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Abstract. In this paper electroencephalogram (EEG) signals are stud-
ied to extract biometric traits for identification of users. Different record-
ing sessions separated in time are considered in order to infer about
usability of EEG biometrics in real life applications. The aim of this
work is to provide a representation of the data and a classification app-
roach which would show repeatability of the EEG features employed in
the proposed framework. The brain electrical activity has already shown
some potentials to allow automatic user recognition, but an extensive
analysis of EEG data aiming at retain stable and distinctive features is
still missing. In this contribution we test the invariance over time of the
discriminant power of the employed EEG features, which is a relevant
property for a biometric identifier to be employed in real life applica-
tions. The enrolled healthy subjects performed resting state recordings
on two different days. Combinations of different electrodes and spectral
subbands have been analyzed to infer about the distinctiveness of differ-
ent topographic traits and oscillatory activities. Autoregressive statisti-
cal modeling using reflection coefficients has been adopted and a linear
classifier has been tested. The observed results show that a high degree
of accuracy can be achieved considering different acquisition sessions for
the enrollment and the testing stage. Moreover, a proper information
fusion at the match score level showed to improve performance while
reducing the sample size used for the testing stage.
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1 Introduction

EEG signals have been widely studied since the beginning of the last century,
mainly for clinical applications, to investigate brain diseases like Alzheimer,
epilepsy, Parkinson and many others. Specifically, EEG signals, acquired by
means of scalp electrodes, sense the electrical activity related to the firing of spe-
cific collections of neurons during a variety of cognitive tasks such as response to
audio or visual stimuli, real or imagined body movements, imagined speech, etc.
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Table 1. State of the art on EEG biometrics using a resting state protocol.

Paper Protocol # Subj # Ch. Features

[4] CE 4 1 AR (6th)

[5] CE 48 3 AR (6th)

[6] CE, OE 40 1 AR (21th)

[7] CE 5 6 AR (6th)

[8] CE 10 1 AR (6th) + PSD

[9] CE, OE 10 4 AR (21th)

[10] OE 10 2-3 AR (11th)

[11] CE 23 1 FFT

The most relevant cerebral activity falls in the range of [0.5, 40] Hz. In details five
wave categories have been identified, each associated to a specific bandwidth and
to specific cognitive tasks: delta waves (δ) [0.5,4] Hz which are primarily associ-
ated with deep sleep, loss of body awareness, and may be present in the waking
state; theta waves (θ) [4, 8]Hz which are associated with deep meditation and
creative inspiration; alpha waves (α) [8, 13]Hz which indicate either a relaxed
awareness without any attention or concentration; beta waves (β) [13, 30]Hz usu-
ally associated to active thinking; gamma waves (γ) [30, 40]Hz usually used to
locate right and left side movements.

In the last decades, the brain activity, registered by means of EEG, has been
heavily employed in brain computer interfaces (BCI) [1] and more recently in
brain machine interface (BMI) [2] for prosthetic devices. In the last few years
EEG signals have also been proposed to be used in biometric based recognition
systems [3].

EEG signals present some peculiarities, which are not shared by the most
commonly used biometrics, like face, iris, and fingerprints. Specifically, brain
signals generated on the cortex are not exposed like face, iris, and fingerprints,
therefore they are more privacy compliant than other biometrics since they are
“secret” by their nature, being impossible to capture them at a distance. This
property makes EEG biometrics also robust against the spoofing attack at the
sensor since an attacker would not be able to collect and feed the EEG signals.
Moreover, being brain signals the result of cognitive processes, they cannot be
synthetically generated and fed to a sensor, which also addresses the problem of
liveness detection. Also, the level of universality of brain signals is very high. In
fact people with some physical disabilities, preventing the use of biometrics like
fingerprint or iris, would be able to get access to the required service using EEG
biometrics.

However, the level of understanding of the physiological mechanisms behind
the generation of electric currents in the brain, not yet fully got, makes EEG a
biometrics at its embryonic stage. Nevertheless, some preliminary, but promis-
ing, results have already been obtained in the recent literature, see for example
[4,5,12–14] where a review on the state of the art of EEG biometrics is also given,
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and [15]. Due to the early stage of research dealing with EEG as biometrics, cur-
rently, the deployment of convenient and accurate EEG based applications in
real world are limited with respect to well established biometrics like finger-
prints, iris, and face. However the brain electrical activity has already shown
some potentials to allow automatic user recognition. Answers to practical and
theoretical questions addressed for the development of a usable system can be
found in [16] where promising results are obtained from the implementation
of a portable EEG biometric framework for applications in real world scenarios.
Improvements in EEG signal acquisition and technological advances in the use of
wireless and dry sensors, easy to wear and robust with respect to noise [17] could
represent the cue for outlining guidelines for practical systems implementation.

In Table 1, an extensive although not exhaustive list of research studies which
have already been published using a resting state acquisition protocol, either
closed eyes (CE) or open eyes (OE), is provided. It is evident that the data-
base dimension is quite limited in almost all of these contributions. This is also
due to the lack of a public EEG database suitably collected for the biometric
recognition purpose, where acquisitions and protocols would be designed accord-
ing to the specific requirements. In fact most of the works in this field test the
implemented techniques on datasets recorded in BCI contexts. Moreover the
issue of the repeatability of EEG biometrics in different acquisition sessions has
never been systematically addressed in any of the aforementioned contributions
and it has never received the required attention from the scientific community.
Nevertheless, its understanding is propaedeutic towards the deployment of EEG
biometrics in real life. Although in some referred works different acquisition ses-
sions have been provided, they were considered to assort a single dataset where
randomly selected EEG segments were used for training or testing a classifi-
cation algorithm for the recognition purpose. On the other hand, in [12] the
session-to-session variability was tested on a dataset of 6 subjects performing
imagined speech. The entire set of 128 channels was used to extract features,
and results show a decreasing performance when considering sessions tempo-
rally apart, which led to assess that the imagined speech EEG does not show
to have a reliable degree of repeatability. Therefore, in this paper we further
speculate on the use of EEG as a biometric characteristic by focusing on the
analysis of repeatability of its features, thus starting filling a gap in the existing
literature. More in details, we rely on two simple acquisition protocols, namely
“resting states with eyes open” and “resting states with eyes closed” to acquire
data from nine healthy subjects in two acquisition sessions separated in time.
Different configurations for the number of electrodes employed and for their spa-
tial placement have been taken into account. Specifically, sets of three and five
electrodes have been considered to acquire the signals, and several frequency
bands have been analyzes. The so acquired signals, after proper preprocessing,
are then modeled using autoregressive stochastic modeling in the feature extrac-
tion stage. Linear classification is then performed. The paper is organized as
follows. The acquisition protocol is detailed in Sect. 2.1, and in Sect. 2.2 the
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template extraction procedure is described. In Sect. 3 classification is performed,
while experimental results are given in Sect. 4. Finally conclusions are drawn in
Sect. 5.

2 Experimental Setup

2.1 EEG Data

Nine healthy volunteers have been recruited for this experiment. Informed con-
sent was obtained from each subject after the explanation of the study, which
was approved by the local institutional ethical committee. During the experi-
ment, the participants were comfortably seated in a reclining chair with both
arms resting on a pillow in a dimly lit room properly designed minimizing exter-
nal sounds and noise in order not to interfere with the attention and the relaxed
state of subjects. The subjects were asked to perform one minute of “resting
state with eyes open” and one minute of “resting state with eyes closed” [18] in
two temporally separated sessions, from 1 to 3 weeks distant from each other,
depending on the subject.
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Fig. 1. Scalp electrodes positioning in the employed protocol according to an extension
of the standard 10-20 montage.

Brain activity has been recorded using a BrainAmp EEG recording system
operating at a sampling rate of 200 Hz. The EEG was continuously recorder from
54 sites positioned according to the International 10-20 system as shown in Fig. 1.
Such configuration is not meant to be a user convenient solution, but allows to
investigate about a proper electrode placement, able to catch distinctive features
according to the employed protocol. Before starting the recording session, the
electrical impedance of each electrode was kept lower than 10 kOhm through
a dedicated gel maximizing the skin contact and allowing for a low-resistance
recording through the skin. After the EEG recording sessions, the EEG signals
have been band pass filtered in the band [0.5, 30] Hz, before further analysis.
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2.2 Methods

The template is generated by considering the signals acquired by a properly
chosen set of electrodes. We have tested different acquisition configurations.
Specifically, sets of three and five electrodes have been employed in our tests
to understand, at a first stage, the proper number of electrodes to employ, lim-
iting it, and at a later stage, the proper electrodes positioning to use in order
to capture repeatable and stable features, if present. The signals so acquired
are preprocessed as described in Sect. 2.2 in order to perform denoising and to
select the proper subbands. Then, the EEG signals in the selected subbands
are AR modeled as described in Sect. 2.2. The template is obtained by concate-
nating the reflection coefficients vectors related to the different channels in the
sets under analysis. Specific brain rhythms are mainly predominant in certain
scalp regions during different mental states. Therefore, we expected a certain
variability of recognition performance spanning the entire scalp through specific
configurations of electrodes, and considering the closed or open eyes condition,
being different the capability to catch distinctive features.

Preprocessing. Before performing feature extraction, each acquired raw EEG
signal has been processed as described in the following. Neural activity reflected
in resting state EEG signals shows to contain frequency elements mainly below
30 Hz. Hence, a decimation factor has been applied to the collected raw signals,
after filtering them through an anti-aliasing FIR filter. A sampling rate of Sr =
60 Hz was selected to retain spectral information present in the four major EEG
subbands referring to the resting state (δ [0.5, 4] Hz, θ [4, 8] Hz, α [8, 13] Hz and
β [13, 30] Hz). The γ subband [30, 40] Hz is not considered, given that it is known
not to be relevant in a resting condition. A further stage of zero-phase frequency
filtering was applied to discriminate the different EEG rhythms. The single δ, θ, α
and β subbands and their combinations (frequency components from 0.5 Hz up to
30 Hz, and from 0.5 Hz up to 14 Hz) have been considered in our experiments.

A spatial filter has been then applied to the acquired signals. When suffi-
ciently large numbers of electrodes are employed, potential at each location may
be measured with respect to the average of all potentials, approximating an inac-
tive reference. Specifically, a common average referencing (CAR) filter has been
employed in the herein proposed analysis by subtracting the mean of the entire
CT = 54 electrodes montage (i.e. the common average) from the channel c of
interest, with c = 1, 2, · · · , CT , at any one instant, according to the formula:

CARV c
u [n] = V c

u [n] − 1
CT

CT∑

j=1

V j
u [n], (1)

where V j
u [n] is the potential between the j-th electrode and the reference elec-

trode, for the user u, with u = 1, 2, · · · , U . CAR filtering has been employed to
reduce artifacts related to inappropriate reference choices in monopolar record-
ings [19] or not expected reference variations, as well as to provide measures as
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Fig. 2. Classification results in % obtained for the best performing set of three (P7-
Pz-P8) and five channels (Cz-CP5-CPz-CP6-Pz), considering AR order Q = 10 and
different values of frame length (Tf ).

independent as possible from the recording session. This results in an increased
signal-to-noise ratio, since artifacts related to a single reference electrode are bet-
ter controlled, as showed in [20], where authors compared spatial filter methods
with a conventional ear reference in an EEG-based system.

A set of instances to be used for the training and the testing stages has
been obtained from the signal segmentation. A range from 1 up to 3 seconds of
EEG frame length has been spanned stepwise, in order to best characterize each
user brain signal for the identification purpose. The one second frame length has
been experimentally selected as it has shown to best catch distinctive features of
users’ EEG segments for the recognition purpose. This can be observed in Fig. 2,
where best performance is achieved both for sets of three and five electrodes,
considering one second EEG segments, in the band δ ∪ θ ∪ α ∪ β = [0.5, 30]Hz
shown to be the best performing. These results refer to 10 order AR modeling
and best sets of three and five channels, and show averaged performance obtained
training the classifier on each acquisition session and testing it on the other one.
Such framework has been employed to increase the number of trials used to
study the repeatability of EEG biometrics in terms of recognition performance
over the investigated period.

In this stage an overlap interval between adjacent frames was set to increase
the sample size. Overlapping percentages of 25 %, 50 % and 75 % have been
tested. Subsequently the DC component jointly to the linear trend has been
removed from each EEG segment. The so obtained data-set have been fur-
ther processed to extract the distinctive features from each user brain signal,
as described below.

Modeling and Feature Extraction. After the preprocessing stage, detailed
in Sect. 2.2, each acquired signal is modeled as a realization of an AR stochastic
process. A realization x[n] of an AR process, of order Q, can be expressed as:
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x[n] = −
Q∑

q=1

aQ,q · x[n − q] + w[n] (2)

where w[n] is a realization of a white noise process of variance σ2
Q, and aQ,q

are the autoregressive coefficients. The well known Yule-Walker equations [21],
which allow calculating the Q coefficients, can be solved recursively, employing
the Levinson algorithm and introducing the concept of reflection coefficients.
Specifically:

{
aQ,q = aQ−1,q + KQ · aQ−1,Q−q, q = 1, · · · , Q − 1
σ2

Q = σ2
Q−1

(
1 − K2

Q

)
,

(3)

where the factor KQ is the so-called reflection coefficient of order Q which is
calculated as follows [21]:

KQ = −
(

Rx[Q] +
Q−1∑

q=1

Rx[q] · aQ−1,Q−q

)
/σ2

Q−1 (4)

where the generic Rx[m] is the signal autocorrelation function, defined as
Rx[m] = E {x[n]x[n − m]}, for all m ≥ 0.

Among the possible estimation approaches, the Burg method [21] estimates
the reflection coefficients Kq, for q = 1, . . . , Q, operating directly on the observed
data x[n] rather than estimating the autocorrelation samples Rx[m]. Therefore,
the Burg’s reflection coefficients, which have been shown in [5] to achieve bet-
ter performance than the most commonly employed AR coefficients, are here
employed.

Given the generic user u, and the generic channel c, let us indicate with ζ(u,c)

the vector, of length Q, composed by the AR model reflection coefficients Kq,
for q = 1, . . . , Q, using the Burg method:

ζ(u,c) = [K(u,c)
1 ,K

(u,c)
2 , · · · ,K

(u,c)
Q ]T . (5)

The model order Q has been selected according to the Akaike Information Crite-
rion (AIC) to minimize the information loss in fitting the data. It can be observed
in Fig. 3(a), that the AIC(Q) function, averaged among subjects and channels,
reaches minimum plateau zone for values of Q from 6 to 12. The feature vector
x for the user u is obtained by concatenating the AR coefficients vectors related
to the signals obtained from the channels in the set under analysis. The 10 AR
order has been experimentally selected since it has shown to best fit the EEG
data for the recognition purpose, as it can be observed in Fig. 3(b), where correct
classification percentage is reported considering one second EEG segmentation.
Averaged results are shown, obtained training on each session and testing on
the remaining one, and considering the best performing sets of three and five
channels.
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Fig. 3. (a) AIC function, averaged on all subjects and channels, for the frequency
band [0.5, 30] Hz. (b) Classification results in % obtained for the best performing set of
three (P7-Pz-P8) and five channels (Cz-CP5-CPz-CP6-Pz), considering Tf = 1s and
different AR orders Q.

3 Classification

The classifier we propose estimates the class (user identity) to which the observed
feature vector x belongs to by means of a linear transformation ŷT(G) = xTG,
where the transformation matrix G is obtained by minimizing the mean square
error (MMSE) thus obtaining:

G = arg min
Γ

N∑

i=1

Pi · Ex|Hi

{
[yi−ŷ(Γ )]T[yi−ŷ(Γ )]

}
(6)

where Hi indicates the hypothesis x belongs to the i-th class, with i = 1, 2, · · · , N .
Here, assuming the hypothesis Hi holds, the vector yi = [0, . . . , 0, 1, 0, . . . , 0] with
the unique one in the i-th position, indicates the class i x belongs to, while ŷT(G)
represents its estimation. Pi denotes the prior probability that x belongs to the
i-th class. It can be easily shown that the employed optimization criterion given
in (6) brings to the normal equations:

Rx · G = Rxy (7)

where Rx = E {xxT} is the auto-correlation matrix for the elements of the
feature vector x, while Rxy=

∑N
i=1 Pi · Ex|Hi

{x} · yT
i turns out to be the matrix

whose columns are the probabilistically averaged conditional mean values of the
observations x.

Dataset. As pointed out in Sect. 2.2, different sets of Nc = 3, 5 channels, to
acquire the signals from which the feature vectors x is extracted, have been
considered for both the employed protocols. Given a chosen set of channels,
each of the signals so acquired has been pre-processed, as described in Sect. 2.2,
segmented into Nf frames, and modeled by resorting to the reflection coefficients
of an AR model of order Q. Therefore, considering, for each user, EEG signals of
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duration of 60 s, segmented into frames of 1, 2 and 3 s, with an overlap factor of
75 %, a number of Nf = 237, 117 and 77 frames has been obtained respectively,
each of which is represented by the feature vector x of Q × Nc elements.

Such a set of feature vectors has been collected for each of the two tempo-
rally separated recording sessions, 1-3 weeks distant from each other, and each
protocol, i.e. closed and open eyes resting conditions. It is worth pointing out
that the vectors used in the training stage and in the recognition stage have been
obtained from the two different acquisition sessions in order to infer about the
repeatability over the considered interval of the EEG features for the acquired
dataset and the employed acquisition protocols. Hence, we applied the classifi-
cation algorithm selecting the train and the test datasets without shuffling the
EEG frames belonging to different sessions, as performed in other works with
user recognition aims. In order to achieve our goal, each one of the two sessions
has been sequentially considered for the training dataset while the remaining
session has been used to obtain the test dataset, thus obtaining two couples
of temporally separated datasets, (training set, recognition set) to train and
test the classifier. This kind of validation framework has been provided just to
encrease the statistical significance of the results. They show that we can’t assess
a perfect symmetry of changes over time, but that the features keep stable over
the considered interval (1-3 weeks). Some of the results of each test are shown
in subsequent columns of Table 2 where each set has been acquired at a different
time.

3.1 Training

The training stage consists in the estimation of the matrix G in (7) computed
as G = R̂−1

x · R̂xy, where the matrices Rx and Rxy are estimated through
MonteCarlo runs, considering equal prior probabilities Pi for all the classes (users
identities) to distinguish between. The estimation was obtained performing the
following two sample averages:

R̂x =
1

NM

N∑

i=1

M∑

m=1

xm,ixT
m,i

R̂xy =
1

NM

N∑

i=1

M∑

m=1

xm,iyT
i ,

(8)

where xm,i is the m-th observed feature vector belonging to the i-th class, with M
being the number of instances of x for each class, and yi = [0, . . . , 0, 1, 0, . . . , 0]T ,
with the unique 1 in the i-th position. The considered matrices can be simply
upgraded in case of enrollment of N ′ new users, summing the related matrices
xm,ixT

m,i to Rx, and adding new columns i to Rxy given by N
M(N+N ′)

∑M
m=1 xm,i,

where i = N + 1, . . . , N + N ′. To avoid failures and to control accuracy in the
estimation of R−1

x , the singular value decomposition based pseudoinversion has
been used for the matrix inversion.
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Table 2. Classification results in % for CE protocol, obtained using the acquisition
session t for training and the acquisition session r for recognition, with t, r = S1, S2

and t �= r, for the subband δ ∪ θ ∪ α ∪ β = [0.5, 30] Hz, for sets of three electrodes. For
each test t → r 2 results are provided, considering 75 % of the training dataset while
25 % (first column) and 75 % (second column) of the test dataset.

Closed eyes

Spatial filtering (CAR) No spatial filtering

Electrodes S1 → S2 S2 → S1 S1 → S2 S2 → S1

Fp1 Fpz Fp2 51.66 57.57 65.03 69.43 59.87 70.18 65.31 73.42

AF3 AFz AF4 63.43 65.40 66.15 70.79 76.89 91.00 79.23 87.15

F7 Fz F8 50.54 57.76 73.89 82.09 70.32 71.26 78.86 88.65

F3 Fz F4 53.26 59.54 66.34 67.84 59.45 65.54 66.71 69.39

F1 Fz F2 60.81 66.43 74.03 82.56 73.14 85.98 72.95 76.14

FC3 FCz FC4 73.61 81.15 80.45 91.09 77.12 91.14 84.29 94.05

T7 Cz T8 68.26 74.59 70.56 77.12 65.64 59.77 63.90 69.29

C3 Cz C4 78.15 82.51 74.82 85.56 78.57 93.48 84.29 87.39

C1 Cz C2 78.43 88.98 81.81 94.19 80.78 87.01 92.50 99.91

TP7 CPz TP8 65.78 75.34 62.82 57.01 75.06 79.75 80.97 85.61

CP3 CPz CP4 63.62 66.85 59.12 72.95 69.25 71.26 80.03 87.25

P7 Pz P8 93.44 100 94.56 99.62 95.50 100 97.47 100

P5 Pz P6 89.69 99.62 93.25 99.06 80.54 87.01 92.31 100

P3 Pz P4 79.00 79.89 86.08 89.22 67.84 67.93 70.84 78.48

P1 Pz P2 65.07 70.60 62.82 70.79 63.90 63.85 63.06 69.48

PO3 POz PO4 70.98 69.06 77.64 80.87 68.07 81.20 74.07 85.51

O1 POz O2 69.57 74.82 70.70 67.79 69.67 78.43 66.24 70.75

3.2 Recognition

In the recognition stage, a linear transformation is applied to each of the M ×
N observations from the test dataset. For the i-th user a score vector ŷi was
obtained for each instance of xi in the dataset applying the discrimination matrix
G to xm,i:

ŷm,i = G · xm,i (9)

with m = 1, . . . , M . Subsequently, the M score vectors related to each tested
user were summed together to reduce the misclassification error, obtaining

ŷi =
M∑

m=1

ŷm,i. (10)

Finally the estimation of the index representing the user identity is obtained
locating the maximum of the score vector ŷi = [ŷi(1), . . . , ŷi(N)]T according to
the criterion

î = argl max yi(l). (11)
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As previously pointed out, to solve the classification problem we separately con-
sidered different symmetrical sets of sensors and different brain rhythms for the
template extraction. In order to improve accuracy, an information fusion inte-
grating multiple sensors distributions and brain rhythms was then performed at
the match score level, which is the most common approach in multibiometric
systems [22]. The aim was to determine the best sets of channels configura-
tions and frequency bands that could optimally combine the decisions rendered
individually by each of them. The basic hypothesis was that different represen-
tations of brain rhythms show different distinctive traits, which may increase
variability between-subjects if efficiently combined together. In this regard the
proper level for information fusion in the multibiometric approach is an impor-
tant issue to dramatically improve the classification performance. We observed
that different subjects showed advantagious scores for different sets of channels
and different rhythms, that is each of them presented particular spactral distrib-
ution and topography of distinctive traits (Table 4). Hence, for each tested user
the proposed score fusion was obtained through the sum

1
NBNCh

B∑

b

S∑

Ch

b
Chŷi (12)

of scores vectors ŷi related to specific NB bands b ∈ B and NS selected sets
Ch ∈ S composed of three electrodes. All tests performed and obtained results
are reported in the next Section.

4 Experimental Results

The results of the performed analysis are reported for all the experiments carried
out. The aim of the study was to test the repeatability of the considered EEG
features, needed to recognize users previously enrolled in a biometric system.
Repeatability and stability represent properties of paramount importance for
the use of EEG biometrics in real life systems. For this purpose we have selected
two simple tasks to be performed by a set of users, and a classification problem
has been set up, where the training set and the one to be used in the recognition
stage have been chosen belonging to temporally separated sessions 1-3 weeks
distant from each other.

More in detail, given the “resting state” acquisition protocols here consid-
ered and the 54 employed channels shown in Fig. 1, we have selected different
subsets of them in order to find the best performing spatial arrangements of the
electrodes while minimizing their number. Although the considered acquisition
technique doesn’t result user convenient, not being this the focus of the paper, in
a preliminary study, as this is, it allows to detect on the scalp the brain rhythms
which provide the best distinctive features, according to the employed protocol.
In order to achieve this goal we have considered sets of three and five electrodes,
the former listed in Table 2. An information fusion approach combining match
scores obtained for the selected distributions of sensors and the selected brain
rhythms is also proposed to improve performance.
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Table 3. Classification results in % for OE protocol. See caption of Table 2 for descrip-
tion.

Open eyes

Spatial filtering (CAR) No spatial filtering

Electrodes S1 → S2 S2 → S1 S1 → S2 S2 → S1

Fp1 Fpz Fp2 57.48 68.03 67.65 64.65 43.46 49.79 55.41 56.59

AF3 AFz AF4 56.12 56.96 47.12 56.17 53.87 59.21 69.39 73.98

F7 Fz F8 63.57 63.48 67.28 70.18 62.17 67.14 69.67 74.54

F3 Fz F4 66.10 68.17 72.25 70.28 65.78 73.00 60.76 69.01

F1 Fz F2 66.01 66.67 67.23 70.98 54.62 58.37 67.28 69.10

FC3 FCz FC4 83.97 87.15 78.57 87.11 66.99 68.45 67.56 65.96

T7 Cz T8 87.06 83.68 84.11 89.59 76.79 77.03 75.25 80.97

C3 Cz C4 80.08 90.53 78.20 80.87 76.84 81.58 69.48 77.92

C1 Cz C2 72.39 73.65 73.65 82.37 65.45 65.17 69.85 81.20

TP7 CPz TP8 53.26 53.91 58.74 66.29 52.23 55.09 58.09 62.59

CP3 CPz CP4 63.24 72.53 62.96 65.17 75.43 82.00 60.29 63.90

P7 Pz P8 55.32 56.54 59.82 64.70 59.17 60.85 51.24 47.30

P5 Pz P6 53.21 54.99 62.59 64.32 65.07 66.67 53.59 54.71

P3 Pz P4 53.73 57.99 68.59 76.32 79.93 85.33 67.74 76.65

P1 Pz P2 55.79 51.34 59.45 66.76 68.40 74.87 56.82 60.29

PO3 POz PO4 51.76 49.41 55.37 52.23 56.02 63.01 56.26 60.76

O1 POz O2 52.13 48.76 54.85 54.15 54.81 56.02 56.49 61.46

Template extraction has been performed as described in Sect. 2.2, by first
preprocessing the EEG signals, which includes decimation with sampling rates
Sr = 60 Hz, CAR spatial filtering, segmentation into frames of Tf s with an
overlapping factor Of between consecutive frames, and eventually band pass
filtering in order to analyze the subbands δ, θ, α and β, which are the ones
interested by the “resting state” protocols, and some of their combinations. A
value of Of = 75% has been here employed since we have experimentally proven
it is able to guarantee good performance as it provides an adequate sample size
to assort the training and recognition datasets. Then the so obtained frames are
modeled using an AR model, whose tested orders Q = {6, 8, 10, 12} have been
estimated by means of the AIC function (see Fig. 3(a)). Value of Tf = 1 s and
Q = 10 have been selected as they showed to best characterize the users’ EEG
for the recognition task (see Fig. 2).

The template is then obtained by concatenating the reflection coefficients of
the signals acquired by means of the electrode set under analysis, thus gener-
ating feature vectors of length 3Q, 5Q for the sets of three, and five electrodes
respectively.
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Table 4. Classification results in % of correct identification reported for each subject
Ii in the cross validation framework (averages over 237 runs). Results refer to CE
condition, when training on session S1 (75 % of frames) and performing identification
tests on S2 (25 % of frames).

Subjects

Electrodes I1 I2 I3 I4 I5 I6 I7 I8 I9

Fp1 Fpz Fp2 78.06 75.53 27.00 85.23 100 91.56 33.76 47.68 0

AF3 AFz AF4 100 70.46 48.95 84.39 86.50 69.62 76.37 55.70 100

F7 Fz F8 100 9.70 13.50 80.17 34.60 100 100 94.94 100

F3 Fz F4 100 3.38 0 74.26 20.25 100 79.32 57.81 100

F1 Fz F2 73.84 72.57 0 79.75 100 100 74.26 58.65 99.16

FC3 FCz FC4 98.31 48.52 32.07 60.76 100 100 75.53 79.75 99.16

T7 Cz T8 7.59 100 100 100 0.00 100 34.60 96.62 51.90

C3 Cz C4 48.10 40.08 100 94.94 90.72 100 58.65 80.59 94.09

C1 Cz C2 37.97 81.43 94.94 100 100 100 27.00 85.65 100

TP7 CPz TP8 26.58 74.26 100 91.56 83.12 100 100 100 0

CP3 CPz CP4 23.63 36.29 100 100 49.37 100 35.86 87.34 90.72

P7 Pz P8 100 100 97.47 100 100 100 100 100 62.03

P5 Pz P6 100 48.95 100 97.47 100 100 37.13 100 41.35

P3 Pz P4 35.44 37.13 100 100 98.31 100 38.82 68.35 32.49

P1 Pz P2 42.19 0 100 100 64.56 100 62.45 85.65 20.25

PO3 POz PO4 100 39.66 65.40 85.65 82.28 100 4.22 64.98 70.46

O1 POz O2 100 12.66 64.56 78.06 100 100 37.97 81.86 51.90

In Tables 2 and 3 the results obtained for sets of three electrodes when using
the MMSE classifier, described in Sect. 3, are given for both employed protocols
CE and OE. It is worth pointing out that the signals employed to obtain the
templates to be used in both the training and the recognition stage are disjoint
in time. Therefore two different combinations of training (t) and recognition (r)
sessions, (t, r) with t, r ∈ {S1, S2} and t �= r, have been tested. Such kind of tests
varying the sequence of sessions in the recognition framework are provided to
validate the results about repeatability of the considered EEG features over the
interval under analysis, for a real usability of an EEG-based biometric system.
The results for the different tests performed are reported separately, not expect-
ing to make assumptions on symmetry of changes over time. Moreover, from the
analysis of different spatial configurations of electrodes we could observe that
triplets of channels allow achieving about same performance then configurations
employing sets of five channels. This is due to a good spatial localization achieved
by configurations of only three sensors, which allow to well capture the underly-
ing phenomena, reducing the problem dimensionality. Moreover, in Tables 2 and
3 results are shown considering the band F = δ ∪θ∪α∪β = [0.5, 30] Hz which is
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Fig. 4. Improvement of the correct recognition rate obtained performing subsequent
score fusions (see Sect. 4), within the CE condition. Curves refer to the combination of
different electrodes sets (x-axis). Labels in the x-axes refer to the score added at each
subsequent step. Results refer to the training on S1 and test on S2.

Table 5. Classification results in % for both CE and OE protocols, obtained using
the same acquisition session S for training and for recognition, with S = S1, S2, for
the subband δ ∪ θ ∪ α ∪ β = [0.5, 30] Hz, for the best performing sets of three and five
electrodes. Results are provided considering 75 % of the dataset for training while 25 %
of the dataset for recognition.

Closed eyes Open eyes

Spatial filt. (CAR) No spatial filt. Spatial filt. (CAR) No spatial filt.

Electrodes S1 → S1 S2 → S2 S1 → S1 S2 → S2 S1 → S1 S2 → S2 S1 → S1 S2 → S2

P7 Pz P8 96.81 100 98.03 100 95.22 96.11 94.56 93.25

Cz CP5 CPz 98.87 100 100 100 100 100 97.00 91.80

CP6 Pz

the one that allows obtaining the best results, and considering a preprocessing
including CAR filtering or not.

Provided performance refers to a cross-validation framework, obtained select-
ing for each user 75% of feature vectors x related to cyclically subsequent frames
from the training dataset, while 25% and 75% from the test dataset, as reported
in subsequent columns of Tables 2 and 3. Numerical results are obtained averag-
ing over 237 independent cross-validation runs to improve the statistical analy-
sis. As previously pointed out, recognition tests have been carried out keeping
independency between the training and the test datasets, acquired in different
sessions, for the classification purpose. This aspect is highlighted in Tables 2 and
3 denoting with Si → Sj the result achieved training on Si and testing on Sj .
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It should be noticed that applying the CAR filter in the preprocessing stage
doesn’t yield a general improvement in the performance for all employed sets of
channels and protocols, while it appears to provide best results for some selected
channels (FC3-FCz-FC4, C3-Cz-C4, T7-Cz-T8) for sets of 3 channels in the OE
protocol. This is likely to be due to artifacts which more affected the open-eyes
condition, removed by the spatial filtering. As regards differences between the
two employed protocols it is evident, by observing the reported results, that
in this experiment the CE protocol provides best performance considering the
adopted EEG feature extraction for the recognition task. In fact, within the
CE condition 100% of correct classification is achieved for instance employing
channels P7-Pz-P8 and 75% of the test feature vectors for each user in the
cross-validation framework. This has been observed to be due both to being the
open-eyes signal more affected by the eyes movement artifacts, and to distinctive
traits contained in the α rhythm which is mainly detected on the posterior head
when resting with eyes closed. In this regard is was noticed that the combination
of channels affected in a different way the recognition results for CE and OE
protocols. In fact, referring to sets of three channels the parietal region has
proven to best perform in CE condition, while the central region achieved best
results in OE condition. Moreover it has been observed, individually analyzing
the extracted brain rhythms, that in CE the α band most contributed to the
best performance obtained combining all bands ([0.5, 30]Hz). The results just
pointed out are in agreement with the fact that in resting state with eyes closed
the dominant brain rhythm α can be detected mainly in the posterior area of
the scalp, while it is attenuated when opening eyes.

Repeatability over the considered interval of the analyzed EEG features can
be inferred by observing that users enrolled in a session have been recognized
in a different one, disjoint in time from 1 to 3 weeks. Besides, it is also evident
that by swapping the training and recognition roles of the session datasets, that
is by considering (t, r) or (r, t), quite coherent performance are obtained.

Table 5 shows results obtained training and testing the classifier on the same
session. It should be noticed that very high correct recognition rate is achieved
considering just 25% of the test dataset (100% for CE and S2), while a greater
number of feature vectors for each user are needed in the inter-sessions frame-
work. This evidence proves the importance of speculating about the stability and
repeatability over time of EEG features for biometric systems. The performance
significantly decreases for the case of disjoint training and test datasets when
considering just few frames for the identification test (25% of the test dataset).
On the other hand, the match score fusion obtained as discussed in Sect. 3.2
has led to a dramatic increase of the recognition accuracy, especially for the
otherwise poorly performing case just mentioned, as observed in Fig. 4 where
the CE condition is analyzed. Same improvements are observed within the OE
condition, not reported in here due to space limitations, still remaining the CE
condition the best performant one. For the selection of the electrodes configura-
tions to combine, the best combination of rhythms was considered, and subse-
quent score fusions were performed. To this aim the electrode sets were sorted in
descending order of performance achieved individually (see Table 2), and sequen-
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tially combined within a forward-backward stepwise approach, retaining in the
information fusion only those sets which improved the correct classification.
Results reported in Fig. 4 showed that a significant improvement was obtained
combining rhythms and sets of channels. Within the multi-session framework a
perfect recognition percentage of 100% could be achieved when the sets of three
inter-hemispheric channels P7 − Pz − P8, C1 − Cz − C2, C3 − Cz − C4, FC3 −
FCz−FC4, AF3−AFz−AF4, and the rhythms [0.5, 30], δ, θ, α containing most
information, were combined into the match score fusion. It should be noticed
that the selected channels result located all over the head, showing that antero-
posterior differences could be distinctive as well as iter-hemispheric asymmetry.
Figure 4 reports the improvements obtained across the subsequent steps of the
information fusion, when considering 75% of training frames from S1 and just
25% of test frames from S2, for the CE condition. Accordingly, this approach
allows to obtain high accuracy while significantly reducing the recording time
needed for the recognition tests.

5 Conclusions

In this paper the problem of repeatability over time of EEG biometrics, for the
same user, within the framework of EEG based recognition, has been addressed.
Simple “resting state” protocols have been employed to acquire a database of
nine people in two different sessions separated in time from 1 to 3 weeks, depend-
ing on the user. Although the dimension of the database employed is contained,
we would like to stress out that this contribution represents the first systematic
analysis on the repeatability issue in EEG biometrics. As such, this contribution
paves the road to more refined analysis which would include more sessions sep-
arated in time as well as different acquisition protocols. Extensive simulations
have been performed by considering different sets of electrodes both with respect
to their positioning and number. A combination of match scores obtained from
different analysis have shown to significantly reduce the frames needed for test,
still maintaining high recognition accuracy. In summary in our analysis a very
high degree of repeatability over the considered interval has been achieved with
a proper number of electrodes, their adequate positioning and by considering
appropriate subband related to the employed acquisition protocol.
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