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Abstract. Unlike the existing object-oriented and other database tech-
nologies, database schemas in the technology developed in this research
are equipped with very general integrity constraints specified in a declar-
ative, logic-based fashion. These declarative specifications are expressed
in object-oriented assertion languages and they apply to transactions
that are implemented in a full-fledged, mainstream object-oriented pro-
gramming language. The model of transactions is based on more ad-
vanced features of object-oriented type systems, the ownership model,
and very general constraints. The main distinction in comparison with
other database technologies is that transactions can be verified to sat-
isfy the schema integrity constraints. The two main contributions of this
paper are object-oriented schemas equipped with integrity constraints
and static verification of transactions with respect to the integrity con-
straints. Solutions to these open problems have been out of reach so far.
Furthermore, transaction verification is not only largely static, but it is
also automatic, so that the subtleties of the underlying verification tech-
nology are hidden from the users. In addition to static verification, the
technology offers dynamic enforcement of the integrity constraints when
necessary. The overall outcome is a significant increase in data integrity
along with run-time efficiency and reliability of transactions.

1 Introduction

This paper is addressing a major limitation of the current generation of object-
oriented database systems. In fact, other widely used database technologies ex-
hibit the same problem. The solution to this problem developed in this paper is
based on recent developments in assertion languages and verification technolo-
gies. This represents a major departure from the technologies and tools that are
commonly used in database systems.

The key issue in object-oriented database systems is management of persistent
objects. Object-oriented languages have no support for persistent objects that
would be suitable for databases. An object-oriented database schema specifies
(collections of) persistent objects, and their types in particular. Complex actions
on persistent objects are expressed as programs in an object-oriented program-
ming language. A transaction is expected to start in a consistent database state
and if successfully completed it must leave the database in a consistent state.
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The current generation of object-oriented systems is based on typed object-
oriented programming languages. This is a source of a major discrepancy: data
languages are declarative and mainstream object-oriented languages by them-
selves do not have such capabilities. Database schemas, the consistency require-
ments, and queries should be specified in a declarative style.

The current object technology has nontrivial problems in specifying even
classical database integrity constraints, such as keys and referential integrity
[10,17,20]. No industrial database technology allows object-oriented schemas
equipped with general integrity constraints. In addition to keys and referential
integrity, such constraints include ranges of values or number of occurrences,
ordering, constraints that apply to inheritance, and the integrity requirements
for complex objects obtained by aggregation [2]. More general constraints that
are not necessarily classical database constraints come from complex applica-
tion environments and they are often critical for correct functioning of those
applications [3].

Object-oriented schemas are generally missing database integrity constraints
because those are not expressible in type systems of mainstream object-oriented
programming languages. Since the integrity constraints cannot be specified in a
declarative fashion, the only option is to enforce them procedurally with nontriv-
ial implications on efficiency and reliability. In a typed constraint-based database
technology, the constraints would fit into the type systems of object-oriented
languages and they should be integrated with reflective capabilities of those lan-
guages [22] so that they can be introspected at run-time. Most importantly, all
of that is not sufficient if there is no technology to enforce the constraints, prefer-
ably statically, so that expensive recovery procedures will not be required when
a transaction violates the constraints at run-time [2,3].

The idea of static verification of transaction safety with respect to the database
integrity constraints has been considered in previous research [8,23,25,6] but it
has not been implemented at a very practical level so that it can be used by
typical object-oriented database programmers. The first problem is that object
database technologies such as ODMG [9], Db4 [10], and Objectivity [20] are not
equipped with general constraints, and even have difficulties in specifying keys
and referential integrity [17]. This problem is resolved in this research by using
an object-oriented assertion language such as JML [13] or Spec# [19]. An as-
sertion language allows specification of schemas with general database integrity
constraints (invariants) and transactions can be specified in a declarative fashion
with preconditions and postconditions.

The ability to statically verify that a transaction implemented in a mainstream
object-oriented language satisfies the database integrity constraints has been
out of reach for a long time. Some of our previous results were based on a
higher-order interactive verification system which is so sophisticated that it is
unlikely to be used by database programmers. A pragmatic goal has been static
automatic verification which completely hides the prover technology from the
users. Automatic static verification of the object-oriented constraints is a major
distinction with respect to our previous work [3,4] as well as with respect to other
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work [8,23,25,6]. Our goals are object-oriented schemas with general integrity
constraints, transactions written in a mainstream object-oriented language, and
their static verification that guarantees ACID properties in an implementation
based on an object-oriented database management system. These goals represent
a significant advancement of our previous results reported in [2].

A key observation is that if it is not possible to verify that transactions satisfy
the schema integrity constraints, then it is not possible to truly guarantee the
ACID properties of the transaction model. ACID stands for atomicity, isolation,
consistency and durability. A serializable concurrent execution of a set of trans-
actions has the property that it will maintain the schema integrity constraints
only as long as the individual transactions by themselves (i.e., in isolation) sat-
isfy those constraints [11]. This explains the relationship between the research
reported in this paper and other research on object-oriented transactions. Most
recent research on object-oriented transactions, such as [14,26,24], has been di-
rected toward an apparatus for providing properties such as atomicity, isolation,
and serializability that would replace the existing inadequate concurrent appara-
tus in object-oriented programming languages with respect to transactions. The
integrity constraints (the C component) are not considered. Our research does
exactly that.

The contributions of this paper are:

— Specification of object-oriented database schemas equipped with classical
as well as more general integrity constraints not available in the existing
database technologies.

— Schema modeling techniques based on abstraction, specification inheritance,
and aggregation including the ownership model.

— A model of object-oriented transactions equipped with declarative speci-
fications and techniques for automatic static and dynamic verification of
transaction safety with respect to the schema integrity constraints.

— A complex object-oriented application that demonstrates the above tech-
niques, verification of complex transactions in particular.

— A model of ACID transactions implemented on top of an object-oriented
database management system that guarantees all ACID properties, the C
component in particular.

This paper is organized as follows. We first specify (section 2) the basic fea-
tures of our model of object-oriented transactions. General issues of concurrent
transactions and the integrity constrains are discussed in section 3. In section 4
we present some key semantic concepts for modeling complex application envi-
ronments and the associated transactions. Levels of consistency as they relate
to the model of transactions and the ownership model are discussed in section
5. In section 6 we consider complex schemas equipped with a variety of gen-
eral integrity constraints, including classical database constraints such as keys
and referential integrity. This is followed by sample transactions with respect
to schemas equipped with integrity constraints in section 7. In section 8 we
elaborate the relationship between declarative specification of constraints and
database queries. The impact of inheritance on the schema integrity constraints
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is discussed in section 9. Abstraction techniques for object-oriented schema are
given in section 10. Dynamic constraint checking is the subject of section 11. The
implementation issues related to the underlying database platform are discussed
in section 12. Related research is summarized in section 13 and conclusions are
given in section 14.

2 Transaction Model

Our main contribution is an implemented model of automatic verification of
object-oriented transactions with respect to the object-oriented schemas
equipped with constraints. To our knowledge this is the first time such a verifi-
cation was possible for transactions written in a full-fledged mainstream object-
oriented language and object-oriented schemas and transactions extended with
very general constraints.

The components of our transaction model are more sophisticated features
of the type system such as bounded parametric polymorphism, the ownership
model, specification of the schema integrity constraints, pre and post conditions
for transactions, and their automatic verification.

In our transaction model there exists an interface Schema and a class Trans-
action. Specific schemas implement the interface Schema.

A schema is a complex object, an aggregation of its components. A schema
is the owner of its components. The ownership model of our transaction model
allows constraints that apply to complex objects and their components. A partic-
ular case are integrity constraints that apply to complex schema objects. Objects
with the same owner are modeled as peers. This in particular applies to compo-
nents of a schema object.

Our model of transactions allows controlled updates of persistent objects in
such a way that the constraints associated with complex objects, and schema
objects in particular, are enforced. Independent updates of components of a com-
plex object that might violate the integrity constraints that apply to the whole
complex object are not allowed. Situations in which a transaction necessarily and
temporarily violates the schema integrity constraints are carefully controlled in
this model.

The relationship between a transaction object and a schema object is also
modeled as a peer relationship. A transaction is not a component of a schema,
and a schema is not a component of a transaction. There are multiple transac-
tions accessing the same schema object and all of them cannot own the schema
object. An object can have at most one owner. In addition, there are constraint-
related reasons for modeling a transaction and its schema as peers to be elabo-
rated in section 4. The basic features of the transaction model are represented
in figure 1.

In our approach, the class Transaction is bounded parametric, where the
bound type is the type of schema to which a specific transaction type is bound.
This makes it possible for a particular transaction class to be compiled with
respect to a specific schema type. The notation in the code given below follows
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Schema Schema
component component

Fig. 1. Transactions and schemas

Spec#. T'! denotes a non-null object type, i.e., an object type that does not al-
low null references. The attribute [Peer] indicates that the relationship between
a transaction object and its associated schema object is specified as the peer
relationship. The attribute [SpecPublic] denotes private components that can
be used as public only in specifications.

public interface Schema {...}

public class Transaction <T> where T: Schema {
[SpecPublic][Peer] protected T! schema;
public Transaction(T! schema){ this.schema = schema;}

}

Both schemas and transactions are equipped with very general logic-based
constraints to be elaborated throughout the paper starting with sections 6 and
7.

3 Concurrent Transactions and Integrity Constraints

Our view is that a database schema should be equipped with explicitly specified
integrity constraints that transactions acting on the database must satisfy. The
database is acted upon by a set of concurrent transactions. A well-known fact
is that concurrent executions of transactions may violate the database integrity
constraints even if individual transactions do not.

If individual transactions respect the integrity constrains, then obviously their
serial execution will as well. That is, if the integrity constraints hold initially,
they will hold after completion of the first transaction, and likewise they will
hold after each subsequent transaction in a serial execution.

However, serial executions are unacceptable for performance and database
availability reasons. Database technologies are naturally based on concurrent
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transactions. Since concurrent transactions may violate the integrity constraints,
they must be managed by a technology that allows only those concurrent exe-
cutions that do not violate those constraints. From the viewpoint of database
integrity, those concurrent executions are equivalent to serial executions. Such
concurrent executions are called serializable executions [11].

A concurrent execution is serializable if it has an equivalent serial execution.
Two executions are said to be equivalent from the viewpoint of integrity if they
have the same ordering of conflicting actions. Two actions are conflicting if they
are executed on the same object and at least one of them is an update. Various
locking protocols have been invented and implemented to guarantee the serial-
izability condition. The classical and the best known is two phase locking. Two
phase locking is a pessimistic strategy and it is provably a sufficient condition
for seralizability [11]. There are optimistic alternatives.

The beauty of the classical results on serializability is that they do not depend
upon a particular form of the integrity constraints. But the underlying assump-
tion is that whatever the integrity constraints are, each individual transaction
in a concurrent execution is required to satisfy those constraints in isolation.
Research on object-oriented transactions or the current generation of object-
oriented database systems do not address this fundamental requirement. The
reason is that there has been no technology to deal with more complex integrity
constraints. This is precisely the main point of the research reported in this
paper. We develop verification techniques that would guarantee that an object-
oriented transaction satisfies the database integrity constraints.

The verification techniques for object-oriented transactions that we investi-
gated belong to one of the following categories:

— Dynamic enforcement of constraints

A representative of this type of technology is JML [13]. In this case schema
constraints and transactions are specified in JML, and transactions are full-
fledged Java programs. Database technologies enforce a few classical database
constraints such as keys and foreign keys. JML allows much more general con-
straints. The main disadvantage is that violations are detected at run-time,
where the implications may be non-trivial, such as invocation of expensive
recovery procedures to maintain data integrity. In addition, dynamic enforce-
ments of constraints in database systems comes with a siginificant cost. But
very general constraints are specifiable and enforceable.

— Static interactive reasoning
A representative of this type of technology is PVS [21]. The main advantage
of this technology is that it is very general. PVS is a higher-order verification
system that allows specifications of specialized logics suitable for transaction
verification. Careful investigation of the transaction model shows that it is
actually temporal in nature. This is why we developed transaction verifica-
tion techniques in PVS that are based on a suitable temporal logic [3]. The
main disadvantage of this technology is that it requires very sophisticated
users and hence it is not likely to be directly used by ordinary database
programmers. This technology has a complementary role in our transaction
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verification environment. It is used to verify more general integrity con-
straints (such as temporal) that technologies based on object-oriented asser-
tion languages cannot handle.

— Automatic static verification

This is the most appealing technology from the viewpoint of users. A rep-
resentative of this technology is Spec# [15]. In our approach, schemas and
transactions are specified in Spec# and transactions are full-fledged C#
programs. In this technology the subtleties of the underlying prover technol-
ogy are hidden from the users. Static automatic verification is attempted,
with runtime checks generated as well. In addition, this particular technology
comes with the ownership model that it is essential for a sophisticated model
of object-oriented transactions. It also comes with features that allow con-
trolled updates that might violate the integrity constraints. This technology
is the focus of this paper because it is precisely what has been out of reach for
many years: static verification of very general integrity constraints for trans-
actions written in a mainstream, preferably object-oriented, programming
language.

In the transaction verification technology presented in this paper static veri-
fication is complemented with dynamic checks. Dynamic checks are in fact nec-
essary even if static verification succeeds. Static verification guarantees that the
transaction code is correct with respect to the schema integrity constraints and
the transaction specification in terms of its pre and post conditions. But if the
schema integrity constraints or the transaction precondition do not hold at the
transaction start, the results of static verification do not apply. In many situ-
ations checking the transaction precondition is possible only at run-time. For
example, inserting an object into a database collection equipped with a key
constraint requires checking that the key of the inserted element does not al-
ready exist in the database collection. This is why the transaction code must be
written in such a way that it handles run-time exceptions caused by dynamic
checks of constraints. In the absence of such exceptions, or if those exceptions
are correctly managed, the transaction postcondition and the schema integrity
constrains will hold at the transaction completion (commit) point. The key point
about static verification is that if a transaction fails a static check, it should never
be executed. This avoids major problems related to violation of the integrity con-
straints running a transaction that provably does not satisfy those constrains.
The penalties of executing such a transaction are aborting a transaction and
invoking expensive recovery procedures to restore database consistency.

4 Owners and Peers

In this section we consider the semantic modeling techniques for object-oriented
database schemas explicitly supported in the technology presented in this paper.
These techniques have not been considered in object database technologies such
as ODMG [9], Db4 [10], and Objectivity [20], and hence have no proper support
in those technologies.
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In addition to inheritance, the key abstraction technique for modeling complex
applications in this paper is aggregation. This abstraction is well understood in
semantic data models, but in the object-oriented model it has specific implica-
tions. A complex object defined by aggregation is represented by its root object
called the owner along with references to the immediate components of the owner
specified as its representation fields. References to other objects do not repre-
sent components of that object. This way a complex object is defined as a logical
unit that includes all of its components. Constraints that apply to objects de-
fined by aggregation may now be specified in such a way that they refer both
to the owner object and to the components defined by its representation fields.
In a flight scheduling application developed in this paper, a flight scheduling ob-
ject is defined as an aggregation of flights, planes and airports, as illustrated in
figure 2.

Transactions

Schedule flight

Redirect flight

Cancel flight

Hft

Fig. 2. Owners and peers in flight scheduling

The notion of ownership comes with a related semantic modeling notion.
Objects that have the same owner are called peers. The relationship among
objects flights, planes and airports is clearly not the ownership relationship.
These objects are peers as they have the same owner, the scheduling object.

The peer relationship has a role that may be even independent from the notion
of ownership. Consider the relationship of a transaction object and its associated
schema object. As we already explained, a transaction and its associated schema
are modeled as peers. Of course, we may view the overall application as the
owner of the schema object and all the associated transaction objects.

In addition to the above abstractions, inheritance is naturally an essential
modeling abstraction which we do not show in the above diagram. The model
of this application includes inheritance hierarchies of different aircraft types and
different airport types, as well as an inheritance hierarchy of different transaction
types. The interplay of inheritance and constraints is discussed in section 9.
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5 Levels of Consistency

The schema integrity constraints are typically violated during transaction execu-
tion and then the constraints are reinstated when the transaction is completed,
so that the constraints should hold at commit time. The mechanism for handling
correctly these situations is illustrated below by the structure of a transaction
that closes an airport:

expose(flight scheduling){
close airport;
cancel all flights to or from the closed airport;

}

After the first action the referential integrity constraints are temporarily vio-
lated to be reinstated after the second action of cancelling all flights to or from
the closed airport. The purpose of the expose block is to indicate that the
schema object invariants may be violated in this block. Otherwise, the verifier
will indicate violation of the schema invariants. In the expose block the object
is assumed to be in a mutable state and hence violation of the object invariants
is allowed. Outside of the expose block, assignments that possibly violate the
invariants will be static errors. Different situations that may occur with respect
to the object state and its satisfaction of the object invariants are summarized
below:

Valid object state — object invariants hold, updates must satisfy the invari-
ants.
— Mutable object state - object invariants are not required to hold, updates
are allowed to violate them
— Consistent object state — the object is in a valid state and
e the object does not have an owner or
e the owner is in a mutable state
— Committed object state — the object is in a valid state and
e the object has an owner
e the owner is also in a valid state.

When a transaction operates on an object, the implicit assumption is that the
object is in a consistent state. This means that either the object does not have
an owner to put restrictions on the object, or that the object has an owner, and
the owner is in a mutable state, hence it allows update actions on the object.
Since the object is in a consistent state, its state is valid and its components
are thus in a committed state. In order to update the receiver and the states
of its components, the receiver state must be changed to a mutable state using
the expose block. This will also change the state of the components of the object
from committed to consistent, so that methods can be invoked on them. The
notions of valid, mutable, consistent and committed objects, and the effect of
the expose statement, are illustrated in figure 3.



260 S. Alagi¢ and A. Fazeli

Valid owner Expose Scheduling Mutable owner object

Scheduling

CONED x

N Valid and consistent component objects
Valid and committed component objects

Valid and committed component object @ Valid and committed component object .M

Fig. 3. Flight scheduling consistency states

There is an obvious alternative to viewing a transaction and its associated
schema as peers: just omit any ownership or peer attributes. But in fact, us-
ing the peer relationship has important implications for transaction verification.
A transaction is verified under the assumption that the schema integrity con-
straints hold when the transaction is started. If this condition is not satisfied,
a transaction cannot be verified even if it is in fact correct with respect to the
schema integrity constraints. So we really have to guarantee this condition.

Spec# adds an implicit precondition for peer consistency so that a trans-
action can assume this condition in its verification. This applies to in-bound
parameters and the receiver of any method. The implicit postcondition for peer
consistency also applies to all out-bound parameters and return values. The
caller of a method is required to satisfy the peer consistency requirement. This
means that an object and its peers must be valid, and their owner must be
exposed first before an update is performed.

6 Constraints for Schemas

We now consider a specific schema in which the core object type is defined using
the aggregation abstraction and the ownership model along with the associated
integrity constraints. The FlightScheduling schema contains specification of three
database collections: a list of airplanes, a list of airports, and a list of flights.
The schema FlightScheduling exhibits two cases of the aggregation abstraction
as supported by the Spec# ownership model. The attribute [Rep] indicates that
the lists of flights, airports and airplanes are components of the flight schedul-
ing object which becomes their owner. The attribute [ElementsRep] indicates
that list elements are also components of the flight scheduling object. These ele-
ments are then peers according to the Spec# ownership model. This has implica-
tions on invariants that can now be defined to apply to entire complex objects,
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i.e., including their components determined by the [Rep] and [ElementsRep]
fields. These constraints are called ownership-based invariants.

public class FlightScheduling: Schema {
[SpecPublic|[Rep] [ElementsRep]| private List<Airplane!>! airplanes;
[SpecPublic][Rep| [ElementsRep] private List<Airport!>! airports;

[SpecPublic|[Rep] [ElementsRep]| private List<Flight!>! flights;
// constraints

}

In the collection of airplanes the key is Id, in the collection of airports the key
is Code, and in the collection of flights the key is FlightId. The first referential
integrity constraint specifies that each flight in the collection of flights refers to a
unique airplane in the collection of airplanes. The remaining (omitted) referential
integrity constraints specify that each flight in the collection of flights refers to
a unique airport as its origin and a unique airport as its destination.

For presentation purposes, the notation in this paper is more mathematical
than the Spec# notation. However, there is a direct correspondence between this
notation and the Spec# notation.

invariant V{int i € (0: flights.Count), int j € (0: flights.Count);
flights]i].Flightld = flights[j].Flightld = flights[i]. Equals(flights][j])};
invariant V{int i € (0: flights.Count);
3 unique {int j € (0: airplanes.Count); airplanes[j].Equals(flights]i]. Airplane) } };

A class is in general equipped with an invariant which specifies valid object
states. The schema integrity constraints are specified above as class invariants.
These assertions allow usage of universal and existential quantifiers as in the
first-order predicate calculus, as well as combinators typical for database lan-
guages such as min, max, sum, count, avg etc. These constraints in the above
schema refer to private components of the schema object. As explained earlier,
the attribute [SpecPublic] means that these private components can be used as
public only in specifications. Typically, such components will also be defined as
public properties with appropriately defined get and set methods so that access
to them can be controlled.

Spec# constraints limit universal and existential quantification to variables
ranging over finite intervals. The above constraints contain specifications of half
open intervals. The limitation that quantifiers are restricted to integer variables
ranging over finite intervals was a design decision to sacrifice expressiveness in
order to allow automatic static verification. This limitation is no problem in the
application considered in this paper as the above schema shows.

The above schema contains non-null object types (indicated by the symbol /)
that capture a very specific object-oriented integrity constraint. A frequent prob-
lem in object-oriented programs is an attempt to dereference a null reference. If
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this happens in a database transaction, the transaction may fail at run-time with
nontrivial consequences. The Spec# type system allows specification of non-null
object types. Static checking will indicate situations in which an attempt is made
to access an object via a possibly null reference.

7 Sample Transactions

Each class that a schema refers to is also equipped with its constraints as illus-
trated below for the class Flight. The relationship between a flight object and
the associated airplane object is defined as a peer relationship for the reasons
explained in section 4. The invariants include the obvious ones: the origin and
the destination of a flight must be different and the departure time must precede
the arrival time. If the current time is greater than the arrival time or the current
time is less than the departure time, the status of the flight must be idle. If the
current time is greater than the departure time and less than the arrival time
the flight status must be either flying, landing or takeoff.

invariant to # from;

invariant departureTime < arrivalTime;

invariant DateTime.Now > arrivalTime = this.flightStatus = FlightStatus.Idle;
invariant DateTime.Now < departureTime = this.flightStatus = FlightStatus.Idle;

invariant DateTime.Now > departureTime A DateTime.Now < arrivalTime =
this.flightStatus = FlightStatus.TakeOff v
this.flightStatus = FlightStatus.Flying Vv
this.flightStatus = FlightStatus.Landing;

The constraints specified in this section include some classical database
integrity constraints such as keys and referential integrity, and in addition con-
straints that are not typical for the existing database technologies, object-oriented
in particular. In fact, we are not aware of a database technology that allows con-
straints of the above variety.

To make the job of the verifier possible, specification of methods that change
the object state, such as database updates, requires specification of the frame
conditions. This is done by the modifies clause, which specifies those objects and
their components that are subject to change. The frame assumption is that these
are the only objects that will be affected by the change, and the other objects
remain the same. An attempt to assign to the latter objects will be a static error.

Sample instantiations of the class Transaction by the flight scheduling schema
are given below.

public class ScheduleFlightTransaction:
Transaction<FlightScheduling> {
public Flight? scheduleFlight (string! flightld,
string! toAirportCode, string! fromAirportCode,
DateTime departure, DateTime arrival, Airplane! plane)
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// constraints
{// transaction body }

Flight? in the above code is an explicit notation for a type that may contain a
null value. The preconditions of the transaction scheduleFlight are that the flight
id does not exist in the list of flights, that its origin (denoted fromAirportCode)
and its destination (denoted toAirportCode) must refer to existing (valid) airport
codes, and that the departure time precedes the arrival time. Valid airport codes
are kept in a table ValidCodes. The transaction scheduleFlight modifies only the
list of flights as specified in its modifies clause. The postcondition guarantees
that the newly scheduled flight exists in the list of flights.

requires toAirportCode # fromAirportCode;
requires V {int i € (0: schema.Flights.Count);
schema.Flights]i].Flightld # flightld };
requires 3 unique {int i € (0: schema.Airplanes.Count);
schema.Airplanes|i]. Equals(plane) };
requires 3 unique {string code € ValidCodes.airportsCodes;
code = toAirportCode};
requires 3 unique {string code € ValidCodes.airportsCodes;
code = fromAirportCode };
requires departure < arrival;
modifies schema.flights;
ensures 3 unique {int i € (0: schema.Flights.Count);
schema.Flights]i].Flightld = flightld };

The first precondition of the transaction cancelFlight specifies that there ex-
ists a unique flight in the collection of flights with the given id of the flight to be
deleted, denoted flightld. The second precondition specifies a requirement that
the flight departure time is greater than the current time. The modifies clause
specifies that this method modifies the collection of flights. The postcondition
specifies that the cancelled flight does not appear in the list of flights.

requires 3 unique {Flight flight € schema.Flights;
flight.Flightld = flightId};
requires V {Flight flight € schema.Flights;
flight.Flightld = flightld =
flight.departureTime > DateTime.Now };

modifies schema.flights;

ensures V {Flight! flight € schema.Flights;
flight.Flightld # flightld };

The precondition for the transaction redirectFlight are that the id of the flight
to be redirected, denoted flightld, must exist in the list of flights, and that its
status must not be landing. This transaction modifies just the list of flights. The
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postcondition ensures that the destination of the redirected flight has indeed
been changed in the list of flights to newDest.

requires 3 unique {Flight flight € schema.flights;
flight.Flightld = flightld A (flight.FlightStatus # FlightStatus.Landing)};
requires V {Flight flight in schema.flights;
flight.Flightld = flightld = flight.from # newDest };

modifies schema.flights;

ensures V {Flight! flight in schema.Flights;
flight.Flightld = flightld = flight.to = newDest };

8 Constraints and Queries

Queries are pure methods. Pure methods are functions that have no impact on
the state of objects, database objects in particular. Interplay of constraints and
queries is illustrated below. The attribute [Pure] indicates a pure method and
result refers to its result.

An example of a query (hence pure) method is flightsDepartureBetween which
returns a list of flights whose departure time is within a given interval. The pre-
conditions require that the time interval is not empty (i.e. the initial time is less
than the end time) and that the initial time is greater than the current time.
The postcondition ensures that the flights that are returned by this method have
the departure times within the specified bounds.

[Pure] public List<Flight!>? flightsDepartureBetween
(DateTime beginDateTime, DateTime endDateTime)

requires beginDateTime < endDateTime;
requires beginDateTime > DateTime.Now;
ensures V {Flight! f € result;

f.departureTime > beginDateTime A

f.departureTime < endDateTime };
{// method body }

The body of this method is specified as a LINQ query given below:

// open db

IEnumerable<Flight> flights =

from Flight flight € db

where flight.departureTime > beginDateTime A
flight.departureTime < endDateTime

select flight;

// close db;
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A native query in Db4 Objects (details omitted) has the following form:

// open db

IList<Flight!>? flights =

db.Query<Flight!>(delegate(Flight! f) {

return (f.departureTime > beginDateTime A
f.departureTime < endDateTime); };

// close db;

9 Specification Inheritance

Specifications of constraints in a class are inherited in its subclasses. In addition,
method postconditions and class invariants may be strengthened by additional
constraints. Method preconditions remain invariant. This discipline with respect
to inheritance of constraints is a particular case of behavioral subtyping [16]. It
guarantees that an instance of a subtype may be substituted where an instance
of the supertype is expected with no behavioral discrepancies.

Consider the class Airport given below in which an airport object is the owner
of its list of runways, as well as of the specific runways in that list.

public class Airport {

[SpecPublic] private string code;

[Additive] protected int numRunways;

[SpecPublic] [Rep] [ElementsRep| protected List<Runway!>! runways;
// methods and constraints

}

The invariants of this class specify that that the number of runways must be
within the specified bounds. In addition, there are ownership based invariants
on flights in the take-off and landing queues in the runways. These are invariants
that relate properties of the owner and its components and hence apply to the
entire complex object of an airport. These constraints include a constraint that
one and the same flight cannot be in two different queues belonging to different
runways. In order to make it possible for subclass invariants to refer to the field
numRunways, Spec# requires the attribute [Additive] in the specification of this
field.

invariant numRunways > 1 A numRunways < 30;
invariant runways.Count = numRunways;
invariant /* No multiple occurrences of the same flight in runways*/

Methods addRunway and closeRunway along with the associated constraints
are specified as follows:
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public virtual void addRunway(Runway! runway)
modifies runways, numRunways;
ensures 3 {Runway! r € runways; r.Equals(runway)};

{//code }

public virtual void closeRunway (Runway! runway)
modifies runways, numRunways;

ensures numRunways > 0;

ensures numRunways = old(numRunways) - 1;
ensures V { Runway! r € runways; Ir.Equals(runway)};

{// code }

Consider now a class InternationalAirport derived by inheritance from
the class Airport. The class InternationalAirport inherits all the invariants from
the class Airport. In addition, it adds new invariants that are conjoined with the
inherited ones. These additional invariants require that the number of runways
is higher than the minimum required by an airport in general. Furthermore, an
additional requirement is that there exists at least one runway of the width and
length suitable for international flights. This is expressed using a model field
IntRunway. The notion of a model field is explained in section 10 that follows.

public class InternationalAirport: Airport {
invariant numRunways > 10;

invariant 3 {Runway! r € Runways; r.IntRunway };
// IntRunway is a boolen model field in Runway

// constructor, methods

public override void closeRunway (Runway! runway)
ensures numRunways > 10;
ensures 3 {Runway! r € runways; r.IntRunway };

{// code}
}

Overriding of the method closeRunway demonstrates the rules of behavioral
subtyping. One would want to strengthen the precondition of this method by
requiring that there is more than one international runway at an international
airport or else the invariant for the international airport will be violated. But
that is not possible by the rules of behavioral subtyping. Otherwise, users of the
class Airport would see behavior of the method closeAirport that does not fit
its specifications in the class Airport. This would happen if the airport object is
in fact of the run-time type InternationalAirport. The modifies clause cannot be
changed either for similar reasons. But the postcondition can be strengthened
as in the above specifications. The postcondition now ensures that the number
of runways is greater than or equal to ten and that there exists at least one
international runway after the method execution. These are specific requirements
for international airports.
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Specification inheritance has implications on behavioral subyping of paramet-
ric types that follow well-known typing rules for such types. For example, if we
derive a schema InternationlFlightScheduling by inheritance from the schema
FlightScheduling, Transaction<InternationlFlightScheduling> will not be a sub-
type of the type Transaction< FlightSchedling>, and hence not a behavioral sub-
type either.

A class frame is the segment of the object state which is defined in that class
alone. A class frame does not include the inherited components of the object
state. An invariant of a class will include constraints that apply to its frame, but
it may also further constrain the inherited components of the object state. For
example, an object of type International Airport has three class frames. These
class frames correspond to classes Object, Airport and InternationalAirport.

The notions wvalid and mutable apply to each individual class frame. The no-
tions consistent and committed apply to the object as a whole. So an object
is consistent or committed when all its frames are valid. The expose statement
changes one class frame from valid to mutable. The class frame to be changed is
specified by the static type of the segment of the object state to be changed. For
example, the body of the method closeAirport of the class InternationalAirport
has the following form:

assert runways # null;

[Additive] expose((Airport)this){
runways.Remove(runway);
numRunways—;

10 Abstraction

Typical classes in this application have private fields that are made public only
for specification purposes. Examples are fields code and runways in the class
Airport. Users of this class would clearly have the need to read the code of
an airport, and some users would have the need to inspect the runways of an
airport. On the other hand, these fields are naturally made private as users are
not allowed to access them directly in order to change them.

The basic mechanism for exposing a view of the hidden object state is to use
public pure methods. A related technique is to use public properties. A public
property is defined as a pair of get and set methods. The constraints in the set
method control correctness of an update to a backing private field. A property
Runways of the class Airport is specified below.

public List<Runway!>! Runways {
get { return runways;}

[Additive] set

requires value # null;

ensures runways = value;
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ensures /*no multiple occurrences of the same flight in runways*/

{/* code */}
}

Property getters are pure methods by default. Properties represent a general
abstraction mechanism as the value of a property returned by the method get
need not just be the value of a backing field, but it may be computed in a more
complex way from the hidden (private) components of the object state.

Another abstraction mechanism is based on model fields. A model field is not
an actual field and hence it cannot be updated. The model fields of an object
get updated automatically at specific points in a transaction. An example of a
model field is IntRunway of the class Runway specified below.

model bool IntRunway {
satisfies IntRunway = (length > 80 A width > 10);}

Unlike pure methods, model fields do not have parameters. But they often
simplify reasoning. The verifier checks that the satisfies clause can indeed be
satisfied, i.e., that there exists an object state that satisfies this clause. The
satisfies clause may depend only on the fields of this and the objects owned by
this. The satisfies clauses may be weaker in superclasses, and strengthened in
subclasses.

11 Dynamic Checking of Constraints

Static verification of a transaction ensures that if the transaction is started in
a consistent database state (the schema invariants hold) and the transaction
precondition is satisfied, the schema invariants and the postcondition of the
transaction will hold at the point of the commit action. The application program
that invokes the transaction must satisfy the above requirements at the start of
the transaction, and will be guaranteed that the postcondition and the schema
invariants will hold at the end of the transaction execution.

Static verification does not say anything about what happens if the schema
integrity constraints or the transaction precondition are not satisfied. What it
says is that the code of a successfully verified transaction is correct with respect
to the integrity constraints. Violation of constraints may still happen at run-
time given the actual data. For example, a transaction may be invoked with
arguments that do not satisfy the precondition and hence the verification results
do not apply. This is why the dynamic checks that Spec# generates are essential.
JML does the same, but it does not offer automatic static verification of code.
Run-time tests will generate exceptions indicating violation of constraints. The
transaction must handle these exceptions properly. Static verification guarantees
that in the absence of such exceptions the results of transaction execution will
be correct with respect to the integrity constraints. This extends to concurrent
serializable executions of a set of transactions that have been statically verified.
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Explicit dynamic checks may be used to verify that the constraints hold at
run-time. This is illustrated below with a dynamic check of the precondition of
the transactions addAirport in which a denotes the airport that should be added.
The precondition of addAirport is that an airport with the code of the new air-
port does not exist in the database. This can be checked only dynamically by
querying the database and asserting that this condition is satisfied.

IList<Airport!>? airports =
db.Query<Airport!>(delegate(Airport! arp){
return (arp.Code = a.Code); };

assert airports = null;

Ensuring that a new airport has been added to the database is accomplished
by querying the database and asserting that the list of airports in the database
with the new code is not empty and that the newly inserted airport is indeed in
the database.

IObjectSet? airportsSet =
db.Query(typeof(Airport!));
assert 3 unique {Airport! arp € airportsSet; arp.Equals(a)};

12 Database Platform

The underlying database platform that we used in the implementation of the
presented transaction model is Db4 Objects. Db4 is an open source object-
oriented database management system. It manages persistent objects, offers mul-
tiple query languages, and two programming language interfaces for specifying
transactions: Java and C#.

Research presented in this paper addresses precisely the limitations of the
current generation of persistent object-oriented systems, and Db4 in particular.
Db4 does not have an explicit notion of a schema and it does not have a transac-
tion class. There are practically no constraints, especially of the kind presented
in this paper. Consequently, the constraints are not enforced, and hence the fact
that Db4 claims support for ACID transactions is not justified because of the C
component.

Our research produces a much more sophisticated database technology that
offers explicit types of schemas and transactions, very general constraints for
both, and transaction verification. These specifications could be expressed in
JML or Spec#, and the transaction code could be written in Java or C#. En-
forcing constraints is done statically if Spec# is used, and it is dynamic in both
JML and Spec#.

The role of PVS in our transaction verification environment is complementary.
It is used to reason about more general schema and transaction constraints, such
as temporal, which the two assertion languages cannot support. In addition, the



270 S. Alagi¢ and A. Fazeli

PreCondition & Schemalnvariant
SchemW Transaction

T
'
- 1
Exception
?
I
1

1
PostCondition ISchemalnvariant

Database

abort

Schemalnvariant

~4 commit H
1

l l Schemalnvariant

Fig. 4. Transaction execution

role of PVS is to show that some constraints are in fact provable, especially if
static verification comes with difficulties.

Our technology truly supports ACID transactions. We rely on Db4 for imple-
mentation of atomicity, isolation and durability, and we guarantee consistency.
In the actual implementation this is accomplished as follows:

— The precondition for the transaction invocation is that the transaction pre-
condition and the schema invariant hold. This precondition will be the sub-
ject of static verification at the point of transaction call and it will be enforced
dynamically if static verification is not possible.

— The above constraints are thus the precondition for the actual transaction
action. The postcondition of the transaction action that is enforced is that
the transaction postconditon and the schema invariant hold. This is the
task of static transaction verification. The postcondition will be enforced
dynamically as well.

— The above postcondition is the precondition for the transaction commit. The
postconditon for the transaction commit is that the schema invariant holds.

— If an exception is raised and it is not handled by the transaction, the trans-
action will be aborted. The postconditon of the transaction abort is that the
schema invariant is reinstated. Figure 4 illustrates the above points.

Isolation of concurrent transactions is implemented as follows. When a trans-
action opens the database, it creates a private workspace. Accessing persistent
objects for the first time brings them into the private workspace of the transac-
tion. Updates of objects affect initially only the objects in the private workspace.
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Since workspaces of individual transactions are private, updates that affect one
workspace are inaccessible to updates of other transactions. Figure 5 illustrates
some of the overall system architecture.

When a workspace is initially populated, the schema integrity constraints
should hold for objects that are in the private workspace because they hold for
the objects in the database. If that is not the case, the results on serializability
and our verification techniques do not apply. During transaction execution the
integrity constraints will typically be violated at some points. Static verification
guarantees that the schema integrity constraints and the transaction postcondi-
tion will hold at the commit point. This is the property of the transaction code
and hence the precondition of the transaction commit.

Atomicity is accomplished by installing all the changes recorded in the trans-
action workspace in the database so that either all of them are performed or
none of them are. In the actual Db4 implementation a two phase write-ahead
protocol is used to guarantee that all changes are made safely or none of them
are.

There are two options supported by Db4 as far as the locking protocols
are concerned. In a pessimistic strategy the private workspace consists of
database objects and in-memory objects. In-memory objects are kept in sep-
arate workspaces and database objects are locked using a protocol that guar-
antees serializability (such as two-phase locking [11]). The locks will be held
throughout transaction execution and released after a successful commit. In an
optimistic protocol the private workspace will consist of in-memory objects only.
Database objects will be accessed by multiple transactions and at commit time
a concurrent execution will be checked for serializability.
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The serializability check looks at the ordering of conflicting actions in the
transactions log. The ordering of conflicting actions must correspond to some
serial execution. If the serializability check fails at commit time, a suitable action
must be performed, such as a rollback.

Once the commit is completed successfully, the updated objects in the
database become available to other transactions. Successful verification guar-
antees that the objects in the database satisfy the integrity constraints. The D
component of the notion of an ACID transaction will hold because committed
changes will persist in the database.

The postcondition of the transaction abort is guaranteed by restoring the
database objects and in-memory objects to the state before transaction execution
so that the restored objects will satisfy the schema integrity constraints. Db4 has
methods used in our implementation that rollback changes to persistent objects
and refresh in-memory objects.

Our protocols differ from other similar protocols, and Db4 protocols in par-
ticular, in a fundamental way. They guarantee that the database integrity con-
straints will indeed be satisfied. To our knowledge, this is the only object-oriented
technology that truly guarantees the C component of the notion of ACID trans-
actions.

13 Related Research

General integrity constraints are missing from most persistent and database
object models with rare exceptions such as [2,4,8]. This specifically applies to
the ODMG model [9,5], PJama [18], Java Data Objects [12], and just as well
to the current generation of systems such as Db4 Objects [10], Objectivity [20]
or LINQ [17]. Of course, a major reason is that mainstream object-oriented
languages are not equipped with constraints. Those capabilities are only under
development for Java and C# [13,19]. In addition, none of the above technologies
has support for the modeling techniques based on the ownership model.

A classical result [23] on the application of theorem prover technology based
on computational logic to the verification of transaction safety is relational.
Early object-oriented results include [8] and the usage of Isabelle/HOL [25]. A
recent result [6] is relational and functional. In comparison with the above results
and our own previous results, research reported in this paper produces object-
oriented schemas with more general integrity constraints, transactions written in
a mainstream object-oriented language, and their static verification that guaran-
tees ACID properties in an implementation based on an object-oriented database
management system.

Our previous results include techniques based on JML and PVS [3]. Our most
recent results that apply to XML Schema constraints and the associated trans-
actions are based on Spec# [2]. Reflective constraint management, static and
dynamic techniques for enforcing constraints, and transaction verification tech-
nology are presented in [3,4,22]. The above techniques were applied to ambients
of concurrent and persistent objects in [1].
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A substantial amount of recent research has been directed toward a correct
model and the required apparatus in object-oriented programming languages
that would support the notion of a transaction [14,26,24]. These results are meant
to resolve the mismatch between the existing concurrent object-oriented features
of languages such as Java and C# and those required by the notion of ACID
transactions. Unlike that research, research reported in this paper concentrates
on the C component of ACID transactions. In addition, we also implement the
D component of the ACID model based on the support of an object-oriented
database management system [10].

14 Conclusions

The main contributions of this paper are solutions for two related problems that
have been open so far:

— Lack of general schema integrity constraints in the existing object-oriented
persistent or database technologies.

— Lack of a transaction specification and verification technology that would
verify, preferably statically, that a transaction satisfies the schema integrity
constraints.

The constraint-based technology allows specification of object-oriented
schemas equipped with general database integrity constraints, transactions and
their consistency requirements. The verification techniques presented in the pa-
per allow largely static and automatic verification of transactions with respect to
the specified constraints. A major advantage is that all the subtleties of the un-
derlying verification and prover technology are completely hidden from the users.
The implications on data integrity, efficiency and reliability of transactions are
obvious and non-trivial.

Data integrity as specified by the constraints could be guaranteed. Runtime re-
liability of transactions is significantly improved. Expensive recovery procedures
will not be required because the objects that violate the integrity constraints
will never be committed to the database. The generated dynamic checks provide
a significantly better control over exceptions raised by violation of the integrity
constraints. In addition, more general application constraints that are not nec-
essarily database constraints could be guaranteed. All of this produces a much
more sophisticated technology in comparison with the existing ones.

The impedance mismatch between data and programming languages is to
a great extent caused by different levels of abstraction of these two classes of
languages. Data (query in particular) languages are largely declarative, and pro-
gramming languages are largely procedural. A distinctive feature of the technol-
ogy presented in this paper is declarative database programming in which the
main emphasis is on writing a variety of constraints. The procedural code is in
general simple, and thanks to recent extensions of object-oriented languages also
largely declarative.
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We demonstrated that an object-oriented model of transactions requires more
advanced features of object-oriented type systems such as bounded parametric
polymorphism and non-null object types. In addition, we showed that the own-
ership model is also essential for the transaction model. It allows specification
of schemas using the aggregation abstraction and specification and enforcement
of the integrity constraints that apply to complex objects. To our knowledge, no
object-oriented persistent or database technology has the above features.

The model for schemas and transactions presented in this paper has been
designed in such a way that it has a direct representation in Spec#. This makes
Spec# verification technology directly applicable. Spec# limitations in expres-
siveness (like those for universal and existential quantification) presented no
paricular problem in the application that we developed. But strictly speaking,
the chosen application features a variety of temporal constraints that cannot be
specified in Spec# in a temporal logic style. We use a different technology for
specifying temporal constraints for schemas and transactions that complements
the environment presented in this paper. That technology is based on a higher-
order interactive verification system. While it is capable of expressing much more
general constraints expressed in specialized logics, this technology requires very
sophisticated users.

Automatic static verification (as in Spec#) is clearly a preferable verification
technology from the viewpoint of the users. At this point that technology is
still a prototype. The underlying architecture that separates the users view from
the prover technology is very complex. Static verification sometimes comes with
difficulties. However, while dynamic enforcement technology (as in JML) allows
very general constraints, it comes with run-time penalties that are particularly
pronounced in database applications.
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