

J. Wu et al. (Eds.): ACA 2014, CCIS 451, pp. 98–112, 2014.
© Springer-Verlag Berlin Heidelberg 2014

A Throughput-Aware Analytical Performance
Model for GPU Applications

Zhidan Hu, Guangming Liu, and Wenrui Dong

College of Computer, National University of Defense Technology Hunan, China
{Huzd,liugm,dongwr}@nscc-tj.gov.cn

Abstract. Graphics processing units (GPUs) have shown increased popularity
in general-purpose parallel processing. This massively parallel architecture al-
lows GPUs to execute tens of thousands of threads in parallel to solve heavily
data-parallel problems efficiently. However, despite the tremendous computing
power, optimizing GPU kernels to achieve high performance is still a challenge
due to the sea change from CPU to GPU and lacking of tools for programming
and performance analysis.

In this paper, we propose a throughput-aware analytical model to estimate
the performance of GPU kernels and optimizations. We construct a pipeline for
global memory access servicing and redefine the compute throughput and
memory throughput as the speed of memory requests arriving and leaving the
pipeline. Based on concluding the kernel throughput limiting factor, GPU pro-
grams are classified into compute-bound and memory-bound categories and
then we predict performance for each category. Besides, our model can provide
useful information on the direction of optimization and predict the potential per-
formance benefits. We demonstrate our model on a manually written bench-
mark as well as the matrix-multiply kernel and show that the geometric mean of
absolute error of our model is less than 6.5%.

Keywords: GPU, compute-bound, memory-bound, performance prediction,
performance bottleneck.

1 Introduction

In recent years, the ceiling of high performance computing has been updated multiple
times by the GPU-based heterogeneous systems [1]. The GPU architecture has gar-
nered wide popularity since the increasing programmability and the ever friendly
programming model. Even though hardware is providing high performance compu-
ting, implementing and optimizing parallel programs to take full advantage of the
potential computing power still remains a big challenge.

Several programming languages have been proposed to reduce programmer’s bur-
den in porting parallel applications to GPUs such as Brook++ [2], CUDA [3], and
OpenCL [4]. However, even with these newly developed programming languages,
programming and optimizing programs to achieve better performance is still time-
consuming and error prone.

 A Throughput-Aware Analytical Performance Model for GPU Applications 99

To provide insight into performance bottlenecks in massively parallel architectures,
especially GPU architectures, we propose a simple analytical model. The model can
be used statically without executing a GPU application. The basic intuition of our
analytical model is that the ability to hide long latency memory operations with inter-
leaving executions of computation from different thread warps can be obtained based
on the warp level parallelism of both computations and memory operations. By con-
structing the memory pipeline model and extending the concept of compute through-
put, we classify GPU applications into compute-bound and memory-bound categories,
and then we estimate the execution time for each category.

We evaluate our analytical model based on the CUDA programming model, which
is specific for the CUDA-enabled NVIDIA GPUs. We compare the results of our
analytical model with the actual execution time collected on the NVIDIA GPUs. Our
results show that the geometric mean of absolute error of our model is less than 6.5%.

The contributions of our work can be concluded as follows:

• We construct the memory pipeline model and extract the memory throughput
based on capturing the performance factor of uncoalesced memory access

• We redefine the concept of compute throughput to be the frequency of global
memory requests leaving the SMs and reaching the memory pipeline

• We classify GPU applications into two categories as memory-bound and compute-
bound based on values of redefined compute throughput and memory throughput

• An analytical performance prediction model is proposed to estimate the perfor-
mance of both compute-bound and memory-bound GPU kernels.

2 Background

We provide a brief background on the GPU architecture and the programming model
that we have modeled. In this work, although we focus on a CUDA-enabled NVIDIA
GPU, we believe our performance model is also applicable to any GPU architecture
and GPU programming API.

2.1 Overview of GPU Architecture and CUDA Programming Model

Graphics Processing Units (GPUs) have emerged as a promising alternative building
block for the construction of high performance supercomputers, due to their unique
combination of outstanding performance, energy-efficiency, density and cost [5].

The GPU architecture consists of several streaming multi-processors (SMs), each
containing a set of streaming processors (sp) that run threads in a SIMD manner. All
SMs are connected to an off-chip DRAM memory via a interconnect network. Tesla
M2050 has 14 SMs, each equipped with 32 streaming processors, which makes for a
total of 448 processing cores [6]. The M2050 employs a dual-issue instruction dis-
patcher per each SM which can issue two instructions to 32 GPU cores every two

100 Z. Hu, G. Liu, and W. Dong

clock cycles and thus an average speed of issuing one instruction per clock cycle is
achieved. The global memory space is divided into 6 partitions, each with a memory
controller.

The CUDA programming model groups GPU threads into a grid of thread blocks.
Each thread block is mapped to a SM in a round-robin manner and multiple thread
blocks can be running simultaneously on one SM. Each thread is assigned a thread ID
(tid), which is used for the data distribution and control condition. Threads are
created, managed, scheduled and executed at the granularity of thread warp, which
contains 32 threads for most GPUs. The CUDA memory model has an off-chip global
memory space, which resides in the DRAM memory and is accessible by all threads.

2.2 Related Work

A commonly introduced metric to characterize a program is arithmetic intensity
which accounts operations per data transferred between the processor and the cache.
The Roofline performance estimation model [7] introduces operational intensity as
another metric which accounts operations per byte that transferred between DRAM
and the processor. Zhang and Owen [8] constructed a GPU performance model in a
quantitative way to estimate the execution time of arithmetic pipeline, shared memo-
ry, and global memory respectively. Performance bottlenecks are derived based on the
modeled execution time of each component. Hong and Kim [9] authored an excellent
study on analytical GPU performance modeling and using two metrics CWP and
MWP to specify a program to be compute-intensive or memory-intensive, which is
the most related to our method. However, we classify and predict performance of
GPU kernels based on the kernel throughput which complies with the throughput-
oriented GPU architecture.

In the past few years, many studies on GPU performance modeling have been pro-
posed. Baghsorkhi et al. [10] proposed a work flow graph (WFG)-based analytical
model to predict the performance of GPU applications. The WFG is an extension of a
control flow graph (CFG), where nodes represent instructions and arcs represent laten-
cies. Meng et al. [11] proposed a GPU performance projection framework to predict
performance in a cross-platform style based on the abstraction of CPU code skeletons.

Hong and Kim [9] proposed the MWP-CWP based GPU analytical model, which
shares the most common with our proposed model in the following two aspects: (1)
the two analytical models extract parallelism from GPU kernels at the granularity of
thread warps and overall execution time is counted on the ability of hiding the latency
of global memory accesses by computations. (2) The latency of an uncoalesced global
memory transaction can be synthesized as the sum of a base latency and multiple
extra delays, each representing the departure delay between uncoalesced global mem-
ory transactions. Apart from that, we also see differences between the two models.
First, in our work, the departure delay between two uncoalesced global memory ac-
cesses turns out to be the DRAM access latency of one memory transaction which can
be calculated based on the values provided in the GDDR datasheet instead of profil-
ing. Second, we construct a pipeline model for global memory accesses and utilize the
pipeline throughput to describe the memory performance. Third, the computations

 A Throughput-Aware Analytical Performance Model for GPU Applications 101

and memory access operations in the kernels are separated and performances of both
parts are represented by the extended compute throughput and memory throughput.
As GPU programs are classified into compute-bound and memory-bound categories,
the potential performance improving needs to emphasize on enhancing the value of
compute throughput or memory throughput. In summary, our model predicts perfor-
mance of GPU kernels in a more straightforward way and thus is more suitable for the
throughput-oriented GPU architectures.

3 Program Classification

In this section, we first redefine compute throughput and memory throughput, and
then classify GPU kernels into compute-bound and memory-bound categories.

3.1 Compute Throughput and Memory Throughput

Originally, the compute throughput refers to the throughput of arithmetic pipeline in a
SM. We redefine the content of compute throughput as the time interval between
warp switches to represent the frequency of memory requests being issued to the
global memory interface. As all SMs can issue memory requests to global memory
concurrently, the time interval should be divided by #SM, which is the number of
SMs in a GPU. It is determined by the efficiency of executing one computation period
which may be related to the performance factors of control flow divergence [12] and
shared memory bank conflict [10] as we consider shared memory instructions have
identical latency with compute instructions.

Fig. 1. A pipeline model for global memory accesses

The process of a global memory access includes several operations such as virtual
address calculation, on-chip crossbar inter-connect traversal, virtual to physical ad-
dress translation and physical to raw address translation, and DRAM access per each
memory request. The DRAM access time here refers to the latency of reading/writing
access to the DRAM chips and thus the latency is just small portion of the whole
global memory access cost. In our model, the above operations are further divided
into even more subtle steps that can be combined together to compromise a pipeline
for memory request servicing, of which the DRAM access takes up the longest stage.
According to the global memory coalescing rule implemented, multiple memory
transactions may be caused per each request and multiple memory segments need to
be transferred between DRAM and SMs, named uncoalesced memory access. In this

102 Z. Hu, G. Liu, and W. Dong

case, the multiple transactions can be synthesized by one memory transaction with
identical steps except a lengthened DRAM access stage due to the increased trans-
ferred memory segments. Thus, the global memory accesses can be serviced by the
pipeline represented in Fig 1 and the global memory performance can be formulated
via the pipeline throughput. The redefined memory throughput actually describes the
frequency of memory accesses leaving the global memory.

The duration of each pipeline stage does not need to be equal but a guarantee
should be made that DRAM access is the most inefficient among all pipeline stages
and thus memory throughput is calculated as the reciprocal of DRAM access time of
the synthesized memory transaction. The memory throughput is constraint by the
global memory access patterns and partition camping.

For GPU with compute capability 2.0, it can be configured to enable L1 cache or
not in SM through a compilation command –Xptxas –dlcm, and corresponded 32-
byte or 128-byte transactions will be generated each with a different DRAM access
time, denoted as DRAM32B and DRAM128B. Let #partition and compp each represents
the number of memory partitions of the global memory and the number of clock
cycles to execute a compute period, and compinst and meminst represents the number of
compute and memory instructions per each thread, issuelat denotes the Clock cycles
needed to issue instructions to the SIMD pipeline while memissue denotes the Latency
per memory transaction. Another two variables tpr32B and tpr128B each represents the
number of 32-byte transactions and 128-byte transactions per each memory request.
We also let DD represents the departure delay of the synthesized memory transaction
.To put it together, we calculate the average DRAM access latency DRAMlat using
equation 4. The compute throughput and memory throughput can be obtained using
the following equations.

௣݌݉݋ܿ ൌ ௖௢௠௣೔೙ೞ೟௠௘௠೔೙ೞ೟ ൈ ௟௔௧݁ݑݏݏ݅ (1)

 ݉݁݉௜௦௦௨௘ ൌ ௖௢௠௣೛#ௌெ (2)

௧௛௥݌݉݋ܿ ൌ ଵ௠௘௠೔ೞೞೠ೐ ൌ ௠௘௠೔೙ೞ೟ൈ#ௌெ௖௢௠௣೔೙ೞ೟ൈ௜௦௦௨௘೗ೌ೟ (3)

௟௔௧ܯܣܴܦ ൌ ஽ோ஺ெయమಳൈ௧௣௥యమಳା஽ோ஺ெభమఴಳൈ௧௣௥భమఴಳ௧௣௥యమಳା௧௣௥భమఴಳ (4)

ܦܦ ൌ ௟௔௧ܯܣܴܦ ൈ ሺݎ݌ݐଷଶ஻ ൅ ଵଶ଼஻ሻ (5)ݎ݌ݐ

 ݉݁݉௧௛௥ ൌ #௣௔௥௧௜௧௜௢௡஽஽ (6)

 A Throughput-Aware Analytical Performance Model for GPU Applications 103

3.2 GPU Program Classification

Based on the calculated compute throughput and memory throughput, the kernel
throughput limited factors can be concluded and we have the following definitions:

• Compute-bound: it corresponds to the conditions where compute throughput is less
than memory throughput, which means that the global memory requests arrive at
the global memory interface at a relatively slow speed.

• Memory-bound: this category refers to the situation where the compute throughput
is larger than the memory throughput, which means that memory requests arrive at
the global memory more quickly than the leaving speed of previously arrived
memory requests.

4 Analytical Performance Model

To illustrate how executing quantity of warps on SMs concurrently affects the total
execution time, we will illustrate several scenarios covering both compute-bound and
memory-bound cases. As the philosophy of the GPU architecture is to cover the long
latency operations with interleaving execution of compute operations from a large
amount of warps, the final performance is largely dependent on the effectiveness of
latency hiding. The total execution time can be decomposed into two parts: duration
of compute execution and uncovered memory latency.

4.1 Performance Prediction for Compute-Bound GPU Kernels

Due to a high compute-to-memory-access ratio or perfect global memory access coa-
lescing, the compute throughput is larger than memory throughput, and memory re-
quests can be handled at a faster speed than they arrive at the memory interface. Fig 2
shows an example of compute-bound kernels.

For case 1 in Fig 3a, we assume that each thread has only one memory access and
thus one corresponding compute period per warp. Due to the relatively higher
throughput of memory requests, the speed of memory requests handling is faster than
the speed they are issued, and thus incoming memory requests will not accumulate
latency to the final execution time. The resulting latency of case 1 in Fig 3a is 4
compute periods plus one memory period overhead.

1

comp_throughput

1

mem_throughput

Fig. 2. An example of compute-bound kernels

104 Z. Hu, G. Liu, and W. Dong

For case 2 in Fig 3b, there are four warps and each warp has two compute periods
and two memory periods. The second compute period can start only after the first
memory period of the same warp is finished. The compute throughput and memory
throughput are the same as case 1. Since the computation latency is dominant, memo-
ry accesses do not contribute to the overall execution time which equals to the sum of
8 compute periods and only one memory period.

Fig. 3. Total execution time for the compute-bound GPU kernel

To be generally, the performance of compute-bound applications can be calculated
using the following equations:

௖௬௖௟௘݌݉݋ܿ ൌ ௖௢௠௣೔೙ೞ೟ൈ#௪௔௥௣ൈ௜௦௦௨௘೗ೌ೟#ௌெ (7)

௖௬௖௟௘ܿ݁ݔ݁ ൌ ௖௬௖௟௘݌݉݋ܿ ൅ ݉݁݉௟௔௧ (8)

where #warp represents the number of warps in a kernel which is defined by the ker-
nel launch configurations and memlat represents the latency of a synthesized memory
transaction, as the value is not critical to the final performance, we constraint the
latency to be 500 cycles.

4.2 Performance Prediction for Memory-Bound GPU Kernels

Figure 4 shows an example of memory-bound kernels where memory throughput is
roughly a half of compute throughput. Equation 5 indicates that the departure delay
between memory requests gets longer as more memory transactions are triggered for
one memory request because of poor performance in memory coalescing. High
throughput of computations will narrow down the interval of warp switching, and as a
result, memory requests are issued more frequently to the global memory.

 A Throughput-Aware Analytical Performance Model for GPU Applications 105

1

comp_throughput

1

mem_throughput

Fig. 4. An example of memory-bound kernels

For case 3 in Fig 5a, there are four warps and each warp has one compute period
and one memory period. Since compute throughput is larger than memory throughput,
memory access latency cannot be completely overlapped by computation, and thus
each warp will accumulate extra latency of (భ೘೐೘೟೓ೝି భ೎೚೘೛೟೓ೝሻ cycles to the total execu-

tion time which equals to the sum of 4 compute periods and 4 extra latencies, which
can also be represented as 4 departure delays plus one memory period and one
compute period.

1 1
-

mem_throughput comp_throughput

Fig. 5. Total execution time for memory-bound kernels

For case 4 in Fig 5b, there are four warps in each SM and each warp has two com-
pute periods and two memory periods. The second compute period can start only after
the first memory period of the same warp is finished. Compute throughput and memo-
ry throughput are the same as case 3. Even though idle cycles are introduced to the
arithmetic pipeline, the execution time remains stable since the memory access time is
dominant. The timing model of case 4 can be equivalently transformed as depicted in
Fig 5c by moving the latter compute periods forward. As a result, the latency of
memory accesses can only be partially overlapped by the computations. The final

106 Z. Hu, G. Liu, and W. Dong

execution time is composed of three parts: parallel execution of compute instructions
by all process units, uncovered overhead of memory requests and one memory period.

To be generally, the total execution time of memory-bound kernels can be calcu-
lated as the following two forms:

௦௨௠ܦܦ ൌ ܦܦ ൈ ݌ݎܽݓ# ൈ ݉݁݉௜௡௦௧ (9)

௟௔௧ܽݎݐݔ݁ ൌ ଵ௠௘௠೟೓ೝ െ ଵ௖௢௠௣೟೓ೝ (10)

݉݁݉௨௡௖௢௩௘௥ ൌ ௟௔௧ܽݎݐݔ݁ ൈ ݌ݎܽݓ# ൈ ݉݁݉௜௡௦௧ (11)

௖௬௖௟௘ܿ݁ݔ݁ ൌ ௖௬௖௟௘݌݉݋ܿ ൅ ݉݁݉௨௡௖௢௩௘௥ ൅ ݉݁݉௟௔௧ (12)

or

௖௬௖௟௘ܿ݁ݔ݁ ൌ ௖௢௠௣೛#ௌெ ൅ ௦௨௠ܦܦ ൅ ݉݁݉௟௔௧ (13)

where DD represents the DRAM access time for a single transaction, DDsum
represents the overall DRAM access time for all memory transactions in the kernel.
The content of extralat points to the extra latency introduced by one memory access in
memory-bound kernels. The memuncover counts for the latency of global memory that
cannot be hidden by computations. Equation 12 and Equation 13 have the same result
but from different aspects. Equation 12 calculates execution time from the aspect of
latency hiding while Equation 13 calculates execution time based on the memory
access efficiency as memory accesses dominant.

5 Methodology

We conduct experiments on one NVIDIA Tesla M2050 GPU and the CUDA pro-
gramming model, and we believe that the result of this work is still suitable for other
chips and programming models as long as modifications are made to the value of
input parameters.

To evaluate the effectiveness of our model, we predict performance for a manually
written GPU benchmark and a commonly used kernel matrix-multiply.

5.1 Benchmark

The manually written benchmark we used contains 100 iterations, each consisting of
one compute period and one memory period. The variable comp_iter controls the
amount of compute instructions in a compute period, and the change of its value can
simulate optimizations toward computation. Another variable tran_per_req presented

 A Throughput-Aware Analytical Performance Model for GPU Applications 107

as a parameter in the calculation of index indicates the number of memory transac-
tions caused by each global memory access, and also its value can simulate optimiza-
tions toward memory access pattern. The variable index in the benchmark spreads the
footprints of one memory request over multiple memory segments based on the value
of tran_per_req and data type. For simplicity, single point float numbers are generat-
ed in the host CPU and transferred to the GPU global memory, and the generated
compute instruction occupies one clock cycle each on Tesla M2050. The number of
both the computation and memory access instructions is counted from the assembly
code, which is obtained through the cuobjdump tool provided by NVIDIA. As can be
concluded from the above assembly code, each iteration of the inner loop will gener-
ate 3 compute instructions and there are 7 other instructions in each iteration of the
outer loop. The instruction LD.E performs 32 global memory load operations for 32
threads in a warp, which may result in multiple memory transaction according to the
performance of memory access coalescing, that is, the value of tran_per_req.

5.2 Matrix-multiply

The matrix-multiplication is commonly applied in various applications. The shape of
two input matrixes A[M*TILE] and B[TILE*M] are rectangular instead of square
shape. The work load of each thread can be decomposed into several memory
requests and plenty of computations per each request.

Figure 6 shows two cases of tiled matrix multiplication each corresponds to
TILE_WIDTH=8 and TILE_WIDTH=32. For each iteration of the inner loop, the
memory requests per warp of the case in Fig 6(a) consists of 4 addresses across four
rows of A and 8 addresses along a row of B tile, which results in 4 32-Byte memory
transactions to A and one 32-byte memory transaction to matrix B. The situation has
been much improved when the tile width is 32 as each iteration of the inner loop only
incurs one 32-byte transaction to A and 4 consecutive 32-byte transactions to B which
can be combined into one 128-byte memory transaction, as we will show in the next
section.

Fig. 6. Matrix multiply : (a) A_tile[8][8] ൈB_tile[8][8], (b) A_tile[32][32] ൈB_tile[32][32]

108 Z. Hu, G. Liu, and W. Dong

6 Experiment Results

6.1 Benchmark

As the address index in the manually written benchmark is carefully assigned that no
repetition occurs in the loaded data for each thread, we bring out an experiment for
both L1 cache enabled and disabled situations, each corresponds to the compilation
command –Xptxas –dlcm=ca and –Xptxas –dlcm=cg, and 128-byte and 32-byte
transactions are triggered. We gradually increase the spectrum of address requirement
of a single warp to increase the number of memory transactions per each warp’s re-
quest for a memory-bound program (with higher ratio of memory requests per compu-
tation) and the result is concluded in the Fig 7. When tran_per_req bellows 8, both
the cached and uncached cases follow the same curve and it can be inferred that the 4
32-byte memory transactions are combined into a single 128-byte transaction, even in
the uncached conditions. While the tran_per_req is above 32, the memory transac-
tions caused by one warp’s memory request will not increase. Otherwise, the execu-
tion time shows a linear growth to the value of tran_per_req, although each with a
different value. Based on the memory-bound classification information, the increased
latency of the kernel can be attributed to the reduction of the memory throughput, due
to the increased memory transactions per each warp’s memory request.

For both cached and uncached cases, the DRAM access time can be calculated by
dividing the increment of kernel latency by the number of increased memory transac-
tions. The calculated DRAM access latencies for 32-byte and 128-byte memory trans-
action of Tesla M2050 are 0.67 cycles and 1.53 cycles respectively. The number of
instructions is counted in the assemble code.

Fig. 7. Measurement of DRAM access time for 32-byte and 128-byte memory transaction

We measured kernel execution time under different compute throughput and mem-
ory throughput by varying the value of comp_iter and tran_per_req. The numbers of
compute and memory instructions, as well as memory access pattern specified by the
tran_per_req, are served as inputs to the performance prediction model. Table 1 lists
parameters and predicted performance of two cases of our benchmark, and the results
show that the error of prediction is no more than 6.5%.

0 8 16 24 32
0

2000

4000

la
te

nc
y

(u
s)

tran_per_req

 perf_uncache_32B
 perf_cache_128B

A

B

C

 A Throughput-Aware Analytical Performance Model for GPU Applications 109

Table 1. Applying the model for benchmark

Parameter Case 1 Case 2 Description

comp_iter 100 20 Parameter

tran_per_req 4 8 Parameter

#warp (64*256)/32=512 (64*256)/32=512 Warp number

compinst 31000 7000 Compute instruction

meminst 1*100 1*100 Memory instruction

compp 310 70 Instructions per compute period

memissue 310/14=22.1 70/14=5 Frequency of memory request issuing

tpr32B 0 0 32-byte transaction per request

tpr128B 4 8 128-byte transaction per request

DRAMlat 1.53*4=6.12 1.53*8=12.24 Average departure delay

compthr 1/22.1=0.045 1/5=0.2 Compute throughput

memthr 1/6.12=0.163 1/12.24=0.082 Memory throughput

classification Compute bound Memory bound Program classification

compcycle 1134393 256641 Execution time of compute instructions

memuncover 0 370688 Uncovered latency of memory accesses

execcycle 1184393 627829 calculated execution time

measured 1267534 642108 Measured execution time

Error 6.5% 2.2% Prediction error

6.2 Matrix-multiply

We conduct experiments to predict the performance of matrix multiplication C=AB
with different matrix scale as depicted in Fig 6.

The case in Fig 6a shows the calculation of a tile of matrix C where A of dimen-
sion 1024ൈ8, B of dimension 8ൈ1024, and C of dimension 1024ൈ1024. Each element
of C is assigned a thread and 1024ൈ1024 threads are created. The matrix C is decom-
posed into multiple tiles and each tile contains 8ൈ8 elements. As a result, the threads
are organized as 128ൈ128 blocks and each block contains 8ൈ8 threads. Each block
calculates the elements of a different tile in C based on a single tile of A and a single
tile of B. The 64 threads in a block are organized into two warps, each of which calcu-
lates 4 rows of C_tile. As presented in the figure, each iteration of the inner loop will
generate 4 32-byte transactions to load A_tile and one 32-byte transaction to load
B_tile per warp, thus 40 32-byte memory transactions are generated for each warp.

For the case in Figure 6b, it shows another matrix multiplication C=AB where A of
dimension 1024ൈ32, B of dimension 32ൈ1024, and C of dimension 1024ൈ1024. For
each warp, an iteration of the inner loop requires one element of A_tile and one row
of B_tile, thus one 32-byte transaction of A and four 32-byte transactions of B will be
generated. Due to the data locality of L2 cache, the unused element of the last
accessed row of A_tile will be used by the next 7 iterations. The generated 4 32-byte
transactions for a row data of B_tile can be combined into a 128-byte transaction. As
a result, 4 32-byte transactions and 32 128-byte transactions will be generated.

110 Z. Hu, G. Liu, and W. Dong

The number of compute instructions per warp can be obtained from the assemble
code. The calculated compute throughput and memory throughput is presented in
Table 2. Surprisingly, the matrix multiplication code is specified as memory-bound
according to our classification method.

Table 2. Parameters for matrix-multiply

 TILE_WIDTH=8 TILE_WIDTH=32
32B trans per warp 40 4

128B trans per warp 0 32
Avg_dep_delay_per_req (40*0.67)/40=0.67 (4*0.67+32*1.53)/36=1.43

Comp_inst 12*8+26=122 12*32+26=410
Mem_req_issue_dist 122/(40*14)=0.218 410/(36*14)=0.813
1/Comp_throughput 0.218 0.813
1/Mem_throughput 0.67 1.43

Program classification Memory-bound Memory-bound

To verify the effectiveness of program classification, we manually add multiple
compute instructions in the inner loop by increasing the value of comp_iter to the case
in Fig 8b. As presented in the Fig 8, the overall latency of the kernel starts to rise at a
point around 6 along the x-axis, which means that the kernel is not bounded by the
compute operations before that point. We also calculate an expected point at which
compute throughput equals to memory throughput, and the result turns out to be
comp_iter=7, which is pretty close to the measured value.

Fig. 8. Verification of program classification
for A[1024][32] ×B[32][1024]

Fig. 9. Comparison of estimated and meas-
ured latency for two cases

6.3 HotSpot and Gaussian Elimination

We also applied our analytical model to another two GPU programs: HotSpot and
Gaussian Elimination, both from the Rodinia benchmark suits [13], which are specifi-
cally developed for the GPU-accelerated heterogeneous systems.

HotSpot is an ordinary differential equation solver used in simulating microarchi-
tecture temperature. Every element is computed as a function of 3*3 neighborhood of
elements from the input array (as stencil). For each thread’s one element computation,

0 4 8 12 16
1200

1300

1400

1500

1600

1700

p
er

fo
rm

an
ce

 (
μs

)

comp_iter
0

500

1000

1500

pe
rf

or
m

an
ce

 (
us

)

 estimate_perf_8
 measure_perf_8
 estimate_perf_32
 measure_perf_32

TILE_WIDTH=8 TILE_WIDTH=32

 A Throughput-Aware Analytical Performance Model for GPU Applications 111

9 elements need to be loaded into the processor unit and thus heavy stresses are as-
signed to the global memory bandwidth. However, the Hotspot in the version Rodinia
2.4 is optimized throughput caching, by way of utilizing shared memory to store
neighborhood data so it can be reused among neighboring threads in the same thread
block. As the shared memory accessing has the identical latency as normal compute
instruction, shared memory access instructions is treated as compute instructions.
There are only two global memory loads and one global memory store instruction in
each iteration of a thread, and all three global memory accesses are coalesced due to
the shared memory. We calculate the values of compute throughput and memory
throughput in the assembly code and the kernel calculate_temp turns out to be com-
pute-bound. We estimate the execution time of all kernel runs using equation (8) and
compare the results with the measured latency as listed in Table 3. The input data are
also provided in the benchmark suit.

Table 3. Benchmark result for HotSpot

Input size Measured (s) Predicted (s) Error

64 0.021 0.017 19.05%

512 0.040 0.035 12.5%

Gaussian Elimination solves systems of equations using the Gaussian elimination
method and contains multiple iterations of two kernels: Fan1 and Fan2. the algorithm
must synchronize between iterations, but the values calculated in each iteration can be
computed in parallel. For both kernels, parameterized size-strided-accesses to matrix
a_cuda and m_cuda lead to uncoalesced accesses which result in tremendous global
memory transactions. In the L1 cache-enabled case, 32 128B-memory-transactions
will be incurred while the value of size above 32. According to GPU program classi-
fication method presented above, the two kernels are defined as memory-bound and
we estimate the execution time using equation (12). A comparison of measured and
predicted execution time is shown in the Table 4.

Table 4. Benchmark result for Gaussian Elimination

Input size Measured (s) Predicted (s) Error

16 0.000410 0.000324 20.94%

64 0.001643 0.001540 6.27%

512 0.063546 0.056340 11.33%

As can be seen from both benchmarks, the estimated values tend to be constantly
smaller than the actual execution time. The inaccuracy in the projected performance
can result from various sources, such as synchronization, kernel initialization, CPU
execution of loop control instructions, etc. In the following work, all those factors will
be considered in our performance model.

112 Z. Hu, G. Liu, and W. Dong

7 Conclusion

In this paper, we propose a throughput-aware analytical performance prediction mod-
el for the GPU applications. We predict performance of GPU kernels based on the
throughput determined by the compute throughput and memory throughput redefined
in the paper. Experiment results illustrate high accuracy of our performance predic-
tion model in capturing impaction of performance bottlenecks such as control flow
divergence and uncoalesced memory access.

We believe our model has captured the GPU’s primary performance factors, and it can
provide some useful hints in the future performance optimization. Our work has several
limitations that we hope to address in future research: (1) model the cost of double-
precision computations and other complex operations, (2) figure out an upper bound of
performance based on the model research, (3) automatic memory transaction number
detection, (4) model the synchronization barrier’s effect on warp-level parallelism.

References

1. Keckler, S.W., Dally, W.J., Khailany, B., et al.: GPUs and the future of parallel computing.
IEEE Micro 31(5), 7–17 (2011)

2. Advanced Micro Devices, Inc. AMD Brook+
3. NVIDIA Corporation. CUDA Programming Guide, Version 4.0
4. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for heteroge-

neous computing systems. Computing in Science & Engineering 12(3), 66 (2010)
5. Owens, J.D., Houston, M., Luebke, D., et al.: GPU computing. Proceedings of the

IEEE 96(5), 879–899 (2008)
6. Lindholm, E., Nickolls, J., Oberman, S., et al.: NVIDIA Tesla: A unified graphics and

computing architecture. IEEE Micro 28(2), 39–55 (2008)
7. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance

model for multicore architectures. Communications of the ACM 52(4), 65–76 (2009)
8. Zhang, Y., Owens, J.D.: A quantitative performance analysis model for GPU architectures.

In: 2011 IEEE 17th International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 382–393. IEEE (2011)

9. Hong, S., Kim, H.: An analytical model for a GPU architecture with memory-level and
thread-level parallelism awareness. ACM SIGARCH Computer Architecture News 37(3),
152–163 (2009)

10. Baghsorkhi, S.S., Delahaye, M., Patel, S.J., et al.: An adaptive performance modeling tool
for GPU architectures. ACM Sigplan Notices 45(5), 105–114 (2010)

11. Meng, J., Morozov, V.A., Kumaran, K., et al.: GROPHECY: GPU performance projection
from CPU code skeletons. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, p. 14. ACM (2011)

12. Cui, Z., et al.: An accurate GPU performance model for effective control flow divergence op-
timization. In: 2012 IEEE 26th International Parallel & Distributed Processing Symposium
(IPDPS). IEEE (2012)

13. Che, S., Boyer, M., Meng, J., et al.: Rodinia: A benchmark suite for heterogeneous computing.
In: IEEE International Symposium on Workload Characterization, IISWC 2009, pp. 44–54.
IEEE (2009)

	A Throughput-Aware Analytical PerformanceModel for GPU Applications
	1 Introduction
	2 Background
	2.1 Overview of GPU Architecture and CUDA Programming Model
	2.2 Related Work

	3 Program Classification
	3.1 Compute Throughput and Memory Throughput
	3.2 GPU Program Classification

	4 Analytical Performance Model
	4.1 Performance Prediction for Compute-Bound GPU Kernels
	4.2 Performance Prediction for Memory-Bound GPU Kernels

	5 Methodology
	5.1 Benchmark
	5.2 Matrix-multiply

	6 Experiment Results
	6.1 Benchmark
	6.2 Matrix-multiply
	6.3 HotSpot and Gaussian Elimination

	7 Conclusion
	References

