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Abstract. The categorization of different staining patterns in HEp-2
cell slides by means of indirect immunofluorescence (IIF) is important
for the differential diagnosis of autoimmune diseases. The clinical prac-
tice usually relies on the visual evaluation of the slides, which is time-
consuming and subject to the specialist’s experience. Thus, there is a
growing demand for computer-aided solutions capable of automatically
classifying HEp-2 staining patterns. In the attempt to identify the most
suited strategy for this task, in this work we compare two approaches
based on Support Vector Machines and Subclass Discriminant Analysis.
These techniques classify the available samples, characterized through a
limited set of optimal textural attributes that are identified with a fea-
ture selection scheme. Our experimental results show that both strategies
have a good concordance with the diagnosis of the human specialist and
show the better performance of the Subclass Discriminant Analysis (91 %
accuracy) compared to Support Vector Machines (87 % accuracy).

Keywords: Indirect immunofluorescence imaging · HEp-2 staining pat-
tern classification · Support vector machines · Subclass discriminant
analysis · Pattern recognition

1 Introduction

Indirect immunofluorescence (IIF) is an imaging modality detecting abundance
of those molecules that induce an immune response in the sample tissue. This
technique uses the specificity of antibodies to their antigen in order to bind
fluorescent dyes to specific biomolecule targets within a cell. The screening for
anti-nuclear antibodies by IIF is a standard method in the current diagnostic
approach to a number of important autoimmune pathologies such as systemic
rheumatic diseases as well as multiple sclerosis and diabetes [1]. This screening,
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which makes use of a fluorescence microscope, is typically done by visual inspec-
tion on cultured cells of the HEp-2 cell line: the specialist observes the IIF slide
at the microscope (see Fig. 1 for an example), and makes a diagnosis based on
the perceived intensity of the fluorescence signal and on the type of the stain-
ing pattern. Fluorescence intensity evaluation is needed for classifying between
positive, intermediate and negative (i.e. absence of fluorescence) samples. Then,
specific staining patterns on positive and intermediate samples reveal the pres-
ence of different antibodies and, thus, different types of autoimmune diseases.
Therefore, a correct description of staining patterns is fundamental for the dif-
ferential diagnosis of the pathologies. Examples of the six main staining patterns
described by literature (homogeneous, fine speckled, coarse speckled, nucleolar,
cytoplasmic or centromere) are reported in Fig. 2. They are distinguished as
follows:

– Homogeneous: diffuse staining of the entire nucleus, with or without appar-
ent masking of the nucleoli.

– Nucleolar: fluorescent staining of the nucleoli within the nucleus, sharply
separated from the unstained nucleoplasm.

– Coarse/Fine Speckled: fluorescent aggregates throughout the nucleus which
can be very fine to very coarse depending on the type of antibody present.

– Centromere: discrete uniform speckles throughout the nucleus, the number
corresponds to a multiple of the normal chromosome number.

– Cytoplasmic Fluorescence: granular or fibrous fluorescence in the
cytoplasm.

The manual classification of HEp-2 staining pattern suffers from usual prob-
lems in medical imaging, that is (i) the reliability of the results is subject to
the specialist’s experience and expertise, and (ii) the analysis of large volume of
images is a tedious and time-consuming operation, translating into higher costs
for the health system. Studies report very high inter- and intra-laboratory vari-
ability for this type of screening (up-to 10 %), that can be even higher in case of
non-specialized structures [1]. This variability impacts on the reliability of the
obtained results and, most of all, on their reproducibility.

Thus, in the last few years, reliable automatic systems for automating the
whole IIF process have been in great demand and several tools have been pro-
posed [2–6]. Nevertheless, the accurate classification of the staining patterns still
remains a challenge.

Several classification schemes have been applied: among the others, learning
vector quantization [3], decision tree induction algorithms [4,5], and multi-expert
systems [6]. Unfortunately, direct comparison of the results presented by different
works is not possible, since they were obtained on different datasets and on
different classes. However, it is worth noting that textural features are generally
acknowledged for being the most appropriate for staining pattern classification.

In this work, we compare two techniques we implemented that classify the
cells into one of the six staining patterns addressed by literature. The first is
based on Support Vector Machines (SVM). This approach was already intro-
duced in our previous work [7], and it is described again here for the sake of
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completeness. The second technique is a novel procedure based on Subclass Dis-
criminant Analysis (SDA), a recent dimensionality reduction method that has
been proven successful in different problems. SDA aims at improving the clas-
sification of a large number of different data distributions, whether they are
composed by compact sets or not, by describing the underlying distribution of
each class using a mixture of Gaussians. Since some of the staining patterns are
characterized by a relevant within-class variance, SDA appears to be a promising
method to improve their classification accuracy.

In our approach, each cell is initially characterized with a set of features based
on statistical measurements of the grey-level distributions and on frequency-
domain transformations. The dimension of this feature vector is then reduced
applying different procedures, aiming at selecting the subsets of feature variables
that are best suited to the classification with both SVM and SDA.

After a description of the dataset employed for training and testing our meth-
ods, Sect. 2, and a description of the two classification techniques, Sect. 3, this
work presents in Sect. 4 the results of our experiments, aimed at identifying the
best IIF classification technique. Discussion and conclusions are presented in
Sects. 4.3 and 5, respectively.

2 Materials

The dataset used in our experiments contains IIF images that are publicly avail-
able at [8]. It is composed of 14 annotated IIF images acquired using slides of
HEp-2 substrate at the fixed dilution of 1:80, as recommended by the guidelines
in [9]. The images were acquired with a resolution of 1388× 1038 pixels and a
color depth of 24 bits. The acquisition unit consisted of a fluorescence microscope
(40-fold magnification) coupled with a 50 W mercury vapour lamp and with a

Fig. 1. HEp-2 IIF image.
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Fig. 2. Examples of staining patterns that are considered relevant to diagnostic pur-
poses, either with intermediate and positive fluorescence intensity.

Table 1. HEp-2 cell dataset characterization.

Pattern N. of samples Int. Pos.

Homogeneous 150 47 103

Nucleolar 102 46 56

Coarse speckled 109 41 68

Fine speckled 94 48 46

Centromere 208 119 89

Cytoplasmic 58 24 34

Tot. 721 325 396

digital camera (SLIM system by Das srl) having a CCD with square pixel of 6.45
µm side. An example of the available images can be seen in Fig. 1.

From these images, a set of samples of HeP-2 cells have been extracted.
Specialists manually segmented each cell at a workstation monitor, labelling
it with the corresponding fluorescence intensity level (either intermediate or
positive) and staining pattern. The latter can be distinguished in the six classes
described in the introduction.

The dataset contains a total of 721 cells, 325 of which with intermediate
and 396 with positive fluorescence intensity. A full characterization of dataset is
reported in Table 1.

3 Methods

Our approach combines texture analysis and feature selection techniques in order
to obtain a limited set of image features that is optimal for the classification task.
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As already mentioned, for classification we implemented and compared two
different methods, based on SVM and on SDA.

In the following subsections we provide details about all the steps of the
proposed techniques.

3.1 Size and Contrast Normalization

Size and intensity normalisation of the samples is a necessary preprocessing step.
In fact, small differences in the dimensions of the cell images are normal, and
these differences are completely independent from their staining pattern. On the
other hand, there are considerable variations of fluorescence intensity between
intermediate and positive samples. Reducing such variability helps to decrease
the noise in the classification process and avoids as well the necessity of training
two separate classifiers for intermediate and positive samples.

Size normalization was obtained by re-sampling all the cell images to 64× 64
pixels dimension. Contrast normalization consisted in linearly remapping the
intensity values so that 1 % of data is saturated at low and high intensities.

3.2 Feature Extraction

Textural analysis techniques have already been proven successful in HEp-2 cell
staining characterization [7]. In fact, they are able to describe the most rele-
vant image variations occurring in the cell allowing to differentiate between the
staining patterns.

The two major approaches for textural analysis are either based on statistical
methods describing the distribution of grey-levels in the image or on frequency-
domain measurements of image variations. In our work we propose a combination
of both of them in order to extract a comprehensive set of features able to fully
characterize the staining pattern of the cell.

A first set of features was computed based on Gray-Level Co-occurrence
Matrices (GLCM), a well established technique that extracts textural informa-
tion from the spatial relationship between intensity values at specified offsets in
the image. More specifically, textural features are computed from a set of grey-
tone spacial dependence matrices reporting the distribution of co-occurring val-
ues between neighbouring pixels according to different angles and distances [10].
In practice, the (i, j)d,θ element of a GLCM contains the probability for a pair of
pixels located at a neighbourhood distance d and direction θ to have gray levels
i and j, respectively.

In our work, we extracted 44 GLCM textural features reported in Table 2,
based on four 16× 16 GLCMs computed for a fixed unitarian neighbourhood
distance and a varying angle θ = 0o, 45o, 90o, 135o (see [7] for details). The
features are based on well-established statistical measurements whose charac-
terization can be found in [10–12]. The use of 4 different directions is aimed at
making the method less sensitive to rotations in the images.
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Table 2. GLCM features.

N. Feature Ref.

1 Uniformity [10]

2 Entropy [11]

3 Dissimilarity [11]

4 Contrast [10]

5 Inverse difference [12]

6 Correlation [10]

7 Homogeneity [11]

8 Autocorrelation [11]

9 Cluster Shade [11]

10 Cluster Prominence [11]

11 Maximum probability [11]

12 Sum of Squares [10]

13 Sum Average [10]

14 Sum Variance [10]

15 Sum Entropy [10]

16 Difference variance [10]

17 Difference entropy [10]

18 Information measures of correlation (1) [10]

19 Information measures of correlation (2) [10]

20 Maximal correlation coefficient [10]

21 Inverse difference normalized (INN) [12]

22 Inverse difference moment normalized (IDN) [12]

Besides statistical methods, a largely used approach to extract relevant tex-
tural information for image compression and classification is based on frequency-
domain transformations [13]. The underlying concept is the transformation of
the image spatial information into a different space whose coordinate system has
an interpretation that is closely related to the description of image texture.

In our work, we computed the two-dimensional Discrete Cosine Transform
(DCT) [14] of the normalized images and then extracted 328 DCT coefficients
(described in details in our previous work [7]) representing different patterns
of image variation and directional information of the texture. The same app-
roach was already successfully applied for texture classification and pattern
recognition [13].

Combining GLCM and DCT sets, we obtained a total number of 44 + 328 =
372 features to characterize each sample image.
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3.3 Classification Based on Support Vector Machines

The first classification method we implemented was already introduced in our
previous work [7]. It is based on Support Vector Machines (SVM), a well-
established machine learning technique that has been proven successful for clas-
sification and regression purposes in many applications [15].

The classification is based on the implicitmapping of data to ahigh-dimensional
space via a kernel function, and on the identification of the maximum-margin
hyperplane that separates the given training instances in this space.

In our work we used SVM with radial basis kernel, optimizing the kernel
parameters by means of ten-fold cross-validation technique and a grid search, as
suggested in [15].

Feature Selection. Feature selection (FS) strategies were applied in order
to select a limited set of optimal features able to improve the accuracy of the
staining pattern classifier.

SVM are widely acknowledged for their built-in feature selection capability,
as they implicitly map data in a transformed domain where the features that
are crucial to the classification purpose are emphasized [16]. Nevertheless, the
combination of SVM with feature selection strategies, besides improving training
efficiency, can further enhance the accuracy of classification. In fact, although the
presence of irrelevant features does not change the hyperplane margin of SVM,
it may increase the radius of the training data points, impacting on SVM’s
generalization capability and also increasing the probability of over-fitting [17].

In our work we applied feature selection in two sequential steps. The first
is based on minimum-Redundancy-Maximum-Relevance (mRMR) algorithm,
whose better performance over the conventional top-ranking methods has been
widely demonstrated in the literature [18]. The mRMR algorithm sorts the
features that are most relevant for characterizing the classification variable,
pointing at the contemporaneous minimization of their mutual similarity and
maximization of their correlation with the classification variable. The number of
the candidate features selected by mRMR was arbitrarily set to 50.

As for mRMR to work at its best the classification variables have to be cate-
gorical and not continuous, we preventively performed features discretization on
the input data. For this purpose, we applied CAIM (class-attribute interdepen-
dence maximization) algorithm [19], which is best suited to work with supervised
data, as it generates a minimal number of discrete intervals by maximizing the
class-attribute interdependence.

The output of mRMR is a generic candidate feature set, which is indepen-
dent from the classification algorithm [18] and not necessarily optimal for SVM.
Therefore, we applied as second FS step a Sequential Forward Selection (SFS)
scheme in order to iteratively construct the subset of optimal features that is
best suited for SVM classification.

Classical SFS [20] works towards the minimization of the misclassification
error: starting from an initial empty set, at each iteration the feature provid-
ing the greatest classification accuracy improvement is added, until no more
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Fig. 3. Sequential Feature Selection strategy: misclassification error vs. number of
selected features at each iteration. The optimal feature set size is 12.

improvement is obtained. As this implementation tends to be trapped in local
minima, in our approach we proceeded with the iterations until all the available
features were added, and then we selected the feature set with the best classifi-
cation accuracy. The final dimension of this optimal set was found to be 12 (see
Fig. 3).

3.4 Classification Based on Subclass Discriminant Analysis

SDA belongs to family of Discriminant analysis (DA) algorithms, which have
been used for dimensionality reduction and feature extraction in many applica-
tions of computer vision and pattern recognition [21–24]. These algorithms map
a set of samples X = (x1, x2, . . . , xn), associated to a class label ∈ [1, C] and
belonging to a high-dimensional feature space ∈ �D, to a low-dimensional sub-
space ∈ �d, with d�D, where the data can be more easily separated according
to their class-labels. Therefore, DA problem can be generally stated as finding
the transformation matrix V = (v1, v2, . . . , vd), with vi ∈ �D, for mapping a
sample x into the final d -dimensional subspace.

In most DA algorithms, the transformation matrix V is found by maximizing
the so-called Fisher-Rao’s criterion:

J(V ) =

∣
∣V T AV

∣
∣

|V T BV | (1)

where A and B are symmetric and positive-defined matrices. The solution to
this problem is given by the generalized eigenvalue decomposition:

AV = BV Λ (2)



184 I. Ul Islam et al.

Where V is (as above) the desired transformation matrix, and Λ is a diagonal
matrix of its corresponding eigenvalues.

Linear Discriminant Analysis (LDA) is probably the most well-known DA
technique. This method assumes that the C classes the data belong to are
homoscedastic, that is their underlying distributions are Gaussian with com-
mon variance and different means. In (1), LDA uses A = SB , the between-class
matrix, and B = SW , the within-class scatter matrix, defined as:

SB =
C∑

i=1

(μi − μ)(μi − μ)T (3)

SW =
1
n

C∑

i=1

ni∑

j=1

(xij − μi)(xij − μi)T (4)

where C is the number of classes, μi is the sample mean for class i, μ is the
global mean, xij is the jth sample of class i and ni the number of samples in
class i.

LDA provides the (C -1)-dimensional subspace that maximizes the between-
class variance and minimizes the within-class variance in any particular data set.
In other words, it guarantees maximal class separability and, possibly, optimizes
the accuracy in later classification.

However, the assumption of having C homoscedastic classes is the very lim-
itation of this method. LDA works well for linear problems and fails to provide
optimal subspaces for inherently non-linear structures in data. Several exten-
sions of LDA have been introduced in literature to effectively classify data with
non-linearities [25].

To this end, one of the most effective approaches is the Subclass Discriminant
Analysis (SDA), proposed in [26]. The main idea of SDA it is to find a way
to describe a large number of different data distributions, whether they are
composed by compact sets or not, by describing the underlying distribution of
each class using a mixture of Gaussians. This is achieved by dividing the classes
into subclasses. Therefore, the problem to be solved is to find the optimal number
of subclasses maximizing the classification accuracy in the reduced space. In
SDA, the transformation matrix V is found by defining the between-subclass
scatter matrix SB in Eq. (1) as:

SB =

C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

pijpkl(µij − µkl)(µij − µkl)
T (5)

where Hi is the number of subclasses of class i, μij and pij are the mean and prior
probability of the jth subclass of class i, respectively. The priors are estimated
as pij = nij/n, where nij is the number of samples in the jth subclass of class i.
In the simplest case of SDA with no class subdivisions, this equation reduces to
that of LDA.

In order to select the optimal number of subclasses, in [26], the authors
propose two different methods. The first is based on a stability criterion described
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in [27]. However, as pointed out in [28], when data have a Gaussian homoscedastic
subclass structure, the minimization of the metric used in this criterion is not
guaranteed. Authors in [28] hypothesize that this is likely to happen also for
heteroscedastic classes.

The second selection criterion is based on a Leave-one-object test. In practice,
for each subdivision, a leave-one-out cross validation (LOOCV) is applied, and
the optimal subdivision is the one giving the maximal recognition rate. The
problem with this strategy is that it has very high computational costs, especially
when the dataset to classify is large and the number of classes is high. This is
exactly what is happening in our case, where the initial classes are 6 and the
samples are 721.

Therefore, to overcome these problems, we used a different formulation of the
optimality criterion, similar to the leave-one-object test, but based on a stratified
5-fold cross validation, which optimizes the accuracies obtained with a k -Nearest
Neighbour (kNN) classifier. A value of 8 for k has been heuristically found to
provide good classification results.

Our implementation differs from the original SDA formulation for two other
details. The first concerns the clustering methods used to divide classes into sub-
classes. In [26] data are assigned to subclasses by first sorting the class samples
with a Nearest-Neighbour based algorithm and then dividing the obtained list
into a set of clusters of the same size. However, this method does not allow to
model efficiently the non-linearity present in the data, as in the case of stain-
ing patterns under analysis. Therefore, we used the K -means algorithm, which
partitions the samples into k clusters by minimizing iteratively the sum, over
all clusters, of the within-cluster sums of sample-to-cluster-centroid distances.
Since, in this method, the centroids are initially set at random, different initial-
ization results in different divisions. Hence, we repeated the clustering 20 times
and kept the solution providing the minimal sum of all within-cluster distances.

The second difference is that, instead of increasing the number of subclasses
for each class of the same amount at each iteration, all the possible permutation
of class subdivisions are created by iteratively incrementing by one the number
of subclasses of a single class in a set of nested loops. For a specific class r, the
subdivision process is stopped when the minimal number of samples in the Hr

clusters obtained with K -means drops below a predefined threshold. In order to
reduce the computational times, the clusters created in inner loops are computed
only once and cached for further use.

The classification accuracy of our method is computed as the average accu-
racy of the different CV rounds. It should be underlined that, given the differ-
ences between training and test sets, different optimal subclasses subdivision are
likely to be obtained at each CV iteration.

Feature Selection. As well as for the SVM classifier, we applied FS strategies
to SDA too. In this case, we used only the reduced feature set obtained with
mRMR. This has been done for two reasons.

First, while mRMR is independent from the classification method, SFS relies
on the classifier output, which makes it unfeasible with the computational cost
of SDA.
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Second, it can be easily shown that the rank of matrix SB , and therefore of
the dimensionality d of the reduced subspace obtained from Eq. (2), is given by
min(H −1, rank(SX)), where H is the total number of subclasses and rank(SX)
is equal (or minor) to the number of features characterizing each sample. While
the number of features selected with mRMR (50) is a reasonable upper bound for
d, reducing it further might hamper the possibility to obtain a good classification
accuracy in problems, like the one tackled in this paper, in which the data present
high non-linearities.

4 Results

The two classification methods presented in Sect. 3 were tested on the same
annotated IIF images, using the staining pattern information provided by the
specialists as ground truth for cross-validation.

4.1 SVM Classification

We recall here the experimental results on SVM classification, already reported
in our previous paper [7], for comparison with SDA approach.

As for SVM classification, experiments were run on the following datasets:

dataset I, the initial 372 elements feature set;
dataset II, the 50 elements candidate set selected by mRMR feature selection;
dataset III, the final 12 elements feature vector obtained with combination of

mRMR + SFS.

The accuracy results of the 10-fold cross-validation, grouped by staining pat-
tern, are reported in Table 3. The last row of the table shows the overall accuracy
obtained by SVM in each dataset.

The following initial remarks can be drawn from the analysis of the results
of Table 3:

– SVM classifier obtained an average accuracy of 86.96 % in the six staining
patterns. The maximum and minimum per-class accuracy were 98.17 % (coarse
speckled pattern) and 71.28 % (fine speckled pattern).

– FS significantly improved the classification performances (+9.01 % on the
overall average accuracy). This confirms the considerations drawn in Sect. 3.3
about the weakness of the implicit feature selection ability claimed by SVM.
As it can be seen, mRMR improved the per-class accuracy of all the staining
patterns (see results on dataset II compared to those on dataset I). The com-
bination of mRMR+SFS (dataset III) further improved the average accuracy
of SVM. While per-class accuracies of centromere and cytoplasmic patterns
were slightly decreased (of, respectively, −1.44 % and −3.45 % w.r.t. dataset
II), the fine speckle pattern, that had lowest per-class accuracy, is the class
that obtained the best improvement (+9.58 % w.r.t. dataset II and +25.53 %
w.r.t. dataset I). This non-uniform behaviour is not surprising, since SFS opti-
mized the average classification accuracy in the overall dataset and not the
accuracies of the single classes.
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Table 3. SVM Classification results: accuracy rate (%).

Pattern Dataset

I II III

Homogeneous 78.66 84.00 86.00

Nucleolar 89.22 93.14 93.14

Coarse speckled 92.66 95.41 98.17

Fine speckled 45.75 61.70 71.28

Centromere 84.13 88.46 87.02

Cytoplasmic 58.62 86.21 82.76

Overall 77.95 85.58 86.96

4.2 SDA Classification

Table 4, which is, again, organized by staining class, summarizes the classification
results obtained with SDA. As already explained in Sect. 3.4, SFS strategy was
not applied in combination with SDA classifier. Therefore, the table contains
only results on dataset I (the initial 372 feature set) and dataset II (50 feature
set obtained after mRMR).

LDA results (which are those obtained with SDA with no class subdivisions)
are also provided for comparison, in order to demonstrate the effective capabil-
ities of SDA to better classify datasets with high non-linearities. Finally, in the
last row we show the overall accuracies obtained in the four cases.

Analysing the results, some considerations can be drawn:

– as expected, the overall accuracy of SDA outperforms that of LDA (+7.29 %
on dataset I and +7.13 % on dataset II). Concerning the per-class results,
better results are obtained in most of the cases (except for centromere class for
dataset I, and coarse speckled class for dataset II), with, as best improvements,
a +17.34 % in dataset I for homogeneous class and + 23.51 % in dataset II for
fine speckled class;

– as in the SVM experiments, FS effectively improves the SDA accuracies of all
classes (the best improvement being the +9.71 % of fine speckled). The overall
improvement is +4.75 %

– the best average accuracy obtained is 90.79 %, with dataset II, which outper-
forms the best accuracy obtained by SVM with mRMR+SFS feature selection
(86.96 %, dataset III). The best per-class improvements have been obtained
for fine speckled (+18.14 %) and cytoplasmic class (+17.24 %), while coarse
speckled and centromere class obtained slightly lower accuracies (respectively,
−6.48 % and −4.85 %).

4.3 Discussion

The results presented in Tables 3 and 4 suggest that the proposed algorithm is a
good solution for the automated classification of immunofluorescence cell patterns.
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Table 4. SDA Classification results: accuracy rate (%).

Pattern Dataset

I II

LDA SDA LDA SDA

Homogeneous 63.33 80.67 80.00 85.33

Nucleolar 90.29 94.29 91.19 96.14

Coarse speckled 87.19 88.05 92.55 91.69

Fine speckled 62.87 79.71 65.91 89.42

Centromere 75.96 73.53 80.78 82.17

Cytoplasmic 92.88 100.00 91.52 100.00

Overall 78.75 86.04 83.66 90.79

As a matter of facts, the accuracy rate is comparable to the one obtained by the
specialists, whose inter-laboratory variability is generally assessed around 10 % or
even higher [1]. Besides that, differently from human operators, our technique pro-
vides fully-repeatable results that are based on objective and quantitative features
of the images.

As for the classification techniques, the same results show that SDA tech-
nique, in combination with a proper selection of the most relevant features,
outperforms the best accuracy achievable with SVM on the same dataset (II)
and even with those obtained by SVM on dataset III, specifically optimized for
that technique with a two-step FS process. Therefore, our experiments show
the capabilities of SDA to describe in a more suitable way the underlying dis-
tributions of each of the staining pattern class, improving their classification
accuracies.

5 Conclusions

In this paper we proposed the comparison of two approaches, based on SVM
and SDA, for the automatic classification of staining patterns in HEp-2 cell
IIF images. Texture descriptors based on GLCM and DCT coefficients are first
exploited to extract a 372-size characteristic vector for each cell. Then, a feature
selection algorithm is applied to obtain a reduced candidate feature set that
improves the classification accuracies of the two methods.

Feature selection is based on the mRMR algorithm, which sorts the features
that are most relevant for characterizing the classification variable. The 50 top-
ranked features were selected. In the case of SVM-based method, a two-steps
feature selection procedure, coupling mRMR with SFS algorithm, is implemented
in order to further improve classification accuracies.

The two approaches provide average classification accuracies of about 87 %
and 91 %, respectively. These results are comparable with those of human special-
ists. Conversely, they are completely repeatable since our automated technique



A Preliminary Analysis on HEp-2 Pattern Classification 189

does not depend on the subjectivity of the operator. Moreover, our experiments
show the effectiveness of SDA into describing more precisely, compared to SVM,
the underlying distributions of each of the staining pattern class.

As future steps, we plan to work on:

(1) a better characterization of cell patterns, which can be insensitive to changes
in size, rotation and intensity;

(2) an improvement of the SDA classifier in terms of computational efficiency.
For this purpose, methods selecting a priori the classes that effectively needs
to be partitioned, like the one described in [29], will be investigated;

Moreover, we plan to develop a pipeline for automatic cells segmentation in
IIF images and to combine it with our pattern classification algorithm in order to
obtain a complete automated approach for the computer-aided diagnosis (CAD)
of autoimmune diseases.
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