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Abstract. We have recently proposed a statistical AV node model
defined by a set of parameters characterizing the arrival rate of atrial
impulses, the probability of an impulse passing through the fast or the
slow pathway, the refractory periods of the pathways, and the prolon-
gation of refractory periods. All parameters are estimated from the RR
interval series using maximum likelihood (ML) estimation, except for
the mean arrival rate of atrial impulses which is estimated by the AF
frequency derived from the f-waves. In this chapter, we compare four
different methods, based either on the Poincaré plot or ML estimation,
for determining the refractory period of the slow pathway. Simulation
results show better performance of the ML estimator, especially in the
presence of artifacts due to premature ventricular beats or misdetected
beats. The performance was also evaluated on ECG data acquired from
26 AF patients during rest and head-up tilt test. During tilt, the AF
frequency increased (6.08 ± 1.03 Hz vs. 6.20 ± 0.99 Hz, p < 0.05, rest vs.
tilt) and the refractory periods of both pathways decreased (slow path-
way: 0.43 ± 0.12 s vs. 0.38 ± 0.12 s, p = 0.001, rest vs. tilt; fast pathway:
0.55 ± 0.14 s vs. 0.47 ± 0.11 s, p < 0.05, rest vs. tilt). These results show
that AV node characteristics can be assessed non-invasively to quantify
changes induced by autonomic stimulation.

Keywords: Atrial fibrillation · Atrioventricular node · Statistical mod-
eling · Maximum likelihood estimation

1 Introduction

During atrial fibrillation (AF), atrial impulses cause summation and/or cancel-
lation of wavefronts in the AV node, which in turn causes disorganization of the
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penetrating impulses so that the ventricular rhythm is more irregular than dur-
ing sinus rhythm. Although AV nodal properties such as refractoriness and con-
cealed conduction determine the characteristics of the ventricular response [1],
no evaluation is performed on a routine basis in clinical practice due to the lack
of suitable noninvasive methodology.

Various nonparametric approaches to the analysis of AV coupling during AF
have recently been proposed, e.g., [2–4]. The Poincaré surface profile is a histo-
graphic variant of the well-known Poincaré plot introduced to filter part of the
AV node memory effects, with the overall aim to detect preferential AV nodal
conductions [2]. The AV synchrogram was introduced for beat-to-beat assess-
ment of AV coupling during AF, as well as for other atrial tachyarrhythmias.
This technique involves a stroboscopic observation of the ventricular phase at
times triggered by atrial activations [4]. The synchrogram was found useful for
tracking the time course of AV coupling and for partially reconstructing the
dynamics of AV response during AF.

A number of AV node models have been proposed during the last decade
where it is assumed that the atrial electrogram is available, e.g., recorded during
electrophysiological studies [5,6]. Thus, these models are less suitable for use
in clinical routine where it is preferable to estimate all model parameters from
the surface ECG. Simulation models represent another type of model which
are useful for investigating certain AV nodal characteristics [7] or the effect
of pacing [8,9]. These models offer detailed characterization of the underlying
electrophysiological dynamics, but do not lend themselves to analysis of real
data since the number of parameters is much too large to produce estimates
with sufficient accuracy.

In a recent paper [10], we have shown that statistical model-based analysis,
relying entirely on information derived from the surface ECG, can be employed
for evaluating essential AV nodal characteristics during AF. The model is defined
by a parsimonious set of parameters which characterizes the arrival rate of atrial
impulses, the probability of an impulse passing through the fast or the slow path-
way, the refractory periods of the pathways, and the prolongation of refractory
periods. Maximum likelihood (ML) estimation was considered for estimating the
parameters from the observed RR interval series, except for the shorter refrac-
tory period, estimated from the Poincaré plot of successive RR intervals, and
the mean arrival rate of atrial impulses, estimated by the AF frequency derived
from the f-waves of the ECG [11]. The results, determined from a total of 2004
30-min ECG segments, selected from 36 AF patients, showed that 88 % of the
segments could be accurately modeled when the estimated probability density
function (PDF) and an empirical PDF were at least 80 % in agreement. The
study suggested that atrial activity is an important determinant of ventricular
rhythm during AF.

In a subsequent paper, we have improved the AV node model to offer a more
detailed characterization of the dual pathways [12]. The estimation procedure
was also improved to become more robust with respect to artifacts in the RR
interval series. The results for the improved model showed a significantly better
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fit between the estimated and the empirical PDF than previously reported for
the original model in [10].

The goal of the present study is to compare different techniques for estimat-
ing the refractory period of the slow pathway. In particular, we compare three
methods based on the Poincaré plot and one where the refractory period is esti-
mated jointly with the ML estimation. The best-performing method (according
to simulation results) is then studied on an ECG dataset recorded during rest
and tilt testing.

2 Methods

2.1 AV Node Model

The AV node is treated as a lumped structure which accounts for concealed con-
duction, relative refractoriness, and dual AV nodal pathways [12]. Atrial impulses
are assumed to arrive to the AV node according to a Poisson process with mean
arrival rate λ. We assume that each arriving impulse is suprathreshold, i.e., the
impulse results in ventricular activation unless blocked by a refractory AV node.
The probability of an atrial impulse passing through the AV node depends on
the time elapsed since the previous ventricular activation. The length of the
refractory period is defined by a deterministic part τ and a stochastic part τp.
The latter part models prolongation due to concealed conduction and/or rela-
tive refractoriness, and is assumed to be uniformly distributed in the interval
[0, τp]. Hence, all atrial impulses arriving to the AV node before the end of the
refractory period τ are blocked. Then follows an interval [τ, τ + τp] with linearly
increasing likelihood of penetration into the AV node. Finally, no impulses can
be blocked if they arrive after the end of the maximally prolonged refractory
period τ + τp. The mathematical characterization of refractoriness of the i:th
pathway (i = 1, 2) is thus defined by the positive-valued function βi(t),

βi(t) =

⎧
⎪⎨

⎪⎩

0, 0 < t < τi
t − τi
τp,i

, τi ≤ t < τi + τp,i

1, t ≥ τi + τp,i,

(1)

where t denotes the time elapsed since the preceding ventricular activation.
The probability of an atrial impulse to pass through the pathway with the

shorter refractory period τ1 is equal to α, and accordingly the other pathway
is taken with probability (1 − α). For this model, the time intervals xi between
consecutive ventricular activations, i.e., corresponding to the RR intervals, are
independent. It can be shown that the joint PDF is given by [10]

px(x1, x2, . . . , xM ) =
M∏

m=1

(αpx,1(xm) + (1 − α)px,2(xm)), (2)
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where M is the total number of intervals, and px,i(xm), i = 1, 2, is given by

px,i(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < τi

λyi

τp,i
exp

{−λy2
i

2τp,i

}
, τi ≤ x < τi + τp,i

λ exp
{−λτp,i

2 − λ(yi − τp,i)
}

, x ≥ τi + τp,i.

(3)

where yi = x − τi.

2.2 Model Parameter Estimation

Interdependence of Consecutive RR Intervals. Since the property of sta-
tistical independence is not fully valid for RR intervals, a simple functional
dependence of the refractory periods related to the previous RR interval is
explored. The interdependence of consecutive RR intervals can be reduced by
preprocessing the original RR interval series, denoted x′

m, with the linear trans-
formation,

xm = x′
m − ŝτx′

m−1, (4)

where ŝτ is determined from the line that defines the lower envelope of the
Poincaré plot.

Alternatively, the autocorrelation function of the RR intervals can be used for
determining ŝτ [13]. During AF, the first lag of the autocorrelation is significant,
whereas it is negligible for larger lags. Hence, decorrelation of the RR interval
series is accomplished by (4), where ŝτ is taken as the smallest value in the
interval [0, 0.5] that makes the first lag negative.

Estimation of λ. The atrial impulses were assumed to arrive to the AV node
according to a Poisson process at a rate λ. An estimate of λ is obtained by

λ =
λAF

1 − δλAF
, (5)

where λAF is the dominant AF frequency estimated from the ECG (indepen-
dently of the AV node parameters), and δ is minimum time interval between
successive impulses arriving to the AV node. Equation (5) derives from the
assumption that atrial impulses do not arrive to the AV node closer to each
other than at a minimum interval δ.

Estimation of Dual Pathway Parameters. The model parameters related
to the dual AV nodal pathways and the refractory period prolongation, except
τmin
1 , are estimated by maximizing the log-likelihood function Λ(θ) with respect

to the vector θ that contains the unknown parameters [12],

θ̂ = arg max
θ

Λ(θ), (6)
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where
θ =

[
α τmin

2 τp,1 τp,2

]T
. (7)

The parameter(s) defining both a single pathway model, i.e., θ = τp,1, and a dual
pathway model, i.e., the vector θ in (7), are estimated. The Bayes information
criterion is used to determine which of these two models is the most appropriate
one.

Since no closed-form solution can be found for the ML estimator, combined
with the fact that the gradient is discontinuous, multi-swarm particle swarm
optimization (MPSO) is employed for the maximization in (6). Briefly, a multi-
initialization with N concurrent swarms is employed in MPSO [14,15]. Each
swarm is moved within a search area to find the optimal solution. After a certain
number of optimization epochs, particles are exchanged between swarms to avoid
local maxima.

Estimation of τmin
1 . Four techniques for estimating the refractory period τmin

1

of the slow AV pathway are compared, of which the first three methods explore
the Poincaré plot in which each RR interval is plotted versus the preceding
interval [16]. The resulting pattern may be used to distinguish AF from other
supraventricular tachycardias such as atrial flutter with its much more regular
ventricular response [17]. During AF, the irregularity of RR intervals results in a
widely scattered distribution which is representative of disorganized atrial activ-
ity combined with atrioventricular conduction properties. The four techniques
are now briefly described.

Linear fitting (LF) has been explored by plotting 512 points and dividing the
horizontal axis into adjacent bins of 64 points [18]. The lower envelope results
from a linear fit to the shortest RR intervals of all bins.

Modified linear fitting extends linear fitting by shifting the intercept of the
fitted line until no points are below. This technique is motivated by the obser-
vation that the lower envelope represents the minimal refractory period.

The Hough transform is a technique for detecting straight lines in an image.
Its application to the Poincaré plot in AF analysis was first pointed out in [19],
see also [20]. Briefly, this plot is discretized (bin size of 20 ms) and edges are
extracted using the Sobel approximation of the derivative. In the Hough space,
a straight line is represented as a point, and the maximum value in this space
corresponds to the most represented line in the input image. To find the lower
envelope, the slope is constrained to 0–0.5 and the intercept to be positive.
Among the lines satisfying these criteria, the one that is closest, in the mean
square error sense, to the minimum points of the edge image is chosen.

Joint ML estimation of τmin
1 and θ was recently proposed [13]. Since the

estimate of τmin
1 is closely related to the shortest interval of the RR series, cf. the

definition of px,i(x) in (3), the handling of artifacts is important. The following
iterative procedure is adopted to reduce the influence of artifactual intervals.
Initially, 1 % of the shortest RR intervals are removed from the decorrelated RR
interval series x, after which ML estimation is performed on the truncated series,



Statistical Modeling of Atrioventricular Nodal Function 263

denoted x̃0. Since x̃0 is assumed to be free of incorrect RR intervals, the initial
estimate

θ̃0 =
[
α(0) τmin

1 (0) τmin
2 (0) τp,1(0) τp,2(0)

]T (8)

can serve as a reference. The removed RR intervals are then brought back to
the truncated series one by one in order of size so that x̃i =

[
x̃i−1 x(i)

]
, where

x(i) is the longest interval removed from x̃i−1; ML estimation is performed for
each x̃i. The estimates corresponding to the maximum value of the log-likelihood
function are chosen as the final ones.

3 Data

3.1 Simulated Data

Simulated 10-min RR interval series were generated, using the AV node model
introduced in [12], to test the different methods for estimating τmin

1 . We used 5
different parameter settings (100 runs per setting), see Table 1. To test whether
the estimation of τmin

1 is robust to the presence of artifacts, we introduced a
fixed percentage of artifacts (0, 0.3, 0.6, and 0.9 % of the RR series length).
The occurrence time was evenly distributed in the range 0.2 s–τmin

1 . The AF
frequency λ was assumed to be known.

Table 1. Simulations parameter setting.

Sim1 Sim2 Sim3 Sim4 Sim5

λ 6 Hz 6.5 Hz 5 Hz 6 Hz 8 Hz

α 0.8 0.5 0.4 0.3 0.7

τmin
1 0.28 s 0.30 s 0.28 s 0.32 s 0.34 s

τmin
2 0.35 s 0.37 s 0.40 s 0.40 s 0.43 s

τp,1 0.10 s 0.20 s 0.05 s 0.10 s 0.10 s

τp,2 0.15 s 0.10 s 0.05 s 0.15 s 0.10 s

3.2 Real Data

We analyzed 25 consecutive patients with persistent AF (67 ± 7 years, 16 females)
who underwent electrical cardioversion, according to the international guidelines,
at the Cardiology department of San Paolo Hospital, Milan, Italy. Recordings
were acquired at rest and during a passive orthostatic stimulus (75◦ tilting). One
patient was excluded from analysis due to poor ECG quality which prevented
the estimation of AF frequency. Hence, the results presented below are based on
24 patients.
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The ECG was recorded at rest for 10 min and, when applicable, followed by
tilting, using three orthogonal leads and a sampling rate of 1 kHz. All record-
ings were performed in the morning in a quiet environment following 15 min of
adaptation. The study was approved by the Ethics Committee, and all patients
gave their written informed consent to participate.

4 Results

4.1 Simulated Data

Figure 1 shows the mean and standard deviation of τ̂min
1 obtained with the four

methods. It can be noted that the larger the percentage of inserted artifacts, the
worse perform the methods based on the Poincaré plot. On the other hand, the
estimates obtained by ML estimation remain quite stable and close to the true
value.
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Fig. 1. Mean and standard deviation of τ̂1
min, computed for 100 RR series, for different

percentages of inserted artifacts; the true value is indicated by the dashed line. The
following model parameter values were used: λ = 6 Hz, τmin

1 = 0.28 s, τmin
2 = 0.35 s,

α = 0.8, τp,1 = 0.1 s, and τp,2 = 0.15 s.

Figure 2 shows the mean normalized absolute error between τ̂min
1 and the

true value τmin
1 averaged on the five simulation settings using the four analyzed

methods. When estimating τmin
1 using the ML estimation, it is observed that

the error is well below 5 % even in the presence of a high percentage of artifacts.
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Fig. 2. The mean normalized absolute error between τ̂min
1 and the true value using the

four methods.

4.2 Real Data

To assess whether the model parameters can capture changes due to increased
sympathetic tone, e.g., observed during a tilt test, the parameter estimates
obtained during rest were compared to those during tilt. Table 2 compares the
model parameter estimates obtained at rest and during tilt, with significant
changes due to sympathetic activation in both τ̂min

1 and τ̂min
2 . The AF fre-

quency was found to increase significantly during tilt. The probability of an atrial
impulse to chose either pathway is almost equal during rest and tilt (α = 0.5),
although α spans the range from 0.05 to 1 in individual patients, thus making
the involvement of the pathway with slower refractory period (α < 0.5) in about
half of all recordings. The refractory periods of both pathways are significantly
shortened during tilt, whereas their prolongation remains almost unchanged.

Both the mean and standard deviation of RR intervals are significantly short-
ened during tilt due to sympathetic activation. The mean RR interval length was
763±149 ms vs. 697±135 ms (rest vs. tilt, p < 0.0001), and the related standard
deviation was 161 ± 48 ms vs. 141 ± 32 ms (rest vs. tilt, p < 0.0001).
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Table 2. Comparison of rest and tilt parameters (*p < 0.05, **p = 0.001).

Rest Tilt

α̂ 0.53 ± 0.31 0.47 ± 0.33

τ̂min
1 (s) 0.43 ± 0.12 0.38 ± 0.12 **

τ̂min
2 (s) 0.55 ± 0.14 0.47 ± 0.11 *

τ̂p,1 (s) 0.38 ± 0.32 0.31 ± 0.25

τ̂p,2 (s) 0.22 ± 0.31 0.30 ± 0.20

λ̂ (Hz) 6.08 ± 1.03 6.20 ± 0.99 *

5 Discussion and Conclusions

In this study we have compared four different methods for estimating the refrac-
tory period of the slow pathway in the presence of artifacts. As the most problem-
atic artifacts are the ones shorter than the refractory period itself, we inserted
only this type in the simulated RR series. The results showed that the esti-
mation of refractory period of the slow pathway obtained jointly with the ML
estimation offers better accuracy than the ones obtained from the Poincaré plot,
independently of the ML estimation.

It is clearly desirable to include the AF frequency λ as well in the ML esti-
mation procedure. However, the point process model is not easily extended from
being entirely RR interval related to also account for information on f-waves
because the f-waves need to be extracted from the ECG.

We described an AV node model defined by parameters characterizing the
arrival rate of atrial impulses, the probability of an impulse choosing either one
of the dual AV nodal pathways, the refractory periods of the pathways, and the
prolongation of refractory periods. After the comparison made in this study, all
model parameters are estimated from the RR interval series using ML estimation,
except for the mean arrival rate of atrial impulses which is estimated by the AF
frequency derived from the f-waves.

Considering the physiological aspects, our results indicate that tilting is asso-
ciated with significant changes in AV conduction that are well-described by the
model and reflected by shortening of both τmin

1 and τmin
2 during adrenergic acti-

vation. Thus, the present AV node model is adequate for studying and describing
the functional characteristics of AV conduction in AF patients, e.g., to assess
drug effect.
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