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Abstract. The prediction of unknown protein functions is one of the
main concerns at field of computational biology. This fact is reflected
specifically in the prediction of molecular functions such as catalytic and
binding activities. This, along with the massive amount of information
has made that tools based on machine learning techniques have increase
their popularity in the last years. However, these tools are confronted to
several problems associated to the treated data, one of them is the learn-
ing with large imbalance between their categories. There exist several
techniques to overcomes the class imbalance, but most of them present
many weakness that difficult the obtaining of reliable results. Moreover,
models based on cost sensitive learning seems to be a good choice to
deal with imbalance data, yet, the obtaining of a optimal cost matrix
still remains an open issue. In this paper, a methodology to calculate a
optimal cost matrix for models based on cost sensitive learning is pro-
posed. The results show the superiority of this approach compared with
several techniques in the state of the art regarding to class imbalance.
Tests were applied to prediction of molecular functions in Embryophyta
plants.
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1 Introduction

Nowadays, modern biology has seen an increasing use of computational tech-
niques for large scale and complex biological data analysis. Several computa-
tional machine learning techniques are applied [16]. For example, to classify
different types of samples in gene expression of microarrays data [2] or mass
spectrometry based proteomics data [1]. In this context, there is a vast number
of problems associated with nature of data. In particular, given that same pro-
tein can be associated to several functional classes, classification problem with
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multiple labels arises. A straightforward way to cope with this issue is the “one-
against-all” strategy, by which a binary classifier is trained per class to take
independent decisions about protein membership. Yet, this approach leads to a
high imbalance between sample number per each class, magnifying an already
present disparity of their sizes, and thereby producing a large bias towards cat-
egory having more information [21].

There are several ways to address class imbalance problems, being the most
representative sampling, boosting, and cost sensitive strategies. Sampling tech-
niques can be divided into oversampling and subsampling. Former techniques
reproduces samples of minority class until they reach the same size as the
majority class, but it induces two major problems: (i) over-training and (%)
noise addition in training set, affecting reliability of protein localization [12].
Although, subsampling eliminates samples of majority class until reaching the
same size of category having fewer samples (i.e., minority class), this technique
may eliminate useful information if sample selection criteria are not properly
selected [12]. Boosting strategies, in turn, are designed to train a set of indi-
vidually trained classifiers in an iterative way, such that every new classifier
emphasizes on incorrectly learned instances by previous trained classifier [7].
Boosting methods, however, are prone to fail if there is not enough data [20] or
if training data holds too much noise [6]. Finally, models based on cost sensitive
learning assume different costs (or penalties) whenever examples are misclassi-
fied. This process is modelled by a cost matrix that is a numerical representation
of penalty of misclassifying examples from one category to another. Convention-
ally, such models assume that costs are fixed; but since this condition is far for
being matched in real-world applications it posses as an open problem [18].

In this paper, an efficient methodology of obtaining the optimal cost matrix
for a cost sensitive learning model is proposed. This methodology is applied to the
prediction of molecular functions in Embryophyta plants and is compared with
a broad spectrum of class-balance strategies to obtain a comprehensive analysis
of the problem. Results show that cost sensitive models are highly reliable and
can outperform many commonly used balance strategies in the prediction of
molecular functions.

2 Class-Balance Strategies

Generally, class-balance strategies are divided into following explained below
strategies: sampling, boosting, and cost sensitive.

2.1 Sampling Strategies

Synthetic Minority Oversampling Technique (SMOTE). In this case, new
synthetic samples are generated that are addressed to minority class [5]. Further,
these samples are computed by interpolation among several closely spaced real
samples. In this way, the decision boundary of the minority class becomes more
general [11]. Synthetic samples are generated as follows: for each real sample
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under consideration, represented as a feature vector, distance between it and
its nearest neighbors is taken. The result is multiplied by a random number
ranging within interval (0, 1) with uniform probability, and this output is added
to original feature vector. This procedure causes selection of a random point
along the line segment between two neighboring samples.

Subsampling Based on Particle Swarm Optimization (PS0). This tech-
nique is based on search of an optimal sample subset from a given majority class
that maximizes generalization capability of classifier. To this end, Metaheuristic
optimization strategy is used. PSO algorithm creates several subsets of majority
class and evaluates its classification performance. When completion criterion is
accomplished, samples are ranked by their frequency selection. After the fre-
quency listing of selected samples is obtained, a balanced dataset is constructed
by combination of samples, which belong to majority class with major frequency
indexes, and minority class [24], as summarized in Fig. 1.
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Fig. 1. Schematic representation of PSO subsampling based on algorithm [24].

2.2 Boosting Strategies

Boosting Algorithm (AdaBoost). Boosting algorithms place iteratively dif-
ferent weights on training data at each iteration, in such a way that boost-
ing increases those weights associated to incorrectly classified examples, but
decreases weights related to correctly classified examples. Thus, training system
is forced to focus on rare items. AdaBoost is the most representative boost-
ing technique, which generates a set of classifiers to be further combined using
the weighted majority voting [19]. Basically, a weak classifier is trained using
instances drawn from an iteratively updated distribution of training data. Intro-
duced distribution update ensures that instances misclassified by previous clas-
sifier are more likely to be included in training data of the next classifier. To
make final decision, each classifier has a different power of decision depending
on its performance during training procedure.
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2.3 Cost Sensitive Strategies

Cost Sensitive Learning. This strategy attempts to minimize costs associated
to their decisions rather than simply reaching high precision. Given a cost speci-
fication for either correct or incorrect predictions, sample can be assigned to that
class that leads to lower expected cost, where the expected value is computed
using conditional probability of each class for a given sample. So, assuming c;;
as inputs associated to a cost matrix C holding cost to predict a class ¢ when
the true class is j. If i = j, prediction is assumed as correct, whereas if i # j,
prediction is incorrect. Given a sample «, optimal prediction for each i is a class

that minimizes:
L(z,i) = Zj P(jlx)ci; (1)

where L(x,i) is the sum over alternative possibilities for true class of sample
x. In this framework, the goal of algorithm is to produce a classifier estimating
probability P(j|x). So, for a given x, prediction can be carried out as if ¢ were
the true class. As quoted in [9], the main idea behind decision-making based on
cost sensitivity learning is that it may be optimal to act as if one class were true
even when other class looks like more probable. In the biclass case, the optimal
prediction is the class 1, if and only if, expected cost of prediction is less than
or equal to the one predicting class 0, i.e.:

P(j =0Jx)ci0 + P(j = 1|x)c11 < P(j =0|x)coo + P(§ = 1|x)cor (2a)
(1 —p)eio + peir < (1 — p)eoo + peor s (2b)

where p = P(j = 1|z). Therefore, threshold for optimal decision making is as

follows:
" €10 — €00 3)

€10 — Coo + Co1 — C11

MetaCost. This technique assumes an unaltered classifier, but adjusts learning
according to a given cost matrix. Initially, training set is taken to constitute
multiple subsets via bootstrap, where each obtained subset is used to build an
classifier ensemble making the final decision [8]. Classifiers are combined through
a majority vote rule to determine the probability of each data object « belonging
to each class label. Next, each data object of training data is relabeled based on
evaluation provided for an introduced conditional risk function, as follows:

Riile) = Y P(jle)e (4)

Lastly, the classification algorithm makes the decision over relabeled training
data.

3 Proposed Optimal Cost Matrix Based on CuckooCost
Search

The Cuckoo Search is based on parasitic behavior exposed by some species of
Cuckoo birds that has as natural strategy to leave eggs in host nest created by
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Table 1. Scaled cost matrix.

Actual negative | Actual positive

Predicted negative | coo = 0 cor =kt/k™

Predicted positive | cio =1 c11=0

other birds. This eggs presents the particularity to have a big similitude with
host eggs, so, the more similar they are, the greater your chance of survival.
Based on this statement, Cuckoo Search uses three hypothesized rules:

— Each cuckoo lays one egg at a time, but dumps it in a randomly chosen nest.

— The best nests with high quality of eggs (solutions) should carry over to the
next generations.

— The number of available host nests is fixed, and a host can discover an alien
egg with a probability p, € [0,1]. In this case, the host bird can either throw
the egg away or abandon the nest so as to build a completely new nest in a
new location.

For simplicity, the last assumption can be approximated by a fraction p, of
the n nests being replaced by new nests (with new random solutions at new
locations). For a maximization problem, the quality or fitness of a solution can
simply be proportional to the objective function. Given a solution at timet, noted
as x!, thus, generation of new solutions along the time ¢ is defined as:

wl(.tﬂ) =zl +a @ Lévy()) (5)

where « is a scale parameter while X\ is the step size of the Cuckoo Search
optimization. Notation & stands for a direct summation operator.

In bi-class problems, the minority class (i.e., the category with less samples)
is assumed to have higher misclassification cost k™ (usually, this samples relate
to category of interest). Due to big amount of data, likewise, category with
more samples must have lower misclassification cost £~. From the above, if a
cost matrix is given, the optimal decisions remain unchanged if their cost (in
this case the inputs of the cost matrix) are multiplied by a scaling factor [17].
This normalization allows to change the baseline in which costs are measured.
Therefore, if each element of the cost matrix that is multiplied by 1/k~, can be
expressed as shown in Table 1.

Since costs are normalized to the unchanged optimal decision, value £~ can
always be set to 1. Therefore k™ /k~ must be bigger than 1 [9]. This relationship
is termed cost-sensitive rescale ratio or cost ratio [17]. In order to deal with class-
imbalance using rescaling, different costs are to be incurred for different classes.
So, the optimal rescale ratio (imbalance rescale ratio) of positive class to negative
class, r, is defined as r; = n~ /n*. Therefore, to handle unequal misclassification
and class-imbalance at the same time, both the cost-sensitive rescale ratio r¢ and
the imbalance rescale ratio r; should be taken under consideration [17]. Merging
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both scale factors, cost ratio of the cost matrix can obtained as ¢ = rory, where
@p=>rr.

Suggested cost using Cuckoo Search, termed CuckooCost, accomplishes opti-
mal parameter values to achieve the best possible classification performance.
Each nest represents a solution set in the searching space, i.e., each egg on the
nest represents a parameter to be used in the model optimization. In this case,
the cost ratio and classifier parameters are handled to improve the performance
of cost sensitive learning.

It is worth noting that in Cuckoo Search, both parameters p, and « are to
explore efficiently over searching space and allow to find together globally and
locally improved solutions. Additionally, these parameters directly influence the
convergence rate of used optimization algorithm. For instance, if value p, tends
to be small and « value is large, the algorithm tends to increment the iteration
number to converge to an optimal value. On the other hand, if p, is large but «
is small, the algorithm convergence speed tends to be very high but it is more
likely to converge to a local optimum. In this work, an improvement to Cuckoo
Search proposed in [23] is used that consists in restraining range of p, and «;
within this values search may change dynamically during each iteration, through
the following equations:

1 min
c= N In <Zmax> , lae € [amin, Qmax) (6a)
N,
Pa = Pmax — FI(pmax - pmin)v Pa € [pminapmax] (6b)
T
O = Qmax exp(c Ny) (6¢)

where N7 is the total number of iterations present in the optimization, Ny is
the current iteration in the algorithm,

The best nest is the one holding the optimal parameters to induce a depend-
able cost sensitive model.

4 Experimental Setup

4.1 Database

Used database that is a subset of the one constructed in [15] holds 1098 pro-
teins belonging to Embryophyta taxonomy of the Uniprot [14], with at least one
annotation in the molecular function ontology of the Gene Ontology Annota-
tion project [3]. Sequences predicted by computational tools and with no real
experimental evidence are discarded. Proteins are associated to one or more
of the seven categories that are shown in Table 2. The dataset does not contain
protein sequences with a sequence identity superior to 40 % in order to avoid nei-
ther bias nor overtraining in the training dataset. All the proteins are mapped
into feature vectors enclosing several statistical and physical-chemical attributes
(see Table 3).
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Table 2. Dataset description.

Class Biological name Samples | Imbalance ratio
GO 0003677 | DNA binding 143 1:7.68

GO 0003700 | Sequence-specific DNA binding 102 1:10.76

transcription factor activity

GO 0003824 | Catalytic activity 401 1:2.74

GO 0005215 | Transporter activity 133 1:8.26

GO 0016787 | Hydrolase activity 237 1:4.63

GO 0030234 | Enzyme regulator activity 46 1:23.87

GO 0030528 | Transcription regulator activity 152 1:7.22

Table 3. Description of the feature space (taken from [15]).

Feature Description Number
Chemical-physical | Length of the sequences 1
Molecular weight 1
Percentage of positively charged residues (%) |1
Percentage of negatively charged residues (%) | 1
Isoelectric point 1
GRAVY - hydropathic index 1
Primary structure | Frequency of each aminoacids 20
Frequency of each dimers 400
Secundary structure | Frequency of structures 3
Frequency of dimers in structures 9
TOTAL 438

4.2 Fitness Function Approach

Performance of CuckooCost depends largely on a function that can properly
guide searching process of the optimal hyperparameters. For this purpose, we
propose the following fitness function that combines two variables that directly
influence the classification process: area under ROC curve, U, and the total cost,
g, as follows:

O(0,¢) = A0) + (1 = A)(s) (7)

The aim of proposed fitness function is to maximize the overall classification
performance as well as to minimize the cost associated with the wrong classified
samples. Optimal value of free parameter of the fitness function is searched
within a range interval [0, 1.] Heuristically, the best value is fixed at A = [0.1].
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4.3 Class Imbalance and Classification Schemes

To mitigate the effect generated by multi-label samples in the dataset, as well
as to reduce classification complexity and to obtain a better interpretation
of results, against-vs-all learning strategy is used. Nevertheless, the usage of
this strategy leads to additional problems such as highly class imbalance on
data space. To overcomes this issue, the following class balance strategies are
considered: AdaBoost (Ada), SMOTE, Subsampling based on particle swarm
optimization (SPSO), and cost sensitive learning (CS). Also, the proposed Meta-
Cost (MC) is considered in two versions: (i) without matrix cost optimization
via CuckooCost (MC), (i7) Cost sensitive learning and MetaCost within Cuck-
00Cost (MCCu). During classification testing, support vector machines (SVM)
with Gaussian Kernel is used, except the test with AdaBoost, for which Naive
Bayes is employed as weak classifier and twenty iterations for Boosting technique.
Parameter tuning needed in SVM and Gaussian Kernel (penalty constant C' and
dispersion 7) are carried out by using particle swarm optimization. However,
PSO is not accomplished in cost sensitive learning strategies (CS and Meta-
Cost), mainly, since the optimization based on Cuckoo Search turns to be more
effective that PSO. So, CuckooCost takes v and penalty constant C' as hyperpa-
rameters in the optimization problem. To evaluate the performance of molecular
function classification, cross-validation is used over ten folds. Besides, chosen a
priori search parameter ranges of CuckooCost are the following:

1<p<15R,
0.00030518 < C < 4096
0.000030518 <~ < 32

where ¢ is the cost ratio extracted from cost matrix, and Ry is the imbalance
ratio.

4.4 Evaluation Metrics

Performance measures non-susceptible to unbalance data phenomena are used
to obtain a reliably evaluation of accomplished classification. Measures such as
sensitivity, specificity, geometric mean, and ROC area (AUC) are used, which
are defined as:

Tp

Sensitivity : S, = ———— 8a
vity Tt Fu (8a)
In

Specificity :  Sp) = ———— 8b
pecificity P Tt By (8b)
Geometric mean :  pg = 1/S55 (8¢)

1+ Tp— F,
ROC area : ) ) (8d)

2
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where Tp,Tx, Fy, and Fp are the true positive, true negative, false negative
and false positive values obtained from confusion matrix, respectively; T, is the
true positive rate, FP is the false positive rate.

Additionally, a metric measuring the classification bias degree, termed rela-
tive sensitivity, is used that is defined as rg = S./S,, as given in [22].

Data Complexity Measures. Degree of data imbalance is not the only factor
leading to a biased learning. Elements associated with data complexity may
also influence learning models. Particularly, data complexity can be related to
difficulties inherent in data, shortcomings in classification algorithms, and the
low representation present in the data space [4,12]. The following measures are
used to quantify data complexity:

(i) Overlap Measures: They explore both range and distribution of values in
each category, and verify the overlap between them. The measures following
overlap measures are used:

o Volume of Overlap Region (VOR): For a given feature set, { f;}, VOR mea-
sures the amount of overlap in boundary region between two categories,
¢+ 1= (1,2), and is defined as [4,13]:

min(max(f;, ¢1), max(f;, c2)) — max(min(f;, ¢1), min(f;, c2))
VOR = H —— .

max(max(f;, ¢1), max(f;, c2)) — min(min(f;, 1), min(f;, c2))
(9)
o Fisher’s Discriminant Ratio: For a multidimensional problem, all features
not necessarily have to contribute to class discrimination. As long as there
exists one discriminating feature, the problem is suitable. Therefore, we
use the maximum f over all the feature dimensions to describe a problem
[4,13]. This measure also serves as indicator of quality in the dataset
representation, i.e., if its value tends to be low, there is little contribution
in the overall discrimination of the dataset, which may indicate a weak

representation of the data. Fisher’s discriminant ratio is defined as:

(/“Ll - M2)2 (10)

Kk = max
ol + o3

where g1 and po are the feature mean of the classes 1 and 2, while o; and
o9 are the feature variance of same classes, respectively.

e Scatter Matrix of Difference between inter/intra Classes: It mea-
sures the distance between the class distribution and indicates on improved
separability as its value is greater [10]. Being complementary to VOR and
K, this metric is described as:

Jy ztr{Sb —Sw} (11)

where, S, = Zl 1y 25 and S, = ZLC:1 % (m; —m)(m; —m) ", being 5

covariance matrix of i-th class, m; is the sample mean of i-th class and
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Fig. 2. Molecular function prediction results.

m the sample mean of the whole dataset. Notation tr stands for matrix
trace, C' is the number of classes, and n is the number of samples in whole
dataset.

(i) Measures of Geometry, Topology, and Density of Manifolds: These
metrics give indirect information about separation between categories. It is
assumed that a category is composed by a collection of one or more man-
ifolds, forming the support of the probability distribution of a given class.
The shape, position and interconnectivity of manifolds give a hint of its over-
lap [4,13]. To evaluate the complexity of manifolds, the leave-one-out error
for a one-nearest-neighbour classifier, A, is used.

5 Results and Discussion

Figure 2 summarizes obtained classification results that are displayed by bars and
lines at different color scales. Each subfigure holds information about behavior of
the geometric mean (drawn in red color), area under ROC curve (AUC) (green),
sensitivity (light blue), and specificity (light cyan). Each row depicts each one
considered class-balance strategies, which are ranked in ascending order accord-
ing to used balance strategy, that is, oversampling (SMOTE), subsampling
(SPSO), cost-sensitive learning without any optimized parameters and the same
strategy using CuckooCost as well (CS, CSCu, MC, MCCU), and Boosting
(AdaBoost). On the right side of the graph, mean values of boxplots are also
shown regarding classifier dispersions obtained by each balance technique.
Table 4 that includes information concerning data complexity involved in cat-
egories describes measurements determining overlap and separability between
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Table 4. Table of data complexity measurements in the datasets.

Categories |k VOR J4 A (%) | Imbalance
GO 0003677 | 1,162564308 | 1,518414e-45 | 366,65 | 42 1:7,68
GO 0003700 | 1,258898151 | 8,325292e-43 | 153,09 | 54,7 1:10,76
GO 0003824 | 0,095424389 | 1,503915e-39 | 114,67 | 41,3 1:2,74
G0 0005215 | 1,275657636 | 1,974T15e-67 | 3045,37 | 19,4 | 1:8,26
GO 0016787 | 0,004254501 | 6,654359e-07 | -0,472 | 53,9 1:4,63
GO 0030234 | 0,265168845 | 1,247835e-26 | 14,712 | 79,3 1:23,87
G0 0030528 | 0,954652410 | 1,125151e-37 | 255,43 | 37,6 | 1:7,22
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classes (VOR, J4, k). Also included measurements of nonlinearity in the classi-
fiers (A) are compared to information of imbalance level for each used dataset.
This comparison is intended to provide information about difficulty to induce
reliable learning models in each biclass problem.

Measures such as J4 and « tend to be favorable as they increase in value,
indicating a greater separability, otherwise VOR tends to be better as its value
approaches zero, indicating a smaller area of overlap. According to the values
given in Table 4, the most complex space is the set belonging to Hydrolase activ-
ity (GO 0016787), showing a low value at J4 and VOR highest compared to
values achieved by other classes. This fact is proved by the results obtained
for this class, as seen in Fig. 2(a), where all techniques show poor performance
balance. This suggests that a very poor data representation is present in this
class.

Also, as seen from values listed in Table 4, level of imbalance is not as signif-
icant as compared with the values of overlap between the data. Then, one can
infer that data complexity may deteriorate more severely the learning process in
protein prediction compared to the class imbalance. But this happens only when
level of overlap and separability is to big compared with imbalance ratio itself.
Therefore, it is convenient to use complexity measures as a complement to the
imbalance degree to be certain about problem complexity.

Despite observed complexity, the best behavior for Hydrolase activity is
obtained by SPSO that provides a value of geometric mean (GM) and ROC
area (AUC) just over 50 %, but with very low dispersion in the prediction. Yet,
obtained difference is not representative if compared to the performance of CSCu
method. In datasets with higher imbalance between categories (such as Enzyme
regulator activity and Sequence-specific DNA binding transcription factor activ-
ity (GO 0030234 and GO 0003700)), it is worth noting that CSCu performs con-
siderable superiority over other compared techniques. In fact, its performance
overcomes in five of the seven categories (GO 0003677, GO 0003700, GO 0003824,
GO 0030234 and GO 0030528), while for the remaining 2 sets (GO 0005215 and
GO 0016787), it is one of the highest performing prediction techniques, as seen
in Table 5.
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Table 5. Prediction performances with several balancing strategies.

Categories | SMOTE SPSO CS CSCu MC MCCu Ada
AUC |GM AUC |GM AUC |GM AUC |GM AUC |GM |AUC |GM AUC |GM

G0 0003677 | 0,693 0,668 |0,708 | 0,707 |0,615|0,519|0.797 |0.796 | 0,684 (0,659 | 0,718 | 0,713 |0,766 | 0,747
G0 0003700 | 0,654 | 0,599 |0,721 | 0,721 |0,679|0,629 |0.815|0.810|0,617|0,566 | 0,668 | 0,655 |0,773|0,744

G0 0003824 | 0,664 0,658 |0,667 | 0,667 |0,53 |0,292|0.671|0.671|0,618|0,592|0,661 | 0,654 |0,599|0,536
G0 0005216 | 0,778 0,752 |0,811 | 0,81 |0,643|0,562|0.815 |0.810 |0,803|0,788|0,839 0,835 |0,8120,766
G0 0016787 | 0,505 0,405 | 0,516 | 0,513 | 0,497 | 0,188 | 0.491 |0.473 | 0,499 (0,395 |0,499 | 0,443 |0,485|0,128

G0 0030234 | 0,568 0,429 |0,663 | 0,642 |0,618|0,613|0.696 |0.683 |0,515|0,205|0,617 | 0,518 |0,675 0,502
G0 0030528 | 0,659 | 0,621 0,717 | 0,714 | 0,595 |0,493 | 0.784 |0.783|0,68 |0,662|0,676 | 0,66 |0,723|0,691
Total 0,646 0,59 | 0,686 |0,682 |0,596|0,47 |0.724|0.718|0,63 |0,552|0,668 |0,64 |0,69 |0,588

On the other hand, both AdaBoost and SMOTE techniques obtain the worst
prediction results, especially, in Hidrolase activity, Enzyme regulator activity,
and Transcription regulator activity (GO 0016787, GO 0030234, and GO 0030528).
Since there is a high probability of inducing extra noise during training set when
synthetic samples are added, therefore, we may infer that in the presence of sets
with high overlap, oversampling technique is not an option making unreliable the
model for prediction of molecular functions. In case of AdaBoost, a high overlap
may decrease considerably the generalization capability of used classifier, which
mostly is forced to have complex decision boundaries.

As shown in Fig.2 and Tableb, the use of CuckooCost improves the
performance of considered methods based on cost sensitive learning (CS, MC,
CSCu, MCCu). Moreover, it clearly shows a substantial improvement in Meta-
Cost and cost sensitive learning in overall performance (increased GM and AUC),
as well as the reliability of the results by decreasing the classification dispersion
in every category. Although MetaCost tends to improve when using CuckooCost
strategy in transporter activity (GO 0005215), still there is a slight increase in
terms of the variability of the results. MetaCost accomplishes the resampling
procedure using Bootstrap strategy, when taking a portion of the training set to
create a subset in each iteration. Further, each subset is taken by a number of
base classifiers equal to the number of iterations for the algorithm selected and
the final classification decision is made in committee by a vote of each classifier.
So, if the number of iterations in MetaCost is not adequate and additionally the
dataset has a substantial degree of imbalance, as it is in this case, the number
of samples of interest, i.e., the samples belonging to this category used for each
base classifier might not be enough. As a result, the variability of performance
increases.

For all considered categories, generally, there exist cases where some bal-
ance techniques show very similar values of ug compared with their O values,
mainly, in SPSO and CSCu. It happens, particularly, when the numeric differ-
ence between sensitivity and specificity becomes too close.
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Assuming £ = S, — Sp, then, it holds that:

’ TP

Tp=——=25,

P Tp + Fx

/ F

Fp=—%__
Tn + Fp

However, Fp/(Tn + Fp) =1 —Tn/(Tn + Fp) = 1 — S,. Moreover, taking
into account that the ROC curves shows a comparison between T}, vs F 1/3, then,
O(Tp, Fp) = (14 Tp — Fp)/2. So, B (AUC) can be expressed in terms of S,
and S, as follows:

U(Se,Sp): 2( P)
_ Se+Sp

2
Therefore expressing the sensitivity in terms of specificity, i.e., Se = S, + €,

one can infer that if the numeric distance between sensitivity and specificity is
shortened, that is, £ — 0, then:

. . Se+ S,
i O(Se, 5p) = fy ===
. Sp+Sp+¢€
= Ty =5

Now, if considering the geometric mean, the following holds:

%iH(l) pi(Se, Sp) = glin% \V/Se Sp

= ghi% \ (Sp +£)Sp = Sp

So, the above expressions indicate that if £ tends to be much smaller, both
U and pg tend increasingly to the same value.

The case when U = p¢ also takes place when the balancing techniques have
very little classification bias. This fact can be corroborated using the relative
sensitivity (Rg) [22]: If Rg — 1, then, S./S, — 1, in turn, S, = 5.

The Rg values for each technique are shown in Table 6. As seen, SPSO and
CSCu techniques show less bias in their classification performance having values
more close to one. That is, both classifiers tend to get a trade-off between sensi-
bility and specificity values, as shown with the points in Fig. 2, for which U = u¢.
On contrast, SMOTE tends to get more specificity, although sampling techniques
try to become more sensitive to increase distribution of samples in those cate-
gories having lower representation. Lastly, it must be quoted that both CS and
MC carry out quite a substantial improvement when they use CuckooCost to
optimize their parameters. Initially, CS is to sensitive but it has a small speci-
ficity, contrary case to MC, which has a big specificity. When CuckooCost is
used, both strategies accomplish similar performance, specially, in terms of CS.
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Table 6. Table of relative sensitivity.

Categories | SMOTE | SPSO | CS CSCu | MC |MCCu |Ada
GO 0003677 0,582 | 0,996 | 3,301 |1.129 0,582 0,796 | 1,572
GO 0003700 | 0,427 1,067 | 2,185 |1.239 | 0,433 /0,676 |1,701
GO 0003824 | 0,766 0,973 | 11,057 | 1.045 | 0,555 | 0,755 | 0,406
GO 0005215 0,593 | 1,002 | 2,885 |0.794 | 0,688 0,842 |0,762
GO 0016787 | 0,251 1,234 | 25,892 |0.576 | 0,241 /0,371 |0,017
GO 0030234 | 0,208 1,652 | 0,783 |0.684 | 0,044 /0,297 |0,269
GO 0030528 0,503 1,203 | 3,541 |1.120 0,631 0,651 | 1,824

6 Conclusions and Future Work

A method to optimize free parameters associated to cost sensitive learning, which
is applied to prediction of molecular functions in embryophita plants, is proposed.
The method is devoted to rule directly sensitivity and specificity on classifier
performance (related to the costs involved misclassifying samples belonging to
each category). The optimization is carried out over cost matrix elements, which
are tuned by adapting those elements outside the main diagonal, in order to
build the cost ratio. The variation of the cost ratio, along with the classification
parameters are used as hyperparameters in the optimization problem, since the
metric intrinsically modifies the fitness function. To this purpose, a metaheuris-
tic optimization technique called Cuckoo Search is suggested. The methodology
takes as fitness function both the maximization of ROC area (AUC) and mini-
mization of total cost; being both variables important in the classification model.
This work shows that the use of models based on cost sensitivity learning are
competitive, reliable, and even superior to other balance techniques in the state
of the art, specially, in applications related to bioinformatics. As future work,
the approach of new fitness functions that lead to better classification results is
to be considered.
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