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Abstract. Graphics processing units (GPUs) have shown increased popularity 
in general-purpose parallel processing. This massively parallel architecture al-
lows GPUs to execute tens of thousands of threads in parallel to solve heavily 
data-parallel problems efficiently. However, despite the tremendous computing 
power, optimizing GPU kernels to achieve high performance is still a challenge 
due to the sea change from CPU to GPU and lacking of tools for programming 
and performance analysis. 

In this paper, we propose a throughput-aware analytical model to estimate 
the performance of GPU kernels and optimizations. We construct a pipeline for 
global memory access servicing and redefine the compute throughput and 
memory throughput as the speed of memory requests arriving and leaving the 
pipeline. Based on concluding the kernel throughput limiting factor, GPU pro-
grams are classified into compute-bound and memory-bound categories and 
then we predict performance for each category. Besides, our model can provide 
useful information on the direction of optimization and predict the potential per-
formance benefits. We demonstrate our model on a manually written bench-
mark as well as the matrix-multiply kernel and show that the geometric mean of 
absolute error of our model is less than 6.5%. 

Keywords: GPU, compute-bound, memory-bound, performance prediction, 
performance bottleneck.  

1 Introduction 

In recent years, the ceiling of high performance computing has been updated multiple 
times by the GPU-based heterogeneous systems [1]. The GPU architecture has gar-
nered wide popularity since the increasing programmability and the ever friendly 
programming model. Even though hardware is providing high performance compu-
ting, implementing and optimizing parallel programs to take full advantage of the 
potential computing power still remains a big challenge. 

Several programming languages have been proposed to reduce programmer’s bur-
den in porting parallel applications to GPUs such as Brook++ [2], CUDA [3], and 
OpenCL [4]. However, even with these newly developed programming languages, 
programming and optimizing programs to achieve better performance is still time-
consuming and error prone.  
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To provide insight into performance bottlenecks in massively parallel architectures, 
especially GPU architectures, we propose a simple analytical model. The model can 
be used statically without executing a GPU application. The basic intuition of our 
analytical model is that the ability to hide long latency memory operations with inter-
leaving executions of computation from different thread warps can be obtained based 
on the warp level parallelism of both computations and memory operations. By con-
structing the memory pipeline model and extending the concept of compute through-
put, we classify GPU applications into compute-bound and memory-bound categories, 
and then we estimate the execution time for each category. 

We evaluate our analytical model based on the CUDA programming model, which 
is specific for the CUDA-enabled NVIDIA GPUs. We compare the results of our 
analytical model with the actual execution time collected on the NVIDIA GPUs. Our 
results show that the geometric mean of absolute error of our model is less than 6.5%. 

The contributions of our work can be concluded as follows: 

• We construct the memory pipeline model and extract the memory throughput 
based on capturing the performance factor of uncoalesced memory access 

• We redefine the concept of compute throughput to be the frequency of global 
memory requests leaving the SMs and reaching the memory pipeline 

• We classify GPU applications into two categories as memory-bound and compute-
bound based on values of redefined compute throughput and memory throughput 

• An analytical performance prediction model is proposed to estimate the perfor-
mance of both compute-bound and memory-bound GPU kernels. 

2 Background 

We provide a brief background on the GPU architecture and the programming model 
that we have modeled. In this work, although we focus on a CUDA-enabled NVIDIA 
GPU, we believe our performance model is also applicable to any GPU architecture 
and GPU programming API. 

2.1 Overview of GPU Architecture and CUDA Programming Model 

Graphics Processing Units (GPUs) have emerged as a promising alternative building 
block for the construction of high performance supercomputers, due to their unique 
combination of outstanding performance, energy-efficiency, density and cost [5].  

The GPU architecture consists of several streaming multi-processors (SMs), each 
containing a set of streaming processors (sp) that run threads in a SIMD manner. All 
SMs are connected to an off-chip DRAM memory via a interconnect network. Tesla 
M2050 has 14 SMs, each equipped with 32 streaming processors, which makes for a 
total of 448 processing cores [6]. The M2050 employs a dual-issue instruction dis-
patcher per each SM which can issue two instructions to 32 GPU cores every two  
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clock cycles and thus an average speed of issuing one instruction per clock cycle is 
achieved. The global memory space is divided into 6 partitions, each with a memory 
controller.  

The CUDA programming model groups GPU threads into a grid of thread blocks. 
Each thread block is mapped to a SM in a round-robin manner and multiple thread 
blocks can be running simultaneously on one SM. Each thread is assigned a thread ID 
(tid), which is used for the data distribution and control condition. Threads are 
created, managed, scheduled and executed at the granularity of thread warp, which 
contains 32 threads for most GPUs. The CUDA memory model has an off-chip global 
memory space, which resides in the DRAM memory and is accessible by all threads. 

2.2 Related Work 

A commonly introduced metric to characterize a program is arithmetic intensity 
which accounts operations per data transferred between the processor and the cache. 
The Roofline performance estimation model [7] introduces operational intensity as 
another metric which accounts operations per byte that transferred between DRAM 
and the processor. Zhang and Owen [8] constructed a GPU performance model in a 
quantitative way to estimate the execution time of arithmetic pipeline, shared memo-
ry, and global memory respectively. Performance bottlenecks are derived based on the 
modeled execution time of each component. Hong and Kim [9] authored an excellent 
study on analytical GPU performance modeling and using two metrics CWP and 
MWP to specify a program to be compute-intensive or memory-intensive, which is 
the most related to our method. However, we classify and predict performance of 
GPU kernels based on the kernel throughput which complies with the throughput-
oriented GPU architecture. 

In the past few years, many studies on GPU performance modeling have been pro-
posed. Baghsorkhi et al. [10] proposed a work flow graph (WFG)-based analytical 
model to predict the performance of GPU applications. The WFG is an extension of a 
control flow graph (CFG), where nodes represent instructions and arcs represent laten-
cies. Meng et al. [11] proposed a GPU performance projection framework to predict 
performance in a cross-platform style based on the abstraction of CPU code skeletons.  

Hong and Kim [9] proposed the MWP-CWP based GPU analytical model, which 
shares the most common with our proposed model in the following two aspects: (1) 
the two analytical models extract parallelism from GPU kernels at the granularity of 
thread warps and overall execution time is counted on the ability of hiding the latency 
of global memory accesses by computations. (2) The latency of an uncoalesced global 
memory transaction can be synthesized as the sum of a base latency and multiple 
extra delays, each representing the departure delay between uncoalesced global mem-
ory transactions. Apart from that, we also see differences between the two models. 
First, in our work, the departure delay between two uncoalesced global memory ac-
cesses turns out to be the DRAM access latency of one memory transaction which can 
be calculated based on the values provided in the GDDR datasheet instead of profil-
ing. Second, we construct a pipeline model for global memory accesses and utilize the 
pipeline throughput to describe the memory performance. Third, the computations 



 A Throughput-Aware Analytical Performance Model for GPU Applications 101 

 

and memory access operations in the kernels are separated and performances of both 
parts are represented by the extended compute throughput and memory throughput. 
As GPU programs are classified into compute-bound and memory-bound categories, 
the potential performance improving needs to emphasize on enhancing the value of 
compute throughput or memory throughput. In summary, our model predicts perfor-
mance of GPU kernels in a more straightforward way and thus is more suitable for the 
throughput-oriented GPU architectures. 

3 Program Classification 

In this section, we first redefine compute throughput and memory throughput, and 
then classify GPU kernels into compute-bound and memory-bound categories.  

3.1 Compute Throughput and Memory Throughput 

Originally, the compute throughput refers to the throughput of arithmetic pipeline in a 
SM. We redefine the content of compute throughput as the time interval between 
warp switches to represent the frequency of memory requests being issued to the 
global memory interface. As all SMs can issue memory requests to global memory 
concurrently, the time interval should be divided by #SM, which is the number of 
SMs in a GPU. It is determined by the efficiency of executing one computation period 
which may be related to the performance factors of control flow divergence [12] and 
shared memory bank conflict [10] as we consider shared memory instructions have 
identical latency with compute instructions.  

 

Fig. 1. A pipeline model for global memory accesses 

The process of a global memory access includes several operations such as virtual 
address calculation, on-chip crossbar inter-connect traversal, virtual to physical ad-
dress translation and physical to raw address translation, and DRAM access  per each 
memory request. The DRAM access time here refers to the latency of reading/writing 
access to the DRAM chips and thus the latency is just small portion of the whole 
global memory access cost. In our model, the above operations are further divided 
into even more subtle steps that can be combined together to compromise a pipeline 
for memory request servicing, of which the DRAM access takes up the longest stage. 
According to the global memory coalescing rule implemented, multiple memory 
transactions may be caused per each request and multiple memory segments need to 
be transferred between DRAM and SMs, named uncoalesced memory access. In this 
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case, the multiple transactions can be synthesized by one memory transaction with 
identical steps except a lengthened DRAM access stage due to the increased trans-
ferred memory segments. Thus, the global memory accesses can be serviced by the 
pipeline represented in Fig 1 and the global memory performance can be formulated 
via the pipeline throughput. The redefined memory throughput actually describes the 
frequency of memory accesses leaving the global memory. 

The duration of each pipeline stage does not need to be equal but a guarantee 
should be made that DRAM access is the most inefficient among all pipeline stages 
and thus memory throughput is calculated as the reciprocal of DRAM access time of 
the synthesized memory transaction. The memory throughput is constraint by the 
global memory access patterns and partition camping. 

For GPU with compute capability 2.0, it can be configured to enable L1 cache or 
not in SM through a compilation command –Xptxas –dlcm, and corresponded 32-
byte or 128-byte transactions will be generated each with a different DRAM access 
time, denoted as DRAM32B and DRAM128B. Let #partition and compp each represents 
the number of memory partitions of the global memory and the number of clock 
cycles to execute a compute period, and compinst and meminst represents the number of 
compute and memory instructions per each thread, issuelat denotes the Clock cycles 
needed to issue instructions to the SIMD pipeline while memissue denotes the Latency 
per memory transaction. Another two variables tpr32B and tpr128B each represents the 
number of 32-byte transactions and 128-byte transactions per each memory request. 
We also let DD represents the departure delay of the synthesized memory transaction 
.To put it together, we calculate the average DRAM access latency DRAMlat using 
equation 4. The compute throughput and memory throughput can be obtained using 
the following equations. 

௣݌݉݋ܿ  ൌ ௖௢௠௣೔೙ೞ೟௠௘௠೔೙ೞ೟ ൈ ௟௔௧݁ݑݏݏ݅   (1)

 ݉݁݉௜௦௦௨௘ ൌ ௖௢௠௣೛#ௌெ   (2)

௧௛௥݌݉݋ܿ  ൌ ଵ௠௘௠೔ೞೞೠ೐ ൌ ௠௘௠೔೙ೞ೟ൈ#ௌெ௖௢௠௣೔೙ೞ೟ൈ௜௦௦௨௘೗ೌ೟  (3)

௟௔௧ܯܣܴܦ  ൌ ஽ோ஺ெయమಳൈ௧௣௥యమಳା஽ோ஺ெభమఴಳൈ௧௣௥భమఴಳ௧௣௥యమಳା௧௣௥భమఴಳ   (4)

ܦܦ  ൌ ௟௔௧ܯܣܴܦ ൈ ሺݎ݌ݐଷଶ஻ ൅ ଵଶ଼஻ሻ  (5)ݎ݌ݐ

 ݉݁݉௧௛௥ ൌ #௣௔௥௧௜௧௜௢௡஽஽   (6)
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3.2 GPU Program Classification 

Based on the calculated compute throughput and memory throughput, the kernel 
throughput limited factors can be concluded and we have the following definitions:  

• Compute-bound: it corresponds to the conditions where compute throughput is less 
than memory throughput, which means that the global memory requests arrive at 
the global memory interface at a relatively slow speed.  

• Memory-bound: this category refers to the situation where the compute throughput 
is larger than the memory throughput, which means that memory requests arrive at 
the global memory more quickly than the leaving speed of previously arrived 
memory requests.  

4 Analytical Performance Model 

To illustrate how executing quantity of warps on SMs concurrently affects the total 
execution time, we will illustrate several scenarios covering both compute-bound and 
memory-bound cases. As the philosophy of the GPU architecture is to cover the long 
latency operations with interleaving execution of compute operations from a large 
amount of warps, the final performance is largely dependent on the effectiveness of 
latency hiding. The total execution time can be decomposed into two parts: duration 
of compute execution and uncovered memory latency. 

4.1 Performance Prediction for Compute-Bound GPU Kernels 

Due to a high compute-to-memory-access ratio or perfect global memory access coa-
lescing, the compute throughput is larger than memory throughput, and memory re-
quests can be handled at a faster speed than they arrive at the memory interface. Fig 2 
shows an example of compute-bound kernels.  

For case 1 in Fig 3a, we assume that each thread has only one memory access and 
thus one corresponding compute period per warp. Due to the relatively higher 
throughput of memory requests, the speed of memory requests handling is faster than 
the speed they are issued, and thus incoming memory requests will not accumulate 
latency to the final execution time. The resulting latency of case 1 in Fig 3a is 4  
compute periods plus one memory period overhead.  

1

comp_throughput

1

mem_throughput

 

Fig. 2. An example of compute-bound kernels 
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For case 2 in Fig 3b, there are four warps and each warp has two compute periods 
and two memory periods. The second compute period can start only after the first 
memory period of the same warp is finished. The compute throughput and memory 
throughput are the same as case 1. Since the computation latency is dominant, memo-
ry accesses do not contribute to the overall execution time which equals to the sum of 
8 compute periods and only one memory period. 

 

 

Fig. 3. Total execution time for the compute-bound GPU kernel 

To be generally, the performance of compute-bound applications can be calculated 
using the following equations: 

௖௬௖௟௘݌݉݋ܿ  ൌ ௖௢௠௣೔೙ೞ೟ൈ#௪௔௥௣ൈ௜௦௦௨௘೗ೌ೟#ௌெ   (7)

௖௬௖௟௘ܿ݁ݔ݁  ൌ ௖௬௖௟௘݌݉݋ܿ ൅ ݉݁݉௟௔௧  (8)

where #warp represents the number of warps in a kernel which is defined by the ker-
nel launch configurations and memlat represents the latency of a synthesized memory 
transaction, as the value is not critical to the final performance, we constraint the  
latency to be 500 cycles. 

4.2 Performance Prediction for Memory-Bound GPU Kernels 

Figure 4 shows an example of memory-bound kernels where memory throughput is 
roughly a half of compute throughput. Equation 5 indicates that the departure delay 
between memory requests gets longer as more memory transactions are triggered for 
one memory request because of poor performance in memory coalescing. High 
throughput of computations will narrow down the interval of warp switching, and as a 
result, memory requests are issued more frequently to the global memory. 
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1

comp_throughput

1

mem_throughput

 

Fig. 4. An example of memory-bound kernels 

For case 3 in Fig 5a, there are four warps and each warp has one compute period 
and one memory period. Since compute throughput is larger than memory throughput, 
memory access latency cannot be completely overlapped by computation, and thus 
each warp will accumulate extra latency of ( భ೘೐೘೟೓ೝି భ೎೚೘೛೟೓ೝሻ cycles to the total execu-

tion time which equals to the sum of 4 compute periods and 4 extra latencies, which 
can also be represented as 4 departure delays plus one memory period and one  
compute period. 

1 1
-

mem_throughput comp_throughput

 

Fig. 5. Total execution time for memory-bound kernels 

For case 4 in Fig 5b, there are four warps in each SM and each warp has two com-
pute periods and two memory periods. The second compute period can start only after 
the first memory period of the same warp is finished. Compute throughput and memo-
ry throughput are the same as case 3. Even though idle cycles are introduced to the 
arithmetic pipeline, the execution time remains stable since the memory access time is 
dominant. The timing model of case 4 can be equivalently transformed as depicted in 
Fig 5c by moving the latter compute periods forward. As a result, the latency of 
memory accesses can only be partially overlapped by the computations. The final 
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execution time is composed of three parts: parallel execution of compute instructions 
by all process units, uncovered overhead of memory requests and one memory period. 

To be generally, the total execution time of memory-bound kernels can be calcu-
lated as the following two forms: 

௦௨௠ܦܦ  ൌ ܦܦ ൈ ݌ݎܽݓ# ൈ ݉݁݉௜௡௦௧  (9)

௟௔௧ܽݎݐݔ݁  ൌ ଵ௠௘௠೟೓ೝ െ ଵ௖௢௠௣೟೓ೝ  (10)

 
 

݉݁݉௨௡௖௢௩௘௥ ൌ ௟௔௧ܽݎݐݔ݁ ൈ ݌ݎܽݓ# ൈ ݉݁݉௜௡௦௧  (11) 

௖௬௖௟௘ܿ݁ݔ݁  ൌ ௖௬௖௟௘݌݉݋ܿ ൅ ݉݁݉௨௡௖௢௩௘௥ ൅ ݉݁݉௟௔௧   (12) 

or 

௖௬௖௟௘ܿ݁ݔ݁  ൌ ௖௢௠௣೛#ௌெ ൅ ௦௨௠ܦܦ ൅ ݉݁݉௟௔௧  (13) 

where DD represents the DRAM access time for a single transaction, DDsum 
represents the overall DRAM access time for all memory transactions in the kernel. 
The content of extralat points to the extra latency introduced by one memory access in 
memory-bound kernels. The memuncover counts for the latency of global memory that 
cannot be hidden by computations. Equation 12 and Equation 13 have the same result 
but from different aspects. Equation 12 calculates execution time from the aspect of 
latency hiding while Equation 13 calculates execution time based on the memory 
access efficiency as memory accesses dominant.  

5 Methodology 

We conduct experiments on one NVIDIA Tesla M2050 GPU and the CUDA pro-
gramming model, and we believe that the result of this work is still suitable for other 
chips and programming models as long as modifications are made to the value of 
input parameters. 

To evaluate the effectiveness of our model, we predict performance for a manually 
written GPU benchmark and a commonly used kernel matrix-multiply. 

5.1 Benchmark 

The manually written benchmark we used contains 100 iterations, each consisting of 
one compute period and one memory period. The variable comp_iter controls the 
amount of compute instructions in a compute period, and the change of its value can 
simulate optimizations toward computation. Another variable tran_per_req presented 



 A Throughput-Aware Analytical Performance Model for GPU Applications 107 

 

as a parameter in the calculation of index indicates the number of memory transac-
tions caused by each global memory access, and also its value can simulate optimiza-
tions toward memory access pattern. The variable index in the benchmark spreads the 
footprints of one memory request over multiple memory segments based on the value 
of tran_per_req and data type. For simplicity, single point float numbers are generat-
ed in the host CPU and transferred to the GPU global memory, and the generated 
compute instruction occupies one clock cycle each on Tesla M2050. The number of 
both the computation and memory access instructions is counted from the assembly 
code, which is obtained through the cuobjdump tool provided by NVIDIA. As can be 
concluded from the above assembly code, each iteration of the inner loop will gener-
ate 3 compute instructions and there are 7 other instructions in each iteration of the 
outer loop. The instruction LD.E performs 32 global memory load operations for 32 
threads in a warp, which may result in multiple memory transaction according to the 
performance of memory access coalescing, that is, the value of tran_per_req. 

5.2 Matrix-multiply 

The matrix-multiplication is commonly applied in various applications. The shape of 
two input matrixes A[M*TILE] and B[TILE*M] are rectangular instead of square 
shape. The work load of each thread can be decomposed into several memory  
requests and plenty of computations per each request. 

Figure 6 shows two cases of tiled matrix multiplication each corresponds to 
TILE_WIDTH=8 and TILE_WIDTH=32. For each iteration of the inner loop, the 
memory requests per warp of the case in Fig 6(a) consists of 4 addresses across four 
rows of A and 8 addresses along a row of B tile, which results in 4 32-Byte memory 
transactions to A and one 32-byte memory transaction to matrix B. The situation has 
been much improved when the tile width is 32 as each iteration of the inner loop only 
incurs one 32-byte transaction to A and 4 consecutive 32-byte transactions to B which 
can be combined into one 128-byte memory transaction, as we will show in the next 
section. 

 

Fig. 6. Matrix multiply : (a) A_tile[8][8] ൈB_tile[8][8], (b) A_tile[32][32] ൈB_tile[32][32] 
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6 Experiment Results 

6.1 Benchmark 

As the address index in the manually written benchmark is carefully assigned that no 
repetition occurs in the loaded data for each thread, we bring out an experiment for 
both L1 cache enabled and disabled situations, each corresponds to the compilation 
command –Xptxas –dlcm=ca and –Xptxas –dlcm=cg, and 128-byte and 32-byte 
transactions are triggered. We gradually increase the spectrum of address requirement 
of a single warp to increase the number of memory transactions per each warp’s re-
quest for a memory-bound program (with higher ratio of memory requests per compu-
tation) and the result is concluded in the Fig 7. When tran_per_req bellows 8, both 
the cached and uncached cases follow the same curve and it can be inferred that the 4 
32-byte memory transactions are combined into a single 128-byte transaction, even in 
the uncached conditions. While the tran_per_req is above 32, the memory transac-
tions caused by one warp’s memory request will not increase. Otherwise, the execu-
tion time shows a linear growth to the value of tran_per_req, although each with a 
different value. Based on the memory-bound classification information, the increased 
latency of the kernel can be attributed to the reduction of the memory throughput, due 
to the increased memory transactions per each warp’s memory request. 

For both cached and uncached cases, the DRAM access time can be calculated by 
dividing the increment of kernel latency by the number of increased memory transac-
tions. The calculated DRAM access latencies for 32-byte and 128-byte memory trans-
action of Tesla M2050 are 0.67 cycles and 1.53 cycles respectively. The number of 
instructions is counted in the assemble code.  

 

Fig. 7. Measurement of DRAM access time for 32-byte and 128-byte memory transaction  

We measured kernel execution time under different compute throughput and mem-
ory throughput by varying the value of comp_iter and tran_per_req. The numbers of 
compute and memory instructions, as well as memory access pattern specified by the 
tran_per_req, are served as inputs to the performance prediction model. Table 1 lists 
parameters and predicted performance of two cases of our benchmark, and the results 
show that the error of prediction is no more than 6.5%. 
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Table 1. Applying the model for benchmark 

Parameter Case 1 Case 2 Description 

comp_iter 100 20 Parameter  

tran_per_req 4 8 Parameter  

#warp (64*256)/32=512 (64*256)/32=512 Warp number 

compinst 31000 7000 Compute instruction 

meminst 1*100 1*100 Memory instruction 

compp 310 70 Instructions per compute period 

memissue 310/14=22.1 70/14=5 Frequency of memory request issuing 

tpr32B 0 0 32-byte transaction per request 

tpr128B 4 8 128-byte transaction per request 

DRAMlat 1.53*4=6.12 1.53*8=12.24 Average departure delay 

compthr 1/22.1=0.045 1/5=0.2 Compute throughput 

memthr 1/6.12=0.163 1/12.24=0.082 Memory throughput 

classification Compute bound Memory bound Program classification 

compcycle 1134393 256641 Execution time of compute instructions 

memuncover 0 370688 Uncovered latency of memory accesses 

execcycle 1184393 627829 calculated execution time 

measured 1267534 642108 Measured execution time 

Error 6.5% 2.2% Prediction error 

6.2 Matrix-multiply 

We conduct experiments to predict the performance of matrix multiplication C=AB 
with different matrix scale as depicted in Fig 6.  

The case in Fig 6a shows the calculation of a tile of matrix C where A of dimen-
sion 1024ൈ8, B of dimension 8ൈ1024, and C of dimension 1024ൈ1024. Each element 
of C is assigned a thread and 1024ൈ1024 threads are created. The matrix C is decom-
posed into multiple tiles and each tile contains 8ൈ8 elements. As a result, the threads 
are organized as 128ൈ128 blocks and each block contains 8ൈ8 threads. Each block 
calculates the elements of a different tile in C based on a single tile of A and a single 
tile of B. The 64 threads in a block are organized into two warps, each of which calcu-
lates 4 rows of C_tile. As presented in the figure, each iteration of the inner loop will 
generate 4 32-byte transactions to load A_tile and one 32-byte transaction to load 
B_tile per warp, thus 40 32-byte memory transactions are generated for each warp.  

For the case in Figure 6b, it shows another matrix multiplication C=AB where A of 
dimension 1024ൈ32, B of dimension 32ൈ1024, and C of dimension 1024ൈ1024. For 
each warp, an iteration of the inner loop requires one element of A_tile and one row 
of B_tile, thus one 32-byte transaction of A and four 32-byte transactions of B will be 
generated. Due to the data locality of L2 cache, the unused element of the last  
accessed row of A_tile will be used by the next 7 iterations. The generated 4 32-byte 
transactions for a row data of B_tile can be combined into a 128-byte transaction. As 
a result, 4 32-byte transactions and 32 128-byte transactions will be generated. 
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The number of compute instructions per warp can be obtained from the assemble 
code. The calculated compute throughput and memory throughput is presented in 
Table 2. Surprisingly, the matrix multiplication code is specified as memory-bound 
according to our classification method. 

Table 2. Parameters for matrix-multiply 

 TILE_WIDTH=8 TILE_WIDTH=32 
32B trans per warp 40 4 

128B trans per warp 0 32 
Avg_dep_delay_per_req (40*0.67)/40=0.67 (4*0.67+32*1.53)/36=1.43 

Comp_inst 12*8+26=122 12*32+26=410 
Mem_req_issue_dist 122/(40*14)=0.218 410/(36*14)=0.813 
1/Comp_throughput 0.218 0.813 
1/Mem_throughput 0.67 1.43 

Program classification Memory-bound Memory-bound 

To verify the effectiveness of program classification, we manually add multiple 
compute instructions in the inner loop by increasing the value of comp_iter to the case 
in Fig 8b. As presented in the Fig 8, the overall latency of the kernel starts to rise at a 
point around 6 along the x-axis, which means that the kernel is not bounded by the 
compute operations before that point. We also calculate an expected point at which 
compute throughput equals to memory throughput, and the result turns out to be 
comp_iter=7, which is pretty close to the measured value. 

  

Fig. 8. Verification of program classification 
for A[1024][32] ×B[32][1024] 

Fig. 9. Comparison of estimated and meas-
ured latency for two cases 

6.3 HotSpot and Gaussian Elimination 

We also applied our analytical model to another two GPU programs: HotSpot and 
Gaussian Elimination, both from the Rodinia benchmark suits [13], which are specifi-
cally developed for the GPU-accelerated heterogeneous systems. 

HotSpot is an ordinary differential equation solver used in simulating microarchi-
tecture temperature. Every element is computed as a function of 3*3 neighborhood of 
elements from the input array (as stencil). For each thread’s one element computation, 
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9 elements need to be loaded into the processor unit and thus heavy stresses are as-
signed to the global memory bandwidth. However, the Hotspot in the version Rodinia 
2.4 is optimized throughput caching, by way of utilizing shared memory to store 
neighborhood data so it can be reused among neighboring threads in the same thread 
block. As the shared memory accessing has the identical latency as normal compute 
instruction, shared memory access instructions is treated as compute instructions. 
There are only two global memory loads and one global memory store instruction in 
each iteration of a thread, and all three global memory accesses are coalesced due to 
the shared memory. We calculate the values of compute throughput and memory 
throughput in the assembly code and the kernel calculate_temp turns out to be com-
pute-bound. We estimate the execution time of all kernel runs using equation (8) and 
compare the results with the measured latency as listed in Table 3. The input data are 
also provided in the benchmark suit. 

Table 3. Benchmark result for HotSpot 

Input size Measured (s) Predicted (s) Error  

64 0.021 0.017 19.05% 

512 0.040 0.035 12.5% 

Gaussian Elimination solves systems of equations using the Gaussian elimination 
method and contains multiple iterations of two kernels: Fan1 and Fan2. the algorithm 
must synchronize between iterations, but the values calculated in each iteration can be 
computed in parallel. For both kernels, parameterized size-strided-accesses to matrix 
a_cuda and m_cuda lead to uncoalesced accesses which result in tremendous global 
memory transactions. In the L1 cache-enabled case, 32 128B-memory-transactions 
will be incurred while the value of size above 32. According to GPU program classi-
fication method presented above, the two kernels are defined as memory-bound and 
we estimate the execution time using equation (12). A comparison of measured and 
predicted execution time is shown in the Table 4.  

Table 4. Benchmark result for Gaussian Elimination 

Input size Measured (s) Predicted (s) Error  

16 0.000410 0.000324 20.94% 

64 0.001643 0.001540 6.27% 

512 0.063546 0.056340 11.33% 

As can be seen from both benchmarks, the estimated values tend to be constantly 
smaller than the actual execution time. The inaccuracy in the projected performance 
can result from various sources, such as synchronization, kernel initialization, CPU 
execution of loop control instructions, etc. In the following work, all those factors will 
be considered in our performance model. 
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7 Conclusion 

In this paper, we propose a throughput-aware analytical performance prediction mod-
el for the GPU applications. We predict performance of GPU kernels based on the 
throughput determined by the compute throughput and memory throughput redefined 
in the paper. Experiment results illustrate high accuracy of our performance predic-
tion model in capturing impaction of performance bottlenecks such as control flow 
divergence and uncoalesced memory access. 

We believe our model has captured the GPU’s primary performance factors, and it can 
provide some useful hints in the future performance optimization. Our work has several 
limitations that we hope to address in future research: (1) model the cost of double-
precision computations and other complex operations, (2) figure out an upper bound of 
performance based on the model research, (3) automatic memory transaction number 
detection, (4) model the synchronization barrier’s effect on warp-level parallelism. 
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