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Abstract. We propose a biometric method for identifying athletes based
on information extracted from the gait style and the electrocardiographic
(ECG) waveform. The required signals are recorded within a non-clinical
acquisition setup using a wireless body sensor attached to a chest strap
with integrated textile electrodes. Our method combines both sources of
information to allow identification despite severe intra-subjects variations
in the gait patterns (walking and jogging) and motion related artefacts
in the ECG patterns. For identification we use features extracted in time
and frequency domain and a standard classifier. Within a treadmill exper-
iment with 22 subjects we obtained an accuracy of 98.1 % for velocities
from 3 to 9km/h. On a second data set consisting of 9 subjects and two
sessions of recording, our method achieved 93.8 % despite variations in
the patterns due to reapplying the body sensor and an increased velocity
(up to 11km/h).

Keywords: Human identification - Accelerometer - Electrocardiograph
(ECG) - Wireless body sensor (WBS) - Pattern recognition

1 Introduction

The identification of humans is important for various applications such as sur-
veillance systems, authorization checks at doors or electronic devices (e.g. com-
puter, smartphone). A variety of biometric characteristics have been investigated
such as information from fingerprint, iris and retina, human face, voice, gait or
electrocardiograph.

Previous work has shown that discerning, reproducible information on the
human is found in the ECG waveform, especially around the QRS complex
[7,11]. Moreover, biomechanical differences between the gait style of humans
have been investigated and used for identification within video and acceleration
sensor based applications [12,18].

We propose a biometric measure combining both sources of information:
characteristics in the electrocardiograph (ECG) waveform and the gait style.
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Fig. 1. Our self-made wireless body sensor (WBS) and its integration into a chest
strap. The WBS can measure a person’s electrocardiograph (ECG) and accelerations
of the body along three orthogonal axes.

Unlike other applications, our approach focuses on the identification of athletes
during physical exercise using a compact wireless body sensor (WBS) which
is worn around the chest (see Fig.1). The WBS is typically used to measure
the heart-rate and the body accelerations of athletes. Our identification method
additionally utilizes the sensor measurements to identify the athlete, enabling
an automatic annotation of sensor data with the subject’s identity. Our goal is
to overcome the drawbacks of a manual annotation of measurements for applica-
tions in sports medicine and athlete training research. Furthermore, recognizing
the subject allows to automatically load personal settings on the WBS or the
sport equipment for a customized training. Our identification method is in par-
ticular interesting for a WBS which is used with several athletes of a mid-sized
group.

Our identification method uses features in time and frequency domain to
extract characteristics on the subject which are used as input to a classifier for
identification. By combining information from gait and ECG we can successfully
identify subjects despite of artefacts in the ECG caused by a slipping of the
ECG electrodes and severe variations in the gait patterns between walking and
jogging.

Previous work in this field focused on the identification of humans from
either gait or ECG waveform characteristics. Mainly ECGs were used which were
recorded at rest or with a clinical acquisition setup. The gait based identification
was carried out for walking velocities.

Rong et al. proposed a method which uses measurements recorded during
walking with an accelerometer located at the subject’s waist [19]. The method
utilises a segmentation into gait cycles to extract gait patterns. Dynamic time
warping is applied to compensate natural changes in walking speed. The actual
gait segment is then compared with a reference pattern of the subject and a
1-nearest neighbour classifier is used to recognize the subject. Ailisto et al. eval-
uated an accelerometer based identification based on similarities between gait
segments to protect portable devices [2]. Mantyjarvi et al. evaluated a gait based
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Fig. 2. Vertical acceleration data of a subject walking and jogging at velocities from
3 to 9km/h. Each stride is represented by two consecutive peaks which correspond
to the heel strike (square) and the toe strike (triangle). These peaks are marked for
9km/h (red) and for 3km/h (black). Velocity can be increased with either longer strides
(increase in signal amplitude) or a higher step frequency (color figure online).

identification for different walking velocities using correlation coefficients derived
from a template comparison, frequency coefficients and a histogram based com-
parison [16]. Gafurov et al. proposed two methods based on histogram similarity
and gait cycle length to distinguish acceleration measurements recorded at the
lower leg [12].

Several methods have been proposed to identify a human based on ECG
measurements. Biel et al. used data from a standard 12-lead ECG recorded
during rest to identify subjects using multivariate analysis [4]. Furthermore,
the study showed that identification is possible with even one-lead ECGs. Shen
et al. also utilises data from one-lead ECGs to distinguish subjects using a tem-
plate matching and a decision-based neural network [21]. Chan et al. identifies
subjects based on ECGs recorded within a non-clinical acquisition setup where
the subjects were holding two electrodes on the pads of their thumbs [7]. For
classification, three qualitative measures were used: percent residual difference,
correlation coefficient, and a novel distance measure based on wavelet transform.

This paper is organized as follows: Sect.2 describes the identification of
a subject based on acceleration and ECG measurements. Information on pre-
processing, feature extraction and used classifiers is given. Section 3 explains the
conducted experiments for data collection. Section 4 presents the experimental
results of our identification method. The results are summarised and discussed
in Sect.5 and a prospect on our future work is given.

2 Identification of a Subject

This section describes the identification of a subject based on gait style and
ECG waveform characteristics. We describe the preprocessing of the signals, the
feature extraction and the classifiers used for identification.
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Fig. 3. Alignment of 100 consecutive strides of four subjects jogging at 9km/h. The
vertical acceleration signals were automatically segmented into strides and cross-
correlation was used to align the strides. The peaks related to the heel strikes (square)
and toe strikes (triangle) significantly differ in shape between the subjects.

2.1 Gait Analysis for Identification

Previous work has shown that gait differs between humans and that the gait style
is fairly stable for a subject [3,18]. Bianchi et al. stated that the variability across
humans depends on different kinematic strategies rather than on biomechanical
characteristics [3]. Their study showed that subjects are different in the ability of
minimising energy oscillations of their body segments for transferring mechanical
energy.

In order to measure these inter-subject differences, severe intra-subject
variations in the gait patterns between walking and jogging have to be taken into
account. The intra-subject variations are a result of an adaptation of the gait
to achieve different velocities. The velocity of a person is described by stride
length and stride frequency. According to Weyand et al., longer strides are
achieved by applying greater support forces to the ground which significantly
increases the amplitude of the vertical acceleration signal, whereas the step fre-
quency changes frequency components of the signal [24].

Samples of vertical acceleration data of one subject walking and jogging at
different velocities on a treadmill are shown in Fig. 2. Strides are presented by two
consecutive peaks corresponding to the heel and toe strikes. Significant changes
in amplitude and an almost doubling of the step frequency can be observed
between walking at 3km/h and jogging at 9 km/h.
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Fig. 4. Comparison of heartbeat segments of six subjects (different colours). The DC-
offset was removed and the heartbeat segments were aligned using cross-correlation.
We use inter-subject variations in the ECG waveform to identify subjects (color figure
online).

Despite this intra-subject variability in the gait patterns, we observed inter-
subject variations in acceleration signals recorded during walking and jogging [10].
In particular, heel and toe strikes differ in the vertical acceleration signal’s shape
between subjects (see Fig.3). The peak acceleration of the heel strikes varies
between the four subjects about 2 m/s?.

2.2 ECG Analysis for Identification

Inter-subject variability is also found in the ECG’s waveform. The variations
depend on position, size and anatomy of the heart, age, sex, relative body
weight, chest configuration and various other factors [13,22]. Figure4 shows
sample heartbeat segments from six subjects recorded with our WBS. The ECG
reflects the electrical activity of the heart and consists of the P wave followed by
the QRS complex and the T wave [11, chap.2]. Discerning information on the
subjects is found in the QRS complex, the P and the T wave.

Chan et al. observed a high degree of reproducibility of information extracted
from the QRS complex of a person through several sessions of recording [7].
Furthermore, a higher identification accuracy was determined for the P wave
than the T wave.

During physical exercise these characteristics can be superposed by motion
related artefacts. These artefacts are caused by a slipping of the ECG electrodes
and variations in the contact resistance during body movements [9]. Figure7
shows disturbances in the ECGs of two subjects recorded during jogging on a
treadmill.

2.3 Preprocessing of Acceleration and ECG Signals

ECGs recorded with our WBSs showed hardware-related differences in the DC-
offset making an ECG associable to a WBS. Furthermore, using textile ECG
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Fig. 5. The 12 bit analog-to-digital converter (ADC) output and the preprocessed ECG
in comparison. An offset of 300 between the ADC output of the two different subjects
was removed by the preprocessing. In Fig. 5¢ the offset due to the static acceleration
of gravity and a sensor-related zero-g-level offset are reduced after preprocessing.

electrodes, the skin contact resistance decreases over time because of an increased
transpiration which results in changes in the DC-offset. In order to avoid classifi-
cation errors, we removed the DC-offset using a 4th-order high-pass butterworth
filter with a cutoff frequency of f. = 0.67 Hz. Additionally, we applied a low-pass
filter with a cutoff frequency of f. = 40 Hz to remove noise in the ECG signal.

With a decrease in skin contact resistance after a few minutes of exercise,
we observed an increase in the ECG signal’s amplitude which improved the
signal-to-noise ratio. We normalised the signal’s amplitude to assure that ECG
segments are comparable. The results of the ECG preprocessing are shown in
Figs. ba and b.

For the frequency analysis of the acceleration measurements, we approxi-
mated the dynamic accelerations by applying a 4th-order butterworth high-pass
filter with a cutoff frequency of f. = 0.1 Hz to the magnitude of the accelera-
tion vector a = (aAp7 ayr, aV); aap denotes anteroposterior accelerations, aasr,
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Fig. 6. Visualisation of time domain features extracted from mediolateral accelerations
anr of ten subjects at 9km/h. Clusters are observable for the different subjects. In
our feature selection we obtained a good identification performance based on the mean,
the variance, the amplitude and the root-mean-square (RMS) features (see Table 3).

mediolateral accelerations and ay vertical (up-down) accelerations. The high-
pass filter reduced the impact of the static acceleration due to gravity and a
sensor-related offset (zero-g level offset). The results of this preprocessing step
are shown in Fig. 5c.

2.4 Feature Extraction for Identification

In order to access characteristics of a subject in the acceleration and ECG mea-
surements, we extracted features in the time and the frequency domain.

The features were calculated within a sliding window with no overlap and
length N. Each window at time ¢ consists of N measurements z(t:t+N—1) =
z(t),x(t+1),...,2(t+N—1). We empirically determined an appropriate window
length of two seconds (N = 300).

2.5 Time Domain Features

In the time-domain we calculated the variance, amplitude, mean and root mean
square (RMS) along the three orthogonal axes ap, apsr, and ay of the windowed
acceleration signals. The variance, mean and amplitude of a,;;, are visualised in
Fig. 6. Discriminative clusters can be observed for the different subjects.

From the ECG signal we calculated a feature measuring the closeness of an
unknown heartbeat segment to five reference patterns stored for each subject.
This step requires a segmentation of the ECG signal into heartbeats. We used
a QRS detection based on the algorithm of [1] in its implementation of Schloegl
in the BioSig toolbox [23]. The five reference heartbeat segments were chosen
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Fig. 7. Alignment of 20 heartbeat segments of four subjects recorded during jogging
on a treadmill. A correct placement of the chest strap is important for an identification
based on a similarity measure between heartbeat segments. Motion related artefacts
and poor skin contact can disturb the ECG-signal (see subjects 5 and 13).

randomly from the ECG data of each subject. However, we assured that only
heartbeat segments without severe disturbances were chosen. For identification,
an unknown segment x was aligned to each reference segment y using cross-

correlation:
N—m-—1

Ryy(m) = N Z y(i+m)z(j) (1)

where N is the length of a segment and m the offset with m =0,1,....,2N — 1.
We calculated the Pearson’s correlation coefficient as a measure of similarity
between the two segments. The Pearson’s correlation coefficient is defined as the
covariance (cov) of the two segments divided by the product of their standard

deviation o:
cov(z,y)

riry) = (2)
Figure 7 shows the alignment of 20 heartbeat segments of four subjects. The
QRS-detection and the alignment are sensitive to motion-related artefacts (see
subjects 5 and 13).

For heartbeat segments without major disturbances the alignment centred
the segments around the QRS complex. The discerning information in this region
of the ECG is fairly stable in relation to morphology changes in the ECG wave-
form during effort.
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Fig. 8. The FFT amplitude spectra of the ECG signals of three subjects during walk-
ing (3km/h) and jogging (9km/h). The amplitude spectra show differences between
the subjects but also vary with the velocity.

2.6 Frequency Domain Features

In the frequency domain we use the discrete Fourier transform (DFT) to extract
frequency components of each window. The DFT is defined as:

t+K—1 _
X(k)y= Y a(j)e ™%, k=0,.,K-1 (3)
j=t

where K is the number of outputs X (k). We used a 512-point fast Fourier trans-
form (FFT) algorithm to compute the DFT efficiently for our windows of the
length N = 300. Therefore, each window x(¢:t+/N—1) was padded with trailing
zeros to the length of K = 512. Before calculating the FFT, a Hamming window

function was applied to each window to reduce the spectral leakage.

Figure 8 shows the FFT amplitude spectra of ECGs of three subjects recorded
during walking (3km/h) and jogging (9km/h). Despite velocity related varia-
tions in the amplitude spectra, differences can be observed between the three
subjects.

We calculated additional frequency domain features from the amplitude spec-
trum (FFT features): the variance, the mean, the Fourier coefficient with the
highest amplitude and the Shannon entropy SE:

Z | X (F)[log, (|X (K)]) (4)

where X (k) is the output of the DFT of length K.
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2.7 Methods for Classification

We used a standard classifier to identify the subject based on the extracted fea-
tures. The identification performance was determined by evaluating three differ-
ent classifiers: artificial neural network (ANN), support vector machine (SVM),
and random forest (RF).

2.8 Artificial Neural Network (ANN)

We used a feed-forward ANN with 25 neurons with tangent sigmoid activa-
tion functions in one hidden layer to associate the extracted features with the
subjects’ identities. The ANN was trained using back-propagation which is a
supervised learning method [14]. During training the prediction of the network
is compared to the known target value (subject’s identity) and the weights are
modified to minimize the mean square error. These errors propagate backwards
from the output layer to the hidden layer [14]. The network was trained using
the scaled conjugate gradient algorithm described in [17]. The weights and bias
values of the neurons were updated using a gradient descent with momentum.

2.9 Support Vector Machine (SVM)

We used a v-SVM [20] with a sigmoid kernel in its implementation in the LIB-
SVM! [8]. SVMs are fundamentally a two-class classifier. Various methods have
been proposed how to use SVMs for multi-class problems [5, chap. 7]. We used
a one-against-one method which constructs n(n — 1)/2 classifiers where n is the
number of classes to distinguish. Each classifier is trained on tuples from two
classes. A voting strategy is then applied to determine the winning class [15].

2.10 Random Forest (RF)

A random forest is a classifier consisting of a combination of tree predictors. The
growth of each tree is governed by independently and identically distributed
random vectors [6]. Each tree votes for one class and the class which occurs
most frequently is the output of the classifier. RF classifiers are fast in the
training phase and the training time is linear to the number of trees used. The
testing of an unknown tuple is performed on each tree independently and is
therefore parallelisable. We used a RF consisting of 100 trees, with each tree
being constructed of ten randomly chosen features.

3 Subjects and Data Collection

For the evaluation of our identification method, we recorded data within two
experiments of subjects who volunteered to participate in the study. The subjects

1 LIBSVM: library for support vector machines.
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Table 1. Characteristics of the subjects who participated in the two experiments.

(a) First experiment with 22 subjects (b) Second experiment with 9 male
(15 men, 7 women). subjects.
Characteristic Mean = SD Range Characteristic Mean == SD Range
Age (yr) 26.6 £4.0 18-33 Age (yr) 27.0£3.7 21-33
Height (cm) 179.8 4+ 9.6 160-198 Height (cm) 180.2 4 9.6 160-198
Weight (kg) 76.7 & 11.1 58-108 Weight (kg) 77.3 + 10.8 65-108

were informed verbally and in writing in advance and signed an informed consent
document.

In the first experiment 22 healthy subjects participated (see Table 1(a)). The
data was collected using the treadmills in the gymnasium of our university. Veloc-
ities between 3 to 9km/h were chosen to cover slow, normal, and fast walking as
well as jogging. The treadmill was set to no incline and the velocity was manu-
ally increased by 2km/h every two minutes. This procedure was repeated twice
for each subject (total: 16 min per subject).

In order to estimate the impact of variations in the gait and ECG patterns
resulting from reapplying the body sensor (electrode placement and conductance,
acceleration sensor orientation), we repeated the experiment with a smaller group
of nine male subjects from which data was collected within two independent
sessions of recording (see Table 1(b)). Both sessions, which were one week apart,
covered data at velocities from 3 to 11km/h (total: 20 min per subject).

The accelerations of the upper body and the ECG were recorded with a
self-made WBS (see Fig. 1). The WBS measures accelerations within a range of
+6m/s? along three orthogonally oriented axes using a commercial off-the-shelf
accelerometer (ST LIS3LV02DL). The ECG is digitized using the analog-to-
digital converter of a TT MSP430 microcontroller. Body accelerations and ECG
were measured with a 150 Hz sampling rate and a 12 bit resolution (range 0 to
4095). The measurements were sent wirelessly to a nearby receiver for recording.

The subjects were given an explanation on how to place the chest strap with
the WBS tightly around the chest. However, we didn’t verify the correct place-
ment of the WBS to assure real world conditions. Furthermore, no instructions
were given on how to perform the exercise.

4 Results

This section describes the evaluation of the athlete identification on the data
collected during walking and jogging on the treadmills.

4.1 Evaluation Methods

All features were calculated on windows of acceleration and ECG measurements
of two seconds. No overlap of the windows was chosen to ensure fully discrim-
inative training and testing data. We concatenated features of two consecutive
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Table 2. Accuracy (ACC) and overall specificity (S) of the identification of the 22
subjects. The results were determined with three different classifiers on a feature space
combining acceleration and ECG features (combination C8, see Table 3).

Classifier | ACC | S

ANN 94.2% | 99.8 %
SVM 90.4 % | 99.5 %
RF 98.1%{99.9 %

windows to have samples of four seconds of data to identify the subject. For the
data of the first experiment with 22 subjects, we determined the identification
performance using a ten-fold cross-validation. The two sessions of recording from
the second experiment with 9 subjects were used for training the classifier (first
session) and for evaluation of the resulting model (second session).

For the evaluation, we used three statistical measures: sensitivity, specificity
and accuracy. In order to calculate the statistics we obtained the number of true
positive samples TP;, true negative samples TN;, false positive samples FP;,
and false negative samples FN; from the classifier’s output. For a class i the
sensitivity R; is defined as:

TP,
R, = WlFNz * 100 (5)
The sensitivity (also referred to as recall) measures the percentage of correctly
classified positive samples in relation to all positive samples. For negative samples
the specificity S; is defined as:

TN;

P L N |
Si= 35, 35, 10 (6)

We calculated the overall sensitivity R and the overall specificity S as a class-
based weighted average. For our multi-class problem we refer to the overall sen-
sitivity as the accuracy of the classifier:

i=1
where n denotes the number of classes and p; the probability of the occurrence of
the class in the test data. In our data from the two experiments the samples are
equally distributed for the n = 22 and n = 9 subjects (p; = 1/n,Vi). The overall

specificity S is calculated accordingly. The optimum of the statistical measures
is 100 %.

4.2 Results of the Athlete Identification

The following results were obtained for the data from the first experiment with
the 22 subjects. We determined the identification performance for three standard
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Fig. 9. Class-specific sensitivity (stars) and specificity (squares) results of the identifi-
cation of the 22 subjects (RF classifier, feature combination C8). The sensitivity varied
between 94.6 to 99.5 %. The specificity was over 99.7 % for all subjects.

classifiers: ANN, SVM and RF. The classifiers and their parametrization are
described in Sect.2.7. We achieved up to 98.1% accuracy (see Table2) with
the RF classifier using a feature space combining acceleration and ECG based
features. The lowest accuracy of 90.4 % was obtained with the SVM. For all three
classifiers, we obtained an overall specificity S of more than 99 %.

The class-specific sensitivity (see Eq.5) of the identification varied between
94.6 to 99.5 % for the different subjects (RF classifier, see Fig.9). We observed
only low deviations in the identification’s specificity between the 22 subjects.
A class-specific specificity (see Eq.6) of more than 99.7% was achieved for all
subjects.

We performed a feature selection using the ANN classifier to determine the
impact of the different features and to identify combinations C' with a high classi-
fication performance (see Table 3). We obtained a similar identification accuracy
based on acceleration (86.6 %, C6) and ECG (84.8 %, C4) features. In combina-
tion, the accuracy improved to 94.2 % (C8).

The ECG contained more information on the subject in the frequency domain
than the acceleration measurements (12.3% higher accuracy). Frequencies of
up to 10Hz contained the most discriminant information of the acceleration
measurements. A reduction of the frequency band from 40 to 10 Hz reduced the
identification accuracy by only 3.8 %. For the ECG measurements, a reduction
from 40 Hz to 15 Hz resulted in a 8.8 % lower accuracy. Overall, we obtained an
accuracy of 72.4% (C1) for features extracted from the ECG in the frequency
domain.

We found that correlation coefficients describing the similarity between heart-
beat segments provide useful insights to identify subjects (80.3 % accuracy, C2).
To reduce the dimensionality of the feature space, we averaged the correlation
coefficients corresponding to the five reference segments per subject. This aver-
aging resulted in a 7.7 % lower accuracy. However, in combination with other
features this difference was negligible (0.4 % for C8).
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Table 3. Identification accuracy for the 22 subjects using different feature combi-
nations C'. We obtained a similar accuracy with acceleration and ECG based fea-
tures (see C4, C'6). Combining both improved the accuracy (see C8). The feature
selection was performed using the ANN classifier. * denotes the use of the average over
the five correlation coefficients per subject.

C | Acceleration feat. | ECG feat. ACC
Time FFT FFT |FFT FFT Corr.
dom. coef. feat. | coef. feat. coef.
c1]- - - X X - 72.4%
C2 | - - - - - X 80.3 %
C3|x - - - - - 83.3%
Cc4 |- - - X x x 84.8%
C5|x - - - x - 86.5 %
C6 | x X X - - - 86.6 %
C7lx - - - - X 93.6 %
C8 | x x x X X x* 94.2%

The time domain features calculated from the acceleration signals showed a
good accuracy (83.3 %, C3). Additional information on the gait in the frequency
domain improved the identification accuracy to 86.6 % (C6).

By combining the time domain features of the acceleration data with the
correlation coefficients derived from the ECG, we achieved a high accuracy
of 93.6 % (C'7), which is only 0.6 % less than using the full feature set (C8).

For the time domain features extracted from the acceleration signals, we
analysed the impact of the different acceleration axes on the subject’s identi-
fication accuracy. The highest accuracy was obtained for the anteroposterior
accelerations (a4p). The mediolateral accelerations (apsr) showed a 4.4% and
the vertical accelerations (ay) a 16.2 % lower accuracy.

We additionally evaluated our approach using a hold-out validation for which
the data set was split into 66 % training data and 34 % testing data. A hold-
out validation avoids temporal proximity between training and testing data and
allows therefore a more accurate estimation of the generalization performance.
We noted only a slight decrease in accuracy by 0.9 % for the RF classifier.

To estimate the impact of the number of subjects in the data set on the
identification performance, we randomly selected eleven out of the twenty-two
subjects and repeated the evaluation. With the smaller group of athletes to
distinguish, the overall accuracy improved by 1.2% (RF classifier).

The above results were obtained for the data from the first experiment with
one session of recording per subject. However, reapplying the body sensor can
change the waveform of the signals due to a different position of the ECG elec-
trodes in relation to the heart, differences in the conductance of the electrodes
or alternations in the acceleration sensor’s orientation. In order to estimate the
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Table 4. Equal error ratio (ERR) and accuracy (ACC) of other gait and ECG based
identification methods. For comparison, our results on the data sets from the first and
second experiment are listed below. N denotes the number of subjects who participated
in the experiments.

Type Velocities N |ERR | ACC
Méntyjarvi et al. Gait slow, normal and fast walking | 36 | 7.0% | -
(2005)
Ailisto et al. (2005) | Gait normal walking 366.4% |-
Gafurov et al. Gait normal walking 21 5.0% |-
(2006)
Rong et al. (2007) | Gait normal walking 21 5.6% |-
Chan et al. (2008) |ECG - 50 | - 89.0%
First experiment Gait & ECG |3, 5, 7 and 9km/h 221 1.1%|98.1%
(1 session)
Second experiment | Gait & ECG |3, 5, 7,9 and 11km/h 912.5%93.8%
(2 sessions)

impact of this variability in the gait and ECG patterns, we evaluated the iden-
tification method on the two independent sessions of recording from the second
experiment. The first session was used to train the RF classifier and the sec-
ond session functioned as an independent test set. We obtained an accuracy of
93.8% with a class-specific sensitivity between 83.6 to 89.7 % for three subjects
and above 94.5 % for the other six subjects; the highest sensitivity was 99.4 %.
The overall specificity was 99.2% showing only minor variations between the
nine subjects (range: 97.4 to 99.9 %). In comparison to the results from the first
experiment, the overall accuracy decreased by 4.3% (22 subjects) and 5.5%
(reduced subset of 11 subjects) mainly because of the outlying results of the
three subjects. However, the results showed that identification is possible with a
good accuracy despite reapplying the body sensors and an increased velocity of
up to 11 km/h. Furthermore, the second evaluation points out that the identifi-
cation method is stable for short-term physiological variations in the ECG and
alternations in the gait patterns.

In order to compare our results with existing work, we additionally calculated
the equal error rate (ERR) of the RF classifier on feature combination C8.
The ERR is the rate at which both accept and reject errors are equal.
For our data set from the first experiment (22 subjects), we obtained an ERR
of 1.1 % and for the evaluation on the data from the second session of the second
experiment (9 subjects) the ERR was 2.5 %. Compared to other approaches, which
are based on only gait characteristics, our achieved ERR is lower (see Table 4). For
a comparison of our approach with an ECG based identification we have
chosen the method of Chan et al. because the results are also based on data from
non-clinical ECGs [7]. With 98.1% our accuracy is higher than Chan et al.
results (89 %). However, with an identification on ECG characteristics only,
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we obtained a lower accuracy (84.8 %, C'4). Overall, our high performance is achi-
eved by combining ECG and gait characteristics. We believe that motion related
artefacts in the ECG, and a high variability in the gait patterns between changing
from slow walking to jogging, reduce the identification performance when we use
only one source of information.

5 Discussion and Conclusions

This paper is concerned with the identification of humans during walking and
jogging using a single wireless body sensor module attached to a chest strap.
Our approach focuses on recognising a human using a biometric measure based
on the characteristics in the gait style and the ECG of the human and is hence
independent of the used hardware. Thus, our system overcomes the drawbacks of
an identification based on the WBS’s serial number or an radio-frequency based
identification (RFID) which recognises the hardware but not the subject itself.

We have collected data from 22 subjects on a treadmill at velocities from 3 to
9km/h using a WBS attached to a chest strap. To assure real world conditions,
no advice was given on how to perform the exercise and the correct placement of
the chest strap was not verified. Despite severe variations in the gait patterns and
motion-related artefacts in the ECG, which occur due to real world conditions
and physical exercise, our method achieves up to 98 % accuracy.

In order to estimate the impact of variations in the ECG and gait patterns
resulting from reapplying the body sensor and short-term physiological alter-
nations, we repeated the experiment with nine subjects with two sessions of
recoding per subject which were one week apart. The first session was used for
training the classifier and the second session served as test data. With 93.8 % the
accuracy of the identification is still high considering also the extended range of
velocity classes (3 to 11km/h).

Our feature selection showed a good identification accuracy for time domain
features extracted from the acceleration signals. By using simple and low-
dimensional features on the acceleration signal our method can potentially be
implemented on computationally constrained platforms, such as a microcon-
troller on a WBS.

Our identification method can presumably not be extended to an unlimited
number of subjects. The individual characteristics in the subject’s ECG and gait
patterns are extremely difficult to capture and may change over time because
of an adaptation to physical exercise. However, we believe our method is well
suited to provide an automatic annotation of sensor measurements from several
WBSs with the subject’s identity for use in sports medicine and athletic training
research. Moreover, our method helps to customize a training session by loading
personal settings of the recognized athlete on the WBS or other sport equipment.

Our future work includes the evaluation of the identification method within
team sports. In particular, we want to recognize handball players in order to
support a real-time vision-based tracking of these players.
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