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Abstract. This short essay overviews a history and a future perspective
of dynamic load balancing for irregular applications. Since I write this
essay for the Festschrift, I discuss ideas of load balancing from the point
of view of concurrent objects as much as possible.
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1 Introduction

In my doctoral work, I designed a concurrent object-oriented programming lan-
guage ABCL/ST (ABCL/Statically Typed) based on ABCL/1 [32, 31] and im-
plemented a concurrent object-oriented language system ABCL/EM-4 [28] for a
highly parallel data-driven computer EM-4 [19].

In the computation/programming model for ABCL/1, computation is per-
formed by a collection of autonomous, concurrently active software entities called
concurrent objects, and the interaction between concurrent objects is performed
solely via message passing. More than one concurrent object can become active
simultaneously, and more than one message transmission may take place in par-
allel. Each concurrent object has its own single thread of control, and it may have
its own memory, the contents of which can be accessed only by itself. Theoretical
foundations for concurrent objects have been established by a series of studies
in Actors [1], ABCM [20] (the computation model for ABCL/1), POOL [2], and
calculi of asynchronous objects [15].

In a concurrent object-oriented language system ABCL/EM-4, the data-driven
nature of EM-4 was well suited for efficient message handling. EM-4 consists of
80 PEs (Processing Elements) and the interconnection network. We can allo-
cate a newly created concurrent object on a PE and exchange hardware-level
packets between PEs to realize message passing. Interestingly, at the implemen-
tation level, I considered PEs as generalized, universal concurrent objects (i.e.,
abstract PEs). At present, I would like to call such generalized, universal concur-
rent objects workers, which handle implementation-level messages and change
their roles according to ABCL-level concurrent objects. Usually, the abstract
system consists of as many workers as there are PEs in the underlying computer
system.

I also think that the concurrent object-based computation model is useful for
implementing higher-level languages than concurrent object-oriented languages,
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where workers (as universal concurrent objects) actually run in parallel. It is
useful for performance analysis as an execution model, and is useful for the
design and verification of protocols (for high-level communication by exchanging
messages). Concurrent objects have clear modularity; messages and their types
(request/reply) are clear, and each concurrent object clearly has its own single
thread of control and its own memory.

An actual computer system may have shared memory. The concurrent object-
based computation model does not cover shared memory. Shared memory may
serve as both an additional gift and a trouble. However, we can specify most
interactions among workers without directly using shared memory; of course,
shared memory can be used for implementing the concurrent object-based com-
putation model.

Recently, as high-level languages that employ workers (as universal concurrent
objects), I am interested in languages which support dynamic load balancing for
irregular applications. In the rest of this short essay, I would like to overview a
history and a future perspective of dynamic load balancing.

2 Load Balancing

With the growing popularity of parallel architectures including many/multi-
cores, it has become important to ensure easy parallel programming for effi-
cient parallel computing. An ultimate goal of programming/computing system
research is to allow users to describe the computation at a higher level of ab-
straction and to automatically determine the details of how to perform the com-
putation.

In many irregular applications, static partitioning of work with sufficient con-
currency into parallel tasks (for present workers), each with an equal amount of
work, is impossible. In such cases, dynamic load balancing, where a task (a piece
of work) is dynamically allocated to an idle worker, is effective. Work stealing is
a randomized technique that implements load balancing. An idle worker (thief)
steals a task from another randomly selected loaded worker (victim). Usually,
the number of workers does not exceed the number of underlying computing re-
sources, such as cores and “hardware” threads (afforded by Simultaneous Multi-
threading (SMT) and Hyper-threading), so that workers actually run in parallel.

In general, work-stealing frameworks [26, 18, 27, 6, 7, 3, 8, 21, 23, 25, 16, 4,
5, 17, 13, 10, 11] work well with parallel divide-and-conquer (tree-recursive) al-
gorithms, where workers, if necessary, exchange relatively large subdivided tasks
near the root of the invocation tree in order to reduce the total work-stealing
costs. It is well known that (nested) FORALL-style parallel algorithms can be
converted into parallel divide-and-conquer (recursive) algorithms easily (almost
automatically); for example, TBB [16]’s parallel_for template function recur-
sively splits a given range into subranges. Examples of manual conversion for
Cilk [8] can be found in our previous paper [29].

Work-stealing frameworks with parallel divide-and-conquer algorithms gener-
ally afford better cache locality than work-sharing approaches; when the dynamic
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schedule is specified on OpenMP’s work-sharing loop construct, relatively small
chunks of iterations are assigned to workers (called “threads in the team” in
OpenMP) dynamically. Note that work-sharing with larger chunks (even with
the guided schedule) is less tolerant of work imbalance among iterations.

2.1 Lazy Task Creation

LTC (Lazy Task Creation) [18] is one of the best implementation techniques
for dynamic load balancing. LTC provides good load balancing for many appli-
cations including irregular ones; that is, it keeps all workers busy by creating
plenty of “logical” threads and adopting the oldest-first work-stealing strategy.

In LTC, each worker spawns plenty of logical threads and schedules them in-
ternally and thus efficiently. An idle worker (thief) may steal (the continuation
of) a logical thread from another worker (victim). That is, logical threads are
used as tasks dynamically allocated to idle workers. When a logical thread re-
cursively spawns offspring logical threads, the oldest-first work-stealing strategy
is generally effective in making tasks larger.

In LTC, a newly spawned logical thread is directly and immediately executed
like a usual call while (the continuation of) the oldest thread in the worker may
be stolen by another idle worker. Usually, the idle worker (thief) randomly selects
another worker (victim) for stealing a task. Cilk [8] employs this technique. LTC
is originally invented for MultiLisp [12], where the future construct is used as in
(+ (future E1) (future E2)). A future expression creates a logical thread,
and the channel (or promise) of the result (which will be determined later) is
passed to the continuation of the future expression. The result is waited for and
extracted with an implicit touch operation.

A message passing implementation [6] of LTC employs a polling method where
the victim detects a task request sent by the thief and returns a new task created
by splitting the present running task. StackThreads/MP [23], OPA [25], and
Lazy Threads [9] employ this technique. Although the thief may have to wait for
a task for a long time, polling methods often improve performance by avoiding
“memory barrier” instructions, as Indolent Closure Creation [21] improves Cilk’s
performance.

2.2 Cilk

Cilk [8] is a parallel programming language. It provides good load balancing by
employing LTC [18].

In Cilk, the programmer specifies parallel functions (cilk procedures). The
spawning of a parallel function is written as a C call with an additional spawn
keyword. At the language level, a logical thread that executes the parallel func-
tion is created. At the implementation level, this child thread is executed im-
mediately (prior to the parent), and (the continuation of) the parent thread
becomes stealable for dynamic load balancing. The programmer writes a sync

statement so that the parent thread waits for the completion of all spawned child
threads. Note that sync statements are compiled away for fast clones [22] at the
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implementation level. Since each parallel function has sync as its implicit last
statement, the child threads cannot survive longer than the parent thread. Thus,
the termination of a parallel algorithm is simply detected as the completion of
the corresponding parallel function invocation.

Note that Cilk can run on shared memory environments, but it cannot run on
distributed memory environments. Since the continuation of the parent thread
is implicit, explicit serialization/communication (for distributed memory) of the
implicit continuation context is difficult.

Cilk employs a Dijkstra-like (and Dekker-like) protocol called the “THE”
protocol for work stealing. When this protocol is implemented on modern paral-
lel architectures that do not provide sequential consistency for shared memory,
the owner (the potential victim) is forced to execute store-load memory barrier
(fence) instructions when extracting its own potential tasks (logical threads in
Cilk); this results in substantial overheads.

In Cilk, the pseudovariable SYNCHED is true if all spawned child threads
are completed. SYNCHED was originally introduced to promote the reuse of a
workspace1 among child logical threads [22] and usually it cannot be used for
the reuse of a workspace between parent and child logical threads.

2.3 Other Versions of Cilk

In 1995, a previous version of Cilk was published in [3]. This version of Cilk
differs from the well-known version Cilk-5 [8] in the following manner:

– Each logical thread is nonblocking, which means that it can run to comple-
tion without waiting or suspending once it has been invoked.

– Programs must be written in explicit continuation-passing style; each logi-
cal thread must additionally spawn a successor thread (by spawn_next) to
receive the children’s return values when they are produced.

– When a thread spawns a new child thread, the parent-first approach is
taken; i.e., the new child thread (rather than the parent thread) is pushed
to the ready queue. Later, it will be popped or stolen. (More precisely, they
use levels each of which corresponds to the number of spawn’s (but not
spawn_next’s) to employ the ready queue as an array in which the Lth
element contains a linked list of all ready threads having level L.)

– It can run on distributed memory computers. When threads are stealable,
they have not been invoked and they have no continuation contexts. Im-
plicit continuations in Cilk-5 may be expressed explicitly as such stealable
new threads in [3]. Note that a thread may spawn as many threads as neces-
sary, and creation of implicit Cilk-5 intrathread continuations can be mostly
avoided.

Recently, MIT licensed Cilk technology to Cilk Arts, Inc. Cilk Arts developed
Cilk++, which includes full support for C++, parallel loops, and superior inter-
operability with serial code. In July 2009, Intel Corporation acquired Cilk Arts.

1 In this essay, workspaces mean arrays or any other mutable data structures.
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Intel released its ICC compiler with Intel Cilk Plus for C and C++ and provided
the GCC “cilkplus” branch C/C++ compiler.

In Cilk++ (and Cilk Plus), reducers and other Cilk++ hyperobjects are intro-
duced, which enable lazy allocation of views (race-free reduction workspaces).
That is, when the continuation of the parent thread is stolen, a new view of
the reducer is allocated. This behavior can also be implemented with SYNCED in
Cilk-5, but the use of reducers is easy to understand.

2.4 Tascell

Recently, we proposed a “logical thread”-free parallel programming/execution
framework called Tascell as an efficient work-stealing framework [13]. Tascell
implements backtracking-based load balancing with on-demand concurrency. A
worker performs a computation sequentially unless it receives a task request
with polling. When requested, the worker spawns a “real” task by temporarily
“backtracking” and restoring its oldest task-spawnable state. Because no logical
threads are created as potential tasks, the cost of managing a queue for them
can be eliminated.2 Tascell also promotes the long-term (re)use of workspaces
(such as arrays and other mutable data structures) and improves the locality of
reference since it does not have to prepare a workspace for each concurrently
runnable logical thread.

The Tascell framework consists of a compiler for the Tascell language and
a runtime system. This framework supports both distributed and shared mem-
ory environments. The Tascell compiler employs an extended C language as the
intermediate language. In the first compilation phase, a Tascell program is trans-
lated into an extended C program with nested function definitions in order to
implement task-request handlers and dynamic winders. In the second compila-
tion phase, the extended C program with nested functions is compiled by an
enhanced version of GCC [30] or by a translator into standard C [14]. These
implementations provide lightweight lexical closures called “L-closures” which
are created by evaluating nested function definitions, enabling a running pro-
gram to legitimately inspect/modify the contents of its execution stack. Using
elaborate compilation/translation techniques, we can delay the initialization of
an L-closure until the L-closure is actually invoked, and we can use a private lo-
cation as a register allocation candidate for an accessed variable to realize quite
low creation/maintenance costs. Because the compiled Tascell program creates
L-closures very frequently but calls them infrequently (only when spawning a
task), the total overhead can be reduced significantly even with high invocation
costs.

Idle workers request tasks from loaded workers. When receiving a task request,
a loaded worker (victim) creates a new task by dividing the current running task,

2 The effect is significant only when the cost of managing logical threads is relatively
high (in expected time) as in Cilk-5. There are multithreaded languages and systems
(such as StackThreads/MP [23] and OPA [25]) in which the cost of managing logical
threads is quite low.
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and returns the new task to the idle worker. When an idle worker (thief) receives
a task, it executes the task and returns the result of the task.

In the current implementation of Tascell, each worker employs a single ex-
ecution stack for multiple tasks. When a worker must wait for the result of a
stolen task, it calls a C function which attempts to steal (and execute with the
worker’s stack) another task by dividing the stolen task.3 When the result is
available, the return to the “current” task is performed as the ordinary return in
C; that is, the “current” task is managed (or “suspended”) with C’s call/return
mechanism.

In Tascell, spawned tasks are managed. More precisely, a task request, the
stolen (spawned) task, the result of the stolen task, and the ACK of the result
are managed by both the victim and thief workers. A task and its result are
represented by a task object.

Figure 1 shows a Tascell program that performs backtrack search for finding
all possible solutions to the Pentomino puzzle. We defined a task object named
pentomino. Several fields are declared as the search input. The field s is declared
for storing the result. A Tascell worker that receives a pentomino task executes
pentomino’s task_exec body. In the task_exec body, Tascell worker can refer
to the received task object by the keyword this.

In worker functions, which are specified by the keyword worker (like cilk

procedures in Cilk), we can use Tascell’s task division constructs. A parallel
for loop construct can be used for dividing an iterative computation. It is
syntactically denoted by:

for(int identifier : expressionfrom, expressionto) statementbody
handles task-name (int identifier from, int identifier to)

{ statementput statementget }

This iterates statementbody over integers from expressionfrom (inclusive)
to expressionto (exclusive). When the implicit task-request handler (available
during the iterative execution of statementbody) is invoked, the upper half of
the remaining iterations are spawned as a new task-name task, whose object
is initialized by statementput . In statementput , the actual assigned range can
be referred to by identifier from and identifier to . The worker handles the result
of the spawned task by executing statementget .

4 Note that a worker performs
iterations for a parallel for loop sequentially unless requested; the worker does
not create any logical threads and can (re)use a single workspace (such as a
worker-local array) for a long time.

Parallel for statements may be nested dynamically in their statementbody .
Therefore, multiple task-request handlers may be available at the same time.

3 This saves the execution stack as in Leapfrogging [27]. TBB [16] employs a more
general technique for saving the execution stack.

4 Specifying a task definition and several statements to handle task objects makes
Tascell programs more verbose than Cilk programs. These costs are necessary for
more exact control of workspaces and distributed memory environment support.
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task pentomino {
out: int s; // output
in: int k, i0, i1, i2;
in: int a[12]; // manage unused pieces
in: int b[70]; // the board, with (6+sentinel) × 10 cells

};
task_exec pentomino {
this.s = search (this.k, this.i0, this.i1, this.i2, &this);

}
worker int search (int k, int j0, int j1, int j2, task pentomino *tsk)
{
int s=0; // the number of solutions
// parallel for construct in Tascell
for (int p : j1, j2)
{
int ap=tsk->a[p];
for (each possible direction d of the piece) {
... local variable definitions here ...
if (Can the ap-th piece in the d-th direction be placed

on the board tsk->b?);
else continue;
dynamic_wind // construct for specifying undo/redo operations
{ // do/redo operation for dynamic_wind

Set the ap-th piece onto the board tsk->b and update tsk->a.
}
{ // body for dynamic_wind
kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // try the next piece
s += search (kk, j0+1, j0+1, 12, tsk);

}
{ // undo operation for dynamic_wind

Backtrack, i.e., remove the ap-th piece from tsk->b and restore tsk->a.
} // end of dynamic_wind

}
}
handles pentomino (int i1, int i2) // Declaration of this and setting

// a range (i1-i2) is done implicitly
{
// put part (performed before sending a task)
{ // put task inputs for upper half iterations
copy_piece_info (this.a, tsk->a);
copy_board (this.b, tsk->b);
this.k=k; this.i0=j0; this.i1=i1; this.i2=i2;

}
// get part (performed after receiving the result)
{ s += this.s; }

} // end of parallel for
return s;

}

Fig. 1. A Tascell program that performs backtrack search for Pentomino
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Each worker attempts to detect a task request by polling at every parallel for
statement without heavy memory barrier (fence) instructions. When the worker
detects a task request, it performs temporary backtracking in order to spawn a
larger task by invoking as old a handler as possible.

We may use the dynamic_wind construct in order to specify how to perform
undo-redo operations during the backtracking (undo) and the return from the
backtracking (redo). In Figure 1, the worker employs a single workspace for
representing a board with pieces (within tsk) unless it receives a task request; the
dynamic winder temporarily removes pieces in order to restore a task-spawnable
state near the root of the backtrack search tree so that the oldest task-request
handler can spawn a larger task as this by copying the restored workspace
(within tsk).

Our approach differs from LTC in the following manner:

– Our worker performs a sequential computation unless it receives a task re-
quest. Because no logical threads are created as potential tasks, the cost of
managing a queue for them can be eliminated.

– In multithreaded languages, each (logical) thread requires its own workspace.
In contrast, our worker can reuse a single workspace while it performs a
sequential computation to improve the locality of reference and achieve a
higher performance.

– When we implement a backtrack search algorithm in multithreaded lan-
guages, each thread often needs its own copy of its parent thread’s workspace.
In contrast, our worker can delay copying between workspaces by using back-
tracking.

– Our approach supports (heterogeneous) distributed memory environments
(including mixed-endian environments) without using distributed shared
memory systems.

Note that LTC assumes that the number of really created tasks (and steals)
is incomparably smaller than the number of logical threads. Our approach also
assumes that the number of really spawned tasks (and steals) is very small. This
assumption justifies our approach, which accepts higher work-stealing (back-
tracking) overheads in order to achieve lower serial overheads than more con-
ventional LTC such as Cilk.

Our approach is “logical thread”-free, but its ability to restore task-spawnable
states without loss of good serial efficiency depends heavily on L-closures and
the notion of lazy stack frame management [14, 30]. The idea of lazy frame man-
agement can also be applied to logical threads. Indolent Closure Creation [21]
employs this idea for Cilk; its technique of using a shadow stack is similar to
the lazy validation of an explicit stack in our transformation-based implemen-
tation [14] of L-closures. StackThreads/MP [23] enables each worker to manage
logical threads within its execution stack by allowing the frame pointer to walk
the execution stack independently of the stack pointer. (Our compiler-based
implementation [30] of L-closures is based on generalization of this technique.)
Moreover, our previous work [25] shows that the notion of “laziness” is effective
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for modern multithreaded languages with thread IDs and dynamically-scoped
synchronizers.

Notice that Tascell’s approach is to employ different semantics from mul-
tithreading rather than to reduce costs for multithreading. Tascell’s approach
enables further performance improvement by reusing a workspace and delaying
copying between workspaces. This is the case in most multithreaded languages
other than Cilk. In Cilk, a pseudovariable SYNCHED is provided, which promotes
the reuse of a workspace among child logical threads [22].

2.5 Other Frameworks

WorkCrews [26], Leapfrogging [27], and Lazy RPC [7] take the parent-first strat-
egy; at a fork point, a worker executes the parent thread prior to the child thread
and makes the child stealable for other workers, and calls the child thread if it
has not been stolen at the join point of the parent thread. Tascell uses a similar
strategy; however, creations of stealable entities are delayed and mostly omitted.

Lazy Threads [9] realizes further optimization for spawning a thread by trans-
lating it into a parallel ready sequential call. It achieves a lower thread creation
cost than the original LTC by avoiding operations for queueing a new thread.
However, this technique can be applied only for consecutive forks. Furthermore,
it is unclear how this technique can coexist with the oldest-first work stealing
strategy.

We can find few pieces of recent work that make remarkable advances follow-
ing the abovementioned techniques; for example, X10[4]’s thread (or activity)
creation and synchronization are inspired by Cilk, and the fundamental parts of
recent techniques [5, 17, 10, 11] are not beyond the abovementioned techniques.
This means that the LTC/Cilk-originating ideas of “logical threads” for load
balancing reach maturity.

3 Future Perspective

There is a research topic in Tascell. In Tascell, when a worker waits for the result
of a stolen task, it tries to steal (and executes) another task of the task requester
until the result is returned. This restriction is posed for saving the execution stack
as in Leapfrogging [27]. This also limits the choice of tasks to steal and therefore
might limit parallelism and cause tightly stealing workers. The use of multiple
execution stacks for a single worker would alleviate the problem. In addition,
the only temporary use of a constantly bounded execution stack would solve the
problem; this means that continuations should be stealable.

For multithreaded languages (and Tascell with stealable continuations), the
implementation for distributed memory is difficult mainly because the implicit
stealable continuations are difficult to move to another node. The idea of Cilk++
hyperobjects, where the objects themselves can interact with steals, may be
applied to this problem.

With the growing popularity of highly/massively parallel architectures, scal-
ability and dependability will be very important properties of load balancing
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frameworks. Extending load balancing frameworks to support these properties
would be required.

In a large scale shared memory system, preventing data races would become
important. Type systems may be useful for preventing data races from occurring
in the first place (e.g., based on [24]).

Recent computer architectures for high performance computing tend to ex-
ploit heterogeneity and hierarchy. Software systems also employ multiple pro-
gramming languages and advanced features such as dynamic compilation. Load
balancing frameworks and other frameworks should exploit these aspects for ef-
ficiency, meaning not only high performance but also low energy consumption.
Clear modularity of concurrent objects can provide clear (extended) models for
the design and verification of such complex systems.
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