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Abstract

Placebo analgesia has become a well-studied phenomenon that encompasses

psychology, physiology and pharmacology. In this chapter we explore the

complex interactions between these disciplines in order to argue that the placebo

response is more than a simple change in perception but is a cognitive style

driven by prior expectations. The expectation of treatment effect is shaped by

prior information and prior experience which our brain uses to predict future

events. In the case of placebo analgesia the prediction of pain relief overrules the

actual feeling of pain leading to a decrease in pain sensation. This altered

sensation can be attributed to personality traits, altered error monitoring pro-

cesses, changes in anticipatory responses to pain and activation of the endoge-

nous opioid system. In conclusion we discuss how altered sensory processing by

descending pain modulation may play a part in placebo analgesia and how the

loss of the brains prefrontal regions can make it impossible to have a placebo

response.
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1 Introduction

The placebo response, once considered a nuisance in clinical trials, is now being

investigated in its own right as a way to enhance treatment effects endogenously.

Conditions such as pain and depression, where the outcome measures are continu-

ous, subjective and are based on self-reports, are most likely to be subject to

manipulation by placebo (Hrobjartsson and Gotzsche 2010), but the placebo

response has also been noted in less subjective disorders such as Parkinson’s

disease (Colloca et al. 2004; De La Fuente-Fernandez et al. 2001) and asthma

(Kaptchuk et al. 2008; Kemeny et al. 2007). The most studied of these conditions to

manipulations by placebo is pain. Studies of placebo analgesia give us great insight

into how psychological manipulations can cause physical changes in perception.

Placebo response rates are highly variable, ranging from no response to a full

response. A placebo treatment will work if it has “meaning” to the individual

receiving it and it is this “meaning” that is thought to cause the variance seen in

placebo response rates (Moerman 2002).

Placebo response is highly dependent on prior expectation. Keeping

expectations the same leads to a reproducible placebo response (Morton

et al. 2009). Conversely, varying expectations, such as altering the name of the

placebo, causes the response to become irreproducible (Whalley et al. 2008). Pla-

cebo response rates also vary inter-individually when the mode of treatment

changes. For example, no relationship was found between subjects’ responses to

placebo pills and sham acupuncture (Kong et al. 2013).

At their simplest, the expectations generated by a treatment cause a change in the

interpretation of the sensory information which is used to represent and understand

the environment. In the case of placebo analgesia this leads to the individual

experiencing a decrease in pain perception. However, the variability of the placebo

response suggests that the mechanisms behind these changes in perception are

much more complex. Here we look at evidence demonstrating that the placebo

response is brought about by an enduring cognitive change in information

processing.

2 Prior Expectations

If perception is receiving information about your environment, cognition can be

viewed as learning or knowing about your environment. Learning is fundamental to

placebo responsiveness. For instance, regular use of paracetamol leads to
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associations with the tablets’ size, shape, colour, packaging and taste with pain

relief. In order to learn, one must first receive information and it is this prior

information that allows us to generate cognitive factors such as expectations and

beliefs regarding future events. Expectations of analgesia are known to modify

responses to analgesic treatment, a phenomena that is illustrated by Colloca

et al 2004. In this study, patients unaware that they were receiving morphine via

a computer-controlled infusion (hidden administration) experienced a significant

reduction in analgesia compared to patients explicitly told they would be receiving

morphine to help with their pain (open administration) (Colloca et al. 2004). The

placebo component of the treatment is thought to be the difference between the

open administration of the treatment and the hidden administration of treatment.

The strength of these treatment expectations comprises an important component of

the placebo response. Parkinson’s patients given varying expectations of receiving

active medication when given a placebo only experienced a significant release of

dopamine when they were informed that they had a 75 % probability of receiving

active medication (Lidstone et al. 2005).

Learning about treatments comes not only through our own experience, but also

from knowledge we have gained from others. Gaining information from observing

other people can in itself generate expectations of treatment outcome possibly by

establishing “a self-projection into the future outcome (pp 33)” (Colloca and

Benedetti 2009).

How do we get from an expectation of treatment to an actual placebo response?

In the case of experimental placebo analgesia, one would expect that once the

subject is exposed to pain after the placebo administration, they would realise that

their expectation of pain relief was incorrect and would not experience an analgesic

effect. Of course in some instances this is true and is a reason for the variability in

magnitude of placebo response. However, in placebo responders this doesn’t

happen and may be explained by how our brains process sensory inputs.

3 Signal Detection Errors and Cognitive Bias

In order to quickly interpret the environment our brain constantly generates

predictions about what our senses are telling us (Kveraga et al. 2007). These

predictions use our past experiences and any prior information of the situation to

create a picture of what is actually happening. Changes in our environment produce

sensory information that can be incompatible with the model of the environment

that has been generated in the brain (Yu and Dayan 2005). If the brain’s predictions

(top-down) and the sensory representations (bottom-up) don’t match up, the two

sets of information are thought to integrate through an error minimization pathway.

A large error signal is then projected to a higher neural region where a new

prediction refined by the error signal is generated (Friston 2005). Representing

this as a computational model has shown how top-down inputs reduce the uncer-

tainty of the stimulus representation when compared with bottom-up processing

alone and leads to faster processing speeds (Siegel et al. 2000). In the placebo
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response, the expectation of treatment is thought to create uncertainty about

incoming sensory information. Siegel’s model shows how top-down/bottom-up

synchrony can lead to the biased processing of top-down information.

As individuals our level of cognitive flexibility to error varies (Allan and Siegel

2002). Therefore what is immediately noticeable to one person as violating their

prior expectations may be totally overlooked by another. Because there is such

variability in placebo response both intra- and inter-individually, researchers are

interested in being able to predict placebo responses even before placebo is

administered. Studies comparing personality and placebo response indicate that

suggestibility (De Pascalis et al. 2002; Morton et al. 2010a, b) and optimism (Geers

et al. 2010; Morton et al. 2009) may be important correlates of placebo magnitude.

How placebo responders weigh perceptual information against prior expectations

has been previously tested. Screening of subjects in a visual perceptual task resulted

in an experimental population of which half had a tendency to rely heavily on prior

expectations, and half who tended to rely on the current perceptual information

(Morton et al. 2011). Individuals who used prior expectations when making per-

ceptual decisions in both the perceptual task and the placebo manipulation were

found to have greater magnitude of placebo response (Morton et al. 2010b). These

results suggest that placebo responders “ignore” the incoming sensory information

to base their decisions on their prior expectations, which creates a conflict between

the incoming pain signals and cognitive control. In this scenario, the placebo

response should have a direct influence on electrophysiological markers of error

processing. This has been shown by Koban et al. (2012) when they hypothesised

that placebo analgesia “may induce a transient change in the reactivity of cognitive

control networks in order to adjust for the mismatch between predicted and

experienced pain” (pp 7) . The authors found that placebo analgesia was related

to altered error monitoring processes in a go/nogo task. The go/nogo task was

specifically designed to cause a large number of response errors and therefore a

large event-related potential (ERP) on the EEG that corresponded to error

processing and adjustments in behavioural control and error awareness. The error

processing potential amplitude was significantly increased for placebo responders

in the placebo condition compared to controls. Source reconstructions of the EEG

recordings showed that this effect was probably caused by increased activation of

specific medial frontal and lateral prefrontal regions, regions previously

demonstrated to be vital in placebo analgesia (Krummenacher et al. 2010; Wager

et al. 2004). Importantly these areas are also associated with adaptive control brain

mechanisms (Botvinick et al. 2001; Ridderinkhof et al. 2004) and adjustments to

expectations (Koban et al. 2012; Montague and Lohrenz 2007).

4 Anticipatory Responses

The anticipation of less pain during a placebo treatment has been suggested as an

important component of placebo analgesia. Imaging a placebo conditioning proce-

dure using fMRI showed activation in the left dorsolateral prefrontal cortex, medial
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frontal cortex and the anterior mid-cingulate cortex. These same areas were also

found to be modulated during the anticipation of placebo analgesia (Watson

et al. 2009). Learnt analgesia can have a significant effect on future anticipatory

responses to pain. In a repeated placebo paradigm, participants in the placebo group

not only anticipated less pain than controls after the administration of placebo but

also demonstrated lowered anticipatory responses to pain before placebo adminis-

tration when the treatment was repeated 2–6 weeks later (Morton et al. 2010a).

Using a penalised regression procedure (LASSO-PCR) to create a model of

re-analysed data from an earlier experiment (Wager et al. 2004), Wager

et al. (2011) were able to predict 12 % of the variance found in the magnitude of

placebo analgesia. Large magnitude placebo analgesia was related to increases in

anticipatory responses in the prefrontal cortex and correlated with prior

expectations of analgesia, and reduced anticipatory responses in somatosensory

area 2/temporal regions. The latter probably reflects the shifting of attention away

from the painful stimulus (Coghill et al. 1999). Together, these results suggest that

an enduring cognitive change in anticipatory pain processing can be produced by

placebo analgesia, and the engagement of emotional appraisal pathways is respon-

sible for some of the variation in placebo analgesia.

5 Opioids in Placebo Analgesia and Distraction

Many studies have associated placebo analgesia with the activation of the endoge-

nous opioid system and with brain areas that include the prefrontal, limbic and

brainstem regions (Wager et al. 2007; Zubieta et al. 2005). Changes in activity of

these brain regions are related to reductions in the physical and emotional aspects of

pain experience. Placebo response is most likely initiated in the dorsolateral

prefrontal cortex which is regarded as a cognitive-evaluative area. The placebo

analgesic effect relies on enhanced functional coupling of the rostral anterior

cingulate cortex with the hypothalamus, and brainstem areas such as the opioid

receptor-rich periaqueductal grey and rostral ventral medulla (Amanzio and

Benedetti 1999; Eippert et al. 2009; Wager et al. 2004, 2007), areas which have

consistently shown expectancy-induced increases in relation to placebo analgesia

(Atlas et al. 2010; Craggs et al. 2007; Eippert et al. 2009). The activity seen during

placebo analgesia within all key regions of the descending pain modulatory system

is significantly decreased with naloxone, an opioid antagonist (Amanzio and

Benedetti 1999; Eippert et al. 2009; Levine et al. 1979; Zubieta et al. 2005). The

placebo-dependent reduction of BOLD responses in fMRI and its reversal by

naloxone is most evident in the dorsal anterior cingulate cortex (Eippert

et al. 2009). Modulation of this region has been previously demonstrated in

expectation manipulations (Keltner et al. 2006). During an fMRI study to image

the spinal cord during pain, participants were required to do a continuous perfor-

mance task (the N-back test) in order to distract them from the painful stimulus. The

distraction task significantly reduced spinal responses to painful events whilst

administration of naloxone during the task selectively blocked the distraction-
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induced reductions on reported pain (Sprenger et al. 2012). This indicates that

opioids are at least partially required for both placebo responses and distraction

effects. However, evidence shows placebo analgesia is not always mediated by

opioids with some placebo responses being naloxone insensitive (Amanzio and

Benedetti 1999; Vase et al. 2005). For example, Eippert et al. (2009) produced a

blockade of placebo-induced decreases in BOLD responses, with naloxone, in

regions associated with pain. However, the behavioural response was not

completely blocked by naloxone as there was no significant increase in pain ratings

after its administration. This suggests that pain self-reports due to placebo can be

distinct from the physiological process of nociception which firmly implicates an

additional non-opioidergic component to placebo analgesia.

During opioid analgesia and placebo analgesia there is consistent overlapping of

brain regions involved in pain. In opioid analgesia there is more activation in the

rostral anterior cingulate cortex and the anterior insula, whilst placebo analgesia

generates greater responses in the lateral orbitofrontal cortex and ventrolateral

prefrontal cortex. It is thought that this difference can be accounted for by the

error signal generated by the discrepancy between actual pain and expectations of

pain relief in placebo analgesia that is not present in opioid analgesia (Petrovic

et al. 2010; Wager and Roy 2010). Colloca et al. (2004) open/hidden paradigm

discussed earlier demonstrated that expectations of pain relief influence the magni-

tude of analgesia. Using this same paradigm to test the relationship between

expectations and the opiate remifentanil, Atlas et al. (2012) showed that a hidden

administration of remifentanil (no expectation of analgesia) influenced different

brain regions when compared to an open administration of remifentanil (expecta-

tion of analgesia). Expectation of analgesia activated lateral and ventromedial

prefrontal cortices and caused reduced responses in amygdala and pain-processing

thalamic and somatosensory regions whereas analgesia caused by remifentanil

without expectation of analgesia produced strong decreases in the anterior cingulate

cortex and the weakest effects on somatosensory areas (S2/dorsal posterior insula).

This suggests expectation operated independently but alongside remifentanil to

reduce pain sensation. What these studies show us is that opioids, distraction, and

placebo may have a common effect on pain, but they involve dissociable brain

regions.

6 Altered Sensory Processing

As discussed in the previous section, the periaqueductal grey and the rostral ventral

medulla are important in the production of the opioid-mediated placebo response.

These same areas are also involved in the descending inhibition of pain by diffuse

noxious inhibitory control (DNIC). DNIC was first described by LeBars

et al. (1979) and is an endogenous pain-modulating system which includes

descending inhibitory projections coordinated in the rostral ventral medulla.

DNIC is a mechanism by which the response to painful stimulation by dorsal

horn wide dynamic range neurons is inhibited by a second painful stimulus
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(counter-irritation). This response has been previously shown to reduce the ampli-

tude of a spinal/nociceptive flexion reflex (RIII) (Willer et al. 1989, 1990). It has

been suggested that the opioid-dependent placebo response may be attributed to, or

work in parallel with, the inhibition of nociceptive processing in the dorsal horn of

the spinal cord. Experimentally, expectations of hyperalgesia (nocebo) have been

shown to block the normal decrease in both pain perception and the nociceptive

reflex activity that is usually seen during counter-irritation (Goffaux et al. 2007). In

contrast, fMRI imaging of the cervical spinal cord during painful heat together with

placebo treatment significantly reduced spinal activity in response to heat compared

to no treatment (Eippert et al. 2009). These findings suggest that the modulation of

pain by placebo affects nociceptive signal processing at the earliest stage of the

central nervous system.

7 Loss of Prefrontal Regions

The activation of opioid transmission has been seen in prefrontal brain areas

(Eippert et al. 2009; Zubieta et al. 2005). In neurodegenerative conditions such as

Alzheimer’s disease, loss of prefrontal lobes can have severe implications for

treatment effects. Benedetti et al. (2006) applied a local anaesthetic either openly

or covertly to the skin of Alzheimer’s patients to reduce burning pain after veni-

puncture. In this paradigm, as in Colloca et al. (2004), the placebo component of the

treatment was shown by the difference in analgesia after expected and unexpected

application of the anaesthetic. Frontal lobe damage often seen in Alzheimer’s can

be assessed using the frontal assessment battery, a series of simple tests which

identifies impairments in cognition and motor behaviour. Patients with reduced

frontal assessment battery scores showed a reduced placebo component of treat-

ment and the reduction in placebo response was correlated with reduced cognitive

status and the reduced functional connectivity of the frontal lobes to the rest of the

brain. Losing the placebo component reduced the effectiveness of the treatment so

much that a dose increase was needed to ensure sufficient analgesia.

Of particular interest in placebo analgesia is the involvement of the dorsolateral

prefrontal cortex, an area known for cognitive and attention-related pain regulation

(Lorenz et al. 2003; Miller and Cohen 2001; Peyron et al. 2000) that has been

repeatedly identified in expectation-related placebo analgesia (Wager et al. 2004;

Zubieta et al. 2005). Disruption of the dorsolateral prefrontal cortex has been shown

to interfere with placebo analgesia. Krummenacher et al. (2010) used sham repeti-

tive transcranial magnetic stimulation (rTMS) and an expectation of pain relief to

induce an increase in pain threshold and pain tolerance indicative of a placebo

response. Then using low-frequency rTMS, they artificially inhibited the function

of the dorsolateral prefrontal cortex, which disrupted the placebo response and

decreased pain threshold and pain tolerance. Previously, the dorsolateral prefrontal

cortex has been related to the generation, maintenance and manipulation of cogni-

tive representations (Miller and Cohen 2001; Pacheco-Lopez et al. 2006) and it has

also been implicated in general attentional processes (Miller and Cohen 2001). The
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authors suggest that the loss of placebo analgesia after rTMS can be explained by

the effects of disrupting the cognitive representation of analgesia and the directing

of attention towards the painful stimulus.

Conclusion

If perception is the information we receive about a stimulus, cognition is how we

have learnt to deal with that information. In the context of a placebo response,

the stimulus information we receive is not variable but how we have learnt to

deal with it using the expectations we have formed from our prior experiences

is. To suggest that placebo response is due to a simple change in perception is to

suggest that the placebo response is formed by a simple mechanism. Instead we

see that a network of brain areas is responsible for the formation of a response,

and that the frontal cortex, particularly the dorsolateral prefrontal cortex, is the

core area for the cognitive modulation of pain. With no prefrontal cortex there

can be no cognitive input, and with no cognitive input there can be no placebo

response (Fig. 1).
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