.

We treat the third case in the similar way.
By the previous paragraph, we can assume that R3 contains either ta or tb.

We consider the second case only and using Lemma 7, we will show that then
R1 pp-defines either LeftPointer or I. In the other case one can analogously
show that R1 pp-defines RightPointer or I. Let R2 be the relation {(v1, v2, v4) |
(∃v3 R1(v1, v2, v3, v4))}. We intend to use Lemma 7 in order to show that R4

is LeftPointer or I. Observe that R2 entails (v1 �= v2 ∨ v2 ≤ v3). Furthermore,
Typ is not falsely positive in Ent(R), and hence R does not entail [P, T3, <, T4].



546 M. Wrona

Thus, by Lemma 4, the relation R2 does not entail (v1 �= v2 ∨ v3 < v4). It
implies that R1 contains a tuple te satisfying te[3] = te[1] = te[2] = te[4] and
R2 a tuple t′e satisfying t′e[1] = t′e[2] = t′e[3]. Since R1 contains ta, tBL, tBG, the
relation R2 contains: t′a such that t′a[3] < t′a[1] and t′a[3] < t′a[2], t′BL such that
t′BL[1] < t′BL[2] and t′BG satisfying t′BG[1] > t′BG[2]. We first use Lemma 3 to
argue that R2 contains t′l such that t′l(v3) < t′l(v1) < t′l(v2) and t′g such that
t′g(v3) < t′g(v2) < t′g(v1). Now, we use Lemma 7 to argue that R2 pp-defines
either LeftPointer or I.

References

1. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Symposium on Theory of Computing (STOC), pp. 216–226 (1978)

2. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM 57(2), 1–41 (2009); An extended abstract appeared in
the Proceedings of the Symposium on Theory of Computing (STOC 2008)

3. Garey, M., Johnson, D.: A guide to NP-completeness. CSLI Press, Stanford (1978)
4. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for tempo-

ral reasoning: A revised report. Reading in Qualitative Reasoning about Physical
Systems, 373–381 (1989)

5. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: A maximal tractable
subclass of Allen’s interval algebra. Journal of the ACM 42(1), 43–66 (1995)
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of k-Clique
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Abstract. In this work the dynamic descriptive complexity of the k-
clique query is studied in a framework introduced by Patnaik and Im-
merman. It is shown that when edges may only be inserted then k-clique
can be maintained by a quantifier-free update program of arity k − 1,
but it cannot be maintained by a quantifier-free update program of arity
k−2 (even in the presence of unary auxiliary functions). This establishes
an arity hierarchy for graph queries for quantifier-free update programs
under insertions. The proof of the lower bound uses upper and lower
bounds for Ramsey numbers.

1 Introduction

The k-clique query — does a given graph contain a k-clique? — can be expressed
by an existential first-order formula with k quantifiers. In this work we study
the descriptive complexity of the k-clique query in a setting where edges may
be inserted dynamically into a graph. In particular we are interested in lower
bounds for the resources necessary to answer this query dynamically.

The dynamic descriptive complexity framework (short: dynamic complexity)
introduced by Patnaik and Immerman [14] models the setting of dynamically
changing graphs. For a graph subject to changes, auxiliary relations are main-
tained with the intention to help answering a query Q. When an insertion (or,
in the general setting, a deletion) of an edge occurs, every auxiliary relation is
updated through a first-order query that can refer to both the graph itself and
the auxiliary relations. The query Q is maintained by such a program, if one
designated auxiliary relation always stores the current query result. The class of
all queries maintainable by first-order update programs is called DynFO.

Since k-clique can be expressed in existential first-order logic, it can be triv-
ially maintained by a first-order update program. Therefore for characterizing
the precise dynamic complexity of this query we need to look at fragments of
DynFO. It turns out that k-clique can still be maintained when the update for-
mulas are not allowed to use quantifiers at all and auxiliary relations may only
have restricted arity. We obtain the following characterization.

Main result: When only edge insertions are allowed then k-clique (k ≥ 3) can
be maintained by a quantifier-free update program of arity k − 1, but it
cannot be maintained by a quantifier-free update program of arity k − 2.
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Actually we prove that every property expressible by a positive existential
first-order formula with k quantifiers and, possibly, negated equality atoms can
be maintained by a (k − 1)-ary quantifier-free program under insertions.

In order to understand why the lower bound contained in the above result is
interesting, we shortly discuss the status quo of lower bound methods for the
dynamic complexity framework. Up to now very few lower bounds are known;
all of them for fragments of DynFO obtained by either bounding the arity of
the auxiliary relations or by restricting the usage of quantifiers (or by restricting
both). Usually those bounds have been stated only for the setting where both
insertions and deletions are allowed. We emphasize that our lower bound for the
insertion-only setting immediately transfers to this more general setting.

The study of bounded arity auxiliary relations was started by Dong and Su
[4]. They exhibited concrete graph queries that cannot be maintained in unary
DynFO, and they showed that DynFO has an arity hierarchy for general (that is
non-graph) queries. Both results rely on previously obtained static lower bounds.

Hesse started the study of the quantifier-free fragment of DynFO (short:
DynProp) in [13]. Although this fragment appears to be rather weak at first
glance, deterministic reachability [13] and regular languages [9] can be main-
tained in DynProp. In [9], Gelade et al. also provided first lower bounds. They
proved that non-regular languages as well as the alternating reachability problem
cannot be maintained in this fragment. The use of very restricted graphs in the
proof of the latter result implies that there is a ∃∗∀∃∗FO-definable query that
cannot be maintained in DynProp. In [16] it was shown that reachability and
3-clique cannot be maintained in the binary quantifier-free fragment of DynFO.

In general, it is a difficult task to prove lower bounds in the dynamic com-
plexity setting; even when update formulas are restricted to the quantifier-free
fragment of first-order logic. We are not at the point where we can, when given a
query, apply a set of tools in order to prove that the query cannot be maintained
in DynProp. Finding more queries that cannot be maintained in DynProp

seems to be a reasonable approach towards finding more generic proof methods.
The lower bound provided by the main result follows this approach and is

interesting in two ways. First, it exhibits, for every k, a query in ∃kFO that
cannot be maintained in (k − 2)-ary DynProp, even when only insertions are
allowed. We believe that finding simple queries that cannot be maintained will
advance the understanding of dynamic complexity. Second, the main result es-
tablishes the first arity hierarchy for graph queries, although for a weak fragment
of DynFO and for insertions only.

The proof of the lower bound uses upper and lower bounds for Ramsey num-
bers. This has been quite curious for us.

A natural question is how far this method to prove lower bounds can be
pushed. As an intermediate step between the quantifier-free fragment and
DynFO itself, Hesse suggested the study of quantifier-free update programs
with auxiliary functions [13]. The main result can be extended as follows.

Extension of the main result: k-clique (k ≥ 3) cannot be maintained by a
quantifier-free update program of arity k−2 with unary auxiliary functions.
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So far there have been only two lower bounds for dynamic classes with auxil-
iary functions. Alternating reachability was actually shown to be not maintain-
able in the quantifier-free fragment of DynFO even in the presence of a successor
and a predecessor function [9]. Further, in [16], it was shown that reachability
cannot be maintained in unary DynProp with unary auxiliary functions. Thus
our extension is a first lower bound for arbitrary unary auxiliary functions and
k-ary auxiliary relations, for every fixed k. We also explain why the lower bound
technique does not extend to binary auxiliary functions. To this end we show that
binary DynQF can maintain every boolean graph property when the domain is
large with respect to the actually used domain.

Related work. Up to now we mentioned only work immediately relevant for this
work. For the interested reader we give a short list of further related work.

Further lower bounds have been shown in [1, 2, 10]. Further upper bounds
have been shown in [8, 12, 15, 10]. Many other aspects such as whether the
auxiliary relations are determined by the current structure (see e.g. [14, 3, 10])
and the presence of an order (see e.g. [10]) have been studied.

Outline. In Section 2 we fix some of our notations and in Section 3 we recapitu-
late the formal dynamic complexity framework. In Sections 4 and 5 we prove the
upper and lower bound of the main result, respectively. In Section 6 we study
the extension of DynProp by auxiliary functions.

2 Preliminaries

We fix some of our notations. Most notations are reused from [16]. The reader can
feel free to skip this section and return when encountering unknown notations.

A domain D is a finite set. A (relational) schema τ consists of a set τ of
relation symbols together with an arity function Ar : τ → N. A database D of
schema τ with domain D is a mapping that assigns to every relation symbol R ∈
τ a relation of arity Ar(R) over D. A τ -structure S is a pair (D,D) where D is a
database with schema τ and domain D. If S is a structure over domain D and D′

is a subset of D, then the substructure of S induced by D′ is denoted by S �D′.
A tuple *a = (a1, . . . , ak) is ≺-ordered with respect to a linear order1 ≺ of the

domain, if a1 ≺ . . . ≺ ak. The k-ary atomic type 〈S,*a〉 of *a over D with respect
to S is the set of all atomic formulas ϕ(*x) with *x = (x1, . . . , xk) for which ϕ(*a)
holds in S, where ϕ(*a) is short for the substitution of *x by *a in ϕ. As we only
consider atomic types here, we will often simply say type instead of atomic type.

For a set A, denote by Ak the set of all k-tuples over A and, following [11],
by [A]k the set of all k-element subsets of A. A k-hypergraph G is a pair (V,E)
where V is a set and E is a subset of [V ]k. If E = [V ]k then G is called complete.
An r-coloring col of G is a mapping that assigns to every edge in E a color from
{1, . . . , r}. A r-colored k-hypergraph is a pair (G, col) where G is a k-hypergraph
and col is a r-coloring of G. If the name of the r-coloring is not important we
also say G is r-colored.

1 All linear orders in this work are strict.
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3 Dynamic Setting

The following introduction to dynamic descriptive complexity is borrowed from
previous work [16, 17]. Although the focus of this work is on maintaining the
k-clique query under insertions, we introduce the general dynamic complexity
framework in order to be able to give a broader discussion of concrete results.

A dynamic instance of a query Q is a pair (D, α), where D is a database over a
domain D and α is a sequence of modifications to D, i.e. a sequence of insertions
and deletions of tuples over D. The dynamic query Dyn(Q) yields as result the
relation that is obtained by first applying the modifications from α to D and
then evaluating the query Q on the resulting database. The database resulting
from applying a modification δ to a database D is denoted by δ(D). The result
α(D) of applying a sequence of modifications α = δ1 . . . δm to a database D is
defined by α(D)

def
= δm(. . . (δ1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization mechanism
and an update program. The former yields, for every (input) database D, an
initial state with initial auxiliary data. The latter defines the new state of the
dynamic program for each possible modification δ.

A dynamic schema is a tuple where τin and τaux are the schemas of the input
database and the auxiliary database, respectively. We always let τ

def
= τin ∪ τaux.

Definition 1. (Update program) An update program P over a dynamic schema
(τin, τaux) is a set of first-order formulas (called update formulas in the following)
that contains, for every R ∈ τaux and every δ ∈ {insS ,delS} with S ∈ τin, an
update formula φR

δ (*x; *y) over the schema τ where *x and *y have the same arity
as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A)
where D is a finite domain, I is a database over the input schema (the current
database) and A is a database over the auxiliary schema (the auxiliary database).
The semantics of update programs is as follows. For a modification δ(*a), where
*a is a tuple over D, and program state S = (D, I,A) we denote by Pδ(S) the

state (D, δ(I),A′), where A′ consists of relations R′ def
= {*b | S |= φR

δ (*a;*b)}. The
effect Pα(S) of a modification sequence α = δ1 . . . δm to a state S is the state
Pδm(. . . (Pδ1(S)) . . .).

Definition 2. (Dynamic program) A dynamic program is a triple (P, Init, Q),
where
– P is an update program over some dynamic schema (τin, τaux),
– Init is a mapping that maps τin-databases to τaux-databases, and
– Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dynamic query Dyn(Q)
if, for every dynamic instance (D, α), the relation Q(α(D)) coincides with the
query relation QS in the state S = Pα(SInit(D)), where SInit(D) is the initial
state for D, i.e. SInit(D)

def
= (D,D, Initaux(D)).
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Definition 3. (DynFO and DynProp) DynFO is the class of all dynamic
queries that can be maintained by dynamic programs with first-order update
formulas and arbitrary initialization mappings. DynProp is the subclass of
DynFO, where update formulas are not allowed to use quantifiers. A dynamic
program is k-ary if the arity of its auxiliary relation symbols is at most k. By
k-ary DynProp (resp. DynFO) we refer to dynamic queries that can be main-
tained with k-ary dynamic programs.

In the literature, classes with restricted initialization mappings have been
studied as well, see [17] for a discussion. The choice made here is not a real
restriction as lower bounds proved for arbitrary initialization hold for restricted
initialization as well. On the other hand, our upper bounds also hold for other
settings of initialization; with the single exception of Theorem 6, which requires
arbitrary initialization. Furthermore our results also hold in the related setting
where domains can be infinite.

4 k-Clique Can Be Maintained under Insertions with
Arity k − 1

In this section we prove that the k-clique query can be maintained in (k−1)-ary
DynProp when only edge insertions are allowed. Instead of proving this result
directly, we show that the class of all semi-positive existential first-order queries
can be maintained in DynProp under insertions.

A positive existential first-order query over schema τ is a query that can be
expressed by a first-order formula of the form ϕ(*y) = ∃*xψ(*x, *y) where ψ is a
quantifier-free formula that contains only literals of the form zi = zj and R(*z)
with R ∈ τ . For semi-positive existential first-order queries literals of the form
zi �= zj are allowed as well.

We will prove that every semi-positive existential first-order query can be
maintained in DynProp when only insertions are allowed. More precisely, it
will be shown that (k− 1)-ary DynProp is sufficient for boolean queries with k
existential quantifiers. In particular k-Clique can be maintained in (k− 1)-ary
DynProp. Before turning to the proof we give some intuition.

Example 1. We show how to maintain 3-Clique in binary DynProp under in-
sertions. The very simple idea is to use an additional binary auxiliary relation R
that stores all edges whose insertion would complete a triangle. Hence a tuple
(a, b) is inserted into R as soon as deciding whether there is a 3-clique contain-
ing the nodes a and b only depends on those two nodes. More precisely (a, b) is
added to R, if an edge (c, a) is inserted to the input graph and the edge (c, b) is
already present (or vice versa).

Thus the update formula for R is

φR
insE(u, v;x, y)

def
= u �= v ∧ x �= y ∧

((
E{u, y} ∧ v = x

)
∨
(
E{u, x} ∧ v = y

)
∨
(
E{v, y} ∧ u = x

)
∨
(
E{v, x} ∧ u = y

))
where E{x, y} is an abbreviation for E(x, y) ∨ E(y, x).
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The update formula for the query symbol Q is

φQ
insE(u, v;x, y) = Q ∨R(u, v)

"#

The general proof for arbitrary semi-positive existential first-order properties
extends the approach taken in the example.

Theorem 1. An �-ary query expressible by a semi-positive existential first-order
formula with k quantifiers can be maintained under insertions in (�+ k− 1)-ary
DynProp.

Proof sketch. For simplicity we restrict the sketch to boolean graph queries.
The proof easily carries over to arbitrary semi-positive existential queries.

Basically a semi-positive existential sentence with k quantifiers can state
which subgraphs with k nodes shall occur in a graph. Therefore it is sufficient to
construct a dynamic quantifier-free program that maintains whether the input
graph contains a subgraph H . Such a program can work as follows. For every
induced, proper subgraph H ′ = {u1, . . . , um} of H , the program maintains an
auxiliary relation that stores all tuples *a = (a1, . . . , am) such that inserting H ′

into {a1, . . . , am} (with ai corresponding to ui) yields a graph that contains H .
In particular, auxiliary relations have arity of at most k − 1 (as only proper

subgraphs of H have a corresponding auxiliary relation). Furthermore the graph
H is contained in the input graph whenever the value of the 0-ary relation
corresponding to the empty subgraph of H is true. In the example above, the
relation R is the relation for the subgraph of the 3-clique graph that consists
of a single edge, and the designated query relation is the 0-ary relation for the
empty subgraph.

Those auxiliary relations can be updated as follows. Assume that a tuple
*a = (a1, . . . , am) is contained in the relation corresponding to H ′. If, after the
insertion of an edge with end point am, every edge from um in H ′ has a cor-
responding edge from am in the graph induced by {a1, . . . , am}, then the tuple
*a ′ = (a1, . . . , am−1) has to be inserted into the auxiliary relation for the subgraph
H ′ �{u1, . . . , um−1}. This is because inserting the graph H ′ �{u1, . . . , um−1} into
{a1, . . . , am−1} will now yield a graph that contains H . Observe that for those
updates no quantifiers are needed. "#

5 k-Clique Cannot Be Maintained with Arity k − 2

In this section we prove that the k-clique query cannot be maintained by a
(k−2)-ary quantifier-free update program when k ≥ 3. The proof uses two main
ingredients; the substructure lemma from [9, 16] and a new Ramsey-like lemma.
We state those lemmas next.

For stating the substructure lemma we need the following notion of corre-
sponding modifications in isomorphic structures. Let π be an isomorphism from
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a structure A to a structure B. Two modifications δ(*a) on A and δ′(*b) on B
are said to be π-respecting if δ = δ′ and *b = π(*a). Two sequences α = δ1 · · · δm
and β = δ′1 · · · δ′m of modifications respect π if δi and δ′i are π-respecting for
every i ≤ m. For a discussion of the lemma we refer the reader to the long
version of [16]. Recall that Pα(S) denotes the state obtained by executing the
dynamic program P for the modification sequence α from state S.

Lemma 1 (Substructure Lemma [9, 16]). Let P be a DynProp-program
with designated Boolean query symbol Q, and let S and T be states of P with
domains S and T . Further let A ⊆ S and B ⊆ T such that S � A and T � B
are isomorphic via π. Then Q has the same value in Pα(S) and Pβ(T ) for all
π-respecting sequences α, β of modifications on A and B.

The second ingredient exhibits a disparity between upper bounds for Ramsey
numbers in k-ary structures and lower bounds for Ramsey numbers in (k + 1)-
dimensional hypergraphs. While the first condition in the following lemma guar-
antees the existence of a Ramsey clique of size f(|A|) in k-ary structures over A,
the second condition states that there is a 2-coloring of the complete (k + 1)-
hypergraph over A that does not contain a Ramsey clique of size f(|A|). This
disparity is the key to the lower bound proof.

Lemma 2. Let k ∈ N be arbitrary and τ a k-ary schema. Then there is a
function f : N → N and an n ∈ N such that for every domain A larger than n
the following conditions are satisfied:

(S1) For every τ-structure S over A and every linear order ≺ on A there is a
subset A′ of A of size |A′| ≥ f(|A|) such that all ≺-ordered k-tuples over A′

have the same type in S.
(S2) The set [A]k+1 of all (k + 1)-hyperedges over A can be partitioned into two

sets B and B′ such that for every set A′ ⊆ A of size |A′| ≥ f(|A|) there are
(k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′.

The two lemmas above can be used to obtain the lower bound for the k-clique
query as follows. The proof of Lemma 2 will be sketched afterwards.

Theorem 2. (k+ 2)-Clique (k ≥ 1) cannot be maintained under insertions by
a k-ary DynProp-program.

Proof. Towards a contradiction assume that there is a k-ary DynProp-
program P over k-ary schema τ that maintains (k + 2)-Clique. Let n and f
be as in Lemma 2. For a set A larger than n let ≺ be an arbitrary order on A
and let D

def
= A � C be a domain with C

def
= [A]k+1. Further let B,B′ be the

partition of [A]k+1 guaranteed to exist by (S2) in Lemma 2.
We consider a state S over domain D where the input graph G contains the

edges

{(b1, b), (b2, b), . . . , (bk+1, b) | b = {b1, b2, . . . , bk+1} ∈ B}

See Figure 1 for an illustration.
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A C
def
= [A]k+1

A′

B
B′

b1

b2

bk+1

b′1
b′2

b′k+1

b = {b1, b2, . . . , bk+1}

b′ = {b′1, b′2, . . . , b′k+1}

Fig. 1. The construction from the proof of Theorem 2

By Condition (S1) there is a subset A′ ⊆ A of size |A′| ≥ f(|D|) such that
all ordered k-tuples over A′ have the same τ -type in S. Then by (S2) there are
(k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′. Without loss of generality
b = {b1, b2, . . . , bk+1} with b1 ≺ . . . ≺ bk+1 and b′ = {b′1, b′2, . . . , b′k+1} with
b′1 ≺ . . . ≺ b′k+1. By construction of the graph G, all elements in b are connected
to the node b ∈ C while there is no node in C connected to all elements of b′.
Thus applying the modification sequences

(α) Insert the edges (bi, bj) in lexicographic order with respect to ≺.
(β) Insert the edges (b′i, b

′
j) in lexicographic order with respect to ≺.

yields one graph with a (k + 2)-clique and one graph without a (k + 2)-
clique, respectively. However, by the substructure lemma, the program P yields
the same result since the substructures induced by *b = (b1, . . . , bk+1) and
*b ′ = (b′1, . . . , b

′
k+1) are isomorphic. This is the desired contradiction. "#

In the following we give a rough sketch of the proof of Lemma 2. The k-
dimensional Ramsey number for r colors and clique-size l, denoted by Rk(l; r),
is the smallest number n such that every r-coloring of a complete k-hypergraph
with n nodes has a monochromatic clique of size l. The tower function towk(n) is

defined by towk(n)
def
= 22

..
.2

n

with (k−1) many 2’s. The following classical result
for asymptotic bounds on Ramsey numbers due to Erdős, Hajnal and Rado is
the key to prove Lemma 2. The concrete formulation is from [5].

Theorem 3. [6, 7] Let k, l and r be positive integers. Then there exist positive
constants ck, ck,r and lk such that

(a) Rk(l; r) ≤ towk(ck,rl)
(b) Rk(l; 2) ≥ towk−1(ckl

2) for all l ≥ lk

The theorem immediately implies that (T1) Ramsey cliques in r-colored k-

dimensional complete hypergraphs are of size at least Ω(log(k−1)(n)); and
that (T2) there are 2-colorings of the (k + 1)-dimensional complete hyper-

graphs such that monochromatic cliques are of size O((log(k−1)(n))
1
2 ). Here

log(k)(n) denotes log(log(. . . (logn) . . .)) with k many log’s. Those conditions are
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already quite similar to the conditions (S1) and (S2). The major difference is
that (T1) is about hypergraphs and not about structures with a k-ary schema.

Fortunately the upper bound from Theorem 3 can be generalized to Ramsey
numbers for structures. To this end some notions need to be transferred from
hypergraphs to structures. Let τ be a k-ary schema, let S be a τ -structure over
domain D and ≺ an order on D. A subset D′ ⊆ D of S is called an ≺-ordered τ-
clique if all ≺-ordered k-tuples *a ∈ D′k have the same τ -type. Denote by R(l; τ)
the smallest number n such that every τ -structure with n elements contains an
≺-ordered τ -clique of size l, for every order ≺ of the domain.

Theorem 4. Let τ be a schema with maximal arity k and let l be a positive
integer. Then there exists a constant c such that R(l; τ) ≤ towk(cl).

Proof. The proof of Observation 1’ in [9, p. 11] yields this bound. For the sake
of completeness we repeat the construction.

Let S be a τ -structure over domain D of size towk(cl). Further let ≺ be
an arbitrary order on D. Define a coloring col of the complete k-dimensional
hypergraph with nodes D as follows. An edge {e1, . . . , ek} with e1 ≺ . . . ≺
ek is colored by the type 〈S, e1, . . . , ek〉. By Theorem 3 there is an induced
monochromatic sub-k-hypergraph with domain D′ ⊆ D with |D′| ≥ l. By the
definition of the coloring col, two ≺-ordered k-tuples over D′ have the same type
and therefore D′ is a ≺-ordered τ -clique in S as well. "#

The previous theorem implies that (T1’) Ramsey cliques in k-ary structures

are of size at least Ω(log(k−1)(n)). Then Lemma 2 follows from the facts (T1’)

and (T2) by choosing f as the function in Ω(log(k−1)(n)) guaranteed to exist
by (T1’). The function f satisfies (S1) and (S2) due to (T1’) and (T2). This
completes the lower bound proof.

6 Adding Auxiliary Functions

In quantifier-free update programs, as considered up to here, only the modified
and the updated tuple can be accessed while updating an auxiliary tuple. Since
lower bounds for first-order update programs where arbitrary elements can be
accessed in updates seem to be out of reach for the moment, it seems natural to
look for extensions of quantifier-free update programs that allow for accessing
more elements in some restricted way.

Here we study DynProp programs extended by auxiliary functions, an ex-
tension proposed by Hesse [13]. Auxiliary functions are updated by update terms
that may use function symbols and a special if-then-else construct. For a discus-
sion of previous work on this extension we refer to the introduction. A formal
treatment of this extension can be found in [16, 9].

The lower bound from the previous section can be generalized to quantifier-
free programs that may use unary functions.

Theorem 5. (k+ 2)-Clique (k ≥ 1) cannot be maintained under insertions by
a k-ary DynProp-program with unary auxiliary functions.
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The proof is along the same lines as the proof of Theorem 2. Instead of the
substructure lemma for DynProp a corresponding lemma for DynQF from
[9, 16] is used. However, this substructure lemma for DynQF requires to exhibit
isomorphic substructures that, additionally, have similar neighbourhoods.

A natural question is whether the lower bounds transfer to k-ary auxiliary
functions. We conjecture that they do, but we will argue that the techniques used
so far are not sufficient for proving lower bounds for binary auxiliary functions.

The fundamental difference between unary and binary auxiliary functions is
that, on the one hand, unary functions can access elements that depend either
on the tuple that has been modified in the input structure or on the auxiliary
tuple under consideration but not on both. On the other hand binary functions
can access elements that depend on both tuples.

A consequence is that binary DynQF can maintain every boolean graph prop-
erty when the domain is large with respect to the actually used domain. We make
this more precise. In the following we assume that all domains D are a disjoint
union of a modifiable domain D+ and a non-modifiable domain D−, and that
modifications may only involve tuples over D+. Auxiliary data, however, may
use the full domain. A dynamic complexity class C profits from padding if every
boolean graph property can be maintained whenever the non-modifiable domain
is sufficiently large in comparison to the modifiable domain2.

Above we have seen that DynProp with unary auxiliary functions does not
profit from padding.

Theorem 6. Binary DynQF profits from padding.

Proof sketch. We only show how ternary DynQF profits from padding, the
adaption to binary DynQF is not difficult. Let Q be an arbitrary boolean graph
property. In the following we construct a ternary DynQF program P which
maintains Q if 2|D

+|2 = |D−|. The idea is to identify D− with the set of all
graphs over D+, that is D− contains an element cG for every graph G over D+.
A unary relation RQ stores those elements of D− that correspond to graphs
with the property Q. Finally the program maintains a pointer p to the element
in D− corresponding to the graph stored in D+. The pointer is updated upon
edge modification by using ternary functions fins and fdel initialized by the
initialization mapping in a suitable way.

The program P is over schema τ = {Q, p, fins, fdel, RQ} where p is a constant,
fins and fdel are ternary function symbols, RQ is a unary relation symbol and
Q is the designated query symbol.

We present the initialization mapping of P first. The initial state S for a graph
H is defined as follows. The functions fins and fdel are independent of H and
defined via

fS
ins

(a, b, cG) = cG+(a,b)

fS
del

(a, b, cG) = cG−(a,b)

2 Note that this type of padding is different from the padding technique used by
Patnaik and Immerman for maintaining a PTIME-complete problem inDynFO [14].



The Dynamic Descriptive Complexity of k-Clique 557

for a, b ∈ D+ and cG ∈ D−. For all other arguments the value of the functions is
arbitrary. Here G+(a, b) and G−(a, b) denote the graphs obtained by adding the
edge (a, b) to G and removing the edge (a, b) from G, respectively. The relation
RS

Q contains all cG with G ∈ Q. Finally the constant pS points to cH .
It remains to exhibit the update formulas. After a modification, the pointer p

is moved to the node corresponding to the modified graph, and the query bit is
updated accordingly:

tp
ins

(u, v) = fins(u, v, p) tQ
ins

(u, v) = RQ(fins(u, v, p))

tp
del

(u, v) = fdel(u, v, p) tQ
del

(u, v) = RQ(fdel(u, v, p))

By further extending the non-modifiable domain, this construction can be ex-
tended to binary DynQF. "#

Hence the ability to profit from padding distinguishes binary DynQF and
DynProp extended by unary functions. Although the proof of the preceding
theorem requires the non-modifiable domain to be of exponential size with re-
spect to the modifiable domain, the construction also explains why the lower
bound technique from the previous sections cannot be immediately applied to
binary DynQF. In the lower bound construction only tuples over the set A are
modified, while tuples containing elements from C = [a]k are not modified. Thus,
by treating C as a non-modifiable domain, it can be used to store information
as in the proof above. As the modification sequences used in the lower bounds
are of length k2, finding similar substructures in structures with binary auxiliary
functions becomes much harder.

7 Conclusion and Future Work

In this work we exhibited a precise dynamic descriptive complexity characteriza-
tion of the k-clique query when only insertions are allowed. The characterization
implies an arity hierarchy for graph queries for DynProp under insertions. We
also discussed the limit of our proof methods.

While proving lower bounds for full DynFO — a major long-term goals in dy-
namic descriptive complexity — might be really hard to achieve, we believe that
the following goals are suitable for both developing new lower bound methods
and for further improving the current methods.

Goal 1. Prove general quantifier-free lower bounds for insertions and deletions
for the reachability query and the k-clique query.

It is known that both queries cannot be maintained in binary DynProp. We
conjecture that 3-clique cannot be maintained in DynProp under deletions.

Goal 2. Find a general framework for proving quantifier-free lower bounds.

Goal 3. Find a natural query that cannot be maintained in binary DynQF.
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