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Preface

Welcome to the proceedings of 10th Annual Conference of Advanced Computer
Architecture (ACA 2014), which was held in Shenyang, China! The emergence
of big data and the continued popularity of cloud computing create grand chal-
lenges and prolific opportunities for computer architecture and systems research,
ranging from high-performance computer architecture, multicore architecture,
compilers, reconfigurable computing and so on. These topics also formed the
theme of ACA 2014. The two-day technical program of ACA 2014 provided
an excellent venue for presenting recent advances in research and practic by
researchers in China.

To ensure the quality of the program and to stimulate interactive discussions,
we assigned each submission to at least three ProgramCommittee (PC) members
and selected papers based on their review scores as well as on the potential of the
paper to generate discussions during the conference. Further, to provide a chance
for interesting papers with controversial reviews, we introduced a “conditional
accept” with a shepherd this year. We held an online PC meeting from April 25
to May 1 to reach consensus on each submission. We directly accepted papers
with all positive reviews. Papers with support from at least two PC members and
only one weak reject, were accepted conditionally and assigned a PC member
with high review confidence as the shepherd. In total, we accepted 15 papers
directly and four papers conditionally. After careful revision, the four papers
were approved by the shepherds.

We would like to express our thanks to all authors who submitted papers to
ACA 2014, and our congratulations to those whose papers were accepted. ACA
is an event that has taken place for 19 years. In addition to the authors, we
would also like to show our appreciation to this year’s dream-team PC. The 36
PC members did a great job in returning constructive reviews in time and in
having active participation in the online PC discussions. This ensured the timely
delivery of results to the authors.

Finally, we would like to thank our honorary general chair Prof. Xuejun Yang,
our general chairs Prof. Yong Dou and Prof. Ge Yu, the Technical Committee on
Computer Architecture of China Computer Federation and Northeastern Uni-
versity of China for their support in making this event happen. Our thanks also
goes to Springer for its assistance in publishing the proceedings. Their help made
ACA 2014 a great success.

August 2014 Haibo Chen
Xingwei Wang

Junjie Wu
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Fusion Coherence: Scalable Cache Coherence  
for Heterogeneous Kilo-Core System 

Songwen Pei1,2,3, Myoung-Seo Kim3, Jean-Luc Gaudiot3, and Naixue Xiong4 
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University of Shanghai for Science and Technology, Shanghai 200093, China 
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Abstract. Future heterogeneous systems will integrate CPUs and GPUs on a 
single chip to achieve high computing performance as well as high throughput. 
In general, it would discard the current discrete pattern and will build a 
uniformed shared memory system avoiding explicit data movement among 
CPUs and GPUs connected by high throughput NoC.  

We propose a scalable cache coherence solution Fusion Coherence for 
Heterogeneous Kilo-core System Architecture by integrating CPUs and GPUs 
on a single chip to mitigate the coherence bandwidth side effects of GPU 
memory requests as well as overhead of copying data among memories of 
CPUs and GPUs. The Fusion Coherence coalesces L3 data cache of CPUs and 
GPUs based on a uniformed physical memory, further integrates a region 
directory and cuckoo directory into two levels of cache coherence directory 
without modifying cache coherence protocol. According to the experimental 
results with a subset of Rodina benchmarks, it is effective to decrease the 
overhead of data transfer and get an average execution speedup by 2.4x. The 
highest speedup is approximate to 4x for data-intensive applications. 

Keywords: Fusion Coherence, Fusion Directory, Two-level Cache Directories, 
Heterogeneous Kilo-core System, Cache Coherence.  

1 Introduction 

Moore’s Law continues with technology scaling, emerging 3D stacking technology, 
increasing transistor capacity and number per square inches, so it is probable to 
implement thousands of cores on a single chip. The evolutionary approach is to 
continue the trend with a few large cores, and a large shared cache [1]. The 
integration capacity will still double in every two years, and implementing coherent 
cache hierarchies becomes increasingly difficult in the age of thousands of cores 
processor. 
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At the mean time, data-parallel accelerators such as general-purpose graphics 
processing unit (GPGPU) computing is emerging as a high-throughput many core 
accelerator. The availability of heterogeneous multicore systems such as AMD Fusion 
[2], Intel Haswell [3], Nvidia Denver[4] and ARM big.LITTLE[5] suggests that 
multicore systems with heterogeneous processing elements are becoming the 
mainstream in the field of future processor design. Especially, as the rapid 
development of manufacture technology, it becomes probable to make heterogeneous 
kilo-core system by integrating the general-purpose (non-graphics or data flow) 
computing units and GPGPU on a single chip in the near future.  

In current paradigms of both discrete and integrated GPUs, there are relatively 
large overheads associated with data transfer, kernel launch, cache coherence and 
synchronization[6]. Taking an example shown in [6], the physical transferring latency 
of a 128KB memcpy from host to device occupies on 70% of the whole overhead of 
data moving, either in discrete GPU system or integrated system. It will be mostly 
benefited from eliminating the overhead of data transferring along with increasing the 
scale of computing units. Besides, the cost of data transfer is overweighed to 
execution on discrete GPU architecture on Radeon HD5870. But, the performance is 
expected to be improved by Heterogeneous System Architecture (HSA) over Trinity 
APU[7]. HSA is a uniformed computing framework cooperated by industries and 
academies. It provides a single address space accessible to both CPU and GPU to 
avoid data copying, user-space queuing to minimize communication overhead, and 
preemptive context switching for better quality of service across all computing 
elements in the system[7]. Gregg et al[8] verified that the time to transfer data 
between CPU and GPU cores is huge and inspired us to reduce the overhead of 
communication in heterogeneous architectures. Besides, Daga et al.[9]showed that 
AMD APU’s performance is better than hybrid architecture integrated by CPU 
processors and discrete GPU cores over PCIe. Hwu et al.[10] also pointed out that the 
overhead of data transferring between CPU and discrete GPU is a bottleneck of 
hybrid processor. As the increasing scale of cores on a chip, the more 
communications and data movements among cores will be occurred, and the whole 
computing performance would be decreased while the power dissipation would be 
increased sharply if there is not a good solution for it. All of the prior work inspired 
us to eliminate the overhead of data transferring and highly scalable cache scheme by 
designing a fusion coherence for real heterogeneous system. 

To this end, in order to eliminate huge overhead of transferring data and keep high 
efficiency of accessing cache between CPUs and GPUs, we propose the fused and 
scalable cache coherence solution-Fusion Coherence for heterogeneous kilo-core 
system based on a uniformed physical memory (UPM) framework [11] to coordinate 
data switch among GPUs and CPUs by directly cross accessing to memories of each 
other without explicit data copying. Within fusion coherence, a new fused cache 
directory called Fusion Directory takes advantages of cuckoo directory [12] and 
region directory [13].  
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The main contributions of this paper are: 

 Fusion directory not only takes advantages of high harsh structure and 
regional directory, bust also decreases the overhead of communication 
among heterogeneous processing elements. 

 Optimization for the cache coherence directory by supplementing states 
transmitting algorithm for classified cache data blocks with different tags.  

 System performance is improved by the seamless coordination of fusion 
coherence and the uniformed physical memory system of heterogeneous 
kilo-core system. 

We implemented Heterogeneous Kilo-core System Architecture (HKSA) on a 
cycle-level simulator based on Gem5[14] and GPGPU-Sim[15]. Furthermore, we 
evaluate fusion coherent cache by the heterogeneous simulator with 1024 cores 
integrating 256 CPU cores and 768 GPU cores on a single chip, and a 3-level 
hierarchical cache directory. We show that, the fused coherent cache is scalable and 
effective to support thousands of cores, and which sharply decreases the overhead of 
data transferring among cores.  

The rest of this paper is organized as follows. Section 2 provides the related work 
and Section 3 presents the target architecture Heterogeneous Kilo-core System 
Architecture, and Section 4 proposes the fusion cache coherence and fusion directory 
structures. Section 5 provides an evaluation result of the fusion coherence. Finally, we 
conclude it and expect our future work. 

2 Related Work 

Snooping and directory-based cache coherence protocols are classical protocol in the 
past decades[16]. Snooping cache coherence protocols work well in small-scale 
systems, but it is not well scalable beyond a handful of cores due to their large 
bandwidth overheads, even with optimizations like snoop filters[17]. Directory-based 
cache coherence system uses a global directory to track the coherence state of 
individual cache blocks. Requests from a computing element or caches consult the 
global directory entry corresponding to the requested cache blocks to determine where 
the location of the up-to-date copies, and which kind of actions should be taken. In 
generally, directory-based protocols are better for large-scale CMPs due to 
introducing a coherence directory between the private and shared cache levels to track 
and control which caches share a line and serve as an ordering point for concurrent 
requests. However, while conventional directory-based protocols scale to hundreds of 
cores and beyond, implementing directories that can track hundreds of sharers 
efficiently has been problematic[18]. Traditional cache coherence directory includes 
duplicate-tag directories[19] maintaining a copy of all tags in the tracked caches and 
bringing energy-inefficient with a large number of cores, and sparse directories 
usually using a bit-vector to maintain each entry[20]. Hierarchical directories [21] 
implement multiple levels of sparse directories with each level tracking the lower-
level sharers.  
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Protoza[22] is an adaptive granularity cache coherence which makes more effective 
spatial locality by avoiding to waste bandwidth and unnecessary coherence traffic for 
shared data. SPATL [23] decoupled the sharing patterns from bloom filters and 
eliminated the redundant sharers based on tagless cache directory, and finally they 
extended it to support 1024-core chips with less than 1%of the private cache space. 
Sanchez, et al. [18,24] proposed a scalable coherence directory for 1024-core CMP, but 
it’s just a single-level cache directory and needed to track a fixed number of sharers, and 
their further work Jigsaw[25] was a scalable software-defined cache for smaller CMPs 
systems. WayPoint [17] is a scaling coherence to 1000-core architecture of Rigel[26], 
which added a broadcast-collective probe filtering for cache coherence scheme and 
minimized its on-die storage and maintaining overhead for directory protocols. Xu et al. 
[27] addressed composite cache coherence for thousand-core CMPs by leveraging 
merging optical on-chip interconnect technology. Their protocol benefited from 
advantages of both snoopy protocol and directory protocol, such as direct cache-to-
cache accesses and cache probing. However, most of their work just focused on cache 
coherence for homogeneous many-core system, their schemes did not involve into 
multiple levels cache coherence between CPU cache and GPU cache.  

Hechtman et al. [28] proposed a cache-coherence shared virtual memory for 
heterogeneous multicore chips, but they did not share last level CPU cache and GPU 
cache just depending on an inclusive L2 cache and they did not proposed an effective 
solution for heterogeneous thousand core system. Library cache coherence (LCC)[29] 
is a time-based hardware coherence that stores unexpired blocks to enforce sequential 
consistency on CMPs. Temporal coherence [30] is also a time-based cache coherence 
framework for GPU architectures aiming at Nvidia GPU architecture. Ubik[31] is an 
efficient cache sharing scheme to support strict QoS for latency-critical workloads. 
Basu et al [32] proposed a dual-grain CMP directory protocol by using snooping 
region coherence to maximize the effectiveness of precious on-chip directory state. 
HeLM [33] is a novel shared LLC management policy that takes advantage of the 
GPU’s tolerance for memory access latency by passing the LLC, and the latency 
tolerance of a GPU application is determined by the availability of thread-level 
parallelism. However, it did not solve the cache coherence among CPU and GPU 
caches within a real heterogeneous processor on a single chip. 

3 Target Architecture 

3.1 Heterogeneous Kilo-core System Architecture(HKSA) 

The heterogeneous kilo-core system architecture (HKSA) is an enhanced architecture 
framework for a thousand cores processor, which is inspired from Rigel[26]. HKSA is 
consist of 3-level computing elements, the heterogeneous CPUs and GPUs cluster are 
at the lowest level, as shown in the right lower corner of Fig.1, each cluster has 4 
CPU cores and 12 GPU cores sharing exclusive L2 data cache among each type of 
interior cores. In default, each CPU core and GPU core has its private L1 instruction 
cache and L1 data cache independently which was not shown in the Fig. 1. Then, each 
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cluster is a quarter of a tile, and each quarter shares their data by input/output queues 
over high throughput network on chip, thus each tile concludes 16 CPU cores and 48 
GPU cores. Similar to Rigel architecture, there are 16 tiles connected by a high speed 
high radix asymmetric crossbar network[34]. Furthermore, the L3 Fusion cache is set 
up for storing uniformed CPU and GPU data. From the sight of software programmer, 
the L3 fusion cache not only supplies a logical uniformed address, but also supports 
uniformed physical cache structure. In other words, there will be no physical data 
copying among CPU data caches and GPU data caches due to the fusion data cache. 
All the data would be referred directly from GPU to CPU or vice versa.  

We can get at least two advantages from this kind of cache structure: (1) It 
eliminates the overhead of data transferring among GPU cores and CPU cores; (2) It 
decreases the overhead of communication on chip and improves the efficiency of 
energy per square inches. 

 

Fig. 1. Heterogeneous Kilo-core System Architecture(HKSA) 

3.2 Hierarchical Cache Directory 

As the number of cores grows, the aggregate directory must increase 
commensurately[11]. It means that the more directory slices should be set to 
accommodate more cores, and then the power dissipation grows quadratically as well as 
the aggregate directory area grows quadratically. Bit vectors are popularly used in 
traditional spare directory to track cache sharers, which grow linearly with core count, 
and lead to increasing of power dissipation and area quadratically as core counts 
increase[35]. Hierarchical directory uses coarse bit vectors at a primary location and 
exacts sub bit vectors at secondary location[36].  

Cuckoo directory is a scalable distributed directory with nearly constant power and 
area utilization per core, regardless of core count, which avoids set conflicts of 
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traditional spare directory and can achieve scalable power- and area-efficient CMP 
coherence[11]. Cuckoo directory structure is an alike set-associative structure, but it 
displaces victims to alternate non-conflicting ways instead of evicting a replaced 
victim from a small set of conflicting entries in terms of Cuckoo hash functions. Take 
a simple example, cuckoo hash uses two independent tables, indexed through two 
different hash functions. A new entry is always inserted in one of the two tables and 
displaces a valid entry[37]. The insertion process is ended until the final temporal 
displaced block is inserted into a vacant alternate location.  

In order to solve the directory coherence on two levels of data cache, L2 data cache 
and L3 uniformed data cache, we propose a hierarchical Cuckoo directory scheme. As 
shown in Fig.2, a 4-way Cuckoo directory structure is designed for GPU L2 data 
cache and CPU L2 data cache respectively in a cluster. 

 

Fig. 2. 4-way Cuckoo directory structure 

Cuckoo directory organization achieves up to 7x area reduction compared to the 
spare directory and Spare Hierarchical directory, maintaining reasonable energy 
dissipation while bring the area of the directory storage under 3% of the L2 area for 
the Shared-L2 configuration 1024 cores and under 30% of the L2 area for the private-
L2 configuration with 1024 cores[11]. 

Region coherence was first proposed in 2005 to reduce the bandwidth required on 
snooping-based system[38-40]. And it was also extended to a directory-based 
cache[41]. In order to decrease the computing and communication overhead of cache 
directory, especially plenty of requests from GPU and CPU cores, we introduce the 
region directory as a global directory. Generally, a region is an aligned multi-block 
range of cache block. We define its capacity as 1K Bytes of 16 64-Byte blocks in 
default.  

3.3 Heterogeneous Cache 

Traditionally, coherence among CPUs and GPUs has been managed by software 
through explicit copies between address spaces. Explicitly copying shared data among 
CPUs and GPUs is either complicated for software programming models and 
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programmers or time consuming over the heterogeneous hardware, such as the 
explicit API memory copying in the framework of CUDA. The programmer should 
firstly understand the detail of GPUs infrastructure and the application features, then 
use the memory copying function to move data from CPU memory to GPU memory. 
After the data is used by GPUs and the new result should be copied again from GPU 
memory to CPU memory.  

To mitigate these issues and increase performance, Kelm, et al [42,43] proposed a 
cohesion scheme to migrating data between coherence domains without copying by 
coordinating software-managed coherence protocol and hardware-managed coherence 
protocol. Hechtman [44] tried to achieve memory consistency for throughput-oriented 
processors. 

4 Fusion Cache Coherence 

We build a hierarchical cache coherence schemes together with two level cache 
structures by taking advantages of cuckoo directory and region directory with tags 
respectively. The first level cache directory is cuckoo directory which is 
corresponding L2 data cache separately for GPU and CPU. The second one is region 
directory with tags for data original source, such as tiles identifier, GPU tags and CPU 
tags, which is corresponding L3 uniformed data cache.  

4.1 Discrete L2 Data Cache  

Due to the L2 data cache for CPUs cluster and GPUs cluster is separate, and we 
observed that the reused frequency of interior data blocks either in GPUs cluster or in 
CPUs cluster is high. So, in order to decrease the possibility of replaced blocks, we 
design a 4-way cuckoo directory for each CPUs and GPUs cluster, as shown in Fig.2. 

4.2 Uniformed L3 Data Cache  

Each quart has two corresponding Region Coherence Array(RCA), the one is RCA 
for CPU L2 data cache (RCAC) and the other one is RCA for GPU L2 data 
cache(RCAG). According to the HKSA, there would be 64 RCACs and 64 RCAGs 
respectively. The Fig.3 shows the abstract cache coherence architecture based on 
HKSA with region cache and region directory.  

In order to effectively access uniformed data cache and uniformed physical 
memory system, we also propose the two phase parallel execution technology like 
[45] while we simulate applications based on HKSA simulator integrating Gem5 and 
GPGPU-Sim. At the first phase, all the instructions are executed for an interval of a 
few thousand cycles by ignoring resource contention and memory load. Thus, we can 
record the track of all memory accesses including cache accessing, main memory 
accessing, invalidation operations among cache structure, and tagging all data by 
where it was generated from, such as the vector {T, Q, C, G}. This can help CPUs or 
GPUs controllers making the final determines how to operate them according to the 
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requirements of a write or read. At the second phase, the instructions are started over 
to be execute in parallel, and load or store data with the actual latency. Due to the all 
tracks of accessing memory and possible interactions among GPU computing units 
and CPU cores are recorded at the first phase, we can get more accurate simulation 
results and decrease the overhead of synchronization.  

GPU Quart 0:0
With 12 CUs and 

L2 Data Cache

U
niform

ed L3  Data Cache

GPU Quart 0:1
With 12 CUs and 

L2 Data Cache

GPU Quart 15:3
With 12 CUs and 
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L2 Data Cache

CPU Quart 0:0
With 4 Cores and 

L2 Data Cache

GPU Quart 0:1
With 4 Cores and 

L2 Data Cache

GPU Quart 15:3
With 4 Cores and 

L2 Data Cache

GPU Quart 15:2
With 4 Cores and 

L2 Data Cache

Region 
Directory

Region Data Buffer Region Data Buffer Region Data Buffer Region Data Buffer

Region Data Buffer Region Data Buffer Region Data Buffer Region Data Buffer

 

Fig. 3. Uniformed Data Cache Coherence with Region Directory 

The coherence protocol is hierarchical coherence with a global region-level 
directory that has 7 bits for the sharing vector responding to 64 GPU quarts and 64 
CPU quarts. The Region directory entry structure is shown in Fig.4. 

 

(a) Region directory 

 

(b) Region Buffer Structure 

Fig. 4. Region directory entry structure 

4.3 Fusion Directory 

The fusion cache directory structure is basically composed of Cuckoo Cache under 
the L2 data cache in a quart and a Region cache under the L3 uniformed data cache. 
The Cuckoo directory is helpful to lengthen the residence time of a block without 
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replaced too frequently. It enhances the temporal locality of cache and decrease power 
dissipation by decreasing cache area per square inches. Moreover, the Region directory 
decreases the communication bandwidth among CPU cores and GPU computing units 
by bypassing the accessing directly from Main memory if there are many continual 
accessing a region of blocks. Besides, Region directory is a bridge of L3 uniformed data 
cache and other tiles. It coordinates the data switch among CPU data cache and GPU 
data cache over tiles. Similar to the heterogeneous system coherence in [13], each quart 
has two Region Buffers as shown in Fig.5. One is a GPU Region buffer containing 
region tags, permissions, and other metadata. The other is a CPU Region buffer  

 

Fig. 5. Two-level Fusion Cache Directory 

Fig.5 shows an example of an exclusive write request flows to memory system with 
three levels of cache. ①The GPU cluster issues a exclusive write request for address F, 
then looks up the cuckoo directory. If it misses in cuckoo directory, then ②the request 
is added into a corresponding Req. Queue connecting Region directory. The write 
request will be forward to GPU Region Buffer until it comes up to the top of the queue. 
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Otherwise, it hits that means the corresponding block of address F is located at GPU L2 
data cache and the subsequent actions are similar to traditional writing operations. If the 
address F is part of a region R(F), which is not included into GPU Region Buffer. 
③Therefore, a region-exclusive request is sent to the region directory. If the tag of write 
request for R(F) hits Region Directory, that means there exists at least one region, either 
interior the same quart or outside the quart, including block of corresponding address F. 
Therefore, the controller of Region directory compares the vectors, such as T, Q, C and 
G which respectively represents the vector for Tiles, Quart, CPU side and GPU side. 
For example, the vector of {T,Q,C,G} is {1,1,1,0}, that means there is a region in a 
CPU Region Buffer including block of address F in the same tile and quart. Therefore, 
4.1  the controller sends an invalidate probe to CPU Region Buffer. ⑤As soon as the 
CPU Region Buffer receives the invalidate probe request, it will invalidates all blocks, 

with valid state in the CPU L2 data cache, belong to the region R(F). 6.1 The 
corresponding blocks in the region will be written back to main memory. By the way, if 
the blocks in the region are also in the L3 uniformed data cache, 6.2 these blocks in the 
L3 uniformed data cache will be evicted. ⑦After then, the controller of Region 
Directory will notify GPU Region Buffer and grant it the permission to directly access 
main memory. ⑧The subsequent write requests for one of the blocks of the same region 
R(F) from the GPU and they missed in GPU L2 data cache, then they can directly 
access to main memory without probing the other GPU computing units or CPU cores 
and asking for the permission to access to the blocks. This kind of mechanism will help 
to decrease the frequency of probing other computing units or cores and mitigate the bus 
load of communication. Furthermore, it supply an alternative path to directly access the 
uniformed cache or main memory without copying any data from CPU cache to GPU 
cache and break through the bottleneck of accessing opposite memory on heterogeneous 
systems. Especially, it can be easily scalable to thousands of cores, either for GPU 
computing units or CPU cores. 

If the write requests are issued from CPU cluster, the procedure of accessing memory 
system is similar because of symmetrical memory system. As for memory requests 
flows of read instructions, it firstly looks up the local Cuckoo directory as well. If it hits, 
then L2 data cache returns the responding blocks. If not, then a request is forwarding to 
Region Buffer and tries to find the responding regions including the requested block’s 
address. If the request reaches the Region directory and finds the regions in CPU Region 
buffer. Then comparing to the attribution vectors to judge whether the region is located 
in local quart or not and whether the L3 Uniformed Data Cache contains the same 
region blocks. If it does, then return the corresponding blocks to the original Region 
Buffer and update their states of the blocks reserving other quarts. 

5 Experiments and Evaluation 

5.1 Methodology and Simulation 

We conduct the verification research by combing Gem5[14] and GPGPU-Sim[15] 
simulation, which are all built on a unmodified x86 64bits Linux 2.6. They simulated 
256 in-order x86 CPU cores at 2G Hz and distributed into 16 tiles, and 768 GPU 
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cores at 600MHz and also distributed into 16 tiles. The Gem5 CPU system obeys 
traditional MOESI cache coherence protocol, and the GPU caches are write-through 
and obey the VI-based cache coherence protocol. Table 1 shows the detail parameters 
of the simulation infrastructure.  

Currently, we just use one benchmark suites to evaluate the fusion coherence based 
on heterogeneous kilo-core system. We mainly choose 10 benchmarks from Rodinia, 
which are back propagation (bp), breadth-first search (bfs), computational fluid 
dynamics solver (cfd), heart wall (hw), hotspot (hs), lavaMD2(lmd), LU 
decomposition (lud), MUMmergpu (mum), Needleman-Wunsch(nw), speckle 
reducing anisotropic diffusion (srad). The bp is a machine-learning algorithm for 
layered neural network, cfd is a solver for the 3D Euler equations for compressible 
flow, hw tracks the movement of a mouse heart over a ultrasound images, hs is a 
simulation for processor temperature, lmd calculates particle potential and relocation 
within a 3D space of molecular dynamics, mum implements an high throughput 
parallel alignment algorithm, nw is a optimization method for DNA sequence 
alignments, and srad implemtns a diffusion method for ultrasonic and radar images.  

Table 1. Simulation Configuration Parameters 

CPU  Total 256 uniformly distributed into 16 tiles, 
each tile has 16 CPU cores, and each Quart has 4 
in-order CPU cores at 2GHz 

CPU L1 Data Cache 64KB 
CPU L1 Instruction Cache 64KB 
CPU L2 Data Cache 2MB (16-way) 
GPU Total 768 computing elements(CEs) uniformly 

distributed into 16 tiles, each tile has 48 CEs, and 
each Quart has 12 CEs at 600MHz 

GPU L1 Data Cache  64KB 
GPU L1 Instruction Cache 64KB 
GPU L2 Data Cache 8MB (32-way) 
L3 Uniformed Data Cache 32MB (16-way) 
DRAM DDR3 
Cuckoo Directory 210 entries (8-way) 
Region Directory 218 entries (16-way) 
Region Buffer 215 entries (16-way) 

5.2 Experimental Result 

We present the experimental result for HKSA, and the experiments are compared with 
a basic infrastructure built with a discrete Nvidia Tesla T20 GPU and an Intel i5 CPU. 
The results include execution time speedup and latency of Load and Store compared 
to the basic infrastructure with discrete GPU. 
 

As shown in the Fig.6, the average speedup is 2.4x and the maximum speedup is 
more than 4x. However, not all the applications achieve the high speedup, such as bp, 
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bfs, hw, lud and nw. These applications are mainly computing-intensive, and spend a 
significant execution time on CPU core instead of transferring a large mount of data 
between CPU and GPU memory.  
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Fig. 6. Execution time speedup 

As for those applications get high speedup, such as cfd, hs, lmd, mum and srad, 
according to our observation, the main reason is increasing the hit ratio on L3 
uniformed data cache and decreasing the delay of load and store instructions due to 
directly accessing cross memory system under the support of two-levels of cache 
directories and uniformed physical memory system, especially the memory operations 
across CPU and GPU. Fig.7 shows the average delay of load and store instructions. 
The average delay of accessing memory within 10 benchmarks are decreased to 40%, 
the most significant decreasing lowers to 21% due to large mount of memory data 
copying among CPU and GPU in the baseline infrastructure.  
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Fig. 7. Delay of accessing memory 

6 Conclusions 

We get some benefits from the design of fusion coherence by two-level directory and 
directly accessing uniformed L3 data cache, which sharply decrease the execution 
time and latency of accessing memory system because of bypassing L3 data cache 
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guided by fusion directory,  directly accessing memory space instead of copying data 
between each other and transmitting over system bus.   

However, the future research would be conducted on the chip’s area due to 
introducing fusion directory and uniformed L3 data cache, and the corresponding 
power dissipation. Furthermore, the effects of system bus and directory bandwidth 
would be investigated. In our opinions, the fusion coherence framework not only 
indicating fusion cache directories, but also the fusion L3 data cache are really helpful 
to build a new large scale of heterogeneous CPU and GPU system. 
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Abstract. Reconfigurable architectures have become popular in recent years in 
the high performance computing field, because of their reconfigurable 
characteristic and abundant computing resources. These architectures combine 
the high performance of ASICs with the flexibility of microprocessors. A novel 
architecture named Application Customized Reconfigurable Pipeline (ACRP) is 
proposed for domain-specific applications in this paper. According to analyze 
and abstract the domain computing character, an application Customized 
Functional Unit (CFU) is designed to execute the frequent instruction sequence 
efficiently. The CFU is shared with the hardware pipeline which is composed of 
some Simple Process Elements (SPEs). The experimental results show that 
ACRP can exploit the CFU-, pipeline- and data-level parallelism efficiently 
with the area constraint. 

Keywords: reconfigurable architecture, reconfigurable pipeline, SIMD, Appli-
cation customized.  

1 Introduction 

Reconfigurable architectures combine the high performance of ASICs with the 
flexibility of the microprocessors because of the abundant hardware resources and the 
reconfigurable interconnection network. Reconfigurable computing is a major 
research direction of the high performance computing nowadays. Reconfigurable 
architectures are divided into CGRA (Coarse Grained Reconfigurable architecture) 
and FGRA (Fine Grained Reconfigurable architecture) according to operation grain of 
the process elements. Compared to FGRA, the CGRA achieves higher performance, 
lower power and shorter configuration time but lower flexibility. CGRA is a 
significant research direction of the reconfigurable computing. 

The past few years, many reconfigurable architectures are proposed with their 
mapping methods[1]. CGRA generally is composed of abundant PEs (Processing 
Elements) and a reconfigurable interconnect network which connects those PEs. 
According to the type of the interconnect network, CGRA can be divided into the 
array architecture and the linear architecture.  In this paper, we concentrate on linear 
architecture named the reconfigurable pipeline. Due to the area constraints, the PEs in 
CGRA are often quite simple. The PEs typically contains a reconfigurable functional 
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unit and a small local memory, which can perform the byte operation or half byte 
operation efficiently. The CGRA typically is domain-specific, e.g. DSP. The large 
number of PEs available in CGRA can be utilized to exploit the parallelism in the 
domain-specific application, while the reconfigurable interconnect network provides 
the required flexibility for the domain-specific application. 

Another domain-specific calculating acceleration method is the ASIP (Application-
Specific Instruction-set Processor).  ASIP makes analysis of the computing 
characteristics, abstracts the frequent instructions sequence, customizes a new FU to 
perform that instructions sequence efficiently, and generate a CI (Customized 
Instruction) that the compiler can identify. The compiler is responsible for identifying 
the CI and mapping the CI to the original FU to improve the performance. In this 
work, we introduce the application customized idea to the CGRA. Due to the area 
constraint, CGRA's PE is usually very simple. So we first design an application 
customized function unit (CFU) of a certain domain application, and share the CFU 
with a simple hardware pipeline which is composed of some simple process elements. 
We call this architecture ACRP (Application Customized Reconfigurable Pipeline). 

The contributions of this paper include: 

1. An ACRP framework is proposed. The ACRP framework is customized for a 
specific domain and this reconfigurable architecture is composed of two types of 
PEs, SPE and CFU.  

2. The customized instruction selection problem is analyzed. This problem arises 
when the CFU is employed to exploit the parallelism with the module 
scheduling algorithm. 

3. Prototype: Two types of ACRPs, DSP-ACRP for DSP domain and SHA-ACRP 
for the secure hash algorithm, are implemented for verifying our architecture. 

The rest of the paper is organized as follows: in Sect. 2, the existing work in the field 
of reconfigurable architecture and their mapping methods. Sect. 3 introduces the ACRP 
framework. Sect.4 presents a case study of ACRP mapping, while experimental results 
are presented in Sect. 5. Finally, conclusions are outlined in Sect. 6. 

2 Related Work 

Accompany the development of this age, the embedded domain application brings up 
a higher standard for computer architecture, including higher performance, higher 
flexibility and lower power. Reconfigurable computing is one important method to 
satisfy the requirements. The first devices that had been used for reconfigurable 
computing were the FPGAs (Field Programmable Gate Arrays). An FPGA consists of 
a matrix of programmable logic cells, executing bit-level operations, with an 
interconnect network. FPGA is very popular for the implementation of complex bit 
level operations, while is inefficient for coarse-grained operations due to the high cost 
of reconfiguration in performance and power. FPGA belongs to FGRA. To overcome 
the bottleneck of performance, the research tended to CGRA. Compared to FGRA, 
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the CGRA reduces the delay, power and configuration time at the expense of 
flexibility. Surveys of reconfigurable systems can be found in [1] and [2]. 

CGRA consists of a lot of PEs which execute the byte operations or half byte 
operations efficiently. Due to the coarser granularity, CGRA reduces the delay, power 
and configuration time at the expense of flexibility. In the past few years, many 
CGRAs have been proposed with their mapping methodologies. According to the type 
of interconnect network, CGRA can be divided into the array architecture and the 
linear architecture. In the array architecture, the PEs are organized in a 2D array with 
horizontal and vertical connections which support communication with horizontal and 
vertical PEs. Tanks to the lavish interconnections, the array architecture is better at 
exploiting the parallelism than the linear architecture but more complicated and larger 
area. Considering the introduction of the complicated CFU, in this paper, we focus on 
the linear architecture. The linear architecture usually organizes the PEs in pipeline 
structure, so we call the linear architecture RP (Reconfigurable Pipeline). RP is 
suitable for pipelined execution stream-based applications with static or dynamic 
reconfiguration. 

RaPiD (Reconfigurable Pipelined Datapath) [4] and PipeRench [3] have a linear 
array structure. RaPiD's PE is a basic cell consists of diverse computing resources like 
ALUs, RAMs, multipliers and registers. These resources are irregularly distributed on 
one dimension and are mostly reconfigured in a static way using bus segments, 
multiplexers, and bus connectors. 

PipeRench relies on dynamic reconfiguration, allowing the reconfiguration of a 
processing element in each execution cycle. It consists of stripes composed of 
interconnects and PEs with registers and ALUs. The reconfigurable fabric allows the 
configuration of a pipeline stage in every cycle, while concurrently executing all other 
stages. 

RP is good for applications that can be executed in the form of linear pipeline. 
However, mapping of an application that performs 2D data processing or forks into 
multiple branches onto RP will be inefficient and require many global interconnects. 
Although the application domains are limited, mapping application onto the RP is 
simple because of the structure's linear characteristics. In addition, the configuration 
time is small and the configuration bus bandwidth requirement is trivial due to the 
incremental reconfiguration characteristic of the RP [7]. Moreover, we can copy 
several RPs to exploit the data parallelism. In [8] an SIMD (Single Instruction 
Multiple Data) reconfigurable architecture is proposed to map some iterations of a 
kernel to one array in SIMD style. 

Most of the CGRAs have a 2D array structure. Array architectures have more PEs 
with the lavish interconnections and are good for applications that perform 2D data 
processing. The array architectures can exploit the inherent parallelism in the kernel 
of applications. At the same time, it also brings up the mapping difficulty, large 
configuration time and large configuration bus bandwidth requirement. 

ADRES (Architecture for Dynamically Reconfigurable Embedded System) [5] is a 
VLIW architecture tightly coupled with a reconfigurable array of PEs. ADRES has 
two views: VLIW view and reconfigurable matrix view. The reconfigurable matrix 
part works as a co-processor of the VLIW and so their executions never overlap with 
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each other. The reconfigurable is responsible for executing the data-intensive code 
while the VLIW is good for the control-intensive code. ADRES firstly introduces the 
modulo schedule method of VLIW flied to reconfigurable architecture to exploit loop-
level parallelism, and develops a compiler framework named DRESC (Dynamically 
Reconfigurable Embedded System Compiler) [6]. So the iterations of a loop can 
continuously fire in a regular interval named II (Initial Interval). DRESC generates a 
mapping PE randomly for an operation, and judges whether meets the data routing 
requirement. DRESC uses the simulated annealing algorithm to avoid the local 
maximum problem. 

The DSE flow presented in [9] considers resource sharing and pipelining in a 
heterogeneous reconfigurable architecture. It assumes that an area critical resource is 
not directly contained in each PE but is shared among a set of PEs. The area critical 
resources can be pipelined not to slow down the clock and at the same time to 
enhance their utilization. 

3 ACRP Framework 

In this section, we will introduce our ACRP framework in three aspects. 1) The 
number and type of the PEs, 2) the interconnect network, 3) the data memory and 
memory access bus. We define the ACRP as a CGRA that consists of multiple SPE 
(Simple Processing Element) reconfigurable pipelines and some CFUs. Figure 1 
illustrates the ACRP framework.  We can see that 1) there are two types of PEs: SPE 
and CFU. The SPE is a simple processing element for executing the arithmetic 
operations and the CFU is a customized processing element to execute the expensive 
operation for domain applications. 2) SPEs is organized in 1D structure, the result of 
one SPE can be used by another SPE in the next cycle. Some CFUs are shared with 
the SPE pipeline. 3) To exploit the data parallelism, we can place several RPs which 
are independent for each other. 4) The ACRP's local memory is typically a multi-bank 
scratchpad memory which the data arrays used by the ACRP are placed in for fast 
access. The SPEs of hardware pipeline share a memory access bus while the CFUs 
share another memory access. 5) All the PEs and interconnect network is controlled 
by the configuration in configuration memory. The ACRP can be reconfigured 
dynamically when needed. 

PE is the least computing unit in CGRA. Due to the large number of PEs, CGRA 
architectures can provide massive amounts of parallelism and high computational 
capability. With the area constraints, the PE in CGRA typically is very simple. SPE in 
the ACRP is similar to the PE in the typical CGRA, as illustrated in the right part of 
Fig. 1. SPE is a two-input, one-output ALU for executing the simple arithmetic, logic, 
shifting operations. SPE contains a small set of private registers for constants and 
temporary variables, as well as an output register. Two multiplexer are responsible for 
supplying the inputs. Inputs of the ALU come from the local memory access bus, 
SPEs that are connected with, local register file or CFUs, where outputs of the ALU 
are also routed to. The SPE is controlled by the configuration register to select the 
inputs, change the operation and specify the output. 
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In this work, we introduce the domain-specific calculating acceleration method for 
ASIP to CGRA. The CFU is a specific functional unit to execute the complicated 
instruction or simple instruction sequence for a specific domain application. But how 
to abstract the calculate characteristic and how to design a CFU are beyond the scope 
of this article. Without violating the area constraints, ACRP organize the SPEs into a 
linear structure. The CFUs are shared by the linear structure. To exploit the data 
parallelism, we can copy several ACRPs which combine reconfigurable architecture 
with SIMD processing. 

 

Fig. 1. The ACRP framework 

Fig.1 illustrates a CGRA with two ACRPs that consists of 6 SPEs and 2 CFUs. 6 
SPEs are organized into a linear structure. Every SPE can communicate with the other 
5 SPEs. The linear structure is best for the pipelined stream-based application. But the 
drawback is not suitable for mapping the 2D data processing application and the 
branch code. However, the ACRP is domain-specific, e.g. DSP domain kernels are 
mostly stream-based. 

Two CFUs are shared by the SPE reconfigurable pipeline. The architecture 
designer firstly makes an analysis of the computing characteristics, abstracts the 
complicated instruction or frequent instructions sequence, customizes a new FU to 
perform that instructions sequence efficiently, and generates a CI that the compiler 
can identify. The compiler is responsible for identifying the CI and mapping the CI to 
the original FU to improve the performance. In this work, we don't discuss how to 
abstract the calculate characteristic and how to design a CFU but the effect of 
introducing a CFU to CGRA. For the DSP domain, we introduce a MAC-CFU which 
can execute the multiply-add operation. For the secure hash algorithm domain, we 
design a HE-CFU which can perform the F functions of MD5 and SHA. 

The memory system of ACRP contains configuration memory, data memory and 
the local register file in the PE. The configuration memory stores all the 
configurations for the ACRPs, which control operating of the ACRPs. The data 
memory is responsible for storing the source data and operation results. The local 
register file is used for the constants and temporary variables. When the capacity of 
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the memory is not enough, the ACRP need to load data from the external memory 
leading to extra delay. 

Fig.1 is a framework of the ACRP. According to the domain application, we can 
design the different CFU, specify the parameters of architecture for executing the 
kernel of domain application efficiently, e.g. the operand width, SPE operation 
latency and so on. 

4 Case Study 

The mapping methodologies of a CGRA are the major research problem in 
reconfigurable computing domain. In this section, a case study is presented for 
describing the new problem of mapping an application to the ACRP. 

Mapping an application to a CGRA always contains three sub problems: mapping 
the operation to a certain PE, routing the operation's result to the successive operation 
and scheduling every operation to execute at a certain cycle. 

The case study relates to how to map the 4-taps FIR algorithm of DSP domain to 
the DSP-ACRP. DSP-ACRP is a simplified ACRP for DSP domain including 5 SPEs 
and 1 CFU. The PE operand width is 32 bits. Every SPE is connected with his 
adjacent SPE and the CFU is shared by the SPEs. SPEs can execute multiplication 
and addition in 1 cycle, while the CFU named MAC-CFU can perform the 
multiplication, addition and multiply-add operation in 1 cycle. In this case study, we 
assume that the additional hardware resources e.g. the memory access bus, are enough 
and conflict-free. 

FIR (Finite Impulse Response) is a filtering algorithm that widely used in the DSP 
domain. Fig. 2(d) illustrates the kernel of the 4-taps FIR C code and Fig. 2(c) is the 
DFG (Data Flow Graph) of this kernel. We can see that the 4-taps FIR contains 4 
multiplications and 3 additions. The goal of mapping FIR to CGRA is mapping these 
7 operations to certain PEs, routing the operation's result to his successive operation 
and scheduling operations to execute at the certain cycle with the hardware constraint 
and the dependent constraint. 

 

Fig. 2. A case study for mapping FIR to DSP-ACRP 

By now, the best known mapping algorithm for CGRA is the edge-centric modulo 
scheduling [10]. We also use this modulo scheduling for mapping application to 
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ACRP to exploit the loop level parallelism. Besides a SIMD mapping method is used 
to exploit the data level parallelism. 

Modulo scheduling makes the iteration initiate before the last iteration completely 
finished in the regular interval II to exploit the loop level parallelism. The II is 
determined by the hardware dependence and the loop-carried dependence [11]. In this 
case study, we assume the hardware is enough and conflict-free. At the same time, 
there is no loop-carried dependency in FIR. So the II of 4-taps FIR is 1, in other 
words, the iteration can initiate next to the last iteration. 

The ACRP compiler first transfers the C code to the intermediate DFG like the 
traditional compiler for microprocessor. The DFG is a directed acyclic graph called 
G= (V, E). The V is the set of nodes which represent the operations and E is the set of 
edges that represent the data dependency. The operations in V are the basic arithmetic 
operations. 

Due to the CFU which can execute the complicated operation, the ACRP compiler 
faces a new problem called the CI selection problem. Before mapping the DFG to 
ACRP directly, the ACRP compiler adds a CI covering phase. Firstly, ACRP 
compiler identifies the instruction sequences or complicated instructions that can be 
substituted for the CI. How to identify the instruction sequence is an instruction 
matching problem and beyond the scope of this paper. There may be several these 
instruction sequences, so the compiler must decide which of these instruction 
sequences are replaced, which called the CI selection problem. 

In this case study, the MAC-CFU can execute the multiply-add operation. To 
maximize the performance, the MAC-CFU prefers to execute the multiply-add 
operation rather than the multiplication or addition operation. The compiler identifies 
three multiply-add operations in 4-taps FIR as illustrated in Fig.2(c). In Fig.2(c), the 
instructions sequences which can be replaced by the multiply-add operation are 
surrounded by the red dotted line. The intermediate DFG is transferred to a new one 
that contains CIs, as illustrated in Fig. 2(b). The II is computed from this new DFG 
again. When mapping kernel to CGRA using modulo scheduling, it may be 
considered as the hardware resources are duplicated II times in the time dimension to 
which the whole kernel must map. There are three multiply-add operations, but only 
one MAC-CFU in DSP-ACRP. So when mapping the DFG contains three multiply-
add operations, II at least is 3, as illustrated in Fig.3(c). In Fig. 3, the horizontal axis is 
the PEs of ACRP and the vertical axis is time. '*' represents the multiplication, '+' is 
the addition, and 'mac' stands for the multiply-add operation. The black circle 
represents the recursion of modulo scheduling every II times. When mapping the 
DFG contains three multiply-add operations and one multiplication to DSP-ACRP, 
the multiplication firstly is mapped to the SPE0 at cycle 1, then the first multiply-add 
operation is mapped to the CFU0 at cycle 2. When mapping the second multiply-add 
operation, there is no PE left for this CI while II is 1. So II must increase to 2 and the 
second CI is mapped to CFU0 at cycle 3. The third CI is the same as the second one. 
At last, II is 3 and the modulo scheduling result is illustrated in Fig. 3 (c). 

There are other different mapping choices. A DFG contains 2 multiply-add 
operations, 2 multiplications and 1 addition of the 4-taps FIR is selected for mapping 
to the ACRP. The modulo scheduling result is illustrated in Fig. 3(b) and II is 2.  
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The best mapping choice of 4-taps FIR is mapping the DFG contains 1 multiply-add 
operation, 3 multiplications and 2 additions. The modulo scheduling result of this best 
choice is illustrated in Fig. 3(a) and II is 1. The placing operations and routing results 
of this best choice is illustrated in Fig. 2(a), which is represented by the red dotted 
line. If we do not introduce the CFU to RP, the modulo scheduling result is illustrated 
in Fig. 3(d) and the II is 2. In this mapping, we instead the CFU0 of SPE5 since the 
hardware should be roughly equal. 

 

Fig. 3. Different mapping scheduling of CI selection problem 

II makes a great impact on the performance and resources utilization. When 
mapping the DFG contains 1 multiply-add operation, 3 multiplications and 2 
additions, the best performance is obtained as illustrated in Fig. 3(a), the throughput 
of which is 97 MOPS (Millions Outputs per Second), and the hardware resources 
utilization is 100%. In Fig. 3(b), the throughput is 49 MOPS and hardware resources 
utilization rate is 42%. The throughput is 33 MOPS and hardware resources 
utilization is 22% in Fig. 3(c) which is one third of the best condition. In Fig. 3(d), the 
throughput is 49 MOPS and hardware utilization is 58%. As we have seen, the best 
condition is 3 times higher than the worst one. The CI selection problem is extremely 
important for the ACRP mapping. 
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5 Experiment 

We have implemented two ACRPs for DSP domain and secure hash algorithm, 
named DSP-ACRP and SHA-ACRP. The proposed reconfigurable architecture with 
the CFU has been designed at the RT-level with verilog. The ACRPs have been 
synthesized with Design Compiler [15] using technology of SMIC[16] 0.13µm. 
ModelSim[17] is used for RTL-level and gate-level simulation. The simulation 
frequency is 100MHZ. We have applied several kernels of Livermore loops 
benchmark [18] and DSPstone [19] to the DSP-ACRP. And the MD5 and SHA 
algorithms in MiBench [20] are mapped to the SHA-ACRP. 

5.1 Synthesis Results 

The DSP-ACRP contains 6 SPEs and 2 MAC-CFUs. The SPEs is organized into the 
linear structure. Two CFUs are shared by SPEs. SPEs can communicate with each other 
by direct connection and the latency of the direct connection is 0 cycle. Every SPE 
contains an adder and a multiplier, and executes the 32 bits addition, subtraction, logic 
operations, shift operations and 16 bits multiplication. The CFU can execute the 
multiply-add operation which the multiplier is 16bits and the addend is 32 bits, 16bits 
multiplication and 32 bits addition, so the CFU have 2 16bits input ports and 1 32bits 
input port. Every PE can execute the operation in 1 cycle. All SPEs share 2 memory 
read buses and 1 memory write bus. Every read bus can supply one 32bits data in 1 
cycle. At last, the configuration memory is 64 words and every configuration is 32 bits. 

The architecture parameters of SHA-ACRP are the same as the DSP-ACRP's, but 
the instruction set of the CFU and the number of SPEs. The CFU of SHA-ACRP 
named HE-Logic32 can execute the F functions in MD5 and SHA. There are 8 SPEs 
for simple operation. 

Table 1. The components synthesis results 

component Area(mm2) Latency(ns) 

ALU32 0.01276 1.34 

MUL16 0.02079 3.39 

MAC16 0.02683 3.86 

MUX32-8 0.00703 0.21 

MUX16-8 0.00361 0.21 

HE-Logic32 0.00383 1.20 

Table 1 lists the synthesis results of some components. The synthesis results are 
obtained before placement and routing phase. The synthesis software is Design 
Compiler using technology of SMIC 0.13µm. operation condition is worst. We can 
see the area and latency increase because of the CFU qualitatively. 
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5.2 Effect of the CFU 

For this experiment, we consider the effect of the CFU. The experimental 
architectures are DSP-ACRP and SHA-ACRP described in previous section. The 
reference reconfigurable architecture for DSP-ACRP named DSP-RP is a 
reconfigurable pipeline without CFUs, which contains 8 SPEs. The hardware 
resources of DSP-RP are roughly equal to the DSP-ACRP which contains 6 SPEs and 
2 CFUs. The reference reconfigurable architecture for SHA-ACRP is SHA-RP with 
10 SPEs. In this experiment, we assume that the memory access bandwidth is 
unlimited and the system frequency is 100MHZ. Table 2 lists the test kernels. 

Table 2. Benchmarks and their descriptions 

benchmarks descriptions 

5-FIR 5-taps FIR algorithm 

25-FIR 25-taps FIR algorithm 

MMV1 Matrix (8×8) Multiply Vector(8×1) optimized 

MMV2 Matrix (8×8) Multiply Vector(8×1) unoptimized 

Hydro Hydro fragment algorithm 

Over Porter-Duff over Operator 

MD5 Message Digest Algorithm V5 

SHA Secure Hash Algorithm 

Fig. 4 shows the performance comparison for mapping the test kernels of DSP on the 
two architectures respectively. In Fig. 4, throughput increases because of CFUs. There 
are three reasons for this performance increase. The first reason is decreasing the II by 
the CFUs which increases the hardware resources, e.g. 5-FIR, 25-FIR. In this case, a 
sharp increase is got. The decrease of the critical path is the second reason. The 
throughput increase for second reason is lower than that in the first condition. The last 
reason is mapping two or more kernels onto the architecture at one time to exploit the 
data parallelism. In the last case, the performance increases exponentially. Some 
performance increases are caused by two or more previous reasons. For example, the 
mapping results of Hydro and Over improve by the second and third reasons. 

MMV1 is the multiplication of 8×8 matrix and 8×1 vector which is optimized by 
the tree height reduction, and the MMV2 is the multiplication unoptimized. The 
structure of MMV1's DFG is a binary tree, and the critical path is 4. MMV2's DFG is 
a linear structure and the critical path is 8. From the experimental results, the 
throughput of MMV1 is 32 MOPS when mapping to the DSP-RP, while the MMV2's 
is 47MOPS. Although the critical path of MMV2 is longer than that of MMV1, but 
the II of MMV2 is 2 and the II of MMV1 is 3. This experiment shows that the 
reconfigurable linear structure is more suitable for the linear DFG. 
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Fig. 4. Performance comparison with and without CFUs for DSP 

In the contrast group of mapping the MMV2 to DSP-RP and DSP-ACRP, the 
performance does no change though the CFU is used. This is explained by the fact 
that the critical path does not decrease. 

Hydro kernel is very simple. The Hydro only contains 5 operations, and its critical 
path is 4. When mapping to DSP-RP and DSP-ACRP, both II is 1. But it is possible 
that two iterations are mapped onto the DSP-ACRP at one time because of the 
hardware resources increase. So performance of DSP-ACRP in this case is double that 
of DSP-RP. It is much the same when mapping the Over kernel to DSP-ACRP which 
also contains 5 operations. 
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Fig. 5. Performance comparison with and without CFUs for SHA 

In the preceding experiments, hardware resources determine the II which is greatly 
important for performance. There is another condition that the loop-carried 
dependence determines the II. In the secure hash encryption domain, the iteration's 
output is the input of the next iteration. So the iteration has to initiate until the last 
iteration finished. Fig. 5 shows the performance comparison with and without CFUs 
for SHA. 
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Compared to the DSP-ACRP, in SHA-ACRP the loop-carried dependent 
determines the II. In this experiment, the performance improvement is 27% to 45% 
because the critical paths of four kernels decrease and II of all four kernels are equal 
to the critical path. The improvement in SHA-ACRP is more than that in DSP-ACRP 
due to the decrease of the critical path. This is because the HE-Logic is more efficient 
than the MAC-CFU. 

5.3 Performance in Respect to the CFU Number 

Fig. 6 illustrates the impact of CFU number on the performance when mapping the 
kernel to DSP-ACRP. The CFU is customized according to the computing 
characteristics of the domain. The cause of performance improvement is not only the 
optimization of the frequent instruction sequences but also the decrease of the critical 
path, II and exploitation of data parallelism. 
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Fig. 6. Performance relative to the CFU number 

In this experiment, the experimental architecture is DSP-ACRP described in previous 
section. There are 6 SPEs and every SPE can communicate with each other. System 
operates at 100MHZ. We assume that the memory access bandwidth is unlimited. The 
results refer to 4 different scenarios concerning the CFU number: 0, 1, 2 and 4. 

Fig. 6 shows that the throughout improves with the increase of CFUs. There are two 
reasons for performance improvement. The first reason is the decrease of II with the 
increase of CFUs, and another one is exploitation of data parallelism. In the experiment 
refer to 4-FIR, the II is 2 without CFUs and throughout is 49MOPS. With 1 CFU, the II 
becomes into 1 and the throughout increases to 97MOPS. But when there are 2 CFUs, 
the II does not change and the second CFU is idle. At last, we can map two iterations to 
the ACRP with 4 CFUs, so the throughout increase to 194MOPS. 

Even more, Fig. 6 shows that blindly increasing the hardware may not lead to 
constant performance improvement. For example, in the MMV2 experiment, MMV2 
is a little complicated for this DSP-ACRP. The II is 3 without CFUs and throughout is 
30MOPS. With 1 CFU, the II becomes into 2 and the throughout increases to 
47MOPS. But until the CFU number increases to 4, the performance does not change. 
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5.4 Effect of the Memory Access Bandwidth 

We have analyzed the performance effect of the hardware resources and loop-carried 
dependent. The other factors include connectivity, memory access bus bandwidth, 
local data memory capacity and so on. 

In the previous experiments, we assume the memory access bandwidth is unlimited 
and the hardware resources are enough. But it is not true in practice. The ACRP is good 
for the stream-based application. These applications always deal with mass data. The 
data array usually is placed in the local scratchpad memory. So the memory access bus 
bandwidth is greatly important to the ACRP performance. Actually the memory bus 
bandwidth is an expensive resource. In this experiment, we analyze the effect of memory 
bus bandwidth for DSP-ACRP. Otherwise the CFUs are unable to function efficiently. 

The experimental architecture DSP-ACRP is represented in the previous section. In 
this architecture, DSP-ACRP contains 6 SPEs and 2 CFUs. The 6 SPEs share the 
memory read bus, while the 2 CFUs have another one. The memory read bus bandwidth 
is the total operands that read from the memory in one cycle. In ACRP, the CFU 
executes the complicated CI. The CI usually has more inputs requirement, so we design 
another memory bus shared by the CFUs. In this experiment, we analyze the 
performance in respect to memory read bus bandwidth of the SPEs instead of the CFU's. 

Table 2 shows that the effect of the memory access bandwidth. In this experiment, 
bandwidth unlimited means that the system can supply all the data that ACRP 
required in one cycle, while bandwidth limited case is that every cycle two data can 
be read from the local memory and one data can be written to the local memory. In 
table 3, PP is short for Parallel Pipeline and MOPS represents the throughput. Number 
of memory operations means the read and write operations in the kernels. 

Table 3. Effect of the memory access bandwidth 

Kernels # of mem OPs 

Bandwidth unlimited 
(∞/∞) 

Bandwidth limited 
(2/1) 

II PP MOPS II PP MOPS 

5-FIR 
5/1 1 1 96 1 1 96 

MMV1 
16/1 2 1 48 3 1 31 

MMV2 
16/1 2 1 47 2 1 47 

Hydro 
3/1 1 2 196 2 1 47 

Over 
3/1 1 2 194 1 1 97 

When mapping the MMV1 to DSP-ACRP, each iteration requires 16 data and 
writes one data to memory. In the unlimited bandwidth condition, II of the MMV1 is 
2 and the throughput is 48MOPS, but when the bandwidth is limited, the II increase 
into 3 and throughput reduces to 31MOPS. The DFG of MMV1 is binary-tree 
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structure, and there are 8 multiplications in the first level of the binary-tree. Every 
multiplication needs 2 data at one time, but the bandwidth is limited. So the II has to 
increase to 3, which leads to performance degradation. In Hydro and Over cases, 
every iteration requires 3 data and writes one data. In the unlimited bandwidth 
condition, two iterations can be mapped into DSP-ACRP at one time, so the PP in 
bandwidth unlimited case of Hydro is 2. However, when the bandwidth is limited, 
only one iteration can be mapped at one time, so the PP in bandwidth limited case of 
Hydro decreases to 1. In summary, the memory bandwidth makes a great impact on 
ACRP performance. 

Fig.7 shows the performance in respect to the memory bandwidth. With the 
memory bandwidth increase, the throughput of Hydro grows linearly. But the 
performance has an upper bound. Blindly increasing of the bandwidth also cannot 
break through the upper bound. The MMV1 is an example. 
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Fig. 7. Performance relative to the memory bandwidth 

6 Conclusions 

In this work, a novel reconfigurable architecture named ACRP is proposed for 
specific domain. The ACRP contains two types of PE, SPE and CFU. The SPEs 
which execute basic operations are organized into a linear structure. And the CFU is 
customized according to the domain computing characteristic, which specially 
executes the frequent instruction sequence of the domain. The CFUs are shared by the 
SPEs to observe the area constraint. 

Moreover some experiments are made to verify the ACRP. The experiments 
include hardware synthesis, effect of the CFU, performance in respect to the CFU 
number and effect of the memory access bandwidth. These experiments show the 
acceleration effect of the CFUs, and verify that ACRP can exploit the parallelism in 
CFU level, pipeline level and data level. At last, some key factors which include CFU 
number and memory bandwidth for the ACRP performance are analyzed. 
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Abstract. A novel memory consistency model for thousand-core processors is 
presented. The model simplifies cache coherence for the full chip, and reduces 
cache design complexity. In addition, the model has the ability to describe the 
direct exchange of data on chip, thereby alleviating the off-chip memory 
bandwidth requirements. The paper gives a formal definition of the model, and 
proves that the model is sequentially consistent. All aspects of the definition are 
fully used in the process of proof, which means that there is no redundancy in 
the definition. Therefore, based on the split-range shared memory consistency 
model, a shared memory system can achieve high performance at low hardware 
cost. Meanwhile, the model is easy to be understood and used by programmers. 

Keywords: many-core processor, memory system, memory consistency model, 
sequential consistency, formal description.  

1 Introduction 

As the technology of computer progresses, the number of processor-cores integrated onto 
a single die is constantly increasing, from tens to hundreds, even thousands[1, 2]. For 
processors with few cores (such as traditional single-core processors or multi-core 
processors), there have been some mature memory consistency models, including SC[3], 
TSO/X86[4], RMO[5], which can also be used for ten-core processors or hundred-core 
processors[6]. Meanwhile, for thousand-core processors, the traditional memory 
consistency models need to implement cache coherence at high hardware cost, whose 
performance is seriously degraded[7]. To solve this problem, several new memory 
consistency models(such as Acoherent Shared Memory[8], ASM) have been proposed. 
These models simplified cache coherence, and reduced cache design complexity. 

Different from software-assisted caches[9], the ASM model avoids the 
complexities that arise from global cache coherence protocols, which simplifies 
hardware design and software programming. Different from message-passing 
programming models, the ASM model can localize cache coherence protocols and 
greatly simplify software programming and especially software migration. 

However, the ASM model has no ability to describe the direct exchange of data on 
chip, and cannot make full use of the inherent data locality characteristics of programs 
for minimal additional demands on off-chip memory bandwidth. In addition, there is 



32 H. Lyu, F. Zheng, and X. Xie 

 

some redundancy in the formal definition of the ASM model, which could be  
optimized for better system performance. 

In this paper, a split-range shared memory consistency model(SRS) is proposed. 
The SRS model avoids cache coherence between cores altogether, reduces hardware 
overhead and design complexity, owns the ability to describe the direct exchange of 
data on chip, and helps reduce the demand for off-chip memory bandwidth 
significantly; meanwhile, there is no redundancy in the definition of the model, based 
on which a system can obtain higher performance. 

The remainder of this paper is organized as follows. Section 1 gives an overview of 
the split-range shared memory consistency model. Section 2 is dedicated to the formal 
description of the model. Next, it has been proved that the SRS model is sequentially 
consistent under the given constraints in Section 3. In Section 4, the model is 
extended for wider applied range. Finally, Section 5 concludes the paper and 
discusses future works. 

2 Overview of the SRS Model 

Data used for many-core software can be divided into four categories, including read-
only data, private data, global data used for synchronization, and data exchanged 
between multiple cores[8, 10]. 

The demand for cache by the above four types of data is different from each other. 
Since read-only data(such as shared code) are not modified, they can be safely replicated 
without cache coherence enforcement mechanisms. Since private data are only accessed 
by the local processor core, they need not cache coherence enforcement mechanisms. 
Since global data used for synchronization are not frequently accessed, the system 
performance is not seriously affected without cache coherence enforcement mechanisms. 
It is only the data exchanged between cores that are frequently accessed by some 
processor cores and need to be supported by cache coherence. 

Data exchanged between cores are shared by some processor cores. In most cases, 
however, cores cannot simultaneously access the data, but do the data by turns. With 
this feature, the paper presents the SRS model. 

Shared memory system built on the SRS model can avoid cache coherence 
between many processor cores altogether, thereby reducing implementation costs. 
After having been extended, the SRS model can also be applied to process read-only 
data, private data, global data used for synchronization. 

According to the proposed model, only after having right to cache some data can a 
processor core caches them. The right is named TOKEN. For a segment of data, at 
some point, there is only one core owning its TOKEN at most. The word split-range 
means that a TOKEN is passed between cores as a relay baton. 

3 Formal Definition of the SRS Model 

3.1 Basic Concept and Notation 

For convenience of description, before describing the model formally, we need to 
introduce some concepts and notations. 
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Program Order: The term "program order" is used to describe the order of 
instructions as listed in the program being executed, which is the basis for achieving a  
deterministic result of running a program. 

Memory Order: The term “memory order” is used to describe the order in which 
memory access instructions reach a certain section of a memory model. 

A program order is a partial order. Instructions associated with the same processor 
are always ordered by a program order, while instructions from different processors 
are never ordered by a program order. 

A memory order is a total order. All memory access instructions are ordered by a 
certain memory order, whether they are from same processor or not. 

For the sake of simplicity, the notations used in the paper are shown in Table 1. 

Table 1. Notation for Split-Range Shared Memory Consistency Model 

Notation Means
X X  means an instruction of Load(L) , Store(S) or Relay(RX) 
L L  means an instruction of Load
S  S  means an instruction of Store 
Se
iX a  Se

iX a  means an instruction of Load or Store. The  

instruction is executed by the processor i, a is a memory 

address, Se is the data segment storing a. What Se
iL a  or 

Se
iS a  means is similar to Se

iX a . 

X  X  means another instruction which is not the same that X  
means. Similarly, L  means another Load instruction which 

is not the same that L  means, S  means another Store  

instruction which is not the same that S  means. 
Se
iX a  Se

iX a  means another Load or Store instruction which is not 

the same that Se
iX a  means. The instruction is executed by 

the processor i, a is a memory address, Se is the data  

segment storing a. What Se
iL a  or Se

iS a  means is similar 

to Se
iX a . 

p<  p< , means the program order of memory access  

instructions. If pX X< , then X  is prior to X  in the 

program order. The program order is transitive; that is, for 

X , X , X , if X p< X  and X p< X , then X p< X . 

m<  m< , means the memory order of memory access  

instructions. If mX X< , then X  is prior to X  in the 

memory order. The program order is transitive; that is, for 

X , X , X , if X m< X  and X m< X , then X m< X . 

( )value L  ( )value L  means the return value of a Load instruction. 
( )value S  ( )value S  means the value written by a Store instruction. 
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Table 1. (continued) 

Notation Means
max ( , , ,......)

p
X X X< ′ ′′  max ( , , ,......)

p
X X X< ′ ′′ , means the last instruction in a  

sequence acquired by sorting X , X ′ , X ′′ … …in the 
program order. 

max ( , , ,......)
m

X X X< ′ ′′  max ( , , ,......)
m

X X X< ′ ′′ , means the last instruction in a  

sequence acquired by sorting X , X ′ , X ′′ … …in the 
memory order. 

RX RX  means a Relay instruction( RelayFrom or RelayTo). 
RT RT  means a RelayTo instruction. 
RF RF  means a RelayFrom instruction. 

Se
iRX  Se

iRX  means a Se
iRT  or Se

iRF instruction. 
Se

iRT  Se
iRT  means a Se

iRT j  or Se
iRT m  instruction. 

Se
iRF  Se

iRF  means a Se
iRF j  or Se

iRF m  instruction. 

( )Se
j iRF RT  If Se

iRT  means Se
iRT j , then ( )Se

j iRF RT  means Se
jRF i . 

( )Se
j iRF RT  If Se

iRT  means Se
iRT m , then ( )Se

j iRF RT  means Se
jRF m . 

( )Se
j iRT RF  If Se

iRF  means Se
iRF j , then ( )Se

j iRT RF  means Se
jRT i . 

( )Se
j iRT RF  If Se

iRF  means Se
iRF m , then ( )Se

j iRT RF  means Se
jRT m . 

Se
iRT j  Se

iRT j  means a RelayTo instruction. The instruction is 

executed by the processor i. After executing the instruction, 
the processor i will complete preparations for sending (but 
not really obtain) the TOKEN of the data segment Se to the 
processor j. 

Se
iRF j  

Se
iRF j  means a RelayFrom instruction. The instruction is 

executed by the processor i. After executing the instruction, 
the processor i will complete preparations for receiving (but 
not really obtain) the TOKEN of the data segment Se from 
the processor j. Se

jRT i  and Se
iRF j  must be supplied as a pair 

when a TOKEN is passed from the processor i to the  
processor j. Before All paired RF/RT are finished, a  
processor cannot really send/receive a TOKEN, which is 
owned by the source processor. 

Se
iRT m  

Se
iRT m  means a RelayTo instruction. The instruction is 

executed by the processor i. After executing the instruction, 
the processor i will give the TOKEN of the data segment Se 
to the memory system. 

Se
iRF m  

Se
iRF m  means a RelayFrom instruction. The instruction is 

executed by the processor i. After executing the instruction, 
the processor i will get the TOKEN of the data segment Se 
from the memory system. 

   , means that the expression on the left is a sufficient 
condition of that on the right. 
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3.2 Formal Definition of the Model 

Based on the above notations, the SRS model is formally described as follows: 

 Se
iL a p< Se

iS a  Se
iL a m< Se

iS a  (1) 

 Se
iS a p< Se

iS a  Se
iS a m< Se

iS a  (2) 

 Se
iS a p< Se

iL a  Se
iS a m< Se

iL a  (3) 

 Se
iX a p< Se

iRT m m< Se
jRF m p< Se

jX a  Se
iX a m< Se

jX a  (4) 

 Se
iX a p< Se

iRT j m< Se
jRF i p< Se

jX a  Se
iX a m< Se

jX a  (5) 

 RX p< RX  RX m< RX  (6) 

 ( )Se
ivalue L a = (max ( | ))

m

Se Se Se
m ivalue S a S a L a< <  (7) 

Where, not both Se
iX a  and Se

jX a  are Load instructions in Formula 4 or in Formula 5. 

4 Proof of Sequential Consistency 

It is proved in the section that the SRS model is sequentially consistent by imposing 
some constraints. 

4.1 Sequential Consistency 

A multiprocessor system is sequentially consistent[3] if the result of any execution is 
the same as if the operation of all the processors were executed in some sequential 
order, and the operations of each individual processor appear in this sequence in the 
order specified by its program. 

4.2 An Interleaving-Order Memory Model 

An interleaving-order memory model is the simplest sequential consistency model. 
The model is formally described as follows: 

 iX p<
iX 

iX m< iX  (8) 

 ( )ivalue L a = (max ( | ))
m m ivalue Sa Sa L a< <  (9) 

4.3 Sequential Consistency of the SRS Model 

It is proved in the section that the SRS model satisfying the ordered pair condition is 
sequentially consistent. 

Theorem 1. If for every execution WITHOUT branch instructions there exists a 
execution producing the same results and satisfying the interleaving-order memory 
model, then for every execution WITH branch instructions there also exists a similar 
execution. 



36 H. Lyu, F. Zheng, and X. Xie 

 

Proof. The theorem is proved by using mathematical induction.  
According to conditions of the theorem, for all instructions before the first branch 

instruction, there exists an instruction sequence producing the same results and 
satisfying the interleaving-order memory model. Hence, the two outcomes of the 
above two sequences used for the branch condition of the same first branch 
instruction are equal, and the same is also true for the branch target. Accordingly, 
adding the first branch instruction to the tail of the above two sequences does not 
affect the results. 

Let us now assume that the theorem is true for every execution with the first n-1 
branch instructions. It can easily be shown that the two outcomes of the two 
sequences used for the branch condition of the same nth branch instruction are equal, 
and the same is also true for the branch target. Accordingly, adding the nth branch 
instruction to the tail of the above two sequences does not affect the results. Q.E.D. 

According to Theorem 1, it follows that branch instructions does not need special 
consideration during the proof of sequential consistency. Therefore, in what follows, 
every instruction sequence does not include a branch instruction. 

According to Formula 4, Formula 5 and the transitivity of the memory order, if 
“ Se

iX a p< Se
iRT m m< Se

jRF m p< Se
jX a ” or “ Se

iX a p< Se
iRT j m< Se

jRF i p< Se
jX a ” or 

“ Se
iX a m< Se

kX a m< Se
jX a ”, then “ Se

iX a m< Se
jX a ”. By enhancing the above constraint, that 

is, if and only if “ Se
iX a p< Se

iRT m m< Se
jRF m p< Se

jX a ” or 

“ Se
iX a p< Se

iRT j m< Se
jRF i p< Se

jX a ” or “ Se
iX a m< Se

kX a m< Se
jX a ”, then “ Se

iX a m< Se
jX a ”. 

The above enhanced constraint is described as the following ordered pair condition. 

Ordered Pair Condition 

∀
Se
iX a ,

Se
jX a

:
Se
iX a m< Se

jX a
, i j≠  

  ∃ ( , )
m

Se Se
i jPATH RT RF< : Se

iX a p< ( , )
m

Se Se
i jPATH RT RF< p< Se

jX a  (10) 

Where, not both Se
iX a  and Se

jX a  are Load instructions. 

( , )
m

Se Se
i jPATH RT RF<  is defined as follows. 

( , )
m

Se Se
i jPATH RT RF< =

, ;

( ) ( , ), .
m

Se Se Se Se
i m k i p k j

i j

RT RF RT PATH RT RF i j<

∅ =
 < < ≠

 

Theorem 2. If any memory order α determined by the a memory consistency model 
M corresponds to a memory order β determined by the interleaving-order memory 
model, where the result of β is the same with α, then the memory consistency model 
M is sequentially consistent. 

Proof. According to the definition of the interleaving-order memory model, it follows 
that in a memory order determined by the interleaving-order memory model, the  
instructions from the same processor are ordered by the program order. Again,  
according to the definition of sequential consistency, the memory consistency model 
M is sequentially consistent. Q.E.D.  

Theorem 3. Let α be any memory order determined by the SRS model, then there 
exists a memory order β determined by the interleaving-order memory model, where, 
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all RX instructions satisfy the relation: RX α< RX α< …
α< RX

 in α, and they also 

satisfy the relation: RX β<
RX β< … β< RX

 in β. 

Proof. For convenience of description, we number all RX  instructions in the 
memory order α, and abbreviate RX α< RX α< …

α< RX
 as 

1x α< 2x α< …
α< nx . 

With RX  as a delimiter, all instructions are split in the program order as follows: 

iY = }:|{ ipjpjip xxyxandxyy <<¬∃<  ):(|{ yxxxamdyxy pjpijpi <<¬∃<

}: jpj xyxand <¬∃
，and all instructions in iY are ordered by the program order. 

According to the definition of the SRS model(Formula 6), 1x α< 2x α< … α< nx  
also satisfy the interleaving-order memory model. Hence, only for RX  instructions, 
there exists a memory order determined β by the interleaving-order memory model, 
where 1x β< 2x β< … β<

nx . Again, since both ix  and iY  are one to one, it follows 

that 1Y β< 2Y β< … β<
nY . Again, since the instructions in iY  are ordered by the 

program order, the instruction sequence produced by unfolding 1Y β< 2Y β< … β<
nY  

keep satisfying the interleaving-order memory model. 
Thus, for all instructions, we find a memory order β determined by the 

interleaving-order memory model, where, all RX instructions satisfy the 
relation: RX α< RX α< … α< RX  in α, and they also satisfy the relation: 

RX β< RX β< … β< RX  in β. Q.E.D. 

For convenience of description, we refer ˆSeL a or SeL a to a specific SeL a  instruction, 

and refer ˆ SeS a  or SeS a  to a specific SeS a  instruction.  

Theorem 4. Let α be any memory order determined by the SRS model which satisfies 

the ordered pair condition. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , then 
ˆ Se

jS a α< ˆSe
iL a  and Se

kS a¬∃  : ˆ Se
jS a α< Se

kS a α< ˆSe
iL a . 

Proof. In the memory order α, ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a . Again, according to 

Formula 7, ˆ( )Se
jvalue S a = ˆ( )Se

ivalue L a  = ˆ(max ( | ))Se Se Se
ivalue S a S a L a

α α< < . Thus, 
ˆ Se

jS a α< ˆSe
iL a and Se

kS a¬∃  : ˆ Se
jS a α< Se

kS a α< ˆSe
iL a . Q.E.D. 

Theorem 5. Let α be any memory order determined by the SRS model which satisfies 

the ordered pair condition. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , then 
ˆ Se

jS a p< ˆSe
iL a , where i j= . 

Proof. If the theorem were false, then ˆSe
iL a p< ˆ Se

jS a . Again, according to Formula 1, it 

follows that ˆSe
iL a α< ˆ Se

jS a . This is contrary to Theorem 4. Hence, ˆSe
iL a p< ˆ Se

jS a  is not 

true. Q.E.D. 

Theorem 6. Let α be any memory order determined by the SRS model which satisfies 

the ordered pair condition. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , then 
Se
jS a¬∃  : ˆ Se

jS a p< Se
jS a p< ˆSe

iL a , where i j= . 
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Proof. If the theorem were false, then Se
jS a∃  : ˆ Se

jS a p< Se
jS a p< ˆSe

iL a . Again, according 

to Formula 2, it follows that ˆ Se
jS a α< Se

jS a . According to Formula 3, it follows that 
Se
jS a α< ˆSe

iL a . That is, ˆ Se
jS a α< Se

jS a α< ˆSe
iL a . This is contrary to Theorem 4. Hence, 

Se
jS a∃  : ˆ Se

jS a p< Se
jS a p< ˆSe

iL a  is not true, where i j= . Q.E.D. 

Theorem 7. If β be a memory order determined by the interleaving-order memory 
model, then iX β<

iX 
iX p<

iX
。 

Proof. Proof by contradiction. Suppose that iX p<
iX . According to the definition of 

the interleaving-order memory model (Formula 8), it follows that iX β<
iX . This 

contradicts the fact that iX β<
iX . Thus, iX β<

iX 
iX p<

iX . Q.E.D. 

Theorem 8. Let α be any memory order determined by the SRS model which satisfies 
the ordered pair condition, and let β be a memory order determined by the 

interleaving-order memory model which satisfies Theorem 3. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : 

ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , where i j= , then in β, ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a . 

Proof. According to Theorem 5, it follows that ˆ Se
jS a p< ˆSe

iL a . Again, according to the 

formal definition of the interleaving-order memory model (Formula 8), it follows that 
ˆ Se

jS a β< ˆSe
iL a . 

Then, we prove that if i j= , then Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , where k is any 

natural number. Therefore, the proof is divided into two cases: (a) k i= ; (b) k i≠ . 
Firstly, we prove the theorem is true in the case (a): k i= . If the theorem would 

not hold, then Se
kS a∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , where k i= , i j= . Again, According to 

Theorem 7, it follows that Se
kS a∃  : ˆ Se

jS a p< Se
kS a p< ˆSe

iL a , where k i= , i j= . This is 

contrary to Theorem 6. Hence, Se
jS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , where k i= , i j= . 

Secondly, we prove the theorem is true in the case (b): k i≠ . Se
kS a∀  , since the 

memory order α is a total order, there must exist sequence relation in α between Se
kS a  

and ˆ Se
jS a , and there also must exist sequence relation in α between Se

kS a  and ˆSe
iL a . 

Again, according to Theorem 4, it follows that Se
kS a α< ˆ Se

jS a  or ˆSe
iL a α< Se

kS a . 

If Se
kS a α< ˆ Se

jS a , then according to the ordered pair condition, it follows that 

∃ ( , )Se Se
k jPATH RT RF

α< : Se
kS a p< ( , )Se Se

k jPATH RT RF
α< p< ˆ Se

jS a . Again, since β is a 

memory order determined by the interleaving-order memory model and β satisfies 

Theorem 3, it follows that Se
kS a β< ( , )Se Se

k jPATH RT RF
β< β< ˆ Se

jS a . That is Se
kS a β< ˆ Se

jS a . 

Similarly, since ˆSe
iL a α< Se

kS a , it follows that ˆSe
iL a β< Se

kS a . Hence, Se
kS a¬∃  : 

ˆ Se
jS a β< Se

kS a β< ˆSe
iL a , where k i≠ , i j= .  

Considering the two cases discussed above, it can easily be seen that if i j= , 

then Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , where k is any natural number. 
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We have thus proved that Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , where i j= , k is any 

natural number. Finally, according to the definition of the interleaving-order memory 

model (Formula 9), it follows that ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a . Q.E.D. 

Theorem 9. Let α be any memory order determined by the SRS model which satisfies 
the ordered pair condition, and let β be a memory order determined by the 

interleaving-order memory model which satisfies Theorem 3. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : 

ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , where i j≠ , then in β, ˆ Se
jS a β< ˆSe

iL a . 

Proof. According to Theorem 4, it follows that ˆ Se
jS a α< ˆSe

iL a . Again, according to the 

ordered pair condition, it follows that ∃ ( , )Se Se
j iPATH RT RF

α< : 
ˆ Se

jS a p< ( , )Se Se
j iPATH RT RF

α< p< ˆSe
iL a . Finally, according to Theorem 3 and Formula 8, 

it follows that ˆ Se
jS a β< ( , )Se Se

j iPATH RT RF
β< β< ˆSe

iL a . That is, ˆ Se
jS a β< ˆSe

iL a . The proof 

of the theorem is now completed. Q.E.D. 

Theorem 10. Let α be any memory order determined by the SRS model which 
satisfies the ordered pair condition, and let β be a memory order determined by the 

interleaving-order memory model which satisfies Theorem 3. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : 

ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , where i j≠ , then in β, Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , 

where k is any natural number.  

Proof. Since i j≠ , the proof is divided into three cases: (a) k j= and k i≠ ; 
(b) k j≠ and k i= ; (c) k j≠  and k i≠ . 

Firstly, we prove the theorem is true in the case (a): k j= and k i≠ . If the theorem 

would not hold, then Se
kS a∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a . According to Theorem 7, it 

follows that ˆ Se
jS a p< Se

kS a . Again, according to Formula 2, it follows that 
ˆ Se

jS a α< Se
kS a . 

Since the memory order α is a total order, there must exist sequence relation in α 
between Se

kS a  and ˆSe
iL a . That is, Se

kS a α< ˆSe
iL a  or ˆSe

iL a α< Se
kS a . 

If Se
kS a α< ˆSe

iL a , then ˆ Se
jS a α< Se

kS a α< ˆSe
iL a . This is contrary to Theorem 4. 

If ˆSe
iL a α< Se

kS a , then according to the ordered pair condition, it follows that 

∃ ( , )Se Se
i kPATH RT RF

α< : ˆSe
iL a p< ( , )Se Se

i kPATH RT RF
α< p< Se

kS a . Again, according to 

Theorem 3 and Formula 8, it follows that ˆSe
iL a β< ( , )Se Se

i kPATH RT RF
β< β< Se

kS a . That 

is, ˆSe
iL a β< Se

kS a . This is contrary to the assumption that Se
kS a∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a . 

Hence, if k j= and k i≠ , then Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a . 

Secondly, we prove the theorem is true in the case (b): k j≠ and k i= . If the 

theorem would not hold, then Se
kS a∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a . According to Theorem 7, 

it follows that Se
kS a p< ˆSe

iL a . Again, according to Formula 2, it follows that 
Se
kS a α< ˆSe

iL a . 
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Since the memory order α is a total order, there must exist sequence relation in α 

between Se
kS a and ˆ Se

jS a . That is Se
kS a α< ˆ Se

jS a  or ˆ Se
jS a α< Se

kS a . 

If ˆ Se
jS a α< Se

kS a , then ˆ Se
jS a α< Se

kS a α< ˆSe
iL a . This is contrary to Theorem 4. 

If Se
kS a α< ˆ Se

jS a , then according to the ordered pair condition, it follows that 

∃ ( , )Se Se
k jPATH RT RF

α< : Se
kS a p< ( , )Se Se

k jPATH RT RF
α< p< ˆ Se

jS a . Again, according to 

Theorem 3 and Formula 8, it follows that Se
kS a β< ( , )Se Se

k iPATH RT RF
β< β< ˆ Se

jS a . That 

is, Se
kS a β< ˆ Se

jS a . This is contrary to the assumption that Se
kS a∃  : 

ˆ Se
jS a β< Se

kS a β< ˆSe
iL a . 

Hence, if k j≠  and k i= , then Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a . 

Thirdly, we prove the theorem is true in the case (c): k j≠ and k i≠ . Se
kS a∀  , since 

the memory order α is a total order, there must exist sequence relation in α between 
Se
kS a  and ˆ Se

jS a , and there also must exist sequence relation in α between Se
kS a  and 

ˆSe
iL a . Again, according to Theorem 4, it follows that Se

kS a α< ˆ Se
jS a  or ˆSe

iL a α< Se
kS a . 

If Se
kS a α< ˆ Se

jS a , then according to the ordered pair condition, it follows that 

∃ ( , )Se Se
k jPATH RT RF

α< : Se
kS a p< ( , )Se Se

k jPATH RT RF
α< p< ˆ Se

jS a . Again, according to 

Theorem 3 and Formula 8, it follows that Se
kS a β< ( , )Se Se

k jPATH RT RF
β< β< ˆ Se

jS a . That 

is, Se
kS a β< ˆ Se

jS a . 

Similarly, if ˆSe
iL a α< Se

kS a , then ˆSe
iL a β< Se

kS a . 

Hence, if k j≠ and k i≠ , then Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a . 

Considering the three cases discussed above, it can easily be seen that if i j≠ , 

then Se
kS a¬∃  : ˆ Se

jS a β< Se
kS a β< ˆSe

iL a , where k is any natural number. Q.E.D. 

Theorem 11. Let α be any memory order determined by the SRS model which 
satisfies the ordered pair condition, and let β be a memory order determined by the 

interleaving-order memory model which satisfies Theorem 3. If in α, ∀ ˆSe
iL a , ˆ Se

jS a : 

ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , where i j≠ , then in β, ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a . 

Proof. According to Theorem 9 ,  Theorem 10,  and Formula 9, it follows that if 
i j≠ , then ˆ( )Se

ivalue L a  = ˆ( )Se
jvalue S a . Q.E.D. 

Theorem 12. If α is any memory order determined by the SRS model which satisfies 
the ordered pair condition, then there must exist a memory order β determined by the 
interleaving-order memory model. The relationship between α and β as follows: if in 

α, ∀ ˆSe
iL a , ˆ Se

jS a : ˆ( )Se
ivalue L a  = ˆ( )Se

jvalue S a , then in β, the equation that ˆ( )Se
ivalue L a  

= ˆ( )Se
jvalue S a  still holds. 

Proof. According to Theorem 3, Theorem 8, and Theorem 11, it is evident to see that 
the theorem to be proved holds. Q.E.D.  
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Theorem 13. The SRS model satisfying the ordered pair condition is sequentially 
consistent. 

Proof. Let α be any memory order determined by the SRS model which satisfies the 
ordered pair condition. According to Theorem 12, it follows that there must exist a 
memory order β determined by the interleaving-order memory model, where the 
result of β is the same with α. Again, according to 2, it is evident to see that the above 
SRS model is sequentially consistent. Q.E.D. 

5 Extending the SRS Model 

Data used for many-core software can be divided into four categories, including read-
only data, private data, global data used for synchronization, and data exchanged 
between cores. For the above four categories of data, the original SRS model is only 
applied to the data exchanged between multiple cores. Therefore, the original SRS 
model needs to be extended for the remaining three categories of data. 

5.1 Extending for Read-Only Data 

The original SRS model is extended for read-only data as follows: 

1. A STORE instruction in the original SRS model is treated as a null instruction 
2. The TOKEN of any read-only data segment is owned by all processor cores at the 

same time. Therefore, RF/RT instructions may not be needed.  
3. The initial placement of read-only data is completed by a specific processor core. 

From the perspective of the processor core, the data are not read-only data, but data 
exchanged between cores.  

Since no STORE instruction is used for read-only data, the SRS model is still  
sequentially consistent after being extended for read-only data. 

5.2 Extending for Private Data 

The original SRS model is extended for private data as follow: The TOKEN of any 
private data segment is only owned by a specific processor core, and the TOKEN needn’t 
be passing to other processor core. Therefore, RF/RT instructions may not be needed.  

Since any private data segment is accessed by only one processor core, not shared 
by multiple processor cores, the SRS model is still sequentially consistent after being 
extended for private data.  

5.3 Extending for Global Data 

The original SRS model is extended for global data used for synchronization by 
building a transactional load and a transactional store. 

1. A transactional load(notation: Se
iTML a ) is a sequence of “ Se

iRF m，
Se
iL a，

Se
iRT m ”, 

which is an atomic operation. 
2. A transactional store(notation: Se

iTMS a ) is a sequence of “ Se
iRF m ，

Se
iS a ，

Se
iRT m ” , which is an atomic operation. 
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Since both Se
iTML a  and Se

iTMS a  are atomic operations, it follows that the SRS 
model extended for global data still satisfies the ordered pair condition. Therefore, the 
SRS model is still sequentially consistent after being extended for global data. 

6 Conclusion 

The paper completes the formal description of the SRS model and the proof of 
sequential consistency. The above proof shows that the model is complete, correct 
and usable. 

Different from traditional memory consistency models(such as SC, TSO/X86, 
RMO), the SRS model simplifies cache coherence for the full chip, and reduces  
design complexity, which is suitable for thousand-core processors.  

Different from existing memory consistency models(such as ASM) for thousand-core 
processors, the SRS model has no redundancy, and has the ability to describe the direct 
exchange of data on chip, which reduces the demand for off-chip memory bandwidth.  

In future work, we plan to build the appropriate hardware and software 
infrastructures based on the SRS model, and then to migrate some typical applications 
to the infrastructures. In this way, we can accurately analyze the hardware cost, the 
performance and the usability of the system based on the SRS model. 
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Abstract. FPGA (Field-Programmable Gate Array) technology can provide  
excellent accuracy and efficiency for Chip verification, which has become the 
key bottleneck of SoC design. Due to the resource constraints of single FPGA 
chip, Multi-FPGA architecture was applied to the verification of the large scale 
SoC design. In recent years, a variety of Multi-FPGA verification platforms 
have been developed, but most of them indirectly part the SoC design on the 
Netlist level after the synthesis procedure. A partition method is proposed in 
this paper, which works directly on the RTL (Register Transfer Level) code. It 
presents a universal partition methodology with realistic and detailed imple-
mentation, applying a linear partition algorithm. The experiment simulation of 
leon3, a SoC design based on SPARC processor, runs at a speed of 8 MHz cor-
rectly, over 100,000 times faster than software simulation, 1-2 times of the 
BEE4 FPGA based recognizable platforms. 

Keywords: verification, Multi-FPGA, partition algorithm, leon3.  

1 Introduction 

With the vast growth of the SoC (System on Chip) design size and system complexi-
ty, chip verification has become the key bottleneck of SoC design. Reconfigurable 
prototyping technology based on hardware comes to be a good method to accelerate 
chip verification. Several logic emulators with reconfigurable FPGA chips have been 
developed with excellent accuracy and efficiency for the verification of the SoC de-
sign [1]. The simulation of the SoC design can run at a speed close to actual chip envi-
ronment in these logic emulators, which provide a functionally equivalent hardware 
prototype for the SoC design. However, the FPGA-based method also faces many 
challenges, such as timing closure and signal integrity. But the most serious challenge 
is that due to the constraints of logic size and I/O capacity, the contemporary FPGA 
chip is not enough to hold the complete SoC design. Multi-FPGA platform is an  
efficient way to overcome such constraints.  

Related Works. In recent years, a variety of state-of-the-art Multi-FPGA verification 
platforms have been developed. Intel has reported a Multi-FPGA [2] platform consist-

                                                           
* This work is supported by "the Fundamental Research Funds for the Central Universities" 
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ing of Xilinx Virtex-4 and Virtex-5 FPGA chips to speed up the verification for x86 
architecture. In the Bluegene project, IBM developed a cycle-accurate, cycle-
reproducible Multi-FPGA system to accelerate the simulation of multi-core processor 
[3].  An FPGA based recognizable platforms named BEEcube, was proposed by the 
University of California, Berkeley, where founders conducted decades of leading 
research on the FPGA-based Berkeley Emulation Engine (BEE) platforms and devel-
opment environments[4]. But most of them indirectly part the SoC design on the Netl-
ist level after synthesis procedure. Such method firstly converts the source code of the 
SoC design to Netlist files using synthesis tools and then parts the design on Netlist 
level. During the indirect and sightless partition of Netlist, some key modules may be 
split into pieces, leading to unsatisfactory of the verification demands. This paper 
researches on a RTL code partition method of the SoC design with the hierarchy of 
the digital design. In our method, module is the basic partition unit, which is named 
MODULE in Verilog or ENTITY in VHDL. The SoC design is divided into pieces 
under the guidance of the module hierarchy tree directly and explicitly. Through op-
timization of the partition algorithm and procedure flow, our method minimizes the 
time consuming of synthesis. It also provides a universal partition methodology with 
realistic and detailed implementation, applying a linear partition algorithm.  

This paper organizes as follows. It introduces the partition methodology and re-
lated works in Section 1. The flow of partition methodology will be proposed in  
Section 2. Then, the preparatory work for the SoC partition is described in Section 3. 
The core partition algorithm is shown in Section 4. In Section 5, a specific Multi-
FPGA verification platform is introduced to conduct the experiment simulation and 
provides the experiment result of leon3, a SoC design based on SPARC processor. 
Section 6 is for the summary. 

2 Partition Flow 

This paper proposes a partition method of the SoC design serving the Multi-FPGA 
verification platform. It divides the SoC design into several parts, and then properly 
maps them into corresponding FPGA chips on the platform.  

A given SoC design consists of a number of modules and sub-modules described 
by Verilog or VHDL, which are organized in a hierarchical way. Our method parts 
the HDL code of the SoC on RTL source code and regards module as the basic parti-
tion unit. The partition flow is described in Fig. 1. In RTL source code, module is the 
basic hardware unit, represented by circles in Fig. 1. In order to part the SoC design 
logically, we firstly obtain the top-down module hierarchy tree of the SoC, which 
contains the module basic information represented by rhombuses in Fig. 1. Secondly 
synthesize and analyze each module for their resource demands which are the key 
factors of the partition algorithm. Thirdly divide the module hierarchy tree into sub-
trees through the partition procedure in O(n) time. Fourthly, modify the RTL code 
using syntax matching tools and package the sub-trees with communication signals 
according to the partition result. Finally, program the bit files synthesized from  
sub-trees into the corresponding FPGA chips. 
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FPGA# S F L I

sub1 .. .. .. ..

sub2 .. .. .. ..

sub3 .. .. .. ..

sub4 .. .. .. ..

sub5 .. .. .. ..

Slice# top parent

0 x x

1 x x

2 x x

3 x x

4 x x

… x x

n x x

 

Fig. 1. Partition Flow 

3 Preparations 

To divide the SoC design logically, the partition algorithm needs some preparatory 
work. We obtain the top-down module hierarchy tree of the SoC design, and then 
synthesize and analyze each module for their resource demands. In this process, the 
input is RTL code and the output is a top-down module hierarchy tree which conveys 
the basic information and resource demands of each module. 

3.1 Extraction and Storage of the Module Tree 

A complete HDL model of a complex digital system is constituted by many modules 
named MODULE in Verilog or ENTITY in VHDL. A module can contain many sub-
modules called instantiations, through which the top-module organizes sub-modules 
to define its own function. A typical SoC design follows the Top-Down design me-
thodology. According to the instantiation relationship, all the modules constitute a 
module hierarchy tree rooted by a top module. The ultimate goal of the partitioning 
algorithm is to divide the module hierarchy tree into several sub-trees mapping to the 
corresponding FPGA chips. Before the partition, we should obtain the module  
hierarchy tree. There is a C language procedural interface standard known as the Pro-
gramming Language Interface (PLI) named VPI in Verilog or VHPI in VHDL, which 
provides a means for HDL users to access and modify data in an instantiated HDL 
data structure dynamically. Table 1. shows VPI routines for module utilities, whose 
specific usage refers on IEEE-1326 standard [5].  
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Table 1. Vpi Routines for Module Utilities 

Utilities Function 
vpi_handle() Obtain a handle for an object with a one-to-one relationship 
vpi_iterate();vpi_scan() Obtain handles for objects in a one-to-many relationship 
vpi_handle_multi() Obtain a handle for an object in a many-to-one relationship 
vpi_get() Get the value of objects with types of int or bool 

Generally, a digital system contains only one top-module rooting of the module 
hierarchy tree. Through BFS (Breadth First Search), use these routines to extract the 
module tree and store the basic information of each module. This paper uses XML 
(Extensible Markup Language) files to record both the hierarchy and basic informa-
tion of modules.  

Fig. 2 shows the label structure of XML file where every module node has two 
fields. One is to record basic information including module definition name, instantia-
tion name, and the name of definition file or instantiation file, which is essential for 
obtaining module resource demands. The other is to record sub-modules instanced in 
current module. The hierarchy of modules is recorded by the relationship of module 
nodes in XML file. 

 

Fig. 2. Structure of XML File 

The partition method is mainly based on the resource demands of the SoC design, 
including the amount of Slices, LUTs, IOBs and Flip-flops. We should obtain the 
resource demands data in advance to avoid the blindness of partition and improve 
success rate.  

Existing mainstream EDA tools can achieve an efficient and accurate calculation 
of resource demands for digital systems. Since the experimental platform employs 
Xilinx FPGA chip, the partition method selects Xilinx ISE XST for synthesize proce-
dure. A fragment of the Synthesis Report (Final Report) is shown in Fig. 3. 

 

Fig. 3. Fragment of Synthesis Report 
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To formalize the resource demands of module, quintuple vector (S, F, L, I) is pro-
posed, S denotes Slices, F denotes Flips Flops, L denotes LUTs, I denotes IOBs. With 
basic information recorded in XML file, XST can synthesize resources demands of 
any module, and then fill the quintuple vector (S, F, L, I). The partition method of  
this paper makes two optimizations to avoid frequent calls of the time consuming 
synthesis tool. 

 
• The analysis depth of the resource demands synthesis procedure is only accurate to 

modules which affect the partition algorithm. Say in other words, during module 
synthesizing, if a module resource demands (S, F, L, I) don’t exceeded the given 
constraints, we just synthesis itself rather than all its sub-modules. 

• In the SoC design, the same modules would be instantiated several times. To avoid 
repetitive synthesis, our partition method will record any synthesized module and 
compare the modules to be synthesized with previous records. 
 
After resource demands analysis, a module hierarchy tree with the basic informa-

tion and resource demands data is obtained. 

4 Partition 

In this section, with the preparatory work above, the partition problem of the SoC 
design is formalized into a weighted tree waiting for partition. Nodes of the tree de-
note modules of the SoC design, while the multidimensional weight of each node 
denotes the multiple resource demands of the module. Our goal is to partition the tree 
design into sub-trees, ensuring the resource demands of any sub-tree meets the given 
constraints. This section consists of two parts. Firstly introduce a partition algorithm 
whose time complexity is O(n). Secondly modify the source code of the SoC design 
with the result partition algorithm. 

4.1 Partition Algorithm 

Problem. With preparation work above, the partition problem has been converted into 
a K-partition [6] problem of a multidimensional weighted tree. In the context of the 
paper, the weight represents the resource demands of a module. 

Problem Formalization. Let T୬ denote a tree rooted by node n, Sሺnሻ is the set of 
sons of node n. Node q represent a module in SoC design. wሺqሻ is the weight of node 
p ,while Wሺqሻ is the sum of node weights in T୯. A feasible K-partition of T୬ is C୤, a 
set of edges cut from the tree. Through cutting edges, it partitions the tree into sub-
trees and each of them has a total node weight (sum resource demands of every mod-
ule) at most K. Our goal is to find a minimal feasible K-partition C୭୮୲ named optimal 
K-partition satisfying |C୭୮୲| ൑ | C୤| . A Oሺnሻ partition algorithm will be presented 
to find an optimal k-partition, where n is the number of nodes in the tree.   
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One-dimensional Situation. To describe the partition algorithm clearly, the one-
dimensional K-partition problem is handled firstly, in which the weight of tree is just 
a positive integer. The solution of Sukhmay and Jayadev [6] is referred to interpret the 
K-partition algorithm of one-dimensional situation, which is the foundation of multi-
dimensional algorithm. Firstly two basic lemmas should be proved. 

Lemma1. Let p such node that  Wሺpሻ ൐ and for any son node r of p Wሺrሻ ܭ ൑ K. 
Then there must be a optimal k-partition C that contains  ሺp, r଴ሻ , Wሺr଴ሻ ൌ max୰∈Sሺ୮ሻሼWሺrሻሽ. 

Briefly Proof. Since Wሺpሻ ൐  .an optimal partition C at least has one edge from Tp ,ܭ
Let  ሺu, vሻ be such edge in C from Tp. If u ് p, then  ሺu, vሻ is in the sub tree T୰, r ∈ Sሺpሻ.  

Assume Cଵ ൌ C െ ሼሺu, vሻሽ ൅ ሼሺp, rሻሽ  is another feasible partition. 
ly|Cଵ| ൌ |C|,Wሺrሻ ൑ K  , Wଵሺqሻ ൑ Wሺqሻ ൅ wሺrሻ ൏ ܹሺݍሻ ൑ ܭ  in Cଵ  partition, so Cଵ is also an optimal partition. AssumeCଶ ൌ Cଵ െ ሼሺp, rሻሽ ൅ ሼሺp, r଴ሻሽ is another feas-
ible partition, r଴ is called the heaviest son of p. Obviously  Wሺr଴ሻ ൑ K , Wଶሺݍሻ ൌ Wଵሺݍሻ െ Wଵሺr଴ሻ ൅  Wሺrሻ , |Cଵ| ൌ |Cଶ| , Wሺr଴ሻ ൌ Wଵሺr଴ሻ ൌ max୰∈Sሺ୮ሻሼWሺrሻሽ ൒ Wሺrሻ, so Wଶሺqሻ ൑ Wଵሺqሻ ൑ K, means that Cଶ is also an optim-
al partition . 

Lemma2. Let ሺp, rሻ  be a edge in an optimal partition of T, while Cଵ is an optimal 
partition of T െ T୰ , Cଶ is an optimal partition of T୰, then C ൌ Cଵ ൅ Cଶ ൅ ሼሺp, rሻሽ is 
an optimal partition of T. 

Briefly Proof. Obviously, C is a feasible partition. Let C3 an optimal partition includ-
ing edge (p,r).let C4 be the edges from T െ T୰ of C3 and C4 be the edges fromT୰ of 
C3. Obviously, |Cଵ| ൏ൌ |Cସ|  |Cଶ| ൏ൌ |Cହ|  then |Cଵ| ൅ |Cଶ| ൏ൌ |Cସ| ൅ |Cହ|  ,so |C| ൏ൌ |Cଷ|. Hence C ൌ Cଵ ൅ Cଶ ൅ ሼሺp, rሻሽ is an optimal partition of T. 

According to lemma 2, we can partition a tree through looking for the optimal par-
titions of its sub-trees level by level from leaf nodes to root. According to Lemma 1, 
we can partition basic sub-tree through looking for the special node p that meets the 
conditions of Lemma 1 and cut the heaviest sons of p one by one until Wሺpሻ ൑ K.  A 
simple algorithm is shown as Fig. 4. 

 

Fig. 4. Algorithm K-partition 
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It is clear that most of time is cost on looking for the weightiest sons. Since the up-
per bound of the time complexity of comparison-based sorting algorithm is Oሺ݊ ln ݊ሻ , the best time complexity of the simple K-partition algorithm is Oሺ݊ ln ݊ሻ.  

Next, this paper briefly introduces an improved algorithm. Through an anonymous 
referee method, the time complexity of node p handling drops to Oሺܵሺ݌ሻሻ. Its main 
idea is to split the sons of p into two parts SLሺpሻ and SHሺpሻto meet three conditions: 

(1) if q ∈ SLሺpሻ and r ∈ SHሺpሻ  then  Wሺqሻ ൑ Wሺrሻ , 

(2) ∑ ܹሺݍሻ  ൅ ሻ݌ሺݓ ൑ ௤∈ௌ௅ሺ௣ሻܭ , 

(3) ∑ ܹሺݍሻ  ൅ ሻ݌ሺݓ ൅ ܹሺݎሻ ൐ ,ܭ ሻ௤∈ௌ௅ሺ௣ሻ݌ሺܪܵ߳ݎ∀  . 

Split procedures run as follows. Firstly apply a linear median finding algorithm [7] 
to split the Sሺpሻ  into SHሺpሻ  and SLሺpሻ  satisfy |SHሺpሻ| ൑ |SLሺpሻ| ൑ |SHሺpሻ| ൅1, and condition (1). Secondly, check condition (2)(3) to shift the boundary of SH(p) 
and SL(p). Once (2) satisfied while (3) unsatisfied, apply the linear median finding 
algorithm to split SHሺpሻ iteratively. Once (3) satisfied while (2) unsatisfied, apply the 
linear median finding algorithm to split SLሺpሻ iteratively. Until (2) and (3) are satis-
fied simultaneously, end the splitting to get the dividing line in Sሺpሻ. The optimal 
Algorithm is presented as Fig.5.  

 

Fig. 5. Algorithm Optimal K-partition 

The linear median finding algorithm time complexity is Oሺnሻ, so the time complex-

ity of p handling is O ቀ|Sሺpሻ| ൅ |ௌሺ௣ሻ|ଶ ൅ |ௌሺ௣ሻ|ସ ൅ ڮ ൅ |ௌሺ௣ሻ|ଶ೙ ቁ ൌ Oሺ|Sሺpሻ|ሻ. Hence the 

time complexity of this algorithm is Oሺnሻ，n is the total node number of Tree. 

Algorithm Analysis. Through the observation of algorithm above, the general steps 
of the K-partition problem can be concluded. Firstly, look for the special node p de-
scribed in lemma 1from down to top of the tree. Secondly, handle the specific nodep. 
Thirdly, follow divide and conquer methodology to handle the partition of the whole 
tree from bottom to top according to lemma 2. To lower the time complexity of node 
p handling, anonymous referee methodology is applied in the linear median finding 
algorithm to split SLሺpሻ into SHሺpሻ and SLሺpሻ. The son nodes of SHሺpሻ will be 
separated out from T௣. 
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Multi-dimensional Situation. When the weight is two-dimensional, X weight and Y 
weight, it needs to make some redefinitions. K ൌ ሺX௞, Y௞ሻ,Wሺqሻ ൌ ሺW௫ሺqሻ, W௬ሺqሻሻ, Wሺqሻ ൑ K means ൫W௫ሺqሻ ൑ X௞, W௬ሺqሻ ൑ Y௞൯, Wሺqሻ ൐ ൫W௫ሺqሻ ݏ݊ܽ݁݉ ܭ ൐ X௞, W௬ሺqሻ ൐ Y௞൯. 

Referring to the K-partition algorithm in one-dimensional case, our goal is to find 
node p of lemma1that Wሺpሻ ൐ and for any son node r of p Wሺrሻ  ܭ ൑ K. There are 
three cases for node p handling： 

Case 1. When W௫ሺpሻ ൐ X௞ and W௬ሺpሻ ൑ Y௞, X resource of  ௣ܶ overflows. This pa-
per just considers the resource X during the splitting of Sሺpሻ into SHሺpሻ and SLሺpሻ. 
Processing method is similar to the one-dimensional case. 

Case 2. When  W௫ሺpሻ ൑ X௞ and W௬ሺpሻ ൐ Y௞ , Y resource of ௣ܶ  overflows. It just 
considers the resource Y during the splitting of Sሺpሻ  into SHሺpሻ and SLሺpሻ . 
Processing method is similar to case 1. 

Case 3. When W௫ሺpሻ ൐ X௞ and W௬ሺpሻ ൐ Y௞, that case is much more complex. Dur-
ing the handling of p, it cannot just simply consider any weigh of X or Y. Our object 
is to split Sሺpሻ  into SHሺpሻ  and SLሺpሻ , satisfying ∑ ܹሺݍሻ  ൅ ሻ݌ሺݓ ൑ ௤∈ௌ௅ሺ௣ሻܭ  
and  ܹሺݎሻ ൏ ,ܭ -ሻ. Due to SHሺpሻ is the set of nodes waiting to be parti݌ሺܪܵ߳ݎ∀
tioned. Due to |SHሺpሻ| ൌ |Sሺpሻ| ൅ |SLሺpሻ| , it tries to reduce |SLሺpሻ| . How to 
split SLሺpሻ and SHሺpሻis a Multi-objective Optimization Problem (MOP). Unilaterally 
scrupling X or Y will cause division resources on the negative results. According to 

MOP solutions, this paper set a priority vector Prioሺpሻ ൌ ቀP௫ሺpሻ, P௬ሺpሻቁ்
 and a stan-

dard value for every son node r of p Valueሺrሻ   ൌ   Prioሺpሻ כ   ቀW௫ሺrሻ, W௬ሺrሻቁ. The 

Setting of P௫ሺpሻ and P௬ሺpሻ is dynamic to measure the overflow of X and Y.P௫ሺpሻ ൌW௫ሺpሻ െ X௞ and P௬ሺpሻ ൌ W௬ሺpሻ െ Y௞. Valueሺrሻ denotes severity of resource over-
flow. The linear median finding algorithm is based on Valueሺrሻ to split Sሺpሻ into SHሺpሻ and SLሺpሻ. 

Summing up the above three cases, it describes node p handling. It uses  Prioሺpሻ  
to denote priority of each kind of resource and Valueሺrሻ  to calculate severity of  
resource overflow. Prioሺpሻ equals  

൞൫         0           , W௬ሺpሻ െ Y௞൯் ݂݅ W௫ሺpሻ ൑ X௞ , W௬ሺpሻ ൐ Y௞ ሺW௫ሺpሻ െ X௞,          0         ሻ் ݂݅ W௫ሺpሻ ൑ X௞ , W௬ሺpሻ ൐ Y௞൫W௫ሺpሻ െ X௞, W௬ሺpሻ െ Y௞൯்݂݅ W௫ሺpሻ ൐ X௞  W௬ሺpሻ ൐ Y௞   
Valueሺrሻ  ൌ  Prioሺpሻ כ   ቀW௫ሺrሻ, W௬ሺrሻቁ 

In the context of this paper, the weight ሺS, F, L, Iሻ is four-dimensional. Prioሺpሻ  ൌ ൫Pୱሺpሻ, P୤ሺpሻ, P୪ሺpሻ, P୧ሺpሻ൯T
. 

Define ݂ሺݔሻ ൌ ൜ݔ; ݔ ݂݅ ൐ 00; if x ൑ 0 , then Prioሺpሻ ൌ ሺ݂ሺW_s ሺpሻ െ ܵ_݇ ሻ, ݂ሺW_݂ ሺpሻ െܵ_݂ ሻ, ݂ሺW_݈ ሺpሻ െ ܵ_݈ ሻ, ݂ሺW_݅ ሺpሻ െ ܵ_݅ ሻ ሻ^T , Valueሺrሻ   ൌ Prioሺpሻ כ    ሺW_s ሺrሻ, W_݂ ሺrሻ, W_݈ ሺrሻ, W_݅ ሺrሻ ሻ 
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To split Sሺpሻ into SHሺpሻ and SLሺpሻ and satisfy three conditions. 

(1) if q ∈ SLሺpሻ and r ∈ SHሺpሻ then  Valueሺqሻ ൑ Valueሺrሻ,  
(2) ∑ ܹሺݍሻ  ൅ ሻ݌ሺݓ ൑ ௤∈ௌ௅ሺ௣ሻܭ , 
(3) ∑ ܹሺݍሻ  ൅ ሻ݌ሺݓ ൅ ܹሺݎሻ ൐ ,ܭ ሻ௤∈ௌ௅ሺ௣ሻ݌ሺܪܵ߳ݎ∀  . 

Detailed process is similar to the one-dimensional case. To apply the linear median 
finding algorithm [7] to split the Sሺpሻ into SHሺpሻ and SLሺpሻ satisfy |SHሺpሻ| ൑|SLሺpሻ| ൑ |SHሺpሻ| ൅ 1, and condition (1). Secondly, check condition (2)(3) to shift the 
boundary of SH(p) and SL(p). Once (2) satisfied while (3) unsatisfied, apply the linear 
median finding algorithm to split SHሺpሻ iteratively. Once (3) satisfied while (2) unsa-
tisfied, apply the linear median finding algorithm to split SLሺpሻ iteratively. Until (2) 
and (3) are satisfied simultaneously, end the splitting to get the dividing line in Sሺpሻ. 
The Multi- Dimensional Algorithm is presented as follows Fig. 6.  

The linear median finding algorithm time complexity is Oሺnሻ, so the time complexi-

ty of p handling is O ቀ|Sሺpሻ| ൅ |ௌሺ௣ሻ|ଶ ൅ |ௌሺ௣ሻ|ସ ൅ ڮ ൅ |ௌሺ௣ሻ|ଶ೙ ቁ ൌ Oሺ|Sሺpሻ|ሻ. Hence the 

time complexity of that algorithm is Oሺnሻ，n is the total node number of Tree. 

 

Fig. 6. Algorithm Multi-Dimensional K-partition 

4.2 RTL Code Modification 

After the partition of the module tree, we get a set of edge C, whose number is |C| ൅ 1. 
Each edge denotes one cut. For any edge of C ሺA, Bሻ, A is the parent module and B is 
the son node cute from A. The partition result is a table II shown as follows. 

Table 2. The Partition result 

Slice# Top module Parent module 
0 x x 
1 SUB ModuleA 
… x x 
n x x 
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Next, what should be done is to modify the RTL code to achieve the concrete divi-
sion of the SoC design. This paper uses an example to describe the RTL code modifi-
cation of the partition method, parting SUB module from ModuleA, shown as Fig.7. 

    module ModuleA(a,b,c);
        input a,b;
        output c;
        ……
        ModuleB SUB(i,j);
ModuleC C(k,l);
……
endmodule;  

Fig. 7. Example of Source Code 

According to the result of partition algorithm C, it needs to divide module SUB 
from ModuleA. The partition steps shown as follows:  

• Find the ports from definition file of sub module and record their names and direc-
tions. E.g. SUB is defined in ModuleA and there are two ports, x for inport, y for 
outport. 

• According to the port list of sub module, add port signal in the parent module. The 
type and size of the ports remain the same as definition in sub-module definition 
file. But the direction of ports invert. E.g. the port of ModuleB x need to be added 
to the ModuleA as outport x. While the port of ModuleB y need to be added to the 
ModuleA as outport y. 

• To remove sub-module instantiation statement from definition file of parent mod-
ule and add some assign statement to connect such two modules.  

The code result of partition SUB from ModuleA show as follows. 

module ModuleA(a,b,c,x,y);
        input a,b;
        output c;
        output x;
        input y;
……

        assign x=i;
        assign j=y;
    endmodule;

 

Fig. 8. Partition SUB From ModuleA 

After the partition, sub module and parent module are allocated into different 
FPGA chips. The communication between such modules will be handled by specific 
control module. This paper chooses RocketIO to take over it, the modification of 
module code need to add the RocketIO module and to assign related signals. The 
relationship of FPGA chips is shown as follows. 
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Fig. 9. Packing of Slices 

5 Experiment 

Although the proposed partition method is generic, we used a specific hardware plat-
form for experiments. The VHDL code of leon3, a SoC design based on SPARC pro-
cessor [8], is used as the DUT (Device under Test) design and a free, commercially 
representative embedded benchmark suite [9] is used to check the speed and accuracy 
of the DUT design. During the experiments, a same leon3 is instantiated in the BEE4 
FPGA based recognizable platforms acting as a reference. 

5.1 Platform 

The overview of our Multi-FPGA verification platform is described as Fig. 10. The 
verification platform consists of a host computer and a Multi-FPGA platform. 

 

Fig. 10. Structure and photograph of Verification Platform 

As a control and display terminal, the host computer is connected with the Multi-
FPGA platform through Molex 74546-040x Series PCIe Lane4 cable that supports 
PCIe 2.0 Protocol. EDA software tools such as ISE of Xilinx, ModelSim of Mentor 
Graphics and the implementation tool of our partition algorithm are installed on host 
computer to assist the verification of DUT.  

The Multi-FPGA Platform consists of a backplane and sub-boards. Fig. 11 shows a 
photograph of the Multi-FPGA Platform. The relationship between FPGAs is shown 
as Fig. 12. The backplane provides a PCIe bus to support the sub-boards. It also in-
stantiates peripheral circuit controller providing with file configuration, operational 
control, global clock generation, communication and monitoring functions. Each sub-
board utilizes a Xilinx Virtex5-F1738 LXT serial high-capacity FPGA.  
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Fig. 11. Commucation Architecure 

5.2 Results 

To conduct better experiments, it has to choose a DUT design carefully. The leon3 
system is a state-of-the-art SoC design based on SPARC V8 architecture. It is com-
plex and large enough to be parted, while its RTL code is open source. The same 
leon3 system instantiated in the BEE4 FPGA based recognizable platforms runs as a 
reference. 

Due to the capacity of any chip from the experiment platform is enough to hold the 
DUT design, we manually lower the resource constrains to get more significant effect 
on the partition. During the system configuration, K is set as (1792,4032,112,3584) 
that equals to the size of Xilinx Spartan-3A XC2S200A/AN chip. The partial hie-
rarchy and resource demands of the leon3 SoC design are shown in Table 3, and the 
partition results under configuration above are shown in Table 4.  

Table 3. Partial Hierarchy and Resource Demands 

Module Parent Slices LUTs IOBs Flip-flops 
leon3mp null 5395 9256 337 11478 

leon3s leon3mp 3656 6541 232 8024 

ahbctrl leon3mp 554 982 32 1023 

apbctrl leon3mp 459 812 33 1578 

mctrl leon3mp 432 654 29 546 

proc3 leon3s 1647 3495 72 3470 

cachemem leon3s 764 1082 53 1853 

fpu0 leon3s 851 962 25 1641 

regfile_3p leon3s 362 902 57 960 

… … … … … … 

To test the speed and accuracy of partitioned leon3, we boots linux-2.6.21.1 on the 
different environment. Table 5 shows the time consuming results of Linux booting. 
Simulation on the ModelSim is so slow that we can just guess the theoretical estima-
tion results. The leon3 instantiated in BEE4 platform and UltraSPARC T1, a kind of 
SPARC V8 ASIC, act as the experiment reference. The experiment of partitioned 
leon3 runs at a speed of 8 MHz, over 100,000 times faster than software simulation, 
1-2 times of the BEE4 platform. 
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Table 4. Partition Result 

FPGA# Top_module Paent_module Slices LUTs IOBs Flip-flops 
0 leon3mp null 1739 2715 105 3454 
1 leon3s leon3mp 1245 1964 107 2701 
2 proc3 leon3s 1647 3495 72 3470 
3 cachemem leon3s 764 1082 53 1853 
4 null null - - - - 
5 null null - - - - 

Table 5. Time to Boot Linux 

Platform Frequency Time to boot Linux 
Software Simulation 10Hz 5.7years 
ASIC(UltraSPARC T1) 1000-1400MHz 1second 
Our Multi-FPGA 8MHz 360 second 
Bee Multi-FPGA 5.4MHz 560second 

 

 

Fig. 12. Structure of Verification Platform 

 

Fig. 13. Instructions Percentage of Programs 
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For further verification of the effectiveness of this partition method, the free and 
commercially representative embedded benchmark suite [9] is used to check the speed 
and accuracy of the leon3. Our experiments pick twelve programs from the packages 
of Mibench suit. 

The twelve programs run both on the Multi-FPGA platform and the BEE4 platform 
of which the cross-reference results demonstrate the accuracy of the partitioned leon3 
on the Multi-FPGA platform. The run time data shown on Fig. 12 demonstrated its 
speed. It is discovered that different programs have different time rate values between 
the Multi-FPGA platform and the BEE4 platform. To find the root cause of that phe-
nomenon, this paper tries to analyze the instruction percentage of these programs. We 
use BCC (Bare-C Cross-Compiler) [10] to compile C/C++ code into instructions and 
categorize them into five classes: floating point, integer, load, store, unconditional 
branch and conditional branch. Their statistics percentage is presented in Fig. 13. 

At the same time, we calculate the IO instruction (load and store instructions) per-
centage shown as the IS rate in Fig. 14. Through comparison of instruction rate and 
time rate, it can figure out certain regularity clearly--higher IO instruction percentage 
causes higher time rate between the Multi-FPGA platform and the BEE4 platform. It 
coincides with some previous studies [11], which confirm our partitioning algorithm 
correctness and effectiveness from another aspect. 

 

 

Fig. 14. Comparison Between Instruction Rate and Time Rate 

6 Conclusion 

In this paper, we focus on RTL code level partition method and provide a universal 
partition methodology with realistic and detailed implementation. It presents the core 
partition algorithm whose time complexity is Oሺnሻ. The simulation of leon3, a SoC 
design based on SPRC processor, runs at a speed of 8 MHz correctly, over 100,000 
times faster than software simulation, 1-2 times of the BEE4 FPGA based recognizable 
platforms. Experimental results on a number of benchmarks from Mibench demon-
strate that this partition method works well on practical application with excellent ac-
curacy and efficiency. The partition method proposed in this paper is generic and can 
be well applied to large scale IC design verification. 
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Abstract. This paper proposes a node-to-set node-disjoint routing algorithm 
based on a path storage model for the hypercube networks with faulty nodes. 
Two properties of the storage model are listed in the paper on condition that the 
n-dimension hypercube has no more than n-1 faulty nodes. The first is that its 
path length is no more than hamming distance plus 2, and the second is that its 
sub-cube model can be partitioned from the global model. Based on the model, 
a novel routing algorithm is brought up to generate node-to-set node-disjoint 
fault-tolerant path. It adopts divide-and-conquer strategy to take full advantage 
of the regularity of hypercube. The routing algorithm can reduce the path length 
to n + f + 2 at most and decrease the time complexity to O(mn) in a faulty-node 
hypercube system(where n is the number of dimensions, m is the number of 
destination nodes and f is number of faulty nodes). Experiment results show that 
the average path length is shorten by 9~10% compared with existing algorithms 
in a ten-dimension hypercube with no more than nine faulty nodes. 

Keywords: Interconnection networks, Hypercube networks, disjoint path, Fault 
tolerance.  

1 Introduction 

Hypercube topology for parallel computing has received many attentions in recent 
years due to its recursive structure, efficient routing, and built-in robustness [1-3]. It is 
widely used in large scale parallel computer systems. For example, Fujitsu K comput-
er has ever ranked first in the TOP500 [4], which includes 548,352 cores with an  
extending hypercube topology. 

A hypercube Hn has 2n nodes and n*2n-1 links. As the system become large, the 
node or links fault occurs more frequently. Many fault tolerant routing strategies  
[5, 6, 7] are proposed to reach balance between transmission performance and fault 
tolerant capability. Attempts to resolve this dilemma have resulted in the development 
of node-disjoint routing strategy with fault tolerant function such as node-to-node  
[8, 9], node-to-set[10-13] and set-to-set routing. The node-to-node node-disjoint path 
routing can be used to avoid congestion, accelerate transmission, and provide alterna-
tive paths and the node-to-set node-disjoint path routing has strong fault tolerant abili-
ty for multicasting communication. To raise efficiency in networks, the related  
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researches focus on generating paths which have reduced maximal length and minor 
average length. 

Gu [13] described a node-to-node fault-tolerant routing algorithm in hypercube Hn, 
which returns paths length at most n+1 with O(n) time complexity. In ref[14] they 
proposed a fault-tolerant node-to-set routing algorithm in Hn, which returns paths 
length at most n+2 with O(|F|n) time complexity(requires d(|F|) ≤1, where F is the 
faulty node set, d operation is to obtain the network diameter of the node set). Bossard 
[15] proposed a fault-tolerant node-to-set node-disjoint path routing algorithm with 
O(n2) time complexity, which adopts the partitioning and mapping operation. Never-
theless, the paper does not consider the average length of paths.  

Sinanoglu[9] proposed a method providing node-disjoint paths for node-to-node in 
fault-free hypercube, Lai[10] proposed an algorithm that optimizes node-disjoint 
node-to-set routing paths in fault-free hypercube, but they do not refer the hypercube 
with faulty nodes. Although the paths generated by above two algorithms are relative-
ly short, the paths are fixed and the methods have insufficient flexibility to avoid con-
gestion. Another disadvantage is that the communication would be crashed in the case 
of that a node in the path fails. 

The algorithms stated above are either based on fault-free hypercube, or not opti-
mized sufficiently for reducing paths length. This paper introduces a node-to-set 
node-disjoint fault-tolerant path routing algorithm based on a novel storage strategy in 
hypercube. The rest of the paper is organized as follows: In section 2, fault tolerance 
optimized path length matrix is stated, and the fault tolerant node-disjoint path routing 
algorithms are presented. In section 3, the analysis of the novel algorithm is showed. 
The final section is the conclusion. 

2 Storage Model and Routing Strategy 

The storage model for fault tolerant optimized path is illustrated and two properties 
follow at first. Subsequently, according to recursive structure of hypercube, a divide-
and-conquer routing strategy is stated. Finally, an example is shown. 

2.1 A Optimized Path Storage Model 

The novel storage model is based on optimized path length, which is defined as  
follow:  

Definition (Optimized path length, OPL) OPL is the number of hops required by 
the optimized path between two nodes in n-dimensional hypercube Hn having failure 
nodes. It is formalized as: 

        

( , ) {OPL( '  , v)} 1  ( '   u, v) < 2

2

k

k

if u is neighbor of v AND v is working

OPL u v min u s neighbor if OPL u neighbor of

others


= + ∃



１

      

(1)

 

Since the formula is based on recursive structure and the health status of each node 
can be acquired by information exchange method, the OPL can be calculated itera-
tively. Based on OPL, the optimized path length matrix is listed as following. 
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For each node pair (u, v), OPL(u, v) and OPL(v, u) are always equal, so the matrix 
is symmetrical. Based on OPLMatrix, the unicast routing algorithm can be a distributed 
strategy listed as following steps with O(n) time complexity. 

Step 1: Find the node w in node u’s neighbors, which meets OPL(w, u) = 1 and 
OPL(w, v) = OPL(u, v)-1. (When the number of satisfied nodes is more than one, 
make an arbitrary choice). 

Step 2: Route the message to the node w. 
Due to the characteristic of hypercube, the sub matrix of OPLMatrix is derived as: 
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(3) 

For Hn with no more than n-1 faulty nodes, OPLMatrix has two properties. 
Property 1. In n-dimensions hypercube Hn with no more than n-1 faulty node, the 

OPL(u, v) in OPLMatrix is no more than dist (u, v) + 2, where dist(u, v) is the hamming 
distance between two nodes. 

Proof: in an n-dimensional hypercube Hn, let F be the set of its faulty components. 
If |F| < n, then for any two nodes s and d, there lies a path P(s, d) with Length(P (s, d)) 
≤ Hamming (s, d) + 2 [14]. It can be concluded from above achievement that the 
length of the fault free path between nodes (s, d) is at most Hamming(s, d) + 2. From 
optimized path length definition, it is an inherent nature that the OPLMatrix stores the 
length of the optimized paths between all node pairs. Hence, the elements in OPLMatrix 
are no more than Hamming (u, v) + 2. 

Property 2. Hypercube Hk is a sub-cube of Hn, which has fk (fk＜k) faulty nodes, 
OPLMatrix(Hk) can be obtained by selecting corresponding rows and columns from 
OPLMatrix(Hn). 

Proof: It is assumed that Hk' is opposite sub-cube of Hk without faulty node. The 
length of path from node s via Hk' to node d of Hk is: 

 LP(s,d)via Hk’ = Hamming(s', d') + Hamming(s, s') + Hamming(d, d') 

 = Hamming(s, d) + 2 (4) 

And by property 1, the maximal length of path in Hk contained by OPLMatrix(Hk) is: 

 LP(s, d)via Hk = Hamming(s, d) + 2.  (5) 
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It means that the stored path from s to d in Hk is no longer than LP(s, d) via Hk'. 
Therefore, sub-matrix OPLMatrix(Hk) can be constructed by selecting corresponding 
rows and columns of OPLMatrix(Hn). 

In order to further illustrate above properties, two cases of H5 are shown in figure 1 
and figure 2. The bold lines shows one of the optimized paths from node s to the node 
d in sub-cube H4, and the dashed lines show a path from node s via H4' to node d. In 
figure 1, H4 and H4' are two opposite sub-cubes of hypercube H5 (3 faulty nodes in H4, 
and no faulty node in H4'). The length of optimized path in H4 from node s to node d 
is 2 and the length of path via H4' is 4. Therefore, the OPL(s, d) in the sub matrix 
OPLMatrix(H4) can be obtained from OPLMatrix(H5). In figure 2, the length of optimized 
path in Hk from node s to node d is 4 and the optimized path length via Hk' is also 4. It 
is obvious that the path in Hk is the one of the optimized paths in H5. That means the 
values in sub matrix OPLMatrix(Hk) can be obtained directly by OPLMatrix(H5). 

 
Fig. 1. An example with OPL(s, d) = Hamming(s, d) in sub-cube H4 

 

Fig. 2. An example with OPL(s, d) = Hamming(s, d)+2 in sub-cube H4 
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2.2 Node-to-Set Routing Algorithm 

Based on the storage model, a novel node-to-set node-disjoint fault-tolerant routing 
algorithm (NNFR for abbreviated) is proposed to reduce the paths length. NNFR is a 
divide-and-conquer strategy to take full advantage of the regularity of hypercube. The 
OPLMatirx(Hn) contains all the optimized path information after the initialization. 
Should the hypercube Hn be divided into sub-cube Hk with fk (fk < k) faulty nodes, the 
OPLSub-Matirx(Hk) could be derived directly. Besides this, OPLMatirx(Hk) is not necessary 
to be stored independently. 

The process of NNFR includes two major steps: hypercube dividing and path mak-
ing. At first, the hypercube is divided by a dimension i (0≤i≤n-1) into two sub-cubes 
with lower dimension. One of sub-cubes is called H0

n-1 (H
0 for abbreviated) contain-

ing the source node s and the other is called H1
n-1 (H

1 for abbreviated). Suppose the 
set of faulty nodes in Hj (j = 0 or 1) is called Fj, and the set of destination nodes in Hj 
is called Dj. Node-disjoint path routing procedure could be derived as following steps. 

Step 1: If |D|=1, route the message along with optimized path generated by unicast 
algorithm on OPLMatrix(Hn). NNFR is finished. 

Step 2: If |F|≥1, chooses a dimension to divide Hn into H0 / H1 and ensure |F1|<n-1. 
If |F|=0, chooses any dimension to divide Hn into H0 / H1. 

Step 3: If D1=∅，then partition H0 repeatedly until D1
≠∅. When D1

≠∅，two 
cases are classified as followings. 

Case 1 - If the neighbor node of s (named as s') in H1 is a faulty node, performs a 
back-mapping operation to route all the destination nodes of H1 to H0. The length of 
back-mapping paths is no more than 2 in this case. 

Case 2 - If s' is a working node, choose a destination node v with minimal OPL 
(s', v) in D1, deliver the message from s to s' directly, and unicast it to the node v 
based on OPLsub-Matrix(H

1), then map the remained nodes in D1 back into H0. 
After case 1 or case 2 operation，repeat NNFR in H0 until all the destination nodes 

are routed. The NNFR could also be expressed by mathematics as follows. 

 

Algorithm NNFR(Hn, s, D={d1,…dk}, F = {…}, P={∅}) 
If |D|=1 
P(d) = P(d)∪{(s,s’)} for s’ ∈H’ s.t. OPL(s, s’)=1  

&OPL(s’,d)=OPL(s,d)-1 
NNFR (H’, s’, {d}, F’) 

End if 
Split Hn to H

0 and H1 s.t. |F1|<n-1 
If ∃ s' s.t. OPL(s',s)=1 & s' ∈ H1    
select d s.t. OPL(s', d) = min{OPL(s',di)} 
P(d) = P(d)∪{(s, s’)}, D1 = D1 – {d} 
NNFR (H1, s’, {d}, F1) 
For ∀ di∈D1 s.t. OPL (di,di’)≤2 & di’∈D0 
D0 = D0∪{di’} 
P(di) = P(di)∪{(di’, di)} 
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NNFR (H0, s’, D0, F0) 
Else 

For ∀ di∈D1 s.t. OPL (di, di’)≤2 & di’∈D0 
D0 = D0∪{di’} 
P(di) = P(di)∪{(di’,di)} 

NNFR (H0, s’, D0, F0) 
End if 

2.3 An Example 

This example shows the procedure of NNFR algorithm in a 5-dimension hypercube 
H5. The source node s, the destinations and the faulty nodes are set as following. 

s = 00000, D = {d1 = 01011, d2 = 10111, d3 = 10100} 
F = {f1 = 10010, f2 = 10101} 
Firstly, H5 is partitioned by dimension 2 (00010) into sub-cube H0 containing {d3} 

and sub-cube H1 containing {d1, d2}. Since s' (Neighbor node of s in H1, address 
00010) is a working node, a routing path is built from s via s' to d1, and the d2 (10111) 
is mapped to d2' (10100) in H0 via 00111, then the new D0 = {10100, 00101}. The 
procedure is shown in figure 3. 

Secondly, H4 is partitioned by dimension 1 (00001) into sub-cube H0 containing 
{10100} and sub-cube H1 containing {00101}. Since s' (00001) is a working node, a 
routing path is built from s via s' to node 00101 in H1, then the new D0 = {10100}. 
Finally, H0 is a fault free hypercube, and the destination node 10100 is the last one. A 
routing path is built from s to node 10100. The second and the final procedures are 
shown in figure 4. 

 

 

Fig. 3. The first procedure in the example 
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Fig. 4. The second and final procedures in the example 

3 Performance Evaluation 

In an n-dimensional hypercube Hn with f (f ≤ n - 1) faulty nodes, it can be found there 
lies k (k ≤ n - f) fault-free node-disjoint paths connecting k nodes in H1

n−1 to H0
n−1, of 

which the length is no more than 2[15]. The reduction operation will be implemented 
no more than f  times in NNFR. Based on above conclusions, a destination node can 
be mapped back  f  times with 2*f length at most. 

If the sub-cube Hk of Hn has only one destination node, a unicast path with length 
no more than k (k = n - f) can be obtained. If the sub-cube Hk of Hn has only more 
than one destination node, the paths with length n - f + 2 at most can be obtained. 
Therefore, the maximal path length on Hn with f faulty nodes and m destinations can 
be represented as: 

 LMax(P) = Max {2f + (n-f), 2f + (n-f)+2}= n + f + 2 (6) 

For average path length, the upper bound result meets: 

 L (Pm) ≤ Hamming(s, dm) +2+2*m (7) 

And the average length of m paths can be obtained by: 

LAverage(P) = 
1

1
( )

m

i
i

L P
m =
 ≤

1

1
( hamming( , ))

m

i
i

s d
m =
 +2+(1+m) 

=
1

1
( hamming( , ))

m

i
i

s d
m =
 +m+3                     (8) 

As we know, a time complexity of O(n) is required for each cube reduction listed 
in chapter 2.1, so a time complexity of O(mn) is required for NNFR, where m is the 
number of destination nodes in Hn. 
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A H10 is created by OPNET tools to give some performance comparisons among 
Lai’s strategy [10], Bossard’s algorithm [15] and the novel NNFR method presented in 
the paper. The experiment contains three steps. Firstly, select d (d<10) destinations in 
the working nodes randomly in H10, and set f (f = 0 or f = 10 - d) nodes as fault random-
ly. Secondly, invoke the algorithms to get paths. Finally, analyze the collected data in 
the network. The collected data is the average paths length from 1000 times experiment. 

 

Fig. 5. Average path length comparison with no faulty node on H10 

 

Fig. 6. Average path length comparison with faulty nodes on H10 
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The node-to-set routing results with no faulty node case (i.e.  f = 0) are shown in 
figure 5. It can be seen that the path length of NNFR has about 6% better than Bos-
sard’s method and about 4% worse than Lai’s strategy. 

The node-to-set routing results with faulty nodes case (f = 10 - d) are shown in fig-
ure 6. It can be seen that the path length of NNFR has about 10% better than Bos-
sard’s method while Lai’s strategy cannot work in this case. So NNFR can work  
effectively both in no faulty node and faulty nodes modes. 

4 Conclusions 

A fault-tolerant node-to-set node-disjoint fault tolerant path routing algorithm is  
introduced based on an optimized path storage model in hypercube networks. The 
optimized storage model contains two properties on condition that Hn has no more 
than n-1 faulty nodes. Based on the model, a NNFR algorithm can effectively reduce 
the average path length and time complexity of node-to-set node-disjoint system. 
Experiment results show that there is about 9~10% path length reduction compared 
with the existing algorithms in H10 with no more than nine faulty nodes. 
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Abstract. Since the growing scale of data has generated huge redun-
dancy, de-duplication which can eliminate redundancy and improve space
utilization of storage device has been widely adopted. De-duplication
filesystem can provide a unified interface to the upper application and
implement inline de-duplication. In this paper, we design and imple-
ment FmdFS, a kernel-space de-duplication filesystem. Due to memory
limitation, metadata of FmdFS is stored on disk group. Meanwhile a
scale-adaptive binary tree filter is constructed in memory, which not only
avoids access to the metadata on disk for searching fingerprints of most
new data, but also records the groups where duplicate data is stored.
In addition, FmdFS uses LRU hash cache, which holds the metadata
group that has been recently accessed, to exploit locality to match the
duplicate data to avoid access to the metadata on disk. In comparison
with traditional de-duplication filesystems, FmdFS has the higher write
performance.

Keywords: De-duplication Filesystem, Scale-adaptive Binary Tree Fil-
ter, LRU Hash Cache.

1 Introduction

According to the prediction of IDC [1], the global scale of data will reach 40ZB
till 2020. Data redundancy increases progressively as the scale of data grows. De-
duplication is a technology that eliminates redundancy among data and improves
space utilization of storage device. File system is the most commonly used tool
to organize and operate data on the storage, so adding de-duplication technology
into the file system is a more general way. In comparison with the traditional
de-duplication storage software, de-duplication file system provides a unified
interface to the upper application, and eliminates duplicate data in the process
of data writing.
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Although de-duplication helps improve storage space utilization, it brings per-
formance overhead and scalability issue, which are both research focus. If meta-
data is stored in memory, de-duplication file system only supports the limited
non-duplicate scale of data. In order to support a larger amount of data, many
de-duplication system store metadata on disk. As the access speed of disk is
much slower than memory, how to manage metadata, and how to try to avoid
disk access, are both primary issues to solve performance bottleneck.

In addition, most traditional de-duplication file systems (e.g. SDFS [2],LessFS
[3], ZFS [4],) are implemented as user-space file system, thus each I/O operation
requires multiple system calls. However, frequent switching between user state
and kernel state will affect the performance of the file system.

In this paper, we design and implement FmdFS, a kernel-space file system
which supports inline de-duplication. FmdFS can avoid the drawbacks of user-
space file system. FmdFS has two features:

Filter of data blocks: A scale-adaptive binary tree filter is constructed in the
memory, and each node of scale-adaptive binary tree filter is a Bloom Filter.
They and can avoids access to the metadata on disk for searching fingerprints
of most new data blocks.

Match of data block: In order to reduce seek time, data block and its metadata
are stored in the same group. Disk group where duplicate data blocks are stored
can be located through scale-adaptive binary tree filter, which records the group
paths of duplicate data blocks. LRU hash cache exploits data locality, thus if
there is duplicate data in a disk group, fingerprint table of the group will be
mapped into LRU hash cache. If the LRU hash cache is full, the fingerprint of
the group which has not been hit for the longest time will be covered.

The remainder of the paper proceeds as follows. In section 2, we present the
design of FmdFS as a de-duplication file system. Section 3 introduces the filter
and match of data blocks in FmdFS. In section 4, the implementation and test
results of FmdFS is presented. Section 5 is the related work. In section 6, we
conclude this paper.

2 FmdFS Design

FmdFS is a kernel-space file system which supports inline de-duplication, and is
an improvement and extension of traditional Ext2 file system. Data block is the
basic unit of data transmission of Linux. The principle of FmdFS implementing
de-duplication is as follow. First calculate a MD5 [13] fingerprint(unique identi-
fication of data block) for every data block in the kernel-space memory, and then
determine whether the data block is duplicate on the basis of the fingerprint.
Modify references of blocks which are detected as duplicate and point their block
pointers to existing duplicate blocks on disk, then abandon the duplicate data
block in the memory. If the data block is not duplicate one, FmdFS allocates
disk block space for the data block, then updates metadata and stores the data
block on the disk.
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The MD5 fingerprint consists of 128 bits, assuming random fingerprint with
a uniform distribution, a collection of n different data blocks, the probability p
that there will be one or more collisions:

P ≤ n(n− 1)

2
∗ 2−128. (1)

FmdFS designed by this paper supports for 2TB. If the block size is 4KB,
229 different data blocks will be stored, so the probability of a collision is less
than 2−71. Because of the extra-low probability, we ignore it and use the MD5
fingerprint as a unique identification for a block.

Due to memory limitation, the metadata (fingerprint and reference count of
a duplicate data block) for de-duplication is stored on disk by group. Reference
count represents times which the block is pointed by data block pointer. In or-
der to reduce seek time, data block and its metadata are stored in the same
group.Fig.1 shows disk structure of FmdFS, and the fingerprint table and refer-
ence count table is proprietary of FmdFS. The N -th entry in fingerprint table is
the fingerprint of the N -th data block of the group. The structure of reference
count table is similar to the fingerprint table. And if a data block is deleted, and
only when the reference count is 0, the data block is really deleted. When a data
block is stored on disk, FmdFS updates fingerprint and reference count on disk.

Reference
count table

Group0 Group1 Group2 Group3

Super
block GDT Block

bitmap
Inode

bitmap
Inode
table

Fingerprint 
table Block Depulicate 

table

Block
pointer

Block
pointer

File m inode File n inode

Fig. 1. Disk structure of FmdFS

Fig.2 shows the flow chart of write data block of FmdFS. In this figure, the
fingerprint calculation module is used to calculate the fingerprints of data blocks.
FmdFS block allocation strategy is used to map the duplicate data blocks. File
metadata manager module is similar to that of Ext2. FmdFS metadata manager
module is used to store and operate metadata of data blocks in FmdFS. Status
manager of page and block buffer module is used to control the status of page
and block buffer in kernel.

The main challenge of FmdFS is looking up address of the duplicate data
block. After the fingerprint of a data block is calculated, we use scale-adaptive
binary tree filter to reducing accessing to the fingerprint table on disk and lo-
cate group of duplicate data block. Then LRU hash cache holds fingerprints and
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File metadata manager
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Status manager of page and block 

FmdFS

Block I/O subsystem 

SCSI subsystem 

Disk

System call level 

Fig. 2. Framework of FmdFS

addresses of data blocks which have been accessed or will be accessed. If a data
block is found in LRU hash cache, we will read corresponding fingerprint table
into fingerprint hash table to find the data block. Scale-adaptive binary tree
filter, LRU hash cache and fingerprint hash table will be explained in detail in
section 3.

3 Data Block Filtering and Matching

Each node of Scale-adaptive binary tree filter is a Bloom Filter. Scale-adaptive
binary tree filter has two main functions. Firstly, it can avoid fingerprints of
most new data blocks accessing to metadata on disk; Secondly, disk group where
duplicate data blocks are stored can be located through scale-adaptive binary
tree filter, duplicate data blocks can be accurately matched in LRU hash cache.

3.1 Bloom Filter

Data structure of Bloom Filter is a bit array of m bits, which represents a set.
There are k mutually independent hash functions, each of which maps to one of
the m array positions. When Bloom Filter contains 0 element, all bits are set to
0. As shown in Fig.3, it represents setx, y, z. In this figure, m = 17, k = 3.
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Fig. 3. Bloom Filter

When adding an element, it should be fed to each of the k hash functions to
get k array positions, and set the bits at these positions to 1. When query for
an element, fed it to each of the k hash functions to get k array positions. If any
of bits at these positions is 0, the determination is negative and the element is
definitely not in the set. If all of bits at these positions are 1, the determination
is positive and there is a probability that the element is in the set. However if
the element isnt actually in the set, the determination is false positive.

Assume that a Bloom Filter has k mutually independent hash functions, and
value of every hash function is uniform distribution in m bits array. When the
set contains n elements, the probability that a certain bit is 1:

1− (1− 1

m
)kn. (2)

Adding the next element, the false positive rate:

(1− [1− 1

m
]kn)k. (3)

When n is sufficiently large, formula (3) is approximately given as:

(1 − e−
nk
m )k. (4)

Via formula (4) we can determine the number of hash functions in every of
Bloom Filter of scale-adaptive binary tree filter.

3.2 Binary Tree Filter

Each leaf node of scale-adaptive binary tree filter corresponds to disk group. The
N -th leaf node corresponds to the N -th group. If FmdFS supports N groups,
the height of binary tree filter is logN , shown in Fig.4. Assume that the number
of levels of binary tree filter is h, then:

h = �logN�+ 1. (5)

When fingerprint of a data block is coming, FmdFS needs to determine
whether the data block is a duplicate one on the basis of the fingerprint. Feed
fingerprint of the data block to root filter, if the determination is positive, then
feed the fingerprint to the child node filter. If the determination is negative, no
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Fig. 4. Binary tree filter

longer feed the fingerprint its left and right child node filterand so forth, till
complete the depth-first traversal of the binary tree filter.

If a data block is new, the probability of traversing out a path from root to
leaf is very low. When a new data block is written on disk, fingerprint of the data
block should be inserted in the corresponding filter. Firstly, insert the fingerprint
in the leaf node filter corresponding to this group of the data block, then insert
the fingerprint in parent node filter of this leafand so forth till the fingerprint is
inserted in the root node. Fig.5 shows that a new data block A, which is stored
in 4th group, is inserted in a four-level binary tree filter.

1

Group0 Group1 Group2 Group3 Group4 Group5 Group6 Group7
A

1 Corresponding position is 
set  1

1

1

1

Fig. 5. Insert a new data block A

If there is a path from root to leaf, the block is very likely to be stored in the
group corresponding to this leaf. Fig.6 shows a process of looking up a duplicated
data block B in four-level binary tree filter, and that block B has been stored in
the 3th group.

Because the number of elements contained in each level filter, from the root to
the leaf nodes, progressively reduces, so length of each level filter progressively
shortens to save memory. In order to accurately locate the disk group where
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Fig. 6. Look up duplicate data block B

the duplicate data blocks are stored, and to avoid unnecessary disk access, false
positive rate in the last level of binary tree filter shouldnt be too low, and so the
length of the last level of the filter should be large enough.

3.3 Number of Hash Functions

To reduce the false positive rate, number of hash functions of every level filter
should be appropriate. Formula (4) expresses the false positive rate. Next, find
the minimum value of formula (4).

Assume that (1 − e−
nx
m )x and y = nx

m , then find the minimum value of the
functionf(y) = (1 − e−y)y. Fig.7 shows graph of functionf(y). when y = −ln 1

2 ,
that is to say, x = −m

n ln 1
2 , function f(y) gets the minimum value.

Due to memory limitation, the length of Bloom filter m is not enough large,
Fig.7 shows that when k=1 the false positive rate gets the minimum value.
Namely, every filter has only one hash function. Every level of binary tree filter
uses the same hash function. Since the MD5 algorithm has good randomness, a
MD5 fingerprint can be used for four level filters. If one MD5 fingerprint is not
enough, compute fingerprint of the fingerprint, until the number of fingerprints
is enough.

As previously mentioned, the length of the last level of the filter shouldnt be
too short, so the number of hash functions will also change.

3.4 Scale-adaptive Binary Tree Filter

Because the scale of FmdFS expands progressively, some node filters of binary
tree filter only work until the system reaches a certain scale. According to this
feature, binary tree filter can be constructed adaptively.

When a new data group is created, FmdFS allocates the leaf node filter
corresponding to this group, and then determine whether parent node filter
of this leaf exists. If it does not exist, FmdFS allocates the node filter. Then
determine whether parent node filter of this node existsand so forth till the



Filtering and Matching of Data Blocks in De-duplication File System 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8

f(
y)

=
(1

-e
( -y

))
y

y

Fig. 7. Graph of function f(y) = (1− e−y)y

Root

(a)

Root

(b)

Fig. 8. Construction of the binary tree filter

parent node filter exists. Assume that binary tree filter has four levels; the third
group will be created. Fig.8(a) shows the state of adaptive binary tree filter
before the third group is created, and Fig.8(b) shows the state after the third
group is created, the dotted circle represents binary node filter which is just
allocated. Figure 8 shows the construction of the binary tree filter. Figure (a) is
the state of self-adaptive binary tree filter before the third group is created, and
figure (b) is the state of self-adaptive binary tree filter after the third group is
created. Scale-adaptive binary tree filter saves memory usage to a great extent.

3.5 LRU Hash Cache

LRU hash cache is designed based on the locality of duplicate data stream. Lo-
cality means that if there is duplicate data in a disk group, other data within
this group is also likely duplicate. If there is duplicate data in a disk group,
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insert fingerprint table of the group into LRU hash cache. Before looking up
fingerprint table on disk to find a fingerprint, the fingerprint first looks up LRU
hash cache to find it. If the cache is hit, the disk access is avoided.

If a block obtains a path from root to leaf by traversing binary tree filter, looks
up LRU hash cache to find its fingerprint. If the cache is hit, LRU list of hash
cache should be updated. If the cache is not hit, fingerprint table of the group cor-
responding to the leaf should be inserted into fingerprint hash table. If fingerprint
of the data block is not found in in the fingerprint hash table, it means that the
false positive happens in the last level filter. Afterwards, the fingerprint returns
to binary tree filter, and seeks for the second path from root to leafand so forth.
When obtaining three paths, the maximum false positive rate is:

Ph−1P
3
h (h = �logN�+ 1). (6)

In the formula (6), Pi is the false positive rate of the i-level node filter.
Each entry of fingerprint hash table consists of the fingerprint and disk address

of data block. Fingerprint hash table uses quadratic probing. h1(k) is the first
hash function, and k represents the fingerprint of data block. h2(k, i) is the second
hash function, and m represents the number of entries of fingerprint hash table,
i = 1, 2,m− 1.

h1 = k%m. (7)

h2 = (h1(k) + i2)%m. (8)

If a fingerprint is found in a certain fingerprint hash table, the fingerprint
hash table should be inserted into LRU hash cache.

Each entry of LRU hash cache consists of the fingerprint, disk address and
the group number of data block. When the fingerprint hash table is inserted
into LRU hash cache, LRU hash cache uses quadratic probing similar to the
above. There are two cases. If LRU hash cache is not full, the group number of
the fingerprint hash table should be added to head of LRU list. If LRU hash
cache is full, the tail of LRU list should be deleted, and the group number of the
fingerprint hash table is added to head of LRU list.

4 Implementation and Experiments

FmdFS designed by this paper supports for 2TB of non-duplicate data. When
the block size is 4KB, FmdFS consists of 214 groups. The number of binary
tree filter levels is 15 under formula (5). mi represents the array length in i-
th level of the filter, and ki represents the number of hash functions in i-th
level of the filter. Under the section 3.2 and section 3.3, their values are as
follow:m1 = 230, k1 = 1,m2 = 229, k2 = 1,m3 = 228, k3 = 1,m4 = 227, k4 =
1,m5 = 226, k5 = 1,m6 = 225, k6 = 1,m7 = 224, k7 = 1,m8 = 223, k8 = 1,m9 =
222, k9 = 1,m10 = 221, k10 = 1,m11 = 220, k11 = 1,m12 = 219, k12 = 1,m13 =
218, k13 = 1,m14 = 217, k14 = 1,m15 = 217, k15 = 3.
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Fig. 9. Write non-duplicate data performances of each file system

When the scale of non-duplicate data reaches 2TB, 2048MB of memory is
occupied by the scale-adaptive binary tree filter.

FmdFS is loaded as a module into the kernel, when writing data to the file
system, the kernel enters into FmdFS through function defined by file operations
table.

Implementation environment of FmdFS is as follow, operating system
Ubuntu11.10, kernel version Linux 2.6.34, CPU Intel Pentium dual-core E5800
@3.20GHz, memory 3GB, disk 7200 revolutions per minute.

The following experiment tests write throughputs of each file system. Test
program firstly generates b MB data, and then calls the write function to write
the data into files. It costs t seconds from the beginning of writing till that all
data is written to disk. Then the write throughput is:

T = b/t. (9)

Fig.9 shows write throughputs of each file system when data stream doesnt
consist of duplicate data. In Fig.9, the abscissa indicates the size (MB) of data
written in file system, and the ordinate indicates the throughputs(MB/s) of each
file system. Figure a, b, c, d respectively represents the results when the writing
data unit is 4kb, 8kb, 16kb, 32kb. In this experiment LessFS uses Berkeley DB.
Fig.9 shows that performance of FmdFS is vastly superior to ZFS, LessFS, and
SDFS. The cause of this result is that when judging whether a fingerprint is one
of a new data block, FmdFS avoids accessing metadata from disk, and the times
of switching between user state and kernel state are less in the FmdFS.
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Fig. 10. Write duplicate and localized data performances of each file system

Fig.10 shows write throughputs of each file system when writing duplicate
data stream. In Fig.10, the abscissa indicates the size (MB) of data written
in file system, and the ordinate indicates the throughputs (MB/s) of each file
system. Figure a, b, c, d respectively represents the results when the writing data
unit is 4kb, 8kb, 16kb, 32kb. In this experiment LessFS uses Berkeley DB. Fig.10
shows that when writing duplicate data stream, the performance of FmdFS is
vastly superior to ZFS, LessFS, and SDFS. The cause of this result is that LRU
hash cache of FmdFS holds fingerprints and addresses of data blocks to avoid
disk access of duplicate data blocks, and the times of switching between user
state and kernel state are less in the FmdFS.

As the scale of data of the system grows, false positive rate of binary tree
filter increases. In the case, some duplicate data blocks cannot be detected, and
searching fingerprints of new data blocks will lead to disk access of fingerprint
table. The following experiment test shows the false positive rate changes with
growth of the system scale.

Fig.11 shows the test of false positive rate of non-duplicate data blocks with
the increasing the scale of data. Experiment method: write new data blocks
to FmdFS with a disk group containing 32000 data blocks. We record the false
positive rate of data blocks when the scale of data increases. Data set: Each data
block will be numbered sequentially from the No.0 upward. The serial number
is stored in the first byte of the data block, and the remaining bytes are set to 0.
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Fig. 11. Overall false positive rate of non-duplicate data blocks

In Fig.11, the abscissa indicates the different scale of data in file system,
and the ordinate indicates the overall false positive rate in FmdFS. This figure
shows the overall false positive rate of non-duplicate data blocks in the different
scale of data. This figure indicates that although the overall false positive rate
increases with the increasing scale of data, but when the scale of data reaches
the maximum, the overall false positive rate is still less than 0.001. Less false
positive rate leads to less disk access times. Thus, when writing non-duplicate
data into FmdFS, there is little chance of accessing the metadata on disk. Even
with the increase scale of data, FmdFS can still have a high performance when
writing non-duplicate data.

Fig.12 shows the test of false positive number of duplicate data blocks with
the increasing scale of data. Experiment method: rewrite the data of last group
into FmdFS in the different scale of data, and then test the false positive number
when writing duplicate data blocks.

In Fig.12, the abscissa indicates the different scale of data in file system, and
the ordinate indicates the false positive number of duplicate data blocks in a
group. The figure shows the false positive number of duplicate data blocks in
the last group of the different scale of data. Because LRU hash cache pre-reads
the metadata of the group which contains the duplicate data, if the group which
contains duplicate data is hit then the remaining duplicate data blocks in the
group can be hit. In the figure, before hitting the group of duplicate data, there
are few (one or two in the figure, it depends on the data used) duplicate data
blocks misjudged as new blocks. On the basis of this figure, we can calculate
that overall false positive rate of duplicate data blocks is about 0.00003. Less
false positive rate leads to less disk access times. Even with the increase scale of
data, FmdFS can still have a high performance when writing duplicate data.
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Fig. 12. False positive number of duplicate data blocks

5 Related Work

SDFS [1] is an open source de-duplication file system on the basis of FUSE.
The metadata of de-duplication is stored in memory to obtain higher perfor-
mance. SDFS provides flexible storage strategy, and data through de-duplication
is stored n the local node, the remote node, or cloud. In addition, SDFS provides
a snapshot function of file or folder.

LessFS [1] is a high performance inline data de-duplication file system for
Linux. Meanwhile, LessFS is an open source file system on the basis of FUSE.
LessFS supports de-duplication of fixed block, and uses database to store the
metadata of de-duplication.

ZFS [1] is an open source file system designed by Sun Microsystems. The fea-
tures of ZFS include protection against data corruption, support for high storage
capacities, efficient data compression and so on. Meanwhile, ZFS supports de-
duplication.

Some systems have been implemented to solve the issues of data scalability
and performance overhead, including file systems and backup systems. The major
systems are listed as follows.

Venti [5] is the first archival storage system which introduces the technology of
data de-duplication. Because of the memory limitation, the index of data blocks
is implemented using a disk-resident hash table. When search the fingerprint of
a data block, the system firstly needs to go through the index cache; and if the
index cache is not hit, disk accesses are needed. Though the striping technique
is used, such disk accesses still degrade performance of the system. FmdFS uses
binary tree filter and LRU cache to avoid most disk accesses of duplicate data
blocks and non-duplicate data blocks.
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Data Domain [6]is a backup product which supports inline de-duplication
from EMC, it uses Bloom Filter algorithm to reduce disk accesses when look up
the fingerprints of new data blocks. BloomStore [7] propose efficient key-value
store on flash with a Bloom Filter based index structure so that a small RAM
space can support a large number of key-value pairs. But because there is only
one Bloom Filter in Data Domain and Bloom Filter, the false positive rate of
Bloom Filter will be higher with the increase of data. FmdFS uses binary tree
filter, including multi Bloom Filter, even when the amount of data reaches a
certain size, it can still reduce most of the disk access to look up fingerprints of
new data blocks.

Sparse indexing [1] is also a backup system; it first breaks up an incoming
stream into relatively large segments. When a data stream is written, only the
fingerprints of large segments which is similar to this data stream are kept in
RAM. Extreme Binning [9] stores the fingerprints of every data block stored on
the disk. When a new file is backed up, the system first select the representative
data block, then find out whether the fingerprint of the representative data block
exists. If it exits, the system only de-duplicate within the file which contains this
block. Sparse indexing and Extreme Binning both de-duplicate according to the
similarity of sampling; and if the sampling is not accurate, the de-duplication
rate and the performance of system will be affected. FmdFS de-duplicates within
the global scope, and it will make global judgment for every data block through
binary tree filter, which acquires higher de-duplication rate than Sparse indexing
and Extreme Binning.

Flash memory does not have latencies of hard drives and perform well in ran-
dom access, thus it has become a choice used for improving de-duplication per-
formance. SAR [11] [12] effectively exploits the high random-read performance
properties of SSDs and the unique data-sharing characteristic of deduplication-
based storage systems by storing in SSDs the unique data chunks with high
reference count, small size, and non-sequential characteristics. In BloomStore
[7], index structure and key-value pairs are stored compactly on flash memory
to improve its performance. Chunkstash [12] builds up an index table in mem-
ory, so only one flash memory access is required for each query. But query for
fingerprints in flash still requires flash memory access, which doesnt advantage
over the operations performed in memory. Besides, flash memory is high in cost.

6 Conclusions

In this paper, we have designed and implemented FmdFS, a kernel-space de-
duplication file system. First we illustrate the difference between FmdFS and the
traditional file system. Then we propose a scale-adaptive binary tree filter, which
not only avoids fingerprints of most new data blocks accessing to metadata on
disk, but also records the group where duplicate data blocks are stored. And then
analyze the false positive rate of scale-adaptive binary tree filter. Whats more,
we exploit data locality to propose LRU hash cache. Via these methods, FmdFS
reduces tremendously the frequency of disk accesses. Experimental results show
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that FmdFS has a high write performance, particularly when the data stream
is duplicate. When the scale of data of the system reaches the maximum, the
overall false positive rate of non-duplicate data blocks is less than 0.001,and that
of duplicate data blocks about 0.00003. Less false positive rate leads to less disk
access times. Even with the increase scale of data, FmdFS can still have a high
performance when writing duplicate or non-duplicate data.

In the future, in order to improve the comprehensive performance of FmdFS,
the read performance will be investigated.
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Abstract. This paper reports our experience optimizing the perfor-
mance of a high-order and high accurate Computational Fluid Dynam-
ics (CFD) application (HOSTA) on the state of art multicore processor
and the emerging Intel Many Integrated Core (MIC) coprocessor. We
focus on effective loop vectorization and memory access optimization.
A series techniques, including data structure transformations, procedure
inlining, compiler SIMDization, OpenMP loop collapsing, and the use
of Huge Pages, are explored. Detailed execution time and event counts
from Performance Monitoring Units are measured. The results show that
our optimizations have improved the performance of HOSTA by 1.61×
on a two Intel Sandy Bridge processors based computer node and 1.97×
on a Intel Knights Corner coprocessor, the public MIC product. The
microarchitecture level effects of these optimizations are also discussed.

Keywords: Computational Fluid Dynamics, multicore, manycore, per-
formance optimization, performance analysis.

1 Introduction

Computational Fluid Dynamics (CFD) is a technology that uses complex math-
ematics to create computer simulations, with the goal of better understanding
fluid related problems. It is one of the grand challenge application areas of High
Performance Computing (HPC). As HPC hardware is progressing rapidly, there
is a consensus that significantly new CFD algorithms and software are required
to exploit emerging hardware capabilities [1].

Current processor designs continue to grow towards ever-increasing numbers
of cores. Almost all general purpose processors have multiple cores on a chip now.
As a key strategy toward Exascale Computing (1018 calculations per second),
Intel proposed the Many Integrated Core (MIC) architecture and released the
product, the Knights Corner (KNC) coprocessor [2]. By integrating 50+ cores
on one chip and the usage of 512-bit Vector Processing Unit (VPU), a KNC co-
processor provides a peak floating-point performance of over 1 Tflop/s in double
precision (DP). The advancement of the hardware also increases the difficulties of
efficient HPC application development, since the applications must be carefully
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optimized to exploit the plenty of architecture features. HOSTA [3,4] is a CFD
application with high-order and high accurate feature that has been successfully
applied to a wide range of flow simulations. We address the techniques to opti-
mize the performance of HOSTA for Intel multicore and manycore architectures
in this paper. Based on the characteristics of the application code, a series of op-
timization techniques are applied. We perform detailed performance evaluation
and show up a speedup of 1.61× on a Intel Xeon E5 Sandy Bridge processor
based computer node and a speedup of 1.97× on an Intel KNC coprocessor over
the previously optimized version. Our major contributions are:

– We apply a series transformation techniques to the HOSTA code based on
the analysis of its data structures and computations patterns. These tech-
niques effectively improved HOSTA’s performance, both on Intel multicore
processor and Intel MIC coprocessor. They can also be extended to other
applications on Intel multicore and manycore architectures.

– With the microarchitectural level data from the hardware counters, we are
able to uncover the architectural effects of the optimization transformations
used. This helps to identify the performance bottlenecks and opportunities
of future optimization.

The rest of this paper is organized as follows: Section 2 introduces the back-
ground of Intel multicore architecture, Intel MIC architecture and the HOSTA
application. Section 3 introduces our performance optimization techniques ap-
plied to HOSTA code. Section 4 describes the performance evaluation methods
and the results. Section 5 presents a short conclusion.

2 Background

2.1 Intel Multicore and Manycore Architectures

Currently, all HPC systems are using general-purpose multicore processors,
mostly from Intel, AMD and IBM. In the top500 supercomputers list [5] pub-
lished on October 2013, 94 percent of the systems use general purpose processors
with six or more cores. More than half (307) systems from the list are using the
Intel Xeon E5 Sandy Bridge processors [6]. Sandy Bridge is a general-purpose
processor microarchitecture that offers many features for high performance com-
puting and was first released in 2011. Each Sandy Bridge chip contains 2 to 8
cores. Each core has a separate 32 KB L1 instruction cache and a separate 32
KB L1 data cache, and also a unified 256 KB L2 cache. A bi-directional 32-
byte ring connects the cores, the LLC (Last Level Cache), the QPI (Quick Path
Interconnect) agent and the integrated memory controller.

Meanwhile, as a strategy toward Exascale Computing, Intel announced the
MIC architecture at the 2010 International Supercomputing Conference. On De-
cember 2012, Intel released the first MIC product, the Knights Corner copro-
cessor, under the Intel Xeon Phi brand [2]. KNC combines 57 to 61 Intel CPU
cores on a single chip. Each core is a modified P54C-design in-order execution
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core. Each core can execute two instructions per clock cycle. Each core is ca-
pable of supporting 4 hardware threads, resulting in 200+ hardware threads
per coprocessor. Each core has a private L2 cache that is kept fully coherent
by a globally-distributed tag directory. The memory controllers and the PCIe
client logic provide a direct interface to the GDDR5 memory and the PCIe bus,
respectively. All these components are connected together by a bidirectional
ring. An important component of the KNC core is its Vector Processing Unit
(VPU), which features a 512-bit SIMD instruction set. The VPU supports Fused
Multiply-Add (FMA) instructions and can execute 32 SP or 16 DP floating point
operations per cycle. A KNC coprocessor provides over 1 Tflop/s floating-point
DP performance on a single card, with a power consumption within 300 watts.

The MIC architecture provides general-purpose programming environments
similar to that of the Intel Xeon processor[7,8]. Currently, a MIC coprocessor
is used as an accelerator connected to a general-purpose processor based node
through the PCIe bus. It is able to run a full service Linux OS and application
codes written in standard programming languages like FORTRAN, C/C++. The
parallel programming of the MIC can be made by using industry-standard paral-
lel programming techniques like OpenMP, POSIX threads, or MPI. As a result,
application performance optimization on MIC coprocessors will also benefit the
application performance when runs on Intel Xeon processors. Intel also provides
middleware to manage data transfers between the processor and coprocessor.
The high performance, power-efficiency and easy to programming features have
made MIC attractive for the HPC community. Vendors are releasing MIC based
servers and large scale computers. In the top500 supercomputers list [5] pub-
lished on November 2013, the Tianhe-2 (No. 1) and the Stampede (No. 7) are
equipped with MIC coprocessors. While the peak performance of the MIC ar-
chitecture is attractive, the performance achieved by real applications are more
desirable. Intel has demonstrated the high performance that can be obtained
on MIC architecture with some math kernels and the Linpack. However, few
works have been done to demonstrate the effectiveness of using MIC coproces-
sors to accelerate large scale applications. Performance engineering of real world
applications on the MIC architecture makes sense to the HPC community.

2.2 The HOSTA Application

HOSTA is a high-order and high accurate CFD application initially developed
by the State Key Laboratory of Aerodynamics of China. It solves the time-
dependent and time-independent Navier-Stokes equations on multi-block struc-
tured grids based on the Weighted Compact Nonlinear Schemes (WCNS) [3,4]
proposed by Xiaogang Deng et al. The governing equations are discretized by
using the finite difference methods (FDM). The unique feature of HOSTA is
its ability to solve flow problems with complex grids. It has been successfully
applied to a wide range of flow simulations. HOSTA is parallelized in hybrid
MPI/OpenMP programming model with about 25000 lines of Fortran-90 code.
At the MPI level, each process is assigned one or more distinct grid blocks. For
the calculations within each block, OpenMP parallelism is utilized.
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Input the grids and the control parameters

Prepare the linear system

Solve the sparse linear system

Exchange boundary variables and singularities

Calculate the residuals

Compute the force, moment and heat

Max number of sub-
iterations?

Yes

No

Max number of time steps?
No

Yes

Sub-iterations

Time steps

Stop

Start

Init the flow field, calculate the geometry values

Update the flow variables

Fig. 1. The high-level flow chart of HOSTA. The figure shows the case for steady
state flow computation. In case of unsteady state flow computation, the linear system
preparation and flow variables updating will be enclosed in the sub-iteration loop.

Fig. 1 shows the high-level flow chart of HOSTA. HOSTA spends most of its
runtime in the time step loop. Each time step includes the following phases: 1)
Preparing the linear system. This phase includes operations to set the bound-
ary conditions, to exchange the boundary variables and singular variables, to fill
corners and to calculate the inviscid and viscid flux. A large fraction of runtime
is spent on the inviscid and viscid flux calculations. 2) Solving the sparse lin-
ear system. This phase also takes a large fraction of runtime. 3) Exchanging of
boundary variables and singular variables. This involves communication among
processes that have neighboring grid blocks and common singular points. 4) Cal-
culating the residuals, which involves global reduction operations. We have ap-
plied several techniques to optimize HOSTA’s performance in our previous work
[9]. These optimizations include defining critical arguments into constant pa-
rameters to enable specific compiler optimizations, multi-level data buffering to
enable better memory access, and loop transformations to optimize the memory
access performance. Performance evaluation showed a uniprocessor performance
improvement of 22.2% to 28.9% over the original version on a Intel Xeon X5670
processor. The optimized version of HOSTA is the baseline in this paper.
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3 Optimizing HOSTA

A series of performance optimizations techniques are applied to the HOSTA
code. We detail these techniques in this section.

3.1 Data Structure Transformations

HOSTA is a multi-block structured grids based CFD application. Its main data
structures are hierarchically defined as user defined structures. In the baseline
HOSTA code, the main data structures are defined as the follows. At the lowest
level, a fld array structure is defined as:

type fld_array
integer(kind_int) :: fldtype
real(kind_real),pointer :: r3d(:,:,:)

end type fld_array

where the three dimensions of r3d determine the indices of the three axes.
Based on fld array, a structure var block is defined as:

type var_block
character(len=len_char_name) :: varname
type(fld_array), pointer :: fld(:)

end type var_block

Then the actual data structures are defined as follows, where different elements
of the arrays point to different blocks:

type(var_block), pointer :: mb_qc(:) ! conservation variables
type(var_block), pointer :: mb_pv(:) ! primitive variables
type(var_block), pointer :: mb_vol(:) ! grid jacobian
type(var_block), pointer :: mb_sxyz(:) ! grid derivatives
type(var_block), pointer :: mb_dpv(:) ! speed and temperature gradient
...

Such data structures correspond naturally to the variables stored on multi-
block structured grids. For example, mb pv(NB)%fld(1)%r3d(I,J,K) stores the
first primitive variable at the coordinate point (I,J,K) of the NB-th block. We
take as example the subroutine that calculate the viscid flux to show the access
patterns of these data structures, as shown in Fig. 2. We omit a lot of other
lines of code and focus the access patterns of the data structures of mb pv and
mb dpv. We use several “;” separated states in a single line to save space.

As can be seen from Fig. 2, for the upper data structures, the data accesses
of the two inner most loops encounter large stride. Further, the three-tier data
structures require more instructions to resolve in the execution. So we transform
the thee-tier data structure into two-tier data structure. First, we change the
two tiers data structures fld array and var block into a one tier structure by
defining a new var block as follows:

type var_block
character(len=len_char_name) :: varname
integer(kind_int) :: fldtype
real(kind_real), dimension(:,:,:,:), pointer :: r4d

end type var_block
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real, pointer:: vn(:,:),ve(:,:); real :: kx,ky,kz,ex,ey,ez,cx,cy,cz
type(fld_array), pointer :: dpv(:),pv(:)
dpv => mb_dpv(nb)%fld; pv => mb_pv(nb)%fld
! I-direction
!$OMP parallel private(vn,ve,...)

...
!$OMP do

do k=kMIN,kMAX; do j=jMIN,jMAX
...
do i=iMIN,iMAX

do m=4,15
vn(i,m) = dpv(m-3)%r3d(i,j,k)

end do
vn(i,16) = vis; vn(i,17) = kcp; vn(i,18) = pv(2)%r3d(i,j,k)
vn(i,19) = pv(3)%r3d(i,j,k); vn(i,20) = pv(4)%r3d(i,j,k)

end do
call sub_intplt(vn,ve,...)
do i=iMIN,iMAX

kx = ve(i,1); ky = ve(i,2); kz = ve(i,3)
call flux_vis(kx,ky,kz,...)

end do
...

end do; end do
!$OMP end do nowait
!$OMP end parallel

! J-direction
!OMP parallel private(vn,ve,...)

...
!$OMP do

do k=kMIN,kMAX; do i=iMIN,iMAX
...
do j=jMIN,jMAX

do m=4,15
vn(j,m) = dpv(m-3)%r3d(i,j,k)

end do
vn(j,16) = vis; vn(j,17) = kcp; vn(j,18) = pv(2)%r3d(i,j,k)
vn(j,19) = pv(3)%r3d(i,j,k); vn(j,20) = pv(4)%r3d(i,j,k)

end do
call sub_intplt(vn,ve,...)
do j=jMIN,jMAX

ex = ve(i,1); ey = ve(i,2); ez = ve(i,3)
call flux_vis(ex,ey,ez,...)

end do
...

end do; end do
!$OMP end do nowait
!$OMP end parallel

! K-direction
!$OMP parallel private(vn,ve,...)

...
!$OMP do

do j= jMIN,jMAX; do i= iMIN,iMAX
...
do k=kMIN,kMAX

do m=4,15
vn(k,m) = dpv(m-3)%r3d(i,j,k)

end do
vn(k,16) = vis; vn(k,17) = kcp; vn(k,18) = pv(2)%r3d(i,j,k)
vn(k,19) = pv(3)%r3d(i,j,k); vn(k,20) = pv(4)%r3d(i,j,k)

end do
call sub_intplt(vn,ve,...)
do k=kMIN,kMAX

cx = ve(k,1); cy = ve(k,2); cz = ve(k,3)
call flux_vis(cx,cy,cz,...)

end do
...

end do; end do
!$OMP end do nowait
!$OMP end parallel

Fig. 2. Code extracted from the baseline viscid flux calculating subroutine

where the left most three dimensions of r4d determine the indices of the three
axes, and the right most dimension of r4d determines the variable. Then the
actual data structures are defined as follows, where different elements of the
arrays point to different blocks:
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type(var_block), pointer :: mb_qc(:) ! conservation variables
type(var_block), pointer :: mb_pv(:) ! primitive variables
type(var_block), pointer :: mb_vol(:) ! grid jacobian
type(var_block), pointer :: mb_dpv(:) ! speed and temperature gradient
...

The form of the actual data structures seems not changed but the structure
that they point to has changed. These new data structures will facilitate our
later optimizations. As most parts of HOSTA uses these data, data structure
transformations involve a large amount of work. After data structure transfor-
mations, the previous code changes into the following form shown in Fig. 3 (to
save space, only the code for I-direction is shown):

real, pointer:: vn(:,:),ve(:,:); real ::kx,ky,kz,ex,ey,ez,cx,cy,cz
type(fld_array), pointer :: dpv(:),pv(:)
dpv => mb_dpv(nb)%fld; pv => mb_pv(nb)%fld
!I-direction
!$OMP parallel private(vn,...)
...
!$OMP do
do k=kMIN,kMAX; do j=jMIN,jMAX

...
do i=iMIN,iMAX

do m=4,15
vn(i,m) = dpv(i,j,k,m-3)

end do
vn(i,16) = vis; vn(i,17) = kcp; vn(i,18) = pv(i,j,k,2)
vn(i,19) = pv(i,j,k,3); vn(i,20) = pv(i,j,k,4)

end do
call sub_intplt(vn,ve,...)
do i=iMIN,iMAX

kx = ve(i,1); ky = ve(i,2); kz = ve(i,3)
call flux_vis(kx,ky,kz,...)

end do
...

end do; end do
!$OMP end do nowait
...
!$OMP end parallel

Fig. 3. The code from the viscid flux calculating subroutine after data structure trans-
formation (only code for I-direction is shown)

3.2 Code Transformation to Enable Better Vectorization

Effective utilization of vector instructions is crucial on both Intel multicore and
manycore architecture. Using the low level programming methods (e.g. the com-
piler Intrinsics) is not practical since HOSTA is programmed in Fortran and the
code size is large. We are intended to enable the compiler to identify vectoriza-
tion opportunities and generate vector instructions automatically. In the code
shown in Fig. 3, simply vectorize the inner most loop (the do m loop) is less
optimal since only a small fraction of computations is vectorized. It is better
to vectorize the second inner most loop. Since the vectorization is better to be
applied to the innermost loop of a nest [10], we fully unrolled these “do m” loops.

Vectorization of loop also requires that there are no function or subroutine
calls except intrinsic math functions in the loop. The Intel Fortran compiler sup-
ports using “DIR$ ATTRIBUTES FORCEINLINE” directive to enable compiler
automatic inline. However, when we tried to use this directive for the subrou-
tines (e.g. flux vis in Fig. 3) in the innermost loops, the Intel Fortran compiler
fails to vectorize these innermost loops, even when the !dir$ SIMD directive is
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placed before these loops to enforce automatic vectorization. So we have manu-
ally inlined the subroutine in the innermost loops. Fig. 4 shows the transformed
code of Fig. 3 as an example of our vectorization optimizations.

real,pointer:: vn(:,:),ve(:,:); real :: kx,ky,kz,ex,ey,ez,cx,cy,cz
type(fld_array), pointer :: dpv(:),pv(:)

dpv => mb_dpv(nb)%fld; pv => mb_pv(nb)%fld
! I-direction
...
!$OMP parallel private(vn,)
...

!$OMP do
do k=kMIN,kMAX; do j=jMIN,jMAX
...

!DIR$ SIMD LINEAR(i:1)
do i=iMIN,iMAX

vn(i,4 ) =dpv(i,j,k,1 )
vn(i,5 ) =dpv(i,j,k,2 )
...
vn(i,15) =dpv(i,j,k,12)
vn(i,16) = vis
vn(i,17) = kcp
vn(i,18) = pv(i,j,k,2)
vn(i,19) = pv(i,j,k,3)
vn(i,20) = pv(i,j,k,4)

end do
call sub_intplt(vn,ve,)

!DIR$ SIMD LINEAR(i:1)
do i=iMIN,iMAX

kx = ve(i,1)
ky = ve(i,2)
kz = ve(i,3)
{code for the inlined subroutine flux_vis}

end do
...
end do; end do

!$OMP end do nowait ... !$OMP end parallel

Fig. 4. The code after transformations to enable vectorization

While the code for J-direction and K-direction are vectorized in much the
same way as for I-direction, there are some differences. In the vectorized loops in
code for I-direction, the access strides to array dpv and array pv are 1. However,
in the vectorized loops in code for J-direction and K-direction, the access strides
to array dpv and array pv are much larger, as J and K are not the left most
dimensions of these arrays. This may negatively affect the vectorization perfor-
mance. Based our test, vectorizing the code for J-direction and K-direction also
improves the performance despite such effects.

In some circumstances, we have to permute some adjacent loops to enable
better vectorization. Fig. 5 shows an example. The code shown in Fig. 5 (a) is
extracted from the subroutine that calculates the viscid flux (after data structure
transformation). We permute loop m and loop i, and fully unroll the loop m, as
shown in Fig. 5 (b). While the access strides to array rhs and array dn increase
from 1 to large numbers, the code in Fig. 5 (b) performs better than the code
in Fig. 5 (a).

3.3 Using Collapse Clause to Optimize OpenMP Parallelism

The OpenMP 3.0 specification provides the collapse clause to combine multi-
ple closely nested loops into one. If more than one loop is associated with the
loop construct, then the iterations of all associated loops are collapsed into one
larger iteration space which is then divided according to the schedule clause.



CFD App. Performance Optimizations on Multicore and Manycore, NUDT 91

do m=1,neqn
do i=1,ni

rhs(i,j,k,m)=rhs(i,j,k,m)+re*dn(i,m)
end do
end do

(a)The original loop nest

!dir$ SIMD LINEAR(i:1)
do i=1,ni

rhs(i,j,k,1)=rhs(i,j,k,1)+re*dn(i,1)
rhs(i,j,k,2)=rhs(i,j,k,2)+re*dn(i,2)
rhs(i,j,k,3)=rhs(i,j,k,3)+re*dn(i,3)
rhs(i,j,k,4)=rhs(i,j,k,4)+re*dn(i,4)
rhs(i,j,k,5)=rhs(i,j,k,5)+re*dn(i,5)

end do
(b)permuted and fully unrolled loop

Fig. 5. Loop permutation to enable better vectorization

Collapsing increases the iteration space and is considered to be more efficient
than nested parallel regions.We have tried to use the collapse clause for HOSTA’s
OpenMP loops wherever is applicable. We find that in HOSTA, all key loop nests
in the linear system preparation, the inviscid and viscid flux calculations, and
the residual calculations can be collapsed. However, the collapse clause cannot
be applied to any of the OpenMP loops in the subroutines for the sparse linear
system solution due to data dependencies.

3.4 Using Huge Pages

On modern processors, access to the memory must be mapped from virtual to
physical address, and reading the page table every time can be costly. Transla-
tion Look aside Buffer (TLB) is used to cache the virtual to physical address
mappings. When a TLB miss occurs, the page tables must be searched for the
correct mapping. Larger page size means that a TLB cache of the same size can
keep track of larger amounts of memory, hence reduces the costly TLB misses
and memory allocation overhead. The KNC coprocessor has a two-level TLB and
two page sizes (4KB and 2MB). By default programs use 4K pages, in which
the L2 TLB acts as a page table cache and reduces the L1 TLB miss penalty
to around 25 clock cycles. It also support large (2 MB) pages, in which the L2
TLB acts as a standard TLB, and the L1 miss penalty is only around 8 cycles.
To enable HOSTA to use the Huge Pages on KNC, the libhugetlbfs [11] is used.
From our test, this evidently improves the performance.

The SNB processor also supports the default page size (4KB) and larger
page size (2MB). However, it seems that enabling Huge Paging on SNB will not
improve the performance of HOSTA. So Huge Pages is not enabled when we test
the performance of HOSTA on SNB.

4 Performance Evaluation

4.1 Experimental Platforms

The performance evaluation is done on a computer node based on two eight-core
Intel Xeon E5-2670 processors, with one KNC coprocessor attached to the node
through the PCIe bus. The setup of the two platforms is shown in Table 1.
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Table 1. The hardware and software setup of the experimental platforms

Items KNC SNB
Code name Intel Xeon Phi 3110P Intel Xeon E5-2670
Cores 57 8
Clock rate 1.1 GHz 2.60 GHz
DP Peak 1003.2 GFlop/s 332.8 GFlop/s
L1 cache 32/32 KB per core 32/32 KB per core
L2 cache 512 KB per core 256 KB per core
L3 cache none 20 MB
Vector width 512Bit 256Bit (AVX)
Memory 6GB GDDR5 (ECC on) 48GB DDR3 (ECC on)
Memory bandwidth 240 GB/s 102.4 GB/s
OS Intel MSPP release 2.1 RedHat Linux Server 6.1
Compiler Intel composer XE 2013.0.079
Compiler switches -mmic -O3 -ipo -no-prec-div

-fno-alias -align array64byte
-O3 -AVX -ipo -no-prec-div
-fno-alias -align array32byte

For the performance measurement on SNB, the target application runs exclu-
sively on the host node. The Hyper-Threading (HT) feature of SNB is disabled
through the BIOS, as HOSTA is a CPU-intensive HPC application that does
not benefit from HT technology. For the performance measurement on KNC, all
applications run exclusively in native model on the single KNC card. Huge Pages
is enabled with the libhugetlbfs when test of the performance of the optimized
version of HOSTA. We have disabled most of the KNC’s power and frequency set-
tings by setting the “PowerManagement” field to “cpufreq off; corec6 off; pc3 off;
pc6 off” in the configure file. This will reduce the performance fluctuation across
different runs for the same application configuration.

4.2 Application Configuration

The baseline version and the optimized version of the HOSTA are used in the
experiment. In the test, the floating-point data type used in HOSTA is double
precision. The test case is the viscous flow around the naca0012 airfoil. The
velocity and the pressure of the whole flow field are calculated. The original mesh
of the naca0012 airfoil has a single block with 940576 grid cells, 1000100 grid
points. For this mesh, HOSTA consumes about 1.7 GB memory when runs with
1 process. For MPI parallelization, an off-line repartition tool is used to partition
the mesh into multiple blocks before the test. Load balance can be achieved by
near evenly partitioning the grid points to each MPI process. We should note that
after the partition, the total number of the cells of the mesh remains the same,
but the total number of the grid points of the mesh will increase slightly with
the number of processes. When 64 MPI processes are used, the total number of
grid points of the mesh is 1064000, 6.4% more than the original one. As HOSTA
is discretized by using the FDM, the increase in the number of grid points will
also increase the number of calculations proportionally.

4.3 Runtime Comparison

In real-world simulation, HOSTA will converge after tens of thousands time steps
and most of the runtime is spent on the time step loops. The performance of the
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time step loops is of primary concern. So the runtime of 10 “pure” time steps
instead of the whole application is reported here. The number of sub-steps in
each time step is 12. As for the OpenMP thread affinity, the OpenMP affinity
variable is not set on SNB and is set as “KMP AFFINITY=compact,1” on KNC,
based our performance test.

Fig. 6 shows the runtime in seconds of 10 time steps of the two versions of
HOSTA codes for different MPI / OpenMP configurations on SNB, where the
horizontal axis is the number of OpenMP threads per MPI rank. The legend
“1P” represents 1 process, “2P” presents 2 processes, and so forth. Since the HT
feature of SNB processor is turned off, there are only 16 physical threads on a
SNB node. So the maximum number of threads per process is set to 16. As shown
in Fig. 6 (a), the baseline version spends a runtime of 536.10 seconds when it
runs with a single thread (1 process / 1 thread) on SNB. The shortest runtime
is achieved when the application runs with 4 processes and each process has
4 threads, where the runtime is 38.30 seconds. The maximum parallel speedup
obtained on a SNB node over a single thread is 14.00. As shown in Fig. 6 (b), the
optimized version spends a runtime of 305.83 seconds when it runs with a single
thread on SNB. The shortest runtime is also achieved when the application runs
with 4 processes and each process has 4 threads, where the runtime is 23.77
seconds. The maximum parallel speedup obtained on a SNB node over a single
thread is 12.87.
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Fig. 6. Runtime of 10 time steps of the two versions of HOSTA on SNB

Fig. 7 shows the runtime in seconds of 10 time steps of two versions of HOSTA
codes for different MPI / OpenMP configurations on KNC. While there are 57
cores on the KNC coprocessor used in this experiment, using only 56 cores may
achieve better performance because one core is reserved for the OS and services.
So the numbers of OpenMP threads per MPI rank used in the test not only
include 1, 2, 4, ..., 128, but also include 7, 14, 28, 56 and 112. As shown in Fig.
7 (a), the baseline version of HOSTA spends a runtime of 7759.72 seconds when
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it runs with a single thread on KNC. The shortest runtime is achieved when
the application runs with 32 processes and each process has 7 threads, where
the runtime is 171.38 seconds. The maximum parallel speedup obtained on a
coprocessor over a single thread is 45.28. As shown in Fig. 7 (b),the optimized
version of HOSTA spends a runtime of 4054.47 seconds when it runs with a
single thread on KNC. This compares sharply with the single thread runtime
on SNB. The shortest runtime is achieved when the application runs with 32
processes and each process has 8 threads, where the runtime is 86.87 seconds.
The maximum parallel speedup obtained on a coprocessor over a single thread
is 46.67.
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Fig. 7. Runtime of 10 time steps of the two versions of HOSTA on KNC

From the above data, we see that the performance improvement of our opti-
mization techniques is significant both on SNB and KNC. For a single thread,
the optimized version runs 1.75× faster on SNB and 1.91× faster on KNC than
the baseline version. For the maximum performance on a whole SNB node, the
optimized version is about 1.61× faster than the baseline version. For the maxi-
mum performance on a whole KNC coprocessor, the optimized version is about
1.97× faster than the baseline version.

4.4 Microarchitecture Performance Analysis

To further investigate the interaction of the application and the underlying ar-
chitectures, and to reveal the reasons of the performance improvement of our
performance optimization techniques, we go into the microarchitecture level.
Both SNB and KNC have on chip Performance Monitoring Units (PMUs) to
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facilitate collecting microarchitecture level performance data. A series of PMU
events on the KNC and SNB are measured with the Intel Vtune [12], a powerful
profiling tool that can collect hardware performance data through the on chip
PMUs. To facility the performance analysis and to avoid the effect of parallel
scalability difference, we only measure the microarchitecture level performance
of the serial (single thread) code.

Table 2 shows the number of event counts of the baseline code and the opti-
mized code on SNB. The description of the PMU events on SNB can be found
in Intel 64 and IA-32 Architectures Software Developer’s Manual [13]. The ra-
tios of the event counts of the optimized code divided by the event counts of
the baseline code are also provided. The data in table 2 clearly show the effects
of the optimization techniques to the microarchitecture. The number of 256-bit
AVX instructions increases for more than 2.0× and most of the floating-point
operations are performed by AVX instructions in the optimized code. The num-
ber of packed SSE instructions also increases for more than 4.6×. This verifies
that the optimized code makes much better use of the vector instructions. The
number of loads and the number of stores are also significantly reduced as a re-
sult of the data structure transformation. The number of instructions is reduced
by more than one half, whose reasons include that less number of floating in-
structions are executed because the more efficient usage of the AVX instructions
and packed SSE instructions, accessing the two-tier data structures requires less
instructions, and the reduced instructions as a result of loop unrolling and sub-
routine inline. The number of branches and the number of mispredicted branches
are reduced owing to the loop unrolling and subroutine inlining optimizations.
However, the number of LLC misses increases in the optimized code. The rea-
son is that the loop permutations applied (see 3.2) have increased the memory
access strides of some arrays. The cost of DTLB misses and also increases for
the same reason. The number of LLC misses is much smaller as compared with
the number of loads and stores. The cost of DTLB misses is also much smaller
as compared with the total number of CPU clocks. So their negative effects to
the performance are limited.

Table 2. Number of event counts in K for the two versions of codes on SNB

Events Baseline Optimized Ratio
INST RETIRED.ANY 1936208000 873492000 0.4511
CPU CLK UNHALTED.THREAD 1378612000 809870000 0.5875
MEM UOPS RETIRED.ALL LOADS 697216000 318528000 0.4569
MEM UOPS RETIRED.ALL STORES 197840000 100760000 0.5093
MEM LOAD UOPS RETIRED.LLC MISS 1436800 2280600 1.5873
MEM LOAD UOPS RETIRED.LLC HIT 2993200 2175600 0.7268
FP COMP OPS EXE.X87 2600000 2704000 1.0400
FP COMP OPS EXE.SSE PACKED DOUBLE 2216000 10232000 4.6173
FP COMP OPS EXE.SSE SCALAR DOUBLE 346072000 61896000 0.1789
SIMD FP 256.PACKED DOUBLE 53816000 118536000 2.2026
BR INST EXEC.ALL BRANCHES 77627200 45203200 0.5823
BR MISP EXEC.ALL BRANCHES 122400 69600 0.5686
DTLB STORE MISSES.WALK DURATION 6272000 7520000 1.1990
DTLB LOAD MISSES.WALK DURATION 51976000 108408000 2.0857
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Table 3. Number of event counts in K for the two versions of codes on KNC

Events Baseline Optimized Ratio
INSTRUCTIONS EXECUTED 3205984809 1163881746 0.3630
CPU CLK UNHALTED 8465052698 4818967228 0.5693
BRANCHES 155070465 112860339 0.7278
BRANCHES MISPREDICTED 43020129 28710086 0.6674
DATA PAGE WALK 28080084 27540083 0.9808
LONG DATA PAGE WALK 3060009 4410013 1.4412
DATA READ 833762501 331740995 0.3979
DATA READ MISS 17550053 17910054 1.0205
DATA WRITE 237600713 95310286 0.4011
DATA WRITE MISS 6030018 7200022 1.1940
L2 DATA READ MISS MEM FILL 5580017 6750020 1.2097
L2 DATA WRITE MISS MEM FILL 2790008 1800005 0.6452
VPU ELEMENTS ACTIVE 7687373062 3293109879 0.4284
VPU INSTRUCTIONS EXECUTED 1493104479 570601712 0.3822

Table 3 shows the number of event counts of the baseline code and the op-
timized code on KNC. The description of these PMU events can be found in
the Intel Xeon Phi Coprocessor PMU document [14]. The ratios of the event
counts of the optimized code divided by the event counts of the baseline code
are provided, too. We see that the number of memory data reads committed by
L1 cache, the number of memory data writes committed by L1 cache are sig-
nificantly reduced. This is the result of the data structure transformations. The
number of branches and the number of branch miss-predictions are significantly
reduced owing to the loop unrolling and subroutine inline transformations. The
number of instructions is also significantly reduced. Contrary to the circumstance
on SNB, it seems that the number of VPU instructions and the cumulative num-
ber of elements active for VPU instructions issued are also significantly reduced.
The reason is that about half instructions on KNC are executed by the VPU. As
the number of instructions is greatly reduced, the number of VPU instructions
is also reduced. The number of memory read accesses that miss the internal
data cache and the number of memory write accesses that miss the internal data
cache increase slightly, the reason is the loop permutations applied (see 3.2) have
increased the memory access strides of some arrays. The number of “long” data
page walks, the data read accesses that missed the L2 cache and were satisfied
by main memory increases slightly. However, the number of data write accesses
that missed the L2 cache and were satisfied by main memory is reduced. Overall,
the optimized code costs much less CPU clocks.

5 Conclusion

This paper reports our experience optimizing HOSTA, a high-order and high
accurate CFD application, for Intel multicore processors and the MIC copro-
cessors. The focused subject is the effective usage of the vector instructions,
memory access optimizations and the improvement of the parallelism. A series
of techniques are explored based on the characteristics of the application code.
Detailed performance evaluation is performed on a two Intel Xeon E5 Sandy
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Bridge processors based computer node and an Intel Knights Corner copro-
cessor. The results show that our optimization techniques have improved the
performance of HOSTA by 1.61X on the computer node and by 1.97X on the
coprocessor. The microarchitectural level performance data are measured and
analyzed, which shows the interaction of the application and the underlying
architectures, reveals the reasons of the performance improvement of our per-
formance optimization techniques. The less hoped for is that the performance
on a KNC coprocessor is not comparable to that on a SNB node, both before
and after the optimization. This indicates that the MIC architecture should be
improved to provide a better performance for such real-world CFD applications.
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Abstract. Graphics processing units (GPUs) have shown increased popularity 
in general-purpose parallel processing. This massively parallel architecture al-
lows GPUs to execute tens of thousands of threads in parallel to solve heavily 
data-parallel problems efficiently. However, despite the tremendous computing 
power, optimizing GPU kernels to achieve high performance is still a challenge 
due to the sea change from CPU to GPU and lacking of tools for programming 
and performance analysis. 

In this paper, we propose a throughput-aware analytical model to estimate 
the performance of GPU kernels and optimizations. We construct a pipeline for 
global memory access servicing and redefine the compute throughput and 
memory throughput as the speed of memory requests arriving and leaving the 
pipeline. Based on concluding the kernel throughput limiting factor, GPU pro-
grams are classified into compute-bound and memory-bound categories and 
then we predict performance for each category. Besides, our model can provide 
useful information on the direction of optimization and predict the potential per-
formance benefits. We demonstrate our model on a manually written bench-
mark as well as the matrix-multiply kernel and show that the geometric mean of 
absolute error of our model is less than 6.5%. 

Keywords: GPU, compute-bound, memory-bound, performance prediction, 
performance bottleneck.  

1 Introduction 

In recent years, the ceiling of high performance computing has been updated multiple 
times by the GPU-based heterogeneous systems [1]. The GPU architecture has gar-
nered wide popularity since the increasing programmability and the ever friendly 
programming model. Even though hardware is providing high performance compu-
ting, implementing and optimizing parallel programs to take full advantage of the 
potential computing power still remains a big challenge. 

Several programming languages have been proposed to reduce programmer’s bur-
den in porting parallel applications to GPUs such as Brook++ [2], CUDA [3], and 
OpenCL [4]. However, even with these newly developed programming languages, 
programming and optimizing programs to achieve better performance is still time-
consuming and error prone.  
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To provide insight into performance bottlenecks in massively parallel architectures, 
especially GPU architectures, we propose a simple analytical model. The model can 
be used statically without executing a GPU application. The basic intuition of our 
analytical model is that the ability to hide long latency memory operations with inter-
leaving executions of computation from different thread warps can be obtained based 
on the warp level parallelism of both computations and memory operations. By con-
structing the memory pipeline model and extending the concept of compute through-
put, we classify GPU applications into compute-bound and memory-bound categories, 
and then we estimate the execution time for each category. 

We evaluate our analytical model based on the CUDA programming model, which 
is specific for the CUDA-enabled NVIDIA GPUs. We compare the results of our 
analytical model with the actual execution time collected on the NVIDIA GPUs. Our 
results show that the geometric mean of absolute error of our model is less than 6.5%. 

The contributions of our work can be concluded as follows: 

• We construct the memory pipeline model and extract the memory throughput 
based on capturing the performance factor of uncoalesced memory access 

• We redefine the concept of compute throughput to be the frequency of global 
memory requests leaving the SMs and reaching the memory pipeline 

• We classify GPU applications into two categories as memory-bound and compute-
bound based on values of redefined compute throughput and memory throughput 

• An analytical performance prediction model is proposed to estimate the perfor-
mance of both compute-bound and memory-bound GPU kernels. 

2 Background 

We provide a brief background on the GPU architecture and the programming model 
that we have modeled. In this work, although we focus on a CUDA-enabled NVIDIA 
GPU, we believe our performance model is also applicable to any GPU architecture 
and GPU programming API. 

2.1 Overview of GPU Architecture and CUDA Programming Model 

Graphics Processing Units (GPUs) have emerged as a promising alternative building 
block for the construction of high performance supercomputers, due to their unique 
combination of outstanding performance, energy-efficiency, density and cost [5].  

The GPU architecture consists of several streaming multi-processors (SMs), each 
containing a set of streaming processors (sp) that run threads in a SIMD manner. All 
SMs are connected to an off-chip DRAM memory via a interconnect network. Tesla 
M2050 has 14 SMs, each equipped with 32 streaming processors, which makes for a 
total of 448 processing cores [6]. The M2050 employs a dual-issue instruction dis-
patcher per each SM which can issue two instructions to 32 GPU cores every two  
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clock cycles and thus an average speed of issuing one instruction per clock cycle is 
achieved. The global memory space is divided into 6 partitions, each with a memory 
controller.  

The CUDA programming model groups GPU threads into a grid of thread blocks. 
Each thread block is mapped to a SM in a round-robin manner and multiple thread 
blocks can be running simultaneously on one SM. Each thread is assigned a thread ID 
(tid), which is used for the data distribution and control condition. Threads are 
created, managed, scheduled and executed at the granularity of thread warp, which 
contains 32 threads for most GPUs. The CUDA memory model has an off-chip global 
memory space, which resides in the DRAM memory and is accessible by all threads. 

2.2 Related Work 

A commonly introduced metric to characterize a program is arithmetic intensity 
which accounts operations per data transferred between the processor and the cache. 
The Roofline performance estimation model [7] introduces operational intensity as 
another metric which accounts operations per byte that transferred between DRAM 
and the processor. Zhang and Owen [8] constructed a GPU performance model in a 
quantitative way to estimate the execution time of arithmetic pipeline, shared memo-
ry, and global memory respectively. Performance bottlenecks are derived based on the 
modeled execution time of each component. Hong and Kim [9] authored an excellent 
study on analytical GPU performance modeling and using two metrics CWP and 
MWP to specify a program to be compute-intensive or memory-intensive, which is 
the most related to our method. However, we classify and predict performance of 
GPU kernels based on the kernel throughput which complies with the throughput-
oriented GPU architecture. 

In the past few years, many studies on GPU performance modeling have been pro-
posed. Baghsorkhi et al. [10] proposed a work flow graph (WFG)-based analytical 
model to predict the performance of GPU applications. The WFG is an extension of a 
control flow graph (CFG), where nodes represent instructions and arcs represent laten-
cies. Meng et al. [11] proposed a GPU performance projection framework to predict 
performance in a cross-platform style based on the abstraction of CPU code skeletons.  

Hong and Kim [9] proposed the MWP-CWP based GPU analytical model, which 
shares the most common with our proposed model in the following two aspects: (1) 
the two analytical models extract parallelism from GPU kernels at the granularity of 
thread warps and overall execution time is counted on the ability of hiding the latency 
of global memory accesses by computations. (2) The latency of an uncoalesced global 
memory transaction can be synthesized as the sum of a base latency and multiple 
extra delays, each representing the departure delay between uncoalesced global mem-
ory transactions. Apart from that, we also see differences between the two models. 
First, in our work, the departure delay between two uncoalesced global memory ac-
cesses turns out to be the DRAM access latency of one memory transaction which can 
be calculated based on the values provided in the GDDR datasheet instead of profil-
ing. Second, we construct a pipeline model for global memory accesses and utilize the 
pipeline throughput to describe the memory performance. Third, the computations 
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and memory access operations in the kernels are separated and performances of both 
parts are represented by the extended compute throughput and memory throughput. 
As GPU programs are classified into compute-bound and memory-bound categories, 
the potential performance improving needs to emphasize on enhancing the value of 
compute throughput or memory throughput. In summary, our model predicts perfor-
mance of GPU kernels in a more straightforward way and thus is more suitable for the 
throughput-oriented GPU architectures. 

3 Program Classification 

In this section, we first redefine compute throughput and memory throughput, and 
then classify GPU kernels into compute-bound and memory-bound categories.  

3.1 Compute Throughput and Memory Throughput 

Originally, the compute throughput refers to the throughput of arithmetic pipeline in a 
SM. We redefine the content of compute throughput as the time interval between 
warp switches to represent the frequency of memory requests being issued to the 
global memory interface. As all SMs can issue memory requests to global memory 
concurrently, the time interval should be divided by #SM, which is the number of 
SMs in a GPU. It is determined by the efficiency of executing one computation period 
which may be related to the performance factors of control flow divergence [12] and 
shared memory bank conflict [10] as we consider shared memory instructions have 
identical latency with compute instructions.  

 

Fig. 1. A pipeline model for global memory accesses 

The process of a global memory access includes several operations such as virtual 
address calculation, on-chip crossbar inter-connect traversal, virtual to physical ad-
dress translation and physical to raw address translation, and DRAM access  per each 
memory request. The DRAM access time here refers to the latency of reading/writing 
access to the DRAM chips and thus the latency is just small portion of the whole 
global memory access cost. In our model, the above operations are further divided 
into even more subtle steps that can be combined together to compromise a pipeline 
for memory request servicing, of which the DRAM access takes up the longest stage. 
According to the global memory coalescing rule implemented, multiple memory 
transactions may be caused per each request and multiple memory segments need to 
be transferred between DRAM and SMs, named uncoalesced memory access. In this 
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case, the multiple transactions can be synthesized by one memory transaction with 
identical steps except a lengthened DRAM access stage due to the increased trans-
ferred memory segments. Thus, the global memory accesses can be serviced by the 
pipeline represented in Fig 1 and the global memory performance can be formulated 
via the pipeline throughput. The redefined memory throughput actually describes the 
frequency of memory accesses leaving the global memory. 

The duration of each pipeline stage does not need to be equal but a guarantee 
should be made that DRAM access is the most inefficient among all pipeline stages 
and thus memory throughput is calculated as the reciprocal of DRAM access time of 
the synthesized memory transaction. The memory throughput is constraint by the 
global memory access patterns and partition camping. 

For GPU with compute capability 2.0, it can be configured to enable L1 cache or 
not in SM through a compilation command –Xptxas –dlcm, and corresponded 32-
byte or 128-byte transactions will be generated each with a different DRAM access 
time, denoted as DRAM32B and DRAM128B. Let #partition and compp each represents 
the number of memory partitions of the global memory and the number of clock 
cycles to execute a compute period, and compinst and meminst represents the number of 
compute and memory instructions per each thread, issuelat denotes the Clock cycles 
needed to issue instructions to the SIMD pipeline while memissue denotes the Latency 
per memory transaction. Another two variables tpr32B and tpr128B each represents the 
number of 32-byte transactions and 128-byte transactions per each memory request. 
We also let DD represents the departure delay of the synthesized memory transaction 
.To put it together, we calculate the average DRAM access latency DRAMlat using 
equation 4. The compute throughput and memory throughput can be obtained using 
the following equations. 

௣݌݉݋ܿ  ൌ ௖௢௠௣೔೙ೞ೟௠௘௠೔೙ೞ೟ ൈ ௟௔௧݁ݑݏݏ݅   (1)

 ݉݁݉௜௦௦௨௘ ൌ ௖௢௠௣೛#ௌெ   (2)

௧௛௥݌݉݋ܿ  ൌ ଵ௠௘௠೔ೞೞೠ೐ ൌ ௠௘௠೔೙ೞ೟ൈ#ௌெ௖௢௠௣೔೙ೞ೟ൈ௜௦௦௨௘೗ೌ೟  (3)

௟௔௧ܯܣܴܦ  ൌ ஽ோ஺ெయమಳൈ௧௣௥యమಳା஽ோ஺ெభమఴಳൈ௧௣௥భమఴಳ௧௣௥యమಳା௧௣௥భమఴಳ   (4)

ܦܦ  ൌ ௟௔௧ܯܣܴܦ ൈ ሺݎ݌ݐଷଶ஻ ൅ ଵଶ଼஻ሻ  (5)ݎ݌ݐ

 ݉݁݉௧௛௥ ൌ #௣௔௥௧௜௧௜௢௡஽஽   (6)
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3.2 GPU Program Classification 

Based on the calculated compute throughput and memory throughput, the kernel 
throughput limited factors can be concluded and we have the following definitions:  

• Compute-bound: it corresponds to the conditions where compute throughput is less 
than memory throughput, which means that the global memory requests arrive at 
the global memory interface at a relatively slow speed.  

• Memory-bound: this category refers to the situation where the compute throughput 
is larger than the memory throughput, which means that memory requests arrive at 
the global memory more quickly than the leaving speed of previously arrived 
memory requests.  

4 Analytical Performance Model 

To illustrate how executing quantity of warps on SMs concurrently affects the total 
execution time, we will illustrate several scenarios covering both compute-bound and 
memory-bound cases. As the philosophy of the GPU architecture is to cover the long 
latency operations with interleaving execution of compute operations from a large 
amount of warps, the final performance is largely dependent on the effectiveness of 
latency hiding. The total execution time can be decomposed into two parts: duration 
of compute execution and uncovered memory latency. 

4.1 Performance Prediction for Compute-Bound GPU Kernels 

Due to a high compute-to-memory-access ratio or perfect global memory access coa-
lescing, the compute throughput is larger than memory throughput, and memory re-
quests can be handled at a faster speed than they arrive at the memory interface. Fig 2 
shows an example of compute-bound kernels.  

For case 1 in Fig 3a, we assume that each thread has only one memory access and 
thus one corresponding compute period per warp. Due to the relatively higher 
throughput of memory requests, the speed of memory requests handling is faster than 
the speed they are issued, and thus incoming memory requests will not accumulate 
latency to the final execution time. The resulting latency of case 1 in Fig 3a is 4  
compute periods plus one memory period overhead.  

1

comp_throughput

1

mem_throughput

 

Fig. 2. An example of compute-bound kernels 
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For case 2 in Fig 3b, there are four warps and each warp has two compute periods 
and two memory periods. The second compute period can start only after the first 
memory period of the same warp is finished. The compute throughput and memory 
throughput are the same as case 1. Since the computation latency is dominant, memo-
ry accesses do not contribute to the overall execution time which equals to the sum of 
8 compute periods and only one memory period. 

 

 

Fig. 3. Total execution time for the compute-bound GPU kernel 

To be generally, the performance of compute-bound applications can be calculated 
using the following equations: 

௖௬௖௟௘݌݉݋ܿ  ൌ ௖௢௠௣೔೙ೞ೟ൈ#௪௔௥௣ൈ௜௦௦௨௘೗ೌ೟#ௌெ   (7)

௖௬௖௟௘ܿ݁ݔ݁  ൌ ௖௬௖௟௘݌݉݋ܿ ൅ ݉݁݉௟௔௧  (8)

where #warp represents the number of warps in a kernel which is defined by the ker-
nel launch configurations and memlat represents the latency of a synthesized memory 
transaction, as the value is not critical to the final performance, we constraint the  
latency to be 500 cycles. 

4.2 Performance Prediction for Memory-Bound GPU Kernels 

Figure 4 shows an example of memory-bound kernels where memory throughput is 
roughly a half of compute throughput. Equation 5 indicates that the departure delay 
between memory requests gets longer as more memory transactions are triggered for 
one memory request because of poor performance in memory coalescing. High 
throughput of computations will narrow down the interval of warp switching, and as a 
result, memory requests are issued more frequently to the global memory. 
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1

comp_throughput

1

mem_throughput

 

Fig. 4. An example of memory-bound kernels 

For case 3 in Fig 5a, there are four warps and each warp has one compute period 
and one memory period. Since compute throughput is larger than memory throughput, 
memory access latency cannot be completely overlapped by computation, and thus 
each warp will accumulate extra latency of ( భ೘೐೘೟೓ೝି భ೎೚೘೛೟೓ೝሻ cycles to the total execu-

tion time which equals to the sum of 4 compute periods and 4 extra latencies, which 
can also be represented as 4 departure delays plus one memory period and one  
compute period. 

1 1
-

mem_throughput comp_throughput

 

Fig. 5. Total execution time for memory-bound kernels 

For case 4 in Fig 5b, there are four warps in each SM and each warp has two com-
pute periods and two memory periods. The second compute period can start only after 
the first memory period of the same warp is finished. Compute throughput and memo-
ry throughput are the same as case 3. Even though idle cycles are introduced to the 
arithmetic pipeline, the execution time remains stable since the memory access time is 
dominant. The timing model of case 4 can be equivalently transformed as depicted in 
Fig 5c by moving the latter compute periods forward. As a result, the latency of 
memory accesses can only be partially overlapped by the computations. The final 
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execution time is composed of three parts: parallel execution of compute instructions 
by all process units, uncovered overhead of memory requests and one memory period. 

To be generally, the total execution time of memory-bound kernels can be calcu-
lated as the following two forms: 

௦௨௠ܦܦ  ൌ ܦܦ ൈ ݌ݎܽݓ# ൈ ݉݁݉௜௡௦௧  (9)

௟௔௧ܽݎݐݔ݁  ൌ ଵ௠௘௠೟೓ೝ െ ଵ௖௢௠௣೟೓ೝ  (10)

 
 

݉݁݉௨௡௖௢௩௘௥ ൌ ௟௔௧ܽݎݐݔ݁ ൈ ݌ݎܽݓ# ൈ ݉݁݉௜௡௦௧  (11) 

௖௬௖௟௘ܿ݁ݔ݁  ൌ ௖௬௖௟௘݌݉݋ܿ ൅ ݉݁݉௨௡௖௢௩௘௥ ൅ ݉݁݉௟௔௧   (12) 

or 

௖௬௖௟௘ܿ݁ݔ݁  ൌ ௖௢௠௣೛#ௌெ ൅ ௦௨௠ܦܦ ൅ ݉݁݉௟௔௧  (13) 

where DD represents the DRAM access time for a single transaction, DDsum 
represents the overall DRAM access time for all memory transactions in the kernel. 
The content of extralat points to the extra latency introduced by one memory access in 
memory-bound kernels. The memuncover counts for the latency of global memory that 
cannot be hidden by computations. Equation 12 and Equation 13 have the same result 
but from different aspects. Equation 12 calculates execution time from the aspect of 
latency hiding while Equation 13 calculates execution time based on the memory 
access efficiency as memory accesses dominant.  

5 Methodology 

We conduct experiments on one NVIDIA Tesla M2050 GPU and the CUDA pro-
gramming model, and we believe that the result of this work is still suitable for other 
chips and programming models as long as modifications are made to the value of 
input parameters. 

To evaluate the effectiveness of our model, we predict performance for a manually 
written GPU benchmark and a commonly used kernel matrix-multiply. 

5.1 Benchmark 

The manually written benchmark we used contains 100 iterations, each consisting of 
one compute period and one memory period. The variable comp_iter controls the 
amount of compute instructions in a compute period, and the change of its value can 
simulate optimizations toward computation. Another variable tran_per_req presented 
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as a parameter in the calculation of index indicates the number of memory transac-
tions caused by each global memory access, and also its value can simulate optimiza-
tions toward memory access pattern. The variable index in the benchmark spreads the 
footprints of one memory request over multiple memory segments based on the value 
of tran_per_req and data type. For simplicity, single point float numbers are generat-
ed in the host CPU and transferred to the GPU global memory, and the generated 
compute instruction occupies one clock cycle each on Tesla M2050. The number of 
both the computation and memory access instructions is counted from the assembly 
code, which is obtained through the cuobjdump tool provided by NVIDIA. As can be 
concluded from the above assembly code, each iteration of the inner loop will gener-
ate 3 compute instructions and there are 7 other instructions in each iteration of the 
outer loop. The instruction LD.E performs 32 global memory load operations for 32 
threads in a warp, which may result in multiple memory transaction according to the 
performance of memory access coalescing, that is, the value of tran_per_req. 

5.2 Matrix-multiply 

The matrix-multiplication is commonly applied in various applications. The shape of 
two input matrixes A[M*TILE] and B[TILE*M] are rectangular instead of square 
shape. The work load of each thread can be decomposed into several memory  
requests and plenty of computations per each request. 

Figure 6 shows two cases of tiled matrix multiplication each corresponds to 
TILE_WIDTH=8 and TILE_WIDTH=32. For each iteration of the inner loop, the 
memory requests per warp of the case in Fig 6(a) consists of 4 addresses across four 
rows of A and 8 addresses along a row of B tile, which results in 4 32-Byte memory 
transactions to A and one 32-byte memory transaction to matrix B. The situation has 
been much improved when the tile width is 32 as each iteration of the inner loop only 
incurs one 32-byte transaction to A and 4 consecutive 32-byte transactions to B which 
can be combined into one 128-byte memory transaction, as we will show in the next 
section. 

 

Fig. 6. Matrix multiply : (a) A_tile[8][8] ൈB_tile[8][8], (b) A_tile[32][32] ൈB_tile[32][32] 
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6 Experiment Results 

6.1 Benchmark 

As the address index in the manually written benchmark is carefully assigned that no 
repetition occurs in the loaded data for each thread, we bring out an experiment for 
both L1 cache enabled and disabled situations, each corresponds to the compilation 
command –Xptxas –dlcm=ca and –Xptxas –dlcm=cg, and 128-byte and 32-byte 
transactions are triggered. We gradually increase the spectrum of address requirement 
of a single warp to increase the number of memory transactions per each warp’s re-
quest for a memory-bound program (with higher ratio of memory requests per compu-
tation) and the result is concluded in the Fig 7. When tran_per_req bellows 8, both 
the cached and uncached cases follow the same curve and it can be inferred that the 4 
32-byte memory transactions are combined into a single 128-byte transaction, even in 
the uncached conditions. While the tran_per_req is above 32, the memory transac-
tions caused by one warp’s memory request will not increase. Otherwise, the execu-
tion time shows a linear growth to the value of tran_per_req, although each with a 
different value. Based on the memory-bound classification information, the increased 
latency of the kernel can be attributed to the reduction of the memory throughput, due 
to the increased memory transactions per each warp’s memory request. 

For both cached and uncached cases, the DRAM access time can be calculated by 
dividing the increment of kernel latency by the number of increased memory transac-
tions. The calculated DRAM access latencies for 32-byte and 128-byte memory trans-
action of Tesla M2050 are 0.67 cycles and 1.53 cycles respectively. The number of 
instructions is counted in the assemble code.  

 

Fig. 7. Measurement of DRAM access time for 32-byte and 128-byte memory transaction  

We measured kernel execution time under different compute throughput and mem-
ory throughput by varying the value of comp_iter and tran_per_req. The numbers of 
compute and memory instructions, as well as memory access pattern specified by the 
tran_per_req, are served as inputs to the performance prediction model. Table 1 lists 
parameters and predicted performance of two cases of our benchmark, and the results 
show that the error of prediction is no more than 6.5%. 
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Table 1. Applying the model for benchmark 

Parameter Case 1 Case 2 Description 

comp_iter 100 20 Parameter  

tran_per_req 4 8 Parameter  

#warp (64*256)/32=512 (64*256)/32=512 Warp number 

compinst 31000 7000 Compute instruction 

meminst 1*100 1*100 Memory instruction 

compp 310 70 Instructions per compute period 

memissue 310/14=22.1 70/14=5 Frequency of memory request issuing 

tpr32B 0 0 32-byte transaction per request 

tpr128B 4 8 128-byte transaction per request 

DRAMlat 1.53*4=6.12 1.53*8=12.24 Average departure delay 

compthr 1/22.1=0.045 1/5=0.2 Compute throughput 

memthr 1/6.12=0.163 1/12.24=0.082 Memory throughput 

classification Compute bound Memory bound Program classification 

compcycle 1134393 256641 Execution time of compute instructions 

memuncover 0 370688 Uncovered latency of memory accesses 

execcycle 1184393 627829 calculated execution time 

measured 1267534 642108 Measured execution time 

Error 6.5% 2.2% Prediction error 

6.2 Matrix-multiply 

We conduct experiments to predict the performance of matrix multiplication C=AB 
with different matrix scale as depicted in Fig 6.  

The case in Fig 6a shows the calculation of a tile of matrix C where A of dimen-
sion 1024ൈ8, B of dimension 8ൈ1024, and C of dimension 1024ൈ1024. Each element 
of C is assigned a thread and 1024ൈ1024 threads are created. The matrix C is decom-
posed into multiple tiles and each tile contains 8ൈ8 elements. As a result, the threads 
are organized as 128ൈ128 blocks and each block contains 8ൈ8 threads. Each block 
calculates the elements of a different tile in C based on a single tile of A and a single 
tile of B. The 64 threads in a block are organized into two warps, each of which calcu-
lates 4 rows of C_tile. As presented in the figure, each iteration of the inner loop will 
generate 4 32-byte transactions to load A_tile and one 32-byte transaction to load 
B_tile per warp, thus 40 32-byte memory transactions are generated for each warp.  

For the case in Figure 6b, it shows another matrix multiplication C=AB where A of 
dimension 1024ൈ32, B of dimension 32ൈ1024, and C of dimension 1024ൈ1024. For 
each warp, an iteration of the inner loop requires one element of A_tile and one row 
of B_tile, thus one 32-byte transaction of A and four 32-byte transactions of B will be 
generated. Due to the data locality of L2 cache, the unused element of the last  
accessed row of A_tile will be used by the next 7 iterations. The generated 4 32-byte 
transactions for a row data of B_tile can be combined into a 128-byte transaction. As 
a result, 4 32-byte transactions and 32 128-byte transactions will be generated. 
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The number of compute instructions per warp can be obtained from the assemble 
code. The calculated compute throughput and memory throughput is presented in 
Table 2. Surprisingly, the matrix multiplication code is specified as memory-bound 
according to our classification method. 

Table 2. Parameters for matrix-multiply 

 TILE_WIDTH=8 TILE_WIDTH=32 
32B trans per warp 40 4 

128B trans per warp 0 32 
Avg_dep_delay_per_req (40*0.67)/40=0.67 (4*0.67+32*1.53)/36=1.43 

Comp_inst 12*8+26=122 12*32+26=410 
Mem_req_issue_dist 122/(40*14)=0.218 410/(36*14)=0.813 
1/Comp_throughput 0.218 0.813 
1/Mem_throughput 0.67 1.43 

Program classification Memory-bound Memory-bound 

To verify the effectiveness of program classification, we manually add multiple 
compute instructions in the inner loop by increasing the value of comp_iter to the case 
in Fig 8b. As presented in the Fig 8, the overall latency of the kernel starts to rise at a 
point around 6 along the x-axis, which means that the kernel is not bounded by the 
compute operations before that point. We also calculate an expected point at which 
compute throughput equals to memory throughput, and the result turns out to be 
comp_iter=7, which is pretty close to the measured value. 

  

Fig. 8. Verification of program classification 
for A[1024][32] ×B[32][1024] 

Fig. 9. Comparison of estimated and meas-
ured latency for two cases 

6.3 HotSpot and Gaussian Elimination 

We also applied our analytical model to another two GPU programs: HotSpot and 
Gaussian Elimination, both from the Rodinia benchmark suits [13], which are specifi-
cally developed for the GPU-accelerated heterogeneous systems. 

HotSpot is an ordinary differential equation solver used in simulating microarchi-
tecture temperature. Every element is computed as a function of 3*3 neighborhood of 
elements from the input array (as stencil). For each thread’s one element computation, 
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9 elements need to be loaded into the processor unit and thus heavy stresses are as-
signed to the global memory bandwidth. However, the Hotspot in the version Rodinia 
2.4 is optimized throughput caching, by way of utilizing shared memory to store 
neighborhood data so it can be reused among neighboring threads in the same thread 
block. As the shared memory accessing has the identical latency as normal compute 
instruction, shared memory access instructions is treated as compute instructions. 
There are only two global memory loads and one global memory store instruction in 
each iteration of a thread, and all three global memory accesses are coalesced due to 
the shared memory. We calculate the values of compute throughput and memory 
throughput in the assembly code and the kernel calculate_temp turns out to be com-
pute-bound. We estimate the execution time of all kernel runs using equation (8) and 
compare the results with the measured latency as listed in Table 3. The input data are 
also provided in the benchmark suit. 

Table 3. Benchmark result for HotSpot 

Input size Measured (s) Predicted (s) Error  

64 0.021 0.017 19.05% 

512 0.040 0.035 12.5% 

Gaussian Elimination solves systems of equations using the Gaussian elimination 
method and contains multiple iterations of two kernels: Fan1 and Fan2. the algorithm 
must synchronize between iterations, but the values calculated in each iteration can be 
computed in parallel. For both kernels, parameterized size-strided-accesses to matrix 
a_cuda and m_cuda lead to uncoalesced accesses which result in tremendous global 
memory transactions. In the L1 cache-enabled case, 32 128B-memory-transactions 
will be incurred while the value of size above 32. According to GPU program classi-
fication method presented above, the two kernels are defined as memory-bound and 
we estimate the execution time using equation (12). A comparison of measured and 
predicted execution time is shown in the Table 4.  

Table 4. Benchmark result for Gaussian Elimination 

Input size Measured (s) Predicted (s) Error  

16 0.000410 0.000324 20.94% 

64 0.001643 0.001540 6.27% 

512 0.063546 0.056340 11.33% 

As can be seen from both benchmarks, the estimated values tend to be constantly 
smaller than the actual execution time. The inaccuracy in the projected performance 
can result from various sources, such as synchronization, kernel initialization, CPU 
execution of loop control instructions, etc. In the following work, all those factors will 
be considered in our performance model. 
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7 Conclusion 

In this paper, we propose a throughput-aware analytical performance prediction mod-
el for the GPU applications. We predict performance of GPU kernels based on the 
throughput determined by the compute throughput and memory throughput redefined 
in the paper. Experiment results illustrate high accuracy of our performance predic-
tion model in capturing impaction of performance bottlenecks such as control flow 
divergence and uncoalesced memory access. 

We believe our model has captured the GPU’s primary performance factors, and it can 
provide some useful hints in the future performance optimization. Our work has several 
limitations that we hope to address in future research: (1) model the cost of double-
precision computations and other complex operations, (2) figure out an upper bound of 
performance based on the model research, (3) automatic memory transaction number 
detection, (4) model the synchronization barrier’s effect on warp-level parallelism. 
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Abstract. In order to harness abundant hardware resources, parallel
programming has become a necessity in multicore era. However, paral-
lel programs are prone to concurrency bugs, especially data races. Even
worse, current software tools always suffer from both large runtime over-
heads and poor scalability, while most of hardware supports for race
detection are not available in parallel programming. Therefore, it has
been a challenge that how to introduce a practical and fast race detec-
tion tools. Nowadays, GPUs with massive parallel computation resources
have become one of the most popular hardware platforms. Hence, the
prevalence of GPU architectures has opened an opportunity of acceler-
ating data race detection.

In this paper, we first have a deeply analysis on data race detection
algorithms like happens-before and observe that these algorithms have
very good computation and data parallelism. Based on the observation,
we propose Grace, a software approach that leverages massive parallelism
computation units of GPU architectures to accelerate data race detec-
tion. Grace deploys detection, the most computation intensive workload,
on GPU to fully utilize the computation resource in GPU. Moreover,
Grace leverages coarse-grained pipeline parallelism and data parallelism
through exploiting the computation resource in multi-core CPUs to fur-
ther improve performance. Experimental results show that Grace is fast
and scalable. It achieves over 80x speedup compared to the sequential
version even under a 128-thread configuration.

Keywords: Parallel Acceleration, Data Race, GPU Architecture.

1 Introduction

With the development of computer technology, we have entered multicore era.
In order to harness the abundant hardware resources, parallel programming has
become more and more prevalent. However, writing robust parallel programs is
difficult, largely due to the hard-to-detect concurrency bugs [17].

Among them, data race, is one of the most important and notorious concur-
rency bugs. A data race manifests when two threads access a shared memory
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without any synchronization and at least one of them is a write operation. Such
bugs, once manifest, will be likely to become a very thorny problem. For instance,
in 2003, a data race condition led to a power blackout, which affects about 45
million people in 8 states in Northeastern US [14].

Therefore, over the last couple of years, there have been lots of efforts aiming
at providing efficient data race detection mechanisms. In general, prior efforts
can be divided into two categories: software-based tools [7–9, 6, 5, 18, 4] and
hardware-based supports [3, 2, 1, 16]. Software tools have to instrument program
code during execution, which incurs unsatisfactory overheads. Even worse, the
detection after instrumentation always contains a large amount of computations
and incur large performance overhead and poor scalability. On the other hand,
hardware-based supports always require specific hardware extensions for race
detection. As these solutions have to depend on specific-modified architectures
rather than the general ones today, they cannot be used in practice for now.
Therefore, it has been a challenge that how to introduce a practical and fast
race detection tools.

Currently, graphics processing units(GPUs) [12] with massive parallel com-
putation resources have become one of the most popular hardware platforms.
The prevalence of GPU architectures has opened an opportunity of accelerat-
ing data race detection. In this paper, we first have a deeply analysis on data
race detection algorithms like happens-before and observe that these algorithms
have very good computation and data parallelism. Based on the observation, we
propose Grace, a software tool that leverages massive parallelism computation
resource of GPU architectures to accelerate data race detection. Grace deploys
detection, the most computation intensive workload, on GPU to fully utilize the
computation resource in GPU. Moreover, Grace leverages coarse-grained pipeline
parallelism and data parallelism through exploiting the computation resource in
multi-core CPUs to further improve performance.

We have implemented Grace based on PIN tool. Grace collects traces in the
front-end and parallelizes detection by leveraging multicore and GPU in the
back-end. Experimental results show that Grace is fast and scalable. It achieves
over 80x speedup compared to the sequential version even under a 128-thread
configuration. In summary, this paper makes the following contributions:

– A thorough design in terms of data race detection by leveraging parallel
acceleration in both CPU and GPU.

– An effective and scalable software tool aiming at race detection.

The rest of paper is organized as follows. We briefly introduce the basic GPU
architecture and data race detection logic in Section 2. Then we present the
design of Grace in Section 3. In Section 4, we evaluate the performance of
Grace. Finally, we discuss related work in Section 5 and make a conclusion in
Section 6.
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2 Background

To gain insight into exploiting computation resource in multicore and GPU for
data race detection, we first give an overview of data race detection algorithm,
then we present a brief introduce on GPU architecture. At last, we analyze the
basic detection logic to find possible portions that are suitable to be mapped
onto GPU.

2.1 Overview of Data Race Detection

Data race is one of the most serious causes of bugs in parallel programming.
Nowadays, there are mainly two types of runtime data race detection algo-
rithms: happens-before [11] and lock-set [15]. Happens-before algorithm analyzes
happens-before relations between shared memory accesses. If there does not ex-
ist a happens-before relation between two shared memory accesses and at least
one of them is a write operation, a data race is detected. Lock-set algorithm pro-
tects variables with locks and it reports races when shared variables are accessed
without a common lock. In this paper, we choose the happens-before algorithm,
as we use Helgrind [13], a state-of-the-art happens-before based race detector,
as the baseline of accuracy. Extending Grace to support the lock-set algorithm
will be our future work.

Happens-Before Algorithm: The happens-before (HB) relation is formally
defined as the least strict partial order on events, which can be described by the
following three rules:

– HB1: a �→ b if a and b are events from the same thread execution and a
precedes b.

– HB2: a �→ b if a and b are synchronization operations from different threads
and the synchronization semantics infers that a precedes b.

– HB3: transitivity, if a �→ b and b �→ c, then a �→ c.

According to the above rules, a data race is defined as two memory accesses (at
least one is write) to the same address without any happens-before relations. The
typical happens-before implementation uses logic vector clock, i.e., timestamp,
to represent happens-before relations. Each thread has its own timestamp, whose
dimension length is the number of threads. Each dimension in the timestamp
represents the logic time of the corresponding thread and it is increased based
on the happens-before relation. Figure 1 shows an example of the timestamps
increase and happens-before relations. There are no races between thread 0 and
thread 1 when the timestamp of access ”Wr A” for thread 1 is larger than access
”Rd A” for thread 0 (this situation is referred to as ”Rd A” happens before ”Wr
A”) or vice-versa.

2.2 Overview of GPU Architecture

In typical GPU architectures of NVIDIA [12], GPU consists of hundreds of
streaming-processor (SP) cores, which are the basic execution units of GPU.
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Fig. 1. Happens-before example

Tens of SP cores are grouped into streaming multiprocessors (SM), as shown in
Figure 2. In the aspect of memory hierarchy, each SM has a region of on-chip
memory, which contains thousands of registers and tens of KB shared memory.
The on-chip memory is shared among SPs inside a SM and not visible out-
side SMs. Different SMs share data through off-chip global memory. In terms
of workflow, each SM works as a SIMT engine, it can be assigned a large num-
ber of threads at the same time. Every 32 threads are grouped into a warp in
NVIDIA GPU and multiple warps are assembled as a thread block. Each SM
supports a few blocks to hide memory latency. In addition, GPU provides pro-
grammability and there are mature programming models for it such as CUDA.
As GPU provides powerful computation ability and great programmability, it
has been increasingly used in general purpose computation aiming at improving
performance recently [19, 20].

SP

SP
SP
SP

SP

SP
SP
SP

Shared Memory

I/D Cache
SM

SP

SP
SP
SP

SP

SP
SP
SP

Shared Memory

I/D Cache
SM

SP

SP
SP
SP

SP

SP
SP
SP

Shared Memory

I/D Cache
SM

…

Global Memory

Fig. 2. Overview of GPU architecture
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Algorithm 1. Race Detection Algorithm

for all threads do
/* Instrumentation. */
Record memory and generate timestamp.

/* History Management. */
for Each collected trace do

Insert into history buffer.
end for

/* Race detection. */
for Each collected trace address do

for all other threads do
Search same address in this thread’s history buffer.
Compare timestamps to check HB relation.

end for
end for

end for

2.3 Observation of Race Detection Logic

To gain insight into possible solution for race detection using GPU, we further
analyze the logic of happens-before algorithm. As the algorithm 1 shown, it
can be divided into three steps: 1) instrumentation; 2) history management; 3)
race detection. In the instrumentation step, memory traces for each thread are
collected and attached with timestamps during the program execution. Then, in
history management step, each collected trace is written into the history buffer
for following detection. At last, in the race detection step, each trace searches
those traces with the same address in all other threads’ history buffers and its
timestamp is compared to those of found traces. A data race is reported if no
happens-before relation is found.

To efficiently deploy the algorithm onto the GPU, we profile the execution
time of those three steps. We use PIN to instrument the memory traces and
implement a sequential happens-before race detector. Then we use Intel VTune
to analyze the hotspots. The data 1 shows that the race detection step is the
most time-consuming part occupying more than 95% of the whole execution
time (evaluated under 4, 8, 16 and 32 threads). In the race detection step, the
algorithm needs to search the traces with the same address in the other thread’s
history information for every memory trace and compare the happens-before
relation. Fortunately, such comparisons are totally independent and there are
millions of traces in each thread, which means there is abundant fine-grained
parallelism in it. Such a computation model is very suitable to GPU architectures
and opens the opportunities for Grace to map the race detection step onto GPU.

1 Due to the space constraints, the detailed data are not given out.
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3 Design

This section describes the implementation details of Grace. First, we present an
overview of Grace. Then we give out detailed parallelism optimizations.

3.1 Algorithm Design

Grace is motivated by the computation-intensive nature of data race detection
and the massively available computation resource in GPU. The overall design
contains three modules:

– Instrumentation module, which is used to collect traces and generate times-
tamp during program execution.

– History management module, responsible for receiving traces from instru-
mentation module, pre-processing traces and sending traces to GPU for bug
detection. Since the happens-before algorithm needs to compare the current
trace’s timestamp with those of previous traces (with the same address) to
detect races, a history trace buffer is necessary for recording the previous
traces.

– Detection module, handling detection workload. Due to the massive paral-
lelism in concurrency bug detection, Grace offloads the detection process to
GPU.

3.1.1 Instrumentation and History Management
As analyzed in Section 2, detection module is the most computation-intensive
stage in happens-before algorithm. Therefore, Grace leaves the instrumentation
module and history module on CPU while mapping detection module on GPU.
Collected traces will be sent to history management module. After a trace arrives
history management module, it will be put in the history buffer. The information
includes address, type and timestamp. Then, the trace will be sent to GPU for
data race detection. Meanwhile, as the transmission between CPU and GPU is
costly, we use a centralized history buffer here for batched transmission.

Moreover, we exploit two optimization strategies in history management: one
is using hash table to speedup trace traversal. The other is exploiting the fact that
read-read traces never raise racy conditions to filter out redundant comparisons
in detection.

– Hashed Strategy: Managing all traces in a single trace list leads to a long
search time during detection, which is quite inefficient. To reduce address
search time, the trace buffer is organized as a hash table. Traces are hashed
to different entry according to their address. Each entry of the table is a FIFO
queue. Such a design brings two advantages in detection process on GPU.
One is that same address searching in history buffer is greatly speeded up
via hashing location. The other is that the cache locality in shared memory
of each SM improves dramatically since the whole history is too large to put
into shared memory.
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– Read/Write Distributed Strategy: As data races never happen between
read and read, all read-read comparisons are race-free. To further filter out
read-read cases, Grace organizes read and write trace histories separately,
as shown in Figure 3. In detection process, GPU accesses traces in differ-
ent read/write FIFO queue according to hashed address and the read/write
types. In other words, the algorithm will not search a read buffer for a read
trace.
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Fig. 3. History management optimizations

3.1.2 Parallelism of Kernel on GPU
When an algorithm is mapped onto GPU, the corresponding kernels are gener-
ated by compiler. To make the kernel more efficient, there are two critical factors.
One is that the parallelism degree should be large enough. Only then can there
be enough number of threads used in overlapping memory latency. The other
one is that the size of kernel working set should not be too large as the shared
memory of GPU is limited while fetching data from global memory is slow.

To fully utilize GPU computation resource, we gather traces until the par-
allelism degree is large enough. All gathered traces are partitioned into blocks.
The blocks are deployed onto different SMs as shown in Figure 4(a). In each
block, each trace is processed by a GPU thread executed on a SP as shown in
Figure 4(b). 32 GPU threads are formed into a warp and multiple warps are
running on a SM. Therefore, GPU can overlap global memory access latency by
warp switch. Based on the mapping model, we collected performance data of
different configurations of block size (block number * thread number per block).
Due to space constraint, we omit detailed data here. Results show that 256 *
256 is the most efficient configuration. Therefore, we use this configuration in
our evaluation.

In order to minimize the kernel size, we leverage the history reorganization
and optimize the detection workflow. Each trace does the following steps to
detect races as shown in Algorithm 2:
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Fig. 4. Parallelism mapping onto GPU

– On GPU side, detection kernel spawns large number of threads for the fol-
lowing detection. Each thread fetches one trace according to the index of
trace, as shown in Figure 4(a).

– For each trace, detection kernel uses trace’s address to find the correspond-
ing history buffer entry in all other threads. If the current trace is a read
operation, it will be compared with the write queues to find the nodes with
the same address. Otherwise, it will be compared with both the read queues
and the write queues.

– The timestamp of the current trace will be compared with the recorded
timestamp of the found trace. If there is no happens-before relation, these
two memory accesses are identified as a race.

As data transmission between CPU and GPU is costly, we minimize the data
transmission in detection process. Except the unavoidable traces transmission
from CPU, we postpone the race report process until the whole detection is
finished. To support that, Grace collects racy traces in the buffer laying on
global memory during detection 2. After detection, GPU sends the buffer back
to CPU as detection report.

3.2 Parallelism Optimizations on CPU

Although GPU accelerates detection stage dramatically, the modules processed
on CPU have become the new bottleneck in whole detection. As shown in Fig-
ure 5, during the whole detection, CPU execution time (instrumentation mod-
ule and history management module) has cost about 80% of total time after
the detection stage is mapped onto GPU. Meanwhile, as multi-core CPUs are
common platforms today, we can leverage them to further improve performance.
As a result, to overlap the execution of these three stages, we introduce pipeline
parallelism between modules. Moreover, to accelerate the most time consuming
stage, we leverage data parallelism.

2 Grace also can report bugs during execution. We leave the report in the end for races
classification of the root cause, which can make the report more clearly.
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Algorithm 2. Trace Detection Algorithm

localTid = trace.threadID
localAddr = trace.address
for all remoteTid in Threads Expect Itself do

for all remoteTrace in remoteTid’s History Buffer do
if remoteTrace.address Is Same As localAddr then

/* Compare timestamps to check HB relation. */
if HB relation exists then

Return /* No race. */
else

Call RaceCollector
end if

end if
end for

end for
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Fig. 5. Execution time percentage of three stages

3.2.1 Pipeline Parallelism
To overlap the execution of these three stages, Grace introduces a pipeline de-
sign. In detail, Grace maps the first two stages onto different CPU cores and
leverages two communication buffer between three stages, as shown in Figure 6.
The communication buffer is designed as a lock-free ring buffer between pro-
ducers and consumers [21]. Producers write buffer from the head entry of buffer
while consumers read buffer from the tail entry. Through such a design, we
improve access throughput of the communication buffer. As there will be race
conditions during buffer management, some mechanisms should be involved for
synchronization. We use semaphores to detect whether the buffer is accessible
and to assure atomic access to a buffer entry.

Moreover, the collected traces will occupy the collection buffer until they are
transferred to the communication ring buffer. Hence, program execution has to
be blocked while collected traces being read. To support parallel trace collection
and transmission, Grace uses a rotation buffer mechanism. Grace uses two buffers
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for trace collection. If one buffer is full and being transmitted, the other continues
to collect the incoming traces. If the other is also full, the execution thread has
to be blocked until one buffer is available.

3.2.2 Data Parallelism
After the optimizations of pipeline, we focus on history management module,
the most time-consuming module (as shown in Figure 5). As every trace has to
insert into history buffer, the workload is not trivial. To parallelize the insertion
process, we reorganize the whole history buffer. We observe that history inser-
tion is independent for different threads. As traces belong to different threads
will not interfere with each other, it forms a natural data parallelism chances
here. In order to parallelize history insertion among threads, traces are main-
tained in different sub-buffers according to their thread ID, as shown in Figure 3.
And Grace uses multiple preprocessing threads in history management module,
whose number is same as the execution threads of running program. As Figure 7
shows, each history management thread receives traces from the corresponding
instrumentation thread according to its thread ID. When the number of phys-
ical cores is abundant, Grace deploys each thread pair of instrumentation and
history management on a specific physical core for better performance and cache
locality. Otherwise, multiple thread pairs are grouped and deployed on a specific
physical core.
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Fig. 7. Mapping between Instrumentation threads and History Management threads
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4 Evaluation

In this section, we evaluate the design of Grace from the following three aspects:
1) race detection capability; 2) the performance compared to basic sequential
version; and 3) acceleration scalability with the number of threads increasing.

4.1 Experimental Setup

Our evaluation environment is PIN as front-end, integrated our Grace parallelism
module as back-end. All experiments were run on a Ubuntu server (12.04.2) sys-
tem with 4 Intel(R) Xeon(R) E5-2660 CPUs with 16 physical cores and NVIDIA
TESLA M2075 GPU. Each CPU frequency is 2.20GHz, with 32KB L1 i-cache,
32KB d-cache and 256KB L2 cache and a 20MB shared last level cache. GPU
contains 448 SPs with 1.15GHz. We use the parallel SPLASH2 [10] benchmarks
suite for evaluation.

4.2 Race Detection Capability

To measure the race detection capability of Grace, we choose Helgrind, a well-
known open source data race detector, as the baseline. Our results show that
Grace is able to detect all bugs found by Helgrind, which is shown in Table 1.

Table 1. Bugs detected by Grace and Helgrind

Benchmark fft radix volrend lu ocean water-n cholesky raytrace sum

Helgrind 0 0 50 0 1 0 3 2 56

Grace 0 0 50 0 1 0 3 2 56

4.3 Detection Speedup

To measure the effectiveness and efficiency of parallelism acceleration of Grace,
we evaluate the race detection speedup compared to the sequential version.
Experimental results show that with GPU acceleration, Grace achieves 68x
speedup. Further, Grace with both CPU and GPU parallel acceleration is over
95x faster than the sequential version under 16-thread configuration.

4.4 Acceleration Scalability

With the number of threads increasing, the workload of Grace increases too.
To illustrate the acceleration scalability of Grace, we evaluate the speedup of
Grace compared to the sequential detection under different number of threads.
As shown in Figure 9, the speedups of 32-thread, 64-thread and 128-thread are
82x, 92x and 166x separately. Grace gains speedup via both GPU parallelism and
CPU parallelism. For 32-thread and 64-thread, the speedups are a bit less than
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that of 16-thread due to the lack of enough threads in history management in
our evaluation platform. In this case, multiple history management threads have
to be grouped onto a specific physical core, which would hurt the performance
of CPU parallelism to some extent. Therefore, history management module has
become bottleneck and hurt the performance improvement brought by CPU
parallelism. For 128-thread, the speedup gets a great growth. In the environment
with such a large amount of running threads, the workload of detection grows
dramatically. Therefore, the speedup gained by GPU parallelism grows largely,
which has covered reduction in terms of CPU parallelism.
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5 Related Work

In the following, we will discuss the mostly closest work to Grace.

5.1 Software-based Data Race Detection

Software race detectors can be further categorized into static and dynamic ones,
according to when data races are being detected. There are also several efforts
in trying to accelerate the software-based detectors.

Software-based detectors can be further divided into static ones and dynamic
ones according to their execution environment. Static race detectors, such as
RacerX [4], are generally based on static analysis on source code. Due to the
possible state space explosion problem, it is usually difficult for static detectors
to scale to large programs. Furthermore, due to the lack of runtime information,
static detectors usually generate a lot of false positives, which may render the
results useless due to the non-trivial manual efforts to filter such false alarms.
On the other hand, dynamic race detectors detect data races by constantly mon-
itoring program execution and dynamically analyze the runtime states, which
usually has very little false alarms [7, 8]. However, to record and analyze the
frequent memory accesses, software-based detectors usually involve significant
runtime overhead.

To improve the software detection performance, there are several efforts trying
to reduce the runtime overhead by trading accuracy for speed. Examples include
sampling-based approach [9] and epoch outcome-based detection [6, 5, 18]. Such
a proposal has to make a balance between performance and accuracy.

5.2 Hardware-Based Data Race Detection

As prior software-based detectors usually have limited performance or accuracy,
or both, researchers have proposed some hardware-based mechanisms for race
detection [3, 2, 1, 16]. These mechanisms always require specific additions aiming
at instrumentation inside cores. Moreover, additional computation units are also
required for handling detection calculation. In a word, all of these supports
require specific hardware additions, which are not parts the general architectures
today. As a result, when compared to software solutions, hardware ones cannot
be used in practice for now.

6 Conclusion and Future Work

This paper has proposed Grace, an effective and scalable GPU-based race detec-
tion tool. Grace leverages a key observation that mainstream dynamic data race
detection algorithm has great computation and data parallelism. Further, Grace
exploits the abundant computation resources on GPU architecture to accelerate
data race detection via both data-parallelism and pipeline-parallelism strategies.
Experimental results showGrace is fast and scalable. It achieves over 80x speedup
compared to the sequential version even under a 128-thread configuration.
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We are continuing our work in two directions. One is to support more types of
concurrency bug detection, such as atomicity violation. The other is to support
more detection algorithm: such as lock-set algorithm for data race detection.
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Abstract. Accelerating security protocols has been a great challenge in general-
purpose processor due to the complexity of crypto algorithms. Most crypto al-
gorithms are employed at the function level among different security protocols. 
We propose a novel flexible crypto coprocessor architecture that relies on Re-
configurable Cryptographic Blocks (RCBs) to achieve a balance between high 
performance and flexibility and implement the architecture for security applica-
tion on FPGA. The pipelining technique is adopted to realize parallel data and 
to reduce the commication costs. We consider several crypto algorithms as ex-
amples to illustrate the design of the RCB in the FC Coprocessor. Finally, we 
create a prototype of the FC coprocessor on a Xilinx XC5VLX330 FPGA chip. 
The experiment results show that the coprocessor, running at 216 MHz, outper-
forms the software-based file encryption running on an Intel Core i3 530 CPU 
at 2.93 GHz by a factor of 29× for typical encrypt application. 

Keywords: flexible crypto coprocessor, reconfigurable crypto block, security 
protocol, accelerator.  

1 Introduction 

Cryptography is an essential component in modern electronic commerce. With in-
creasing transactions conducted over the Internet, ensuring security of data transfer is 
critically important. Considerable amounts of money are being exchanged over the 
network, either through e-commerce sites (e.g., Amazon and Buy.com), auction sites 
(e.g., eBay), online banking (e.g., Citibank and Chase), stock trading (e.g., Schwab), 
and even in governments (e.g., irs.gov). Therefore, many security protocols have been 
employed to guarantee data privacy and communication channel security, such as 
virtual private networks [1] and secure IP (IPSec) [2]. Security-related processing can 
exhaust the processing capacities of many servers. 

Accelerating security protocols is a great challenge in the general-purpose proces-
sor due to the complexity of crypto algorithms. In general, ciphers use large arithmet-
ic and algebraic modifications, which are inadequate for software implementation. 
When using a general-purpose processor, even the fastest software implementation of 
ciphers cannot satisfy the required data rates of bulk data encryption for high-end 
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applications. Most of the modern security protocols widely used today allow for mul-
tiple encryption algorithms, whose use is negotiated on a per-session basis, and multi-
cipher and multi-mode schemes are employed to strengthen the secret-key ciphers. 
Additionally, the security protocol must also support different algorithms and be up-
gradeable in the field; otherwise, interoperability among different systems cannot be 
realized, and any upgrade results in excessive cost. However, most hardware imple-
mentations suffer from the drawback of the difficulty in the programming model, 
resulting in upgrading difficulty. 

The ultimate solution to this problem would be an adaptive processor that can pro-
vide software-like flexibility with hardware-like performance. FPGA chips, which 
operate at the bit level and serve as custom hardware for different crypto applications, 
have been considered as a likely option to support efficiently a wide range of crypto-
graphic algorithms and procedures. 

Therefore, we propose a novel flexible crypto coprocessor (FC Coprocessor) archi-
tecture to achieve a balance between high performance and flexibility and implement 
the coprocessor for storage of files on FPGA. By utilizing the reconfigure feature of 
FPGA, we propose the idea of Reconfigurable Cryptographic Blocks (RCBs), which 
are pipeline implementations of crypto algorithms on the reconfigurable chip, with 
unified interface ports to the host computer and to one another. For a specific security 
application, we can adapt the coprocessor architecture and select several correspond-
ing blocks from the library to realize the entire security application on a reconfigura-
ble device. 

This paper is organized as follows: Section 2 describes the related works. Sections 
3 describe in details the flexible architecture of our proposed coprocessor and several 
implementations of the RCBs. Section 4 presents the performance of the crypto 
blocks and their application on FPGA, and Section 5 presents the conclusion. 

2 Related Work 

Our work encompasses many aspects of cryptographic algorithm accelerations [3–8]. 
In the following, we summarize some representative works and explain how our work 
differs from them.  

When using a general-purpose processor, even the fastest software implementation 
of ciphers cannot satisfy the required data rates of bulk data encryption for high-end 
applications [6–10]. As a result, hardware implementations are necessary for ciphers 
to achieve this required performance level.  

Many studies focused on the hardware structure to reconfigure unit of ciphers. The 
Cryptographic Optimized for Block Ciphers Reconfigurable Architecture (COBRA) 9 
proposed specialized cryptographic elements (named as reconfigurable crypto graphic 
elements) to construct the COBRA architecture and a methodology to design general-
purpose reconfigurable cryptographic elements optimized for block cipher implementa-
tion by analyzing the functional requirements of the block ciphers. The Cryptobooster 
10 processor adopted modules to implement the IDEA algorithm. 
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Fig. 1. Block diagram of the hardware design of FC Coprocessor 

The Adaptive Cryptographic Engine (ACE) 11 was proposed to provide the speed 
and flexibility required by IPSec. ACE consists of an FPGA device, a cryptographic 
library, and a configuration controller. Using the cryptographic library, the FPGA can 
be configured at run-time using the configuration controller. Various configuration 
files are available for selection, similar to COBRA; however, only one crypto algo-
rithm is chosen in the meantime.  

Most of the times, security protocol needs more than one crypto algorithm block at 
once, and integrating all crypto blocks needed by the protocols on a chip can decrease 
the overhead of communications between the host and the accelerator. Therefore, this 
paper proposes the novel FC Coprocessor architecture that balances high performance 
and flexibility. 

3 Implementation of the Coprocessor 

3.1 Architecture 

Figure 1 shows the computation platform consisting of a cryptographic coprocessor 
accelerator and a host. The crypto coprocessor accelerator comprises one FPGA chip, 
two SDRAM modules, and an I/O channel interface. The interface channel is respon-
sible for transferring the computed data and results between the accelerator and the 
host. 

The core of the FC Coprocessor mainly consists of the memory controller, register 
files, data-path controller, and reconfigurable integrity blocks for the crypto algo-
rithms. The data-path controller controls the dedicated crypto block and performs the 
interface operations using external devices such as the memory and an I/O bus inter-
face controller. The RCB executes the various crypto algorithms such as MD5 and 
SHA-256 (hash algorithm) and other application programs such as the user authenti-
cation and IC card interface programs. 

The controller module handles the control signal from the data-path controller. When 
a start signal is received from the top controller, the module orders the RCB to read  



 A Novel Design of Flexible Crypto Coprocessor and Its Application 131 

 

sequentially the data from the FIFO and to start the pipeline of RCBs. When the pipeline 
result is ready, the module produces the control signal to write data back to the FIFO.  

LocalMem is used to store the local parameters of the symmetric algorithms, such 
as the S-boxes of AES, RC4, and DES. The S-box design is an important work  
in progress of these algorithms. RCBs are the pipeline implementations of crypto 
algorithms, described in details in following section.  

The RCB structure is shown in Figure 2. The input data, e.g., plaintext, are trans-
mitted via FIFO, as well as the cipher text. We chose 128 bits as the data width in our 
implementation because the width of the operands in most crypto algorithms is 128 
bits or higher. Through the FIFOs, different blocks with different operand widths can 
work synchronously. 
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Reconfigurable
Cryptographic Block

Controller

DoneStart

Done
Ctrl
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Config.

 

Fig. 2. Block diagram of the hardware design of RCB 

A controller module is provided to handle the control signal from the data-path 
controller. When a start signal is received from the top controller, the module orders 
the RCB to read the data from FIFO_I sequentially and start the pipeline of RCBs. 
When the pipeline result is ready, the module produces the control signal to write data 
back to FIFO_O. 

LocalMem is used to store the local parameters of the symmetric algorithms, such 
as the S-boxes of AES, RC4, and DES. The S-box design is an important work  
in progress of these algorithms. RCBs are the pipeline implementations of crypto 
algorithms, described in details in following section.  

3.2 Implementations of RCB 

RSA 
RSA [14] is one of the most popular public-key crypto algorithms. This algorithm is a 
type of modular exponentiation: modeC M N= . Here, e and N refer to the public-key 
cryptography, M refers to the plaintext, and C is the calculated cipher text. N, e, and 
M are large numbers. The width of the operands in the RSA can reach 1,024 bits or 
higher, indicating that the throughput of the system is too difficult to achieve. 

The Montgomery algorithm is used to speed up the modular multiplication and mod-
ular exponentiation. The radix-2 Montgomery algorithm without subtraction is pre-
sented in [12]. The difficulties of the Montgomery algorithm lie in solving qi and the 
large-number additions. We propose the following methods to solve these problems:  
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Solving qi: Before Y is input, we can shift Y to the left of N bits; thus, the calculation of 
qi would be 

0× mod 2r
i iq S n= ′ , where n0′ is decided by input X. We can truncate the high 

part of Si because of the mode operation. Then, we can easily and quickly obtain qi. 

Large-number additions: Using the CSA contracture, we can split X into Xc and Xs, 
which indicate the carry of X and the result of X, respectively. Furthermore, the same 
process with Y can be performed, splitting Y into Yc and Ys. Therefore, the Montgom-
ery algorithm can be modified as shown in Figure 3. 

*: Equation1=2r-1xri+r-1+2r-2xri+r-2+ +21xri+1+20xri.

Improved Montgomery Algorithm:
Input: X,Y,N (0<=X,Y<2N; the length of X,Y,N are all n bits;

and n0n0 = -1 mod 2r)
Output: S = X×Y×2-r(n +1) mod N
1: S0 = 0;
2: for (i =0, i < (n+ r)/ r, i ++)
3: {
4: qi ={Si+ Y×Equation1* }n0 mod 2r;
5 Si+1= {Si+ Y×Equation1*+ qi N}/2r;
6 }
7 return Sn;

 

Fig. 3. Modified algorithm of the general radix-2r Montgomery algorithm without subtraction 
from the radix-2 Montgomery algorithm 

Figure 4(a) shows that after X and Ys are input and width_N cycles carry the save 
addition in the CSA tree, Sc and Ss are sent to the add module to complete the entire 
addition. Finally, we can derive the result. The whole Montgomery system requires (n 
+ r)/r + n/w cycles (w is the width of the data processing in the Adder module). 

The full Adder (FA) module completes the final summation operation of the out-
puts Ss and Sc in the improved Montgomery algorithm. Figure 4(b) shows its construc-
tion. The results of the CSA (Ss and Sc) are sent to Registers A and B, respectively. 
Subsequently, we derive w bits from A and B to send them to the FA, and the result-
ing w bits are sent to the lower w bit in the result register. The one-bit carry is sent to 
C_in to prepare for the next w-bit addition. The result register shifts the w bits to the 
right following the addition of every w bit. 
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YsX

result
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(a)                                            (b)  

Fig. 4. (a) Montgomery multiplier module. (b) Construction of the FA module 
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MD5 

MD5 is a hash algorithm for message digesting, introduced in 1992 by Rivest; it con-
sists of five steps (for more details, please refer to [13]). The core of MD5 is the algo-
rithm used for processing the message. The algorithm consists of four rounds, each of 
which comprises 16 steps. 

The algorithm is performed as follows: first, the values of A, B, C, and D are 
stored as temporary variables. Then, every step operation is performed for 64 rounds. 
For each round, a corresponding nonlinear function exists. Finally, the values of the 
temporary variables are added to the values obtained from the algorithm, and the re-
sults are stored in Registers A, B, C, and D. When all message blocks have been 
processed, the message digest of M is stored in Registers A, B, C, and D.  

Message M is divided into 512-bit blocks, which are processed separately. Data 
dependence does not exist among the pieces of input data. Hence, we can pipeline the 
data path in 64 cycles.  

A one-round process of MD5 is shown in Figure 5. The Const Unit keeps the data of 
MD5 constant. The registers store the input message block, and a selection module is 
available that chooses the response corresponding to the value of Xk in every round. FU 
is a combinational logic consisting of rotate left, adder, and nonlinear functions.  
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Fig. 5. One round of MD5 algorithm 

SHA256 

SHA256 15 is another widely used message-digesting algorithm. The SHA-256 algo-
rithm takes a message length of less than 264 bits and outputs a 256-bit long message 
digest. The digest serves as a concise representation of the message and has the property 
that any change in the message is very likely to result in a change in the corresponding 
digest. Initially, we need to initiate several parameters, such as from a to h, as shown in 
Figure 6, to be used as starting points for the rounds. In the design, parameters a to h are 
implemented through eight registers whose width are all 32 bits. Subsequently, the mes-
sage should be scheduled. The next step is an iterative process. Finally, the hash value is 
updated; the data in registers a to h represent the final result. 
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Fig. 6. Iterative progress of SHA256 algorithm 

AES 

AES [16] was accepted as a FIPS standard in November 2001. The algorithm is com-
posed of four different steps, namely, byte substitution, shift row, mix column, and key 
addition. The number of rounds Nr that the algorithm is repeated is related to the key 
size that the algorithm used. When a key size of 128 bits is used, the number of 
rounds is equal to 10. Figure 7 shows the unrolled and fully pipelined implementation 
of the AES algorithm. The shift row step is only for interconnection, and the key addi-
tion is the XORing of the round data and the round key. The mix column step consists 
of a chain of XORs to permute the elements of the data in each column. The arithmet-
ic of these three stages can be combined in one pipeline stage for each round.  

The byte substitution is performed on each byte of the state using a substitution ta-
ble (S-box). In this phase, the input is considered as an element of GF(28). First, the 
multiplicative inverse of GF(28) is calculated. Then, an affine transformation over 
GF(2) is applied. Here, either all substitute values are calculated in advance and 
stored in the block RAMs or on-the-fly calculation of the values is logically imple-
mented. We implemented the SubBytes block (S-box) with a block RAM, instead of 
calculating the multiplicative inverse and affine transform, for simplicity and high 
performance. We used a 1-kbyte block RAM for the S-box, and S-box was used in the 
implementation of the AES crypto block. 
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Fig. 7. AES round structure 
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DES 

DES [17] is a block cipher that uses a 64-bit key and operates on 64-bit blocks of 
data. Because every 8th bit of the 64-bit key is used for parity checking, DES has a 56-
bit key. The DES algorithm has 16 rounds of identical operations such as non-linear 
substitutions and permutations. In each round, 48-bit sub keys are generated, and 
substitutions using S-box, bitwise shift, and XOR operations are performed. 

The 56-bit key length is relatively small by today’s standards. For increased securi-
ty, the DES operation can be performed by three consecutive times, which expands 
the effective key length to 112 bits. Using DES in this manner is referred to as triple-
DES. In this section, we only describe the DES crypto block because the expansion to 
triple-DES is trivial. 

Figure 8 shows one round of the DES algorithm. The left and right halves of each 
64-bit input data operand are treated as separate 32-bit data operands Li-1 and Ri-1 . 
The 32-bit right halves of the data are passed to the next left halves of the data. The 
left and right halves of each 64-bit input data operand are treated as separate 32-bit 
data operands Li-1 and R i 1. The 32-bit right halves of the data are passed to the next 
left halves of the data. 

Li-1[31:0] Ri-1[31:0]

P S-box

P

P S-boxPermutation Expansion

Ki

Ri[31:0] Li[31:0]

32

48
48

483232

 

Fig. 8. Structure of one round in DES 

RC4 

Rivest, of RSA Data Security, Inc., developed the RC4 cipher in 1987; its details were 
published in 1996 18. RC4 is a public-key encryption system, which is used to en-
crypt and decrypt messages transferred during a particular communication session. 
All messages encrypted with the master keys are considered secure.   

The core of the RC4 encryption consists of two functions: key schedule algorithm, 
which is responsible for the initialization of a key-dependent permutation in S, and 
key stream generator, which generates a sequence of bits that can be XORed with 
plaintext for encryption and with the cipher text for decryption.  

We implement the RC4 algorithm on FPGA using the “read before write” access 
mode. We can use it to read S[j] and write S[i] in a single cycle, reducing the total 
number of clock cycles for testing one key. 
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4 Experimental Results 

We implemented the crypto coprocessor on a development board and verified the 
designs on FPGA. The board was composed of one large-scale FPGA chip, Virtex5 
XC5VLX330 from Xilinx, two 4 GB DDRII SODIMM modules, and a PCI-E × 8 
interface to the host computer.  

Our designed target is the FPGA at its fastest speed grade (-2) using ISE 10.1i.03 
implementation flow by Xilinx Synthesis Technology. We used the Mentor Graphics 
ModelSim 6.5a for the behavioral simulation. The software platform included a host 
PC with Intel Dual-Core i3 530 CPU at 2.93 GHz and 8.0 GB DDR3 1333 memory at 
level O3 compiler optimization [19].  

4.1 Performance of RCB 

In this section, we present and analyze the performance of the FC Coprocessor. We 
compared the representative operation mode of the algorithms in the test. By the term 
“performance,” we mean the throughput of the blocks measured by the minimum time 
that elapsed between the completions of two independent encrypting operations, 
which is smaller than the instruction latency because the circuit is pipelined. 

 Performance of the RCB 
Table 1 shows the details of the FPGA synthesis results for the basic RCBs. The AES 
crypto block was implemented with full pipelined-based architecture, and its S-boxes 
were implemented with FPGA’s block RAM. We also chose the pipelining technique 
for the MD5, SHA256, and DES crypto blocks. Resource cost is usually related to the 
width of the operand, such as RSA. Because of the mode of operation, the RC4 algo-
rithm block was selected to exploit the sub-pipelining technique. 

The achievable maximum frequency of the RCBs is 308 MHz. Compared with the 
same circuit implemented directly on silicon (ASIC), the FPGA implementation, 
emulated with a very large number of configurable elementary blocks and network of 
wires, is typically one order of magnitude slower. However, the performance of the 
FPGAs improved using custom hardware for applications equipped with multiple 
RCBs working in parallel. 

Table 1. Resource and frequency of the algorithms on FPGA 

Algorithms Slice LUT BRAM Freq.(MHz) Perf.(Gbps) 
AES 128 14833 32 307.89 39.4 

RC4 1215 1 320.62 0.83 

SHA-256 11,047 55 214.34 10.9 

MD5 12,662 20 248.08 53.3 

RSA-1024 24,996 1 308.36 2.2×10-3 
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 Performance comparison with an i3 core  
Table 2 shows that we can obtain better performance compared with the parallel pro-
grams running on Intel multi-core processor. We compare the performance of the 
RCBs with the corresponding parallel program of the multi-core processor. The spee-
dup factor for the RCBs is between 2 and 72. The DES hardware implementation 
achieves 20.2 Gbps, a factor of 72 times better than the general processor. The AES in 
the CBC mode results in a performance of 39.4 Gbps and achieves a speedup of 15.8 
times. The throughput of the 1,024-bit RSA encryption is 2.2 Mbps. 

Table 2. Performance (gigabit per second) comparison with the general processor  

Algorithms Ours (Gbps) CPU (Gbps) Speedup 

AES-128 39.4 1.16 15.8 

RC5 5.6 0.08 66.7 

SHA256 10.9 0.12 68.3 

MD5 53.3 2.24 29.2 

RSA-1024(Sign) 2.2×10-3 1.2×10-3 2.1 

 Performance comparison with related works  
In Table 3, we compare the performance of our design with existing designs. From 
the result, we obtain a better throughput in most algorithms. The performance of AES 
and SHA256 in our design is approximately the same. For RC4 and MD5 algorithms, 
the frequency of our design is higher; therefore, the throughput is higher than that of 
the related works.  

Table 3. Performance comparisons with other designs 

Algorithms Imple. Area 
(slice) 

Freq. 
(Mhz) 

Perf. 
(Gbps) 

AES-128 Ours 14,833 307.89 39.4 
1 20,720 240.9 30.8 

RC4 Ours 915 353.78 0.91 
21 9170 60.8 0.055 

SHA256 Ours 11,047 214.34 10.9 
22 4,219 163.80 10.4 

MD5 Ours 12,662 248.08 53.3 
23 26,758 66.48 32.0 

RSA-1024 
(Sign) 

Ours 24,996 308.36 2.2×10-3 
24 6,826 -- 0.3×10-3 

4.2 Coprocessor Application in File Encryption 

To test and verify the method and architecture proposed in this paper, we used the 
processor to implement SSL ciphered communication in the Virtex5 FPGA. In addi-
tion, we evaluated the feasibility of the SSL accelerator based on one-chip architec-
ture using FPGA. 
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To test and verify our proposed architecture, we adopt the coprocessor to imple-
ment an accelerator on the FPGA that can encrypt the file storage. We analyze the 
encryption procedure of the common files such as in word or pdf format, which 
adopts the RC4 and MD5 algorithms to encrypt the user password. Therefore, we 
select the corresponding RCBs of MD5 and RC4 described above. Next, we build the 
control circuit and RCBs as the processor.  

The processor costs 15,264 slices and 32 BRAM, which runs at 216 MHz. We com-
pare the computation time on FPGA with the parallel programs running on Intel multi-
core processor. According to the results shown in Table 4, the coprocessor outperforms 
the software-based encryption procedure running four threads by a factor of 29.4×. 

Table 4. Performance comparison of file encryption (the result is measured by running the 
program for 106 times) 

Algorithms Implements Time(s) Performance 
(Mbps) 

Speedup 

 
RC4+MD5 

1 Thread 26.7 2.39 1 
4 Threads 9.2 7.03 10 

Ours 0.91 70.33 29.4 

5 Conclusion and Future Work 

In this paper, we have presented the design and implementation of a novel crypto 
coprocessor with flexible architecture and reconfigurable crypto blocks. The RCBs of 
the crypto processor accelerated the private and public key crypto algorithms. The 
crypto processor was evaluated by constructing an acceleration system for the encryp-
tion procedure of file storage. The high performance and flexibility of the crypto pro-
cessor design enables its use in various security applications. 

For our future work, we plan to develop additional high-performance public-key 
crypto blocks. To facilitate our crypto processor, we will exploit the high-level syn-
thesis toolchain based on existing architecture for security protocols. 

For future work, we plan to develop additional high-performance public-key crypto 
blocks. To facilitate our crypto processor, we will exploit the high-level synthesis 
toolchain based on existing architecture for security protocols. 
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Abstract. The data replica management scheme is a critical component of cloud 
storage system. In order to enhance its scalability and reliability at the same time 
improve system response time, the multiple data replica scheme is adopted. 
When a cloud user issues an access request, a suitable replica should be selected 
to respond to it in order to shorten user access time and promote system load 
balance. In this paper, with network status, storage node load and historical in-
formation of replica selection considered comprehensively, a PGSA (Plant 
Growth Simulation Algorithm) based data replica selection scheme for cloud 
storage is proposed to improve average access time and replica utilization. The 
proposed scheme has been implemented based on CloudSim and performance 
evaluation has been done. Simulation results have shown that it is both feasible 
and effective with better performance than certain existent scheme. 

Keywords: cloud storage, multiple data replica, replica selection, PGSA (Plant 
Growth Simulation Algorithm). 

1 Introduction 

Cloud storage is developed from cloud computing [1]. With the support of clustering, 
networking, virtualization, distributed operating system and distributed file system and 
others, it collects huge amount of heterogeneous storage devices in network and make 
them work cooperatively by application software, providing the unified storage system 
to enable users to store and access data transparently without the need to know where 
the data physically locate. The users only need to acquire online storage space through 
storage service provider without setting up their own data storage center, thus avoiding 
repeated construction of storage systems as well as saving the investment on hardware 
and software infrastructure. 

Cloud storage is generally composed of massive storage devices distributed over 
different data centers. These devices are connected through network and have different 
reliability and performance with temporary even permanent faults happened occasio-
nally. The network status also has influence on the timeliness and dependability of data 
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access. In the face of huge amount of access requests from massive cloud users, dep-
loying multiple replicas of one single data object in cloud storage system is generally 
needed in order to get timely, reliable and efficient data access services, and thus 
improve cloud storage system response time to user access and enhance system QoS 
(Quality of Service) and user QoE(Quality of Experience) [2-6]. A multiple data replica 
scheme can deploy right quantity of replicas for suitable data objects in due time and 
due place. It needs an efficient management mechanism to realize the suitable place-
ment of multiple replicas, the suitable selection of the specific replica for user access 
and consistency maintenance among replicas, etc. In this paper, we discuss how to 
select the suitable data replica to respond to the user access request to the cloud storage 
system when multiple data replicas exist. In fact, the problem of data replica selection 
can be divided into two sub-problems: data replica location and suitable replica selec-
tion. The former refers to locate one or more replicas by the data’s logical name. The 
latter refers to select the suitable one from multiple replicas in order to minimize, for 
example, the user access cost and thus help improve the overall system performance. In 
this paper, our research focus is put on the latter. 

There are many factors which have major influences on the suitable replica selec-
tion, including network status, performance of the storage node where the data replica 
resides, and cloud user access cost to the replica, etc. A replica selection scheme is said 
to be good if it can shorten the cloud user access time to data as much as possible with 
the above factors taken into account thoroughly and comprehensively. 

Some of the data replica selection mechanism has been proposed. In [7], an adaptive 
replica selection strategy was presented to employ network bandwidth information and 
account for its fluctuation in the wide-area environment, taking advantage of multiple 
replicas and concurrent data transfers. In [8], a two phased replica selection scheme 
was proposed. In the first coarse-grain phase, replicas with low latency (located at the 
uncongested network segments) and replicas with high latency (located at the con-
gested network segments) were distinguished. In the second fine-grain phase, the 
replicas admissible for user access requirements were selected through applying a 
modified minimum cost and delay policy. In [9], a balanced QoS replica selection 
strategy was proposed to select a suitable replica which was the closest to the user with 
almost equal values of QoS parameters (such as availability, time and security).In [10], 
a workload-driven replica selection algorithm was proposed to minimize query latency 
in terms of the average query span, i.e., the average number of machines that were 
involved in processing of a query. In [11], based on the min-max balancing workload 
method, a dynamic replica selection strategy was proposed to upgrade the efficiency of 
execution in data grid environments. In [12], a new replica selection strategy was 
presented. It used the concept of association rules of data mining approach to the most 
stable network segments and could adapt its replica selection criteria dynamically so as 
to satisfy user access requirements and reduce system response time. In [13], an ant 
algorithm based replica selection scheme was proposed. The calculation formula of the 
probability of a replica being selected was devised, and the candidate replicas were 
predicted based on the historical replica accessed records. It could help balance the 
access loads among replicas dynamically. In [14], a hybrid replica selection strategy 
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was proposed. It tried to combine the advantages of genetic algorithm and ant algorithm 
to find the suitable replica for the user access request. By speeding up the convergence 
to the optimum, the system response time to access was improved. 

Inspired by the above research, a data replica selection scheme for accessing cloud 
storage system is proposed in this paper. It comprehensively considers network status, 
performance and load of the storage node where the replica resides, and historical 
information of replica selection. It tries to select the suitable data replica to respond to 
the cloud user access request based on the idea of PGSA (Plant Growth Simulation 
Algorithm) [15], so that the QoE of the user to use the cloud storage system can be 
improved in terms of replica utilization and average access time. 

2 Problem Formulation 

The suitable replica selection scheme is one of critical components of the data replica 
management scheme in cloud storage system. It selects the suitable replica from mul-
tiple candidates to respond to the cloud user access request. A good replica selection 
strategy should at first determine the related factors which have significant influence on 
the QoE of the user to access data, and then a suitable replica selection algorithm should 
be devised based on these factors. In this paper, the following major factors are con-
sidered when the suitable replica is selected to respond to the user request [13]. 

(1) Network status. It is an important factor to be considered when replica selection 
is done, because, for example, the available bandwidth affects the data transmission 
time, the end-to-end delay affects user access time, and the packet loss rate affects the 
data transfer reliability. Therefore, in the process of replica selection to respond to the 
cloud user request, the replicas which locate in those network segments in good con-
ditions should be chosen preferentially. In addition, under the environment of cloud 
storage, the distance between the cloud user and the storage node where the replica 
resides should be considered when making the replica selection decision. It affects the 
data transfer latency and further influences the system response time. Thus, choosing 
the nearer replica to the user is more appropriate when responding to the access request. 

(2) Storage node performance. It mainly refers to the node's data access speed, 
computing capability and networking capacity to the external network. 

(3) Storage node access load. In general, the more heavy the access load of a storage 
node, the weaker its ability to respond to the cloud user access request, thus the replica 
which resides in the light-loaded storage node is preferred when selecting the suitable 
in replica. 

(4) Historical information. The historical information of a specific replica being 
chosen to respond to the cloud user access request can reflect the user QoE on using this 
replica to certain degree and represent the measurement of the system on the effect of 
setting up this replica in a sense. The more the specific replica being selected to respond 
to the user requests, the more suitable and valuable it being setup. Thus, in this paper, 
the ratio of the times of a replica being chosen to respond to the user requests to the total 
times of its corresponding data object being accessed is also considered to be a refer-
ence to the process of suitable replica selection. 
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In summary, selecting suitable data replica can reduce the cloud user access latency 
and the network resource consumption, it can effectively achieve load balance among 
storage nodes where replicas reside at the same time improve the reliability of data 
access, etc. Therefore, how to select the suitable data replica from multiple candidates 
to respond to the cloud user access request is critical to the effective and efficient data 
replica management. The purpose of the proposed suitable data replica selection 
scheme in this paper is to achieve fast and reliable data access as well as efficient use of 
replicas with the above mentioned factors taken into account thoroughly. 

3 Algorithm Design 

PGSA is an intelligent optimization algorithm using the plant phototropism mechanism 
[15]. Based on the characteristics of the plant phototropism, it uses the plant growth 
environment as the problem solution space and determines the corresponding plant 
morphactin concentration according to the objective function value of the problem 
solution. The greater its difference from the root (i.e., the initial solution), the bigger the 
plant morphactin concentration, and thus the higher the plant growth chance. There-
fore, it simulates the plant growth dynamic model to converge to the global optimum 
rapidly. In this paper, we use morphactin concentration to represent the data replica's 
fitness to the user access request, and select the suitable data replica by adjusting and 
comparing its morphactin concentration. 

3.1 Calculation of Replica Morphactin Concentration 

We refer to the basic idea of PGSA to devise the proposed suitable replica selection 
scheme. It mainly uses the morphactin concentration as the criteria to decide which 
replica being selected. When a new data replica Rj is set up in the cloud storage system, 
the Eqn. (1) is used to calculate the initial morphactin concentration of the replica. 

(0) j
j

j

f
rτ =                                     (1) 

where the size of the Rj is denoted by jf  and the access speed of the storage node in 

which Rj resides is denoted by jr . 
After the replica setup, its morphactin concentration is adjusted when it being se-

lected and accessed, and its calculation is defined in the following Eqn. (2): 

 
j

new old
j j ττ ρτ= + Δ                                 (2) 

where the proportion of the historical morphactin concentration information is de-

noted by ρ  and the variation of the morphactin concentration is denoted by 
jτΔ . 
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In fact, the morphactin concentration adjustment is involved in the following three 
different cases.  

When a data replica has been selected to respond to the user request, its morphactin 
concentration will be reduced and the reduction is defined in the following Eqn. (3). 

 
j

j
j

j

f
dlbwτ

 Δ = − + 
 

                               (3) 

where the available bandwidth of the storage node in which Rj resides, is denoted by 

jbw  and the transfer latency between the storage node and the user is denoted by jdl
. The reason why the morphactin concentration is reduced is that load balance should be 
considered, once a replica was selected to respond to a user request, its probability of 
being selected to respond to other user requests should be decreased in order to prevent 
it being overloaded. 

After a replica selected, if it is accessed successfully, its performance is considered 
good, thus as a kind of encouragement, its morphactin concentration is increased to 
make its probability of being selected to respond to user requests in the future higher, 
and the increase is defined in the following Eqn. (4). 

 ( )
j e j j jf bw dlτ ϑΔ = ⋅ +                             (4) 

where the reward factor is denoted by eϑ . 

If the access to the selected replica failed, it means that the selected replica does not 
work normally at present, its morphactin concentration is decreased to make its prob-
ability of being selected to respond to user requests in the future lower, and the decrease 
is defined in the following Eqn. (5). 

 .
j

j
p j

j

f
dlbwτ ϑ  Δ = − + 

 
                              (5) 

where the penalty factor is denoted by pϑ . 

3.2 Calculation of Replica Selection Probability 

The change of a replica's morphactin concentration affects the probability of its being 
selected to respond to user requests. In this paper, the replica selection probability are 
determined by two parts: jp  and '

jp . The former is derived from the replica mor-
phactin concentration and the node load, reflecting the influence of the status of the 
network and the node where the replica resides, i.e., the instant information on the 
selection decision. The latter is based on the historical information, reflecting the 
influence of the historical access frequency to the replica on the decision of whether it 
being selected in the future to respond to user requests. 
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In order to reflect the load status of the node where the replica resides, in this paper 
we divide the node load into 3 levels, i.e., light-loaded, moderate-loaded, and 
heavy-loaded. At the same time, a load factor is introduced to characterize the node 
load and defined as follows. 
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where jλ  indicates the current access volume of the storage node in which Rj re-

sides, light 
jλ  and heavy

 jλ  are boundary values of light-loaded and heavy-loaded 

respectively, max
jλ  is the upper bound of the access volume which the storage node 

can accept, b  is a constant greater than 1. The calculation of jp  is defined as fol-

lows. 

 

1

( )

( ( ))

j j
j k

j j
j

t
p

t

τ α λ

τ α λ
=

+
=

+
                      (7) 

where α  is the adjustment coefficient determined by experience or experiment. 

For '
jp , it is set be the ratio of the times of a replica being chosen to respond to the 

user requests to the total times of its corresponding data object being accessed. 

Taking jp  and '
jp  into account comprehensively, the probability of a replica 

being selected is defined as follows. 

 '' '(1 )j j jp p pβ β= + −                               (8) 

where β  is a weighting coefficient to reflect the relative importance of the instant 

information and historical information on replica selection decision. 
The selection probability of each replica is calculated by Eqn. (8) and then the 

roulette method is used to select the specific replica. The selection process is described 
as follows. 
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Assume that there are k  replicas of the specific data object in the cloud storage 

system, the selection probability of each replica is ''
jp (1 )j k≤ ≤ , then we have 

'' '' ''
0 1( ) jps j p p p= + + ⋅⋅⋅ + , 1 j k≤ ≤ . Generate a random number r  between 

[0, ( )]r ps k∈ , if ( 1) ( )ps j r ps j− < ≤ , then Rj is selected. 

3.3 Algorithm Description 

Based on the above discussion, the algorithm of the PGSA based suitable replica se-
lection scheme is described as follows. 

Step 1: Initialization: for each data object in the cloud storage system, generate k  
growing points corresponding to k  replicas, and use Eqn. (1) to calculate the initial 
morphactin concentration of each growing point; input the user request set. 

Step 2: Take one user request out of the input set and determine the specific growing 
points corresponding to the data object requested by the user. 

Step 3: Calculate the selection probability of each replica corresponding to the 
growing point by the Eqn. (8), use the roulette method to select the matched growing 
point, i.e., the suitable replica to the specific user request. 

Step 4: Do the regeneration process of growing point to update the corresponding 
morphactin concentration. 

Step 4.1: Update the corresponding replica's morphactin concentration to the 
growing point selected in Step 3 by Eqn. (2). 

Step 4.2: Access the selected replica as the response to the user request. If suc-
ceeded, use the Eqn. (4) to update the replica's morphactin concentration morpheme as 
encouragement; otherwise, use the Eqn. (5) to update it as punishment. 

Step 5: Check whether the user request set becomes empty: if empty, the algorithm 
ends, otherwise go to Step 2. 

4 Performance Evaluation 

The simulation experiment of and performance evaluation on the proposed scheme in 
this paper have been done on the CloudSim [16]. The main functions of the proposed 
scheme, which have been implemented by simulation, are listed in Table. 1. 
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Table 1. Main functions of the proposed scheme 

Name Description 

void get_ replica_info (…) Get information about replica. 

double cal_ morphactin (…) Calculate morphactin concentration for a 
replica. 

double cal_ probability (…) Calculate probability of a replica being 
selected. 

void roulette(…) Use roulette method to select a replica. 

double tuning (…) Reduce a selected replica's morphactin 
concentration. 

double reward (…) Increase a successfully accessed replica's 
morphactin concentration. 

double penalty(…) Decrease an access failed replica's mor-
phactin concentration. 

 

In order to evaluate the performance of the PGSA based data replica selection 
scheme proposed in this paper (simply call it P scheme below), it is compared with the 
ant algorithm based one proposed in [13] (simply call it A scheme below) in terms of 
replica utilization and average access time. 

4.1 Replica Utilization 

Replica utilization (RU) is defined as the ratio of the response of a replica to the access 
requests to the corresponding data object. Apparently, the sum of RUs of all replicas of 
the same data object is 1. From Fig. 1, it can be seen that the RU distribution of P 
scheme is more balanced than that of A scheme. This is because when replica selection 
decision made, P scheme considers not only the performance of the storage node where 
the replica resides and the network status, but also the storage node load and the his-
torical information of replica access, once the above factors changed, it will re-select 
the suitable replica; in addition, after a replica selected, its morphactin concentration 
will be adjusted and thus influence its chance to be selected in the future, promoting the 
selection balance among replicas. By contrast, A scheme does not take the above 
factors into account thoroughly, leading to a little poor RU distribution. 
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Fig. 1. Replica utilization distribution 

4.2 Average Access Time 

A user request's access time is defined as the time interval from it being issued to the 
end of the selected replica access, and the average access time (AAT) is defined as the 
average value of the access time of the simultaneously arrived user requests. From Fig. 
2, it can be seen that the AAT of P scheme is better that of A scheme. This is because P 
scheme tries to achieve balance between the replica access time and the load of the 
storage node where the replica resides, thus it often selects the replica with smaller 
access cost and lower corresponding storage node load. Meanwhile, it uses roulette 
method to determine the selected replica by probability, this can further balance the 
access load among replicas, in the long run, it helps reduce AAT significantly. It also 
can be seen that, as the increase of the amount of replicas, P scheme has more chance to 
select the suitable replica from more replicas, each replica's access load is further 
reduced and becomes more balanced, thus AAT is reduced further. By contrast, A 
scheme is inflexible in reasonable apportion of replica access load and lacks dynamic 
adjustment ability, leading to the bigger AAT. 
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performance. It can not only help balance system load and shorten user access time, but 
also help improve replica utilization and make them work well. In this paper, based on the 
basic idea of PGSA, a data replica selection scheme for cloud storage is proposed with 
network status, performance and load of storage node and historical information of rep-
lica selection taken into account. It has been implemented based on CloudSim and per-
formance evaluation has been done. Simulation results have shown that it has good 
performance in terms of replica utilization and average access time. In the near future, we 
will make the prototype implementation of the proposed scheme over the Northeastern 
University Campus Cloud platform in order to verify and enhance its practicability. 
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Abstract. Resource allocation for multi-user across multiple data centers is an 
important problem in cloud computing environments. Many geographically-
distributed users may request virtualized resources simultaneously. And the 
distances from users to allocated resources have much impact on the quality of 
service (QoS) in multiple data centers environment. Most existing methods do 
not take all these factors into account when allocating resources. They usually 
result in poor runtime performance of users’ virtual computing environment and 
the remarkable difference of users’ QoS. In this paper, we propose RAMD, a 
resource allocation algorithm based on multi-stage decision in multiple data 
centers. The RAMD algorithm allocate VMs to users, taking into account the 
correlation and interaction between multiple users, so as to minimize the sum of 
all users’ service distances (i.e. determined by user location and network 
distance of virtual machines). Experimental results show that the algorithm can 
effectively deal with the cloud resource allocation for multi-user across multiple 
data centers. It can improve the runtime performance of users' virtualized 
resources and reduce the difference of QoS. 

Keywords: resource allocation, data centers, location-aware, multi-user, 
multiple data centers. 

1 Introduction 

With the development of cloud computing, the integration and interaction of 
geographically distributed data centers has become important service mode in clouds 
[1]. Multiple data centers (MDC) can rationally schedule data center resources to 
users according to their requirements and provide efficient services for users located 
in different regions. Thereby it can enhance the user experiences, improve the overall 
resource utilization rate of cloud data centers and reduce the operating costs of cloud 
service providers. MDC also can meet some certain requirements about elasticity and 
fault tolerance.  
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In reality, cloud computing system usually consists of some data centers which are 
distributed in different geographical areas. These data centers connect with each other 
by dedicated network with high reliability and high transmission rate [2]. Compared 
to traditionally centralized Internet data center (IDC), users in different regions can 
access to the close data centers in MDC environments. The services user requested 
can be provided by data centers nearby, it can reduce access latency and network 
load, meanwhile, improve communication efficiency. And for some high-bandwidth 
applications, it helps to reduce network costs [3]. Moreover, users’ requests may 
come at any time (many users may request virtual machines simultaneously or in the 
same period of time), so the cloud resource allocation for multi-user is rather 
universal and typical. This paper will study the cloud resource allocation mechanism 
for multiple users in multiple data centers environment. 

However, most existing studies, e.g. [4-14], mainly focus on resource allocation 
mechanisms in centralized data center, and there are few studies involving the MDC. 
On the other hand, they usually implement virtual machine (VM) allocation for a 
single user at a time without considering methods for multiple users. 

Though the study [15] considered the resource allocation problem in distributed 
cloud data centers and proposed a resource allocation algorithm based on the 
maximum clique problem in order to minimize the network diameter (i.e. the 
maximum distance among VMs), but it was only fit for the particular cases in which 
all the network traffic between any VMs were known. Moreover, it did not consider 
that resource allocation for multi-user can be performed simultaneously and user 
locations can have impact on the QoS in multiple data centers environment. 

Resource allocation methods in single data center (or centralized IDC) can usually 
be directly extended to the MDC environment. However, due to the fact that the 
merger of many data centers will be considerable larger (i.e. simply suppose that a 
MDC consists of many single data centers, without regard to topological structure 
among the IDCs), it is easy to lead to a low performance when using previous 
methods. In addition, the purpose of introducing the MDC is to facilitate the users in 
different regions to acquire service nearby. And that particularity has not be 
considered with previous extended algorithms. We take the positional relationship 
between users and data centers as the researching point, and aim to balance the 
network distance of users’ VMs and the distance between users and data centers. So 
we propose a resource allocation algorithm based on multi-stage decision in MDC 
environments, called RAMD, which taking into account the correlation and 
interaction between multiple users and using a multi-stage strategy to implement the 
resource allocation, so as to minimize the sum of all users’ service distances. 

The main contribution of this paper is shown as below. Firstly, we defined the 
problem of location-aware multiple-user resource allocation. Secondly, we designed 
the resource allocation algorithm based on multi-stage decision in MDC 
environments. Finally, we perform experiments to evaluate the RAMD algorithm and 
verify that the algorithm can effectively deal with the cloud resource allocation for 
multi-user across multiple data centers. 

The rest of this paper is organized as follows. Section 2 describes the resource 
allocation problem in MDC environments. Section 3 proposes the selection algorithm 
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of MDC based on user location for single user request. Section 4 illustrates the 
RAMD algorithm. Section 5 evaluates the algorithms by simulation experiments. 
Section 6 introduces the related work. Section 7 presents the conclusion. 

2 Problem Description 

In MDC environments, users may request virtual machine resource simultaneously or 
in the same period of time. Since users can request the number of data centers, the 
number of racks, or the number of physical machines to place their VMs, here we take 
the number of IDCs that users want to place VMs at least as an example (i.e. users 
decide the number of IDCs to place first, then if the MDC environment could not 
satisfy this requirement, it will automatically select more IDCs to place). We divide 
the resource allocation method based on MDC into two steps as follows: 

i) For all user requests, determine which IDCs to place VMs in the MDC and how 
many VMs to place in each IDC. By default, we equalize the number of VMs in each 
IDC for every user to reduce the traffic between data centers. 

ii) Allocating VMs in each IDC. In this case, we can use resource allocation 
algorithms in centralized data center, e.g. [4]. The paper does not discuss this owing 
to limited space. 

Our work in this paper is to solve the resource allocation problem in step i). For 
every user, we will consider the user location and the network distance of multiple 
IDCs that would be selected to place VMs. Our goal is to make all users in different 
regions select the IDCs that meet their requirements. 

 

Fig. 1. Example of geographically distributed data centers 

Figure 1 shows an example diagram of geographically distributed data centers. 
Assuming that the current end-user wants to place requested VMs into four IDCs, the 
figure shows two possible options: Graph 1 and Graph 2. The gray nodes indicate the 
centers of the graphs respectively. Graph 1 is far from the end-user but gets a small 
network diameter, while Graph 2 is close to the end-user but gets a large network 
diameter. How to find the IDCs that meet the conditions in the MDC and effectively 
balance the relationship of both sides are our research points. 
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In MDC environments, we define communication delay or network hops between 
IDCs to be their network distance. Assuming that the number of total IDCs is m, then 
all IDCs constitute an undirected complete graph GM = (VM, EM, CM

V, DM
E). Here the 

subscript M means the MDC; VM specifies the node set of IDCs; EM specifies the edge 
set of IDCs; CM

V specifies the set of the number of available VMs; DM
E specifies the 

set of the network distances between IDCs. 
Assuming that there are n user requests of U={PU, K, mU}, where PU specifies the 

user location, K specifies the number of VMs requested by the user, mU specifies at 
least the number of IDCs requested by the user (we suppose the number of actually 
selected IDCs is s(>=mU), so we place ⌊K/s⌋ or ⌈K/s⌉ VMs in each IDC, the value 
sequence of s is mU, mU+1, mU+2, …, until meet the conditions). For each user 
request U, our goal is to look for all sub-graphs GU

i=(VU
i, EU

i, CU
Vi, DU

Ei)(i=1,2,...) 
which satisfy the user request in the undirected complete graph GM. Here the subscript 
U means user request; VU specifies the node set of |VU| IDCs that satisfy the user 
request, exists VU⊆VM; EU specifies the edge set of VU, exists EU⊆ EM; CU

V specifies 
the set of allocated VMs to VU for the user (the value is ⌊K/|VU

i|⌋ or ⌈K/|VU
i|⌉), exists 

CU
V⊆CM

V; DU
E specifies the set of the network distances between IDCs in VU. 

Definition Service Distance (SD): For a user, we define the distance between the 
user and GU

i (i=1,2,…) to be the Service Distance (SDi) of the user. The 
computational formula is as follows. 

( ) ( )* , 1 * ,  1 ,) ,( 2
i i

i U U U
SD Distance P G Diameter G iσ σ= + − = …              (1) 

Here, Distance(PU, GU
i) specifies the distance between the user location and the 

center of the graph GU
i, Diameter(GU

i) specifies the network diameter of GU
i, 

σ specifies the balance factor, the default value is taken as 0.5. 
We define the optimization target to be minimizing the sum of users’ service 

distances for all n user requests. 

( )

1

n
t

t

Minimize TSD SD
=

=                               (2) 

Here SD(t) specifies the service distance of the user t. 

3 Selection Algorithm of MDC 

Since our goal is to determine which IDCs to place in MDC for every user request. 
We will take into account the correlation and interaction between multiple users and 
propose a multi-stage strategy to implement the resource allocation in Section 4. 

In this section, we will consider the user location and the network distance of 
multiple IDCs that would be selected to place VMs for single user request. Then we 
propose a selection algorithm of MDC base on user locations and the algorithm is 
shown in Figure 2. 

Looking for all sub-graphs GU
i = (VU

i, EU
i, CU

Vi, DU
Ei) (i = 1, 2, ...) which satisfy a 

user request in the undirected complete graph GM is a NP-hard problem. So we design 
an approximation algorithm to solve it. 
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Algorithm 1. GetGuAndDiameter(v, GM, U) 
Input: v: the initial node to be extended; GM=(VM, EM, CM

V, DM
E): the MDC; U={PU, K, 

mU}: the user request; 
Output: GU

i=(VU
i, EU

i, CU
Vi, DU

Ei): the sub-graph that satisfied the user request; 
Diameter(GU

i): the network diameter of GU
i; 

1   GU
i ← {v} ∪ {CU

Vi(v) ← min{⌈K/mU⌉,CM
V}}; 

2   Q ← {all vertex connected to v}; 
3   Diameter ← 0; 
4   last ← K - CU

Vi; 
5   for z = 1 to mU do 
6       tmp_dia ← MAX_VALUE; 
7       for u ∈ Q do 
8           if (z<mU && CM

V(u) >= ⌊K/mU⌋ || z==mU && CM
V(u) >= last)  

and DM
E(u, GU

i) < tmp_dia then 
9               tmp_dia ← DM

E(u, GU
i); 

10              tmp_v ← u; 
11          end if 
12      end for 
13      GU

i ← GU
i ∪ {tmp_v} ∪ {CU

Vi(tmp_v) ← min{⌈K/mU⌉, CM
V(tmp_v), last}}; 

14      Q ← Q ∪ {all vertex connected to tmp_v}; 
15      Diameter ← max{Diameter, tmp_dia}; 
16      last ← last - CU

Vi(tmp_v); 
17      if last == 0 then 
18          break; 
19  end for 
20  return GU

i, Diameter; 

Fig. 2. Selection algorithm of MDC 

Algorithm 2. FindCenterOfGraph(GU
i) 

Input: GU
i=(VU

i, EU
i, CU

Vi, DU
Ei): the sub-graph that satisfied the user request; 

Output: vc: the center of GU
i; 

1   min ← MAX_VALUE; 
2   for each v in VU

i do 
3       now ← 0; 
4       for each u in VU

i do 
5           if v≠u and DU

Ei(v,u) > now then 
6               now ← DU

Ei(v,u); 
7           end if 
8       end for 
9       if now < min then 
10          min ← now; 
11          vc ← v; 
12      end if 
13  end for 
14  return vc; 

Fig. 3. The algorithm to find center of graph  
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The selection algorithm of MDC (Algorithm 1) calculates a sub-graph GU
i that 

satisfies the user request U by a node of IDCs at a time. The algorithm uses a method 
based on minimum spanning tree (MST) to extend nodes. The initial node set of the 
sub-graph GU

i includes a node of IDCs, every time it selects the node that has shortest 
network distance to GU

i and the number of its available VMs is not less than ⌊K/mU⌋ to 
join into the set (and determines ⌊K/mU⌋ or ⌈K/mU⌉ VMs to be placed), until mU IDCs 
to be selected. If it exists unallocated VMs (i.e. last≠0), then we selects the final IDC 
(the number of its available VMs is not less than last) according to previous 
procedure. If it does not exist a solution, we will iteratively replace mU with mU+1 to 
solve it (pseudo-code omitted this step). At the end, the algorithm returns the sub-
graph GU

i and the network diameter. The time complexity is O(mmU). 
The center of the graph represents the node that gets the minimum value of the 

maximum of the distance to other nodes in the graph. We regard it as the center of the 
multiple IDCs that be selected for VMs placement. The algorithm to find the center of 
the graph is shown in Algorithm 2. 

4 Resource Allocation Algorithm Based on Multi-stage Decision 

Location-aware multiple-user resource allocation in MDC cloud environments is also 
a NP-hard problem. The paper defined the optimization target to be minimizing the 
sum of all users’ service distances for all user requests. In order to achieve that target, 
we use above approximation algorithm (Section 3) to work out the resource allocation 
schemes to all user requests. Then we propose a resource allocation algorithm based 
on multi-stage decision in MDC environments. RAMD takes full advantage of the 
feature to multi-user. 

 

Fig. 4. Example of RAMD 

As shown in Figure 4, there are 5 users and 3 IDCs. In the first round of the 
allocation process, the algorithm first calculates all possible allocation schemes (total 
is 5*3) for all users (Described in Section 3), and sorts all schemes by the service 
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distance in ascending order, then uses linear scanning from left to right to select 
feasible schemes. For example, it first selected the first scheme of user 2, and skipped 
the second scheme of user 2 (because of user 2 was already allocated). Then it met the 
scheme of user 1 and would determine whether the number of available VMs in IDCs 
can satisfy it or not. If it was not satisfied then skipped it, or selected it. Repeat this 
process. After the first round, it completed the allocation of the users 2, 5 and 4. In the 
second round of the allocation process, used the same method to allocate the 
remaining users 1 and 3. Until it completed resource allocation for all users. 

 
Algorithm 3. MinTSD_MultistageDecision(GM, U) 

Input: GM=(VM, EM, CM
V, DM

E): the MDC; {U(t)={PU
(t), K(t), mU

(t)} | t=1,2,…,n }: all user 
requests; 

Output: Z: set of allocation schemes; TSD: sum of users’ service distances; 
1   Z ← Ø; TSD ← 0; 
2   Q ← { U(t ) | t=1,2,…,n}; 
3   while Q≠Ø do 
4       for t:each U in Q do 
5           for i:each IDC v in VM do 
6               if CM

V(v) >= ⌊K(t)/ mU
(t)⌋ then 

7                   GU
(t)i ← GetGuAndDiameter(v, GM, U(t)); 

8                 SD(t)i ← *Distance(PU
(t),GU

(t)i)+(1- )*Diameter(GU
(t)i); 

9               end if 
10          end for 
11      end for 
12      Sort all GU

(t)i by SD(t)i in ascending order; 
13      for each GU

(t)i do 
14          if U(t)

∈ Q and CU
V(t)i ⊆ CM

V then 
15              Q ← Q – {U(t)}; 
16              CM

V ← CM
V - CU

V(t)i; 
17              Z ← Z ∪ { GU

(t)i };  
18              TSD ← TSD + SD(t)i; 
18          end if 
19      end for 
20  end while 
21  return Z,TSD; 

Fig. 5. The RAMD algorithm 

RAMD (Algorithm 3) uses a multi-stage strategy to implement resource allocation. 
The set Q specifies all unallocated user requests. At each stage, it figures out all 
possible allocation schemes {GU

(t)i} for all unallocated user requests, and sorts all 
these schemes by service distance SD(t)i in ascending order. Then it uses linear 
scanning from left to right to select feasible schemes that are unallocated (U(t)

∈Q) 
and can be allocated (CU

V(t)i⊆ CM
V). The time complexity of lines 4~11 is 

O(nm)*O(mmU), line 12 is O(nmlg(nm)) and lines 13~19 is O(nm), so the total time 
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complexity of the algorithm is O( n*( O(nm)*O(mmU) + O(nmlg(nm)) + O(nm) ) ) = 
O(n2m2mU), a polynomial complexity. 

5 Experimental Results 

In this section, we will evaluate the performance of these algorithms through 
experiments, including the RAMD algorithm, Random algorithm and Greedy 
algorithm. 

When a user selects its multiple data centers to place VMs, Random algorithm each 
randomly selects an IDC that the number of available VMs satisfies the user request 
until mU IDCs to be selected, while Greedy algorithm selects the allocation scheme 
that satisfies the user request and be of minimum service distance. 

Table 1. Experimental setup 

 1 2 3 

#IDCs (variable m) 10 100 1000 

#VMs in a IDC 10000 1000 100 

total #VMs 10^5 10^5 10^5 

coordinate range of IDCs and users 
[0~10^4, 

0~10^4] 

[0~10^4, 

0~10^4] 

[0~10^4, 

0~10^4] 

Table 1 shows the simulation experimental setup, which includes 3 types of MDC. 
The total #VMs is 10^5, #IDCs are 10, 100, 1000 respectively. And the coordinate 
values of IDCs and user locations are randomly distributed in [0~10^4, 0~10^4]. 

Assuming that the number of VMs of all user requests (variable K) is randomly 
distributed in [1, 500] and the number of IDCs of all user requests (variable mU) is 
randomly distributed in [1, 10]. So the number of user requests is about 400 (i.e. until 
the number of available VMs in multiple data centers is not sufficient). We report the 
results as average of 100 runs.  

Figure 6 shows the experimental results. Compared to the random algorithm and the 
greedy algorithm, the RAMD algorithm can get the better service performance 
(determined by the average of users’ service distances). Moreover, the greater the number 
of IDCs in MDC, the better the service performance for same algorithms. The reason is 
that the more IDCs to be densely distributed, the better to acquire service nearby for users 
and reduce the network diameter of multiple IDCs that are selected to place VMs. 

Since the random algorithm and the greedy algorithm allocate virtualized resources 
according to the order of users’ arrival sequence, the random algorithm may make the 
difference between users’ service performance large, while the greedy algorithm may 
make the difference between users that come early or later obvious. RAMD can 
improve the runtime performance of users' virtualized resources and reduce the 
difference of users’ service performance (i.e. users’ QoS). 
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Fig. 6. Experimental results of the three algorithms in MDC 

6 Related Work 

Most existing studies mainly focus on resource allocation in single centralized data 
center, and there are few studies involving the MDC [4-14]. On the other hand, they 
usually implement virtual machine (VM) allocation for a single user at a time without 
considering methods for multiple users [6] [7]. 

In MDC environments, resource allocation methods can usually be directly 
extended from the methods (e.g. [4],[8]) of single data center or centralized IDC. But 
due to the fact that the merger of multiple data centers will be considerable larger, it is 
easy to lead to a low performance. Another method divided the resource allocation 
top-down into two steps: the IDC selection and the allocation within IDC [15], then 
took different methods in each step to deal with the resource allocation problem. 

To consider the issue of resource allocation for multiuser across MDC 
environments, many studies mainly focus on minimizing overall communication costs 
between VMs within single IDC or centralized IDC (e.g. [4]). And the network-aware 
resource allocation [15] aims to minimize the network diameter. However, we 
consider that user location can impact on the QoS and define the optimization target 
to be minimizing the sum of all users’ service distances. 

7 Conclusion 

Cloud resource allocation problem for multi-user in multiple data centers is one of hot 
topics in cloud computing. To solve the resource allocation problem in MDC cloud 
environments, existing methods usually lack enough consideration. For example, 
resource allocation for multi-user can be performed simultaneously and user locations 
can have impact on the quality of service in multiple data centers environment. These 
usually result in poor runtime performance of users’ virtualized resources and the 
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difference of QoS for users is obvious. In this paper, we proposed RAMD, a resource 
allocation algorithm based on multi-stage decision in multiple data centers. The 
RAMD algorithm allocates VMs to users, taking into account the correlation and 
interaction between multiple users, so as to minimize the sum of all users’ service 
distances. The algorithm uses a multi-stage strategy to implement the resource 
allocation. At each stage, it works out all possible allocation schemes for all 
unallocated user requests and sorts all these schemes by service distance in ascending 
order, then uses linear scanning from left to right to select feasible schemes that are 
unallocated and can be allocated. Experimental results show that the algorithm can 
effectively deal with the cloud resource allocation for multi-user in multiple data 
centers. It can improve the runtime performance of users' virtualized resources and 
reduce the difference of QoS.  
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Abstract. The RCNet (Rank Coherence in Networks) algorithm has been used 
to find out the associations between the gene sets and disease phenotypes. 
However, it suffers from high computational cost when the size of dataset is 
very large. In this paper, we design three mechanisms to solve the RCNet algo-
rithm on heterogeneous CPU-GPU system based on CUDA and OpenMP  
programming model. The pipeline mechanism is much suitable for the collabor-
ative computing on CPU and dual-GPUs, which can achieve more than 33 times 
performance gains. The work plays an important role in reconstructing the  
disease phoneme-genome association efficiently. 

Keywords: disease phenotype, gene set, RCNet, CUDA, OpenMP. 

1 Introduction 

It is well known that phenotypes are determined by genetic material since Gregor 
Mendel discovered that phenotypes were inherited from ancestors in the 19th century. 
The associations between the candidate gene sets and disease phenotypes have been 
the research focus in the bioinformatics and medical informatics fields [1,2,3]. The 
knowledge of determined disease phenotype-gene associations has been quickly ac-
cumulated in many databases in the last decades such as the Online Mendelian Inhe-
ritance in Man (OMIM) database [4]. 

To understand the relations between the disease phenotypes and gene sets, many 
network-based approaches are proposed based on the observation that genes asso-
ciated with the same or related diseases tend to interact with each other in the gene 
network [5,6,7,8]. These approaches prioritize disease genes by the disease modules 
and gene modules in the networks. But they cannot fully utilize the disease phenotype 
network and known relations in the global analysis. A heterogeneous network is 
created from the gene network, disease phenotype network and the association net-
work of the gene and disease phenotype in the label propagation algorithm [9]. But it 
is difficult to obtain the optimal parameters and the results due to they cannot fully 
utilize the information of the networks. 
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The RCNet (Rank Coherence in Networks) algorithm is different from the gene set 
enrichment analysis with statistical methods, such as hypergeometric statistics, 
McNemar’s test, permutation test and other non-parametric methods [10,11,12]. It 
analyzes the associations between a gene set and all phenotypes using the topological 
information in the disease phenotype network and the gene network. It can provide 
adequate global dependency by analyzing all the phenotypes [13]. Hence much relia-
ble information can be utilized to compute the relationship scores when ranking all 
the phenotypes. However, the RCNet algorithm faces high computational cost and 
needs to improve the large data processing efficiently. 

Due to being powerful and cost-effective, GPUs have been used in a vast range of 
scientific applications, including the DNA analysis [14], protein sequence processing 
[15], MapReduce [16], etc. GPU has a large number of stream multiprocessors (SMs) 
and high memory bandwidth, and its computing power has been significantly im-
proved and growing beyond Moore’s law in the recent years [17]. GPGPU (General 
Purpose GPU) computing mainly adopts CPU-GPU heterogeneous model, which is 
based on CUDA (Compute Unified Device Architecture) to give full play in handling 
floating-point arithmetic [18]. 

In this paper, the RCNet algorithm is analyzed quantitively and parallelized using 
the OpenMP and CUDA model to accelerate the association inference between the 
gene sets and disease phenotypes. The computing intensive operations including the 
matrix normalization, correlation coefficient calculation, summation of each row and 
column have been implemented on single- and dual-GPU(s) with three parallel me-
chanisms. They are evaluated with the gene network, disease phenotypes network and 
disease phenotype-gene association network from OMIM database. The data transfer 
optimization mechanism can achieve 12.9 times speedup on GTX 480 GPU, while the 
collaborative pipeline mechanism on dual-GPUs can obtain 33.8 performance gains.  

The rest of the paper is organized as follows. Section 2 shows the RCNet algo-
rithm. Section 3 presents the different parallel mechanisms using the CUDA and 
OpenMP programming models. Section 4 analyzes the results of the RCNet alogirhtm 
with different implementation. Conclusion and future work are shown in Section 5. 

2 RCNet Algorithm 

The RCNet algorithm is a general network-based approach to infer associations be-
tween disease phenotypes and gene sets, which can be defined as the query process in 
the disease phenotype network and the gene network. A list of disease phenotypes are 
expected to retrieve with the highest predicted association with the gene set by query-
ing the networks with a given gene set. 

2.1    Problem Definition 

A heterogeneous network has been constructed in the RCNet algorithm from the gene 
network (GNet), disease phenotypes network (PNet) and disease phenotype-gene 
association network (ANet). The PNet and ANet are from OMIM, where the ANet 
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contains 1393 associations between 1126 disease phenotypes and 916 genes. The 
GNet is from the human protein-protein interaction (PPI) networks [21]. Each node in 
the heterogeneous network represents a disease phenotype or a gene set. A link to the 
gene set of one or several phenotypes can be obtained by query a sequence of gene set 
in the heterogeneous network. 

The GNet, PNet and ANet are represented as adjacency matrix ( )n nG × , ( )m mP ×  and 

( )n mA ×  respectively, where n is the number of genes and m is the number of disease 

phenotypes. The query gene set is represented as a binary vector [ ]1 2, , ,
T

ng g g g=   

and 1ig =  if gene i is in the query gene set, otherwise 0. Similarly, the list of target 

phenotype is represented as another binary vector [ ]1 2, , ,
T

mp p p p=   and 1jp =  

if phenotype j is a target phenotype. The purpose is to find the p that gives the highest 
rank coherence with the query gene set g. 

2.2    RCNet Algorithm 

The RCNet algorithm measures the query gene set g and a phenotype set p whether 
have coherent associations with the known disease-gene associations. The Laplacian 
scores g and p  are required in this process. The score g  ranks the genes by their 

relevance to the query gene set g. The score p  ranks the disease phenotypes by their 

relevance to the hidden target phenotypes p. Given A, the RCNet( g , p , A) tests 

whether the association can connect the genes and phenotypes in g  and p  with 

similar scores. 

Computing Graph Laplacian Scores 

In order to fully utilize the network topology information, the global correlation score 
between the query gene set g and all the genes based on the graph Laplacian of the 
gene network ( )n nG ×  should be got at first. Then the Laplacian score can be used to 

capture the information of the interaction between the nodes in the network. 
The Laplacian sore is a second order differential operator in the n-dimensional 

Euclidean space, defined as the divergence ( )f∇  of the gradient ( )f∇ . Thus, if 

f  is a twice-differentiable real-valued function, then the Laplacian of f  is defined 

by 2f f f∇ = ∇ = ∇ ∇ . The Laplacian score use the modular information in the net-

work to capture the interactions between the different nodes. At first, the matrix G of 

GNet is normalized as 1/2 1/2
G GG D GD− −= , where GD  is a diagonal matrix with di-

agonal elements 
, ,i jG i jj

D G= . The Laplacian score vector can be derived from the 

following optimization formula (1) [19]. 

 ( ) ( )2 2

,
,

1-
min - - .g i j i j i i

i j i

G g g g g
α

α
+      (1) 
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

The first term in formula (1) is a smoothness penalty, which gives interconnected 
genes similarity scores and the second term ensures consistency with the query gene 
set. The factor ( )0,1α ∈  is used to balance the weight ratio of the two components. 

The closed-form solution for the formula (1) is 

 ( )( )-1
1- - .g I G gα α=  (2) 

The iterative algorithm can be used to calculate the closed-form solution with the 

following rules in time step t to avoid computing the inverse of ( )-I Gα . 

 ( ) -11- .t tg g Ggα α= +   (3) 

Formula (4) is used to measure the relevance between the phenotypes and the tar-
get phenotype. The closed-form solution is as formula (5), where P  is the norma-
lized P and ( )0,1β ∈  is the balancing parameter. 

 ( ) ( )2 2

,
,

1-
min - - .p i j i j i i

i j i

P p p p p
β

β
+      (4) 

 ( )( )-1
1- - ,p I P pβ β=  (5) 

The Laplacian score calculation is equivalent to a weighted summation of perform-
ing random walk on the graph from one step to infinite step. Note that G and P can be 
normalized as a stochastic matrix. Therefore, G and P are enabled to be directed 
graphs. Other scoring functions also can be used to achieve the same goal such as 
counting the direct neighbors of the query gene set or find the shortest distance from 
the query gene set to other genes [5]. However, the direct-neighbor function doesn’t 
generate enough information, and the shortest-path function cannot fully explore the 
neighborhood information too. 

Process of the RCNet Algorithm 

A score against the query gene set g for each case is computed by going through each 
phenotype if only to get the most relevant disease phenotype. For this method, two 
functions are proposed to measure the RCNet. 

 ( ) ( )corrRCNet , , corr , ,g p A Ap g=      (6) 

 ( ) ( )2

lap ,
,

RCNet , , .i j i j
i j

g p A A p g= − −     (7) 

In formula (6), RCNetcorr checks the consistency between Ap and g by using the 
Pearson correlation coefficient. The adjacent gene and phenotype in disease pheno-
type-gene association network are checked in formula (7) whether they have a similar 
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score. The smaller the disagreement, the higher the relevance is. The pseudocode of 
the RCNet algorithm is given below. 

RCNet Algorithm 

Input g , G , P , A, α , β  

( )( )-1
1- - .g I G gα α=  

Initialize ( )0 0p ← , ( )0 0s ← . 

Iterate n times 

( )( )
( ) ( )

-1

2

,
,

(1) 1

(2) 1- -

(3) , ,  -

(4) 0

i

i i j i j
i j

i

p

p I P p

s corr A p g or A p g

p

β β

←

←

← −

←





   
 

End Iterate 
arg max i

i
j s←  

1jp ←  

return p 

The main calculation of the RCNet algorithm includes matrix normalization (MN), 
matrix-vector multiplication (MVM), calculation of the correlation coefficient of two 
column vectors (CCV), calculation of the sums of each row and column of the matrix 
(SRC). The RCNet score is computed in the iterations of each configuration of p. The 

time complexity of the algorithm is ( )2 3m nΟ +  for one phenotype if 

( )( )-1
1- -I Pβ β  can be preprocessed. The total cost is exponential of m if all possi-

ble configuration of p are explored.  

3 Parallel Implementation of RCNet 

3.1    CUDA Programming Model 

CUDA is based on the extensions of the C programming language, which virtualizes 
the underlying hardware of NVIDIA’s GPUs at multiple levels and abstracts the view 
for programmers from actual hardware operation [18]. It has been designed with the 
scalability to use the increased resources of each new GPU generation. CUDA’s ab-
straction provides an easy-to-program model for developers from a wide variety of 
application domains. 

On the heterogeneous CPU-GPU platform, the CPU and its system memory is re-
ferred as the host and the GPU and its device memory is referred as the device. It uses 
the master-slave programming model, where the GPU operates as a slave processor 
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under the control of a master or host processor. A function executed on the device is 
typically called a CUDA kernel, which is usually expressed using data parallel 
scheme. When a kernel issued, many threads will be created and organized in the 
form of an array into a thread block. These thread blocks are composed of a grid. The 
dimension of the grid and thread block can be specified through CUDA API func-
tions. Each thread will be assigned a unique thread index, by which we can control the 
corresponding thread to process the data on the GPUs. 

Fermi architecture has some advantages such as supporting double-precision float-
ing-point, 64-bit addressing, unified virtual address and so on. Kepler architecture has 
some new technologies such as new streaming multiprocessor design, dynamic paral-
lelism, Hyper-Q, etc. The memory hierarchy of GPU can be divided into three layers 
by access permission of thread. An underlying memory owned by single thread in-
cluding registers and local memory is the innermost layer. A middle memory shared 
by the threads in the same thread block, which only includes the shared memory is the 
inner layer. The outermost memory can be accessed by all threads in any grids includ-
ing global memory, constant memory and texture memory. The page-locked host 
memory that Fermi architecture supported can be accessed by a kernel directly. The 
operating system guarantees that it will never page this memory out to the disks, 
which ensure its residency in the physical memory. Knowing the physical address of a 
buffer, GPU can use direct memory access (DMA) to transmit data between the host 
and device. The page-locked host memory enjoys roughly a twofold performance 
advantage over standard pageable host memory when data are transmitted between 
the host and device. Furthermore, GPU can handle large scale data sets exceeding the 
device memory size limit by using the page-locked host memory. 

3.2    CUDA Implementation Mechanisms 

There are three computating intensive operations in the RCNet algorithm, which are 
analyzed using gcov, gprof and Intel vtune tools. These operations are the SRC, the 
CCV and the MN. Their time overheads are 46.17%, 31.16% and 19.06% respectively 
of the whole time to execute the RCNet algorithm serially. These three operations 
involve many basic matrix operations such as the sums of the matrix, matrix normali-
zation and matrix multiplication. It is very suitable for the GPU to compute in parallel 
because of the homogeneous data distribution and regular memory access. 

Three mechanisms based on different storage schemes are proposed as CUDA im-
plementation mechanism (CIM), Data transfer optimization mechanism (DTOM) and 
Pipeline mechanism (PM). All the data sets are stored in host memory and transferred 
from host memory to global memory when necessary in the CIM. The SRC, MN and 
CCV are all executed on the GPU. The CPU conducts the known information exclud-
ing between 2007 and 2010 of the ANet and the partial GNet and PNet excluding. In 
the DTOM, the PNet, ANet are stored in the GPU device memory and the GNet in the 
host memory. The known information excluding between 2007 and 2010 of the ANet 
is executed on the CPU. The GPU conducts the SRC, MN, the partial GNet and PNet 
excluding and CCV operations. In the PM, the ANet, GNet and PNet are stored in 
GPU device memory and the task assignment as same as the CIM. 
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CUDA Implementation 

Each computing intensive operation has many inner iterations, which has no data 
dependencies in each iteration. GPU is good at highly parallel numerical calculation 
of the graphics class or non-graphical class. It can accommodate thousands of threads 
to run in parallel. Data parallel programming on GPU is very suitable for parallel 
computing of no logical relation data. The CIM is proposed to make use of this ad-
vantage and directly implement the operations using corresponding kernels on GPU. 

The algorithm steps are listed in Fig.1. The computing intensive steps are accele-
rated on GPU in this mechanism. Separate kernels are designed to implement the MN 
and CCV operations. The SRC operation is divided into SR kernel for calculating of 
the sums of each row of the matrix and SC kernel for calculating the sums of each 
column of the matrix. 

Firstly, CPU conducts the calculation for excluding the known information be-
tween 2007 and 2010 from the ANet. And the ANet (before 2007) will be pitched and 
transferred to the GPU global memory. The SR kernel creates some blocks by the 
amount of the rows of ANet matrix. Each block executes an iteration to calculate the 
sum of one row elements of ANet matrix. There are 256 threads launched in each 
block. Each thread calculates the sum of the elements by striding 256 elements. The 
SRC operation is shown in Fig.2. 

Secondly, the MN kernel creates thread blocks by the amount of the rows of the 
ANet matrix. Each thread block normalizes each row of the matrix. At the end of MN 
kernel, the zero-columns and zero-rows will be excluded from ANet matrix. 

Finally, CPU excludes the useless information for the next calculation step about the 
GNet and PNet. The PNet matrix and the transposed GNet matrix will be transferred to 
the GPU global memory. The CCV kernel creates thread blocks by the amount of the 
rows of the transposed GNet matrix. Each thread block calculates the correlation coeffi-
cient of gene set jG  (one row vector of the transposed GNet matrix) and the phenotype 

set iP . Then one prediction vector (PV) will be calculated by one thread block. These 

PVs will be transferred from the GPU global memory to the host memory. At last, the 
prediction matrix is composed on CPU. The CCV kernel is shown in Fig.3. 

 

 

SC Kernel

……

……

…
…

…
…

SR Kernel

row i

row j

sum i

sum j

column m column n

sum m sum n
Column Sums

Row Sums

SRC Operation

 

Fig. 1. Calculation steps on CPU and GPU Fig. 2. SRC Operation 
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Fig. 3. CCV Kernel 

Data Transfer Optimization Mechnism  
There is not enough device memory to store the PNet, GNet and ANet matrices in 
GTX 480 GPU. So the GNet is stored in the host memory. GPU needs to get the da-
ta’s physical address before accessing them. And the operating system may page these 
data out to disk or relocate their physical address by updating the operating system’s 
pagetables. The page-locked host memory can be used to solve this problem. 

In this mechanism, the computing intensive operations of MN, SR calculation, SC 
calculation and excluding the known ANet information between 2007 and 2010 will 
be implemented by four corresponding kernels. The SRC operation for the ANet ma-
trix is divided into the SR calculation kernel and the SC calculation kernel. Before 
calculating CCV, the target gene set, target disease phenotype, the mean value and 
variance of the vector of the target gene set need to be get. So the operation of CCV 
calculation is designed to three kernels as follows: the vector of disease-gene obtain-
ing kernel, the statistic obtaining kernel and the correlation coefficient computation 
kernel. At first, the PNet matrix and ANet matrix are transferred to the page-locked 
host memory. Then they will be pitched and transmitted to GPU global memory. The 
columns of the GNet matrix are non-contiguous in the memory, since the matrix ele-
ments are allocated column-by-column in traditional C++ language. And the GNet 
matrix is accessed column-by-column in the RCNet algorithm. So, it would cause 
frequent context switch when copying one column each time. The efficiency of mem-
ory access would or will be decreased distinctly. The GNet matrix is transposed so 
that the elements in each columnneed to be accessed only once. The contiguous 
memory space is allocated for thethe elements in each column. After that, the GNet 
matrix and ANet matrix are transmitted to the GPU global memory. 

Secondly, the SR kernel and SC kernel will be called to calculate SRC of ANet 
matrix. And then GPU excludes the known ANet information between 2007 and 
2010. The MN kernel creates thread blocks by the amount of the rows of the ANet 
matrix. Each thread block has been arranged to normalize one row of the matrix. 

The gene-disease vector (GDV) kernel creates thread blocks by the amount of the 
row of the normalized ANet matrix. Then each thread block computes the dot product 
of one row of the matrix and one phenotype vector, and transmits the GDV to another 
kernel which is used to obtain the statistics. Because the GDV is stored in a conti-
guous memory, one thread block and multiple threads are created to calculate the 
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statistics. Then the result will be transmitted to the correlation calculation kernel. This 
kernel creates thread blocks by the amount of the row of the GNet matrix and assigns 
the assignments to different thread blocks. Each thread block calculates the disease 
phenotype-gene vector and the correlation coefficient of each gene set in the query 
gene sets. These predictive PVs will be transmitted from the GPU global memory to 
host memory. Then the predictive ANet matrix will be stored on specified location. 

Pipeline Mechanism  

The NVIDIA Visual Profiler is used to analyze the RCNet implementation on single 
GPU, which spends much time on accessing the PNet matrix in the page-locked host 
memory. In order to solve this memory access bottleneck, the PM on dual GPUs is 
proposed. All the data sets are stored in the GPU global memory to prevent the  
program from accessing the page-locked host memory frequently. Based on the dual-
GPUs, the problem is divided into several subtasks and a suitable scheduling  
sequence is given for these subtasks. These subtasks can run on dual-GPUs at the 
same time. So the overlap of computation and data transfer can be achieved.  

In this mechanism, some computing intensive operations are implemented by the 
MN kernel, SR kernel, SC kernel, excluding KANet kernel and GDV calculation 
kernel. The CCV calculation is implemented by the statistic obtaining kernel and PV 
calculation kernel. Fig.4 lists the task assignment and execution steps on the dual-
GPUs. GPU 0 transmits the GDV to the GPU 1 through the PCIE. Then GPU 0 goes 
to the next cycle of computation instead of waiting for the computing completion of 
GPU 1. Thus GPU 0, GPU 1 and the CPU will calculate concurrently with overlap of 
calculation and data transfer. 

3.3 OpenMP Implementation of RCNet 

OpenMP (Open Multi-Processing) is an API that supports shared memory multipro-
cessing programming. It uses the fork-join model of parallel execution. There are 
many inner loops in SRC calculation, CCV calculation, MN and no data dependences 
in them. So these operations can be paralleled by OpenMP respectively. 

In the design of ANet calculation, the ANet matrix is stored by row-by-row, so the 
physical address of the adjacent elements of each column are discontinuity. On this 
occasion, it will increase the time overhead of accessing the CPU memory if we use 
multi-threads to calculate SC. So only the operation of SR calculation can be accele-
rated by OpenMP. Each core of CPU is arranged to calculate the sum of one row of 
the matrix. When normalizing the matrix, each core of the CPU is arranged to calcu-
late one row of the ANet matrix until all the rows of the matrix have been accessed. 

In the CCV calculation, all the elements of the GNet matrix will be accessed col-
umn-by-column. The matrix will be transposed in advance for the sake of decreasing 
CPU memory accessing time. And it will be accessed row-by-row only once in the 
whole process. The correlation coefficient of the vector of gene-disease and one row 
of the matrix will be calculated by each core of CPU until all the elements of the ma-
trix has been accessed. 
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Fig. 4. Task assignment on dual-GPUs 

In this mechanism, the data sets will just be read by every core of CPU and the 
writing operations on these data sets are at different physical address. Therefore, there 
are no competitions for the resources. 

4 Experiment and Discussion 

4.1    Experimental Platform and Dataset 

The experiments are conducted on the quad-core processor Intel® CoreTMi7-2600 
with four cores, clock of 3.4 GHz, 64-bit instruction sets, 16GB RAM and 32GB/s 
maximum memory bandwidth. The GPUs are NVIDIA GeForce GTX 480 and GTX 
780 with 1.5GB and 6GB global memory respectively. Ubuntu desktop 12.04 operat-
ing system runs on this platform. 

All the data sets are from the OMIM database. There are five PNets [20] and each 
is an undirected graph with 5080 vertices representing OMIM disease phenotypes 
with the size of approximate 200MB.The five GNets are derived from the human 
protein-protein interaction (PPI)  networks [21] and each of them is an undirected 
graph with 12456 vertices representing OMIM genes with the size of approximate 
1GB. There is only one ANet (Ver. 2010) with the size of approximate 400MB. And 
it contains 1393 associations between 1126 disease phenotypes and 916 genes. 

4.2 Correctness Verification 

The implementation approaches between the parallel mechanism and the serial me-
chanism have some adjustments, since the hardware architecture and instruction set of 
the GPU and CPU are different. To guarantee the result of the parallel mechanism can 
meet the accuracy requirement in reality, the accuracy error between the results of 
different parallel mechanisms and the result of the serial implementation of the 
RCNet algorithm is calculated. 

The relative error measurement is adopted to calculate the accuracy error. In this 
measurement, the maximum difference of the data in the same location between the 
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results of the different implementation mechanisms and the mechanism of serial im-
plementation of the RCNet algorithm are adopted to evaluate the accuracy error. The 

formula is ( )( ), ,max 2 -i j i jabs A A ( )1,2, , . 1,2, ,i n j m= =  , where ( )n mA ×  

represents the results of the mechanism of serial implementation of RCNet and 

( )2 n mA ×  based on the GPU. 

The results show that there is no accuracy error of the result of OpenMP compared 
with the result of the serial implementation. While the results of CUDA parallel me-
chanisms have approximately five millionths level relative accuracy error compared 
to that of the serial implementation. However, the level of accuracy error will not 
affect its practical applications in the bioinformatics and medical informatics fields. 

4.3 Performance Comparison and Analysis 

CUDA-Based Implementation  

NVIDIA Visual Profiler is used to collect and analyze the GPU computing perfor-
mance. Table 1 lists the profiling results of different parallel mechanisms based on 
current CUDA: HtoD (Host to Device) includes the time overhead of data sets trans-
fer from host memory to device memory and the intermediate results transferring 
from host to device. DtoD (Device to Device) includes the time overhead of interme-
diate results transferring from GPU 0 to GPU 1. DtoH (Device to Host) includes the 
time overhead of results transferring from device memory to host memory. It can be 
observed that the DTOM and PM achieved an ideal effect on reducing the data sets 
transfer time overhead. 

Table 1. Time overhead of data transfer 

CUDA Mechanisms HtoD(s) DtoD(s) DtoH(s) 

CIM 2318.41 0.00 2241.05 

DTOM 0.23 197.17 0.63 

PM 5.26 141.99 2.67 

The time overhead of the three computing intensive operations including MN, CCV 
calculation, SRC calculation and their data sets transfer time overheads are counted in 
different mechanisms. Fig.5 lists all the analysis results. Four threads are launched in 
the OpenMP mechanism. It can be observed that the three computing intensive opera-
tions in the DTOM and PM had obtained an ideal effect. 

OpenMP-Based Implementation 

Different numbers of threads are launched to evaluate the performance of the imple-
mentation mechanism. Table.2 lists the experimental results.The time overhead is the 
least when the amount of threads is equal to the cores of CPU. There will be a compe-
tition for resource when the amount of the threads exceeding the cores of the CPU 
because all the threads may read or write the same variables at the same time. 
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Fig. 5. Hotspots time overhead of different mechanisms 

Table 2. Results with variable threads 

Threads 1 2 4 8 16 

Time(s) 17475.0 13626.6 13308.0 13375.8 13408.8 

Comparison and Analysis  

Fig.6 lists the whole time overhead and speedup results of different mechanisms. The 
OpenMP mechanism had created 4 threads to calculate. The PM on dual GPUs 
achieves the best performance and its speed-up ratio is 33.8. A nice performance with 
a 12.94 speedup is achieved of the DTOM. 

The time overhead of CIM is 15744.6 seconds, which shortens about 9.9% of the 
time overhead compared to the serial implementation mechanism. The time overhead of 
DTOM decreases to 1350 seconds from 15744.6 seconds of the serial implementation 
mechanism. It proves that 92.27% time overhead is saved compared to the mechanism 
of CUDA implementation. The time overhead of PM on dual GPUs is 516.6 seconds, 
which is proved 97.04% time overhead saved compared to the serial implementation 
mechanism. The PM achieves a higher performance than other mechanisms. 
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Fig. 6. Time overhead and speedup of different mechanisms 
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With the size of the data sets increasing, the PM cannot store all the data sets in the 
GPU. So the DTOM has more universal applicability and scalability than the PM 
since partial data sets are stored on host memory in the whole process. The DTOM is 
tested on NVIDIA GTX 780 GPU, which has 6GB global memory. The DTOM's time 
overhead is 829.67s, which is only about 360 seconds more than the DTOM of 
putting all the data sets on the GPU. This result has proved that the DTOM's universal 
applicability and scalability. 

The performance of sub-process belonging to the mechanism based on single GPU 
obtains a significant improvement by creating enough threads. The experiment result 
of dual-GPUs proves the reasonable of the mechanism of computation and data trans-
fer overlap, which stores all the data sets in the GPU global memory instead of the 
page-locked host memory. This mechanism breaks the bottleneck of the PCIE bus 
bandwidth and obviously decreases the time delay of data transmission. Finally its 
performance is 1.61 times compared to the mechanism of single GPU. 

5 Conclusion 

The disease-causing genes prediction process encounters the challenge of slow 
processing speed. Several parallel implementation mechanisms are proposed for infer-
ring disease and gene set associations based on the OpenMP or CUDA programming 
model. The experimental results show that the PM on dual GPUs can be efficiently 
used to inferring the disease-causing genes, which ensures the accuracy of the predic-
tion results. This mechanism greatly reduces the prediction time and achieves 33.8-
fold speedup. It will have an impact on accelerating the research progress of inferring 
the disease-causing genes. 
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Abstract. Power estimation has attracted a plenty of attentions for its signifi-
cant guidance for OS scheduling and the development of power-efficiency op-
timization design. Previous researches indicate that power consumption can be 
estimated via monitoring related hardware events, such as retirement of instruc-
tions, cache access, etc. However, these models based on hardware events will 
introduce an error around 5%. In this paper, a more accurate hardware events 
directed power model is proposed. We identified the most appropriate events to 
respond to the major power consumption components. By analyzing the hard-
ware events in processor through performance counters, a unified run-time 
power estimation model is introduced. Our model has been verified through 
real-time measurement and shown to be 3.01% and 1.99% inaccurate for 
PARSEC and SPLASH-2 benchmark suites. Our power estimation model can 
serve as a foundation for intelligent, power-aware systems that can dynamically 
balance power assignment and smooth peak power at run-time. 

Keywords: Dynamic Power, Power Estimation, Performance Counters. 

1 Introduction 

Until recently, benefiting from the increasing of clock rate and shrinking of transistor 
size, the performance of microprocessors has been developing in an amazing speed. 
However, power is becoming an issue that restricts the further development. First, if 
the excess thermal produced by high power cannot be sent out in time, device temper-
ature would rise up, which usually leads to an unreliable system. Second, current high 
performance processors are reaching the limitation of conventional cooling tech-
niques. Powerful radiator fan even water-cooling has to be employed to guarantee 
processors to work normally. Third, electric cost is another important factor that we 
must take into account in the age of environment-friendly and energy-saving. For 
example, the electric charge of Tianhe-2, the first one of top500 ranking in June and 
November 2013[1], is over hundreds of thousands of US dollars each hour. Therefore, 
Green computing has attracted more and more attentions and how to improve power 
efficiency becomes a hot topic. In order to raise the awareness of Power-Aware  
Computing instead of pursuing performance blindly, Green500 [2] lists the most 
energy-efficiency supercomputer twice a year according to the ratio of performance 
and power consumption. 
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With multi-thread or multi-core becoming dominant, power density further in-
creases. Modern operating system also introduces a variety of power saving mechan-
isms, such as DVFS (Dynamic Voltage and Frequency Scaling), which is widely used 
to reduce power and temperature. Usually, the schedule is based on the worst case. 
For example, on some multi-core platforms, all processor cores share a same frequen-
cy and voltage domain. If one core is overheating because of hot tasks, their frequen-
cy will be brought down. Other cold cores have to bear the negative influence. To 
reduce the performance impairments, an alternative is thread schedule or migration 
instead of throttling. Appropriately energy-aware dispatching tasks among cores can 
obtain optimal performance per watt or maximal performance under a power-limited 
system. Obviously, the precondition of energy-aware schedule is to realize how much 
power a task will consume at present and in the future. Even for platforms supporting 
different frequency and voltage domain among cores, power consumption of each 
core is also an important factor which will influence frequency adjustment. 

Some researchers try to optimize power efficiency according to CPU temperature. 
“HybDTM” [3] and “ThreashHot” [4] implement task schedule according to real time 
temperature to take full advantage of computing resource and avoid overheating. 
However, temperature does not work as effectively as power in reflecting the run-time 
characteristics of workloads for the delay before temperature changing. Hot core with 
high temperature may be coursed by a heavy load a moment ago not right now. Russ 
Joseph [5] tried to measure real hardware power by placing a shunt resistance be-
tween computer’s power supply and motherboard power terminal. But the extra in-
strument consumes power itself and the measurements are limited by its accuracy. 
What’s more, tiny change cannot be detected nimbly. Imprecise power would mis-
guide the scheduler and lead to downgrade of power efficiency which is opposite to 
the original goal. 

Power consumption can also be estimated via monitoring hardware events [6,7,8], 
such as the number of unhalt cycles, instructions retired, cache miss/hit at each level. 
Compared with power model based on simplified simulations [21], it can be imple-
mented and evaluated on real hardware. To collect hardware events, almost all mod-
ern processors offer special hardware performance counters, which are commonly 
used in commercial toolsets such as Intel’s performance analysis software VTune. 
These counters monitor the occurrence of hardware events with almost no perfor-
mance penalty which catches valuable insights into various performance aspects of 
application. The only overhead is to record and reset counters. These counters were 
designed for performance tuning separately at the beginning and accessing them will 
not increase the burden of pipeline or other resource. However, Frank finds a strong 
linear correlation between some hardware events and processor’s dynamic power [6]. 
Having understood when and how these events occur, we can build a power estima-
tion model with the explored hardware events using a mathematical method.  
Hardware-based performance monitor not only can help pinpoint where the power is 
consumed; it can also offer input for power estimation model. A good profile can 
provide a lot of useful information about the behavior of a running program and 
guides to optimization strategy. In practice, the operating system scheduler can  
benefit from power profiles to optimize the thread assignments, avoiding unbalanced 
situations when one core is overloaded but others are idle. Also, developers can un-
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derstand the behavior of applications and undertake a relevant performance tuning. 
Current estimation models have its own limitations in different aspects. For example, 
the model depends on applications closely, or process method is too intricacy. Most 
importantly, some of them are far from accurate. This paper’s goal is to overcome 
these weaknesses and demonstrate an easy, application-independent model with  
high-accuracy. 

We propose a two-stage power estimation approach, as shown in Fig. 1. We as-
sume this approach is implemented on a four-core platform as a monitor program. 
The monitor program is bound to core 0 and be responsible for gathering information 
of real power, performance counter values and temperature. Applications can run on 
core 1 to 3. The first stage is offline profiling, in which the monitor program takes 
sample of hardware events, core temperature and total power periodically. All related 
data is stored into a log file. Then, a statistical method is applied with above log file 
as input to construct both static and dynamic power model. In the second stage, online 
estimation, processor monitors appropriate events and calculates the power with the 
model obtained in the offline phase.  

The rest of this paper is organized as follows. Section 2 reviews the related works. 
Section 3 describes how to build the parameter model in offline stage. Section 4 
presents the details of experiment implementation, then analyses the error of model 
with actual measurement. And section 5 summarizes the conclusion. 
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Fig. 1. Framework of our approach 

2 Related Work 

Frank Bellsoa’s work [6] shows the linear correlation of hardware events and energy. 
Then, they use hardware activity to establish thread-specific energy consumption 
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model. Since then, a lot of work has been done for power estimation based on hard-
ware performance counters. 

Performance monitor counters (PMCs) based power estimation models in prior 
work can be divided into two categories [7]. The top-down method uses a reduced set 
of events, aiming to build a fast and simple model with little overheads, while the 
bottom-up approach breakdowns the power components based on microarchitecture. 
The latter one produces more accurate power model by gathering more information to 
reflect the power characteristics of applications, at the cost of increasing the complex-
ity of modeling. Our model makes a balance between accuracy and cost, and can be 
viewed as a moderation on both sides. 

Karan Singh et al. [24] achieves a run-time per-core power estimation of multi-
thread and multi-program workloads using the top-down method [7]. They categorize 
the processor’s hardware event into four classes (because their environment platform 
has only four performance counters). Then the topmost one is chosen in each class 
which is the most correlated to power. With the runtime data from executing micro-
benchmark, they build a piece-wise linear mode and achieve median errors of 3.9%, 
5.8% and 7.2% for the SPEC-OMP, NAS and SPEC2006 benchmark suites respec-
tively. However, comparing with ours, their model is uniform and relies on the appli-
cation, and they can’t thoroughly explain the cause to fragment. Our uniform model 
catches a better precision with errors of 3.01% and 1.99% for PARSEC and 
SPLASH2 respectively. 

Isci and Martonosi [8] decompose CPU into 22 power breakdowns based on func-
tion unit which is a typical bottom-up approach [7]. Following that, they present a 
per-unit power estimation devised from performance counters. They train sub-model 
with a set of specialized micro-benchmark to stress the correlated power units one by 
one. Plenty of hardware events can reflect more power characteristics, making contri-
bution to the prediction accuracy. However, their process of modeling is complicated 
and quite dependents on particular architecture. Since modern processor is becoming 
more and more intricate, it is hard to define the suitable granularity for each power 
breakdown and seek corresponding events. We treat things as a whole and combine 
different units on a higher level view to avoid cumbersome per-unit model. 

3 Power Model 

3.1 Hardware Event Selection  

Hardware events for building model directly decide the precision of final estimation 
model. The accuracy of performance monitoring hardware is discussed in article [20], 
the overhead from interface may influence the accuracy. As a result, taking too many 
events into consideration would result in a bad estimation. On the contrary, insuffi-
cient of events would make the model unable to catching enough information of  
power characteristics. It’s a great challenge for us to select the events that are most 
representative for system power with the least redundancy. Events with high correla-
tion to power consumption usually come from power-hungry components. For a good 
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Fig. 2. The breakdown of power in microprocessor 

model, the events should reflect the work of most energy component as far as possi-
ble. In a microprocessor, clock logic unit is the largest consumer of processor power. 
It includes clock driver, clock tree, clock load and so on [23] (Fig. 2). Data path is the 
second leading cause of power consumption, which includes all kinds of complex 
execution unit, register file with high access frequency and bus. What we need to do 
is to extract the most representative event set for them with little redundancy. First of 
all, we pick out events which are related to these component. Then, events were  
filtered based on Pearson correlation coefficient to total dynamic power. Pearson 
correlation shows the linear relationship between two sets of data. Events with the 
coefficient between -0.1 and 0.1 are cast out, which means no linear relationship exits. 
Finally, through stepwise multiple linear regression, redundant events were filtered, 
with 9 typical events left finally which are described below. These selected hardware 
events are belong to four different groups based on the distribution of power above, as 
listed in Table 1. The groups represent different causes of power in a microprocessor. 

Table 1. Selected hardware events 

Unit Event 

Clock logic UNHALTED_CORE_CYC 

Data path 

INSTRUCTION_RETIRED 
MISPREDICTED_BRANCH_RETIRED 

BUS_CYCLE 
DTLB_MISS 

Cache 

MEM_UOP_RETIRED:ALL_LOADS 
MEM_UOP_RETIRED:ALL_STORES 

ICACHE:MISSES 
PERF_COUNT_HW_CACHE_L1D:MISS 

Others 
OFFCORE_REQUESTS:ALL_DATA 

OFFCORE_REQUESTS_BUFFER 
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UNHALTED_CORE_CYC: Counts the number of thread cycles while the core is 
not in a halt state. When CPU is in idle state, OS halts it by a HLT instruction then 
gates the clock signal to save power. So, the running power is significantly different 
between unhalt and halt. In Intel processors, there are several C-states [9] in device, 
core or package level to improve energy efficiency when they are idle. 

BUS_CYCLE: Bus is the path to connect processor and memory. For the speed of 
processor is far more than that of memory, a great quantity of bus cycle means target 
data is absent from cache, leading to the action of fetching memory. 

INSTRUCTION_RETIRED: This event can be used to reckon the activity of in-
struction retired component. We can catch a glance of the throughput of pipeline 
through the number of retired instructions. Due to branch instructions with wrong 
prediction don’t accomplish executing, they are ignored by this event. 

MISPREDICTED_BRANCH_RETIRED: Branch instructions usually predict ex-
ecuting direction in advance by demanding branch history buffer (BHB) or branch 
target buffer (BTB). Once mistaken is detected, the pipeline would be flushed and 
rerun in the opposite direction. For the modern processor especially those with long 
pipeline, overhead coursed by wrong prediction is greater.  

MEM_UOP_RETIRED:ALL_LOADS/ALL_STORES: Loading or storing opera-
tion would lead to memory access which usually brings stalls into pipeline and de-
creases throughput. These two events represent the access times of load and store 
buffer as well as L1 cache. 

ICACHE:MISSES/DCACHE:MISSES: Represent number of L1 instruction cache 
and  L1 data cache misses respectively. The sum of which is the access to L2 private 
cache that reflects the access frequency of the L2 cache. 

OFFCORE_REQUESTS/OFFCORE_REQUESTS_BUFFER: With the growing 
size of uncore-cache and the integration of other SOC components, uncore must not 
be overlooked [10]. We record the requests sent to uncore which are mostly triggered 
by L2 cache miss. 

DTLB_MISS: Processors that utilizes page or segmented virtual memory need to 
access memory twice for each load or store operation. To ensure better performance, 
translation look-aside buffer (TLB) is used to improve virtual address translation 
speed [19]. A TLB miss will result in walking the page tables and performing the 
translation of virtual address. 

3.2 Event-Based Power Estimate Model 

It was difficult to build a pinpoint power model without information of processor’s 
circuit. While we try to model the major power customers in the processor. We as-
sume power consumed by these units for each access is a constant. To count the 
access of component, the related hardware events are supervised. The total dynamic 
power of unit Ui can be calculated by formula (1). 

 iii avgPActUP *)( =  (1) 
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Where Acti represents Ui’s access frequency which is a measurement of the utiliza-
tion rate. Simply summing up the power of all the major power-sapping components 
can obtain the total dynamic power using formula (2): 

 
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idynamic UPP
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We can get Acti by dividing the sample interval with the value of corresponding 
event counter (formula 4). Treating activities as independent variables and dynamic 
power as dependent variable, we perform a multi-linear regression analysis to gain 
coefficients of the model. Finally, we can obtain the following linear model: 
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Where Wi  is the coefficient calculated from linear regression, acting as the average 
power cost by unit Ui. Acti is the occurrence of event i per second. It’s the measure-
ment of component activity. Si is sampled data for event i from performance counter. 
The limited number of events cannot reflect the total power. C is a constant represents 
the partition out of our monitor. 

4 Experimental and Analysis 

We select Intel i5 2300 processor as baseline platform to evaluate the correctness and 
performance of our model. System configurations are listed in Table 2. Intel i5 2300 
has 4 single-threaded cores and its own private L1 and L2 caches. Its L1 cache is 
typical Harvard structure with divided instruction and data cache. The last level cache 
inside the physical package is an inclusive, unified data and instruction cache, shared 
by all processor cores. The processor provided the interface to real time power for its 
Sandy Bridge architecture which a RAPL (Running Average Power Limit) [14] mod-
ule has been integrated into. All the experiments run on the Ubuntu Linux 13.04 oper-
ating system, whose kernel version is 3.8.0. 

Table 2. Configuration of processor 

Processor Intel i5 2300 
# of Core 4 
# of thread 4 
L1 Caches 64KB Instruction, 64KB Data, Private 
L2 Cache 256KB, Private 
L3 Cache 6MB, Shared 
Size 32mn 
TDP 95W 
Clock speed 2.8Ghz max,1.6Ghz min 
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4.1 Experiment Environment Setup 

Hardware Events Collection 
In order to gather events data, we have to configure MSR (Model Specific Register) 
which refers to event coding and mask. Fortunately, performance monitor tools or 
libraries like PAPI [11], Perfmon [12], Perfsuit [13] are commonly used to monitor 
hardware counters. They provide APIs that are accessible and well documented for 
users. Here, we use libpfm4, a library with a flexible performance interface for Linux. 
With this lightweight interface, we can control counters easily and collect profiles on 
a per-thread or per-CPU basis. It helps converting an event name, expressed as a 
string to the event encoding, so as to avoid complex configuration register setting.  

The sampling interval which refers to the numbers of events monitored has an indi-
rect influence on estimation accuracy. A trouble appears in our model when we have 
to catch the values of 11 events for all cores with only 4 performance counters. There-
fore, one counter is configured to monitor the events in a fixed core and record one 
event value at a time. We rotate through all these selected events and assign each 
event a time slice of 20ms. This multiplexing assumes that program behavior is fairly 
constant with respect to the sampling intervals, because of the guarantee by temporal 
locality. There is a tradeoff between inaccuracy with a longer sampling interval and 
an increasing overhead for continually sampling. 

Real Time Power Measurement  
RAPL is first introduced to Intel’s Sandy Bridge architecture, which allows users to 
monitor and control power consumptions. With the support of RAPL[14], we can 
measure the real time power in different domains hierarchy, such as package, DRAM 
controller and CPU core, even make a power budgeting. We bound the monitor pro-
gram to core0, and other applications to be tested running on core1 to core3. The 
measured power can be described as below:  

 idlenamicmeasured PPP += dy  (5) 

 staticmonitorosidle PPPP ++=  (6) 

Where the idle power (Pidle) contains the static power (Pstatic), the dynamic power 
of OS (Pos) and the monitor (Pmonitor).  

We subtract Pidle from Pmeasured to obtain the dynamic power. It’s difficult and 
beyond the research scope for us to decouple OS power, monitor power and static 
power separately. However, to treat the two parts ahead as a constant is reasonable. 
As OS dynamic power is tiny by contrast, we ignore it directly. Power consumed by 
monitor is stable, because it only performs sampling and data storing periodically. 
Static power is a function of voltage and temperature, but the voltage keeps unaltera-
ble in our experiment for which we just consider the changes coursed by the tempera-
ture. Lm-sensors is used to detect the temperature, which is a user space tool to sense 
temperatures, voltages and fans. Then we built the model of idle power (formula 7). 
In spite of exponent relationship in theory, linear approximation within a small range 
of temperature is acceptable [15]. In fact, measurements of the changing range of 
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temperature in our experiment is within 15 degree centigrade. To avoid the unknown 
interference from the Turbo Boost [9], we turned down this mechanism in the BIOS 
in advance. 

 
21

* CTCPidle +=  (7) 

Both C1 and C2 are constant. T is the average temperature of all cores. 

Benchmark Selection 

Training Set 
The model would be more precise, if the behavior of training set can explore the full 
space of the selected events. We use benchmarks from SPEC CPU2006 [16] bench-
mark suite to build model. This training set covers computing domains form worksta-
tion, scientific and enterprise involving CPU and memory bound workload that 
stresses different subsets of system components. Prediction would lose precision if 
some scenarios are absent for considering.  

Testing Set 
To guarantee the fairness of evaluation, a different benchmark group is used for test 
and verity. PARSEC [17] benchmark suite enjoys widespread use in evaluating 
CMPs. It’s composed of multithread programs and focus on emerging workloads. 
Some researchers [18] have proved PARSEC is fundamentally different from 
SPLASH2 [19] benchmarks in the view of architectural characteristics, such as in-
struction footprint and working set size. As a result, they complement each other well 
to give a credible comprehensive. So the combination is a good choice to test model. 

 

Fig. 3. (a) Idle power  

4.2 Results and Error Analysis 

To model the idle power, we run a heavy workload for quick heating up the chip, then 
stop all applications except the monitor, to keep track of the idle power and tempera-
ture of each core until the temperature is no longer falling down. Idle power result  
 



186 X. Liu et al. 

 

 

Fig. 3. (b) The power of PARSEC and estimation errors 

 

Fig. 3. (c) The power of SPLASH2 and estimation errors 

 

Fig. 4. The power phase of Blackscholes(left) and Streamcluster(right) 

is shown in Fig 3(a). It drops with the reducing of core temperature. Although a linear 
fitting is so simple, it really produces a great result with a percentage error of 0.78%. 
For dynamic power, we run multi-thread workload with 2 threads, then compare pre-
dicted power to the measured one. The result (Fig3 b, c) shows that our model tracks 
the power consumption well. There is an average error of 3.01% and 1.99% for 
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PARSEC and SPLASH-2 have respectively. 80% of the applications have less than 
5% error. Moreover, the model adapts power phase of running programs well, which 
can be shown in Figure 4. Because the phase behavior can be detected by hardware 
event directly [22], which our model is exactly based on. Some benchmarks are esti-
mated unsatisfactory such as facesim, with an error up to 8%.  

Reasons may lead to errors are analyzed below: 
 

• The estimation model is built with a simple multi-liner regression which ignores 
the non-linear element to the power which would be a potential reason to cause the 
major error. 

• Coarse-grained model for some complex components are not elaborate enough. For 
example, the estimation model can’t distinguish between ADD and DIV instruction 
which certainly cost different mount of power. The disability to differentiate in-
struction type ignores this influence to ALU. 

• Insufficiently training in the phase of model learning coursed by incomplete train-
ing set. We exercise model with SPEC2006 benchmarks which are designed to 
stress ALU and memory hierarchy. Adding some I/O bound program for training 
seems to be more comprehensive.  

• The multiplex technology subdivides the usage of the counting hardware over time 
to simultaneously monitor more performance events which may cause some lose in 
prediction precision. 

• Dynamic power model is built based on idle power. Errors in idle power would be 
delivered to dynamic power model, even to be magnified. 

In spite of some errors, our estimation fits actual value well. Especially, it can fol-
low the changes of power phase accurately. The prediction is application independent 
and need no other pretreatment of tested application. Moreover, the modeling metho-
dologies used in this work can also be popularized to any other platform with perfor-
mance counter, which indicates the generality of this work. 

4.3 Contrastive Analysis 

We compare our model with previous works in Table 3. Top-down method is easy 
and low overhead compared with Bottom-up method which is more accurate. Howev-
er, our method incorporates the advantages of both of them. Filtering events with a 
Top-Down method at first, then determining the final events through mathematical 
statistics from the bottom up, we effectively avoid the model for each feature sepa-
rately, greatly reducing the complexity of modeling. We make use of 11 events and 
acquire a more precise model with the average error of 2.5% on the Intel I5 processor. 
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Table 3. Comparison between different models 

Model Method Platform 
# of 

events 
Average 

Error 
Application- 
independent 

Karan’s mod-
el[24] 

Top-Down AMD Phenom 9500 4 5.63% No 

TDC[7] Top-Down Intel Core TM 2 Duo 4 4.53% Yes 

BU[7] Bottom-Up Intel Core TM 2 Duo 9 2.53% No 

Isci’s model[8] Bottom-Up P4 22+ 
Around 

3W 
Yes 

MICRO[25] Bottom-Up Intel Core TM 2 Duo 20 2.85% Yes 

Our model 
integrated 
approach 

Intel I5 11 2.5% Yes 

5 Conclusions and Future Work 

This paper proposes a general framework for estimating microprocessor’s power 
through performance counters and implements a light-weight and accuracy power 
estimate model. Its accuracy has been validated by PARSEC, SPLASH2 with average 
errors of 3.01% and 1.99%. In addition, the framework provides power breakdown for 
the components which helps to locate the hot point. What’s more, our model needs no 
priori understanding of the tested applications.  

To further demonstrate the platform-independent of proposed methodology, we plan 
to transplant it to other platform such as AMD processor. Still further, we will focus on 
exploring new power model for CPU+GPU or CPU+MIC heterogeneous architectures 
which are more and more commonly adopted in high performance computing 
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Abstract. Phase change memory (PCM) has emerged as a promising
candidate to replace DRAM in embedded systems with its attractive
features. However, the endurance of PCM greatly limits its adoption in
embedded systems. It can only sustain a limited number of write opera-
tions. To solve this issue, we propose a simple, novel, and effective wear
leveling technique, called Double Circulation Wear Leveling (DCWL),
to evenly distribute write activities across the PCM chips. The basic
idea is to periodically move the hot region across the whole PCM chips.
When a movement of the hot region is triggered, several small areas in
the hot region move to the right. The experimental results show that
our wear leveling technique can effectively improve the lifetime of PCM
chips compared with the previous work.

Keywords: PCM, Wear Leveling, Endurance, Non-volatile Memory.

1 Introduction

PCM is a promising non-volatile memory technique [1,2,3]. There are several
characteristics compared with DRAM and NAND flash. The most typical fea-
ture of PCM is non-volatile, which is similar to NAND flash, but it has advan-
tages over NAND flash in density, energy, endurance and read/write speed. In
particular, PCM is bit-alterable and byte-addressable, and unlike NAND flash,
does not require erase operations for overwrites. Low standby power is another
feature of PCM, which is superior to DRAM, because PCM does not need the
refresh power. Although PCM has better endurance than NAND flash, its write
endurance is still limited [4]. A single level PCM cell (SLC) can endure 107

to 109 writes before it permanently fails [3]. On the other hand, a program in
embedded systems usually distributes write traffic in an extremely unbalanced
way. Repeated write operations to the same address may break PCM in dozens
of seconds, which poses challenges for the adoption of PCM, so appropriate man-
agement for PCM is important and necessary. Furthermore, the access latency of
PCM is much closer to DRAM, and combined with its density advantage, PCM
is an ideal candidate to replace DRAM as the main memory [5].

In order to increase the lifetime of PCM, a series of reducing write opera-
tions and implementation of wear leveling studies are carried out. For reducing
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writes on PCM, various effective techniques have been done, e.g., removing re-
dundant writes [6], write truncation [7], software optimizations proposed by [8,9]
and Flip-N-Write [10]. Flip-N-Write is a simple read-modify-write technique to
write either flipped or unflipped in order to reduce writes. Whereas, the lifetime
of PCM is not directly proportional to the total number of writes on PCM,
but to depend on the location that is written most frequently. Therefore, these
techniques are inability when the writes in a program are non-uniformity. To
evenly distribute write traffic on PCM, row shifting and segment swapping [6]
has been proposed to achieve wear leveling, in which a mapping table is employed
to record writes on each row or segment. It requires a huge space overhead. To
avoid the space overhead, random-based swapping techniques, such as Start-Gap
[11], security refresh [12] and PCM-aware swap algorithm [13], are proposed to
dynamically randomize the mapping on PCM chips for achieving wear leveling.
Start-Gap [11] method first randomizes the mapping from logical to physical ad-
dresses to distribute write traffic with high spatial locality. Then, by combining
a rotation-based wear leveling utilizing start and gap registers, logical to phys-
ical address mapping is changed. Curling-PCM [14] is a kind of wear leveling
algorithms oriented particular embedded application. The basic idea is to peri-
odically move the hot region across the whole PCM chips. There are also other
kinds of wear leveling algorithms, such as age-based PCM wear leveling [15] and
bloom filter-based dynamic wear leveling [16].

In this paper, we propose a simple, novel, and effective wear leveling technique,
called Double Circulation Wear Leveling (DCWL), to evenly distribute write
activities across the PCM chips so that the endurance of PCM-based embedded
systems is enhanced. Our basic idea is to periodically move the hot region across
the whole PCM chips. When a move of the hot region is triggered, several small
areas in the hot region move to the right. In such a way, write traffic to hot areas
can be evenly distributed to the whole PCM chips, so the PCM wear leveling can
be improved. DCWL is very simple and requires only five additional registers to
perform wear leveling. The experimental results show that DCWL can effectively
improve the lifetime of PCM chips compared with the previous work.

This paper makes the following contributions:

• We propose a simple, novel, and effective wear leveling technique, called Dou-
ble Circulation Wear Leveling (DCWL), to evenly distribute write activities
across the PCM chips. The effectiveness of our techniques is demonstrated
by comparing with previous work using workloads.

• We develop a simulator to simulate PCM-based embedded systems, and
based on which, we conduct a series of experiments to demonstrate the ef-
fectiveness of our techniques.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground and motivation. Double Circulation Wear Leveling is proposed in Section
3. Section 4 reports the experimental results. Finally, in Section 5, we conclude
this paper and discuss future work.
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2 Architecture and Motivation

In this section, we first present the architecture of PCM-based embedded sys-
tems. Then, we discuss the motivation of our work.

2.1 Architecture of PCM-Based Embedded Systems

In [17], the architecture of PCM-based embedded systems has been presented.
DRAM serves as the main memory, NOR flash is used to store code with
eXecution-In-Place, and NAND flash is used as the secondary storage to store
user data. As PCM has superior read/write performance compared with NOR
flash, it has been utilized as NOR flash replacement. In [4], NOR flash is re-
placed with PCM, which is used to store the code and meta-data. In our paper,
the architecture of PCM-based embedded systems is shown in Figure 1. PCM
replaces the conventional DRAM as the main memory of embedded systems,
and is used for storing data from execution process of program [14]. The embed-
ded systems adopt the SRAM-based Scratch Pad Memory (SPM) as its on-chip
memory, which is widely used for reducing the speed gap between the processor
and the PCM-based main memory. In this architecture, the flash-based storage
drive is used as the secondary storage to store user data [18].

PCM-based 
main 

memoryPCM 
control unit

wear leveling 
control unit

cache 
control unit

SRAM

CPU

Flash-based 
storage drive

 Controller 

Fig. 1. Architecture of PCM-based embedded systems

2.2 Motivation

Despite the studies in PCM wear leveling, most existing work is based on count-
ing the number of writes per line or page [6], which may introduce non-negligible
hardware overheads. Other approaches such as Start-Gap [11] require simple ad-
ditional hardware changes, but move cold regions only. Application-specific fea-
tures such as fixed update frequencies and access patterns in embedded systems
are not fully utilized, so Curling-PCM [14] has been proposed, which is a kind
of wear leveling algorithms oriented particular embedded application. As shown
in Figure 2, we still note some extraordinary large write counts. The reason be-
hind is that the frequency of moving hot regions is not large enough to perfectly
and evenly distribute all write activities across the PCM chips. If we reduce
the number of writes required before conducting a move, write activities will
become more evenly distributed. But small thresholds may lead to frequent and
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Fig. 2. Distribution of write activities with Curling-PCM [14]

excessive copy operations, thus increasing the total number of bit flips. To solve
this conflict, we propose a wear leveling algorithm that is suitable in distributing
unbalanced writes in PCM evenly across the whole PCM chips.

3 Double Circulation Wear Leveling

In this section, we present our wear leveling technique, called Double Circulation
Wear Leveling (DCWL), which is a simple and effective wear leveling technique.
Many methods in PCM wear leveling have been proposed in the general com-
puting field. Most of the previous work is based on recording the write counts of
each line or page, which may introduce big hardware overhead. Other approaches
such as Start-Gap [11] require simple hardware.

The basic idea is to periodically move predefined hot areas across the whole
PCM chips. When a movement of the hot region is triggered, several small areas
in the hot region move to the right. In this way, write traffic to hot areas can be
evenly distributed to improve wear leveling. In DCWL, we mainly need to solve
the following three problems: (1) How to identify and allocate PCM space for
hot and cold regions; (2) When to move the hot region and several small areas
in the hot region; (3) How to implement the address mapping after moving the
hot region.

To identify hot and cold regions, for the data and code of an application that
will be put into PCM chips, we can first obtain the number of writes for the data
and code by analyzing memory accesses of an application. Then, all hot areas
where there exist more writes are grouped together and put into a region called
as hot region, and all other areas are put into a region called as cold region.
Since the identified starting logical address and length of the hot region will not
change.

To evenly distribute writes of the hot region, it is periodically moved across
the PCM chips. When the hot region reaches to the bottom, it will continue to
move and exchange its contents of the first entries of the PCM chips. A move
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Fig. 3. The mapping between logical and physical addresses

of the hot region is triggered when the number of writes reaches a predefined
threshold. To achieve this, in DCWL, besides the register for storing the number
of writes, we need one register to record the starting physical address of the hot
region, and one register to record the logical address of the first cold region
entry after the hot region to implement the address mapping after moving the
hot region. To achieve better wear leveling, we divide each region into multiple
sub-regions with fixed number of PCM entries. When a move of the hot region
is triggered, several small areas in the hot region move to the right. We also
need two registers which are the number of hot region moves and the number of
hot region circulation in order to implement the address mapping after moving
sub-regions inside the hot region.

Moving the hot region will cause mismatches of logical-to-physical address
mappings. One example is shown in Figure 3. With the initial PCM layout,
logical and physical addresses match each other exactly. Then with the contin-
uous movements of the hot region, as shown in Figure 3(b)-(d), the mapping
between logical and physical addresses keeps changing. In DCWL, two steps
address mappings are needed. First step is based on the following equations.

HPA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(HLA+R HStart) mod Len
if LA ∈ hot region

(HLA+R HStart+ Len−R CStartL) mod Len
if LA < R CStartL

(HLA+R HStart+HLen−R CStartL) mod Len
if LA ≥ R CStartL

(1)

From the equation (1), there are three cases for the address translation. In
Case 1, when a given logical address is within the hot region, the high addresses
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of physical address (HPA) is obtained by adding the high addresses of logical
address (HLA) to the starting physical address of the hot region (R HStart).
Note that in this paper, we assume that the hot region starts at the first physical
PCM entry. In Case 2, a given logical address is not in the hot region and is less
than the first logical address following the hot region (R CStartL). In this case,
the physical address can be obtained by adding the starting physical address of
the hot region, the total length of hot and cold regions (Len), and subtracting
R CStartL. Finally, in Case 3, a given logical address is not in the hot region
and is greater than or equal to R CStartL. The physical address calculation is
same as that in Case 2 except that it is the hot region length (HLen), instead
of total length (Len) is added. Note that one needs to modulo Len after did the
above calculations.

LPA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(LLA+M Num× SLen) mod HLen
if LA ∈ hot region

(LLA+ (C Num+ 1)× SLen) mod HLen
if LA < R CStartL

(LLA+ C Num× SLen) mod HLen
if LA ≥ R CStartL

(2)

Second step is shown in the equation (2). As shown in Figure 3, each region
is divided into four sub-regions. We require one register to record the number
of hot region moves (M Num), another register to record the number of hot
region circulation (C Num). When the hot region moves to the bottom of the
whole region, the number of hot region circulation adds one. The low addresses
of physical address (LPA) also need to change, when the hot region moves.
There are three cases for the address translation. In Case 1, when a given logical
address is within the hot region, LPA is obtained by adding the low addresses
of logical address (LLA) to the multiplication of M Num and the sub-region
length (SLen). In Case 2, a given logical address is not in the hot region and is
less than R CStartL. LPA can be obtained by adding LLA to the multiplication
of C Num plus one and SLen. Finally, in Case 3, a given logical address is not in
the hot region and is greater than or equal to R CStartL. LPA can be obtained
by adding LLA to the multiplication of C Num and SLen. Note that one needs
to modulo HLen after did the above calculations. We can get the real physical
addresses combining the changed low addresses (LPA) with the high addresses
(HPA).

4 Experiments

To evaluate the effectiveness of DCWL, we conduct various experiments with
application traces. In this section, we first introduce the schemes for comparison,
and then we describe experimental setup. Finally, the experimental results with
analysis of DCWL algorithm are presented.
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4.1 Schemes for Comparison

Since the maximum number of bit flips will directly determine the lifetime of a
PCM chip, wear leveling algorithms are required to further evenly distribute the
write activities across the whole PCM chips. Therefore, we use DCWL to dis-
tribute the write activities, compared against both Start-Gap [11] and Curling-
PCM [14].

Start-Gap [11] is a well-known wear leveling scheme. An additional empty line
which is called the Gap is moved up periodically after the number of writes to
PCM reaches a predefined threshold. In our experiment, one line contains four
bytes, and the threshold is set to 100 writes.

Curling-PCM [14] is another wear leveling scheme. The basic idea is to period-
ically move the hot region across the whole PCM chips. In this scheme, the hot
region contains roughly 2,000 lines, and the threshold for triggering a movement
of the hot region is set to 20,000 writes.

In our Double Circulation Wear Leveling scheme, the hot region contains
almost 2000 lines. Therefore we set DCWL to move this region periodically. The
threshold for triggering a movement of the hot region should be set carefully.
Small thresholds may lead to frequent and excessive copy operations, and large
thresholds can not perform good wear leveling. Through the experiment the
threshold is set to 20,000 writes by which we obtain good results overall.

4.2 Experimental Setup

To accelerate development, we first collect application trace data by SimpleScalar
[19]. Trace files are then fed into our simulator with related parameters (e.g.,
wear leveling thresholds) to obtain experimental results. Figure 4 explains the
experimental work flow. We adopt the architecture shown in Figure 1 for our
simulator. The system specification used in our experiment is shown in Table

Table 1. Experimental setup

Description

CACHE size:16KB, block size:32B, LRU

PCM size:32Mb, read latency:48ns, write latency:150ns
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1. Experimental benchmarks adapt Mibench [20], which is a free, commercially
representative embedded benchmark suite.

4.3 Experimental Results and Discussion

Based on the above experimental setup, we record the total number of bit flips of
all PCM cells and the maximum number of bit flips in each PCM cells. We com-
pare our results with two wear leveling approaches: Start-Gap [11] and Curling-
PCM [14]. In addition, we also compare our results with the two schemes: no
wear leveling (No-WL) that does not adopt wear leveling, and the ideal case that
all the writes are distributed evenly over the PCM space.

Table 2. Comparison of the maximum number of bit flips

Benchmark No-WL Start-Gap Curling-PCM DCWL

basicmath 2035628 607 227 96

bitcount 490317 4562 1396 419

crc32 71598 463 193 107

dijkstra 1463800 1874 490 112

FFT 4259 600 258 128

patricia 63048 1392 547 332

qsort 3019 602 506 221

blowfish 92570 1628 770 395

susan 1985 863 336 80

Table 2 shows the maximum number of bit flips among all PCM cells for each
benchmark. A PCM cell can survive only a limited number of writes before it
loses ability to change the state. Hence, the lifetime of PCM depends on the max-
imum number of bit flips. The results show that DCWL can effectively reduce
the maximum number of bit flips. Compared with no wear leveling (No-WL),
Start-Gap and Curling-PCM, DCWL can reduce by 98.27%, 81.16%, 57.81% re-
spectively on average. Start-Gap cannot effectively and evenly distribute the hot
traffic and cool down hot areas, because it only moves empty line. Curling-PCM
distributes most write activities across the whole PCM chips. However, there
are still some extraordinary large write counts. The reason behind is that the
frequency of moving hot regions is not large enough to perfectly and evenly dis-
tribute all write activities across the PCM chips. DCWL can solve this problem
perfectly. Because of the movement inside the hot region, write activities will
become more evenly distributed.

Figure 5 shows the lifetime of PCM on these wear leveling schemes. Com-
pared with Start-Gap [11], the lifetime of DCWL can averagely improve 4x-5x.
Compared with Curling-PCM [14], the lifetime of DCWL can averagely improve
2x-3x. It can achieve 85.28% of the lifetime compared with the ideal case. We
also calculate the lifetime of PCM without any wear leveling. PCM would be



198 G. Wang et al.

0

5

10

15

20

25
Start-Gap Curling-PCM DCWL ideal

Li
fe

tim
e(

ya
er

) 

Fig. 5. The lifetime of the PCM

wear-out in a short time, especially for the benchmarks basicmath, diskstra, and
crc32.

Compared with no wear leveling, the total number of bit flips is increased
in Start-Gap, Curling-PCM and DCWL. Figure 6 shows the extra writes over-
head are incurred among these schemes on various benchmarks. Start-Gap incurs
approximately 12.11% more writes than no wear leveling. This is caused by pe-
riodically moving the empty line. Compared with Start-Gap, our scheme causes
a 4.31% increase in the total number of bit flips. However, our scheme still out-
performs Start-Gap overall, because of the big improvement in the maximum
number of bit flips.
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5 Conclusion and Future Work

In this paper, we proposed a novel and effective wear leveling technique, called
DCWL, to evenly distribute write activities across the PCM chips for better
endurance. The basic idea is to periodically move the hot region across the
whole PCM chips. When a move of the hot region is triggered, several small
areas in the hot region move to the right. According to experimental results, the
proposed technique can greatly improve the lifetime of PCM-based embedded
systems, and achieve approximately 85.28% lifetime of the ideal case.

In the future, with the capacity of PCM continues to increase, we can use
PCM to store user data that is currently stored in NAND flash. This may require
some fundamental changes from the current user data management. Considering
the high read speed of PCM, we should have direct PCM read instead of using
the traditional structure. The data management of the main memory and the
secondary storage memory should be studied.
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1 Introduction

Cognitive Networks have already been prototyped for many commercial and civil-
ian applications[1]. Combined with the social intelligence, cognitive networks
promise to support services like citizen journalism, mobile social networking, en-
vironmental monitoring, and trafficmonitoring by integrating ubiquitous sensing,
large-scale data collection and cloud computing[2]. Nonetheless, commercializa-
tion of sensor network has rarely been successfully deployed in the physical world
due to high cost for sufficient number of sensors.

Opportunistic network[3], provides an ideal solution for promoting the evo-
lution of communication among human beings and machines. Smart hand-held
devices (e.g., smart phone or PDA) carried by a large number of participants
contribute to opportunistic cognitive networks with their sensing parts. The in-
herent mobility of participants provides unprecedented spatiotemporal coverage
and also makes it possible to observe various events. PEIR [4] is an applica-
tion that uses location data sampled from everyday mobile phones to calculate
personalized estimates of environmental impact and exposure. CarTel [5] is a
mobile sensor computing system designed to collect, process, deliver, and visual-
ize data from sensors located on mobile units such as automobiles. Reference [6]
proposes Bubble-Sensing, a new sensor network abstraction that allows mobile
phones users to create a binding between tasks (e.g., take a photo, or sample
audio every hour indefinitely) and the physical world at locations of interest,
which remains active for a duration set by the user.Reference[7,8]provides effi-
ciently routing schemes in different mobile networks, which is the essence of data
collection and dissemination.

Moreover, by including people in the sensing loop, it is now possible to design
applications that can dramatically improve daily lives of individuals and com-
munities. In general, there are two main groups of opportunistic cognitive appli-
cations, environmental monitoring (air pollution [9], noise [10], traffic [11],data
collection[12] and scenery [13]) and social monitoring (social network [14] and
user activity [15]).

Participants who submit their collecting data to the system will eventually
lose enthusiasm to remain actively in this system without being fairly rewarded.
Namely, participants may drop out unless the reward is greater than their ex-
pectation. Furthermore, there are some malicious participants who will generate
corrupted data when opportunistic cognitive networks are deployed. Malicious
participants may supplant normal ones and it may be worse when they collude
with each other. In such circumstances, normal participants drop out and ma-
licious ones will control the system without hesitation. Therefore, it’s critical
to keep sufficient normal participants for collecting reliable sensing data. Also,
minimizing incentive cost is essential to participatory sensing systems.

In this paper, we propose the Reputation-Based Participant Incentive Ap-
proach (RBPIA) to categorize and motivate participants, while minimizing in-
centive cost for maintaining sufficient normal participants which always provide
accurate sensing data.
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RBPIA first analyzes sensing data and bid prices to evaluate the trustworthi-
ness of participants using accumulated reputation degree. Then a multidimen-
sional reverse auction will be performed by RBPIA and reputable participants
who bid lower price will win the reward. Furthermore, RBPIA will adjust each
participant’s bid price and increase winning probability of loser in the next auc-
tion round according to their reputation level.

– Establish reputation to evaluate the trustworthiness of participants by par-
ticipants’ reputation degree. The reputation degree is calculated according to
sensing data quality and malicious collusion. High reputation degree reflects
accumulation of good historical participations and vice versa.

– Design reputation-based incentive approach for participatory sensing sys-
tems. RBPIA can greatly decrease incentive cost for maintaining sufficient
participants through multidimensional reverse auction where bid price and
reputation level are both considered. RBPIA encourages reputable partici-
pants in sensing activities by adjusting their bid prices.

– Introduce virtual coupon in RBPIA. The participants who bid lower price
will always become winners in reverse auction. However, virtual coupon will
be given to the losers to increase winning probability in the next auction
round. Moreover, different participants can obtain various amount of virtual
coupon according to their reputation.

The remainder of this paper is organized as follows. In Section 2, related works
about participatory sensing are illustrated. Section 3 gives detail of RBPIA. In
Section 4, RBPIA is evaluated in various simulations. Finally, we conclude this
paper in Section 5.

2 Related Work

2.1 Reputation Model

Reputation model has long been studied in a diverse range of disciplines. It is
widely used in web site for Comment Rating Environment [16]. As is well known,
the online markets such as Taobao and Amazon [17] are much popular. Taobao
establishes its own reputation system using reputations to enhance buying and
selling experiences [18]. For example, Taobao uses a simple feedback mechanism
where a buyer assigns 1 to 5 rating stars to the seller based on his/her satisfaction
with the transaction. A seller’s overall feedback score is simply the average of
all ratings. This approach is simple to implement and understand, but it has
some drawbacks. First, negative ratings can be easily drowned by a large pool
of positive ratings. Furthermore, it is easy for system administrators to change
ratings illegally. There is relevant behavior in recent report. This simple approach
is not appropriate in context of participatory sensing systems.

Reputation systems have been used in ad-hoc wireless networks [19, 20, 21,
22]. In [19, 20], the ideas is borrowed from game theory and attempted to address
the selfish routing problem in such networks. In [21, 22], Bayesian analysis is used
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to formulate a similar problem and the resulting reputation systems are shown to
counter any misbehaving nodes. Bayesian reputation systems are quite flexible
and can be adapted with relative ease in different types of applications and
environments [23, 24]. For example, the reputation framework, RFSN, proposed
in [25] makes use of Beta reputation for associating a reputation score with each
sensor node in a traditional embedded wireless sensor network. However, it takes
a less aggressive approach in penalizing participants that contributes corrupted
data.

To the best of our knowledge, a few research work is conducted on reputation
in participatory sensing systems. Reference [26] implements a noise monitoring
system to identify corrupted noise data. However, the system only focuses on the
sensing data provided by participants in current monitoring application with-
out considering accumulated reputation of participants. Reference [27] proposes
using reputation management to classify the gathered data and provide useful
information for campaign organizers and data analysts to facilitate their deci-
sions. However, the author just provides a simple reputation method and cannot
adapt to the changeable environment when participatory sensing system deploys
in the real world.

2.2 Incentive Mechanism

Incentive mechanism has been widely used in management and economy. In re-
cent years, the mechanism is introduced into computers and networks. Generally,
there are two categories of mechanisms in networks: offering rewards and dis-
tinguishing services. In the way of offering rewards, the active and well-behaved
nodes can obtain some remuneration for their participation [28]. The mechanism
of distinguishing services mainly provides different level services to sensors ac-
cording to their behavior [29]. The mechanism, by its very nature, offers more
resources and services to incentive reputable nodes.

Reverse auction is a special form of offering rewards. There are two types of
player in an auction: bidder and auctioneer. In a general auction, buyers become
bidders and the seller is an auctioneer. By comparison, in a reverse auction there
is a single buyer that becomes an auctioneer while many sellers become bidders.
In terms of bidding sides, auctions can also be classified as single or double ones.
In a single auction, only one side of participants can bid. On the other hand, in
a double auction, both sides of participants can bid.

All above mentioned auction types use bids that comprise only of price, so we
call it one-dimensional reverse auction. In contrast, a multidimensional reverse
auction allows bidders to bid on various attributes beyond the price. Since the
auctioneer selects winners based on all bidding attributes, the overall utility of a
bid should be computed following various utility functions. General procedures
for multidimensional auctions in e-markets have been described in [30]. Recent
studies [31] have proposed a motivation system, named the Reverse Auction
based Dynamic Price incentive mechanism with Virtual Participation Credit
(RADP-VPC).
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To the best of our knowledge, no study addresses incentive mechanisms with
multidimensional reverse auction in participatory sensing system. RBPIA is the
first reputation based incentive system where a multidimensional reverse auction
is introduced by taking participants’ reputation and incentive cost into account.

3 Reputation-Based Participant Incentive Approach

In this section, we propose the Reputation-Based Participant Incentive Approach
(RBPIA) in the context of participatory sensing systems.

3.1 Overview

Fig. 1 depicts the framework of RBPIA. Generally, sensing request is sent to
the participants through server in a participatory sensing system. After sensing,
each participant uploads sensing data, bid price and personal information (e.g.,
location) to the server and RBPIA residing in the server processes all data
obtained from participants.

RBPIA

Incentive Module

Virtut al
Coupu on
Virtual
Coupon

Multidimensional
Reverse Auction

Multidimensional
Reverse Auction

bid price
coupon
for losers

Reputation Module

Trurr stworthiness
on sensing data

Trustworthiness
on sensing data

<id, sensing data, bid price, location>

n participants

Reputation based
on Game theory

Rank
Price
Rank
Price

bW

reputation

bid: 0Win Coupon
:Lose Coupon

sW

uta

Trurr stworthiness
on bid price

Trustworthiness
on bid price

bid pricesensing data

Fig. 1. Framework of RBPIA

Firstly, sensing data and bid prices will be uploaded to the Reputation Module
where the Trustworthiness on Sensing Data and the Trustworthiness on Bid Price
is produced, respectively. After that, the reputation degree can be successfully
derived based on game theory.
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Then, a multidimensional reverse auction in the Incentive Module selects win-
ners in terms of Rank Prices which are calculated based on participants’ bid
prices and virtual coupon they possess.

Finally, the participants with lower Rank Prices win out, get reward and reset
their virtual coupon to zero. Nevertheless losers will obtain virtual coupon to
raise their winning probability.

3.2 Reputation Module

Trustworthiness on Sensing Data

The number of normal participants is usually larger than that of malicious par-
ticipants in a target field, so we choose the density-based outlier detection algo-
rithm proposed in [32] to preprocess the sensing data set S = {s1, s2, · · · , sn}
received from n participants. The details are illustrated in Eq. 1 and Eq. 2.

A =

n∑
i=1

Misi (1)

Mi =

1
(si−A)2

∑n
i=1

(si−A)2+ε∑n
j=1

1
(si−A)2

∑n
i=1

(si−A)2+ε

(2)

As shown in Fig. 2, the algorithm is iterative in nature. At first, it defines
and initializes Mi =

1
n . A and Mi are computed in each iteration. Mf

i equals

to M l+1
i when the convergence |M l+1

i − M l
i | < η is observed in the (l + 1) th

iteration.
It is obvious that tighter convergence could be chosen to produce more ac-

curate result according to specific scenarios. ε is a small positive constant for
adjustment and more discussion can be found in [33].

As mentioned above, normal participants are usually more than malicious ones
in participatory sensing systems. Consequently, the majority of participants who
provide similar sensing data will have higher Mf

i . This takes the fact that most
participants generate relatively accurate sensing data.

However, in particular circumstances, the number of malicious participants
would be larger than that of normal ones in sensing field which will affect overall
data accuracy. It may lead to fatal error when making decisions based on such
corrupted data provided by malicious ones in participatory sensing system.

After several rounds, a participant will present its trustworthiness through
its historical behaviors. The trimmed-mean method [34] is introduced to reflect
the long-term trends accordingly. The method is a statistical measure of central
tendency and involves the calculation of mean value after discarding given parts
of a probability distribution or sample at the high and low end, and typically
discarding an equal amount of both.
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Ws = {ws,1, ws,2, · · · , ws,n} is computed based on historical Mf
i using the

trimmed-mean method which is depicted in Eq. 3.

ws,i =
Mf

i,[mσ]+1 +Mf
i,[mσ]+2 + · · ·+Mf

i,m−[mσ]

m− 2[mσ]
(3)

Trustworthiness on Bid Price

To deploy participatory sensing systems with RBPIA in the real world, it is
vital to make RBPIA robust against bid price collusion.

In the auctions, participants will bid in terms of their effort. However, col-
lusive participants often bid similar low prices in several initial auction rounds,
and will always win in these auctions, which will expel normal participants from
the system. After that, they will control the system and bid high prices to boost
their profit which will greatly increase the incentive cost. To retain sufficient
participants and guarantee fairness of the participatory systems, the k-means
algorithm [35] is exploited in the Reputation Module against bid price collusion.
The k-means algorithm observes the bid price of each participant and classi-
fies them into different categories to detect collusive ones from the others. The
collusive participants will be punished on their trustworthiness value. Based on
all bid prices of all participants B = {b1, b2, · · · , bn}, the scheme generating
Wb = {wb,1, wb,2, · · · , wb,n} is detailed as follows:

a) The k-means algorithm classifies bid prices of all participants B to k clusters
and captures the centroids of k clusters in each round. All participants from
each cluster whose centroid is lower than the mean of all centroids will be
recorded.

b) The scheme only examines successive ζ rounds. The records of ζ rounds will
form a list containing all collusive suspects. For participant i, if the frequency
of occurrence in the list is greater than or equal to predefined g (say 0.6ζ )
during ζ rounds, we set hi = hi + 1 (hi is initialized to zero).

c) From round ζ+1, the trustworthiness on bid price of participant i till current
round r (wb,i) will be produced as shown in Eq. 4.

wb,i = aebe
d+chi

+ 1 (4)

Where coefficient a, b and c are negative numbers, coefficient d is a positive
value and e is Euler’s Number.

Reputation Based on Game Theory

The trustworthiness of participant i is evaluated by the reputation degree which
is a gaming result between ws,i and wb,i.

We introduce a joint-weight method based on game theory. The method fo-
cuses on discovering compromise of Ws and Wb and minimizing the bias of
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reputation degree between two weights (i.e., Ws and Wb). Although there are
only two weights, the complete method is provided as follow without loss of
generality.

Linear combination of q weights is depicted in Eq. 5.

W =

q∑
i=1

αiW
T
i (5)

The appropriate coefficient αi balances all weights. A comprehensive weight
can be obtained by solving Eq. 6.

min‖W =

q∑
i=1

αiW
T
i −WT

j ‖2 j = 1, 2, · · · , q (6)

After normalization, the reputation degree is computed by αi and Wi. The
reputation degree RP = {rp1, rp2, · · · , rpn} is calculated as Eq. 7.

RP = αsW
T
s + αbW

T
b (7)

3.3 Incentive Module

To motive participants, a multidimensional reverse auction is introduced in the
Incentive Module. The objective of RBPIA is to maintain adequate number
of participants for desired service quality while minimizing incentive cost by
preventing cost explosion during the multidimensional reverse auction.

Intuitively, participants who bid lower price are more likely to become winners
in one-dimensional reverse auction, as shown in Fig. 2. However, the participants
who always lose in auction may drop out. As a result, the winners can manipulate
subsequent auctions and increase bid price to maximize their profits.

To maintain fair competition and prevent incentive cost explosion, enough
participants should participate continuously in reverse auctions of RBPIA. For
this goal, the proposed Incentive Module provides a novel winner selection strat-
egy using virtual coupon and reputation degree.

Lower bid price Higher bid price

Always winner Always loser

Fig. 2. Winners and losers in one-dimensional reverse auction
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A participant (i.e., bidder) i will receive virtual coupon as a reward when they
lost in the previous auction round to increase winning probability in the next
round. The virtual coupon D = {d1, d2, · · · , dn} can be defined as Eq. 8

di =

{
di + γ · rpi i is a loser

0 i is a winner
(8)

Where γ denotes the amount of virtual coupon and rpi is a weight created
by the Reputation Module. Hence, whenever a participant i loses in an auction
round, an amount of coupon γ weighted by reputation degree rpi is added to
virtual coupon di. Reputable participants can obtain more virtual coupon.

The virtual coupon di is set to zero whenever participant i won or dropped out
in the previous auction round. The virtual coupon can be used for decreasing bid
price, and thus increase winning probability of participant for current auction
round.

We define two types of bid prices: One is actual bid price and the other is
Rank Price. The actual bid price bi is claimed by participant i and the Rank
Price pi can be defined as Eq. 9

pi = bi − di (9)

Lower Rank Price Higher Rank Price

winner loser

with virtual coupon

higher bid price lower bid pricelower bid price

Fig. 3. Winner and loser in multidimensional reverse auction with virtual coupon

In the proposed Incentive Module, the Rank Price pi is used for selecting
winners in each auction round and RBPIA increases the winning probability of
the bidder by decreasing Rank Price using virtual coupon.

Even participants who bid higher price can be winners by participating con-
tinuously (see Fig. 3). Therefore, RBPIA encourages continuous participation of
participants in the system.

4 Performance Evaluation

In this section, we simulate RBPIA in various scenarios to evaluate its effective-
ness. The mechanism proposed in reference [30] is also simulated for comparison.
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4.1 Simluation Setup

In this work, we simulate a data collection application using RBPIA. A vector
of random value is generated for each participant to represent data value mon-
itored at a specific location in a short time period. For ease of comparison, the
simulation metrics in [30] is adopted.

Malicious Behavior and Bid Price Collusion

We classify the participants into three categories: normal participant, malicious
participant and collusive participant on bid price.

Table 1. Sensing Data and Bid Price Provided By Participants

Participant Accurate Sensing Data Bid Price

Normal 90-100% Normal

Malicious 10-20% Normal

Collusive 90-100% Low → High

As shown in Table 1, normal participants upload accurate sensing data in 90-
100% of participations and bid according to their true valuation of the sensing
data (i.e., the effort for obtaining sensing data).

Malicious participants are supposed to intentionally provide corrupted sensing
data (only provide accurate sensing data in 10-20% of participations) and bid
normal prices. The bidding behaviors of malicious participants don’t follow the
utility function.

Collusive participants usually provide accurate sensing data like normal par-
ticipants, but they collude with each other by initially bidding similar low prices
and subsequently bid high price to maximize their profits after they dominate
the system.

We run simulations for 50 participatory sensing rounds in three scenarios
(marked as scenario A, scenario B and scenario C), and 40 participants are
involved in the simulations (see Table 2).

Table 2. Participant Composition In Three Scenarios

Scenarios Normal Malicious Collusive

A 38 2 0

B 20 2 18

C 20 18 2

Note that the setups are used in the following simulations unless they are
specified otherwise.
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4.2 Simluation Results

Incentive cost

Fig. 4, Fig. 5 and Fig. 6 depict the tendency of incentive cost in 50 partici-
pation rounds.
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Fig. 4. Incentive cost of RBPIA and RADP-VPC in scenario A
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Fig. 5. Incentive cost of RBPIA and RADP-VPC in scenario B

In scenario A, both RBPIA and RADP-VPC mostly select normal partici-
pants, and there are no collusive participants in this scenario, so the two schemes
both keep low incentive cost.
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Fig. 6. Incentive cost of RBPIA and RADP-VPC in scenario C

By contrast, as we can see from Fig. 5, incentive cost of RADP-VPC increases
dramatically from about round 10 in scenario B due to existence of collusive
participants. Such phenomenon means that RADP-VPC cannot cope with bid
price collusion. There are almost half of participants are collusive and normal
participants will drop out because of low winning probability. Winning prices
of participants keep going up since normal participants drop out and collusive
participants control the system eventually. Whereas, incentive cost of RBPIA
can stay relatively stable even though there are many participants collude with
each other on bid price.

Additionally, from Fig. 6, the incentive cost of both RBPIA and RADP-VPC
in scenario C stay at a low level because collusive participants account for a
small proportion.

5 Conclusion

Sufficient reputable participants are critical to participatory sensing activities
such as urban sensing and environmental monitoring. In this paper, we study
incentive approaches based on reputation model for participatory sensing. We
address the problem of retaining a desired number of active reputable partici-
pants in participatory sensing systems to provide adequate level of service quality
with low incentive cost. The Reputation-Based Participant Incentive Approach
(RBPIA) is proposed for motivating participants in opportunistic cognitive net-
works. From simulation results, RBPIA perform better than RDAP-VPC which
is proposed in literature [30]. In future work, we plan to design an adaptive
technique for finding optimal coefficients in the incentive approach.
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Abstract. We first analyzes the deviation when current similarity calculation 
methods for texts are applied to short texts, and proposes a similarity 
calculation method for short texts based on language network and word 
semantic information. Firstly, models the short texts as language network 
according to the complex-network characteristic of human being’s language. 
Then analyzes the comprehensive eigenvalue of the words in the language 
network and the word similarity between different texts to obtain the word 
semantic. Calculate the similarity between short texts combining language 
network and word semantic. Finally the effectiveness of proposed algorithm is 
verified through clustering algorithm experiments. 

Keywords: language network, text clustering, short texts similarity, word 
similarity. 

1 Introduction 

Text Clustering refers to divide text collection into different clusters automatically. 
Texts in the same cluster are very similar and differentiate in different clusters [1]. 
Text clustering is the fundamental research for text excavation. Researchers at home 
and abroad have got an earlier research and development for the algorithm on text 
clustering and obtain good results. However, there are several principal problems 
existing in the process of text clustering, include how to define the number of clusters, 
how to calculate the similarity between texts and how to assess text clustering. 

With the rapid development of WEB, short texts such as micro blog, SMS and IM, 
etc., take more and more importance in people’s life. Unlike long texts with rich 
information, short texts contain poor information. Usually, their lengths don’t exceed 
to 200 words. Short texts generally have explicit themes to transfer the author’s 
intention. Traditional texts similarity calculation methods are to obtain the statistic of 
word similarity between texts. For long texts, the word number is larger and the 
method can work effective. But short texts may only contain a few number of words, 
there may be no common words between them. If the calculation methods of 
similarity between long texts are applied, we may achieve false results between short 
texts. Short texts like language that people use in daily life are originated with 
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people’s feeling, are uncertain in line with the normal rules of grammar, only if they 
can express the speaker’s meaning. For such short texts with unclear grammar, short 
length and irregular word order, we can’t utilize conventional calculation methods of 
similarity for long texts. For instance, there’re two short texts: “how to download 
music from internet” and “can I transfer mp3 to my laptop”. If only the common 
words are in statistics, there are few identical words. But the two sentences have a 
high degree of similarity in fact. 

Similarity calculations for short texts have been widely used in many fields. In 
information retrieval, it’s considered as one of the best method to improve the 
retrieval results [2]. In mail message processing, it can implement mail classification 
faster [3]. In the interface development of nature language database, it can extend the 
inquiry interface [4]. Moreover, it also has important applications in health advisory 
dialogue system [5], property sales [6], telephone sales [7] and smart tour guide [8]. 

Traditional methods of similarity measure like Vector Space Similarity Measure 
will cause erroneous results when applied in short texts, because most of them treat 
texts as a set of words. They calculate the word’s number appearing in the text, 
establish characteristic vector and compute the text similarity using the cosine 
similarity or Jaccard similarity [9]. Due to fewness of words and brief content of short 
texts, the method not only ignores the semantics information of the words but also the 
order information and grammar information. It creates a vector space with very high 
dimension and necessarily causes a problem of data sparse, finally leads to low 
computational efficiency. 

The innovation of this paper lies in: the first is in accordance with the special 
characteristics of short text, we introduce the language network model to represents 
the semantic information of short text; the second is with combine the important 
features of language network and semantic information of words, we propose a new 
short text similarity calculation method. Provided the short texts, our method can 
efficiently and quickly calculate the similarity on the semantic level between them. It 
can be applied in a wide range. 

2 Related Works 

With the rapid development of Internet, text resources increase sharply. In fact 80% 
of Internet resources are texts. In the past few decades, automatically processing of 
electronic text resources have become the key research of researchers. There’s a large 
quantity of the Internet text resources including Webpage text, email, news messages. 
With the large number of network texts, researcher’s principal interests on text 
processing are how to mine the needed information [10]. In the early 80s, the major 
application of text processing is text categorization in knowledge engineering. Experts 
artificially defined regular knowledge base in first, and then determined the texts to 
relevant category [11]. In order to avoid the low efficiency caused by excessive 
artificial involvement in the writing of regular base, in the 90s, researchers proposed 
many improved method including regular base construction method based on machine 
learning. The method can get a better result than that based on artificial writing, 
largely save human resource and improve efficiency [12].  



 Semantic Similarity Calculation of Short Texts 217 

Besides text mining, many other Natural Language Processing application, 
including data mining, machine learning, pattern recognition, artificial intelligence, 
statistics, computational linguistics, compute network technology and informatics, 
also set appropriate requirement for text processing. The text resource on the Internet 
is massive, heterogeneous and widely distributed. The contents of texts are natural 
language of human beings and can’t be understood by computer directly. The data 
processed by traditional computer text processing are structured. However, texts are 
semi-structured or non-structured. In particular, short texts have less content, maybe 
several sentences, one sentence or several words, even only one word. Consequently, 
the primary problem is to represent the short text effective in computers to reflect the 
text characteristic with sufficient information and avoid low computational 
effectively. 

In recent years, the attentions of researchers have been greatly attracted on 
complex network. Complex network is almost everywhere in our life and their model 
are widely used in life sciences[13], stress media[14], neural networks[15], space-
time game[16], gene controlling network[17] and other self-organized systems. 
Complex network is composed of nodes and edges, whether it’s visual system or not. 
For example, telephone networks and oil-gas transmission systems are visual and 
have material nodes and edges. While interpersonal relationship network and social 
work relationship are invisible. The topology graph of network usually is fully regular 
or fully random. But many biological networks, technology networks and social 
networks is between the two [18]. 

Researchers have demonstrated that human languages also have characteristic of 
small-world complex network.  Common used words severed as nodes and semantic 
relationship between words as edges, the complex network of human language can be 
established. Taking it as thinking, we can establish complex network for texts, and 
obtain the weight and semantic information of characteristic words by computing the 
comprehensive edge value of each nodes in the language network. As a characteristic 
word to represent the meaning of the text, it must meet the following four 
requirements:  

1) Distinctly represent the text content； 

2) Clearly distinguish the text meaning from other meanings； 

3) The quantity is small； 

4) The algorithm is not complicated. 

Harris believes that the ability to calculate the similarity of text is due to that those 
element words which represent similar meaning in similar short texts [19]. The 
thought is confirmed by Firth. Firth supposes that in any language, words with the 
same meaning appear in different style [20]. Miller further verifies that the words in 
text are similar to some extend as long as the texts are similar [21]. Thus, a conclusion 
can be draw that words in similar texts are always similar, since similar texts express 
similar subject. Instead, if words in texts are similar, the texts are similar. We can 
firstly compute the similarity of words, and then comprehensively weight them to 
achieve the similarity of texts. Based on such conclusion, the similarity of short texts 
can be increased through the improvement of similarity between words and the 
weighted algorithm. 
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To address the above problem and after comparing and analysis of other methods 
for characteristic representation and similarity calculation, the paper proposes an 
calculation method for the semantic similarity of short texts based on language 
network and word semantic. The main contributions are as follows: 

 1) Modeling short texts with language network to provide a proper 
characterization model for the calculation of semantic similarity. 

 2) Combining the important features and word semantic information of language 
network, and presenting the calculation method for the similarity of short texts.  

 3) Verifying the effectiveness of the proposed method based on classification 
experiments on several mainstream texts. The experiments have demonstrated that our 
method is super to the traditional TF-IDF method and the method proposed in [22]. 

3 Short Texts Similarity Based on Word Semantics 

3.1 Important Characteristics of Complex Network 

To establish model of complex network with mathematical linguistics and according 
to the important characteristics of complex networks which are generally accepted in 
the industry, the graphic definition for complex network is given as below:  

Definition1(complex network): Suppose complex network G=(V,E,W) is a graph 

where V={v1,vi……vn}, is the nodes collection, E={( vi, vj), vi∈V, vj∈V},  is the 

edges collection and W={wij|( vi, vj)∈E}, is the weight collection. The characteristic 

equation is listed respectively in the following:    

1) Di is the degree of node vi, defined as: 

|},,),(:),{(| VvVvEvvvvD jijijii ∈∈∈=                   (3-1) 

In complex network, Di represents the number of nodes which have edge with node 
vi. Di indicates the connectivity of one node with others. 

2) Ki is the aggregation degree of node vi, defined as: 

|},,,),(,),(:),{(| VvVvVvEvvEvvvvK kjikjjikji ∈∈∈∈∈=   (3-2) 

In complex network, Ki represents the connectivity between nodes which are vi-
centered. Ki indicates the nodes’ aggregation within a local range. 

3) Ci is the clustering degree of vi,, defined as: 
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The numerator in the formula is the aggregation degree of vi, while the 
denominator is the degree distribution statistics when the graph is complete 
connected. 



 Semantic Similarity Calculation of Short Texts 219 

4) WDi is the weigh degree of node vi, defined as: 


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WDi  is the sum of the weight of all edges which are connected with vi. 
5) WKi is the weighted aggregation degree of vi, defined as: 


∈

=
Evv

jki

kj

WWK
),(

                            (3-5) 

WKi  is the sum of the weight of all edges which are vi-centered. 
6) WCi is the comprehensive aggregation degree, defined as: 
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WCi is proportional to WKi and Ki, while inversely proportional to WDi. 
7) The aggregation factor of complex network G is defined as: 


=

=
n

i
iC

n
C

1

1
     (3-7) 

The aggregation factor is the average of all nodes’ clustering degree. 
8) The average shortest path of G is defined as: 
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l(vi, vj) represent the shortest path between any two nodes vi and vj. In complex 
network’s graph, there may be more than one path between any two nodes. Given that 
l(vi, vj) is the shortest path，then the average shortest path of the complex network 
can be defined as the sum of all the shortest paths. 

9) BCi is the clustering factor of node vi, defined as： 
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ljk(i) represents the length of the path which is among all the shortest path between 
vj and vk and through vi. ljk represents all the shortest path between vj and vk. 

BCi  has strong practical significance and reflects the place flow of vi toward the 
complex network. The research has demonstrated that complex network can be 
regarded as a set of connected sub network. The sub network’s connection nodes play 
a critical role. Consequently, the shortest path between two nodes which belong to 
two different sub networks is via node vi. 

10) BPi is the path factor of node vi, defined as: 
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BPi is defined to address the situation that the clustering factor may be 0. Since 
when some key nodes are not in the shortest path, BCi =0. Nevertheless, those nodes 
are the key nodes of the complex network. And the clustering factor emphasizes the 
local connectivity, thus the introduction of BPi is to enhance the global connectivity.  

11) Zi is the comprehensive eigenvalue of node vi in complex network, defined as: 
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α、βandηcan be adjusted according to different applications. 

3.2 Text Pre-processing 

Although the word number is small and the content is brief, current natural language 
processing technologies can’t fully process a short text message. Before building text 
characteristic model, pre-processing is necessary for short texts, including word 
separation, removal of stop-word, stemming, etc.  For English texts, words are 
divided by blank space or obvious punctuations, therefore word division can be 
quickly realized according to such symbols. But there’re no clear boundaries between 
Chinese texts, hence word separation for Chinese texts through algorithm is needed. 
At present, the algorithms for word separation are mainly distributed into three 
classes: matching method based on forward, separation methods based on maximum 
probability and shortest path. The main idea of matching method is to obtain 
candidate sub-string from text string by lookup in the dictionary. And the separation 
methods based on maximum probability is to calculate the probability of separation 
results of Chinese sentence strings and select a separation result with maximum 
probability. Method based on shortest path constructs graph for text string, calculate 
the number of the word with shortest path and conduct it as separation result. Chinese 
word separation is the important basis of Chinese information processing and its 
result has great impact on the effect of application. The main reason for separation 
ambiguity in Chinese is polysemy and synonymy in sentences, so the expression can 
be various. 

After word separation for short texts, removal of stop words should be 
implemented. Stop words refer to the words whose impact on text expression is 
negligible and valueless for text processing, like “the、a、of、for、in” in English. 
The most common method for removal of stop words is the maintenance a stop word 
list. When a word appears in the list after text separation, it should be removed. Stop 
words are always related to application field. Since the proposed method need 
semantic analysis for words, after word separation and removal of stop words, 
there’re two steps should be executed as following: 
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1) Replace people names, address and organization names in short texts with 
particular strings. Among them, names are substituted with PEO, address is 
substituted with ADD, and organization names with COM.  

2) Mark the property of words in short texts. Words can be divided into different 
types according to their characteristic and application. Among them, notional 
word can best represent the meaning of short texts. Thus, it’s necessary to 
distinguish the words that who are nouns, verbs, adjectives or adverbs. 

3.3 Language Network Construction 

One of important features that distinguish human language from other biological 
language is that human language has a large number of words. Statistics show that an 
ordinary foreign high school student’s English vocabulary is more than 100 thousand. 
People can make decision within 100ms that the combination of a word or term is 
right or wrong. Research has indicated that the reason for human being’s literacy skill 
is the great deal of connection between human languages. Human language has 
network characteristics as small-world. The words in human language texts are not 
random and out-of-order, but express a particular subject according to the relationship 
between words. The number of word is limited, while different word order can 
produce tens of thousands of texts that hold different meanings. Texts are mostly 
composited with paragraphs and sentences. The basic component element of a 
sentence is word. Taking words as nodes, the relationship between words as edges, 
and the language network can be constructed for the text. When two different words 
appear in the same sentence, they have grammar relationship, and the edge is 
generated. Therefore, edge inevitably exists between adjacent words. However, dose 
grammar relationship exists between non-adjacent words? How to define a specific 
distance within which two words have edge relation? If only the relation between 
adjacent words is collected, the relation between long-distant words may be lost and 
the significance of some useless words in the network maybe rose. So the correlation 
between words in the sentence should be determined. If the span is too short, much 
important correlation can’t be recorded, whereas much redundancy information will 
be generated if the span is too long. The paper explores the regulation in [23] that the 
maximum correlation span is 2, because it’s most common and important in language 
network. For instance, for the sentence “texts similarity calculation process”, “texts”, 
“similarity”, “calculation”  and “process” will be generated through word separation, 
thus the language network can be built as the Fig.1 shows. The construction of 
language network for the whole texts can be generated by combination of the same 
nodes and edges in each sentence. 

 

Fig. 1. An example of language network 
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3.4 Similarity Calculation of Short Texts 

After construction of language network for short texts, we can compute the 
comprehensive eigenvalues of each word node by using formula (3-11) and consider 
them as an eigenvector to calculate the similarity between short texts. Due to small 
number of words and brief content of short texts, there are not too many words after 
preprocessing. Hence, the dimension of the eigenvector can’t be high. The next is to 
consider how to calculate the similarity of short texts. Because those words deliver 
the most information of short texts, the similarity of short texts can be converted into 
that of eigenvectors. Moreover, thanks to the variable length of each short text, the 
dimension of eigenvectors which characterize the short text is also different. Such 
impact should be eliminated to make the similarity of eigenvectors satisfy the basic 
measurement standard of similarity. 

Suppose vi and vj are eigenvectors of two different short text X and Y and 
vi=(wi1,wi2,……wim)，vj=(wj1,wj2,……wjn). Define the similarity between two vectors 
as follows: 

),(),( jiji vvVectSimcfvvSTSim ×=                 (3-12) 

VectSim(vi,vj) denotes the similarity between vi and vj and cf denotes the weight 
factor. If there’re many words whose similarity is high in the two short texts and their 
comprehensive eigenvalues take a large proportion, they will play important roles in 
each short texts.  Therefore, we can firstly find out the feature words which meet the 
similarity threshold criteria, and then compute the sum of the comprehensive 
eigenvalues of the feature words, and finally ratio it with the total comprehensive 
eigenvalues of the whole text and weight it. The detail calculation formula of the 
weight factor is defined as following: 
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Where, Zik is the comprehensive eigenvalue of language network of feature word 
wik. In the right term, the numerator denotes the sum of comprehensive eigenvalue of 
feature words which meet the similarity threshold criteria, and the denominator 
signifies that of all feature words. The definitions of the collectionΛi andΛj in (3-13) 
are: 

μ})}jlw,ikmax{sim(w m,k1:{kiΛ ≥≤≤=        (3-14) 

})}w,max{sim(w  n,l1:{lΛ ikjlj μ≥≤≤=          (3-15) 

If the similarity between the word wik in the eigenvector vi and another word 
wjl(l=1,2……n) in the eigenvector vj exceeds the specified similarity threshold, the 
feature word wik will be subsumed to collectionΛi. Select the feature words from 
eigenvector vj in collectionΛj according to the construction process ofΛi. |Λi| and 
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|Λj| denote the element number ofΛi andΛj respectively. The more the element of 
the collection is, the more the number of words who meet the similarity threshold 
criteria is and the greater significance on similarity they will place. Sim(wjl,wik) 
signifies the semantic similarity between wjl and wik. 
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     (3-16)                 

VectSim(vi,vj) is determined by the word similarity of vector vi and vj and cosine 
similarity between vectors. 

3.5 Basic Flow 

Input：two short texts X and Y，similarity threshold µ 
Output：similarity value between X and Y 
Step1: preprocess X and Y, establish corresponding language network and calculate 

the comprehensive eigenvalue Z for each node in the network by formula (3-11); 
Step2: generate the feature word vectors for X and Y, vi =(wi1,wi2,……wim) and vj 

=(wj1,wj2,……wjn); 
Step3: from the word wi1 in vector vi on, seek the word wjk in vj which has a highest 

similarity with wi1 and record the similarity value θ between wi1 and wjk. Compare θ 
with µ. Place wi1 into the collection Λi if θ is larger than µ. 

Step4: repeat Step3 until all the words in vector vi has their corresponding largest-
similarity word in vector vj. Record the similarity value and adjust the collection Λi. 

Step5: calculate the sum achieved in Step3 and Step4, and divide it by the number 
of words in vector vi. Take the result as the similarity Sim(vi, vj) between vi and vj; 

Step6: acquire Λj and Sim(vj, vi) in the same way;  
Step7: get VectSim(vi, vj) by using the result of Step5 and Step6 and formula 3-16. 

Step8: calculate the total of comprehensive eigenvalue of all the words in 

collection Λi and Λj, and gain the weight factor cf by formula 3-13; 

Step9: compute the similarity value between X and Y by formula 3-12. 

4 Experiments and Analysis 

We choose experiment data from the partial text classification corpus library gathered 
and organized by the natural language processing group of Fudan University. The 
partial corpus library is divided into 10 categories and contains 2706 articles. Each 
category is subdivided into different categories based on text content as table 1 shows: 
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Table 1. Abstract of experimental data 

category Number  

of text 

Number of 

subcategory 

the smallest 

number of 

text in 

subcategory 

the biggest 

number of 

text in 

subcategory 

The average 

text number 

in 

subcategory 

Environment 200 6 8 25 33 

Computer 200 5 10 22 40 

Transportation 214 8 7 20 26 

Education 220 6 6 16 37 

Economy 325 5 11 14 65 

Military 240 8 12 20 30 

Sports 350 9 9 22 39 

Medicine 204 6 8 20 34 

Arts 248 5 7 23 50 

Politics 505 10 7 18 50 

The experiment firstly implement the processing on text collection using division 
software ICTCLAS developed by Chinese Academy of Science and then establish 
language network, calculate the comprehensive eigenvalue Z for each word. Take 
feature word as feature vector of the text and comprehensive eigenvalue as weight of 
vector. The similarity between feature words can be obtained suing the method 
proposed in [21]. Afterwards, combining with the method for text similarity 
calculation proposed in the paper, compute the similarity of text data collection to get 
the similarity matrix. 

The experiment is carried out in the Windows 7 operating system, hardware 
configuration of CPU dual core 3.3G, 4G ram, 1T hard disk space. Using Java 
language, development tools is Eclipse 3.2. 

The experiment verifies the effectiveness of the proposed algorithm, and compare 
the clustering result gained by text similarity matrix based on TF-IDF[10] and that of 
TSemSim combining with word semantic information proposed in [17]. Clustering 
experiments are done with CLUTO toolkit① and algorithms like K-Mean(DKM), 
bipartite K-mean(BKM) and aggregation K-mean(AKM) are achieved. 

The experiment adopts F-metric value to measure the computation of text 
similarity. F-metric value is a comprehensive evaluation index given by precision P 
and recall R, defined as follows: 

PR

RP
F

+
= 2

 

num of correctly returned text
P

num of total calculated text 
=  

num of correctly returned text 
R

num of text in subcategory
=  
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F-metric value of global clustering is defined as:  

=
i

j

i F
n

n
F )(max  

In above formula, ni denotes the text number in each subcategory, n denotes the 
number of all texts and j is the clustering result after computation. The larger F is, the 
better the clustering result is.  

The first step is to determine the impact that similarity threshold µ places on 
clustering result. Fig1 shows the impact of µ in the case of DKM clustering algorithm. 
Seen from the diagram, the clustering effect changes in a parabola trend when µ 
varies. When µ is in the interval [0.65, 0.7], the clustering effect is best. After 
analysis, when µ is too small or too large, the number of elements in the selected 
feature word collectionΛi andΛj will varies and affect the clustering effect. 

 

Fig. 2. The impact of similarity threshold µ on clustering result 

According to above experimental result, the paper chooses 0.7 as similarity 
threshold µ. Fig.2 presents the comparison result gained by proposed algorithm, TF-
IDF and TSemSim algorithm. We can see from Fig.3 that no matter in the situation of 
DKM、BKM or AKM clustering algorithm, the proposed algorithm can achieve 
better F-metric value than the other two. Thus the proposed algorithm can effectively 
enhance clustering result. 
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Fig. 3. Comparison result of F-metric gained by proposed algorithm, TF-IDF and TSemSim 
algorithm in DKM, BKM, AKM clustering algorithm 
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Fig. 3. (continued) 

5 Conclusion 

The paper firstly analyzes the disadvantage of existing measurement method for text 
similarity based on statistic and semantic analysis and then proposes a new 
calculation method for text similarity based on language network and word semantic 
information. Compared with traditional method, the proposed algorithm can decrease 
the dimension of text representation model and combine the semantic similarity 
between words to calculate the similarity between texts. Experiments based on 
classical clustering algorithm are implemented to verify the effectiveness of proposed 
algorithm.  

The further work is to in-depth analyze the influence exerted by the words in 
different location or with different weight on the similarity calculation result, basing 
on existing basis of language network and word semantic information analysis. 
Comprehensively consider other information like the location weight of word and 
paragraph structure and improve the calculation precision of similarity calculation for 
texts. 
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Abstract. The technology for multiple-input multiple-output (MIMO) detection is a 
kind of key enabling technology in high-rate wireless communication, whose 
performance directly affects the data throughput of the whole system. How to 
improve the MIMO detection technology, so as to increase the detecting rate and 
reliability, as well as to lower the bit error rate (BER) has become a hot topic in the 
field of wireless digital communication. Since the original sphere decoding 
algorithm (OSDA) has a relatively high computational complexity and a relatively 
long decoding time, in this paper, we present a new technology for MIMO detection: 
the μ quantum genetic sphere decoding algorithm (μQGSDA), which combines the 
super-parallelism of μ quantum computing with the global superiority of genetic 
algorithm (GA), and can be summarized as a multi-dimensional search for a 
single-dimensional search, thus to avoid a large number of complex matrix 
operations, as well as to improve the detection efficiency. Simulation experiment 
results demonstrate that our method has some advantages of good robustness, search 
capability and convergence rate. What’s more, the detection performance of 
μQGSDA has been greatly improved than OSDA. 

Keywords: MIMO Detection, Wireless Digital Communication, μ Quantum 
Computation, OSDA, μQGSDA. 

1 Introduction 

Recently, users’ demand for system capacity and service quality is continually rising 
with the integration of internet and multimedia applications in the next generation of 
wireless digital communication [1]. On the other hand, we couldn’t satisfy users’ needs 
without a higher spectral efficiency and link reliability since the bandwidth is a limited 
resource. Study on information theory shows that: MIMO technology with multiple 
antennas in both transmitter and receiver of the wireless digital communication system 
can meet the above requirements very well, which makes it be widely used in the 
relative fields. 

However, the performance of MIMO technology is improved at the cost of the 
increasing computational complexity of the receiver. Thus, the MIMO detection 
                                                           
* Student Member, CCF. 
** Member, IEEE. 



230 J. Zhao et al. 

 

technology has become a key to MIMO wireless digital communication system. To 
optimize the MIMO detection algorithm so as to minimize the system computational 
complexity will be a hot topic of the researches on the next generation of wireless 
digital communication system [2].  

Before giving the main structure of this paper, we introduce a narrowband MIMO 
wireless digital communication system model under the flat Rayleigh fading channel, 
and briefly trade off several common technologies for MIMO detection. 

1.1 MIMO Wireless Digital Communication System Model 

Our MIMO wireless digital communication system model is shown in Fig 1. Consider a 
narrowband MIMO wireless digital communication system with nTx transmit antennas 
and nRx receive antennas under the flat Rayleigh fading channel, the nRx*1 
dimensional received signal vector is given by: 

=H*S+NY                             (1) 

Where H denotes the nRx*nTx dimensional channel matrix, whose element hij is a 
complex Gaussian random variable with zero mean and unit variance under the 
independent identical distribution. S=[s1, s2, … , snTx]

T is the nTx*1 dimensional 
transmitted signal vector. N stands for the nRx*1 dimensional additive complex 
Gaussian white noise vector, whose components are independent with zero mean and 
σ2 variance. Besides, we furthermore assume nRx ≥  nTx, and the channel matrix H is 
quasi-static, that is to say, H can be considered to remain unchanged during one or more 
data bursts, so that we could accurately obtain H by sending test sequence or other 
channel estimation methods.   

 

Fig. 1. MIMO wireless digital communication system schematic diagram 

1.2 Conventional MIMO Detection Technologies 

1) Maximum-likelihood detection algorithm (MLDA), which solves formula (2),  
is the optimal detection under the condition of minimum BER. However, its 
computational complexity is closely related to the size of signal space as well as the 
number of transmitting and receiving antennas, and grows exponentially with  the 
increase of modulation order as well as the minimum number of transmit and receive 
antennas, which makes it an NP problem and be severely limited in a high order 
modulation MIMO system [3]. 
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2ˆ arg min *S Y H S= −                       (2) 

2) Serial interference cancellation algorithm (SICA), zero-forcing algorithm 
(ZFA), minimum mean square error algorithm (MMSEA), which have low 
complexities but poor BER performance. 

3) OSDA, which can achieve a better performance with a lower computational 
complexity, thus to solve the problem of MLDA quite well [4]. There are two kinds of 
search strategies in OSDA: depth-first and breadth-first. The former can provide the 
optimal BER performance, but its instantaneous throughout and computational 
complexity vary widely, and still are the exponential functions of antennas number and 
modulation order. The BER performance of the latter is relatively lower, but its 
instantaneous throughout and computational complexity are deterministic, and are the 
linear functions of antennas number and modulation order. So each has advantages and 
disadvantages, and both have attracted widespread attention. In view of the superior 
performance of OSDA, ever since it is introduced and applied to MIMO detection, 
reduction of its computational complexity effectively has been a hot topic in the 
research of the algorithm. Nevertheless, to the best of our knowledge, so far most of the 
researches on MIMO detection technologies are merely focus on the optimization of 
OSDA itself, with some limitations existed inevitably (e.g., [5], [6], [7], [8]). Little 
attention has been paid to the combination of OSDA and other ideas or intelligent 
algorithms, and the associated performance tradeoffs and evaluations. 

1.3 Outline 

The rest of this paper is organized as follows: Chapter 2 briefly reviews the basic 
principle and flow of OSDA, and then sums up the current problems. Chapter 3 
introduces the concept and theory of μ quantum, and presents a new technology for 
MIMO detection: μQGSDA, and highlight its principle and flow. Chapter 4 compares 
and analyses μQGSDA with OSDA by carrying out tradeoffs and evaluations of the 
associated performance through simulation experiments. At last, chapter 5 concludes 
the whole paper and makes an expectation. 

2 Original Sphere Decoding Algorithm 

The main idea of OSDA is to decrease the search space of MLDA by certain 
limitations, so as to achieve the goal of speeding up the search process and reducing the 
computational complexity. Through constraining the detection to only those points that 
lie inside a hypersphere with specified radius (r) around the received signal vector Y, 
thus to avoid the complex search, and the nearest point to vector S is the point of 
maximum likelihood [9-11]. The corresponding sphere constraint (SC) inequality is 

2 2*Y H S r− ≤                             (3) 

Only imposing SC does not lead to computational complexity reductions, we also 
need to take a rapid method to determine whether a candidate vector is within the 
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hypersphere, and then find out the closest point to the received signal vector, namely 
SML.  

Through QR decomposition on channel matrix H, formula (3) can be equivalent to  

2
2ˆ ˆ*Y R S r− ≤                             (4) 

Where 1
ˆ *HY Q Y= , 

22 2
2ˆ *Hr r Q Y= − . R is an nTx*nRx dimensional 

upper triangular matrix, whose element can be denoted as rij. Q=[Q1, Q2] is an nRx*nRx 
dimensional unitary matrix, where Q1 and Q2 respectively are the first nTx columns and 
the last remaining columns of Q. Thus, formula (4) can be expanded as 
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Formula (5) can be further simplified as 

.

.

.

.

.

.

2

1 11 1

2 22 2

2

nTx nTxnTx nTx

*

*

. .ˆ * =

. .

. .

*

y r s

y r s

Y R S

y r s

− 
 − 
 

−  
 
 
 

−  






   (6) 

Where 
nTx

i i ij j
j=i+1

ˆ ( * )y y r s= −  , i=1, … , nTx. As can be seen in Fig 2, if we build a 

search tree, whose depth is the number of transmit antennas, namely nTx. Then from 
layer nTx to layer 1, each node in each layer represents the each possible symbol value 
of the transmitted signal vector. 
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Fig. 2. Construction of the search tree for OSDA with depth-first strategy 

Now, we can recursively compute the partial Euclidean distances by traversing 
down the search tree. For formula (6), assuming: 

2

i ii i i i* ( )y r s e s− =                       (7) 

Where ei(si) is defined as the Euclidean distance increment, corresponding to the 
length of branch  in layer i. The range of results in layer i can be derived from formula 
(4) and (7): 

i i
i

ii ii

ˆ ˆy r y r
s

r r

− +≤ ≤
 

                     (8) 

We define PEDi(si) as the partial Euclidean distance, which denotes the cumulative 
Euclidean distance from the root node to the goal node in layer i: 

2

i i i+1 i+1 i i i+1 i+1 i ii i( ) ( ) ( ) ( ) *PED s PED s e s PED s y r s= + = + −
   

 (9) 

To iterate in turn according to formula (9), and each PEDi(si) should meet SC, 
otherwise, the search tree is pruned: 

2
i i ˆ( )PED s r≤  

                         (10) 

Finally, until i=1, when the search tree traversal is finished, the path corresponding 
to the leaf node with the lowest Euclidean distance is the maximum likelihood solution, 
record the results and update SC. 

Although OSDA can effectively cut down the number of points that the transmitted 
signal vector symbol to be traversed, and reduce the computational complexity to some 
extent. However, the indexes such as computational complexity and single decoding 
time, etc. are unsatisfactory yet, so we still need to seek an improved method [12].  

3 u Quantum Genetic Sphere Decoding Algorithm 

In order to consider from different viewpoints to further reduce the computational 
complexity, so as to improve the performance of MIMO detection, we can apply the 
current widely used intelligent algorithms to the field of signal processing, for MIMO 
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detection can actually be seen as a process of searching the optimal solution [13]. Based 
on this, we fully absorb the significant advantages of the super parallelism of μ 
quantum computing as well as the intelligence and the robust of GA, and then introduce 
the μ quantum state vector expression to genetic coding and present a new technology 
for MIMO detection: μQGSDA, which achieves a better effect than the conventional 
MIMO detection methods. 

3.1 μQuantum Bit Coding 

In μQGSDA, we adopt the μ quantum bits to store and to express a gene, which can be 
"0" state or "1" state, or their arbitrary superposition state. That is to say, the expression 
of a gene no longer contains the determined information, but all possible information. 
What’s more, any operations on a gene will act on all possible information at the same 
time. All above make this algorithm have a better diversity and convergence than the 
classical GA.  

As can be seen in Fig 3, each individual is composed of chromosome chains, 
namely, α genetic chain, β genetic chain, and γ genetic chain. Where α genetic 
chain and β genetic chain denote the signal phase, and determine the evolutionary 
direction of each gene in the individual. These two real numbers must satisfy the 
normalization conditions according to the theory of μ quantum computing. So during 
the crossover and mutation operations, α genetic chain and β genetic chain cannot be 
destroyed. γ genetic chain denotes the signal amplitude, and can be changed 
individually. 

 

Fig. 3. Individual structure of μ quantum bit 

The specific process of initialization coding is shown in the following formula: 

( , ) ( ( , ), ( , ), ( , ))QL i j realL i j imagL i j absL i jμ =           (11) 

Where L is the complex matrix corresponding to the signal constellations, μQL is the 
constellation matrix after the μ quantization. real(•) denotes to calculate the real part, 
imag(•) denotes to calculate the imaginary part and abs(•) denotes to calculate the plural 
module value. μQL(i,j)=( •,•, •) denotes that each element in μQL consists of three 
components, namely, α genetic chain, β genetic chain, and γ genetic chain. 
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3.2 Search Model and Strategy 

The search model and strategy of μQGSDA are similar to those of OSDA, while the 
difference is the introduction of μ quantum genetic algorithm (μQGA) to the search 
process in each layer of the search tree. Unlike the traditional quantum genetic 
algorithm, μQGSDA simplifies the related operations in order to reduce the 
computational complexity: 

 Set the upper limit of the evolutional generations as 6.25*M (M is the 
modulation order of MIMO wireless digital communication system). 

 Consider there being only limited M points in the whole search space, set the 
initial population size as 2*M. 

3.3 Fitness Function 

The fitness function and terminal condition of μQGSDA are shown in formula (9).  

3.4 Evolution Operators 

1) Selection operator: when designing the selection operator, in view of the small 
population size and the relatively simple solution space to be searched, the local-best or 
premature being not easy to appear, so we directly use the individual fitness value as the 
basis for selection, choose the individual with the best fitness value, and then spread the 
prepotency of the individual among the population. While selecting the superior 
individuals, the current worst individual is also selected, and replaced with a new one.  

2) Crossover operator: as can be seen in Fig 4, crossover operation adopts the 
two-point crossover strategy, however, two male parents do not simply interchange the 
selected gene fragment, but respectively keep one genetic chain in the selected gene 
fragment of each male parents, and exchange the other. 
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3) Mutation operator: as can be seen in Fig 5, the gene bit to be mutated is 
selected at first, and then during the mutation operation, the α gene and β gene of this 
gene bit are randomly generated at the same time, which must also satisfy the 
normalization conditions of μ quantum computing, whileγ gene is randomly 
generated alone or remains unchanged. In this way, the diversity of new individuals is 
potentially improved, and thus the population space is enlarged [14]. 
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Fig. 5. Mutation operation 

3.5 Algorithm Flow 

The flow of μQGSDA is shown in Fig 6. The population evolution stage is the just 
search process, including the operations of selection, crossover, and mutation. The 
population assessment needs to be iterated layer by layer, and the fitness function in 
each layer is different in specific parameters, except in the same form. After the 
completion of the population assessment, the optimal individual must be selected, and 
determine whether it meets the corresponding terminal conditions or not, if so, exit the 
search and record the final decoding results, else continue until reach the upper limit of 
the population evolutional generations. Each time launching the search process of 
μQGA, the returned results are detected according to the range of solution in each layer 
obtained by OSDA, if they meet the conditions to continue into the next layer, update 
the parameters and compute the range of solution in the next layer, and then enter into 
μQGA to perform the search process, otherwise, determine whether the search process 
has been completed. Where after, determine whether the whole algorithm is completed 
according to the results of judgment, if so, quit and return the final decoding results, 
else enter into the next step. If the results searched by μQGA can neither meet the exit 
conditions of OSDA, nor meet the conditions of termination to the next layer, reset the 
search parameters and return to the previous step. The whole μQGSDA cycles time 
after time on the basis of the above search logic, and finally obtain the maximum 
likelihood solution. 
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Fig. 6. The flow chart of μQGSDA 

4 Simulation Experiment and Results Analysis 

The conditions of the simulation experiment and the initial settings of the related 
parameters are shown in Table 1 and Table 2. 

Table 1. The conditions of the simulation experiment 

Simulation Experiment Platform 

Processor Memory Operating system 
Simulation 

environment 
Intel Core 
i5-3470 

3.14GB 
Microsoft Windows 
XP Professional 

Matlab 2012b 
(32bits) 

Table 2. The initial settings of the related parameters 

Related Parameters Initialization of The Decoder  

Transmit 
antennas number 

(nTx) 

Receive 
antennas 
number 

(nRx) 

Size of data 
package to be 

transmitted per 
antenna  

modulation 
order (M) 

channel 
matrix (H) & 
noise vector 

(N)  

4 4 100bits 16-QAM 
Channel 

estimation 



238 J. Zhao et al. 

 

In order to verify the correctness, validity as well as the superior MIMO detection 
performance of μQGSDA, we respectively conduct 100 times of simulation experiment 
on μQGSDA and OSDA with the signal to noise ratio (SNR) ranging from 0 to 20, and 
then compute the average BER and the average time consuming per decoding apart, the 
corresponding performance curve and three dimensional heat histogram are shown in 
Fig 7 (a & b) and Fig 8 (a & b). As can be seen: 

1) With the increase of SNR, the average BER of the two algorithms declines on 
approximately the same trend, and a zero BER is basically achieved when SNR is 
around 15. 

2) The average time consuming per decoding of the two algorithms are fairly 
short, which is closely related to the simple and effective idea of searching layer by 
layer. Where the average time consuming per decoding performance of μQGSDA is 
relatively stable, and eventually fluctuates around 0.0026s. While the average time 
consuming per decoding performance of OSDA fluctuates downward with the increase 
of SNR, but changes slowly, and is basically stable around 0.0159s in the end.  

 

Fig. 7. (a). The average BER performance curve of μQGSDA and OSDA. 

Fig 7 (b). The average time consuming per decoding performance curve of μQGSDA and OSDA. 
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Fig. 8. (a). The average BER performance three dimensional heat histogram of μQGSDA and 
OSDA. 

Fig 8 (b). The average time consuming per decoding performance three dimensional heat 
histogram of μQGSDA and OSDA. 

At last, we contrast the average time consuming per decoding performance of 
μQGSDA and OSDA with SNR being 15, and the number of the receive & transmit 
antennas ranging from 1 to 10. Each algorithm cycles 10 times, the simulation 
experiment performance curve is shown in Fig 9. 

 

Fig. 9. The performance curve of μQGSDA and OSDA that describes the average time 
consuming per decoding changing with the number of the receive& transmit antennas 
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As can be seen: the average time consuming per decoding of the two algorithms 
grows with the increase of the number of receive & transmit antennas on the same 
linear trend, and the average time consuming per decoding of μQGSDA is nearly the 
half of that of OSDA. 

The above simulation experiment and results analysis show that: μQGSDA is a kind 
of deterministic algorithm because of the depth-first search strategy, namely, it is 
definitely to find out the target results. Because of the introduction of μ quantum 
computing and GA, OSDA not only keeps its optimal BER performance, but also 
enhances the robustness, and substantially cuts down the average time consuming per 
decoding. What’s more, as the computational complexity of MIMO detection 
algorithm is closely related to the number of complex matrix operations, so the 
summarization from an original multi-dimensional search into a single-dimensional 
search enables μQGSDA to avoid a large number of complex matrix operations, thus to 
improve the overall detection efficiency. 

5 Conclusion and Expectation 

Aiming at the problems of MIMO wireless digital communication system such as how 
to effectively improve the data detection rate and reliability, and how to reduce BER, as 
well as the disadvantages of OSDA such as the relatively high computational 
complexity and the relatively long decoding time, we present a new technology for 
MIMO detection: μQGSDA, which combines the super-parallelism of μ quantum 
computing with the global superiority of GA, and can be summarized as a 
multi-dimensional search for a single-dimensional search, thus to avoid a large number 
of complex matrix operations, as well as to improve the detection efficiency. 
Simulation experiment results demonstrate that our method has some advantages of 
good robustness, search capability and convergence rate. What’s more, the detection 
performance of μQGSDA has been greatly improved than OSDA. 

However, the work of this paper is still a lot of deficiencies and defects, remaining to 
be further improved and perfected. With the development of the fourth generation of 
wireless digital communication system, technologies for MIMO detection will attract 
more attention [15]. 
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Abstract. While unmanned aerial vehicle (UAV) is in the mission, the acquired 
big data information needs to communicate in real-time with the base. 
Consequently, how to achieve a high-speed and high-quality data transmission 
via the limited bandwidth and frequency spectrum resource has currently become 
a hot researching topic in the field of wireless communication and aeronautical 
telemetry. Aiming at these problems, in this paper, we present a kind of 
optimization scheme of multi-input multi-output (MIMO) orthogonal frequency 
division multiplexing (OFDM) sphere equalization technology for UAV wireless 
image transmission data link system, which combines MIMO technology with 
OFDM technology, thus to increase the spectrum utilization rate and to improve 
the system performance while resisting to the multipath effect. What's more, by 
means of carrying out the collaborative optimization on the original sphere 
equalization technology (OSET), and by the introduction of the support of the 
configurable parameters, the system computational complexity is significantly 
reduced, the detection efficiency as well as the adaptability to complex 
environment is also improved. Simulation experiment results demonstrate that 
our method has an approximately optimal bit error rate (BER) performance, a 
high bandwidth efficiency, a good robustness, a fast convergence rate, and the 
comprehensive performance is greatly improved than OSET. Furthermore, our 
method also has a very important reference significance and application value to 
the development of the equalization technologies of the wireless image 
transmission data link system based on the UAV platform in our country, as well 
as to the researches in domestic and foreign related fields. 

Keywords: UAV, wireless image transmission data link, MIMO, OFDM, OSET. 

1 Introduction 

In recent years, with the continuously rapid development of the computer technology, 
the electronic technology and the communication theory, the concept and idea of 
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“information dominance” gradually starts to enter people's horizons, and then is widely 
adopted and applied around the world. No matter in the military field or in the civilian 
area, who takes the “information dominance”, who takes the first strike and controls the 
future. At the same time, with the continuous promotion and perfection of the social 
informatization, the multimedia technology and the radio communication constantly to 
integrate with each other, besides, the structure of communication system began to tend 
to three-dimensional and networked, and evolve rapidly from narrowband to 
broadband. As a result, the existing technologies such as terrestrial communication and 
satellite communication, etc. have been unable to meet people's growing demand. 
Therefore, the technology for UAV wireless image transmission data link system has 
currently become a hot research topic in the field of wireless communication and 
aeronautical telemetry [1]. 

Researches on the information theory demonstrate that the selection of the 
combination of MIMO technology with OFDM technology in the UAV wireless image 
transmission data link system is able to resist the influence of multipath effect very 
well, substantially increase the frequency band resource utilization rate, and effectively 
reduce the front-end design complexity of the transmitter/receiver. However, in the 
frequency selective Rayleigh fading channel under the condition of dynamic and 
multipath, the impact of the factors like inter-symbol interference (ISI), etc. on the 
system performance is very serious. As a result, a feasible equalization technology has 
become the key to the design of the UAV wireless image transmission data link system. 

Although OSET can be able to effectively reduce the number of grid points 
traversing the symbol vectors, and lower the computation complexity of 
MIMO-OFDM system to a certain degree. However, the indexes like single decoding 
time, etc. are unsatisfactory yet, so we still need to seek an improved method. 

Before giving the main structure of this paper, we introduce the system model of 
MIMO-OFDM UAV wireless image transmission data link, and briefly trade off 
several common equalization technologies for UAV wireless image transmission data 
link system. 

1.1 The System Model of MIMO-OFDM UAV Wireless Image Transmission 
Data Link 

Our system model of MIMO-OFDM UAV wireless image transmission data link is 
shown in Fig 1. The collaborative communication between each UAV, and the 
collaborative communication between UAVs and the base are all achieved through the 
corresponding data link. In order to meet the technical index requirements of UAV 
wireless image transmission data link better, so as to transmit the more high-resolution 
images and video in real-time under the limited bandwidth resource and the poor 
communication environment, MIMO-OFDM technology is adopted in this paper to 
guarantee the reliability and the validity of the data link. Consider a MIMO-OFDM 
wireless data communication system in the frequency selective Rayleigh fading 
channel under the condition of dynamic and multipath, whose transmitting antennas 
number is nTx , and receiving antennas number is nRx , then the nRx  dimensional 
received signal vector can be expressed as: 

=H*S+NY                                     (1) 
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Where, H  denotes the *nRx nTx  dimensional channel matrix, whose element 

i jh  is a complex Gaussian random variable with zero mean and unit variance under 

the independent identical distribution. 1 2, , , s
T

nTxs s s =    is the nTx  

dimensional transmitted signal vector. N  stands for the nRx  dimensional additive 
complex Gaussian white noise vector, whose components are independent with zero 

mean and 2σ  variance. Besides, we further assume the channel matrix H  is 
quasi-static, namely, H  can be considered to remain unchanged during one or more 
data bursts, so that we could accurately obtain H  by sending pilot frequency test 
sequence or other channel estimation methods.   

 

Fig. 1. The system principle diagram of MIMO-OFDM UAV wireless image transmission data 
link 

1.2 Conventional UAV Wireless Image Transmission Data Link System 
Equalization Technologies 

1) Maximum likelihood (ML) equalization technology: with the minimum BER, 
this technology is the optimal receiving scheme which regards the additive complex 

Gaussian white noise vector as an unknown quantity, and takes *2M nTx  (where, M  is 
the modulation order, and assume nRx nTx≥ ) kinds of possible transmitted symbol 
into formula (2) one by one for computation, and then select the result with the 
minimum additive complex Gaussian white noise vector power as the ML output. 
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However, its computational complexity is closely related to the size of signal space as 
well as the number of receiving/transmitting antennas, and grows exponentially with  
the increase of modulation order as well as the minimum number of transmit and 
receive antennas, which makes it an NP problem and be severely limited in a high order 
modulation system [2]. 

2ˆ arg min *S Y H S= −                         (2) 

2) Zero-forcing (ZF) equalization technology, and minimum mean square 
error (MMSE) equalization technology: as representatives of the linear 
equalization technologies, these two technologies are able to separate the same 
frequency signals very well under the condition of high signal to noise ratio (SNR), 
besides, they have a relatively low computational complexity but a relatively poor 
BER performance [3]. 

3) OSET: proposed by Fincke and Pohst in 1985, this technology searches within 
a pre-set limited spherical region to reduce number of the grid points to be searched, so 
as to shorten the search time and realize the approximately optimal detection of 
MIMO-OFDM system with a relatively low computational complexity, rather than 
searching exhaustively just like ML. OSET can be divided into two kinds of search 
strategies, namely, depth-first and breadth-first. The former can provide the optimal 
BER performance, but its instantaneous throughout and computational complexity vary 
widely, and still are the exponential functions of antennas number and modulation 
order. The BER performance of the latter is relatively lower, but its instantaneous 
throughout and computational complexity are deterministic, and are the linear 
functions of antennas number and modulation order. So each has advantages and 
disadvantages, and both have attracted widespread favor and attention within the circle. 
In view of the superior performance of this technology, ever since it is introduced and 
applied to MIMO-OFDM detection in UAV wireless image transmission data link 
system, reduction of its computational complexity effectively has always been a hot 
topic in the research of the related fields. Nevertheless, to the best of our knowledge, so 
far most of the researches are merely focus on the optimization and improvement of a 
certain aspect of the sphere equalization technology, with some limitations existed 
inevitably (e.g., [4-6]). Little attention has been paid to the collaborative design and 
optimization of multiple parameters of OSET, and to the related attempt to tradeoff and 
evaluate the comprehensive performance of the system. 

1.3 Outline 

The next chapter briefly introduces the basic concepts, principles and connotations of 
MIMO-OFDM technology, including the concepts and principles of MIMO 
technology, the concepts and principles of OFDM technology, and the necessity 
analysis for the combination of MIMO technology and OFDM technology. 
Subsequently, chapter 3 detailedly elaborates solutions and countermeasures of the 
collaborative improvement and optimization in aspects of initial search radius, 
detection order, and search strategies, etc. on OSET, and highlights its principle and 
flow. Through simulation experiments, chapter 4 compares and analyzes the optimized 
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MIMO-OFDM sphere equalization technology with the conventional methods and 
OSET, and carries out tradeoffs and evaluations on the overall performance of the UAV 
wireless image transmission data link system. At last, chapter 5 concludes the whole 
paper and makes an expectation. 

2 The Basic Principle of MIMO-OFDM Technology 

2.1 The Basic Principle of MIMO Technology 

Currently, science and technology continuously get rid of the stale and bring forth the 
fresh, and the demand for UAV wireless image transmission data link system 
broadband high-speed data communication service is constantly growing, what’s more, 
the limited link resources are faced with the communication data big bang difficulties, 
so how to transfer more information with the limited bandwidth resource while 
restraining the radio interference very well has become a huge challenge in UAV 
wireless image transmission data link system development. Researches on the 
communication theory show that MIMO technology with multiple antennas in both 
transmitter and receiver of the wireless digital communication system can expand the 
spatial degree of freedom, exponentially increase the capacity and the spectrum 
efficiency of the communication system, lower BER, and improve the transmission 
quality of the wireless signal without increasing the spectral bandwidth. Its system 
principle block diagram is shown in Fig 2. 

11h

22h

nRxnTxh

 

Fig. 2. MIMO system principle block diagram 

The key of MIMO technology is space-time signal processing, namely, to combine 
the time domain and the space domain for signal processing via multiple antennas 
distributed in space, so as to economize the random fading and the possibly existing 
multipath propagation to increase the data transmission rate. Furthermore, MIMO 
technology is able to provide spatial multiplexing gain and spatial diversity gain for the 
system: 

1) Spatial multiplexing gain: while signal is propagating in a rich scattering 
environment, it is just like passing through a plurality of independent parallel data 
channels simultaneously in the same space, which not only enhances the reliability, but 
also increases the transmission rate, thereby significantly expands the system capacity. 
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The implementation of spatial multiplexing gain requires that the separation distance 
between the transmitting antennas and the receiving antennas is further than their 
correlation distance (usually more than 10 times of signal wave length), in order to 
guarantee each subchannel of the receiving/transmitting end being independent fading 
non-correlated channel, so as to realize the spatial diversity reception of the signal. 

2) Spatial diversity gain: in the wireless channel, the probability of multiple 
copies of the same signal propagated via the independent fading link or branch being 
simultaneously in deep fading is very small. In order to improve the reliability of the 
wireless link, we can combine those copies of the signal at the receiving end according 
to certain rules to improve the reliability of the channel and to lower BER. 

Laboratory studies show that: the spectrum efficiency of MIMO technology in the 
indoor environment can get as high as 20-40 bit/s/Hz, while that of the traditional 
wireless communication technologies in the mobile cellular is merely 1-5 bit/s/Hz, and 
only 10-12 bit/s/Hz even in the point to point fixed microwave system [7]. However, 
the performance indexes of MIMO technology in the aspects of resisting to the 
frequency selective fading, etc. are unsatisfactory yet, so we still need to seek a 
combination scheme with other technologies to get a more excellent system 
performance.  

2.2 The Basic Principle of OFDM Technology 

April in 2003, IEEE802.11 wireless local area network (LAN) physical layer interface 
standard was put forward by institute of electrical and electronic engineers (IEEE), and 
then the broadband wireless LAN air interface standard below 11 GHz frequency band 
was set on the basis of IEEE802.11 standard, which specified OFDM technology as one 
of the two kinds of standard transmission mode [8]. 

OFDM technology is a kind of special multicarrier digital modulation technology, 
which can also be understood as a kind of multiplexing technology, whose system 
principle block diagram is shown in Fig 3. The operation of OFDM technology is based on 
data block, and input data carries out serial to parallel conversion after constellation 
mapping, and then the original data symbols are concurrently modulated to mutually 
orthogonal subcarriers, which is able to overcome the frequency selective fading or 
narrowband interference introduced by multipath delay very well. By means of adding 
cyclic prefix (CP), the sustainable length of data symbols on each subcarrier is made to 
relatively increase, so that ISI introduced by the time dispersion of the wireless channels 
can be effectively reduced. After CP is removed, frequency domain equalization is 
realized by fast Fourier transform (FFT), and the influence of channel interference can be 
simplified to the product of a complex propagation constant and a subchannel transmission 
signal, so the complexity of channel equalization is greatly simplified, which is difficult to 
realize in the traditional single carrier system with the same bandwidth. Moreover, the 
frequency band is divided into several disjoint subband by the traditional frequency 
division multiplexing (FDM) technology to transmit data stream, and each subchannel is 
separated by a set of filters in the receiving end. This technology is simple and direct but a 
waste of resources, what’s worse, its frequency band utilization rate is relatively lower, 
too. While OFDM technology allows the frequency spectrum of the subcarriers to overlap 
with each other, and maximizes the use of frequency spectrum resources. However, there 
are also some disadvantages in OFDM: 
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1) Being susceptible to frequency deviation. The frequency spectrum of the 
subcarriers overlaps with each other in OFDM system, which proposes a more stringent 
requirement on the orthogonality between them. However, because of the time-varying 
characteristics of the wireless channels, the phenomenon of frequency deviation will 
occur while the wireless signal is being in the transmission process. For example, the 
Doppler frequency shift or the frequency deviation between the transmitter carrier 
frequency and the receiver local oscillator will all possibly destroy the orthogonality 
between the subcarriers in OFDM system, and thereby result in the generation of 
inter-channel interference (ICI) between the subcarrier signals. 

2) The sending signal has a relatively high peak-to-average power ratio (PARA), 
which requires a wider dynamic range for the transmitter power amplifier, and 
simultaneously asks for a smaller phase noise coefficient of the tuning unit as well as 
other analog devices in the receiver. As a result, the system cost increases. 

Consequently, simply adopting the roadmap with single OFDM technology cannot 
obtain the ideal solution, either. 

2.3 The Necessity Analysis for the Combination of MIMO Technology and 
OFDM Technology 

In UAV wireless image transmission data link system, multipath effects and frequency 
selective fading are two key issues which must also be considered in the signal 
transmission process except for the necessity of fully increasing bandwidth resource 
utilization rate. Easily leading to the generation of ISI, multipath effects are often regarded 
as a harmful factor by the traditional receiver. While MIMO technology is just generated 
aiming at multipath channels, and the multipath components produced during propagation 
can be utilized to some extent, so the influence of multipath effects can be seen as a 
favorable factor instead. However, MIMO technology is still unable to avoid frequency 
selective fading, while solve the problem of frequency selective fading happens to be one 
of the advantages of OFDM technology. Thus, the combination of OFDM technology and 
MIMO technology is bound to be the inevitable trend of the development of wireless radio 
communication technology and space telemetry technology [9]. 

 

Fig. 3. OFDM system principle block diagram 
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3 The Solutions and Countermeasures of the Optimization on 
Sphere Equalization Technology 

OSET is able to achieve the ML performance and to keep the calculation efficiency at 
the same time. Hence, it is a kind of very effective method for MIMO-OFDM 
detection. However, for the unequal symbol energy constellation graph like quadrature 
amplitude modulation (QAM), there is a large amount of computation. In order to 
further reduce the computational complexity of OSET, in this paper, by means of 
carrying out the collaborative improvement and optimization in aspects of initial search 
radius determination, pretreatment ranking, and search strategies, etc. on OSET, and by 
the introduction of the support of configurable parameters,  the comprehensive 
effectiveness of UAV wireless image transmission data link system is further improved. 
The idiographic flow is shown in Fig 4. 

 

Fig. 4. OSET optimization scheme flow diagram 

1) Determination of the initial search radius. Take the 64-QAM constellation 
diagram for example, as can be seen in Fig 5, the core of the efficiency of OSET lies in 
its selective search process, that is to say, we only need to search the area within the 
range of predetermined conditions, and then search for the closest transmitted symbol 
vector s  around the received symbol vector y . If the initial search radius r  is 

selected too small, just like 1r  shown in the figure, the expected solutions will not be 

obtained; If the initial search radius r  is selected too big, just like 3r  shown in the 

figure, although the expected solutions can be obtained, however, the search time will 
also be increased at the same time, resulting in a decrease in the overall efficiency of the 

system; The best initial search radius is supposed to be 2r  shown in the figure, but it 
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turns out to be that the determination of the initial radius being the best or not is 
essentially an NP problem. Consequently, the way to select an appropriate initial search 
radius has been a key issue in the improvement and optimization of OSET. There are 
two main methods frequently-used to determine the initial search radius: 

 Select the initial search radius according to the probability distribution of the 
additive complex Gaussian white noise vector variance, namely: 

( ) ( )2 22 , 1 200lr Nα σ α= ≤ ≤                   (3) 

This method has a relatively low complexity, but can not guarantee the transmitted 
symbol vector located within the hypersphere, thus there is a possibility of search 
failure. 

 Adopt ZF technology for pre-detection, and take the Euclidean distance 
between its results and the received signal as the initial search radius. This method 
ensures that there is at least one mapping point of the transmitted signal within the 
initial hypersphere, thus there is no possibility of search failure, therefore, in this paper, 
we adopt this method to determine the initial radius, so as to improve and optimize 
OSET. 

1r

2r

3r

 

Fig. 5. OSET initial search radius selection schematic diagram (64-QAM) 

2) Pretreatment ranking. Determine the reliability of the transmitted signal by 
adopting the initial estimate value of ZF equalization technology as a reference. While 
calculating the candidate set of each dimensional symbol vectors, rank the possible 
coordinate values in it according to the size of the upper and lower boundary, and 
synchronously update all upper and lower boundaries according to each updated search 
radius. Thereby, enhance the convergence rate and shorten the detection delay of 
OSET. 
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3) Search strategies. There are two search strategies in the tree search process of 
OSET: Fincke-Pohst (FP) strategy and Schnorr-Euchner (SE) strategy. The main 
distinction between the two strategies is the order to enumerate the candidate nodes. 
When FP strategy visits the nodes located on the next layer, it is in accordance with the 
order of the signal constellation, which is to enumerate the signal constellation points in 
turn from left to right. While SE strategy ranks the signal constellation points located on 
the next layer according to the order of ascending metric values, and enumerates the 
signal constellation points according to this order when it visits nodes. SE strategy 
carries out the search using the zig-zag method, and the first point acquired is the point 
with the minimum metric value located on the current layer (BaBai point), so if the 
search fails, then the rest nodes located on that layer can be immediately skipped, thus 
the computational complexity is greatly reduced [10]. SE strategy starts its search from 
the node with the minimum branch metric value, so it can find out the ML solution with 
a higher speed as well as a lower computational complexity than FP strategy. Hence, in 
this paper, we adopt SE strategy to carry out improvement and optimization on OSET. 

4) Support to the configurability of the system. Including the configurability of 
search methods (K-best breadth-first strategy and depth-first strategy), the 
configurability of antenna array (upper limit to 16 * 16), the configurability of the 
number of subcarriers (upper limit to 128), and the configurability of modulation mode 
(upper limit to 64-QAM). Accordingly, UAV wireless image transmission data link 
system can carry out adaptive adjustment at any time according to the actual 
environment and other changes of conditions to acquire a more excellent performance. 

4 Simulation Experiment and Result Analysis 

The conditions of the simulation experiment and the initial settings of the related 
parameters are shown in Table 1 and Table 2. 

Table 1. The conditions of the simulation experiment 

Simulation experiment platform 

Processor Memory Operating system 
Simulation  

environment 

Intel Core 
i5-3470 

3.14GB 
Microsoft Windows 
XP Professional 

Matlab 2012b 
(32bits) 

Table 2. The initial settings of the related parameters 

Related parameters initialization 

Transmit  
antenna 

number 
(nTx) 

Receive 
antenna 
number 

(nRx) 

Number of 
subcarriers 

Modulation 
type 

Channel  
matrix (H) & 

noise vector (N) 

4 4 100000 16-QAM 
Channel  

estimation 
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In order to verify the correctness, validity as well as the superior MIMO-OFDM 
detection performance of the collaborative optimized OSET, in this paper, we 
respectively conduct the simulation experiment on ZF equalization technology, MMSE 
equalization technology, and the collaborative optimized OSET with SNR ranging 
from 0 to 30, and then respectively compute the average BER under the three 
technologies, the corresponding performance curve is shown in Fig 6. As can be seen: 

1) With the increase of SNR, the average BER of ZF equalization technology and 
MMSE equalization technology both decline on the parabolic trend, and the average 
BER performance of MMSE equalization technology is about 2dB better than ZF 
equalization technology. 

2) The collaborative optimized OSET is still able to continually maintain the 
approximately optimal ML detection performance in terms of the average BER index, 
with 11dB better than MMSE equalization technology and 13dB better than ZF 
equalization technology. 

 

Fig. 6. The average BER performance curve of ZF equalization technology, MMSE equalization 
technology, and the collaborative optimized OSET 

At last, we contrast the average time consumed per decoding performance of  
the collaborative optimized OSET and OSET with SNR being 15, and the number of 
the receive & transmit antennas ranging from 1 to 10. Each algorithm cycles 20 times, 
the simulation experiment performance curve is shown in Fig 7. As can be seen: with 
the increase of the number of receive & transmit antennas, the average time consumed 
per decoding of the two technologies both increase on the linear trend, and the average 
time consumed per decoding of the collaborative optimized OSET is approximately the 
half of that of OSET. 
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Fig. 7. The performance curve of the collaborative optimized OSET and OSET that describes the 
average time consumed per decoding changing with the number of the receive & transmit 
antennas 

The above simulation experiment and result analysis show that: the innovative 
technology roadmap combining MIMO technology with OFDM technology makes 
UAV wireless image transmission data link system be able to enhance the capacity of 
resistance to multipath interference and to fully improve the bandwidth utilization rate. 
Besides, because of the collaborative improvement and optimization in the three 
aspects of the determination of initial search radius, pretreatment ranking, and search 
strategies on OSET and the introduction of the support of configurable parameters, 
OSET has enhanced its robustness, lowered its computational complexity, and greatly 
reduced the average time consumed per decoding on the basis of maintaining its 
approximately optimal BER performance. 

5 Conclusion and Expectation 

Aiming at the problems of UAV wireless image transmission data link system under the 
condition of informatization such as how to improve the transmission efficiency, 
detection speed and reliability of the big data information, so as to lower BER, and the 
disadvantages of OSET such as the relatively high computational complexity and the 
relatively long average time consumed per decoding, etc.. In this paper, we present a 
kind of optimization scheme of MIMO-OFDM sphere equalization technology for 
UAV wireless image transmission data link system, which combines MIMO technology 
with OFDM technology, thus to increase the spectrum utilization rate and to improve 
the system performance while resisting to the multipath effect. What's more, by means 
of carrying out the collaborative optimization on OSET, and by the introduction of the 
support of the configurable parameters, the system computation complexity is 
significantly reduced, the detection efficiency as well as the adaptability to complex 
environment is also improved. Simulation experiment results demonstrate that our 
method has an approximately optimal BER performance, a high bandwidth efficiency, 
a good robustness, a fast convergence rate, and the comprehensive performance is 
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greatly improved than OSET. Furthermore, our method also has a very important 
reference significance and application value to the development of the equalization 
technologies of the wireless image transmission data link system based on the UAV 
platform in our country, as well as to the researches in domestic and foreign related 
fields. 

However, the work of this paper is still a lot of deficiencies and defects, the aspects 
of lowering PARA and simplifying the front-end design complexity of the 
transmitter/receiver, etc. still remain to be further improved and perfected [11]. With 
the development of the wireless radio communication system and the space telemetry 
system, MIMO-OFDM sphere equalization technology will attract more attention. 
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