
Gul Agha Atsushi Igarashi
Naoki Kobayashi Hidehiko Masuhara
Satoshi Matsuoka Etsuya Shibayama
Kenjiro Taura (Eds.)

Concurrent Objects
and Beyond

Fe
st

sc
hr

ift
LN

CS
 8

66
5

Papers dedicated to Akinori Yonezawa
on the Occasion of His 65th Birthday

 123

Lecture Notes in Computer Science 8665
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Gul Agha Atsushi Igarashi
Naoki Kobayashi Hidehiko Masuhara
Satoshi Matsuoka Etsuya Shibayama
Kenjiro Taura (Eds.)

Concurrent Objects
and Beyond

Papers dedicated to Akinori Yonezawa
on the Occasion of His 65th Birthday

13

Volume Editors

Gul Agha
University of Illinois at Urbana-Champaign, Urbana, IL, USA
E-mail: agha@illinois.edu

Atsushi Igarashi
Kyoto University, Kyoto, Japan
E-mail: igarashi@kuis.kyoto-u.ac.jp

Naoki Kobayashi
Etsuya Shibayama
Kenjiro Taura
The University of Tokyo, Japan
E-mail: koba@is.s.u-tokyo.ac.jp
E-mail: etsuya@ecc.u-tokyo.ac.jp
E-mail: tau@eidos.ic.i.u-tokyo.ac.jp

Hidehiko Masuhara
Satoshi Matsuoka
Tokyo Institute of Technology, Tokyo, Japan
E-mail: masuhara@acm.org
E-mail: matsu@is.titech.ac.jp

Cover figure: US Post Office-Central Square, Cambridge, MA, USA

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-44470-2 e-ISBN 978-3-662-44471-9
DOI 10.1007/978-3-662-44471-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946291

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Yonezawa

Preface

It is with great pleasure that we present this Festschrift volume in honor of
Professor Akinori Yonezawa, a towering figure in computer science who has made
pioneering contributions to research, education, and service in the field over four
decades.

Professor Yonezawa worked on both theoretical and practical aspects of con-
current object-oriented programming. He defined one of the first actor languages,
developed methods for reasoning about concurrent object systems, and built the
first high-performance compiler and run-time system for such a language. The
language constructs he developed for communication have been incorporated in
subsequent actor languages. His techniques for implementation demonstrated the
suitability of using concurrent objects for high-performance computing. His work
on reasoning techniques and computational reflection provided deep insights into
the semantics of programming languages based on concurrent objects.

Professor Yonezawa’s research on concurrent object languages not only
spurred an enormous body of research, it laid the ground for the successful
development of actor languages now widely used in academia and industry. Be-
sides making ground breaking research contributions, Professor Yonezawa has
been an extraordinarily influential educator and mentor. He trained a genera-
tion of students who are now well-known researchers in leading universities and
industrial laboratories. It is fair to say that it is in no small part because of Pro-
fessor Yonezawa’s effort that Japan today is recognized as an important center
for research in programming languages and high performance computing.

This Festschrift includes a collection of papers written by the participants
to the symposium titled “Concurrent Objects and Beyond: From Theory to
High-Performance Computing” to celebrate the accomplishments of Professor
Yonezawa on the occasion of his 65th birthday in 2012. A few researchers who
were regretfully unable to attend the symposium, were also invited to submit to
the Festschrift volume. All papers went through a rigorous peer review process
with one or more rounds of revision as needed. We have also decided to reprint
two of Professor Yonezawa’s early influential papers on the programming lan-
guage ABCL. It is indeed a privilege to present this body of research as a tribute
not only to Professor Yonezawa’s long and distinguished career, but as an ap-
preciation of his inspiring warmth and friendship which we have all cherished
over the decades.

Acknowledgements. We would like to thank all the authors of the papers in
this volume and also the speakers at and participants to the symposium. We are
also grateful to Toshiyuki Maeda and Yoshiko Iwasa for everything about local
arrangements of the symposium. Last but not least, we would like to dedicate
this volume to the memory of Kohei Honda, one of the distinguished researchers

VIII Preface

in concurrency theory and also one of the speakers at the symposium and authors
of the papers in this volume, who, very unfortunately, passed away in London
in December 2012, just several months after the symposium.

June 2014 Gul Agha
Atsushi Igarashi
Naoki Kobayashi

Hidehiko Masuhara
Satoshi Matsuoka
Etsuya Shibayama

Kenjiro Taura

Papers in This Festschrift

We give brief summaries of the papers included in this Festschrift.

Birth of Concurrent Objects. The opening of the Festschrift is an essay titled
My Early Education and Concurrent Objects by Prof. Yonezawa about his in-
tellectual journey, including recollection of how he grew up intellectually and of
how he came up with and developed the idea of concurrent objects. The next pa-
per Object-Oriented Concurrent Programming in ABCL/1, originally presented
at the first OOPSLA in 1986 by Akinori Yonezawa, Jean-Pierre Briot, and Et-
suya Shibayama, introduces the programming language ABCL/1, which based
on concurrent objects. In Reflection in an Object-Oriented Concurrent Language,
originally presented at the third OOPSLA in 1988 by Takuo Watanabe and Aki-
nori Yonezawa, the authors applied the notion of computational reflection by
Smith and Maes to concurrent objects and developed ABCL/R, an extension of
ABCL/1 with reflection.

Foundations of Concurrent Objects and Beyond. The paper Building Safe Con-
currency Abstractions, by Ole Lehrmann Madsen describes how high-level
concurrency constructs such as monitors and rendezvous can be built by us-
ing patterns, the unifying abstraction mechanism in Beta, and a rather low-level
concurrency construct of test-and-set. Structuring Communication with Session
Types, by Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen,
Romain Demangeon, Pierre-Malo Deniélou, and Nobuko Yoshida reviews ses-
sion types, emphasizing its historical background and design philosophies. It
also demonstrates the use of session types and session programming through
programming examples instead of going through formalities (such as the formal
syntax and semantics of programs and types). From Linear Types to Behavioural
Types and Model Checking, by Naoki Kobayashi gives an overview of a series of
the work by him (and his colleagues) on linear and behavioral type systems
for process calculi and higher-order model checking. Interestingly, the author
also describes how these ideas relate to each other and evolved, mainly from a
personal perspective.

Implementation of Concurrent Objects and Massively Parallel Languages. The
paper SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concur-
rency, by Travis Desell and Carlos Varela presents SALSA Lite, a Java-like actor
language for non-distributed environments. It introduces a notion of stages, an
abstraction of a thread, and allocating actors to one of the stages in the system.
The paper comes with performance comparison with other actor frameworks
like Erlang, Scala, and Kilim, and shows that SALSA Lite demonstrates the
best performance among them. Past and Future Directions for Concurrent Task
Scheduling, by Robert Halstead reviews two important concepts and techniques

X Papers in This Festschrift

for task scheduling systems, namely Lazy Task Creation and speculative compu-
tation based on sponsor model. This paper gives a valuable review about the root
of the idea when we consider growing number of systems similar to Lazy Task
Creation and a growing interest in parallel programming systems for multicores
in general. The paper Controlling Concurrency and Expressing Synchronization
in Charm++ Programs, by Laxmikant Kale and Jonathan Lifflander provides
a good overview of work done on the Charm++ language library and subpro-
jects, going into detail about different strategies for controlling concurrency and
parallel program flow. It concludes with case studies for a set of related high per-
formance computing applications (leanMD and a dense LU factorization for the
high performance computing challenge). MassiveThreads: A Thread Library for
High Productivity Languages, by Jun Nakashima and Kenjiro Taura describes the
MassiveThreads library, which is a fine-grained thread library compatible with
Pthreads. Unlike other fine-grained thread libraries, the MassiveThreads library
allows thread switching upon blocking I/O operations. The paper presents the
results of the micro-benchmarks. On Efficient Load Balancing for Irregular Ap-
plications, by Masahiro Yasugi is an essay on efficient dynamic load balancing for
task based parallel programming languages. Topics covered include Cilk, Lazy
Task Creation, and Tascell, which is the author’s own work.

Concurrent Objects in the World The paper Verifiable Object-Oriented Trans-
actions, by Suad Alagić and Adnan Fazeli proposes techniques to describe spec-
ifications of integrity constraints of OODB transactions and to statically verify
that those constraints are satisfied by using Spec#. Design and Implementation
of a Mobile Actor Platform for Wireless Sensor Networks, by Youngmin Kwon,
Kirill Mechitov and Gul Agha summarizes the design and implementation of
ActorNet, which is an actor-based language for embedded devices. The notable
features of ActorNet include its lightweight implementation as well as intrinsic
support of concurrency. Objects In Space, by Wolfgang de Meuter, Andoni Lom-
bide Carreton, Kevin Pinte, Stijn Mostinckx and Tom Van Cutsem overviews
extensions to AmbientTalk for writing mobile RFID-enabled applications. The
extensions consists of storing objects in RFID tags, a mechanism to obtain ob-
ject references from tags, and a support for reactive programming. Advantages
of those extensions are discussed through a case study on an application that
suggests cooking recipes for a given set of ingredients.

Beyond Concurrent Objects. The paper Towards a Substrate Framework of Com-
putation, by Kazunori Ueda gives an overview of LMNtal (and its extension
HyperLMNtal) that he designed and worked on for the past several years. The
overview includes an introduction to the language, static analysis, and an en-
coding of lambda-calculus into LMNtal. Event-Based Modularization of Reac-
tive Systems, by Somayeh Malakuti and Mehmet Akşit proposes an event-based
language for implementing reactive systems in a modular way, i.e., separating
the base- and reactive parts of the systems. From Actors and Concurrent Ob-
jects to Agent-Oriented Programming in simpAL, by Alessandro Ricci and An-
drea Santi describes an agent-oriented programming language called simpAL,

Papers in This Festschrift XI

including some design philosophy, programming examples, and implementation
issues as well as discussion on actors and concurrent objects.

We hope this volume demonstrates Professor Yonezawa’s deep influence on
a wide range of research on concurrent/parallel computing.

Symposium “Concurrent Objects and Beyond”

An international symposium titled “Concurrent Objects and Beyond: From The-
ory to High-Performance Computing” was held in Kobe, Japan to celebrate the
accomplishments of Professor Yonezawa on the occasion of his 65th birthday in
2012. It was held during May 28 and 29, 2012 at Integrated Research Center of
Kobe University, Kobe, Japan, located next to RIKEN Advanced Institute for
Computational Science (home of the K Computer), where Professor Yonezawa
serves as Deputy Director. The symposium, which attracted about 40 participants
(see the group photo in Figure 1), included talks by prominent researchers, many
of them colleagues and former students of Professor Yonezawa, who are working
on topics related to concurrent objects and high performance computing. After
the symposium, we had a tour to the K Computer as an excursion.

Fig. 1. Participants to the Symposium

We record the technical program in figures and the participants below:

Gul Agha Mehmet Akşit Suad Alagić
Kenichi Asai Eric Chen Shigeru Chiba
Andrew Chien Pierre Cointe Wolfgang de Meuter
Toshio Endo Jacques Garrigue Bert Halstead
Kohei Honda Atsushi Igarashi Takayasu Ito
Tomio Kamada Takuya Katayama Naoki Kobayashi
Ole Madsen Toshiyuki Maeda Naoya Maruyama
Hidehiko Masuhara Motohiko Matsuda Satoshi Matsuoka
Tsuyoshi Murata Viet Ha Nguyen Atsushi Ohori
Yutaka Oiwa Yoshihiro Oyama Mitsuhisa Sato
Etsuya Shibayama Kohei Suenaga Eijiro Sumii
Kenjiro Taura Mario Tokoro Kentaro Torisawa
Jan Vitek Takuo Watanabe Masahiro Yasugi

Symposium “Concurrent Objects and Beyond” XIII

10:00–10:20 Opening

Session 1 (Chair: Toshio Endo, Tokyo Institute of Technology)
10:20–10:50 Suad Alagić (University of Southern Maine)

Verifiable Object-oriented Transactions
10:50–11:10 Shigeru Chiba (University of Tokyo)

Does modularity help high-performance computing?

Session 2 (Chair: Masahiro Yasugi, Kyushu Institute of Technology)
11:40–12:10 Gul Agha (University of Illinois)

Dynamic Analysis of Concurrent Systems
12:10–12:40 Bert Halstead (Curl Corporation)

Past and Future Directions for Concurrent Task Scheduling
12:40–13:00 Kenjiro Taura (University of Tokyo)

MassiveThreads: A Lightweight Thread Library for Massively Parallel
Machines

Session 3 (Chair: Kenjiro Taura, University of Tokyo)
14:30–15:00 Akinori Yonezawa (RIKEN AICS)

Working for High Performance Computing
15:00–15:30 Andrew Chien (University of Chicago)

Concurrent Objects in High-Performance Computing and Architec-
ture: A Fundamental Theme

15:30–15:50 Mitsuhisa Sato (University of Tsukuba)

Researches on Programming Environment for the K Computer in
AICS

Session 4 (Chair: Eijiro Sumii, Tohoku University)
16:20–16:50 Kohei Honda (Queen Mary University of London)

Structuring Communications with Session Types
16:50–17:20 Vijay Saraswat (IBM Watoson Research Lab)

Building applications with X10
17:20–17:40 Atsushi Ohori (Tohoku University)

Development of SML� and its Potential for Massively Parallel
Computation

18:00–20:00 Reception

Fig. 2. Symposium Program, Day 1 (May 28, Monday, 2012)

XIV Symposium “Concurrent Objects and Beyond”

Session 5 (Chair: Etsuya Shibayama, University of Tokyo)
10:00–10:30 Ole Madsen (Aarhus University)

Concurrent object-oriented modeling and programming in BETA
10:30–11:00 Wolfgang de Meuter (Vrije Universiteit Brussel)

Objects in Space
11:00–11:20 Satoshi Matsuoka (Tokyo Institute of Technology)

Million Cores Now a Reality: Tsubame 2.0 and Beyond

Session 6 (Chair: Jacques Garrigue, Nagoya University)
11:50–12:20 Jan Vitek (Purdue University)

Thorn: Objects, Scripts and more...
12:20–12:40 Naoki Kobayashi (University of Tokyo)

Towards Model Checking of Concurrent Objects
12:40–13:00 Atsushi Igarashi (Kyoto University)

Gradual Typing for Java

Session 7 (Chair: Takuo Watanabe, Tokyo Institute of Techonology)
14:30–15:00 Mehmet Akşit (University of Twente)

From Object-Oriented to Event-Driven Programming

15:00–15:30 Pierre Cointe (École des Mines de Nantes)
Designing Programming Languages: an Historical Perspective

15:30–15:50 Hidehiko Masuhara (University of Tokyo)
Reflection on the Power of Pointcuts

Fig. 3. Symposium Program, Day 2 (May 29, Tuesday, 2012)

Brief Biography of Professor Akinori Yonezawa

Akinori Yonezawa was born in 1947 in Tokyo, Japan. He received his B.E., M.E.
degrees from the University of Tokyo in 1970, and 1972, respectively, and Ph.D
degree in computer science from Massachusetts Institute of Technology in 1978.
From 1974 to 1978, he was a Research Associate at Laboratory for Computer
Science and Artificial Intelligence Laboratory, MIT. After returning to Japan,
he joined the faculty of Department of Information Science, Tokyo Institute
of Technology, Japan as a research associate and was promoted to assistant
professor and then professor. He moved to Department of Information Science,
University of Tokyo as a professor in 1989. He was appointed Director of Center
for Information Technology, University of Tokyo from 2006 for 4 years. In 2011,
he left Tokyo and took office in RIKEN Advanced Institute for Computational
Science as Deputy Director. He became a Fellow of ACM in 1999, cited as “a
pioneer of concurrent object-oriented programming systems.” He received AITO
Dahl–Nygaard Prize in 2008 and Medal of Honor with a Purple Ribbon of Japan
(Shijuhousho) in 2009.

Publications of Professor Akinori Yonezawa

Books

1. Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.): RIMS 1982.
LNCS, vol. 147. Springer, Heidelberg (1983)

2. Yonezawa, A., Tokoro, M. (eds.): Object-Oriented Concurrent Programming, pp.
1987–282. MIT Press

3. Agha, G., Wegner, P., Yonezawa, A. (eds.): Proceedings of the 1988 ACM SIG-
PLAN workshop on Object-Based Concurrent Programming, 214 pages. ACM, San
Diego (1988)

4. Tokoro, M., Anzai, Y., Yonezawa, A. (eds.): Concepts and Characteristics of
Knowledge-Based Systems: selected and reviewed papers from the IFIP TC
10/WG10.1 Workshop, November 9-12, 511 pages. North-Holland, Mount Fuji
(1989)

5. Ito, T. (ed.): UK/Japan WS 1989. LNCS, vol. 491. Springer, Heidelberg (1991)
6. Yuen, C.K., Yonezawa, A. (eds.): Parallel Programming Systems: Proceedings of

a JSPS Seminar (Tokyo, Japan, 27-29 May 1992), 253 pages. World Scientific
(September 1993)

7. Nishio, S. (ed.): ISOTAS 1993. LNCS, vol. 742. Springer, Heidelberg (1993)
8. Agha, G., Wegner, P., Yonezawa, A. (eds.): Research Directions in Concurrent

Object-Oriented Programming, 532 pages. MIT Press (November 1993)
9. Ciancarini, P., Wang, J. (eds.): ECOOP-WS 1994. LNCS, vol. 924. Springer, Hei-

delberg (1995)
10. Ito, T. (ed.): TPPP 1994. LNCS, vol. 907. Springer, Heidelberg (1995)
11. Briot, J.-P., Geib, J.-M. (eds.): OBPDC 1995. LNCS, vol. 1107. Springer, Heidel-

berg (1996)
12. Bahsoun, J.-P., Baba, T., Briot, J.-P., Yonezawa, A.: Object-Oriented Parallel and

Distributed Programming, 329 pages. HERMES Science Publications, Paris (2000)
13. Matsuoka, S. (ed.): Reflection 2001. LNCS, vol. 2192. Springer, Heidelberg (2001)
14. Okada, M., Babu, C. S., Scedrov, A., Tokuda, H. (eds.): ISSS 2002. LNCS,

vol. 2609. Springer, Heidelberg (2003)

Chapters in Books

15. Shibayama, E., Yonezawa, A.: Distributed Computing in ABCL/1. In: Yonezawa,
A., Tokoro, M. (eds.) Object-Oriented Concurrent Programming, pp. 91–128. MIT
Press (1987)

16. Yonezawa, A., Shibayama, E., Takada, T., Honda, Y.: Modelling and Programming
in an Object-Oriented Concurrent Language ABCL/1. In: Yonezawa, A., Tokoro,
M. (eds.) Object-Oriented Concurrent Programming, pp. 55–90. MIT Press (1987)

17. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-Oriented Concurrent Program-
ming in ABCL/1. In: Bond, A.H., Gasser, L. (eds.) Readings in Distributed Arti-
ficial Intelligence, pp. 434–444. Morgan Kaufman Publishers (1988)

18. Matsuoka, S., Yonezawa, A.: Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages. In: Agha, G., Wegner, P., Yonezawa, A.
(eds.) Research Directions in Concurrent Object-Oriented Programming, ch. 4,
pp. 107–150. MIT Press (1993)

XVIII Publications of Professor Akinori Yonezawa

19. Yonezawa, A., Osawa, I.: Object-Oriented Parallel Parsing for Context-Free Gram-
mars. In: Adriaens, G., Hahn, U. (eds.) Parallel Natural Language Processing, ch. 4,
pp. 188–210. Ablex Publishing Corporation (1994)

20. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-Oriented Concurrent Program-
ming in ABCL/1. In: Skillicorn, D.B., Talia, D. (eds.) Programming Languages for
Parallel Processing, pp. 158–168. IEEE Computer Society Press (1995)

21. Masuhara, H., Yonezawa, A.: Reflection in Concurrent Object-Oriented Languages.
In: Bowman, H., Derrick, J. (eds.) Formal Methods for Distributed Processing: A
Survey of Object-Oriented Approaches, pp. 305–325. Cambridge University Press
(2001)

Invited Talks

22. Object-Oriented Concurrent Programming and Its industrial Applications. In-
ternational Conference on Theory and Practice of Software Development (TAP-
SOFT), Berlin (March 1985)

23. Object-Oriented Concurrent Computing. Department of Computer Science and
Engineering, Technical University of Dresden, Dresden, East Germany (May 1985)

24. Object-Oriented Concurrent Programming - A Language ABCL -. AFCET Con-
ference on Object-Oriented Languages, Paris, France (May 1986)

25. AI Parallelism and Programming. IFIP Congress, Dublin, Ireland (September
1986)

26. Object-Oriented Concurrent Computing. Fall 1987 Lecture Series, Department of
Computer Science, University of Maryland (October 1987)

27. Reflection in an Object-Oriented Concurrent Language. School on Foundations of
Object-Oriented Languages, Noorwijkerhout, Netherlands (May 1990)

28. Object-oriented Concurrent Computing. Five Lecture Series, Swedish Institute of
Computer Science (June 1992)

29. Theory and Practice of Concurrent Object-Oriented Computing. International
Conference on Theoretical Aspects of Computer Software (TACS 1994), Sendai,
Japan (April 1994)

30. Object-Based Models and Languages for Concurrent Systems. 1994 Workshop on
Models and Languages for Coordination of Parallelism and Distribution, Bologna,
Italy (July 1994)

31. Mobile Objects and their Implementations. International Symposium on Future
Software Technology, Hangzou, China, October 29 (October 1998)

32. Distributed and Concurrent Objects Based on Linear Logic. Third Interna-
tional Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS 1999), Florence, Italy, Feburary (1999)

33. Message or Object? – Origin and Future of Concurrent/Mobile Objects –. The 7th
International Workshop on Foundations of Object-Oriented Languages (FOOL 7),
Boston, USA (January 2000)

34. Overview of the Japanese Inter-University Research Project on Software Security.
4th International Symposium on Theoretical Aspects of Computer Software (TACS
2001), Sendai, Japan (October 2001)

35. An Overview of a Mext funded Inter-University Software Security Research, Berke-
ley, California, USA. An NSF Agenda Meeting on computer security (August 2002)

Publications of Professor Akinori Yonezawa XIX

36. An Overview on a 3.5-Year Japanese Inter-University Research on Software Se-
curity. Workshop on New Approaches to Software Construction - WNASC 2004,
Komaba, Tokyo (September 2002)

37. Concurrent Objects - Introspect and Prospect -. European Conference on Object
Oriented Programming, Paphos, Cyprus (July 2008)

38. Modeling and Simulating Real/Virtual Worlds with Concurrent Objects. The 4th
Franco-Japanese Computer Security Workshop, Tokyo (December 2008)

Journal Articles

39. Yonezawa, A.: Comments on Monitors and Path-Expressions. Journal of Informa-
tion Processing 1(4), 180–186 (1979)

40. Yonezawa, A., Hewitt, C.: Modelling Distributed Systems. Machine Intelligence 9,
41–50 (1979)

41. Yonezawa, A.: Specifying Software Systems with High Internal Concurrency Based
on Actor Formalism. Journal of Information Processing 2(4), 208–218 (1980)

42. Yonezawa, A.: A Method for Synthesizing Data Retrieving Programs. Journal of
Information Processing 5(2), 94–101 (1982)

43. Furukawa, K., Nakajima, R., Yonezawa, A.: Modularization and Abstraction in
Logic Programming. New Generation Computing 1(2), 169–177 (1983)

44. Maruyama, H., Yonezawa, A.: A Prolog-Based Natural Language Front-End Sys-
tem. New Generation Computing 2(1), 91–99 (1984)

45. Yonezawa, A., Loeper, H., Jäkel, H.-J.: The Rendezvous Concept - a Program-
ming Tool for Parallel Processing. Journal of Information Processing and Cyber-
netics 21(9), 429–440 (1985)

46. Matsuoka, S., Takahashi, S., Kamada, T., Yonezawa, A.: A General Framework
for Bi-Directional Translation between Abstract and Pictorial Data. ACM Trans-
actions on Information Systems 10(4), 408–437 (1992)

47. Yonezawa, A., Matsuoka, S., Yasugi, M., Taura, K.: Implementing Concurrent
Object-Oriented Languages on Multicomputers. IEEE Parallel and Distributed
Technology: Systems and Technology 1(2), 49–61 (1993)

48. Sugimoto, T., Yonezawa, A.: Multiple World Representation of Mental States for
Dialogue Processing. IEICE Transaction on Information and Systems E77-D(2),
192–208 (1994)

49. Kobayashi, N., Yonezawa, A.: Asynchronous Communication Model Based on Lin-
ear Logic. Formal Aspects of Computing 7(2), 113–149 (1995)

50. Kobayashi, N., Yonezawa, A.: Towards Foundations of Concurrent Object-Oriented
Programming-Types and Language Design. Theory and Practice of Object Sys-
tems 1(4), 243–268 (1995)

51. Matsuoka, S., Yasugi, M., Taura, K., Kamada, T., Yonezawa, A.: Compiling and
Managing Concurrent Objects for Efficient Execution on High-Performance MPPs.
In: Bic, L., Nicolau, A., Sato, M. (eds.) Parallel Language and Compiler Research
in, pp. 91–125. Kluwer Academic Publishers (1995)

52. Nakaya, A., Yamamoto, K., Yonezawa, A.: RNA Secondary Structure Prediction
Using Highly Parallel Computers. Computer Applications in the Biosciences 11(6),
685–692 (1995)

XX Publications of Professor Akinori Yonezawa

53. Asai, K., Matsuoka, S., Yonezawa, A.: Duplication and Partial Evaluation For
a Better Understanding of Reflective Languages. Lisp and Symbolic Computa-
tion 9(2/3), 203–241 (1996)

54. Nakaya, A., Taura, K., Yamamoto, K., Yonezawa, A.: Visualization of RNA Sec-
ondary Structures Using Highly Parallel Computers. Computer Applications in the
Biosciences 12(3), 205–211 (1996)

55. Nakaya, A., Yonezawa, A., Yamamoto, K.: Classification of RNA Secondary Struc-
tures Using the Techniques of Cluster Analysis. Journal of Theoretical Biol-
ogy 183(1), 105–117 (1996)

56. Kobayashi, N., Shimizu, T., Yonezawa, A.: Distributed Concurrent Linear Logic
Programming. Theoretical Computer Science (Linear Logic Special Issues), Else-
vier Science 227(1-2), 185–220 (1999)

57. Oiwa, Y., Taura, K., Yonezawa, A.: Extending Java Virtual Machine with Integer-
Reference Conversion. Concurrency: Practice and Experience 12(6), 407–422 (2000)

58. Masuhara, H., Yonezawa, A.: A Portable Approach to Dynamic Optimization in
Run-time Specialization. New Generation Computing 20(1), 101–124 (2001)

59. Shibayama, E., Yonezawa, A.: Secure Software Infrastructure in the Internet Age.
New Generation Computing 21(2), 87–106 (2003)

60. Kaneda, K., Taura, K., Yonezawa, A.: Virtual private grid: a command shell for uti-
lizing hundreds of machines efficiently. Future Generation Computer Systems 19(4),
563–573 (2003)

International Conference Proceedings

61. Yonezawa, A., Hewitt, C.: Modelling Distributed Systems. In: Reddy, R. (ed.)
Proceedings of the 5th International Joint Conference on Artificial Intelligence,
Cambridge, MA, pp. 370–376. William Kaufmann (August 1977), Also in Machine
Intelligence 9, Ellis Horwood Ltd., Chichester, Sussex (1978)

62. Yonezawa, A.: A Specification Technique for Abstract Data Types with Paral-
lelism. In: International Conference on Mathematical Studies of Information Pro-
cessing, Kyoto, Japan (August 1978), Also available as Research Report C-17,
Department of Information Science, Tokyo Institute of Technology (April 1978)

63. Yonezawa, A.: A Formal Specification Technique for Abstract Data Types with
Parallelism. In: Blum, E.K., Takasu, S., Paul, M. (eds.) Mathematical Studies of
Information Processing. LNCS, vol. 75, pp. 127–150. Springer, Heidelberg (1979)

64. Yonezawa, A., Matsumoto, Y.: Object Oriented Concurrent Programming and In-
dustrial Software Production. In: Mathematical Foundations of Software Develop-
ment, Proceedings of the International Joint Conference on Theory and Practice
of Software Development (TAPSOFT), vol. 2: Colloquium on Software Engineer-
ing (CSE), vol. 186 of Lecture Notes in Computer Science, pp. 395–409, Berlin,
Germany, Springer (March 1985)

65. Yonezawa, A.: AI Parallelism and Programming. In: Kugler, H.J. (ed.) Informa-
tion Processing 1986, IFIP Congress, pp. 111–113. North-Holland (1986)

66. Yonezawa, A., Matsuda, H., Shibayama, E.: An Approach to Object-Oriented
Concurrent Programming – A Language ABCL –. In: Proceedings of AFCET
Conference on Object-Oriented Languages, Paris, pp. 125–134 (1986)

Publications of Professor Akinori Yonezawa XXI

67. Briot, J.-P., Yonezawa, A.: Inheritance mechanisms in distributed object-oriented
languages. In: Conference on Software Science and Engineering (SSE 1986), RIMS,
Kyoto University, Japan (September 1986)

68. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-Oriented Concurrent Program-
ming in ABCL/1. In: Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 1986), Portland, Oregon,
pp. 258–268 (November 1986), Also in SIGPLAN Notices 21(11), 258–268

69. Briot, J.-P.: Inheritance and Synchronization in Concurrent OOP. In: Bézivin, J.,
Hullot, J.-M., Lieberman, H., Cointe, P. (eds.) ECOOP 1987. LNCS, vol. 276, pp.
32–40. Springer, Heidelberg (1987)

70. Cottrell, G.W., Dey, P., Diederich, J., Reich, P.A., Shastri, L., Yonezawa, A.:
Parallel processing in computational linguistics. In: Proceedings of the 12th In-
ternational Conference on Computational Linguistics, Budapest, Hungary, pp.
595–598 (August 1988)

71. Honda, Y., Yonezawa, A.: Debugging Concurrent Systems Based on Object
Groups. In: Gjessing, S., Chepoi, V. (eds.) ECOOP 1988. LNCS, vol. 322, pp.
267–282. Springer, Heidelberg (1988)

72. Yonezawa, A., Ohsawa, I.: Object-Oriented Parallel Parsing for Context-Free
Grammars. In: Proceedings of the 12th International Conference on Computa-
tional Linguistics, Budapest, Hungary, pp. 773–778 (August 1988)

73. Watanabe, T., Yonezawa, A.: Reflection in an Object-Oriented Concurrent Lan-
guage. In: Proceedings of Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 1988), San Diego, CA, vol. 11, pp. 306–
315 (September 1988), Also in SIGPLAN Notices 23(11) (November 1988)

74. Akinori Yonezawa, T.W.: An Introduction to Object-Based Reflective Concurrent
Computation. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Proceedings of the
1988 ACM SIGPLAN Workshop on Object-Based Concurrent Programming, San
Diego, pp. 50–54 (1989), Also in SIGPLAN Notices 24(4)

75. Watanabe, T., Yonezawa, A.: Reflective Computation in Object-Oriented Con-
current Systems and its Applications. In: Proceedings of the Fifth International
Workshop on Software Specification and Design (IWSSD 1989), Pittsburgh, USA,
pp. 56–58 (1989)

76. Shibayama, E., Yonezawa, A.: Optimistic and Pessimistic Synchronization in Dis-
tributed Computing. In: Ito, T., Halstead Jr., R.H. (eds.) US/Japan WS 1989.
LNCS, vol. 441, pp. 257–260. Springer, Heidelberg (1990)

77. Yonezawa, A.: A Reflective Object Oriented Concurrent Language ABCL/R. In:
Ito, T., Halstead Jr., R.H. (eds.) US/Japan WS 1989. LNCS, vol. 441, pp. 254–
256. Springer, Heidelberg (1990)

78. Matsuoka, S., Yonezawa, A.: Metalevel solution to inheritance anomaly in con-
current object-oriented languages. In: ECOOP/OOPSLA 1990 Workshop on Re-
flection and Metalevel Architectures in Object-Oriented Programming, Ottawa,
Canada (October 1990)

79. Ichisugi, Y., Matsuoka, S., Watanabe, T., Yonezawa, A.: An Object-Oriented Con-
current Reflective Architecture for Distributed Computing Environments (Ex-
tended Abstract). In: Proceedings of 29th Annual Allerton Conference on Com-
munication, Control and Computing, Allerton Illinois (1991)

80. Ichisugi, Y., Yonezawa, A.: Exception Handling and Real Time Features in an
Object-Oriented Concurrent Language. In: Ito, T. (ed.) UK/Japan WS 1989.
LNCS, vol. 491, pp. 92–109. Springer, Heidelberg (1991)

XXII Publications of Professor Akinori Yonezawa

81. Watanabe, T., Yonezawa, A.: An Actor-Based Metalevel Architecture for Group-
Wide Reflection. In: de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.)
REX 1990. LNCS, vol. 489, pp. 405–425. Springer, Heidelberg (1991)

82. Kobayashi, N., Matsuoka, S., Yonezawa, A.: Control in Parallel Constraint Logic
Programming. In: Proceedings of Logic Programming Conference 1991, Tokyo,
Japan. Lecture Notes in Artificial Intelligence. Springer (July 1991)

83. Matsuoka, S., Watanabe, T., Yonezawa, A.: Hybrid Group Reflective Architecture
for Object-Oriented Concurrent Reflective Programming. In: America, P. (ed.)
ECOOP 1991. LNCS, vol. 512, pp. 231–250. Springer, Heidelberg (1991)

84. Matsuoka, S., Furuso, S., Yonezawa, A.: A Fast Parallel Conservative Garbage
Collector for Concurrent Object-Oriented Systems. In: Proceedings of IEEE Inter-
national Workshop on Object Orientation in Operating Systems (I-WOOS 1991),
Palo Alto, CA, pp. 87–93 (October 1991)

85. Yasugi, M., Yonezawa, A.: Towards User (Application) Language-Level Garbage
Collection in Object-Oriented Concurrent Languages. In: Proceedings of the
OOPSLA 1991 Workshop on Reflection and Metalevel Architectures in Object-
Oriented Programming, Phoenix, USA (October 1991)

86. Takahashi, S., Matsuoka, S., Yonezawa, A., Kamada, T.: A General Framework for
Bi-Directional Translation between Abstract and Pictorial Data. In: Proceedings
of the Fourth ACM Symposium on User Interface Software and Technology (UIST
1991), Hilton Head, South Carolina, USA, pp. 165–174 (November 1991)

87. Wakita, K., Yonezawa, A.: Linguistic Supports for Development of Distributed
Organizational Information Systems in Object-Oriented Concurrent Computation
Frameworks. In: Proceedings of ACM Conference on Organizational Computing
Systems (COCS 1991), Atlanta, pp. 185–198 (November 1991)

88. America, P., Milner, R., Nierstrasz, O., Tokoro, M., Yonezawa, A.: What Is
An Object (panel). In: Zatarain-Cabada, R., Wang, J. (eds.) ECOOP-WS 1991.
LNCS, vol. 612, pp. 257–264. Springer, Heidelberg (1992)

89. Matsuoka, S., Watanabe, T., Ichisugi, Y., Yonezawa, A.: Object-Oriented Concur-
rent Reflective Architectures. In: Zatarain-Cabada, R., Wang, J. (eds.) ECOOP-
WS 1991. LNCS, vol. 612, pp. 211–226. Springer, Heidelberg (1992)

90. Yasugi, M., Matsuoka, S., Yonezawa, A.: ABCL/onEM-4: A New Soft-
ware/Hardware Architecture for Object-Oriented Concurrent Computing on an
Extended Dataflow Supercomputer. In: Proceedings of the 6th International Con-
ference on Supercomputing (ICS 1992), Washington D.C., pp. 93–103 (July 1992)

91. Masuhara, H., Matsuoka, S., Watanabe, T., Yonezawa, A.: Object-Oriented Con-
current Reflective Languages can be Implemented Efficiently. In: Proceedings of
Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA 1992), Vancouver, Canada, pp. 127–144 (1992), Also in SIG-
PLAN Notices 27(10)

92. Ichisugi, Y., Matsuoka, S., Yonezawa, A.: RbCl: A Reflective Concurrent Lan-
guage without a Run-Time Kernel. In: Proceedings of IMSA 1992 International
Workshop on Reflection and Metalevel Architectures, Tokyo, Japan (November
1992)

93. Miyashita, K., Matsuoka, S., Takahashi, S., Yonezawa, A., Kamada, T.: Declar-
ative Programming of Graphical Interfaces by Visual Examples. In: Proceedings
of the Fifth ACM Symposium on User Interface Software and Technology (UIST
1992), Monteray, CA, pp. 107–116 (November 1992)

94. Asai, K., Matsuoka, S., Yonezawa, A.: Model Checking of Control-Finite CSP Pro-
grams. In: Proceedings of the 26th Hawaii International Conference on Systems
Science, vol. 2, pp. 174–183 (1993)

Publications of Professor Akinori Yonezawa XXIII

95. Kobayashi, N., Yonezawa, A.: Asynchronous Communication Model Based on
Linear Logic. In: Halstead Jr., R.H., Ito, T. (eds.) US/Japan WS 1992. LNCS,
vol. 748, pp. 331–336. Springer, Heidelberg (1993)

96. Taura, K., Matsuoka, S., Yonezawa, A.: An Efficient Implementation Scheme
of Concurrent Object-Oriented Languages on Stock Multicomputers. In: Hal-
stead Jr., R.H., Ito, T. (eds.) US/Japan WS 1992. LNCS, vol. 748, pp. 402–405.
Springer, Heidelberg (1993)

97. Yonezawa, A., Matsuoka, S., Yasugi, M., Taura, K.: Efficient Implementations of
Concurrent Object-Oriented Languages on Multicomputers (abstract). In: Pro-
ceedings of a JSPS Seminar: Parallel Programming Systems, pp. 50–52 (1993)

98. Taura, K., Matsuoka, S., Yonezawa, A.: An Efficient Implementation Scheme of
Concurrent Object-Oriented Language on Stock Multicomputers. In: Proceedings
of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP 1993), San Diego, pp. 218–228 (May 1993), Also in
SIGPLAN Notices 28(7) (July 1993)

99. Matsuoka, S., Taura, K., Yonezawa, A.: Highly Efficient and Encapsulated Re-
use of Synchronization Code in Concurrent Object-Oriented Languages. In: Pro-
ceedings of the 8th Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA 1993), Washington D.C., USA,
September-October, pp. 109–126 (1993), Also in SIGPLAN Notices 28(10)

100. Miyata, T., Hasida, K., Yonezawa, A.: Plan Inferences in Dialogue under Dynam-
ical Constraint Programming. In: Proceedings of the Fourth International Work-
shop on Natural Language Understanding and Logic Programming (NLULP,4),
Nara, Japan, September-October, pp. 129–145 (1993)

101. Asai, K., Matsuoka, S., Yonezawa, A.: Duplication and Partial Evaluation to
Implement Reflective Languages. In: Proceedings of OOPSLA 1993 Workshop on
Reflection and Metalevel Architectures, Washington D.C., USA (October 1993)

102. Kobayashi, N., Yonezawa, A.: ACL – A Concurrent Linear Logic Programming
Paradigm. In: Proceedings of the 1993 International Logic Programming Sympo-
sium, Vancouver, Canada, pp. 279–294. MIT Press (October 1993)

103. Masuhara, H., Matsuoka, S., Yonezawa, A.: Designing an object-oriented reflec-
tive language for massively-parallel processors. In: Proceedings of OOPSLA 1993
Workshop on Object-Oriented Reflection and Metalevel Architectures, Washing-
ton D.C., USA (October 1993)

104. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting Object
Interactions Using Composition Filters. In: Guerraoui, R., Riveill, M., Wang,
J. (eds.) ECOOP-WS 1993. LNCS, vol. 791, pp. 152–184. Springer, Heidelberg
(1994)

105. Sekiguchi, T., Yonezawa, A.: A Complete Type Inference System for Subtyped
Recursive Types. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789,
pp. 667–686. Springer, Heidelberg (1994)

106. Hosobe, H., Miyashita, K., Takahashi, S., Matsuoka, S., Yonezawa, A.: Locally
Simultaneous Constraint Satisfaction. In: Borning, A. (ed.) PPCP 1994. LNCS,
vol. 874, pp. 51–62. Springer, Heidelberg (1994)

107. Taura, K., Matsuoka, S., Yonezawa, A.: ABCL/f : A Future-Based Polymorphic
Typed Concurrent Object-Oriented Language – Its Design and Implementation –.
In: Proceedings of the DIMACS workshop on Specification of Parallel Algorithms,
May 1994. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 18, pp. 275–291. Princeton, New Jersey (1994)

XXIV Publications of Professor Akinori Yonezawa

108. Yasugi, M., Matsuoka, S., Yonezawa, A.: The Plan-Do Style Compilation Tech-
nique for Eager Data Transfer in Thread-Based Execution. In: Proceedings of the
IFIPWG10.3 International Conference on Parallel Architectures and Compilation
Techniques (PACT 1994), Montréal, Canada, pp. 57–66 (August 1994)

109. Konno, K., Nagatsuka, M., Kobayashi, N., Matsuoka, S., Yonezawa, A.: PARCS:
An MPP-Oriented CLP Language. In: Proceedings of the First International Sym-
posium on Parallel Symbolic Computation (PASCO 1994), Linz, Austria, pp.
254–263. World Scientific (September 1994)

110. Kobayashi, N., Yonezawa, A.: Type-Theoretic Foundations for Concurrent
Object-Oriented Programming. In: Proceedings of the 9th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
1994), Portland, Oregon, pp. 31–45 (October 1994), Also in SIGPLAN Notices
29(10)

111. Takahashi, S., Miyashita, K., Matsuoka, S., Yonezawa, A.: A Framework for Con-
structing Animations via Declarative Mapping Rules. In: Proceedings of IEEE
Symposium on Visual Languages, St. Louis, Missouri, pp. 314–322 (October 1994)

112. Kamada, T., Matsuoka, S., Yonezawa, A.: Efficient Parallel Global Garbage Col-
lection on Massively Paralle Computers. In: Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing (Supercomputing 1994), Washington D.C, pp.
79–88 (November 1994)

113. Miyashita, K., Matsuoka, S., Takahashi, S., Yonezawa, A.: Interactive Generation
of Graphical User Interfaces by Multiple Visual Examples. In: Proceedings of the
7th ACM Symposium on User Interface Software and Technology 1994 (UIST
1994), Marina del Rey, CA, USA, pp. 85–94 (November 1994)

114. Kamada, T., Matsuoka, S., Yonezawa, A.: An Algorithm for Efficient Global
Garbage Collection on Massively Parallel Computers. In: Ito, T. (ed.) TPPP
1994. LNCS, vol. 907, pp. 346–355. Springer, Heidelberg (1995)

115. Kobayashi, N., Yonezawa, A.: Higher-Order Concurrent Linear Logic Program-
ming. In: Ito, T. (ed.) TPPP 1994. LNCS, vol. 907, pp. 137–166. Springer, Hei-
delberg (1995)

116. Taura, K., Matsuoka, S., Yonezawa, A.: StackThreads: An Abstract Machine for
Scheduling Fine-Grain Threads on Stock CPUs. In: Ito, T. (ed.) TPPP 1994.
LNCS, vol. 907, pp. 121–136. Springer, Heidelberg (1995)

117. Kobayashi, N., Nakade, M., Yonezawa, A.: Static Analysis of Communication for
Asynchronous Concurrent Programming Languages. In: Mycroft, A. (ed.) SAS
1995. LNCS, vol. 983, pp. 225–242. Springer, Heidelberg (1995)

118. Takahashi, S., Matsuoka, S., Miyashita, K., Hosobe, H., Yonezawa, A., Kamada,
T.: A Constraint-Based Approach for Visualization and Animation. In: Monta-
nari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 103–117. Springer, Hei-
delberg (1995)

119. Masuhara, H., Matsuoka, S., Asai, K., Yonezawa, A.: Compiling Away the Meta-
Level in Object-Oriented Concurrent Reflective Languages Using Partial Evalu-
ation. In: Proceedings of the 10th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA 1995), Austin, Texas,
USA, October 1995, pp. 300–315 (1995), Also in SIGPLAN Notices 30(10)

120. Masuhara, H., Matsuoka, S., Asai, K., Yonezawa, A.: Efficient implementation
technique for object-oriented concurrent reflective languages using partial eval-
uation. In: Proceedings of International Workshop on New Models for Software
Architecture (IMSA 1995), Tokyo, Japan (October 1995)

Publications of Professor Akinori Yonezawa XXV

121. Kamada, T., Yonezawa, A.: A Debugging Scheme for Fine-Grain Threads on
Massively Parallel Processors with a Small Amount of Log Information - Replay
and Race Detection. In: Queinnec, C., Halstead Jr., R.H., Ito, T. (eds.) PSLS
1995. LNCS, vol. 1068, pp. 108–127. Springer, Heidelberg (1996)

122. Taura, K., Yonezawa, A.: Schematic: A Concurrent Object-Oriented Extension to
Scheme. In: Briot, J.-P., Geib, J.-M. (eds.) OBPDC 1995. LNCS, vol. 1107, pp.
59–82. Springer, Heidelberg (1996)

123. Sato, N., Matsuoka, S., Yonezawa, A.: Hierarchical Collections: An Efficient
Scheme to Build an Obeject-Oriented Distributed Class Library for Massively
Parallel Computation. In: Futatsugi, K., Matsuoka, S. (eds.) ISOTAS 1996. LNCS,
vol. 1049, pp. 96–117. Springer, Heidelberg (1996)

124. Masuhara, H., Matsuoka, S., Yonezawa, A.: Implementing Parallel Language Con-
structs Using a Reflective Object-Oriented Language. In: Proceedings of Reflec-
tion 1996, San Francisco, pp. 79–91 (April 1996)

125. Hosobe, H., Matsuoka, S., Yonezawa, A.: Generalized Local Propagation: A
Framework for Solving Constraint Hierarchies. In: Freuder, E.C. (ed.) CP 1996.
LNCS, vol. 1118, pp. 237–251. Springer, Heidelberg (1996)

126. Hosoya, H., Kobayashi, N., Yonezawa, A.: Partial Evaluation Scheme for Con-
current Languages and Its Correctness. In: Fraigniaud, P., Mignotte, A., Bougé,
L., Robert, Y. (eds.) Euro-Par 1996. LNCS, vol. 1123, pp. 625–632. Springer,
Heidelberg (1996)

127. Asai, K., Masuhara, H., Yonezawa, A.: Partial Evaluation of Call-by-Value
lambda-Calculus with Side-Effects. In: Proceedings ACM Conference on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM 1997), Amster-
dam, pp. 12–21 (June 1997)

128. Taura, K., Yonezawa, A.: An Effective Garbage Collection Strategy for Parallel
Programming Languages on Large Scale Distributed-Memory Machines. In: Pro-
ceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 1997), Las Vegas, pp. 264–275 (June 1997)

129. Taura, K., Yonezawa, A.: Fine-grain Multithreading with Minimal Compiler Sup-
port - A Cost Effective Approach to Implementing Efficient Multithreading Lan-
guages. In: Proceedings of the 1997 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 1997), Las Vegas, pp. 320–333 (June
1997)

130. Sato, N., Matsuoka, S., Jezequel, J.-M., Yonezawa, A.: A Methodology for Spec-
ifying Data Distribution using only Standard Object-Oriented Features. In: Pro-
ceedings of the 11th ACM International Conference on Supercomputing (ICS
1997), Vienna, pp. 116–123 (July 1997)

131. Sekiguchi, T., Yonezawa, A.: A Calculus with Code Mobility. In: Proceedings of
Second IFIP International Conference on Formal Methods for Open Object-based
Distributed Systems (FMOODS 1997), Canterbury, UK, pp. 21–36 (July 1997)

132. Oyama, Y., Taura, K., Yonezawa, A.: An Efficient Compilation Framework for
Languages Based on a Concurrent Process Calculus. In: Lengauer, C., Griebl,
M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 546–553. Springer,
Heidelberg (1997)

133. Masuhara, H., Yonezawa, A.: Reasoning-conscious Meta-object Design of a Reflec-
tive Concurrent Language. In: Proceedings of International Symposium on Biolog-
ically Inspired Computation (IMSA 1997), Tsukuba, Japan, pp. 42–56. ETL/IPA
(October 1997)

XXVI Publications of Professor Akinori Yonezawa

134. Endo, T., Taura, K., Yonezawa, A.: A Scalable Mark-Sweep Garbage Collector on
Large-Scale Shared-Memory Machines. In: Proceedings of ACM/IEEE High Per-
formance Computing and Networking (SC 1997), San Jose, CA, USA (November
1997)

135. Takahashi, T., Ishikawa, Y., Sato, M., Yonezawa, A.: A Compile-Time Meta-
Level Architecture Supporting Class Specific Optimization. In: Sun, Z., Reynders,
J.V.W., Tholburn, M. (eds.) ISCOPE 1997. LNCS, vol. 1343, pp. 89–96. Springer,
Heidelberg (1997)

136. Hosoya, H.: Garbage Collection via Dynamic Type Inference - A Formal Treat-
ment -. In: Leroy, X., Ohori, A. (eds.) TIC 1998. LNCS, vol. 1473, pp. 215–239.
Springer, Heidelberg (1998)

137. Masuhara, H., Yonezawa, A.: A Reflective Approach to Support Software Evolu-
tion. In: Proceedings of International Workshop on Principles of Software Evolu-
tion (IWPSE 1998), Kyoto, Japan, pp. 135–139 (1998)

138. Yamamoto, H., Taura, K.: Comparing Reference Counting and Global Mark-
and-Sweep on Parallel Computers. In: O’Hallaron, D.R. (ed.) LCR 1998. LNCS,
vol. 1511, pp. 205–218. Springer, Heidelberg (1998)

139. Masuhara, H., Yonezawa, A.: Design and Partial Evaluation of Meta-Objects for a
Concurrent Reflective Language. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445,
pp. 418–439. Springer, Heidelberg (1998)

140. Oyama, Y., Taura, K., Yonezawa, A.: An Implementation and Performance Eval-
uation of Language with Fine-Grain Thread Creation on Shared Memory Parallel
Computer. In: Proceedings of 1998 International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS 1998), Las Vegas, USA, pp. 672–675
(October 1998)

141. Sugita, Y., Masuhara, H., Harada, K., Yonezawa, A.: On-the-fly Specialization of
Reflective Programs Using Dynamic Code Generation Techniques. In: Proceed-
ings of OOPSLA 1998 workshop on Reflective Programming in C++ and Java,
Vancouver, Canada (October 1998)

142. Sekiguchi, T., Hansen, K.A.: A Simple Extension of Java Language for Control-
lable Transparent Migration and Its Portable Implementation. In: Ciancarini,
P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, pp. 211–226.
Springer, Heidelberg (1999)

143. Taura, K., Tabata, K., Yonezawa, A.: StackThreads/MP: Integrating Futures into
Calling Standard. In: Proceedings of the Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP 1999), Atlanta, USA,
pp. 60–71 (May 1999)

144. Masuhara, H., Yonezawa, A.: Generating Optimized Residual Code in Run-Time
Specialization. In: Technical Report on Partial Evaluation and Program Trans-
formation Day (PE Day 1999), Waseda, Tokyo, Japan, 20 pages (November 1999)

145. Masuhara, H., Yonezawa, A.: An Object-Oriented Concurrent Reflective Lan-
guage ABCL/R3: Its Meta-level Design and Efficient Implementation Techniques.
In: Object-Oriented Parallel and Distributed Programming, Paris, pp. 151–165.
HERMES Science Publications (2000)

146. Oyama, Y., Taura, K., Yonezawa, A.: Executing Parallel Programs with Syn-
chronization Bottlenecks Efficiently. In: Proceedings of International Workshop
on Parallel and Distributed Computing for Symbolic and Irregular Applications
(PDSIA 1999), Sendai, Japan, July 5-7, pp. 182–204. World Scientific (April 2000)

147. Yamauchi, H., Masuhara, H., Hoshina, D., Sekiguchi, T., Yonezawa, A.: Wrapping
Class Libraries for Migration-Transparent Resource Access by Using Compile-

Publications of Professor Akinori Yonezawa XXVII

Time Reflection. In: Proceedings of Workshop on Reflective Middleware (RM
2000), New York, pp. 19–20 (April 2000)

148. Oyama, Y., Taura, K.: Online Computation of Critical Paths for Multithreaded
Languages. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 301–
313. Springer, Heidelberg (2000)

149. Tanaka, Y., Taura, K., Sato, M.: Performance Evaluation of OpenMP Applica-
tions with Nested Parallelism. In: Dwarkadas, S. (ed.) LCR 2000. LNCS, vol. 1915,
pp. 100–112. Springer, Heidelberg (2000)

150. Hashimoto, M.: MobileML: A Programming Language for Mobile Computation.
In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp.
198–215. Springer, Heidelberg (2000)

151. Sakamoto, T., Sekiguchi, T.: Bytecode Transformation for Portable Thread Mi-
gration in Java. In: Kotz, D., Mattern, F. (eds.) MA 2000, ASA/MA 2000, and
ASA 2000. LNCS, vol. 1882, pp. 16–28. Springer, Heidelberg (2000)

152. Hashimoto, M., Yonezawa, A.: A Context-based Higher-Order Typed Language
for Mobile Computation. In: Proceedings of the International Workshop on Mobile
Objects/Code and Security (MOCS 2000), Tokyo (October 2000)

153. Masuhara, H., Sugita, Y., Yonezawa, A.: Dynamic Compilation of a Reflective
Language Using Run-Time Specialization. In: Proceedings of International Sym-
posium on Principles of Software Evolution (ISPSE 2000), Kanazawa, Japan, pp.
125–134 (November 2000)

154. Sekiguchi, T., Sakamoto, T.: Portable Implementation of Continuation Opera-
tors in Imperative Languages by Exception Handling. In: Romanovsky, A., Cher-
aghchi, H.S., Lindskov Knudsen, J., Babu, C. S. (eds.) ECOOP-WS 2000. LNCS,
vol. 2022, pp. 217–233. Springer, Heidelberg (2001)

155. Endo, T., Taura, K., Yonezawa, A.: Predicting Scalability of Parallel Garbage Col-
lectors on Shared Memory Multiprocessors. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS 2001), San Francisco,
CA, USA (April 2001)

156. Hansen, K.A.: Run-time Bytecode Specialization: A Portable Approach to Gener-
ating Optimized Specialized Code. In: Danvy, O., Filinski, A. (eds.) PADO 2001.
LNCS, vol. 2053, pp. 138–154. Springer, Heidelberg (2001)

157. Oyama, Y., Taura, K.: Fusion of Concurrent Invocations of Exclusive Methods.
In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 293–307. Springer,
Heidelberg (2001)

158. Hoshina, D., Sumii, E.: A Typed Process Calculus for Fine-Grained Resource
Access Control in Distributed Computation. In: Kobayashi, N., Babu, C. S. (eds.)
TACS 2001. LNCS, vol. 2215, pp. 64–81. Springer, Heidelberg (2001)

159. Nguyen, V.H., Taura, K., Yonezawa, A.: Parallelizing Programs Using Access
Traces. In: Proceedings of the 6th Workshop on Languages, Compilers, and Run-
time Systems for Scalable Computers (LCR 2002), Washington D.C., USA (March
2002)

160. Kaneda, K., Taura, K., Yonezawa, A.: Virtual Private Grid: A Command Shell for
Utilizing Hundreds of Machines Efficiently. In: Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID 2002),
Berlin, Germany, pp. 212–219 (May 2002)

161. Affeldt, R., Masuhara, H., Sumii, E., Yonezawa, A.: Supporting Objects in Run-
time Bytecode Specialization. In: Proceedings of ACM SIGPLAN ASIAN Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation (ASIA-
PEPM 2002), Aizu, Japan, pp. 50–60 (September 2002)

XXVIII Publications of Professor Akinori Yonezawa

162. Chen, E.Y., Fuji, H., Yonezawa, A.: Solution Deployment on Multi-Provider Net-
works. In: OPENSIG 2002 Conference Proceedings, Lexington, USA (October
2002)

163. Oiwa, Y., Sekiguchi, T., Sumii, E., Yonezawa, A.: Fail-Safe ANSI-C Compiler: An
Approach to Making C Programs Secure: Progress Report. In: Okada, M., Babu,
C. S., Scedrov, A., Tokuda, H. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 133–153.
Springer, Heidelberg (2003)

164. Tabuchi, N., Sumii, E., Yonezawa, A.: Regular Expression Types for Strings in a
Text Processing Language. In: Proceedings of Workshop on Types in Program-
ming (TIP 2002), Dagstuhl, Germany, vol. 75, 19 pages. Elsevier Science (Febru-
ary 2003)

165. Peschanski, F., Briot, J.-P., Yonezawa, A.: Fine-grained Dynamic Adaptation of
Distributed Components. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003.
LNCS, vol. 2672, pp. 123–142. Springer, Heidelberg (2003)

166. Taura, K., Kaneda, K., Endo, T., Yonezawa, A.: Phoenix: a Parallel Programming
Model for Accommodating Dynamically Joining/Leaving Resources. In: Proceed-
ings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 2003), San Diego, pp. 216–229 (June 2003)

167. Chen, E.Y., Yonezawa, A.: Federation of Network Service Providers and Its Ap-
plications. In: Proceedings of the Eighth IEEE Symposium on Computers and
Communications (ISCC 2003), Kemer-Antalya, Turkey (July 2003)

168. Maeda, T.: Kernel Mode Linux: Toward an Operating System Protected by a
Type Theory. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 3–17.
Springer, Heidelberg (2003)

169. Masuyama, T., Peschanski, F., Oyama, Y., Yonezawa, A.: Mobile Scope: A Pro-
gramming Language with Objective Mobility. In: Proceedings of the 2nd Interna-
tional Workshop on Mobile Distributed Computing (MDC 2004), Tokyo, Japan,
pp. 542–547 (March 2004)

170. Endo, T., Kaneda, K., Taura, K., Yonezawa, A.: High Performance LU Factoriza-
tion for Non-dedicated Clusters. In: Proceedings of the 4th IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid 2004), Chicago,
USA (April 2004)

171. Kaneda, K., Taura, K., Yonezawa, A.: Routing and Resource Discovery in Phoenix
Grid-Enabled Message Passing Library. In: Proceedings of the 4th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 2004),
Chicago, USA (April 2004)

172. Nagata, A., Kobayashi, N.: Region-Based Memory Management for a
Dynamically-Typed Language. In: Chin, W.-N. (ed.) APLAS 2004. LNCS,
vol. 3302, pp. 229–245. Springer, Heidelberg (2004)

173. Tatsuzawa, H., Masuhara, H., Yonezawa, A.: Aspectual Caml: an Aspect-Oriented
Functional Language. In: Proceedings of Foundations of Aspect-Oriented Lan-
guages (FOAL), Chicago, USA (March 2005)

174. Oyama, Y., Onoue, K., Yonezawa, A.: Speculative Security Checks in Sandbox-
ing Systems. In: Proceedings of The 1st International Workshop on Security in
Systems and Networks (SSN 2005), Denver, USA (April 2005)

175. Maeda, T., Yonezawa, A.: Writing practical memory management code with a
strictly typed assembly language. In: Proceedings of the 3rd Workshop on Seman-
tics, Program Analysis, and Computing Environments for Memory Management
(SPACE 2006), Charleston, South Carolina, USA (January 2006)

Publications of Professor Akinori Yonezawa XXIX

176. Marti, N., Affeldt, R., Yonezawa, A.: Verification of the heap manager of an op-
erating system using separation logic. In: Proceedings of the 3rd Workshop on
Semantics, Program Analysis, and Computing Environments for Memory Man-
agement (SPACE 2006), Charleston, South Carolina, USA (January 2006)

177. Unno, H., Kobayashi, N., Yonezawa, A.: Combining Type-Based Analysis and
Model Checking for Finding Counterexamples against Non-Interference. In: Pro-
ceedings of the ACM SIGPLANWorkshop on Programming Languages and Anal-
ysis for Security (PLAS 2006), Ottawa, Canada (June 2006)

178. Ragab, K., Oyama, Y., Yonezawa, A.: K-Interleaving Rendezvous Overlay Net-
work Construction Scheme. In: Proceedings of the 5th IEEE/ACIS International
Conference on Computer and Information Science and 1st IEEE/ACIS Interna-
tional Workshop on Component-Based Software Engineering, Software Architec-
ture and Reuse (ICIS-COMSAR 2006), Honolulu, Hawaii, USA (July 2006)

179. Marti, N., Affeldt, R.: Formal Verification of the Heap Manager of an Operating
System Using Separation Logic. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 400–419. Springer, Heidelberg (2006)

180. Hansen, K.A., Endoh, Y.: A Fine-Grained Join Point Model for More Reusable
Aspects. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 131–147.
Springer, Heidelberg (2006)

181. Onoue, K., Oyama, Y., Yonezawa, A.: A Virtual Machine Migration System Based
on a CPU Emulator. In: Proceedings of the 1st International Workshop on Virtu-
alization Technology in Distributed Computing (VTDC 2006), Tampa, Florida,
USA (November 2006)

182. Kosakai, T., Maeda, T.: Compiling C Programs into a Strongly Typed Assem-
bly Language. In: Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 17–32.
Springer, Heidelberg (2007)

183. Onoue, K., Oyama, Y., Yonezawa, A.: Control of system calls from outside of
virtual machines. In: Proceedings of the 2008 ACM Symposium on Applied Com-
puting (SAC 2008), Fortaleza, Brazil, pp. 2116–1221 (March 2008)

184. Maeda, T., Yonezawa, A.: Writing an OS Kernel in a Strictly and Statically Typed
Language. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal
to Practical Security. LNCS, vol. 5458, pp. 181–197. Springer, Heidelberg (2009)

185. Matsuda, M., Maeda, T., Yonezawa, A.: Towards Design and Implementation
of Model Checker for System Software. In: Proceedings of the 1st International
Workshop on Software Technologies for Future Dependable Distributed Systems
(STFSSD 2009), Tokyo, Japan (January 2009)

186. Dun, N., Taura, K., Yonezawa, A.: GMount: An Ad Hoc and Locality-Aware
Distributed File System by Using SSH and FUSE. In: Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid (CC-
Grid 2009), Shanghai, China, pp. 188–195 (May 2009)

187. Shimizu, M., Yonezawa, A.: Remote Process Execution and Remote I/O for Het-
erogeneous Processors in Cluster Systems. In: Proceedings of the 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010),
Melbourne, Australia, pp. 145–154 (May 2010)

188. Dun, N., Taura, K., Yonezawa, A.: ParaTrac: A Fine-Grained Profiler for Data-
Intensive Workflows. In: Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC 2010), Chicago, USA, pp.
37–48 (June 2010)

XXX Publications of Professor Akinori Yonezawa

189. Maeda, T., Yonezawa, A.: Typed Assembly Language for Implementing OS Ker-
nels in SMP/Multi-Core Environments with Interrupts. In: Proceedings of the 5th
International Workshop on Systems Software Verification (SSV 2010), Vancouver,
Canada (October 2010)

190. Dun, N., Taura, K., Yonezawa, A.: Easy and Instantaneous Processing for Data-
Intensive Workflows. In: Proceedings of the 3rd IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS 2010), New Orleans, USA
(November 2010)

191. Sawazaki, J., Maeda, T., Yonezawa, A.: Implementing a Hybrid Virtual Ma-
chine Monitor for Flexible and Efficient Security Mechanisms. In: Proceedings
of the 16th IEEE Pacific Rim International Symposium on Dependable Comput-
ing (PRDC 2010), Tokyo, Japan, pp. 37–46 (December 2010)

192. Maeda, T., Sato, H., Yonezawa, A.: Extended Alias Type System using Separating
Implication. In: Proceedings of the 7th ACM SIGPLAN Workshop on Types
in Language Design and Implementation (TLDI 2011), Austin, USA, pp. 29–42
(January 2011)

193. Suzuki, T., Pinte, K., Cutsem, T.V., Meuter, W.D., Yonezawa, A.: Programming
Language Support for Routing in Pervasive Networks. In: Proceedings of the 8th
International IEEE Workshop on Middleware and System Support for Pervasive
Computing (PerWare 2011), Austin, USA (March 2011)

Technical Reports

194. Yonezawa, A., Hewitt, C.: Symbolic Evaluation Using Conceptual Representa-
tions for Programs with Side-Effects. Technical Report 399, MIT Artificial Intel-
ligence Laboratory, AI-Memo (December 1976)

195. Yonezawa, A.: Specification and Verification Techniques for Parallel Programs
Based on Message Passing Semantics. Technical Report TR-191, MIT Laboratory
for Computer Science, Ph. D Thesis (December 1977)

196. Yonezawa, A., Matsuda, H., Shibayama, E.: An Object Oriented Approach for
Concurrent Programming. Technical Report C-63, Department of Information
Science, Tokyo Institute of Technology (1984)

197. Yonezawa, A., Matsuda, H., Shibayama, E.: Discrete Event Simulation Based on
an Object-Oriented Parallel Computation Model. Technical Report C-64, Depart-
ment of Information Science, Tokyo Institute of Technology (1984)

198. Ichisugi, Y., Yonezawa, A.: Distributed Garbage Collection Using Group Refer-
ence Counting. Technical Report is-90-014, The University of Tokyo, Faculty of
Science, Department of Information Science (1990)

199. Matsuoka, S., Wakita, K., Yonezawa, A.: Synchronization Constraints With In-
heritance: What Is Not Possible - So What Is? Technical Report is-90-010, The
University of Tokyo, Faculty of Science, Department of Information Science (1990)

200. Kobayashi, N., Yonezawa, A.: Asynchronous Communication Model Based on
Linear Logic. Technical Report TR92-05, The University of Tokyo, Faculty of
Science, Department of Information Science (1992)

201. Yasugi, M., Yonezawa, A.: An Object-Oriented Parallel Algorithm for the New-
tonian N-Body Problem. Technical Report TR92-06, The University of Tokyo,
Faculty of Science, Department of Information Science (1992)

Publications of Professor Akinori Yonezawa XXXI

202. Kobayashi, N., Yonezawa, A.: Logical, Testing, and Observation Equivalence for
Processes in a Linear Logic Programming. Technical Report TR93-04, The Uni-
versity of Tokyo, Faculty of Science, Department of Information Science (1993)

203. Sugimoto, T., Yonezawa, A.: A preference-based theory of intention. Technical
Report TR94-04, The University of Tokyo, Faculty of Science, Department of
Information Science (1993)

204. Asai, K., Matsuoka, S., Yonezawa, A.: Roles of a Partial Evaluator for the Re-
flective Language Black. Technical Report TR94-11, The University of Tokyo,
Faculty of Science, Department of Information Science (May 1994)

205. Kobayashi, N., Nakade, M., Yonezawa, A.: Static Analysis on Communication for
Asynchronous Concurrent Programming Languages. Technical Report TR95-04,
The University of Tokyo, Faculty of Science, Department of Information Science
(April 1995)

206. Asai, K., Masuhara, H., Matsuoka, S., Yonezawa, A.: Partial Evaluator as a
Compiler for Reflective Languages. Technical Report TR95-10, The University of
Tokyo, Faculty of Science, Department of Information Science (December 1995)

207. Taura, K., Yonezawa, A.: Schematic: A Concurrent Object-Oriented Extension to
Scheme. Technical Report TR95-11, The University of Tokyo, Faculty of Science,
Department of Information Science (December 1995)

208. Asai, K., Masuhara, H., Yonezawa, A.: Partial Evaluation of Call-by-value
lambda-calculus with Side-effects. Technical Report TR96-04, The University of
Tokyo, Faculty of Science, Department of Information Science (November 1996)

209. Oyama, Y., Taura, K., Yonezawa, A.: An Efficient Compilation Framework for
Languages Based on a Concurrent Process Calculus. Technical Report TR97-07,
The University of Tokyo, Faculty of Science, Department of Information Science
(July 1997)

Others

210. Agha, G., Yonezawa, A., Wegner, P., Abramsky, S.: OOPSLA/ECOOP 1990 Re-
port, Panel: Foundations of Object-Based Concurrent Programming. In: Proceed-
ings of the European Conference on Object-Oriented Programming Addendum,
Ottawa, Canada, pp. 9–14 (1990)

211. Agha, G., Abramsky, S., Hewitt, C., Milner, R., Wegner, P., Yonezawa, A.: Foun-
dations of Concurrent Object-Oriented Programming (Panel). In: Proceedings of
OOPSLA/ECOOP 1990, Ottawa, Canada, p. 100 (October 1990), Also in SIG-
PLAN Notices 25(10)

212. Agha, G., Yonezawa, A., Wegner, P., Abramski, S.: OOPSLA panel on object-
based concurrent programming. OOPS Messenger 2(2), 3–15 (1991)

213. Halstead Jr., R.H., Chikayama, T., Gabriel, R.P., Waltz, D.L., Yonezawa, A.:
Applications for Parallel Symbolic Computation (panel). In: Halstead Jr., R.H.,
Ito, T. (eds.) US/Japan WS 1992. LNCS, vol. 748, p. 417. Springer, Heidelberg
(1993)

214. Wada, E., Yonezawa, A.: Obituary: Professor Nobuo Yoneda (28 March 1930-22
April 1996). Science of Computer Programming 27(3), 215–216 (1996)

List of PhDs Supervised

Ichiro Osawa, Fundamental Research on Natural Language Dialogue Systems,
1989.

Takuo Watanabe, Object-Oriented Models for Reflection in Concurrent Systems,
1991.

Etsuya Shibayama, An Object-Based Approach to Modeling Concurrent Systems,
1991.

Yuuji Ichisugi, A Reflective Object-Oriented Concurrent Language for Distributed
Environments, 1993.

Ken Satoh, A Logical Formalization of Preference-based Reasoning by Interpre-
tation Ordering, 1993.

Satoshi Matsuoka, Language Features for Extensibility and Re-use in Concur-
rent Object-Oriented Languages, 1993.

Masahiro Yasugi, A Concurrent Object-Oriented Programming Language Sys-
tem for Highly Parallel Data-Driven Computers and its Applications, 1994.

Takeshi Fuchi, New Methods to Analyze Japanese Morphemes and Dependency
Structure AND Formalization of Rules to Derive Implied Meanings, 1995.

Toru Sugimoto, Formal Models of Dialogue Participants, 1995.

Jacques Garrigue, Label-Selective Lambda-Calculi and Transformation Calculi,
1995.

Jeff McAffer, A Meta-Level Architecture for Prototyping Object Systems, 1995.

Shigeru Chiba, A Study of Compile-Time Metaobject Protocol, 1996.
(supervised with Prof. T. Masuda and Prof. G. Kiczales)

Naoki Kobayashi, Concurrent Linear Logic Programming, 1996.

Takashi Miyata, A Study on Inference Control in Natural Language Processing,
1996.

Kenichi Asai, The Reflective Language Black, 1997.

Naohito Sato, Modularity and Composability in an Object-Oriented Library Frame-
work for Parallel and Distributed Computation, 1997.

Kenjiro Taura, Efficient and Reusable Implementation of Fine-Grain Multithread-
ing and Garbage Collection on Distributed-Memory Parallel Computers, 1997.

Ken Wakita, Continuations and Concurrent Transactions: Extensible Language
Constructs for Concurrent Computing, 1997.
(supervised with Prof. T. Masuda)

Hiroshi Hosobe, Theoretical Properties and Efficient Satisfaction of Hierarchical
Constraint Systems, 1998.

Sachiko Kawachiya, Analyses and Reduction of Operational Overhead in Computer-
Assisted Drawing, 1998.

Hidehiko Masuhara, Architecture Design and Compilation Techniques Using Par-
tial Evaluation in Reflective Concurrent Object-Oriented Languages, 1999.

Tatsurou Sekiguchi, A Study on Mobile Language Systems, 1999.

XXXIV List of PhDs Supervised

Atsushi Igarashi, Formalizing Advanced Class Mechanisms, 2000.
(supervised with Prof. N. Kobayashi and Prof. B. C. Pierce)

Kentaro Torisawa, Towards Practical HPSG Parsing, 2000.
(supervised with Prof. J. Tsujii)

Yoshihiro Oyama, Achieving High Performance for Parallel Programs that Con-
tain Unscalable Modules, 2001.

Haruo Hosoya, Regular Expression Types for XML, 2001.
Toshio Endo, Scalable Dynamic Memory Management Module on Shared Mem-

ory Multiprocessors, 2001.
Reynald Affeldt, Verification of Concurrent Programs Using Proof Assistants,

2004.
Eijiro Sumii, Theories of Information Hiding in Lambda-Calculus: Logical Rela-

tions and Bisimulations for Encryption and Type Abstraction, 2004.
(supervised with Prof. N. Kobayashi and Prof. B. C. Pierce)

Yutaka Oiwa, Implementation of a Fail-Safe ANSI C Compiler, 2005.
Eric Y. Chen, Defending against Distributed Denial of Service Attacks, 2005.
Toshiyuki Maeda, Writing an Operating System with a Strictly Typed Assembly

Language, 2006.
Kenji Kaneda, Middleware Systems for Enabling Users to Adapt to Dynamic

Changes in Execution Environments, 2006.
Kohei Suenaga, Type Systems for Formal Verification of Concurrent Programs,

2008.
Marti Nicolas, Formal Verification of Low-Level Software, 2008.
Hiroshi Unno, Dependent Type Inference for Program Verification, 2009.
Koichi Onoue, VMM-based Systems for Enhancing Application Security, 2010.
Masaaki Shimizu, Operating System Structures for High Performance Computer

Clusters, 2011.
Dun Nan, Rapidly Deployable, Scalable, and High-Performance Distributed File

System for Data-Intensive Distributed Computing, 2011.

Table of Contents

My Early Education and Concurrent Objects . 1
Akinori Yonezawa

Object-Oriented Concurrent Programming in ABCL/1 18
Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama

Reflection in an Object-Oriented Concurrent Language 44
Takuo Watanabe and Akinori Yonezawa

Building Safe Concurrency Abstractions . 66
Ole Lehrmann Madsen

Structuring Communication with Session Types . 105
Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen,
Romain Demangeon, Pierre-Malo Deniélou, and Nobuko Yoshida

From Linear Types to Behavioural Types and Model Checking 128
Naoki Kobayashi

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local
Concurrency . 144

Travis Desell and Carlos A. Varela

Past and Future Directions for Concurrent Task Scheduling 167
Robert H. Halstead

Controlling Concurrency and Expressing Synchronization in Charm++
Programs . 196

Laxmikant V. Kale and Jonathan Lifflander

MassiveThreads: A Thread Library for High Productivity Languages . . . 222
Jun Nakashima and Kenjiro Taura

On Efficient Load Balancing for Irregular Applications 239
Masahiro Yasugi

Verifiable Object-Oriented Transactions . 251
Suad Alagić and Adnan Fazeli

Design and Implementation of a Mobile Actor Platform for Wireless
Sensor Networks . 276

YoungMin Kwon, Kirill Mechitov, and Gul Agha

XXXVI Table of Contents

Objects in Space . 317
Wolfgang De Meuter, Andoni Lombide Carreton, Kevin Pinte,
Stijn Mostinckx, and Tom Van Cutsem

Towards a Substrate Framework of Computation . 341
Kazunori Ueda

Event-Based Modularization of Reactive Systems . 367
Somayeh Malakuti and Mehmet Aksit

From Actors and Concurrent Objects to Agent-Oriented Programming
in simpAL . 408

Alessandro Ricci and Andrea Santi

Author Index . 447

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 1–17, 2014.
© Springer-Verlag Berlin Heidelberg 2014

My Early Education and Concurrent Objects

Akinori Yonezawa

Riken Advanced Institute of Computational Science
7-1-26 Minatominami-cho Chuo-ku Kobe City, Japan, 750-0047

yonezawa@riken.jp

Forewords

Before attaining the mandatory retirement age of the University of Tokyo, I left the
university and moved to the Riken Advanced Institute of Computational Science
(AICS) in the spring of 2011. AICS is located in Kobe, which is 600 km to the west
of Tokyo. It is the second city outside of Tokyo in which I have lived, with the excep-
tion of Boston in the USA. In addition to the location of AICS being new to me, the
institute’s missions for which I am partially responsible are also new. In May 2012, I
had the honor of being a part of an international workshop that was organized by
many of my ex-students and overseas-based colleagues to celebrate my 65th birthday.

Gul Agha suggested that I write this essay (in his words, it would be an account of
my intellectual journey), which has turned out to be one of the most unique expe-
riences I have had in my writing career, as I am the subject of this manuscript. I am
very fortunate to have the opportunity to write such an essay. I would therefore like to
thank Gul and the other editors of this volume, including the editor of Springer Verlag
LNCS. An interesting chain of events have led me to publish this kind of essay in a
Springer LNCS volume, as I have edited more than seven volumes in the series.

With their permission, I have included in this manuscript some nonacademic and
personal experiences knowing that people tend to be quite receptive of a university
professor’s discourse in his final lecture. Actually, Professor Sigeiti Moriguti at the
University of Tokyo, who is one of my mentors, gave a series of four talks (usually it
is just one talk) at his final lecture, which I was unable to attend as I was in Cam-
bridge, Mass. that time.

This essay has two parts. The first one sketches a personal trail of my intellectual
growth. The second part summarizes my research on concurrent objects. It also con-
tains an account of the development of my idea of mobile concurrent objects.

Part I My Early Education

1 Before Reaching University

Family Traditions
I was born in Japan in June, 1947. My family tradition was somewhat scholastic, and,
consequently, I was always encouraged to study. Many of my ancestors also loved

2 A. Yonezawa

studying, and both of my grandfathers graduated from the University of Tokyo nearly
one hundred years ago, one with a doctoral degree in medicine, and the other with a
doctoral degree in engineering. My father also graduated from the University of
Tokyo with a doctoral degree in engineering. My mother was literalistic and she often
talked to me about her compositions in a Japanese short poetic form of 32 characters
called “tan-ka.”

As a child, I was always very talkative, with which my mother was extremely dis-
pleased. Once she scolded me, saying “Akinori, men do not talk much, and you are
like a girl talking all the time.” I believe, since that day, I have become less chatty and
have retreated into being a reticent person, communicating in a cryptic manner.
Eventually, I began to develop an aversion toward giving nontechnical talks and
speeches, including public greeting speeches, which I am occasionally obliged to
give. Actually, I am very clumsy when it comes to reading things aloud and compos-
ing sentences in speeches (and perhaps in writing as well) in both Japanese and
English. Nevertheless, I have been always very interested in the literary field and
linguistic phenomena, and this has reflected in my field of research, i.e., programming
languages. It may be that my complex/mixed feelings toward speech and language in
general emanated from my musing of my mother’s words.

Travelling
My intellectual upbringing is something that is inalienable from my fondness of trav-
eling. From the nascent stages of my life, I have been encouraged to travel. I recall
that at around age 4, after having lunch one day, my paternal grandfather sat me down
on his lap while squatting on a tatami-mattress in a room and said to me “Akinori,
when you grow up, you should go to see other countries as I did.” He also told me
about his three lifetime goals that were planned and achieved. One of the goals was to
study abroad. Actually, he stayed in London for more than three years early in the last
century and studied mining. Another goal was to obtain a doctoral degree. I do not
remember what I felt when my grandfather told me his story and how much I was
directly influenced by his narrative, but it does appear that his words more or less
determined the course of life.

My parents also encouraged me to travel, and they especially pressed me to travel
alone. During my days of elementary school, almost every year my mother took my
sister and I to Kyoto, where her parents had survived the war and were living simple
lifestyles. Traveling by special express trains between Tokyo and Kyoto was a won-
derful event and excited me a great deal. In those days, special express trains were
steam-powered, which later became electric-powered.

When in secondary school, my solo travels included a trip to Kyoto and a one-
week trip to the Tohoku area. I even visited a small town in Aomori prefecture, in
which my grandfather was raised before he left for Tokyo to pursue higher education
over a hundred years ago. Traveling by myself helped me feel liberated and matured.

Middle and High School Days (Age 12 to Age 17)
The Azabu middle and high school, in which I was enrolled, was somewhat unique
with regards to teaching. The rules were not very stringent. A half of the teachers

 My Early Education and Concurrent Objects 3

were very old (and often funny), and the other half were not professional teachers, but
mostly graduate students pursuing doctoral courses in well-known universities, who
were hired on an annual basis. The school’s atmosphere was very relaxed. Some stu-
dents worked diligently, while some partook only in sports or hobbies. Of course, the
school did not use any of the government-issued textbooks. The teachers had their
own styles of teaching, especially young teachers from graduate schools, who taught
us the content that they believed was crucial and essential, and which is often beyond
students’ imagination at that age.

At an early stage in middle school, I subscribed to a popular science magazine
called Kagaku Asahi, which had many science-related pictures, especially about as-
tronomy. My interests in science piqued on account of this magazine. As mentioned
earlier, my mother was a literary person, but while raising me, she did her best to
avert me from following the same path. This magazine was not given to me by my
mother, but I picked it up myself in a book store on the way back home. In a sense,
she was successful in directing me to science and technology. The photos that im-
pacted me the most in the magazine volumes were those of the far side of the moon.
In the year 1959, these photos were taken and sent to the earth by a Russian space
rocket called Luna 3, which traveled in an orbit to the other side of the moon and
returned to the earth. At the time, the success of Luna 3 was another severe blow to
US science and technology, following on the heels of the success of the satellite Sput-
nik in the year 1957, where the first artificial satellite in human history was launched
by Russia. With this mental impression of Russian superiority, I chose Russian as my
second foreign language in the university.

The classes that interested me throughout middle and high schools were those of
Japanese classics, Chinese classics (Kanbun), Japanese history, English, Physics, and
Mathematics. There were good teachers in Modern Japanese, but I never quite liked
it. Chemistry teachers were uninterested in teaching, and practically all of the students
lost interest in Chemistry. In contrast, the biology and mathematics teachers were
really good. One biology teacher used to be a Professor of Biology at Taipei Universi-
ty before the war. His classes were always clear and steeped with intense biological
knowledge. He talked about the functions of DNA and RNA, perhaps including the
new scientific findings of the 50’s.

A mathematics teacher, who was a graduate student at the University of Tokyo,
and who was writing a PhD thesis in differential geometry, taught us vectors, matric-
es, and determinants, introducing the axioms of vector space and linear algebra. His
class was enlightening to me, and it introduced me to axiomatic approaches of mod-
ern mathematics. Another mathematics teacher selected several smart students and
gave them a series of lectures on the introduction of “functional analysis or complex
analysis.” I was not among the selected students initially, but I asked the teacher to
permit me to join the class. There was a rumor that the teacher used to be a doctoral
student in mathematics at the University of Tokyo, and that he ended his university
studies after starting his new life as a teacher of mathematics in our high school. The
goal of his lecture series was to prove the Cauchy-Riemann Theorem in complex
analysis by the end of the series, which is to say that the integral of any “regular”
(complex) function on a closed path on a complex plane is always equal to zero. I

4 A. Yonezawa

managed (with some difficulty) to follow his lectures to the end and learned that there
is such a notion as Laurent expansion. About a year earlier, we had just learnt the
Taylor expansion. I was quite impressed that the Laurent expansion contained the
terms of negative powers of the variable, just as a Taylor expansion has only terms of
positive powers of the variable. One of the students who followed the entire lecture
series eventually became a professional mathematician after entering the graduate
course of mathematics at the University of Tokyo. He was indeed much smarter than
me in mathematics.

2 Undergraduate School in Japan (1966-1970)

Freshman and Sophomore Days – Chomsky and Mathematics (1966-1968)
In the spring of 1966, I was admitted to the University of Tokyo as a student of
Science Category I, and while on the Komaba campus, I was truly liberated from the
somewhat tedious high school studies in preparation for the university entrance ex-
amination. The first two years at the university were devoted mainly to general liberal
arts education. The students of Science Category I were supposed to enter either the
science (including mathematics) departments or engineering departments in the re-
maining two years, and the departments were located on a different campus called
Hong Campus.

My second foreign language, Russian, was taught as a part of liberal arts education.
While I like languages in general, I am not as good at learning them, including my
mother tongue and English. Russian was therefore not an exception, but I was intri-
gued by the Russian (Greek borrowed) alphabet and its grammatical structures. Even
after a two-year period of learning Russian, my command of the language was li-
mited, and it was really difficult to prepare for the graduate school entrance examina-
tion, which at that time still required reading and writing competence of a foreign
language besides English.

The Russian class was not of much practical benefit to me, but one experience has
had a life-long impact upon me. I was introduced to the work of Noam Chomsky. One
day in Russian class, the lecturer (Mr. Kurihara) mentioned the name of N. Chomsky
when explaining Russian grammatical structures. Also, he mentioned “generative
grammars.” I was very much intrigued by the term “generative grammars.” After the
class ended, I followed him to his office and asked him for some more explanation of
the term “generative grammars.” He gave me reprints of his recent papers on an ac-
count of Russian grammar or morphological analysis in terms of generative gram-
mars, and he also spoke a bit about “Syntactic Structures,” which is the book form of
N. Chomsky’s Ph.D. thesis. Immediately after the conversation with Kurihara-sensei,
I went to the book store called Maruzen, which was the largest seller of foreign books
in Tokyo. I was very lucky to find the book, and I bought it right away. Of course, I
began to read it the very next day. As far as I remember, what astonished me the most
about “Syntactic Structures” was not its contents, but rather the clarity of the language
used and the manner in which Chomsky wrote the book.

 My Early Education and Concurrent Objects 5

One of the marvelous things in the education at the Komaba campus was that they
offered many special lecture/seminar series, where for each course, a maximum of 10
to 15 students were allowed to participate, and the advanced topics were taught by the
professors, many of whom were from the Hongo Campus. The lecture/seminar series
that I attended/participated in during the first three terms (18 months in total) were
Advanced Lecture on Banach Space, Advanced Lecture on General Topology, Lec-
ture on Molecular Orbital Methods, Reading of Watson’s Molecular Biology of the
Genes (1st Edition), and Introduction to Computer Architectures and Machine Lan-
guages. Actually, I did not participate in the reading of Watson’s book as I drew a
losing ticket in the lottery held to select the students who could take part. Had I won
the lottery, my academic and research interests would, no doubt, have been different.
Here I should add that in addition to pure educational motivations, many departments
on the Hongo Campus wanted to attract good, motivated students (or to have imprint-
ing of their disciplines on the students).

By the end of the third term, all sophomore students had to decide the department
into which they wished to go for their junior and senior years. My initial wish was the
pure mathematics department in the School of Science, after which I changed to the
applied mathematics department in the School of Engineering. When I talked to my
father about my first choice during the first bidding, he said to me, “Akinori, do you
have mathematical talent?” His question reminded me of a small episode I witnessed
in a class of the Advanced lecture on Banach Space. One of the classmates had
pointed out an error in the proof of the Hahn-Banach Theorem, which was given by
the lecturer. The student also appeared to have suggested the correction, and, with a
perplexed expression, the lecturer appealed to us to pardon his error. Yes, there were
many students who were smarter and more talented than I was. This episode brought
me a sense of realization that may have saved my life.

Junior and Senior Days in University – Campus Strike and Travelling in Russia
My new student life in the Department of Applied Mathematics began on the Hongo
Campus in April, 1968. The courses I took on the Hongo Campus included Automata
& Computation Theory (by Prof. Eiiti Wada), Information Theory (by Prof. Shun ichi
Amari), Numerical Analysis (by Prof. Sigeiti Moriguti), and Linear Programming (by
Prof. Iri). I was deeply interested in those courses, and their lecturers were excellent.
Among them, Amari’s lecture on information theory was the one that I remember
most clearly. His lecture started with a statement “Information is a reduction of ambi-
guity. The information carried by a message is the difference between the degree of
ambiguity before and after the arrival of the message.”

There was also a mandatory seminar where each student (about 15 students in to-
tal) was supposed to read and present a technical paper. Papers were assigned to stu-
dents by teachers. Prof. Iri gave me an early paper written by a Russian linguist S.K.
Shaumyan, who later became one of the authorities of Russian grammar with his
Adaptive Grammar Theory, which is an opponent of Chomsky’s generative grammar.
Naturally, the paper was written in Russian. While I hesitated to accept Iri-sensei’s
assignment, he insisted, saying “You took Russian on the Komaba campus, so I will
give you two weeks for reading.” I presented what I had understood from those two

6 A. Yonezawa

weeks. From my recollection, Iri-sensei did not make many comments regarding my
presentation.

Before the end of the first term (summer 1968), a radical student group blocked the
access to the university’s medical school using barricades. This marked the beginning
of a university-wide student strike, which was significantly influenced by the late 60’s
global student movements including the Paris Quartier Latin demonstrations and anti-
Vietnam War campaigns in the United States. Several months later, the School of
Engineering was blocked too. For the next six months, there were no classes. At the
time, I was a moderately radical student and an active participant in student demon-
strations on the campus, but it never went outside the campus. One of the classmates
was arrested and jailed during the final resistance against the police, who invaded the
campus and removed the students who had fortified the university’s monumental
auditorium (Yasuda Kohdo) building. Some twenty years later, I found him teaching
in a small university in the southern area of Japan. In my mind, I had felt a certain
sense of remorse for a long period.

For about three weeks during the summer of 1968, I traveled within Russia by my-
self. This was my first trip outside of Japan. I implored my father for some money
for the trip, and he gave it to me. Starting at the port of Yokohama, the ship sailed to
the Russian port city of Nakhodka, after which I moved to Khabarovsk by train, and
then flew to Moscow. I spent several days in Moscow, sightseeing popular places,
and I also visited the building of the Moscow State University without knowing any-
body there. After leaving Moscow, I flew to Leningrad (now called Sankt Petersburg)
and spend three days there. I traveled aboard a very advanced Russian jet plane, Ilu-
shin 62. At Hermitage Palace, I was pleasantly surprised to be able to be almost with-
in a touching distance of paintings and designs by da Vince and Raphael without
being intervened by the museum guards. My journey continued south when I flew to
Tashkent, the capital of Uzbekistan, and then to Samarkand, an old town and the capi-
tal of the Timour Empire of the 14th century. The ruins of the Gur-Imir Mausoleum
were extremely beautiful. At the airport in Tashkent, I met a professor from the De-
partment of Applied Physics at my university. He was among a group of researchers
on a tour after an International Conference on Semi-conductors held in Moscow a few
days earlier. He kindly introduced me to Prof. Bardeen, one of the three cowinners of
the Nobel Prize for “transistors.” I shook hands with him and exhanged a few words.
The event lasted just 15 seconds. Afterwards, the professor from my university con-
fessed to me that he had felt nervous while traveling with Prof. Bardeen.

Before graduating from the university, students have to write a senior thesis. All
students were supposed to choose a professor to supervise their theses. Without any
second thought, I chose Prof. Amari on account of the clarity of his lecture. The pe-
riod allocated for the writing of the senior thesis was about four months. We were not
required to make any new findings or help conducting the research work being done
by professors. Prof. Amari simply gave me two papers and told me to read and think.
The two papers were “Computation In the Presence of Noise” (1958) by Peter Elias,
and “Probabilistic logics and the synthesis of reliable organisms from unreliable com-
ponents” (1956) by von Neumann. (I subsequently met Peter Elias at the beginning of

 My Early Education and Concurrent Objects 7

my graduate studies at MIT). As expected, I did not come up with anything new, but I
wrote a survey paper in English as my thesis after three months of reading related
literatures.

3 Graduate School in Japan (1970-1973)

Master Course Days (1970-1972) – ALOGOL N, McCarthy, and Gentzen –
In the of Applied Mathematics, students were strongly encouraged to choose, as their
supervisor, a professor who was different from their supervisor for the senior thesis.
On the basis of my grades in the graduate school entrance examination as well as my
expressed preference, I was admitted to Professor Moriguti’s group. While he was a
senior faculty member, he was very active in mathematical programming and numeri-
cal analysis. Because I was interested in programming languages, Prof. E. Wada, who
was an associated professor in Prof. Moriti’s group, became my de facto advisor. He
was working on programming languages and compilers. At that time, Prof. Wada was
actively designing an extensible programming language called ALGOL N. ALGOL
was one of the candidates being considered to replace ALGOL 60. Although it failed
in this regard, it had many interesting features of extensibility. The idea was to have a
core language that can be extended to become different kinds of languages such For-
tran, Cobol, or PL/I. ALGOL N’s extensible features allowed extensions of both the
syntax and semantics. Under the supervision of Prof. Wada, two of the second year
master students were designing and implementing an ALGOL N compiler. I was as-
signed to work together with them in the writing of many subroutines for the compiler
implementation, and, consequently, I learned a lot of compiler writing.

During my two years as a Master’s student, several great pioneering computer
scientists visited Tokyo. They were John McCarthy, Patrick Winston, Andre Ershov,
Rod Burstall, among others. Brief conversations with them gave me important infor-
mation and greatly influenced me in various ways. McCarthy gave a talk including an
overview of the research being carried out at the Stanford Artificial Intelligence Lab.
He also showed us a film. It showed the scenes of a robot’s hand solving an “Instant
Insanity Puzzle.” Solutions were generated by a theorem prover based on J.A. Robin-
son’s resolution principle. A couple of days after McCarthy’s talk, the professors
hosting him went to the Tokyo airport to see him off. While I cannot recollect the
reason, I did accompany the professors to the airport. At the airport, I saw John walk-
ing alone in a corridor. I walked up to him and spoke with him. I told him that I was
planning to implement an automatic theorem prover for my master’s study and asked
him for his thoughts over it. His immediate response was to ask me the reason for
which I was going to implement the theorem prover. In response, I mumbled some-
thing and could not give a clear reply, so I ended the conversation.

On another occasion, Electro-Technical Laboratory (belonging to Japanese MITI)
invited several well-known AI researchers from abroad. Rod Burstall from Edinburgh
gave a talk in a Tokyo hotel. While introducing the AI Lab at Edinburgh University,
he explained a formulation of robot movement planning in terms of modal logic.
However, I did not comprehend it entirely at that time. After he left Japan, I wrote to

8 A. Yonezawa

him requesting the additional details of his modal logic formulation. He was a very
kind and sincere person, and several weeks later, he sent me a two page hand-typed
letter with his explanations. The letter also said that I should read a book “An Intro-
duction to Modal Logic” by M.J. Cresswell and G.E. Hughes. I read Cresswell’s book
and was very impressed by the semantics of modal logic based on the possible world
model, which was first invented by Saul Kripke. Later, I learned that Kripke had pub-
lished his possible world model at the age of 15. When I was at MIT as a graduate
student, the Boston University Logic Colloquium invited him as a speaker, and I at-
tended the lecture of this genius. The audiences were unexpectedly small in number,
and his talk was not very interesting.

Theorem Prover and Herbrand’s Decidable Case
Late in the spring of 1971, the ALGOL N compiler project ended. It was time to think
about what should be the focus of my master’s thesis. There was not much research
on ALGOL N compiler to be carried out, and no suggestions were made by either
Prof. Moriguti or Prof. Wada regarding my thesis research topic. Early in the spring
of 1971, Professor T. Simauti (Rikkyo University), who was the main designer of
ALGOL N and an accomplished logician, gave a series of four tutorial seminars in the
office of Prof. Wada. This series was given at the request of Prof. Wada, who wanted
to know the differences between classical logic and intuitionistic logic (and construc-
tive logic). The master’s students (including me) who had been involved in the
ALGOL N compiler project attended the seminars. Prof. Simauti presented G. Gent-
zen’s sequent calculus logics (LK ad LJ), the formalism of which clearly and elegant-
ly distinguished between classical and intuitionistic logics. In this seminar, I learned
Gentzen’s Hauptsatz (the principal theorem), which guarantees that any provable first
order logical formula can be proven without using modus ponens. In my opinion, this
theorem appeared to be very profound, and the actual proof given by Genzten was
very interesting. Because Simauti had devised an automatic theorem prover using
Genzten style sequent calculus, he did not forget to explain his theorem prover. Be-
cause I had maintained my interest in automatic theorem proving, these seminars by
Simauti led me to follow his line of study.

The entire summer of 1971 was filled with struggles and hardships. I was attempt-
ing to identify a new material for my thesis, and the implementation of Simauti’s old
ideas on a new and faster computer was not sufficient. I juggled and played around
with various formal proofs and formulas in the sequent calculus. I read articles related
to proof strategies that had been invented for theorem proving based on Robinson’s
resolution principle. By the end of August 1971, I had found that a class of first order
formulas is decidable when proving them. In general, it was known that the proof
procedures of the first order predicate calculus are semi-decidable, in that any true
formula can be proven in a finite step, but some false formulas can be proven to be
false in a finite step, while some cannot be proven to be false (in a finite step). In the
class of formulas that I identified, all of the formulas could be proven to be either true
or false. Using this discovery, I planned to implement an automatic theorem prover
which first recognizes decidable cases of logical input formulas (to be proved), and
treats decidable formulas separately from general formulas. After the summer of

 My Early Education and Concurrent Objects 9

1971, I visited Prof. Simauti’s office and explained to him my plan for implementing
a theorem prover as well as my proof of decidability of the formula class that I had
found. Upon approval by Simauti of both my implementation and proof, I began the
implementation of the theorem prover.

At the time, Prof. Morituti’s group did not have a suitable computer available for
implementing an automatic theorem. The university computer center did have a large
and fast machine, but it served only as a number cruncher, and not for system imple-
mentation. The two professors managed to find a Toshiba machine called TOSBAC
3400, which had a 32K word core memory and could be programmed in an assembly
languages, Fortran and Cobol. The computer was owned by the library of the Tokyo
Women’s Christian University. For the next several months, I often visited the cam-
pus of the Women’s University. I had no choice but to use assembly language to
implement the theorem prover. I wrote I/O routines in Fortran as I did not fully under-
stand the section of I/O in the assembly language manual. In the end, the program that
I wrote was assembly code with more than 3000 lines.

While debugging my code, I tried to identify other decidable classes of logical
formulas in order to incorporate other cases in my theorem provers. I searched old
articles and found the book “Solvable Cases of Decision Problems”

(by W. Ackermann, 1954). I was unable to find the book in the university, so I or-
dered it from the Maruzen Book Store. They said that it would take a couple of
months for me to obtain a copy of the book. Indeed, it arrived in December 1971,
which was less than two months before the deadline of thesis. I skimmed through the
book quickly, and was both surprised and disappointed to see that the class of decida-
ble formulas was mentioned in the book. It had been discovered about 40 years earlier
by Jacques Herbrand, who was a great logician and had died at a young age in the
Alps. In addition to the mathematical logic community, he is well known for the term
Herbrand Universe in the logic programming community. At a later date, in the winter
of 1973, I found a biography (with an elegant cover) of Jacques Herbrand at the
Crimson Book Store in a corner of Harvard Square. I bought it on the spot, paying a
price which at the time was prohibitively expensive for a graduate student with an
research assistantship.

Therefore, my discovery of the decidable class was in fact not new. I told my disap-
pointing story to Prof. Simauti, adding that my proof was simpler than that of Her-
brand’s. He said that it was allowed for a master’s thesis, as Herbrand is a great
logician. During my thesis defense, I told the master thesis committee that Prof. Simauti
had assured me that my discovery and theorem prover implementation were definitely
worthy of a master degree. However, I was entirely aware that with my master thesis
work, I had not answered the question that I was asked by John McCarthy at the airport.
I was also convinced that automatic theorem proving may be useful for local or short
reasoning, but it probably would not be effective for general AI problems.

Doctor Course Days in Japan – Winograd’s SHRDLU and MicroPlanner –
Without a future insight, I entered the doctoral course in the Department of Applied
Mathematics Department at the University of Tokyo and remained a part of the
group led by Prof. Moriguti and Prof. Wada. The English version of my master’s

10 A. Yonezawa

thesis contained material that could be published in a domestic computer science
journal. I, therefore, submitted a draft (written in Japanese), and it was soon accepted
and published in the fall of 1972. While writing the paper, I did not follow the line of
research on automatic theorem proving. But the experience gained during my master
work was very important for my future research. For example, when I was (with
Naoki Kobayashi) attempting to present the semantics of the core of ABCL (my con-
current object-oriented language) in terms of Linear Logic, my understanding of
Gentzen’s sequent calculi (LK and LJ) helped me significantly as Liner logic is for-
mulated as a sequent calculus. Also, my pessimistic view on the automatic theorem
proving led me to Minsky’s (as opposed to McCarthy’s) approach to the representa-
tion of human intelligence in computers.

In early 1973, Pattick Winston from MIT’s AI Lab was invited to give a series of
talks hosted by Electro-Technical Laboratory. Winston gave a very insightful lecture
series on his lab’s research activities, focusing mainly on Terry Winograd’s natural
language understanding system called “SHRDLU,” which was a significant landmark
in early AI research. During his explanation of how English commands to a robot
were translated into programs for execution by the robot, he mentioned Carl Hewitt’s
Micro-Planner Language. In Winston’s account, (micro-) Planner is a language that
describes procedural interpretations of logical formulas. I was very impressed, and I
began to read about the Planner language of Carl Hewitt, who subsequently became
my advisor at the MIT graduate school and my eventual boss at the Laboratory for
Computer Science and Artificial Intelligence Laboratory, MIT.

I had no other choice but to go abroad for studies. I quickly prepared myself for
this impending change, and applied to the doctoral courses of six graduate schools in
the United States. I also obtained a nine-month scholarship from the Japan Society for
the Promotion of Science (JSPS). The University of California (Berkeley campus),
Cornell University, University of Illinois, and MIT all sent me acceptance letters by
the beginning of April 1973. Naturally, I chose to go to MIT.

Part II Concurrent Objects1

In the summer of 1973, I spent six weeks at the University of Texas at Austin in prep-
aration for my graduate studies in the States, which was a part of the support from the
JSPS. In September, I joined the EECS department of MIT as a graduate student.
During the fall and spring terms, I took courses and seminars by Albert Meyer, Pa-
trick Winston, Carl Hewitt, Marvin Minsky, Barbara Liskov, Vaughn Pratt among
others. The seminars by Carl Hewtt and Barbara Liskov were most exciting to me. At
the time, Carl had begun to develop his idea of Actors[9]. Barbara had also started to
develop her idea of data abstractions based on her language CLU[11]. By the end of
the 1974 spring term, I had managed to pass the first stage of the qualifying examina-
tion. Almost immediately after the ending of the term, I took an inexpensive flight to

1 Part II is an extended revision of my paper “Early Concurrent/Mobile Objects.” In Proc. 2006

ECOOP Nantes, pp198-202, Springer LNCS No.4067, 2006.

 My Early Education and Concurrent Objects 11

Madrid, which marked the starting point of my nine-week European back-packer tour.
In September 1974, I joined Carl Hewitt’s group, and he became my academic advi-
sor. He also hired me as one of his research assistants.

1 Some History and Motivations
In the early 70’s (it may have been in the second half of 1973), research ideas were
conceived in the group led by Carl Hewitt who was a member of the AI Lab and the
Laboratory for Computer Science. Carl and his group member were interested in

–finding a universal model for concurrent computation, and
–the abstraction and simulation of activities for almost all entities which interact

with each other and are able to move around in physical spaces.

The entire research group was convinced that the basic entities in the model should
be process- or procedure-like things that mutually interact with message passing.
Message passing is required to be asynchronous in the sense that an entity can send a
message to another entity anytime, even when the destination entity is not ready or
able to receive the message. This assumption was taken because maximum concur-
rency needs to be expressible at the modeling level[8]. Almost all of the members
who were only concerned with computation/execution but not with modeling were
uninterested in the mobility of entities. However, I had a keen interest in modeling the
world, describing it in programs and running (simulating) it with large and powerful
machinery. To me, it was natural to capture mobile aspects of entities that exist in the
world.

Even in the early days of computer science, the term ”object” was used in many CS
subdomains. In particular, the group led by Barbara Liskov, which designed a struc-
tured programming language called CLU[11], was using the term ”object” to refer to
an instance of abstract data types being defined by the novel program module feature
in CLU. CLU was not the first language system to use the term. Others included early
Lisp systems, early Smalltalk systems, and the Hydra Operating System, which all
frequently used the term ”object.” However, these notions of objects did not deal with
message transmissions which take place among objects. Of course, the interactions
among objects were called message passing, but they were merely meant to be dy-
namically dispatched method calls (or procedure calls). A more restricted formal cal-
culus of modeling message passing objects was proposed by Robin Milner [7].

2 Concurrent Objects
After several trials of developing frameworks, I came up with my own notion of ob-
jects that abstract away and model entities that interact with each other in problem
domains. To me, it was a very suitable approach to modeling things in the world. In
explaining my notion of concurrent objects, I often used an anthropomorphic analogy.
Things are modeled as autonomous information processing agents called “concurrent
objects,” and their mutual message transmissions abstract away various forms of
communications found in human or social organizations. Also, such forms of com-
munication need to be realized by the current computer technology without much
difficulty.

12 A. Yonezawa

In our approach, the domain to be modeled/designed/implemented is represented as
a collection of concurrent objects, and the interaction of the domain components is
represented as concurrent message passing among such concurrent objects. Domains
in which our approach is powerful include distributed problem solving, the modeling
of human cognitive process, modeling and implementation of real-time systems, and
design and implementation of distributed event simulation. Although a mathematical
account of the basic notion of concurrent objects has been given in [11], let me de-
scribe an intuitive characterization of concurrent objects (COs) below. Each CO

–has a globally unique identity/name,
–may have a protected, yet updatable local memory,
–has a set of procedures that manipulates the memory,
–receives a message that activates one of the procedures,
–has a single FIFO queue for arrived messages, and
–has autonomous thread(s) of control.

In each CO, memory-updating procedures are activated one at a time with the mes-
sage arrival order. The contents of the memory of a CO, which is the local state of the
CO, can be defined at the time of message arrival, owing to its single FIFO message
queue. Each CO can send messages to the set of COs whose ids are known to the CO
approximately at the time of sending. This means that communication is point-to-
point, and that any CO can send messages as long as it remembers the names of the
destination COs. Because the memory of a CO can be updatable, a CO can forget
names of other COs. The set of objects to which a CO can send messages therefore
varies from time to time. The communication topology is therefore dynamic, and any
CO can dynamically create COs.

3 What Can Be Contained in Messages?
In my framework, message passing is the sole means by which information can be
exchanged among COs. So we need to clarify the information that can be contained in
messages. My design is as follows: Messages are allowed to contain the names and
ids of COs, in addition to COs themselves. In implementation terms, this means that
messages can contain both pointers to COs and the code of COs. This mechanism
allows direct addressing of what has been called code migration or code mobility. In
our framework, messages are sent by COs, and not by other kinds of entities. When a
message contains a whole CO (not just its id), the CO is actually (forced to be) moved
by COs. This mechanism is somewhat strong for modeling interactions among do-
main components. Therefore, I restricted message passing in such a way that a mes-
sage containing a CO should be transmitted only when a CO sends the very CO itself,
and not when other COs do so. This restriction allows a CO to move on its own ac-
cord, but it can never be forced to move by other COs. It should be noted that while a
CO is moving, it can both send and receive messages.

4 Modeling Customers Coming to a Post Office
To observe the suitability of my concurrent object framework, I modeled concurrent
activities in a simple post office following an example given in the book by Simula[3].

 My Early Education and Concurrent Objects 13

Activities in the post office include customers entering/exiting, interactions between
post office clerks and customers (buying/selling stamps), and customers dropping
letters in the mailbox. Figure 1 illustrates the post office. Post office clerks are collec-
tively represented by the counter-section. First, we model customers as concurrent
objects. We also need to model the post office building. Customers go into the post
office through its main door. More than one customer can be inside the post office. It
is therefore acceptable to model the building as a concurrent object D representing the
entrance door. Now, two kinds of objects, the customer object and the door object,
exist in our domain. The next step is to determine how to model the interactions of the
two kinds of objects. In our message passing paradigm, arrivals or transmissions of
messages are the sole event of interaction among COs. The event representing a cus-
tomer C going through the door is naturally represented as the arrival of a message M
at the door object D, where M contains the customer object C itself (not the id of C).
Then, the door object D sends to the customer object C a message M’ requesting that
C moves to the counter-section object CS. As the customer object C does not know
the location of counter-section object CS, the door object D should supply the infor-
mation of the location/name of the counter-section object to CS. This information is
provided in the message M’ requesting the customer C to change its location.

Fig. 1. Simple Post Office

CounterSection

MailBoxx

Door

C
C : customer

14 A. Yonezawa

5 Need for Autonomous Mobility and Ambients
When explaining the modeling of the post office above, the explanation of how a
message M containing a customer object C arrives at the door object was somewhat
vague. There are two possibilities: (1) Another concurrent object sends M containing
C, and (2) C itself sends M. As noted earlier, I restricted the movement of objects in
such a way that objects can only be moved by themselves. The second possibility is
therefore the correct interpretation. This means that concurrent objects move by them-
selves, and are not moved by other COs. In turn, we need to provide a Move-
instruction which is executed by any concurrent object C. When this instruction is
executed, it is transformed into the transmission of a message containing C to a spe-
cific destination object.

Another point to note is that customers are not necessary local people who are fa-
miliar with the layout of the post office. Therefore, when a customer enters the post
office, he needs to know the location of the counter-section or the mailbox. This in-
formation corresponds to what is known as an ambient. In our modeling, the locations
(or names) of the counter-section and the mailbox are given to the customer object by
the door object when the customer object arrives at the door object. In other words,
the ambient information about the inside of the post office is given by the door object
to the customer object. As the information contained in incoming messages can be
stored, updated, and retrieved in the local memory of a CO, it can be said that that my
framework has addressed issues associated with ”ambients” of mobile objects [6].

6 ABCL, A Language for Concurrent Objects and Its Reflective Versions
We presented the first sketch of our concurrent object-oriented language ABCL [19]
at the third French workshop on Object-Oriented Languages held in Paris in 1985.
This workshop was organized by Pierre Cointe and Jean Bezivin. They graciously
invited me. After that invitation, I became a member of the European community of
object-oriented programming. This was a great opportunity for me to return to the
international scene after several nonproductive domestic years in Tokyo. Henry Lie-
bermann also presented his work at the workshop. This workshop was the predecessor
of the first ECOOP (1987) and the first OOPSLA (1986). Much of my own research
career on object-oriented computing owes this workshop.

The design of our full language ABCL/1[20], its prototype implementation, and
several applications were presented at the first OOPSLA in 1986. My presentation
was enthusiastically received by Kristen Nygaard, who was the Scandina-
vian/European leader of object-oriented computing. I was encouraged a great deal
because of his strong support and encouragement. I distributed the ABCL language
manuals at the conference site. In 1990, which was several years later, a thorough
treatment of our concurrent object model was published as a book [21], which in-
cludes our work on reflective computation in the field of concurrent object-oriented
programming. The whole purpose of reflective computation is to facilitate the self-
evolution of systems. The original idea of computational reflection came from Brian
Smith’s work on LISP. Then, P. Maes and Luc Steels introduced the idea into an ob-
ject-oriented knowledge representation language to design their reflective language 3-
KRS. I thought that reflective computation was much more powerful and useful in

 My Early Education and Concurrent Objects 15

parallel/concurrent computation than in sequential computation. To verify this view, I
developed a reflective computation scheme which was formulated in our concurrent
object-oriented framework, and T. Watanabe and I designed and implemented a ref-
lective language ABCL/R[18]. Using ABCL/R, interesting applications of reflective
object-oriented concurrent programming were identified. Examples of the applica-
tions include an object’s dynamic acquisitions of methods, distributed time manage-
ment, and the dynamic monitoring of object behavior. I still like this work and am
proud of these accomplishments.

The semantic framework of our ABCL languages was given by N. Kobayashi and
myself in 1994[6]. This semantics was based on the Linear Logic reported by Jean-
Yves Girard. Novel language implementation techniques for high-performance com-
puting machines were developed together with S. Matsuoka, K. Taura. and M. Yasugi
[22]. In particular, Taura’s idea of StackThread[17] was enlightening, and this tech-
niques were proved to scale on Fujitsu AP1000, which is a multi-computer consisting
of 512 Spark processors. The problems of inheritance mechanisms with concurrent
object-oriented languages, coined inheritance anomaly, were found by J.-P. Briot, S.
Matsuoka, and myself [4,12]. Furthermore, the work by T. Sekiguchi and myself on a
very efficient implementation of our MOBILE object language called Java-GO [16]
was published in 1999.

7 Large Scale Applications of Concurrent Objects
The ultimate goal of programming language research is that the central ideas in the
languages being designed and implemented will be actually used in the real world. I
am happy to report that the idea of concurrent objects has been extensively used in
interesting large-scale applications including the following software systems.

 -Charm++ and NAMD
 -Twitter System

-Second Life (Linden Lab.)

Charm++[9] is a concurrent object-oriented programming and runtime system de-
veloped by Sanjay Kale and his group at the University of Illinois, and it has been
extensively used to implement various high-performance computing applications.
NAMD[13] is one of the most well-known applications of Charm++, and is a molecu-
lar dynamics simulation platform. It was developed jointly by Klaus Scholten’s group
and Kale’s group. NAMD is one of the major molecular dynamics applications and
the number of its users has been reported to be more than 7000. Also in 2000,
10~20% of the resources of two major US supercomputing centers were used for
applications using Charm++.

It has been reported that the twitter system is being used by more than 200 million
people worldwide. The idea of concurrent objects was used to implement the core part
of processing incoming tweets. This implementation is highly efficient and reliable,
and was succinctly written[15].

Also, Second Life is a very popular virtual world simulation (game) system devel-
oped by Linden Lab. With the Second Life system, users create program avatars,
buildings and other such things by combining built-in software components that are
constructed with concurrent objects[14].

16 A. Yonezawa

Afterwords

Despite this educational journey, I feel I have not accomplished as much as I should
have in my academic life, and I do reflect upon it with a certain sense of . bitterness.
However, I would like to express my heartfelt thanks to the many people who were a
part of this process. The following list is not exclusive: Makoto Kikuchi, Sigeiti Mori-
guti, Eiiti Wada, Takakazu Shimauti, Shun’ichi Amari, Masao Iri, Shigeru Igarashi,
Makoto Nagoa, Kazuhiro Fuchi, Takuya Takuya, Yoshinori Morimura, Carl Hewitt,
Kristen Nygaard, Barbara Liskov, Albert Meyer, Gerald Sussman, Vaughan Pratt,
J.C.R. Licklider, Hirochika Inoue, Patrick Winston, Hilary Putnam, Mike Gordon, Gul
Agha, Mehmet Aksit, C.A.R. Hoare, Robin Milner, Krishna Prasad, Takayasu Ito,
Norihisa Suzuki, Jean Pierre, Ken kahn, Suad Alagic, Mario Tokoro, Atsushi Ohori,
Hisao Miyauchi, Dennis Tsichritzis, Brian Smith, Gregor Kiczales, Guy Steele, Luc
Steels, Pierre Cointe, Jean Bezivin, Ole Madsen, Wolfgang de Meuter, Jan Vitek, Reiji
Nakajima, Kouichi Furukawa, Jun’ich Tsujii, Etsuya Shibayama, Akikazu Takeuchi,
Kazunori Ueda, Satoshi Matsuoka, Kenichi Asai, Tsuyosh Murata, Naoki Kobayashi,
Ken-jiro Taura, Hidehiko Masuhara, Vijay Saraswat, Ken-ichiro Torisawa, Kazuhi-
ko Kato, Shigeru Chiba, Kohei Honda, Tomio Kamada, Takuo Watanabe, Atsushi
Igarashi, Jacques Garrigue, Affeldt Reynaldt, Tatsuro Sekiguchi, Eijiro Sumii, Yoshi-
hiro Ooyama, Eric Chen, Toshiyuki Maeda.

References

1. Agha, G.: Actor: A Model of Concurrent Computation in Distributed Systems. MIP Press
(1986)

2. Agha, G., Wegner, P., Yonezawa, A.: Research Directions in Concurrent Object-Oriented
Programming. MIT Press (1993)

3. Birtwistle, G., Dahl, O.-J., Myhrhang, B., Nygaard, K.: SIMULA Begin. Auerbach, Phila-
delphia (1973)

4. Briot, J.-P.: Inheritance and Synchronization in Concurrent OOP. In: Bézivin, J., Hullot, J.-
M., Lieberman, H., Cointe, P. (eds.) ECOOP 1987. LNCS, vol. 276, pp. 32–40. Springer,
Heidelberg (1987)

5. Cardelli, L.: Abstractions for Mobile Computation. In: Vitek, J. (ed.) Secure Internet Pro-
gramming. LNCS, vol. 1603, pp. 51–94. Springer, Heidelberg (1999)

6. Kobayashi, N., Yonezawa, A.: Asynchronous Communication Model Based on Linear
Logic. In: Halstead Jr., R.H., Ito, T. (eds.) US/Japan WS 1992. LNCS, vol. 748, pp. 331–
336. Springer, Heidelberg (1993)

7. Milner, R.: The polyadic pi-calculus: a tutorial. Technical Report ECD-LFCS-91-180, La-
boratory for Foundations of Computer Science, Edingburgh University (October 1991)

8. Hewitt, C., et al.: A Universal Modular Actor Formalism for Knowledge Representations.
In: ACM Conf. on Principles of Programming Languages, Boston (1973)

9. Kale, S., Krishman, S.: CHARM++: A portable concurrent object oriented system based
on C++. ACM SIGPLAN Notices 28(10), 91–108 (1993)

10. Kobayashi, N., Yonezawa, A.: Asynchronous communication model based onlinear logic.
Formal Aspects of Computing 7(2), 113–149 (1995)

 My Early Education and Concurrent Objects 17

11. Liskov, B., Snyder, A., Atkinson, R., Schaffert, C.: Abstraction Mechanisms in CLU.
Comm. of the ACM 20, 564–576 (1977)

12. Matsuoka, S., Yonezawa, A.: Analysis of Inheritance Anomaly in Object-Oriented Con-
current Programming in [2]

13. Nelson, M.T., Humphrey, W., Gursoy, A., Dalke, A., Kale, S., Skeel, R.D., Schulten, K.:
NAMD: A parallel, object-oriented molecular dynamics program. International Journal of
High Performance Computing Applications 10(4), 251–268 (1996)

14. Purbrick, J., Lentczner, M.: Second life: The world’s biggest programming environment.
Invited talk, OOPSLA 2007, Portland, Oregon (October 2007)

15. Pointer, R.: Kestrel system (August 14, 2009),
http://github.com/robey/kestrel/tree/master

16. Sekiguchi, T., Hansen, K.A.: A Simple Extension of Java Language for Controllable
Transparent Migration and its Portable Implementation. In: Ciancarini, P., Wolf, A.L.
(eds.) COORDINATION 1999. LNCS, vol. 1594, pp. 211–226. Springer, Heidelberg
(1999)

17. Taura, K., Matsuoka, S., Yonezawa, A.: An Efficient Implementation Scheme of Concur-
rent Object-Oriented Languages on Stock Multi-Computers. In: Proc. ACM Symposium
on Principles and Practice of Parallel Programming, San Diego, pp. 218–228 (1993)

18. Watanabe, T., Yonezawa, A.: Reflection in ABCL/R. In: Proc. ACM Conference on Ob-
ject-Oriented Programming, Systems, Languages and Applications, San Diego (1988)

19. Yonezawa, A., Matsuda, H., Shibayama, E.: An Approach to Object-oriented Concurrent
Programming–A Language ABCL–. In: Proc. 3rd Workshop on Object-Oriented Languag-
es, Paris (1985)

20. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented Concurrent Programming in
ABCL/1. In: Proc. ACM OOPSLA 1986, Portland, Oregon, USA, pp. 258–268 (1986)

21. Yonezawa, A. (ed.): ABCL: an Object-Oriented Concurrent System, 329 pages. MIT Press
(1990)

22. Yonezawa, A., Matsuoka, S., Yasugi, M., Taura, K.: Implementing Concurrent Object-
Oriented Languages on Multi-computers. IEEE Parallel & Distributed Technology 1(2),
49–61 (1993)

Object-Oriented Concurrent Programming

in ABCL/1

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama

Department of Information Science, Tokyo Institute of Technology,
Ookayama, Meguro-ku, Tokyo, Japan, 152

Abstract. An object-oriented computation model is presented which is
designed for modelling and describing a wide variety of concurrent sys-
tems. In this model, three types of message passing are incorporated.
An overview of a programming language called ABCL/1, whose seman-
tics faithfully reflects this computation model, is also presented. Using
ABCL/1, a simple scheme of distributed problem solving is illustrated.
Furthermore, we discuss the reply destination mechanism and its ap-
plications. A distributed “same fringe” algorithm is presented as an il-
lustration of both the reply destination mechanism and the future type
message passing which is one of the three message passing types in our
computation model.

1 Introduction

Parallelism is ubiquitous in our problem domains. The behavior of computer
systems, human information processing systems, corporative organizations, sci-
entific societies, etc. is the result of highly concurrent (independent, cooperative,
or contentious) activities of their components. We like to model such systems,
and design AI and software systems by using various metaphors found in such
systems[1–4]. Our approach is to represent the components of such a system as
a collection of objects[5] and their interactions as concurrent message passing
among such objects. The problem domains to which we apply our framework
include distributed problem solving and planning in AI, modelling human cogni-
tive processes, designing real-time systems and operating systems, and designing
and constructing office information systems[6].

This paper first presents an object-based model for parallel computation and
an overview of a programming language, called ABCL/1[7, 8], which is based
on the computation model. Then, schemes of distributed problem solving are
illustrated using ABCL/1. Though our computation model has evolved from the
Actor model[9, 10], the notion of objects in our model is different from that of
actors.

2 Objects

Each object in our computation model has its own (autonomous) processing
power and it may have its local persistent memory, the contents of which rep-
resent its state. An object is always in one of three modes: dormant, active, or

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 18–43, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Object-Oriented Concurrent Programming in ABCL/1 19

waiting. An object is initially dormant. It becomes active when it receives a
message that satisfies one of the specified patterns and constraints. Each object
has a description called script (or a set of methods) which specifies its behavior:
what messages it accepts and what actions it performs when it receives such
messages.

When an active object completes the sequence of actions that are performed
in response to an accepted message, if no subsequent messages have arrived, it
becomes dormant again. An object in the active mode sometimes needs to stop
its current activity in order to wait for a message with specified patterns to
arrive. In such a case, an active object changes into the waiting mode. An object
in the waiting mode becomes active again when it receives a required message.
For instance, suppose a buffer object accepts two kinds of messages: a [:get]

message from a consumer object requesting the delivery of one of the stored
products, and a [:put <product>] message from a producer object requesting
that a product (information) be stored in the buffer. When the buffer object
receives a [:get] message from a consumer object and finds that its storage,
namely the buffer, is empty, it must wait for a [:put <product>] message to
arrive. In such a case the buffer object in the active mode changes into the
waiting mode.

An active object can perform usual symbolic and numerical computations,
make decisions, send messages to objects (including itself), create new objects
and update the contents of its local memory. An object with local memory cannot
be activated by more than one message at the same time. Thus, the activation
of such an object takes place one at a time.

As mentioned above, each dormant object has a fixed set of patterns and
constraints for messages that it can accept and by which it can be activated. To
define the behavior of an object, we must specify what computations or actions
the object performs for each message pattern and constraint. To write a definition
of an object in our language ABCL/1, we use the notation in Fig. 1. Fig. 2
shows a skeletal definition of an object. (state ...) declares the variables which
represent the local persistent memory (we call such variables state variables) and
specifies their initialization. object-name and the construct “where constraint”
are optional. If a message sent to an object defined in the notation above satisfies
more than one pattern-constraint pair, the first pair (from the top of the script)
is chosen and the corresponding sequence of actions is performed.

[object object-name
(state representation-of-local-

memory. . .)

(script

(=> message-pattern where constraint
. . . action . . .)

. . .
(=> message-pattern where constraint

. . . action . . .))]

Fig. 1. Object Definition

[object Buffer

(state ...)

(script

(=> [:put ...] ...)

(=> [:get] ...))]

Fig. 2. Buffer

20 A. Yonezawa, J.-P. Briot, and E. Shibayama

An object changes into the waiting mode when it performs a special action.
In ABCL/1, this action (i.e., the transition of an object from the active mode
to the waiting mode) is expressed by a select-construct. A select construct also
specifies the patterns and constraints of messages that are able to reactivate
the object. We call this a selective message receipt. As an example of the use of

(select

(=> message-pattern where constraint . . . action . . .)
...

(=> message-pattern where constraint . . . action . . .))

Fig. 3. Select Construct

this construct, we give, in Fig. 4, a skeleton of the definition of an object which
behaves as a buffer of a bounded size.

[object Buffer
(state declare-the-storage-for-buffer)
(script

(=> [:put aProduct] ; aProduct is a pattern variable.
(if the-storage-is-full
then (select ; then waits for a [:get] message.

(=> [:get]
remove-a-product-from-the-storage-and-return-it)))

store-aProduct)
(=> [:get]

(if the-storage-is-empty
then (select ; then waits for a [:put . . .] message.

(=> [:put aProduct]
send-aProduct-to-the-object-which-sent-[:get]-message))

else remove-a-product-from-the-storage-and-return-it)))]

Fig. 4. An Example of the Use of Select Constructs

Suppose a [:put <product>] arrives at the object Buffer. When the storage
in the object Buffer is found to be full, Buffer waits for a [:get] message to
arrive. When a [:get] message arrives, Buffer accepts it and returns one of the
stored products. If a [:put] message arrives in this waiting mode, it will not be
accepted (and put into the message queue for Buffer, which will be explained in
Sec. 3. Then, Buffer continues to wait for a [:get] message to arrive. A more
precise explanation will be given in the next section.

As the notation for a select construct suggests, more than one message pat-
tern (and constraint) can be specified, but the ABCL/1 program for the buffer
example in Fig. 4 contains only one message pattern for each select construct.

Object-Oriented Concurrent Programming in ABCL/1 21

3 Message Passing

An object can send a message to any object as long as it knows the name of
the target object. The “knows” relation is dynamic: if the name of an object T
comes to be known to an object O and as long as O remembers the name of T ,
O can send a message to T . If an object does not know or forgets the name of
a target object, it cannot at least directly send a message to the target object.
Thus message passing takes place in a point-to-point (object-to-object) fashion.
No message can be broadcast.

All the message transmissions in our computation model are asynchronous in
the sense that an object can send a message whenever it likes, irrespective of
the current state or mode of the target object. Though message passing in a
system of objects may take place concurrently, we assume message arrivals at
an object be linearly ordered. No two messages can arrive at the same object
simultaneously. Furthermore we make the following (standard) assumption on
message arrival:

[Assumption for Preservation of Transmission Ordering]
When two messages are sent to an object T by the same object O, the
temporal ordering of the two message transmissions (according to O’s clock)
must be preserved in the temporal ordering of the two message arrivals
(according to T ’s clock).

This assumption was not made in the Actor model of computation. Without this,
however, it is difficult to model even simple things as objects. For example, a
computer terminal or displaying device is difficult to model as an object without
this assumption because the order of text lines which are sent by a terminal
handling program (in an operating system) must be preserved when they are
received. Furthermore, descriptions of distributed algorithms would become very
complicated without this assumption.

In modelling various types of interactions and information exchange which
take place among physical or conceptual components that comprise parallel or
real-time systems, it is often necessary to have two distinct modes of message
passing: ordinary and express. Correspondingly, for each object T , we assume
two message queues: one for messages sent to T in the ordinary mode and the
other for messages sent in the express mode. Messages are enqueued in arrival
order.

[Ordinary Mode Message Passing]
Suppose a message M sent in the ordinary mode arrives at an object T when
the message queue associated with T is empty. If T is in the dormant mode,
M is checked as to whether or not it is acceptable according to T ’s script.
When M is acceptable, T becomes active and starts performing the actions
specified for it. When M is not acceptable, it is discarded. If T is in the
active mode, M is put at the end of the ordinary message queue associated
with T . If T is in the waiting mode, M is checked to see if it satisfies one of
the pattern-and-constraint pairs that T accepts in this waiting mode. When

22 A. Yonezawa, J.-P. Briot, and E. Shibayama

M is acceptable, T is reactivated and starts performing the specified actions.
When M is not acceptable, it is put at the end of the message queue.

In general, upon the completion of the specified actions of an object, if the
ordinary message queue associated with the object is empty, the object becomes
dormant. If the queue is not empty, then the first message in the queue is removed
and checked as to whether or not it is acceptable to the object according to its
script. When it is acceptable, the object stays in the active mode and starts
performing the actions specified for the message. If it is not acceptable, the
message is discarded and some appropriate default action is taken (for instance,
the message is simply discarded, or a default failure message is sent to the sender
of the message). Then if the queue is not empty, the new first message in the
queue is removed and checked. This process is repeated until the queue becomes
empty. When an object changes into the waiting mode, if the ordinary message
queue is not empty, then it is searched from its head and the first message that
matches one of the required pattern-and-constraint pairs is removed from the
queue. Then the removed message reactivates the object. If no such message is
found or the queue itself is empty, the object stays in the waiting mode and
keeps waiting for such a message to arrive. Note that the waiting mode does not
imply “busy wait”.

[Express Mode Message Passing]
Suppose a message M sent in the express mode arrives at an object T . If T
has been previously activated by a message which was also sent to T in the
express mode, M is put at the end of the express message queue associated
with T . Otherwise, M is checked to see if it satisfies one of the pattern-and-
constraint pairs that T accepts. If M is acceptable, T starts performing the
actions specified for M even if T has been previously activated by a mes-
sage sent to T in the ordinary mode. The actions specified for the previous
message are suspended until the actions specified for M are completed. If
so specified, the suspended actions are aborted. But, in default, they are
resumed.

An object cannot accept an ordinary mode message as long as it stays in the
active mode. Thus, without the express mode message passing, no request would
be responded to by an object in the active mode. For example, consider an object
which models a problem solver working hard to solve a given problem (cf. Sec. 7).
If the given problem is too hard and very little progress can be made, we would
have no means to stop him or make him give up. Thus without the express
mode, we cannot monitor the state of an object (process) which is continuously
in operation and also cannot change the course of its operation. More discussion
about the express mode will be found in Sec. 5.3, Sec. 10.2, and Sec. 10.3.

As was discussed above, objects are autonomous information processing agents
and interact with other objects only through message passing. In modelling
interactions among such autonomous objects, the convention of message passing
should incorporate a naturalmodel of synchronization among interacting objects.
In our computation model, we distinguish three types of message passing: past,

Object-Oriented Concurrent Programming in ABCL/1 23

now, and future. In what follows, we discuss each of them in turn. The following
discussions are valid, irrespective of whether messages are sent in the ordinary
or express mode.

[Past Type Message Passing] (send and no wait)
Suppose an object O has been activated and it sends a message M to an
object T . Then O does not wait for M to be received by T . It just continues
its computation after the transmission of M (if the transmission of M is not
the last action of the current activity of O).

We call this type of message passing past type because sending a message finishes
before it causes the intented effects to the message receiving object. Let us denote
a past type message passing in the ordinary and the express modes by:

[T <= M] and [T <<= M],

respectively. The past type corresponds to a situation where one requests or
commands someone to do some task and simultaneously he proceeds his own task
without waiting for the requested task to be completed. This type of message
passing substantially increases the concurrency of activities within a system.

[Now Type Message Passing] (send and wait)
When an object O sends a message M to an object T , O waits for not only
M to be received by T , but also waits for T to send some information back
to O.

This is similar to ordinary function/procedure calls, but it differs in that T’s
activation does not have to end with sending some information back to O. T
may continue its computation after sending back some information to O. A now
type message passing in the ordinary and express modes are denoted by:

[T <== M] and [T <<== M],

respectively. Returning information from T to O may serve as an acknowledge-
ment of receiving the message (or request) as well as reporting the result of a
requested task. Thus the message sending object O is able to know for certain
that his message was received by the object T though he may waste time wait-
ing. The returned information (certain values or signals) is denoted by the same
notation as that of a now type message passing. That is, the above notation
denotes not merely an action of sending M to T by a now type message passing,
but also denotes the information returned by T . This convention is useful in
expressing the assignment of the returned value to a variable. For example, [x
:= [T <== M]].

Now type message passing provides a convenient means to synchronize con-
current activities performed by independent objects when it is used together
with the parallel construct. This construct will not be discussed in this paper. It
should be noted that recursive now type message passing causes a local deadlock.

24 A. Yonezawa, J.-P. Briot, and E. Shibayama

[Future Type Message Passing] (reply to me later)
Suppose an object O sends a message M to an object T expecting a certain
requested result to be returned from T . But O does not need the result
immediately. In this situation, after the transmission of M , O does not have
to wait for T to return the result. It continues its computation immediately.
Later on when O needs that result, it checks its special private object called
future object that was specified at the time of the transmission of M . If the
result has been stored in the future object, it can be used.

Of course, O can check whether or not the result is available before the result is
actually used. A future type message passing in the ordinary and express modes
are denoted by:

[T <= M $ x] and [T <<= M $ x],

respectively, where x stands for a special variable called future variable which
binds a future object. We assume that a future object behaves like a queue. The
contents of the queue can be checked or removed solely by the object O which
performed the future type message passing. Using a special expression “(ready?
x)”, O can check to see if the queue is empty. O could access to the first element
of the queue with a special expression “(next-value x)”, or to all the elements
with “(all-values x)”. If the queue is empty in such cases, O has to wait. (Its
precise behavior will be given in Sec. 6.2).

A system’s concurrency is increased by the use of future type message passing.
If the now type is used instead of the future type, O has to waste time waiting
for the currently unnecessary result to be produced. Message passing of a some-
what similar vein has been adopted in previous object-oriented programming
languages. Act1, an actor-based language developed by H. Lieberman[11] has a
language feature called “future,” but it is different from ours. The three types
of message passing are illustrated in Fig. 5.

Though our computation model for object-oriented concurrent programming
is a descendant of the Actor computation model which has been proposed and
studied by C. Hewitt and his group at MIT[9, 10, 12, 11], it differs from the
Actor computation model in many respects. For example, in our computation
model, an object in the waiting mode can accept a message which is not at
the head of the message queue, whereas, in the actor computation model, a
(serialized) actor can only accept a message that is placed at the head of the
message queue. Furthermore, now type and future type message passing are not
allowed in the Actor computation model. Therefore, an actor A which sends a
message to a target actor T and expects a response from T must terminate its
current activity and receive the response as just one of any incoming messages.
To discriminate T ’s response from other incoming messages arriving at A, some
provision must be made before the message is sent to T . Also the necessity of
the termination of A’s current activity to receive T ’s response causes unnatural
breaking down of A’s task into small pieces.

Object-Oriented Concurrent Programming in ABCL/1 25

PAST NOW FUTURE

sender receiver

request

accept

value

ready?

wait

sender receiver

request

accept

value

sender receiver

request

accept

Fig. 5. The Three Message Passing Types

4 Messages

We will consider what information a message may contain. A message is com-
posed of a singleton or a sequence of tags, parameters, and/or names of objects.
Tags are used to distinguish message patterns. (In the buffer example mentioned
in Fig. reffig:buffer-def, :get and :put are tags, and “aProduct” denotes a pa-
rameter in the [:put ...] message.) Object names contained in a message can
be used for various purposes. For example, when an object O sends a message
M to an object T requesting T to do some task, and O wishes T to send the
result of the requested task to a specified object C1, O can include the name of
C1 in the message M . Objects used in this way correspond to “continuation”
(or customer) in the Actor computation model. Also, when O requests T to do
some task in cooperation with a specified object C2, O must let T know the
name of C2 by including it in the message M .

Besides the information contained in a message itself, we assume two other
kinds of information can be transmitted in message passing. One is the sender
name and the other is the reply destination. When a message sent from an object
O is received by an object T , it is assumed that the name of the sender object
O becomes known to the receiver object T . (We denote the sender name by
“&sender” in ABCL/1.) This assumption considerably strengthens the expres-
sive power of the model and it is easy to realize in the implementation of our
computation model. A receiver object can decide whether it accepts or rejects
an incoming message on the basis of who (or what object) sent the message.

26 A. Yonezawa, J.-P. Briot, and E. Shibayama

When an object T receives a message sent in a now or future type message
passing, T is required to reply to the message or return the result of the requested
task (or just an acknowledgement). Since the destination to which the result
should be returned is known at the time of the message transmission, we assume
that such information about the destination is available to the receiver object
T (and this information can be passed around among objects). We call such
information the reply destination. To specify the object to which the result should
be returned, the reply destination mechanism provides a more uniform way than
simply including the name of the object in the request message. This mechanism
is compatible with the three types of message passing, and enables us to use both
explicit reply destinations in case of past type message as well as implicit ones
in case of now or future type messages (cf. Sec. 6 and Sec. 9). Furthermore,
the availability of the reply destination allows us to specify continuations and
implement various delegation mechanisms[13] uniformly. This will be discussed
in Sec. 8.

The fact that sender names and reply destinations can be known to mes-
sage receiving objects not only makes the computation model powerful, but also
makes it possible that the three different types of message passing: past, now,
and future, be reduced to just one type of message passing, namely the past type
message passing. In fact, a now type message passing in an object T can be ex-
pressed in terms of past type message passing together with the transition into
the waiting mode in the execution of the script of the object T . And a future
type message passing can be expressed in terms of past and now type message
passing, which are in turn reduced to past type message passing. These reduc-
tions can be actually demonstrated, but to do so, we need a formal language.
Since the programming language ABCL/1 to be introduced in the subsequent
sections can also serve this purpose, we will give an actual demonstration after
the explanation of ABCL/1 (cf. Sec. 6). The reply destination mechanism plays
an important role in the demonstration.

5 An Overview of the Language ABCL/1

5.1 Design Principles

The primary design principles of our language, ABCL/1, are:

1. [Clear Semantics of Message Passing] The semantics of message passing
among objects should be transparent and faithful to the underlying com-
putation model.

2. [Practicality] Intentionally, we do not pursue the approach in which every
single concept in computation should be represented purely in terms of ob-
jects and message passing. In describing the object’s behavior, basic values,
data structures (such as numbers, strings, lists), and invocations of opera-
tions manipulating them may be assumed to exist as they are, not necessarily
as objects or message passing. Control structures (such as if-then-else and

Object-Oriented Concurrent Programming in ABCL/1 27

looping) used in the description of the behavior of an object are not neces-
sarily based upon message passing (though they can of course be interpreted
in terms of message passing).

Thus in ABCL/1, inter-object message passing is entirely based on the underly-
ing object-oriented computation model, but the representation of the behavior
(script) of an object may contain conventional applicative and imperative fea-
tures, which we believe makes ABCL/1 programs easier to read and write from
the viewpoint of conventional programmers. Since we are trying to grasp and
exploit a complicated phenomenon, namely parallelism, a rather conservative
approach is taken in describing the internal behavior of individual objects. Var-
ious applicative and imperative features in the current version of ABCL/1 are
expressed in terms of Lisp-like parenthesized prefix notations, but that is not
essential at all; such features may be written in other notations employed in
various languages such as C or Fortran.

5.2 Creating Objects and Returning Messages

In our computation model, objects can be dynamically created. Usually, when
an object A needs a new object B, A sends, in a now or future type message
passing, some initial information to a certain object which creates B. Then B is
returned as the value (or result) of the now/future type message passing. This
way of creating an object is often described in ABCL/1 as follows:

[object CreateSomething
(script

(=> pattern-for-initial-info ![object ...]))]

where [object] is the definition of an object newly created by the object
CreateSomething. The CreateAlarmClock object defined in Fig. 6 creates and
returns an alarm clock object when it receives a [:new ...] message containing
the person (object) to wake. The time to ring is set by sending a [:wake-me-at

...] message to the alarm clock object. It is supposed to keep receiving [:tick

...] messages from a clock object (called the Ticker and which will be defined
in the next subsection). When the time contained in a [:tick ...] message is
equal to the time to ring, the alarm clock object sends a [:time-is-up]message
to the person to wake in the express mode. Note that the “Person-to-wake”
variable in the script of the alarm clock object to be created is a free variable
(it is not a state variable nor a message parameter). It will be “closured” when
creating this object, which implies that the scope rule of ABCL/1 is lexical. The
notation using ! is often used in ABCL/1 to express an event of returning or
sending back a value in response to a request which is sent in a now or future
type message passing. In the following fragment of a script:

(=> pattern-for-request ...!expression ...),

where is the value of expression returned? In fact, this notation is an abbrevi-
ated form of a more explicit description which uses the reply destination. An
equivalent and more explicit form is:

28 A. Yonezawa, J.-P. Briot, and E. Shibayama

[object CreateAlarmClock
(script

(=> [:new Person-to-wake]

![object
(state [time-to-ring := nil])
(script

(=> [:tick Time]
(if (= Time time-to-ring)

then [Person-to-wake <<= [:time-is-up]]))

(=> [:wake-me-at T]
[time-to-ring := T]))]))]

Fig. 6. An Example of the Use of Select Constructs

(=> pattern-for-request @ destination ...[destination <=

expression] ...)

where destination is a pattern variable which is bound to the reply destination
for a message that matches pattern-for-request, When a message is sent in a
past type message passing, if we need to specify the reply destination, it can be
expressed as:

[T <= request @ reply-destination].

Note that reply-destination denotes an object. In the case of now or future type
message passing, pattern variables for reply destination are matched with cer-
tain objects that the semantics of now/future type message passing defines.
(See Sec. 6) Thus the programmer is not allowed to explicitly specify reply
destinations in now or future type message passing. So the following expres-
sions [target <== message @ reply-destination], and [target <= message

@ reply-destination $ x] are illegal.
There is another way to create an object. That is, an object can be obtained by

copying some object. We can use the copy instantiation model[14] after defining
a prototype[13], rather than defining a generator object (analog to a class). Each
object can invoke a primitive function “self-copy” whose returning value is a copy
of the object itself (Me), which will be exemplified in Sec. 9.

5.3 Ordinary Mode and Express Mode in Message Passing

The difference between the ordinary mode and express mode in message passing
was explained in Sec. 3. The notational distinction between the two modes in
message transmission is made by the number of “<”, one for the ordinary mode
and two for the express mode (namely <= and <==, vs. <<= and <<==). The same
distinction should be made in message reception because a message sent in the
ordinary mode should not be interpreted as one sent in the express mode. To
make the distinction explicit, we use the following notation for expressing the
reception of a message sent in the express mode.

Object-Oriented Concurrent Programming in ABCL/1 29

(=>> message-pattern where constraint ... action ...),

The reception of a message sent in the ordinary mode is expressed by the fol-
lowing notation as explained above:

(=> message-pattern where constraint ... action ...)

This notational distinction protects an object from unwanted express mode mes-
sages because the object accepts only messages that satisfy the patterns and
constraints declared after the notation “(=>>”. Express mode messages which
do not satisfy such patterns and constraints are simply discarded.

Suppose a message sent in the express mode arrives at an object which has
been currently activated by an ordinary mode message. If the script of the object
contains the pattern and constraint that the message satisfies, the current actions
are temporarily terminated (or suspended) and the actions requested by the
express mode message are performed. If the object is accessing its local persistent
memory when the express mode message arrives, the current actions will not be
terminated until the current access to its local memory is completed. Also, if the
object is performing the actions whose script is enclosed by “(atomic” and “)”
in the following manner:

(atomic ... action ...),

they will not be terminated (or suspended) until they are completed. And if
the actions specified by the express mode message are completed and no express
mode messages have arrived yet at that time, the temporarily terminated actions
are resumed by default. But, if the actions specified by the express mode message
contains the “non-resume” command, denoted by:

(non-resume),

the temporarily terminated actions are aborted and will not be performed any
more.

Note that, in the above explanation, the actions temporarily terminated by an
express mode message are the ones that are activated (specified) by an ordinary
mode message. When an object is currently performing the actions specified by
an express mode message, no message (even in the express mode) can terminate
(or suspend) the current actions.

To illustrate the use of express mode, we give the definition of the behavior
of a clock object Ticker which sends [:tick ...] messages to all the alarm
clocks he knows about (the value of its state variable “alarm-clocks-list”).
The definition of the Ticker object is given in Fig. 7. The two state variables
of Ticker, “time” and “alarm-clocks-list”, respectively contain the current
time and a list of alarm clocks to be “ticked”.When Ticker receives a [:start]
message, it starts ticking and updating the contents of “time”.

[alarm-clocks-list <= [:tick...]]

30 A. Yonezawa, J.-P. Briot, and E. Shibayama

means sending [:tick ...]messages to each member of “alarm-clocks-list”
simultaneously. We call this way of sending messages multicast. When Ticker

receives a [:stop]message sent in the express mode, it stops ticking by the effect
of (non-resume). This message must be sent in the express mode because Ticker
always stays in the active mode to keep ticking (in the while loop). An [:add

...] message appends new alarm clock object to the “alarm-clocks-list” in
Ticker. This message also should be sent in the express mode for the same
reason. The definition of the CreateAlarmObject (which appeared in Fig. 6)

[object Ticker
(state [time := 0] [alarm-clocks-list := nil])
(script
(=> [:start]
(while t do

(if alarm-clocks-list
then [alarm-clocks-list <= [:tick time]])

[time := (1+ time)]))

(=>> [:add AlarmClock]
[alarm-clocks-list := (cons AlarmClock alarm-clocks-list)])

(=>> [:stop] (non-resume)))]

Fig. 7. Definition of Ticker Object

should be slightly changed in order for a newly created alarm clock object to
be known by Ticker. The description of an alarm clock object is the same
as in Fig. 6, but when created it will now be bound to a temporary variable
“AlarmClock”. Then, after the created object is sent to Ticker to be appended
to Ticker’s “alarm-clocks-list”, it is returned to the sender of the [:new

...] message as in the case of Fig. 6.

[object CreateAlarmClock
(script

(=> [:new Person-to-wake]
(temporary

[AlarmClock := [object description of an alarm clock object]])

[Ticker <<= [:add AlarmClock]]
!AlarmClock))]

Fig. 8. New Definition of CreateAlarmClock Object

Object-Oriented Concurrent Programming in ABCL/1 31

6 A Minimal Computation Model

Below we will demonstrate that

1. A now type message passing can be reduced to a combination of past type
message passing and a selective message reception in the waiting mode, and

2. A future type message passing can also be reduced to a combination of past
type message passing and now type message passing.

Thus both kinds of message passing can be expressed in terms of past type mes-
sage passing and selective message reception in the waiting mode, which means
that now type message passing and future type message passing are derived con-
cepts in our computation model. (The rest of this section could be skipped if one
is not interested in the precise semantics of “now” and “future” types message
passing.)

6.1 Reducing Now Type

Suppose the script of an object A contains a now type message passing in which
a message M is sent to an object T . Let the object T accept the message M
and return the response (i.e., send the response to the reply destination for M).
This situation is described by the following definitions for A and T written in
ABCL/1.

[object A
...

(script

...

(=> message-pattern ... [T <== M] ...) ...)]

[object T
...

(script

...

(=> pattern-for-M @ R ... [R <= expression] ...) ...)]

** Note that the script of T can be abbreviated as:

(=> pattern-for-M ... !expression ...)

We introduce a new object “New-object” which just passes any received
message to A, and also introduce a select-construct which receives only a message
that is sent from “New-object”. The behavior of the object A can be redefined
without using now type message passing as follows:

[object A
(script

...
(=> message-pattern

32 A. Yonezawa, J.-P. Briot, and E. Shibayama

(temporary [New-object := [object (script (=> any [A <= any]))]])
...

[T <= M @ New-object]
(select

(=> value where (= &sender New-object)
... value ...)) ...) ...)]

Note that the message M is sent by a past type message passing with the reply
destination being the newly created “New-object.” Immediately after this mes-
sage transmission, the object A changes into the waiting mode and waits for a
message that is passed by the “New-object”. The constraint

“where (= &sender New-object)”

in the select-construct means that the messages sent by New-Object can only
be accepted. “New-object” serves as a unique identifier for the message trans-
mission from A to T in past type: [T <= M @ New-object].

6.2 Reducing Future Type

Suppose the script of an object A contains a future type message passing as
follows:

[object A
(state ...)
(future ... x ...) ; declaration of a future variable x.
(script
...
(=> message-pattern

... [T <= M $ x] ...

... (ready? x) ... (next-value x) ... (all-values x) ...) ...)]

Then we consider the future variable x in A to be a state variable binding
a special object created by an object CreateFutureObject. (In general, such a
object, namely a future object, is created for each future variable if more than
one future variable is declared.) Also we rewrite the accesses to x by now type
message passing to x as follows:

[object A
(state ... [x := [CreateFutureObject <== [:new Me]]] ...)
(script

...
(=> message-pattern

... [T <= M @ x] ... [x <== [:ready?]] ...

... [x <== [:next-value]] ... [x <== [:all-values]] ...) ...)]

Note that the future type message passing [T <= M $ x] is replaced by a past
type message passing [T <= M @ x] with the reply destination being x. Thus,
the future type message passing is eliminated. The behavior of the future object is
defined in Fig. 9. As mentioned before, it is essentially a queue object, but it only
accepts message satisfying special pattern-and-constraint pairs. A queue object
created by CreateQ accepts four kinds of messages: [:empty?], [:enqueue...],
[:dequeue], and [:all-elements]. Note the fact that the contents of the queue

Object-Oriented Concurrent Programming in ABCL/1 33

[object CreateFutureObject
(script

(=> [:new Creator]

![object
(state [box := [CreateQ <== [:new]]])
(script
(=> [:ready?] where (= &sender Creator) ; if [:ready?] is sent

!(not [box <== [:empty?]])) ; by the Creator,
; and if the box is non-empty, t is returned.

(=> [:next-value] @ R where (= &sender Creator)
(if [box <== [:empty?]]
then (select ; waits for a message to come, not sent by the

(=> message where (not (= &sender Creator)) ; Creator.
[R <= message])) ; it is returned

; to the reply destination for a [:next-value] message.
else ![box <= [:dequeue]]))

; removes the first element in the queue and returns it.

(=> [:all-values] @ R where (= &sender Creator)
(if [box <== [:empty?]]
then (select ; waits for a message to come, not sent by the

(=> message where (not (= &sender Creator)) ; Creator.
[R <= [message]])) ; sends a singleton list.

else ![box <== [:all-elements]]))
; removes all the elements in the queue and returns the list of them.

(=> returned-value
[box <= [:enqueue returned-value]])~)])~)]

Fig. 9. Definition of Future Object

object stored in “box” can be checked or removed solely by the object which is
bound to the pattern variable “Creator”. Furthermore, if the queue is empty,
the object which sends messages [:next-value] or [:all-values] has to wait
for some value to arrive.

7 Project Team: A Scheme of Distributed Problem
Solving

In this section, we present a simple scheme of distributed problem solving de-
scribed in ABCL/1. In doing so, we would like to show the adequacy of ABCL/1
as a modelling and programming language in the concurrent object-oriented
paradigm.

Suppose a manager is requested to create a project team to solve a certain
problem by a certain deadline. He first creates a project team comprised of
the project leader and multiple problem solvers, each having a different prob-
lem solving strategy. The project leader dispatches the same problem to each
problem solver. For the sake of simplicity, the problem solvers are assumed to

34 A. Yonezawa, J.-P. Briot, and E. Shibayama

Manager

problem
solver1

problem
solveri

problem
solvern

Ticker

alarm-clock1 alarm-clock2

ProjectLeader

Fig. 10. A Scheme for Distributed Problem Solving

work independently in parallel. When a problem solver has solved the problem,
it sends the solution to the project leader immediately. We assume the project
leader also tries to solve the problem himself by his own strategy. When either
the project leader or some problem solvers, or both, have solved the problem,
the project leader selects the best solution and sends the success report to the
manager. Then he sends a stop message to all the problem solvers. If nobody
has solved the problem by the deadline, the project leader asks the manager to
extend the deadline. If no solution has been found by the extended deadline, the
project leader sends the failure report to the manager and commits suicide. This
problem solving scheme is easily modeled and described in ABCL/1 without any
structural distortions. (See Fig. 10.)

The definition of the project leader object is given in Fig. 11. Initially it creates
an alarm clock object which will wake the project leader, and keeps it in a state
variable “time-keeper”. “Me” is a reserved symbol in ABCL/1 which denotes the
innermost object whose definition contains the occurrence of “Me”. We assume
that the Ticker defined in Fig. 7 is now ticking. When the project leader object
receives a [:solve...] message from the manager object, it requests its alarm
clock (time-keeper) to wake itself at certain time. Then, the project leader
object multicasts to the project team members a message that contains the
problem description. Note that dispatching the problem to each problem solver
is expressed as a multicast of the problem specifications and also the message
passing is of future type. If a problem solver finds a solution, it sends the solution

Object-Oriented Concurrent Programming in ABCL/1 35

[object ProjectLeader
(state [team-members := nil] [bestSolution := nil]

[time-keeper := [CreateAlarmClock <== [:new Me]]])
(future Solutions)
(script

(=> [:add-a-team-member M]
[team-members := (cons M team-members)])

(=> [:solve SPEC :by TIME]
(temporary [mySolution := nil]) ; temporary variable

[time-keeper <= [:wake-me-at (- TIME 20)]]
[team-members <= [:solve SPEC] $ Solutions]

; multicast in future type
(while (and (not (ready? Solutions)) (null mySolution))

do ... try to solve the problem by his own
strategy and store his solution in mySolution ...)

(atomic
[bestSolution := (choose-best mySolution (all-values Solutions))]
[Manager <<= [:found bestSolution]]
[team-members <<= [:stop-your-task]]))

(=>> [:time-is-up] where (= &sender time-keeper)
(temporary new-deadline)

(if (null bestSolution)
then
[new-deadline := [Manager <<== [:can-extend-deadline?]]]
(if (null new-deadline)

then [team-members <<= [:stop-your-task]] (suicide)
else [time-keeper <= [:wake-me-at new-deadline]])))

(=>> [:you-are-too-late] where (= &sender Manager)
(if (null bestSolution)

then [team-members <<= [:stop-your-task]] (suicide))))]

Fig. 11. Definition of ProjectLeader Object

to the future object bound to “Solutions” of the project leader object. While the
project leader engages himself in the problem solving, he periodically checks the
variable by executing “(ready? Solutions)” as to if it may contain solutions
obtained by problem solvers. Note that there is a fair chance that more than one
problem solver sends their solutions to the future object bound to “Solutions”.
As defined in the previous section, solutions sent by problem solvers are put in
the queue representing the future object in the order of arrival. “(all-values
Solutions)” evaluates to the list of all the elements in the queue. Note that the
sequence of actions from selecting the best solutions to terminating the team
members’ tasks is enclosed by “(atomic” and “)” in Fig. 11. Thus, the sequence
of actions is not terminated (or suspended) by an express mode message.

If no solution is found within the time limit the project leader himself has set, a
[:time-is-up]message is sent by his time keeper (an alarm clock object) in the
express mode. Then, the project leader asks the manager about the possibility

36 A. Yonezawa, J.-P. Briot, and E. Shibayama

of extending the deadline. If the manager answers “no” (i.e., answers “nil”), it
sends a message to stop all the problem solvers and commits suicide.

Though the definition of the manager object (denoted by “Manager” in Fig. 11)
and problems solvers are easily written in ABCL/1, we omit them here.

8 Delegation

The reply destination mechanism explained in Sec. 4 and used in Sec. 6 is the
basic tool to provide various delegation strategies[13]. The explicit use of pattern
variables for reply destinations enables us to write the script of an object which
delegates the responsibility of returning a requested result to another object.

Below we define an object A, and an object B which will delegate all un-
known messages to A. The pattern variable “any” will match any message not
matched by the other patterns in the script of B (this is analog to the last
clause with predicate t in a Lisp cond construct). The variable R will match the
reply destination. So any kind of message, namely past type with or without
reply destination, or now type, or future type message, will be matched and
fully delegated to the object A, which could in turn, also delegate it to another
object.

[object A
(state . . .)
(script

(=> patternA1

...)

...

(=> patternAn

...))]

[object B
(state . . .)
(script

(=> patternB1

...)

...

(=> patternBp

...)

(=> any @ R [A <= any @ R]))]

This is illustrated by Fig. 12, showing an answer is delivered directly to the
asker without coming back through B.

Fig. 12. Illustration of Basic Delegation

Object-Oriented Concurrent Programming in ABCL/1 37

9 A Distributed Algorithm for the Same Fringe Problem

The same fringe problem is to compare the fringes of two trees (Lisp lists). We
will present a solution of the same fringe problem in ABCL/1, which will permit
us to illustrate the use of both future type messages and reply destinations.

Our approach to the problem is similar to the one proposed by B. Serpette in
[15]. Basically, there are three objects in this model:

– two tree extractors, extracting recursively the fringe of each tree,

– one comparator, comparing the successive elements of the two fringes.

These three objects will work in parallel. (See Fig. 13.) The two tree extractors
are linked to the comparator through two dashed arrows. Each one represents
the data-flow of the successive elements of the fringe extracted by each tree
extractor.

The Comparator object, defined in Fig. 14, owns two state variables:
“Extractor1” and “Extractor2” binding the two tree extractors, and two future
variables “input1” and “input2” which are used for receiving the fringes from
these two extractors. “Extractor1” will be bound to the object TreeExtractor
defined in Fig. 15, the second extractor (“Extractor2”) will be created by re-
questing TreeExtractor to copy itself. When the Comparator object receives
the [tree1 :and tree2] message, it will send a future type message [:fringe
tree] to each TreeExtractor in order to request it to compute the fringe of
each of the trees. Comparator assumes that Extractor1 and Extractor2 will

TreeExtractor1 TreeExtractor2tree1 tree2

input1 input2

Comparator

output output

Fig. 13. The Same Fringe: Tree Extractors and Comparator

38 A. Yonezawa, J.-P. Briot, and E. Shibayama

[object Comparator
(state
[Extractor1 := TreeExtractor]
[Extractor2 := [TreeExtractor <== [:copy]]])

(future input1 input2)
(script

(=> [tree1 :and tree2]
[Extractor1 <= [:fringe tree1] $ input1] ; future type message
[Extractor2 <= [:fringe tree2] $ input2] ; future type message
[Me <= [:eq (next-value input1) :with (next-value input2)]])

(=> [:eq atom1 :with atom2]
(if (eq atom1 atom2)

then (if (eq atom1 ’EOT)
then (print ‘‘same fringe’’)
else [Me <= [:eq (next-value input1)

:with (next-value input2)]])
else (print ‘‘fringes differ’’))))]

Fig. 14. The Same Fringe Comparator

reply the successive elements of the fringes, which will be enqueued in the fu-
ture objects bound to input1 and input2, respectively. When two values from
the two extractors become available to Comparator through input1 and input2,
Comparator sends an [:eq (next-value input1) :with (next-value input2)]

message to itself.Note that if one of the two queues (i.e., the future objects bound to
variables input1 and input2) is empty, Comparatorhas to wait until both queues
become non-empty. (See the definition of a future object in Sec. 6.2.) If the two ele-
ments are equal, Comparatorwill compare next elements unless they were equal to
the special atom EOT (as End Of Tree), which indicates the end of the extraction.
If both are EOT, the two fringes are declared to be the same. On the other hand, if
the two elements differ, Comparatorwill declare the two fringes to be different.

We could have defined a CreateTreeExtractorobject, as generator of the tree
extractors, but (to show a different way of creating objects) we will rather define
the prototype object TreeExtractor, and later copy it to create the second
tree extractor we need. The TreeExtractor object, defined in Fig. 15, owns a
single state variable “output” to remember the reply destination to which it has
to send the successive elements of the fringe during the extraction. The script
[:copy] will return a copy of itself. This will be a pure (exact copy of the original
object) copy of TreeExtractor. The [:fringe tree] script will bind the reply
destination to the variable “Pipe”. This reply destination is a future object
which was bound to the future variable “input1” or “input2” of Comparator.
It will be assigned to the state variable “output”, thus connecting1 its “output”
with one “input” of the Comparator (like in the Fig. 13). Then it will send to
itself the message [:extract tree] with itself being the reply destination.

1 Like the communication pipes in the ObjPive model[15], inspired by the Un*x pipes.
In contrast, these “pipes” are virtual (no assumption of shared memory).

Object-Oriented Concurrent Programming in ABCL/1 39

[object TreeExtractor
(state output)
(script
(=> [:copy] !(self-copy))

(=> [:fringe tree] @ Pipe
[output := Pipe]
[Me <= [:extract tree] @ Me])

(=> [:extract tree] @ C
(cond

((null tree) [C <= [:continue]])
((atom tree) [output <= tree] [C <= [:continue]])
(t [Me <= [:extract (car tree)]

@ [object
(state [Extractor := Me])
(script
(=> [:continue]
[Extractor <= [:extract (cdr tree)] @ C]))]])))

(=> [:continue] [output <= ’EOT]))]

Fig. 15. The Same Fringe TreeExtractor

To extract the fringe of a tree, the continuation-based programming style
is adopted, which is in contrast to iterative or recursive ones. This model was
initiated by Carl Hewitt[16], who gave a solution of the same fringe problem using
continuations in a coroutine style. In contrast, our algorithm is fully parallel. The
“[:extract tree] @ C” message script will bind the variable C to the reply
destination, which represents the continuation, i.e., the object which will do the
following:

– If the tree is null, the tree extractor just activates the continuation C, by
sending it the message [:continue].

– If the tree is atomic, then this element is sent to the output, (so the cor-
responding “input1/2” of Comparator will receive a new element) and the
continuation will be activated.

– The last case means that the tree is a node (a Lisp cons). We have to ex-
tract its left son (car), and then its right son (cdr). This second part to be
performed later is specified in a dynamically created object (a new contin-
uation), which will request the tree extractor to extract the cdr of the tree,
when receiving the [:continue] message. The bindings of variables “tree”
and “C” are memorized in the new continuation because of the lexical scoping
of ABCL/1.

When the tree extractor receives the [:continue] message, that means the end
of the extraction. So it will send EOT to the output, and stop there.

Note that in this algorithm if the two fringes are found to be different, the
two extraction processes go on. Comparator could then send a stop message to
either “freeze” or kill them. To deal with such a situation, we could devise various

40 A. Yonezawa, J.-P. Briot, and E. Shibayama

strategies which are related to the issues of objects’ “capability” and garbage
collection. This will be a subject for further study.

10 Concluding Remarks

10.1 Importance of the Waiting Mode

The computation model presented in this paper has evolved from the Actor
computation model. One of the important differences is the introduction of the
waiting mode in our computation model. As noted at the end of Sec. 3, without
now type (and/or future type) message passing, module decomposition in terms
of a collection of objects tends to become unnatural. Thus the now type message
passing is essential in structuring solution programs. In our computation model,
the now type message passing is derived from the waiting mode and the past
type message passing in a simple manner as demonstrated in Sec. 6. In contrast,
the realization of a now type message passing in the Actor computation model
forces the unnatural decomposition of actors and requires rather cumbersome
procedures for identifying a message that corresponds to the return (reply) value
of now type message passing.

10.2 Express Mode Message Passing

We admit that the introduction of the express mode message passing in a high-
level programming language is rather unusual. The main reason of introducing
the express mode is to provide a language facility for natural modelling. Without
this mode, the script of an object whose activity needs to be interrupted would
become very complicated. When an object is continuously working or active,
if no express mode message passing is allowed, there is no way of interrupting
the object’s activity or monitoring its state. One can only hope that the object
terminates or suspends its activity itself and gives an interrupting message a
chance to be accepted by the object. But this would make the structure of the
script of the object unnatural and complicated. It should also be noted that the
express mode message passing is useful for debugging because it can monitor the
states of active objects.

10.3 Interrupt vs. Non-Interrupt

Our notion of express mode message passing is based on a very simple interrupt
scheme. Even in this simple scheme, we must sometime protect the activity of
an object from unwanted interruptions by using the “(atomic ...)” construct.
(See the script of ProjectLeader in Fig. 11.) Appropriate uses of this construct
sometimes requires skills.

An alternative scheme might be what we call the mail priority model. In
this model, objects are not interrupted during their activities. An express mode
message sent to an object arrives at the express queue without interrupting the

Object-Oriented Concurrent Programming in ABCL/1 41

object. When the object is ready to check its message queues, it always first
consult its express queue (with first priority), and consult its ordinary queue
only when there is no (more) message in the express queue. Now there is no fear
of bad interruptions that the programmer has to take care of. But, on the other
hand, as noted in the previous subsection, the activity of an object cannot be
stopped or monitored when it is in progress. To alleviate this situation, we can
introduce a built-in primitive, say “(check-express)”, with which an object
can check to see whether an express mode message has arrived while the object
is carrying out its actions. “(check-express)” can be placed in the script of an
object and it is invoked as one of the actions performed by the object. When
it is invoked, if a message is in the express queue and it satisfies one of the
pattern-and-constraint pairs in the script, the execution of the actions specified
for the message pattern intervenes.

Since both schemes have various advantages and disadvantages and they de-
pend on the application areas of our language, we need more experiments to
draw a firm conclusion.

10.4 Parallelism and Synchronization

Let us review the basic types of parallelism provided in ABCL/1:

1. Concurrent activations of independent objects.
2. Parallelism caused by past type and future type message passing.
3. Parallelism caused by the parallel constructs [7] (we did not explain in this

paper) and multicasting (cf. Sec. 5.3 and Sec. 7).

Furthermore, ABCL/1 provides the following four basic mechanisms for syn-
chronization:

1. Object: the activation of an object takes place one at a time and a single first-
come-first-served message queue for ordinary messages is associated with
each object.

2. Now type message passing: a message passing of the now type does not end
until the result is returned.

3. Select construct: when an object executes a select construct, it changes into
the waiting mode and waits only for messages satisfying specified pattern-
and-constraint pairs.

4. Parallel construct: see [7].

10.5 Relationship to Other Work

Our present work is related to a number of previous research activities. To dis-
tinguish our work from them, we will give a brief summary of ABCL/1. Unlike
CSP [17] or other languages, ABCL/1 has characteristics of dynamic nature:
objects can be created dynamically, message transmission is asynchronous, and
the “knows”-relation among objects (i.e., network topology) changes dynami-
cally. An object in our computation model cannot be activated by more than

42 A. Yonezawa, J.-P. Briot, and E. Shibayama

one message at the same time. This “one-at-a-time” nature is similar to that
of Monitors [18], but the basic mode of communication in programming with
monitors is the call/return bilateral communication, whereas it is unilateral in
ABCL/1.

10.6 Other Program Examples

A wide variety of example programs have been written in ABCL/1 and we
are convinced that the essential part of ABCL/1 is robust enough to be used
in the intended areas. The examples we have written include parallel discrete
simulation [19, 20], inventory control systems [21, 22] à la Jackson’s example [23],
robot arm control, mill speed control [24], concurrent access to 2-3 trees and
distributed quick sort [20].

Acknowledgements. We would like to thank Y. Honda and T. Takada for
their implementation efforts on Vax/11s, Sun workstations, and a Symbolics.

References

1. Smith, R.G.: Report on the 1984 distributed artificial intelligence workshop. AI
Magazine 6(3), 234–243 (1986)

2. Special issue on distributed problem solving. IEEE Transactions on Systems, Man,
and Cybernetics, SMC 11(1) (1981)

3. Yonezawa, A., Tokoro, M. (eds.): Object-Oriented Concurrent Programming. The
MIT Press (1987)

4. Brodie, M., Mylopoulos, J., Schmidt, J. (eds.): On Conceptual Modelling. Springer
(1984)

5. Stefik, M.K., Bobrow, D.G.: Object-oriented programming: Themes and variations.
AI Magazine 6(4), 40–62 (1986)

6. Tschritzis, D. (ed.): Office Automation. Springer (1985)
7. Yonezawa, A., Shibayama, E., Takada, T., Honda, Y.: Modeling and programming

in an object-oriented concurrent language ABCL/1. In: Yonezawa, A., Tokoro,
M. (eds.) Object-Oriented Concurrent Programming, pp. 55–89. The MIT Press
(1987)

8. Shibayama, E., Yonezawa, A.: ABCL/1 User’s Manual (1986), Internal Memo
9. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial

Intelligence 8(3), 323–364 (1977)
10. Hewitt, C., Baker, H.: Laws for parallel communicating processes. In: IFIP

Congress Proceedings, Toronto, pp. 987–992 (1977)
11. Lieberman, H.: A preview of Act-1. AI-Memo AIM-625, Artificial Intelligence

Laboratory. MIT (1981)
12. Yonezawa, A., Hewitt, C.: Modelling distributed systems. In: Machine Intelligence,

vol. 9, pp. 41–50. Halsted Press (1979)
13. Lieberman, H.: Delegation and inheritance - two mechanisms for sharing knowledge

in object-oriented systems. In: Bezivin, J., Cointe, P. (eds.) 3rd AFCET Workshop
on Object-Oriented Programming, Paris, France. Globule+Bigre, vol. 48, pp. 79–89
(January 1986)

Object-Oriented Concurrent Programming in ABCL/1 43

14. Briot, J.P.: Instanciation et héritage dans les langages objets (thèse de 3ème cycle).
LITP Research Report 85-21, LITP - Université Paris-VI, Paris, France (December
1984)

15. Serpette, B.: Contextes, processus, objets, séquenceurs: FORMES. LITP Research
Report 85-5, LITP – Université Paris-VI, Paris (October 1984)

16. Hewitt, C., et al.: Behavioral semantics of nonrecursive control structures. In: Pro-
ceedings of Colloque Sur la Programmation, Paris (April 1974)

17. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

18. Hoare, C.A.R.: Monitors: An operating system structuring concept. Communica-
tions of the ACM 17(10), 549–558 (1974)

19. Yonezawa, A., Matsuda, H., Shibayama, E.: Discrete event simulation based on
an object oriented parallel computation model. Technical Report C-64, Dept. of
Information Science, Tokyo Institute of Technology (1984)

20. Shibayama, E., Yonezawa, A.: Distributed computing in ABCL/1. In: Yonezawa,
A., Tokoro, M. (eds.) Object-Oriented Concurrent Programming, pp. 91–128. The
MIT Press (1987)

21. Kerridge, J.M., Simpson, D.: Three solutions for a robot arm controller using
pascal-plus, occam and edison. Software – Practice and Experience 14, 3–15 (1984)

22. Shibayama, E., Matsuda, M., Yonezawa, A.: A description of an inventory control
system based on an object-oriented concurrent programming methodology. Jouhou-
Shori 26(5), 460–468 (1985)

23. Jackson, M.: System Development. Prentice-Hall (1983)
24. Yonezawa, A., Matsumoto, Y.: Object-oriented concurrent programming and in-

dustrial software production. In: Ehrig, H., Floyd, C., Nivat, M., Thatcher, J. (eds.)
TAPSOFT 1985 and CSE 1985. LNCS, vol. 186, pp. 395–409. Springer, Heidelberg
(1985)

Reflection in an Object-Oriented Concurrent

Language

Takuo Watanabe and Akinori Yonezawa

Department of Information Science, Tokyo Institute of Technology,
Ookayama, Meguro-ku, Tokyo, Japan, 152

Abstract. Our work is along the lines of the work of B. Smith and P.
Maes. We first discuss our notion of reflection in object-oriented concur-
rent computation and then present a reflective object-oriented concur-
rent language ABCL/R. We give several illustrative examples of reflective
programming such as (1) dynamic concurrent acquisition of “methods”
from other objects, (2) monitoring the behavior of concurrently run-
ning objects, and (3) augmentation of the time warp mechanism to a
concurrent system. Also the definition of a meta-circular interpreter of
this language is given as the definition of a meta-object. The language
ABCL/R has been implemented. All the examples given in this paper
are running on our ABCL/R system.

1 Introduction

Reflection is the process of reasoning about and acting upon itself[1, 2]. A reflec-
tive computational system is a computational system which exhibits reflective
behavior. In a conventional system, computation is performed on data that rep-
resent (or model) entities which are external to the computational system. In
contrast, a reflective computational system must contain some data that repre-
sent (or model) the structural and computational aspects of the system itself.
And such data must be manipulable within the system itself, and more impor-
tantly, changes made to such data must be causally reflected/connected to the
actual computation being performed.

B. Smith[3] and other researchers(e.g.,[4–6]) investigated the power of com-
putational reflection and emphasized its usefulness. In particular, P. Maes has
proposed a reflective system in the framework of object-oriented computing[7]
and made good contributions to the fields of object-oriented programming and
reflective computation. Her work, however, confined itself to sequential systems,
and did not consider systems where more than one object can be active simul-
taneously.

Our present work proposes a reflective system in the framework of object-
oriented concurrent computing. This is one of our research results in the
paradigm of “Object-Oriented Concurrent Programming”[8, 9]. We expect that
reflective facilities will become increasingly more important in concurrent com-
putational systems such as (distributed) operating systems, realtime systems,

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 44–65, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Reflection in an Object-Oriented Concurrent Language 45

distributed simulation systems, distributed problem solving systems, robot plan-
ning/controlling, etc. For reflective capabilities are indispensable when one tries
to make the behavior of these systems more powerful and intelligent as well as
controllable by the user.

In this chapter, we first discuss our notion of reflection in object-oriented
concurrent computing and then present a reflective object-oriented concurrent
language ABCL/R. We give several illustrative examples of reflective program-
ming such as

– dynamic concurrent acquisition of “methods” from other objects,
– monitoring the behavior of concurrently running objects, and
– augmentation of the time warp mechanism[10] to a concurrent system.

Also the definition of a meta-circular interpreter of this language is given as
the definition of a meta-object. This language ABCL/R is an extension of our
previously proposed language ABCL/1 [11] and has been implemented. All the
examples given in this paper are running on our ABCL/R system. The summary
of our present work is given in the final section of this chapter.

2 Object-Oriented Concurrent Computation Model

In order to present the framework of our work, we first introduce an object-
oriented concurrent computation model. This model is basically a submodel of
our existing object-oriented concurrent computation model ABCM/1[11].

2.1 Overview of the Computation Model

In our computation model, a system is a collection of objects — autonomous
information processing agents. Each object has an individual serial computation
power, and may have local persistent memory called a state memory. Func-
tions and properties of a conceptual/physical entity in the problem domain are
modeled and represented as such an object. In order to use the functions and
properties, a request message is sent to the object. When an object receives a
message, if the message is acceptable to the object, it starts the sequence of
actions which are requested by the message.

Actions performed by an object are combinations of inquiring/updating the
object’s local state memory, sending messages to other objects (including itself),
creating new objects, and other symbolic/numerical operations. Basically, se-
quences of actions by objects in the system proceed asynchronously. This means
that many objects perform their computation in parallel. In our model, the unit
of concurrency is an object. Communication among objects and the synchroniza-
tion of their computation are done only by message passing. Any two objects
don’t share any data other than the names (addresses, or pointers) of other
objects. The state memory of each object cannot be accessed directly by other
objects, and only indirect accesses through message passing are permitted.

46 T. Watanabe and A. Yonezawa

Each object is always in one of two modes: dormant and active. The mode
of an object is dormant at creation time. It becomes active when it accepts
a message and starts executing a sequence of actions for the message. When
the execution completes, and if no subsequent message has arrived, the object
becomes dormant.

From the programming point of view, an object is the basic building block of
program. A program is written as the behavior description of objects — what
actions to perform when received messages. The description of the behavior of
an object is a collection of scripts (often called methods in other object-oriented
languages), which consists of a message pattern and a sequence of actions. A
script prescribes the sequence of actions by the object invoked when received a
message that matches the message pattern of the script.

2.2 Structure of an Object

Since each object has a single serial processing power, it executes a script one
at a time. Although messages can be received by an object which is in active
mode, the execution of the scripts for the messages must be postponed until the
current script execution completes. Therefore each object has a message queue
to store incoming messages. (This message queue can be viewed as a part of the
receiver memory state.)

The structure of an object consists of a serial evaluator, a set of scripts, a
state memory, and a message queue. The structure itself can be regarded as a
serial computational system. This structure of an object is a basic one. As will
be seen in the subsequent sections, we can build different structures for objects,
and such structures can dynamically be changed by using reflective language
facilities.

2.3 Message Transmission

All message transmission is asynchronous. There is no need for any handshaking
to send/receive messages. This means that one can send messages whenever it
wants, regardless of the current condition (mode) of the target object. When
a message is sent to an object, it will be treated by the receiver object in the
following way.

1. Arrival : First, the message arrives at the receiver object. This event is called
the arrival of the message. The receiver starts processing the message. It is
assumed that once a message is transmitted, it is guaranteed to arrive at the
receiver (as long as the receiver exists).

2. Receiving: Next, the receiver object enqueues the arrived message in its
message queue — this is the event of receiving. If the receiver is in dormant
mode, it starts trying to accept the messages in the queue (see next).

3. Acceptance: If the receiver is in dormant mode, it dequeues the first message
in the queue, and checks to see whether the receiver can process it. To be
more precise, the receiver tries to find an appropriate script for the message

Reflection in an Object-Oriented Concurrent Language 47

by pattern-matching. Acceptance of the message is the event in which the
appropriate script for the message is found. If the receiver accepts the mes-
sage, it starts executing the script for the message. Otherwise, the message
is simply ignored (in the language ABCL/R, a warning message is issued).

4. End of Processing a Message: When the evaluation finishes, the receiver
checks the queue to process subsequent messages. If the queue is empty, the
receiver becomes dormant.

2.4 Types of Message Transmissions

Our model has the following two types of message transmissions (ABCM/1 also
has three types including the future type).

– Past type: Suppose an object x sends a message to y in the course of com-
putation. Then x does not wait for the message to be received by y, and
continues the rest of computation immediately. Using the notation of our
reflective language ABCL/R, this type of message transmission is written
as:

[T <= M] or [T <= M @ R]

where T , M , and R are the target object, message, and reply destination,
respectively. The reply destination is an object to which the receiver can
send a reply message. If the reply destination is not specified, the receiver
regards NIL as the reply destination. (Sending messages to NIL causes no
effect.)

– Now type: When an object x sends a messageM to T , x waits for the message
to be received by y and further waits for a reply from T to come, blocking
the current script execution. A now type message transmission is written in
ABCL/R as:

[T <== M]

A now type message transmission looks similar to an ordinary remote proce-
dure call, but it is different. In the case of now type, after sending the reply
to x, T may continue its computation, and furthermore, T can ask another
object y to send a reply to x.

3 Reflection in Our Model

To realize reflection in a system based on our computation model, the causally
connected self representation[1, 2] of the system must exist within the system.
Since reflective computation depends on the way in which the self representation
is described, choosing the formalism for the self representation is the primary
concern of building a reflective system.

There are at least two approaches to build the self representation of an object-
oriented concurrent computational system. One is to assume the existence of a

48 T. Watanabe and A. Yonezawa

datum which is the causally connected self representation of the whole system,
and the other is to introduce the self representation of each object in the system
individually. Our approach is the latter one. The remarks on the former approach
will be found in the concluding section.

As explained in the previous section, we can regard an object as a serial
computational system. Thus we can build a representation of an object as a
representation of a serial computational system. The representation of an object
contains the representations of the message queue, the state memory, the set
of scripts, and the evaluator of the object. Besides this structural aspect, the
computational aspect of the object — arrival, receiving, and acceptance of a
message and the execution of a scripts — must be represented. Our approach is
to represent each object as an object called a meta-object.

For each object x, there exists a meta-object ↑x, which represents both the
structural and computational aspects of x. ↑x contains the meta-level information
about x. Meta-object ↑x represents the object x in a similar way that usual
objects represent entities in the problem domain. x is called the denotation of
↑x. The structure of x is represented as the data in the state memory of ↑x, and
the computational aspects of x is described as the scripts (methods) of ↑x. The
following points should be noted.

– An object x and the information about x in ↑x are causally connected. Thus
the data stored in ↑x always represent the current status of x, and operations
on the data cause the isomorphic effect on x.

– ↑x is an object. So ↑↑x also exists. This means that operations on ↑x are
allowed. Thus, there is an infinite tower of meta-objects ↑x, ↑↑x, ↑↑↑x, . . . for
each object x. In the actual implementation, meta-objects are created when
their access takes place (by lazy creation).

– If one knows the name of x, it can always get the name of ↑x, and vice versa.
– The correspondence between objects and their meta-objects is one to one.

That is, for each object x, y, x ≡ y ⇐⇒ ↑x ≡↑y holds (≡ is the identity
relation).

The concept of meta-objects in our model is similar to that of meta-objects
in 3-KRS[2, 7]. In 3-KRS, structural/computational aspects of an object is also
represented in its meta-object. But the way of modeling an object as its meta-
object is different, because an object is a unit of concurrency in our computation
model.

In our model, the causal connection link between an object x and its meta-
object ↑x is implicit — the changes in x cause the isomorphic changes to the data
in ↑x not by the message transmission from x to ↑x (and vice versa). The reason
is that the message transmission takes time, which requires the synchronization
of x and ↑x. As we will see in the later section, ↑x is used as the “implementation”
of x.

Reflective computation in an object x is performed by x sending messages to
its meta-object ↑x. This enables x to inquire/modify itself through ↑x, because
the structural/computational aspects of x is represented in ↑x in a causally con-
nected way. Note that appropriate scripts for operations on x must be prepared

Reflection in an Object-Oriented Concurrent Language 49

in ↑x. If ↑x doesn’t have such scripts, it is possible to modify ↑x using ↑↑x to
acquire such scripts. Such examples are found in Sec. 5.

Of course a meta-object can receive messages from objects (other than its
denotation). In a system that consists of a collection of many objects, we can
regard the meta-object of an object as the partial representation of the system.
Thus the reflective computation in the system is realized by sending messages to
each other’s meta-object. Note that such message transmissions may take place
concurrently in our computation model.

4 Meta-Objects and Reflective Language
ABCL/R

The notion of meta-objects is the key concept for the reflection in our computa-
tion model. ABCL/R — the description language of our model — is an object-
oriented concurrent language with reflective architecture based on the notion of
meta-objects. The syntax and basic features of the language are adopted from
the language ABCL/1[11, 12]. In this section, we describe the definition of meta-
object in details in terms of the language ABCL/R.

4.1 Object Definition in ABCL/R

In ABCL/R, an object definition is written in the following form. The value of
the form is a newly created object the name of which is object-name.

[object object-name
(state variable-declaration. . .)
(script
(=> message-pattern @ reply-destination-variable

from sender-variable
(temporary variable-declaration. . .)
behavior description)

. . .)]

object-name is optional in the above definition. (state . . .) is the local state
variable declaration. variable-declaration is either [variable := initial-value] or
variable which is equivalent to [variable := nil]. [variable := expression] is
the expression for assignment of the value of expression to variable. Each (=>

message-pattern . . .) is the description of a script. The object defined in the
above form accepts a message which matches a message-pattern. The reply des-
tination and the sender object of an incoming message are bound to the variables
reply-destination-variable and sender-variable, respectively. These two variables
are optional. behavior description in each script description is a sequence of
actions, which are described as expressions of either object creation, message
transmission, inquiring/modifying state memory (through state variables), or
some other symbolic/numerical calculation (as Lisp expressions). (temporary
...) is the declaration of temporary variables used in the script.

50 T. Watanabe and A. Yonezawa

4.2 Definition of a Meta-Object in ABCL/R

As explained in Sec. 3, a meta-object ↑x is an object which models the structural
and computational aspects of an object x, and x is called the denotation of ↑x.

Modeling the Structure of an Object. Since an object x in our computation
model consists of a set of scripts, a state memory, a local serial evaluator, and
a message queue, the structural aspect of x is represented as the values of ↑x’s
state variables scriptset, state, evaluator, and queue, respectively. Using
the ABCL/R notation, this structural aspect is described as the state-part of
the definition of the meta-object ↑x given in Fig. 1.

[object ; a meta-object
(state [queue := a message queue]

[state := a state object]
[scriptset := a set of scripts]
[evaluator := an evaluator object]
[mode := either :dormant or active])

(script
(=> [:message Message Reply-Dest Sender] ; message arrival & receiving

[queue := (enqueue queue [Message Reply-Dest Sender])]
(if (eq mode ’:dormant) then

[mode := active]
[Me <= :begin]))

(=> :begin ; acceptance & script execution
(temporary mrs scr newenv [object := Me])
[mrs := (first queue)]
[queue := (dequeue queue)]
[scr := (find-script (first mrs) scriptset)]
(if scr then ; acceptance

[newenv := [env-gen <== [:new (script-alist mrs scr) state]]]
;; pattern variables, reply & sender variables have been bound in newenv
[evaluator <= [:do-prg (scr$body scr) newenv [den Me]] @

[cont ignore ; the value of the evaluation is ignored
[object <= :end]]]

else ; cannot accept
(warn ‘‘Cannot handle the message ~A’’ (first mrs))
[Me <= :end]))

(=> :end ; termination of the execution
(if (not (empty? queue)) then

[Me <= :begin]
else

[mode := :dormant]))
;; The following scripts are examples of special scripts for meta-level operations.
(=> :queue ; inquiring about the message queue

!queue) ; returns the value of queue
(=> [:script Message];inquiring about the script whose pattern matches Message

!(find-script Message scriptset)) ; returns the found script
...)]

Fig. 1. Definition of A Meta-Object

Reflection in an Object-Oriented Concurrent Language 51

Each element in the value of scriptset is a script (represented in a certain
data structure, say, character strings), and the values of state and evaluator

are objects which represent the state memory and the evaluator. The value
of mode indicates the current mode of the denotation object, which is either
:dormant or :active.

Modeling the Behavior of an Object. Besides the structural aspect, the
meta-object ↑x models the computational aspect of its denotation — arrival,
receiving, and acceptance of messages, and execution of scripts. This aspect is
described in the ABCL/R notation as the script-part of the definition in Fig. 1.

The following is a more precise description of what was explained in Sec. 2.3
in terms of the ABCL/R notation. Suppose a message M is sent to an object x.

1. Arrival of a Message: The arrival of a message M at the object x is rep-
resented by acceptance of a message [:message M R S] by ↑x. R is the
reply destination of M , and S is the sender object of M .

2. Receiving a Message (See the script for [:message . . .]): When ↑x accepts
the message [:message M R S], it enqueues the triple [M R S] to its
message queue — the value of the variable queue. This represents the situ-
ation where the object x receives the message M . If x is in dormant mode
— the value of the state variable mode in ↑x is :dormant, then ↑x sends a
message :begin to itself.

3. Acceptance of a Message (See the script for :begin): ↑x dequeues one triple
[M R S] from the queue. If there is an appropriate script σ for M in
scriptset (acceptance), ↑x executes the body of σ (see next). If there is
no script for M , it just ignores this and sends :end to itself after issuing a
warning message.

4. Execution of a Script : First, ↑x creates a new environment — which binds
the contents of M to the pattern variables of σ, R to the reply variable of
σ, and S to the sender variable of σ —, then evaluates the body of σ under
the new environment using the evaluator object.

5. After a Script Execution (See the script for :end): When the execution of
the script completes, a message :end is sent to ↑x. Then ↑x checks the queue,
and starts processing of subsequent messages if the queue is not empty (by
sending a message :begin to itself).

Let us look at the script execution more closely. A new environment is created
by the environment generator object env-gen from the a-list of pattern vari-
ables/values and the state object. The evaluator object evaluator is activated
by receiving a message [:do Exp Env Me-ptr], where Exp is the expression to
be evaluated, Env is the environment object, and Me-ptr is the object in which
the evaluation takes place. The following expression in Fig. 1 is executed at the
end of the execution of the script for :begin.

[evaluator <= [:do-prg (scr$body scr) newenv [den Me]]
@ [cont ignore [object <= :end]]]

52 T. Watanabe and A. Yonezawa

Message [:do-prg . . .] is used instead of [:do . . .], and this is used to
evaluate the list of expressions (the value of (scr$body scr)) and the result is
the value of the last expression of the list (like progn of Lisp). The value of the
variable Me is the meta-object itself (such variables are often named “self” in
other languages), and [den Me] (this form is explained in a later section) is the
denotation of the meta-object.

Since a past type message transmission is used, the execution of the script
for :begin immediately completes after the execution of the above expression,
and the mode of the meta-object becomes dormant. The result of the evaluation
is passed to the reply destination of the message, which is expressed as [cont

...]. Note that the form

[cont message-pattern script-description]

is syntactically equivalent to the following form.

[object

(script (=> message-pattern script-description))]

The notation [cont . . .] is intended to be used as the continuation of the eval-
uation which accepts the evaluation result and does the rest of the task. The
result of the script evaluation is bound to a variable ignore and just ignored
(the variable ignore is not used in the body), and the rest of the task is to send
a message :end to the meta-object which is bound to a variable object.

Inherent Concurrency. Suppose the meta-object ↑x has accepted a mes-
sage :begin and the evaluation of the corresponding script has been started
by evaluator. Since this evaluation is triggered by a past type message trans-
mission, now ↑x changes to dormant mode and stays in dormant mode until a
message :end is sent to ↑x from the continuation object ([cont ...]) of the
evaluator. (Note that if the evaluator object is executing a script, the mode of
x can be active even when ↑x is in dormant mode.) Thus ↑x can accept the
next [:message . . .] without waiting for the completion of the current script
execution.

This corresponds to the fact that x can receive messages while x is in active
mode (asynchrony described in 2.3). The fact is called the inherent concurrency
of the object x.

To model the behavior of an object correctly, it must be guaranteed that the
execution of the object’s scripts takes place one at a time. We can see that this
is guaranteed by the meta-object definition: once a message :begin is sent to
the meta-object ↑x, the next :begin message will not be sent until a message
:end is sent to ↑x. (The value of variable mode becomes :dormant only after the
script for :end has been executed.)

The definition in Fig. 1 also says that messages arriving at the denotation x
are simply enqueued when x is in active mode, and the search of the scriptset
by ↑x is postponed until the current script execution completes. For more detailed
explanation, see [13].

Reflection in an Object-Oriented Concurrent Language 53

4.3 Meta Circularity of Objects

In ABCL/R, to satisfy the requirement of the causal connection between an ob-
ject x and its meta-object ↑x, ↑x is used as the actual implementation of x. That
is, the contents of the state variables of ↑x — a message queue, a set of scripts,
a state object, and an evaluator object of x — are used for the actual compu-
tation of x. The arrival, receiving and acceptance of messages are performed as
we have seen before. Moreover, the evaluation of scripts is carried out by the
evaluator object, which is also an ordinary object of ABCL/R. Thus every object
of ABCL/R is implemented in a meta-circular way as its meta-object.

The definition of the meta-object in Fig. 1 is used in default. In ABCL/R, we
can specify other meta-object instead of this in the object definition. An example
of a non-default meta-object is described in Sec. 6.4.

A message transmission to an object x is defined in terms of its meta-object
↑x. The form

[x <= m @ r]

in the script of an object y, which is the sender of the messagem, will be reduced
to (interpreted as)

[↑x <= [:message m r y]]

when the above form is evaluated by the evaluator of y. In the definition of the
evaluator object, the part for the evaluation of a message transmission expression
is actually defined as above. (Of course, it is possible to access the meta-object
of the evaluator object.)

Because a meta-object ↑x is also an object, there exists an object ↑↑x which
is a meta-object of ↑x. This implies that ↑x is implemented in ↑↑x in the same
way as x is implemented in ↑x. This situation induces an infinite tower of meta-
objects for each objects, but in the actual implementation, we can avoid the
infinite tower by the lazy creation of meta-objects.

5 Reflective Programming Facilities in ABCL/R

This section explains language facilities for reflection in ABCL/R using simple
examples.

5.1 Sending Messages to Meta-Objects

In ABCL/R, ↑x can be accessed as the value of the special form [meta x],
and the value of [den ↑x] is x. Thus, for each object x, [meta [den ↑x]] ≡
↑x and [den [meta x]] ≡ x always holds. Access to ↑x enables the inquiry
and/or modification of components of x if ↑x has scripts appropriate for those
operations (e.g., scripts for :queue and [:script Message] in Figure 1).

Let us look at a small program example in which meta-objects are accessed.
Suppose that there is a group of objects consisting of the manager object M

54 T. Watanabe and A. Yonezawa

W1 WiW2

W1 WiW2

Manager

Workers

Meta of
Workers

causal
connection

:queue [:add-script ...]

[:job ...]

Fig. 2. Manager and Workers

and some worker objects W1,W2, Each Wi can receive a message of pattern
[:job job-type :param parameter], which is the request for a job of job-type
with parameter (Fig. 2).

M constantly monitors each worker Wi, and if M notices that Wi receives
requests of a particular job type (e.g., job 1) very frequently, M gives Wi a new
script for [:job 1 :param parameter] which is an optimized script for the job
type 1. This is realized by accessing ↑Wi from M . For example, to know the
messages received by Wi, M can simply send a message to ↑Wi as

[[meta Wi] <== :queue]

and also to add the new script for the job type 1, M can send a message to ↑Wi

as

[[meta Wi] <= [:add-script

’(=> [:job 1 :param parameter-var]
body of the script)]]

Note that this script extension of Wi by M can be done while Wi is executing
its jobs — the performance of the whole system is gradually improved while the
system is working.

5.2 Reflective Functions

Beside [meta ...] and [den ...], there is another language feature which fa-
cilitates reflective programming in ABCL/R. That is reflective functions, which
are similar to the reflective procedures in 3-Lisp[3]. In 3-Lisp, the unevaluated
call-time arguments (as in fexprs of the old-fashioned Lisp), call-time environ-
ment, and call-time continuation can be accessed in arbitrary place/time using

Reflection in an Object-Oriented Concurrent Language 55

reflective procedures. The triple (arguments, environment, and continuation)
represents the “snapshot” of a serial computation of 3-Lisp.

The number of the formal parameters of a reflective function in ABCL/R
is always five, and they are bound to the list of call-time (unevaluated) argu-
ments, the call-time environment (as an object), the call-time continuation (as
an object), the caller object which has invoked the reflective function, and the
evaluator object, respectively.

As an example of the use of (user-defined) reflective functions, let us look
at the following definition of a reflective function. This function is actually a
definition of a now-type message transmission, namely, the invocation of this
function, (now-send T M), is equivalent to the execution of [T <== M].

(define (now-send args env cont caller eval) reflect
[eval <= [:do-seq args env caller] @

[cont [Target Message]
[[meta Target]

<= [:message Message cont caller]]]])

The evaluation of the form (now-send T M) is performed at the level of the
evaluator as in 3-Lisp. Let Ex be an evaluator object of an object x. Since Ex is an
object, there is a meta-object ↑Ex. So ↑Ex has an evaluator, and it is an evaluator
of Ex, namely EEx . If the above expression is invoked as the part of a script
of x, then the formal parameters are bound to the following values: args=(T
M), env=environment object in ↑x, cont=continuation object , caller=x, and
eval=Ex. First, the value of the args is evaluated and the elements of the result
is bound to Target and Message. Then a message containing Message, cont and
caller is sent to the meta-object of Target. Note that the abbreviation form
[cont ...] explained in Sec. 4.2 is used.

6 Reflective Programming in ABCL/R

In this section, we will present several characteristic examples of reflective pro-
gramming in ABCL/R. First, we explain the basic methods for dynamically
modifying objects. Then we will show that the dynamic acquisition (or dynamic
“inheritance”) of scripts from other objects are concisely programmed at the
user-level by using the means of dynamic modification. Furthermore, we illus-
trate how an object can monitor other concurrently running objects’ behavior.
In this example, the meta-object of the meta-object of an object is involved. Also
we will briefly explain the implementation of the timewarp mechanism[10] us-
ing reflective features of the language ABCL/R. The reader should be reminded
that all the computations illustrated by these examples are performed in the
framework of concurrent computation.

6.1 Dynamic Modification of Objects

As we have seen, the internal structure of an object can be manipulated as data
in the meta-object of the object. In the default meta-object of an object, some

56 T. Watanabe and A. Yonezawa

special scripts which manipulate the internal structure of the denotation object
(queue, scripts, state, and evaluator) are provided. For example, the following
messages can be acceptable by the default meta-object.

– [:add-script s] : Adds a new script s to the denotation object of the
target meta-object.

– [:script m] : Returns a script whose message pattern matches m.
– [:delete-script m] : Deletes a script whose message pattern matches m.
– :state : Returns the object which represents the state memory of the de-

notation of the target object.

Let us look at how these messages are used. First, to add a new script to the
object x:

[[meta x] <== [:add-script ’(=> [:foo X] body-of-script)]]

Now x can accept messages that match the pattern [:foo X]. Before adding
this script, if x already has a script whose pattern matches [:foo X], this newly
added script is used instead of the old one. But the old script still remains and
when the new one is deleted, the old one will be used again.

[[meta x] <== [:script [:foo 1]]] =⇒ (=> [:foo X] body-of-script)

(The right hand side of “=⇒” is the value of the expression on the left hand
side.) The result is the script added before. The execution of the following form
deletes it.

[[meta x] <== [:delete-script [:foo 1]]]

In addition, it is possible to access the object which represents the state memory
by:

[s := [[meta x] <== :state]]

Variable s is bound to the state memory of x represented as the state object of
x. To know the value of a variable, a message [:value variable-name] is used
as follows.

[s <== [:value ’X]] =⇒ 1

In this example, the value of the state variable X of x is 1. To create a new
variable binding in the state memory, the following will do.

[s <== [:add-binding ’Y 100]]

Then x has a new state variable Y with its value being 100. If the binding of Y
already exists before adding, the old one is hidden by the new binding. The old
binding remains but cannot be accessed until the new one is deleted.

Using these special scripts of the default meta-objects and state objects, we
can write the code to modify the scripts and the state memory of an object
dynamically, and such modification can be done while the object being modified
is running. The examples described below use these special scripts effectively.

Reflection in an Object-Oriented Concurrent Language 57

6.2 Dynamic Acquisition (Inheritance) of Scripts

Suppose an object x has received a message M , but x does not have any script
for M . If x has the following script:

(=> message-pattern-for-M @ reply-var from sender-var
(inherit msg-pattern-for-M reply-var sender-var y t))

x can inherit (acquire) the script for the message M from another object y.
(What really happens when the above script is executed is: ↑x gets the script
dynamically from ↑y and then ↑x starts execution with the environment (state
memory and evaluator) of x as if the script were x’s local one.)

inherit is a reflective function whose caller object acquires (inherits) scripts
from a specified object. The first, second, and third arguments of inherit are the
message, reply destination, and the sender, respectively. The fourth argument
is the source of inheritance, which is an object (y) from which the caller (x)
inherits a script. If the last argument is a non-nil value, the script inherited is
stored in the caller object as its own script. Then the caller object can process
the subsequent messages of the same pattern using the newly acquired script,
and now it doesn’t need to inherit the script for the same message pattern. The
following is the definition of the function inherit.

(define (inherit args env cont caller eval) reflect
[eval <= [:do-seq args env caller] @

[cont [Message Reply Sender Inherit-Source Cache?]
(let ((scr [[meta Inherit-Source]

<== [:script Message]]))
(if scr then

[eval <= [:do-progn (scr$body scr)
[env-gen
<== [:new (script-alist

[Message Reply Sender]
scr) env]]

caller]
@ [cont Value

(if Cache? then
[[meta caller]

<== [:add-script scr]])
[[meta caller] <= :end]]]

else
(warn "No script found: ~A ~A" Message Inherit-Source)
[[meta caller] <= :end]))]])

First, all the call-time arguments are evaluated by the evaluator object eval,
and the values are bound to Message, Reply, Sender, Inherit-Source, and
Cache?. The message [:script . . .] explained above is used to try to get, from
the source of the inheritance (the value of Inherit-Source), a script whose
pattern matches the message (the value of Message). If found, the body of the
script is evaluated using the environment of the caller object as if it were the
caller’s local one.

Let us look at a simple example of using the function inherit. Objects bird
and emu are defined as follows:

58 T. Watanabe and A. Yonezawa

[object bird
(script
(=> :has-feather? !t) ; returns t
(=> :can-fly? !t) ; returns t
(=> Any @ Reply from Sender

(inherit Any Reply Sender animal nil)))]

[object emu
(script
(=> :can-fly? !nil) ; returns nil
(=> Any @ Reply from Sender

(inherit Any Reply Sender bird nil)))]

These objects model simple knowledge about birds and emus. Since an emu is a
bird, the object emu inherits all the scripts from bird except for :can-fly?. In
the second script of emu, the single pattern variable Any can match any messages.
When a message :can-fly? is sent to emu, it answers using its local script. In
the case of :has-feather?, emu inherits the script from bird, and answers using
it.

In this example, the fifth argument of inherit is nil. So emu can always
answer correctly being consistent with the changes made to the definition of
bird, because the scripts acquired are not cached in emu.

The function inherit will be used in the examples below. It should be noted
that the object-based inheritance scheme in [14] and the proxy-query inheritance
in [15] can easily be implemented using our inheritance scheme.

6.3 Monitoring Running Objects

The behavior of an object can be monitored from outside through its meta-
object. For example, let us consider how an object can monitor what messages
have been received by a specified object while the specified object is running.
Below we will show how simple reflective programming in ABCL/R implements
this monitoring facility.

Let Monitor be an object which monitors messages accepted by an object
x. To do so, Monitor modifies the behavior of x so that whenever x accepts a
message m from s with reply destination r, x sends a message [:has-accepted

m r s] to Monitor. See Fig. 3.
To start monitoring of x, the following will do:

[Monitor <= [:monitor x]]

Now, whenever x accepts a message m with reply destination r from s, Monitor
receives a message [:has-accepted m r s]. To stop this monitoring:

[Monitor <= :stop-monitoring]

We can start/stop monitoring whenever we want — even when the object
being monitored, namely the subject of monitoring, is executing its script. The

Reflection in an Object-Oriented Concurrent Language 59

[:add-script ...]

:state

[:has-accepted m]

m

x

x

x

[:add-bindings ...] Monitor

representation of the
state memory of x

object to be monitored

Fig. 3. The monitor object

inherent concurrency explained in 4.2 guarantees that the meta-object can re-
ceive and accept messages when its denotation is executing the script.

The definition of the monitor object Monitor is as follows:

[object Monitor
(state subject new-name)
(script

(=> [:monitor An-object]
[subject := An-object]
[new-name := (gensym)]
[[meta [meta subject]]

<== [:add-script
‘(=> :begin

. . .
(if scr then

[,new-name
<= [:has-accepted . mrs]]

. . .))]]
[[[meta [meta subject]] <== :state]

<== [:add-binding new-name Me]])
(=> :stop-monitoring

[[meta [meta subject]]
<== [:delete-script ’:begin]]

[[[meta [meta subject]] <== :state]
<== [:remove-binding new-name]]))]

When the monitor object receives the message [:monitor x], the monitor
object modifies ↑x so that ↑x may send the monitored information, namely, a
message [:has-accepted m r s] when x accepts a message m (from s with

60 T. Watanabe and A. Yonezawa

reply r). To do this, the monitor adds a new script for a message :begin through
↑↑x (see Fig. 1). The new script added is almost equal to the default one (in Fig. 1)
except that the monitored information is sent to x upon acceptance of a message.
In order to refer to the monitor object from x, a new state variable is added in
x, and the name of the new variable should not conflict with the other variables.
Thus (gensym) is used to create the new variable.

Stopping monitoring is simple. The newly added script and variable bindings
are simply removed from x. Then the original script for :begin is used again.

The above definition of Monitor specifies just the framework for monitoring.
What to do when a message comes [:has-accepted ...] is not specified in its
definition. By using this monitor object, actually by acquiring (inheriting) its
scripts, the following simple tracer object can be defined.

[object tracer
(state subject new-name)
(script

(=> [:monitor An-object] @ R from S
(inherit [:monitor An-object] R S Monitor t))

(=> :stop-monitoring @ R from S
(inherit :stop-monitoring R S Monitor t))

(=> [:has-accepted Message Reply Sender]
(format *trace-window* "~&~S accepts ~S from ~S"

subject Message Sender)))]

The object tracer monitors an object and displays the trace of message
acceptances on *trace-window*.

6.4 Time Warp Mechanism

A simple Time Warp mechanism based on the Virtual Time concept[10] has
been implemented using the reflective language constructs in ABCL/R.

Object-oriented concurrent programming offers the natural framework for dis-
tributed discrete event simulation. Each entity in the simulation domain is mod-
eled as an object, and events among entities are represented as transmission and
reception of messages by such objects. The essential problem in this framework is
how to manage the temporal consistency among events. Our computation model
does not assume the existence of the global clock .

In [16], this problem is solved with ABCL/1 using a rollback mechanism based
on the notion of the virtual time. Messages transmitted by objects (which model
or represent simulation entities) explicitly contain timestamps , and if time con-
flict is detected by an object (i.e., the timestamp τ of a message is older than the
time according to the local clock of the object), the object performs undoing of
its execution (rollback) to τ . That is, it sends anti-messages to objects to which
the object has already sent messages since τ , and undoes the execution so far.

As in [16], this roll back mechanism is usually explicitly specified in the scripts
of an object mingled with the description of simulation activities. But this ex-
plicit specification of roll back severely decreases the modularity of the simulation
program and it is very cumbersome and error-prone because the programmer has
to write the code for roll back everywhere necessary in the script.

Reflection in an Object-Oriented Concurrent Language 61

Since the rollback mechanism (of handling anti-messages and undo operations
for state variables) is meta-level to the simulation of activities, our implemen-
tation explicitly separates the two levels and describes the general roll back
mechanism in the definition of the meta-object of an object doing simulation
activities.

To define an object which has the Time Warp mechanism, the meta-object
specification facility of ABCL/R can be used as in the following object definition.

[object a-simulation-object
(meta TW-meta-gen)
(script
(=> message-pattern @ reply from sender

description of simulation activities)
. . .)]

(meta TW-meta-gen) in the above definition specifies the generator
(TW-meta-gen) of the meta-object of a-simulation-object explicitly. (The defi-
nition of TW-meta-gen is described in Appendix.) When the above expression is
evaluated, TW-meta-gen, instead of the default meta-object generator, is actually
used in creating a new object.

The Time Warp mechanism is fully handled by the meta-object. Thus the pro-
grammer of a-simulation-object does not need to write the code for rollback. The
Time Warp mechanism part and the simulation part are completely separated.
Of course, it is possible to use TW-meta-gen for defining of other simulation ob-
jects. It can be used as library code. Introducing this type of modularity is an
important feature of languages with reflective architecture.

7 Concluding Remarks

7.1 Summary

We designed and implemented an object-oriented concurrent language ABCL/R
which has a reflective architecture based on the notion of meta-objects. The
following is the summary of our present work.

– Each object is represented/implemented by its meta-object . The meta-object
incorporates the meta-level representations of structural and computational
aspects of the object in a meta circular way. A meta-object is also an object
of ABCL/R. This implies the infinite tower of meta-objects. (For its imple-
mentation, see below.) An evaluator (interpreter) of the language is also an
object. In our computation system, a number of such objects may work in
parallel.

– Reflective computation is performed by message transmissions to meta-
objects and such message transmissions take place concurrently. Reflective
computation can be performed in meta-objects of any level because of the
infinite tower of meta-objects. Sending messages to a meta-object makes it

62 T. Watanabe and A. Yonezawa

possible to inquire and alter the structure and behavior of the object. It is
possible to send messages to the meta-object of an object while the object
is performing its jobs. Thus, a concurrent system can gradually modify itself
by means of objects and (their) meta-objects in the system sending messages
each other.

– The dynamic modification of running objects in a concurrent system can
be described by using reflective language constructs of ABCL/R. We have
presented programming examples of dynamic (concurrent) modification such
as acquiring (or inheriting) scripts from other objects, and monitoring a
running object by modifying its meta-object through the meta-object of the
meta-object.

– Enhancement of program modularity can be attained by using meta-objects.
The example of a simple Time Warp mechanism has demonstrated this. In a
simulation program using this mechanism, the meta-level part is separated
from the object-level part by specifying a non-default meta-object for each
simulation object.

7.2 Current Status of ABCL/R

So far, we have built a prototype implementation of ABCL/R written in ABCL/1
(written in Kyoto Common Lisp on UNIX and Symbolics Common Lisp on
Symbolics Lisp Machines). All the examples described in the preceding sections
are actually tested on this implementation.

The primary concern of implementation is how to represent the infinite tower
of meta-objects. In our implementation, meta-objects are created in the lazy
way. A meta-object ↑x is actually created when the access to ↑x takes place —
when the evaluator first evaluates an expression [meta x].

7.3 Future Work

This work is our first attempt to build concurrent reflective systems. As we men-
tioned in Sec. 3, there are at least two approaches to building the causally con-
nected self representation of an object-oriented concurrent system. To completely
represent the whole concurrent system as a single datum is difficult because of
the causal connection. To do so, we need a good formalism and an appropriate
modeling of a concurrent system as a whole, as well as techniques to establish
the causal connection.

A possible approach is that the system is divided into some groups of objects
in such a way that each group contains objects that are related each other. Then
we describe an approximate (or partial) self representation of the computational
aspect of each group and make the representation accessible from all the members
of the group.

Reflection in an Object-Oriented Concurrent Language 63

References

1. Smith, B.C.: Reflection and semantics in a procedural language. Technical Report
TR-272, Laboratory for Computer Science, MIT (1982)

2. Maes, P.: Computational reflection. Technical Report 87-2, Artificial Intelligence
Laboratory, Vrije Universiteit Brussel (1987)

3. Smith, B.C.: Reflection and semantics in Lisp. In: Proceedings of ACM Symposium
on Principles of Programming Languages (POPL), pp. 23–35 (1984)

4. Friedman, D.P., Wand, M.: Reification: Reflection without metaphysics. In: Pro-
ceedings of Lisp and Functional Programming, pp. 348–355. ACM (1984)

5. Weyrauch, R.: Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence 13(1,2), 133–170 (1980)

6. Batali, J.: Computational introspection. AI Memo AIM-701, Artificial Intelligence
Laboratory. MIT (1982)

7. Maes, P.: Concepts and experiments in computational reflection. In: Proceedings
of ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 147–155 (1987)

8. Yonezawa, A., Tokoro, M. (eds.): Object-Oriented Concurrent Programming. The
MIT Press (1987)

9. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial
Intelligence 8(3), 323–364 (1977)

10. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (1985)

11. Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Proceedings of ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), pp. 258–268 (1986)

12. Yonezawa, A., Shibayama, E., Takada, T., Honda, Y.: Modeling and programming
in an object-oriented concurrent language ABCL/1. In: Yonezawa, A., Tokoro,
M. (eds.) Object-Oriented Concurrent Programming, pp. 55–89. The MIT Press
(1987)

13. Watanabe, T.: Reflection in object-oriented concurrent systems. Technical Report
(Master Thesis), Department of Information Science, Tokyo Institute of Technology
(March 1988)

14. Hailpern, B., Nguyen, V.: A model for object-based inheritance. In: Shriver, B.,
Wegner, P. (eds.) Research Directions in Object-Oriented Programming, pp. 147–
164. The MIT Press (1987)

15. Briot, J.-P.: Inheritance and synchronization in concurrent OOP. In: Bézivin, J.,
Hullot, J.-M., Lieberman, H., Cointe, P. (eds.) ECOOP 1987. LNCS, vol. 276,
pp. 32–40. Springer, Heidelberg (1987)

16. Shibayama, E., Yonezawa, A.: Distributed computing in ABCL/1. In: Yonezawa,
A., Tokoro, M. (eds.) Object-Oriented Concurrent Programming, pp. 91–128. The
MIT Press (1987)

64 T. Watanabe and A. Yonezawa

A Code for Simple Time Warp Mechanism

TW-meta-gen is the generator of meta-objects in which a simple time warp mech-
anism is implemented. The structure of an object consists of a local clock , an
input message queue, and an output message queue, a set of scripts, a state
memory, and an evaluator. The local clock and input/output message queues are
implemented as values of variables lvt, input-messages, and output-history,
respectively.

The arrival of a message is represented as the acceptance of the mes-
sage (in meta-level) which matches [:message Message Reply-Dest Sender

Timestamp] where the argument Timestamp is the timestamp of the mes-
sage. Messages which match the pattern [:anti-message Message Reply-Dest

Sender Timestamp] are antimessages .
In this program, the rollback works only for the past type message transmis-

sions. The retrieval of the state value is not implemented. In the script description
of an object whose meta-object is created by TW-meta-gen, timestamps must be
specified explicitly in message sending expressions like following:

[target <= message @ reply-destination :time receive-time]

receive-time is the virtual receive time[10] — the time at which the target object
receives the message message.

The definition of TW-input-queue-gen, TW-output-history-gen, and TW-

-evaluator-gen is omitted. See [13] for details.

;; Meta-object generator with TimeWarp mechanism
[object TW-object-gen
(script
(=> [:new State-Vars Lexical-Env Scripts & Creation-Time]

![object TW-object ; scope of this name is local to TW-object-gen
(state [input-queue := [TW-input-queue-gen <== :new]]

[output-history := [TW-output-history-gen <== :new]]
[state := [state-gen <== [:new State-Vars Lexical-Env]]]
[scriptset := Scripts]
[evaluator := [TW-eval-gen <== :new]]
[mode := ’:dormant]
[lvt := (or Creation-Time 0)]) ; Local Virtual Time

(script
(=> [Message-Type Message Reply-Dest Sender Timestamp]

where (member Message-Type ’(:message :anti-message))
[input-queue

<== [:enqueue
[Message-Type Message Reply-Dest Sender

Timestamp]]]
(if (eq mode ’:dormant) then

[mode := ’:active]
[Me <= :begin]))

(=> :begin
(match [input-queue <== :dequeue]

;; positive messages whose timestamp is equal to or newer than LVT
(is [:message Message Reply-Dest Sender Timestamp]

where (>= Timestamp lvt)
(case (find-script Message scriptset)

Reflection in an Object-Oriented Concurrent Language 65

(is [Message-Pattern Script-Body] ; a script is found
[lvt := Timestamp]
[evaluator

<= [:do-prg Script-Body
(newenv Message-Pattern

[Message Reply-Dest Sender]
state)

[den Me] lvt output-queue]
@ [cont ignore

[TW-object <= :end]]])
(is [] ; script is not found

(warn "Cannot handle the message: ~S" Mesg)
[Me <= :end])))

;; Messages whose timestamp is older than LVT
(is [Message-Type Message Reply-Dest Sender Timestamp]

where (< Timestamp lvt)
[lvt := Timestamp]
[input-queue <== [:rollback-to lvt]]
;; Sending anti-messages
(case-loop [output-history <== :last]
(is [Message Reply-Dest Target Timestamp]

where (> Timestamp lvt)
[[meta Target]

<= [:anti-message
Message Reply-Dest [den Me]
Timestamp]]

[output-history <== :drop]))
[Me <= :end])))

(=> :end
(if (not [input-queue <== :empty?]) then

[Me <= :begin]
else

[mode := ’:dormant])))]))]

Building Safe Concurrency Abstractions

Ole Lehrmann Madsen

Department of Computer Science, Aarhus University and the Alexandra Institute
Åbogade 34, DK-8200 Aarhus N, Denmark
ole.l.madsen@{cs.au.dk,alexandra.dk}

Abstract. Concurrent object-oriented programming in Beta is based on
semaphores and coroutines and the ability to define high-level concur-
rency abstractions like monitors, and rendezvous-based communication,
and their associated schedulers. The coroutine mechanism of SIMULA
has been generalized into the notions of concurrent and alternating ob-
jects. Alternating objects may be used to start a cooperative thread
for each possible blocking communication and is thus an alternative to
asynchronous messages and guarded commands. Beta like SIMULA, the
first OO language, was designed as a language for modeling as well as
programming, and we describe how this has had an impact on the de-
sign of the language. Although Beta supports the definition of high-level
concurrency abstractions, the use of these rely on the discipline of the
programmer as is the case for Java and other mainstream OO languages.
We introduce the notion of subpattern (including subclass) restrictions as
a mechanism for defining safe concurrency abstractions. Subpattern re-
strictions have been implemented in a new experimental version of Beta,
called xBeta.

1 Introduction

Concurrent object-oriented programming, and concurrent programming in gen-
eral, is a discipline that despite many years of research still is difficult to master.
And no model for concurrent programming has been established as the one to
be used. In practice, concurrent programming is often based on threads, locks,
and/or monitor-like mechanisms. It is well known that these styles of program-
ming in mainstream languages such as Java[27], C++[53] and C [34] give rise to
many problems with race conditions, deadlocks and non thread-safe libraries.

In 1999 Per Brinch-Hansen, the designer of the first high-level concurrent
programming language Concurrent Pascal [12], wrote the following [13]:

Gosling [1996, p.399] claims that Java uses monitors to synchronize
threads. Unfortunately, a closer inspection reveals that Java does not
support a monitor concept. . . .

The failure to give an adequate meaning to thread interaction is
a very deep flaw of Java that vitiates the conceptual integrity of the
monitor concept. . . .

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 66–104, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Building Safe Concurrency Abstractions 67

It is astounding to me that Java’s insecure parallelism is taken seri-
ously by the programming community, a quarter of a century after the
invention of monitors and Concurrent Pascal. It has no merit. . . .

If programmers no longer see the need for interference control, then
I have apparently wasted my most creative years developing rigorous
concepts, which have now been compromised or abandoned by program-
mers.

Today one may conclude that Brinch-Hansen was right in the sense that Java as
a concurrent programming language has a number of problems that Concurrent
Pascal did not have. On the other hand, Concurrent Pascal has a number of
other shortcomings as also expressed by the work of Brinch-Hansen himself [11].

In the literature, there are many proposals for concurrent OO programming
languages that do not suffer from the problems of Java. These include Actors
[29,2,3], CSP [32], Ada [1], ABCL[61], Concurrent Smalltalk[59], Erlang [6], and
Timber [51].

Recently there has been a growing interest in using Actor-like languages like
Erlang as an alternative to Java. One reason for this is that in Erlang concurrent
processes are completely encapsulated and there is no way two or more processes
can access the same data items. The language Dart [26] is a new OO language
that also supports processes as ’isolated’ units.

In most of the above-mentioned languages, communication is based on mes-
sages between processes. A process may send a message (using an output com-
mand) and/or receive a message (using an input command). A message may be
a simple or structured value or a method activation depending on the language.

There is a standing issue regarding the use of synchronous versus asynchronous
messages. With synchronous messages, the caller is blocked until the receiver is
ready to accept the message. The proponents for asynchronous messages argue
that these reduce the likelihoods for deadlocks just as the calling process may do
other things while waiting for the answer. Some authors [2,51] also argue that
asynchronous messages are more fundamental than synchronous messages.

With pure asynchronous messages, return values have to be passed back by
another message call, as in CSP. To improve on this, so-called futures [52] are
often used to hold return values. However, this to some extent often just delays
the point where the process may be blocked waiting for a value.

Proponents for synchronous messages argue that this style makes programs
more readable compared to control flow with sending messages and receiving
answers, even using futures, that may be difficult to follow.

A process may be involved in communication with several other processes
and because the order of arrival of messages from different processes is non-
deterministic, most languages have a select mechanism (based on guarded com-
mands as proposed by Dijkstra [25]) that makes it possible to wait for more than
one message at a given point of execution. This may be combined with Boolean
expressions that further may control which messages are accepted.

A disadvantage of the select-mechanism is that in most languages there is
an asymmetry between sending and receiving messages since a select may only

68 O.L. Madsen

contain input commands. There are proposals [7] in the literature for allowing
both input and output commands in a select, and Hoare mentions this in his
original paper on CSP. As we will discuss below, the lack of symmetry between
input and output commands and the use of Boolean expressions may blur the
control flow of the process.

In this paper, we present the Beta [36,39,42] approach to concurrent object-
oriented programming. Beta is a language designed for modeling as well as pro-
gramming, following the tradition of SIMULA. For the concurrency part, the
original goals for the design of Beta were:

– In contrast to SIMULA, full concurrency should be supported.1

– It should be possible for the programmer to define high-level concurrency
abstractions using the basic mechanisms. This should include the ability to
define an associated scheduler.

– The concurrency mechanisms should support modeling as well as program-
ming.

SIMULA [22,20,23], the very first object-oriented programming language, was
originally designed as a language for describing simulation systems motivated
by work in operations research at the Norwegian Computing Center in Oslo,
Norway. The goal for SIMULA I was to devise a language for modeling as well
as programming systems to be simulated.

Since SIMULA was supposed to model real-life systems, it was necessary to be
able to describe concurrent processes from the application domain. SIMULA did
not have true concurrency, but did have so-called quasi-parallel systems based
on coroutines. Later full concurrency was added in the Lund SIMULA system
[46,56], by introducing a mechanism for enforcing suspend on a coroutine from,
say, an external process, like a clock.

One of the strengths of SIMULA is the ability to define schedulers for concur-
rent processes based on the mechanism for scheduling active objects (coroutines)
in a simulation program. An example of a simulation scheduler was described
by Dahl and Hoare [19]. In the Lund SIMULA system, this mechanism may be
used to define schedulers for real concurrent objects.

Beta is based on the coroutine mechanism of SIMULA and further generalizes
and simplifies it. SIMULA has symmetric (resume) as well as semi-coroutines
(call, detach). Beta only has semi-coroutines, but symmetric coroutines may be
defined as an abstraction. In Beta, objects may execute concurrently or alter-
natingly (see below).

In an early version of Beta, communication between concurrent objects was
supported by a rendezvous mechanism as in Ada, and a select-mechanism with
Boolean expressions but allowing both input and output commands. It was,
however, soon realized that it was complicated to implement a symmetric select,
and the concept of alternation was developed as a replacement.

At a later stage, experience with the rendezvous mechanism was found to be
too heavy for a number of concurrency problems — often monitors were much

1 As mentioned below, full concurrency was later added in the Lund SIMULA system.

Building Safe Concurrency Abstractions 69

clearer. Jean Vaucher introduced the concept of prefixed procedures [55] inspired
by subclass and the inner-mechanism in SIMULA, and he showed how to define
a monitor abstraction using subprocedures and inner.

The experience with using rendezvous and monitors was that different con-
currency mechanisms were needed for different kinds of problems. This was
apparently also a requirement for C++: “I considered it crucial – as I still do –
that more than one notion of concurrency should be expressible in the language”
Bjarne Stroustrup in [54].

It turned out that in Beta it was possible to define high-level concurrency
abstractions like monitor, Ada-like rendezvous, futures, asynchronous methods,
etc. using a low-level mechanism for synchronization [42,62]. Semaphores were
therefore chosen as the low-level synchronization mechanism.

Although it is possible to define high-level concurrency abstractions in Beta,
there is nothing that forces a programmer to use them as intended. Beta thus has
the same kind of problems as Brinch-Hansen has pointed out for Java.When Beta
was designed, we either had to select a fixed set of safe concurrency mechanisms
or include general mechanisms for defining concurrency abstractions.

Languages, such as Simula, Beta, C++, Java, Smalltalk, and C# suffer from
the problem that they are primarily perceived as sequential languages. Concur-
rency is often presented and considered as an add-on. One just has to consult
text books and reference manuals, and other course material, which in most cases
start by presenting the sequential parts and at an (often) later stage introduce
the concurrency part. This does not encourage/inspire programmers to think of
their software systems as concurrent systems.

With languages like CSP, ABCL, and Erlang this is quite different, since
these are inherently concurrent languages that force the programmers to think
in organizing his/her program as a set of communicating concurrent processes.

In this paper, we present the Beta approach to concurrent object-oriented
programming with focus on abstraction mechanisms for building high-level con-
currency abstractions with associated schedulers. We also present the notion
of alternating activities as an alternative to asynchronous messages and select
statements.

To overcome the problems with unsafe concurrency mechanisms, we introduce
a language mechanism called subpattern restrictions for restricting the use of a
concurrency abstraction (class library). Subpattern restrictions make it possible
to define safe abstraction mechanisms without compromising the generality of
Beta.

A new experimental version of Beta, called xBeta, has been implemented in
order to experiment with various improvements of Beta, including subpattern
restrictions. In Beta, a pattern is a generalization of, e.g., class and method
– subpattern restrictions thus also make it possible to enforce restrictions on
subclasses and submethods (as we shall introduce later).

Other improvements in xBeta include a new module mechanism based on
singular objects [44], and a new debugger based on a combination of object
diagrams and message sequence charts [43].

70 O.L. Madsen

The overall goal of this paper is to contribute to language mechanisms for
concurrent object-oriented programming that are safe and help keep structure
and overview of the code. We are not addressing efficiency issues of multi/many-
core computers – for a large class of software systems, readability, structure and
safety are major issues.

As mentioned, Beta is a language for modeling as well as programming. We
start by a short introduction in section 2 to modeling in Beta and (some of)
the implications for the (concurrent) parts of Beta. In section 3, we present two
examples of concurrency abstractions defined in Beta: a monitor-based system
and a rendezvous-based system. In section 4, we show how these systems may
be defined (by the programmer) in Beta. In section 5, we present the language
mechanism for expressing subpattern restrictions. Finally, section 6 is related
work and evaluation and section 7 is the conclusion.

2 Modeling

Programming is modeling [21,41,47,60,49,38,45]), although some people do not
think modeling is important. The critique [17,18] of the modeling aspect has
been that (1) just a small percentage of the code relates to the “real world”, and
(2) there are many other means for modeling such as mathematical functions,
algebras, processes, constraints, rules, and automata.

It is true that the ability to represent the real world may have been overempha-
sized. This is, however, a question of what is the “real world”? Any application
domain may be considered the “real world” and independent of whether or not a
given technical domain such as network protocol is considered the “real world”,
the domain has phenomena and concepts that may be represented using objects
and classes.

It is of course also true that OO is not the only formalism for modeling
(the “real world” / application domains), and depending on the purpose of the
model, other formalisms may be better suited. However, when the purpose is
programming software systems, we claim that a modeling approach to OO has
a number of advantages as we shall argue below.

Software systems are complex entities and it is still a major problem to avoid
errors just as they are often inefficient and difficult to maintain. By and large,
we are still – and will continue to be – dependent on people’s ability to under-
stand the structure, interoperability and details of these systems. And for many
systems no single person is capable of doing this. To quote Grady Booch [10]:
“..., the complexity of such [industrial strength software] systems exceeds the
human intellectual capacity.”

We therefore claim that understandability of software systems is an essential
requirement. The better people understand the software, the easier it is to en-
sure the right functionality, avoid errors, and ensure efficiency. There is a general
acceptance that abstraction and modularization are powerful means for dealing
with complexity just as simplicity (over smartness and tricks) should be a guid-
ing principle. To quote Kristen Nygaard [42]: “To program is to understand”.

Building Safe Concurrency Abstractions 71

This should be understood in contrast to: “To program is to get away with
it” – Nygaard called this the Lisp-hacker’s credo. These quotes appeared during
(heated) discussions with (especially Lisp, Loops, Flavors) people about the pur-
pose of (multiple) inheritance: for inheritance of code (code grabbing according
to Nygaard) or for representing concept hierarchies.

In programming, abstraction is often about hiding details (information hiding
and encapsulation) of the code and providing well-defined interfaces. Abstrac-
tion is, however, also about identifying and forming concepts (abstractions) rep-
resenting knowledge about the application domain [30]. This form of abstraction
requires an in-depth understanding of the application domain and this is what
modeling is about.

Modeling is really about abstraction in the sense of identifying and forming
concepts (abstractions). Any abstraction is a concept, and language mechanisms
like procedure (method) or class are suitable for representing concepts/abstrac-
tions. Procedures and classes in a given program should therefore represent
meaningful concepts in the application domain. And a class/subclass hierar-
chy should in general represent a concept hierarchy that is meaningful in the
application domain.

There is no conflict between viewing abstraction as information hiding and/or
encapsulation and concept formation, since the latter may provide guidelines for
the former. And as mentioned, one of the advantages of a modeling approach
is that the application domain is reflected in the programs [40,15]. A model-
ing approach thus provides design guidelines for identifying classes, subclasses,
methods, data items, etc.

An important part of the Beta project was to develop a conceptual framework
[42, Chap. 2, 18] for understanding and organizing knowledge about the appli-
cation domain. The conceptual framework includes means for identification of
relevant phenomena and their properties: objects, properties of objects, and re-
lated action-sequences and their properties. In addition, conceptual means such
as various forms of composition, classification, and association are discussed.

An abstraction may be considered a model [14], but in the Scandinavian ap-
proach to OO, a model is considered a physical entity [41], and the program exe-
cution is viewed as such a physical model. This is in contrast to UML where the
UML diagram is considered the model – this would correspond to the program
text being the model. As argued in [41,38,45], the dynamic process generated
during a program execution should be considered the model for the application
domain. Of course, language mechanisms/languages for describing (the program
text and/or UML diagram) are equally important.

Composition (is-part-of relation) and classification (is-a relation) are well-
known conceptual means. In programming languages, we have support for com-
position of action sequences: an action-sequence may be composed of other
actions by means of procedures (methods). For objects, class and subclass sup-
port classification by making it possible to represent a classification hierarchy of
general and more specialized concepts as the one in Figure 1 for vehicles.

72 O.L. Madsen

Fig. 1. Vehicle hierarchy

Beta and UML have direct support for composition of objects in the sense
that an object may consist of other objects. In [9], a proposal for supporting
part objects in Smalltalk is presented. Composition of objects is not directly
supported by mainstream languages like C++, Java and C#. You may simulate
composition using constant references, but this is only indirect support.

For concurrent action-sequences one may also claim that composition is sup-
ported since an action-sequences may be split into two or more concurrent action-
sequences using mechanisms like parbegin/parend and fork/join.

Classification of action-sequences are, however, rarely supported by program-
ming languages and not by mainstream languages. Mechanisms like procedure
(method) and process do support simple one-level classification since action-
sequences may be grouped and given a name as a procedure or process. It is,
however, not possible to define procedure or process hierarchies – i.e. inheritance
for methods.

Fig. 2. Movement hierarchy

For people, composition and classification are used to understand and or-
ganize knowledge for all kinds of phenomena. Consider concepts like move-
ment, travel, run, jump, business (travel), and vacation (travel). As shown in
Figure 2, these may be organized in a classification hierarchy where jump and
travel are more specialized action-sequences than movement, which on the other
hand is a generalization. Another example is cooking in general and more spe-
cialized cooking as Italian cooking, French cooking, Chinese cooking, etc.

Building Safe Concurrency Abstractions 73

Beta supports classification of action-sequences [37]: a method may be a sub-
method of another method just like a class may be a subclass of another class.
And as we shall see later, a process may be a defined as a subprocess of another
process.

2.1 Submethods in Beta

In this section, we give examples of how submethods may be defined and used
in Beta. For the benefit of the reader, we will use a syntax in the style of C++,
Java, and C# to avoid introducing Beta syntax.

In Beta there is no distinction between a class and a method – they are unified
into the notion of a pattern. A pattern may be used as a class or method and
instances of a pattern may be executed as method activations, or as coroutines.
As we shall see later, coroutines may be executed concurrently or alternatingly
with other coroutines.

A class in the following means a pattern intended to be used as a class. A
similar terminology is used for method, coroutine, etc.

A class (pattern) has the following syntax:

MyClass : super{ attributes do statements }
Where super is the superclass of MyClass, attributes describes the at-

tributes of objects and statements describes a sequence of statements.
As can be seen, a class pattern may contain a do-part in the form of statements

to be executed. A method (pattern) has the following syntax:

returnType msg (arguments) : super{ attributes do statements }
The structure of a method is the same as the structure of a class with respect
to super, attributes and do-part. A class may in fact also have arguments and a
return type, but we will not give examples of this in this paper.

Consider the following example of a submethod hierarchy:

void msg1 () : { . . . do S1 ; inner ; S6 } ;
void msg2 () : msg1{ . . . do S2 ; inner ; S5 } ;
void msg3 () : msg2{ . . . do S3 ; inner ; S4 } ;

The methods msg2 and msg3 are submethods of msg1 and msg2 respectively, and
msg1 and msg2 are supermethods of msg2 and msg3 respectively. Execution of
msg1 implies that S1, inner and then S6 are executed, and in this case, inner
is just a skip-statement with no effect.

Execution of msg2 starts by execution of the do-part of msg1, and in this
case, execution of inner in msg1 implies that the do part of msg2 is executed. All
together the following statements are executed: S1, inner (in msg1) S2, inner(in
msg2), S5 and then S6. In this case, inner in msg1 has an effect whereas inner
in msg2 is a skip-statement.

Submethods may form an arbitrary hierarchy - the method msg3 is a sub-
method of msg2 which in turn is a submethod of msg1. Execution of msg3 gives
rise to the following statements being executed: S1, S2, S3, S4, S5, S6.

74 O.L. Madsen

In Beta, it is possible to define singular objects – corresponding to anonymous
classes in e.g. Java. In a similar way, it is possible to define singular method
activations. A singular method activation may have the form:

msg2{ . . . do S7 }
Execution of this statement implies that the do-part of the top supermethod, in
this case msg1, is executed and the resulting statements being executed are: S1,
S2, S7, S5, S6.

A singular method activation corresponds to a prefixed block in SIMULA,
which in turn is a generalization of inner blocks from Algol 60 [48].

In Beta, control abstractions are defined using submethods. This includes
iterators as shown in the example below of a List class:

List :
{ void insert (V : integer) : { . . . } ;

integer head () : { . . . } ;
void scan () :

{ current : integer

do current := first_element ;
while current <> none then

inner ;
current := next_element ;

endwhile
} ;
−− r ep r e s en t a t i on o f L i s t

}
void useList () :

{ L : obj List ;
do . . . ;

L . scan {do current . print ()}
}

The List has methods insert and head (returns and removes the head of the
list). In addition, List has a control pattern scan that iterates through all
elements of the list – none is the the same as null in Java. For each element
of the list, the variable current holds the value of the next element and inner

is executed. Execution of inner implies that the do-part of a submethod of
scan is executed. Note that inner appears within a loop and is thus potentially
executed several times.

The method useList defines a List object L, it scans the elements of L, and
prints each element.

In Beta, a declaration like L: obj List defines a static object in the form
of L being an instance of List. It is similar to final List L = new List() in
Java.

Execution of the anonymous method activation L.scan{do current.print()}
thus prints the elements of L. Note that L.scan is the supermethod of the
anonymous method activation.

Control abstractions defined using submethods and inner have the advantage
that you do not need to initialize the iterator and there is no state in the object

Building Safe Concurrency Abstractions 75

M : obj Semaphore ;
L : obj List ;
void entry () : { do M . wait () ; inner ; M . signal () }
void put (V : integer) : entry{ do L . put (V) }
integer get () : entry{ do return L . get () }

Fig. 3. Supermethod ensuring exclusive access

 put(5)

M.wait inner M.signal

L.put(5)

Fig. 4. Entry supermethod

keeping track of the progress of the iterator. This means that several instances
of the control abstraction (iterator) can be made.
Submethods are also useful for describing a general supermethod that ensures
mutual access to shared variables as shown in Figure 3. Here we have two objects:
a Semaphore M, a List L and three methods entry, put and get.

The method entry is a supermethod used by put and get, which are both
submethods of entry. Execution of the do-part of put and get is thus wrapped
by the do-part of entry. Figure 4 shows the actions executed for put(5). As
can be seen entry ensures the exclusive access to the variable L. Later we will
expand this example to show how a monitor abstraction may be defined.

3 Multi-sequential Action-Sequences

In Beta, the basic mechanisms for supporting multiple action-sequences are
coroutines and semaphores.2 A coroutine may be executed concurrently with
other coroutines or alternatingly with the execution of other coroutines within
a concurrent object. These basic mechanisms are used for defining higher level
concurrency abstractions by means of patterns.

In this section, we will introduce some of the concurrency abstractions de-
fined in Beta and in a subsequent section, we will show how these are defined
using coroutines and semaphores. We present these concurrency abstractions
as if certain patterns: system, process, monitor, activity, port, entry, etc. are

2 In xBeta, semaphores are not primitives, but may be implemented as abstractions
– see section 5.

76 O.L. Madsen

built-in mechanisms in Beta, and they are also marked as keywords (in bold).
The implementation in Beta is shown in section 4.

In general, a Beta system may contain one or more modules3 defining con-
currency abstractions in the form of patterns and objects. The structure of such
concurrency abstractions may vary, but they often have the following form:

A system is an object that may contain coroutines that are executed con-
currently. A system object is a subclass of the pattern system. A process is a
coroutine (an object) that may be executed concurrently with other processes.
A process is an instance of a subclass of the pattern process.

If P is a process defined within a system S, then an action P.start(), implies
that P is scheduled for concurrent execution within S. Start is defined as a
virtual method in process.

A concurrent program may have the following structure:

MySystem : obj ConcSys . system
{ S1 : process . . .

S2 : process . . .
S3 : process . . .

do S1 . start () ; S2 . start () ; S3 . start ()
}

ConcSys is the module defining the concurrency patterns being used in the exam-
ple. I.e. system, process, etc., are defined within ConcSys. In the next sections,
we give examples of such modules. As can be seen, MySystem is a singular system
object being a subclass of ConcSys.system.

3.1 The Monitor Abstraction

As mentioned, the abstraction mechanisms in Beta make it possible for the
programmer to define new concurrency abstractions using the basic concurrency
mechanisms. The Mjølner Beta System contains a number of such abstractions
for well known concurrency mechanisms and the monitor class is one example.
It is important to stress that the monitor class is defined completely within Beta
and the programmer is free to define his/her own variants.

The example below shows how the monitor abstraction may be used:

monitorEx : obj MonitorSystem . system
{ producer : obj process { do . . . ; buffer . put (exp) ; . . . ; }

buffer : obj monitor
{ void put (V : integer) : entry

{
do wait{do cond := L . full () } ;

L . put (V)
} ;

integer get () : entry
{
do wait{do cond := L . empty () } ;

3 In xBeta, a module is a singular objects – see [44].

Building Safe Concurrency Abstractions 77

return L . get ()
} ;

L : obj List

}
consumer : obj process { do . . . ; X := buffer . get () ; . . . }

do producer . start () ; consumer . start ()
}

The monitor pattern is defined in the object module MonitorSystem. The ob-
jects producer and consumer are declared as process objects and executed
concurrently. The buffer object is a subclass of Monitor. The put and get

methods of Buffer are submethods of the method pattern entry defined within
Monitor. The pattern entry acts as a wrapper around the do-part of put and
get and ensures mutual access to the buffer. The semantics of entry, put and
get is as described in Figure 3.

The pattern wait is also defined within Monitor and delays execution of put
and get if the buffer is full or empty respectively. The statement

wait{do cond := L . full () ; }
is a singular method activation. Wait repeatedly executes cond := L.full and
if cond (defined within wait) is true, execution of put (or get) is delayed. If
cond is false, execution of the singular method activation terminates.

As an alternative to wait, the Monitor pattern also defines a queue pattern
with operations signal and wait corresponding to the original primitives of
Concurrent Pascal monitors. The main point here is not the actual monitor
mechanism being used, but that the programmer is able to define whatever
monitor abstraction (or other concurrency abstractions) that fits his/her needs.

Readers familiar with Concurrent Pascal may notice that the above example
is quite similar to a Concurrent Pascal program except for the wait pattern.
We will later show how monitor is defined in Beta – for now system, process,
monitor, entry and wait may be considered primitives/keywords in the lan-
guage.

3.2 Rendezvous

The Mjølner Beta System also has a concurrency abstraction that supports com-
munication between processes in the form of rendezvous-based method invoca-
tions similar to Ada-style procedure entries.

The Port class defines objects that may be used to associate methods with
processes. External processes may perform synchronous calls of methods at-
tached to ports. Such methods can only be executed if the enclosing process has
executed an accept on the corresponding port. This style of communication is
thus similar to rendezvous as in CSP and Ada.

A process with ports and methods attached to ports has the following form:

S : obj process
{ P1 : obj port

{ void m1 () : entry{ . . . do . . . }

78 O.L. Madsen

void m2 () : entry{ . . . do . . . }
}

P2 : obj port

{ void m3 () : entry{ . . . do . . . }
}

do . . . ; P1 . accept () ; . . . ; P2 . accept () ; . . .
}

S has two ports P1 and P2 declared as singular objects, each as a subclass of
port. The methods m1, and m2 are nested within P1 and declared as submethods
of the entry method of P1. The method m3 is similarly declared within P2. M1
and m2 are thus associated with the port P1 and m3 with P2.

The Port class also has an accept method that when executed makes it pos-
sible for external systems to execute methods attached to the Port. The system
executing the accept method is blocked until an external system has executed a
method attached to the Port. When the method returns, the execution resumes
after the accept call.

In the example, a system, say R, may execute a method invocation of the form
S.P1.m1(). R is blocked until S executes P1.accept(). S is similarly blocked
until another system executes S.P1.m1(). When P1.m1() has been executed, S
continues execution until P2.accept() and is blocked until some other system
has executed m3.

The accept pattern exists in three different forms:4

– P.accept() – all processes may execute methods attached to P.
– P.accept(X) – only the process X may invoke methods on the port.
– P.accept(C) – invocations are accepted from all processes belong to the

class C (instances of C or subclasses of C).

3.3 Alternation

Beta also has the ability to describe processes consisting of one or more alter-
nating coroutines. The concept of alternation was identified in order to mod-
el/represent active entities that alternate between different activities, and also
to understand coroutines from a modeling point of view.

Active entities, such as people, may be engaged in several activities, but at
most one at a time. An agent working in a travel agency may be engaged in
booking tours for several customers and in addition perform various adminis-
trative activities. At a given point in time, the agent is working on one of the
tasks and the other tasks are temporarily suspended. The agent may decide to
suspend the current task and resume one of the other tasks. An external event
such as a telephone call may also imply that the current task is suspended and
another one is resumed.

Cooperative scheduling may be considered an example of structuring a soft-
ware system into two or more alternating activities. Each such activity may

4 Beta does not have overloading, so there are three different method names.

Building Safe Concurrency Abstractions 79

consist of carrying out a task involving communication with other processes.
Scheduling of the inner alternating activities may be explicit in the code or im-
plicit depending on the communication with external processes. But at most one
activity at a time is being executed.

A concurrent system may be engaged in communication with several external
systems, and since it is unpredictable and non-deterministic when an exter-
nal system is ready for communication, languages like CSP, Ada, Actor lan-
guages, ABCL, Concurrent Smalltalk, etc. introduced guarded commands (or
select statements) to be able to specify accept of more than one external com-
munication. In addition, these languages allow for Boolean expressions as part
of the guard to be able to let the state of the system influence which methods
may actually be accepted.

In the design of Beta, a number of deficiencies with guarded commands were
identified. As mentioned, there is an asymmetry in most languages between input
and output commands, since a select may only contain input commands (accept
of method activations).

In addition, the use of Boolean expressions often blur the control flow in
the sense that independent logical action sequences have to be mixed into one
sequence and the sequencing has to be controlled by Boolean expressions.

Consider the following example where a process S may be engaged in an
activity that involves communication with two external systems, S1 and S2. S
alternates between accepting a method from S1 and invoking a method on S1.
Similarly it alternates between invoking a method on S2 and accepting a method
activation by S2.

A standard technique to guarantee the sequencing between S1 and S2, is to
use Boolean variables. In this example, two Booleans B1 and B2 are introduced
and S may be described in the following way using select:

S : obj process
{ P1 : obj port { void m1 () : entry{ . . . } } ;

P2 : obj port { void m2 () : entry{ . . . } } ;
do . . . ;

cycle{
se lect

P1 . accept (S1) and B1 => stm1 ; B1 := not B1 ;
S1 . Px . f () and not B1 => stm2 ; B1 := not B1 ;
S2 . Py . g () and B2 => stm3 ; B2 := not B2 ;
P2 . accept (S2) and not B2 => stm4 ; B2 := not B2 ;

endselect
}
. . .

}
What we really would like to express is that S alternates between two logical
action sequences:

cycle{ P1.accept(S1); stm1; S1.Px.f(); stm2 }

cycle{ S2.Py.g(); stm3; P2.accept(S2); stm4 }

80 O.L. Madsen

We may express this in Beta by defining two inner alternating objects in S:

S : obj process
{ P1 : obj port { void m1 () : entry{ . . . } } ;

P2 : obj port { void m2 () : entry{ . . . } } ;

A1 : obj activity
{ do cycle{do P1 . accept () ; stm1 ; S1 . Px . f () ; stm2 }}

A2 : obj activity
{ do cycle{do S2 . Py . g () ; stm3 ; P2 . accept () ; stm4 }}

do . . . ; A1 . start () ; A2 . start () ; . . .
}

The class activity describes coroutine objects that may be executed as alter-
nating with other activities in the same process. The process S thus consists of
two alternating activities A1 and A2.

At most one of the activities may be executing at a given point in time. A
suspended activity may be marked as either ready to be resumed or waiting
for an external event.

The do-part of the process S is for initializations. The method A1.start

implies that the activity A1 is scheduled for execution.
The execution of the activity continues until it either terminates or is blocked

by an accept or method activation in another system. If blocked, it is temporar-
ily suspended and marked as waiting for an external event. An activity marked
as ready to be resumed will then be resumed.

The following is a possible scenario for S:

1. S a.o. executes A1.start(), and A2.start(), which implies that A1, and A2

are scheduled for execution.

2. A1 is selected for execution.

3. A1 executes P1.accept() and is blocked and thus suspended as waiting.

4. A2 is selected for execution.

5. A2 executes S2.Py.g() and is blocked and suspended as waiting.

6. Now the situation is that none of A1 and A2 are ready to be resumed. In this
case no actions are executed by S and its inner activities.

7. An external event may imply that one of A1 and A2 becomes ready.

8. Let us assume that S2 executes an accept of g. Then A2 is resumed and
eventually executes P2.accept() and possibly blocked and suspended as
waiting.

9. Now either A1 may be resumed if S1 invokes m1 or A2 may be resumed if S2
invokes m2.

10. At any given point in time, one of A1 and A2 may be executing or they may
both be waiting for communications with external systems.

11. . . .

Building Safe Concurrency Abstractions 81

3.4 A Simple Shop Example

Consider a shop where a customer5 may order some items that are delivered to
the customer at a later stage. The shop in a similar way orders items from a
supplier that delivers the items to the shop.

The example is similar to the sketchy example above, except that (1) we show
how a port may be used to communicate values between processes, and (2) an
example of using a conditional wait within an activity is shown.

The structure of the Shop system is as follows:

SimpleShop : obj RendezvousSystem . system
{ Customer : obj process { . . . } ;

Shop : obj process { . . . }
Supplier : obj process { . . . }

do Customer . start () ; Shop . start () ; Supplier . Start () ;
}

The module object RendezvousSystem defines the rendezvous based
concurrency abstraction. The example defines SimpleShop as a subclass of
RendezvousSystem.system.

The Customer has the following structure:

Customer : obj process
{ start () : : < { do shopper . start () }

mailBox : obj port

{ void deliver (item , quantity : integer) : entry{ . . . }
} ;

shopper : obj activity
{ itm , qua : integer

do cycle

{do Shop . orderBox . placeOrder (itm , qua) ; . . . ;
mailBox . accept () ; . . .

}
}

}

The Customer object is a process. It has a port, mailBox, which defines an
entry method, deliver, for receiving items ordered in the shop.

It defines an activity, shopper, that repeatedly places an order at the shop
(Shop.orderBox.placeOrder(itm,qua)) and then awaits that the order is de-
livered (mailBox.accept()).

The virtual start method from process is further bound (specified by ::<)
to start the shopper – this implies that the do-part of start in Customer is
combined with the do-part of start in Shop in the same way as described for
submethods in Section 2.1.

5 To keep the example simple, we have only one customer.

82 O.L. Madsen

The Shop has the following structure:

Shop : obj process

{ start () : : < {do orderhandler . start () ; importHandler . start () } ;
orderBox : obj port

{ placeOrder (item , quantity : integer) : entry

{ do itm := item ; qua := quantity } ;
(integer , integer) accept () : : { do return (itm , qua)} ;

itm , qua : integer

} ;
importBox : obj port

{ void receive (item , quantity : integer) : entry

{ do store . add (item , quantity) }
} ;

orderHandler : obj activity

{
do cycle

{ item , quantity : integer

do (item , quantity) := orderBox . accept () ;

wait{do cond := store . inStock (item , quantity) } ;
Customer . mailBox . deliver (store . get (item , quantity)) ;

}
}

importHandler : obj activity

{ itm , qua : integer

do cycle {do Supplier . request (itm , qua) ; . . . ; importBox . accept ; . . . }
}

store : obj { . . . }
}

The shop is a process. It defines two ports, orderBox and importBox for
communicating with the Customer and Supplier respectively.

The orderBox defines an entry method, placeOrder, for receiving orders
from the Customer. It has a (final) binding of the accept method6 – in addition
to executing the accept defined in port, the accept in orderBox returns two
integers being the new order received by placeOrder.

The orderBox defines two variables, itm and qua, which are used by
placeOrder to store the values of its item and quantity arguments. And itm

and qua are subsequently returned by accept. The orderBox box is an example
of using a port to communicate values.

The importBox has a method for receiving items ordered from the supplier.
The entry method receive updates the store with the new items received. We
do not show the details of this and the store object.

The Shop alternates between two activities. The orderHandler receives an
order from the Customer. It then checks if the item and quantity is in stock.
Otherwise it waits until they are in stock. When in stock, it delivers the items
to the Customer.

The importHandler places orders at the Supplier and awaits delivery from
the Supplier.

6 accept in orderBox is a submethod of accept in port.

Building Safe Concurrency Abstractions 83

The Supplier has the following structure:

Supplier : obj process
{ start () : : < {do orderHandler . start () } ;

orderBox : obj port

{ void receive (item , quantity : integer) : entry{ . . . }
} ;

orderHandler : obj activity
{
do cycle

{do orderBox . accept () ; . . . ;
Shop . importBox . receive (itm3 , qua2) ; . . . }

}
}

4 Implementation in Beta

In this Section, we show how the above concurrency abstractions may be defined
as patterns in Beta. The implementation described here is for a processor with a
single CPU/core. In Section 4.4 below, we describe what is needed to generalize
the implementation to a multi-core CPU.

4.1 Coroutines

A Beta object may behave like a semi-coroutine in the style of SIMULA. Consider
an object R defined as follows:

R : obj
{ void foo () : { do . . . L3 : R . suspend ; L4 : . . . }

. . .
do . . . ; L1 : R . suspend ; L2 : . . . ; foo () ; . . .
}

L1 - L4 are labels.
R may be executed as a coroutine by a statement of the form:

R

The first time R is executed, execution starts by the do-part of R – if R has a
superclass, execution starts with the do-part of the topmost superpattern as for
submethods. The execution of Rmay be temporarily suspended, and control then
returns to after the R-statement. A subsequent statement, R, resumes execution
at the point of suspension.

Consider the following method:

void callR () :
{
do . . . ; A1 : R ; A2 : . . . ; A3 : R ; A4 : . . . ; A5 : R ; . . .
}

84 O.L. Madsen

Fig. 5. Snapsnot of coroutines

Again A1 - A5 are labels. At A1, R is executed by the statement R. At the label
L1, R.suspend implies that execution of R is suspended and control returns to
the point of A2. When execution is at A3, the statement R resumes execution
of R at the point of L2. R eventually executes foo and at L3, execution of R

is suspended and controls returns to A4. In this situation R is suspended while
executing foo. The final execution of R at A5 resumes execution of R at L4.

In Figure 5 is shown the state of execution of a program at a given point in
time. The snapshot shows one active object, R1, and two suspend objects, R and
R2. R1 is executing a method m. R is the coroutine from the above example –
R is shown as suspended at the label L3 in foo. R2 is suspended in a method
activation g called from f, where f is called from R2.

The boxes with a double line border show the objects being the head of the
coroutine and the boxes with a single line border show method activations. The
arrows show the return link of a method activation. The return link of an active
coroutine refers to the calling object – here P*. For a suspended coroutine, the
return link points to the top method activation. This notation was introduced
by Dahl and Wang [24].

It is illegal to invoke an active coroutine and/or to suspend a coroutine that
is already suspended.

Coroutines may be used to define control abstractions of objects as shown in
the following example:

List :
{ void insert (e : integer) : { . . . } ;

. . . ; −− o ther methods
traverse : obj

{ scan (current : ref node) :
{
do i f current <> none then

V := current . elm ;
this (traverse) . suspend ;
scan (current . next)

else
while true do

Building Safe Concurrency Abstractions 85

V := MaxInt ;
this (traverse) . suspend

endwhile
endif

} ;
V : integer

do scan (head)
} ;

−− r ep r e s en t a t i on o f the L i s t
head : ref node ;
node : { elm : integer ; next : node } ;

}
. . .
L1 , L2 : obj List

void merge () :
{
do L1 . traverse ; L2 . traverse ;

while (L1 . V != MaxInt) and (L2 . V != MaxInt) do
i f L1 . V < L2 . V then

L1 . V . print () ; L1 . traverse
else

L2 . V . print () ; L2 . traverse
endif

endwhile
}

A declaration like current: ref node defines a variable, current that may
refer to instances of class node. It is similar to node *current in C++.

A traverse object has been added to the List class. Traverse is used as a
coroutine and acts as a generator that supplies the elements of the list one by
one. Traverse calls a recursive method scan that returns the next element in the
List. The value is returned via the local variable V. When the list is exhausted,
the value MaxInt is returned whenever traverse is resumed.

L1 and L2 are two List objects. We assume that the two lists are sorted with
the smallest value appearing first in the list. The merge method prints a merged
sequence of the two lists. It starts by invoking traverse for L1 and L2. L1.V
and L2.V are then the smallest elements of L1 and L2, respectively. If L1.V is
smaller than L2.V then L1.V is printed and L1.traverse is executed to get the
next element of L1, etc.

As mentioned, Beta coroutines are semi-coroutines in the style of SIMULA.
SIMULA has also symmetric coroutines where control is transferred to another
coroutine by an operation resume R. The coroutine executing resume R is sus-
pended and R is resumed. This is the most common form of coroutines. In [42], it
is shown that in Beta it is possible to define a symmetric coroutine abstraction
using semi-coroutines.

Preemptive Suspend. A coroutine may also be invoked/resumed by the prim-
itive operation R.attach(e), where e is an integer expressions. A preemptive

86 O.L. Madsen

suspend is enforced on R after e time units. This is in contrast to invoking/re-
suming the coroutine using R as used above – in this case R continues execution
until it executes R.suspend.

In Beta the Semaphore is a primitive in the language. A semaphore is, how-
ever, a somehow high-level structure since it contains a queue for keeping track
of possible waiting processes. For xBeta, semaphore is not a built-in primitive.
Instead we use primitives for disabling and enabling preemptive suspend to im-
plement say a semaphore, and below we describe implementations of two variants
of a Semaphore pattern.

4.2 Monitor Abstraction

The MonitorSystem module has the following structure:

MonitorSystem : obj
{ System :

{ Process : . . . −− superpa t t e rn f o r proces s o b j e c t s
Monitor : . . . −− superpa t t e rn f o r monitor o b j e c t s
scheduler : obj . . . −− s ch edu l e r f o r process o b j e c t s ;
P_status : obj −− cons tan ts used f o r s ch edu l i n g

{ ACTIVE = 1 ;
WAITING = 2 ;
RESUMED = 3 ;
TERMINATED = 4 ;

} :
Semaphore : . . . −− the semaphore pa t te rn

do inner ;
scheduler

}
}

A System as defined by MonitorSystem starts by executing inner to allow for
process objects to be started (see above). Then it executes the scheduler

object, which handles the scheduling of Process objects.
The Process pattern is defined as follows,

Process :

{ void start ():< { do scheduler . add (this (Process)) ; inner } ;
status : integer

do status := P_status . ACTIVE ;

inner ;

status := P_status . TERMINATED

} ;

The virtual7 startmethod adds the Process to the scheduler. The do-part sets
the status of the Process to ACTIVE, executes inner, and when the Process

terminates, sets the status to TERMINATED. The object P status defines con-
stants used by the scheduler.

7 A virtual method is declared using :<.

Building Safe Concurrency Abstractions 87

The Monitor pattern is defined as follows:

Monitor :
{ M : obj Semaphore ;

Monitor ():< { do M . init (1) −− i n i t i a l l y open }
void entry () : { do M . wait () ; inner ; M . signal () }

}
The Monitor pattern is encapsulating the code in Figure 3 in appropriate pat-
terns. The constructor8 assures that the M-semaphore is properly initialized.

Finally, we may show the definition of the scheduler:

scheduler : obj
{ void add (P : obj Process) : { do SQS . insert (P) } ;

Process next () : { do return SQS . next () ; } ;
active : ref Process ;
SQS : obj Queue ;

do loop :
cycle

{
do active := next () ;

i f active <> none then
active . status := P_status . ACTIVE ;
active . attach (100) ;
i f active . status = P_status . ACTIVE then

add (active)
endif

e lse
leave loop

endif}
}

The scheduler has a FIFO-queue, SQS, of Process objects ready to be sched-
uled. The scheduler is a simple round-robin scheduler that takes the first pro-
cess in the queue and executes it.

The primitive operation active.attach(100) resumes active as a coroutine
and a preemptive suspend is enforced on active after 100 time units.

A Semaphore may be implemented in xBeta in the following way:

Semaphore :
{ cnt : integer ;

Q : obj Queue ;
void init (c : integer) : {do cnt := c } ;
void wait () :

{
do disable () ; −− d i s a b l e preemption

cnt := cnt − 1 ;
i f cnt < 0 then

scheduler . active . status := P_status . WAITING ;
Q . insert (scheduler . active) ;

8 Beta does not have constructors, but xBeta does.

88 O.L. Madsen

enable () ; −− enab l e preemption
scheduler . active . suspend

else
enable () −− enab l e preemption

endif ;
} ;

void signal () :
{ P : ref Process

do disable () ;
cnt := cnt + 1 ;
i f cnt >= 0 then

P := Q . next () ;
P . status := P_status . RESUMED ;
scheduler . add (P) ;

endif ;
enable () ;

}
}

The method signal moves a waiting Process from the queue (Q) of the
Semaphore to the queue of active processes in the scheduler. The scheduler

will then eventually pick it up for execution. Note that Semaphore is a lo-
cal pattern of MonitorSystem, which means that scheduler is visible within
Sempahore.

As can be seen, xBeta has no basic patterns with built-in structures like
queues – they are all defined as abstractions. And the programmer is free to
define his own abstractions. This makes it possible to implement/tailor concur-
rency abstractions to the actual needs. For semaphores there may be alternative
implementations – one example is to suspend the active process in signal.

4.3 Imlementing Rendezvous System

The implementation of the rendezvous system is a bit more complicated than
the monitor system. The definition has the following structure:

RendezvousSystem : obj
{ System :

{ BasicProcess : { . . . } ;
Process : BasicProcess { . . . } ;
Port : { . . . } ;
Semaphore : { . . . } ;
scheduler : obj { . . . } ;
P_status : obj { −− same as f o r Monitor }

do inner ; scheduler

}
}

Building Safe Concurrency Abstractions 89

The BasicProcess and Process patterns have the following structure:

BasicProcess :

{ status : integer

do status := P_status . ACTIVE ;

inner ;

status := P_status . TERMINATED

} ;
Process : BasicProcess

{ void start ():< { do scheduler . add (this (Process)) ; inner } ;
Activity : { . . . } ; . . .

ActivityScheduler : { . . . } ;
myAS : obj ActivityScheduler

do inner ;

myAS ;

} ;

Fig. 6. The two levels of scheduling of processes and activities within processes

A Process has a start pattern that adds the Process to the scheduler queue.
It has a local pattern Activity that defines possible alternating activities of
the Process. It has a scheduler object, myAS, defined as an instance of class
ActivityScheduler, for scheduling inner alternating Activities. It executes
an inner that allows for initializations and then it executes the myAS.

Scheduling of coroutines takes place at two levels. At the outer level, the
scheduler schedules concurrent process objects and is similar to the scheduler
for MonitorSystem. Each process has an ActivityScheduler, which takes care
of the scheduling of its inner activities. The two levels of scheduling are illustrated
in Figure 6.

An Activity has the following structure:

Activity : BasicProcess

{ void start ():< {do myAS . add (this (Activity)) ; inner } ;
sch : ref ActivityScheduler

do inner ;
}

90 O.L. Madsen

An Activity has a start method that adds the activity to the
ActivityScheduler, myAS.

A Port has the following structure:

Port :
{ m , mutex : obj Semaphore ;

Port ():< {do m . init (0) ; mutex . init (0) } ;
entry : {do m . wait () ; inner ; mutex . signal () }
accept :< {do m . signal () ; mutex . wait () ; inner}

}
A Port has an entry and an accept method that controls access to the meth-
ods in the Port. The m-semaphore guarantees that at most one entry-method at
time may access the Port. The mutex-semaphore similarly handles termination
the entry-method and resumption of accept-method. (We only show the im-
plementation of accept without arguments – the two other variants described
in Section 3.2 may be implemented in a similar way.)

The ActivityScheduler has the following structure:

ActivityScheduler : BasicProcess

{ void add (P : obj Activity) : { do SQS . insert (P) } ;
Activity next () : { do return SQS . next () ; }
SQS : obj Queue ;

active : ref Activity ;

now : integer ; −− no of wait ing a c t i v i t i e s

incrWaiting : {do now := now + 1} ;
decrWaiting : {do now := now − 1}

do loop :

cycle {
do disable () ; −− d i s a b l e preemption ;

active := next () ;

i f active <> none then

active . status := P_status . ACTIVE ;

enable () ;

active ; −− no preemptive suspend

disable () ;

i f active . status = P_status . ACTIVE then

add (active)

endif ;

enable () ;

else

i f now > 0 then −− wait ing a c t i v i t i e s in t h i s process

enable () ;

scheduler . active . suspend ; −− the process i s suspended ;

else −− no more ac t i v e a c t i v i t i e s

enable () ;

leave loop

endif

endif

}
}

The ActivityScheduler invokes active using active. This implies that active
cannot be preemptively suspended. In this way, the ActivityScheduler differs
from the process scheduler, which invokes coroutines that may be preempted.
Note that preemption is disabled during scheduling of activities.

Building Safe Concurrency Abstractions 91

If there are no scheduled activities in SQS (active = none), but waiting ac-
tivities (now > 0), the ActivityScheduler suspends execution of the Process

(scheduler.active.suspend) that initially invoked it. This Process then re-
turns to the scheduler in the enclosing System, and since it is still active, it is
added to scheduler.SQS for a subsequent scheduling.9 It will then eventually
be executed and if some of the waiting activities have become active, they will
be executed. Otherwise it will suspend execution again.

When there are no more activities in SQS and no waiting activities, the
ActivityScheduler terminates (through leave Loop). It then returns to the
Process, which initially invoked it. And then this Process object terminates.

The Semaphore pattern defined here differs from the one defined for the mon-
itor system. In the monitor system, a semaphore interacts with the scheduling
of process objects. For the rendezvous system, a semaphore interacts with the
scheduling of activities.

Semaphore :

{ cnt : integer ;

Q : obj Queue ;

void wait () :

{ P : ref Process

do disable () ;

cnt := cnt − 1 ;

i f cnt < 0 then

P := scheduler . active ;

P . activityScheduler . active . status := P_status . WAITING ;

P . activityScheduler . active . sch := P . activityScheduler ;

P . activityScheduler . incrWaiting () ;

Q . insert (P . activityScheduler . active) ;

enable () ;

P . activityScheduler . active . suspend

else

enable () ;

endif ;

} ;
void signal () :

{ A : ref Activity

do disable () ;

cnt := cnt + 1;

i f cnt >= 0 then

A := Q . next () ;

A . status := P_status . RESUMED ;

A . sch . add (A) ;

A . sch . decrWaiting () ;

endif ;

enable ()

}
}

This completes the definition of the rendezvous system.

9 As pointed out by one of the reviewers, this may waste CPU time since there is
no need to add a process for rescheduling until one of the waiting activities of the
process is signaled.

92 O.L. Madsen

4.4 Summing Up

As shown above, it is possible in Beta to define high-level concurrency abstrac-
tions. It is, however, fairly complicated and it requires a lot of work to validate
the correctness of such abstractions.

The important message here is that it is possible to design a programming
language that with the right primitives and abstraction mechanisms makes it
possible to define a broad range of concurrency abstractions including associated
schedulers.

The basic primitives used here are (semi-)coroutines that may be executed in a
cooperativeway as in SIMULA together with a preemptive suspend R.attach(t),
R.suspend, and primitives for disabling and enabling preemptive suspend. In ad-
dition, the ability to define submethods using the pattern/subpattern mechanism
and method combination using inner is essential.

Fig. 7. Snapshots of coroutines in multi-core implementation

Multicore Implementation. The implementation described above is for a
processor with a single CPU/core. There has also been an experimental imple-
mentation of Beta on a SPARC multiprocessor with 4 cores10. In this implemen-
tation, the basic environment for Beta was extended with a predefined array of
coroutines representing the cores of the available platform:

Processors: [noOfCores] ref Processor

The coroutines Processors[1], Processors[2], ..., Processors[noOfCores]
are attached to threads in the operating system and thus representing potentially
noOfCores coroutines executing in parallel.

A Beta coroutine, S, may be attached to a processor by the primitive operation
S.attachTo(Processors[i]).

The implementation of Semaphore as described in this paper was adjusted
to handle the situation with possible true concurrent coroutines accessing the
semaphore at the same time.

In this implementation, we experimented with attaching different types of
schedulers to the processors using different kinds of strategies for organizing the
queues of active coroutines to be scheduled.

10 The SPARC implementation is no longer maintained.

Building Safe Concurrency Abstractions 93

Figure 7 illustrates a situation with 4 predefined Processor coroutines (P1,
P2, P3, P4). Each Processor coroutine has a Beta coroutine attached. In addition,
the figure shows a number of suspended coroutines.

5 Subpattern Restrictions

As shown in the previous section, the abstraction mechanisms in Beta make it
possible for programmers to define a variety of concurrency abstractions. Beta,
however, suffers from the same deficiencies as Brinch-Hansen has pointed out
for Java. As long as the programmer follows a discipline where all concurrent
activities and shared data are encapsulated in appropriate abstractions, the code
is safe. There is, however, no way the compiler can prevent or warn a programmer
if he/she by accident or incidentally bypasses the abstractions. This may e.g.
happen by declaring methods in a monitor that are not submethods of entry.

In addition, Beta is a block-structured language, which means that classes,
methods, processes and objects may be arbitrarily nested. And inner methods
may access global variables. Nesting thus makes it possible for two concurrent
processes to share global variables without interference control.

In the design of Beta, it was considered important to be able to unify all
abstraction mechanisms into the pattern concept and avoid specialized mecha-
nisms. This was on the sacrifice of e.g. interference control by the compiler, and
safety of concurrent processes was relying on the discipline of the programmers.

One straightforward solution to this is of course to introduce some of the above
concurrency abstractions (monitor, process activity, port, etc.) as built-in mech-
anisms, and appropriate language-defined restrictions. In this way, the compiler
may check and enforce interference control. This is indeed a viable alternative
and such a version of Beta will then be similar to other languages with built-in
high-level mechanisms for concurrency. The price will be that the generality of
the one-pattern approach and the ability to define new concurrency abstrac-
tions will be degraded, but this is no worse than other specialized languages
with classes, processes and methods. In fact, a version of Beta with built-in
mechanisms for rendezvous and alternation and process objects as isolated ob-
jects would in our opinion be a usable alternative to e.g. Java in the sense that
the basic OO mechanisms are available. Concurrent objects are closed and only
values can be communicated, and the compiler can enforce interference control.

We do, however, think it is useful to be able to define new concurrency ab-
stractions from the basic primitives.

In this section, we will propose a new language mechanism called subpat-
tern restrictions, which makes it possible to define safe concurrency abstractions
without compromising the concept of one pattern. By means of subpattern re-
strictions it is possible to define restrictions on the use and scope of subpatterns
of a given pattern.

Most OO languages have mechanisms for controlling the access to methods
and data-items of objects. In SIMULA, C++, Java, C# and others, a method
or data-item may be declared as private, public or protected. In Smalltalk all
data items are private and all methods are public.

94 O.L. Madsen

Subpattern restrictions complement public, private and protected. For the
latter, the programmer on a class-by-class basis defines the accessibility of data-
items and methods. With subpattern restrictions, the programmer defines re-
strictions that make the pattern function as a wrapper for all of its subpatterns.

5.1 Restrictions

A pattern with subpattern restrictions is described in the following way:

MyPtn : [R1 , R2 , . . . , Rn] super{ . . . }
where R1, R2, ... Rn are restrictions imposed on subpatterns of MyPtn. A given
restriction, R, can only be imposed if it holds for the superpattern as well.

One example of a restriction is immutable. A pattern restricted by immutable

can only be used to define immutable objects. For such a pattern and its sub-
patterns, it is not possible to change the state of its instances.

The pattern Complex is an example of how to declare a pattern defining
immutable objects:

Complex : [immutable]
{ Complex (x , y : real) { do re := x ; im := y } ;

re , im : real ;
. . .

}
As recognized by several authors [8], immutable objects are useful in the case
of concurrent and distributed objects. For this reason, an object restricted by
immutable may not refer to or return mutable objects, since this will make it
possible (indirectly) to pass a reference to a mutable object to two or more
processes.

The restriction globals[P1,P2,..., Pn] where each Pi is a pattern, and n ≥
0 limits the types of global data-items that may be referred. Only subpatterns
of Pi may be referred. If n = 0, i.e. globals[], then no global data-items in
enclosing objects may be referred. A pattern restricted by globals[] is called
a closed pattern.

The globals restriction apply both directly and indirectly. If a global variable
is accessed directly it must be of one of the types Pi. And for indirect access
to global data-items, a (global) pattern used within a subpattern restricted by
globals may also not access data-items that are not of type Pi. A pattern defining
the behavior of a function may be defined as follows:

Function :
[globals [] , signature [immutable] , kind [method]]
{ do inner }

The restriction signature[immutable]means that only immutable objects may
be passed as arguments to subpatterns of Function. In addition, only immutable
objects may be returned. Subpatterns of Function will thus behave as functions
in the sense that the result will depend only on its input arguments just as it
can have no side effects. An example of a Function is:

Building Safe Concurrency Abstractions 95

Complex fromPolar (magnitude , angle : real) : Function

{ re , im : real ;
do re := magnitude ∗ cos (angle) ;

im := magnitude ∗ sin (angle) ;
return new Complex (re , im) ;

}
The function fromPolar has local variables re, and im, which are instances of
the closed pattern real and it calls two closed functions cos, and sin.

The restriction interface[P1,P2, ..., Pn] implies that all externally vis-
ible methods must be submethods of one of Pi just as no data-items may be
accessed remotely. The Monitor class may e.g. be declared as follows:

monitor : [interface [entry]] { . . . }
which implies that all methods in subclasses of Monitor must be submethods of
Entry.

In Beta, a pattern may be used as a class, method or superpattern. And a
class pattern may be used to generate a dynamic object by means of new or as
a static (part) object using obj. An object’s kind refers to how its is generated.
In Beta, we thus have the following kinds: method, dynamic, static, and super.
The restriction kind[K1,K2,...Kn] makes it possible to restrict the use of a
pattern.

The pattern Entry in Monitor may e.g. be restricted in the following way:

Entry : [kind [method]] { . . . }
which means that subpatterns of Entry may only be used as methods.

5.2 Monitor System

The MonitorSystem presented above is subject to a number of restrictions in
order to be similar to e.g. Concurrent Pascal(CP).

All communication between processes must be via monitors and only val-
ues (immutable objects) may be communicated. Processes cannot access global
variables and no methods can be invoked on processes.

A monitor cannot access global variables and all remote-accessible methods
defined within the monitor must be submethods of entry. And such submethods
may only be used as kind method.

In CP, classes may be used to define abstract data-types. CP does not have
references to objects – all instances are in-lined and copied when passed as
arguments to methods. Here we use immutable objects instead of copying.

Data-items / variables are not meaningful in the outermost system object,
since neither processes nor monitors may access them.

It is meaningful to define global classes to be used within processes and moni-
tors as long as the classes do not break the restrictions on processes and monitors
with respect to globals.

96 O.L. Madsen

We may thus specify the restrictions for MonitorSystem as follows:

MonitorSystem : obj
{ System : [interface [] , globals []]

{ Monitor : [interface [entry] , globals []]
{ Entry :

[signature [immutable] , kind [method]]
{ . . . }

}
Process :

[interface [] , globals [Monitor]]
{ do inner }

−− Semaphore and s chedu l e r shou l d be dec l ared p r i v a t e
do inner
}

}
A System object can have no remote-accessible methods (interface[]) and it
is closed (globals[]).

All remote-accessible methods of a Monitor must be submethods of entry

(interface[entry]), and it is closed (globals[]). Submethods of Entry can
only have immutable arguments and return types (signature[immutable]). In
addition, Entry-methods can only be of kind method (kind[method]).

5.3 Rendezvous System

The restrictions to be imposed upon the RendezvousSystem are similar to the
ones for MonitorSystem:

RendezvousSystem : obj
{ System : [interface [] , globals []]

{ Process :
[interface [port . entry] , globals [Process]]
{ Activity : [] { . . . } ;

Port :
{ entry :

[signature [immutable] , kind [method]]
{ . . .
do . . . Inner . . .
}

}
}

}
}

One difference is that processes may communicate directly – this is expressed
by interface[port.entry], which means that a process may invoke entry-
methods within arbitrary port-objects of processes.

Processes may also refer to other Processes ([globals[Process])).

Building Safe Concurrency Abstractions 97

For an Activity there are no additional restrictions since activities cannot
refer to data-items outside their enclosing process and no external process may
access an Activity. The same holds for port where no additional restrictions
are needed.

5.4 Summary of Subpattern Restrictions

Figure 8 shows a grouping of the restrictions that we may impose upon subpat-
terns of a given pattern:

Fig. 8. Subpattern restrictions

– Interface: This group contains the restrictions interface[...], and
signature[...]. It may be considered to have a special property
returns[...] for restricting the return values of a pattern and not cou-
pling this with the signature restriction. However, they seem to go pair in
pair.

– Globals : This group contains the restriction globals[P1,P2,...,Pn], i.e.
the restrictions enforced on accessing global data-items

– References : A restriction of the form references[P1,P2,...Pn] is being
considered – to restrict the type of objects that may be referred from an
object.

– Internal : Restrictions on the internal behavior of an object. It includes:
immutable, exclude:primitives[p1,p2,...pn],

– Kind : Here we have the restrictions of type kind[K1,K2,K3] where Ki is
method, dynamic, part or super.

6 Evaluation and Related Work

Concurrent programming languages, including concurrent object-oriented pro-
gramming languages has been an active research area for more than 40 years.
With respect to concurrent object-oriented modeling and programming, there
are a number of proposals for modeling of concurrent processes including Petri
Nets, CCS, CSP and similar for concurrent programming [11]. There is very little
work on combined object-oriented modeling and programming. One example is
ABCL where modeling as well as programming were important for the design of

98 O.L. Madsen

the language [60]. Except for SIMULA, we are not aware of other languages than
Beta where modeling requirements have had a direct influence the programming
language in the form of the inner-mechanism, submethods, subprocesses and
concurrent and alternating process objects.

Regarding alternation, we are not aware of a similar mechanism in other
languages. The pros and cons of synchronous and asynchronous communication
have been extensively discussed in the literature [3,51].

Alternation makes it possible to use synchronous method invocation and, in
our opinion, this makes it easier to follow the control flow of concurrent processes.
In addition, the input- and output commands are handled in a symmetric way
- as opposed to the select-mechanism in most languages.

Some authors, e.g. Nordlander et al [51], mention that in order to avoid block-
ing on a synchronous communication one may start a thread for each new com-
munication. In some way, this is similar to starting a new alternating activity as
presented here for Beta. However, as pointed out by Nordlander et al., if con-
current threads are used, there is still an issue of coordinating the computations
of these threads. This is not a problem with alternation, since at most one al-
ternating activity is executing at a time, and each activity may safely update
shared data in the enclosing process.

A number of language mechanisms have been proposed for synchronization
and communication of concurrent processes. This includes simple enable/dis-
able of interrupts, testAndSet operations, locks, semaphores, message passing,
rendezvous, guarded commands, public subscribe, Actors, etc.

For Beta, a goal has been to identify a few simple basic mechanisms that do
not imply unnecessary overhead and structures like queues. In Beta, the basic
mechanism for synchronization was the semaphore, which does require a queue
as part of the implementation. In xBeta, semaphores have been replaced by
enable/disable of interrupts.

Coroutines in the style of SIMULA are the basis for threads. SIMULA
has symmetric coroutines and semi-coroutines, whereas Beta has only semi-
coroutines, but as mentioned earlier, the abstraction mechanism in Beta makes
it possible to build an abstraction for symmetric coroutines. In SIMULA, all
objects are coroutines. In Beta, a pattern may be instantiated as a simple object
corresponding to objects in C++, Smalltalk, Java, etc. or as a coroutine object.
In xBeta, all objects may be used as coroutines.

Most (OO) languages, like Java, and C#, have concurrent tasks built into the
language. Other languages like C++ provided task libraries. Coroutines were
originally proposed by Conway [16]. There are few languages based on corou-
tines, but some languages have a notion of generators that essentially are corou-
tines – the language Icon [28] is an example of such a language. Modula 2 [57]
is an example of a language that has direct support for (semi) coroutines. And
according to [58], “. . . it was decided that only the very basic notion of corou-
tines would be included in Modula-2, and that higher abstractions should be
programmed as modules based on coroutines”.

Building Safe Concurrency Abstractions 99

In SIMULA, Beta and xBeta, the scheduling of coroutines may be cooperative
or preemptive, and coroutines may be executed concurrently. And as shown in
this paper, it is possible to implement schedulers in these languages. We are
not aware of other languages where it is possible to implement schedulers to the
same extent.

The main concern for the design of Beta and xBeta is, however, not the choice
of basic primitives, but the ability to define higher-level concurrency abstractions
directly in the language. In almost all modern programming languages, it is
possible to define new abstractions from the primitives of the language, but
we are not aware of languages that to the same extent as Beta/xBeta can
define new concurrency abstractions from simple synchronization primitives like
enable/disable of interrupts.

In [62], Kasper Østerbye and Wolfgang Kreutzer describe how to build high-
level synchronization abstractions using Beta patterns using examples from Be-
taSIM [35], a high-level framework for discrete event simulation.

Concurrent object-oriented languages have a problem passing references to
mutable objects between processes. In the current design of xBeta, a notion of
immutable object has been introduced in order to handle this problem. This is
a well-known restriction in many concurrent OO languages [8].

During the design of Beta, a mechanism like subpattern restrictions was dis-
cussed as a possibility for restricting the use of a pattern – and was named
local language restriction. The main purpose was to be able to define patterns
that define abstraction mechanisms like procedure (method), function, class and
process as specializations of the pattern concept.

Originally, the main idea with unifying abstraction mechanisms like class and
method into one abstraction mechanism – the pattern – was to ensure a uniform
treatment of all abstraction mechanisms. It might still be useful to distinguish
between class and method patterns – however, in practice programmers do not
seem to have difficulties of just using one pattern.

The problems with lack of interference control for concurrent objects was
recognized but not discussed in the light of local language restrictions.

The original idea of local language modifications was to impose restrictions
on the use of a pattern similar to the kinds[...] restriction and to exclude the
use of certain syntactic categorizes in a given subpattern. The working propos-
als were: ExcludedIn – constructs where this subpattern cannot be used, and
Exclude - constructs excluded in subpatterns. A concrete proposal for such a
mechanism was, however, never completed.

Subpattern restrictions are analogous to islands, balloons, and ownership
types [33,5,50,4] that also try to put restrictions on the use of objects, but
primarily to avoid aliasing. In xBeta, aliasing is possible within a process, but
for the inter-process situation this may only be the case for immutable objects.

7 Conclusion

We have presented the Beta/xBeta approach to concurrent object-oriented pro-
gramming. We have shown how coroutines and preemptive suspend combined

100 O.L. Madsen

with patterns and subpatterns, especially in the form of submethods and method
combination using inner, are powerful means for defining high-level concurrency
abstractions. This is exemplified by showing how to define a monitor-based sys-
tem and a rendezvous-based system.

The rendezvous-based system further includes the notion of alternating activi-
ties, which may be used as an alternative select-statements (guarded commands)
and asynchronous messages to handle non-determinism.

We have furthermore shown that it is possible to define an associated scheduler
as part of a concurrency abstraction.

We have introduced the notion of subpattern restrictions as a means to restrict
the use of a given pattern in order to control interference control and insecurity
and not rely on programmer discipline – cf. the comments made by Brinch-
Hansen on Java in the introduction. Subpattern restrictions complement access
control mechanisms like public, private and protected and make it possible to
define patterns that define general rules for access to attributes of subpatterns.

In the literature, there are many proposals for supporting concurrency and no
model has gained widespread acceptance. Concurrency on mainstream languages
like Java, C++, and C# makes use of insecure threads, locks, etc.

For this reason we think that it is useful to be able to define libraries of
concurrency abstractions in a given language including schedulers. Few languages
to our knowledge support this.

In [31], Tony Hoare wrote the following about Algol 60: “Here is a language so
far ahead of its time, that it was not only an improvement on its predecessors, but
also on nearly all its successors.” Bertrand Meyer has made a similar statement
about SIMULA. The SIMULA notions of object, class, subclass, virtual and the
ability to define frameworks like class Simulation have been widely adapted. The
notions of objects as active coroutines and the ability to define schedulers have
been overlooked.

In Beta and xBeta, we have further generalized the SIMULA notions of
coroutine and preemptive suspend and demonstrated their usefulness to support
concurrency abstractions.

xBeta retains the power of object-orientation and at the same time provide
safe concurrent processes. Concurrent objects may be defined using the stan-
dard OO mechanisms, and communication between concurrent processes is not
reduced to simple messages.

There is of course a restriction that only immutable objects may be passed
between concurrent processes. As for processes, we may use the full power of
OO to define immutable objects.

For xBeta, we have thus not been forced to downgrade support for concurrent
objects to asynchronous messages and simple values.

It may still be an issue if xBeta will be considered an inherently concurrent
language. As of now, there is nothing that prevents the programmers from using
xBeta as a sequential language and adding concurrency by need. In the outset,
we believe that the new organization of modules as objects [44] and the ability to
offer safe concurrency abstractions may improve on this. In some sense, it may

Building Safe Concurrency Abstractions 101

be a matter of presentation. In practice, programmers may freely choose their
language – so concurrency modules should be offered as languages. In the real
world the programmer is free to choose between e.g. Java, Erlang and C. With
xBeta, we provide the option of choosing an inherently concurrent language.

The final issue relates to the generality of the proposed language mechanisms.
The notions of coroutine and preemptive suspend should be easily adapted to
languages like Java, C++, and C#. The same holds for submethods and inner
— being central in order to define the kind of abstractions presented here.

Adapting submethods and inner to a given OO language may require a ma-
jor change in language philosophy and programming style. In most languages, a
method may be completely redefined and method combination is done by means
of a super-mechanism. Submethods and inner provides more structure and se-
curity, but at the expense of flexibility. We do, however, believe that in software
development, structure and security should be prioritized.

Acknowledgements. Beta was developed as a joint effort with Bent Bruun
Kristensen, Birger Møller-Pedersen, and Kristen Nygaard. Boris Magnusson
taught us about a deficiency of the SIMULA suspend mechanism and introduced
us to preemptive suspend. I am grateful to Eric Jul, Birger Møller-Pedersen, and
the anonymous reviewers for giving useful comments on this paper, especially for
pointing out a number of errors in the first version of this paper. I would also like
to thank the editors of the Festschrift for professor Akinori Yonezawa, especially
Atsushi Igarashi for their assistance with this paper and making it possible for
me to attend the Symposium in Honor of Professor Akinori Yonezawa’s 65th
birthday. And, finally, a warm thank you to Akinori Yonezawa for his significant
achievements in computer sciences including concurrent objects – Aki and his
work has always been of great inspiration to me.

References

1. Ada. Ada reference manual. proposed standard document (1980)
2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT

Press, Cambridge (1986)
3. Agha, G.: Concurrent object-oriented programming. Communications of the

ACM 35(9), 125–141 (1990)
4. Aldrich, J., Chambers, C.: Ownership Domains: Separating Aliasing Policy from

Mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

5. Almeida, P.S.: Balloon Types: Controlling Sharing of State in Data Types. In:
Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 32–59. Springer,
Heidelberg (1997)

6. Armstrong, J., Virding, R., Williams, M.: Concurrent Programming in Erlang.
Prentice Hall (1993)

7. Bernstein, A.J.: Output Guards and Nondeterminism in “Communicating Se-
quential Processes”. ACM Transactions on Programming Languages and Systems
(TOPLAS) 2(2), 234–238 (1980)

102 O.L. Madsen

8. Black, A., Hutchinson, N., Jul, E., Levy, H.: Object Structure in the Emerald
System. In: OOPLSA 1986 – Object-Oriented Programming Systems, Languages
and Applications, pp. 78–86. ACM SIGPLAN (1986)

9. Blake, E., Cook, S.: On Including Part Hierarchies in Object-Oriented Languages,
with an Implementation in Smalltalk. In: Bézivin, J., Hullot, J.-M., Lieberman, H.,
Cointe, P. (eds.) ECOOP 1987. LNCS, vol. 276, pp. 41–50. Springer, Heidelberg
(1987)

10. Booch, G.: Object-Oriented Analysis and Design with Applications. Benjam-
in/Cummings, Redwood City (1991)

11. Brinch-Hansen, P.: The Origin of Concurrent Programming: From Semaphores to
Remote Procedure Calls. Springer (2002)

12. Brinch-Hansen, P.: The Programming Language Concurrent Pascal. IEEE Trans-
actions on Software Engineering SE-1(2) (1975)

13. Brinch-Hansen, P.: Java’s insecure parallelism. ACM SIGPLAN Notices 34(4), 38–
45 (1999)

14. Budd, T.: An Introduction to Object-Oriented Programming, 3rd edn. Addison
Wesley (2002)

15. Coad, P., Yourdon, E.: Object-Oriented Analysis. Prentice-Hall, Englewood Cliffs
(1991)

16. Conway, M.E.: Design of a Separable Transition-Diagram Compiler. Communica-
tions of the ACM 6(7), 396–408 (1963)

17. Cook, S.: Object Technology – A Grand Narrative? In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 174–179. Springer, Heidelberg (2006)

18. Cook, W.R.: Peak Objects. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 180–185. Springer, Heidelberg (2006)

19. Dahl, O.-J., Hoare, C.A.R.: Hierarchical Program Structures. Academic Press
(1972)

20. Dahl, O.-J., Myhrhaug, B., Nygaard, K.: SIMULA 67 Common Base Language
(Editions 1968, 1970, 1972, 1984). Technical report, Norwegian Computing Center
(1968)

21. Dahl, O.-J., Nygaard, K.: SIMULA—a Language for Programming and Description
of Discrete Event Systems. Technical report, Norwegian Computing Center (1965)

22. Dahl, O.-J., Nygaard, K.: SIMULA: an ALGOL-based Simulation Language. Com-
munications of the ACM 9(9), 671–678 (1966)

23. Dahl, O.-J., Nygaard, K.: The Development of the SIMULA Languages. In: ACM
SIGPLAN History of Programming Languages Conference (1978)

24. Dahl, O.-J., Wang, A.: Coroutine Sequencing in a Block Structured Environment.
BIT 11, 425–449 (1971)

25. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and the Formal Derivation
of Programs. Communications of the ACM 18, 453–457 (1975)

26. Google. Dart – Build HTML5 Apps for the Modern Web. Technical report (2011),
http://www.dartlang.org/

27. Gosling, J., Joy, B., Steele, G.: The Java (TM) Language Specification. Addison-
Wesley (1996)

28. Griswold, R.E., Hanson, D.R., Korb, J.T.: Generators in Icon. ACM Trans. on
Programming Languages and Systems 3(2), 144–161 (1981)

29. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for arti-
ficial intelligence. In: IJCAI 1973 – 3rd International Joint Conference on Artificial
Intelligence, pp. 235–245 (1973)

30. Hoare, C.A.R.: Notes on Data Structuring. Academic Press, London (1972)

http://www.dartlang.org/

Building Safe Concurrency Abstractions 103

31. Hoare, C.A.R.: Hints on Programming Language Design. Technical report, Com-
puter Science Department, Stanford University (1973)

32. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the
ACM 21(8) (1978)

33. Hogg, J.: Islands: Alisasing Protectio in Object-Oriented Languages. In: OOPSLA
1996 – Object-Oriented Programming Systems, Languages and Applications (1991)

34. Kernighan, B.W., Ritchie, D.M.: The C Programming Language, 2nd edn. Prentice
Hall, Englewood Cliffs (1978)

35. Kreutzer, W., Østerbye, K.: BetaSim - a framework for discrete event modeling &
simulation. Simulation - Practice & Theory (1999)

36. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Abstraction
Mechanisms in the BETA Programming Language. In: Tenth ACM Symposium on
Principles of Programming Languages (1983)

37. Kristensen, B.B., Møller-Pedersen, B., Chepoi, V.: Classification of Actions or In-
heritance also for Methods. In: Bézivin, J., Hullot, J.-M., Lieberman, H., Cointe,
P. (eds.) ECOOP 1987. LNCS, vol. 276, pp. 98–107. Springer, Heidelberg (1987)

38. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B.: The When, Why and Why
not of the BETA Programming Language. In: Hailpern, B., Ryder, B.G. (eds.)
History of Progamming Languages III. SIGPLAN (2007)

39. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Multi-
sequential execution in the BETA programming language. ACM SIGPLAN No-
tices 20(4), 57–69 (1985)

40. Krogdahl, S., Olsen, K.A.: Modular and Object-Oriented Programming. Data Tid 9
(1986)

41. Madsen, O.L., Møller-Pedersen, B.: What Object-Oriented Programming May
Be—and What It Does Not Have to Be. In: Gjessing, S., Chepoi, V. (eds.) ECOOP
1988. LNCS, vol. 322, pp. 1–20. Springer, Heidelberg (1988)

42. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming
in the BETA Programming Language. Addison Wesley (1993)

43. Madsen, O.L.: Defining Object Semantics using Object Sequence Diagrams – or
just another high-level debugger. Technical report, Aarhus University (2012)

44. Madsen, O.L.: Modularization and Browsing – an Integrated Design. Technical
Report, Dept. of Computer Science, Aarhus University, Aarhus (2012)

45. Madsen, O.L., Møller-Pedersen, B.: A Unified Approach to Modeling and Program-
ming. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I.
LNCS, vol. 6394, pp. 1–15. Springer, Heidelberg (2010)

46. Magnusson, B.: Using the simioprocess library on Unix Systems. Technical report,
Lund Software House AB, Sweden (1997)

47. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997)
48. Naur, P.: Revised Report on The Algorithmic Language ALGOL 60. Communica-

tions of the ACM 6 (1963)
49. Nierstrass, O.: Ten Things I Hate About Object-Oriented Programming – Banquet

speech given at ECOOP 2010. Maribor 2010. The JOT blog – Journal of Object
Technology (June 24, 2010)

50. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)

51. Nordlander, J., Jones, M.P., Carlsson, M., Kieburtz, D., Black, A.P.: Reactive
Objects. In: Fifth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, ISORC 2002 (2002)

52. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems 7(4), 501–538 (1985)

104 O.L. Madsen

53. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading
(1986)

54. Stroustrup, B.: Evolving a language in and for the real world: C++ 1991-2006. In:
History of Programming Languages III. ACM (2007)

55. Vaucher, J.: Prefixed Procedures: A Structuring Concept for Operations. IN-
FOR 13(3) (1975)

56. Vaucher, J., Magnusson, B.: SIMULA Frameworks: the Early Years. Wiley (1999)
57. Wirth, N.: Programming in Modula-2. Springer, New York (1982)
58. Wirth, N.: Modula-2 and Oberon. In: Hailpern, B., Ryder, B.G. (eds.) History of

Progamming Languages III. SIGPLAN (2007)
59. Yokote, Y., Tokoro, M.: Experience and Evolution of Concurrent Smalltalk. In:

OOPSLA 1987– Object-Oriented Programming Systems, Languages and Applica-
tions, pp. 406–415. ACM SIGPLAN (1987)

60. Yonezawa, A.: Early Concurrent/Mobile Objects. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 198–202. Springer, Heidelberg (2006)

61. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-Oriented Concurrent Program-
ming in ABCL/1. In: OOPLSA 1986 – Object-Oriented Programming Systems,
Languages and Applications, pp. 258–268. ACM SIGPLAN (1986)

62. Østerbye, K., Kreutzer, W.: Synchronization Abstraction in the BETA Program-
ming Language. Computer Languages 25, 165–187 (1999)

Structuring Communication with Session Types

Kohei Honda1, Raymond Hu2, Rumyana Neykova2, Tzu-Chun Chen1,
Romain Demangeon1, Pierre-Malo Deniélou2,3, and and Nobuko Yoshida2

1 Queen Mary,
University of London

2 Imperial College, London
3 Royal Holloway, University of London

Abstract. Session types are types for distributed communicating pro-
cesses. They were born from process encodings of data structures and
typical interaction scenarios in an asynchronous version of the π-calculus,
and are being studied and developed as a potential basis for structuring
concurrent and distributed computing, as well as in their own right. In
this paper, we introduce basic ideas of sessions and session types, outline
their key technical elements, and discuss how they may be usable for
programming, drawing from our experience and comparing with existing
paradigms, especially concurrent objects such as actors. We discuss how
session types can offer a programming framework in which communica-
tions are structured both in program text and at run-time.

1 Introduction

This paper illustrates a structuring method for distributed computing based on
session types [19, 20, 29]. We take the standpoint that communication is an es-
sential building block for concurrent and distributed computation and that there
is a strong prospect that both software and hardware engineers need to position
this notion as a foundation of their design activities. Under this assumption, we
seek a general principle for structuring communications as a basis to facilitate
the development of correct and efficient programs. Computation based on com-
munication is so rich – it certainly includes the whole of sequential and shared
variable computation – that it looks hopeless to identify a principle which may
apply to its different realisations. There is also a difficulty inherent in com-
munication as we discuss in the next section. Given these potential difficulties,
instead of looking for general principles, we may be content with having different
techniques depending on different classes of use cases and different levels of ex-
pertise. But we believe this difficulty should not deter us from our quest towards
a unifying foundation since only with such a foundation we can start to harness
the richness of the large class of behaviours realisable through communication
and concurrency, providing a guide for individual problems and giving a basis
upon which different techniques can be positioned and integrated with greater
benefits than isolated solutions.

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 105–127, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

106 K. Honda et al.

A central idea for structuring communications in session types is to divide
them into chunks of inter-related interactions forming logical units, called ses-
sions. Each session, in its own temporal-spatial confine, consists of messages
which are clearly identifiable as belonging to that session. The term “session”
comes from the networking community where such a classification has been prac-
tised for a long time, albeit informally. Each session is associated with its pro-
tocol, specifying how its participants may interact with each other, which gives
a type for the session in the sense that it classifies interaction structures, and
that they are directly linked to programming primitives as a formal specification,
just as types for functions and methods are directly linked to their underlying
primitive. This is how protocols arise as types when programming with sessions.
We illustrate this framework more concretely in Section 2.

The study of session types over the past two decades has extensive interactions
with other threads of research. Session types were born from a desire to articu-
late the abstract structures arising from idioms that repeatedly occur when we
encode high-level data types and programs in the asynchronous version of the
π-calculus [23], which in turn was influenced by actor model. Theories of con-
currency, in particular process algebras such as ACP [3], CCS [21] and CSP [16],
offered mathematical foundations of session types: the research on concurrent
languages based on actors and concurrent objects also played an important role
in the inception of session types. These languages include the ABCL family of
programming languages starting from [32], developed by Akinori Yonezawa and
his team, which is one of the prominent accomplishments in the study of con-
current languages and formed a cultural background of the initial introduction
of session types.

This paper is intended for a concise presentation of key ideas as well as some
of the open topics. We also provide comparisons with related programming and
software development methodologies. For technical details, we hope the reader
can consult citations in each section. Section 2 gives the background of session
types. Section 3 introduces its programming methodology informally through
examples. Section 4 discusses one of its application examples. Section 5 compares
our approach with other framework for concurrent programming with a focus
on concurrent objects and actors, and concludes.

2 Background

2.1 Structuring Sequential Programs

Computing in its modern sense started from the discoveries in 1930s and 1940s
of abstract and concrete machines which are in nature sequential. Among them,
the abstract machine by Turing and its crystallisation as an engineering design
by Von Neumann offered the combination of striking simplicity and universality
with a finite state automaton as the processing unit and a linear array of memory
cells as the workspace for the automata (designated as a “tape” containing many
squares in Turing’s model: symbols are read from and written to these squares
by an automata). This simple machine model was to be explored extensively by

Structuring Communication with Session Types 107

generations of engineers, developing faster processing units and larger memories
with high-bandwidth for reading and writing. By Turing’s result, engineers know
that, just by focusing on these two key elements (the processor and the memory)
and enlarging their capabilities, the machine can simply get better.

It is on this stable hardware model that the fundamental programming ab-
stractions for sequential computing were developed, from assemblers to a sim-
ple notion of control flows and data types, to procedures and the structured
programming discipline, to dynamically created data structures with multiple
operations (objects), to higher-order procedures. The stable and universal hard-
ware model makes it possible, assisted by other fundamental theories including,
among others, the λ-calculus and its type theories, to incrementally build up
layers of abstractions that assist designers and programmers to describe the in-
tended behaviour with clear structures understandable by the programmer and
his/her fellow colleagues, as well as by compilers which perform static checking
of programs. Without good structures, it is hard for both humans and machines
to understand programs’ semantics.

This point is well-articulated by Dijkstra, when he advocates the structures
programming discipline in his famous communication [13]:

Our intellectual powers are rather geared to master static relations. [...]
For that reason we should do (as wise programmers aware of our lim-
itations) our utmost to shorten the conceptual gap between the static
program and the dynamic process, to make the correspondence between
the program (spread out in text) and the process (spread out in time)
as trivial as possible.

Implicit in this observation is that the dynamic process realisable by the struc-
tured presentation of programs has the same expressive power as the “unstruc-
tured” method. Another observation underlying Dijkstra’s remark is the fact
that a formal basis for the structuring method, such as Hoare logic for struc-
tured programming constructs, can pinpoints the status of the method.

The quote above also indicates a crucial element for any effective structuring
method for programming: we obtain abstraction and good structure so that we
can map the resulting program text tractably into efficient code, since without
the existence of such a mapping, it is hardly expected that we can make the
correspondence between program text and how it will be executed “as trivial as
possible.”1 And for this correspondence to be judged to be effective for a high-
level programming language, we needed a stable machine model which not only
underlies the existing hardware products but also would underlie for potential
ones.

1 Note that this correspondence is preserved, albeit not too trivially, even for dy-
namic data structures such as objects, by a stable compilation strategy based on
class tables. Such a basic correspondence is a basis for individual optimisations for
architectures.

108 K. Honda et al.

2.2 Communication and Concurrency

Communicating processes are at the heart of computing since early days of
computing. While, as we have just discussed, computing has been based on the
most effective sequential model, scientists and engineers quickly found the use of
networking in combination with computing machinery, especially in the shape
of packet-switching networks that deliver digital data throughout networks with
effective use of the capacity of wires and flexibility which is not possible through
circuit-based networks. This is done through the help of intermediate nodes
which act as exchanges of data packets.

On this basis, at the network engineering level, we saw the emergence of the
idea of inter-networking, which links multiple networks, born and crystallised as
the TCP/IP combination of protocols [7]. This protocol was later split into the
two components as we know now based on the understanding on the end-to-end
principle [26], leading to the scalable inter-network infrastructure now known as
Internet, which was eventually to span the globe. Around the time when TCP/IP
was being engendered and incorporated as part of the then nascent Internet,
many studies on communicating processes, in abstract models, programming
languages and verifications were initiated, on which we shall discuss later.

In Internet, after several notable applications had been developed such as
electronic mails based on corresponding application-layer protocols, we saw an
invention of a simple but useful idea to implement hyperlinks over Internet,
embodied in the document format HTML and the application-layer protocol
HTTP. HTTP, a simple protocol based on server-client interactions performed
in a TCP-connection, has turned out to be a great medium for providing services
to users, by which the user base of Internet has undergone an explosive growth.
Later we found other applications of Internet, such as Internet Telephony as well
as social networking, leading to the proliferation of web services, where many
businesses become Internet-based and have global presence, be they bookshops,
music or flower delivery. The resulting socio-technical complex is to be called
World-Wide Web.

Global services in the World-Wide Web need to cope with a large number of
clients. This in turn necessitated the development of server technologies, to be
used for the backend of these web services. Combined with virtualisation tech-
nologies of OSes and networks, this has led to a set of technologies by which
multiple users can share a gigantic interconnected network of commodity hosts
as if each has its own network and computing resources, leading to cloud com-
puting. Cloud computing is giving at least three impacts. First it allows every
user an opportunity to use large amount of computing resources economically.
Second, it allows diverse networking technologies to be experimented without in-
terfering with other users. Thirdly, it offers users an economical platform where
an embarrassing amount of concurrency and distribution are the norm rather
than a marginal concern.

The cloud computing has become prominent in the first decade of the 21st
century. Not neglecting other factors, an insight which the cloud computing
may give us is that, to share computation, that computation had better be

Structuring Communication with Session Types 109

distributed. This is a physical problem, having the same root as the following
observation by Hoare on multi-processor architecture several decades ago [16]:

[...] Where the desire for greater speed has led to the introduction of
parallelism, every attempt has been made to disguise this fact from the
programmer [...]. However, developments of processor technology suggest
that a multiprocessor machine, constructed from a number of similar
self-contained processors (each with its own store), may become more
powerful, capacious, reliable, and economical than a machine which is
disguised as a monoprocessor.

In brief, there is a limit to share a large amount of computing power in the
sequential form (or, in Hoare’s words, to “disguise” it to be sequential), due to the
existence of latency. In spite of all the engineering efforts to achieve the contrary,
we see a clear slowing-down of sequential performance of representative CPUs at
the beginning of the 21st century, fulfilling Hoare’s prediction in a globally aware
form. Since then, the architectural development centres on increasing parallel
performance through many cores. This is also in line with the architectural
evolution of super computers, which, after prominent instances such as Blue-
gene showed their performance merits, have turned into communication-centred
designs.

2.3 Structuring Communication

Thus, in all scales of computing, communication is becoming one of the major el-
ements. And theoretical results such as Milner’s embedding of the λ-calculus into
the π-calculus [22] confirms their status as an expressive computing primitive.
However, as Hoare himself observed when he introduced CSP, communication is
hard to harness, in both design and formal verifications, which is one of the rea-
sons why Hoare and Milner have chosen synchronous interaction. Can we find
a tractable way to specify and manage communication in program texts and
runtime?

There is however subtlety in this question itself: what is it to which we aim to
give a good structure? Sequential computation has a stable execution basis, in
the abstract models and in concrete machine instructions. But communication
is different. Either inside a chip, among different machines in a cluster or across
continents, communication is always mediated by intermediate infrastructure,
be it on-chip interconnect and buffering facilities in a manycore chip, Ethernet
bus and drivers, or IP routers. Communication is not a hardware primitive at
the same level of assignment, and never will be. Thus it is hard to determine
and agree on what would count as basic primitives for communication. And if
we cannot identify primitives, how can we think of the structuring method for
them?

Answering this problem is hard because communication is useful, after all,
because it is between two computing machines: there may not be only one way to
realise it. Session types started from a theory of processes based on asynchronous
communication based on the π-calculus which is also close to the actor model.

110 K. Honda et al.

This theory, introduced in [5, 18], is interesting in that it is a sub-set of the π-
calculus, which itself is based on synchronous, handshake computation, but just
by taking its subset, now represents asynchrony. This also suggests all theories
developed in CSP, CCS and the π-calculus are now applicable to asynchronous
theory. These theories show that, at the foundational level, we can indeed have
a rigorous theory of asynchronously communicating processes, with an exact
notion of behaviours, their equivalence, and logical specifications. But having a
general theory does not dispel the theoretical intractability, and accompanying
mental intractability, of asynchrony: assuming we use large or infinite buffering
in communication, it looks hard to reason about behaviours (consider model
checking interactional behaviours with infinite buffering).

It is here that the notion of protocols and session types comes in, on which
we shall discuss in the next section.

3 Multiparty Protocols and Sessions

3.1 Session Types

One of the outcomes of using very large-scale integration for implementing a
central processor of a computer is that, to link “remote” areas of a single chip
(since we want different cores to share data), we need to rely on asynchronous
communication. This is for the following simple reason: if we need to have two
computations to be not too closely synchronised, that is (as we want when two
different cores to calculate two parts of computation) if we want their compu-
tations to proceed independently unless absolutely necessary, the only way is to
link them with a buffered communication medium, which an on-chip intercon-
nect in VLSI readily provides. Note that a relative independence in processing
also means that we can overlap computation and communication, which is a
major method to make the most of distributed computing resources.

But this very asynchrony also poses a problem in understanding computation:
the “dynamic process”, as Dijkstra called it, of asynchronously communicating
processes looks hard to harness, because, simply put, all different ways in which
the messages can be buffered add new states in potential computations, making
the reasoning extremely difficult. For example, if a process changes its state on
each occasion when a new message is received, and each sending action depends
on this state, then unbounded buffering means unbounded states and behaviours.

It is to harness this untenable nature of asynchronous communicating pro-
cesses that has led to the birth of the structuring method for communications
programming based on sessions and session-based primitives (creating sessions
and communication through sessions), together with the underlying types which
offer a way to specify protocols for sessions as types, drawing from the study of
the π-calculus and its type theories as well as the foregoing studies on types in
programming languages. By restricting asynchrony by protocols, we can reduce
the size of state space to be considered, for each session and interleaved sessions,
ensuring safe interactions by static checking and giving a basis for understanding
and verifying behaviour. It has the equivalent expressive power as the original

Structuring Communication with Session Types 111

primitive of the π-calculus, which is known to possess a universal computing
power for interactions in a certain technical sense.

The original session typed π-calculi are based on synchronous communica-
tion primitives, assumed to be compiled into asynchronous interaction: later
researchers found that, if we assume ordered asynchronous communications for
binary interactions inside a session, the original synchronous theory of safety
can be preserved while directly expressing asynchronous interaction. This safety
theory includes the simple fact that the type of a message by a sender coincides
with what a receiver expects inside a multiparty dialogue, which is practically
important because such an error costs a lot more in asynchronous communicating
processes than in sequential computing.

3.2 Writing Protocols

Session types describe a way, or a pattern, in which interactions can take place in
sessions. Session types have been called protocols for many years in network and
other engineering disciplines which need to treat such patterns. For this reason,
and because session types are sufficiently different in nature from data types, we
know in sequential computing (although the former share the key principle from
data types as we shall discuss later), hereafter we often use the term “protocols”
instead of “session types” when discussing their use for programming.

One of the key ingredients of session-based programming is the use of proto-
cols as an essential element of design and programming, because a clear under-
standing of an interaction scenario is an essential ingredient of communications
programming. For this reason, one of the key features of programming with ses-
sions is a protocol description language, the language with which engineers read
and write their protocols. They are close to types in sequential programming:
like data and function types, there is a tight linkage to language primitive. Like
data and function types, protocols may be inferred from programs or declared
by programmers so that programs may be checked against them. A difference
is that a protocol describes interactions for a session, and that, for this rea-
son, each session involves a sequence of interactions (which may not necessarily
be contiguous, since interactions in other sessions or internal computation may
interleave).

A Simple Protocol. To illustrate how we can specify a protocol, we take
a simple scenario, and show how the corresponding protocol can be specified
using an experimental protocol description language we are developing, called
Scribble [17,27,28] (the name comes from our desire to create an effective tool for
architects, designers and developers alike to quickly and accurately write down
protocols).

A key feature of Scribble is that all of its constructs are fully founded on the
formal theory of multiparty session types, starting from the core language fea-
tures for message passing, choice and recursion [4,20], to more advanced features,
such as parallel [10], interrupts [6], sub-sessions [9] and run-time monitoring [8],

112 K. Honda et al.

1 type <ysd> "ListingFormat" from "ListingFormat.ysd" as Format;
2

3 protocol ListResources(role client as cl, role resource_registry as rr) {
4 request(resource_kind:String) from cl to rr;
5 rec loop {
6 choice at rr {
7 response(element:Format) from rr to cl;
8 continue loop;
9 } or {

10 completed() from rr to cl;
11 }
12 }
13 }

Fig. 1. A protocol for the List Resources use case

and studies relating session types to alternatives such as communicating au-
tomata [10]. The development of Scribble is a collaboration between researchers
and industry partners [24,27]. Most of the examples presented in this section are
supported by the current working version of Scribble [28], with a few exceptions
that we note as being planned for future release.

The initial scenario we treat is called “List Resources”, where a Client obtains
a list of resources of some kind from a Resource Registry. This is a basic use case
applicable to many environments where a user may be provided with a variety
of resources by the infrastructure, e.g. remotely operable instruments or systems
resources such as bandwidth. The scenario consists of two steps:

Step 1: Client asks Registry to send her a resource list, specifying the kind of
resources it is interested in.

Step 2: Registry responds by sending the list of the resources of the kind spec-
ified, until the list is exhausted.

It is a simple elaboration of a remote procedural call. Note, however, that Step 2
involves a repetition of sending actions. This use case may be further elaborated
in various ways, but this simple version is sufficient for our first exercise.

Writing down a protocol goes through a natural flow, practised for decades
in the networking community. We first list the message formats, followed by the
participating actors (and other parameters). Then we scribble away the structure
of the conversation between the actors. The result for our mini use case is given
in Figure 1.

Line 1 starts from importing an message type ListingFormat, specified in
YAML (ysd), from the external source (file) ListingFormat.ysd. This message
type can then be referred to in this Scribble protocol specification by the given
alias Format. (In the coloured presentation of this paper, the import and as are
coloured blue, signifying they are keywords.) Message type imports allow Scrib-
ble to be used in conjunction and orthogonally with externally defined message
formats: here we are using a YAML schema, but any data format given in a well-
defined schema/type language may be used as far as the protocol validator is
notified. Data format is of course fundamental in protocols to ensure interacting
parties understand what the other is saying.

Structuring Communication with Session Types 113

In Line 3, we give the name to the protocol, ListResources, followed by its
parameters. The parameters consist of the names of the two actors roles which
participants can play, client and resource registry, aliased as cl and rr (short
names are often good for scribbling away protocols). This completes the header
of the protocol.

The remaining lines (Lines 4–13) constitute the protocol body, which describes
the structured flow of the conversation in a session. We have the first interaction
described in Line 4, which reads:

A request message whose content, annotated as resource kind and typed
as String, is sent from cl to rr asynchronously.

In Line 4, request is the message operator ; String (which is a built-in type for
strings) is a message payload type, and resource kind is the payload annota-
tion (a simple name). Finally from and to specify the source and destination,
respectively.

Line 4 is reminiscent of a method/function declaration found in APIs and
modules of high-level sequential programming languages: an interaction signa-
ture is a symmetric, peer-to-peer version of the familiar notion of “interface” of
functions and objects. As such, Line 4 does not specify constraints on concrete
values a message may carry, but specifies only the type of an interaction. For this
reason, we call the description in Line 4 as a whole, an interaction signature.

Registry now responds through a sequence of one or more messages: in the
protocol, we use a light form of labelled recursion for such repetition. Line 5
declares the recursion label loop that names the recursion body starting from
Line 6 and reaching Line 12. The recursion body consists of a single choice
statement.

The choice construct starts from Line 6, which first declares the choice: at rr

says that it is the Registry who will be the deciding party of this choice, through
a subsequent send action.

Lines 7–8 and Line 10 are respectively two distinct branches of the choice,
separated by or on Line 9. In the first branch, Line 7 says that Registry sends
a response message to Client, with message content annotated as (list) element

and typed as Format. Again we specify only a sender, a receiver and a message
signature. This is followed by Line 8, a recurrence denoted by the continue

keyword, which says that the protocol flow at this point returns to the start of
the recursion body labelled by loop, i.e. to Line 5.

The other branch consists of a single interaction, Line 10, where a completed

message with an empty payload is sent from Registry to Client, indicating
the end of the list, i.e. the end of the recursion – since there is no recurrence, the
loop terminates if this branch is chosen. As described in Step 2 above, at the
level of the application logic, the repetition should terminate only when all
the resource data for the specified kind has been sent by Registry: our pro-
tocol description again abstracts from exactly how this may be determined in
the program logic (although the protocol assertions we discuss later can con-
strain this behaviour in some way or another). After this action, the flow exits

114 K. Honda et al.

1 protocol ListResources<type ListingFormat as Format>
2 (role client as cl, role resource_registry as rr) {
3 request(resource_kind:String) from cl to rr;
4 rec loop {
5 choice at rr {
6 response(element:Format) from rr to cl;
7 continue loop;
8 } or {
9 completed() from rr to cl;

10 }
11 }
12 }

Fig. 2. A refined List Resources protocol (1)

the choice and the recursion, and (since no further interactions are specified) the
session terminates.

Nature of Protocols. We have seen a simple but self-contained protocol (ses-
sion type), ListResources. Even from this simple example, we can find unique
features of protocols. First, a protocol is like an API in that it defines a con-
tract, but this contract is not just between a function and its user, but among
conversing agents. Further, a protocol describes a series of interactions, with con-
ditional and repeated segments, because conversations among distributed agents
will often involve more elaborate structures than call-return. Like APIs, a pro-
tocol only offers a bare minimal behavioural specification, without constraining
values nor conditions for actions. This paucity has a practical merit: minimal
notations are needed for reading and writing basic protocols; they are amenable
for efficient validation at both compilation time and at runtime; and they can
serve as a minimal sufficient basis for elaborating them with refined behavioural
constraints through, among others, assertions.

Elaborating Protocols. For protocols to assist computer software develop-
ment, be it a newly built system or an upgrade of an existing system, they had
better be reusable, i.e. once you author a protocol, it should be able to be used for
many concrete applications. From this viewpoint, the ListResources protocol in
Figure 1 may not be fully satisfactory. In particular, it works only for the message
type defined in the specification by the concrete ListingFormat YAML schema.
Even if only one listing format is known now, new formats may arise later. Why
should we write different protocols for all different formats, given the structure
of interactions is identical? We use a basic technique from programming theory,
parametrisation, to solve the problem.

There are at least two different, and natural, ways we may employ param-
etericity in the protocol of this example. The first approach, supported in the
current version of Scribble, is given in Figure 2. Here, we directly abstract the
message type as a parameter to the protocol. In Line 1, the protocol has gotten
an additional parameter, <type ListingFormat>, as well as dispensing with the
“import” statement. This additional parameter means, with the keyword <type>,

Structuring Communication with Session Types 115

1 protocol ListResources(role client as cl, role resource_registry as rr) {
2 request(resource_kind:String, type ListingFormat) from cl to rr;
3 rec loop {
4 choice at rr {
5 response(element:ListingFormat) from rr to cl;
6 continue loop;
7 } or {
8 completed() from rr to cl;
9 }

10 }
11 }

Fig. 3. A refined List Resources protocol (2)

that ListingFormat (again aliased as Format) is now a type name to be instanti-
ated each time this protocol is instantiated as a whole into a run-time session.
Later, in the response interaction in Line 6, Registry is obliged to send the list
elements according to the concrete type known at run-time, while the Client
should be ready to receive them. The protocol again gives a contract among
participants, while now flexibly catering for arbitrary data formats.

A second approach, based on a dynamic form of parametrisation [25, 30], is
presented in Figure 3. This time, we elaborate the initial request interaction, in
Line 2 (the import clause is again dispensed with), so that the type ListingFormat
is now explicitly communicated from the Client to the Registry as the value of
a message, signifying its kind as type. This communicated type is then used
in Line 5, specifying that Registry should send the datum using the format it
has received from Client in Line 2. Scribble may be extended to support this
alternative technique for achieving the necessary parametrisation in a future
release, as the underlying theory is already well established.

Nested Protocols. Consider the protocol given in Figure 4. It has two actors,
a Requester and an Authority. In Lines 2–3, Requester sends a check message
to query on whether a subject is permitted to do an operation on a resource,
carrying the identities of a subject and a resource, the name of an operation, and
the certificate of Requester (for authentication, possibly validated via a separate
protocol) in its payload. In Lines 4–10, Authority responds, saying the operation
is allowed or not, or else by saying other, to deal with cases when the answer
cannot be delivered for some reason, such as an unqualified Requester.

Now consider the following elaboration of our original “List Resources” use
case:

Step 1: Client asks Resource Registry to send a resource list (as before).
Step 2: Registry checks if Client has sufficient privileges.
Step 3: If everything is fine, the Registry replies by a sequence of data for

resources of the specified kind to Client.

This use case incorporates a privilege check as part of the protocol, as an exten-
sion to the original use case. Note this use case composes two previous use cases,
by nesting a protocol inside another protocol. Can we realise such composite use
cases as a protocol?

116 K. Honda et al.

1 protocol CheckPrivileges(role requester as req, role authority as au) {
2 check(subject:URI, resource:URI, operation:String, certificate:String)
3 from req to au;
4 choice at au {
5 allowed() from au to req;
6 } or {
7 not_allowed(reason:String) from au to req;
8 } or {
9 other(reason:String) from au to req;

10 }
11 }

Fig. 4. A protocol for the Check Privileges use case

In Figure 5, we show how such a composition is done in Scribble, by com-
bining the previously specified CheckPrivileges and ListResources (the Figure 1
version). In Line 5, we use the introduces keyword to indicate that Registry will
“introduce” a new actor, authority. After this preparation, the CheckPrivileges

protocol is launched (spawn) by Registry (at rr) in Line 6. Note the argu-
ments include Authority which has just been introduced, as well as Registry
(who will play the requester role in the spawned session). We call the nested
CheckPrivileges session spawned during the execution of the ListResources pro-
tocol a child session, or a sub-session, of the parent ListResources session. The
lifetime of a child session is, in the standard run-time semantics [9], dependent on
its parent (e.g. if a parent session aborts, its child session(s) should also abort).
Where such causal dependency is not desired, these unrelated protocols may well
be specified separately, to be instantiated into distinct sessions at run-time.

Returning to Figure 5, after the CheckPrivileges sub-session is carried out,
Registry, now knowing the qualification of Client for this query, responds to
Client with either an ok or an error message with the reason (a String payload).
When ok, the remainder of the protocol is the same as in Figure 1 (and also
Figures 2 and 3). Note that the result of running CheckPrivileges is likely to be
related to whether ok or error is selected at the application logic but, at this
type level, we do not specify such detailed constraints.

As mentioned earlier, there are other constructs in Scribble, and in session
types in general. Among them are parallel composition, where two concurrent
threads of conversations can occur; interrupts, where a participant can asyn-
chronously interrupt an ongoing session using a message with one of the declared
signatures; and other modes of interactions beyond simple unicast. Additional
features supported by Scribble, and founded on formal theory, include nested
protocols, which is based on recent work introduced in [9] studying a general
form of nesting and instantiating session types.

3.3 Writing Programs with Sessions

We next take a brief look at how we can use the proposed concept of protocols
and sessions to implement clear and understandable communication programs,
taking a Python implementation of the List Resources protocol from Figure 1

Structuring Communication with Session Types 117

1 import Authentication.CheckPrivileges as CheckPrivileges;
2

3 protocol ListResources(role client as cl, role resource_registry as rr) {
4 request(resource_kind:String, type ListingFormat) from cl to rr;
5 rr introduces au;
6 spawn CheckPrivileges(rr as requester, au as authority) at rr;
7 choice at rr {
8 ok() from rr to cl;
9 rec loop {

10 choice at rr {
11 response(list:ListingFormat) from rr to cl;
12 continue loop;
13 } or {
14 completed() from rr to cl;
15 }
16 }
17 } or {
18 error(reason:String) from rr to cl;
19 }
20 }

Fig. 5. A refined List Resources protocol (3)

as an example. We cannot give a full implementation in its entirety here, but we
hope the reader can get the flavour.

Preliminaries. A protocol describes interactions among two or more agents.
While the running agents are often distributed in terms of run-time locality, the
implementation of the agent programs is also often “distributed” in terms of
development. Indeed, one of the primary purposes of protocols is to provide a
minimal interface against which each agent program may be independently im-
plemented, by different parties using different languages and techniques, while
ensuring full interoperability when global application is executed as a whole.
Therefore, the basic but general protocol- and session-oriented methodology for
developing programs is based on designing and implementing one program for
each endpoint. These programs interact with each other inside run-time conver-
sations via asynchronous messages following the specified protocols.

At run-time, a multiparty session functions like a network of TCP connec-
tions between the multiple endpoints, enabling them to communicate with each
other following the stipulated protocol. However, the concept of session also insu-
lates interactions among its participants from the underlying concrete transport
mechanisms, so that developers can (mostly) stay unaware of the particular net-
working technologies that may be employed at run-time. Our session-oriented
programs are constructed using “socket” abstractions that can be seen as stan-
dard TCP sockets generalised for multiparty messaging. Explicit structuring of
conversation flows makes the description of multiple flows of interactions within
an endpoint implementation clear with regards to the dependencies within each
flow and between flows. Since interactions in a session are ensured to never vio-
late the underlying protocol, either by static checking [4,20] or through run-time
monitoring (by protocol machines) [8], each endpoint knows what kinds of mes-
sages are coming from which other participants at each stage of a conversation.

118 K. Honda et al.

1 protocol RequestResponse(role Client as cl, role Server as sr) {
2 choice at cl {
3 GET() from cl to sr;
4 choice at sr {
5 sc200(s:String) from sr to cl;
6 } or {
7 sc500(reason:String) from sr to cl;
8 ...
9 } or {

10 POST() from cl to sr;
11 ...
12 ...
13 }

Fig. 6. A HTTP-like request-response protocol (extract)

To demonstrate the description of multiple conversation flows, our example
implementation shall integrate the List Resources protocol with a separately spec-
ified HTTP-like request-response protocol (simply called Request-Response). We
first give the relevant part of the Scribble for Request-Response in Figure 6 be-
fore proceeding to the code. In the figure, “sc” in e.g. sc200 stands for the “status
code” of a message.

Program. We now consider a Python program that uses the ListResources

and RequestResponse protocols (the latter for transparently receiving user re-
quests) in combination. The program is an implementation of a service proxy
that obtains data from the Registry on behalf of the User. We call this endpoint
program simply “Proxy” from now on. Proxy needs to carry out two kinds of
conversations:

1. As a Request-Response server, it will engage in sessions with Users, accepting
the User query and returning the results from the Registry.

2. As a List Resources client, it will engage in sessions with the Registry, passing
on the User query and receiving the list of resources following Figure 1.

Proxy will return the results to User in HTML format, in a similar manner to
a standard CGI application. The main Python code for Proxy related to imple-
menting these sessions is given in Figure 7 (in the version with colours, the blue

and red indicate Python keywords and conversation programming constructs,
respectively).

Line 2 declares a try block for handling exceptions that may arise during
session execution. In Line 3, Proxy (receives and) accepts an invitation to inter-
act in the Request-Response session with User. The proxy uri object represents
Proxy as a network principal, and may roughly be considered as a conversation
programming counterpart to a TCP server socket. Proxy can then accept an
invitation through this interface, with respect to the RequestResponse protocol,
playing the role of Server to User. Specifying the protocol and role for this end-
point prescribes the local programming interface for c1, by which Proxy will
interact with User.

Structuring Communication with Session Types 119

1 c1 = None
2 try:
3 c1 = proxy_uri.accept("RequestResponse", "Server")
4 msg = c1.receive("Client")
5 if msg.op == "GET":
6 resource_kind = parse_query(msg.value) # fun def omitted
7 c2 = None
8 try:
9 c2 = Conversation("ListResources")

10 c2.join("client")
11 registry_uri.invite(c2, "resource_registry")
12 c2.send("resource_registry", "request", resource_kind)
13 html_str = ""
14 def loop():
15 msg = c2.receive("resource_registry")
16 if msg.operator == "response":
17 html_str = html_str + yaml2html(msg.value)
18 loop()
19 elif msg.operator == "completed":
20 return
21 loop()
22 c1.send("HTTPClient", "sc200", html_str) # All went well
23 except Exception as e:
24 if c1.alive():
25 c1.send("HTTPClient", "sc500", "internal error")
26 raise e
27 finally:
28 if c2 != None:
29 c2.close()
30 else:
31 c1.send("HTTPClient", "sc501", "internal error")
32 except ConversationException as e:
33 print("Error({0})@{1}:{2}".format(e.errno, e.cid, e.strerror))
34 except:
35 print("Error({0}):{1}".format(e.errno, e.strerror))
36 finally:
37 if c1 != None:
38 c1.close();

Fig. 7. Conversation endpoint program for a service proxy program in Python (extract)

In Line 4, through c1, Proxy receives from User (denoted by its role name
Client in the protocol), a message msg. The basic attributes of a session message
include op, the operation name for the message (i.e. the message label or header),
and the value array, the message payload. In Line 5, we check if the operation
of msg is GET. We assume that the kind of resources is specified by the message
value, parsed by the parse query function and the result stored in resource kind.

This example demonstrates the interleaving of multiple sessions in a single ap-
plication. Here we introduce a second session in which Proxy now acts as client
according to ListResources. Line 8 declares a nested try block for this session. In
Line 9, we initialises a new session, using the class named Conversation. When
creating a session, we specify the protocol name ListResources (taken to be the
simplest version presented earlier, in Figure 1). In Line 10, after initialisation,
Proxy “joins” the session as the client role specified in the protocol.

In Line 11, Proxy invites the remote registry uri principal to this newly
created session (to play the role resource registry). The method returns when
an acknowledgement is returned by the principal to accept the invitation. Now

120 K. Honda et al.

that both roles have joined, in Line 12, Proxy sends to Registry (role name
resource registry), a message with the request operation and the kind of re-
sources it is interested in. Note the message format precisely follows the protocol.

The next part of the code gives a tail recursive routine for repeated data deliv-
ery, whose flow exactly matches that in the ListResources protocol. Lines 14–20
define a function loop. In its body, first in Line 15, the client receives a msg from
Registry. Then we have two cases, depending on the operation of the message:

– If the operation is response (Line 16), a HTML-formatted version of the orig-
inal message (which was specified in the protocol to have a YAML format)
is appended to the string (Line 17), and the recursion is enacted (Line 18).

– If the operation is completed, the recursion is terminated (Line 19).

Line 21 executes this recursive function, and Line 22 returns the HTML request
to User, concluding the inner try-block.

Line 23 catches exceptions. Line 24 checks if c1 is alive (i.e. if it can still send
a message), and if so, sends the Request-Response status code for an internal
error before re-raising the exception. In this simple example, Line 30 handles the
case when the request is not a GET by returning another error message. Finally
Line 32 catches exceptions specific to sessions, signified by the exception class
named ConversationException, whose content is printed in Line 33 (when an in-
terrupt signature is specified in a protocol level, an endpoint program can use this
signature to raise the interrupt, which can be caught in the same way). Line 33
shows that session exceptions contain the cid field, not present in standard ex-
ceptions (Line 35). Finally, either in the normal completion or not, Lines 27 and
36 clean up the sessions upon exiting their respective try blocks.

Discussions. We have illustrated above a simple use of sessions in communica-
tions programming. The use of sessions in programs makes it possible to build
the application logic with a clear understanding on explicit conversation flows.
These flows are clearly visible: by going through how conversation channels are
mentioned in a given program (the red part in Figure 7), one can clearly capture
these flows.

Having distinct flows of interactions explicitly expressed in your program help
modular development, in the sense that one flow can be tweaked because e.g. we
wish to offer better user experience, while keeping other flows intact. For exam-
ple, we may consider a variation of the client in Figure 7, with more asynchronous
interactions with the web server following more programmatic (e.g. Javascript-
based) user-level interactions at the browser. A client can send data incremen-
tally to the web server following repeated messages from the registry, which will
be sent and displayed in the browser. We may also enrich the Request-Response
protocol in Figure 7 to reflect the interactions at the user interface level. These
refinements however do not affect the other protocol, for interactions between
the client and the resource registry: so, in the program, we may only refine the
interactions at c1, keeping those at c2 intact.

Our purpose in our introduction to session programming in this section was
to illustrate the core ideas of session programming, to see how it looks like to

Structuring Communication with Session Types 121

structure communications with (typed) sessions. There are other basic constructs
for sessions, such as those for sending interrupts; creating a sub-session; inviting
participants from the parent session in a child session; and others. Further, in
practice, we often naturally wish to combine two or more consecutive sending
actions, such as the invitation to join a session as a role and the initial sending
action to that role. However the central idea is the same: to clearly present,
in a communication program, how a flow of interactions – a session – proceeds
through a sequence of program actions and their composition, possibly inter-
leaved with actions in other sessions.

The resulting organisation of communication actions enable not only programs
with a clear presentation of interaction structures, but also static validation of
conformance to the underlying protocols through type checking; and its dynamic
counterpart through finite state machine based protocols monitors. In the latter
(dynamic) validation, it is assumed that we can identify the underlying session
by inspecting a message, if that message belongs to a session. In this way the
runtime messages also get organised, dividing numerous message exchanges in
distributed computing environments into different chunks with a binding to un-
derlying protocols. This is how sessions structure communication-centred com-
puting.

4 Using Session Types

4.1 Session Types in Distributed Systems

Unlike in sequential computing, where a piece of software can often be regarded
as a self-contained mathematical function, software in distributed computing en-
vironments evolve over long periods of time, interacting with other applications
and services with disparate origins and histories. A piece of software interacts
with other pieces of software, and their mutual interactions critically affect their
behaviour to e.g. users. Because different endpoints should communicate with
each other to realise a certain function, we need an infrastructure by which all
this software can interact with each other. The global Internet is a typical and
prominent example, which provides an infrastructure for communications in the
shape of the TCP/IP protocol suite and, building on the end-to-end principle,
enables diverse software and services to evolve and inter-relate with each other,
creating the web of mutually dependent and evolving services. Partly overlapping
with Internet but forming their own networks, we see many distributed comput-
ing environments designed and evolve, with different geographic expanses, shapes
and functions, such as the corporate backbone networks, the backends of popular
web services, and networked infrastructures for sciences and engineering.

Session types were introduced to structure distributed communicating pro-
cesses. By different endpoints communicating with typed sessions, their inter-
actions follow the stipulated scenarios, without inducing communication error:
when a sender sends a message, the receiver can understand what it is, and in
turn will send messages in an expected way. That is, we expect all parties to be-
have properly in their interactions following the protocols of sessions. It is then

122 K. Honda et al.

a natural question how we ensure proper communication behaviours of systems
at run-time.

For example, we may realise typed sessions without having session informa-
tion at run-time (for example, we may use a set of TCP connections to realise
a session), with each program being type checked statically and whose session
primitives invokes actions on such connections. In this case, there is no explicit
session (wrt. the concept of session being proposed here – i.e. beyond that im-
plicit to TCP) at run-time – except in our mind’s eye. The freedom to realise
sessions in this way is certainly the merit of having high-level abstraction in
the shape of sessions assisted by static verification made possible by that very
abstraction.

Another method is having sessions and protocols explicitly incorporated as
part of the infrastructure in a distributed computing environment: a web of
distributed runtimes, by which we can create and use sessions, become part of
the infrastructure and applications use these runtimes to communicate with each
other. Some of the practical motivations to use such a configuration include to
track errors, to dynamically share protocols, and to optimise communication
paths on the fly using information on sessions and their protocols. But the most
prominent reason to choose this explicit approach is to insulate the specification,
design and runtime behaviour of software systems in a distributed computing
environment from low-level transport details. It leads to an environment where
all or most communication behaviours in that environment are governed by
explicitly declared protocols, and messages exchanged at runtime are marked by
distinct sessions so that they can be multiplexed over communication channels
and are checked against state machines induced by the underlying protocols
(just as TCP and other transport and higher protocols are checked at endpoint
network stacks). On this basis, we may build a machinery to assure high-level
behavioural constraints such as conformance to security policies.

4.2 Using Session Types for End-to-End Cyberinfrastructure

Ocean Observatories Initiative [24], often abbreviated as OOI, is a large-scale
NSF-funded project to build a cyberinfrastructure for observing oceans in the
United States and beyond, with usage span of 30 years. It integrates real-time
data acquisition, processing and data storage for ocean research (e.g. sensor ar-
rays, underwater gliders, high-resolution under-water cameras), providing access
for a wide ranging user community under different administrative domains. It
consists of multiple marine networks where we lay cables over a large area under
the sea, which are integrated by a distributed cyberinfrastructure. This cyber-
infrastructure, called OOI CI (CI for CyberInfrastructure), is itself a network,
consisting of distributed infrastructural services whose main sites are two large
clouds but whose distributed components in the shape of containers also re-
side all over its distributed sites residing in hundreds of universities and marine
institutions.

One of the central features of the OOI CI is its end-to-end nature, in the sense
that its design allows and encourages scientists to register data (which often takes

Structuring Communication with Session Types 123

the form of real-time streaming data from sensors over different time scales) and
data products (which are derivatives from raw data by application of models).
Just as scientists publish their papers, they may as well publish their data and
data products, shared by other scientists, as well as by teachers for educational
purposes. In the same spirit, the OOI CI should allow an easy and well-regulated
sharing of instruments and other resources, each under a specific administrative
control. For example, a seabed camera owned by one institution may be used by a
scientist in the other. Thus, in this system, multiple heterogeneous organisations
and individuals participate, run their software (such as simulation models for
sensor data) inside the system, and we need to ensure a high-level quality of
usage including transparency, partly because marine data play a critical role at
the time of calamity such as earthquakes and tsunami.

One of the architectural decisions of OOI CI is to regulate the behaviours
of heterogeneous participants in the OOI CI by imposing high-level abstrac-
tions based on interaction patterns, which are in turn regulated by high-level
policies through runtime monitors. The catalogue of interaction patterns will in
turn assist developers to implement their distributed services with ease and clar-
ity. Thus we need a descriptive means to write down these interaction patterns
clearly and without ambiguity, use them for software development, and regulate
communications behaviour of participating endpoints at runtime through in-
duced protocol machines, augmented with regulation by policies on their basis.
For the description of interaction patterns, the use of session types (and Scrib-
ble) is considered, building a framework to regulate interaction behaviour based
on policies on its basis. This policy-based regulation is called “governance” by
the OOI CI architects, conceived by Munindar Singh and the OOI CI architects,
centring on the notion of commitments [11]. To use session types as a basis of
regulating behaviour in this distributed computing platform, several technical
challenges were identified, which include (restricted to those proper to session
types):

– Can we accurately describe interaction patterns which are and will poten-
tially be used in distributed applications in OOI CI?

– Can we ground them to programming? Can we help developers to build safe
and robust systems with ease?

– Can we have a simple and efficient execution framework for these programs?
– Can we guarantee their communication safety at runtime? What would be

the simplest mechanism?

The research team on session types in Imperial College London and Queen
Mary, including the present authors, are contributing to the OOI CI development
through, among others, the following technical elements:

– A protocol description language, Scribble, and development/execution envi-
ronments centring on this language.

– A tool chain for protocol validation, endpoint projection, FSM translations,
APIs and runtimes.

– Part of the monitor architecture based on the protocol machines (FSM)
translated from protocols.

124 K. Honda et al.

As we have already observed, Scribble is fully based on research on session types.
The FSM translation is a direct application of the theory which links automata
theory (communication automata) and session types, recently introduced in [10],
where a session type can be directly translated into a communication automaton.

The development efforts are producing several interesting findings. For exam-
ple, one of the methods for facilitating the use of session types for developers who
are not accustomed to session types is to use the interface of the standard com-
munication APIs such as RPC. These libraries were independently developed
in the OOI CI to support application development based on traditional tech-
nologies: the idea is to replace them with distributed runtimes for session types.
What we found is that this approach, where we implement libraries using session
primitives, has rewarding practical merits in the tractability and transparency
in engineering. For instance, each library is now a short scripting code by using
the underlying session machinery, automatically monitored by the corresponding
protocol. As one example, RPCs with diverse signatures are now based on a sin-
gle parametrised protocol, and its interactions are checked by a generic monitor
for general session types. This conversion is feasible because not even a single line
of application code needs be changed: the resulting behaviour is the same, we
can use the same interface file, with a formal foundation automatically assuring
correctness of interactions. The layer for typed sessions is called Conversation
Layer in OOI CI. As well as the extensive experiments on Conversation Layer
itself, our development efforts are focusing on the governance functions to be
realised on top of Conversation Layer.

5 Conclusion

In this work we have examined the motivations and backgrounds of the introduc-
tion of session types and associated programming methodology, together with
illustration of how we may design and implement a program centring on ses-
sion types. For organising communicating processes, there are other approaches
which address different aspects of abstractions for communicating processes.

One basic approach centres on the notion of concurrent objects [33], where
objects communicate with each other by sending messages to their object iden-
tities, starting from the actor model [1,15], which also gives one of the simplest
forms of this paradigm. In concurrent objects in general, there is a strong inte-
gration of the idea of objects and concurrency, where concurrency is considered
to be a default rather than an exception. While programming languages based
on concurrent objects may not have treated sessions and session type beyond
request-response patterns, the use of constraints on interaction patterns in such
languages should certainly be feasible, as a recent work shows [14]. Similarly,
the identities as found in actors and concurrent objects may as well be part of
the session-based programming (for example, distributed infrastructures such as
the OOI CI demand the use of identities for principals which act as endpoints of
communications). Different experiments in such integrations will deepen our un-
derstanding on the relationships between these two paradigms. How the pursuit

Structuring Communication with Session Types 125

towards flexible programming abstraction in concurrent objects (e.g. reflection)
may interact with the type-based approach in session types is another interesting
future topic.

Concurrency and communication are a rich realm for which many different
approaches exist. Occam-Pi [31] is a highly efficient systems-level concurrent
programming language centring on synchronous communication channels, based
on CSP and the π-calculus. Erlang [2] is a communication-centred programming
language with emphasis on reliability whose central programming and execu-
tion paradigm is based on actors. Session types are an approach to structuring
communications programs based on session abstraction and protocol description,
with its formal basis in the π-calculus and its type theories. Protocols, arising
as types for dialogue among endpoints, are used to constrain behaviour so that
the resulting programs and runtime configurations are easy to understand and
reason. For fully identifying its possibilities and limitations, we need to explore
the use of typed sessions in various stages of software development, ranging from
high-level modelling to execution, as well as formal specifications and verifica-
tions. Not restricted to session types, we need to identify a wide range of concrete
methods usable to address these problems, as well as a unifying foundation for
them, to reach a truly effective methodology for distributed computing systems.

We refer the reader to [12] for more detailed comparison of session type theory
and session-based implementations against other related works.

Acknowledgements. We thank the reviewers for their comments, Dr Gary
Brown for his collaborations on the Scribble project, and our colleagues in the
Mobility Reading Group for discussions. This work is partially supported by the
Ocean Observatories Initiative, EPSRC grants EP/F002114/1, EP/G015481/1
and EP/G015635/1, and EPSRC KTS.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

3. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. Theoretical Com-
puter Science 37, 77–121 (1985)

4. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008)

5. Boudol, G.: Asynchrony and the pi-calculus. Technical Report 1702, INRIA (1992)
6. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. In:

FSTTCS. LIPIcs, vol. 8, pp. 338–351 (2010)
7. Cerf, V.G., Khan, R.E.: A protocol for packet network intercommunication. IEEE

Transactions on Communications 22, 637–648 (1974)
8. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous

distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012)

126 K. Honda et al.

9. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M., Ulid-
owski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Heidelberg
(2012)

10. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating au-
tomata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211,
pp. 194–213. Springer, Heidelberg (2012)

11. Desai, N., Chopra, A.K., Arrott, M., Specht, B., Singh, M.P.: Engineering foreign
exchange processes via commitment protocols. In: IEEE SCC 2007, Los Alamitos,
CA, USA, pp. 514–521. IEEE Computer Society (2007)

12. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: An Overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010)

13. Dijkstra, E.W.: Letters to the editor: go to statement considered harmful. Commun.
ACM 11(3), 147–148 (1968)

14. Dinges, P., Agha, G.: Scoped synchronization constraints for large scale actor sys-
tems. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 89–103.
Springer, Heidelberg (2012)

15. Hewitt, C.: Viewing control structures as patterns of passing messages. Artif. In-
tell. 8(3), 323–364 (1977)

16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

17. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

18. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:
POPL 2008, pp. 273–284. ACM (2008)

21. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

22. Milner, R.: Functions as processes. MSCS 2(2), 119–141 (1992)
23. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II.

Info.& Comp. 100(1) (1992)
24. Ocean Observatories Initiative (OOI), http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/

25. Pierce, B., Sangiorgi, D.: Behavioral equivalence in the polymorphic pi-calculus.
Journal of ACM 47(3), 531–584 (2000)

26. Saltzer, J., Reed, D., Clark, D.: End-to-end arguments in system design. ACM
Transactions in Computer Systems 2(4), 277–288 (1984)

27. Scribble development tool site, http://www.jboss.org/scribble
28. Scribble github project, https://github.com/scribble
29. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing

System. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

30. Turner, D.N.: The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh (1996)

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.jboss.org/scribble
https://github.com/scribble

Structuring Communication with Session Types 127

31. Welch, P.H., Barnes, F.R.M.: Communicating Mobile Processes: introducing
Occam-pi. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating
Sequential Processes. LNCS, vol. 3525, pp. 175–210. Springer, Heidelberg (2005)

32. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: OOPSLA, pp. 258–268 (1986)

33. Yonezawa, A., Tokoro, M.: Object-oriented concurrent programming: An introduc-
tion. In: Yonezawa, A., Tokoro, M. (eds.) Object-Oriented Concurrent Program-
ming, pp. 1–7. MIT Press, Cambridge (1987)

From Linear Types to Behavioural Types

and Model Checking

Naoki Kobayashi

The University of Tokyo

Abstract. This article reviews our past work on non-standard type sys-
tems for program analysis, which started from the motivation for static
analysis of concurrent objects. We discuss how the notion of linear types
has evolved to behavioral types and higher-order model checking.

1 Introduction

When I was a graduate student, my supervisor Akinori Yonezawa advised me to
study linear logic [11] as theoretical foundations for concurrent objects [3, 49].
Since then, linear logic and linear types have been the main sources of our
research ideas. To appreciate his insightful advice, in this article I summarize how
our research topics evolved from linear logic and linear types to our more recent
work on behavioral types [14,15,19] and higher-order model checking [21,26,28],
and discuss their relationship.

When we started studying linear logic, there were two major, independent
approaches to applying linear logic to programming languages: the linear logic
programming approach (or proof search paradigm) [4,12] and the “formulas (of
linear logic) as types” approach [1, 5, 7, 47]. These two approaches are rather
independent and orthogonal. Motivated by Andreoli and Pareschi’s pioneering
work [4], we initially studied the former approach to provide foundations of
concurrent objects [30,31], but later switched to the latter approach, as the latter
provides fruitful techniques for analysis and verification of concurrent objects.

In the rest of this article, we first review our earlier work on linear types for
concurrency in Section 2. We then explain how linear types evolved to behav-
ioral types in Section 3. In Section 4, we show that recent program verification
techniques based on higher-order model checking [21] can be considered a fur-
ther extension of behavioral types. Section 5 concludes the paper. This paper
reviews the evolution of linear types to behavioral types and higher-order model
checking from a personal perspective, and is not intended to be an exhaustive
survey of linear/behavioral type systems. A more extensive (but non-exhaustive)
survey of linear/behavioral type systems can be found elsewhere [18].

2 Linear Types for Concurrency

For a proposition A, the conjunction A∧A is equivalent to A in classical logic, but
the (multiplicative) conjunction A⊗A is not in linear logic [11]. This resource-
sensitiveness of linear logic has attracted attentions of programming language

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 128–143, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

From Linear Types to Behavioural Types and Model Checking 129

researchers, and various forms of linear types (where formulas of linear logic are
viewed as types) have been studied [1,5,7,34,45,47]. We review here a linear type
system [27] for the π-calculus [36,37,42], which is, to our knowledge, one of the
first practical applications of linear types to message-passing-based concurrent
programs.

We use the following variant of the (asynchronous) π-calculus [36, 37, 42] to
discuss linear types for message-passing-based concurrent programs.

Definition 1 (processes). We assume a countably infinite set of variables
(used as channels), ranged over by x, y, z. The syntax of processes is given by:

P (processes) ::= 0 inaction
| x![y1, . . . , yn] output
| x?[y1, . . . , yn]. P input
| (P |Q) parallel composition
| (νx)P channel creation
| ∗P replication

Just as the λ-calculus consists of only functions and their applications, the π-
calculus consists of only communication channels and processes communicating
through channels. The process 0 represents inaction. The process x![y1, . . . , yn]
sends a tuple [y1, . . . , yn] on channel x. The process x?[y1, . . . , yn]. P waits to
receive a tuple [z1, . . . , zn] along channel x, binds y1, . . . , yn to z1, . . . , zn, and
then behaves like P . The processes P |Q and (νx)P represent parallel compo-
sition and channel creation respectively. The process ∗P behaves like infinitely
many copies of P running in parallel.

Various encodings of concurrent objects into π-calculus-like processes have
been proposed [32, 40, 41]. By “concurrent objects”, we mean an object (i.e., a
state coupled with methods to manipulate it) with its own thread of control [48,
49]. For instance, Pierce and Turner [40] encoded a concurrent object as a parallel
composition of a process representing the current state, and processes handling
messages. For example, a counter class is expressed by the following process
(called Counter below):

∗newC ?[init , r]. (νst) (νread) (νinc)
(r![read , inc] (* returns [read , inc] as the identity of the new object *)
| st ![init] (* stores the initial counter value in st *)
| ∗read?[r′]. st?[n]. (st ![n] | r′![n]) (* handles a read request *)
| ∗inc?[r′]. st?[n]. (st ![n+ 1] | r′![]) (* handles an increment request *)
)

Here, we have assumed that the language has been extended with integers
(which can be encoded in the π-calculus). The process above receives a re-
quest newC ![n, r] for creating a new counter object with the initial value n,
and returns to r a tuple [read , inc] of channels, on which the client can send re-
quests for reading or incrementing the counter value. The counter value is stored
in the channel st , and is read or updated by the processes ∗read?[r′]. · · · and
∗inc?[r′]. · · ·, which handle read/increment messages.

130 N. Kobayashi

In the encoding above, each communication channel is used in a specific man-
ner. For example, the channels r and r′ are used just once for returning values.
That property enables aggressive optimizations, like elimination of redundant
messages [27]. For instance, consider a client process of the form:

Counter | (νr) (newC ![n, r] | r?[cread , cinc]. r′![cread , cinc] |P),

where r′ is a channel and P is some process that does not use r. If r′ is used
just once for input in the process P , the process above can be replaced by
Counter | newC ![n, r′] |P . This is similar to tail-call optimizations in functional
languages, in that it eliminates redundant communication to forward the result
of a method invocation. As another source of optimization, observe that the
channel st is used more than once, but that it holds at most one message at each
state during execution. Thus, a one-place buffer can be used for implementing
st , instead of an unbounded message queue [25];

Motivated by the above observations, various linear type systems for message-
passing-based concurrent programs have been proposed [25, 27, 44]. We review
the type system of [27] below.

The set of types is defined by:

τ (types) ::= b | [τ1, . . . , τn] chan(m1,m2)

m (multiplicities) ::= 0 | 1 | ω

Here, b is a meta-variable for base types (like int, if the language is extended
with integers). The type [τ1, . . . , τn] chan(m1,m2) describes channels used for
exchanging a tuple of values of types τ1, . . . , τn, at most m1 times for input,
and at most m2 times for output.1 The multiplicity ω means that channels can
be used for arbitrarily many times. For example, in the process Counter above,
read , inc (in the ν-prefixes), and newC (in the whole process) have the following
types:

read : [[int] chan(0,1)] chan(ω,ω)

inc : [[] chan(0,1)] chan(ω,ω)

newC : [int,
[[[int] chan(0,1)] chan(0,ω), [[] chan(0,1)] chan(0,ω)] chan(0,1)

] chan(ω,0)

The types describe the behavior of Counter as follows.

– Upon receiving a read request (with a reply channel of type [int] chan(0,1)),
the object sends an integer (at most) once as a reply. It never tries to receive
a message from the reply channel.

– Similarly, upon receiving an inc request, the object sends a null tuple as
a reply (at most) once. It never tries to receive a message from the reply
channel.

1 Because of a possibility of deadlock or divergence, the linear type system given below
cannot ensure that channels are used exactly m1 times for input and m2 times for
output.

From Linear Types to Behavioural Types and Model Checking 131

NonLinear(Γ)

Γ � 0
(LT-Zero)

NonLinear(Γ)

Γ + (x : [τ1, . . . , τn] chan(0,1)) + (y1 : τ1) + · · ·+ (yn : τn) � x![y1, . . . , yn]
(LT-Out)

Γ, y1 : τ1, . . . , yn : τn � P m ∈ {1, ∗}
(x : [τ1, . . . , τn] chan(m,0)) + Γ � x?[y1, . . . , yn]. P

(LT-In)

Γ � P Δ � Q

Γ +Δ � P |Q (LT-Par)

Γ, x : [τ1, . . . , τn] chan(m1,m2) � P

Γ � (νx : [τ1, . . . , τn] chan(m1,m2))P
(LT-New)

Γ � P

∗Γ � ∗P (LT-Rep)

Fig. 1. Typing rules for the linear type system

– Upon receiving a request for an object creation on newC , Counter sends
back a pair of two channels (of types [[int] chan(0,1)] chan(0,ω) and
[[] chan(0,1)] chan(0,ω)), on which clients can send (but not receive) request
messages. Upon sending requests on those channels, clients can expect to
receive at most one reply message.

Thus, linear types express more information about the behavior of processes
than ordinary types. As indicated through the above example, they can ensure
that certain processes behave like concurrent objects.

We now give a type system that assigns linear types to channels. A type
environment is a map from a finite set of variables to types, represented in the
form x1 : τ1, . . . , xn :τn. We use the metavariable Γ for type environments. When
x is not in the domain of Γ , we write Γ, x : τ for the type environment Γ ′ such
that Γ ′(x) = τ and Γ ′(y) = Γ (y) if x
= y. (Thus, when we write Γ, x : τ , it
is implicitly assumed that x does not occur in Γ .) A type judgment is of the
form Γ � P , which means that the process P can be safely executed under the
assumption that each variable x is bound to a channel of type Γ (x). Since types
contain multiplicity conditions (on how often each channel can be used), “P
being safely executed” means that P obeys those multiplicity conditions. For
example, x : [] chan(0,1) � x![] is valid but x : [] chan(0,1) � x![] |x![] are not.
The typing rules are shown in Figure 1. Here, the condition NonLinear(Γ) in
rules LT-Zero and LT-Out means that for every type binding x : τ in Γ , τ is
either a base type or a channel type of the form [τ1, . . . , τn] chan(m1,m2) with
m1
= 1 and m2
= 1. The (partial) operations “+” and “∗” on multiplicities,
types, and type environments are defined by:

132 N. Kobayashi

m1 +m2 =

⎧
⎨

⎩

m2 if m1 = 0
m1 if m2 = 0
ω otherwise

∗m =

{
0 if m = 0
ω otherwise

b+ b = b
[τ1, . . . , τn] chan(m1,m2) + [τ1, . . . , τn] chan(m′

1,m
′
2)

= [τ1, . . . , τn] chan(m1+m′
1,m2+m′

2)

∗[τ1, . . . , τn] chan(m1,m2) = [τ1, . . . , τn] chan(∗m1,∗m2)

dom(Γ +Δ) = dom(Γ) ∪ dom(Δ)

(Γ +Δ)(x) =

⎧
⎨

⎩

Γ (x) +Δ(x) if x ∈ dom(Γ) ∩ dom(Δ)
Γ (x) if x ∈ dom(Γ) \ dom(Δ)
Δ(x) if x ∈ dom(Δ) \ dom(Γ)

dom(∗Γ) = dom(Γ)
(∗Γ)(x) = ∗(Γ (x))

Note that the operation “+” on types are partial: [τ1, . . . , τn] chan(m1,m2) +
[τ ′1, . . . , τ

′
n′] chan(m′

1,m
′
2)

is defined only when n = n′ and τi = τ ′i for every
i ∈ {1, . . . , n}.

The main difference from the usual (non-linear) type systems is that type
environments cannot be shared between processes. For example, suppose that
x : [int] chan(0,1) � P and x : [int] chan(0,1) � Q hold, which mean that each
of P and Q uses x for sending an integer at most once. Then, we have x :
[int] chan(0,ω) � P |Q (by using LT-Par), but not x : [int] chan(0,1) � P |Q.

The condition NonLinear (Γ) in rules LT-Zero and LT-Out ensures that
each linear channel is used once for input and once for output (if there is no
divergence or deadlock). Note that if we drop the condition, we would obtain,
for example, x : [[int] chan(0,1)] chan(1,0) � x?[y].0, which ignores the channel
y received through x, although the type of x suggests that y should be used for
output.

Remark 1. Although the linear type system above has been inspired from linear
logic based on the formulas-as-types approach, there is not so clear connection
between the type system and linear logic (besides the fact that contraction and
weakening are used in a controlled manner), unlike linear type systems for the λ-
calculus [34,45,47]. Ignoring the operational semantics, however, one can observe
some connections between the typing rules and inference rules of linear logic, as
discussed below. We assume that readers have some familiarity with linear logic
below; those who are not familiar with linear logic may safely skip the rest of
this section. Let us encode channel types into linear logic formulas by:

[[[τ1, . . . , τn] chan(m1,m2)]] =
!m1(([[τ1]]⊗ · · · ⊗ [[τn]]−◦P)−◦P)⊗!m2([[τ1]]⊗ · · · ⊗ [[τn]]−◦P)

Here, P is the type of processes, and !m is defined as follows.

!ωA =!A !1A = A !0A = 1.

From Linear Types to Behavioural Types and Model Checking 133

(The symbol “!” is the logical connective of linear logic and should not be con-
fused with the constructor for output processes of the π-calculus.) The encod-
ing of channel types above is based on the intuition that a channel can be
viewed as a pair consisting of a function for receiving a message and a function
for sending a message. The part !m1(([[τ1]] ⊗ · · · ⊗ [[τn]] −◦P) −◦ P) describes
the former function (which takes a continuation as an argument) and the part
!m2([[τ1]]⊗ · · · ⊗ [[τn]]−◦P) describes the latter function.

Let us represent processes as terms of the λ-calculus.

[[0]] = 0
[[x![y1, . . . , yn]]] = let (xi, xo) = x in xo(y1, . . . , yn)
[[x?[y1, . . . , yn]. P]] = let (xi, xo) = x in xi(λ(y1, . . . , yn). [[P]])
[[P |Q]] = Par [[P]] [[Q]]
[[(νx)P]] = νm(λx. [[P]]) (where m is 0, 1, or ω depending on the usage of x)
[[∗P]] = ∗([[P]])

Here, 0, Par, ν and ∗ are treated as constants of the following types:

0:P Par:P−◦P−◦P νm:([[[τ1, . . . , τn] chan(m,m)]]−◦P)−◦P ∗:P−◦P.

Then, each typing rule can be viewed as an (admissible) rule of a linear λ-
calculus. For example, LT-Out and LT-In corresponds to the following type
derivations in the linear λ-calculus.

Γ1 � xo : ([[τ1]]⊗ · · · ⊗ [[τn]]−◦P) Γ2 � (y1, . . . , ym) : [[τ1]]⊗ · · · ⊗ [[τn]]

xi : 1, xo : ([[τ1]]⊗ · · · ⊗ [[τn]]−◦P), y1 : [[τ1]], . . . , yn : [[τn]] � xo(y1, . . . , ym) : P

x : 1⊗ ([[τ1]]⊗ · · · ⊗ [[τn]]−◦P), y1 : [[τ1]], . . . , yn : [[τn]] � [[x![y1, . . . , yn]]] : P

xi : (τ −◦P), xo : 1 � xi : (τ −◦P)

Γ, y1 : [[τ1]], . . . , yn : [[τn]] � [[P]] : P

Γ � λ(y1, . . . , yn). [[P]] : τ

Γ, xi : (τ −◦P), xo : 1 � xi(λ(y1, . . . , yn). [[P]]) :P

Γ, x : (τ −◦P)⊗ 1 � [[x?[y1, . . . , yn]. P]] :P

Here, Γ1 = xi :1, xo : ([[τ1]]⊗ · · ·⊗ [[τn]]−◦P) and Γ2 = y1 : [[τ1]], . . . , yn : [[τn]] in the
former derivation, and τ = [[τ1]]⊗ · · · ⊗ [[τn]]−◦P in the latter one. By dropping
terms, we can also view them as derivations in (intuitionistic) linear logic. ��

3 From Linear Types to Behavioral Types

As explained in the previous section, linear types describe more precise behav-
iors of concurrent programs than standard (non-linear) types, helping us reason
about and optimize programs. They are, however, not precise enough for de-
scribing certain communication patterns. For example, recall the channel st in
the Counter process. There can always be at most one message in the channel,
but such a property cannot be expressed by the linear type system in the previ-
ous section: st is given type [int] chan(ω,ω), as it is used for input and output
infinitely often.

134 N. Kobayashi

We can express more precise information by extending the notion of linear
types. Thanks to linearity, it became reasonable to talk about the order between
each use of a channel. For example, the type [int] chan(1,1), which describes
channels that can be used once for input and once for output, can be refined to
the following types:

– [int] chan?.!, which describes channels that can be used once for input and
then used once for output.

– [int] chan!.?, which describes channels that can be used once for output and
then used once for input.

– [int] chan! | ?, which describes channels that can be used once for output
and once for input in any order (possibly in parallel).

Based on this idea, the syntax of types is now extended as follows.

τ (types) ::= b | [τ1, . . . , τn] chanU

U (usages) ::= 0 | !.U | ?.U | (U1 |U2) | ∗U

Here, the usage 0 describes channels that cannot be used at all. The usage !.U
(?.U , resp.) describes a channel that can be used once for output (input, resp.),
and then used according to U . The usage U1 |U2 describes a channel that can be
used according to U1 and U2 possibly in parallel (that is, the channel can be used
either concurrently by two processes according to U1 and U2, or sequentially by
a single process; thus, a channel of usage ?.0|!.0 may also be used according to
?.!.0 or !.?.0). The usage ∗U describes a channel that can be used according to U
an arbitrary number of times, possibly in parallel. We often omit the trailing 0 in
usages, and write ! for !.0. The linear type [τ1, . . . , τn] chan(m1,m2) corresponds
to the type [τ1, . . . , τn] chanm1! |m2?, where 0U = 0, 1U = U , and ωU = ∗U .

For the example of Counter , the type of st is now refined to [int] chan! | ∗(?.!).
From the usage ! | ∗(?.!), we know that there can be at most one message queued
in the channel.

Typing rules for the extended type system are given in Figure 2. Here, we use
the following (partial) operations on types:

b; b = b b+ b = b ∗ b = b
([τ1, . . . , τn] chanα); ([τ1, . . . , τn] chanU) = [τ1, . . . , τn] chanα.U (where α ∈ {!, ?})
([τ1, . . . , τn] chanU1) + ([τ1, . . . , τn] chanU2) = [τ1, . . . , τn] chanU1 |U2

∗([τ1, . . . , τn] chanU) = [τ1, . . . , τn] chan∗U

Note that the operation ([τ1, . . . , τn] chanU1); ([τ
′
1, . . . , τ

′
m] chanU2) is defined

only if [τ1, . . . , τn] = [τ ′1, . . . , τ
′
m], and U1 is either ! or ?. Those operations are

pointwise extended to partial operations on type environments, as in Section 2.
For example, we have:

(x : [τ] chan!); (x : [τ] chanU , y : [τ
′] chanU ′) = x : [τ] chan!.U , y : [τ

′] chanU ′ .

Notice the difference between (LT-Out)/(LT-In) and (UT-Out)/(UT-In).
The operation “+” on type environments has been replaced by “;”, to take into

From Linear Types to Behavioural Types and Model Checking 135

∅ � 0 (UT-Zero)

(x : [τ1, . . . , τn] chan!); (y1 : τ1 + · · ·+ yn : τn) � x![y1, . . . , yn]
(UT-Out)

Γ, y1 : τ1, . . . , yn : τn � P

(x : [τ1, . . . , τn] chan?);Γ � x?[y1 : τ1, . . . , yn : τn]. P
(UT-In)

Γ � P Δ � Q

Γ +Δ � P |Q (UT-Par)

Γ, x : [τ1, . . . , τn] chanU � P

Γ � (νx : [τ1, . . . , τn] chanU)P
(UT-New)

Γ � P

∗Γ � ∗P (UT-Rep)

Fig. 2. Typing rules for the usage type system

account the temporal order. The type environment x : [τ1, . . . , τn] chan?;Γ in
rule (UT-In) captures the fact that the process P is executed only after the
input on x succeeds.

Example 1. x : [] chan?.! � x?[]. x![] is obtained as follows.

x : [] chan! � x![]

x : [] chan?.! � x?[]. x![]
UT-In

Note that (x : [] chan?); (x : [] chan!) = x : [] chan?.! holds.
x : [] chan?.!, y : [[] chan!] chan?|! � x?[]. y![x] | y?[z]. z![] is derived as follows:

x : [] chan!, y : [[] chan!] chan! � y![x]

x : [] chan?.!, y : [[] chan!] chan! � x?[]. y![x]

z : [] chan! � z![]

y : [[] chan!] chan? � y?[z]. z![]

x : [] chan?.!, y : [[] chan!] chan?|! � x?[]. y![x] | y?[z]. z![]

Note that the temporal order between the input and output on x is correctly
captured through the type of y. ��

The usages of channels above can be considered a small subset of CCS [35], where
there is only a single pair of an action (!) and a co-action (?). By using a larger
subset of CCS [9, 14, 29, 44] (where more than one pair of actions is allowed),
we can express even more precise properties of processes. Such types (including
usage types) are often called behavioral types. They have been used to analyze
various properties of processes, including deadlock-freedom, race-freedom, and
information flow [2, 13, 14, 17, 19, 50].

Intuitively, behavioral types can be regarded as projections and abstractions
of the behavior of a process to its channel-wise behavior. For example, consider
the following type judgment:

x : [] chan?.!, y : [] chan! � x?[]. (x![] | y![]).

136 N. Kobayashi

The type [] chan?.! of x describes that x is used once for input and then once
for output, ignoring the behavior on y (that y is used for output after x is used
for input). In that sense, the type [] chan?.! of x (the type [] chan! of y, resp.)
describes the projection of the behavior of the process on channel x (y, resp.).
The behavior described by a type environment is also an abstraction, in the
sense that it is an overapproximation of the actual behavior of a process. In
the example above, the type environment does not tell us the causality between
the input on x and the output on y; thus the type environment also describes
y![] |x?[]. x![].

To analyze the behavior of a process, one can reason about its behavioral
types, instead of the process itself. As a type (or a usage) is itself a process, such
an analysis of the type can be viewed as model checking [10]. Let us define the
reduction relation U −→ U ′ on usages by the following rules.

!.U1 | ?.U2 |U3 −→ U1 |U2 |U3

U1 ≡ U ′
1 U ′

1 −→ U ′
2 U ′

2 ≡ U2

U1 −→ U2

Here, U1 ≡ U2 is the least equivalence relation closed under the rules: ∗U ≡
U | ∗U , 0 |U ≡ U , U1 |U2 ≡ U2 |U1, and U1 | (U2 |U3) ≡ (U1 |U2) |U3. The re-
duction relation can be considered a special case of the reduction relation for
CCS, where there are only one pair (! and ?) of an action and its co-action. To
see how the behavior of a process can be analyzed through the analysis of a
usage, consider the usage ! | ∗(?.!) of the channel st in the process Counter . We
can infer that there can be at most one output on channel st at every execution
step, by checking how the usage ! | ∗(?.!) is reduced:

! | ∗(?.!) ≡ ! | ?.! | ∗(?.!) (by ∗U ≡ U | ∗U)
−→ 0 | ! | ∗(?.!) (by !.U1 | ?.U2 |U3 −→ U1 |U2 |U3)
≡ ! | ∗(?.!) (by 0 |U ≡ U)
−→ · · ·

As the usage ! | ∗(?.!) has just one state (where there is only one active output) up
to the congruence ≡, we know that at most one output can occur simultaneously
on st .

The overall structure of the analysis is shown in Figure 3. A type system is first
used to apply projection and abstraction to obtain simpler, abstract processes,
and then model checking is used to check the behavior of the abstract processes.
In the case of the type system above, the source program is a π-calculus process,
while the abstract programs are written in a subset of CCS processes; note that
the latter is more amenable to model checking. Compared with the linear types
reviewed in Section 2, less abstraction is performed in the first phase thanks
to the expressive power of types. Instead, the second step is more involved and
requires model checking in general.

From Linear Types to Behavioural Types and Model Checking 137

Process
type system

Abstract Processes
(Behavioral Types)

model checking

Analysis
Result

Fig. 3. Program Analysis by Behavioral Types

The same approach has also been applied to resource usage verification of
functional programs with effects [15]. Here, the resource usage verification aims
to check that functional programs access resources (such as files and networks)
according to the specification (e.g., a read-only file is eventually closed after
some reads, and no read/write occurs after the close operation). As in the be-
havioral type for the π-calculus, a type can be considered a projection (and
over-approximation) of the behavior of a program to the resource-wise behavior.
The syntax of types is given like:

τ (types) ::= b | File(U) | τ1 → τ2 | ...
U (usages) ::= 0 | a | U1;U2 | (U1 |U2) | U1&U2 | α | μα.U | · · ·
a (actions) ::= read | write | close

Here, α in the syntax of U denotes a variable (called a usage variable). The
type File(U) describes file pointers that should be used according to usage U .
The usage 0 means that the file should not be accessed at all, and the usage
read (write and close, resp.) means that the file should be read (written and
closed, resp.). The usage U1;U2 means that the file should be used according to
U1 and then U2. The usage U1 |U2 means that the file can be used according
to U1 and U2 in an interleaving manner. The usage U1&U2 means that the file
can be used according to either U1 or U2, and μα.U means that the file can be
used recursively according to the behavior α defined by α = U . For example,
μα.(close&(read;α)) describes the usage of a read-only file. The type system
maps a program to the behavioral types that expresses resource-wise program
behavior, and then model checking is performed to check that the resource-wise
behavior is valid.

Example 2. Consider the following functional program M1:

let rec repeat f x = if _ then () else (f x; repeat f x) in

let p = open_in "foo" in

(repeat read p; close p)

Here, “ ” represents a non-deterministic boolean value. The program first de-
fines function repeat, which takes two arguments f and x, and repeatedly
applies f to x. The program then opens file “foo” as a read-only file, and
accesses them. By using the resource usage types above [15], the main body
repeat read p; close p has type unit under the following type environment:

138 N. Kobayashi

repeat : (File(read) → unit) → File(μα.(0&(read;α))) → unit,
p : File(μα.(0&(read;α)); close)

From the type of p, we know that p is indeed used as a read-only file pointer. ��

4 From Behavioral Types to Higher-Order Model
Checking

As reviewed in the previous section, the shift from linear types to behavioral
types has changed the role of type systems, from the whole analysis consisting
of just one phase, to pre-processing of a program to obtain a simpler model
(which is then model-checked in the next phase). The latter role can be shrunk
further, by using more expressive models as inputs of model checking. In the case
of the resource usage verification reviewed at the end of the previous section, the
role of the type system was to extract, from higher-order functional programs
(e.g.M1 in Example 2), first-order programs (expressed in the form of usages; re-
call the usage μα.(0&(read;α)); close in Example 2) that describe abstractions
of resource-wise program behavior. Thanks to the decidability of higher-order
model checking [38] (or, more precisely, the model checking of higher-order recur-
sion schemes, which asks if the tree generated by a simply-typed, call-by-name,
higher-order functional program with recursion satisfies a given property),2 how-
ever, we can actually use higher-order programs to express resource-wise behav-
ior.

For example, recall the (call-by-value) program M1 in Example 2. From the
above program, we can systematically (by using CPS transformation) construct
the following (call-by-name) higher-order program M2, which generates a tree
describing how “foo” is accessed [21]:

let rec repeat f x k = br k (f x (repeat f x k)) in

let read’ x k = read k in

let close’ x k = close k in

repeat read’ p (close’ p end)

Here, br is a binary tree constructor representing a non-deterministic choice, and
close and read are unary constructors representing close and read operations
respectively. The symbols end and p are nullary tree constructors, where the
former represents termination of the program, and the latter represents a dummy
parameter representing the function pointer p.3 The following (infinite) tree is
generated by the program above.

2 Higher-order model checking is a generalization of finite-state model checking [10]
and pushdown model checking [43], in the sense that finite-state and pushdown
model checking are reduced to model checking of order-0 and order-1 higher-order
recursion schemes respectively.

3 A file pointer should actually be represented as a function when more than one file
is accessed, and a more involved encoding is necessary: see [21].

From Linear Types to Behavioural Types and Model Checking 139

Program program
transform.

Resource-wise
behavior

higher-order model checking

Analysis
Result

Fig. 4. Program Analysis Based on Higher-Order Model Checking

br

close

end

read

br

close

end

read

br

close

end

read

· · ·

Thus, the program M2 can be considered a projection of M1 to the file access
behavior. By using higher-order model checking [38], we can automatically check
that the projection describes valid access behavior, i.e., that every path of the
tree represents a valid access sequence.

The overall structure of the resulting analysis is shown in Figure 4. Compared
with the approach using behavioral types (recall Figure 3), the first phase has
been shrunk, and has been replaced by a simple program transformation [21].
The resulting analysis [21] is more precise than type-based one [15], and actually
complete for the simply-typed λ-calculus with finite base types.

In Figure 4, the type system in the first-phase has been replaced by pro-
gram transformation, but the role of type systems actually has not disappeared.
Higher-order model checking [16, 38] (see also [22] for a survey on higher-order
model checking) in the second phase is quite different from (but a generaliza-
tion of) ordinary, finite-state model checking [10], and practical algorithms for
higher-order model checking [20, 23] are based on reduction to type-checking
problems [21, 26]. Thus, the role of type systems has just shifted from the first
to the second phase.

We briefly explain how types help higher-order model checking (which asks if
the tree generated by a given higher-order program satisfies a given property)
by using the program M2 above. Here, we wish to check that every finite path
of the tree generated by M2 is accepted by the automaton given in Figure 5. For
that purpose, we can use the states of the automaton q0 and q1 as the type of
trees every (finite) path of which is accepted from q0 and q1 respectively. Then,
the tree constructors and the functions in M1 are given the following types:

140 N. Kobayashi

q0 q1 q2

read,br br

close end

Fig. 5. A finite automaton that accepts valid access sequences for read-only files

br : (q0 → q0 → q0) ∧ (q1 → q1 → q1)
read : q0 → q0

close : q1 → q0
end : q1

read’ : q0 → � → q0
close’ : q1 → � → q0
repeat : (q0 → � → q0) → � → q0 → q0

Here, a type of the form τ1 ∧ τ2 is an intersection type [6, 46], which describes
a value that can be used as a value of type τ1 and also as that of type τ2. The
type � denotes the empty intersection (that describes a value that cannot used
at all). To see why the type q1 → q0 is assigned to close, please note that if
every path of a tree t is accepted from state q1 (i.e., if t has type q1), then every
path of the tree close(t) is accepted from state q0, i.e., close(t) has type q0.
Thus, close can be considered a function from type q1 to type q0.

Since the main body of M2:

repeat read’ p (close’ p end)

has type q0 under those type assumptions, we know that every finite path of the
tree generated by M2 is accepted by the automaton, which implies that the file
“foo” is accessed in a valid manner by M1.

As indicated in the example above, the types used for higher-order model
checking [20,21,26] are intersection types, not linear types. The recent studies [23,
39], however, suggest that it is beneficial to combine the intersection types with
game semantics. As game semantics is closely related to linear logic [8, 33], we
can observe a trace of linear logic/types also in higher-order model checking.

The above approach has so far been applied mainly to functional programs.
Work is however under way to apply it to verification of object-oriented and
concurrent programs [24].

5 Conclusions

We have briefly reviewed our past work on type-based program analysis, which
evolved from studies of linear logic and linear types as foundations for concurrent
objects. Concurrent objects posed many challenges for theoretical work, e.g., on

From Linear Types to Behavioural Types and Model Checking 141

how we can statically ensure that a program really behaves like a concurrent
object, and that concurrent objects do not suffer from deadlock or race. Those
challenges served as a driving force for the development of linear and behavioral
types for concurrent programs. In earlier linear type systems (such as the one
reviewed in Section 2), program analysis (or verification) is carried out in “one-
pass”, through type inference. But in behavioral type systems developed later
(such as those reviewed in Section 3), the overall analysis has been split into
two phases (recall Figure 3), and the type systems focus on projection and
abstraction of programs, leaving analysis of the abstracted programs to other
methods such as model checking. The two phase structure has been re-organized
in more recent work based on higher-order model checking (recall Figure 4).
The first phase focuses on projection of a source program to another program
that describes behaviors of interest (without abstractions), and the second phase
checks the behavior of the program obtained by the projection. Type systems
then take care of the second phase, by applying abstractions to deal with the
infinite state space of the projected program. We hope this view helps further
development of type-based program analysis/verification techniques.

Acknowledgment. I am sincerely grateful to Professor Akinori Yonezawa for
his insightful advice that motivated me to study applications of linear logic.
The work reviewed in this article would have been impossible without his initial
advice and guidance. I would also like to thank anonymous referees for useful
comments.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer
Science 111, 3–57 (1993)

2. Acciai, L., Boreale, M.: Responsiveness in process calculi. Theor. Comput.
Sci. 409(1), 59–93 (2008)

3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press (1986)

4. Andreoli, J.-M., Pareschi, R.: Linear objects: Logical processes with built-in inher-
itance. New Generation Computing 9, 445–473 (1991)

5. Baker, H.G.: Lively linear lisp – look ma, no garbage? ACM Sigplan Notices 27(8),
89–98 (1992)

6. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. J. Symb. Log. 48(4), 931–940 (1983)

7. Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Technical Report ECS-
LFCS-92-232, Department of Conputer Science, The University of Edinburgh
(1992)

8. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1-3), 183–
220 (1992)

9. Chaki, S., Rajamani, S., Rehof, J.: Types as models: Model checking message-
passing programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 45–57. ACM Press (2002)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

142 N. Kobayashi

11. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

12. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear
logic. Information and Computation 110(2), 327–365 (1994)

13. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In:
Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Program-
ming Languages (POPL), pp. 81–92 (2002)

14. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theoretical
Computer Science 311(1-3), 121–163 (2004)

15. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Transactions on Pro-
gramming Languages and Systems 27(2), 264–313 (2005)

16. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: Nielsen, M., Engberg, U. (eds.) Fossacs 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

17. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems 20(2), 436–482 (1998)

18. Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K. (ed.)
Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS,
vol. 2757, pp. 439–453. Springer, Heidelberg (2003),
http://www-kb.is.s.u-tokyo.ac.jp/ koba/papers/

tutorial-type-extended.pdf

19. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta In-
formatica 42(4-5), 291–347 (2005)

20. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press (2009)

21. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pp. 416–428 (2009)

22. Kobayashi, N.: Higher-order model checking: From theory to practice. In: Proceed-
ings of the 26th Annual IEEE Symposium on Logic in Computer Science (LICS
2011), pp. 219–224. IEEE Computer Society (2011)

23. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)

24. Kobayashi, N., Igarashi, A.: Model checking higher-order programs with recursive
types. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 431–
450. Springer, Heidelberg (2013)

25. Kobayashi, N., Nakade, M., Yonezawa, A.: Static analysis of communication for
asynchronous concurrent programming languages. In: Mycroft, A. (ed.) SAS 1995.
LNCS, vol. 983, pp. 225–242. Springer, Heidelberg (1995)

26. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
pp. 179–188. IEEE Computer Society Press (2009)

27. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21(5), 914–947 (1999)

28. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pp. 222–233 (2011)

29. Kobayashi, N., Suenaga, K., Wischik, L.: Resource usage analysis for the pi-
calculus. Logical Methods in Computer Science 2(3:4), 1–42 (2006)

http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/tutorial-type-extended.pdf

From Linear Types to Behavioural Types and Model Checking 143

30. Kobayashi, N., Yonezawa, A.: ACL – a concurrent linear logic programming
paradigm. In: Logic Programming: Proceedings of the 1993 International Sym-
posium, pp. 279–294. MIT Press (1993)

31. Kobayashi, N., Yonezawa, A.: Asynchronous communication model based on linear
logic. Formal Aspects of Computing 7(2), 113–149 (1995)

32. Kobayashi, N., Yonezawa, A.: Towards foundations for concurrent object-oriented
programming – types and language design. Theory and Practice of Object Sys-
tems 1(4), 243–268 (1995)

33. Lafont, Y., Streicher, T.: Games semantics for linear logic. In: Proceedings of LICS
1991, pp. 43–50 (1991)

34. Mackie, I.: Lilac: A functional programming language based on linear logic. Journal
of Functional Programming 4(4), 1–39 (1994)

35. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
36. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press (1999)
37. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I, II. Information

and Computation 100, 1–77 (1992)
38. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion

schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)
39. Ong, C.-H.L., Tsukada, T.: Two-level game semantics, intersection types, and re-

cursion schemes. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 325–336. Springer, Heidelberg (2012)

40. Pierce, B.C., Turner, D.N.: Concurrent objects in a process calculus. In: Ito, T.
(ed.) TPPP 1994. LNCS, vol. 907, pp. 187–215. Springer, Heidelberg (1995)

41. Sangiorgi, D.: Typed π-calculus at work: a proof of jones’s parallelisation trans-
formation on concurrent objects. In: Fourth Workshop on Foundations of Object-
Oriented Languages, FOOL 4 (1997)

42. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2001)

43. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München (2002)

44. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

45. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Proceedings of Func-
tional Programming Languages and Computer Architecture, San Diego, California,
pp. 1–11 (1995)

46. van Bakel, S.: Intersection type assignment systems. Theor. Comput. Sci. 151(2),
385–435 (1995)

47. Wadler, P.: Linear types can change the world? In: Programming Concepts and
Methods. North-Holland (1990)

48. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. MIT Press (1990)
49. Yonezawa, A., Tokoro, M.: Object-Oriented Concurrent Programming. The MIT

Press (1987)
50. Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay, V.

(eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)

SALSA Lite: A Hash-Based Actor Runtime

for Efficient Local Concurrency

Travis Desell1 and Carlos A. Varela2

1 Department of Computer Science, University of North Dakota,
Grand Forks, ND, USA
tdesell@cs.und.edu

2 Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, NY, USA

cvarela@cs.rpi.edu

Abstract. As modern computer processors continue becoming more
parallel, the actor model plays an increasingly important role in
helping develop correct concurrent systems. In this paper, we consider
efficient runtime strategies for non-distributed actor programming lan-
guages. While the focus is on a non-distributed implementation, it serves
as a platform for a future efficient distributed implementation. Actors ex-
tend the object model by combining state and behavior with a thread of
control, which can significantly simplify concurrent programming. Fur-
ther, with asynchronous communication, no shared memory, and the fact
an actor only processes one message at a time, it is possible to easily im-
plement transparent distributed message passing and actor mobility. This
paper discusses SALSA Lite, a completely re-designed actor runtime sys-
tem engineered to maximize performance. The new runtime consists of
a highly optimized core for lightweight actor creation, message passing,
and message processing, which is used to implement more advanced co-
ordination constructs. This new runtime is novel in two ways. First, by
default the runtime automatically maps the lightweight actors to threads,
allowing the number of threads used by a program to be specified at run-
time transparently, without any changes to the code. Further, language
constructs allow programmers to have first class control over how actors
are mapped to threads (creating new threads if needed). Second, the
runtime directly maps actor garbage collection to object garbage collec-
tion, allowing non-distributed SALSA programs to use Java’s garbage
collection “for free”. This runtime is shown to have comparable or bet-
ter performance for basic actor constructs (message passing and actor
creation) than other popular actor languages: Erlang, Scala, and Kilim.

Keywords: Concurrent Programming, Actor Model, Actor Languages,
Fairness, State Encapsulation, SALSA, Erlang, Kilim, Scala.

1 Introduction

Actors model concurrency in open distributed systems [1, 2]. They are inde-
pendent, concurrent entities that communicate by exchanging messages. Each
actor encapsulates a state with a logical thread of control which manipulates

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 144–166, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 145

it. Communication between actors is purely asynchronous. The actor model
assumes guaranteed message delivery and fair scheduling of computation. Actors
only process information in reaction to messages. While processing a message,
an actor can carry out any of three basic operations: alter its state, create new
actors, or send messages to other actors (see Figure 1). Actors are therefore
inherently independent, concurrent and autonomous which enables efficiency in
parallel execution [3] and facilitates mobility [4, 5].

This paper describes the development of a new runtime for SALSA called
SALSA Lite. This runtime was designed to perform the basics of actor based
computation, simple message passing and actor creation, as efficiently as possible
(see Section 4). Then the rest of SALSA’s advanced message passing constructs,
remote message passing, remote actor creation, and actor mobility are built
using this optimized core. The strategy is to separate the overhead of distributed
communication, universal naming, mobile computation, and distributed garbage
collection, so that SALSA programs that run locally on multi-core processors do
not have to pay the performance price for distribution and mobility.

Because encapsulation and fairness are guaranteed by the language seman-
tics, it was possible to create a highly efficient and simple runtime to execute
lightweight actors. The runtime itself is also based on the actor model, and is
similar in structure to E’s vats [7, 8]. It assigns lightweight actors to stages, each
of which have a single thread and combined mailbox for every assigned actor.
A stage processes messages from its mailbox sequentially on its assigned actors
using their message handlers, and actors send messages to other actors by plac-
ing them in the target actor’s stage. In this runtime, the stage is essentially a
heavyweight actor, and lightweight actors can be implemented as simple objects.

Using this approach, it is also possible to provide first class stage support,
allowing SALSA developers to specify what stage actors are assigned to, and
dynamically create new stages as needed. Furthermore, the stage runtime maps
actor garbage collection to object garbage collection, allowing the use of Java’s
garbage collection without additional overhead for non-distributed non-mobile
SALSA programs. Results show that for benchmarks testing actor creation and
message passing, SALSA Lite is two times faster than Kilim, two to ten times
faster than Scala, and over an order of magnitude faster than Erlang. Addition-
ally, SALSA Lite does this while providing actor garbage collection and ensuring
state encapsulation, in contrast to Kilim and Scala.

2 Related Actor Languages and Frameworks

This section describes three commonly used languages with actor semantics:
Erlang, Kilim, and Scala.

2.1 Erlang

Erlang is a functional programming language which allows concurrency via pro-
cesses that use the actor model [9]. Erlang’s scheduler accomplishes fairness by
counting the number of reductions, or function calls used by a process. When a

146 T. Desell and C.A. Varela

Fig. 1. Actors are reactive entities. In response to a message, an actor can (1) change its
internal state, (2) create new actors, and/or (3) send messages to other actors (image
from [6]).

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 147

process has made 1,000 reductions, it is paused and Erlang starts execution of
a different process. This allows Erlang to scale to a large number of processes
using a fixed number of actual processes without violating fairness.

The state of a process in Erlang can only be updated as the result of message
passing. This coupled with safe message passing ensures state encapsulation. Safe
message passing in Erlang is guaranteed by single assignment. Single assignment
enforces that a value can be bound to a variable exactly once. As a consequence,
all variables are immutable after their initial assignment. Since there is no way to
directly update the state of other processes and variables passed in messages are
immutable, there is no way to share mutable memory between Erlang processes.

2.2 Kilim

Kilim is an actor based message passing framework for Java. It uses byte-code
transformation to convert specified Java objects into actors. Kilim actors use
ultra-lightweight threads as well as safe, zero-copy message passing based on a
type system [10]. Kilim’s weaver transforms methods with a @pausable qualifier
into continuation message passing. The resulting actor threads and continuation
messages enable very fast context-switching via lightweight threads. Kilim uses
a linear ownership type system to ensure that a message can have at most one
owner at any time, which helps developers guarantee safe message passing.

However, Kilim requires users to explicitly copy Java objects when they are
sent in messages, so it violates state encapsulation as actors can pass references
to Java objects and access the same memory concurrently. Kilim actors can
also be constructed with references to shared objects and access the mailbox
and state of other actors directly. While having a reference to another actors
mailbox allows actors to “send” messages, it also lets an actor “steal” messages
from other actors’ mailboxes. It also does not guarantee fair scheduling, as syn-
chronous object method invocation and infinite loops may block an actor and
the thread executing that and potentially other actors indefinitely, preventing it
from processing further messages.

2.3 Scala

Scala provides a library scala.actors, heavily inspired by Erlang, to support
the actor model. It supports synchronous and asynchronous message passing and
fair scheduling by unifying threads and events [11]. However, it allows shared
memory and synchronous execution of methods on other actors. While, this can
be desirable in some programs, it can also result in a violation of actor semantics
as well as data inconsistencies. Similarly, objects passed within messages may
be accessed by multiple actors simultaneously leading to a loss of state encapsu-
lation. Allowing synchronous message passing can also cause deadlocks [12, 13].

Scala actors can be either heavyweight, with each actor using its own thread,
or event-based, using a thread pool to provide fairness. It is possible to combine
event-based and heavyweight actors in Scala. For event-based actors, Scala can
use a single thread scheduler or a thread pool. Scala’s thread pool scheduler will

148 T. Desell and C.A. Varela

add a new thread to its thread pool if all worker threads are blocked due to long-
running operations. This can be much more efficient than heavyweight actors,
as the number of threads can typically remain constant if the worker threads are
not continuously blocked. However, this implementation can still fail if enough
actors are created that block worker threads, as the thread pool can run out of
resources when the JVM cannot create any new threads.

3 The SALSA Lite Runtime

The SALSA Lite runtime was developed to execute the common case fast with
the least amount of overhead. Message processing is accomplished via Java code,
so in terms of the actor model the two most important common cases to execute
fast are message sending and actor creation. Further, these need to be imple-
mented in a way to protect state encapsulation and guarantee safe message
passing.1

Figure 2 shows the runtime environment used by SALSA Lite. As the ac-
tor model provides a simple and efficient way to develop concurrent and dis-
tributed programs, the SALSA Lite runtime practices what we preach. It uses
heavyweight actors (called stages) to simulate the execution of many concur-
rent lightweight actors in parallel, as with a heavyweight actor, each stage has
its own mailbox and thread of control. Because of this, SALSA Lite actors are
implemented as simple Java objects, consisting only of their state (object fields)
and a reference to the stage they are performing or executing on, so other actors
can easily send messages to them by placing those messages in their respective
stage.

A drawback of this implementation is that if any message has an unbounded
processing time, e.g., it enters an infinite loop or calls a blocking method in-
vocation on an object like reading from a socket, the other actors on the same
stage may starve. Currently, the solution to this problem is by creating an actor
with its own stage, as described in Section 3.1, if it could potentially execute a
message with unbounded execution time. This approach is also used by other
performance focused actor implementaitons, such as libcppa [14].

Other implementations, which utilize thread pools (such as Scala) can also fall
prey to this problem – if all threads in the threadpool are in an infinite loop or
call a blocking method which never unblocks, actors waiting to process messages
outside the thread pool will starve. Thread pools can also potentially cause
significant performance overhead and can potentially cause the JVM to run out of
resources when they cannot create new threads. Thread pools were examined for
SALSA Lite, however they resulted in significantly worse performance. Further,
they require each actor to also have some data structure to store their own
individual mailbox, increasing memory requirements.

1 State encapsulation refers to the inability to modify an actor’s internal state other
than indirectly by sending it messages. Safe message passing refers to the inability
to missuse the message passing system in order to share memory and thereby break
state encapsulation, e.g., by sending a reference to a mutable object in a message.

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 149

Fig. 2. The SALSA Lite runtime environment. Heavyweight actors called stages are
used to process messages on multiple lightweight actors, simulating their concurrent
execution. A stage will repeatedly get the first message from its mailbox and process
that message on the message’s target actor. Every actor is assigned to a stage. A
Message sent to an actor is placed at the end of its assigned stage’s mailbox.

Examining methods for automatically quarantining actors with unbounded
message processing behavior to their own stages, or other methods for efficiently
ensuring fairness at the runtime level remains an area of future research.

3.1 Actor Creation

Figure 3 gives an example of creating actors at different stages. The initial num-
ber of stages used can be specified at runtime, and these stages are identified 0
through N − 1 where N is the number of stages. First class stage support can
be used to create an actor at the same stage as another actor, a stage specified
by its identifier, or its own new stage.

150 T. Desell and C.A. Varela

1 : //create on a default stage
2 : MyActor a = new MyActor () ;

3 : //create b on a’s stage
4 : MyActor b = new MyActor () on (a) ;

5 : //create c on stage 3
6 : MyActor c = new MyActor () on (3) ;

7 : //create d on its own new stage
8 : MyActor d = new MyActor ()
9 : on (S tageServ i c e . getNewStage ()) ;

Fig. 3. SALSA Lite has first class support for which stage (or thread) an actor runs on.
An actor can either use SALSA’s default scheduling, run on the same stage as another
actor, its own new stage, or a stage specified by an identifier.

If an actor is created without specifying a target stage, the SALSA runtime
uses a hash function to determine which stage it runs on. Currently, this is done
using the actor’s hash value (which is inherited from Java’s default object hash
value). This hash value was chosen over other strategies (such as generating a
random number) for efficiency, as the hash values serve as random numbers and
are already calculated by the Java runtime as part of object creation so there is
no need to do additional calculation.

The stage the actor is placed on is the actor’s hash value modulo the number
of stages specified at runtime. This makes for an efficient way to distribute actors
over stages in a generally balanced and random way. Hashing actors to stages
is particularly interesting as a research question, as it provides transparent par-
allelism of SALSA Lite programs, allowing the number of stages to be specified
at runtime, independent of the application’s code. Further, it makes it possi-
ble to examine different hashing functions with respect to their load balancing
capabilities and performance.

This implementation also allows SALSA programs to intermingle lightweight
and heavyweight actors without any additional overhead, as a heavyweight actor
is simply an actor running at a stage without any other actors. Furthermore, ac-
tors which communicate frequently can be assigned to the same stage so they do
not have to pay the price of context switching when passing messages, which can
result in significant performance as shown by the ThreadRing and Chameneos-
Redux benchmarks in Sections 4.1 and 4.2, respectively. In this way SALSA
actors have location translucency : a developer can simply specify an initial num-
ber of stages and have the SALSA runtime determine what stage actors will
be assigned to, or the developer can have first class control over the number of
stages used, what actors are assigned to them, and can even change the number
of stages dynamically.

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 151

3.2 State Encapsulation

State encapsulation, asynchronous communication, and fairness are the main
semantic concerns in actor languages. As stated by Karmani et al., “Without
enforcing encapsulation, the Actor model of programming is effectively reduced
to guidance for taming multi-threaded programming on shared memory ma-
chines” [15]. Asynchronous communication is critical in preventing deadlocks and
to facilitate the execution of concurrent systems on distributed environments.
Finally, fair scheduling ensures the correctness of an actor system composed of
several existing systems [16]. Without state encapsulation, asynchronous com-
munication, and fairness, it is not possible to guarantee the correct execution of
an actor-oriented program.

Many current actor system implementations use a language or framework
that combines both object-oriented and actor-oriented programming [15], such
as the ActorArchitecture [17], the Actor Foundry [18], JavAct [19], Jetlang [20],
Kilim [10] and Scala [11]. However, the combination of objects, threads, and ac-
tors can lead to inconsistencies in the actor model implementation. For example,
if an actor passes a reference to an object to another actor within a message, both
actors can then access the memory of that object concurrently which can lead
to race conditions, deadlock, or memory inconsistency; nullifying many of the
benefits of the actor model. Some approaches, such as Kilim’s, have attempted
to address this issue by zero-copy isolation types [10], while others simply allow
these inconsistencies. Erlang monitors the call stack and suspends actor process-
ing, yielding to others if an actor takes too long to process a message [9], and
Scala uses a thread pool which will spawn new threads if message processing
becomes blocked [11]. In summary, it is very difficult to guarantee state encap-
sulation and deadlock freedom; and often complicated run time solutions are
necessary to ensure fairness.

SALSA Lite guarantees state encapsulation during the compilation process.
The SALSA lite compiler generates Java objects for each actor, which have all
their state fields and methods flagged as private. The compiler generates two
methods which take a message object and invoke the corresponding method or
constructor on the actor, and these can only be invoked by that actor’s con-
trolling stage. Further, as SALSA Lite allows the use of Java objects, and the
underlying implementation of actors and their references are objects, to prevent
programmer confusion the compiler explicitly does not allow for methods to
be invoked on actor references, and generates appropriate error messages. This
guarantees state encapsulation of all actors.

3.3 Safe Message Passing

When a message is sent to an actor, it is placed in the mailbox of that actor’s
stage. Stages process messages in the same first-in, first-out manner as actors,
except the messages are invoked on the target actor instead of the stage. As each
actor is only assigned to a single stage, multiple messages will not be processed
by an actor at the same time. Because this runtime is based on the actor model

152 T. Desell and C.A. Varela

as well, there are very few synchronization points. The LinkedList of a stage’s
mailbox must be synchronized such that the thread will wait for new messages to
be placed in the mailbox if it is empty, and incoming messages must be added to
the mailbox one at a time. Inter-stage fairness follows from Java thread execution
fairness. While the current implementation uses synchronization around the use
Java’s LinkedList class for a mailbox, performance may potentially be further
improved by using lock-free data structures [14, 21–24], which will be investigated
as future work.

When messages are sent, they must not allow direct access to the state of
the actor sending the message, otherwise this would violate state encapsulation
and distributed memory. One way to enforce this is by doing a deep copy on
every argument passed in a message from one actor to another. However, this
is not particularly efficient. Further, when an actor sends a message to another
actor, the arguments of that message can either be references to other actors
(whose state and references to objects and other actors do not need be copied)
or objects, which do need to be copied. For a simple example, an argument to
a message may be an ArrayList of actors. The ArrayList should be copied,
but the actors (as well as the objects and actors referenced by those actors) it
contains should not.

The SALSA Lite compiler uses static type checking and static method res-
olution which enable us to implement fast and safe message passing. In Java,
primitives and immutable objects are passed by copy, while mutable objects are
passed by reference. In order to sucessfully implement safe and efficient message
passing in SALSA, primitives, immutable objects and mutable objects need to
be passed by copy, while actors should be passed by reference.

Previous SALSA implementations use Java’s default serialization interface,
which would copy the entire message over a socket connection, which is not par-
ticularly efficient. In SALSA Lite, each stage only processes one message at a
time, which allows the use of highly efficient and unsynchronized fast byte array
input and output streams for the deep copy [25]. Further, as the SALSA lite com-
piler has static type checking, it can selectively copy only the message arguments
which require it (mutable objects), by wrapping those particular arguments in
a deep copy call.

Actors were implemented as Java objects extending a simple Actor class.
SALSA disallows direct access to any fields within an actor, and these objects
to allow message passing from other actors. These references are essentially im-
mutable, so it is safe to share them between actors and objects. State encap-
sulation is enforced in SALSA utilizing the writeReplace and readResolve

methods of Java’s java.io.Serializable interface. The SALSA compiler pro-
vides a writeReplace and readResolve for each actor. When an actor is to
be serialized, Java will call the writeReplace method and instead serialize the
object returned by that method. When that object is read, its readResolve

method will be called and the result of that method used as the unserialized
object. This is used to hijack the serialization process of actors, preventing
them from being copied. The writeReplace places the written actor into a hash

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 153

table (using a hash function which generates unique values, separate from Java’s
default implementation which potentially has collisions), and returns an object
with the hash value for that actor. The readResolve method takes the hash
value of the serialized object, looks up the actor in the hash table and returns
that actor. This approach also has further benefits in that it allows actor refer-
ences to be tracked when actors are serialized to remote locations via migration
in distributed applications.

3.4 Garbage Collection

Erlang provides garbage collection via a mark-and-sweep algorithm [26]. The
actor implementation on the Kilim and Scala languages do not provide garbage
collection at all. Using the description of actor liveness and garbage presented
by Kafura et al. [27], an actor is garbage if:

– it is not a root actor.
– it cannot potentially send a message to a root actor.
– it cannot potentially receive a message from a root actor.

We can define an unblocked actor as an actor that is either processing a
message or has messages waiting for it in its mailbox. A potentially unblocked
actor is an actor that another unblocked or potentially unblocked actor has a
reference to (and thus messages could be sent to it). Because of this, an actor is
garbage if it is not potentially unblocked [28, 29].

All SALSA actors have static references to standard output, standard input,
and standard error (via Java), so they all have references to root actors and
objects. Therefore, in SALSA there cannot be active garbage, or garbage actors
that repeatedly send messages to each other, since if an actor is processing
messages, it can potentially send messages to root actors. Detecting live (non-
garbage) actors is therefore reduced to reachability from potentially unblocked
actors, also called pseudo-roots [28, 29].

In Java garbage collection, objects are collected if they are unreachable by a
non-system thread. In SALSA Lite, the only non-system threads are the threads
used by stages. In non-distributed programs, unblocked actors are always reach-
able by a stage thread, as the stage will have either a reference to the actor as
it is processing a message, or a reference to a message in its mailbox which has
a reference to that actor. As unblocked actors are always reachable by a stage
thread, potentially unblocked actors are as well, because there will be a chain
of references through other unblocked and potentially unblocked actors to every
potentially unblocked actor. The only references to actors are in messages or
in the state of an actor. If an actor is garbage, it is unreachable by any stage
thread as there will be no messages to it in its stage mailbox and no unblocked
or potentially unblocked actors will have a reference to it. Therefore it will be
reclaimed by Java’s garbage collector.

Because of this, the stage based runtime presented automatically maps local
actor garbage collection to object garbage collection, allowing SALSA Lite to

154 T. Desell and C.A. Varela

use Java’s garbage collection to reclaim non-distributed garbage actors without
additional overhead.

4 Performance Benchmarks

This section compares the performance of Erlang, Kilim, SALSA, and Scala
with three different benchmarks. The ThreadRing benchmark measures the per-
formance of message passing between concurrent entities (in this case, actors).
Chameneos-Redux measures not only the performance of message passing, but
also the fairness of scheduling for the concurrent entities. FibonacciTree measures
the performance of message passing and actor creation, as well as the memory
usage of many concurrent actors.

All experiments were run in a 2.93 GHz Intel Core 2 Duo MacBook Pro with
4 GB 1067 MHz DDR3 RAM, running Mac OS X 10.6.2. The Java version used
was 1.6.0 17. The mean runtime for 25 experiments was used for all performance
figures, and includes start up and shut down time (they were not run repeatedly
within a JVM). The implementations of ThreadRing and Chameneos-Redux
used by Java, Scala and Erlang were taken from the best performing versions
at the Computer Language Benchmarks Game2. Scala 2.7.7, Erlang R14A, and
Kilim 0.6 were used to perform the tests. The FibonacciTree has been used by
SALSA in the past to test its performance, however it is not as well known as
ThreadRing and Chameneos-Redux, so implementations were made for Erlang,
Kilim and Scala using the same message passing strategy used by SALSA. Be-
cause of this it should be noted that there may be better performing implemen-
tations for Erlang, Kilim and Scala if written by an expert in those languages.
However, the SALSA benchmarks were also programmed as typical program-
mers (e.g., see Appendix A and B for the SALSA code for the Fibonacci and
ThreadRing benchmarks), and were not extensively optimized either.

4.1 ThreadRing

The specification for the ThreadRing benchmark states that 503 concurrent en-
tities should be created and linked either explicitly or implicitly in a ring. Fol-
lowing this, a token should be passed around the ring N times. The ThreadRing
benchmark provides a good measurement of the time to pass messages between
actors. It also provides an interesting mechanism to examine the cost of context
switching between actors (or threads), as only one is active at any given time
while it is passing the token. Because of this, lightweight threading implemen-
tations which do not require context switching can provide significant speedup
over heavyweight implementations.

Figure 4 compares the performance of Java, single stage SALSA, Kilim, Scala
with a single thread scheduler (STS), typical Scala with a thread pool, and
Erlang as the number of times the token was passed (message hops) was in-
creased from 500 to 50,000,000. The runtime did not change much between 500

2 http://benchmarksgame.alioth.debian.org/

http://benchmarksgame.alioth.debian.org/

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 155

0.1

1.0

10.0

100.0

1000.0

0.5 5 50 500 5,000 50,000

ThreadRing Performance

R
un

tim
e

(s
ec

on
d

s)

Message Hops (thousands)

SALSA (1 stage)
SCALA
SCALA (STS)
ERLANG
KILIM
Java

Fig. 4. The performance of Java, Kilim, Erlang, SALSA, and Scala for the Thread-
Ring benchmark. SALSA used a single stage runtime, while Scala used a single thread
scheduler (STS) and its typical thread pool runtime. Kilim had indistinguishable re-
sults for a single and double thread scheduler. The Java implementation used standard
Java threads and the java.util.concurrent.locks.LockSupport class for a locking
mechanism.

0.1

1.0

10.0

100.0

1000.0

5 50 500 5,000 50,000

ThreadRing Performance

R
un

tim
e

(s
ec

on
d

s)

Message Hops (thousands)

SALSA (1 stage)
SALSA (2 stage)
SALSA (3 stage)
SALSA (4 stage)
SALSA (1 stage per actor)
Java

Fig. 5. The performance of SALSA using one to four stages, and to Java for the
ThreadRing benchmark. This illustrates the high cost of thread context switching for
this benchmark.

156 T. Desell and C.A. Varela

and 50,000 message hops, as the majority of this time was the startup cost
of the runtime environment. While the startup cost of Erlang was the lowest,
the performance overhead of message passing increased the fastest of the actor
languages. Single stage SALSA had the fastest performance for message pass-
ing, and from 500,000 to 50,000,000 message hops had the lowest runtime. Single
thread Scala had very fast message passing, however above 500,000 message hops
it suffered from stack overflow and could not complete the benchmark, because
the message passing strategy used involved recursion and method invocation.
Kilim had a similar startup time to SALSA, however message passing was not
as fast. The Java ThreadRing had the worst performance, due to its traditional
heavyweight thread usage. It should be noted that the runtime in the figure is
a logarithmic scale, and that single stage SALSA had extremely fast message
passing; for 50,000,000 message hops, SALSA was three times faster than Kilim,
and an order of magnitude faster than Erlang and Scala, and almost two orders
of magnitude faster than Java.

As the SALSA runtime allows the number of actors in the system to be inde-
pendent from the number of stages, or threads, used; Figure 5 shows the runtime
of the ThreadRing benchmark using one to four stages, and a heavyweight ver-
sion with one stage per actor. With multiple stages, the high cost of context
switching becomes apparent, as the more stages there are, the more threads
the message must hop through, causing more context switching. This is further
demonstrated as the heavyweight SALSA ThreadRing performance matches the
Java performance with some overhead (approximately 23%). As only there is
only one message being passed at a time around the ring, when it is passed
between actors on different stages, it will not continue to be passed until the
context switches to that other stage. This also illustrates the benefit of having
first class control over what stage processes what actor. In a SALSA application,
actors which communicate frequently can be assigned to the same stage and thus
not have to pay the cost of context switching when message passing. This is not
possible using a thread pool based runtime, as is done in Scala and Erlang.

4.2 Chameneos-Redux

The Chameneos-Redux benchmark not only tests the speed of message passing,
but also the fairness of concurrency scheduling. Two runs are done, one with an
odd number of creatures (three) and another with an even number of creatures
(ten). For each run, the creatures repeatedly go to a meeting place and meet
(or wait to meet) another creature. Each creature has a color and upon meeting
another creature both change their color to the complement of the creature they
met. This tests the performance of message passing as there are many messages
between the chameneos creatures and the meeting place. Additionally, it tests
fairness of concurrency scheduling as with an unfair scheduler, some creatures
will meet more than others.

Figure 6 compares the performance of Erlang, Killim, Scala and SALSA for
the Chameneos-Redux benchmark, as the number of meetings was increased from
600 to 6,000,000. SALSA used a single stage runtime and a heavyweight runtime

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 157

Fig. 6. The performance of Erlang, Kilim, SALSA, and Scala for the Chameneos-Redux
benchmark. SALSA used both a lightweight runtime with a single stage and a heavy
weight runtime which assigned each creature to its own stage. Only the thread pool
version of Scala is shown as the benchmark had errors with a single thread scheduler.
Kilim had indistinguishable results for both a single and double thread scheduler.

with one actor per stage. As with ThreadRing, the single thread scheduler in
Scala had runtime errors due to stack overflow, so only the thread pool version
of Scala is given. Again, Erlang was the quickest to start up, however its message
passing was slower than both Scala and the single thread SALSA runtime. As
the heavyweight SALSA Chameneos-Redux required context switching for each
message passed between the creatures and the meeting place, its performance was
very poor. As with the ThreadRing benchmark, single stage SALSA had the best
runtime after startup costs became insignificant, being 1.75x faster than Kilim,
2.5x faster than Scala, and ten times faster than Erlang for 6,000,000 meetings.

Not only does the Chameneos-Redux benchmark test the speed of message
passing between concurrent entities, it also provides a measure of the fairness of
concurrency. With perfectly fair scheduling, each chameneos creature should
have the same number of meetings. Figure 7 shows the standard deviation
between the meetings of each chameneos creature for Chameneos-Redux with
6,000,000 meetings, run ten times for each language and runtime; for both the
run with three creatures and the run with ten creatures. A lower standard devi-
ation meant scheduling was more fair, as there was less difference in the number
of times the creatures met. Both single stage SALSA and single thread Kilim
were perfectly fair by processing messages in a first-in, first-out manner. Double
thread Kilim had almost perfectly fair scheduling for an even number of crea-
tures (10), and was almost perfect for an odd number (3). While a heavyweight
Chameneos-Redux implementation in SALSA had the worst runtime, it had the

158 T. Desell and C.A. Varela

Fig. 7. The fairness of scheduling in Erlang, Kilim, SALSA and Scala. SALSA used
both a single stage runtime and a multi-stage runtime that assigned each chameneos
creature (and the meeting place) to its own stage. Kilim used both a single and double
thread scheduler. The standard deviation between the meetings of creatures is shown,
so a lower standard deviation is more fair concurrency. Single stage SALSA and single
thread Kilim were perfectly fair with a standard deviation of 0.

next best fairness as it relied on Java’s thread scheduling. Erlang and Scala
had different fairness depending on the number of creatures. Erlang had better
fairness for three creatures while Scala had better fairness with ten.

4.3 FibonacciTree

The last benchmark tested was a concurrent Fibonacci tree. This benchmark cal-
culates the Fibonacci number using concurrent actors. A Fibonacci actor com-
putes the Fibonacci number N by creating two child Fibonacci actors with the
Fibonacci numbers N − 1 and N − 2, which create their own children and so on.
If a Fibonacci actor is created with N = 0 it returns 0 to its creator, and if it is
created with N ≤ 2 it returns 1 to its creator. This benchmark not only tests the
speed of message passing, but also the speed of creation of new actors. As this
benchmark generates many actors, memory usage can be quite high. Because of
this, Kilim, SALSA and Scala used the -Xmx and -Xms flags of the Java Virtual
Machine to set the initial and maximum heap size to 2000MB, as the cost of
allocating new memory has a significant effect on the runtime of the benchmark.

Figure 8 shows the performance of the FibonacciTree benchmark for SALSA
with a single stage, one actor per stage, and a smart implementation that dis-
tributes subtrees across 4 stages, Kilim, Scala with a thread pool and a sin-
gle thread scheduler, and Erlang. Both heavyweight SALSA and Erlang (which
also uses a heavyweight actor implementation) failed after FibonacciTree(20),
as no more resources were available to create new threads or processes.

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 159

0.1

1.0

10.0

100.0

5 10 15 20 25 30

FibonacciTree

R
un

tim
e

(s
ec

on
d

s)

FibonnaciTree(N)

SALSA (1 stage)
SALSA (smart, 4 stages)
SALSA (1 stage per actor)
SCALA (STS)
SCALA
ERLANG
KILIM

Fig. 8. The performance of the FibonacciTree for SALSA with a single stage, one
stage per actor, and a smart implementation that placed subtrees across 4 stages,
single thread scheduler and thread pool Scala, Kilim and Erlang. Both Erlang and
heavyweight SALSA ran out of memory after FibonacciTree(20).

For FibonacciTree with N > 20, the smart implementation using four stages
in SALSA had the best performance. This implementation shows the benefit
of using first class stage support to split the FibonacciTree into closely sized
subtrees3 and assigning each of these to its own stage to be processed in par-
allel, improving performance by 44% over single stage SALSA (1.8 seconds to
2.6 seconds). Kilim was initially faster than Scala due to its faster startup time,
however the single thread scheduler for Scala had the next best performance for
larger Fibonacci numbers. Using the thread pool runtime of Scala had the worst
performance. For smaller Fibonacci numbers, Erlang had the best performance
until it ran out of resources, due to its fast startup time.

Scala with the single thread scheduler had the best memory usage, as it used
recursion and method invocation on objects instead of actor creation and actual
message passing, and thus had the interesting property of not requiring extra
memory for larger Fibonacci numbers. Apart from this, SALSA had similar
memory use for both a single and multi stage runtime, at 80MB for Fibonacc-
iTree(25) and 600MB for FibonacciTree(30). Kilim required the next least mem-
ory for FibonacciTree(25) and (30), around 180MB and 1530MB respectively.
Scala required 300MB for FibonacciTree(25), and significantly more memory for
FibonacciTree(30), reaching the imposed limit of 2000MB with a thread pool
runtime.

3 For FibonacciTree(30), stage 0 would be assigned FibonacciTree(28), stage 1 would
be assigned FibonacciTree(27), stage 2 would be assigned FibonacciTree(27) and
stage 3 would be assigned FibonacciTree(26).

160 T. Desell and C.A. Varela

Fig. 9. Memory usage of FibonacciTree(25) and FibonacciTree(30) for SALSA with a
single stage and the smart implementation with four stages, Kilim, and Scala with a
single thread scheduler and thread pool. It should be noted that JVM memory usage
was capped at 2000MB, and Scala with a thread pool could not allocate more than
this amount of memory for FibonacciTree(30).

5 Discussion

This work describes an extremely efficient hash based runtime, in which actors
are highly lightweight and independent from the threading mechanism used.
The SALSA Lite runtime uses stages, similar to heavyweight actors, each with
their own thread of control and mailbox, to simulate the concurrent execution
of multiple lightweight actors. Each actor is assigned to a stage, either by an
application developer using first class support to intelligently co-locate frequently
communicating actors and give heavyweight actors their own thread, or by the
SALSA Lite runtime. An added benefit of using this stage based runtime is
that it automatically maps actor garbage collection to object garbage collection,
and SALSA Lite can directly use Java’s garbage collection for local (or non-
distributed) concurrent programs.

Because of the stage based runtime and semantically guaranteed fairness and
encapsulation, SALSA Lite significantly improved message passing performance
and memory usage over earlier versions of SALSA. Results show that SALSA
Lite’s runtime is significantly faster than other existing actor implementations,
two times faster than Kilim, between two and ten times faster than Scala, and
over an order of magnitude faster than Erlang for the ThreadRing, Chameneos-
Redux and FibonacciTree benchmarks. Additionally, with a similar result to
single thread Kilim, SALSA Lite has perfect fairness using a single stage for the
Chameneos-Redux benchmark. SALSA’s memory usage was also less than Kilim

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 161

and Scala using a thread pool scheduler, however not less than Scala’s single
thread scheduler which did not increase for larger FibonacciTree numbers due
to its recursive method invocation, as opposed to actor creation based, strategy.

6 Future Work

While this paper describes SALSA Lite’s non-distributed runtime and semantics
in detail, SALSA also provides location transparency and mobility for distributed
computing [5]. This lays the groundwork for extending the runtime presented
with support for distributed applications with minimal overhead. Additionally,
the strategy used for mapping actor garbage to local garbage will not work
for distributed applications, so efficient distributed garbage collection is also
required, e.g. [30, 31, 28].

Performance is limited by SALSA being implemented in Java. For example,
in Section 4, Erlang consistently has the fastest startup time. While the Java
implementation does have many benefits (like use of Java’s libraries), it should be
possible to have a significantly faster actor implementation if it was built up from
a lower level, as done in ABCL [32] or libcppa [14]. This would also allow for a
purely actor model implementation, and if developed in C or C++ would allow
easy use of MPI, GPUs and many-integrated core accelerator cards, resulting in
an actor language for high performance computing with the additional benefits
of transparent parallelism and mobility.

Further, in work done by Plevyak et al. [33] and in systems like ABCL [32],
compile and runtime optimizations are used to process messages using local
non-parallel function calls when applicable. This can result in significant perfor-
mance increases, as it utilizes the stack instead of the heap, and message passing
typically requires the creation of an additional message object and passing in-
formation about the messages sender and potential receiver for return values.
SALSA Lite currently utilizes the heap for all message passing, with each mes-
sage requiring creation of a message object, which is slower than a pure object
method invocation. Another area of future work is to investigate strategies for
using the stack and method invocation when possible, e.g.when multiple actors
are on the same stage and are passing messages to each other which do not
require continuations.

Further, to guarantee fairness in this runtime, currently a programmer needs
to identify actors which could potentially process unbounded messages and as-
sign them to their own stages. While this significantly reduces overhead, it may
be desirable to have the runtime automatically enforce fairness by quarantining
actors with long running messages to their own stage. A future area of research
is to evaluate ways of enforcing fairness without significant overhead; as many
applications do not require this enforcement.

The SALSA Lite runtime uses a hash based strategy to determine what stages
actors are assigned to. An interesting avenue of research would be examining
other scheduling strategies for assigning actors to stages in an intelligent man-
ner; for example, in the ThreadRing benchmark, there is no reason to divide

162 T. Desell and C.A. Varela

the actors over multiple stages and suffer from context switching. The runtime
presented also gives first class support for assigning actors to threads. Previ-
ous work with the Internet Operating System (IOS) has shown that dynamic
reconfiguration of distributed SALSA programs can be used to improve perfor-
mance [34, 35]. The stage based runtime can be extended to enable local mobility
of actors, allowing actors to dynamically change what stage they are assigned
to. It also may be possible to improve application performance through intelli-
gent middleware that profiles the runtime and rearranges actors based on their
communication patterns.

Acknowledgements. This work has been partially supported by the National
Science Foundation under NSF CAREER Award No. CNS-0448407, and by the
Air Force Office of Scientific Research under Grant No. FA9550-11-1-0332.

References

1. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial
Intelligence 8, 323–364 (1977)

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

3. Kim, W., Agha, G.: Efficient Support of Location Transparency in Concurrent
Object-Oriented Programming Languages. In: Proceedings of Supercomputing
1995, pp. 39–48 (1995)

4. Agha, G., Jamali, N.: Concurrent programming for distributed artificial intelli-
gence. In: Weiss, G. (ed.) Multiagent Systems: A Modern Approach to DAI. MIT
Press (1999)

5. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. SIGPLAN Not. 36, 20–34 (2001)

6. Varela, C.: Worldwide Computing with Universal Actors: Linguistic Abstractions
for Naming, Migration, and Coordination. PhD thesis, U. of Illinois at Urbana-
Champaign (2001), http://osl.cs.uiuc.edu/Theses/varela-phd.pdf

7. Miller, M.S., Shapiro, J.S.: Robust composition: Towards a unified approach to ac-
cess control and concurrency control. PhD thesis, Johns Hopkins University (2006)

8. Miller, M., Tribble, E., Shapiro, J.: Concurrency among strangers. Trustworthy
Global Computing, 195–229 (2005)

9. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

10. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

11. Haller, P., Odersky, M.: Actors that unify threads and events. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

12. Vermeersch, R.: Concurrency in Erlang and Scala: The actor model (2009),
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

13. Varela, C., Agha, G.: What after Java? From Objects to Actors. Computer Net-
works and ISDN Systems: The International J. of Computer Telecommunications
and Networking 30, 573–577 (1998); Proceedings of the Seventh International Con-
ference on The World Wide Web (WWW7), Brisbane, Australia

http://osl.cs.uiuc.edu/Theses/varela-phd.pdf
http://ruben.savanne.be/articles/concurrency-in-erlang-scala

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 163

14. Schmidt, D.C.T.C., Hiesgen, R., Wählisch, M.: Native actors–a scalable software
platform for distributed, heterogeneous environments (2013)

15. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: a
comparative analysis. In: PPPJ 2009: Proceedings of the 7th International Con-
ference on Principles and Practice of Programming in Java, pp. 11–20. ACM, New
York (2009)

16. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7, 1–72 (1997)

17. Jang, M.W.: The Actor Architecture Manual. Department of Computer Science.
University of Illinois at Urbana-Champaign (2004)

18. Astley, M.: The Actor Foundry: A Java-based Actor Programming Environment.
Open Systems Laboratory. University of Illinois at Urbana-Champaign (1998–
1999)

19. Rougemaille, S., Arcangeli, J.P., Migeon, F.: Javact: a Java middleware for mobile
adaptive agents (2008)

20. Rettig, M.: Jetlang (2008–2009), http://code.google.com/p/jetlang/
21. Valois, J.D.: Lock-free data structures (1996)
22. Alexandrescu, A.: Lock-free data structures. C/C++ User Journal (2004)
23. Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mechanism

for supporting dynamic-sized lock-free data structures. In: Malkhi, D. (ed.) DISC
2002. LNCS, vol. 2508, pp. 339–353. Springer, Heidelberg (2002)

24. Herlihy, M., Luchangco, V., Martin, P., Moir, M.: Nonblocking memory manage-
ment support for dynamic-sized data structures. ACM Transactions on Computer
Systems (TOCS) 23, 146–196 (2005)

25. Isenhour, P.: Faster deep copies of java objects,
http://javatechniques.com/blog/faster-deep-copies-of-java-objects/

(accessed: February 26, 2013)
26. Armstrong, J., Virding, R.: One pass real-time generational mark-sweep garbage

collection. In: Baker, H.G. (ed.) IWMM-GIAE 1995. LNCS, vol. 986, pp. 313–322.
Springer, Heidelberg (1995)

27. Kafura, D., Washabaugh, D., Nelson, J.: Garbage collection of actors. SIGPLAN
Not. 25, 126–134 (1990)

28. Wang, W.: Distributed Garbage Collection for Large-Scale Mobile Actor Systems.
PhD thesis, Rensselaer Polytechnic Institute (2006)

29. Wang, W.-J., Varela, C.A.: Distributed garbage collection for mobile actor sys-
tems: The pseudo root approach. In: Chung, Y.-C., Moreira, J.E. (eds.) GPC 2006.
LNCS, vol. 3947, pp. 360–372. Springer, Heidelberg (2006)

30. Kamada, T., Matsuoka, S., Yonezawa, A.: Efficient parallel global garbage collec-
tion on massively parallel computers. In: Proceedings of the 1994 Conference on
Supercomputing, pp. 79–88. IEEE Computer Society Press (1994)

31. Wang, W.-J., Varela, C., Hsu, F.-H., Tang, C.-H.: Actor garbage collection using
vertex-preserving actor-to-object graph transformations. In: Bellavista, P., Chang,
R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A. (eds.) GPC 2010. LNCS, vol. 6104,
pp. 244–255. Springer, Heidelberg (2010)

32. Taura, K., Matsuoka, S., Yonezawa, A.: An efficient implementation scheme of
concurrent object-oriented languages on stock multicomputers. ACM SIGPLAN
Notices 28, 218–228 (1993)

33. Plevyak, J., Karamcheti, V., Zhang, X., Chien, A.A.: A hybrid execution model for
fine-grained languages on distributed memory multicomputers. In: Proceedings of
the 1995 ACM/IEEE Conference on Supercomputing (CDROM), Supercomputing
1995. ACM, New York (1995)

http://code.google.com/p/jetlang/
http://javatechniques.com/blog/faster-deep-copies-of-java-objects/

164 T. Desell and C.A. Varela

34. Desell, T., Maghraoui, K.E., Varela, C.A.: Malleable applications for scalable high
performance computing. Cluster Computing, 323–337 (2007)

35. Maghraoui, K.E., Desell, T., Szymanski, B.K., Varela, C.A.: The Internet Operat-
ing System: Middleware for adaptive distributed computing. International Journal
of High Performance Computing Applications (IJHPCA), Special Issue on Schedul-
ing Techniques for Large-Scale Distributed Platforms 20, 467–480 (2006)

A Fibonacci.salsa

A simple concurrent Fibonacci program in SALSA. The SALSA syntax is ex-
tremely similar to Java’s syntax, and it can utilize all of Java’s libraries (lines
9, 26). The new command creates a (concurrent) actor (lines 20 and 21), and
<- sends asynchronous messages (lines 11, 20, 21). If a message or result of a
message requires the result of another message (lines 11, 20, 21) it will not be
sent until the required result has been sent with the pass statement (lines 16,
18, 20, 21), similar to a return statement. The constructor taking a array of
arguments serves as an actor’s main method.

1: behavior Fibonacci {

2: int n;

3:

4: Fibonacci(int n) {

5: self.n = n;

6: }

7:

8: Fibonacci(String[] arguments) {

9: n = Integer.parseInt(arguments[0]);

10:

11: self<-finish(self<-compute());

12: }

13:

14: int compute() {

15: if (n == 0) {

16: pass 0;

17: } else if (n <= 2) {

18: pass 1;

19: } else {

20: pass new Fibonacci(n-1)<-compute() +

21: new Fibonacci(n-2)<-compute();

22: }

23: }

24:

25: ack finish(int value) {

26: System.out.println(value);

27: }

28: }

SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Concurrency 165

B ThreadRing.salsa

A simple concurrent ThreadRing program in SALSA. A JoinDirector (line 20) is
an actor that provides a method for waiting for a group of messages to complete
before sending another message. After an actor completes a message, it sends a
join message to the JoinDirector (lines 27 and 30), which will resolve after it has
received a number of messages specified by sending a resolveAfter message (line
32). In this case, only after the JoinDirector receives threadCount messages, the
forwardMessage will be send (line 33).

1: import salsa_lite.language.JoinDirector;

2:

3: behavior ThreadRing {

4: ThreadRing next;

5: int id;

6:

7: ThreadRing(int id) {

8: self.id = id;

9: }

10:

11: ThreadRing(String[] args) {

12: if (args.length != 2) {

13: System.out.println("Usage: java ThreadRing <threadCount> <hopCount>");

14: pass;

15; }

16:

17: int threadCount = Integer.parseInt(args[0]);

18: int hopCount = Integer.parseInt(args[1]);

19:

20: ThreadRing first = new ThreadRing(1);

21: JoinDirector jd = new JoinDirector();

22:

23: ThreadRing next = null;

24: ThreadRing previous = first;

25: for (int i = 1; i < threadCount; i++) {

26: next = new ThreadRing(i + 1);

27: previous<-setNextThread(next) @ jd<-join();

28: previous = next;

29: }

30: next<-setNextThread(first) @ jd<-join();

31:

32: jd<-resolveAfter(threadCount) @

33: first<-forwardMessage(hopCount);

34: }

35:

36: ack setNextThread(ThreadRing next) {

37: self.next = next;

38: }

39:

40: ack forwardMessage(int value) {

41: if (value == 0) {

42: System.out.println(id);

43: System.exit(0);

166 T. Desell and C.A. Varela

44: } else {

45: value--;

46: next<-forwardMessage(value);

47: }

48: }

49: }

Past and Future Directions for Concurrent

Task Scheduling

Robert H. Halstead

24 Louise Road, Belmont, MA 02478, USA
rhhalstead@alum.mit.edu

Abstract. A wave of parallel processing research in the 1970s and 1980s
developed various techniques for concurrent task scheduling, including
work-stealing scheduling and lazy task creation, and various ideas for sup-
porting speculative computing, including the sponsor model, but these
ideas did not see large-scale use as long as uniprocessor clock speeds
continued to increase rapidly from year to year. Now that the increase
in clock speeds has slowed dramatically and multicore processors have
become the answer for increasing the computing throughput of processor
chips, increasing the performance of everyday applications on multicore
processors by using parallelism has taken on greater importance, so con-
current task scheduling techniques are getting a second look.

Work stealing and lazy task creation have now been incorporated
into a wide range of systems capable of “industrial strength” application
execution, but support for speculative computing still lags behind. This
paper traces these techniques from their origins to their use in present-
day systems and suggests some directions for further investigation and
development in the speculative computing area.

1 Introduction

A first great wave of parallel processing research took place in the 1970s and
1980s as people began to think about inherent limits to the speed at which
individual circuits can run and at which communication between circuits can
operate, and began to recognize that parallel execution would be the ultimate
route to achieving the highest performance. While that era did see the first con-
struction of large-scale parallel computers and their use for certain really large
computations, the programming effort required was heroic enough to prevent
their use for all but a small set of really large computations. For everyday appli-
cations, the continuing rapid progress in uniprocessor clock speeds was enough
to yield regular performance improvements and dissuade efforts to further im-
prove performance using parallelism. Thus, techniques for parallelizing massive
computations saw some practical application, but using parallelism for more
modestly scaled applications remained of research interest only.

In the last ten years, however, this situation has started to change. Moore’s
Law continues to give us denser circuitry every year, but removing heat from
processor chips has emerged as a major barrier preventing faster clock speeds. As

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 167–195, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

168 R.H. Halstead

a result, multicore processors capable of on-chip parallel processing have become
the latest trend in processor chip architecture. Even consumer-grade personal
computers are now sold with processor chips that have 2–4 cores, and more
highly parallel chips are on the way soon.

The onus is now on application developers to restructure their applications to
achieve higher performance by using more than one core. In the past, an appli-
cation provider could simply wait a year for the next generation of faster com-
puter hardware to come out, and all applications would automatically improve
in performance. Now, the performance capabilities of processor chips continue
to increase, but benefiting from those capabilities requires applications that can
use multiple cores.

The computations that were parallelized for serious use during the first wave
were generally large enough to be totally impractical for sequential execution
and contained large amounts of potential parallelism that could be exploited
with (somewhat) reasonable effort. These applications typically featured fairly
uniform data parallelism at a fine-grained level, or else they could be decom-
posed into a large number of coarse-grained blocks of computation that could
be executed without too much interaction between them. Many “everyday” ap-
plications are harder to decompose, but the advent of multicore processors has
elevated the importance of finding parallelism in them, even if the total amount
of parallelism found is not as large as in the earlier cases.

Commercially important compute-intensive applications that are not necessar-
ily executed on large “data center” computers include engineering applica-
tions such as computer-aided design and simulation; data mining and analysis;
2-dimensional and 3-dimensional image processing for medical applications,
graphic designers, gamers, and consumers; and many others. The importance of
running these applications with high performance on multicore processors has re-
vived interest in parallelization techniques that were investigated during the first
wave but were never widely deployed because it was easier to just wait for the next
generation of faster processors to achieve the next round of performance increases.

1.1 Achieving Parallel Execution on Multicore Processors

As a first approach to parallelizing a legacy application for execution on mul-
tiple cores, it is tempting to try decomposing the application into large-scale
architectural modules, such as “parsing,” “processing,” and “output,” assigning
each module to a different core, and setting up a suitable connection, such as a
pipeline, between the modules. While this approach may be appealing because it
avoids extensive redesign of the application, it has serious scalability limitations
as we look forward to processor chips with 8–16 cores or more. The number of
large-scale modules that can be identified in an application grows with the size
of the application code but not with the size of the application data, so further
decomposing an application into more and more modules as the number of cores
increases becomes more and more difficult. Moreover, it is very unlikely that the
amount of processing required by the different modules will be well balanced, so

Past and Future Directions for Concurrent Task Scheduling 169

there are likely to be performance bottlenecks and a majority of the cores may
be poorly utilized.

To make efficient use of multicore processors and to be able to continue in-
creasing in performance as processor chips become more powerful, an application
really needs to be decomposed in a “data-parallel” manner with parallelism that
scales with the size of the computation rather than the size of the application
program source code. Since the applications that we are talking about are com-
plex and heterogeneous, a flexible approach to exposing concurrency is required.
The data parallelism of these applications will generally not be found in simple
inner loops but in more complex and irregular patterns of access to large data
structures. The communication and synchronization patterns of such computa-
tions usually cannot be mapped out in advance and must instead be managed
at run time as they evolve.

The demands of this kind of concurrency are most easily satisfied using a
shared-memory MIMD model that can support unplanned patterns of access
to shared data at a reasonable cost. Fortunately, this is exactly the computing
model that is supported by multicore processor chips. This happy coincidence
has revived interest in techniques for shared-memory MIMD parallel computing.
A particular discipline that is well suited to the multicore situation is the prac-
tice of annotating an application program to expose large amounts of potential
concurrency and then letting a run-time task scheduler determine the actual
parallel task schedule based on conditions at each moment during the execution
of the application. Although there are certainly cases where automated program
analysis tools can add annotations based on analysis of the concurrency oppor-
tunities in a program, our focus here is on manually placed annotations because
this is pretty much the only viable strategy for parallelizing legacy applications
of the kind that resisted parallelization in the past.

1.2 Overview of the Paper

This paper looks at a couple of techniques for task scheduling that were investi-
gated in connection with the Multilisp [15,17] and Mul-T [27,28] projects during
the first wave of parallel processing research and examines how these techniques
are now being, or could be, put to work on multicore processors. A principal
goal of these techniques is to reduce the cost of exposing concurrency while still
enabling a good parallel execution order to be chosen efficiently at run time.

Although multicore processors are the technological trend that has brought
interest back to these ideas, the ideas themselves are equally applicable in any
shared-memory MIMD computing system, regardless of whether the processing
cores are all on one chip or are distributed across multiple chips. Accordingly, we
will informally use the terms “core” and “processor” somewhat interchangeably
to mean “a device capable of executing a sequential stream of instructions.”

We begin by examining lazy task creation implemented using work-stealing
schedulers. These techniques address the problem of providing concurrency an-
notations that are inexpensive at run time and therefore can be used aggres-
sively to expose a large number of concurrency opportunities in a program.

170 R.H. Halstead

Work stealing and lazy task creation are now used in a wide range of systems
for concurrent programming, of which perhaps the best known is the family of
Cilk systems [6,25], including Cilk-5 [13], Cilk++ [24], and Intel Cilk Plus [19],

Later, we look at speculative computing using the sponsor model. These tech-
niques are especially helpful for applications that include some kind of search.
They provide additional opportunities for parallel execution by spawning and
controlling the execution of computations whose results may be useful but are
not certain to be needed. Speculative computing support should be thought of as
building an additional layer of parallelism opportunities on top of the basic capa-
bilities provided by lazy task creation and work-stealing schedulers. Speculative
computing is still not widely used and there are many open issues regarding the
best way to implement the sponsor model, but speculative computing oppor-
tunities occur in many important applications and improving our ability to use
speculative computing is an important problem that deserves more investigation.

Section 2 of this paper gives some examples of parallel programming appli-
cations that do not involve speculative computing. Section 3 then discusses the
task scheduling problem for such applications and explains the advantages of
work stealing and lazy task creation for solving it. The section concludes with
a review of how these technologies have been incorporated into contemporary
systems. Section 4 discusses the nature of speculative computing and the new
scheduling requirements that it entails. The sponsor model is briefly introduced
and its strengths and weaknesses are discussed. The section concludes with a re-
view of speculative computing support in some contemporary systems. Finally,
Section 5 summarizes the paper and offers a vision of future parallel computing
systems that integrate all of the scheduling technologies discussed.

2 Examples of Non-Speculative Parallel Computing

Concurrency in programs can be specified using various constructs, including
Multilisp’s future construct and the fork/join constructs of Cilk and various
other languages. This section uses the future construct in a few examples of
parallel computing that do not require speculative computation.

The expression (future X) is the main concurrency construct in Multilisp
and Mul-T and may return a result before the evaluation of the expression X
has completed [15]. In this case, the returned value is a future object that acts as
a promise to deliver the value of X when it is known. When the evaluation of X
yields a value, the future object resolves to that value. In this way, (future X)

provides concurrency between evaluating X and executing the code that uses the
value of X . It is natural to use future at all levels of recursion when exploring
or operating on a large data structure; in this way, future allows the exposure
of concurrency that scales with the size of the data.

Strict operations such as addition, which inspect their operands, may be ap-
plied to a future object but they touch the object, which means that they will
block, if necessary, until the future object resolves. However, many operations
such as parameter passing and construction of data objects are nonstrict and do
not need to block if given an unresolved future.

Past and Future Directions for Concurrent Task Scheduling 171

2.1 Divide-and-Conquer Computations

Divide-and-conquer algorithms offer the most obvious opportunities for parallel
computing. A trivial example, shown in Fig. 1, is the psum-tree procedure
from [28] for summing a property of all leaves of a tree. This procedure uses
future so that the leaf values for the left-hand child of a node can be summed
concurrently with summing the leaf values for the right-hand child. Many divide-
and-conquer computations have a similar structure and can be expressed in the
same straightforward way. This style of concurrency is also easily expressed using
fork/join constructs such as those in Cilk. In Cilk, the reducer construct, found
in C++-based Cilk implementations, is often useful for combining tasks’ results
at the join point [24,25].

(define (psum-tree tree)

(if (leaf? tree)

(leaf-value tree)

(+ (future (psum-tree (left tree)))

(psum-tree (right tree)))))

Fig. 1. A simple parallel divide-and-conquer program

Many combinatorial enumeration computations, including the famous
“N Queens” problem, as well as many dense matrix, exhaustive search, and
sorting computations, also fit the divide-and-conquer paradigm.

2.2 Pipelined Computations

For another style of parallel computing, consider the program of Fig. 2, whose
p* procedure multiplies two dense polynomials, using a representation where
the polynomial anx

n + · · · + a1x + a0 is represented as a list of coefficients
(a0 a1 . . . an). The p* procedure uses divide-and-conquer parallelism to multi-
ply the first coefficient of x times the polynomial y concurrently with multiplying
the rest of x times y, but the pc* and p+ procedures use future to introduce
a pipelined style of concurrency in which a caller of pc* or p+ can begin to use
the result of the call even before the full computation performed by the call has
finished [16]. This pipelining is possible because the cons constructor operation
is nonstrict and can return its value even before its arguments resolve. In this
example as given, the tasks will be very small because the primitive + and *

operations on numerical coefficients are fast; however, in other use cases where
the coefficients are not simple numerical types, the granularity of the tasks will
be coarser.

This pipelined style of computation is not expressible using simple fork/join
constructs but it can be a prolific source of concurrency in computations that
traverse data structures and build new data structures based on the information

172 R.H. Halstead

(define (p* x y) ; Polynomial x times polynomial y

(if (null? x)

’()

(p+ (future (pc* (car x) y))

(cons 0

(future (p* (cdr x) y))))))

(define (pc* c y) ; Scalar c times polynomial y

(if (null? y)

’()

(cons (* c (car y))

(future (pc* c (cdr y))))))

(define (p+ x y) ; Polynomial x plus polynomial y

(cond ((null? x) y)

((null? y) x)

(else

(cons (+ (car x) (car y))

(future (p+ (cdr x) (cdr y)))))))

Fig. 2. A parallel program for multiplying dense polynomials

found. It is not difficult to imagine computations on sparse polynomials, tree
rewriting, relational joins, and many others that use a similar concurrency style.

It is worth noting that if we used vectors of coefficients, rather than lists, to
represent polynomials, this computation could be programmed using a straight-
forward divide-and-conquer algorithm. Nevertheless, other computations on in-
herently richer data structures can still benefit from pipeline parallelism.

2.3 Mostly Functional Programming

The parallel programming examples in Figs. 1 and 2 contain no side-effecting
operations, which makes their correctness much easier to understand without
considering the details of task scheduling. Generally, as many authors have
noted, state-changing operations on objects shared between concurrent tasks
bring about the possibility of nondeterminacy and difficulty in verifying that
a program will behave correctly under all legal scheduling scenarios. For many
computations, however, it is more natural and even more efficient to have some
mutable objects that are shared between tasks. We can use the term mostly
functional programming for a programming style that is largely free of shared
mutable objects but does use them occasionally for important coordination pur-
poses. Because it confines the potential nondeterminacy of a computation to
a small number of interaction points, this style has much to recommend it for
parallel programming, and for the rest of this paper we implicitly assume its use.

As a side note, clever ideas such as Cilk’s reducer objects, mentioned above,
can sometimes replace nondeterminacy-inducing shared objects, with great

Past and Future Directions for Concurrent Task Scheduling 173

benefits to program understandability and reliability. We need as many clever
ideas like this as possible.

3 Scheduling for Task-Based Parallel Computing

The requirements for exposing concurrency in an application for execution on a
multicore processor are quite different from the classic requirements for thread-
based execution using a threading library such as Pthreads [29]. The typical
reason for using threads in an application is to ensure that some part of the
computation can proceed, or remain responsive, even if another part of the com-
putation is blocked or busy. For example, an application’s developer may wish for
the application’s user interface to remain responsive even though the application
is busy updating internal data structures or waiting for a network transmission
to complete. Similarly, it may be desirable to continue making progress on a
lengthy calculation even while waiting for user input or for one or more pro-
grammed input/output operations to complete.

In all of these situations, it is common to organize a computation into a set
of threads so that each individual activity within the computation can proceed
independently. In this model, it is important that all threads that are not blocked
can proceed at some rate, because the whole idea of using threads is to keep all
parts of the computation live and active as much as possible. This goal leads to
the ideal of fair scheduling to guarantee that each unblocked thread can make
progress.

3.1 Fair Scheduling Is Not Always Best

Fair scheduling is useful when working with threads, to ensure that semantically
distinct parts of a computation can proceed independently, but it can be coun-
terproductive if used for portions of a computation that has been subdivided
to provide parallel work for multiple processor cores. Consider, for example,
the divide-and-conquer scenario illustrated in Fig. 3, where each node except
those at the bottom represents a subcomputation that recursively spawns two
more subcomputations. This is the kind of task tree that could result from the
psum-tree program of Fig. 1, for example.

If executed sequentially in the standard depth-first manner, this computation
will require only O(D) storage for the recursion stack, whereD is the depth of the
divide-and-conquer tree. If, however, each node is given its own thread and fair
scheduling is used for the threads, the storage requirements of this computation
will explode since the computation will effectively be performed breadth-first.
Depending on the details, all nodes in the tree could be active simultaneously,
leading to a storage requirement of O(2D).

The ideal execution order for this computation on a 4-core processor would
involve spawning separate concurrent subcomputations for the first two levels of
the tree in breadth-first fashion, so that there are four subcomputations ready
to execute in parallel, and then unfolding the tree within each subcomputation

174 R.H. Halstead

Fig. 3. A divide-and-conquer task tree

in depth-first fashion so as to economize on space usage. Assuming that each
subcomputation takes about the same amount of time to execute, this execution
order will achieve good utilization of all four cores while at the same time keeping
the required storage from growing exponentially.

When using threads to expose concurrency, achieving this ideal execution or-
der requires augmenting the application code with potentially complex tests to
determine whether enough threads have been created yet, and to throttle the
computation by suppressing thread creation and reverting to depth-first exe-
cution once enough threads have been created. This is unfortunate for several
reasons. First, it mixes hardware-dependent scheduling code with the applica-
tion code. It would be preferable to have the application code simply describe
the computation to be performed, while scheduling details are handled by an
orthogonal mechanism. Second, the scheduling code added to the application is
fragile and depends on many assumptions. If the number of cores changes, the
scheduling code needs to know the new number. If the subcomputations do not
all take the same amount of time, the tree depth is not the same for all branches
of the computation, or some subcomputations may become blocked waiting for
actions by other subcomputations, it can be very difficult to know what deci-
sions to program into the scheduling code. Moreover, if other parts of an overall
application are also available to execute in parallel with this divide-and-conquer
computation, this too affects the requirements for concurrency in ways that are
difficult to address in the scheduling code.

3.2 Threads vs. Tasks

For all of the above reasons, it is better if the application code simply declares as
many opportunities for concurrency as possible, and then an efficient scheduling
mechanism uses this information to achieve the needed parallelism without caus-
ing excessive storage use. To avoid confusion with the thread model discussed
above, let us call these basic units of concurrency “tasks.”

Past and Future Directions for Concurrent Task Scheduling 175

3.3 Work-Stealing Schedulers

While fair scheduling has several important advantages for threads, it is not a
desirable discipline for scheduling tasks. This fact has been recognized at least
as far back as the work of Burton and Sleep [8], who described the problem with
breadth-first expansion of a divide-and-conquer task tree, as well as its solution
by defaulting to depth-first expansion but making pending tasks available to be
“stolen” by idle processors. They in turn point to the AMPS project [21] as one
of their sources of inspiration.

This work-stealing approach was also developed and implemented in the Mul-
tilisp project, and timing results for various benchmark programs were reported
[15]. An impressive proof of bounds on the time and space requirements for
computations scheduled using work stealing was published by Blumofe and
Leiserson [7]. This work formed the basis for using work stealing in the Cilk
system [6,25] and many systems that have followed.

In the basic work-stealing model, a program is thought of as containing various
potential fork points at which one or more parallel tasks can be spun off if there
are idle processors (or, in the modern case, processor cores) available to execute
them. When execution reaches a fork point, a “work generator” object is pushed
onto a double-ended queue, or deque, and then execution proceeds to the leftmost
child node of the fork point, in exactly the same order as a sequential execution
that would walk the task tree depth-first from left to right. Each processor has its
own deque of work generators. Task execution on a processor may lead to further
work generators being pushed onto the processor’s deque, leading ultimately to
a structure similar to that shown in Fig. 4.

Fig. 4. A work generation deque used by a work-stealing scheduler

When a processor finishes executing a task, the processor uses the work gen-
erator at the tail of the deque (shown at the top in Fig. 4) to get the next task
to execute. If the work generator is exhausted, it is popped off of the deque and

176 R.H. Halstead

the next work generator is used. If a processor is idle and its deque is empty,
then it looks for work to steal from another processor’s deque. When stealing,
however, it removes the work generator from the head of the other processor’s
deque and uses it to generate work. This steal operation is shown in Fig. 5,
which shows what happens when a thief processor P2 steals work from a victim
processor P1. The steal entails some cost for synchronization and for increased
cache-coherence and/or communication traffic, but it prevents a processor from
lying idle.

Fig. 5. A thief processor P2 steals work from a victim processor P1

3.4 Optimality of Work Stealing

Intuitively, it is best to amortize the cost of stealing by maximizing the size of the
stolen unit of work. By taking stolen work from the head of a victim processor’s
deque rather than from the tail, the work-stealing strategy improves the chances
of stealing a large unit of work, especially in a divide-and-conquer task tree such
as that of Fig. 3. Stealing larger units of work also potentially improves locality
of reference, since it can be hoped that the execution of a large block of work will
be more self-contained, creating and later using its own private data structures.

While these hypothesized advantages are attractive, it is not obvious that they
can be stated or proven rigorously. It was thus quite impressive when Blumofe
and Leiserson [7] were able to prove useful time and space bounds for work
stealing based on assumptions that are faithful to the character of many realistic
applications. Their proof applies to computations that follow the “dag model of
multithreading” in which a computation can be organized into a directed acyclic
graph of tasks such as that shown in Fig. 6. The proof is further restricted to
“fully strict” computations, which include fork-join computations but not certain
task graphs that can occur in other types of computations. (For example, the
pipeline-parallel polynomial multiplication program of Fig. 2 does not generate
a fully strict task graph.)

Some key parameters of a computation can be defined based on the dag model:

Past and Future Directions for Concurrent Task Scheduling 177

Fig. 6. A dag of concurrent tasks; the tasks on the critical path are shaded

– T1, also known as the work, is the total number of instructions in the dag.
– T∞, also known as the span, is the number of instructions in the critical

path.

Based on these concepts, Blumofe and Leiserson proved worst-case bounds for
the time TP and space SP required when the computation is executed using a
work-stealing scheduler on P processors, with the following results:

TP ≤ T1/P +O(T∞)

SP ≤ S1P

As an extra benefit, a bound on communication was also proven.
The equation for TP contains the expected terms. Even if the work in the

dag is divided evenly between all the processors, we cannot expect that the time
TP will be less than T1/P because that would imply a speedup by a factor of
more than P on P processors. Similarly, we cannot expect the time TP to be less
than T∞ because that would require a magical ability to execute some of the
operations on the critical path in parallel with each other, which would contradict
the definition of a critical path. In this light, the result for TP is really a very
good result. Asymptotically, it is the best result that any scheduling algorithm
could be expected to achieve.

Similarly, the guarantee that SP is at most P times the required space on one
processor is a very strong result. It implies that the storage that needs to be
added to a system when processors are added is, at most, proportional to the
number of processors. It is hard to imagine expecting a scheduling algorithm to
do better than that.

While the assumptions made in this proof do not apply to every task-based
parallel computation, in combination with empirical observations that work-
stealing schedulers frequently lead to good parallel speedups, the proof does
provide a lot of confidence that work stealing is a reasonable scheduling approach
and shows that it is asymptotically optimal in an important set of cases.

178 R.H. Halstead

3.5 Lazy Task Creation

The asymptotic benefits of work-stealing schedulers do not take away from
the importance of implementing the primitive task-management operations ef-
ficiently. The cheaper the basic operations on the work deque can be made,
the more aggressively a programmer can decorate an application program with
potential fork points, exposing the largest number of opportunities for parel-
lel execution. If we assume that a program has enough concurrency to keep all
the available processors (or cores) busy most of the time, we can assume that
steal operations will be comparatively infrequent, and thus the most important
operations to optimize are those that push work generators onto the work gen-
eration deque and those that use and pop the work generators when no stealing
is happening.

The Mul-T project [27], a successor to Multiisp, adopted a goal of making
the pushing and popping of work for the future construct (see Section 2) “no
more expensive than a procedure call.” In a simple implementation, every time
a (future X) expression is executed, a future object and a task to calculate X
will both be created. The technique of lazy task creation optimizes this operation
by deferring the creation of the future object and the task until a steal operation
occurs. From the work-stealing perspective, sequential execution of (future X)

proceeds directly into the evaluation of X , but the associated work generator
creates the future object and spawns a task that executes the continuation of
the future expression, using the future object as a proxy for the actual value
of X . If no stealing occurs, these work generator operations will be skipped.

In addition to economizing on the cost of creating future objects, the lazy
task creation implementation in Mul-T further reduced the cost of future by
merging the work generation deque into the call stack and adopting a stack
frame format for future expressions that includes linking and synchronization
fields that enable cutting the stack during a steal operation and moving the base
of the stack to a new processor [28]. Fig. 7 shows a call stack including several
of these frames, and Fig. 8 shows how a steal operation is performed using this
data structure.

The lazy task creation stack includes the minimum bookkeeping information
that is needed for implementing the steal operation. This information consists
of pointers associated with the stack that point to the work generator frames
(referred to in [28] as lazy continuations) that are closest to the base and to the
top of the stack, along with pointers in each lazy continuation that point to the
next higher and lower lazy continuations in the stack. (The lazy continuations
are shown as thick gray lines in the figures.) This doubly linked list of pointers
to frames in the stack effectively implements the work generation deque.

When no steal occurs, processing of a future expression begins by simply
building a lazy continuation on the stack and updating the pointers to link it into
the doubly linked list, and ends by unlinking the lazy continuation and restoring
the stack to its previous condition. A steal operation breaks the stack at the
deepest lazy continuation, moving the base of the stack to the thief processor,
creating the future object, and letting execution continue on the thief processor

Past and Future Directions for Concurrent Task Scheduling 179

Fig. 7. A lazy task creation stack including several work generator stack frames

Fig. 8. A lazy task creation steal operation where thief processor P2 steals work from
victim processor P1

using the future object as a proxy for the value that will be computed on the
victim processor. When the victim processor finally returns from the bottommost
stack frame on its stack, the value returned will be put into the future object.
There is a potential race condition between popping a lazy continuation and
having the same lazy continuation stolen by another processor. For this reason,
a synchronization operation is needed when popping a lazy continuation; details
are found in [28]. The lazy task creation concept can be generalized beyond
the case of future to include any work-stealing implementation that defers the
creation of synchronization objects until a steal operation occurs and integrates
the work generation deque with the processor stack.

180 R.H. Halstead

Lazy task creation for Mul-T was implemented both on an Encore Multimax
multiprocessor and the MIT Alewife machine [1]. Table 1 gives the cost of the
lazy task creation operations on each of these platforms [28]. (For low-level op-
timization reasons, the data structures supporting the lazy task creation stack
were not organized exactly as in Fig. 7, but the overall concept was the same.
Interested readers are referred to [28].)

The cost of the simple case, where a lazy continuation is created but never
stolen, is 12 instructions on the Encore and 9 on Alewife, which was designed to
support lazy task creation efficiently. This number is certainly within the same
order of magnitude as the cost of a procedure call, suggesting that the Mul-T
project at least came close to its performance goal for this operation. Compared
with the cost of eagerly spawning a new task and enqueuing it for execution,
which was 118 instructions on the Encore, we can see that the lazy task creation
mechanism provided a major improvement in the minimum performance cost of
concurrency annotations. (The Alewife implementation does not have a cost for
eager task spawning because it used lazy task creation exclusively, and its cost
for lazy task creation does not include a term that depends on the stack size
because a stack representation was used that avoided the need to copy the base
of the stack during a steal operation.)

Table 1. Cost (in instructions) of lazy task creation operations in Mul-T

Operation Encore Alewife

Push and pop lazy continuation 12 9
Steal 150 + (4 for each word copied) 100
Spawn non-lazy future 118

Naturally, the cost of a steal operation has the same order of magnitude as
the cost of eagerly spawning a task, and is even somewhat greater because of
the additional complexity of taking apart an existing stack, but the numbers
still show that we could afford to steal up to 50% of all lazy continuations and
still pay a lower overall cost for parallelism management than if all tasks had
been spawned eagerly. In a typical situation where the available concurrency
exceeds the number of processors (or cores), the fraction of lazy continuations
that are eventually stolen is usually far less than 50%, as shown by measurements
of various example applications on Mul-T [28]. Thus, lazy task creation makes
the exposure of concurrency cheap enough to allow programmers to aggressively
expose large-scale, data-dependent concurrency in application programs.

The task graphs for computations that use future are not always “fully
strict,” so the optimality proof for work stealing by Blumofe and Leiserson [7]
does not always apply to this case. Nevertheless, the performance measurements
on Mul-T show reasonable behavior for the applications tested [28].

One disadvantage of the lazy task creation mechanism is that it leads to a
“cactus stack” structure [18] when continuations are stolen. As implemented on

Past and Future Directions for Concurrent Task Scheduling 181

the Encore and shown in Fig. 8, supporting this stack entails moving segments
of stack from one memory address to another. Legacy subroutine libraries and
calling conventions on standard processors do not anticipate stack frames being
moved, and often store pointers to data on the stack which will become incorrect
if a stack frame is moved. This becomes a problem if there is ever a call from
inside a legacy library back out to application code that may include concurrency
constructs [25]. Such calls can easily occur if a legacy library receives arguments
that are pointers to callback procedures.

The Mul-T implementations did not use legacy libraries in this way, so they
did not suffer from this limitation, but Cilk does allow application code to use
legacy libraries. Early Cilk systems avoided the cactus-stack problem by forbid-
ding program structures in which libraries call back into application code. Intel
Cilk Plus [19] allows such callbacks at the cost of using multiple linear stacks to
support the cactus stack [25], and the Cilk-M research prototype uses thread-
local memory mapping to avoid moving stack frames to new virtual memory
addresses [23].

3.6 Work Stealing and Lazy Task Creation Today

Task scheduling by work stealing has become mainstream, used by many systems
including Cilk, Intel Threading Building Blocks, X10, Fortress, Phoenix, and
others. Of these systems, Cilk has the longest pedigree, having originated in 1993
and evolved through many iterations to current systems including Cilk++ [24]
and Intel Cilk Plus [19].

Cilk began as an extension of the C programming language, augmented with
spawn and sync annotations to support fork-join concurrency, eventually adopt-
ing lazy task creation for task management [25]. The Cilk++ dialect [24], based
on C++ rather than C, also introduced a simple cilk for keyword for paral-
lelizing loops, as well as reducer hyperobjects for combining results from parallel
tasks without introducing locks. Cilk++ ultimately led to the Intel Cilk Plus
product [19]. The various Cilk versions have served as the base for implement-
ing large-scale applications such as the chess programs StarTech, *Socrates, and
Cilkchess.

Intel Threading Building Blocks [33,32,20] uses a work-stealing model when
tasks are spawned using the continuation-passing idiom. OpenMP also supports
task parallelism by means of the task directive [4,9]. There is no fair scheduling
guarantee for tasks, and tasks that are designated as “untied” are available to be
moved between processors. This design opens the way for using a work-stealing
scheduler, although the specification does not appear to require it [4].

Various research languages have also incorporated the work-stealing and lazy
task creation concepts. Work stealing has been used in the XWS package [11]
that was implemented for the X10 language [10]. Fortress [34,3] also provides
fork-join parallelism based on tasks that are not scheduled fairly, and uses work
stealing to move tasks between processors. Phoenix [35] uses lazy task creation
in a parallel processing system in which processors can join and leave the com-
putation dynamically.

182 R.H. Halstead

One very useful property of scheduling by work stealing, exploited by these
systems, is that when an application containing concurrency annotations runs
on one processor, it runs in the same sequential order as an unannotated pro-
gram. During application debugging, this property makes it easier to distinguish
fundamental algorithmic bugs from bugs caused by race conditions: if an ex-
ecution on one processor produces the same incorrect result that is produced
by a parallel execution, then there is a bug in the basic algorithm. Otherwise,
there is a problem with the way the concurrency annotations have been added.
Race-detection tools such as Cilkscreen [24,25] capitalize on this property to
detect potential data races just from sequentially executing an application with
instrumented code. Programming in a mostly functional style (see Section 2.3)
that minimizes the use of state changes to shared objects generally will also help
avoid programming bugs caused by nondeterminacy.

4 Speculative Computing

The task management techniques discussed above are implicitly based on the
assumption that all computations in a program are needed, and focus on how to
exploit concurrency between those mandatory operations as effectively as pos-
sible. Many applications also have opportunities for parallelism by executing
speculative computations that are not certain to be needed, but have some prob-
ability of being needed. Further performance improvements are often available
by spawning speculative computations to execute in parallel with the rest of an
application, without waiting for proof that the speculative computations will be
needed. Supporting speculative computations in a parallel system without losing
the benefits of a task-based, work-stealing scheduler presents several challenges,
which are discussed in this section.

4.1 Sources of Speculative Parallelism

Opportunities for speculative parallelism are especially common in applications
that involve searching or heuristics. The potential sources of speculative paral-
lelism in applications fall into several related, and somewhat overlapping, cat-
egories. The following discussion follows the framework laid out by Osborne
[30,31].

Multiple Approaches. Perhaps the simplest category of speculative paral-
lelism involves trying multiple approaches or strategies for solving a problem
in parallel. For example, many paths through a maze or graph can be tried in
parallel, or different strategies for factoring an algebraic expression, solving an
equation, or proving a theorem can be tried in parallel. These problems have the
property that as soon as any of the alternative approaches succeeds, the others
can be abandoned.

Multiple-approach speculative parallelism is often expressed using the parallel
AND and parallel OR control structures. These operators have been defined

Past and Future Directions for Concurrent Task Scheduling 183

in various ways, but a simple definition of parallel AND is that the expression
(pand X1 X2 . . . Xn) returns false if any of the operand expressionsXi returns
false and otherwise returns the value of Xn. Parallel OR can be defined so
that (por X1 X2 . . . Xn) returns false if all the Xi return false, and otherwise
returns the value of the first expression Xi that does not evaluate to false.

The corresponding sequential and and or operators traditionally work from
left to right, evaluating operands until it becomes clear what the value of the and
or or expression will be (for example, until a non-false operand value is found
in an or expression). When this point is reached, evaluation of the remaining
operands is skipped and the appropriate value is returned as the value of the
and or or expression.

In the parallel case, we can extend the sequential execution order by consid-
ering the leftmost operand of pand or por to be a mandatory computation but
also spawning speculative computations for the remaining operands. Consider-
ing the case of pand, if the mandatory operand finishes evaluating and yields
a true value, then the leftmost remaining operand becomes mandatory; and if
any operand (not necessarily the mandatory one) yields false, then the pand

expression should return false and all of its remaining subcomputations should
be canceled. Analogous reasoning applies to the por construct.

A very simple example of multiple-approach computation is the tree-equality
problem [30], where a program must determine whether two trees have the same
structure and equal values at their corresponding leaf nodes. (In this case, the
term “multiple approach” is easiest to understand if we suppose that the problem
to be solved is proving that the trees are not equal!) An obvious sequential
implementation of this computation is shown in Fig. 9.

(define (tree-equal a b)

(cond ((leaf? a) (leaf-equal? a b))

((leaf? b) false)

(else

(and (tree-equal (car a) (car b))

(tree-equal (cdr a) (cdr b))))))

Fig. 9. A sequential procedure that tests for tree equality

Simply replacing and with pand leads to the speculative parallel version shown
in Fig. 10. This parallel program actually has the capability of doing less work
than the sequential version—for example, in the case where the car trees are
equal and very large, while the cdr trees are trivially different—but of course
it is also possible that the parallel version will do more work. This behavior is
often seen in speculative computing situations.

The simple pand notation used here covers up many important issues that
need to be addressed. For example, when executing mandatory and speculative
operands of pand, further pand operators will be encountered, having their own
mandatory and speculative operands. Eventually we may get a whole tree of

184 R.H. Halstead

(define (ptree-equal a b)

(cond ((leaf? a) (leaf-equal? a b))

((leaf? b) false)

(else

(pand (ptree-equal (car a) (car b))

(ptree-equal (cdr a) (cdr b))))))

Fig. 10. A speculative parallel procedure that tests for tree equality

computations, where each arc in the tree is marked as either mandatory or
speculative relative to its parent. How should we prioritize a computation that
is reached by, say, a path that is labeled as mandatory-speculative-speculative
relative to a path that is labeled as speculative-mandatory-speculative? This
and many other important issues were noted by Osborne [30] and are briefly
reviewed in the remainder of this paper. Osborne also described and studied a
larger multiple-approach example: the EMYCIN benchmark originally developed
by Krall and McGehearty [26].

Order-Based Speculation. A second speculative computing style may be
termed “order-based” speculative computing [30,31]. This category includes
branch-and-bound and alpha-beta pruning algorithms. Here, we are generally
not looking for just any solution, but for a solution that is optimal according to
some metric. Even if the algorithm finds a solution that looks pretty good, all
other possible solutions need to be explored at least to the point where it be-
comes clear that they cannot possibly be better than an already found solution.
Since many solutions will need to be explored, at least to some point, exploring
these solutions can be a rich source of parallelism. Often there are heuristics that
predict which solutions are likely to be the best, however. Exploration of those
solutions needs to be given priority and not starved out by exploration of less
promising solutions.

A classic example of this style of speculation is the branch-and-bound solution
of the traveling salesman problem [30,31]. We may envision the solution of this
problem as a tree-structured search problem similar to the “N Queens” problem,
with a task responsible for further developing each partially developed path
(typically by spawning more tasks), except that a task should be abandoned as
soon as the cost of its path exceeds the cost of an already known complete path.
Also, it is beneficial to focus system resources on the partial solutions that look
most promising. Osborne used a heuristic of giving the highest priority to partial
paths that have the lowest value for the total cost of the partial path divided by
the number of nodes in the partial path [30].

Osborne also investigated problems that combine aspects of order-based and
multiple-approach speculation such as the Boyer theorem-proving benchmark [14]
and finding solutions for the Eight-puzzle, a children’s sliding piece puzzle [30,31].

Past and Future Directions for Concurrent Task Scheduling 185

Speculative Precomputing. A third category of speculative parallelism in-
volves precomputing values that may be needed in a computation, but are not
yet known to be definitely needed. One example of this kind would be a producer-
consumer situation where a producer produces a stream of values to be consumed
by a consumer. If resources are idle, they can be used to continue executing the
producer to produce more values even before it is known for sure that the con-
sumer will demand them [30,31].

4.2 Requirements for Speculative Task Scheduling

Parallelism from speculative computations is of lower quality than that from
mandatory computations because it is possible that a speculative computation
will not contribute to the application’s overall result. For this reason, scheduling
should ensure that speculative tasks do not take resources from mandatory tasks
that are available for execution.

Just as mandatory tasks have a higher worth than speculative tasks, some
speculative tasks may have a higher worth than others, and scheduling should
take these relationships into account. Measuring the worth of a speculative task is
itself a challenging problem that could benefit from more research, but intuitively
we expect it to depend on the probability that a speculative computation will
prove to be necessary as well as the cost of the speculative computation. Both
the benefit and the cost may only be known uncertainly, and as we saw above
in the case of pand and por, the estimated worth of a computation may change
as execution progresses and more information becomes available.

Considerable past research in speculative computing has focused on the idea
of using garbage collection to keep an unneeded speculative computation from
continuing and consuming unbounded resources [5], but this is not a very effi-
cient way to focus computing resources on the most important tasks. When a
speculative task becomes irrelevant—effectively, when its worth drops to zero—
its execution should be stopped as soon as possible. Waiting for the next garbage
collection is much too long.

Similarly, it is important to adjust scheduling policy on an ongoing basis to
reflect changes in the estimated worth of speculative tasks, as well as changes in
the number of available tasks at the various levels of worth. Low-worth specu-
lative tasks should not use resources to the exclusion of higher-worth tasks, and
speculative tasks should not use resources to the exclusion of mandatory tasks.
Adherence to these principles may, for example, require processors to suspend
execution of a speculative task when a mandatory or higher-worth speculative
task becomes available. Garbage collection still has a role to play, but only for
the final reclamation of resources for speculative tasks that are known to have
become irrelevant.

These are not easy requirements to satisfy, especially because the scheduling
operations involved must be efficient enough that they do not waste whatever
benefit is gained by exploiting speculative computing in the first place. This
is probably why there has not been much progress in supporting speculative
computing in the parallel computing frameworks that are currently in wide use.

186 R.H. Halstead

4.3 Applications at the System Level

Another reason for being interested in speculative computing support is that
many of the speculative computing requirements, such as the ability to stop
the execution of irrelevant computations and the ability to allocate resources
between higher-worth and lower-worth computations, have analogs at the op-
erating system level. Users interacting with a computer often ask for multiple
computations to be performed. One computation may be the “foreground” job
that is the user’s primary focus at the moment, while others are “background”
jobs that should execute as long as they don’t interfere with the foreground
job. Usually users want the foreground job to have first priority for computing
resources, while background jobs should proceed as quickly as possible with-
out slowing down the foreground job. This is not unlike a multiple-approach or
precomputing scenario for speculative computing, though the relationships that
need to be expressed are probably not as complex.

Also, users can change their minds and cancel a job after it has started, or
a job may need to be canceled after an exception occurs in one of its subtasks.
This is similar to the speculative computing case when a computation is found
to be irrelevant.

Scheduling jobs on a server that has parallel processing capabilities also has
points of similarity with speculative computing. Whenever these jobs have differ-
ent priorities or deadlines, we will want the scheduling mechanism on the server
to focus as many resources as possible on the highest-priority jobs and avoid
starving them in favor of executing lower-priority jobs.

4.4 The Sponsor Model

One way to attack the problem of speculative parallelism is to represent the
goal of each speculative subcomputation explicitly as an object that contains
the information needed to make correct scheduling decisions. This approach was
explored by Osborne [30,31] in the Multilisp project, who called these objects
sponsors following the terminology introduced by Kornfeld and Hewitt [22]. The
original sponsor concept was that a sponsor is a source of energy to run a com-
putation, much as a research sponsor is the source of resources for carrying out
a research project. The sponsor would monitor the sponsored computation, ad-
justing the resources allocated to it according to the results being generated by
the computation as well as any pertinent news about other computations in the
system.

Figure 11 illustrates the structure of a computation using the sponsor model.
The sponsors are represented by the triangular objects in the diagram and the
tasks are represented by rectangles. We can see that generally each specula-
tive (or mandatory) subcomputation can consist of multiple tasks that are all
governed by the same sponsor. Sponsors can also govern other sponsors that rep-
resent subcomputations of the sponsored computation. These subcomputations
can be mandatory or speculative relative to the sponsored computation at the
next higher level, which itself could be mandatory or speculative relative to the

Past and Future Directions for Concurrent Task Scheduling 187

Fig. 11. A collection of speculative and mandatory tasks governed by sponsors

overall computation. In the figure, the sponsors of mandatory computations are
shaded.

At this level of detail, the sponsor model is quite general and can repre-
sent pretty much any speculative computing scenario, but of course the sponsor
model cannot be implemented without deciding what parameters are actually
represented in the sponsor objects, how they are managed, and how they are
used in scheduling decisions. This is one of the major areas in which the sponsor
model needs further work, but for now let us suppose that each sponsor includes
a numerical priority used for scheduling decisions, with larger priority values
indicating computations of greater worth. In Fig. 11, these priority values are
represented using the letter ‘p’.

The investigation by Osborne [30,31] confined itself to studying multiple-
approach and order-based speculation using numerical priorities of this kind,
where a higher-priority task would completely pre-empt a lower-priority task
(subject to possible time lags while the scheduling mechanism discovers that a
pre-emptable lower-priority task exists). For example, in the traveling salesman
solver the priority of each sponsor was set to the negative of that sponsor’s par-
tial path cost, divided by the number of nodes in the partial path. However, it
is obvious that in some cases scheduling policies other than simple pre-emptive
priority-based scheduling will be required, such as fair scheduling that allocates
some percentage of effort between a sponsor’s subcomputations. Further com-
ments on this point appear in Section 4.6.

4.5 Using the Sponsor Model

In the presence of speculative computing and sponsors, the scheduling rules
change. Within a sponsored subcomputation, we still prefer depth-first execu-
tion of tasks except when a steal occurs, but in addition, processors should
always work on the highest-worth available tasks. This means that if a proces-
sor is busy with a task and a higher-worth task becomes available, work on the

188 R.H. Halstead

lower-worth task should be suspended so that the higher-worth task can be ex-
ecuted. Sponsors may also dynamically gain or lose priority, so task scheduling
needs to be responsive to these events as well. Finally, if a computation loses its
sponsorship—effectively, if the worth of the computation drops to zero—then its
execution should not continue.

Taken literally, this philosophy could require a large amount of communica-
tion. In the simple case where all tasks are mandatory, scheduling-related com-
munication only occurs when a processor becomes idle and needs to find work
to steal from another processor. With the sponsor model, any time a proces-
sor creates new stealable work, it should determine whether another processor is
currently executing a task of lower worth. If so, that processor should be notified
to suspend execution of its current task so it can steal the higher-worth work and
execute it instead. Shared data structures that indicate the priority level of tasks
currently being executed, to support such notification decisions, can be expen-
sive to maintain and access, increasing the cost of task-management operations
that should be inexpensive, such as pushing a lazy continuation. Similarly, when
a sponsor’s worth changes, processors executing computations under that spon-
sor should reconsider whether to continue executing the same computation or
switch to something different. To keep the cost of scheduling operations within
reasonable bounds, it may be necessary to back off from the ideal scheduling
policy for speculative computations and implement an approximate policy in-
stead. The best way to accomplish this is a question that certainly needs further
investigation.

When a new task is spawned, by default its sponsor should be the same as its
parent task’s sponsor. However, control structures that create speculative sub-
computations need to extend the sponsor network to represent the relationship
between the various speculative subcomputations.

Parallel AND/OR with Sponsors. Fig. 12 shows how the sponsor network
should change when a parallel OR construct is encountered. (The ideas used
in the case of parallel AND are similar.) A new sub-sponsor is created for each
branch of the OR, and each of the new sub-sponsors is subordinated to the spon-
sor of the computation that has executed the parallel OR. The sub-sponsor re-
sponsible for the first subcomputation is made mandatory (relative to its parent
sponsor) because it is known that this value will be needed in order to determine
the value of the parallel OR. The other sponsors should be marked as specula-
tive, with priorities that drop from left to right, since the second subcomputation
is more likely to be needed than the third, and so on.

When any of the branches finishes, the other sub-sponsors should be updated
accordingly. For example, if any branch yields a non-false value, then all tasks
to its right should be downgraded to irrelevant, because it is known that their
results will not be used. On the other hand, if the mandatory branch yields a
false value, then the next branch to its right should be upgraded to mandatory
(relative to the sponsor of the overall parallel OR computation).

Past and Future Directions for Concurrent Task Scheduling 189

Fig. 12. Sponsor network generated by parallel OR operation

This discussion does not say what the priorities of the new sub-sponsors should
be. Of course these priorities can be set using an arbitrary “one size fits all”
strategy such as giving the highest speculative priority to the second operand, a
lower priority to the third operand, and so on, but the por operator could also
support annotations specifying the priorities to be used. It is hard to say more
than this until a range of multiple-approach applications have been studied and
the best priority structure for each has been determined.

Task Blocking and Sponsors. One of the problems that can occur with
priority-based scheduling is the priority inversion problem when a higher-priority
task H blocks waiting for a lower-priority task L to complete some action. In
the Multilisp context, this could happen when H waits for the value of a future
object that is being computed by L, or when H needs to obtain a lock that
is currently held by L. In the sponsor model, this problem can be solved by
having H ’s sponsor temporarily add its sponsorship to L, effectively elevating
the priority of L [30,31]. Fig. 13 shows an example of this situation, where the
priority 10 sponsor of a blocked task adds its sponsorship to a formerly priority
5 task (shown lightly shaded) that must execute before the blocked task can
proceed.

Depending on how much is known about how to satisfy the condition that is
blocking the high-priority task H , H ’s sponsor could add its sponsorship directly
to a task that will satisfy the condition (as shown in Fig. 13) or to the sponsor
of a whole subcomputation that will satisfy the condition. This latter situation
could occur, for example, if H is waiting for a future object that will contain the
result of a parallel OR computation. Given an effective mechanism for adjusting
task schedules in response to changes in sponsor priorities, the above technique
will automatically solve the priority inversion problem. It is important to note
that this strategy does require enough bookkeeping so that any time a task blocks
waiting for a condition to be satisfied, the task or sponsor that is responsible for
satisfying the condition can be identified and sponsored so it will make progress.

4.6 Challenges for the Sponsor Model

Although the sponsor model is surely general enough to represent a wide range
of speculative computing scenarios, some major challenges must be addressed
before it can be put into widespread use.

190 R.H. Halstead

Fig. 13. Sponsor network generated when a task blocks, waiting for another task

The first of these challenges concerns the range of task scheduling policies that
a sponsor can employ. The examples above have assumed a simple pre-emptive
priority system: given two sponsors A and B, either A’s tasks should always take
precedence over B’s, B’s tasks should always take precedence over A’s, or both
are at the same level and therefore any ordering of A’s tasks relative to B’s is
acceptable. However, in certain types of search, the optimal approach involves
dividing processing resources fairly between A’s tasks and B’s, for example so
that A’s tasks will get a certain given percentage of the available resources and
B’s will get another given percentage. This can be the best approach when it
is expected that one of two approaches to a problem could yield an answer
fairly quickly but we don’t know in advance which approach will be the best.
In such a situation, we don’t want to work exclusively on A’s tasks for a long
time if it turns out that B’s tasks would have yielded an answer quickly. In
addition to priority scheduling and fair resource sharing, are there other kinds of
scheduling policies that also need to be implementable using the sponsor model?
This question could use more thought.

There is also the question of what “resources” are controlled by sponsors. The
discussion above implicitly assumes that processing time is the main resource
of interest, so a sponsor is mainly in charge of monitoring and deciding how
processing time is used. However, memory space is also an important resource
that may need to be controlled in some situations.

The second challenge concerns the best way to represent a sponsor’s attributes
so it can be compared to other sponsors for scheduling purposes. Schedulers
based on numerical priorities and real-time deadlines have often been built in the
past. We can also consider defining the worth of a computation as a cost/benefit
ratio, as discussed above. Each of these metrics has advantages and disadvan-
tages, some of which are discussed by Osborne [30,31].

Past and Future Directions for Concurrent Task Scheduling 191

The third challenge involves defining the “combining rules” to use in the spon-
sor network when sponsors sponsor other sponsors. Whatever attribute values
are chosen to characterize a sponsor, there has to be a rule for deriving the ef-
fective attribute values for every sponsor from its position in the network. For
example, suppose sponsors have numerical priorities and there is a sponsor S7

with priority 7 that has a child sponsor S7,5 whose priority is 5 relative to S7,
and then there is another sponsor S5 with priority 5 that has a child sponsor
S5,7 whose priority is 7 relative to S5. Now if there is a task T7,5 sponsored by
S7,5 and another task T5,7 sponsored by S5,7, what priority relationship should
exist between these two tasks? A case can be made that T7,5 should get priority
because it is part of a higher-priority top-level computation, but this conclusion
needs to be studied to determine whether it makes sense in general.

Correctly addressing the above challenges requires being able to explain how
to handle a wide range of practical speculative computing problems by defining
sponsor networks with the right attributes. For each of several important kinds
of problems (branch and bound, alpha-beta pruning, parallel AND/OR, etc.)
there should be an explanation of how to set up the sponsor network for that
kind of problem, along with some kind of proof or demonstration that a good
schedule will result.

In addition to defining the semantics of sponsors, as discussed above, an ef-
ficient implementation approach must be developed. This implementation must
address challenges such as efficiently propagating sponsorship upgrades and
downgrades through the sponsor network and efficiently notifying processors
about the existence of high-priority work that they should steal. The basic effi-
ciency benefits of work stealing and lazy task creation need to be preserved as
much as possible, or else programmers will have to become stingier in identify-
ing opportunities for parallelism, which in turn may result in less concurrency
available to exploit.

A final challenge involves correctly closing down and deleting tasks that have
become irrelevant. The details depend on the source language used for program-
ming, but obviously there are situations, such as when a task holds a lock, in
which it is not correct to just stop execution and delete all traces of the task as
soon as it is declared to be irrelevant. One interesting idea is to use the mecha-
nism for avoiding priority inversions to clean up a task’s use of shared resources:
any held locks or other resources that need cleaning up can have a pointer to the
task which will clean them up if it continues to execute, and if these resources
are ever needed elsewhere in the computation, that task (even if otherwise irrel-
evant) can be sponsored for as long as it takes to clean them up. Also, using a
mostly functional programming style will help minimize the number of shared
mutable objects that need this kind of treatment; for applications whose use of
shared mutable objects is significant, a transactional approach to updating these
objects may provide a good framework for doing the necessary cleanups when a
computation is declared irrelevant.

192 R.H. Halstead

It is probably best to rely on a garbage collector for the job of finally deleting
the storage used by irrelevant tasks. This will ensure that a task is never deleted
while there is still a chance that it might be reawakened to clean up a resource.

4.7 Speculative Computing Today

Most current systems provide some support for programming speculative com-
putations, which testifies to the importance of this issue. The support that is
provided in these systems is much simpler than the general sponsor model, how-
ever.

Cilk-4 introduced inlet and abort keywords [13,25] for speculative comput-
ing support, which is fairly important for the chess-playing applications that
were one of the major showcases for the Cilk technology [12]. Inlets provide a
way to execute computations in a parent task when a child task returns a value,
and abort may be executed within an inlet procedure so that the arrival of
a value from one subcomputation kills off other subcomputations rendered ir-
relevant by the arrival of that value. The Cilk runtime system thus provides a
mechanism for killing irrelevant computations but does not provide control over
how resources are allocated between competing speculative subcomputations.

Intel Threading Building Blocks [33,32,20] includes the concept of “enqueued”
tasks, which are scheduled in a “first-come first-serve” order, which approxi-
mates fair scheduling. The availability of enqueued tasks along with “spawned”
tasks which are executed in depth-first order provides a small amount of control
over scheduling, which is potentially useful for speculative computing. Thread-
ing Building Blocks also includes the concept of “task group context nodes,”
which have some similarities with sponsors. Each task group context node is as-
sociated with a computation or subcomputation, and the nodes are organized
into a tree whose structure mirrors the nesting of subcomputations. When an
exception occurs in a subcomputation, the remaining tasks that belong to that
subcomputation are canceled and then the exception is rethrown to the caller
that is waiting for the subcomputation’s result. Like Cilk’s abort mechanism,
this provides a way to cancel irrelevant computations but it does not provide
control over how speculative computations are scheduled relative to each other.

Fortress [34,3] includes a spawn construct that creates threads that are sched-
uled fairly with respect to each other. Implicit tasks that are created within
these threads are also scheduled fairly with respect to each other. This again
provides a building block for speculative computing but with only a very limited
degree of control over scheduling. X10 [10] also addresses the exception propa-
gation problem by means of a finish statement that waits for all activity in a
subcomputation to terminate. This statement serves as a point for rethrowing,
if an exception was generated anywhere in the subcomputation.

Although not specifically aimed at speculative computing, there has been a
whole subculture of research projects looking at how to share a multiproces-
sor between parallel jobs. The A-STEAL algorithm [2], developed in the Cilk
research project, is an example. It divides the processors of a multiprocessor
machine among the jobs that are asking for resources, adjusting the number of

Past and Future Directions for Concurrent Task Scheduling 193

processors assigned to each job based on the job’s demonstrated ability to fully
use the processors assigned to it. Algorithms similar to A-STEAL could be an
effective way to enable a set of speculative computations to share a machine with
some degree of fairness.

There is a lot of evidence that speculative computing is an important idea,
judging from the fact that every parallel processing system that has been put out
for real, general-purpose applications includes at least some support for it. How-
ever, none of the systems surveyed provides a built-in capability for scheduling
different tasks according to their worth. While there are still many important
open questions about the sponsor model, it appears expressive enough to han-
dle speculative computing requirements in a much more principled way than
today’s parallel computing systems. If reasonable answers can be found to the
many open questions about sponsors, it would be very appealing to have a par-
allel computing system that uses lazy task creation to manage low-level tasks
and uses sponsors for the higher-level management of speculative subcomputa-
tions. Such a structure could even provide benefits at the operating system level
by providing a principled framework for allocating resources between tasks that
belong to different user-level jobs. Can sponsors efficiently provide such a useful,
general approach to the speculative computing problem? More investigation will
be needed in order to find out.

5 Conclusion

With the advent of multicore processors, parallel computing has emerged after
a long gestation period and is now a vital technology for improving the perfor-
mance of many everyday applications. This development has brought renewed
interest to various technologies, developed in earlier eras of parallel computing
research, for exploiting shared-memory MIMD systems.

Effective and inexpensive task scheduling is one of the principal requirements
for successful parallel computing. The space and time benefits of work-stealing
scheduling and lazy task creation, developed and prototyped during the 1980s,
have now been recognized and these approaches have been incorporated into
systems that can handle “industrial strength” parallel computations.

While these ideas are effective for a wide range of applications, they do not
fully address the needs of applications that involve search or heuristic problem
solving. Achieving the best performance for these applications on a multicore or
multiprocessor system requires exploiting speculative computing, in which some
tasks are executed even before it is certain that their results will be required.
Various contemporary systems for parallel computing incorporate features to
support speculative computing, but these features are often ad hoc and provide
only part of the control over scheduling that is needed in speculative applications.

The sponsor model is an old idea that offers a general and principled approach
to speculative computing, but many details remain to be worked out before it
can be deployed as an “industrial strength” computing technology. Perhaps a
future survey of parallel computing technologies will be able to report that a

194 R.H. Halstead

combination of lazy task creation with the sponsor model has been developed into
a truly powerful and efficient tool for scheduling the whole range of application
programs on parallel machines.

Acknowledgments. The author very gratefully acknowledges the support by
the symposium organizing committee that enabled him to participate in the
symposium, as well as the efforts of the anonymous referees, whose comments
have significantly improved this paper.

References

1. Agarwal, A., Bianchini, R., Chaiken, D., et al.: The MIT Alewife Machine: Archi-
tecture and Performance. In: 22nd Annual Int’l. Symp. on Computer Architecture,
pp. 2–13 (1995)

2. Agrawal, K., Leiserson, C., He, Y., Hsu, W.: Adaptive Work Stealing with Paral-
lelism Feedback. ACM Transactions on Computer Systems 26(3), 7:1–7:32 (2008)

3. Allen, E., Chase, D., Hallett, J., et al.: The Fortress Language Specification Version
1.0 (2008), http://research.sun.com/projects/plrg/fortress.pdf

4. Ayguade, E., Copty, N., Duran, A., et al.: The Design of OpenMP Tasks. IEEE
Trans. on Parallel and Distributed Systems 20(3), 404–418 (2009)

5. Baker, H., Hewitt, C.: The Incremental Garbage Collection of Processes. MIT
Artificial Intelligence Laboratory Memo 454, Cambridge, MA (1977)

6. Blumofe, R., Joerg, C., Kuszmaul, B., et al.: Cilk: An Efficient Multithreaded
Runtime System. J. Parallel and Distributed Computing 37(1), 55–69 (1996)

7. Blumofe, R., Leiserson, C.: Scheduling Multithreaded Computations by Work
Stealing. J. ACM 46(5), 720–748 (1999)

8. Burton, F.W., Sleep, M.R.: Executing Functional Programs on a Virtual Tree of
Processors. In: Proc. of the 1981 Conf. on Functional Programming Languages and
Computer Architecture, FPCA 1981, pp. 187–194 (1981)

9. Chapman, B., LaGrone, J.: OpenMP. In: Encyclopedia of Parallel Computing, pp.
1365–1371. Springer (2011)

10. Charles, P., Donawa, C., Ebcioglu, K., et al.: X10: An Object-Oriented Approach
to Non-Uniform Cluster Computing. In: OOPSLA 2005, pp. 519–538 (2005)

11. Cong, G., Kodali, S., Krishnamoorthy, S., et al.: Solving Large, Irregular Graph
Problems Using Adaptive Work-Stealing. In: International Conf. on Parallel Pro-
cessing, pp. 536–545 (2008)

12. Dailey, D., Leiserson, C.: Using Cilk to Write Multiprocessor Chess Programs. J.
Int. Computer Chess Assoc. 24(4), 236–237 (2002)

13. Frigo, M., Leiserson, C., Randall, K.: The Implementation of the Cilk-5 Multi-
threaded Language. In: ACM SIGPLAN 1998 Conf. on Programming Language
Design and Implementation, pp. 212–223 (1998)

14. Gabriel, R.: Performance Evaluation of Lisp Systems. MIT Press, Cambridge
(1985)

15. Halstead, R.: Multilisp: A Language for Concurrent Symbolic Computation. ACM
Trans. on Programming Languages and Systems 7(4), 501–538 (1985)

16. Halstead, R.: Vista: un outil générique pour visualiser l’exécution de programmes
parallèles. In: Proc. JFLA 1996, Journées Francophones des Langages Applicatifs,
INRIA—Collection Didactique, pp. 3–24 (1996) ISBN 2-7261-0944-6 (in French)

http://research.sun.com/projects/plrg/fortress.pdf

Past and Future Directions for Concurrent Task Scheduling 195

17. Halstead, R.: Multilisp. In: Encyclopedia of Parallel Computing, pp. 1216–1222.
Springer (2011)

18. Hauck, E., Dent, B.: Burroughs’ B6500/B7500 Stack Mechanism. In: Proc. AFIPS
Spring Joint Computer Conf., pp. 245–251 (1968)

19. Intel Corporation: Intel R C++ Compiler 12.0 User and Reference Guides (Septem-
ber 2010), Document Number 323271-011US (2010)

20. Intel Corporation: Intel Threading Building Blocks Reference Manual,
http://www.threadingbuildingblocks.org/documentation.php

21. Keller, R., Lindstrom, G., Patil, S.: A Loosely-Coupled Applicative Multi-
Processing System. In: NCC 1979, AFIPS Conf. Proceedings, vol. 48, pp. 613–622
(1979)

22. Kornfeld, W., Hewitt, C.: The Scientific Community Metaphor. IEEE Trans. on
Systems, Man, and Cybernetics 11(1), 24–33 (1981)

23. Lee, I., Wickizer, S., Huang, Z., Leiserson, C.: Using Memory Mapping to Support
Cactus Stacks in Work-Stealing Runtime Systems. In: PACT 2010, pp. 411–420.
ACM (2010)

24. Leiserson, C.: The Cilk++ Concurrency Platform, J. Supercomputing 51(3), 244–
257 (2010)

25. Leiserson, C.: Cilk. In: Encyclopedia of Parallel Computing, pp. 273–288. Springer
(2011)

26. Krall, E., McGehearty, P.: A Case Study of Parallel Execution of a Rule-Based
Expert System. Int’l J. of Parallel Programming 15(1), 5–32 (1986)

27. Kranz, D., Halstead, R., Mohr, E.: Mul-T: A High-Performance Parallel Lisp. In:
ACM SIGPLAN 1989 Conf. on Programming Language Design and Implementa-
tion, pp. 81–90 (1989)

28. Mohr, E., Kranz, D., Halstead, R.: Lazy Task Creation: A Technique for Increas-
ing the Granularity of Parallel Programs. IEEE Trans. Parallel and Distributed
Systems 2(3), 264–280 (1991)

29. Nichols, B., Buttlar, D., Farrell, J.: Pthreads Programming: A POSIX Standard
for Better Multiprocessing. O’Reilly, Sebastopol (1996)

30. Osborne, R.: Speculative Computation in Multilisp. Tech. Report MIT/LCS/TR-
464, MIT Laboratory for Computer Science, Cambridge, MA (1989)

31. Osborne, R.: Speculative Computation in Multilisp. In: Ito, T., Halstead Jr., R.H.
(eds.) US/Japan WS 1989. LNCS, vol. 441, pp. 103–137. Springer, Heidelberg
(1990)

32. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Pro-
cessor Parallelism. O’Reilly, Sebastopol (2007)

33. Robison, A.: Intel Threading Building Blocks (TBB). In: Encyclopedia of Parallel
Computing, pp. 955–964. Springer (2011)

34. Steele, G., Allen, A., Chase, D., et al.: Fortress (Sun HPCS Language). In: Ency-
clopedia of Parallel Computing, pp. 718–735. Springer (2011)

35. Taura, K., Kaneda, K., Endo, T., Yonezawa, A.: Phoenix: A Parallel Program-
ming Model for Accommodating Dynamically Joining/Leaving Resources. In: ACM
PPoPP 2003, pp. 216–229 (2003)

http://www.threadingbuildingblocks.org/documentation.php

Controlling Concurrency and Expressing

Synchronization in Charm++ Programs

Laxmikant V. Kale and Jonathan Lifflander

University of Illinois at Urbana-Champaign
{kale,jliffl2}@illinois.edu

Abstract. Charm++ is a parallel programming system that evolved
over the past 20 years to become a well-established system for program-
ming parallel science and engineering applications, in addition to the
combinatorial search applications with which it started. At its earliest
point, the precursor to Charm++, the Chare Kernel, was a purely reac-
tive specification, similar to most actor languages. This paper describes
the evolution of a series of concurrency control mechanisms that have
been deployed in Charm++ to tame this unrestricted concurrency in
order to improve code clarity and/or to improve performance.

1 Introduction

One of the challenges in parallel programming, especially in science and engi-
neering applications, is resource management. This is especially true for dynamic
and irregular applications, such as those involving dynamic adaptive mesh re-
finements. Newer machines, with issues of power and component failures, also
create related challenges. A programming system supported by a smart adaptive
runtime system that automates resource management is therefore desirable.

Charm++ is a concurrent-objects parallel programming system that has been
used for programming science and engineering applications. With Charm++, one
programs in C++, providing a few additional declarations to facilitate parallel
mechanisms such as asynchronous method invocations. A Charm++ computa-
tion consists of a number of C++ objects that interact via asynchronous method
invocations. An adaptive runtime system controls and dynamically changes as-
signments of objects to processors, and also chooses the sequence in which ready
method invocations will execute on a given processor. These control mechanisms
empowers the runtime to automate load balancing, as well as implement other
resource management policies.

In this paper, we will focus on how concurrency and synchronization within
an individual object is expressed. We present these concepts, which have been
described in earlier literature [14,28] going over 20 years by us, in a pedagogical
and historical sequence, with illustrations from recent case studies.

We begin this paper with a brief history of the beginning of Charm++, to
elucidate the evolution of its constructs, and to set the context for the description
of concurrency control mechanisms in Section 3. From 1983 to 1985, a new paral-
lel execution model for logic programming was developed, called the Reduce-Or

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 196–221, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Controlling Concurrency and Expressing Synchronization 197

process model [26]. This allowed a relatively novel combination of AND and OR
parallelism. In particular, the main innovation was something called consumer-
instance parallelism. Given a Horn clause such as p(X), q(Y), r(X,Y), this
model was able to exploit independent-AND parallelism between p and q literals,
the OR parallelism underneath p (as well as q), and also the parallelism between
multiple instances of r created by incrementally joining solutions to p and q. This
was accomplished by having the activation record for the clause as a persistent
object. As each solution for p (or q) was returned to it, it combined them with
the stored (already-received) solutions to q (or p), and fired a task for computing
each instance (the so-called “consumer-instance”) of r so created. Initially, as a
part of a PhD thesis [25], this model was implemented in an interpreted mode,
working with Prof. David Scott Warren. Later, byte-code compilation [41] and
related optimizations were developed. However, for the theme of this paper, the
interesting part is the runtime system itself. The runtime system needed to have
a dynamic load balancer, to distribute all the goals across processors, especially
as the distributed memory architectures (such as the “hypercubes”, including
NCUBE, and iPSC/2) were targeted. It also needed prioritization to focus the
search on the most promising paths.

The main “applications” considered in the development of ROLOG (as the
compiled implementation of Reduce-Or Process Model was called) involved com-
binatorial search, including N-queens, Knight’s-tour, graph coloring, etc. [24,31].
Our interest shifted to the applications themselves, rather than the logic pro-
gramming language used to express them. Consequently, the speed of finding a
solution became an important goal in itself. These developments led to extraction
of the runtime system into a separate entity, called the chare kernel [32]. This
was a C-based parallel programming system. ROLOG itself was implemented on
top of the chare kernel.

The term chare was borrowed from an earlier project on parallel implemen-
tation of functional languages called RediFlow [33] by Keller, Lindstrom, et al.;
chare means a small task or a chore in old English. The activation records for
evaluation of a Rolog Clause mentioned above can each be implemented as a
chare. In the chare kernel, a chare was an object with its own ID; it was load
balanced by the system, and it was possible to send messages to a chare.

One will recognize an ABCL-style concurrent object [49,50,9], or an “actor”
in this description immediately [1], although we came to it from the functional
language implementations, and macro-dataflow ideas. The reactive kernel and
Cantor [4] were other relevant contemporary systems. However, the chare was
clearly very similar to the notion of a concurrent object or an actor developed
earlier by Agha [2] and Yonezawa [49] et al., which built upon Hewitt’s earlier
work [17]. The main differences, in retrospect, were minor up to this point:
a C-based implementation, reflecting an efficiency orientation, and a focus on
combinatorial search applications. From the language point of view, one differ-
ence was that, unlike actors, chares did not have access to their mailboxes. They
simply executed every method anyone invoked on them.

198 L.V. Kale and J. Lifflander

There were potentially multiple invocations that were ready on a processor,
stored in a prioritized message queue. The system picked the next message from
this queue, invoked it on the named object, and it selected another message only
when it returned. Any guards or internal synchronization within a chare were
the responsibility of user’s code within the method. This typically led to a lot
of buffering and flags indicating what is ready and what is not. The reactive
notation also affected the expression of the overall flow of control. A series of
solutions to this problem constitute the focus of this chapter. We return to
this theme in section 3, after reviewing the somewhat orthogonal but important
developments within the Charm++ model in the next section.

Note that the chare kernel was developed before C++ had really taken off. So
the language (called Charm by 1991), while object-based, was translated to C by
a simple translator. In 1992, with increasing popularity of C++, a C++-based
version was created, and it was called Charm++.

2 Charm++ and CSE Applications

In the early 1990’s, the attention of Charm++ developers shifted to applica-
tions in computational science and engineering (CSE), from the combinatorial
search applications that were dominant earlier. In part because of the nature of
these applications, and because of the pragmatic orientation that CSE applica-
tions necessitated, several new features and language constructs were developed
that improved expressiveness of Charm++ in comparison with the plain Chare
Kernel as well as the Actor languages of that time.

The first of this was the notion of organizing the chares into indexed collec-
tions. This followed naturally from the need to support domain decomposition
methods used in CSE. Consider a two-dimensional decomposition of a 2D domain
in fluid dynamics. A single chare is responsible for one chunk of this decompo-
sition. It needed to communicate (its borders) with the four neighboring chares.
But what does “neighboring” mean? In the plain Charm of that time, one would
have to create a network of chares, and pass IDs from one to the other in complex
manner to ensure that everyone had the IDs of the four chares they needed. The
need for an indexed organization was anticipated and developed in early work
by Sanjeev Krishnan and Joshua Yelon [42,48]. These ideas were developed into
the notion of a “chare array”: an indexed collection of chares [37]. Although
they were called “arrays”, the index could be quite general, supporting sparse
arrays as well as collections indexed by bit-vectors or even strings. A program
(or more accurately, a computation) consisted of one or more chare array. These
were typically created at the beginning of the computation by a “main” chare,
but they could also be created dynamically in the middle of the computation.

Method invocation was directed to an individual member of the collection:
A[i].foo(x,y) caused an asynchronous method invocation (“asynchronous” in
that it returned immediately to the caller) being sent to the i’th member of the
collection whose ID was represented by “A”. The system took charge of global
location management via a scalable scheme [37], so that it could identify the
processor on which the named chare lived, and deliver the message to it.

Controlling Concurrency and Expressing Synchronization 199

For plain chares, their “seeds” (the messages containing the constructor ar-
guments) were moved around by the load balancers; but once they took root
(i.e. were installed on a processor, and executed their constructor), they were
not allowed to migrate. For combinatorial search applications, where new chares
were created all the time, this was a reasonable strategy. In contrast, chare ar-
ray members were allowed to migrate. This allowed CSE applications to be load
balanced dynamically. Observing that these applications tended to exhibit the
principle of persistence [30], a suite of measurement-based load balancing strate-
gies [8] were developed that periodically re-examine the load and migrate chares
to restore balance. Research on such adaptive load balancers continues to date,
and Charm++ provides an excellent proving ground for new load balancing
ideas.

The adaptive runtime system, of which the load balancers are a part, has
continued to evolve. It now supports features such as automatic checkpoint-
ing [52,40], communication optimizations [34], fault tolerance, and power-and-
temperature optimizations [43].

The Charm++ model and all its constructs described so far do not have the
notion of a “processor” in them. For the sake of practicality, processor-level con-
structs were added: the most basic of these mechanisms allowed specification on
which processor to create a given chare. A more interesting example was a con-
struct called branch-office chare [21] (later renamed chare group). A chare group
consists of a set of chares such that there is exactly one chare (the “branch”) on
each processor. A regular chare, which does not know which processor it is on,
can simply ask for a pointer to the local branch of a chare group, and invoke
regular C++ methods on it. The members of the group can communicate with
each other just as if they are chare array members—using the processor num-
ber as the index. This construct allowed development of many support libraries,
including the load balancers mentioned above.

The base language described above does not have any global variables. Various
types of global variables, based on specific modes of information sharing, were
added early on to the language [44].

Several CSE applications have been developed using Charm++. NAMD for
biomolecular simulations was developed in mid 1990s and has continued to evolve
with Charm++. Other applications span topics such as computational astron-
omy [20], quantum chemistry and nanomaterials [35], agent-based simulation of
contagion [5], etc. Also, several higher level languages have been developed using
Charm++ [27].

2.1 Comments on the Charm++ Model

Fairness and Scheduling Strategy. By default, Charm++ processes pending
method invocations in FIFO order. Also, method invocations by an object on
itself are explicitly specified as either in-line or asynchronous by the programmer.
This thus pushes the onus on fairness to the programmer; with FIFO, all the
explicitly scheduled invocations will be executed fairly. However, Charm++ also
supports prioritized queues, instead of (or in addition to) FIFO queues. In this

200 L.V. Kale and J. Lifflander

case, the execution may not be fair. Again, the responsibility for ensuring non-
starvation is mostly borne by the programmer.We have found this to be adequate
for the applications we have developed so far. Further, the scheduler itself is
pluggable component; so it is possible, for example, to replace it with one based
on “lottery-scheduling” principles, where one selects between tasks randomly,
with probabilities determined by the priority of the task.

Message Passing Semantics. In Charm++, messages are passed by value by
default. If the serialization methods are implemented correctly for a user-defined
type, a deep copy will be made of the data being serialized. However, if Charm++
is used with shared memory, data within a node can be passed by pointer if the
programmer indicates that the data should be conditionally packed: only packed
into a message when the data leaves the node. If a method invocation is marked
as conditional, the programmer must ensure that the semantics are correct (e.g.
the data is only read in that method).

3 Concurrency Control within a Parallel Object

The earliest version of Charm supported a fairly flat and reactive control struc-
ture. A chare was defined by a series of “entry points” (later called “entry meth-
ods” in Charm++), in addition to a set of data members and private methods.
Its behavior is specified as a set of reactions: if the chare gets an invocation for
its entry method A, it will execute the body of method A, and so on. The con-
currency in such chares is unrestrained. Such a reactive specification does not
allow a clear description of the life cycle of a chare. Also, it leads to a cluttered
program, with buffers, flags and counters for keeping track of where the chare is
in its life-cycle. This section, which is the main topic of the paper, describes three
notational mechanisms for constraining the concurrency — specifying which of
the many possible actions a chare can execute will be allowed to execute — and
simplifying the expression of the life-cycle of a chare.

3.1 Dagger

The Dagger notation, developed around 1993 [13], allows specification of depen-
dencies between computational actions and messages within a chare. A dag-chare
is a special type of chare that supports such specification. A chare definition
consists of a set of computational blocks called when-blocks. Each when-block is
preceded by a list of dependencies. There are two kinds of dependencies: entry-
method names, and condition variables. A condition-variable is set by calling
ready(condition-variable-name). A message sent to an entry method is not
eligible to be looked at until it is expected. An entry method (named, say, EP)
is marked as expected by calling expect(EP). A when-block is ready to execute
when all the condition variables in its dependency list are set and all the entry
method invocations in its dependency list are both expected and received.

Controlling Concurrency and Expressing Synchronization 201

A when clause has the form: when g0 , ... , gk : { computation } where each
gi is either a condition variable or the name of an entry method.

The collection of when clauses defines a static dataflow graph. This graph
both allows and constrains concurrency within an object. It is important to
remember that all the actions within a chare take place on a single processor.
So, when multiple actions within an object are described as “concurrent”, it does
not imply any parallel execution between them.

Consider the following code fragment, based on an example from the first pa-
per about Dagger [12]. The data-flow graph corresponding to this chare definition
is shown in Figure 1.

dag chare C {
// ... declarations of local variables, condition variables,
// ... entry methods and private methods

when init: { ... Computation C0 ... ; expect(e1); expect(e2); }

when e1: { ... Computation C1 ... ; ready(R); }

when e2: {... Computation C2 ... ; expect(e3); }

when R, e3 : { ... Computation C3 ... ; }
}

C0

C1

C2

C3
e1

e3e2

Fig. 1. Example dependency graph that could be expressed using the Dagger notation

The final computational block Computation3 is dependent on receipt of a mes-
sage directed at entry method e3, but it also requires that condition variable R be
set, and that the message for e3 be expected. Computation1 and Computation2

can be carried out in either order, depending on whether the message directed
at e1 arrives before or after that directed at e2. Yet, they are not parallel com-
putations: they both belong to the same chare, and therefore will be serialized
in one of those two sequences. In general, the same behavior can be specified
with different but equivalent graphs: for example the expect(e3) and ready(R)
statement can be swapped in this example.

202 L.V. Kale and J. Lifflander

To describe a more concrete example, consider a formulation of martix-matrix
multiplication where the row-blocks of the left matrix (say A), and column blocks
of the right matrix (say B) are distributed among processors, using a distributed
hash table (indeed, the earliest version of Charm supported distributed hash
tables, which were simply called “distributed tables” [44]). The job of a particular
chare is to request one block of rows from A, one block of rows from B, multiply
them out, and send the result to be stored in another distributed table. Such
a formulation may be useful in a context where dynamic balancing of block-
multiplication tasks is necessary.

The “reactive” code for this chare, in plain Charm, is shown below. Note
the use of counters and buffers (to store the row or column block that arrived
earlier).

chare multiplyBlock
int count;
float ∗row, ∗column;

entry init: (message Work ∗msg) {
count = 2;
Find(A, msg−>rowNum, getRow, myChareID());
Find(B, msg−>colNum, getCol, myChareID());

}
entry getRow: (message TBL REPLY ∗m) {
row = m−>data;
if (−−count == 0) matmul block(row, col);

}
entry getCol: (message TBL REPLY ∗m) {
col = m−>data;
if (−−count == 0) matmul block(row, col);

}
...

In contrast, the same code is expressed using the Dagger notation as shown
below:

dag chare multiplyBlock
entry init: (message Work ∗msg);
entry getRow: (message TBL REPLY ∗row);
entry getCol: (message TBL REPLY ∗col);

when init: {
Find(A, msg−>rowNum, getRow, myChareID());
Find(B, msg−>colNum, getCol, myChareID());
expect(getRow); expect(getCol);

}
when getRow, getCol: { matmul block(row−>data, col−>data); }

Controlling Concurrency and Expressing Synchronization 203

The Dagger code makes the dependencies clear, avoids the use of counters,
and automates the buffering required. The entry declarations associate message
variables (which must have distinct names) with each entry method, so the
buffered data (row, col) can be accessed in the subsequent when block.

We selected these examples from the first Dagger paper, to be faithful to
the original syntax. Note that at that time, a message pointer was the only
parameter an entry method was allowed to have. Modern Charm++, as well as
the Structured Dagger notation we describe next, allow more general parameters
for entry methods.

Synchronization mechanisms and, in particular, the inheritance anomaly
(following the phrase coined by the Rosette system [47]) in concurrent object
languages have been well studied in the literature [10]. One of the most compre-
hensive study of the problem and possible solutions was presented by Matsuoka
and Yonezawa [39]. Our approach was to simply disallow inheriting “dagger”
methods (called the body methods in some of the literature, analogous to the
“run” threads of Java). Other sequential methods can be inherited just as in
C++, because Chares are, after all, C++ classes. In practice, this has not been
a hindrance in using the Dagger or SDAG (see next section) notation. Further,
the focus of much of the related work in concurrent objects community was on
expressing semantic constraints on individual methods. For example, a popular
example of such a constraint was: a get method should not be executed on a
bounded buffer object if the buffer is empty. In contrast, Dagger is designed to
support expression of dependence graphs between computations and messages,
and the ability to better express the life-cycle of an object.

3.2 Structured Dagger

In Dagger, we allow arbitrary dependencies (a DAG) to be represented between
the entry methods or message receptions for a given parallel object in the sys-
tem. Although this is very powerful, we found for many real applications of
Dagger that a full dependency graph is not needed. The disadvantage of a full
dependency graph is that there is no natural flow to the application’s code. This
makes comprehending the application code and flow of the parallel application
difficult and unintuitive.

In Structured Dagger (SDAG, for brevity) [29] we limit the graphs that can be
expressed to those constructed with single-entry single-exit (structured) blocks.
This restricts one to a set of dependencies that are either sequenced (the default)
or explicitly defined to be overlappable (i.e. they do not depend on each other).
Although this reduces the set of graphs that can be represented, all the real
applications we have found can be represented cleanly even with this limitation.
For the cases that cannot be expressed using SDAG, one can fall back to the
original reactive specification method. An example of a graph that cannot be
expressed in Structured Dagger, without losing concurrency is shown in Figure
2 below.

204 L.V. Kale and J. Lifflander

C0 e1

C1

C4

C2

C7

C5

C3

C6

C8

e2 e3

e5

e6

e4

Fig. 2. An unstructured DAG that cannot be expressed in SDAG

In SDAG, the fundamental construct is a when statement that specifies a
dependency on a incoming message or set of messages. In Charm++, a message
is targeted toward a method on a certain parallel object or chare in the system.
So if we want to wait for a method invocation of void foo(int param), we could
specify the following:

when foo(int param) { /∗ block1 ∗/ }
/∗ block2 ∗/

In this case, block1will not execute until foo arrives, and because SDAG defines a
sequence (i.e. program order) by default, block2 will not execute until foo arrives
and block1 executes. Note, that SDAG constructs can be nested, so block1 can
specify more when constructs or other SDAG constructs.

We can also wait on more than one method to arrive by simply specifying a
list of methods that we are expecting:

when foo(int param), bar(int size, char str[size]) { /∗ block1 ∗/ }
/∗ block2 ∗/

Since SDAG defines a sequence by default, the following code will wait for
foo to arrive, execute block1, then wait for bar to arrive and execute block2:

when foo(int param) { /∗ block1 ∗/ }
when bar(int size, char str[size]) { /∗ block2 ∗/ }

SDAG works by buffering any messages that are not ready to be received. A
message is ready if a when statement that matches the incoming message has
been executed by the SDAG runtime. If a when statement is encountered and
no message has arrived that matches that declaration, a trigger is created that
acts as a continuation that can be activated when the appropriate message(s) ar-
rive. Thus, the “ready” statement and condition variables of the plain “Dagger”
described in the previous section are not needed with SDAG, there use is re-
placed by relying on program order, and restricting the description to structured
graphs.

If we have a set of statements that are overlappable (i.e. they can be executed
in any order) we can override the default sequence enforced by using the overlap
statement. For example, if foo(. . .) and bar(. . .) can actually be executed in any
order according to the semantics of the application, we can declare the following:

Controlling Concurrency and Expressing Synchronization 205

overlap {
when foo(int param) { /∗ block1 ∗/ }
when bar(int size, char str[size]) { /∗ block2 ∗/ }

}

In general, we can specify a set of SDAG constructs in an overlap that can be
executed without regard to ordering. Each nested construct within the overlap
will be ordered separately — so an overlap relaxes the ordering to a partial order
between a set of statements.

For many applications, we have found that we need to wait on a number of
messages, all of the same type. An example of this is a typical near-neighbor
interaction, were we wait for some defined number of neighboring elements to
send data to this object. SDAG provides a convenient syntax for declaring this
interaction pattern: using a for loop when the messages constitute a sequence,
or a forall when the incoming messages are allowed to be processed in any order.

The following is an example of using a SDAG for loop:

for (i = 0; i < 4; i++)
when updateGhostRegion(int d, int size, double buf[size]) serial {
updateBoundary(d, size, buf);

}

Using this code, we wait for each of the neighbors’ data to arrive, execute some
code (possibly performing an update or saving a pointer) when each arrives and
continue only when all of them have arrived.

If the application we are writing is iterative, one possible problem with the
above code is that we may not explicitly synchronize between iterations. If this
is the case, a neighbor message for a subsequent iteration might arrive out-of-
order with the current iteration. Note the above code does not have any way
of specifying which iteration we are waiting on: we only wait on some method
updateGhostRegion(. . .) to arrive.

To make this common case much easier, we allow a when trigger to wait on
a certain reference number that can be included with a message. In SDAG,
the first integer specified in the parameter list is the reference number for that
message — and can be used to make the dependency more specific:

when updateGhostRegion[iter](int i, int d, int size, double buf[size])

In the above code, we wait on a specific class of the updateGhostRegion mes-
sages — ones that are marked with the reference number iter. So in an iterative
application without explicit synchronization between iterations, we would write
the following code, which is an example of how a 5-point stencil computation
(Jacobi relaxation, for instance) could be implemented in SDAG:

206 L.V. Kale and J. Lifflander

serial {
prepareGhostRegions();
thisProxy(wrapX(x + 1),y).updateGhostRegion(iter, TOP, size, topReg);
thisProxy(wrapX(x − 1),y).updateGhostRegion(iter, BOTTOM, size, botReg);
thisProxy(x,wrapY(y − 1)).updateGhostRegion(iter, LEFT, size, leftReg);
thisProxy(x,wrapY(y + 1)).updateGhostRegion(iter, RIGHT, size, rightReg);

}
for (i = 0; i < 4; i++)
when updateGhostRegion[iter](int i, int d, int size, double buf[size]) serial {
updateBoundary(d, size, buf);

}
serial {
int c = doCalc() < targetDiff;
CkCallback cb(CkReductionTarget(Tile, checkConverged), thisProxy);
if (iter % 5 == 1) contribute(sizeof(int), &c, CkReduction::logical and, cb);

}
if (++iter % 5 == 0) {
when checkConverged(bool result) serial { converged = true; }

}

In this code segment, while the stencil computation has not converged, we pre-
pare the ghost regions for sending, and then send a message to each neighbor
with the corresponding region copied into a buffer. Then, in the following for
loop, we wait to receive 4 neighboring ghost regions that have a reference num-
ber corresponding to the current iteration iter. After receiving all 4 ghost re-
gions, we run a compute kernel doCalc and then asynchronously contribute to
a reduction that logically ANDs all the local convergence decisions. We exploit
asynchronous reductions in Charm++ by only contributing every 5 iterations
and waiting for the result of the reduction 4 iterations later. In this way, the
reduction is overlapped with the computation and we only block waiting to find
out if the computation has converged every several iterations, instead of syn-
chronizing every iteration. If the computation has converged, we set the local
converged variable to true and stop executing the computation.

The serial construct simply specifies a sequential block of C++ code to be
executed in sequence. The programmers have to explicitly mark these blocks
of code due to the implementation details of how the SDAG code is parsed:
our implementation does not actually parse all of C++ and serial allows us to
mark which blocks the SDAG translator can safely ignore and pass to the C++
compiler directly.

If we want to wait on n method invocations (or n nested SDAG constructs,
in general), but the order they are executed does not matter, we can use the
forall construct in SDAG. The semantics are the same as overlap, but it is more
convenient when we have n identical sequences that can be overlapped:

forall [iter] (0:10, 1)
when recvData[iter](int param) { /∗ block1 ∗/}

/∗ block2 ∗/

Controlling Concurrency and Expressing Synchronization 207

In this case, we wait for 10 instances of recvData to arrive, each tagged with
reference numbers from 0..9 (note the upper-bound on the range is exclusive: it
defines a range [0, 10) with a stride of 1). The receives can arrive in any order
and block1 will be executed for each one as they arrive. When they all arrive,
block2 will be executed.

Fibonacci Example Using SDAG. Using SDAG we can define a pedagogical
Fibonacci using the (inefficient) recursive algorithm in the following way:

entry void calc(int n) {
if (n < THRESHOLD) serial { respond(seqFib(n)); }
else {
serial {
CProxy Fib::ckNew(n − 1, false, thisProxy);
CProxy Fib::ckNew(n − 2, false, thisProxy);

}
when response(int val)
when response(int val2)
serial { respond(val + val2); }

}
};

In this example, we define a calc(. . .) method that calculates the n’th Fibonacci
number by either sequentially calculating the Fibonacci number if n is small
enough (for efficiency reasons), or creating two children chares, waiting for both
their responses, and then adding them up. In either case, the respond function
sends the answer to the parent. Using SDAG, we explicitly define the depen-
dency on waiting for both the responses from the two children and SDAG buffers
one of the responses until they both arrive and we can add them. Although this
is a simple example, it demonstrates the power of SDAG— without this we
would have to manually buffer the first response and add them up later.

3.3 Threads

Often in the middle of executing sequential code, some remote data is required
to proceed with the computation. In Charm++, this requires sending a message
to a chare, waiting for a response, and then continuing execution. With SDAG

this pattern can be expressed cleanly, but only if the waiting occurs at the top
level entry method, because when blocks are allowed only in the entry methods).

entry void waitsForData(..) {
serial {
// some computation
f(..);
g(..);

}
when dataNeeded(...) serial {
// continue execution with remote data

}
}

208 L.V. Kale and J. Lifflander

Here, f and g may be regular methods or stand alone functions. This code
works fine because the waiting happens at the top level. But if it is necessary to
fetch remote data when the control is inside of (say) the function g, this is not
supported by SDAG. Putting a when inside the body of g (g is regular C++
code), will just be flagged as a syntax error by the C++ compiler. In a SDAG

entry, when a when statement is encountered, control typically returns to the
Charm++ scheduler, with no trace of the ongoing work left on the stack itself.
All the bookkeeping information about the pending when blocks and buffered
messages is left in the SDAG data structures.

However, if we were to use a threaded model (assuming threads that are
migratable) we can wait on remote data and then continue executing in the
same context when the data arrives. Charm++ supports this by allowing an
entry method to be marked as threaded.

entry [threaded] void foo(..);

By declaring a method as such, the method will actually run in a user-level
thread that is migratable. A thread is made migratable by allocating its stack
using isomalloc, which allocates data with a globally-unique virtual address.
The isomalloc function works by reserving the same virtual space on all pro-
cessors [19,3].

We can then declare a certain entry method to be sync, which allows it to
actually return data:

entry [sync] ReturnMsg∗ bar(..);

Then inside the implementation of the foo entry method, we can make a call
to bar, wait for the result, and seamlessly continue execution when the data
arrives:

Worker::foo(..) {
// do some computation
ReturnMsg∗ msg = remoteChare.bar(...);
// continue execution when msg arrives

}

Further, the call to remoteChare.bar() doesn’t need to be at the top level entry
method. In the earlier example, this call could be inside the body of the C++
function g(), which still works, because when the call is made, the user-level
thread simply suspends, with its stack intact.

Futures: Threads are useful for describing this interaction pattern, but we may
want to overlap the computation with the communication. In the above example,
once the sync entry method is invoked, we wait for the message from bar to arrive
before we proceed. However, although we know we will need the data from bar,
we may not need it immediately. A Future is an abstraction that allows us to
declare a container that will hold the data at some future time. The future will
only block when we try to “open” the container and access the data. Using

Controlling Concurrency and Expressing Synchronization 209

futures, we can postpone waiting on the remote data until it is required for the
computation.

The future construct was described, in the sense we use it, in the multiLisp
system of Halstead [15], although multiple precursors existed before that. Taura,
Matsuoka, and Yonezawa [46] extended ABCL to support the future construct
as well.

The following code creates a CkFuture and passes it to an entry method:

Worker::foo(..) {
// do some computation
CkFuture ft = CkCreateFuture();
remoteChare.bar(ft, ...); // call the remote chare with a future
// continue execution
ReturnMsg∗ msg = (ReturnMsg∗)CkWaitFuture(ft); // wait on future
// execute using the data from the remote chare

}

Here, we create a future that will hold the data that remoteChare.bar(. . .) will
produce when it finishes execution. When we make the call to the remoteChare,
we include the future, so it has a place to put its response. Then, when we
actually need the data we can explicitly call CkWaitFuture(. . .), which will block
if the remote data has not arrived.

Instead of using SDAG to express Fibonacci, we can express the same con-
currency pattern using threaded methods and futures, as shown below. Note that
since Charm++, as a C++ library, does not have a translator, except for parsing
interface files and SDAG code, the method for accessing and setting futures is
somewhat verbose.

void run(int n, CkFuture f) {
if (n < THRESHOLD) result = seqFib(n);
else {
CkFuture f1 = CkCreateFuture();
CkFuture f2 = CkCreateFuture();
CProxy Fib::ckNew(n−1, f1);
CProxy Fib::ckNew(n−2, f2);
ValueMsg∗ m1 = (ValueMsg∗)CkWaitFuture(f1);
ValueMsg∗ m2 = (ValueMsg∗)CkWaitFuture(f2);
result = m1−>value + m2−>value;
delete m1; delete m2;

}
ValueMsg ∗m = new ValueMsg();
m−>value = result;
CkSendToFuture(f, m);

}

Synchronization Mechanisms Based on Threads. The user level thread
mechanism underlying Charm++ is designed to be used in a flexible manner. The
API allows one to extract the (opaque) threadID of the currently running thread,

210 L.V. Kale and J. Lifflander

to suspend the current thread (and thereby transferring control to the scheduler
which may resume another ready thread), and to “awaken” a thread (which puts
the threadID in the scheduler’s queue of ready threads). This API can be used to
implement customized synchronization mechanisms. As an example, a counting
semaphore can be implemented as shown in the pseudocode below:

wait(x) {
while (x−>value == 0) { enqueue(x−>waitingQ, CthThread()); CthSuspend(); };
x−>value−−; }

signal(x) { x−>value++; tid = dequeue(x−>waitingQ); CthAwaken(tid);}

Note that this works because Charm++’s threads are cooperative (not pre-
emptive), and each thread is confined to one core at a given time, until it is mi-
grated by the load balancer. Thread migration does not happen while a thread
is waiting in a queue, by convention.

3.4 Comparing Concurrency Control Mechanisms

So, should one use Dagger, SDAG, or threads in a given situation? The Dag-
ger mechanism is historically and empirically been subsumed by SDAG by the
Charm++ user community. The reasons are easy to discern and were alluded to
earlier: a structured graph is adequate for most real applications, and when it is
too restrictive, one can use the flat, reactive, entry methods of Charm++ to re-
store full concurrency. Using threads efficiently is more complicated. Again, sta-
tistically, most Charm++ users tend to prefer SDAG. Avoiding the (admittedly
small) extra overhead of threads, and the need to predict stack sizes, combined
with environment-dependent challenges of migrating threads for load balancing
are some of the reasons why. Also, the cleaner separation of parallel and sequen-
tial code that SDAG engenders (via the “serial” construct) is often seen as a
beneficial feature. On the other hand, some programmers find it beneficial to
not have that separation, and so prefer using threads. In particular, if you are
calling a function f from a threaded entry method, you do not have to know if
this function is completely local, or if it may request and block for some remote
data. That way, a function that is sequential today, may be modified by the
writer of that function to become parallel later, without requiring a code-change
in the caller’s code. Threads are also useful when you need to block for some
specific remote data when you are deep in the function-call stack.

The need for abstraction, especially arising out of supporting other program-
ming models, is another reason for using threads. For example, AMPI [19] im-
plements the well-known MPI abstraction on top of Charm++. To benefit from
Charm++’s load balancers, AMPI maps multiple MPI “ranks” on a single pro-
cessor. When one rank issues a receive call, and the data is not available, the
implementation needs to suspend the execution of the calling rank, and resume
execution on any other rank that is ready on that processor at that point. This
blocking receive can be implemented using Charm++ threads. AMPI imple-
ments each user “rank” (which the user thinks of as an MPI process) as a user-
level thread embedded in a Charm++ chare.

Controlling Concurrency and Expressing Synchronization 211

The specific issues that come up when one is trying to migrate a chare, in
which a user-level thread or a DAG is embedded, are discussed in our earlier pa-
per [51], which also presents detailed performance comparisons of the alternative
methods.

4 Controlling Concurrency across Parallel Objects

The control structures described so far: threads, futures, Structured Dagger, etc.,
can be used to control and manage the concurrency and control flow within a
chare. Charm++ also has several mechanisms to enable chares to work together
in various ways to increase efficiency and/or programmability.

4.1 Asynchronous Collective Operations

A simple example of this is allowing the use of asynchronous broadcasts and
reductions (as shown in the 5-point stencil example) over a chare array, which
can be sparsely populated and can grow and shrink over time without explicit
synchronization. In addition, Charm++ has a very efficient built-in algorithm
to detect termination across the entire system: the state when no messages are
in flight and all processors are idle [45]. The termination detection mechanism
in Charm++ is very easy to use, and only requires a single call to the system:

CkStartQD(CkCallback(...));

In the above snippet, whenever this call is made, the Charm++ runtime starts
its termination detection algorithm, and when it confirms quiescence, it triggers
the callback, which allows the user to define an arbitrary endpoint to be notified
(for instance, a entry method on a chare, or broadcast to a chare array).

An example where these features are very beneficial is adaptive mesh refine-
ment (AMR). In traditional MPI (and thus, in any bulk-synchronous) imple-
mentations of AMR, remeshing is an expensive operation that requires multiple
collective operations to determine when all the remeshing decisions are finished
propagating based on the mesh criteria. In the Charm++ implementation [36],
one abstracts the computation (structured as blocks in an oct-tree) as a dy-
namic collection of blocks indexed by their position in the tree using a chare
array. During remeshing, instead of using O(d) (where d is the depth of the
propagation) expensive collective operations over all the processors to deter-
mine when remeshing is finished, we use point-to-point messages to propagate
decision messages and then wait for termination to be detected by the system. A
recent paper [36] shows that this methodology is highly-scalable and has many
beneficial properties.

4.2 Queuing Policies

Charm++ allows a priority to be set for an entry method invocation; such
priorities are used to schedule a message when it arrives on the destination pro-
cessor. Under the hood, Charm++ maintains a queue of outstanding messages

212 L.V. Kale and J. Lifflander

that execute in turn on each processor for the set of objects that live there.
When a message arrives, it is placed in the queue to be executed in a certain
order depending on its priority. Although message priorities are a heuristic, they
can be very important for obtaining high performance.

Message priorities can be set very easily for an invocation by adding a single
argument:

Worker::foo() {
CkEntryOptions opts;
opts.setPriority(100);
remoteWorker.method(data, &opts);

}

Note that Charm++ also allows priorities to be bit-vectors or other variable-
sized fields, which is useful for state-space search applications [6].

In addition, Charm++ allows the user to specify a queuing strategy that is
used for the message when it arrives on the destination processor. By default,
messages are enqueued in FIFO order, but this can be changed easily:

opts.setQueueing(CK QUEUEING LIFO);

An example where priorities make a high impact on application performance
is dense LU factorization. In dense LU factorization, the matrix being factorized
is decomposed into a 2D grid of blocks, which in the Charm++ implementa-
tion [38] is encapsulated in a chare array. We can succinctly describe the parallel
control flow of a non-pivoting LU in SDAG as follows:

1 entry void factor() {
2 for (step = 0; step < min(thisIndex.x, thisIndex.y); step++) {
3 overlap {
4 when recvL[step](blkMsg ∗mL) serial { L = mL; }
5 when recvU[step](blkMsg ∗mU) serial { U = mU; }
6 }
7 serial {
8 // Schedule the trailing update for sometime later with low priority
9 CkEntryOptions opts;

10 opts.setPriority(calcPrioDepOnLoc(x,y));
11 thisProxy(x,y).processTrailingUpdate(step, &opts);
12 }
13 when processTrailingUpdate[step](int step) atomic {
14 updateMatrix(L, U);
15 }
16 }
17 if (x == y) serial {
18 thisProxy(x,y).processLocalLU();
19 } else if (x < y)
20 when recvL[step](blkMsg ∗mL) serial { thisProxy(x,y).processComputeU(mL); }
21 else
22 when recvU[step](blkMsg ∗mU) serial { thisProxy(x,y).processComputeL(mU); }
23 };

Controlling Concurrency and Expressing Synchronization 213

Each block goes through various phases as it executes depending on its location in
the matrix. The most critical operation for unleashing concurrency is performing
the diagonal factorization (line 18), which only depends on a few of the trailing
updates (matrix-matrix multiplies) to be executed (lines 2-16) (each diagonal
enables all the trailing updates below and to the right of the diagonal, but only
the ones above and to the left of the next diagonal are required to start that
computation).

Note in the above example when recvL and recvU arrive (lines 4-5) instead
of immediately executing the trailing update that is available, we delay the
execution by enqueuing a message in the local queue with low priority that will
start the trailing update (see lines 9-11). In this example, we exploit Charm++

prioritized scheduling to reduce the priority of an operation that might hamper
work directly on the critical path from executing.

4.3 Memory-Aware Scheduling in LU

Another example of across-chare concurrency control also comes from LU factor-
ization. When LU is being weak-scaled, as it often is for obtaining the top-500
benchmark results, it needs to run very close to memory limits to obtain max-
imum performance and reach the FLOP limit of DGEMM (the matrix-matrix
multiplies that the trailing updates execute). The typical Charm++ idiom is
to send messages to a chare when the data is ready. However, for certain ap-
plications that are memory-sensitive, aggressively sending data when it is ready
might exceed memory limits on the receiving end.

In our highly-scalable implementation of dense LU [38], we demonstrate how
to exploit Charm++ groups to control incoming messages by explicitly schedul-
ing when messages arrive. For LU, instead of sending the block of data when
it is ready on the sender-side, we notify the receiver that the data is ready and
allow the receiver to determine which blocks to request based on what is ready
and the optimized schedule it has computed that adheres to the dependencies
natural in an LU computation. With this methodology, we are able to achieve
high performance without exceeding memory limits or treating processors as
first-class entities.

4.4 Charisma: Controlling Concurrency across Chares

Let us turn now, from the runtime schemes for across-chare concurrency control
within a processor, to language-level mechanisms for controlling and expressing
concurrency across chares, even when they are spread across multiple processors.

Note that Structured Dagger allowed clean expression of the life-cycle of a
given chare, while still avoiding overly constraining the execution order, via the
overlap and forall statements. However, the behavior of the program as a
whole is not explicitly expressed; it remains an emergent property that needs to
be inferred from the descriptions of behaviors many chares, possibly belonging
to multiple chare arrays. Again, we built upon an empirical observation that
a fixed, data-independent communication pattern among the chares is common

214 L.V. Kale and J. Lifflander

in most (but certainly not all) applications. For instance, in such applications,
which tend to be iterative, the content of messages and even their sizes may
change from iteration to iteration, but the basic pattern of message-exchanges
(the dataflow among the objects) remains the same. Charisma [18] is a notation
developed to facilitate elegant expression of such applications.

Charisma also supports multiple indexed collections of chares, as Charm++,
but their behavior is expressed by a collective script (hence we call it an orches-
tration language). This script is written in a special notation, while the sequential
code in the form of plain methods of chares is kept in separate C++ files. The
main statement in Charisma is a foreach statement.

foreach i in stencil[i]
stencil[i].foo();

end−foreach

The code above asks all members of a chare array (stencil) to execute their
method foo. More interestingly:

foreach i in stencil[i]
q[i] <− stencil[i].bar(p[i−1]);

end−foreach

tells each chare stencil[i] to consume the parameter p[i-1] and produce the param-
eter q[i]. The charisma compiler connects producers and consumers by generating
appropriate message-passing (Charm++ method invocations) code. The concur-
rency in Charisma is only constrained by data dependencies and program order.
Without going into technical details, and simplifying the example, the following
code fragment for the 5-point stencil computation illustrates Charisma.

foreach [i,j] in stencil
(top[i,j], bottom[i,j], left[i,j], right[i,j]) <− stencil[i,j].publishboundaries();
repeat

foreach [i,j] in stencil
(+error, top[i,j], bottom[i,j], left[i,j], right[i,j]) <−

stencil[i,j].publishboundaries(top[i+1,j], bottom[i−1,j],
left[i,j+1], right[i,j−1]);

until (error < THRESHOLD)

Values for the boundaries generated in previous iteration are consumed by the
neighbors in the next iteration. The + symbol preceding error specifies a reduc-
tion (i.e. a commutative-associative operation). The operator for the reduction
(here, max) is specified in the declarations, not shown here.

Although some applications, such as Barnes-Hut, are not amenable to
Charisma, because of the data-dependent data-flow they exhibit, a substan-
tial class of applications are expressible using Charisma. Charisma scripts are
compiled into Structured Dagger programs.

Controlling Concurrency and Expressing Synchronization 215

5 Case Studies and Performance

In this section, we summarize two case studies to demonstrate that the con-
currency control mechanisms, and specifically SDAG, lead to high performance
code. These case studies are taken from our 2011 HPC Challenge submission,
which won the class 2 award for programming language productivity [22].

5.1 LeanMD

LeanMD [23] is a molecular dynamics simulation benchmark written in
Charm++. It simulates the behavior of atoms using the Lennard-Jones poten-
tial to calculate the interaction between uncharged molecules. The benchmark
is similar to the short-range non-bonded force calculation that NAMD calcu-
lates [7] and it also resembles the miniMD application found in the Mantevo
benchmark suite [16] maintained by Sandia National Laboratory.

LeanMD is parallelized using a hybrid spatial and force decomposition. The
three-dimensional space consisting of molecules is divided into equal-sized cells
that hold a set of molecules using the cutoff distance rc and a margin. During
each iteration, the force calculation between a set of neighboring cells is assigned
to another set of parallel objects called the computes. Using the forces that
are sent to the computes, they perform the force integration and update the
properties of the atom — namely acceleration, velocity, and position.

 10

 100

 1000

2k 4k 8k 16k 32k 64k 128k

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Performance on Intrepid (2.8 million atoms)

 10

 100

 1000

 10000

1k 2k 4k 8k 16k 32k

T
im

e
pe

r
st

ep
 (

m
s)

Number of processes

Performance on BlueGene/Q (2.8 million atoms)

Fig. 3. Performance of LeanMD for the 2.8 million atoms system on Vesta (IBM BG/Q)
and Intrepid (IBM BG/P)

Our code is very short (only 693 lines of code1) and it can be dynamically load
balanced using many built-in strategies by Charm++, can be checkpointed to
disk or in-memory for fault tolerance, and is not sensitive to different shapes of
simulation domains nor to the number of processors.

The following is a snippet of SDAG code that shows the parallel flow of
control that describes the Cell object for LeanMD:

1 The line count was generated using David Wheeler’s SLOCCount.

216 L.V. Kale and J. Lifflander

array [3D] Cell {
entry Cell();
entry void run() {
for(stepCount = 1; stepCount <= finalStepCount; stepCount++) {
// send current atom positions to my computes
serial { sendPositions(); }
// update properties of atoms using new force values
when reduceForces(vec3 forces[n], int n) serial { updateProperties(forces); }

if ((stepCount % MIGRATE STEPCOUNT) == 0) {
// send atoms that have moved beyond my cell to neighbors
serial { migrateParticles(); }
// receive particles from my neighbors
for(updateCount = 0; updateCount < inbrs; updateCount++) {
when receiveParticles(const std::vector<Particle> &updates) serial {
for (int i = 0; i < updates.size(); ++i)
particles.push back(updates[i]);

}
}

}

if (stepCount >= firstLb && (stepCount − firstLb) % lbPeriod == 0) {
serial { AtSync(); } // periodically call load balancer
when ResumeFromSync() { }

}

if (stepCount % checkptFreq == 0) { // periodically checkpointing
serial { contribute(CkCallback(CkReductionTarget(Cell,startCheckpoint),

thisProxy(0,0,0))); }
if (thisIndex.x == 0 && thisIndex.y == 0 && thisIndex.z == 0) {
when startCheckpoint() serial {
CkStartMemCheckpoint(CkCallback(CkIndex Cell::cpDone(),thisProxy))

;
}

}
when cpDone() { }

}
}

};
};

Figure 3 shows the scaling of LeanMD on BG/P and BG/Q — two IBM
supercomputers. We achieve near-linear scaling and demonstrate that load bal-
ancing is beneficial for obtaining high-efficiency. The checkpoint (milliseconds)
and restart time (100-200 milliseconds) for LeanMD is very low. As seen in the
above snippet, using all these features of Charm++ requires very little extra
work by the programmer.

Controlling Concurrency and Expressing Synchronization 217

5.2 Dense LU Factorization

As described earlier, we have implemented a dense LU factorization library [38]
in Charm++ that fully conforms to the HPC Challenge [11] specification. Our
implementation is a fully-composable library (it can share space and time with
another parallel Charm++ module) that allows for flexible data placement (by
writing a simple block-to-processor function).

Our implementation has been scaled up to 8064 cores on Jaguar (Cray XT5
with 12 cores and 16GB per node) by increasing problem sizes to occupy a con-
stant fraction of memory (75%) as we increased the number of cores used. We
obtain a constant 67% of peak performance across this range. We also demon-
strate strong scaling on Intrepid, an IBM Blue Gene/P machine, by running a
fixed matrix size (n = 96, 000) from 256 to 4096 cores. The results are shown in
Figure 4.

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Fig. 4. Weak scaling (matrix occupies 75% of memory) from 120 to 8064 processors
on Jaguar (Cray XT5)

6 Conclusion

We presented a historical overview of various mechanisms for controlling concur-
rency that have been developed for the Charm++ parallel programming system.
Within a single chare (a message driven object), the mechanisms included Dag-
ger, SDAG, and threaded entry methods based on migratable user-level threads.
Of these, SDAG was seen to be the most beneficial and popular method, al-
though threads combined with futures, and other synchronization mechanisms
are very useful in somewhat narrower contexts. Mechanisms for coordination
and control of concurrency across chares, and indeed across processors, were

218 L.V. Kale and J. Lifflander

also discussed. These ranged from priorities, quiescence detection, memory aware
scheduling, as well as Charisma, an orchestration languages that specifies the be-
havior of a collection of chares, when they are known to exhibit static data-flow.
We included two case studies to demonstrate the raw performance attained by
Charm++ using these methods.

Charm++ has become one of the few parallel programming systems devel-
oped in academia that has been successful as a production-quality system for a
significant number of highly scalable parallel applications in Science and Engi-
neering, in regular use by scientists on supercomputers in USA and elsewhere.
In addition to being a programming language in its own right, it also forms a
substrate for development of other high level languages, of which Charisma is
an example. We expect that it will be used as a back-end by new programming
languages that will be developed by us and others; in this context, its support
for interoperability is very important.

As the field moves to more complex machines and increasingly sophisticated
adaptive applications, we think that Charm++ will play a larger role in the
coming years. Its features for tolerating component failures and for managing
power, energy and core temperatures will make it suitable for exascale comput-
ers. We expect the concurrency control abstractions described in this paper to
evolve to meet the challenges of this future.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press (1986)

2. Agha, G.A., Kim, W.: Actors: a unifying model for parallel and distributed com-
puting. J. Syst. Archit. 45(15), 1263–1277 (1999)

3. Antoniu, G., Bouge, L., Namyst, R.: An efficient and transparent thread migration
scheme in the PM2 runtime system. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and
SPDP-WS 1999. LNCS, vol. 1586, pp. 496–510. Springer, Heidelberg (1999)

4. Athas, W.C., Seitz, C.L.: Multicomputers: Message passing concurrent computers.
IEEE Computer (August 1988)

5. Bisset, K., Aji, A., Marathe, M., Chun Feng, W.: High-performance biocomput-
ing for simulating the spread of contagion over large contact networks. In: 2011
IEEE 1st International Conference on Computational Advances in Bio and Medical
Sciences (ICCABS), pp. 26–32 (February 2011)

6. Booth, J.A.: Balancing priorities and load for state space search on large parallel
machines. Master’s thesis, University of Illinois at Urbana-Champaign (2003)

7. Brunner, R., Phillips, J., Kalé, L.V.: Scalable molecular dynamics for large
biomolecular systems. In: Proceedings of SuperComputing 2000 (2000)

8. Brunner, R.K., Kalé, L.V.: Handling application-induced load imbalance using par-
allel objects. In: Parallel and Distributed Computing for Symbolic and Irregular
Applications, pp. 167–181. World Scientific Publishing (2000)

9. Caromel, D.: Abstract Control Types for Concurrency (Position Statement for the
panel: How could object-oriented concepts and parallelism cohabit). In: O’Conner,
L. (ed.) International Conference on Computer Languages (IEEE ICCL 1994), pp.
205–214. IEEE Computer Society Press (August 1993)

Controlling Concurrency and Expressing Synchronization 219

10. Tomlinson, C., Singh, V.: Inheritance and synchronization with enabled-sets. In:
ACM OOPSLA, pp. 103–112 (1989)

11. Dongarra, J., Luszczek, P.: Introduction to the HPC Challenge Benchmark Suite.
Technical Report UT-CS-05-544, University of Tennessee, Dept. of Computer Sci-
ence (2005)

12. Gursoy, A., Kale, L.: Tolerating latency with dagger. In: Proceedings of the Eigth
International Symposium on Computer and Information Sciences, Istanbul, Turkey
(November 1993)

13. Gursoy, A., Kalé, L.: Dagger: Combining the Benefits of Synchronous and Asyn-
chron ous Communication Styles. In: Proceedings of the 8th International Parallel
Processing Symposium (April 1994)

14. Gursoy, A., Kalé, L.: Dagger: Combining the Benefits of Synchronous and Asyn-
chronous Communication Styles. In: Siegel, H.G. (ed.) Proceedings of the 8th In-
ternational Parallel Processing Symposium, Cancun, Mexico, pp. 590–596 (April
1994)

15. Halstead, R.: Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions on Programming Languages and Systems (October 1985)

16. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Technical report, Sandia National Labora-
tories (September 2009)

17. Hewitt, C., Bishop, P., Steiger, R.: A universal ACTOR formalism for artificial
intelligence. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 235–245. SIAM (1973)

18. Huang, C., Kale, L.V.: Charisma: Orchestrating migratable parallel objects. In:
Proceedings of IEEE International Symposium on High Performance Distributed
Computing, HPDC (July 2007)

19. Huang, C., Zheng, G., Kumar, S., Kalé, L.V.: Performance Evaluation of Adaptive
MPI. In: Proceedings of ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (March 2006)

20. Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.R.: Massively paral-
lel cosmological simulations with ChaNGa. In: Proceedings of IEEE International
Parallel and Distributed Processing Symposium 2008 (2008)

21. Kale, L.: The Chare Kernel parallel programming language and system. In: Pro-
ceedings of the International Conference on Parallel Processing, vol. II, pp. 17–25
(August 1990)

22. Kale, L., Arya, A., Bhatele, A., Gupta, A., Jain, N., Jetley, P., Lifflander, J.,
Miller, P., Sun, Y., Venkataraman, R., Wesolowski, L., Zheng, G.: Charm++ for
productivity and performance: A submission to the 2011 HPC class II challenge.
Technical Report 11-49, Parallel Programming Laboratory (November 2011)

23. Kale, L., Arya, A., Jain, N., Langer, A., Lifflander, J., Menon, H., Ni, X., Sun,
Y., Totoni, E., Venkataraman, R., Wesolowski, L.: Migratable objects + active
messages + adaptive runtime = productivity + performance a submission to 2012
HPC class II challenge. Technical Report 12-47, Parallel Programming Laboratory
(November 2012)

24. Kale, L., Ramkumar, B., Saletore, V., Sinha, A.B.: Prioritization in parallel sym-
bolic computing. In: Halstead Jr., R.H., Ito, T. (eds.) US/Japan WS 1992. LNCS,
vol. 748, pp. 11–41. Springer, Heidelberg (1993)

25. Kalé, L.V.: Parallel architectures for problem solving. PhD thesis, State Univ. of
New York, Stony Brook, USA (1985)

220 L.V. Kale and J. Lifflander

26. Kalé, L.V.: Parallel execution of logic programs: the REDUCE-OR process model.
In: Proceedings of Fourth International Conference on Logic Programming, pp.
616–632 (May 1987)

27. Kale, L.V.: Programming Models at Exascale: Adaptive Runtime Systems, Incom-
plete Simple Languages, and Interoperability. The International Journal of High
Performance Computing Applications 23(4), 344–346 (2009)

28. Kale, L.V., Bhandarkar, M.: Structured Dagger: A Coordination Language for
Message-Driven Programming. In: Fraigniaud, P., Mignotte, A., Bougé, L., Robert,
Y. (eds.) Euro-Par 1996. LNCS, vol. 1123, pp. 646–653. Springer, Heidelberg (1996)

29. Kale, L.V., Bhandarkar, M.: Structured Dagger: A Coordination Language for
Message-Driven Programming. In: Fraigniaud, P., Mignotte, A., Bougé, L., Robert,
Y. (eds.) Euro-Par 1996. LNCS, vol. 1123, pp. 646–653. Springer, Heidelberg (1996)

30. Bhandarkar, M.A., Brunner, R.K., Kalé, L.V.: Run-time Support for Adaptive
Load Balancing. In: Rolim, J.D.P. (ed.) IPDPS 2000 Workshops. LNCS, vol. 1800,
pp. 1152–1159. Springer, Heidelberg (2000)

31. Kale, L.V., Richards, B.H., Allen, T.D.: Efficient parallel graph coloring with pri-
oritization. In: Queinnec, C., Halstead Jr., R.H., Ito, T. (eds.) PSLS 1995. LNCS,
vol. 1068, pp. 190–208. Springer, Heidelberg (1996)

32. Kalé, L.V., Shu, W.: The Chare Kernel base language: Preliminary performance
results. In: Proceedings of the 1989 International Conference on Parallel Processing,
St. Charles, IL, pp. 118–121 (August 1989)

33. Keller, R., Lin, F., Tanaka, J.: Rediflow Multiprocessing. In: Digest of Papers
COMPCON, Spring 1984, pp. 410–417 (February 1984)

34. Kumar, S.: Optimizing Communication for Massively Parallel Processing. PhD
thesis, University of Illinois at Urbana-Champaign (May 2005)

35. Kumar, S., Shi, Y., Bohm, E., Kale, L.V.: Scalable, fine grain, parallelization of
the car-parrinello ab initio molecular dynamics method. Technical report, UIUC,
Dept. of Computer Science (2005)

36. Langer, A., Lifflander, J., Miller, P., Pan, K.-C., Kale, L.V., Ricker, P.: Scalable
Algorithms for Distributed-Memory Adaptive Mesh Refinement. In: Proceedings
of the 24th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD 2012), New York, USA (October 2012) (to appear)

37. Lawlor, O., Kalé, L.V.: Supporting dynamic parallel object arrays. In: Proceedings
of ACM 2001 Java Grande/ISCOPE Conference, Stanford, CA, pp. 21–29 (June
2001)

38. Lifflander, J., Miller, P., Venkataraman, R., Arya, A., Jones, T., Kale, L.: Mapping
dense lu factorization on multicore supercomputer nodes. In: Proceedings of IEEE
International Parallel and Distributed Processing Symposium (May 2012)

39. Matsuoka, S., Yonezawa, A.: Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Languages. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Research
Directions in Object-Based Concurrency. MIT Press (1993)

40. Ni, X., Meneses, E., Kalé, L.V.: Hiding checkpoint overhead in hpc applications
with a semi-blocking algorithm. In: IEEE Cluster 2012, Beijing, China (September
2012)

41. Ramkumar, B., Kalé, L.V.: Compiled execution of the Reduce-Or process model
on multiprocessors. In: The North American Conference on Logic Programming,
pp. 313–331 (October 1989)

42. Krishnan, S., Kale, L.V.: A parallel array abstraction for data-driven objects. In:
Proceedings of Parallel Object-Oriented Methods and Applications Conference,
Santa Fe, NM (February 1996)

Controlling Concurrency and Expressing Synchronization 221

43. Sarood, O., Kalé, L.V.: A ‘cool’ load balancer for parallel applications. In: Proceed-
ings of the 2011 ACM/IEEE conference on Supercomputing, Seattle, WA (Novem-
ber 2011)

44. Sinha, A., Kalé, L.: Information Sharing Mechanisms in Parallel Programs. In:
Siegel, H. (ed.) Proceedings of the 8th International Parallel Processing Sympo-
sium, Cancun, Mexico, pp. 461–468 (April 1994)

45. Sinha, A.B., Kale, L.V., Ramkumar, B.: A dynamic and adaptive quiescence de-
tection algorithm. Technical Report 93-11, Parallel Programming Laboratory, De-
partment of Computer Science, University of Illinois, Urbana-Champaign (1993)

46. Taura, K., Matsuoka, S., Yonezawa, A.: An efficient implementation scheme of con-
current object-oriented languages on stock multicomputers. In: Proceedings of the
5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming. ACM SIGPLAN Notices (June 1993)

47. Tomlinson, C., Kim, W., Scheevel, M., Singh, V., Will, B., Agha, G.: Rosette: An
object-oriented concurrent systems architecture. In: Proceedings of the 1988 ACM
SIGPLAN Workshop on Object-based Concurrent Programming, OOPSLA/E-
COOP 1988, pp. 91–93. ACM, New York (1988)

48. Yelon, J., Kale, L.V.: Agents: An undistorted representation of problem structure.
In: Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter, D., Nicolau, A., Padua,
D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 551–565. Springer, Heidelberg (1996)

49. Yonezawa, A.: ABCL: An Object Oriented Concurrent System. MIT Press (1990)
50. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-

ming in ABCL/1. In: ACM SIGPLAN Notices, Proceedings of the OOPSLA 1986,
vol. 21(11), pp. 258–268 (1986)

51. Zheng, G., Lawlor, O.S., Kalé, L.V.: Multiple flows of control in migratable parallel
programs. In: 2006 International Conference on Parallel Processing Workshops
(ICPPW 2006), Columbus, Ohio, pp. 435–444. IEEE Computer Society (August
2006)

52. Zheng, G., Ni, X., Kale, L.V.: A Scalable Double In-memory Checkpoint and
Restart Scheme towards Exascale. In: Proceedings of the 2nd Workshop on Fault-
Tolerance for HPC at Extreme Scale (FTXS), Boston, USA (June 2012)

MassiveThreads: A Thread Library

for High Productivity Languages

Jun Nakashima and Kenjiro Taura

The University of Tokyo
Tokyo, Japan

{nakashima,tau}@eidos.ic.i.u-tokyo.ac.jp

Abstract. An efficient implementation of task parallelism is important
for high productivity languages. Specifically, it requires a tasking layer
that fulfills following requirements: (i) its performance scales to high core
counts, and (ii) it is seamlessly integrated into a runtime system that per-
forms inter-node communication and synchronization. More specifically,
it should facilitate interactions between tasks and threads dedicated for
inter-node communication. There have been many implementations that
satisfy (i), but, to the best of our knowledge, none of such systems satisfy
both requirements.

To address this issue, we propose a thread library called
MassiveThreads. It provides not only lightweight threads and a scalable
dynamic load-balancing mechanism among CPU cores, but also Pthread-
compatible API and I/O semantics. In MassiveThreads, issuing a block-
ing I/O call triggers a user-level context switch instead of blocking the
underlying OS-level thread. These features simplify interactions between
tasks and communication threads by instantiating both of them on top
of MassiveThreads.

1 Introduction

Current parallel programming languages and frameworks such as MPI[7] pro-
vide programming models based on the primitive abstraction of hardware. They
achieve high performance by putting the burden of managing tasks and commu-
nication on programmers. The burden is becoming heavier as machines become
larger, more heterogeneous, and more hierarchical.

To address this issue, there have been recently proposed many parallel lan-
guages that aim to improve both performance and productivity. Many of them
provide a global address space and general task parallelism, in which tasks can
be nested and created at arbitrary points of execution. This general form of task
parallelism encompasses many syntactically different forms of parallelism sup-
ported in parallel programming languages, including fork-join, parallel recursions
and parallel for loops.

The implementation of an application with task parallelism becomes simple
and modular if there is an underlying thread package that can directly map
multi-tasking primitives of the language to multi-threading primitives of the

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 222–238, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

MassiveThreads: A Thread Library for High Productivity Languages 223

thread package. For example, if the underlying thread package is Pthreads, a task
creation is directly translated into pthread create. But instantiating a Pthread
for each task creation performs poorly especially when a large number of tasks are
created. To perform well when executing many fine-grained tasks, the underlying
thread package should be lightweight.

A basic technique for implementing efficient task parallelism is known. Rooted
back to Lazy Task Creation [8] proposed for a parallel Lisp, many systems are
based on a similar principle of work-first and LIFO scheduling within each worker
(underlying OS-level thread to execute tasks) and FIFO task stealing between
workers. However, most of them assume applications running on single node
machines.

Many high productivity languages such as X10[4] and Chapel[3] support task
parallelism and work on distributed memory machines. If their runtime system
can switch tasks trigged by communication, overlapping communication and
computation — one of the important techniques to achieve good performance
on distributed memory machines — can be easily written with the languages by
simply creating many tasks.

One way to implement such runtime system is to integrate existing lightweight
thread packages into a runtime system that communicates with other nodes,
but it is complicated. Suppose a lightweight thread impletmented as a user-level
thread performs a blocking I/O call. In this case, not the lightweight thread
but the underlying OS-level thread is blocked until the I/O call finishes thus
some degree of parallelism is lost. This issue can be addressed by yielding all the
communication to a dedicated OS-level thread, but in this case synchronization
between user-level tasks and the OS-level communication thread becomes a non-
trivial issue.

Our approach is to eliminate the problem at its root: a thread package that is
lightweight and can handle blocking I/O calls without blocking the underlying
OS-level threads. By executing both a communication thread and lightweight
threads for task paralleism on top of this thread package, integration into the
runtime system can be simplified. Our proposed solution is implemented as a
library called MassiveThreads, which we describe in this paper. This paper also
describes the evaluation result of its performance.

2 Related Work

Comparing to OS-level threads, user-level threads have two major advantages.
(1) User-level threads’ overheads are much smaller since thread management
does not require system calls, and (2) User-level threads can use scheduling poli-
cies optimized for specific applications. Such an application that can take ad-
vantage of user-level threads is a task parallelism runtime system. As described
in previous section, efficient implementations of user-level threads for task par-
allelism on a shared memory machine is a well studied topic. There are many
languages, frameworks, and libraries that support task parallelism by lightweight
threads, such as Cilk[1], Java Fork/Join Framework[5], Intel Threading Building
Blocks (TBB)[10], StackThreads/MP[12], Qthreads[14], and Nanos++[2].

224 J. Nakashima and K. Taura

Another application of user-level thread is for processing concurrent I/O. Map-
ping a thread for each connection is a naive way for implementing concurrent I/O
processing, but OS-level thread is too heavyweight for this purpose. Capriccio[13]
and StateThreads[11] provide user-level threads that can automatically switch
the context triggered by I/O calls to leverage highly concurrent server imple-
mentations.

3 Design and Implementation

3.1 Design Overview

To make threads lightweight, MassiveThreads is implemented as a user-level
thread library. In order to handle I/O calls without blocking the underlying OS-
level threads, it automatically intercepts blocking I/O calls and switches contexts
to other ready threads.

The MassiveThreads library is build as a shared library that provides the
functions compatible with Pthreads. Therefore it can be used in place of Pthreads
by simply linking it instead of Pthreads, or by dynamically loading at runtime
by using environment variables. Thanks to this feature, existing communication
libraries for Pthreads can easily run on top of MassiveThreads.

3.2 Definition of Terms

– “thread” means user-level thread managed by the MassiveThreads library
– “worker” means OS-level thread to execute user-level threads
– “deque” means double-ended queue

3.3 Thread Scheduling

Design. We chose work-first and LIFO scheduling within each worker and FIFO
randomized work stealing between workers as MassiveThreads scheduling policy
for two reasons. First, this scheduling policy is known to be efficient for recursive
task parallelism. Most parallel constructs including fork-join and parallel for loop
can be easily translated to recursive task parallelism. Therefore this scheduling
policy can give the potential to execute most parallel constructs efficiently under
the appropriately implemented compiler and the runtime system. The second
reason is that the algorithm has no centralized components which may become
a bottleneck with large number of cores.

Data Structure. The MassiveThreads library creates workers and binds them
to CPU cores. Each worker thread has a deque called ready deque to store the
ready user-level threads (Fig.1). Ready deque supports the following 3
operations.

MassiveThreads: A Thread Library for High Productivity Languages 225

– push: Insert a thread to the head by owner
– pop: Get a thread from the head and delete it from the deque by the owner

worker
– take: Get a thread from the tail and delete it from the deque by non-owner

worker

Fig. 1. Data Structure to Execute User-level Threads

Scheduling. When a new thread is created, underlying worker suspends a
thread currently running, inserts it to the head of the ready deque by push
operation, and executes the new thread immediately. When the current running
thread is finished, the worker obtains a new thread using pop operation. If there
is no thread in the ready deque, the worker tries to steal a ready thread from
randomly chosen workers’ ready deque using take operation.

Optimization. The MassiveThreads library is implemented to minimize con-
text switching and thread creation overhead. This section describes some of
these optimizations and their corresponding performance effects are shown in
Section 4.

Avoid Using ucontext. On most Linux systems, portable user-level context
switching library called ucontext can be used to implement user-level threads.
We first use it for its portability, but found that its large switching overhead due
to internal system calls for switching signal masks became a serious bottleneck.
To address this issue, we implemented context switching routines that switch
callee-saved registers only.

226 J. Nakashima and K. Taura

Ready Deque Implementation. To implement a ready deque, we followed similar
approaches to Cilk[1] and Java Fork/Join Framework[5]. A ready deque consists
of an array to store threads, two integers pointing the head and tail of the deque,
and one spinlock. Following is the brief description of how it works.

– Push operation first stores a new thread to the array, and then increments
the head pointer.

– Pop operation decrements the head pointer, and compares the head and tail
pointers to check whether it is safe to return the result without locking. If it
is safe result is returned without locking, otherwise lock is acquired to avoid
conflicts.

– Take operation acquires the lock to serialize other operations, increments
the tail pointer, and then checks conflicts with pop operation. If there is no
conflict the result is returned.

To work the algorithm correctly, memory accesses order must not be changed.
To meet this requirement we inserted memory barrier instructions and code
snippets to suppress memory access re-ordering by the compiler.

With this algorithm push operation can be done without locking, and if there
are more than one thread in the ready deque, pop operation can also be done
without locking.

Additionally, we applied double-checked locking optimization to pop and take
operations. Before pop and take, the number of threads in the ready deque is
checked by comparing the head and tail pointer. If it is zero operations are
aborted because there seems to be no thread available. This optimization im-
proves the load balancing ability because it increases the amount of work stealing
attempts per unit time by reducing the overhead of failed work stealing attempts.

Double-Checked Locking on Joining a Thread. Join function waits for the ter-
mination of a thread and returns the exit value of the thread. When a thread is
terminated, its exit value is stored to the thread descriptor — an internal data
structure to describe the thread. At the time the thread is joined by the other
thread, the exit value is read and the descriptor is released. Thread termination
and join function call can be occured at the same time, thus lock is required to
avoid race conditions.

In order to support join function, a thread descriptor includes:

– Area to store the exit value
– An Integer to describe thread status (e.g. running, suspended, finished)
– A reference to the thread waiting for the termination
– A spinlock to avoid a race condition.

Before we applied double-checked locking optimization, join function is im-
plemented as the following:

1. Acquire the lock of a target thread descriptor
2. Read the status
3. If it is already finished, read the exit value, release the descriptor, and return

MassiveThreads: A Thread Library for High Productivity Languages 227

4. Otherwise, set the reference to the currently running thread, suspend it, and
then release the lock.

5. Read return value, release the descriptor, and return after the thread is
continued

And thread termination is implemented as the following:

1. Acquire the lock of a target thread descriptor
2. Set the exit value
3. Set the status as finished
4. If the reference of suspended thread is set, resume it, and release the lock
5. Otherwise, get a thread from a ready deque and continue it, and release the

lock.

This implementation acquires the lock 2 times for each thread join and ter-
mination. To reduce the number of attempts to acquire the lock, We applied
double-checked locking optimization. Specifically, for thread termination, just
after releaseing the lock the status is set to the another one called “ready to be
released”. For join function, before acquiring the lock the status is checked. If the
status is ready to be released, it reads the exit values and releases the decsriptor
without acquiring the lock. Before releasing the descriptor, it waits for status to
change to ready to be released. Appendix A shows pseudocode of join operation
and thread termination with double-checked locking optimization.

This optimization is effective for most task-parallel application because when
a thread joins the other thread, usually it has already terminated.

Faster Thread-Local Storage Model. The MassiveThreads library internally uses
thread-local storage to obtain worker-local information. There are 4 thread-
local storage model: General Dynamic, Local Dynamic, Initial Exec, and Local
Exec[6]. By default, General Dynamic model — the most general model in 4
models — is chosen. In General Dynamic model, access to the thread-local stor-
age is compiled to a function call. We notice that this overhead takes up high
percentage in thread creation and join overheads, because the thread-local stor-
age is accessed very frequently. In order to reduce the overhead, we choose Initial
Exec model — more restricted one than General Dynamic — through GCC com-
piler flags. In this model, access to thread-local storage is compiled to only a few
instructions. This optimization has a drawback that the MassiveThreads library
must be initially loaded. Thus runtime dynamic library loading mechanisms (e.g.
dlopen) may not be used. But we believe this drawback is not serious, because
most parallel applications do not load libraries dynamically, but libraries are
linked with applications so that they are initially loaded.

3.4 Blocking I/O Call Handling

Currently this function only supports blocking I/O on network socket, thus in
this paragraph, we use the socket-specific terms for explanation. But this imple-
mentation is essentially independent from the underlying I/O mechanism and

228 J. Nakashima and K. Taura

can be applied to other blocking I/O calls. This implementation looks similar
to that of Capriccio[13] or StateThreads[11], but is different in that it supports
working on multiple workers.

Data Structure. Fig.2 illustrates the data structures for I/O handling. To
manage the threads waiting for a file descriptor to become ready, The Mas-
siveThreads library assigns two lists called “blocked lists” for each file descrip-
tor. One of the blocked list is for read and the other is for write.1 A blocked list
stores threads waiting for the file descriptor to become ready for the requested
operation, as well as the arguments to the requested I/O call.

To check the status of file descriptors, the MassiveThreads library uses epoll.
epoll is an I/O notification mechanism in Linux. To use epoll, file descriptors to
check should be registered to an epoll instance. After that the list of ready file
descriptors can be obtained using epoll wait function. In order to distribute I/O
handling operations, each worker has its own epoll instance. File descriptors are
registered to one of the epoll instances.

Fig. 2. Data Structure for I/O Handling

To look up the blocked lists from a file descriptor, there is a map from a file
descriptor to the corresponding blocked lists. It is implemented by a hash table

1 In Fig.2, only one blocked list is shown for each file descriptor for simplicity.

MassiveThreads: A Thread Library for High Productivity Languages 229

and lookups to the map with different file descriptors can be done concurrently
unless a hash collision occurs.

I/O Handling Procedures. I/O handling in MassiveThreads consists of three
procedures, namely, registering a new file descriptor, performing the I/O call,
and polling to resume blocked threads.

Registering a New File Descriptor. When a new file descriptor is created, two
blocked lists are created and an association from the file descriptor to the lists
is added to the map. Then it is registered to the epoll instance of the worker.
To distribute I/O management loads, The worker is randomly chosen.

Performing the I/O Call. When the application performs a blocking I/O call, it
is intercepted by MassiveThreads, and performed with non-blocking option. If
I/O call fails because the file descriptor is not ready, then the worker puts the
caller thread and the arguments of the I/O call to the corresponding blocked list
(Fig.2 (1)), and then switches to the thread in the ready deque.

Polling to Resume Blocked Threads. When a worker has no thread to execute,
it checks the status of the file descriptors using epoll. If there is a ready file
descriptor with a non-empty blocked list, then the worker tries the I/O call again.
If it now succeeds, the thread in the entry is put into the head of the ready deque
of the worker (Fig.2 (2)). We choose this policy in order to minimize migrating
threads between workers by running a thread which use a file descriptor on a
worker that checks its status as possible.

4 Evaluation

First, in order to confirm the MassiveThreads library has enough performance
for leveraging task parallelism implementation, we evaluated the overheads to
create and join one thread and load balancing abillity. We also compared the
performance with Cilk using pratical applications. Then, we evaluated how well
blocking system call handling works through ping-pong benchmark with many
concurrent connections.

4.1 Thread Create and Join Overheads

The overhead to create and join threads are especially important for fine-grained
task parallelism. To evaluate them, we repeatedly create and join an empty
(immediately finishing) thread using a single worker, and measured the overhead.
The experimental setup is shown in Table 1.

Fig.3 shows the overhead to create and join one thread. For comparison, this
figure also shows that of Cilk, Intel Threading Building Blocks (TBB), Qthreads,
and Nanos++. The overhead of MassiveThreads is about 70 nanoseconds, which
is close to that of TBB.

230 J. Nakashima and K. Taura

Table 1. Experimental Setup for Overhead and Scalability Evaluation

CPU Xeon E7540 (2.0GHz) 4 Sockets

OS Debian Linux 2.6.32

Compiler GCC 4.6.0

Cilk version 5.4.6

Intel TBB version 3.0

Nanos++
version nanox-e3a0ce4
(included in Chapel 1.4)
NX SCHEDULE=cilk

Qthreads
version 1.7

sherwood scheduler
QTHREAD NUM WORKERS PER SHEPHERD=1

Fig. 3. Overheads to Create and Join One Thread

To see the overhead in more detail and to confirm the benefits of the optimiza-
tions described in Section 3.3 we broke down the overheads into 4 major parts:
memory management (allocation, initialization, and release for thread descriptor
and stack), context switching, operation to the ready deque, and synchronization
on thread join. Fig.4 shows the breakdown in the stacked bar graphs. Fullopt
in the figure shows the overhead with all the optimization enabled. The other
four bars show the overhead with one optimization disabled: choosing faster
thread-local storage model on TLS, double-checking for thread join on Join,
double-checking for ready deque operation on Queue, and avoid using ucontext
for Context.

Without using faster thread local storage (see Fullopt and TLS), memory
management and synchronization overhead increase, because most functions read

MassiveThreads: A Thread Library for High Productivity Languages 231

Fig. 4. Overhead Breakdown and Optimization Effects

worker-local data stored in the thread-local storage. When disabling double-
checking for thread join (Fullopt vs. Join), synchronization overhead gets larger
due to the extra atomic operation, while it is usually avoided when this optimiza-
tion is enabled. Interestingly, ready deque operation overhead gets smaller when
disabling double-checking for the ready deque operation (Fullopt vs. Queue).
We are now investigating this case in order to reveal the cause and look for the
opportunity to further performance improvement. When using ucontext instead
of hand-written context switching functions (Fullopt vs. Context), the overhead
jumps up to about 700 nanoseconds because of large increment of memory man-
agement and context switching overheads, because ucontext issues system calls
every time on switching the contexts and on initializing the contexts for the new
thread.

4.2 Load Balancing on Unbalanced Tree Search

To evaluate the scalability, we use Unbalanced Tree Search (UTS) Benchmark[9].
This benchmark measures the performance of searching highly unbalanced tree.
The tree shape is highly unbalanced but contains sufficient amount of parallelism
enough to fully utilize many CPU cores. Therefore, this performance reflects the
performance of dynamic load balancing. We parallelize the reference implemen-
tation that performs depth-first search (uts-dfs) by creating threads recursively.
As a dataset, we choose T3L tree (details are shown in Table 2).

Fig.5 shows the speedup of MassiveThreads, Cilk, and Intel TBB, Qthreads,
and Nanos++ relative to a single core performance of each implementation.

Table 2. UTS Benchmark Dataset

Tree Type b0 q m r Depth Nodes

T3L binomial 2000 0.200014 5 7 17844 1.1× 108

232 J. Nakashima and K. Taura

MassiveThreads speedup factor is approximately 21. Except for using 24 cores,
the performance is close to that of TBB, which performs the best in existing
frameworks used for the evaluation.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

S
pe

ed
up

 fr
om

 1
 c

or
e

of CPU cores

MassiveThreads
Cilk

Intel TBB

Qthreads
Nanos++

Fig. 5. Speedup of UTS Benchmark

4.3 Performance of Practical Programs

To see MassiveThreads performance for more practical applications, first we
picked up programs from Cilk distribution that are non-interactive and can be
directly translated to MassiveThreads (specifically, “abort” statement — task
cancellaration in Cilk — cannot be directly translated). Then we ported them to
MassiveThreads and evaluated the performance. Programs and their arguments
are shown in Table 3. Fig.6 shows the relative performance compared to Cilk
on a single core and 24 cores. In most program, MassiveThreads performances
are similar to or little worse than Cilk. But in bucket, fib and knapsack, the
MassiveThreads library has much worse performance than Cilk. We guess the
reason is that the task granularity is too small to hide MassiveThreads overhead
which is about 3 times larger than Cilk. On the other hand, in cholesky, heat, lu
and plu, The MassiveThreads library outperforms Cilk on high number of cores,
because it scales well enough to compensate its larger overhead.

4.4 Blocking I/O Performance

To evaluate the blocking I/O performance, we use ping-pong benchmark be-
tween 2 nodes. One node runs a server and the other runs a client. In this

MassiveThreads: A Thread Library for High Productivity Languages 233

Table 3. Benchmark Parameters on Practical Programs

Name Commandline Arguments Description

bucket -n 10000000 Bucket sorting

cholesky -n 6000 -z 40000 Cholesky decomposition of sparse matrix

cilksort -n 400000000 Sorting

fft -n 268435456 FFT

fib 44 Fibonacci

heat -g 1 -nx 6000 -ny 6000 -nt 400 Heat diffusion solver using jacobi iteration

knapsack -benchmark long 0-1 knapsack solver using branch-and-bound

lu -n 8192 LU decomposition of dense matrix

matmul 6000 Cache-oblivious matrix multiply

plu -n 8192 LU decomposition with partial pivoting

rectmul -x 8192 -y 8192 -z 8192 Rectangular matrix multiply

spacemul -n 8192 Dag-consistent matrix multiply

strassen -n 8192 Strassen’s algorithm

Fig. 6. MassiveThreads Relative Performance on Practical Programs

Table 4. Experimental Setup for Ping-pong

CPU Xeon E5410 (2.5GHz) 4 Sockets

OS Linux 2.6.26 (Debian)

Network 10Gbit Ethernet

C Compiler GCC 4.4.1

benchmark, a server accepts TCP connections, and creates a thread for each
connection. Threads in the server wait for a 1-byte message from the its connec-
tion. When a message arrives, the thread sends an acknowledgement. A client

234 J. Nakashima and K. Taura

 0

 20000

 40000

 60000

 80000

 100000

 120000

 100 1000 10000

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/s
ec

)

of connections

MassiveThreads
NPTL
epoll

Fig. 7. I/O Throughput of Ping-pong Benchmark using 1 core

 0

 50000

 100000

 150000

 200000

 250000

 300000

 100 1000 10000

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/s
ec

)

of connections

MassiveThreads
NPTL

Fig. 8. I/O Throughput of Ping-pong Benchmark using 8 cores

establishes connections to the server. In order to limit message concurrency,
connections are distributed among the predifined number of threads. Threads
in the client randomly choose a connection, send a 1-byte message, and wait

MassiveThreads: A Thread Library for High Productivity Languages 235

for the reply. In this experiment, we limit the concurrency to 128. We define a
pair of the message and the reply as a transaction, and measured the through-
put of transaction. The experimental setup is shown in Table 4. Fig.7 shows
the throughput of MassiveThreads, NPTL (OS-level Pthreads on Linux), and
single-threaded event-driven implementation using epoll. User-code for evalu-
ation is common for both libraries. The MassiveThreads library outperforms
NPTL and achieves close performance as epoll, which indicates MassiveThreads
blocking system call handling works well enough to utilize epoll performance.
Fig.8 shows the throughput using 8 cores. The MassiveThreads library achieves
up to 4.5x better throughput than NPTL.

5 Conclusion and Future Work

In addition to good performance on single node, task parallel runtime system for
distributed memory environment is required to interact with inter-node commu-
nication libraries. Our approach to address this issue is to implement a thread
library called MassiveThreads, which can execute both tasks and communication
threads on top of it. To achieve this, it supports context switches triggered by
blocking system calls and has compatible API and semantics with Pthreads.

Evaluation results show the MassiveThreads library has competitive perfor-
mance with existing task parallel implementations, and ping-ping benchmark
result show user-level context switches triggered by system calls can multiplex
blocking socket I/O calls from many threads better than OS-level Pthreads.

As future work we are going to the following:

1. Perform more in-depth performance analysis.
2. Support context switching for more types of blocking system calls or I/O

calls for interconnects, and evaluate the benefits.
3. Evaluate MassiveThreads on distributed memory applications and study

scheduling policies for good interactions between tasks and communication
threads.

MassiveThreads source code is available under BSD license from this URL:

– http://googlecode.com/p/massivethreads

Acknowledgements. This work was supported by JSPS Grant-in-Aid for JSPS
Fellows Grant Number 248391.

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. SIGPLAN Not. 30(8), 207–
216 (1995)

2. BSC: Nanos++, http://pm.bsc.es/projects/nanox

http://googlecode.com/p/massivethreads
http://pm.bsc.es/projects/nanox

236 J. Nakashima and K. Taura

3. Callahan, D., Chamberlain, B.L., Zima, H.P.: The Cascade High Productivity
Language. In: Ninth International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2004), pp. 52–60 (2004)

4. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. In: OOPSLA 2005: Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 519–538. ACM, New York (2005)

5. Lea, D.: A Java Fork/Join Framework. In: JAVA 2000: Proceedings of the ACM
2000 Conference on Java Grande, pp. 36–43. ACM, New York (2000)

6. Drepper, U.: ELF Handling for Thread-Local Storage
7. Message Passing Interface(MPI) Forum: MPI: A Message-Passing Interface Stan-

dard. Technical report, Knoxville, TN, USA (1994)
8. Mohr, E., Kranz, D.A., Halstead Jr., R.H.: Lazy Task Creation: A Technique for

Increasing the Granularity of Parallel Programs. IEEE Trans. Parallel Distrib.
Syst. 2(3), 264–280 (1991)

9. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., wen Tseng, C.: UTS: An Unbal-
anced Tree Search Benchmark

10. Pheatt, C.: Intel R©Threading Building Blocks. J. Comput. Small Coll. 23(4), 298–
298 (2008)

11. Shekhtman, G.: State Threads for Internet Applications,
http://state-threads.sourceforge.net/docs/st.html

12. Taura, K., Tabata, K., Yonezawa, A.: StackThreads/MP: Integrating Futures into
Calling Standards. SIGPLAN Not. 34(8), 60–71 (1999)

13. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: Scalable
Threads for Internet Services. In: SOSP 2003: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pp. 268–281. ACM, New York (2003)

14. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: An API for Programming with
Millions of Lightweight Threads. In: IPDPS, pp. 1–8. IEEE (2008)

http://state-threads.sourceforge.net/docs/st.html

MassiveThreads: A Thread Library for High Productivity Languages 237

Appendix A: Join Implementation with Double-Checked
Locking Optimization

// Data structure
typedef struct{
void ∗return value;
int status;
thread ∗waiter;
mutex t lock;
...

}thread;

// Join operation
void join(thread ∗th)
{
void ∗ret;
thread ∗this,∗next;
this=massivethread self();
// First check the status without locking
if (th−>status==FREE READY){
ret=th−>return value;
mem free(th);
return ret;

}
// Then check with locking
mutex lock(&th−>lock);
if (th−>status==FINISHED || th−>status==FREE READY){
// Target is already finished
ret=th−>return value;
mutex unlock(&th−>lock);
// Wait for the target ready to be freed
while (th−>status!=FREE READY){}
mem free(th);
return ret;

}
th−>waiter=this;
// Block currently running thread
next=get next thread from ready deque();
switch callstack(next);
// Execute mutex unlock with bollowing the other context’s stack
// in order to avoid collision of call stack
mutex unlock(&th−>lock);
switch context(next);

// Execution continues from here:
mutex lock(&th−>lock);
ret=th−>return value;
mutex unlock(&th−>lock);
// Wait for the target ready to be freed

238 J. Nakashima and K. Taura

while (th−>status!=FREE READY){}
mem free(th);
return ret;

}

void on thread termination(void ∗retval)
{
thread ∗this,∗waiter,∗next;
this=massivethread self();
mutex lock(&th−>lock);
// Set return value and status
this−>return value=retval;
this−>status=FINISHED;
waiter=this−>waiter;
if (waiter!=NULL){
// Continue the waiting thread
switch callstack(next);
// Execute mutex unlock with bollowing the other context’s stack
// in order to avoid collision of call stack
mutex unlock(&this−>lock);
// From here thread descriptor is ready to be freed
this−>status=FREE READY;
switch context(waiter);

}
else{
// Execute the other thread in the ready deque
next=get next thread from ready deque();
switch callstack(next);
mutex unlock(&this−>lock);
this−>status=FREE READY;
switch context(next);

}
}

On Efficient Load Balancing for Irregular

Applications

Masahiro Yasugi

Department of Artificial Intelligence, Kyushu Institute of Technology,
680-4 Kawazu Iizuka Fukuoka, Japan 820-8502

Abstract. This short essay overviews a history and a future perspective
of dynamic load balancing for irregular applications. Since I write this
essay for the Festschrift, I discuss ideas of load balancing from the point
of view of concurrent objects as much as possible.

Keywords: load balancing, concurrent objects.

1 Introduction

In my doctoral work, I designed a concurrent object-oriented programming lan-
guage ABCL/ST (ABCL/Statically Typed) based on ABCL/1 [32, 31] and im-
plemented a concurrent object-oriented language system ABCL/EM-4 [28] for a
highly parallel data-driven computer EM-4 [19].

In the computation/programming model for ABCL/1, computation is per-
formed by a collection of autonomous, concurrently active software entities called
concurrent objects, and the interaction between concurrent objects is performed
solely via message passing. More than one concurrent object can become active
simultaneously, and more than one message transmission may take place in par-
allel. Each concurrent object has its own single thread of control, and it may have
its own memory, the contents of which can be accessed only by itself. Theoretical
foundations for concurrent objects have been established by a series of studies
in Actors [1], ABCM [20] (the computation model for ABCL/1), POOL [2], and
calculi of asynchronous objects [15].

In a concurrent object-oriented language system ABCL/EM-4, the data-driven
nature of EM-4 was well suited for efficient message handling. EM-4 consists of
80 PEs (Processing Elements) and the interconnection network. We can allo-
cate a newly created concurrent object on a PE and exchange hardware-level
packets between PEs to realize message passing. Interestingly, at the implemen-
tation level, I considered PEs as generalized, universal concurrent objects (i.e.,
abstract PEs). At present, I would like to call such generalized, universal concur-
rent objects workers, which handle implementation-level messages and change
their roles according to ABCL-level concurrent objects. Usually, the abstract
system consists of as many workers as there are PEs in the underlying computer
system.

I also think that the concurrent object-based computation model is useful for
implementing higher-level languages than concurrent object-oriented languages,

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 239–250, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

240 M. Yasugi

where workers (as universal concurrent objects) actually run in parallel. It is
useful for performance analysis as an execution model, and is useful for the
design and verification of protocols (for high-level communication by exchanging
messages). Concurrent objects have clear modularity; messages and their types
(request/reply) are clear, and each concurrent object clearly has its own single
thread of control and its own memory.

An actual computer system may have shared memory. The concurrent object-
based computation model does not cover shared memory. Shared memory may
serve as both an additional gift and a trouble. However, we can specify most
interactions among workers without directly using shared memory; of course,
shared memory can be used for implementing the concurrent object-based com-
putation model.

Recently, as high-level languages that employ workers (as universal concurrent
objects), I am interested in languages which support dynamic load balancing for
irregular applications. In the rest of this short essay, I would like to overview a
history and a future perspective of dynamic load balancing.

2 Load Balancing

With the growing popularity of parallel architectures including many/multi-
cores, it has become important to ensure easy parallel programming for effi-
cient parallel computing. An ultimate goal of programming/computing system
research is to allow users to describe the computation at a higher level of ab-
straction and to automatically determine the details of how to perform the com-
putation.

In many irregular applications, static partitioning of work with sufficient con-
currency into parallel tasks (for present workers), each with an equal amount of
work, is impossible. In such cases, dynamic load balancing, where a task (a piece
of work) is dynamically allocated to an idle worker, is effective. Work stealing is
a randomized technique that implements load balancing. An idle worker (thief)
steals a task from another randomly selected loaded worker (victim). Usually,
the number of workers does not exceed the number of underlying computing re-
sources, such as cores and “hardware” threads (afforded by Simultaneous Multi-
threading (SMT) and Hyper-threading), so that workers actually run in parallel.

In general, work-stealing frameworks [26, 18, 27, 6, 7, 3, 8, 21, 23, 25, 16, 4,
5, 17, 13, 10, 11] work well with parallel divide-and-conquer (tree-recursive) al-
gorithms, where workers, if necessary, exchange relatively large subdivided tasks
near the root of the invocation tree in order to reduce the total work-stealing
costs. It is well known that (nested) FORALL-style parallel algorithms can be
converted into parallel divide-and-conquer (recursive) algorithms easily (almost
automatically); for example, TBB [16]’s parallel_for template function recur-
sively splits a given range into subranges. Examples of manual conversion for
Cilk [8] can be found in our previous paper [29].

Work-stealing frameworks with parallel divide-and-conquer algorithms gener-
ally afford better cache locality than work-sharing approaches; when the dynamic

On Efficient Load Balancing for Irregular Applications 241

schedule is specified on OpenMP’s work-sharing loop construct, relatively small
chunks of iterations are assigned to workers (called “threads in the team” in
OpenMP) dynamically. Note that work-sharing with larger chunks (even with
the guided schedule) is less tolerant of work imbalance among iterations.

2.1 Lazy Task Creation

LTC (Lazy Task Creation) [18] is one of the best implementation techniques
for dynamic load balancing. LTC provides good load balancing for many appli-
cations including irregular ones; that is, it keeps all workers busy by creating
plenty of “logical” threads and adopting the oldest-first work-stealing strategy.

In LTC, each worker spawns plenty of logical threads and schedules them in-
ternally and thus efficiently. An idle worker (thief) may steal (the continuation
of) a logical thread from another worker (victim). That is, logical threads are
used as tasks dynamically allocated to idle workers. When a logical thread re-
cursively spawns offspring logical threads, the oldest-first work-stealing strategy
is generally effective in making tasks larger.

In LTC, a newly spawned logical thread is directly and immediately executed
like a usual call while (the continuation of) the oldest thread in the worker may
be stolen by another idle worker. Usually, the idle worker (thief) randomly selects
another worker (victim) for stealing a task. Cilk [8] employs this technique. LTC
is originally invented for MultiLisp [12], where the future construct is used as in
(+ (future E1) (future E2)). A future expression creates a logical thread,
and the channel (or promise) of the result (which will be determined later) is
passed to the continuation of the future expression. The result is waited for and
extracted with an implicit touch operation.

A message passing implementation [6] of LTC employs a polling method where
the victim detects a task request sent by the thief and returns a new task created
by splitting the present running task. StackThreads/MP [23], OPA [25], and
Lazy Threads [9] employ this technique. Although the thief may have to wait for
a task for a long time, polling methods often improve performance by avoiding
“memory barrier” instructions, as Indolent Closure Creation [21] improves Cilk’s
performance.

2.2 Cilk

Cilk [8] is a parallel programming language. It provides good load balancing by
employing LTC [18].

In Cilk, the programmer specifies parallel functions (cilk procedures). The
spawning of a parallel function is written as a C call with an additional spawn
keyword. At the language level, a logical thread that executes the parallel func-
tion is created. At the implementation level, this child thread is executed im-
mediately (prior to the parent), and (the continuation of) the parent thread
becomes stealable for dynamic load balancing. The programmer writes a sync

statement so that the parent thread waits for the completion of all spawned child
threads. Note that sync statements are compiled away for fast clones [22] at the

242 M. Yasugi

implementation level. Since each parallel function has sync as its implicit last
statement, the child threads cannot survive longer than the parent thread. Thus,
the termination of a parallel algorithm is simply detected as the completion of
the corresponding parallel function invocation.

Note that Cilk can run on shared memory environments, but it cannot run on
distributed memory environments. Since the continuation of the parent thread
is implicit, explicit serialization/communication (for distributed memory) of the
implicit continuation context is difficult.

Cilk employs a Dijkstra-like (and Dekker-like) protocol called the “THE”
protocol for work stealing. When this protocol is implemented on modern paral-
lel architectures that do not provide sequential consistency for shared memory,
the owner (the potential victim) is forced to execute store-load memory barrier
(fence) instructions when extracting its own potential tasks (logical threads in
Cilk); this results in substantial overheads.

In Cilk, the pseudovariable SYNCHED is true if all spawned child threads
are completed. SYNCHED was originally introduced to promote the reuse of a
workspace1 among child logical threads [22] and usually it cannot be used for
the reuse of a workspace between parent and child logical threads.

2.3 Other Versions of Cilk

In 1995, a previous version of Cilk was published in [3]. This version of Cilk
differs from the well-known version Cilk-5 [8] in the following manner:

– Each logical thread is nonblocking, which means that it can run to comple-
tion without waiting or suspending once it has been invoked.

– Programs must be written in explicit continuation-passing style; each logi-
cal thread must additionally spawn a successor thread (by spawn_next) to
receive the children’s return values when they are produced.

– When a thread spawns a new child thread, the parent-first approach is
taken; i.e., the new child thread (rather than the parent thread) is pushed
to the ready queue. Later, it will be popped or stolen. (More precisely, they
use levels each of which corresponds to the number of spawn’s (but not
spawn_next’s) to employ the ready queue as an array in which the Lth
element contains a linked list of all ready threads having level L.)

– It can run on distributed memory computers. When threads are stealable,
they have not been invoked and they have no continuation contexts. Im-
plicit continuations in Cilk-5 may be expressed explicitly as such stealable
new threads in [3]. Note that a thread may spawn as many threads as neces-
sary, and creation of implicit Cilk-5 intrathread continuations can be mostly
avoided.

Recently, MIT licensed Cilk technology to Cilk Arts, Inc. Cilk Arts developed
Cilk++, which includes full support for C++, parallel loops, and superior inter-
operability with serial code. In July 2009, Intel Corporation acquired Cilk Arts.

1 In this essay, workspaces mean arrays or any other mutable data structures.

On Efficient Load Balancing for Irregular Applications 243

Intel released its ICC compiler with Intel Cilk Plus for C and C++ and provided
the GCC “cilkplus” branch C/C++ compiler.

In Cilk++ (and Cilk Plus), reducers and other Cilk++ hyperobjects are intro-
duced, which enable lazy allocation of views (race-free reduction workspaces).
That is, when the continuation of the parent thread is stolen, a new view of
the reducer is allocated. This behavior can also be implemented with SYNCED in
Cilk-5, but the use of reducers is easy to understand.

2.4 Tascell

Recently, we proposed a “logical thread”-free parallel programming/execution
framework called Tascell as an efficient work-stealing framework [13]. Tascell
implements backtracking-based load balancing with on-demand concurrency. A
worker performs a computation sequentially unless it receives a task request
with polling. When requested, the worker spawns a “real” task by temporarily
“backtracking” and restoring its oldest task-spawnable state. Because no logical
threads are created as potential tasks, the cost of managing a queue for them
can be eliminated.2 Tascell also promotes the long-term (re)use of workspaces
(such as arrays and other mutable data structures) and improves the locality of
reference since it does not have to prepare a workspace for each concurrently
runnable logical thread.

The Tascell framework consists of a compiler for the Tascell language and
a runtime system. This framework supports both distributed and shared mem-
ory environments. The Tascell compiler employs an extended C language as the
intermediate language. In the first compilation phase, a Tascell program is trans-
lated into an extended C program with nested function definitions in order to
implement task-request handlers and dynamic winders. In the second compila-
tion phase, the extended C program with nested functions is compiled by an
enhanced version of GCC [30] or by a translator into standard C [14]. These
implementations provide lightweight lexical closures called “L-closures” which
are created by evaluating nested function definitions, enabling a running pro-
gram to legitimately inspect/modify the contents of its execution stack. Using
elaborate compilation/translation techniques, we can delay the initialization of
an L-closure until the L-closure is actually invoked, and we can use a private lo-
cation as a register allocation candidate for an accessed variable to realize quite
low creation/maintenance costs. Because the compiled Tascell program creates
L-closures very frequently but calls them infrequently (only when spawning a
task), the total overhead can be reduced significantly even with high invocation
costs.

Idle workers request tasks from loaded workers. When receiving a task request,
a loaded worker (victim) creates a new task by dividing the current running task,

2 The effect is significant only when the cost of managing logical threads is relatively
high (in expected time) as in Cilk-5. There are multithreaded languages and systems
(such as StackThreads/MP [23] and OPA [25]) in which the cost of managing logical
threads is quite low.

244 M. Yasugi

and returns the new task to the idle worker. When an idle worker (thief) receives
a task, it executes the task and returns the result of the task.

In the current implementation of Tascell, each worker employs a single ex-
ecution stack for multiple tasks. When a worker must wait for the result of a
stolen task, it calls a C function which attempts to steal (and execute with the
worker’s stack) another task by dividing the stolen task.3 When the result is
available, the return to the “current” task is performed as the ordinary return in
C; that is, the “current” task is managed (or “suspended”) with C’s call/return
mechanism.

In Tascell, spawned tasks are managed. More precisely, a task request, the
stolen (spawned) task, the result of the stolen task, and the ACK of the result
are managed by both the victim and thief workers. A task and its result are
represented by a task object.

Figure 1 shows a Tascell program that performs backtrack search for finding
all possible solutions to the Pentomino puzzle. We defined a task object named
pentomino. Several fields are declared as the search input. The field s is declared
for storing the result. A Tascell worker that receives a pentomino task executes
pentomino’s task_exec body. In the task_exec body, Tascell worker can refer
to the received task object by the keyword this.

In worker functions, which are specified by the keyword worker (like cilk

procedures in Cilk), we can use Tascell’s task division constructs. A parallel
for loop construct can be used for dividing an iterative computation. It is
syntactically denoted by:

for(int identifier : expressionfrom, expressionto) statementbody
handles task-name (int identifier from, int identifier to)

{ statementput statementget }

This iterates statementbody over integers from expressionfrom (inclusive)
to expressionto (exclusive). When the implicit task-request handler (available
during the iterative execution of statementbody) is invoked, the upper half of
the remaining iterations are spawned as a new task-name task, whose object
is initialized by statementput . In statementput , the actual assigned range can
be referred to by identifier from and identifier to . The worker handles the result
of the spawned task by executing statementget .

4 Note that a worker performs
iterations for a parallel for loop sequentially unless requested; the worker does
not create any logical threads and can (re)use a single workspace (such as a
worker-local array) for a long time.

Parallel for statements may be nested dynamically in their statementbody .
Therefore, multiple task-request handlers may be available at the same time.

3 This saves the execution stack as in Leapfrogging [27]. TBB [16] employs a more
general technique for saving the execution stack.

4 Specifying a task definition and several statements to handle task objects makes
Tascell programs more verbose than Cilk programs. These costs are necessary for
more exact control of workspaces and distributed memory environment support.

On Efficient Load Balancing for Irregular Applications 245

task pentomino {
out: int s; // output
in: int k, i0, i1, i2;
in: int a[12]; // manage unused pieces
in: int b[70]; // the board, with (6+sentinel) × 10 cells

};
task_exec pentomino {
this.s = search (this.k, this.i0, this.i1, this.i2, &this);

}
worker int search (int k, int j0, int j1, int j2, task pentomino *tsk)
{
int s=0; // the number of solutions
// parallel for construct in Tascell
for (int p : j1, j2)
{
int ap=tsk->a[p];
for (each possible direction d of the piece) {
... local variable definitions here ...
if (Can the ap-th piece in the d-th direction be placed

on the board tsk->b?);
else continue;
dynamic_wind // construct for specifying undo/redo operations
{ // do/redo operation for dynamic_wind

Set the ap-th piece onto the board tsk->b and update tsk->a.
}
{ // body for dynamic_wind
kk = the next empty cell;
if (no empty cell?) s++; // a solution found
else // try the next piece
s += search (kk, j0+1, j0+1, 12, tsk);

}
{ // undo operation for dynamic_wind

Backtrack, i.e., remove the ap-th piece from tsk->b and restore tsk->a.
} // end of dynamic_wind

}
}
handles pentomino (int i1, int i2) // Declaration of this and setting

// a range (i1-i2) is done implicitly
{
// put part (performed before sending a task)
{ // put task inputs for upper half iterations
copy_piece_info (this.a, tsk->a);
copy_board (this.b, tsk->b);
this.k=k; this.i0=j0; this.i1=i1; this.i2=i2;

}
// get part (performed after receiving the result)
{ s += this.s; }

} // end of parallel for
return s;

}

Fig. 1. A Tascell program that performs backtrack search for Pentomino

246 M. Yasugi

Each worker attempts to detect a task request by polling at every parallel for
statement without heavy memory barrier (fence) instructions. When the worker
detects a task request, it performs temporary backtracking in order to spawn a
larger task by invoking as old a handler as possible.

We may use the dynamic_wind construct in order to specify how to perform
undo-redo operations during the backtracking (undo) and the return from the
backtracking (redo). In Figure 1, the worker employs a single workspace for
representing a board with pieces (within tsk) unless it receives a task request; the
dynamic winder temporarily removes pieces in order to restore a task-spawnable
state near the root of the backtrack search tree so that the oldest task-request
handler can spawn a larger task as this by copying the restored workspace
(within tsk).

Our approach differs from LTC in the following manner:

– Our worker performs a sequential computation unless it receives a task re-
quest. Because no logical threads are created as potential tasks, the cost of
managing a queue for them can be eliminated.

– In multithreaded languages, each (logical) thread requires its own workspace.
In contrast, our worker can reuse a single workspace while it performs a
sequential computation to improve the locality of reference and achieve a
higher performance.

– When we implement a backtrack search algorithm in multithreaded lan-
guages, each thread often needs its own copy of its parent thread’s workspace.
In contrast, our worker can delay copying between workspaces by using back-
tracking.

– Our approach supports (heterogeneous) distributed memory environments
(including mixed-endian environments) without using distributed shared
memory systems.

Note that LTC assumes that the number of really created tasks (and steals)
is incomparably smaller than the number of logical threads. Our approach also
assumes that the number of really spawned tasks (and steals) is very small. This
assumption justifies our approach, which accepts higher work-stealing (back-
tracking) overheads in order to achieve lower serial overheads than more con-
ventional LTC such as Cilk.

Our approach is “logical thread”-free, but its ability to restore task-spawnable
states without loss of good serial efficiency depends heavily on L-closures and
the notion of lazy stack frame management [14, 30]. The idea of lazy frame man-
agement can also be applied to logical threads. Indolent Closure Creation [21]
employs this idea for Cilk; its technique of using a shadow stack is similar to
the lazy validation of an explicit stack in our transformation-based implemen-
tation [14] of L-closures. StackThreads/MP [23] enables each worker to manage
logical threads within its execution stack by allowing the frame pointer to walk
the execution stack independently of the stack pointer. (Our compiler-based
implementation [30] of L-closures is based on generalization of this technique.)
Moreover, our previous work [25] shows that the notion of “laziness” is effective

On Efficient Load Balancing for Irregular Applications 247

for modern multithreaded languages with thread IDs and dynamically-scoped
synchronizers.

Notice that Tascell’s approach is to employ different semantics from mul-
tithreading rather than to reduce costs for multithreading. Tascell’s approach
enables further performance improvement by reusing a workspace and delaying
copying between workspaces. This is the case in most multithreaded languages
other than Cilk. In Cilk, a pseudovariable SYNCHED is provided, which promotes
the reuse of a workspace among child logical threads [22].

2.5 Other Frameworks

WorkCrews [26], Leapfrogging [27], and Lazy RPC [7] take the parent-first strat-
egy; at a fork point, a worker executes the parent thread prior to the child thread
and makes the child stealable for other workers, and calls the child thread if it
has not been stolen at the join point of the parent thread. Tascell uses a similar
strategy; however, creations of stealable entities are delayed and mostly omitted.

Lazy Threads [9] realizes further optimization for spawning a thread by trans-
lating it into a parallel ready sequential call. It achieves a lower thread creation
cost than the original LTC by avoiding operations for queueing a new thread.
However, this technique can be applied only for consecutive forks. Furthermore,
it is unclear how this technique can coexist with the oldest-first work stealing
strategy.

We can find few pieces of recent work that make remarkable advances follow-
ing the abovementioned techniques; for example, X10[4]’s thread (or activity)
creation and synchronization are inspired by Cilk, and the fundamental parts of
recent techniques [5, 17, 10, 11] are not beyond the abovementioned techniques.
This means that the LTC/Cilk-originating ideas of “logical threads” for load
balancing reach maturity.

3 Future Perspective

There is a research topic in Tascell. In Tascell, when a worker waits for the result
of a stolen task, it tries to steal (and executes) another task of the task requester
until the result is returned. This restriction is posed for saving the execution stack
as in Leapfrogging [27]. This also limits the choice of tasks to steal and therefore
might limit parallelism and cause tightly stealing workers. The use of multiple
execution stacks for a single worker would alleviate the problem. In addition,
the only temporary use of a constantly bounded execution stack would solve the
problem; this means that continuations should be stealable.

For multithreaded languages (and Tascell with stealable continuations), the
implementation for distributed memory is difficult mainly because the implicit
stealable continuations are difficult to move to another node. The idea of Cilk++
hyperobjects, where the objects themselves can interact with steals, may be
applied to this problem.

With the growing popularity of highly/massively parallel architectures, scal-
ability and dependability will be very important properties of load balancing

248 M. Yasugi

frameworks. Extending load balancing frameworks to support these properties
would be required.

In a large scale shared memory system, preventing data races would become
important. Type systems may be useful for preventing data races from occurring
in the first place (e.g., based on [24]).

Recent computer architectures for high performance computing tend to ex-
ploit heterogeneity and hierarchy. Software systems also employ multiple pro-
gramming languages and advanced features such as dynamic compilation. Load
balancing frameworks and other frameworks should exploit these aspects for ef-
ficiency, meaning not only high performance but also low energy consumption.
Clear modularity of concurrent objects can provide clear (extended) models for
the design and verification of such complex systems.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press (1987)

2. America, P., Rutten, J.: A layered semantics for a parallel object-oriented lan-
guages. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1990.
LNCS, vol. 489, pp. 91–123. Springer, Heidelberg (1991)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 1995, pp. 207–216 (1995)

4. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40(10), 519–538 (2005)

5. Cong, G., Kodali, S., Krishnamoorthy, S., Lea, D., Saraswat, V., Wen, T.: Solv-
ing large, irregular graph problems using adaptive work-stealing. In: ICPP 2008:
Proceedings of the 2008 37th International Conference on Parallel Processing, pp.
536–545. IEEE Computer Society (2008)

6. Feeley, M.: A message passing implementation of lazy task creation. In: Halstead,
R.H., Ito, T. (eds.) US/Japan WS 1992. LNCS, vol. 748, pp. 94–107. Springer,
Heidelberg (1993)

7. Feeley, M.: Lazy remote procedure call and its implementation in a parallel variant
of C. In: Queinnec, C., Halstead, R.H., Ito, T. (eds.) PSLS 1995. LNCS, vol. 1068,
pp. 3–21. Springer, Heidelberg (1996)

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. ACM SIGPLAN Notices (PLDI 1998) 33(5), 212–223 (1998)

9. Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy Threads: Implementing a fast
parallel call. Journal of Parallel and Distributed Computing 3(1), 5–20 (1996)

10. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-first and help-first scheduling
policies for async-finish task parallelism. In: 23rd IEEE International Symposium
on Parallel and Distributed Processing (IPDPS 2009), pp. 1–12 (May 2009)

11. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: Slaw: a scalable locality-aware adaptive
work-stealing scheduler. In: 24th IEEE International Symposium on Parallel and
Distributed Processing (IPDPS 2010), pp. 1–12 (April 2010)

On Efficient Load Balancing for Irregular Applications 249

12. Halstead, R.H.: New ideas in parallel Lisp: Language design, implementation, and
programming tools. In: Ito, T., Halstead, R.H. (eds.) US/Japan WS 1989. LNCS,
vol. 441, pp. 2–57. Springer, Heidelberg (1990)

13. Hiraishi, T., Yasugi, M., Umatani, S., Yuasa, T.: Backtracking-based load balanc-
ing. In: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2009), pp. 55–64 (February 2009)

14. Hiraishi, T., Yasugi, M., Yuasa, T.: A transformation-based implementation of
lightweight nested functions. IPSJ Digital Courier 2, 262–279 (2006), IPSJ Trans-
actions on Programming 47(SIG 6(PRO 29)), 50–67

15. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

16. Intel Corporation: Intel Threading Building Block Tutorial (2007),
http://threadingbuildingblocks.org/

17. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. In: Pro-
ceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2009), pp. 45–54 (February 2009)

18. Mohr, E., Kranz, D.A., Halstead, R.H.: Lazy task creation: A technique for in-
creasing the granularity of parallel programs. IEEE Transactions on Parallel and
Distributed Systems 2(3), 264–280 (1991)

19. Sakai, S., Yamaguchi, Y., Hiraki, K., Kodama, Y., Yuba, T.: An architecture of a
dataflow single chip processor. In: Proc. of the 16th Annual International Sympo-
sium on Computer Architecture, pp. 46–53 (June 1989)

20. Shibayama, E.: An Object-Based Approach to Modeling Concurrent Systems.
Ph.D. thesis, Department of Information Science, The University of Tokyo (1991)

21. Strumpen, V.: Indolent closure creation. Tech. Rep. MIT-LCS-TM-580, MIT
(June 1998)

22. Supercomputing Technologies Group: Cilk 5.4.6 Reference Manual. Massachusetts
Institute of Technology, Laboratory for Computer Science, Cambridge, Mas-
sachusetts, USA

23. Taura, K., Tabata, K., Yonezawa, A.: StackThreads/MP: Integrating futures into
calling standards. In: Proceedings of ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPoPP 1999), pp. 60–71 (May 1999)

24. Terauchi, T.: Checking race freedom via linear programming. In: Proceedings of
the 2008 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2008, pp. 1–10 (2008)

25. Umatani, S., Yasugi, M., Komiya, T., Yuasa, T.: Pursuing laziness for efficient
implementation of modern multithreaded languages. In: Veidenbaum, A., Joe, K.,
Amano, H., Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 174–188. Springer,
Heidelberg (2003)

26. Vandevoorde, M.T., Roberts, E.S.: WorkCrews: An abstraction for controlling par-
allelism. International Journal of Parallel Programming 17(4), 347–366 (1988)

27. Wagner, D.B., Calder, B.G.: Leapfrogging: A portable technique for implementing
efficient futures. In: Proceedings of Principles and Practice of Parallel Programming
(PPoPP 1993), pp. 208–217 (1993)

28. Yasugi, M.: A concurrent object-oriented programming language system for highly
parallel data-driven computers and its applications. Tech. Rep. 94-7e, Department
of Information Science, Faculty of Science, University of Tokyo (April 1994), Doc-
toral Thesis (March 1994)

http://threadingbuildingblocks.org/

250 M. Yasugi

29. Yasugi, M., Hiraishi, T., Umatani, S., Yuasa, T.: Parallel graph traversals using
work-stealing frameworks for many-core platforms. Journal of Information Pro-
cessing 20(1), 128–139 (2012)

30. Yasugi, M., Hiraishi, T., Yuasa, T.: Lightweight lexical closures for legitimate ex-
ecution stack access. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923,
pp. 170–184. Springer, Heidelberg (2006)

31. Yonezawa, A. (ed.): ABCL: An Object-Oriented Concurrent System — Theory,
Language, Programming, Implementation and Application. The MIT Press (1990)

32. Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Proc. of ACM Conference on OOPSLA, pp. 258–268 (1986)

Verifiable Object-Oriented Transactions

Suad Alagić and Adnan Fazeli

Department of Computer Science,
University of Southern Maine, Portland, Maine, USA

alagic@usm.maine.edu, adfazeli@gmail.com

Abstract. Unlike the existing object-oriented and other database tech-
nologies, database schemas in the technology developed in this research
are equipped with very general integrity constraints specified in a declar-
ative, logic-based fashion. These declarative specifications are expressed
in object-oriented assertion languages and they apply to transactions
that are implemented in a full-fledged, mainstream object-oriented pro-
gramming language. The model of transactions is based on more ad-
vanced features of object-oriented type systems, the ownership model,
and very general constraints. The main distinction in comparison with
other database technologies is that transactions can be verified to sat-
isfy the schema integrity constraints. The two main contributions of this
paper are object-oriented schemas equipped with integrity constraints
and static verification of transactions with respect to the integrity con-
straints. Solutions to these open problems have been out of reach so far.
Furthermore, transaction verification is not only largely static, but it is
also automatic, so that the subtleties of the underlying verification tech-
nology are hidden from the users. In addition to static verification, the
technology offers dynamic enforcement of the integrity constraints when
necessary. The overall outcome is a significant increase in data integrity
along with run-time efficiency and reliability of transactions.

1 Introduction

This paper is addressing a major limitation of the current generation of object-
oriented database systems. In fact, other widely used database technologies ex-
hibit the same problem. The solution to this problem developed in this paper is
based on recent developments in assertion languages and verification technolo-
gies. This represents a major departure from the technologies and tools that are
commonly used in database systems.

The key issue in object-oriented database systems is management of persistent
objects. Object-oriented languages have no support for persistent objects that
would be suitable for databases. An object-oriented database schema specifies
(collections of) persistent objects, and their types in particular. Complex actions
on persistent objects are expressed as programs in an object-oriented program-
ming language. A transaction is expected to start in a consistent database state
and if successfully completed it must leave the database in a consistent state.

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 251–275, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

252 S. Alagić and A. Fazeli

The current generation of object-oriented systems is based on typed object-
oriented programming languages. This is a source of a major discrepancy: data
languages are declarative and mainstream object-oriented languages by them-
selves do not have such capabilities. Database schemas, the consistency require-
ments, and queries should be specified in a declarative style.

The current object technology has nontrivial problems in specifying even
classical database integrity constraints, such as keys and referential integrity
[10,17,20]. No industrial database technology allows object-oriented schemas
equipped with general integrity constraints. In addition to keys and referential
integrity, such constraints include ranges of values or number of occurrences,
ordering, constraints that apply to inheritance, and the integrity requirements
for complex objects obtained by aggregation [2]. More general constraints that
are not necessarily classical database constraints come from complex applica-
tion environments and they are often critical for correct functioning of those
applications [3].

Object-oriented schemas are generally missing database integrity constraints
because those are not expressible in type systems of mainstream object-oriented
programming languages. Since the integrity constraints cannot be specified in a
declarative fashion, the only option is to enforce them procedurally with nontriv-
ial implications on efficiency and reliability. In a typed constraint-based database
technology, the constraints would fit into the type systems of object-oriented
languages and they should be integrated with reflective capabilities of those lan-
guages [22] so that they can be introspected at run-time. Most importantly, all
of that is not sufficient if there is no technology to enforce the constraints, prefer-
ably statically, so that expensive recovery procedures will not be required when
a transaction violates the constraints at run-time [2,3].

The idea of static verification of transaction safety with respect to the database
integrity constraints has been considered in previous research [8,23,25,6] but it
has not been implemented at a very practical level so that it can be used by
typical object-oriented database programmers. The first problem is that object
database technologies such as ODMG [9], Db4 [10], and Objectivity [20] are not
equipped with general constraints, and even have difficulties in specifying keys
and referential integrity [17]. This problem is resolved in this research by using
an object-oriented assertion language such as JML [13] or Spec# [19]. An as-
sertion language allows specification of schemas with general database integrity
constraints (invariants) and transactions can be specified in a declarative fashion
with preconditions and postconditions.

The ability to statically verify that a transaction implemented in a mainstream
object-oriented language satisfies the database integrity constraints has been
out of reach for a long time. Some of our previous results were based on a
higher-order interactive verification system which is so sophisticated that it is
unlikely to be used by database programmers. A pragmatic goal has been static
automatic verification which completely hides the prover technology from the
users. Automatic static verification of the object-oriented constraints is a major
distinction with respect to our previous work [3,4] as well as with respect to other

Transaction Verification 253

work [8,23,25,6]. Our goals are object-oriented schemas with general integrity
constraints, transactions written in a mainstream object-oriented language, and
their static verification that guarantees ACID properties in an implementation
based on an object-oriented database management system. These goals represent
a significant advancement of our previous results reported in [2].

A key observation is that if it is not possible to verify that transactions satisfy
the schema integrity constraints, then it is not possible to truly guarantee the
ACID properties of the transaction model. ACID stands for atomicity, isolation,
consistency and durability. A serializable concurrent execution of a set of trans-
actions has the property that it will maintain the schema integrity constraints
only as long as the individual transactions by themselves (i.e., in isolation) sat-
isfy those constraints [11]. This explains the relationship between the research
reported in this paper and other research on object-oriented transactions. Most
recent research on object-oriented transactions, such as [14,26,24], has been di-
rected toward an apparatus for providing properties such as atomicity, isolation,
and serializability that would replace the existing inadequate concurrent appara-
tus in object-oriented programming languages with respect to transactions. The
integrity constraints (the C component) are not considered. Our research does
exactly that.

The contributions of this paper are:

– Specification of object-oriented database schemas equipped with classical
as well as more general integrity constraints not available in the existing
database technologies.

– Schema modeling techniques based on abstraction, specification inheritance,
and aggregation including the ownership model.

– A model of object-oriented transactions equipped with declarative speci-
fications and techniques for automatic static and dynamic verification of
transaction safety with respect to the schema integrity constraints.

– A complex object-oriented application that demonstrates the above tech-
niques, verification of complex transactions in particular.

– A model of ACID transactions implemented on top of an object-oriented
database management system that guarantees all ACID properties, the C
component in particular.

This paper is organized as follows. We first specify (section 2) the basic fea-
tures of our model of object-oriented transactions. General issues of concurrent
transactions and the integrity constrains are discussed in section 3. In section 4
we present some key semantic concepts for modeling complex application envi-
ronments and the associated transactions. Levels of consistency as they relate
to the model of transactions and the ownership model are discussed in section
5. In section 6 we consider complex schemas equipped with a variety of gen-
eral integrity constraints, including classical database constraints such as keys
and referential integrity. This is followed by sample transactions with respect
to schemas equipped with integrity constraints in section 7. In section 8 we
elaborate the relationship between declarative specification of constraints and
database queries. The impact of inheritance on the schema integrity constraints

254 S. Alagić and A. Fazeli

is discussed in section 9. Abstraction techniques for object-oriented schema are
given in section 10. Dynamic constraint checking is the subject of section 11. The
implementation issues related to the underlying database platform are discussed
in section 12. Related research is summarized in section 13 and conclusions are
given in section 14.

2 Transaction Model

Our main contribution is an implemented model of automatic verification of
object-oriented transactions with respect to the object-oriented schemas
equipped with constraints. To our knowledge this is the first time such a verifi-
cation was possible for transactions written in a full-fledged mainstream object-
oriented language and object-oriented schemas and transactions extended with
very general constraints.

The components of our transaction model are more sophisticated features
of the type system such as bounded parametric polymorphism, the ownership
model, specification of the schema integrity constraints, pre and post conditions
for transactions, and their automatic verification.

In our transaction model there exists an interface Schema and a class Trans-
action. Specific schemas implement the interface Schema.

A schema is a complex object, an aggregation of its components. A schema
is the owner of its components. The ownership model of our transaction model
allows constraints that apply to complex objects and their components. A partic-
ular case are integrity constraints that apply to complex schema objects. Objects
with the same owner are modeled as peers. This in particular applies to compo-
nents of a schema object.

Our model of transactions allows controlled updates of persistent objects in
such a way that the constraints associated with complex objects, and schema
objects in particular, are enforced. Independent updates of components of a com-
plex object that might violate the integrity constraints that apply to the whole
complex object are not allowed. Situations in which a transaction necessarily and
temporarily violates the schema integrity constraints are carefully controlled in
this model.

The relationship between a transaction object and a schema object is also
modeled as a peer relationship. A transaction is not a component of a schema,
and a schema is not a component of a transaction. There are multiple transac-
tions accessing the same schema object and all of them cannot own the schema
object. An object can have at most one owner. In addition, there are constraint-
related reasons for modeling a transaction and its schema as peers to be elabo-
rated in section 4. The basic features of the transaction model are represented
in figure 1.

In our approach, the class Transaction is bounded parametric, where the
bound type is the type of schema to which a specific transaction type is bound.
This makes it possible for a particular transaction class to be compiled with
respect to a specific schema type. The notation in the code given below follows

Transaction Verification 255

Peer

Peer

Owner
Owner

Schema

Schema
component

Schema
component

Peer

Transaction

Transaction

Fig. 1. Transactions and schemas

Spec#. T ! denotes a non-null object type, i.e., an object type that does not al-
low null references. The attribute [Peer] indicates that the relationship between
a transaction object and its associated schema object is specified as the peer
relationship. The attribute [SpecPublic] denotes private components that can
be used as public only in specifications.

public interface Schema {. . .}
public class Transaction <T> where T: Schema {
[SpecPublic][Peer] protected T! schema;

public Transaction(T! schema){ this.schema = schema;}
}

Both schemas and transactions are equipped with very general logic-based
constraints to be elaborated throughout the paper starting with sections 6 and
7.

3 Concurrent Transactions and Integrity Constraints

Our view is that a database schema should be equipped with explicitly specified
integrity constraints that transactions acting on the database must satisfy. The
database is acted upon by a set of concurrent transactions. A well-known fact
is that concurrent executions of transactions may violate the database integrity
constraints even if individual transactions do not.

If individual transactions respect the integrity constrains, then obviously their
serial execution will as well. That is, if the integrity constraints hold initially,
they will hold after completion of the first transaction, and likewise they will
hold after each subsequent transaction in a serial execution.

However, serial executions are unacceptable for performance and database
availability reasons. Database technologies are naturally based on concurrent

256 S. Alagić and A. Fazeli

transactions. Since concurrent transactions may violate the integrity constraints,
they must be managed by a technology that allows only those concurrent exe-
cutions that do not violate those constraints. From the viewpoint of database
integrity, those concurrent executions are equivalent to serial executions. Such
concurrent executions are called serializable executions [11].

A concurrent execution is serializable if it has an equivalent serial execution.
Two executions are said to be equivalent from the viewpoint of integrity if they
have the same ordering of conflicting actions. Two actions are conflicting if they
are executed on the same object and at least one of them is an update. Various
locking protocols have been invented and implemented to guarantee the serial-
izability condition. The classical and the best known is two phase locking. Two
phase locking is a pessimistic strategy and it is provably a sufficient condition
for seralizability [11]. There are optimistic alternatives.

The beauty of the classical results on serializability is that they do not depend
upon a particular form of the integrity constraints. But the underlying assump-
tion is that whatever the integrity constraints are, each individual transaction
in a concurrent execution is required to satisfy those constraints in isolation.
Research on object-oriented transactions or the current generation of object-
oriented database systems do not address this fundamental requirement. The
reason is that there has been no technology to deal with more complex integrity
constraints. This is precisely the main point of the research reported in this
paper. We develop verification techniques that would guarantee that an object-
oriented transaction satisfies the database integrity constraints.

The verification techniques for object-oriented transactions that we investi-
gated belong to one of the following categories:

– Dynamic enforcement of constraints
A representative of this type of technology is JML [13]. In this case schema
constraints and transactions are specified in JML, and transactions are full-
fledged Java programs. Database technologies enforce a few classical database
constraints such as keys and foreign keys. JML allows much more general con-
straints. The main disadvantage is that violations are detected at run-time,
where the implications may be non-trivial, such as invocation of expensive
recovery procedures to maintain data integrity. In addition, dynamic enforce-
ments of constraints in database systems comes with a siginificant cost. But
very general constraints are specifiable and enforceable.

– Static interactive reasoning
A representative of this type of technology is PVS [21]. The main advantage
of this technology is that it is very general. PVS is a higher-order verification
system that allows specifications of specialized logics suitable for transaction
verification. Careful investigation of the transaction model shows that it is
actually temporal in nature. This is why we developed transaction verifica-
tion techniques in PVS that are based on a suitable temporal logic [3]. The
main disadvantage of this technology is that it requires very sophisticated
users and hence it is not likely to be directly used by ordinary database
programmers. This technology has a complementary role in our transaction

Transaction Verification 257

verification environment. It is used to verify more general integrity con-
straints (such as temporal) that technologies based on object-oriented asser-
tion languages cannot handle.

– Automatic static verification
This is the most appealing technology from the viewpoint of users. A rep-
resentative of this technology is Spec# [15]. In our approach, schemas and
transactions are specified in Spec# and transactions are full-fledged C#
programs. In this technology the subtleties of the underlying prover technol-
ogy are hidden from the users. Static automatic verification is attempted,
with runtime checks generated as well. In addition, this particular technology
comes with the ownership model that it is essential for a sophisticated model
of object-oriented transactions. It also comes with features that allow con-
trolled updates that might violate the integrity constraints. This technology
is the focus of this paper because it is precisely what has been out of reach for
many years: static verification of very general integrity constraints for trans-
actions written in a mainstream, preferably object-oriented, programming
language.

In the transaction verification technology presented in this paper static veri-
fication is complemented with dynamic checks. Dynamic checks are in fact nec-
essary even if static verification succeeds. Static verification guarantees that the
transaction code is correct with respect to the schema integrity constraints and
the transaction specification in terms of its pre and post conditions. But if the
schema integrity constraints or the transaction precondition do not hold at the
transaction start, the results of static verification do not apply. In many situ-
ations checking the transaction precondition is possible only at run-time. For
example, inserting an object into a database collection equipped with a key
constraint requires checking that the key of the inserted element does not al-
ready exist in the database collection. This is why the transaction code must be
written in such a way that it handles run-time exceptions caused by dynamic
checks of constraints. In the absence of such exceptions, or if those exceptions
are correctly managed, the transaction postcondition and the schema integrity
constrains will hold at the transaction completion (commit) point. The key point
about static verification is that if a transaction fails a static check, it should never
be executed. This avoids major problems related to violation of the integrity con-
straints running a transaction that provably does not satisfy those constrains.
The penalties of executing such a transaction are aborting a transaction and
invoking expensive recovery procedures to restore database consistency.

4 Owners and Peers

In this section we consider the semantic modeling techniques for object-oriented
database schemas explicitly supported in the technology presented in this paper.
These techniques have not been considered in object database technologies such
as ODMG [9], Db4 [10], and Objectivity [20], and hence have no proper support
in those technologies.

258 S. Alagić and A. Fazeli

In addition to inheritance, the key abstraction technique for modeling complex
applications in this paper is aggregation. This abstraction is well understood in
semantic data models, but in the object-oriented model it has specific implica-
tions. A complex object defined by aggregation is represented by its root object
called the owner along with references to the immediate components of the owner
specified as its representation fields. References to other objects do not repre-
sent components of that object. This way a complex object is defined as a logical
unit that includes all of its components. Constraints that apply to objects de-
fined by aggregation may now be specified in such a way that they refer both
to the owner object and to the components defined by its representation fields.
In a flight scheduling application developed in this paper, a flight scheduling ob-
ject is defined as an aggregation of flights, planes and airports, as illustrated in
figure 2.

AirportsFlights Planes

Peer

Peer

Owner
OwnerOwner

Peers

Scheduling

Schedule flight

Cancel flight

Peer

Redirect flight

Transactions

Fig. 2. Owners and peers in flight scheduling

The notion of ownership comes with a related semantic modeling notion.
Objects that have the same owner are called peers. The relationship among
objects flights, planes and airports is clearly not the ownership relationship.
These objects are peers as they have the same owner, the scheduling object.

The peer relationship has a role that may be even independent from the notion
of ownership. Consider the relationship of a transaction object and its associated
schema object. As we already explained, a transaction and its associated schema
are modeled as peers. Of course, we may view the overall application as the
owner of the schema object and all the associated transaction objects.

In addition to the above abstractions, inheritance is naturally an essential
modeling abstraction which we do not show in the above diagram. The model
of this application includes inheritance hierarchies of different aircraft types and
different airport types, as well as an inheritance hierarchy of different transaction
types. The interplay of inheritance and constraints is discussed in section 9.

Transaction Verification 259

5 Levels of Consistency

The schema integrity constraints are typically violated during transaction execu-
tion and then the constraints are reinstated when the transaction is completed,
so that the constraints should hold at commit time. The mechanism for handling
correctly these situations is illustrated below by the structure of a transaction
that closes an airport:

expose(flight scheduling){
close airport;

cancel all flights to or from the closed airport;

}

After the first action the referential integrity constraints are temporarily vio-
lated to be reinstated after the second action of cancelling all flights to or from
the closed airport. The purpose of the expose block is to indicate that the
schema object invariants may be violated in this block. Otherwise, the verifier
will indicate violation of the schema invariants. In the expose block the object
is assumed to be in a mutable state and hence violation of the object invariants
is allowed. Outside of the expose block, assignments that possibly violate the
invariants will be static errors. Different situations that may occur with respect
to the object state and its satisfaction of the object invariants are summarized
below:

– Valid object state – object invariants hold, updates must satisfy the invari-
ants.

– Mutable object state - object invariants are not required to hold, updates
are allowed to violate them

– Consistent object state – the object is in a valid state and
• the object does not have an owner or
• the owner is in a mutable state

– Committed object state – the object is in a valid state and
• the object has an owner
• the owner is also in a valid state.

When a transaction operates on an object, the implicit assumption is that the
object is in a consistent state. This means that either the object does not have
an owner to put restrictions on the object, or that the object has an owner, and
the owner is in a mutable state, hence it allows update actions on the object.
Since the object is in a consistent state, its state is valid and its components
are thus in a committed state. In order to update the receiver and the states
of its components, the receiver state must be changed to a mutable state using
the expose block. This will also change the state of the components of the object
from committed to consistent, so that methods can be invoked on them. The
notions of valid, mutable, consistent and committed objects, and the effect of
the expose statement, are illustrated in figure 3.

260 S. Alagić and A. Fazeli

SchedulingScheduling

Flights Planes Airports Flights Planes Airports

Runways
Runways

Expose
Valid owner

Valid and committed component objects

Valid and committed component objectValid and committed component object

Mutable owner object

Valid and consistent component objects

Fig. 3. Flight scheduling consistency states

There is an obvious alternative to viewing a transaction and its associated
schema as peers: just omit any ownership or peer attributes. But in fact, us-
ing the peer relationship has important implications for transaction verification.
A transaction is verified under the assumption that the schema integrity con-
straints hold when the transaction is started. If this condition is not satisfied,
a transaction cannot be verified even if it is in fact correct with respect to the
schema integrity constraints. So we really have to guarantee this condition.

Spec# adds an implicit precondition for peer consistency so that a trans-
action can assume this condition in its verification. This applies to in-bound
parameters and the receiver of any method. The implicit postcondition for peer
consistency also applies to all out-bound parameters and return values. The
caller of a method is required to satisfy the peer consistency requirement. This
means that an object and its peers must be valid, and their owner must be
exposed first before an update is performed.

6 Constraints for Schemas

We now consider a specific schema in which the core object type is defined using
the aggregation abstraction and the ownership model along with the associated
integrity constraints. The FlightScheduling schema contains specification of three
database collections: a list of airplanes, a list of airports, and a list of flights.

The schema FlightScheduling exhibits two cases of the aggregation abstraction
as supported by the Spec# ownership model. The attribute [Rep] indicates that
the lists of flights, airports and airplanes are components of the flight schedul-
ing object which becomes their owner. The attribute [ElementsRep] indicates
that list elements are also components of the flight scheduling object. These ele-
ments are then peers according to the Spec# ownership model. This has implica-
tions on invariants that can now be defined to apply to entire complex objects,

Transaction Verification 261

i.e., including their components determined by the [Rep] and [ElementsRep]
fields. These constraints are called ownership-based invariants.

public class FlightScheduling: Schema {
[SpecPublic][Rep] [ElementsRep] private List<Airplane!>! airplanes;

[SpecPublic][Rep] [ElementsRep] private List<Airport!>! airports;

[SpecPublic][Rep] [ElementsRep] private List<Flight!>! flights;

// constraints

}

In the collection of airplanes the key is Id, in the collection of airports the key
is Code, and in the collection of flights the key is FlightId. The first referential
integrity constraint specifies that each flight in the collection of flights refers to a
unique airplane in the collection of airplanes. The remaining (omitted) referential
integrity constraints specify that each flight in the collection of flights refers to
a unique airport as its origin and a unique airport as its destination.

For presentation purposes, the notation in this paper is more mathematical
than the Spec# notation. However, there is a direct correspondence between this
notation and the Spec# notation.

invariant ∀{int i ∈ (0: flights.Count), int j ∈ (0: flights.Count);
flights[i].FlightId = flights[j].FlightId ⇒ flights[i].Equals(flights[j])};

invariant ∀{int i ∈ (0: flights.Count);

∃ unique {int j ∈ (0: airplanes.Count); airplanes[j].Equals(flights[i].Airplane)}};

A class is in general equipped with an invariant which specifies valid object
states. The schema integrity constraints are specified above as class invariants.
These assertions allow usage of universal and existential quantifiers as in the
first-order predicate calculus, as well as combinators typical for database lan-
guages such as min, max, sum, count, avg etc. These constraints in the above
schema refer to private components of the schema object. As explained earlier,
the attribute [SpecPublic] means that these private components can be used as
public only in specifications. Typically, such components will also be defined as
public properties with appropriately defined get and set methods so that access
to them can be controlled.

Spec# constraints limit universal and existential quantification to variables
ranging over finite intervals. The above constraints contain specifications of half
open intervals. The limitation that quantifiers are restricted to integer variables
ranging over finite intervals was a design decision to sacrifice expressiveness in
order to allow automatic static verification. This limitation is no problem in the
application considered in this paper as the above schema shows.

The above schema contains non-null object types (indicated by the symbol !)
that capture a very specific object-oriented integrity constraint. A frequent prob-
lem in object-oriented programs is an attempt to dereference a null reference. If

262 S. Alagić and A. Fazeli

this happens in a database transaction, the transaction may fail at run-time with
nontrivial consequences. The Spec# type system allows specification of non-null
object types. Static checking will indicate situations in which an attempt is made
to access an object via a possibly null reference.

7 Sample Transactions

Each class that a schema refers to is also equipped with its constraints as illus-
trated below for the class Flight. The relationship between a flight object and
the associated airplane object is defined as a peer relationship for the reasons
explained in section 4. The invariants include the obvious ones: the origin and
the destination of a flight must be different and the departure time must precede
the arrival time. If the current time is greater than the arrival time or the current
time is less than the departure time, the status of the flight must be idle. If the
current time is greater than the departure time and less than the arrival time
the flight status must be either flying, landing or takeoff.

invariant to
= from;

invariant departureTime < arrivalTime;

invariant DateTime.Now > arrivalTime ⇒ this.flightStatus = FlightStatus.Idle;

invariant DateTime.Now < departureTime ⇒ this.flightStatus = FlightStatus.Idle;

invariant DateTime.Now ≥ departureTime ∧ DateTime.Now ≤ arrivalTime ⇒
this.flightStatus = FlightStatus.TakeOff ∨
this.flightStatus = FlightStatus.Flying ∨
this.flightStatus = FlightStatus.Landing;

The constraints specified in this section include some classical database
integrity constraints such as keys and referential integrity, and in addition con-
straints that are not typical for the existing database technologies, object-oriented
in particular. In fact, we are not aware of a database technology that allows con-
straints of the above variety.

To make the job of the verifier possible, specification of methods that change
the object state, such as database updates, requires specification of the frame
conditions. This is done by the modifies clause, which specifies those objects and
their components that are subject to change. The frame assumption is that these
are the only objects that will be affected by the change, and the other objects
remain the same. An attempt to assign to the latter objects will be a static error.

Sample instantiations of the class Transaction by the flight scheduling schema
are given below.

public class ScheduleFlightTransaction:
Transaction<FlightScheduling> {

public Flight? scheduleFlight (string! flightId,

string! toAirportCode, string! fromAirportCode,

DateTime departure, DateTime arrival, Airplane! plane)

Transaction Verification 263

// constraints

{// transaction body }
}

Flight? in the above code is an explicit notation for a type that may contain a
null value. The preconditions of the transaction scheduleFlight are that the flight
id does not exist in the list of flights, that its origin (denoted fromAirportCode)
and its destination (denoted toAirportCode) must refer to existing (valid) airport
codes, and that the departure time precedes the arrival time. Valid airport codes
are kept in a table ValidCodes. The transaction scheduleFlight modifies only the
list of flights as specified in its modifies clause. The postcondition guarantees
that the newly scheduled flight exists in the list of flights.

requires toAirportCode
= fromAirportCode;
requires ∀ {int i ∈ (0: schema.Flights.Count);

schema.Flights[i].FlightId
= flightId };
requires ∃ unique {int i ∈ (0: schema.Airplanes.Count);

schema.Airplanes[i].Equals(plane)};
requires ∃ unique {string code ∈ ValidCodes.airportsCodes;

code = toAirportCode};
requires ∃ unique {string code ∈ ValidCodes.airportsCodes;

code = fromAirportCode };
requires departure < arrival;
modifies schema.flights;

ensures ∃ unique {int i ∈ (0: schema.Flights.Count);

schema.Flights[i].FlightId = flightId };

The first precondition of the transaction cancelFlight specifies that there ex-
ists a unique flight in the collection of flights with the given id of the flight to be
deleted, denoted flightId. The second precondition specifies a requirement that
the flight departure time is greater than the current time. The modifies clause
specifies that this method modifies the collection of flights. The postcondition
specifies that the cancelled flight does not appear in the list of flights.

requires ∃ unique {Flight flight ∈ schema.Flights;
flight.FlightId = flightId};

requires ∀ {Flight flight ∈ schema.Flights;
flight.FlightId = flightId ⇒
flight.departureTime > DateTime.Now };

modifies schema.flights;

ensures ∀ {Flight! flight ∈ schema.Flights;

flight.FlightId
= flightId };

The precondition for the transaction redirectFlight are that the id of the flight
to be redirected, denoted flightId, must exist in the list of flights, and that its
status must not be landing. This transaction modifies just the list of flights. The

264 S. Alagić and A. Fazeli

postcondition ensures that the destination of the redirected flight has indeed
been changed in the list of flights to newDest.

requires ∃ unique {Flight flight ∈ schema.flights;
flight.FlightId = flightId ∧ (flight.FlightStatus
= FlightStatus.Landing)};

requires ∀ {Flight flight in schema.flights;
flight.FlightId = flightId ⇒ flight.from
= newDest };

modifies schema.flights;

ensures ∀ {Flight! flight in schema.Flights;

flight.FlightId = flightId ⇒ flight.to = newDest };

8 Constraints and Queries

Queries are pure methods. Pure methods are functions that have no impact on
the state of objects, database objects in particular. Interplay of constraints and
queries is illustrated below. The attribute [Pure] indicates a pure method and
result refers to its result.

An example of a query (hence pure) method is flightsDepartureBetween which
returns a list of flights whose departure time is within a given interval. The pre-
conditions require that the time interval is not empty (i.e. the initial time is less
than the end time) and that the initial time is greater than the current time.
The postcondition ensures that the flights that are returned by this method have
the departure times within the specified bounds.

[Pure] public List<Flight!>? flightsDepartureBetween
(DateTime beginDateTime, DateTime endDateTime)

requires beginDateTime < endDateTime;
requires beginDateTime > DateTime.Now;

ensures ∀ {Flight! f ∈ result;

f.departureTime ≥ beginDateTime ∧
f.departureTime < endDateTime };

{// method body }

The body of this method is specified as a LINQ query given below:

// open db

IEnumerable<Flight> flights =

from Flight flight ∈ db

where flight.departureTime ≥ beginDateTime ∧
flight.departureTime < endDateTime

select flight;

// close db;

Transaction Verification 265

A native query in Db4 Objects (details omitted) has the following form:

// open db

IList<Flight!>? flights =

db.Query<Flight!>(delegate(Flight! f) {
return (f.departureTime ≥ beginDateTime ∧

f.departureTime < endDateTime); };
// close db;

9 Specification Inheritance

Specifications of constraints in a class are inherited in its subclasses. In addition,
method postconditions and class invariants may be strengthened by additional
constraints. Method preconditions remain invariant. This discipline with respect
to inheritance of constraints is a particular case of behavioral subtyping [16]. It
guarantees that an instance of a subtype may be substituted where an instance
of the supertype is expected with no behavioral discrepancies.

Consider the class Airport given below in which an airport object is the owner
of its list of runways, as well as of the specific runways in that list.

public class Airport {
[SpecPublic] private string code;
[Additive] protected int numRunways;

[SpecPublic] [Rep] [ElementsRep] protected List<Runway!>! runways;

// methods and constraints

}

The invariants of this class specify that that the number of runways must be
within the specified bounds. In addition, there are ownership based invariants
on flights in the take-off and landing queues in the runways. These are invariants
that relate properties of the owner and its components and hence apply to the
entire complex object of an airport. These constraints include a constraint that
one and the same flight cannot be in two different queues belonging to different
runways. In order to make it possible for subclass invariants to refer to the field
numRunways, Spec# requires the attribute [Additive] in the specification of this
field.

invariant numRunways ≥ 1 ∧ numRunways ≤ 30;
invariant runways.Count = numRunways;
invariant /* No multiple occurrences of the same flight in runways*/

Methods addRunway and closeRunway along with the associated constraints
are specified as follows:

266 S. Alagić and A. Fazeli

public virtual void addRunway(Runway! runway)
modifies runways, numRunways;

ensures ∃ {Runway! r ∈ runways; r.Equals(runway)};
{//code }

public virtual void closeRunway (Runway! runway)

modifies runways, numRunways;

ensures numRunways > 0;
ensures numRunways = old(numRunways) - 1;

ensures ∀ { Runway! r ∈ runways; !r.Equals(runway)};
{// code }

Consider now a class InternationalAirport derived by inheritance from
the class Airport. The class InternationalAirport inherits all the invariants from
the class Airport. In addition, it adds new invariants that are conjoined with the
inherited ones. These additional invariants require that the number of runways
is higher than the minimum required by an airport in general. Furthermore, an
additional requirement is that there exists at least one runway of the width and
length suitable for international flights. This is expressed using a model field
IntRunway. The notion of a model field is explained in section 10 that follows.

public class InternationalAirport: Airport {
invariant numRunways ≥ 10;
invariant ∃ {Runway! r ∈ Runways; r.IntRunway };
// IntRunway is a boolen model field in Runway
// constructor, methods

public override void closeRunway (Runway! runway)
ensures numRunways ≥ 10;

ensures ∃ {Runway! r ∈ runways; r.IntRunway };
{// code}
}

Overriding of the method closeRunway demonstrates the rules of behavioral
subtyping. One would want to strengthen the precondition of this method by
requiring that there is more than one international runway at an international
airport or else the invariant for the international airport will be violated. But
that is not possible by the rules of behavioral subtyping. Otherwise, users of the
class Airport would see behavior of the method closeAirport that does not fit
its specifications in the class Airport. This would happen if the airport object is
in fact of the run-time type InternationalAirport. The modifies clause cannot be
changed either for similar reasons. But the postcondition can be strengthened
as in the above specifications. The postcondition now ensures that the number
of runways is greater than or equal to ten and that there exists at least one
international runway after the method execution. These are specific requirements
for international airports.

Transaction Verification 267

Specification inheritance has implications on behavioral subyping of paramet-
ric types that follow well-known typing rules for such types. For example, if we
derive a schema InternationlFlightScheduling by inheritance from the schema
FlightScheduling, Transaction<InternationlFlightScheduling> will not be a sub-
type of the type Transaction<FlightSchedling>, and hence not a behavioral sub-
type either.

A class frame is the segment of the object state which is defined in that class
alone. A class frame does not include the inherited components of the object
state. An invariant of a class will include constraints that apply to its frame, but
it may also further constrain the inherited components of the object state. For
example, an object of type International Airport has three class frames. These
class frames correspond to classes Object, Airport and InternationalAirport.

The notions valid and mutable apply to each individual class frame. The no-
tions consistent and committed apply to the object as a whole. So an object
is consistent or committed when all its frames are valid. The expose statement
changes one class frame from valid to mutable. The class frame to be changed is
specified by the static type of the segment of the object state to be changed. For
example, the body of the method closeAirport of the class InternationalAirport
has the following form:

assert runways
= null;

[Additive] expose((Airport)this){
runways.Remove(runway);

numRunways–;

}

10 Abstraction

Typical classes in this application have private fields that are made public only
for specification purposes. Examples are fields code and runways in the class
Airport. Users of this class would clearly have the need to read the code of
an airport, and some users would have the need to inspect the runways of an
airport. On the other hand, these fields are naturally made private as users are
not allowed to access them directly in order to change them.

The basic mechanism for exposing a view of the hidden object state is to use
public pure methods. A related technique is to use public properties. A public
property is defined as a pair of get and set methods. The constraints in the set
method control correctness of an update to a backing private field. A property
Runways of the class Airport is specified below.

public List<Runway!>! Runways {
get { return runways;}
[Additive] set
requires value
= null;
ensures runways = value;

268 S. Alagić and A. Fazeli

ensures /*no multiple occurrences of the same flight in runways*/

{/* code */}
}

Property getters are pure methods by default. Properties represent a general
abstraction mechanism as the value of a property returned by the method get
need not just be the value of a backing field, but it may be computed in a more
complex way from the hidden (private) components of the object state.

Another abstraction mechanism is based on model fields. A model field is not
an actual field and hence it cannot be updated. The model fields of an object
get updated automatically at specific points in a transaction. An example of a
model field is IntRunway of the class Runway specified below.

model bool IntRunway {
satisfies IntRunway = (length ≥ 80 ∧ width ≥ 10);}

Unlike pure methods, model fields do not have parameters. But they often
simplify reasoning. The verifier checks that the satisfies clause can indeed be
satisfied, i.e., that there exists an object state that satisfies this clause. The
satisfies clause may depend only on the fields of this and the objects owned by
this. The satisfies clauses may be weaker in superclasses, and strengthened in
subclasses.

11 Dynamic Checking of Constraints

Static verification of a transaction ensures that if the transaction is started in
a consistent database state (the schema invariants hold) and the transaction
precondition is satisfied, the schema invariants and the postcondition of the
transaction will hold at the point of the commit action. The application program
that invokes the transaction must satisfy the above requirements at the start of
the transaction, and will be guaranteed that the postcondition and the schema
invariants will hold at the end of the transaction execution.

Static verification does not say anything about what happens if the schema
integrity constraints or the transaction precondition are not satisfied. What it
says is that the code of a successfully verified transaction is correct with respect
to the integrity constraints. Violation of constraints may still happen at run-
time given the actual data. For example, a transaction may be invoked with
arguments that do not satisfy the precondition and hence the verification results
do not apply. This is why the dynamic checks that Spec# generates are essential.
JML does the same, but it does not offer automatic static verification of code.
Run-time tests will generate exceptions indicating violation of constraints. The
transaction must handle these exceptions properly. Static verification guarantees
that in the absence of such exceptions the results of transaction execution will
be correct with respect to the integrity constraints. This extends to concurrent
serializable executions of a set of transactions that have been statically verified.

Transaction Verification 269

Explicit dynamic checks may be used to verify that the constraints hold at
run-time. This is illustrated below with a dynamic check of the precondition of
the transactions addAirport in which a denotes the airport that should be added.
The precondition of addAirport is that an airport with the code of the new air-
port does not exist in the database. This can be checked only dynamically by
querying the database and asserting that this condition is satisfied.

IList<Airport!>? airports =

db.Query<Airport!>(delegate(Airport! arp){
return (arp.Code = a.Code);};
assert airports = null;

Ensuring that a new airport has been added to the database is accomplished
by querying the database and asserting that the list of airports in the database
with the new code is not empty and that the newly inserted airport is indeed in
the database.

IObjectSet? airportsSet =

db.Query(typeof(Airport!));

assert ∃ unique {Airport! arp ∈ airportsSet; arp.Equals(a)};

12 Database Platform

The underlying database platform that we used in the implementation of the
presented transaction model is Db4 Objects. Db4 is an open source object-
oriented database management system. It manages persistent objects, offers mul-
tiple query languages, and two programming language interfaces for specifying
transactions: Java and C#.

Research presented in this paper addresses precisely the limitations of the
current generation of persistent object-oriented systems, and Db4 in particular.
Db4 does not have an explicit notion of a schema and it does not have a transac-
tion class. There are practically no constraints, especially of the kind presented
in this paper. Consequently, the constraints are not enforced, and hence the fact
that Db4 claims support for ACID transactions is not justified because of the C
component.

Our research produces a much more sophisticated database technology that
offers explicit types of schemas and transactions, very general constraints for
both, and transaction verification. These specifications could be expressed in
JML or Spec#, and the transaction code could be written in Java or C#. En-
forcing constraints is done statically if Spec# is used, and it is dynamic in both
JML and Spec#.

The role of PVS in our transaction verification environment is complementary.
It is used to reason about more general schema and transaction constraints, such
as temporal, which the two assertion languages cannot support. In addition, the

270 S. Alagić and A. Fazeli

PreCondition & SchemaInvariant

PostCondition & SchemaInvariant

SchemaInvariant

?

commit

abort

Database
Database

Transaction

SchemaInvariant

SchemaInvariant

Exception

Fig. 4. Transaction execution

role of PVS is to show that some constraints are in fact provable, especially if
static verification comes with difficulties.

Our technology truly supports ACID transactions. We rely on Db4 for imple-
mentation of atomicity, isolation and durability, and we guarantee consistency.
In the actual implementation this is accomplished as follows:

– The precondition for the transaction invocation is that the transaction pre-
condition and the schema invariant hold. This precondition will be the sub-
ject of static verification at the point of transaction call and it will be enforced
dynamically if static verification is not possible.

– The above constraints are thus the precondition for the actual transaction
action. The postcondition of the transaction action that is enforced is that
the transaction postconditon and the schema invariant hold. This is the
task of static transaction verification. The postcondition will be enforced
dynamically as well.

– The above postcondition is the precondition for the transaction commit. The
postconditon for the transaction commit is that the schema invariant holds.

– If an exception is raised and it is not handled by the transaction, the trans-
action will be aborted. The postconditon of the transaction abort is that the
schema invariant is reinstated. Figure 4 illustrates the above points.

Isolation of concurrent transactions is implemented as follows. When a trans-
action opens the database, it creates a private workspace. Accessing persistent
objects for the first time brings them into the private workspace of the transac-
tion. Updates of objects affect initially only the objects in the private workspace.

Transaction Verification 271

Database

Owner

Schema

Transaction

Peer

Persistent store

Heap

Schema

Workspace

Owner

Fig. 5. Architecture

Since workspaces of individual transactions are private, updates that affect one
workspace are inaccessible to updates of other transactions. Figure 5 illustrates
some of the overall system architecture.

When a workspace is initially populated, the schema integrity constraints
should hold for objects that are in the private workspace because they hold for
the objects in the database. If that is not the case, the results on serializability
and our verification techniques do not apply. During transaction execution the
integrity constraints will typically be violated at some points. Static verification
guarantees that the schema integrity constraints and the transaction postcondi-
tion will hold at the commit point. This is the property of the transaction code
and hence the precondition of the transaction commit.

Atomicity is accomplished by installing all the changes recorded in the trans-
action workspace in the database so that either all of them are performed or
none of them are. In the actual Db4 implementation a two phase write-ahead
protocol is used to guarantee that all changes are made safely or none of them
are.

There are two options supported by Db4 as far as the locking protocols
are concerned. In a pessimistic strategy the private workspace consists of
database objects and in-memory objects. In-memory objects are kept in sep-
arate workspaces and database objects are locked using a protocol that guar-
antees serializability (such as two-phase locking [11]). The locks will be held
throughout transaction execution and released after a successful commit. In an
optimistic protocol the private workspace will consist of in-memory objects only.
Database objects will be accessed by multiple transactions and at commit time
a concurrent execution will be checked for serializability.

272 S. Alagić and A. Fazeli

The serializability check looks at the ordering of conflicting actions in the
transactions log. The ordering of conflicting actions must correspond to some
serial execution. If the serializability check fails at commit time, a suitable action
must be performed, such as a rollback.

Once the commit is completed successfully, the updated objects in the
database become available to other transactions. Successful verification guar-
antees that the objects in the database satisfy the integrity constraints. The D
component of the notion of an ACID transaction will hold because committed
changes will persist in the database.

The postcondition of the transaction abort is guaranteed by restoring the
database objects and in-memory objects to the state before transaction execution
so that the restored objects will satisfy the schema integrity constraints. Db4 has
methods used in our implementation that rollback changes to persistent objects
and refresh in-memory objects.

Our protocols differ from other similar protocols, and Db4 protocols in par-
ticular, in a fundamental way. They guarantee that the database integrity con-
straints will indeed be satisfied. To our knowledge, this is the only object-oriented
technology that truly guarantees the C component of the notion of ACID trans-
actions.

13 Related Research

General integrity constraints are missing from most persistent and database
object models with rare exceptions such as [2,4,8]. This specifically applies to
the ODMG model [9,5], PJama [18], Java Data Objects [12], and just as well
to the current generation of systems such as Db4 Objects [10], Objectivity [20]
or LINQ [17]. Of course, a major reason is that mainstream object-oriented
languages are not equipped with constraints. Those capabilities are only under
development for Java and C# [13,19]. In addition, none of the above technologies
has support for the modeling techniques based on the ownership model.

A classical result [23] on the application of theorem prover technology based
on computational logic to the verification of transaction safety is relational.
Early object-oriented results include [8] and the usage of Isabelle/HOL [25]. A
recent result [6] is relational and functional. In comparison with the above results
and our own previous results, research reported in this paper produces object-
oriented schemas with more general integrity constraints, transactions written in
a mainstream object-oriented language, and their static verification that guaran-
tees ACID properties in an implementation based on an object-oriented database
management system.

Our previous results include techniques based on JML and PVS [3]. Our most
recent results that apply to XML Schema constraints and the associated trans-
actions are based on Spec# [2]. Reflective constraint management, static and
dynamic techniques for enforcing constraints, and transaction verification tech-
nology are presented in [3,4,22]. The above techniques were applied to ambients
of concurrent and persistent objects in [1].

Transaction Verification 273

A substantial amount of recent research has been directed toward a correct
model and the required apparatus in object-oriented programming languages
that would support the notion of a transaction [14,26,24]. These results are meant
to resolve the mismatch between the existing concurrent object-oriented features
of languages such as Java and C# and those required by the notion of ACID
transactions. Unlike that research, research reported in this paper concentrates
on the C component of ACID transactions. In addition, we also implement the
D component of the ACID model based on the support of an object-oriented
database management system [10].

14 Conclusions

The main contributions of this paper are solutions for two related problems that
have been open so far:

– Lack of general schema integrity constraints in the existing object-oriented
persistent or database technologies.

– Lack of a transaction specification and verification technology that would
verify, preferably statically, that a transaction satisfies the schema integrity
constraints.

The constraint-based technology allows specification of object-oriented
schemas equipped with general database integrity constraints, transactions and
their consistency requirements. The verification techniques presented in the pa-
per allow largely static and automatic verification of transactions with respect to
the specified constraints. A major advantage is that all the subtleties of the un-
derlying verification and prover technology are completely hidden from the users.
The implications on data integrity, efficiency and reliability of transactions are
obvious and non-trivial.

Data integrity as specified by the constraints could be guaranteed. Runtime re-
liability of transactions is significantly improved. Expensive recovery procedures
will not be required because the objects that violate the integrity constraints
will never be committed to the database. The generated dynamic checks provide
a significantly better control over exceptions raised by violation of the integrity
constraints. In addition, more general application constraints that are not nec-
essarily database constraints could be guaranteed. All of this produces a much
more sophisticated technology in comparison with the existing ones.

The impedance mismatch between data and programming languages is to
a great extent caused by different levels of abstraction of these two classes of
languages. Data (query in particular) languages are largely declarative, and pro-
gramming languages are largely procedural. A distinctive feature of the technol-
ogy presented in this paper is declarative database programming in which the
main emphasis is on writing a variety of constraints. The procedural code is in
general simple, and thanks to recent extensions of object-oriented languages also
largely declarative.

274 S. Alagić and A. Fazeli

We demonstrated that an object-oriented model of transactions requires more
advanced features of object-oriented type systems such as bounded parametric
polymorphism and non-null object types. In addition, we showed that the own-
ership model is also essential for the transaction model. It allows specification
of schemas using the aggregation abstraction and specification and enforcement
of the integrity constraints that apply to complex objects. To our knowledge, no
object-oriented persistent or database technology has the above features.

The model for schemas and transactions presented in this paper has been
designed in such a way that it has a direct representation in Spec#. This makes
Spec# verification technology directly applicable. Spec# limitations in expres-
siveness (like those for universal and existential quantification) presented no
paricular problem in the application that we developed. But strictly speaking,
the chosen application features a variety of temporal constraints that cannot be
specified in Spec# in a temporal logic style. We use a different technology for
specifying temporal constraints for schemas and transactions that complements
the environment presented in this paper. That technology is based on a higher-
order interactive verification system. While it is capable of expressing much more
general constraints expressed in specialized logics, this technology requires very
sophisticated users.

Automatic static verification (as in Spec#) is clearly a preferable verification
technology from the viewpoint of the users. At this point that technology is
still a prototype. The underlying architecture that separates the users view from
the prover technology is very complex. Static verification sometimes comes with
difficulties. However, while dynamic enforcement technology (as in JML) allows
very general constraints, it comes with run-time penalties that are particularly
pronounced in database applications.

References

1. Alagić, S., Anumula, A., Yonezawa, A.: Verifiable constraints for ambients of per-
sistent objects. In: Advances in Software, vol. 4, pp. 461–470 (2011)

2. Alagić, S., Bernstein, P.A., Jairath, R.: Object-oriented constraints for XML
Schema. In: Dearle, A., Zicari, R.V. (eds.) ICOODB 2010. LNCS, vol. 6348, pp.
100–117. Springer, Heidelberg (2010)

3. Alagić, S., Royer, M., Briggs, D.: Verification technology for object-oriented/XML
transactions. In: Norrie, M.C., Grossniklaus, M. (eds.) Object Databases. LNCS,
vol. 5936, pp. 23–40. Springer, Heidelberg (2010)

4. Alagić, S., Logan, J.: Consistency of Java transactions. In: Lausen, G., Suciu, D.
(eds.) DBPL 2003. LNCS, vol. 2921, pp. 71–89. Springer, Heidelberg (2004)

5. Alagić, S.: The ODMG object model: does it make sense? In: Proceedings of OOP-
SLA, pp. 253–270. ACM (1997)

6. Baltopoulos, I.G., Borgström, J., Gordon, A.D.: Maintaining database integrity
with refinement types. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp.
484–509. Springer, Heidelberg (2011)

7. Benzaken, V., Doucet, D.: Themis: A database language handling integrity con-
straints. VLDB Journal 4, 493–517 (1994)

Transaction Verification 275

8. Benzanken, V., Schaefer, X.: Static integrity constraint management in object-
oriented database programming languages via predicate transformers. In: Akşit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 60–84. Springer, Hei-
delberg (1997)

9. Cattell, R.G.G., Barry, D., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F.: The Object Data Standard: ODMG 3.0.
Morgan Kaufmann (2000)

10. Db4 objects (2010), http://www.db4o.com
11. Eswaran, K.P., Grey, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency

and predicate locks in a database system. Comm. of the ACM 19, 624–633 (1976)
12. Java Data Objects, Apache, http://db.apache.org/jdo/
13. Java Modeling Language, http://www.eecs.ucf.edu/leavens/JML/
14. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus.

Science of Computer Programming 57, 164–186 (2005)
15. Leino, K.R., Muller, P.: Using Spec# language, methodology, and tools to write

bug-free programs. Microsoft Research (2010),
http://research.microsoft.com/en-us/projects/specsharp/

16. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM TOPLAS 16,
1811–1841 (1994)

17. Language Integrated Query, Microsoft Corporation,
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx

18. Atkinson, M.P., Daynès, L., Jordan, M.J., Printezis, T., Spence, S.: An orthogonally
persistent Java. ACM SIGMOD Record 15(4) (1966)

19. Microsoft Corp., Spec#, http://research.microsoft.com/specsharp/
20. Objectivity, http://www.objectivity.com/
21. Owre, S., Shankar, N., Rushby, J.M., Stringer-Clavert, D.W.J.: PVS Language Ref-

erence, SRI International. Computer Science Laboratory, Menlo Park, California,
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

22. Royer, M., Alagić, S., Dillon, D.: Reflective constraint management for languages
on virtual platforms. Journal of Object Technology 6, 59–79 (2007)

23. Sheard, T., Stemple, D.: Automatic verification of database transaction safety.
ACM Transactions on Database Systems 14, 322–368 (1989)

24. Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with isolation
and cooperation. In: Proceedings of OOPSLA 2007. ACM (2007)

25. Spelt, D., Even, S.: A theorem prover-based analysis tool for object-oriented
databases. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 375–
389. Springer, Heidelberg (1999)

26. Welc, A., Hosking, A.L., Jia, L.: Transparently reconciling transactions with locking
for Java synchronization. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp.
148–173. Springer, Heidelberg (2006)

http://www.db4o.com
http://db.apache.org/jdo/
http://www.eecs.ucf.edu/leavens/JML/
http://research.microsoft.com/en-us/projects/specsharp/
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx
http://research.microsoft.com/specsharp/
http://www.objectivity.com/
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

Design and Implementation of a Mobile Actor

Platform for Wireless Sensor Networks

YoungMin Kwon1, Kirill Mechitov2, and Gul Agha2

1 Microsoft Corporation
One Microsoft Way

Redmond, WA, USA 98052
youngminkwon@gmail.com

2 Department of Computer Science
University of Illinois at Urbana-Champaign

201 North Goodwin Avenue
Urbana, IL, USA 61801

{mechitov,agha}@illinois.edu

Abstract. Wireless sensor networks (WSNs) promise the ability to
monitor physical environments and to facilitate control of cyber-physical
systems. Because sensors networks can generate large amounts of data,
and wireless bandwidth is both limited and energy hungry, local process-
ing becomes necessary to minimize communication. However, for reasons
of energy efficiency and production costs, embedded nodes have relatively
slow processors and small memories. This makes programming sensor
networks harder and requires new tools for distributed computing. We
have developed ActorNet, an implementation of the Actor model of com-
puting for sensor networks which facilitates programming by treating
a sensor network as an open distributed computing platform. ActorNet
provides a high-level actor programming language: users can write dy-
namic applications for a single cross-platform runtime environment with
support for heterogeneous and physically separated WSNs. This shields
application developers from some hardware-specific concerns. Moreover,
unlike other programming systems for WSNs, ActorNet supports agent
mobility and automatic garbage collection. We describe the ActorNet lan-
guage and runtime system and how it achieves reasonable performance
in a WSN.

1 Introduction

A Wireless Sensor Network (WSN) is a system of sensor nodes that collaborate
with other nodes through wireless communication channels. A typical sensor
node has one or more sensors, some data processing capabilities, a wireless com-
munications channel, and an independent power source. With the utilization of
the local processing capabilities and wireless communications, a sensor node can
autonomously perform its tasks or collaborate with other nodes. Due to these
unique features, WSNs have been proposed for applications such as environmen-
tal monitoring [33], structural health monitoring [8], intrusion detection [6], and
target tracking [11].

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 276–316, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Design and Implementation of a Mobile Actor Platform 277

WSN application development remains a complex and challenging endeavor.
The task is somewhat simplified by using a distributed middleware which can
provide services such as localization [27], time synchronization [34], and data
aggregation [40]. Despite the support offered by a middleware, programming
WSN still poses difficulties. This is because of several reasons: embedded code
is platform dependent; multiple applications cannot be concurrently executed;
applications cannot be dynamically loaded; multiple WSNs cannot interoperate;
and migration of processes is not supported.

Some of the problems we described above have been studied in the context
of open distributed systems. In an open distributed system, adding new compo-
nents may be added, existing components may be replaced, and interconnections
between components may be changed. A platform which supports an open dis-
tributed largely should allow such evolution without impacting the functioning of
the system. The actor models provides a suitable for building open distributed
systems: it has a notion local components and interaction restricted through
specified interfaces. Interaction in the actor model is based on asynchronous
message passing; this prevents the direct manipulation of the internal state of
one component by another.

In this paper, we implement a variation of an actor model, called ActorNet [2]
to address some challenges in WSN programming. ActorNet provides a uniform
computing platform for mobile agents, which we call actors [5]. ActorNet builds
a single virtual network by interconnecting physically separated WSNs over the
Internet. This virtual network removes the difficulties in interoperating multiple
WSNs together. For example, an actor can track a seismic event while migrat-
ing thousands of miles through the Internet. The homogeneity of the computing
environments provided by the interpreter layer of ActorNet simplifies interoper-
ation. Because the underlying platform differences and the network differences
are hidden from the actors, the same actor program can continue its tasks while
migrating between different ActorNet platforms, e.g. a Mica2 sensor node and a
PC. The ActorNet implementation is available with an open source license1.

ActorNet consists of a language interpreter and a runtime system. The actor
language supports powerful operations such as high-order functions, reflection,
garbage collection, and tail recursion removal. The specific details of the un-
derlying hardware and the operating system are hidden behind the high level
operators of the actor language. The uniform computing environment also sim-
plifies the application developments greatly as it precludes the need for different
variations of programs for different platforms.

ActorNet runtime provides with a library of services such as virtual memory,
application level context switching, garbage collection, and a communication
stack machine. These services not only secure the necessary resources for Actor-
Net applications to run, but also enables ActorNet, as an application running
on a sensor node, to coexist harmoniously with other native applications.

Unlike other WSN mobile agent frameworks based on a bytecode virtual ma-
chine [17], using an interpreter can greater power and flexibility. In particular,

1 http://osl.cs.illinois.edu

http://osl.cs.illinois.edu

278 Y. Kwon, K. Mechitov, and G. Agha

the ActorNet interpreter facilitates reflective capabilities of the language. To sup-
port actor migration, we uniformly represent the state of an actor as a pair of a
continuation [47] and a value to be passed to the continuation. This state rep-
resentation, along with the reflection capability of the actor language (cf. [53]),
endows actors with the voluntary migration capability. The mobility of actors
enables fine-grained network reprogramming. The actors run only at required
nodes and their migration does not disrupt the continuation of other actors’
computation.

Organization of the paper. Section 2 discusses the problems we are trying to
address. Section 3 describes our approach to addressing the problems identified.
Section 4 provides a complete ActorNet example application to illustrate our
approach. The detailed syntax and the semantics of ActorNet language is de-
fined in Section 5. Section 6 describes the implementation of the interpreter and
the runtime system of ActorNet. In Section 7 we evaluate the performance of
the system. Section 8 examines the application of ActorNet mobile agents as the
foundation of a macroprogramming system. Finally, we discuss the unique con-
tributions of ActorNet in the context of related work on mobile agent systems
and network reprogramming in Section 9. Concluding remarks and discussion of
future work follow.

2 Motivation

Our research is motivated by our experience in building WSN applications which
continues to require embedded systems programming and networking expertise.
Domain experts are not usually embedded systems experts, as pointed out in [42].
We believe this has slowed down the adoption of WSNs. The difficulties can be
summarized as follows:

– Embedded code is dependent on the specific platform used. Thus embedded
systems programmers have to be familiar with the intricacies of the hard-
ware, operating system, and programming language used for the particular
embedded hardware and software that they are using. Moreover, it is diffi-
cult to adapt applications to new sensor platforms, even as new platforms
are being continually developed.

– Interoperation of multiple, possibly heterogeneous WSNs is not supported.
Many large scale events cannot be covered by a single WSN but require
multiple WSNs; for example mapping the temperature of a city or recording
seismic data observed across the globe may be facilitated by the cooperation
of multiple WSNs. However, many WSN applications are designed only for
a single or a handful of predetermined groups of sensors.

– It is difficult to run multiple applications in a WSN. As we move from dumb
sensors to smart sensors with on board processing capabilities, embedded
computers will be used to multitask. For example, it may process readings
from different sensors and adapt the behavior of these applications based on
the readings.

Design and Implementation of a Mobile Actor Platform 279

– Remote reprogramming of sensors is tedious. Because application images are
preloaded on the nodes and the message formats are predetermined, a WSN
cannot respond to dynamically changing requirements:
• an application’s coverage is bound to a predetermined set of sensors as
nodes;

• new nodes cannot dynamically join a WSN unless they are already pro-
grammed to do so; and,

• even when applications potentially of interest are known in advance,
given that memory on an embedded node is scarce, it is impractical to
preload less-frequently used applications on a large number of nodes.

One approach to addressing the problem of dynamically changing require-
ments is to support remote reprogramming. Several network reprogramming sys-
tems have been developed including Deluge [22], over-the-air programming of
Contiki [15], SOS [20], and Trickle protocol of Mate [31]. These systems install
the whole image or replace some of the modules remotely injected from a central
node. However, unless remote reprogramming supports fine grained targeting
and inter-operation of heterogeneous application images, energy consumption
considerations severely limit its usefulness.

A different remote evaluation approach has been proposed by Stamos et al.
Instead of the traditional client/server architecture, server nodes in this remote
evaluation framework provide a set of generic operations which allow remotely
transmitted programs to run on a server using the generic operations and return
the results [45]. The remote evaluation approach solves the scalability problem
and can potentially reduce the communication load as well. However, some tasks
can be better executed in a framework that not only allows program to be
copied but migrates its state. Migrating an actor’s state allows it to continue a
computation on the destination platform. Actor migration enables to duplicate a
program over the entire network. Moreover, the ability to migrate continuations
can reduce the code size that needs to be migrated.

One of the design principles of a WSN is to build a large scale distributed sys-
tem using cheap, even disposable, hardware. Naturally, problems arising from the
limited resources follow. For example, Mica2 [13] node has only 4 kB of memory,
which is a very tight limit even for a single application. To make matters worse,
TinyOS [50], an operating system for the Mica nodes, does not support dynamic
loading and unloading of applications. That is, the 4 kB of memory must be
shared by all applications shipped on a node. These constraints pose a big im-
pediment to the development and the maintenance of WSN applications. Some
embedded computer operating systems support dynamic module/application
loading: these include Contiki [15], Mantis [9], and SOS [20]. TinyOS, a pop-
ular operating system for WSNs, does not. According to a survey, TinyOS has
the largest support community and the largest number of publications among
operating systems for WSNs with 81% [29]. For this reason, ActorNet is imple-
mented primarily targeting TinyOS; however, we believe porting ActorNet to
other platforms may not be difficult: only a small fraction of the runtime sys-
tem code is platform-dependent. ActorNet already provides support for two very
diverse platforms: TinyOS on Mica2, and Linux on PC.

280 Y. Kwon, K. Mechitov, and G. Agha

3 ActorNet Design

We now describe the overall design of the computing environment and highlight
the issues that need to be addressed in its implementation. The principal features
ActorNet provides are:

– A light-weight actor (mobile agent) programming language for WSN systems
which powerful programming constructs such as higher-order functions, re-
flection, tail recursion removal, and garbage collection.

– Support for multiple concurrently actors which can execute on a node with-
out interfering with each other.

– A library of useful services, including a virtual memory space on embed-
ded nodes to dynamically load and run non-trivial actor programs and an
application-level context switching mechanism to enable blocking I/O and
fair scheduling.

– A virtual network platform that encompasses multiple physical WSNs and
PC platforms without exposing the hardware and networking differences to
the application.

3.1 Network Architecture Design

Simplifying the interoperation of multiple physically-distributed WSNs is one
of the design goals of ActorNet. Toward this goal, ActorNet builds a single vir-
tual computing environment for mobile actors that encompasses multiple WSNs.
Specifically, this environment is constructed by interconnecting the base sta-
tions, or gateway nodes, of WSNs via an Internet overlay. Using the virtual
environment, differences in the communication network as well as the under-
lying computing platform can be obscured from application-level actors. Being
exposed to these differences, an actor program would have to prepare different
sets of handlers for each hardware configuration, which results in duplicated
code, unnecessarily complex implementations, and large application code sizes.

The proposed virtual environment spans two tiers of networks: an ad hoc wire-
less network and the Internet, as can be seen in Figure 1. These two network
tiers feature vastly different topology, bandwidth, protocols, and performance
characteristics. In ad hoc wireless networks, messages are locally broadcast to a
node’s neighbors, whereas most of the Internet consists of wired, point-to-point
connections. The bandwidth differences between the two network types can be
huge. Typical RF network devices used to interconnect wireless sensors can com-
municate at speeds ranging from 38.4 to 250 kbps, for 802.15.4 devices. However,
in practice the communication speeds are much lower. For example, a 64-node
WSN deployed on the Golden Gate Bridge took 12 hours to transport 90 sec-
onds worth of high-frequency vibration data [26]. Finally, there is a multiple
order of magnitude difference in performance of the hosts comprising the net-
work: personal computers (PCs) and servers connected to the Internet typically
have processors running at several GHz, whereas sensor nodes feature proces-
sors with maximum speeds of several MHz. These differences make developing
applications that span both network types a challenging endeavor.

Design and Implementation of a Mobile Actor Platform 281

Forwarder

Repeater

Sensor Node

Repeater

Sensor Node

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����

����
����
����

��������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 1. ActorNet network architecture: the forwarder turns the Internet into a single-
hop, broadcast overlay network, and the repeaters act as a bridge between it and the
ad hoc wireless networks. This network architecture obscures the underlying network
differences from the actor programs.

To hide the heterogeneity of the network from the actors, we represent the
Internet a single hop broadcast network from the actor’s viewpoint. Specifically,
any messages transmitted from a gateway node connected to the Internet are
forwarded to the other gateway nodes. In view of this network topology, the dif-
ference between the ad hoc network and the Internet is hidden from the actors.
All ActorNet platforms connected to a forwarder node over the Internet can be
regarded as a single hop neighbor. This virtual single-hop network extends the
range of mobile actors to the global scale. That means, to an actor, a migration
of thousands of miles through the Internet is no different from a local migration
between two neighboring sensor nodes. As a solution for the network bandwidth
differences, ActorNet provides a packet buffer at the gateway nodes, which com-
pensates for temporary differences in the throughput of the two networks.

One of the merits of this network design is that existing agent coordination al-
gorithms can be easily adopted. For example, ant algorithms use a reinforcement
based on (computational) pheromones to guide the agent behavior. A notable
example is the ant-based routing algorithm [14], which builds robust, adaptive
end-to-end routes. In sensor networks, due to the intermittent nature of network
connectivity, dynamic routing algorithms based on end-to-end route quality are
preferable to static routing tables. With network design, building message routes
across the WSNs does not differ from building them within a WSN.

282 Y. Kwon, K. Mechitov, and G. Agha

3.2 Actor Language Design

The ActorNet programming language uses the syntax of the programming lan-
guage Scheme [1], extended with actor operators. In this respect, it is similar to
the actor language Rosette [51]. As mentioned earlier, the ActorNet program-
ming language simplifies programming WSNs. This is accomplished by:

Platform independent execution: ActorNet naturally shields the platform
differences from actors by functioning as a virtual machine.

Uniform messaging: Communication is platform independent: a simple send
operator is used to send any type or volume of data to any destination node,
even if the destination actor resides in a different WSN connected via an
Internet gateway.

Continuation Passing Style (CPS) programming: The state of an actor
is represented as a pair consisting of a continuation—a single parameter
function representing the rest of the program [47], and a reduction expression
whose value is to be passed to the continuation. Applying the value to the
continuation produces a new actor state, and an actor repeatedly generates
new states as it computes. Continuations allow a programmer to capture,
send, and execute future computations, similar to the concept of future type
message passing in the ABCL/1 concurrent programming language [56].

Actor Mobility: Because an actor program is represented as a data type, it is
platform independent and can be migrated as source code.

Concurrency: Multiple actors may be concurrently executed on a single Ac-
torNet node.

Note that the CPS representation of an actor’s state supports reflection over
the current state. This enables actors to migrate themselves at any stage of
execution–by accessing the continuation and the value to be passed to the con-
tinuation, and send these to a new platform. To make the migration happen,
an ActorNet platform needs to be ready to receive an actor’s state and let
it continue its execution. For this purpose, each ActorNet platform features a
special-purpose built-in actor which receives such messages and creates a new
actor to evaluate the message content. During the evaluation, the new actor’s
state is replaced with the actor state in the message.

3.3 ActorNet Platform Design

Running ActorNet platforms on sensor nodes presents its own unique difficulties.
In this section, we describe the concerns in developing ActorNet platforms on
extremely resource-constrained sensor platforms, such as Crossbow Mica2 sensor
nodes (described below). Note that ActorNet would be much easier to implement
on more powerful sensor platforms; we use a the Mica2 to demonstrate that our
approach can be supported on a broad range of WSN devices.

Design and Implementation of a Mobile Actor Platform 283

Mica2 and TinyOS
The Crossbow Mica2 mote is built on an 8MHz 8-bit ATmega128L CPU with
4 kB of SRAM, 128 kB of program flash memory, and 512 kB of serial flash [13].
The 4 kB SRAM space is shared by the stack, heap, and static variables of
all TinyOS components and applications. This, in turn, places a tight memory
constraint on applications. Application code, large constant tables, and log data
are loaded in the flash memory units. As an application, ActorNet also has to
share this 4 kB space, but because its data is actor programs, the small memory
is the more restrictive to ActorNet compared to other applications. To address
this fundamental problem, we designed a 56 kB virtual memory formed at the
512kB serial flash memory. Usually, flash memory read operations are fast, but
write operations are slow and expensive in terms of energy consumption. On
Mica2 it takes ∼15ms to write a 128-byte page to flash.

Mica2 hardware is equipped with a CC1000 RF transceiver for single-duplex
wireless communication. At the bit-level, TinyOS uses Manchester encoding [48],
achieving a theoretical raw throughput of 38.4 kbps. In practice, a Mica2 node
is able to transmit approximately 20 34-byte packets per second. Internally,
TinyOS employs a carrier sense multiple access (CSMA) medium access control
protocol called B-MAC [41], together with SEC-DED encoding and a 16-bit
cyclic redundancy code (CRC) on each packet, which allows receivers to detect
data corruption. In addition to the wireless transceiver, Mica2 units feature an
RS-232 serial interface [46], allowing communication with PC-based applications
through an interface board.

TinyOS is a lightweight operating system for the sensor nodes written primar-
ily in NesC [19]. The system is structured as a collection of modules which are
statically linked together based on a component specification. The modules con-
sist of statically-allocated variables and three different types of program blocks:
command, event, and task. Service requests are typically split-phase: a caller in-
vokes a command, which returns quickly; once the request is satisfied, the service
calls back to a corresponding event procedure in the caller. This communication
pattern enables a higher application throughput as compared to simple blocking
I/O. Long-running procedures are explicitly executed as tasks, which are sched-
uled in series and run to completion. Since only interrupts can preempt tasks or
lower-priority interrupt handlers, if multiple processes must be run concurrently,
they have to be explicitly segmented into a sequence of tasks.

In order to enable the mobility of actors, ActorNet supports dynamic loading
and unloading of actor programs. Because an actor may allocate and deallocate
memory during its computation, the dynamic unloading module must reclaim all
the dangling memory made by the unloaded actor. As a general solution to this
problem, we added a Garbage Collection (GC) mechanism to ActorNet. The GC
mechanism is based on the mark and sweep GC algorithm, which is effective but
induces an unpredictable latency with a large mean and a large variance. While
the GC is running, most of the services are stopped, which can be critical for
periodic sampling or communication services. The large variance in the latency
also prevents an efficient task scheduling. As a remedy to these limitations, we

284 Y. Kwon, K. Mechitov, and G. Agha

foo() {
int a;

...

read();

...

}
bar() {

int a;

...

foo();

...

}

int foo a;

int bar a;

prefoo() {
...

preread();

}
postfoo() {

postread();

...

}

prebar() {
...

prefoo();

}
postbar() {

postfoo();

...

}

Fig. 2. Code examples with (left) and without (right) blocking I/O. read makes an
I/O operation.

developed a multi-phase GC algorithm. Assuming that the virtual memory is
lightly loaded and thus the mark phase is fast, we divided the sweep phase into
multiple sub-phases and deallocated only fractions of the memory on each step.
This partial deallocation reduces the slow flash memory write while maintaining
the page hit ratio high. The multiple phase GC algorithm also reduces the mean
and the variances of the GC latency, which results in a better scheduling.

Note that this garbage collection is constrained to local node resources, since
the overhead costs involved with implementing distributed GC in a resource-
constrained sensor network are prohibitive. In particular, garbage collection of
actors is complicated by the fact that not only references from reachable actors
have to be considered, but inverse references from potentially active actors must
also be considered [52].

TinyOS achieves concurrency among applications through split-phase pro-
gramming. More specifically, most of the I/O operations are supported only
in the split-phase style. Although this style of programming increases through-
put, the limited support of the blocking I/O makes it difficult to develop and
maintain applications. For example, let us consider the code in Figure 2. The
code on the left side is written with blocking I/O: bar calls foo and foo calls
read which performs an I/O. Without blocking I/O, we must split the functions
as in the right side of Figure 2: an application calls prebar and arranges an
I/O completed event handler to call postbar. The problem is that every possi-
ble function call chain reachable to read should be divided into two parts like
Figure 2. Furthermore one cannot use stack allocated local variables across the
divided functions. That is, all such variables must be declared as static variables
which take up space even after the functions are returned. The problem is even
graver in ActorNet: any memory access can make a page fault which leads to a
flash memory access, an I/O operation; split phasing on every memory access
is practically impossible. To overcome these problems, we implement an appli-
cation level context switching mechanism. The mechanism enables ActorNet to
return control to TinyOS and regain control later with the same register, flags,

Design and Implementation of a Mobile Actor Platform 285

and stack configurations. Using this mechanism, ActorNet enables blocking I/O
for its actors. This mechanism also provides a seamless concurrent execution
of ActorNet alongside other applications. The context switching mechanism is
developed at the application layer to reduce the difficulty of porting it to other
platforms.

The state representation of an actor can be structurally complicated. Specifi-
cally, there can be loops or multiple references in the list structure. Thus, sending
and receiving the list data involves serialization and deserialization. One of the
concerns in sending a message is that the message is locally broadcast to all the
neighbors of the sender. Because there is a single sender with multiple receivers, it
is computationally beneficial to allow higher computational load at the sender in
order to lower the computational load at a receiver. To achieve this, we design
a simple communication stack machine: a sender handles all the complexities
of communication and makes a stream of data mixed with stack manipulation
commands so that receivers can restore the data simply by running their stack
machine following the commands.

4 Example

We provide a complete example application to illustrate the design of the Actor-
Net platform before going into the details of the actor language and the platform
implementation.

Consider an actor migrating through a WSN in search of a local temperature
maximum—a typical environmental monitoring task. Searching for a local max-
imum point is a reasonable monitoring task for a WSN: for example, to detect a
heat sink or a gas leak, one may want to find the local maximum point. An actor
in this example autonomously selects its migration path based on the environ-
mental information and reports the final result to a base station. The example
demonstrates the high level of abstraction for WSN application development
provided by ActorNet.

The steps in our maxima search actor’s execution are as follows:

1. An actor A broadcasts to its neighbors a simple actor which measures the
temperature at a node and sends back the result.

2. A determines the neighborhood maximum temperature and migrates itself
to the corresponding node. When it migrates to another node, A records
its point of origin so that it can forward the maximum temperature reading
back along the path it followed.

3. When it arrives at a point with maximal temperature (i.e., where all the
neighbors report a lower temperature), A migrates back to the base station.
Upon arrival at the base station it prints out the temperature value. (Note
that more information could easily be maintained and reported).

Because of expressiveness of ActorNet, we do not need any platform or OS
support for multi-hop message routing. An actor locally broadcasts and moves
itself to its neighbor with the greatest temperature, while constructing the return
path as it migrates from node to node.

286 Y. Kwon, K. Mechitov, and G. Agha

1 (rec (move path temp) ;;return path, max temp
2 (seq

3 (send (list 0 measure (io 0))) ;;broadcast measure actors to neighbors
4 (delay 100) ;;wait for 10 seconds
5 ((lambda (maxt)

6 (par

7 (cond (le (car maxt) temp) ;;if it arrives at a maximal point
8 (return migrate path temp) ;;then return the temp along the path
9 (move ;;else move to the highest temp. node
10 (cond (equal path nil)

11 (cons launch path)

12 (cons (io 0) path))

13 (migrate

14 (cadr maxt) ;;node id
15 (car maxt)))) ;;temp
16 (setcdr (msgq) nil))) ;;reset msgq
17 (max (cdr (msgq)) (list 0 0))))) ;;find the max temp. and the node

Fig. 3. An actor program that migrates to a point of maximal temperature in a WSN
and returns the temperature back to the base station

Consider a migrate function which makes an actor move to another node
and then continue its execution. Recall that the state of an actor is a pair of
a continuation and a value to be passed to the continuation. In ActorNet, an
actor can easily migrate itself to a neighboring node, using the explicit state
representation and sending its current continuation. There is a launcher actor
running on every ActorNet platform that receives the messages sent to it as
programs and evaluates them. The entire actor migration process is implemented
using this very short migrate function:

1 (lambda (address value) ;; migrate
2 (callcc

3 (lambda (cc)

4 (send (list address cc (list quote value))))))

The code for the temperature-search example, which utilizes this migrate
function, is listed in Figure 3. The precise syntax and semantics of the language
will be described in the next section, but this code excerpt illustrates the general
structure of an ActorNet program and the compactness of the actor language.
Note that a relatively complex application is implemented in under 20 lines of
code.

The program first broadcasts a measure actor that reads a temperature at a
remote node and sends back the reading. The sender then waits for 10 seconds
and then checks its message queue, msgq, for the measurement. No other work
is needed for synchronization. The measure actor can be encoded simply as

1 (lambda (ret) ;;measure
2 (send (list ret (io 1) (io 0)))).

Design and Implementation of a Mobile Actor Platform 287

The (io 1) system call returns a temperature reading and the call (io 0) re-
turns the unique node identifier. A launcher actor running at a remote platform
will evaluate this function with the return address, which is the (io 0) function
call of the 3rd line of Figure 3. Although the measure actor in this example is
simple, it could be an arbitrarily complex function. That is, an actor can easily
distribute a complex piece of its code to run in other nodes and later collect
the results in the form of messages. This example demonstrates the versatility
of ActorNet as a concurrent computing environment for multiple actors.

Returning to Figure 3, the move function takes a return path and the current
maximum temperature reading as its parameters. Migration occurs after eval-
uating the second parameter. Line 9 shows how the actor migrates to another
node: it first appends its node id—(io 0)—to the return path and then migrates
to the node where the greatest temperature was read. When the actor arrives at
a point of the maximal temperature, it returns the temperature value using the
return function, listed below.

1 (rec (return migrate path temp)

2 (cond (equal path nil)

3 (print temp)

4 (return migrate (cdr path)

5 (migrate (car path) temp))))

The return function is similar to move. It migrates across the nodes along the
return path.

Note how easy it is to write a mobile agent program using the ActorNet
platform. By providing simple-to-use and high-level features, ActorNet enables
a rapid development of powerful WSN applications. Furthermore, because mobile
agents operate autonomously, they can be used in resource-constrained sensor
networks that do not provide many supporting services.

Finally, it is worthwhile to mention that this program does not require any
routing services: the actor follows a steepest temperature ascent path, and it also
maintains a return path by itself. Also note that the application does not require
collecting the temperature reading from all nodes to a central node (usually
done by a data dissemination process); instead the actor collects and processes
the information while migrating in a sensor field. Even considering the data
aggregation service, the saving in the amount of communication by the mobile
agent approach is very significant.

5 Actor Language

We now formally describe the syntax and the semantics of the ActorNet actor
language in rewriting logic [35, 38]. One of the merits of using rewriting logic
is that it describes both the syntax and the semantics of a language together.
The syntax is defined by its mix-fix definition of operators and the semantics is
described by the deductions rules of a rewriting theory. Another benefit of using
rewriting logic is that the descriptions are executable by rewriting engines, such
as Maude [35].

288 Y. Kwon, K. Mechitov, and G. Agha

5.1 Rewriting Theory

In rewriting logic, a signature Σ comprises a set S of sorts, a partial order
relation ≤ of subsorts, and a S∗ × S indexed set of operators. A Σ-algebra
AΣ is an algebra with an S indexed family of sets {As : s ∈ S} such that
As ⊆ As′ if s ≤ s′, and constants c ∈ As for each operator c∅×s of Σ, and
functions f : As1 × · · · ×Asn → As for each operator fs1,...,sn×s of Σ. An inter-
esting Σ-algebra is the term algebra TΣ whose terms are c ∈ As for c∅×s, and
f(t1, . . . , tn) ∈ As for fs1,...,sn×s, where ti is a term in Asi . The term algebra is
a minimal Σ-algebra that has Σ-homomorphism to all Σ-algebras. The mix-fix
operator definition of Maude eases defining the syntax of a language. However,
for simplicity, we use the BNF notation where possible. For example, we write
P ::= 〈 V , V 〉 instead of 〈 , 〉 : V × V → P for pairs.

An equational theory is a pair (Σ,E) of a signature Σ and a set E of possibly
conditional equations on the terms of TΣ . We say that a Σ-algebra AΣ is a model
of a theory (Σ,E), and write AΣ |= (Σ,E) if AΣ satisfies all equations in E.
An equation e is a theorem of (Σ,E) if all models of (Σ,E) satisfy e. Theorems
can be proved by applying the deduction rules of reflexivity, symmetry, transi-
tivity, congruence, and modus ponens. Theorems can also be simply proved by
applying equational rewriting under the termination and confluence conditions.
The equational theory can be generalized in membership equational logic, where
a kind is given to the equivalent class of sorts related by ≤, and the operators
are indexed with kinds. Sorts are given to the terms through the membership
axiom.

A rewriting theory is a four-tuple IR = (Σ,E,L,R), where (Σ,E) is an equa-
tional theory and R is a set of labeled rewrite rules whose labels are from L. IR
describes the behaviors of a transition system, where the equivalent classes of
terms represent the state of the system and the state transitions are described
by applying the inference rules of reflexivity, transitivity, congruence, and re-
placement. A more detailed discussion of rewriting logic is presented in [35].

5.2 Syntax

In our actor language, everything is a value sort: numbers, symbols, pairs, lists2,
and all ActorNet program elements, such as actor programs, actor states, and
actor configurations are values. Because these program elements have distin-
guishable structures, specific sorts are assigned to them through membership
axiom.

Actor language has only one kind that all sorts belong to. Thus, in this paper,
we drop the index from the sorts. Some examples of the sorts in S are V for values,
which is the supersort of the other sorts, N for numbers, S for symbols, P for
pairs, L for lists, E for expressions, R for environments, A for actor states, K for
continuations, M for actor messages, and C for actor configurations. For each

2 Lists are nested form of pairs ending with an empty list. However, because lists
simplify the descriptions, we gave them a separate sort.

Design and Implementation of a Mobile Actor Platform 289

non-string sort T, we assume that there is a sort T ∗ ∈ S for the string of the
sort. For example, N∗ ∈ S is a string of numbers. In this paper, we denote the
variables of a sort with a small letter of that sort. We also suffixed the variables
with s for their string sorts.

Examples of the constant operators for symbols (∅ → S) are lambda, rec,

cond, nil. In this paper, we use the typewriter style font for the symbols. The
constructor for pairs is P ::= 〈 V , V 〉 and the constructor for lists is L ::= (V∗).
A list indeed is a nested form of pairs. Thus, we equate them so that these terms
belong to the same equivalent class.

〈 v , (vs) 〉 = (v vs).

The expressions E of the actor language have the well-known S-expression
syntax defined as follows.

E ::= N | S
| (lambda (S∗) Ebody)
| (rec (S S∗) Ebody)
| (cond Etest Etrue Efalse)
| (quote V)
| (Eop E∗),

where Ebody , Etest , Etrue , Efalse , Eop are expressions. When a value term is struc-
tured as above, it is given with a sort E .

5.3 Semantics

In this section we describe the semantics of the actor language. First, we explain
an informal semantics with examples, and then we describe the formal semantics
of the actor system with a rewriting theory IR. In IR, the transitions of actor
states and actor configurations are described as the deductions on the congruent
terms modulo equations E.

Informal Semantics. Like the programming language Scheme, the ActorNet
language uses prefix notation. For example (add 1 2 3) returns 6. Actor lan-
guage has arithmetic operators like add, sub, mul, div, and logical operators
like and, or, not. It also has a set of pair and list manipulation operators. For
example (cons 1 2) returns a pair of 1 and 2, and (car (cons 1 2)) returns
the first element 1, and (cdr (cons 1 2)) returns the second element 2. (list
1 2 3) returns a list (1, 2, 3) which is equivalent to (cons 1 (cons 2 (cons 3

nil))). Note that (cdr (list 1 2 3)) is (2, 3). There are assignment opera-
tors setcar and setcdr that set the first and the second elements of a pair.

An expression beginning with lambda is an anonymous function definition,
where S∗ are zero or more names for the function parameters. To ease writing
recursive functions, the actor language has the rec primitive, where S is for the

290 Y. Kwon, K. Mechitov, and G. Agha

name of the function and S∗ is for the parameters. cond is used for branching
expression: if Etest is evaluated to be true, Etrue is evaluated; otherwise Efalse is
evaluated. Observe that this behavior is not the call by value semantics of the
function application. quote is an operator that returns its parameter as a value
without evaluating it. This operator is useful when we are sending a list as a data
to another ActorNet platform. Without this operator, building a literal list is
difficult because the interpreter regards the literal list as a function application
and tries to evaluate all the elements. The seq operator is similar to the begin

operator of the programming language Scheme: each expression is evaluated in
turn, and the value of the last expression is returned.

The par, send and msgq are new actor operators not in Scheme. par creates
new actors for each expression and makes the actors evaluate the expressions
in parallel. The return value of the par expression is a list of the created actor
ids. Note that these ids are initially known only to the creator, but they can be
sent to other actors for the actor coordination, such as the join continuation [5].
While these actors remain in the same ActorNet platform, they share some parts
of their environments so that they can communicate efficiently. If actors migrate
to another platform, they can communicate via asynchronous messages. The
send operator provides a simple mechanism to send messages to an actor. send
makes a deep copy of the message and transmits it to the receiver to prevent
any dependence on the source host. For example, (send (list 100 x)) sends
all the data reachable from the variable x to an actor with id 100. An actor can
access its message queue by calling the msgq operator, which returns the list of
the messages the actor has received. ActorNet internally uses a recv method
that receives the massage and collects it to the list returned by msgq. Note that
msgq is one of the operators that makes our Actor language non-functional; it
may return different values for different calls.

The callcc operator accesses the Current Continuation (CC)–an abstrac-
tion of the rest of the program remaining to execute [24]. For example, the CC
of the expression (add 1 (mul 2 ↓ 3)) at the ↓ mark can be regarded as a
single-parameter function c1: (lambda (x) (c2 (mul 2 x 3))), where c2 is
an another single-parameter function (lambda (x) (add 1 x)). In general, the
CC can be regarded as a stack of single-parameter functions. The operand of
callcc is a single-parameter function to which the CC is passed.

In ActorNet, the state of an actor is a pair of a CC and a value to be passed to
it. Because an actor can read its current continuation, it can duplicate itself or
migrate to another platform voluntarily by sending its continuation-value pair
to another ActorNet platform. By simply applying the continuation to the value,
the sender’s computation is continued on a new platform. Using these primitives
we could easily and intuitively define the migrate function of Section 4.

Formal Semantics. The state of an actor is a pair of a continuation and a
value to be passed to it. In the rewriting theory, the actor states are represented
by an equivalent class of terms corresponding to the intermediate computations
between the actor state transitions. The computation of an actor is a sequence

Design and Implementation of a Mobile Actor Platform 291

of actor state transitions. The interaction between actors are captured by an
actor configuration which is a snapshot of the whole actor systems. The actor
configuration can be regarded as a soup of actor states and actor messages. The
concurrent computations of actors are the transitions of the actor configurations.

Let us begin the formal semantics of Actor language with the environment
(R) which maps the identifiers to their values. An environment comprises two
stacks of symbols and values. When a symbol is evaluated, it is looked up from
the stack of symbols and the value at the corresponding index in the value stack
is returned. R has three operations: a constant emptyEnv: ∅ → R, an extend
operation [,]/ : S∗×V∗×R → R, and a lookup operation [] : R×S → V .
The equations below describe how environments are built. By the equations, the
terms in the left side and the right side of = are put to the same equivalent class
of terms3

emptyEnv = (env () ())

[ss′, vs′] /(env (ss) (vs)) = (env (ss′ ss) (vs′ vs)).

We also assign the sort R to the lists structured as (env (S∗) (V∗)). The look
up operation is also explained by the following equations.

(env (s ss) (v vs))[s] = v

(env (s′ ss) (v vs))[s] = (env (ss) (vs))[s] if s
= s′.

The second equation is a conditional equation: the equation is applied if the
(in)equality following the if keyword holds.

Continuations (K) are single parameter functions that represent the rest of
the program. In the rewriting logic, we assign a sort K to the lists structured as
follows.

K ::= (halt)

| (app (V∗yet) (V∗done) R K)

| (if Etrue Efalse R K),

where V∗yet is a list of not yet evaluated parameters, V∗done is a list of already
evaluated parameters, and Etrue/Efalse are expressions to be evaluated when T/F
are passed respectively.

A state of an actor is a pair of a continuation and a value: A ::= 〈 K , V 〉.
Any pair structured as such is assigned with a sort A. An actor configuration (C)
is a set of actor states and actor messages. Actor messages is a list structured
as M ::= (mesg N V), where N is the recipient address and V is the message
contents. The sort C of actor configurations is a supersort of A and M, and has
an associative and commutative constructor: | : C × C → C. That is, C is a
soup of actor messages and actor states.

3 In the rewriting logic, the equivalent classes can be regarded as states: the term
rewriting occurs between the equivalent classes.

292 Y. Kwon, K. Mechitov, and G. Agha

An actor computation is a transition of actor states by applying the deduction
rules based on the following rewrite rules4.

λ1 : 〈 (if etrue efalse r k) , T 〉 → 〈 k , eval (etrue , r) 〉
λ2 : 〈 (if etrue efalse r k) , F 〉 → 〈 k , eval (efalse , r) 〉
λ3 : 〈 (app (v vs) (vs′) r k) 〉 → 〈 (app (vs) (vs′) r k) , eval(v , r) 〉
λ4 : 〈 (app () ((closure (ssargs) r ebody) vs) r

′ k) 〉
→ 〈 k , eval(ebody , [ssargs , vs]/r) 〉

λ5 : 〈 (app () (list vs) r k) 〉 → 〈 k , (vs) 〉
λ6 : 〈 (app () (car (v vs)) r k) 〉 → 〈 k , v 〉
λ7 : 〈 (app () (cdr (v vs)) r k) 〉 → 〈 k , (vs) 〉
λ8 : 〈 (app () (k v) r k′) 〉 → 〈 k , v 〉
λ9 : 〈 (app () (callcc (closure (sarg) r

′ ebody)) r k) 〉
→ 〈 (halt) , eval(ebody , [sarg , k]/r

′) 〉

λ1 and λ2 explain the transitions of the conditional expressions. If T is passed
to the if continuation, etrue is evaluated; otherwise efalse is evaluated. We ex-
plain the eval operator in the next paragraph. λ3 shows how the parameters to
a function are evaluated sequentially: v, the first yet to be evaluated element,
is removed from the continuation and its evaluation is passed to the resulting
continuation. When all parameters are evaluated, they are applied to the func-
tion. λ4 to λ9 explain the parameter applications on different types of functions.
λ4 is for a user defined function. A user defined function is evaluated to be a
closure structure. Thus, the application of parameters extends the environment
with the parameters and evaluates the function body in the extended environ-
ment. λ5, λ6, and λ7 are for primary operators. For simplicity, we show only the
three primary operators for a list manipulation, but the rests are similar. λ8 is
for a continuation: if the function is a continuation, the parameter is passed to
the continuation. Observe that the old continuation k′ is ignored. λ9 explains
the callcc operator. The parameter to the callcc operator is a single param-
eter function which is evaluated to be a closure structure. In λ9 the body of
the single parameter function is evaluated in the environment extended with the
continuation k.

In the rewrite rules above, we used an operator eval (,) : E × R → V .
eval evaluates the expression E in the environment R. The following equations
on the terms of the eval operator build an equivalent class of terms for the
evaluation5.

eval (s , r) = r[s] (1)

eval (n , r) = n (2)

4 We simplified the rules by writing 〈 (app (vs) (vs′) r k) , v 〉 as
〈 (app (vs) (vs′ v) r k) 〉.

5 The equational rewriting based on these equations on eval terms will produce their
normal forms.

Design and Implementation of a Mobile Actor Platform 293

eval (k , r) = k (3)

eval ((closure (ssargs) r ebody) , r
′) = (closure (ssargs) r ebody) (4)

eval ((lambda (ssargs) ebody) , r) = (closure (ssargs) r ebody) (5)

eval ((quote vs) , r) = (vs) (6)

〈 k , eval ((efunc esparam) , r) 〉
= 〈 (app (esparam) () r k) , eval (efunc , r) 〉 (7)

〈 k , eval ((cond etest etrue efalse) , r) 〉
= 〈 (if etrue efalse r k) , eval(etest , r) 〉 (8)

Equation (1) shows that the evaluation of a symbol is the value looked up
from the environment. Specifically, the equation means that the eval term and
the terms involved in the look up operation are in the same equivalent class.
Equation (2) to Equation (4) show that the evaluations of numbers, continua-
tions, and closures are themselves. Equation (5) shows how user defined functions
are converted to the closure structures. A closure is a list of the function param-
eter names, an environment, and the function body. When writing a program,
referencing a function itself from its body are often necessary; for example, to
make a recursive call. Although one can use the Y combinator [43] on the λ
expression for this purpose, rec operator provides an easy access to the name
of a function from its body. The following equation shows what rec means in
terms of the Y combinator.

(rec (sfn ssargs) ebody) = (Y (lambda (sfn) (lambda (ssargs) ebody))),

where Y = (lambda (f) ((lambda (y) (f (lambda (ssargs) ((y y) ssargs))))
(lambda (y) (f (lambda (ssargs) ((y y) ssargs))))))

However, in the actual implementation, the rec term is transformed directly
to a closure term like Equation (5) and its environment is extended with a
mapping from the function name to the closure itself. Equation (6) shows that the
evaluation of a quote’d list is the list content. The quote operator is useful when
sending a list to another ActorNet platform; without it, the ActorNet node would
regard the list as a function application with the function of the first element and
the parameters of the rest of the elements. Equation (7) explains how a function
application is converted to the app continuation. Similarly, Equation (8) shows
how a conditional expression is converted to an if continuation. Observe that
unlike app continuation the two parameters etrue and efalse of the if continuation
are not eagerly evaluated: one of them is evaluated based on the evaluation of
etest .

Actors coordinate with others through the asynchronous message passing.
These interactions are described as transitions of actor configurations which are
a “soup” of actor states and messages. Actor configurations make transitions by
applying the deduction rules based on the following rewrite rules.

π1 : 〈 k , eval((par′ 〈 (e es) , (ns) 〉) , r) 〉 →
〈 k , eval((par′ 〈 (es) , (ns n) 〉) , r) 〉 | 〈 (halt) , eval (e , r′) 〉,

294 Y. Kwon, K. Mechitov, and G. Agha

where n is a fresh actor id and r′ = [msgq id , () n]/r

π2 : 〈 (app () (send n v) r k) 〉 → 〈 k , () 〉 | (mesg n v)

π3 : 〈 (app (vsyet) (vsdone) r k) 〉 | (mesg n v)

→ 〈 (app (vsyet) (vsdone) r
′ k) 〉 if r[id] = n,

where r = (env (ss msgq id ss′) (vs (vsm) n vs′)),
r′ = (env (ss msgq id ss′) (vs (v vsm) n vs′))

π4 : 〈 (if etrue efalse r k) , v′ 〉 | (mesg n v)

→ 〈 (if etrue efalse r′ k) , v′ 〉 if r[id] = n,

where r = (env (ss msgq id ss′) (vs (vsm) n vs′)),
r′ = (env (ss msgq id ss′) (vs (v vsm) n vs′))

π5 : 〈 (halt) , v 〉 | c → c if v is N , S, K, P , or L sort

π1 shows how an actor creates other actors; par operator takes one or more
expressions as its parameters and creates new actors for each expression to con-
currently evaluate them. The return value from the par operator is a list of
the new actor ids. To simplify the explanation, we introduced the following two
helper equations.

eval ((par es) , r) = eval ((par′ 〈 (es) , () 〉) , r)
eval ((par′ 〈 () , (ns) 〉) , r) = (ns).

π2 shows that send adds a message to the actor configuration. π3 and π4 specify
that the message in the configuration is added to the message queue of the
recipient actor. Finally, π5 describes the demise of an actor: when an actor
computation is completed, its state is removed from the configuration.

6 ActorNet Implementation

Based on the design proposed in Section 3 and the language definition of the
previous section, we discuss the issues in implementing the ActorNet runtime
platform.

6.1 ActorNet Network Implementation

ActorNet provides a single virtual WSN to actors by connecting physically
separated multiple WSNs through the Internet. Recall that the uniform net-
work structure of the virtual WSN is ensured by making the Internet a single
hop broadcast network. ActorNet implements two services called repeater and
forwarder to build the uniform network. The repeater bridges the communi-
cations between the Ad-Hoc wireless network and the Internet by passing all
messages received from one network to the other. Meanwhile, the forwarder
provides a single-hop broadcast overlay over the Internet by replicating the mes-
sages from each repeater to each of the others connected to it. The net effect

Design and Implementation of a Mobile Actor Platform 295

of the repeater/forwarder architecture is transforming the individual physically-
separated WSNs into a single-hop neighborhood.

Figure 1 shows the repeater/forwarder network architecture of ActorNet. Each
repeater has a node called GenericBase through which the repeater can hear from
and talk to its WSN. A repeater injects any message it hears from the Internet
into its WSN and it sends any message it overhears from its GenericBase to the
forwarder. On the other hand, a forwarder is listening to a TCP port for any
connections. Once a connection is made, the client is registered to the forwarder
until the connection is terminated. In summary, any message overheard by a
repeater from its WSN is transmitted to the forwarder and then retransmitted
to the other repeaters and ActorNet platforms running on PCs. Finally, the
messages sent to the repeaters are injected into their WSNs.

The network bandwidth difference problem is currently handled by placing a
large message buffer at the repeaters. The fast messages from the Internet are
gathered at the buffer and then slowly retransmitted to the WSNs. However, as
the number of clients to the forwarder is increased, the repeaters will constantly
send messages to their WSNs. This will increase the chance of a network collision
and drain the energy from the nodes near the GenericBase. In addition, the
buffering solution is only valid while the input data rate to the buffer is smaller
than its output rate. To address these problems, a smarter scheme that makes
the repeaters selectively filter the messages can be used. The filtering is based on
the actor computation model: when an actor is created, its unique id is known
only to its creator, and as the parent or the children send messages with the new
actor ids, others can communicate with the newly created actor. Thus, unless a
messages with the actor id have passed through a repeater, no actors at the other
side of the repeater know the existence of the new actor. Because every data is
associated with its type in actor language, the actor id checking at the repeater
can be effectively done by adding a new type for the actor ids. Observe that the
actor ids stored in repeaters can be regarded as the receptionist names and the
external actor names of the actor configuration [5]. Our actor configuration of
Section 5.3 can be augmented with these actor names after this communication
optimization is introduced.

6.2 ActorNet Language Implementation

Recall from section 3 that an actor state is a pair of a continuation and a value,
and the computation of an actor is a series of actor state transitions made by
applying a state’s value to its continuation. In ActorNet, these state transitions
are implemented by two core methods of actor language interpreter called eval

and apply. apply takes the continuation and the value of an actor state as
its parameter and produces a new actor state by applying the value to the
continuation. eval takes an expression and an environment as its parameter and
evaluates the expression within the environment. While evaluating an expression,
the values of the identifiers are looked up from the environment that actually is
a stack of identifier-value pairs. The environment stack is stored at a structure
called closure when eval encounters a function definition, and is extended when

296 Y. Kwon, K. Mechitov, and G. Agha

the actual function parameters are applied to the function. The stack structure of
environment and the use of closure ensure the lexical scoping rule when looking
up the identifiers.

The tail recursion is a recursive call that does not necessarily result in a build
up of state information on the stack [47]. Because actor programs use recursions
for the loops, the tail recursion removal is crucial for actor programs; without it,
the stack will grow for any simple loop implementations. ActorNet implemented
only the basic tail recursion removal capability: the return addresses of function
calls are eliminated, removing unnecessary growth of the stack. Although it is not
a fully optimized capability, loops can be effectively replaced with parameterless
functions. The return addresses are naturally eliminated through the use of the
continuation in the actor computation.

The computation of an actor is explicitly managed as transitions of actor
states. This explicit state management leads to a simple and notationally clean
implementation of multi-threading capability. Because all the necessary infor-
mation required to proceed the computation of an actor is stored in the actor
state, the context switching is as simple as taking an actor state from a queue of
actor states and then applying its value to its continuation. This mechanism is
similar to the trampolining technique [47], except that ActorNet schedules the
switching and the states are explicitly managed. Observe that the environments
play the role of the stack, but they are essentially linked lists, as oppose to linear
arrays, built on the virtual memory. This dynamic structure eliminates the stack
management during the context switch.

6.3 ActorNet Platform Implementation

The current implementation of the ActorNet platform is implemented in only
30 kB of code and 2 kB of data. The code is stored in the Mica2’s 128kB flash
memory unit, leaving 100 kB for other applications; the data is allocated in the
4 kB of SRAM space.

Figure 4 depicts a layered software architecture of ActorNet platform for a
sensor node. A module does not know the modules above it, but it has access
to all the modules below it, not just the ones immediately below it. In contrast,
actors only use the interpreter module. Thus, the implementation details are
hidden from the actor programs.

Virtual Memory. ActorNet provides a virtual memory (VM) subsystem which
uses 64 kB of the 512kB serial flash as the virtual memory. This address space
is efficiently indexed by a 16-bit integer. The virtual address space is divided
into 512 pages of 128 bytes each. In addition, 8 pages of SRAM (1 kB) are
used as a cache for the virtual memory. While flash is not commonly used as a
virtual memory store due to the limitation on the maximum number of writes
it supports, typically about a million writes to each location, the relatively slow
operating speed of sensor nodes and small data sizes of mobile actors mean that
even long-term deployments of wireless sensors are very unlikely to approach
this limit.

Design and Implementation of a Mobile Actor Platform 297

Actor ActorActor

Comm. DriverGarbage Collector

VM Driver

TinyOS

Mica2 Hardware

Interpreter

. . . .

Application−Level Context Switcher

Fig. 4. Software architecture of ActorNet platform (Mica2 node). By making actors
interact only with the interpreter layer, the platform differences are hidden from the
actors.

An inverted page table is used to search the cached pages for a requested
address. It is implemented as a priority queue that maintains the 8 most recently
used pages. Hence, the page replacement follows the Least Recently Used (LRU)
policy. Figure 5 shows the structure of a page. The 128 byte page is divided
into a 112-byte data area, a 14-byte bitmap, a 1-bit dirty bit flag, a 4-bit lock
count, and 11 bits of reserved space. Because the flash memory writes are slow,
we used the dirty bit to avoid an unnecessary page writing. The lock count
is used to prevent the VM subsystem from swapping out certain pages. For
example, the communication driver of Figure 4 uses a set of static variables
defined in a structure called ComData. Because this data has buffers shared with
the TinyOS communication subsystem, its container page must be locked during
transmit and receive operations. This is accomplished by calling the VM’s lock
procedure, subsequently followed by an unlock call.

Since there are 112 bytes of data area per page, the effective virtual mem-
ory space is 56 kB (512 × 112). In Figure 5, an allocation bitmap with 8-byte
granularity is maintained at the end of each page. Note that the whole 4 kB
SRAM space of the Mica2 is not large enough to hold the bitmap of all 56 kB
of virtual memory space: 56kB/8 = 7kB. Distributing the bitmap at each page
has a disadvantage when searching for a free space, because the VM driver has
to load each page from the flash to check the free space. On the other hand, it
is crucial to save the precious SRAM space.

Evaluation based on the benchmark of recursively computing the nth Fi-
bonacci numbers showed a page hit ratio of 95.00%. However, the page hit ratio
rises to 99.06% if we consider only the page misses involving the flash-write
operations.

298 Y. Kwon, K. Mechitov, and G. Agha

BitmapData

Dirty bit: 1 bit

Lock count: 4 bits

Reserved: 11 bits

14 bytes112 bytes

Fig. 5. ActorNet page structure. Including bitmaps in the page structure imposes a
performance penalty when searching for a free space. However, having a smaller RAM
space than the size of the bitmap, it is an inevitable decision.

Application-Level Context Switching. Figure 6 shows pseudo code of yield
and resume methods for the context switching mechanism. In order to perform
the context switching correctly, stack contents and register values must be pre-
served. We reserved a stack space for TinyOS and other applications by defining
the stack[n] array in the stackBottom function. Register values including the
program counter and stack pointer are stored and reloaded through the setjmp

and longjmp system calls. The control flow for this mechanism is as follows.

1. When resume is called from TinyOS, it stores its register values in toTos.
If this is the first time that resume has been called, stackBottom is called
to allocate TinyOS stack space by defining stack[n] array. Following stack
reservation, stackBottom initiates the ActorNet platform.

2. When ActorNet calls yield, the current register values are stored at the
toApp variable and the control flow is returned from the setjmp call of the
resume function. Note that control does not go back to the stackBottom

function: the value of r in resume is 1 in this case.
3. When the resume function is called again from TinyOS, the register values

are restored from the toApp variable and control flow is returned to the
setjmp of the yield function.

The left side of Figure 6 shows the stack configuration with this mecha-
nism. In the figure, the stack fills up from the bottom. The shaded area be-
low the resume() is the stack space used by TinyOS. The white area below
the stackBottom() is the additional stack space allocated to TinyOS in the
stack[n] local variable. We use n = 500 for Mica2 platforms and n = 5000 for
PC platforms. Note that the TinyOS stack is limited to this white area; while,
in general, we cannot anticipate a stack usage, the applications running on a
Mica2 are fixed when a binary image is loaded. This, combined with the fact
that most TinyOS applications do not employ recursion, means that in most
cases the stack usage is predictable. The shaded area above the stackBottom()
is the stack space used by the ActorNet platform. The yield() line shows the
top of the application stack when the yield is called.

Design and Implementation of a Mobile Actor Platform 299

yield()

stackBottom()

resume()

TinyOS stack

stack[n]

actorNet stack

jmp buf toTos, toApp;

void yield() {
if(setjmp(toApp)==0)

longjmp(toTos,1);

}
int resume() {
int r=setjmp(toTos);

if(r==0)

if(/*first time called*/)
stackBottom(500);

else

longjmp(toApp,1);

else

return r!=2;

}
void stackBottom(int n) {
char stack[n];

/*start ActorNet platform*/

longjmp(toTos,2);

}

Fig. 6. Application level context switching mechanism: stack[n] local variable provides
a gap between the beginning of ActorNet platform stack (StackBottom) and the stack
space for TinyOS. The yield and resume calls switch the stack pointer between these
two regions accordingly.

In order to explore the utility of the context switching mechanism, let us
consider the following NesC program for the read. Note that there is a spin-loop
in the read function waiting for the isFlashReadDone variable to become true.

read() {
...

while(!isFlashReadDone)

yield();

return flashData;

}

task loop() {
resume();

post loop();

}

With our context switching mechanism the yield() call in the read function
causes control to exit from the resume() call of the loop task. Thus, TinyOS
can schedule other tasks and process pending events. Later, when the loop task
is scheduled again and the resume function is called, the computation continues
from the yield() call of the read function as if it had just returned from the
yield. Note that we do not need to divide the application program into two
phases as in Figure 2. Hence the yield-resume mechanism improves the main-
tainability of applications.

Multi-Phase Garbage Collector. We implemented a scalable mark and
sweep garbage collector [7, 16] to reduce programming errors and to relieve the
developers of the burden of manual memory management. Our actor language

300 Y. Kwon, K. Mechitov, and G. Agha

is a typed language: every data value is tagged with a byte for its type. Because
there are only a handful of data types in the actor language, the rest of the bits
can be used as marking flags. In fact, the garbage collector uses two bits for its
marking and the communication stack machine uses another bit for serialization.
Marking the reachability of a memory cell from any active actor states can be
done easily because all actor states are explicitly managed. However, there are
also temporary data produced by the actor language interpreter that are not
yet bound to their state. To prevent them from being swept away, ActorNet
manages a list of the temporary data until their actor state is updated.

In our experiments, the conventional mark and sweep GC can take as long
as 10 seconds on Mica2 nodes. This delay can slow down the communication
speed considerably, as flash write operations prevent any other computations,
including radio communication, in TinyOS. Due to the memory limit, we cannot
allocate enough communication buffers to cover the full 10 seconds of GC. We
could squeeze the memory to make a communication buffer for 4 packets, but
with the conventional GC algorithm this buffer can allow only 1 packet per 2.5
seconds. Instead, we redesign the GC algorithm to have a shorter latency.

To solve this problem, we divide the sweep step into several subphases. Each
subphase clears 10 pages, which takes approximately 150ms. If we disregard the
mark phase, ideally, we can send as many as 26 packets per second, because
ActorNet has a communication buffer for 4 packets. With the multi-phase GC
algorithm, there is a transient time that the mark phase is finished, but the sweep
phase is not completed for all pages. The memory allocated during the transient
time needs a special care. Suppose that we do not mark the freshly allocated
memory, then the memories allocated at not-yet-swept pages will be erroneously
deallocated later. On the other hand, if we mark the fresh memory, the memories
allocated at the already swept page will not be cleared in the next round of GC.
To solve this problem, we implement a 2 bit marking scheme. In this scheme,
we alternate the marking bit on each GC round and mark all freshly allocated
memories with the current mark bit. Then, the freshly allocated memories will
not be swept as they are marked, and the marking in the next round can be
done correctly as it uses a different marking bit.

Communication Stack Machine. Sending and receiving a structured data
involve data serialization and deserialization. Considering the sender/receiver
imbalance, we built a stack machine for the communication. A sender traverses
a structured data and sends a serialized stream of stack manipulation commands
and data. The receivers can then reconstruct the data structure by simply fol-
lowing the stack commands.

A sender uses encode method to transmit a serialized stream of stack com-
mands and data, and the receivers use decode method to restore the data. Both
methods use a stack and an array called adrsTable to manage multiply refer-
enced addresses.

The encode algorithm is done in two steps. In the first step, encode fills
the adrsTable with the addresses of multiply referenced data. After this step,

Design and Implementation of a Mobile Actor Platform 301

d

d

c

c d c d c dd

c

Fig. 7. A data structure to send (the first graph), and the stack configurations of a
receiver (the next 7 graphs)

all data reachable from the parameter are marked. In the second step, encode
generates a stream of stack commands and data while clearing the mark. The
details of the second step are as follows:

1. If encode visits a marked non-pair data, it sends the type and the value of
the data, and clears the mark. When decode receives the type tag and the
value, it pushes the address of the value.

2. If encode visits a marked pair, it sends a TagPair tag, processes the two
elements of the pair, and sends a CmdCons tag. decode creates a pair on
receiving the TagPair as a place holder, and pushes the pair’s address. It
pops two elements from the stack and links them to the place holder beneath
later when it receives the CmdCons.

3. If the marked data of cases 1) and 2) are in the adrsTable, encode sends a
CmdSaveRef tag and the index of the data in the adrsTable. On receiving
the CmdSaveRef, decode stores its top element at the index of its adrsTable.

4. Finally, if encode visits an unmarked data, it sends a TagRef tag and the
index of the data in its adrsTable. On receiving the TagRef, decode pushes
the address at the index of its adrsTable.

As an example of the serialization, suppose that we are sending the first graph of
Figure 7. The sequence of data sent from encode is TagPair, TagPair, TagWord,
d, TagWord, c, CmdSaveRef, 0, CmdCons, TagRef, 0, CmdCons, CmdEnd. From
this stream of stack commands and data, decode replicates the same structure on
its side. The 7 graphs from the second graph of Figure 7 show how the receiver
stack changes.

302 Y. Kwon, K. Mechitov, and G. Agha

Fig. 8. Selective-repeat protocol for reliable actor migration

Reliable Communication. Execution and communication in a WSN is not
always reliable. Many multi-agent applications do not depend on the reliability
of a particular actor: the system simply waits for a timeout before launching
another instance of a failed actor. Because reliable migration can increase com-
munication cost and latency, the first release of ActorNet did not implement
reliable migration. For other applications, however, time-outs to deal with a lack
of reliable actor migration simply introduces unacceptable delays.

Two reliable communication methods have been implemented to provide reli-
able communication. The first is a selective repeat protocol based on the sliding
window concept. This is similar to TCP, where the sender transmits all mes-
sages in an actor and then waits for the acknowledgments. Messages that have
not been acknowledged are retransmitted. The receiver waits for an entire actor
to be transmitted before it is added to the buffer for evaluation and execution.
The other method is a simpler stop-and-wait protocol which sends one packet
at a time and the sender blocks until the receiver acknowledges the packet. Un-
der this protocol, every packet is retransmitted periodically until acknowledged.
Figures 8 and 9 illustrate the behavior of these protocols.

We found the stop-and-wait protocol to be superior for environments with low
packet loss rates (under 15%). This is because stop-and-wait has lower processor
overhead, while selective repeat outperformed significantly in lossier environ-
ments. Both implementations are available in the ActorNet platform, and can
be selected as appropriate for the application environment.

Design and Implementation of a Mobile Actor Platform 303

Fig. 9. Stop-and-wait protocol for reliable actor migration

7 Performance Evaluation

We now evaluate the experimental performance of the ActorNet platform. The
focus of the experiments described here is to show that the overhead incurred by
its constituent services is not prohibitive. Thus, ActorNet is a suitable platform
for mobile agents in resource-constrained sensor networks. Our evaluation has
three parts:

1. The page hit ratio of the virtual memory subsystem and its impact on system
performance.

2. The performance of the multi-phase garbage collector.
3. The communication costs incurred by ActorNet.

7.1 Virtual Memory Performance

We use the benchmark of computing the nth Fibonacci number to evaluate the
performance of the VM subsystem. A recursive version of this program is sim-
ple, but its exponential behavior is complex enough to carry out a performance
evaluation.

As one might expect, as the page cache size increases, the page hit ratio
increases. However, in a resource-limited computing environment such as a sensor
node, we cannot increase the cache size indefinitely. We must consider a trade-off
between the performance and the number of applications that can be run on the

304 Y. Kwon, K. Mechitov, and G. Agha

2 4 6 8 10 12 14 16 18
80

85

90

95

100

Number of pages in SRAM

P
ag

e
hi

t r
at

io
 (

%
)

2 4 6 8 10 12 14 16 18
97.5

98

98.5

99

99.5

Number of pages in SRAM

P
ag

e
hi

t (
no

 fl
as

h
w

rit
e)

 r
at

io
 (

%
)

Fig. 10. Page hit ratio (top) and non-flash-write page hit ratio (bottom)

same platform (as not all applications use our VM). The first graph of Figure 10
shows the page hit ratio vs. cache size (number of pages in SRAM). Its shape is
approximately concave and increases with cache size. After about 14 pages, the
slope is almost flat. However, in the Mica2 platform, the flash write operations
dominate the time spent in the VM subsystem. Hence, considering only the flash
write operations as page-misses is a more accurate performance measure for the
ActorNet platform. The second graph of Figure 10 shows the page hit ratio
considering only the flash writes as a page miss. This graph shows a plateau
after 9 cache pages (the current ActorNet implementation uses 8 cache pages).
However, because of the lock count, when a message encoding or decoding task
is running, it would use 7 cache pages. When there are 8 cache pages, the non-
flash-write page hit ratio is 99.24%, while with 7 cache pages, the ratio becomes
99.06%.

7.2 Multi-Phase GC Performance

The slow flash write operation of the Mica2 poses a challenge for the garbage col-
lection. As discussed earlier, the GC delay directly limits communication speed.
In order to reduce the delay due to GC, we devised a multi-phase GC algorithm.
We evaluate the performance of our multi-phase GC as a function of the number
of pages swept per phase. The first graph of Figure 11 shows the number of flash

Design and Implementation of a Mobile Actor Platform 305

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

average number of flash write during a gc

maximum number of flash write during a gc

number of sweep pages

nu
m

be
r

of
 fl

as
h

w
rit

e

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

number of sweep pages

nu
m

be
r

of
 g

c

Fig. 11. The number of flash writes during a GC phase (top). The number of GC
phases (bottom).

write operations during a GC phase. The solid line shows an average number
of flash writes, which can be interpreted as the expected delay due to GC for
each phase, and the dashed line shows the maximum number of flash writes,
which can be interpreted as the worst case GC delay per phase. The two lines
are roughly increasing functions of the number of pages swept, which agrees with
intuition. The second graph of Figure 11 shows the number of times GC is called
during an experiment. As expected, it is a decreasing function of the number
of pages swept per phase. The current implementation of ActorNet sweeps 10
pages per phase; its average number of flash write operations is 3.02 per GC.
If we choose the number of pages swept to be 100, then the average number of
flash writes is increased to 38.19. That is, when 10 pages are swept per phase,
each GC phase takes about 45.3 ms on average, and in the worst case it takes
about 870 ms.

There is another merit of the multi-phase GC other than the reduced delay per
GC phase. Because our memory reservation algorithm limits the search space
for free memory within the interval of the last-swept pages, if the number of
pages swept per phase is small, freshly allocated memory addresses are highly
correlated in space and time. That is, the fewer the pages swept per phase,
the higher the spatial and temporal locality of allocated data. The first graph of
Figure 12 shows the number of mark operations during an experiment. Note that

306 Y. Kwon, K. Mechitov, and G. Agha

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

nu
m

be
r

of
 m

ar
k

ph
as

es

number of sweep pages

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r

of
 fl

as
h

w
rit

e

number of sweep pages

number of flash writes during whole gc operatons

Fig. 12. The number of Mark phases called (top). The number of flash writes due to
GC (bottom).

for each round of GC, there are a single mark phase and multiple sweep phases.
Hence, the number of mark phases is an indicator of how efficiently the memory
is used. The graph roughly shows that the number of GC rounds increases with
the number of pages swept per phase. The second graph of Figure 12 shows the
total number of flash writes made for GC during an experiment. Specifically, it
shows an increasing, concave curve: when few pages are swept per phase, the
related data tends to aggregate. Thus, related data is more likely to be found
in the cache, which reduces the number of flash writes. However, sweeping too
few pages at a time results in overly frequent calls to GC, as seen in the second
graph of Figure 11.

7.3 Evaluation of Communication Performance

Next we evaluate the communication costs of the example application of Sec-
tion 4. This application does not require a routing service: it follows a steepest
ascent path of temperatures, and also maintains a return path by itself. Also note
that it does not involve spanning tree based data dissemination; the program
migrates through the network, rather than collecting all the data at a central
node. When the gradient path is a straight line, and assuming that the nodes
are uniformly distributed, the number of nodes involved in the experiment is
proportional to

√
n for a WSN of n nodes.

Design and Implementation of a Mobile Actor Platform 307

Table 1. The number of messages and the size of messages transmitted by the actor
program of Figure 3

message content size (byte) number of messages

measure 107 4
temperature 27 1
move 1629 + hop×8 57+
return 474 + hop×4 17+

To assess the communication performance, we measured the number and size
of messages while running the actor program in Figure 3. Table 1 summarizes
the results. Broadcasting a measurement actor to neighboring nodes requires
107 bytes of data in 4 messages. Sending a temperature reading requires 27
bytes, which can be sent in a single message. 27 bytes for a simple temperature
reading may look like an overhead. The overhead can be attributed to the type
information, the list data structure, and the communication stack commands.
However, they are necessary overheads to make actor messages generic and not
application dependent. Observe that the measure actor is only 107 bytes long.
A similar program that periodically samples the temperature and broadcasts
the result is about 28 kB. In order to move an actor along the gradient ascent
path, 1,629 bytes plus 8 bytes times the hop count thus far are necessary. The
extra 8 bytes per hop account for the local variables stored during the migration
(recursion). Note that as the actor migrates back to the base station, it discards
the unnecessary pieces of its code. As such, the returning actor shrinks in size
from 1,629+ bytes to 474+ bytes.

8 Case Study: Ambiance Platform

The ActorNet mobile agent framework is used as part of the macroprogramming
system called Ambiance [42]. The goal of Ambiance is facilitate non-expert pro-
grammers in using pervasive computing devices in the environment, including
WSNs. In the Ambiance system, users make “ubiquitous queries” called uQuery
through a web interface. A uQuery is an aggregation of flow-independent spec-
ification of tasks whose comprising steps, such as primitive calls, loops, nested
calls, and application-specific constructs, are converted to a task graph of con-
current active objects which can be executed concurrently. This makes Ambiance
an open system where users and tasks can join or leave the system at any time.

In Ambiance, WSN computations are automatically converted to actor pro-
grams and executed on the ActorNet platforms deployed in the sensor network.
Ambiance also uses a high level mobile agent system based on the meta-actor ar-
chitecture by Mechitov et al. [37]. This system is focused on effectively scheduling
and sharing middleware services for WSNs. For a given request, it runs matching
algorithms on a repository of service implementations and node capabilities to
find a feasible set of candidates, and optimally deploy the implementation to a
fine-grained set of selected nodes.

308 Y. Kwon, K. Mechitov, and G. Agha

Fig. 13. Two-level adaptive object model architecture for controlling active objects in
Ambiance

The Ambiance platform follows the architectural style of Adaptive Object-
Models (AOM), which define a family of architectures for object-oriented
software systems dynamically programmable by domain experts. AOMs are
meta-level architectures that enforce separation of concerns, and in particular
the separation of high-level logic from technical aspects of implementation. In
other words, AOMs store the base object as used in the code alongside its meta-
data description in terms accessible to the domain expert.

Ambiance further extend this architectural style to enable high-level speci-
fications of global behavior by uncoordinated end-users through a specialized
Web interface, and their translation into not only meta-objects, but also meta-
actors, which control and customize the runtime behavior of both passive and
active application objects. These meta-objects are dynamic, they have the ca-
pability to observe the application objects and the environment (introspection),
and to customize their own behavior by analyzing these observations (interces-
sion), as seen in Figure 13. This is a form of reflection, which allows a program
to reason about and affect its own representation and behavior. Watanabe and
Yonezawa [54, 57] introduced the notion of reflection in object-oriented concur-
rent computation model with message passing, which is in many respects similar
to the actor model of Ambiance.

The key innovation with respect to the AOM architecture is the separation
of the knowledge level, where the application, data, service definitions are rep-
resented, from the operational level, where actual low-level implementation of
these objects and services are located and code execution takes place. Figure 14
provides an overview of the system decomposed into these two levels. Note that
program representation and transformation environments exist entirely in the

Design and Implementation of a Mobile Actor Platform 309

Fig. 14. Ambiance macroprogramming platform runtime

knowledge level, and are thus logically independent of the underlying execution
framework used in the deployment environment.

At the operational level, a fine-grained mobile code deployment framework
must be available on resource-limited, real-time distributed systems comprising
the ambient infrastructure. The mobile code deployment platform is responsible
for: 1) deploying and executing dynamically generated low-level code, 2) dynami-
cally discovering and providing access to all sensor and computational resources
in the system, and 3) implementing the elements of the service repository. In
Ambiance, this role is filled by the ActorNet runtime.

ActorNet eases development by providing an abstract environment for
lightweight concurrent object-oriented mobile code on WSNs. As such, it enables
a wide range of dynamic applications, including fully customizable queries and
aggregation functions, in-network interactive debugging and high-level concur-
rent programming on the inherently parallel sensor network platform. Moreover,
ActorNet cleanly integrates all of these features into a fine-tuned, multi-threaded
embedded Scheme interpreter that supports compact, maintainable programs—
a significant advantage over primitive stack-based virtual machines used in other
WSN-based mobile agent implementations. Mobile agents, called base-level ac-
tors in Ambiance, are automatically generated using templates in the knowledge
level. The entire base-level application is then deployed as a system of cooper-
ating mobile agents in the WSN, where each node is an ActorNet platform.

310 Y. Kwon, K. Mechitov, and G. Agha

9 Related Work

There has been related work on WSNs in a number of areas, including mobile
agents, intelligent agent systems, and database systems. We discuss this and
other systems related work below.

9.1 Mobile Agent Systems for WSNs

Several attempts have been made to implement efficient mobile agent platforms
onWSNs. With the proactive mobile agents, the flexibility in reprogramming and
operating WSNs, and the energy saving due to the reduced amount of commu-
nication can be maximized. Mate [31] is one of the first mobile agent platform
designed for WSNs. Sharing some of the same design goals as ActorNet, it is
specifically targeted for highly memory restricted sensor nodes: its stack-based
virtual machine operates on a Rene2 mote with only 16kB of program memory
and 1 kB of RAM. Mate features high-level instructions that result in a small
code size and efficient code migration. Agilla is another mobile agent platform
for WSNs [17]. Like Mate, Agilla is a stack-based virtual machine with special in-
structions for code mobility. Additionally, Agilla supports multiple applications
running on a single node and features a Linda-like tuplespace that decouples
data from the spatial constraints [12]. Unlike ActorNet, whose agents are writ-
ten in a high-level language, programmability and code maintainability in these
two systems pose a much greater challenge due to the low level of language
abstraction.

Considering the programmability, there is a mobile agent platform for WSNs
called SensorWare [10] that provides a high-level language abstraction. Sensor-
Ware supports an event-based Tcl-like script language. This high level language
not only increases the programmability but also reduces the code size: the spe-
cific low-level details are removed by the high level of language abstractions.
Currently, SensorWare is implemented only on more powerful platforms such as
mobile phones or PDAs. However, with its code size of < 180kB, it may not be
directly applicable to current-generation sensor nodes, such as Mica2 or Telos,
which have much tighter memory constraints. In contrast, ActorNet implements
an interpreter for a high-level language in under 30 kB of code.

9.2 Intelligent Agent Systems for WSNs

Agent systems, in general, are concerned with high level issues such as negoti-
ation or scheduling. Bryan et al. [30] have designed an agent system for target
tracking in WSNs that addresses these high-level aspects of the system. In their
system, a WSN is divided into non-overlapping regions called sectors, which are
managed by statically assigned sector managers. The sector managers dynami-
cally assign track managers which initiate a new target tracking task as new tar-
gets are detected. The tasks are described by alternatively selectable sequences
of sub-tasks such that a schedulable plan for a new task can be dynamically built
from the space of alternative choices of sub-tasks by negotiating the available

Design and Implementation of a Mobile Actor Platform 311

resources with other task managers. However, specialized to a target tracking
application, their system does not offer the flexibility usually associated with mo-
bile agents. For example, a user has to reprogram the entire WSN loaded with
the target tracking application to run different applications. Avoiding platform-
and application-specific restrictions on the power of mobile agents is one of the
distinguishing features of ActorNet, with its actors being able to take advan-
tage of powerful programming abstractions such as higher-level functions and
recursion to implement complex behaviors.

9.3 WSNs as a Data Provider

One of the main usages of a WSN is monitoring the area it is deployed. This
task can be done by making the sensors push events to the servers or by mak-
ing servers pull the data from sensors periodically or in response to the user’s
requests. In the pull model, WSNs can be seen as a data repository. Naturally,
DataBase-like approaches have been developed. For example, with TinyDB [32],
a user can easily read the sensor data by making a simple SQL-like query. In
TinyDB, considering the efficiency, the sensor data are aggregated together on
their way back to the base station. However, despite their efficiency and sim-
plicity, the DataBase like approaches usually provide much less flexibility than
mobile agent-based approaches such as ActorNet.

The approach TinyDB has taken on WSNs can be seen as a client/server sys-
tem where the sensor nodes are the servers providing information in response to
the requests from a central client. One of the problems, identified by James et
al [45], in this client/server approach, especially when the server resources are
limited, is that the server cannot provide enough interfaces that could satisfy all
the requests of the client. Usually the set of the services a sensor node provides
are statically determined when the node is deployed, but the kinds of requests
to a WSN can dynamically change over time. Hence, the statically determined
services may eventually fail to satisfy the dynamically changing requests. Ob-
serve that with a small storage and thus having only handful of fixed services,
the utility of a WSN becomes worse as the size of a WSN becomes large. In other
words, the efficiency and the scalability of a WSN can be restricted with this
static approach. A technique called Remote Evaluation has been suggested to
address this problem [45]. In this technique, a program is sent to a server to be
evaluated remotely and the result is sent back to the client. This Remote Eval-
uation approach not only increases the flexibility of the server but also reduces
the amount of the network communication between the server and the client.

Another approach similar to the Remote Evaluation technique is the work of
Jagannathan [23]. His work is focused on the definition of languages for coordi-
nation in distributed environments. In his work, a continuation is transferred to
a remote node instead of a program and its parameters. A continuation sent to
a node can locally process the remotely located data to resolve the synchroniza-
tion issues. Although we do not send continuations for this purpose, our notion
of actor migration bears similarity with this mechanism.

312 Y. Kwon, K. Mechitov, and G. Agha

9.4 Related Work in Other Aspects

The actors running on ActorNet are implementation of the Actor model. An ac-
tor is a self-contained computing element that communicates with other actors by
asynchronous messages. The concept of the actors was proposed by Hewitt [21],
and formalized as a transition system by Agha [5]. There are many implemen-
tations of the Actor systems including the work of Agha et al. [4], where the
location of an actor computation is added to the actor programs to enhance the
concurrency.

In developing applications for WSNs, reprogramming of sensor nodes has been
a big problem that requires considerable amount of time and effort. For this
specific problem, a network reprogramming protocol, called Deluge [22], has
been developed. The protocol works like a distributed flooding algorithm [49]:
each node compares the versions of the advertised images with its own. When a
higher version exists it requests and installs the whole image from the winning
advertiser. A practical difficulty is that the application images are often larger
than the physical memory size. With this protocol, over-the-air reprogramming
of a network becomes easy. However, when an upgrade is required on only a few
nodes, Deluge is an overkill since it upgrades unnecessary parts of the network
also. Moreover, running several distinct applications concurrently on a single
network requires the creation of a large image containing all applications.

Since ActorNet was originally proposed in [28], it has been used as a base
technology for other applications for WSNs. In the Ambiance system [42] and
the shared middleware service system of Mechitov et al. [37], ActorNet serves
as an end-computing platform. Karmani and Agha [25] developed a debugging
tool for WSN applications based on ActorNet.

10 Future Research Directions

Although ActorNet provides many useful features not found in any previous sen-
sor network programming platform, the current implementation still has several
limitations. We describe several open problems.

One of the biggest challenges is fault tolerance: as message transmission in
WSNs is via local broadcast, we cannot use a simple message acknowledgment
mechanism for reliability. Several reliable communication mechanisms for Actor-
Net have been evaluated in [44], and we are currently investigating techniques
to implement an efficient negative acknowledgment-based rebroadcast reliability
mechanism.

ActorNet is a bare bones actor system and does not provide coordination
mechanisms. The virtual memory and multi-tasking environments provided by
ActorNet open the possibility for the more advanced coordination mechanisms.
These could be as simple as tuple spaces [12] and ActorSpaces [3], or more
complex ones such as synchronizers [18], which can be built on top of the existing
distributed storage services for sensor networks [36].

Security is another concern for the mobile agents. Mobile agent platforms
can prevent malicious agents performing an admission control against signed

Design and Implementation of a Mobile Actor Platform 313

agent programs. However, this security checking is more challenging in ActorNet
because the program is mixed with the states and is changing over time. However,
actors work on isolated memory with well-defined and if the runtime ensures that
the actor semantics is correctly implemented, security can be enhanced. Another
possibility is to use memory management and garbage collection of actors to
enhance security by limiting the temporal exposure of a node.

There are many resource management related issues that we have not consid-
ered in this work. For example, only a limited number of actors can operate with
reasonable performance on as embedded systems have limited processing power
and memory. This means that resource arbitration is necessary. Such resource
arbitration must be self-evolving and adaptive to enable autonomic function-
ing of a WSN. In a way, this problem is analogous to the resource arbitration
problem in clouds or in enterprise storage systems [55].

We have also not considered energy consumption. Energy is a critical con-
straint in WSNs and requires careful management. Some embedded nodes pro-
vide frequency scaling to conserve energy and this can interact with other
behaviors of a node, further complicating energy management (e.g. see [39]).

Despite its limitations, we believe ActorNet provides powerful, efficient, scal-
able, and high level services for developing applications for WSNs. However,
further research is needed to facilitate the broader use of actors for building
WSN applications.

Acknowledgments. The authors gratefully acknowledge the support of this
research by the National Science Foundation under grants CMS 06-00433, CNS
10-35773, NSF 10-35562, and NSF CMMI 09-28886; the Army Research Of-
fice under contract W911NF-09-1-0273, and Air Force Research Laboratory and
the Air Force Office of Scientific Research, under agreement number FA8750-
11-2-0084. The second author was also supported by the Vodafone graduate
fellowship. Sergei Shevlyagin, a University of Illinois undergraduate student,
contributed to the implementation of ActorNet’s reliable communication proto-
col. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

References

1. Abelson, H., Dybvig, R.K., Haynes, C.T., Rozas, G.J., Adams, I.N.I., Friedman,
D.P., Kohlbecker, E., Steele, J. G.L., Bartley, D.H., Halstead, R., Oxley, D., Suss-
man, G.J., Brooks, G., Hanson, C., Pitman, K.M., Wand, M.: Revised report
on the algorithmic language scheme. SIGPLAN Lisp Pointers IV(3), 1–55 (1991),
http://doi.acm.org/10.1145/382130.382133

2. ActorNet, http://osl.cs.illinois.edu/software/actor-net/
3. Agha, G., Callsen, C.J.: Actorspaces: An open distributed programming paradigm.

In: Chen, M.C., Halstead, R. (eds.) PPOPP, pp. 23–32. ACM (1993)
4. Agha, G., Houck, C., Panwar, R.: Distributed execution of actor programs. In:

Banerjee, U., Nicolau, A., Gelernter, D., Padua, D.A. (eds.) LCPC 1991. LNCS,
vol. 589, pp. 1–17. Springer, Heidelberg (1992)

http://doi.acm.org/10.1145/382130.382133
http://osl.cs.illinois.edu/software/actor-net/

314 Y. Kwon, K. Mechitov, and G. Agha

5. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7, 1–72 (1997)

6. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal,
V., Cao, H., Demirbas, M., Gouda, M., Choi, Y.R., Herman, T., Kulkarni, S.S.,
Arumugam, U., Nesterenko, M., Vora, A., Miyashita, M.: A line in the sand: A
wireless sensor network for target detection, classification, and tracking. Computer
Networks, 605–634 (2004)

7. Azatchi, H., Levanoni, Y., Paz, H., Petrank, E.: An on-the-fly mark and sweep
garbage collector based on sliding views. ACM SIGPLAN Notices 38(11) (2003)

8. Basharat, A., Catbas, N., Shah, M.: A framework for intelligent sensor network
with video camera for structural health monitoring of bridges. In: Proceedings of
Third IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom (March 2005)

9. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruen-
wald, C., Torgerson, A., Han, R.: Mantis os: an embedded multithreaded operating
system for wireless micro sensor platforms. In: Mobile Networks and Applications,
pp. 563–579. Kluwer Academic Publishers (2005)

10. Boulis, A., Han, C.C., Srivastava, M.B.: Design and implementation of a framework
for efficient and programmable sensor networks. In: International Conference on
Mobile Systems, Applications, and Services. USENIX Association

11. Brooks, R.R., Ramanathan, P., Sayed, A.M.: Distributed target classification and
tracking in sensor networks. In: Proceedings of the IEEE (2003)

12. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32,
444–458 (1989)

13. Crossbow Technology, Inc., http://www.xbow.com/
14. Dorigo, M., Caro, G.D., Gambardella, L.: Ant algorithms for discrete optimization.

In: Artificial Life, pp. 137–172 (1999)
15. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating

system for tiny networked sensors. In: IEEE International Conference on Local
Computer Networks, pp. 455–462. IEEE Computer Society (2004)

16. Endo, T., Taura, K., Yonezawa, A.: A scalable mark-sweep garbage collector on
large-scale shared-memory machines. In: Proceedings of the IEEE/ACM Confer-
ence on Supercomputing (1997)

17. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of
adaptive wireless sensor network applications. Technical Report WUCSE-04-59.
Washington University, Department of Computer Science and Engineering

18. Frølund, S., Agha, G.: A language framework for multi-object coordination. In:
Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Heidel-
berg (1993)

19. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc
language: A holistic approach to networked embedded systems. In: Proceedings of
Programming Language Design and Implementation (PLDI) (June 2003)

20. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating
system for sensor nodes. In: International Conference On Mobile Systems, Appli-
cations and Services, pp. 163–176. ACM (2005)

21. Hewitt, C.E.: Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence 8, 323–364 (1977)

22. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, pp. 81–94. ACM Press (2004)

http://www.xbow.com/

Design and Implementation of a Mobile Actor Platform 315

23. Jagannathan, S.: Continuation-based transformations for coordination languages.
In: Theoretical Computer Science, vol. 240, pp. 117–146. Elsevier Science Publish-
ers Ltd. (June 2000)

24. Kamin, S.N.: Programming Languages An Interpreter-Based Approach. Addison
Wesley (1990)

25. Karmani, R., Agha, G.: Debugging wireless sensor networks using mobile actors.
In: Real-Time and Embedded Technology and Applications Symposium, Poster
Abstract (2008), http://hdl.handle.net/2142/4607

26. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon,
M.: Health monitoring of civil infrastructures using wireless sensor networks.
In: Proceedings of the 6th International Conference on Information Process-
ing in Sensor Networks, IPSN 2007, pp. 254–263. ACM, New York (2007),
http://doi.acm.org/10.1145/1236360.1236395

27. Kwon, Y., Mechitov, K., Sundresh, S., Kim, W., Agha, G.: Resilient localization
for sensor networks in outdoor environments. In: International Conference on Dis-
tributed Computing Systems, pp. 643–652 (2005)

28. Kwon, Y., Sundresh, S., Mechitov, K., Agha, G.: ActorNet: An actor platform
for wireless sensor networks. In: International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1927–1300 (2006)

29. Lajara, R., Pelegri-Sebastia, J., Solano, J.J.P.: Power consumption analysis of op-
erating systems for wireless sensor networks. In: Sensors, vol. 10, pp. 5809–5826.
IEEE (2010)

30. Lesser, V., Charles, L., Ortiz, J., Tambe, M.: Distributed sensor networks 15 (2007)
31. Levis, P., Culler, D.: Mate: A tiny virtual machine for sensor networks. In: In-

ternational Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA (October 2002)

32. Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Application (2002)

33. Mainwaring, A., Polastre, J., Culler, R.S.D., Anderson, J.: Wireless sensor networks
for habitat monitoring. In: Proceedings of the First ACM International Workshop
on Wireless Sensor Networks and Applications (WSNA) (2002)

34. Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization
protocol. In: Sensys (2004)

35. Marti-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Meseguer, J. (ed.) Electronic Notes in Theoretical Computer Science, vol. 4.
Elsevier Science Publishers (2000)

36. Mazumdar, S.: Fast range queries using Pre-Aggregated In-Network storage. Mas-
ters’ thesis, University of Illinois at Urbana Champaign (2004)

37. Mechitov, K., Razavi, R., Agha, G.: Architecture design principles to support adap-
tive service orchestration in wsn applications. ACM SIGBED Review 4, 37–42
(2007)

38. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

39. Moinzadeh, P., Mechitov, K., Shiftehfar, R., Abdelzaher, T.F., Agha, G., Spencer,
B.F.: The time-keeping anomaly of energy-saving sensors: Manifestation, solution,
and a structural monitoring case study. In: SECON, pp. 380–388. IEEE (2012)

40. Nagayama, T., Spencer, B.F., Agha, G., Mechitov, K.: Model-based data aggrega-
tion for structural monitoring employing smart sensors. In: International Confer-
ence on Networked Sensing Systems (2006)

http://hdl.handle.net/2142/4607
http://doi.acm.org/10.1145/1236360.1236395

316 Y. Kwon, K. Mechitov, and G. Agha

41. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: Proceedings of the Second ACM Conference on Embedded Networked
Sensor Systems (SenSys) (November 2004)

42. Razavi, R., Mechitov, K., Agha, G., Perrot, J.F.: Ambiance: A mobile agent plat-
form for end-user programmable ambient systems. In: Advances in Ambient Intel-
ligence, Frontiers in Artificial Intelligence and Applications, vol. 164, pp. 81–106.
IOS Press (2007)

43. Reade, C.: Elements of Functional Programming. Addison-Wesley (1989)
44. Shevlyagin, S., Mechitov, K., Agha, G.: Implementation of fault tolerance in ac-

tornet. In: UIUC Department of Computer Science Undergraduate Research Sym-
posium (2008)

45. Stamos, J.W., Gifford, D.K.: Remote evaluation. ACM Transactions on Program-
ming Languages and Systems, 537–564 (1990)

46. Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison Wes-
ley (1992)

47. Sussman, H.A.G.J., Sussman, J.: Structure and Interpretation of Computer Pro-
grams, 2nd edn. The MIT Press (1996)

48. Tanenbaum, A.S.: Computer Networks, 4th edn. Prentice Hall (2003)
49. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University

Press (2001)
50. TinyOS, http://www.tinyos.net
51. Tomlinson, C., Kim, W., Scheevel, M., Singh, V., Will, B., Agha, G.: Rosette: An

object-oriented concurrent systems architecture. SIGPLAN Notices 24(4), 91–93
(1989)

52. Venkatasubramanian, N., Agha, G., Talcott, C.L.: Scalable distributed garbage
collection for systems of active objects. In: Bekkers, Y., Cohen, J. (eds.) IWMM-
GIAE 1992. LNCS, vol. 637, pp. 134–147. Springer, Heidelberg (1992)

53. Watanabe, T., Yonezawa, A.: Reflection in an object-oriented concurrent language.
In: Meyrowitz, N.K. (ed.) OOPSLA, pp. 306–315. ACM (1988)

54. Watanabe, T., Yonezawa, A.: Reflection in an object-oriented concurrent language.
In: Yonezawa, A. (ed.) ABCL: An Object-Oriented Concurrent System. MIT Press
(1990)

55. Yin, L., Uttamchandani, S., Palmer, J., Katz, R.H., Agha, G.A.: Autoloop: Auto-
mated action selection in the ”observe-analyze-act” loop for storage systems. In:
POLICY, pp. 129–138. IEEE Computer Society (2005)

56. Yonezawa, A., Shibayama, E., Takada, T., Honda, Y.: Modelling and programming
in an object-oriented concurrent language ABCL/1. In: Yonezawa, A., Tokoro, M.
(eds.) Object-Oriented Concurrent Programming. MIT Press (1987)

57. Yonezawa, A., Watanabe, T.: An introduction to object-based, reflective, concur-
rent computation. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Proceedings of
the ACM SIGPLAN Workshop on Object-Based Concurrent Programming (1988)

http://www.tinyos.net

Objects in Space

Wolfgang De Meuter, Andoni Lombide Carreton, Kevin Pinte,
Stijn Mostinckx, and Tom Van Cutsem

Software Languages Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium

Abstract. The paper presents a research agenda that we are currently
executing for programming mobile applications that write and read in-
formation to and from passive RFID tags. Modern tags can host up to
several kilobytes of information which makes it possible to store real soft-
ware objects (in the object-oriented sense) that can even refer to each
other. This gives the term ‘spatial database’ an entirely new meaning.
The paper motivates the need for new programming language constructs
that are specifically targeted towards representing objects on tags, des-
ignating specific tags in the application’s proximity and keeping the in-
ternal status of the mobile application causally connected to its physical
surrounding.

1 Introduction

In recent years, we have seen a steady growth in the penetration of smart phones
in our society. Apart from being full-fledged computers, modern smart phones
are also equipped with a plethora of sensors that can be used by application
programmers. One such ‘sensor’ that is becoming a mundane feature is an RFID
(Radio Frequency Identification) reader. Interestingly, RFID readers are not just
sensors; they can also write information on the tags they encounter. This gives
rise to a new type of mobile applications that we dub Mobile RFID-Enabled
Applications or MoREnAs for short.

This paper analyses the difficulties that programmers face when writing well-
functioning MoREnAs. We do so by considering MoREnAs as a particular kind
of distributed application. However, instead of assuming a fixed (or fairly sta-
ble) set of communication partners, MoREnAs communicate with large volatile
“clouds” of tags that happen to be in the communication range of a MoREnA
at a particular moment in time. Our research hypothesis is that MoREnAs are
best programmed in a distributed programming language that offers a rich set
of features that are especially designed to handle a correct interaction with such
clouds of tags.

Our research departs from a homegrown distributed language, called Am-
bientTalk. AmbientTalk has been originally conceived to program peer-to-peer
mobile applications that run on networks that emerge spontaneously whenever
users collocate. These networks are called mobile ad hoc networks or MANETs

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 317–340, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

318 W. De Meuter et al.

for short. Many problems of MoREnAs are inherited from the MANET case.
Adopting existing solutions for these problems is therefore a logical thing to do.
Our research agenda thus consists of extending AmbientTalk with features that
are specifically targeted towards MoREnAs. These exhibit a number of proper-
ties that MANET applications do not exhibit: the fact that the communication
partners come in vast amounts and the fact that they do not have any compu-
tational power whatsoever1.

1.1 Scenario: Intelligent Kitchens

In order to give a concrete idea of the type of applications that we target, we
start by outlining a potential scenario.

In this scenario we envision buying and using furniture in an IKEA-like fur-
niture shop. Furniture configurations need to be selected and assembled from
modular pieces. The typical setup is that customers walk through a show room
in order to choose furniture from a particular product line (“a kitchen of the
product line named Ångebakken”, “a couch configuration of the product line
named Zërikønt). After selecting a product line, various modular parts can be
selected and composed in order to come up with one particular configuration
that fits the needs of the customer. As soon as a concrete configuration has been
composed, the necessary parts have to be collected at the exit of the shop. The
parts have to be assembled at home.

In our scenario, users would run a mobile shopping assistant application that
allows them detect the identity of the product lines that are involved in a partic-
ular show room. All assembly parts used in a show room contain an RFID-tag
that stores a software object describing the assembly part. Based on the product
line identities, the mobile application offers users a list of all the line’s assembly
parts and of a list of constraints that restrict their composability. It subsequently
offers the ability to visually compose a particular configuration. After deciding
on one particular configuration (e.g. a kitchen), the application enumerates the
required assembly parts and generates a list of instructions on how to find those
parts at the shop’s ‘self serve furniture area’. The customer collects his modular
parts and proceeds to the cash register.

Once at home, a configuration and installation application displays a step-
by-step assembly plan in order to assemble the chosen configuration. Moreover,
while assembling, the application stores configuration information about that
particular configuration onto the RFID tags that are built into those parts. Like
this, a kitchen sink can “be told” that it is situated right below a certain cup-
board. A door of a cupboard is programmed with the identify of “its” cupboard.
A cupboard can be told that it is situated “on the left” of another cupboard,
etc.

1 Our work currently only deals with passive RFID tags. Active RFID tags are less
interesting from an academic point of view since they are actually small computers;
hence they fall under the MANET classification.

Objects in Space 319

Third, a mobile kitchen operation application can be used to read and write
information from and to the tags while one is using the kitchen. Cupboards can
be programmed such that they know which tools they contain and so on.

Finally, the kitchen can also contain a number of non-mobile kitchen applica-
tion components that monitor the “current state”. For example, we could think
of a software component built into a fridge which perpetually scans the tags
attached to the products stored in the fridge. One particularly interesting appli-
cation that we will use is the RFID-Chef. It is an application that is part of the
kitchen counter. It assists a user while cooking. Figure 5 displays a screen shot
of the application. Every time we put an ingredient on the kitchen counter, the
RFID-Chef consults its database of recipes. The recipes that can become a can-
didate to be prepared are displayed. Recipes displayed in green are fully covered
by the ingredients sitting on the counter. The amount of green is corresponds to
the amount of surplus ingredients. Recipes displayed in red are nearly covered.
The amount of red corresponds to the amount of ingredients that is still lacking.

Fig. 1. Screenshot of the RFID-Chef

From a technological point of view, such applications are entirely feasible with
todays technology. However, given the current state of the art in software tech-
nology, their construction is extremely intricate and tedious. This is explained
in section 3. It forms the motivation for the rest of the paper.

1.2 Middleware vs. Programming Languages

In distributed programming research, we discern two different research method-
ologies. On the one hand there is the middleware school which tries to come up

320 W. De Meuter et al.

with novel concepts and abstractions that ease the construction of distributed
applications. Usually, the abstractions are programmed in a mainstream lan-
guage (e.g. Java). They are subsequently used by using the traditional abstrac-
tion mechanisms of that language (e.g. inheritance, composition, genericity). On
the other hand there is the programming language school which typically designs
an entirely new language or which extends an existing language with the novel
abstractions. Here the focus is on trying to polish both the novel abstractions
and the existing ones in order to form one coherent language.

In our research, we take a combined approach. From a purely academic point
of view, we believe that the programming language approach is superior to the
middleware approach because it results in cleaner, more orthogonal abstractions
that can be studied in a laboratory setting [20]. When integrating middleware
in an existing language, one often has to wrestle with the shortcomings of that
language (e.g. the lack of reflection in Java) and this often influences the con-
ceptual purity in a negative sense. Nevertheless, we do believe that we should
also investigate how our novel abstractions can be applied to a mainstream lan-
guage, possibly after making a compromise with the restrictions it imposes. A
good example is our recent Middleware paper [2] which presents a simplified Java
version of some of the ideas presented here. In this paper we wear our academic
hat though.

The remainder of this paper is organized as follows. First we briefly introduce
the AmbientTalk programming language (section 2). Next we analyze the prob-
lems we address and the research agenda (section 3). Subsequently, we present
the results of our research (section 4). Finally, we conclude this paper and discuss
limitations and future work (section 5).

2 A Brief Tour of AmbientTalk

Since AmbientTalk is a fairly unknown academic language, we devote some space
to explaining the language. AmbientTalk is an open source project. It can be
downloaded and used for free. It is supported by an Eclipse plug-in and it runs
on Android devices. The language is currently used by a team of PhD students
and it has been used in a master level course on distributed programming for
quite some years now. This means that the tool suite (i.e. interpreter, plug-in,
debugger) are fairly stable.

It is by no means our intention to cover the language entirely. It has been
documented in several research papers [5,21] and in an online tutorial [18].

AmbientTalk features a concurrency and distribution model based on commu-
nicating event loops [15]. In this model, event loops form the unit of distribution
and concurrency. Every event loop has a message queue and a single thread
of control that perpetually processes messages from that queue. An event loop
hosts regular objects. Within an event loop, object references are accessed using
ordinary, synchronous message sending. An event loop can publish its objects
(on the network). Other event loops can discover these published objects thereby
obtaining a remote object reference (or far reference) to the object. Communi-
cation with a remote object happens by sending messages over the far reference.

Objects in Space 321

The messages are then placed in the message queue of the event loop hosting the
remote object. The event loop’s thread handles these messages in sequence thus
ensuring the hosted objects are protected against race conditions. A far reference
operates asynchronously: a sender event loop will never wait for a message to be
delivered, but immediately continues its computation. Figure 2 illustrates the
communicating event loops model.

Fig. 2. The communicating event loops model

2.1 Service Discovery

Publishing an object on the network is done using the export:as: language
primitive. It takes an object to be published and a type tag2 to label the object.
In the example below an object representing a printing service is published.
The object is labelled with the Printer type tag, which was created using the
deftype primitive. Notice that AmbientTalk is a prototype-based language, an
object is created ex-nihilo using the object: primitive.

deftype Printer;

def printService := object: {
def print(aDoc) {

system.println("printing " + aDoc)
} };

export: printService as: Printer

Clients have two ways to obtain a far reference to a remote object. Either
they install discovery callbacks in order to react on the appearance of objects on
the network, or objects are passed as arguments of messages sent over another
far reference. Below is an example of a client interested in a printing service.

deftype Printer;

when: Printer discovered: { |farRef|
farRef<-print(myDoc) }

2 Type tags are a lightweight classification mechanism to categorize remote objects
explicitly by means of a nominal type. They can best be compared to a topic in
publish/subscribe terminology or marker interfaces in Java.

322 W. De Meuter et al.

The when:discovered: primitive installs a block closure as a listener pro-
cedure (i.e. a callback). This procedure is triggered upon discovery of an object
labeled with the Printer type tag on the network. When the callback is ex-
ecuted, the block closure receives a far reference to the remote printService

object as an argument. The <- operator is used to send asynchronous messages
over a far reference. In this case, the client sends a document to the printing
service using the print message.

Intuitively, the message is placed in the receiving event loop’s mailbox. When
the message is processed locally, the corresponding method is called on the
printService object. The argument to this method is a far reference to the
document object hosted on the client event loop.

The when:discovered: primitive installs a callback that is executed
only once. After the first execution the callback is discarded. The
whenever:discovered: variant installs a callback that can be triggered many
times, until the programmer discards it manually.

2.2 Fault Tolerance with Respect to Volatile Connections

When mobile devices move out of each others range, the event loops that are
hosted on the different devices are disconnected from each other. Upon such
a disconnection, all far references become disconnected and will start buffering
incoming messages, as illustrated by figure 3. When the communication is re-
established, the far references are automatically rebound and all buffered mes-
sages are subsequently flushed to the message queue of the destination event
loop.

Fig. 3. Messages to disconnected objects are buffered until reconnection

The programmer can monitor the connectivity of far references by means
of two primitives. when:disconnected: and when:reconnected: install call-
backs that are triggered when a far reference is disconnected or reconnected.
Here too, whenever:disconnected: and whenever:reconnected: variants ex-
ist that may be executed multiple times. In the example below, a print button
is enabled or disabled depending on the availability of the service is unavailable.

Objects in Space 323

whenever: farRef disconnected: {
disablePrintButton() };

whenever: farRef reconnected: {
enablePrintButton() }

2.3 Futures

By default, asynchronous message sends have no return value. futures can be
used to alleviate this restriction. A future is a placeholder for the later return
value, which may not yet be available. Initially, the future is said to be unresolved.
Consider the example of a calculator service:

def calc := actor: {
def add(x,y) {

x + y
} }

import /.at.lang.futures;
enableFutures(true);

def sumFuture := calc<-add(1,2);

The actor: primitive spawns a new event loop representing a calculator ser-
vice with an add method. The import statement loads the futures library, after
which it is enabled as the default for all asynchronous messages. Sending the add
message to the calculator service now immediately returns a future which pro-
vides us with a handle on the eventual return value. Using the when:becomes:
primitive, we can register a callback on a future, which is executed as soon as
the future becomes resolved. The callback is given the actual return value of the
message. Here is an example:

when: sumFuture becomes: { |result|
system.println("the result was " + result);

} catch: { |exception|
system.println("addition failed") };

The when:becomes:catch: function takes a future and two callback blocks
(a callback and an errback). If the asynchronously invoked method returns a
value, the future is resolved, and the callback is called with the return value. If
the method instead raises an exception, the corresponding future becomes ruined
and the errback is called with the exception.

2.4 Parameter Passing Rules

When sending a message across a far reference, objects are parameter-passed by
far reference: the parameters of the invoked method are replaced by far references
to the original objects.

324 W. De Meuter et al.

There is one exception to the above parameter-passing rules: objects created
as isolates (i.e. using isolate: instead of object:) are passed by (deep) copy
rather than by far reference. Isolates are treated as lexically closed expressions.
In other words, they are isolated from their lexical scope, which allows them
to be copied across actor boundaries without losing information. The benefit of
isolates is that the recipient actor will receive its own local copy of the isolate,
avoiding further remote communication.

For the calculator example, it makes sense to represent e.g. complex numbers
as isolates. The calculator service can then access the properties and methods
using the regular synchronous dot operator:

def complexNumber := isolate: {
def re := 0;
def im := 0;
def init(re, im) {

self.re := re;
self.im := im

};
def +(other) { self.new(re+other.re, im+other.im) } }

2.5 Summary

In brief, AmbientTalk is a distributed programming language that features ob-
jects that can be exported and discovered on MANETs. The fault tolerance that
comes with its far reference semantics makes the language extremely well-suited
for such networks. Temporal network disconnections are not felt by the program-
mer since far references transparently buffer messages. Objects never leave their
hosting actor as they are passed by far reference. Isolates are used when a repli-
cation semantics is desirable. Local communication happens synchronously (us-
ing the ordinary dot operator). Remote communication happens asynchronously
(using the left arrow). Futures are used to propagate back results.

3 Problem Statement and Research Agenda

The problem addressed by this paper is twofold. First, we currently lack ab-
stractions to represent and interact with software objects that correspond to
RFID-tags. Second, since RFID tags form large volatile clouds of devices, keep-
ing a MoREnA’s status consistent with the physical composition of such clouds
leads to a highly event-driven system, which induces a number of programming
problems.

3.1 Representing and Accessing Objects in Space

MoREnAs use RFID technology in a radically different way from existing RFID
applications which typically are about stock management or item tracking. These

Objects in Space 325

applications use RFID tags as mere digital barcodes. They do not exploit the
writable memory on these tags [16,6,14] and they typically assume the pres-
ence of an infrastructure in the form of a centralized backend database that
associates every digital barcode with its semantics [10,7]. For MoREnAs such
centralised infrastructure is absent. It should thus be possible to write the se-
mantic information directly onto the tags. With the state of the art software
technology, this is problematic. Developers of MoREnAs are currently forced to
rely on extremely low-level abstractions in order to interact with RFID hard-
ware; in most cases even directly with the hardware driver or bare tag memory
level. The programmer must “manually” deal with the fact that communication
with RFID tags is prone to many failures. E.g., on the Android platform, API
documentation advice programmers to spawn a separate thread to cover this.
As a consequence, dealing with these intermittent failures and interacting with
the low-level abstraction layers offered by RFID vendors from within a general
purpose programming language results in complex and brittle code. Apart from
this problem, current APIs allow us to encode byte arrays but nothing more. As
such, MoREnA programmers have to provide code that encodes their applica-
tion objects into such (sequences of) byte arrays. Other abstraction levels have
to be encoded manually on top of the machinery that sends these byte arrays
back and forth between the MoREnA and the physical tags. Obviously, this is a
level of abstraction that is even below the (already problematic) ORM (Object-
Relational Mapping) level. In short, current technology does not offer a way to
access and use tags in a conceptually clean object-oriented way.

3.2 Highly Event-Driven Nature

Since the set of tags in the range of an RFID reader is continuously fluctuating, it
becomes impractical to use polling on the application level as the mechanism to
detect the appearance and disappearance of tags. As a consequence, MoREnAs
have to be conceived as event-driven applications from the ground up. Phe-
nomena such as the appearance and disappearance of tags and the reception of
acknowledgments from these tags become the driving forces of the application.
This contribute to the highly event-driven nature of MoREnAs.

In such applications, it is no longer the programmer who steers the applica-
tion’s control flow. Instead, the control flow is entirely managed by a network
of callbacks that get triggered as soon as an event is detected. Unfortunately,
adopting an event-driven architecture, has the effect that the application logic
becomes entirely scattered over different event handlers or callbacks which may
be triggered independently [3]. This is a phenomenon that is known as inversion
of control [8,17]. It engenders a number of unpleasant software engineering con-
sequences. Unlike consecutive function calls, code triggered by different event
handlers cannot use the runtime stack to make local variables visible to other
event handlers. Because handing over state from one event handler to another no
longer relies on parameter passing, these variables have to be made instance vari-
ables, global variables, etc. This is why in complex systems such an event-driven
architecture becomes hard to develop, understand and maintain [11,9,13].

326 W. De Meuter et al.

3.3 Problem Analysis

It was our goal to extend AmbientTalk with programming language constructs
that tackle the above problems. We claim that there are three language aspects
that need to be dealt with in order to render the engineering of such applications
easier. We refer to figure 4 in order to make this vision more tangible.

Representation: First of all, the level at which data is written and read to and
from tags should be raised drastically. Instead of dealing directly with bytes
and byte arrays, we think it should be possible to communicate with tags
by storing true software objects (in the object-oriented sense) on the tags.
Furthermore, the RFID-reader itself should be hidden behind an object-
oriented abstraction layer. Since it can operate independently from the rest
of the application it should become an event loop.

Designation: Second, we need a technique for addressing and designating in-
dividual tags or groups of tags that belong together or that share some
common characteristic. With the current software technology, we can only
read all reachable tags into the memory of an application after which we
need to manually loop over the read tags in order to select the ones that
are needed. Only after this process we can start communicating with the
tags in order to write or read data. This is obviously extremely error-prone:
by the time we start communicating with a selected tag, the mobility of
the application and the tags may already caused the tag to be unreach-
able. This problem may occur with large amounts of tags at the same time.
Consider e.g. communicating with particular tags in a supermarket’s racks.
Writing correct code against such volatility requires a huge number of if
tests and try/catch constructs. It would be so much easier if only we can
use a declarative expression that allows us to specify which tags we want to
communicate with. The concrete set of tags that satisfy this expression is
extremely volatile as the MoREnA moves about. We envision a new “cloud”
data type whose values correspond to such perpetually changing tag sets.

Synchronization: Having a new data type that perpetually represents the
reachable (and selected) tags, it is our task to keep the internal state of
a MoREnA consistent with the composition of the set. If e.g. a particular

Designation:
(clouds of) things Representation:

objects ⇋ tags

Synchronization:
application with cloud

Fig. 4. Representation, Designation and Synchronization in MoREnAs

Objects in Space 327

functionality of the application only makes sense when a certain group of
tags is reachable, then that functionality should immediately be disabled
as soon as one or more of the tags is no longer reachable. Conversely, the
functionality should be re-enabled as soon as the tags come back into com-
munication range. In other words, we want our application’s internal status
to be synchronised at all times with the status of the reachable part of the
external world.

4 Research Results

We now present the three experimental enhancements of AmbientTalk. Things
is the name for a new type of AmbientTalk object that represents a tag. Ambient
References are used to query the “ether” for a cloud of desired tags. Reactive
Programming is used to keep the internal state of the application consistent with
the physical world. These are discussed in the following sections.

4.1 Representation: Things

It was our explicit goal to enrich AmbientTalk with the programming language
constructs necessary to represent RFID tags and to keep the software repre-
sentation of a tag (i.e. the “object” that lives in the MoREnA) as consistent as
possible with the data that actually lives on the tag. To this extent, we extended
the object system of AmbientTalk with a new type of objects called things. Re-
member from section 2 that AmbientTalk features objects and isolates. A thing
is new type of remote object that is referred to by means of a far reference. The
idea is to have a dedicated RFID-actor in every AmbientTalk virtual machine.
This actor manages the things about which the actor knows that they exist on
one of the tags it has encountered. The RFID-actor perpetually tries to keep its
things as consistent as possible with the data that lives on the actual tags. The
RFID-actor is causally connected to the hardware driver of the RFID reader.
Every time the reader (re)discovers a tag, the thing is updated should the data
on the tag be changed (possibly by another reader). Conversely, the data on the
tag is updated should the thing be changed (by the MoREnA). In case the tag
and the thing have both changed, an exception is thrown.

Here is how an application programmer creates a thing. The example is taken
from a library MoREnA in which books contain a tag that stores information
about the book as well as reviews written by users. Notice that the mere execu-
tion of this code does not involve communication with a tag yet.

deftype Book <: RFIDTag;

def aBook := thing: {
def isbn := 123;
def title := "My book";
def reviews := Vector.new();

328 W. De Meuter et al.

def setTitle(newTitle)@Mutator {
title := newTitle };

def addReview(review)@Mutator {
reviews.add(review) };

} taggedAs: Book;

The RFID-actor broadcasts any blank tag its reader discovers to the other
actors in the system. As such, other AmbientTalk actors can discover blank tags
in the following way. The code shows how a listener is installed that reacts to
blank tags. As soon as a blank tag is discovered, the native initialize method
is executed and it is this method that writes the thing on the tag. The result of
this method is a future that resolves with a far reference bookref to the newly
created thing when the tag was written successfully. Notice that the tag itself is
represented by a far reference from the application actor to the thing residing in
the RFID-actor.

deftype BlankTag < RFIDTag;

whenever: BlankTag discovered: { |tag|
when: tag<-initialize(aBook)
becomes: { |bookref|

... } }

This code shows how to use AmbientTalk’s standard discovery mechanism for
tags that are already initialized (possibly by another RFID-actor). The following
code installs a listener that reacts to tags containing a Book thing.

whenever: Book discovered: { |bookref|
...
whenever: bookref disconnected: {
... };

whenever: bookref reconnected: {
... } };

Notice from the definition of the thing that some of its methods are annotated
as Mutator. Execution of such methods by the RFID-actor will always cause a
“dirty flag” to be set such that the actual tag becomes a candidate for updating
as soon as it is in the communication range of the driver. For example, if a
user adds a review message to a book object using the addReview method, the
corresponding RFID tag will be updated as soon as it is in range.

Is is perfectly legal to refer to a thing from within another thing (e.g. a book
that points to other books from the same author). References between things are
also serialized (using the unique identifier of the RFID tag). Upon deserialization
the respective far references are reconstructed. Some of these references may be
disconnected depending on the availability of the corresponding RFID tag.

In brief, things are special objects that are maintained by a built-in RFID-
actor. From the AmbientTalk perspective they are a special kind of isolates (see
section 2) since copying their contents back and forth between the application

Objects in Space 329

and the tag cannot be combined with lexical scoping. Hence, things do not have a
lexical scope. However, in contrast to isolates, things are referred to from within
other virtual machines; i.e. they are referred to by far reference. Apart from
this special status, things neatly fit into AmbientTalk and all its distributed
programming features (such as the when: and whenever: primitives) are appli-
cable to them as well. Things were developed in the context of Andoni Lombide
Carreton’s PhD work and we refer to the dissertation for more details [12].

4.2 Designation: Ambient References

As indicated before, we envision a MoREnA as an application that constantly
moves about. Obviously, not all tags encountered will be relevant to a MoREnA
or to the state in which a MoREnA finds itself. In order to give MoREnAs
precise control over the tags it is interested in, we envision an intentional object
designation feature that allows a programmer to declaratively express the kinds
of things he wants to communicate with. This is where ambient references come
into play. An ambient reference is create by an expression that describes the kind
of things one is interested in. The expression is “perpetually” re-evaluated and
therefore denotes a “cloud” of things that satisfy the expression. That cloud is
the current status of the ambient reference.

For example, in the following code,

def books := ambient: Book

books refers to all things that correspond to a Book. Things appear and disap-
pear from books as tags come and go. The following version of ambient references
is a bit more interesting. The ambient:where: primitive takes a type tag and
a predicate that can be used to filter things based on the status of their state
variables. In the example, CSBooks corresponds to all computer science books
encountered.

def CSBooks := ambient: Book where: { |b|
b.cat == "Computer Science" };

Ambient Messages. Ambient references become interesting when they are used to
convey ambient messages. These are messages sent asynchronously to an ambient
reference. The messages are typically annotated with one of a predefined set of
annotations. For example, the following example shows how a getShelfmessage
is sent to all far references that belong to the ambient reference CSBooks. The
@One annotation stipulates that the message only has to be sent once, to the first
reference that was discovered by the ambient reference. The last line exemplifies
the @Sustain annotation which stipulates that the message should be sent to
all references that currently reside in the ambient reference and to all references
that will in the future be discovered3 as the content of the ambient reference

3 AmbientTalk features machinery to cancel an ambient message as soon as we do not
want it to be sent anymore.

330 W. De Meuter et al.

changes due to user mobility. This implies that the precise number of receivers
of that message cannot be determined upfront.

def shelfFuture := CSBooks <- getShelf()@One;

when: shelfFuture becomes: { |shelf|
system.println("The book should be on shelf: " + shelf) };

CSBooks <- setShelf("5D")@Sustain;

We can combine different ambient message policies by grouping them in
an array. For example, if players is an ambient reference in a mobile
game, then players <- askToVote(q)@[All,Expires(minutes(1))] sends
the askToVote message to all players belonging to the ambient reference (in-
stead of just the first one discovered). The Expires annotation stipulates that
we keep on broadcasting the message to newly appearing players for a total
duration of 1 minute.

Discovery
Lifetime

Communication
Lifetime

AritySustainableInstant Transient

One-way

Unbounded Bounded Expirable
@Due(t) @Expires(t)

@Sustain@Instant @Transient(t)

@Reply

@Oneway

Point-to-point
@One

One-to-many
@All

Two-way

Fig. 5. Ambient Message Policies

Figure 5 summarizes ambient messages. Ambient messages have a discovery
lifetime, a communication lifetime and an arity. The discovery lifetime corre-
sponds to the amount of time that the interpreter needs to listen to new far refer-
ences that should receive the message. Instant causes message to be sent to the
currently reachable references. Sustain keeps on trying forever. Transient(t)
puts a duration on the amount of time the ambient reference will try to send the
message to newly discovered references. The communication lifetime specifies
how long the interpreter waits for an answer. We can send the message without
expecting an answer (i.e. OneWay) or we can wait for an answer to return, either
indefinitely (i.e. Reply) or with a predetermined time limit (i.e. Due). Note that
the Due annotation is used to prevent messages to be buffered indefinitely, for
example, in case of a permanent disconnection. The arity is the number of re-
cipients of the ambient message. For more details on ambient messages, we refer
to the PhD work of Tom Van Cutsem [19].

Objects in Space 331

The fact that ambient messages are sometimes sent to multiple objects may
give rise to multiple results. As in standard AmbientTalk, these are returned
by means of futures. The “cloud of futures” that results from sending an ambi-
ent message to an ambient reference is known as a multi future. The following
example illustrates how sending a getBookInfo to all books discovered gives
rise to a multi future books. Dedicated constructs such as when:becomes:,
whenEach:becomes: and whenAll:becomes: allow us to install the appropri-
ate listeners on such multi futures. The first one causes a block closure to be
executed on the first future that is resolved. The second one executes its code
for each future that is resolved (i.e. one by one). The final one executes its block
only when all the futures of a multi future have been resolved. We refer to [19]
for a more elaborate analysis as well as implementation details.

deftype Book < RFIDTag;

def books := ambient: Book;

whenEach: books <- getBookInfo()@Sustain becomes: { |infoAndRef|
GUI.addToList(infoAndRef) }

Ambient references together with ambient messages can be referred to as vague
binding. Ambient references were studied in great detail in the PhD work of Tom
Van Cutsem [19]. Andoni Lombide Carreton first applied them to MoREnAs in
his PhD [12]. We refer to both documents for more technical details.

4.3 Synchronization: Reactive Sets

AmbientTalk’s RFID-actor takes care of sustaining the connection between tags
and their corresponding things. However, we now show how using the concepts
presented so far generate the following software engineering problems:

Inversion of Control. The control flow of the application is scattered across
different event handlers. This results in applications in which the control
flow is completely obfuscated. Explicitly orchestrating the interplay of these
event handlers is nigh impossible, since the order in which they are triggered
is beyond the developers control.

Explicit Dependency Management. Dependencies between causally con-
nected objects need to be expressed explicitly in AmbientTalk. This implies
that an object needs to know which objects are (possibly indirectly) causally
connected to the environment, such that it can register an observer on these
objects. This is detrimental to the evolution of the application since it im-
plies that when an object becomes causally connected to the environment
(i.e. its state is changed in an event handler), all users of the object need to
register an additional dependency.

Superfluous Updates. One needs to explicitly register ones interest in
changes to modules that are causally connected to the environment (e.g.
the RFID reader). If these modules are not independent of one another, a

332 W. De Meuter et al.

single change to the environment may cause the dependent to be updated
multiple times.

Premature Updates. Using an ad hoc mechanism to propagate updates im-
plies that the order in which the various event handlers are triggered remains
unspecified. Consequently, objects may be recomputed before all objects
on which they depend are properly updated. Updating objects prematurely
proves to be a subtle source of erroneous behavior.

We illustrate these problems by means of an AmbientTalk implementation of
the RFID-Chef explained in section 1.1. The solution — Reactive Programming
— will be explained by the second implementation of the RFID-Chef.

The RFID-Chef in Plain AmbientTalk. Every time an Ingredient tag
(exported by the RFID-actor) is discovered, its corresponding thing is added to
the set AvailableIngredients. Listeners are installed to monitor the connec-
tivity status of the thing such that the set correctly represents the “currently
visible” things.

def AvailableIngredients := ObservableSet.new();
whenever: Ingredient discovered: { |tag|

AvailableIngredients.add(tag);
whenever: tag disconnected:{AvailableIngredients.remove(tag)};
whenever: tag reconnected: { AvailableIngredients.add(tag) } }

AvailableIngredients is an observable set. Such sets feature listener ma-
chinery (called whenever:hasAdded: and whenever:hasRemoved:) that allows
reacting to the addition and removal of elements. Based on this set, we compute
another set called RecommendedRecipes which consists of all recipes of which
the ingredient list contains at least one of the present ingredients. The function
recipesForIngredient queries a database of recipes given some ingredient i.

def RecommendedRecipes := ObservableSet.new();

whenever: AvailableIngredients hasAdded: { | ingredient |
RecommendedRecipes.addAll(recipesForIngredient(ingredient)) };

whenever: AvailableIngredients hasRemoved: { | ingredient |
RecommendedRecipes.clear();
AvailableIngredients.each: { | i |
RecommendedRecipes.addAll(recipesForIngredient(i)) } };

Notice that we cannot just remove a recipe when an ingredient disappears. This
is because some of the other ingredients it uses may still be available. Hence, we
clear the list of recommended recipes and we refill it again with the recipes for
the ingredients that remain in AvailableIngredients. The code so far clearly
illustrates the problem that the application suffers from inversion of control.
The control flow is entirely determined by externally produced events. Inver-
sion of control contaminates the entire application because dependencies

Objects in Space 333

need to be manually managed. The argument with clear illustrates that this is
extremely error prone.

We are now ready to sort the recommended recipes according to how well
they score. Given a recipe and the currently availableIngredients, then
recipeScore generates a score based on the number of missing and the num-
ber of surplus ingredients for that recipe. SortedRecipes is an ordered set
(which orders recipes based on a recipeComparator that compares the scores).
The third expression initialises the sorted set and the last three expressions in-
stall the listener machinery needed to recompute the sorted set as soon as a
recipe is added to or removed from the list of available ingredients. Notice that
recompSortedRecipes has to clear the SortedRecipes manually. We cannot
generate a new set because that would ignore all listeners installed on the original
set.

def recipeScore(recipe, availableIngredients) { ... }

def SortedRecipes := ObservableSortedSet.new(recipeComparator)

SortedRecipes.addAll(RecommendedRecipes.map:{ |r|
recipeScore(r, AvailableIngredients) })

def recompSortedRecipes(availableIngredients, recipes) {
SortedRecipes.clear();
SortedRecipes.addAll(recipes.map: { |r|
recipeScore(r, availableIngredients) }) };

whenever: AvailableIngredients hasChanged: { |ingredient|
recompSortedRecipes(AvailableIngredients, RecommendedRecipes)};

whenever: RecommendedRecipes hasChanged: { |ingredient|
recompSortedRecipes(AvailableIngredients, RecommendedRecipes)};

We have installed one listener on AvailableIngredients and another one on
RecommendedRecipes in order to recompute the sorted recipes. However, since
RecommendedRecipes also depends on AvailableIngredients, a change in the
ingredients will cause the recipes to be recomputed twice! This code illustrates
a second problem of manually installing event handlers, namely the problem of
superfluous updates.

Initializing the GUI is fairly boring. The code below uses AmbientTalk’s
access to the JVM in order to create a Swing component RecipeForm rep-
resenting a recipe graphically, and a graphical gui that contains a panel
gui.TopRecipesPanel that groups together all forms. visibleRecipes is an
array of the 5 currently visible forms (w.r.t. scrolling).

def RecipeForm := jlobby.at.context.rfidchef.RecipeForm;
def gui := jlobby.at.context.rfidchef.new();

def visibleRecipes[5] { RecipeForm.new() };
gui.TopRecipesPanel.addAll(visibleRecipes);

334 W. De Meuter et al.

In the following, we register listeners on the previous and next buttons of the
GUI. Clicking the buttons causes us to display the next or the previous 5 recipes.
offset is the index in SortedRecipes of the first visible recipe.

def offset := 0;

gui.PreviousButton.addActionListener(object: {
def actionPerformed(event) { offset := offset - 5;

updateRecipes() } });
gui.NextButton.addActionListener(object: {

def actionPerformed(event) { offset := offset + 5;
updateRecipes() } });

The listener installed on SortedRecipes below ensures that the buttons are
properly enabled (resp. disabled) in case more (resp. less) than 5 exist. This
code shows a third problem of installing manual event handlers: since the vari-
able offset is not observable, we have to implement manual dependency
management code to correctly enable and disable the buttons every time we
change offset.

def enableButtons(nrDisplayable) {
gui.PreviousButton.setEnabled(offset != 0);
gui.NextButton.setEnabled(offset + 5 < nrDisplayable) };

def capoffset(nrDisplayable) {
while: { nrDisplayable < offset } do: {
offset := offset - 5 } };

whenever: SortedRecipes hasChanged: {
capoffset(SortedRecipes.size());
enableButtons(SortedRecipes.size()) };

Finally, here is the method to update the 5 visible recipes. A range (starting
at offset) of 5 recipes is extracted from the SortedRecipes and copied to the
array of visible recipes, unless there are less than 5 recipes to show. On first sight,
this is innocent code. However, if the updateRecipes happens to be triggered
before capping the offset variable, an exception may be thrown (because it is
out of range). Such premature updates may occur if the order of dependencies
matters: we cannot control the order in which multiple event handlers (installed
on an observable set) are triggered.

def updateRecipes() {
def visibleRange :=
SortedRecipes.range(offset,

min(offset + 5, SortedRecipes.size()));
visibleRange.copyTo(visibleRecipes) };

whenever: SortedRecipes hasChanged: { updateRecipes() }

Objects in Space 335

The RFID-Chef in Reactive AmbientTalk. The above code snippets clearly
show that writing applications consisting of huge networks of collaborating event
handlers soon gives rise to unmanageable code. In this code we explain how
reactive programming alleviates this problem. We do so by showing how the
RFID-Chef looks like in an experimental reactive version of AmbientTalk.

Reactive programming languages [1] feature so called reactive values and event
sources. Reactive values change their value at regular time intervals. Suppose
that x and y are variables containing a reactive value and suppose that we declare
def z := (x + y) / 2. The idea of a reactive value is that z is automatically
updated if either x or y changes. To this extent, reactive languages compile
their programs into dependency graphs which are used to propagate changes
through the program. Notice that the operator + is automatically lifted so that
it automatically works on reactive values by recomputing its result as soon as
one of its arguments changes. Event sources are objects that emit messages at
irregular time intervals (e.g. depending on some externally produced IO-event
or because they received an event from another event source).

Here is the reactive set AvailableIngredients. It grows and shrinks every
time a tag is discovered by the built-in reactive value RFIDReader. This is an
event source that emits tagRead and tagRemove messages every time a tag is
discovered on the kitchen counter. The <<+ operator takes a regular object and
an event source and registers the object to listen to the event source. Every
time the event source emits a message, that message is relayed to the object.
In our case, this gives rise to adding or removing the tag to the set of available
ingredients.

def AvailableIngredients := makeReactive(Set.new());

def translator := object: {
def tagRead(readerID, tag) { AvailableIngredients.add(tag) };
def tagRemove(readerID, tag) {

AvailableIngredients.remove(tag) } };

translator <<+ RFIDReader;

The following code illustrates the power of reactive programming.
PromotedRecipes is a reactive set of sets. Every set it contains corresponds to
the set of recipes that can be prepared with one of the ingredients. Notice that
map: is a lifted method of the AvailableIngredients reactive set: every time
the reactive set changes, map: is re-sent which gives rise to a recalculation of
the PromotedRecipes set. RecommendedRecipes is the union of all promoted
recipes. Notice that union is lifted again. Finally, SortedRecipes is a list of
sorted recipes that automatically gets updated every time the
AvailableIngredients set changes. An implementation technique of reactive
languages — called stratification see [4] — guarantees that SortedRecipes is
updated online once, even though it depends on two progenitors, one of which
(i.e. RecommendedRecipes) depends on the other.

336 W. De Meuter et al.

def PromotedRecipes := AvailableIngredients.map: { |ingredient|
recipesContaining(ingredient) };

def RecommendedRecipes := union(PromotedRecipes);

def scoredRecipes(availableIngredients, recipes) {
def scoredRecipes := SortedSet.new(recipeComparator);
recipes.each: { |r| scoredRecipes.add(

recipeScore(r, availableIngredients)) } }

def SortedRecipes := scoredRecipes(AvailableIngredients,
RecommendedRecipes);

This code shows that we no longer have to deal with explicitly man-
aged inversion of control thanks to default lifting semantics for functions and
methods. The dependency graph is automatically constructed by the language
instead of having to be constructed manually by a network of event handlers.
Moreover, our code no longer suffers from superfluous updates in case of
multiple dependencies. This is guaranteed by the stratification technique that is
used to implement the language.

The initialisation of the GUI is omitted since it is identical to the non-reactive
one. Here is the reactive code that updates the GUI. The variables NumRecipes,
CappedOffset and VisibleRange all depend on reactive values and therefore
also contain reactive values. The operators and methods used on the right hand
side of the assignments are lifted by the language implementation. Because of
the stratification, premature updates are impossible: all values change in
the right order.

def NumRecipes := SortedRecipes.size();
def CappedOffset :=

min(offset,(((NumRecipes - 1) /- displaySize)) * displaySize)

def VisibleRange := SortedRecipes.range(
CappedOffset,
min(CappedOffset + displaySize, SortedRecipes.size()));

def updateRecipes(visibleRange) {
visibleRange.copyTo(visibleRecipes) };

updateRecipes(VisibleRange)

Finally, we show the code that takes care of enabling and disabling the but-
tons. The listing below shows the definition of a variable offset that is anno-
tated with the @Reactive annotation. This means that the variable itself (as
opposed to the value it may contain) is reactive. This allows us to assign values to
the variable and at the same time write reactive expressions that depend on the
changing state of such a reactive value. For example, the variable CappedOffset
is defined in terms of offset. If offset were a variable containing a reactive

Objects in Space 337

value itself, then we would have ended up with a circular dependency. That is
why offset is declared a reactive variable. Needless to say, we have to fill a
reactive value with an ordinary value. To this extent, we provide the snapshot:
primitive.

def @Reactive offset := 0;

gui.PreviousButton.setEnabled(CappedOffset != 0);
gui.NextButton.setEnabled(CappedOffset+displaySize < NumRecipes);

gui.PreviousButton.addActionListener(object: {
def actionPerformed(event) {

offset := (snapshot: CappedOffset) - displaySize } });

gui.NextButton.addActionListener(object: {
def actionPerformed(event) {

offset := (snapshot: CappedOffset) + displaySize } })

In contrast to the first version of the RFID-Chef, offset and CappedOffset

can be used as reactive entities on the right hand side of expressions. Hence, there
is no need to cover the lack of reactive variables with manual dependency
management (as was the case in our first version of the RFID-Chef).

4.4 Discussion

In this section, we have explained three experimental language extensions that
have been built on top of AmbientTalk. Together they implement the research
vision on MoREnAs that we summarized in figure 4. The integration of things
with ambient references is fairly well understood. We refer to Andoni Lombide
Carreton’s PhD for more details. The integration of these features with reactive
programming is less well understood and still a topic of ongoing research. In
our current implementation, reactive AmbientTalk uses “reactive sets” (as ex-
emplified by the RFID-Chef) in order to represent perpetually changing clouds
of things. An integration of reactive programming with ambient references is
future work.

5 Conclusion

5.1 Limitations and Future Work

A problem that we have not considered yet is security. We are currently looking
at using locking mechanisms for preventing eavesdropping and encryption of the
serialized data on RFID tags to secure that data. However, it must be noted that
the severity of these problems highly depends on the hardware and the setting
used. We are also looking into transaction mechanisms to prevent inconsistencies
that may arise when multiple devices concurrently access the same set of RFID
tags. To this end, we are investigating a leasing mechanism where an application

338 W. De Meuter et al.

would get the right to exclusively access a tag for a specific period of time, using
the tag’s first memory block to store the necessary lease information.

Another limitation is the limited amount of writable memory on passive RFID
tags. We have tested our implementation using RFID tags with up to 8 kbits
of writable memory. This means that we can only store very small serialized
objects on the tags. On the other hand, the technology is progressing and we
can expect the storage on passive tags to steadily increase while the costs drop.
This opens the door to use more standardized serialization formats as well, in
our middleware implementation we convert Java objects to the JSON format [2].

Finally, we make the underlying assumption that all devices in the network
attribute the same meaning to each type tag, i.e. we assume they define a com-
mon ontology to classify objects stored on RFID tags. This discovery mechanism
also does not take versioning into account explicitly. For example, if the interface
of objects of type Book from the example in section 4.1 is updated, older clients
may discover the updated book objects, and clients that want to use only the
updated interface may still discover older versions. Clients and services are thus
themselves responsible to check versioning constraints.

5.2 Contributions

In this paper, we presented a research agenda for novel programming language
support for mobile RFID-enabled applications, MoREnAs in short. We consider
MoREnAs as extreme cases of distributed applications that have to deal with a
dynamically changing set of communication partners. Hence, our starting point
was to start from a distributed programming paradigm that provides some initial
support, which needs to be extended to deal with vast volatile clouds of passive
RFID tags. We chose to extend the ambient-oriented programming paradigm, a
paradigm that is targeted to applications that run on dynamic mobile ad hoc net-
works and incorporates connection volatility into the heart of its computational
model. We shortly described AmbientTalk as the concrete ambient-oriented pro-
gramming language and research vehicle in which we are carrying out our ex-
periments. We extended AmbientTalk to deal with three concerns that are hard
to manage using a non-language approach (i.e. a middleware or a library) when
implementing MoREnAs.

First, we aim to represent RFID-tagged real world objects as true software
objects in an object-oriented system. It should be possible to seamlessly read
and write these software objects from/to the memory of passive RFID tags.
For this, we extended the prototype-based object model of AmbientTalk with a
new kind of objects, which we call things. These things perpetually keep their
internal state up to date when the RFID hardware reads out the memory of
their associated passive RFID tags. Similarly, when their state is changed by a
MoREnA, they autonomously attempt to store these changes onto the memory
of their associated tags. Things are integrated into the asynchronous, event-loop
based concurrency and distribution model of AmbientTalk.

Second, we propose to designate sets of tags that are related in a declarative
manner, to prevent having to write extremely error-prone looping code over

Objects in Space 339

volatile clouds of tags. We have applied ambient references as an object-oriented
abstraction to denote a set of perpetually fluctuating communication partners,
such as passive RFID tags containing things. Ambient references support various
messaging policies which are tailored to such volatile clouds of objects.

Third, the internal status of MoREnAs must be kept synchronized with its
external surrounding, which turns MoREnAs into highly event-driven applica-
tions. Using traditional event-driven techniques such as callbacks to react on
changes in the physical surrounding quickly becomes unmanageable when deal-
ing with large volatile clouds of RFID tags. To automate this synchronization
we introduced an orthogonal programming paradigm into AmbientTalk: reac-
tive programming. By combining reactive programming with AmbientTalk we
are able to declaratively specify sets of things that vary over time. New sets gen-
erated out of such reactive sets are automatically updated when the sets they
depend on change (for example because the set of RFID tags in range fluctu-
ates). Reactive sets are normal reactive values that cause dependent application
code to be re-executed when their contents change.

These three objectives drive our research to come up with better integrating
and more expressive novel language constructs. At the same time we try to carry
over much of these ideas in mainstream programming technology, at the expense
of conceptual purity, but with immediate usability as a bonus.

References

1. Bainomugisha, E., Carreton, A.L., Van Cutsem, T., Mostinckx, S., De Meuter, W.:
A survey on reactive programming. ACM Computing Surveys (2012) (to appear)

2. Lombide Carreton, A., Pinte, K., De Meuter, W.: MORENA: a middleware for
programming NFC-enabled Android applications as distributed object-oriented
programs. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS,
vol. 7662, pp. 61–80. Springer, Heidelberg (2012)

3. Chin, B., Adsul, B.: Responders: Language support for interactive applications. In:
Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 255–278. Springer, Heidel-
berg (2006)

4. Cooper, G.H., Adsul, B.: Embedding dynamic dataflow in a call-by-value language.
In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 294–308. Springer, Heidelberg
(2006)

5. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming. In: Companion to the 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, pp. 31–40. ACM, New York (2005)

6. Diekmann, T., Melski, A., Schumann, M.: Data-on-network vs. data-on-tag: Man-
aging data in complex rfid environments. In: Proceedings of the 40th Annual Hawaii
International Conference on System Sciences, HICSS 2007, p. 224a. IEEE Com-
puter Society, Washington, DC (2007)

7. Floerkemeier, C., Roduner, C., Lampe, M.: RFID application development with
the accada middleware platform. IEEE Systems Journal, Special Issue on RFID
Technology 1(2), 82–94 (2007)

340 W. De Meuter et al.

8. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

9. Kasten, O., Römer, K.: Beyond event handlers: programming wireless sensors with
attributed state machines. In: 4th Int. Symposium on Information Processing in
Sensor Networks, p. 7. IEEE Press, Piscataway (2005)

10. Kefalakis, N., Leontiadis, N., Soldatos, J., Gama, K., Donsez, D.: Supply chain
management and NFC picking demonstrations using the AspireRfid middleware
platform. In: ACM/IFIP/USENIX Middleware 2008, pp. 66–69. ACM, New York
(2008)

11. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. SIGPLAN
Not. 37, 85–95 (2002)

12. Lombide Carreton, A.: Ambient-Oriented Dataflow Programming for Mobile
RFID-Enabled Applications. PhD thesis, Vrije Universiteit Brussel, Faculty of Sci-
ences, Software Languages Lab (October 2011)

13. Maier, I., Rompf, T., Odersky, M.: Deprecating the Observer Pattern. Technical
report, École Polytechnique Fédérale de Lausanne (2010)

14. Melski, A., Thoroe, L., Caus, T., Schumann, M.: Beyond EPC - insights from
multiple RFID case studies on the storage of additional data on tag. In: Proceedings
of the International Conference on Wireless Algorithms, Systems and Applications,
WASA 2007, pp. 281–286. IEEE Computer Society, Washington, DC (2007)

15. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency among strangers: program-
ming in e as plan coordination. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 195–229. Springer, Heidelberg (2005)

16. Pais, S., Symonds, J.: Data storage on a RFID tag for a distributed system. Inter-
national Journal Of UbiComp (IJU) 2(2), 26–39 (2011)

17. Petitpierre, C., Eliens, A.: Active Objects Provide Robust Event-Driven Applica-
tions. In: The 2002 International Conference on Software Engineering Research
and Practice (SERP) (2002)

18. Software Languages Lab, Vrije Universiteit Brussel. AmbientTalk/2 tutorial,
http://soft.vub.ac.be/amop/at/tutorial/tutorial

19. Van Cutsem, T.: Ambient References: Object Designation in Mobile Ad Hoc Net-
works. PhD thesis, Vrije Universiteit Brussel, Faculty of Sciences, Software Lan-
guages Lab (May 2008)

20. Van Cutsem, T.: Why programming languages (2011),
http://soft.vub.ac.be/˜tvcutsem/invokedynamic/node/11

21. Van Cutsem, T., Mostinckx, S., Boix, E.G., Dedecker, J., De Meuter, W.: Ambi-
entTalk: Object-oriented event-driven programming in Mobile Ad Hoc Networks.
In: Proceedings of the XXVI International Conference of the Chilean Society of
Computer Science, SCCC 2007, pp. 3–12. IEEE Computer Society, Washington,
DC (2007)

http://soft.vub.ac.be/amop/at/tutorial/tutorial
http://soft.vub.ac.be/~tvcutsem/invokedynamic/node/11

Towards a Substrate Framework of Computation

Kazunori Ueda

Department of Computer Science and Engineering, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

ueda@ueda.info.waseda.ac.jp

Abstract. A grand challenge in computing is to establish a substrate
computational model that encompasses diverse forms of non-sequential
computation. This paper demonstrates how a hypergraph rewriting
framework nicely integrates various forms and ingredients of concurrent
computation and how simple static analyses help the understanding and
optimization of programs. Hypergraph rewriting treats processes and
messages in a unified manner, and treats message sending and parame-
ter passing as symmetric reaction between two entities. Specifically, we
show how fine-grained strong reduction of the λ-calculus can be con-
cisely encoded into hypergraph rewriting with a small set of primitive
operations.

1 Introduction

It is fifty years since Carl Adam Petri formalized Petri Nets in his PhD thesis.
Since then, we have seen a lot of proposals to capture and formalize the essence
of concurrency. Yet, the world of concurrency and concurrent programming is
not like its sequential counterpart where Turing machines and the λ-calculus are
the two established formalisms. This indicates two things: one is that the world
of concurrency has more aspects to address than the sequential world, and the
other is that we don’t understand concurrency in sufficient depth yet.

The author’s research career started with the design of a concurrent program-
ming model, where he reengineered the nuts and bolts of logic programming
(such as first-order terms and unification) to have a simple model of commu-
nication and synchronization as an improvement over previous attempts [16].
In the resulting model, Guarded Horn Clauses (GHC), processes work on data
structures equipped with logical (single-assignment) variables. Processes com-
municate by instantiating logical variables by unification and observing their
values by matching (one-way unification). The dataflow synchronization mech-
anism provided by one-way unification was widely recognized as the highlight
of concurrent logic programming. However, another key highlight of concurrent
logic programming is that first-order terms with logical variables were expres-
sive enough to represent sequences of messages with reply boxes (necessary to
encode Concurrent Objects) and channel mobility (exactly in the sense of the
π-calculus). This is in sharp contrast with many other concurrency formalisms
in which communication is heavily studied but data structures are not treated
as primary issues.

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 341–366, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

342 K. Ueda

It is worth mentioning that the development of the concurrent logic pro-
gramming paradigm and Guarded Horn Clauses proceeded in parallel with the
development of Concurrent Objects in early 1980’s, partly stimulated by each
other. Both shared the high level goal of establishing a concise model of message-
passing concurrency but with somewhat different focuses: Concurrent Objects
were designed at a higher level of abstraction, that is, in terms of objects and
messages, while concurrent logic programming languages were designed as a sub-
strate model consisting of a smallest possible set of primitive constructs and still
allows the encoding of Concurrent Objects and operations on them [17].

In spite of the nice properties and the expressive power of Guarded Horn
Clauses, it was felt that we could treat processes and data in a more unified man-
ner. Communicating fine-grained processes may form process structures (such as
lists or grids of processes) that act as autonomous, concurrent data structures,
but process structures and ordinary data structures had to be handled very
differently.

With this motivation, the author designed LMNtal a decade ago as his sec-
ond model of concurrent programming based on a small class of graph rewriting,
where nodes represent processes or data and edges represent one-to-one channels
or links. In fact, nodes are nothing more than atomic logical formulas and edges
are nothing more than zero-assignment logical variables (i.e., variables that will
never get concrete values). First-order terms, which are trees with constructors
and variables, are represented using relations by employing one (n + 1)-ary re-
lation for each n-ary constructor.

It turned out that LMNtal was almost backward compatible with concurrent
logic languages. LMNtal also allowed interpretation as a linear logic program-
ming language [23]. Nevertheless, the real challenge of LMNtal was to have a
formalism that could be understood without deep technical knowledge in com-
puter science (such as logic and categories). The adoption of graphs, a widespread
mathematical notion, as the basic structure is motivated exactly by this goal.
The versatility of the graph data structure became evident when our publicly
available LMNtal implementation was tailored into a model checker that used
LMNtal as a modeling language for state transition systems in general [25].

The present paper is concerned with our next step of language evolution.
We have already incorporated hyperlinks (links interconnecting multiple points)
in addition to one-to-one links so that it may better cover a broader range of
computational models. The resulting language, HyperLMNtal [26], has much in
common with Bigraphical Reactive Systems [14], and its versatility and viability
seem to be worth exploring in depth to establish it as a substrate model of
computation.

The rest of the paper is organized as follows. Section 2 briefly describes
LMNtal with some examples. Section 3 describes how LMNtal evolved to Hyper-
LMNtal. Section 4 discusses static analysis techniques that reveal two important
properties of programs, capabilities of links and multiplicities of nodes. As one
of the most challenging case studies, Section 5 presents a fine-grained encoding

Towards a Substrate Framework of Computation 343

[]

6

.

7

.

8

.

9

. []

1

.

2

.

3

.

5

.

4

.append

courses
PL

.

ueda

k

+

name

HPC

Fig. 1. LMNtal graphs: A tree-shaped graph with one free link (left) and a hierarchical
graph with two membranes (right). An arrowhead indicates the first argument and the
ordering of links.

of the full reduction of the lambda calculus into HyperLMNtal and how the type
system of Section 4 gives further computational structures to the encoding.

2 LMNtal: A Model and Language Based on Graph
Rewriting

This section reviews LMNtal briefly. Technical details and relation to other for-
malisms can be found in [23].

LMNtal embodies the view that computation is manipulation of graphs, which
in our setting consist of (i) atoms, (ii) links for one-to-one connectivity, and (iii)
membranes that can enclose atoms and other membranes and can be crossed
by links. Connectivity and hierarchy are the two major basic structuring mech-
anisms in both real worlds and cyberworlds including computing, society, bio-
logical systems and body of knowledge. The purpose of LMNtal is to provide a
concise programming and modeling language that allows us to represent the two
mechanisms simultaneously and manipulate them in a direct manner. Figure 1
shows some graphs that can be manipulated by LMNtal.

The choice of links and membranes as structuring mechanisms allows pro-
gramming with sets and graphs. Although sets and graphs are less common
than arrays, records and pointers as programming language constructs, they are
more standard and commonly used in the rest of the world and in mathematics
in particular. As a formalism of concurrency, an important feature of LMNtal
is that it provides a well-defined notion of atomic actions: graph rewriting by a
single rule application is always done atomically.

2.1 Basic Syntax

The syntax of LMNtal is defined as in Fig. 2, where the syntactic constructs not
used in this paper are omitted for simplicity.

The two syntactic categories, link names (denoted by Xi) and atom names
(denoted by p) are presupposed. Processes are the principal syntactic category
and consist of hierarchical graphs and rewrite rules. In the concrete syntax,

344 K. Ueda

capitalized names represent links, while other names (e.g., those starting with
lowercase letters, numbers, and non-alphanumeric symbols) represent atoms.

A process P must observe the following link condition: Each link name in P
(excluding link names occurring in rules) may occur at most twice. A link whose
name occurs exactly once (twice) in P is called a free link (local link) of P ,
respectively. The T ’s are process templates that are used in rewrite rules and
handle local contexts, namely contexts within particular membranes.

(Process) P ::= 0 | p(X1, . . . , Xm) | P, P | {P} | T :- T

(Process template) T ::= 0 | p(X1, . . . , Xm) | T, T | {T} | T :- T | @p | $p

Fig. 2. Syntax of LMNtal

0 stands for an inert process (represented as an empty symbol in the concrete
syntax), p(X1, . . . , Xm) stands for an atom with m links, and P, P stands for
parallel composition called a molecule. Note that links of an atom are totally
ordered and that multiple links between atoms are allowed as well as links con-
necting the same atom. {P} is called a cell and stands for a process enclosed by
a membrane { }. T :- T stands for a rewrite rule, which is applied to processes
located at the same place of the hierarchy formed by membranes. The two T ’s
are called the head and the body of the rule, respectively. A rewrite rule is sub-
ject to several syntactic conditions [23]. Most notably, a link name occurring in
a rule must occur exactly twice in the rule.

The reserved atom name, =, is called a connector. The process X =Y short-
circuits the link X and the link Y . A rule context, denoted by @p, matches the
(possibly empty) multiset of all rules within a membrane, while a process context,
denoted by $p, is to match all processes other than rules within a membrane.

2.2 Operational Semantics

The operational semantics of LMNtal (Fig. 3) consists of structural congruence
defined by (E1)–(E10) and the reduction relation defined by (R1)–(R6). (E4)
stands for α-conversion. (E9)–(E10) are the interaction rules between atoms/cells
and connectors.

Computation proceeds by rewriting processes using rules collocated in the
same place of the nested membrane structure. (R1)–(R3) are standard structural
rules, while (R4)–(R5) are the mobility rules of =. The central rule of LMNtal is
(R6), in which θ is to map process contexts into actual processes. For programs
that do not use membranes, (R6) degenerates to a simpler form: T,(T :- U) −→
U,(T :- U).

2.3 Extended Syntax and Examples

A rule may be prefixed by a rule name and two @’s.

Towards a Substrate Framework of Computation 345

(E1) 0,P ≡ P (E2) P,Q ≡ Q,P (E3) P,(Q,R) ≡ (P,Q),R

(E4) P ≡ P [Y/X] if X is a local link of P

(E5) P ≡ P ′ ⇒ P,Q ≡ P ′,Q (E6) P ≡ P ′ ⇒ {P} ≡ {P ′}

(E7) X =X ≡ 0 (E8) X =Y ≡ Y =X

(E9) X =Y , P ≡ P [Y/X] if P is an atom and X occurs free in P

(E10) {X =Y , P} ≡ X =Y , {P} if exactly one of X and Y occurs free in P

(R1)
P −→ P ′

P,Q −→ P ′,Q
(R2)

P −→ P ′

{P} −→ {P ′}
(R3)

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) {X =Y ,P} −→ X =Y , {P} if X and Y occur free in {X =Y ,P}

(R5) X =Y , {P} −→ {X =Y ,P} if X and Y occur free in P

(R6) Tθ,(T :- U) −→ Uθ,(T :- U)

Fig. 3. Structural congruence and reduction relation of LMNtal

[] =

Y

Z X0

Y

Z
append . .

A A

Z0 Z0

Y Y

X0 ZX X
append append

Fig. 4. Reaction rules for append

An abbreviation called a term notation allows an atom b without its final
argument to occur as the kth argument of a, to mean that the kth argument of
a and the final argument of b are interconnected. For instance, f(a) is the same
as f(A),a(A). This can be written also as f=a because f(A),a(A) is congruent
(i.e., convertible in zero steps) to f(A),A=A1,a(A1) (by (E9) of Fig. 3), to which
we can apply the abbreviation twice to obtain f=a. A list with the elements Ai’s
can be written as X = [A1, . . . ,An], where X is the link to the list.

Example 1. Two lists can be concatenated using the following two rules:

append(X0,Y,Z), ’[]’(X0) :- Y=Z.

append(X0,Y,Z0), ’.’(A,X,X0) :- ’.’(A,Z,Z0), append(X,Y,Z).

This form makes it explicit that there is no distinction between predicate symbols
and constructors, but we can write it also in a more familiar, Prolog-style form:

append([],Y,Z) :- Y=Z.

append([A|X],Y,Z0) :- Z0=[A|Z], append(X,Y,Z).

Figure 4 shows a diagrammatic representation of the two rules, where the arrow-
heads indicate the first arguments of atoms and the ordering of arguments. ��

Some atoms such as ‘+’ are written as unary or binary operators. Parallel
composition (e.g., P1, P2, . . . , Pn) can be written also in a period-terminated
form (e.g., P1. P2. . . . Pn.).

346 K. Ueda

Example 2. The dining philosopher problem can be represented as a circular
graph with philosophers and forks:

phi(L1,R1), fork(+R1,+L2), phi(L2,R2), fork(+R2,+L3),

phi(L3,R3), fork(+R3,+L4), phi(L4,R4), fork(+R4,+L5),

phi(L5,R5), fork(+R5,+L1).

fork(+X,+L), phi(L,R) :- fork(-X,+L), phi(L,R). % grab left fork

fork(-X,+L), phi(L,R), fork(+R,+Y) :-

fork(-X,+L), phi(L,R), fork(+R,-Y). % grab right fork

fork(-X,+L), phi(L,R), fork(+R,-Y) :-

fork(+X,+L), phi(L,R), fork(+R,+Y). % release forks

Each link represents a philosopher’s access to a fork, and the atoms ‘+’ and
‘-’ indicate the availability of the fork. The LMNtal model checker constructs
and visualizes the state space of the model, where the state space construction
algorithm takes advantage of the symmetry of the circular graph to avoid state
space explosion. ��
Example 3. One of the uses of membranes is to encapsulate rules and delimit
their scope of effect. Suppose we have the following rule:

{module(m),@m}, {use(m),$p,@p} :- {module(m),@m}, {$p,@p,@m}

The first cell stands for a rule set repository with a module name, while the
second cell stands for a “test tube” that requires the rules in the module m. This
rule causes a new copy of @m, which is the content of the module m, to be loaded
to other cells containing use(m). ��

The rest of this subsection is about how to specify operations on primitive
datatypes.

We note that numbers in LMNtal are unary atoms such as 8(X), where X is
connected to the atom referring to the number. To specify operations on primi-
tive types such as integers, the two constructs, typed process contexts and guards,
are introduced. While the process matched by an ordinary process context is de-
termined by the membrane it belongs to (i.e., hierarchy), the process matched by
a typed process context is determined by the graph structure (i.e., connectivity)
and the atom name inside the structure. For instance, the guarded rule

p(X), $n[X] :- int($n), $n>0 | p(Y), $n[Y], p(Z), $n[Z].

means that, when a unary atom p is connected to a positive integer, that two-
atom molecule will be duplicated. The guard constraint int($n) requests that
$n[X] is a typed process context (with one free link) representing an integer
atom, and the constraint $n>0 requests that the value of the integer is positive.

Available type constraints other than int include unary (standing for unary
atoms) and ground (standing for non-hierarchical connected graphs with exactly
one free link). Note that int is regarded as a subtype of unary which in turn is
a subtype of ground. A rule containing typed process contexts can be viewed as
a rule scheme that represents a set of rules without guards.

Towards a Substrate Framework of Computation 347

3 Incorporating Hyperlinks

The design decision of LMNtal to feature one-to-one links rather than hyper-
links came from the observation that multi-point connectivity could be encoded
using membranes. However, membranes are a general construct that can be used
to enclose processes and rules for localized reactions and are somewhat heavy-
weight for representing just multi-point connectivity or multisets. Also, pro-
gram variables in most computational models and languages represent possibly
shared data, and efficient and succinct encoding of those program variables is of
practical importance. This motivated us to incorporate hyperlinks into LMNtal.
The main driving force was to build an efficient encoding of Constraint Han-
dling Rules (CHR) [6], a constraint programming language syntactically close to
LMNtal.

The first step towards HyperLMNtal was the design of the hyperlink con-
struct. Since the design and implementation of LMNtal was quite stable, it was
considered ideal if the extension could be made smoothly without changing the
basic framework of the language and its implementation or affecting the perfor-
mance of existing applications. The two design choices we have made are the
following:

– Distinguish between links and hyperlinks. Although hyperlinks could be re-
garded as subsuming links, we maintain the distinction between them. Each
link connection has exactly one partner, and this property is not only a fun-
damental program invariant but also utilized by the implementation of links
in many ways, including the access to partners and the garbage-collection of
partners.

– Treat hyperlinks as atoms with local names. Having decided that hyperlinks
are a syntactic category different from links, we must decide whether to
incorporate something totally new or something close to an existing category.
We already observed that links are local names shared by exactly two atoms
[23], and this suggests that hyperlinks should be treated as local names
shared by any number of atoms. This can be realized by providing a construct
to create a unary atom with a fresh local name, because unlike link names,
unary atoms can be copied and discarded in our extended syntax.

Now we describe the constructs provided for hyperlink manipulation. A fresh
local name can be created by a new guard construct as:

H :- new($x) | B

where the hyperlink name $x can be used in B. The scope of x (i.e., the set of
atoms that can access x) is B initially, but it may extend to other atoms in the
course of graph rewriting, as is the case with local names of the π-calculus.

To check if an argument of an atom is a hyperlink, we write:

H :- hlink($x) | B

348 K. Ueda

where $x occurs in H . Because hlink is a subtype of unary, the equality and
inequality of hyperlinks can be checked using guard constraints ‘==’ and ‘\==’.

Motivated by Linear Logic, we allow hyperlinks to be written in the form !X (X
capital), in which case either of the guard constraints hlink and new is implicitly
provided, depending on whether the hyperlink occurs in the head or not.

The most characteristic operation is the fusion of two hyperlinks,

H :- . . . | !X >< !Y, B.

which is a hyperlink version of the connector ‘=’ and interconnects two hyperlinks
by fusing two hyperlink names. In the abstract syntax, >< will be denoted as �.

Another characteristic operation is to obtain or check the cardinality (i.e.,
number of endpoints) of a hyperlink:

H :- num(!X,$n) | B

where !X occurs in H and $n is bound to the current cardinality of !X.
The shorthand notation illustrated below allows a hyperlink to occur more

than once in the head of a rule to represent sharing:

Example 4

a(!X), b(!X), c(!X) :- .

is the same as

a($x), b($x0), c($x1) :-

hlink($x), hlink($x0), hlink($x1),

$x==$x0, $x==$x1 | .

This rule removes three unary atoms a, b, c if they share the same hyperlink, in
which event the cardinality of that hyperlink is reduced by three. ��

4 Analyzing HyperLMNtal Programs

Since graphs are highly general data structures, programming with graphs will
greatly benefit from tools and techniques for analyzing and understanding the
properties and the behavior of programs.

With this motivation, we have developed a model checker for LMNtal and its
integrated development environment (IDE)[25] and found them extremely useful
for analyzing the state space of nondeterministic concurrent systems. The model
checker can presently handle systems with a half billion states with various
optimization techniques and shared-memory parallel processing. The LMNtal
model checker was later extended to handle hypergraphs.

HyperLMNtal as a programming language requires no declarations of any
kind (variables, types, procedures, etc.), and could be positioned as a scripting
language for model checking in the sense that it allows concise description and
quick development of small- to medium-scale models. To analyze hypergraph
rewriting, however, static analysis will also play an important rôle because we
are far less familiar with computing with hypergraphs than computing with lists

Towards a Substrate Framework of Computation 349

and trees. It will also identify important subclasses of programs that are more
legitimate or likely to be correct than others.

With this in mind, we describe two static analysis techniques that address
aspects of program properties in a clear way. Our goal here is not to analyze
programs as precisely as possible; rather, we are concerned with extracting sim-
ple properties by abstracting others. Chemistry suggests that the fundamental
properties of graphs are those about (chemical) atoms and those about bonds,
and we follow this metaphor. For the sake of simplicity, henceforth we focus on
Flat HyperLMNtal, a fragment of HyperLMNtal without membranes, and call
Flat HyperLMNtal simply as HyperLMNtal.

4.1 Assigning Polarities and Capabilities to Links and Hyperlinks

Let a port, denoted by 〈a, i〉, stand for the ith argument of an atom a, which
is an endpoint of a link or a hyperlink. Firstly, we are interested in which port
of an atom may be connected to which port of the same or another atom. This
information will lead to a type system that deals with graph structures based on
a local view. Although the connectivity information alone may not capture the
global shape of data (e.g., whether a grid forms a square or a rectangle; whether
a list is terminated by a nil or not), it addresses local properties of structures
with sharing (i.e., more than one path leading to a single atom) and cycles.

Secondly, we may be interested in the rôle of each port. Informally, by a rôle
we mean the polarity or capability of a port, where a polarity stands for the
direction of access (i.e., whether the port is used for sending data or receiving
data), information flow, or ownership (i.e., whether the port of an atom is used
to access data it owns or is used to be accessed by its owner), while a capability
additionally stands for whether the port of a hyperlink has exclusive access to
the partner(s) or shares them with others. We focus on this second aspect of
ports, namely their polarities and capabilities.

Technically, we choose to represent the capability of a port using a real number
between −1 and +1 inclusive. The capability value +1 means that the port
stands for an exclusive, full ownership of (or exclusive reference to) the partner
atom(s), while a value 0 < c < 1 stands for a non-exclusive, partial ownership
(or shared reference). The value −1 stands for a sole source or access point of
data available to the partner(s). A hyperlink with a −1 port and several positive
fractional ports is a directed hyperarc of a specific kind called a backward hyperarc
[7] (Fig. 5), and can be represented by a family of pointers pointing to the atom
with the −1 port. A value −1 < c < 0 represents a partial source and appears
when a partial ownership is returned through that port. The value 0 stands for
an inactive port not connected to anywhere else.

This notion of capability inherits the author’s capability type system designed
for a class of Flat GHC programs [21], except that the system described in
the present paper simplifies the original one thanks to the unified treatment of
processes and data and by focusing on individual (hyper)links. The use of frac-
tions in type systems later appeared in [3] and subsequent papers with different
settings. Our type system is unique in that it uses negative as well as positive

350 K. Ueda

α1

−1
α2

α3 (α
i
> 0, Σα

i
+1= 0)

Fig. 5. A backward hyperarc with three owners

fractions, enjoying symmetry around zero. Historical account of fractional type
systems can be found in [19].

The capability type system for (Flat) HyperLMNtal consists of the constraints
given in Fig. 6, where a capability type c is formulated as a function from the set
of ports to the closed interval [−1,+1]. To be useful, our type system is neces-
sarily polymorphic because capabilities are very often split and passed to atoms
with the same name, that is, they keep decreasing in the course of recursion.
The polymorphism is realized by suffixing each atom in a rule l :- r1, ..., rn as
ls :- r1,s.1, ..., rn,s.n, where a suffix s is a sequence of indexes, and s.i means
appending an index i to s. Atoms with the same name and different suffixes are
subject to the same constraints but may adopt different solutions.

The first constraint, (Conn), represents the relationship between the ports of
a connector and a fuser.

The key advantage of our formulation is that the central type constraint on
a (hyper)link is exactly Kirchhoff’s current law (KCL), i.e., the capabilities of
the endpoints of a (hyper)link sum up to 0.

Constraint (Coop) states that

– if a left-hand side occurrence of L has a positive capability, all the left-hand-
side occurrences must have positive capabilities and jointly act as the source
of data in the rule, and

– otherwise exactly one of L’s occurrences in the right-hand side must have a
negative capability and act as a single source of data.

In other words, it states that that a hyperlink L represents a backward hyperarc
(if k = 0) or transforms a backward hyperarc into another backward hyperarc
(if k ≥ 1) by using the rule. Note that the capability of a hyperlink occurrence
on the left-hand side of a rule must be negated because the left-hand side acts
as a template of rewriting. This constraint states also that the capability of
a hyperlink port should be nonzero. The non-zero condition is to disallow the
“silent” participation to and withdrawal from a hyperlink.

Constraint (Link) states that the capability of a link should be either 1 or −1
(i.e., non-fractional). We could allow a singleton hyperlink with a zero capability
as was done in [21], but will not discuss it here.

Although we have installed the suffix system to allow polymorphism, Occam’s
razor tells us that type inference as an explanation of program properties should

– prefer maximally general solutions to those with unnecessary constraints and

Towards a Substrate Framework of Computation 351

(Conn) If (X1 =s X2) ∈ Q then c(〈 =s, 1〉) + c(〈 =s, 2〉) = 0;
If (X1 ��s X2) ∈ Q then c(〈 ��s, 1〉) + c(〈 ��s, 2〉) = 0

Let a link or a hyperlink L occur n (≥ 1) times in P and Q at p1, . . . , pn, of which the
occurrences in P are at p1, . . . , pk (k ≥ 0). Then

(KCL) −c(p1)− · · · − c(pk) + c(pk+1) + · · ·+ c(pn) = 0 (Kirchhoff’s Current Law)

(Coop) If k = 0 then R({c(p1), . . . , c(pn)}
)
;

If k ≥ 1 then R({−c(p1), c(pk+1), . . . , c(pn)}
)
;

where R is a ‘cooperativeness’ relation:

R(S)
def
= ∃s ∈ S

(
s < 0 ∧ ∀s′ ∈ S \ {s} (s′ > 0

))

(Link) If L is a link then c(pk) ∈ {−1, 1} for 1 ≤ k ≤ n (= 2)

Fig. 6. Capability constraints imposed by a rule P :- Q

– prefer least polymorphic (i.e., most uniform) solutions to those that give
different types to each instance of atoms with the same name.

As an example, we first consider polarizing append (Sect. 2.3) in a monomor-
phic setting.

Example 5. The constraints imposed by (KCL) and (Conn) on append in a
monomorphic setting are as follows:

c(〈append, 1〉) + c(〈[], 1〉) = 0 by X0

c(〈append, 3〉) + c(〈append, 2〉) = 0 by =

c(〈append, 1〉) + c(〈., 3〉) = 0 by X0

c(〈append, 3〉) = c(〈., 3〉) by Z0

c(〈., 2〉) = c(〈append, 1〉) by X

c(〈., 2〉) + c(〈append, 3〉) = 0 by Z

This is satisfiable with the following solution satisfying (Coop) and (Link) also:

c(〈append, 1〉) = 1, c(〈append, 2〉) = 1, c(〈append, 3〉) = −1,
c(〈[], 1〉) = −1,
c(〈., 2〉) = 1, and c(〈., 3〉) = −1, (no constraints on c(〈., 1〉)

which intuitively means an append reads its first and the second arguments and
writes to the third argument. However, this is not the only satisfying assignment,
and another solution is:

c(〈append, 1〉) = −1, c(〈append, 2〉) = −1, c(〈append, 3〉) = 1,
c(〈[], 1〉) = 1,
c(〈., 2〉) = −1, and c(〈., 3〉) = 1, (no constraints on c(〈., 1〉).

The latter solution makes practical sense. A ‘.’ here can be thought of an ac-
tive message that activates append which generates another ‘.’ that may act

352 K. Ueda

on the subsequent procedure connected to the third argument of append. This
message-oriented scheduling policy was studied and implemented in the logic
programming context [20], but our framework which does not distinguish be-
tween predicate symbols and constructors provides more uniform treatment of
different reduction strategies. ��

A setD of atoms is said to dominate the left-hand side of a rule if all the atoms
in the left-hand side can be reached (by following directed (hyper)links) from the
atoms in D. In the case of the above example, the atom append dominates the
left-hand sides in the first solution, while ‘.’ and [] dominate the left-hand sides
in the second solution. One may wish to interpret dominators as procedures and
non-dominators as data.

An example involving hyperlinks will be described in Section 5.6.
The capability type system turns hypergraphs into directed hypergraphs and

allows them to be represented using one-way pointers. The type system thus pro-
vides key information for compiler optimizations even when undirected links are
a more natural tool for modeling purposes (e.g., when directed links break sym-
metry). It will also help deeper understanding of graph structures and
debugging.

We have confirmed that most simple LMNtal programs allow uniform polar-
ization that gives the same polarity vector to atoms with the same name. We
have found exceptions as well:

Example 6. A program constructing a fullerene (C60) structure does allow po-
larization but needs two different polarity vectors for c:

dome(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9) :-

p(T0,T1,T2,T3,T4), p(L0,L1,H0,T0,H4), p(L2,L3,H1,T1,H0),

p(L4,L5,H2,T2,H1), p(L6,L7,H3,T3,H2), p(L8,L9,H4,T4,H3).

dome(E0,E1,E2,E3,E4,E5,E6,E7,E8,E9), /* top half */

dome(E0,E9,E8,E7,E6,E5,E4,E3,E2,E1). /* bottom half */

/* icosahedron -> fullerene */

p(L0,L1,L2,L3,L4) :- X=c(L0,c(L1,c(L2,c(L3,c(L4,X))))).

It is easy to see that there is no uniform (monomorphic) solution because exactly
half of the 180 ports provided by the 60 ternary carbon atoms must be positive,
namely 1.5 ports per atom. ��

Thanks to the algebraic formulation, it is rather straightforward to prove the
subject reduction property:

Theorem (subject reduction). If a program P : c and P −→ Q then Q : c.

4.2 Composition Analysis

Many programs that handle data structures enjoy beautiful invariants with re-
spect to the size of data. The append program is a typical example, where the

Towards a Substrate Framework of Computation 353

Fig. 7. Size space of the dining philosopher program

recursive rule just changes connectivity and preserves all the atoms, while the
base case rule loses two atoms, append and []. The possibly non-terminating
dining philosopher program preserves the total number of atoms, while the com-
position of the ‘+’s and the ‘-’s keeps changing. This suggests that composition
analysis (exactly in the sense of chemistry) could be a useful tool to analyze
properties about the number of atoms.

Remarkably, properties about the increase and decrease of atoms in state
transition systems have been studied in depth in the field of Petri Nets [1].
Boundedness of the number of tokens at each place is a fundamental property
of Petri Nets and is analyzed by forming a reachability graph of possible mark-
ings. The possible markings of unbounded Petri Nets can be represented using
coverability graphs, which over-approximates possible markings of unbounded
Petri Nets using the ordinal number ω, and much work has been done on the
algorithms for constructing coverability graphs [5][15].

Now notice that place/transition nets, the most basic form of Petri Nets, are
exactly multiset rewriting systems; they are different representations of the same
thing. Note also that graph rewriting degenerates to multiset rewriting simply
by forgetting about links. Thus, it is almost trivial to have a multiset rewriting
system corresponding to a given LMNtal program and analyze its state space
that captures just the composition of atoms.

Example 7. Figure 7 shows the state space of the dining philosopher program
with respect to the number of atoms, which was visualized by our LMNtal IDE.
The multiplicities of atoms are indicated by suffixes as in chemical formulae. The
shape clearly indicates that the number of available forks is reduced one by one,
possibly leading to deadlock, while it may be increased by two at a time. ��

Example 8. Let us consider append again. The polarization of links establishes
an interpretation of the initial graph such as

X = append([1,3,5,7,9],[11,13,15])

as a binary tree. Composition analysis tells that, upon termination, there will
be a single list consisting of the initial elements. Now notice that the preorder
traversal of the above tree, modulo append and [], visits the list elements in in-
creasing order, and the second rule of append is exactly a tree rotation operation
that does not affect preorder traversal (modulo append and []).

354 K. Ueda

The same line of argument applies to establish the associativity of append:

X = append(append([1,3,5],[7,9]),[11,13,15])

X = append([1,3,5],append([7,9],[11,13,15]))

Each of the above graphs is obtained by rotating the two append atoms at the
top of the other graph, which preserves preorder traversal modulo append and
[]. ��

5 Encoding the Pure Lambda Calculus into
HyperLMNtal

Substitutions is the éminence grise of the λ-calculus.
—Abadi et al. (1991) [2]

The usual implementation of functional programming languages based on
a weak evaluation paradigm (no reduction inside a lambda), betray the

very spirit, i.e., the higher-order nature, of lambda-calculus.
—Asperti (1998)

One of the most significant challenges in the (Hyper)LMNtal project has been to
have a concise encoding of the λ-calculus. This may sound surprising, but it was
a real challenge because HyperLMNtal’s connection to the λ-calculus was far
less obvious than to concurrency calculi such as the π-calculus and the ambient
calculus [27]. The encoding of the λ-calculus is significant because the λ-calculus
and λ-terms play fundamental rôles not only in functional languages but in the
treatment of variable binding, scoping, and substitutions that appear in various
formalisms.

The core of the λ-calculus is β-reduction, (λx.M)N → M [x �→ N], but the
definition of substitutions used here is far from simple and provoked various
alternative formulations. In particular, “to replace all the free occurrences of x
by copies of N” does not necessarily reflect actual implementation, which may
share the representation ofN whenever possible but must sometimes make copies
of N (e.g., when applying another λ-term to N).

One of the formalisms aiming at the precise representation of the λ-calculus is
the λσ-calculus [2], which provides two syntactic categories, λ-terms and explicit
substitutions, and gives rewrite rules to both.

Another approach to formalizing the λ-calculus is to adopt graph represen-
tation of λ-terms; a bound variable can most naturally be represented as an
edge (or a hyperedge) that connects the defining and applied occurrences of the
same variable. Most previous work in this approach adopted Interaction Nets
[8] to represent and manipulate graphs ([9][11][12], to name a few). Many of
the encodings of the λ-calculus into Interaction Nets pursued optimal sharing
or efficiency, and resulted in more or less involved representation of λ-terms to
achieve the objective. One notable exception is the encoding by Sinot [18], which
addressed the simplicity of the encoding, but it focused on the weak λ-calculus
that did not evaluate the body of λ-abstractions. Indeed, as KCLE [12] suggests,

Towards a Substrate Framework of Computation 355

encoding of the pure calculus can be much less concise (in terms of the number
of rules involved) than the encoding of the weak calculus. Weak λ-calculi may
be appropriate for the foundations of functional languages, but the applications
of the λ-calculus as a whole call for strong (or pure) λ-calculi as well.

This raises one question: Is there any concise graph-based encoding of the
pure λ-calculus? With Interaction Nets, YALE [11] proposes a relatively simple
solution but still needed to simulate “boxes” for scope management. So the
next question is: To obtain a more concise encoding (appropriate, say, for an
undergraduate text), what additional constructs should be included to the graph
rewriting framework?

A concrete answer to these questions was given using LMNtal by presenting a
fine-grained and highly nondeterministic encoding of the pure λ-calculus (with
open terms) and discussing its properties [24]. Although the membrane construct
of LMNtal provides powerful functionalities such as the copying of the graph
enclosed by a membrane, the encoding used membranes only to represent and
manipulate fresh local names, called colors, so that each rewrite step could be
executed in (almost) constant amortized time. Thus the encoding was essentially
not specific to LMNtal, and the evolution of LMNtal to HyperLMNtal gives us
another chance of bringing insights on what constructs are most basic for concise
encoding. The purpose of this section is to describe our encoding of the pure λ-
calculus into typed HyperLMNtal whose hyperlink manipulation is significantly
more restricted than that of untyped HyperLMNtal. Since each of the proposed
rewrite rules is simple and well-motivated, the proposed method is expected to
serve not only as an encoding but as a fine-grained reformulation of the pure
λ-calculus.

5.1 Representing λ-terms in HyperLMNtal

Now we describe our encoding of the λ-calculus into (Flat) HyperLMNtal. Our
starting point was the encoding into Interaction Nets. Interaction Nets is a
non-hierarchical graph rewriting formalism with strong syntactic conditions, and
HyperLMNtal can be considered as a model and a language that extends Inter-
action Nets by alleviating their syntactic conditions and introducing hyperlinks.
Of various encodings into Interaction Nets, Sinot’s encoding [18] is one of the
simplest in the sense that it dispenses with the explicit management of free
variables in each λ-abstraction. However, the method is to compute weak head
normal forms (terms of the form xM0 . . .Mn (n ≥ 0) or λx.M , where M and
Mi are not necessarily in normal form) and the computation is serialized using
a control token navigating over the λ-graph. Our goal, in contrast, is to encode
the basic reduction semantics of the pure λ-calculus, preserving and manifesting
nondeterminism inherent in the formalism.

5.2 Representing λ-terms

First of all, we define the encoding from a λ-term L into an LMNtal process. The
result must have exactly one free link (say R), which is connected to the atom

356 K. Ueda

referring to L. So the translation function T receives as arguments the λ-term
L and the free link name R.

– When L is a variable x, it is represented as a unary atom with the name x
connected to R via a binary atom fv indicating a free variable:

T (x,R)
def
= fv(x,R) (= R = fv(x)).

– When L is a λ-abstraction λx.M , let k (≥ 0) be the number of free oc-
currences of x in M , and Tx(M, [R1, . . . , Rk], R) be a process obtained from
T (M,R) by removing all unary atoms x and their tags fv and changing them
into free links R1, . . . , Rk. (For example, Tx(x, [R1], R) = R =R1.) Then

T (λx.M,R)
def
= lambda(R0, R

′, R), Tx(M, [R1, . . . , Rk], R
′),

connect[R0, R1, . . . , Rk] ,

where connect[R0, R1, . . . , Rk] is a process with free links R0, R1, . . . , Rk

defined as follows:

connect[R0]
def
= rm(R0)

connect[R0, R1]
def
= R0 =R1

connect[R0, R1, . . . , Rn]
def
= cp(R1, R

′
0, R0), connect[R′

0, R2, . . . , Rn] (n ≥ 2).

– When L is an application MN :

T (MN,R)
def
= apply(R1, R2, R), T (M,R1), T (N,R2) .

Bound variables are encoded into LMNtal links, but because of the Link
Condition of LMNtal, bound variables not occurring exactly twice requires the
branching or termination of links. We employ a unary atom rm (remove) to ter-
minate unused bound variables and a ternary atom cp (copy) to bifurcate links.
The encoding of a bound variable with more than two occurrences forms a tree of
cp’s, but the form of the tree does not count for our encoding and its properties.
For example, a combinator I = λx.x is represented as

lambda(X,X,Result) (= Result= lambda(X,X))

where Result is the free link name representing the result. The Church encodings
of natural numbers, λfx.fnx (n ≥ 0), can be represented as

0: lambda(rm,lambda(X,X),Result)
1: lambda(F,lambda(X,apply(F,X)),Result)
2: lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X))),Result)

and so on.

Towards a Substrate Framework of Computation 357

λ

λrm

λ

λ

@

λ

λ

@

@

cp

λ

@

@

cp

λ

cp

@

Fig. 8. Graph representation of the Church numerals 0, 1, 2, 3, where ‘@’ stands for
apply

5.3 Reaction Rules with Color Management

Figure 9 shows a complete set of rules that encodes the pure λ-calculus using our
λ-term representation, in which cpc stands for a complement of cp and hereafter
denoted as cp. Intuitively, an atom a is said to be a complement of b if they may
cancel each other. Likewise, topc and subc are the complements of top and sub

and will be denoted as top and sub.
The first rule, beta, performs “bare” β-reduction, that is, performs parameter

passing without copying the argument even when it is referenced more than
once. Rule beta alone is sufficient if all formal parameters are used exactly once;
otherwise we need reaction rules for the atoms cp, cp, rm, and rm (11 rules
following beta) to destroy or copy graph structures incrementally. The final four
rules are for the color management described next.

The ternary cp’s in λ-terms are first converted to quinternary cp’s by Rule
c2c. The additional third and fourth arguments form a pair of complementary
circuits for distinguishing between cp’s with different origins (i.e., cp’s copied
from the ones belonging to different λ-abstractions) when copying nested λ-
abstractions. The additional information is called a color after the Petri Net
terminology. Let us focus on the circuit formed by the third arguments and
come back to the other circuit formed by the fourth arguments later. Each color
is represented using a hyperlink that interconnects all atoms sharing that color.

Colors form tree-shaped partial order. Two colors in the supercolor-subcolor
relationship are interconnected by an atom sub. The topmost color is connected
to the atom top. Figure 10 shows a graph structure consisting of one cp with
a top color, one cp and one cp with the complementary pair of a subcolor, and
one cp and two cp’s with the complementary pair of another subcolor.

Each quinternary cp is given a top color initially. Rule c2c creates an indepen-
dent top color cell for each cp, but whether to create independent top color cells
or share a single top color cell does not affect the correctness of our encoding.

Graph copying starts when beta reduction takes place and a cp on the formal
parameter side meets apply, lambda, or fv in the argument term. Figure 11
depicts important rewrite rules related to cp’s.

358 K. Ueda

� �

beta@@ H=apply(lambda(A, B), C) :- H=B, A=C.

l_c@@ lambda(A,B)=cp(C,D,!L,!M) :-

C=lambda(E,F), D=lambda(G,H),

A=cpc(E,G,!L1,!M1), B=cp(F,H,!L2,!M),

sub(!L1,!L2,!L), subc(!M1), .

a_c@@ apply(A,B)=cp(C,D,!L,!M) :-

C= apply(E,F), D= apply(G,H),

A=cp(E,G,!L,!M1), B=cp(F,H,!L,!M2), !M=jn(!M1,!M2).

c_c1@@ cpc(A,B,!L1,!M1)=cp(C,D,!L2,!M2), sub(!L1,!L2,!L) :-

A=C, B=D, sub(!L1,!L2,!L), !L1 >< !M1, !L2 >< !M2.

c_c2@@ cpc(A,B,!L1,!M1)=cp(C,D,!L2,!M2), top(!L2) :-

C=cpc(E,F,!L1,!M11), D=cpc(G,H,!L1,!M12), !M1=jn(!M11,!M12),

A=cp(E,G,!L2,!M21), B=cp(F,H,!L2,!M22), !M2=jn(!M21,!M22),

top(!L2).

f_c@@ fv($u)=cp(A,B,!L,!M) :- unary($u) |

A=fv($u), B=fv($u), !L >< !M.

l_r@@ lambda(A,B)=rm :- A=rmc, B=rm.

a_r@@ apply(A,B)=rm :- A=rm, B=rm.

c_r1@@ cp(A,B,!L,!M)=rmc :- A=rmc, B=rmc, !L >< !M.

c_r2@@ cpc(A,B,!L,!M)=rm :- A=rm, B=rm, !L >< !M.

r_r@@ rmc=rm :- .

f_r@@ fv($u)=rm :- unary($u) | .

promote@@ subc(!L1), sub(!L1,!L2,!L3) :- !L2 >< !L3.

join@@ !Y=jn(!X,!X) :- !X >< !Y.

c2c@@ A=cp(B,C) :- A=cp(B,C,!L,!M), top(!L), topc(!M).

gc@@ top(!L), topc(!L) :- .

� �

Fig. 9. HyperLMNtal encoding of the pure λ-calculus

When a cp meets an apply, it copies the partner, splits itself, and proceeds
to the copying of the apply’s two arguments. In this case, the color of the split
cp’s remains unchanged (Rule a_c).

When a cp meets a lambda, it copies the partner and splits itself in the
same manner, but in this case it turns into a complementary pair of cp and
cp. Furthermore, the complementary pair is made to have different colors as
described below (Rule l_c).

The hyperlink !L on the left-hand side of l_c stands for the current color. The
right-hand side creates a subcolor !L2 and its complement !L1. A cp moving
anticlockwise (in the representation of Fig. 8) from the x side of a λ-term λx.M
and a cp moving clockwise from the M side are given the same color held by
the first and the second arguments of sub, respectively.

Towards a Substrate Framework of Computation 359

cp

cp

cpcp cp

cp

sub

top

jnsub

top

jn jnsub

sub

Fig. 10. Coloring cp atoms. Non-circular atoms and dotted edges form a circuit for
color management.

cp

@ cp cp

@ @ cp

λ cp cp

λ λ

(a_c)

cp

cp cp cp

cp cp

(c_c2): mismatch

cp

cp

(c_c1): match

(l_c)

Fig. 11. Reaction rules for cp atoms. A white triangle stands for jn; a white trapezoid
stands for sub; a black trapezoid stands for sub; and a white square stands for top.

As can be seen from the Church numerals example, the link representing the
bound variable of a λ-abstraction is either terminated by rm or is split using zero
or more cp’s and connected to some places in the body. Accordingly, each cp

will eventually meet, and is annihilated by, either an rm or a cp with the com-
plementary color (possibly after crossing and copying cp’s with the top color).
When a cp meets a cp with the top color, it copies the partner using c_c2, splits
itself, and proceeds.

In contrast, a cp may not meet a cp with the complementary color, because it
may escape the scope of the λ-abstraction through a link representing nonlocal
variables. The color of a cp that has escaped must be changed back to the original
color. This is done using promote, which fuses a subcolor with its supercolor by
removing the atom sub when all the cp’s of the subcolor disappear (Fig. 12).
This promotion mechanism was realized using membranes in our first encoding
[24], where the emptiness checking of membranes was used in an essential way.

360 K. Ueda

cp

cp

cp

cp

cp

cp

top

sub

top

sub

Fig. 12. Color promotion triggered by the short-circuiting of sub and sub

Based on this experience, a cardinality operator of some sort was considered an
indispensable construct for hyperlinks, and was incorporated into HyperLMNtal.

The concurrency research community has been deeply concerned with the
choice of primitives which may affect the expressive power of the formalism.
Thus, exactly what primitives are needed to encode the lambda calculus is a
central rather than marginal issue. The major contribution of the encoding pre-
sented in Fig. 9 is that a symmetric hyperlink circuit works nicely for color
management and is amenable to capability typing.

Recall that, when a cp is annihilated, it is not allowed to discard the color
capability carried by its third argument in a typed setting; the cp instead returns
it through the fourth argument. When a cp is copied into two, the capabilities
distributed to the two copies through their third arguments are returned through
the fourth arguments and are joined by an atom jn defined in the rule join. The
initial cp’s carry the top color top, and their fourth arguments are connected to
top, the complement of top.

A similar mechanism is implemented for the cp’s sharing the same subcolor;
the third arguments of the cp’s are connected to the first argument of sub, while
their fourth arguments are connected, possibly via jn’s, to the complementary
atom sub. From Fig. 10, one can observe that a hyperlink circuit between a sub

and a corresponding sub form a circuit involving cp’s and containing jn’s on
the sub side. When the cp’s are short-circuited, the jn’s will detect the identity
of two hyperlinks and join their capabilities. The sub and the sub will establish
one-to-one connection eventually, when they annihilate each other and triggers
promotion. Similarly, observe from Fig. 10 that a top and a corresponding top

form a circuit involving cp’s, which also contains sub’s on the top side and jn’s
on the top side, which is symmetric if the sub’s and the jn’s are ignored.

Rule promote is applied asynchronously with other rules; it is not necessarily
applied as soon as all the cp’s of some color disappear. The delay of promote
simply delays the reaction between cp’s and cp’s (using c_c1 and c_c2) and
does not cause wrong reactions by affecting the applicability of other rules.

Of the remaining rules, f_c copies global free variables. This rule contains a
side condition, unary($u), that specifies that the first argument of fv is con-
nected to some unary atom, which will be copied in the right-hand side because

Towards a Substrate Framework of Computation 361

Fig. 13. State space of the omega combinator

$u occurs twice there. Rules l_r, a_r, c_r1, c_r2, r_r, and f_r are to delete
any partner that an rm or an rm may encounter. Rule gc is to delete a topmost
color not referenced any more.

5.4 Examples

From numerous examples we have run using our LMNtal system, we pick two
well-known λ-terms to illustrate our encoding.

Example 9. The omega combinator Ω = (λx.xx)(λx.xx) is a beautiful λ-term
that involves copying. Figure 13 shows the state space of Ω encoded into Hy-
perLMNtal, where beta is allowed to be used only once for the purpose of our
analysis. Figure 14 shows some of those states. Graph (G1) is the initial state
decorated with colors by c2c. The only rule applicable to (G1) is beta, which
yields (G2). Now λ reacts with cp and is split into two ((G3)). (G4) is obtained
from (G3) by a_c and c_c2 (in either order). Now the two complementary pairs
of cp and cp are canceled by two applications of c_c1, and the resulting (dis-
connected) graph, (G5), consists of Ω (left) and a graph of used colors (right),
where the Ω graph came with a color representation different from (G1). The
color graph will be erased by join, promote and gc.

When we do not restrict the number of β-reductions, the encoding turns out
to have infinitely many states (unlike Ω in the original λ-calculus which has only
one state) because the erasure of the garbage graph may be delayed arbitrarily
long. ��

Example 10. The exponentiation of Church numerals seems to be an impor-
tant test of λ-calculus encodings because the extremely simple encoding of mn,
λmn.nm, involves exponential amount of graph copying. It is important also
because it requires the evaluation of the bodies of λ-abstractions.

The program in Fig. 15 reduces to

R = apply(fv(s),apply(fv(s),...,apply(fv(s)
︸ ︷︷ ︸

81 times

,fv(0))...))

362 K. Ueda

λ

@

@

cp

λ

@cp @cpcp @

λ

@cp

@

λ λ

cp cp

(G1) (G2) (G3)

λ

@

@

λ

@cpcp

cpcp cpcp λ

@

@

cp

λ

@cp

(G4) (G5)

Fig. 14. Reduction of the omega combinator. a white square stands for top; a black
square stands for top; a white trapezoid stands for sub; a black trapezoid stands for
sub; and a white triangle stands for jn.

that stands for s3
22

(0). The encoding is highly nondeterministic, reflecting the
fine-grainedness of the encoding. Even the computation of R = apply(n(2),n(2))

(22) has 2874 possible states. ��

5.5 Properties of the Encoding

The encoding described above decomposes β-reduction into many small mi-
crosteps that allow asynchronous, out-of-order execution. The adequacy of the
encoding is therefore not obvious; recall that the confluence and termination
of the λσ-calculus was not obvious, either [4][13]. Furthermore, because of the
asynchrony, the “meaning” of an intermediate state of graph reduction broken
into microsteps is far from obvious.

To address the above problems, in [24] we proposed to interpret graphs using
λ-terms with additional binder constructs corresponding to rm and cp atoms,
and established several important properties of the (original) encoding through
well-known properties of the λ-calculus. Exactly the same technique can be used
to establish the properties of the encoding described in this paper because the
two encodings differ only in the representation of colors that is abstracted in the

Towards a Substrate Framework of Computation 363

� �

N=n(2) :- N=lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X)))).

N=n(3) :- N=lambda(cp(F0,cp(F1,F2)),

lambda(X,apply(F0,apply(F1,apply(F2,X))))).

R = apply(apply(apply(apply(n(2),n(2)),n(3)),fv(s)),fv(0)).

� �

Fig. 15. Church numerals and their exponentiation

extended λ-term representation of graphs. We do not repeat the technical details
but mention that the encoding enjoys the following properties, whose proofs can
be found in [24]:

1. Preservation of strong normalization: If a λ-term M is strongly normalizing,
the HyperLMNtal encoding of M is strongly normalizing.

2. Soundness : If an HyperLMNtal encoding G of M reduces in 0 or more steps
to G′ which is an encoding of some term M ′, then M −→∗ M ′.

3. Completeness : If G is a HyperLMNtal encoding of M and M −→∗ M ′, then
there is a HyperLMNtal encoding G′ of M ′ such that G can be reduced to
G′ in 0 or more steps.

Most previous encodings into Interaction Nets used two kinds (i.e., two col-
ors) of copying tokens. Two colors sufficed in [18] because it did not evaluate
bodies of λ-abstractions. YALE and KCLE computed normal forms, but did so
by explicitly managing nonlocal variables, which added certain complexity. Al-
though not for computing normal forms, Lang’s encoding [10] employed many
colors, where colors were represented as sequences of fresh names. Color compar-
ison was based on whether one color was a prefix of the other, whose practical
cost is yet to be studied. Lamping’s optimal sharing [9] also employed many
colors (called levels), and further employed tokens called croissants and brackets
(both coming with many colors as well) to achieve sharing and complicated level
management. Our encoding pursues a different direction: the size of the rewrite
system. Color hierarchy implemented using hyperlinks lead to a rewrite system
that added only a few rules to the rules for handling all possible pairs of atoms
that may meet.

Our rewrite system could be slimmed down further. Rule c2c can be dispensed
with by starting with colored cp atoms. Rules l_r, a_r, c_r1, r_r, f_r (i.e., all
rules involving rm and rm except c_r2), plus gc are just for garbage collection
and tidying up the tree of cp’s, and could be dispensed with. (Rule c_r2 cannot
be removed because it kills cp’s whose cardinality is counted.) This leaves us
only nine essential rules, beta, l_c, a_c, c_c1, c_c2, f_c, c_r2, promote, and
join, which suffice for the full evaluation of colored λ-term representation.

5.6 Typing the Encoding

The encoding described in this section is designed to allow capability typing. We
omit the typing constraints but show a well-typing of atom ports:

364 K. Ueda

c(〈@, 1〉) = c(〈@, 2〉) = 1, c(〈@, 3〉) = −1,
c(〈λ, 1〉) = −1, c(〈λ, 2〉) = 1, c(〈λ, 3〉) = −1,
c(〈cp, 1〉) = c(〈cp, 2〉) = −1, c(〈cp, 5〉) = 1,
c(〈cp, 3〉) > 0, c(〈cp, 4〉) < 0, c(〈cp, 3〉) + c(〈cp, 4〉) = 0,
c(〈cp, 1〉) = c(〈cp, 2〉) = 1, c(〈cp, 5〉) = −1,
c(〈cp, 3〉) > 0, c(〈cp, 4〉) > 0, c(〈cp, 3〉) + c(〈cp, 4〉) = 0,
c(〈rm, 1〉) = 1, c(〈rm, 1〉) = −1,
c(〈jn, 1〉) > 0, c(〈jn, 2〉) > 0, c(〈jn, 3〉) < 0,
c(〈jn, 1〉) + c(〈jn, 2〉) + c(〈jn, 3〉) = 0,
c(〈sub, 1〉) = −1, c(〈sub, 2〉) < 0, c(〈sub, 3〉) > 0,
c(〈sub, 2〉) + c(〈sub, 3〉) = 0,
c(〈sub, 1〉) = 1, c(〈top, 1〉) = 1, c(〈top, 1〉) = −1

Ports constrained by inequalities and zero-sum constraints are polymorphic ports
for hyperlinks. The above constraints give us an interpretation that

– @ works on λ in Rule beta,
– cp and rm work on @, λ, cp, rm, and fv in Rules a_c, l_c, c_c1, c_c2, c_r1,

f_c, a_r, l_r, c_r2, r_r, and f_r,
– top works on top in Rule gc,
– sub works on sub in Rule promote, and
– jn works by itself.

Thus, the capability typing provides all atoms (except jn) with active or pas-
sive rôles in reaction, and this directionality information should be useful in an
optimized implementation of our encoding.

6 Conclusion

We have shown that programming with controlled use of links and hyperlinks
provides us with a uniform framework of concurrent and non-deterministic com-
putation that allows (among other things) concise and fine-grained encoding of
the strong λ-calculus. The encoding shows that the carefully chosen set of hy-
perlink operations (equality checking and fusing) are powerful enough to express
multiset operations necessary to encode the scope management of the λ-calculus.

The simple capability type system with a [−1,+1] real-valued type domain
gives interpretation of hyperlinks as backward (directed) hyperlinks. The type
constraints are formulated around Kirchhoff’s current law, and could be solved
rather easily using SAT (for links) or SMT (for hyperlinks) solvers. Although we
advocate distinguishing between links and hyperlinks syntactically, the distinc-
tion is for practical reasons, since the capability type system is powerful enough
to automatically infer which ports and hyperlinks are used as (and can be im-
plemented as) links. The capability type system seems to advocate a symmetric
program structure with respect to capability management; that is, hyperlink ca-
pabilities split into fractions in a tree-like manner should eventually be joined in
the tree-like manner.

Towards a Substrate Framework of Computation 365

Our ongoing work includes the encoding of Bigraphical Reactive Systems into
Flat HyperLMNtal, in which hyperlinks are used in a much more sophisticated
way. Two major directions of future work are (i) to apply the proposed type
system to aggressive compiler optimization and (ii) to develop a verification
framework for programs based on hyperlink rewriting.

Acknowledgments. The author is indebted to the present and past members
of the LMNtal group for fruitful discussions and building the (Hyper)LMNtal
system on which the present work was successfully based. He would like to thank
anonymous referees for their careful reviewing and useful comments. This work
is partially supported by Grant-In-Aid for Scientific Research ((B) 23300011),
JSPS, Japan.

References

1. van der Aalst, W., Stahl, C.: Modeling Business Processes: A Petri Net-Oriented
Approach. The MIT Press, Cambridge (2011)

2. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitutions. Journal
of Functional Programming 1(4), 375–416 (1991)

3. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

4. Curien, P.-L., Hardin, T., Lévy, J.-J.: Confluence Properties of Weak and Strong
Calculi of Explicit Substitutions. J. ACM 43(2), 362–397 (1996)

5. Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: Rozenberg, G. (ed.)
APN 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)

6. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

7. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed Hypergraphs and Appli-
cations. Discrete Applied Mathematics 42(2-3), 177–201 (1993)

8. Lafont, Y.: Interaction Nets. In: Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–
108. ACM (1990)

9. Lamping, J.: An Algorithm for Optimal Lambda-Calculus Reductions. In: Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL 1990), pp. 16–30. ACM (1990)

10. Lang, F.: Modèles de la β-réduction pour les implantations. Ph.D. Thesis, Ècole
Normale Supérieure de Lyon (1998)

11. Mackie, I.: YALE: Yet Another Lambda Evaluator Based on Interaction Nets. In:
Proc. Third ACM SIGPLAN International Conference on Functional Programming
(ICFP 1998), pp. 117–128. ACM (1998)

12. Mackie, I.: Efficient λ-Evaluation with Interaction Nets. In: van Oostrom, V. (ed.)
RTA 2004. LNCS, vol. 3091, pp. 155–169. Springer, Heidelberg (2004)

13. Melliès, P.-A.: Typed λ-Calculi with Explicit Substitutions Not Terminate. In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–
334. Springer, Heidelberg (1995)

14. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

366 K. Ueda

15. Reynier, P.-A., Servais, F.: Minimal Coverability Set for Petri Nets: Karp and
Miller Algorithm with Pruning. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI
NETS 2011. LNCS, vol. 6709, pp. 69–88. Springer, Heidelberg (2011)

16. Shapiro, E.Y., Warren, D.H.D., Fuchi, K., Kowalski, R.A., Furukawa, K., Ueda,
K., Kahn, K.M., Chikayama, T., Tick, E.: The Fifth Generation Project: Personal
Perspectives. Comm. ACM 36(3), 46–103 (1993), (This is actually a collection of
single-authored articles, and my article (pp. 65–76) was originally titled “Kernel
Language in the Fifth Generation Computer Project”)

17. Shapiro, E., Takeuchi, A.: Object oriented programming in Concurrent Prolog.
New Generation Computing 1(1), 25–48 (1983)

18. Sinot, F.-R.: Call-by-Name and Call-by-Value as Token-Passing Interaction Nets.
In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Hei-
delberg (2005)

19. Suenaga, K., Kobayashi, N.: Fractional Ownerships for Safe Memory Deallocation.
In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 128–143. Springer, Heidelberg
(2009)

20. Ueda, K., Morita, M.: Moded Flat GHC and Its Message-Oriented Implementation
Technique. New Generation Computing 13(1), 3–43 (1994)

21. Ueda, K.: Resource-Passing Concurrent Programming. In: Kobayashi, N., Babu,
C. S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 95–126. Springer, Heidelberg (2001)

22. Ueda, K., Kato, N.: LMNtal: A Language Model with Links and Membranes. In:
Mauri, G., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.)
WMC 2004. LNCS, vol. 3365, pp. 110–125. Springer, Heidelberg (2005)

23. Ueda, K.: LMNtal as a Hierarchical Logic Programming Language. Theoretical
Computer Science 410(46), 4784–4800 (2009)

24. Ueda, K.: Encoding the Pure Lambda Calculus into Hierarchical Graph Rewrit-
ing. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 392–408. Springer,
Heidelberg (2008)

25. Ueda, K., Ayano, T., Hori, T., Iwasawa, H., Ogawa, S.: Hierarchical Graph Rewrit-
ing as a Unifying Tool for Analyzing and Understanding Nondeterministic Systems.
In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 349–355.
Springer, Heidelberg (2009)

26. Ueda, K., Ogawa, S.: HyperLMNtal: An Extension of a Hierarchical Graph Rewrit-
ing Model. Künstliche Intelligenz 26(1), 27–36 (2012), doi:10.1007/s13218-011-
0162-3

27. Ueda, K.: Encoding Distributed Process Calculi into LMNtal. Electronic Notes in
Theoretical Computer Science 209, 187–200 (2008)

Event-Based Modularization of Reactive Systems

Somayeh Malakuti1 and Mehmet Aksit2

1 Software Technology Group, Technical University of Dresden, Germany
somayeh.malakuti@tu-dresden.de

2 Software Engineering Group, University of Twente, The Netherlands
m.aksit@utwente.nl

Abstract. There is a large number of complex software systems that have reac-
tive behavior. As for any other software system, reactive systems are subject to
evolution demands. This paper defines a set requirements that must be fulfilled
so that reuse of reactive software systems can be increased. Detailed analysis of a
set of representative languages reveals that these requirements are not completely
fulfilled by the current programming languages and as such reuse of reactive sys-
tems remains a challenge. This paper explains Event Composition Model and its
implementation the EventReactor language, which fulfill the requirements. By
means of an example, the suitability of the EventReactor language in creating
reusable reactive systems is illustrated.

Keywords: reactive system, object-orientation, aspect-orientation, event mod-
ules, reuse anomaly, evolvability.

1 Introduction

Reactive systems are the ones that can respond to external events [1]. Conceptually,
one can assume that a reactive system is composed of a non-reactive part and a reactive
part; the reactive part responds to the event calls that are published by the non- reactive
part. There may be many forms of responses, such as collecting data, filtering data, ver-
ification of certain properties, interpretation, displaying information, taking corrective
measures on the non-reactive part, etc.

As for any other software system, reactive systems are subject to evolution demands.
By the term evolution, we refer to a large set of change request possibilities on an
existing system, such as bug fixes, performance improvement requests, introduction
of new functions, integration with other systems, etc. Generally, in case of evolution
demands, software engineers face correctness and reuse challenges. The correctness
challenges are considered out of scope of this paper; we refer to [2] for more details on
this topic.

This paper focuses on the reuse challenge that is defined as the ability to maximum
reuse of code without unnecessary redefinitions. We consider it a reuse anomaly if the
evolution demands cannot be localized to the relevant parts of the implementation, and
have ripple modification effects on parts of the system that are irrelevant to the demand.
Naturally, there has been a vast amount of publications on reactive systems [3]. For ex-
ample, some publications have focused on the definition and application of patterns and

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 367–407, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

368 S. Malakuti and M. Aksit

architectural styles such as Observer pattern [4], MVC pattern, Publisher-Subscriber
style [5], etc. There have been studies which address the problem of expressive specifi-
cation and efficient implementation of domain specific events, for example for database
updates. Some studies have focused on specific applications of the reactive part for
example for the purpose of visualization. Similarly, there have been extensive studies
on control algorithms and deriving the control calls on the non-reactive part [6]. There
have been publications on some applications of reactive systems and the related archi-
tectures for example for run-time verification and control, fault-tolerant systems. Last
but not least, we want to refer to the studies on reactive systems which have focused on
the linguistic constructs of the programming languages so that reactive systems can be
easily implemented, verified and/or reused [7–9, 3].

In this paper, we refer to this last category of research activities. In particular, we
investigate and research to find answers to the following two questions in relation to the
evolution of reactive systems: a) To which extent the current languages help to avoid
reuse anomalies? b) Which kinds of linguistic abstractions are still needed to avoid
reuse anomalies? To be able to answer these questions, this paper first identifies a set
of reuse and language requirements that must be fulfilled by a language to avoid reuse
anomalies, and then it evaluates a set of representative languages with respect to these
requirements.

This paper discusses the suitability of Event Composition Model [10, 8] to achieve
reusability in structuring reactive systems. Event Composition Model considers events
and the reaction to the events as the core abstractions of computations, and introduces
event module to modularize a set of correlated events and the reactions to these events.
Event Modules have well-defined event-based interfaces, which help to keep event mod-
ules loosely coupled to each other and to other modules. New kinds of events, reactions
and event modules can be programmed, and new compositions of event modules can be
defined by reusing the existing event modules. We discuss the EventReactor language,
which implements Event Composition Model. By means of an example, this paper il-
lustrates that Event Composition Model is suitable in eliminating the reuse anomalies
defined in this paper.

This paper is organized as follows: Section 2 provides a definition of reactive sys-
tems, and outlines the reuse and language requirements that must be fulfilled to avoid
reuse anomalies. Section 3 identifies reuse anomalies in a representative set of lan-
guages. Section 4 explains Event Composition Model. Section 5 discusses the Event-
Reactor language by means of an example, and Section 6 illustrates its suitability in
achieving reusable implementations by means of a set of evolution scenarios. Section 8
explains the compiler of the EventReactor language, and Section 9 outlines the conclu-
sions and future work.

2 Reactive Systems

2.1 Definitions

A reactive system is generally defined as a system that responds to external events [1].
As shown in Figure 1, conceptually, one can assume that a reactive system is composed

Event-Based Modularization of Reactive Systems 369

of a non-reactive part and a reactive part, although in implementations such a clear
separation is not always the case.

The reactive part responds to the event calls that are published by the non-reactive
part; there may be many forms of responses, such as collecting data, filtering data, ver-
ification of certain properties, interpretation, displaying information, taking corrective
measures on the non-reactive part, etc. Here the term event refers to any relevant state
change in the execution of the non-reactive part of the system. The exact implemen-
tation of publishing of an event can be various such as direct call, event-propagation
mechanisms as defined in the Observer and Publisher-Subscriber patterns [4], implicit
invocations as in aspect-oriented languages [11], etc. The reactive part accordingly may
regulate the execution of the non-reactive part through control calls. The event and
control calls convey the necessary information between non-reactive and reactive part.

event calls

control calls co tntroll calllls

Fig. 1. Typical concepts in reactive systems

It is possible to merge the reactive and non-reactive parts within a single code block.
However, in this paper, we are particularly interested in reactive system architectures,
where these parts are organized as separate modules. In the literature of reactive sys-
tems, clear separation of these parts are generally claimed to be necessary. For example,
in control systems, it is desired that the controlling system (reactive part) is separated
from the system being controlled (non-reactive part).

Nowadays, there is a large number of systems with reactive behavior; self-adaptive
systems [12], runtime verification systems [13], and fault-tolerant systems [14] are
examples. Self-adaptive systems can adapt their structure/behavior in response to the
changes in the environment. In these systems, the reactive and the non-reactive part
can correspond to adaptation mechanisms and the system to be adapted, respectively.
In these systems, event calls are means to represent the changes in the environment,
and control calls are means to represent the adaptations that must be performed on the
system. Runtime verification systems check the execution trace of software to reason
about its behavior, for example, to detect the violation of certain security properties.
The system under verification and the system that verifies form the non-reactive and
reactive parts, respectively. The state changes in the system under verification (e.g., in-
vocations on a method, construction of an object) are regarded as event calls; various
actions (e.g. reporting an error) can be performed by the reactive part in case failures are
detected. Fault-tolerant systems usually adopt a similar mechanism as runtime verifica-
tion systems to detect the failures in the non-reactive part, and heal it from the failures.
In these systems, event calls are means for abstracting necessary information from the

370 S. Malakuti and M. Aksit

execution trace of software, and control calls are means to heal the software from fail-
ures for example by initializing a recovery action.

The architecture that is shown in Figure 1 is mostly suitable in representing a sin-
gle feedback-loop based control system1. Control systems can be organized in more
complex ways such as peer-to-peer control, distributed control, hierarchical control,
etc. Nevertheless, for now, we consider the architecture shown in the figure sufficient
enough to identify the essential concepts in reactive systems.

2.2 An Illustrative Example: Recoverable Process

In this paper, we particularly focus on fault-tolerant systems as an illustrative case for
reactive systems. We make use of Recoverable Process [15] as an illustrative example,
which aims at making processes fault-tolerant by monitoring the processes to detect
their failures, and by restarting a failed process along with other processes that are
semantically related to it. This technique assumes that after recovery, processes can
continue their normal operation.

Figure 2 is a UML class diagram representing the concerns of Recoverable Process.
AppProcess represents a child process, and has the attributes pid, name, status, init and
kill. The attribute pid is the unique identifier of the child process, which is generated by
the operating system. The attribute name is the developer-specified name of the child
process. The attribute status is the execution state of the child process, which can either
be running, terminated or under-recovery. The attributes init and kill are the methods
that create or kill the child process, respectively. The events initiated and killed, which
are shown as operations in the figure, occur if the child process is created or killed,
respectively.

Parent
ProcessManager

+restart()

RecoveryUnit
-processes
+notify()

AppProcess
- p i d
-name
-status
- i n i t
- k i l l
+initiated()
+killed()

 1

 1..*

restarts

notifies

 *
 1

executes

*1
executes

 *

 1

Fig. 2. The concerns of Recoverable Process

The concern RecoveryUnit represents a group of child processes that must be recov-
ered together. RecoveryUnit detects the failures in the corresponding child processes,

1 http://en.wikipedia.org/wiki/control_theory

http://en.wikipedia.org/wiki/control_theory

Event-Based Modularization of Reactive Systems 371

and publishes an event to the concern ProcessManager to inform the failures. Conse-
quently, ProcessManager recovers the corresponding child processes by changing their
status to under-recovery, restarting them by invoking the methods kill and init, and set-
ting their status back to running. The concern Parent represents the parent process of
AppProcess. It creates the child processes, and publishes the event initiated for each of
them.

As depicted in Figure 2, Parent and AppProcess belong to the non-reactive part of
Recoverable Process, where RecoveryUnit and ProcessManager belong to the reactive
part. AppProcess communicates with RecoveryUnit by publishing the event killed. The
invocations on the methods kill and init on AppProcess are control calls that are is-
sued by ProcessManager. The reactive part has a hierarchical architecture, in which
ProcessManager responds to the event calls from RecoveryUnit.

We apply Recoverable Process to an example media-player software to make its pro-
cesses fault-tolerant. An abstract block diagram of the media-player software is shown
in Figure 3. The software is structured around four processes Runner, MPCore, Au-
dio and Video, which execute the modules Main, Core, Libao and Libvo, respectively.
The nesting of blocks shows that the parent process Runner has spawned the other pro-
cesses as children. The arrows in the figure represent the messages that are exchanged
among processes. We would like to apply Recoverable Process for the global recov-
ery of media-player software, i.e. if MPCore is destroyed, MPCore along with Audio
and Video are restarted, because the latter two child processes cannot continue their
operation as well.

MPCore Audio Video MPCore A di Video PCore Audio VideoPCore Audio

Runner

Process

Inter-process communication

Fig. 3. An abstract block diagram of the media-player software

2.3 Language Requirements for Reusable Reactive Systems

Like many software systems, reactive systems are generally subject to continual evo-
lution demands, which may influence various parts of the system. For example, the
media-player application may evolve such that a new child process called UserInterface

372 S. Malakuti and M. Aksit

User Interface MPCore Audio Video User Interface MPCore A di Video PCore Audio VideoPCore Audioser Interface M

Runner

Process

Inter-process communication

Fig. 4. An abstract block diagram of the evolved media-player software

is added, which executes the code related to interactions with users. Figure 4 shows the
block diagram of the evolved media-player.

This evolution demands RecoveryUnit and ProcessManager to take the new child
process into account for the global recovery. Likewise, the reactive part may evolve
such that local recovery is supported for the individual child processes UserInterface,
Audio and Video if the are destructed unexpectedly. Local recovery increases the over-
all availability of the media-player application [15], because other child processes can
continue their execution.

Evolution demands may cause the software engineers to deal with both reuse and
correctness challenges. We define the reuse challenge as to be able to maximum reuse
of code without unnecessary redefinitions. A correctness challenge is to assure the cor-
rectness of software systems after the implementation of the new requirements. In this
paper we mainly focus on the reuse challenges. For the correctness challenges of the
evolution of reactive systems, we refer to [2].

The linguistic constructs of the adopted programming language and the chosen im-
plementation technique play an important role in achieving reusability in the imple-
mentations of reactive systems. By referring to the field of control theory and Figure 1,
to eliminate the irrelevant ripple modification effects for each element of the figure, a
language must fulfill the following goals:

– The language must facilitate the evolution of the structure and/or the semantics of
the non-reactive part with minimal impact on event calls, control calls, and the reac-
tive part. Such an evolution may be demanded for example due to new application
requirements, changes in hardware components, improvements in algorithms, etc.

– The language must facilitate the evolution of the event calls for example by in-
troducing new event calls and/or by modifying the existing ones with a minimal
impact on the reactive and the non-reactive part of the software.

– The language must facilitate the evolution of the structure and/or the semantics
of the reactive part with minimal impact on event calls, control calls and the

Event-Based Modularization of Reactive Systems 373

non-reactive part. Evolution of the reactive part can be due to new monitoring and
control requirements, improvements in control algorithms, etc.

– The language must facilitate the evolution of control calls with a minimal impact
on the reactive and the non-reactive part of the software.

– The language must facilitate the evolution of the architecture, for example, from
single feedback loop control architecture towards multiple feedback loop architec-
ture, hierarchical architecture, etc.

We consider it a reuse anomaly if the adopted language is not expressive enough
to fulfill the above-mentioned goals. Reuse anomaly causes the implementation of an
evolution demand have ripple modification effects on the parts of the system that are
irrelevant to the evolution demand. In the following, we outline a set of language re-
quirements that we consider necessary to improve the reusability of reactive systems:

– Events: Depending on the application domain, reactive systems may need to deal
with different kinds of events. For example, Recoverable Process shown in Figure 2
is applied to process-related events. More example of events are: an invocation of a
method on an object, calling a function, beginning or ending of a thread of execu-
tion, a success or failure of a verification operation, triggering a diagnosis operation,
committing a recovery action, excessive usage of a resource, excessive increase of
temperature, etc. The kinds of required events are not fixed and cannot be antici-
pated always. This implies that a language must offer suitable means to define new
events of interest and/or flexibly modify the existing ones when necessary. Oth-
erwise, one has to provide workarounds to map the desired events into the set of
events supported in the language; such mappings may increase the complexity of
implementations. For example, although processes are the basic means of structur-
ing operating systems, process-related events may not be directly available to the
application programmers and as such they must be introduced if necessary.

– Event calls: The non-reactive part may consist of various different elements; for
example, it may consist of application modules developed in different languages,
middleware, OS and hardware elements. For instance, in the media-player software
example, the process-related events may be generated by software modules imple-
mented in different languages. It is a common practice for example that the GUI
process is implemented in Java, whereas the other processes are implemented in C.
This implies that event calls may be issued from various different kinds of sources,
and a language must provide means to represent these calls and to receive them.
Otherwise, the usability of the language for implementing various kinds of reac-
tive systems is hindered, and/or one has to provide workarounds to map the desired
event calls to the ones supported by the language. Such workarounds complicates
the implementations.

– Reactive parts: To improve the reusability of reactive parts, we claim that a lan-
guage must fulfill the following two requirements:

• Selection of event calls: The language must offer dedicated constructs to iden-
tify and select the event calls of interest. Since the kinds of events and event
calls cannot be fixed, the offered constructs must be expressive enough to cope
with the diverse set of events and event calls. In addition, the language must

374 S. Malakuti and M. Aksit

facilitate defining the specification of event calls of interest separately from the
reactions to them, so that both the specifications and reactions can be reused
independently. For instance, the event calls generated by the child processes
shown in Figure 3 must be processed by Recoverable Process, in case fault
tolerant software is required.

• Reactions to event calls: The language must offer sufficient means to program
the desired reactions to the selected event calls. Since the reactive part of sys-
tems are generally defined as state-machines, it may be desirable to adopt a
domain specific language (DSL) that directly support state-based formalisms.
To support evolution of state machines, the DSL must be equipped with the
suitable abstractions and composition operators. Naturally, to program the re-
active part, other kinds of formalisms and consequently different kinds of DSLs
may be also desirable.

– Control calls: The kinds of necessary control calls are not fixed and cannot be
anticipated always. The language must offer a rich set of interaction possibilities
to implement control calls including event-based communication. For example in
Recoverable Process, the type of control calls depend on the characteristics of
the processes to be recovered, and as such loose coupling among these may be
necessary.

– Architectural constraints: The interactions between the non-reactive and reactive
parts may be constrained in various ways. For example, if both global recovery and
local recovery are applied to the media-player software, it may be necessary to de-
fine architectural constraints to coordinate global and local recovery strategies. An
example constraint is that local recovery for a child process must not be executed
if the child process is being restarted during the global recovery.
A language must offer suitable constructs to specify the necessary architectural
constraints, and the specifications must be separated and modularized from the re-
active and non-reactive parts. Otherwise, the implementation of the architectural
constraints scatters across and tangles with these parts, which consequently, in-
creases their complexity and decreases their reusability for different architectural
configurations.

3 Reuse Anomalies in Reactive Systems

In the following, we discuss implementation alternatives of reactive systems in a repre-
sentative set of languages, and explain the extent to which the reuse requirements that
are mentioned in Section 2 are fulfilled.

3.1 Object-Oriented Implementation of Reactive Systems

There are various ways that one may implement reactive systems in an object-oriented
(OO) language. In the following, we explain two typical cases.

Event-Based Modularization of Reactive Systems 375

Monolithic Implementation: In this approach, the reactive and non-reactive parts are
not clearly separated from each other. The event and control calls are implemented via
explicit method calls among the corresponding objects. The state machine behavior
of the reactive part can be implemented through the use of IF-THEN-ELSE-like state-
ments. IF-THEN-ELSE like statements have a serious limitation in that the event and
control calls must be defined a-priori. Each newly introduced unanticipated event and/or
control call requires recompilation of the code [16]. This is an error-prone activity and
against the minimal impact requirements presented in the previous section.

Implementation Using Design Patterns: To increase the reusability of implemen-
tations, one may adopt combination of various design patterns [4]. For example, the
state-machine behavior of the system can be implemented using the State pattern. The
Observer pattern can be used to implement the event calls; the Decorator pattern can be
used to dynamically extend the semantics of the methods of an object through the use
of so-called decorator objects; this pattern can be useful for instance to introduce new
event calls per method when necessary. The Strategy pattern can be used to change the
implementation of an object dynamically, for example to adapt the implementation of
reactive part.

Using design patterns to increase reuse, however, has a number of limitations. First,
to cope with the new reuse demands, implementations must be extended with the mech-
anisms that are needed for each pattern. In the most extreme case, each object or even
each method of an object must be prepared for extension. This creates unnecessary
overhead in case extensions are not used as anticipated.

Second, the incorporated patterns may not be always suitable for the new evolution
requirements. For example, assume that State pattern is adopted in the reactive part. In
this case, the introduction of a new event call has a ripple effect on the reactive part,
because the interface of every state object has to be extended to handle the new event. If
a new state has to be introduced, the existing state objects must be modified to include
transitions to the newly-defined state. Consequently, there will be ripple modification
effect on the whole state-machine.

As another example, both Decorator and Strategy patterns assume a fixed set of in-
terfaces for each object. This is because, decorations/variations are encapsulated by
an object which dispatches the calls to the dynamically installed implementation ob-
jects. In this case, the interface of the encapsulating object is fixed at compile time. If
necessary, one may overcome this problem by using an additional pattern, such as the
Command pattern. However, this may complicate the implementation because in the
Command pattern, the message passing of the call has to be implemented in the appli-
cation and as such the language runtime is by-passed. Also, type conversion problems
may arise in passing the command objects with new call arguments.

3.2 Aspect-Oriented Implementation of Reactive Systems

Aspect-Oriented (AO) programming languages [11, 17] offer various constructs, which
may help in overcoming some of the problems that appear in the OO implementation
of reactive systems.

376 S. Malakuti and M. Aksit

The key concepts in AO programming languages are join points, pointcut predi-
cates, advices and aspects. Join points are identifiable state changes in the execution
of so-called base programs. Examples are execution of methods, creation of objects,
and throwing of exceptions. Pointcut predicates are linguistic constructs for querying
the join points of interest from the program. Advice is a program code that is executed
when the corresponding join point is activated. An advice is bound to a set of join points
through pointcut predicates. In most AO languages, the combination of an advice and
its pointcut predicate forms an aspect.

In an AO implementation of reactive systems, base programs represent the non-
reactive part, join points and the activation of join points can be regarded as a means to
define event calls. Pointcut predicates are means to define the semantics for selecting
event calls, and advices are means to define the reactive part, which are bound to event
calls through pointcut predicates. Control calls can be defined by accessing the corre-
sponding base objects from aspects, and by changing the flow of executions and/or data
values in the base objects. A hierarchical architecture is facilitated if an AO language
allows defining aspects on aspects.

There is a large number of AO languages introduced in the literature. In the follow-
ing we evaluate AspectJ [11], some of its relevant extensions [18–21], and the Com-
pose* [17] language. AspectJ is a widely-used language among the AO languages.
There are many other AO languages whose features are similar to the ones of AspectJ;
we therefore assume that the shortcomings of AspectJ are representative for them. Com-
pose* will be evaluated due to its distinctive features such as language-independence
and its support for some domain-specific languages for the advice code.

AspectJ: With respect to the supported events, a predefined set of join points in Java
programs are supported by AspectJ. Consequently, if a new set of events are required
which are not included in this set (e.g. process destruction), software engineers have to
provide workarounds to map the desired event calls to the supported join points. As it is
studied in [22, 8], such workarounds increase the complexity of programs, reduce their
reusability and may lead to the implementations that are not correct.

With respect to the supported event calls, naturally the event calls can only be is-
sued from Java programs. However, as it is usually the case in embedded systems,
non-reactive part may be implemented in multiple languages, which means that to im-
plement the reactive part using AspectJ, software engineers have to provide various
workarounds. As we studied in [23], a solution would be to redefine the reactive part
such that it is implemented in AspectJ and AspectC [24], for example. This solution
would however suffer from reuse anomaly because the reactive part has to be redefined
if the non-reactive part evolves with different languages. Moreover, software engineers
have to provide means to compose aspects that are implemented in various languages,
so that the overall functionality of the reactive part is achieved. The lack of a standard
composition mechanism for this matter leads to ad-hoc and arbitrary implementations
of compositions, which might not be reusable for different kinds of applications.

With respect to selection of event calls, AspectJ offers a fixed set of pointcut pred-
icates to designate the event calls of interest. The problems with fixed set of pointcut
predicates with a limited expression power are well-studied in the literature [25]; one

Event-Based Modularization of Reactive Systems 377

has to provide workaround code to express the desired event selection semantics in
the base software and/or advice code. Such code complicates the implementations and
causes the code for selecting event calls gets tangled with the code implementing the
non-reactive and/or reactive parts. Another problem in AspectJ is that the code for bind-
ing the advice code to the pointcut predicates is tangled with the advice code, which
reduces the reusability of the advice code for different applications.

With respect to the reactions to event calls, DSLs are not supported in AspectJ.
Consequently, one has to make use of the imperative Java language to implement the
reactive part, possibly by adopting design patterns. This, however, leads to the same
problems explained for the OO implementations of the reactive part.

As stated previously, reactive systems may be organized hierarchically; for example,
the concern RecoveryUnit represents a reactive part for which a higher order reactive
part is defined through the concern ProcessManager. To implement such hierarchal
structures, the adopted AO language must support defining aspects on aspects. AspectJ
offers the adviceexecution pointcut predicate that picks out join points representing
the execution of advices. Since advice code is not named in AspectJ, adviceexecution
cannot distinguish among advices within an aspect to select the join points related to a
specific advice. As a workaround, one has to rewrite an advice by putting its original
body in a method and invoke this method from within the advice. By this way, AspectJ
pointcut predicates can be used to select the event calls corresponding to the invocation
and/or execution of this method. This solution, however, suffers from the reuse anomaly
because the aspect has to be redefined; moreover, it increases the complexity of aspect
code.

In AspectJ, one can adopt the existing composition operators such as declare prece-
dence, scoping pointcut predicates such as cflow and within, and/or higher level aspects
to define architectural constraints and the coordination semantics between the reactive
and non-reactive parts. The precedence rules can be defined separately from the cor-
responding aspects. However, adopting the scoping pointcut predicates and/or higher
level aspects may cause the redefinition of the corresponding aspects; consequently,
reuse anomaly can be experienced if the architecture evolves.

Let us illustrate a set of reuse anomalies that can be experienced if AspectJ is adopted
to implement our Recoverable Process example. Here, we aim at providing a reusable
implementation by modularizing each concern that appear in Recoverable Process. List-
ing 1 shows an excerpt of the abstract aspect AppProcess, which represents the
concern AppProcess. The aspect defines the attributes pid, name, status, init
and kill, as it is specified by AppProcess depicted in Figure 2. The pointcut pred-
icates e Initiated and e Killed are to select the state changes corresponding
to the initialization and destruction of a child process, respectively. After the point-
cut e Initiated is activated, the attribute status is initialized with the value
’running’. After the pointcut e Killed is activated, the attribute status is ini-
tialized with the value ’terminated’. We assume that the information about the
unique identifier of the child process, and the methods that construct or destruct the
child process are abstracted from the base program via pointcut arguments, and are as-
signed to the attributes pid, init and kill. The assignments to the attributes are
performed by the advice code and the helper methods in Listing 1.

378 S. Malakuti and M. Aksit

1 public abstract aspect AppProcess {
2 public int pid;
3 public String name;
4 public String status;
5 public Method init;
6 public Method kill;
7 abstract pointcut e Initiated(...);
8 abstract pointcut e Killed(...);
9 after(...): e Initiated(){ initiated();}

10 after(...): e Killed(){ killed();}
11 public void initiated(){ status=”running”; ...}
12 public void killed(){ status=”terminated”; ...}
13 }

Listing 1. Modular representation of the concern AppProcess

Each child process of interest is represented as a sub-class of AppProcess. For
example, Listing 2 shows an excerpt of the aspect MPCoreProcess to represent the
child process MPCore of the media-player software. Since the join point model of As-
pectJ does not support the join points representing process construction and destruction,
we are obliged to provide the workaround methods initMPCore and killMPCore
in the class Main, whose invocations represent the construction and destruction of MP-
Core, respectively. The pointcut predicates e Initiated and e Killed are defined
to select these invocations. The other child processes must be defined likewise.

1 public aspect MPCoreProcess extends AppProcess{
2 ...
3 pointcut e Initiated(...): call (∗ Main.initMPCore(..));
4 pointcut e Killed(...): call (∗ Main.killMPCore(..));
5 ...
6 }

Listing 2. Modular representation of the process MPCore

Listing 3 shows the aspect GlobalRecovery that defines a recovery unit for the
global recovery of the media-player software. The method getProcesses specifies
the processes MPCore, Audio and Video as the elements of the recovery unit. This is
achieved by retrieving the corresponding instance of the aspect AppProcess via the
operator aspectOf of AspectJ. The method getInitiator specifies the child pro-
cess MPCoreProcess as the initiator process, whose destruction causes the recovery
unit be restarted. the pointcut predicate e processfailed selects the join points
indicating that the MPCore process is killed. The advice code is provided as a means
to inform the destruction of MPCore; this is done by invoking the dummy method
notifyFailure.

Listing 4 defines the aspect ProcessManager, which represents the concern Pro-
cessManager of Recoverable Process. The aspect reacts to the events generated by
a recovery unit, and restarts the processes forming the recovery unit. The pointcut
notified selects the invocations of the method notifyFailure defined within
GlobalRecovery. The advice code first re-initializes the initiator process, then re-
trieves all other processes forming the recovery unit, kills and re-initializes them.

Event-Based Modularization of Reactive Systems 379

1 public aspect GlobalRecovery{
2 public AppProcess[] getProcesses(){
3 return new AppProcess[]{
4 MPCoreProcess.aspectOf(),
5 AudioProcess.aspectOf(),
6 VideoProcess.aspectOf()};
7 }
8 public AppProcess getInitiator(){return MPCoreProcess.aspectOf(); }
9 pointcut e processfailed (AppProcess p):

10 call(∗ AppProcess.killed()) &&
11 target(p) && && if(p == MPCoreProcess.aspectOf());
12 after (AppProcess process): e processfailed(process){notifyFailure();}
13 public void notifyFailure(){}
14 }

Listing 3. Modular representation of the global recovery unit

1 public aspect ProcessManager{
2 pointcut notified (GlobalRecovery ru):
3 call(∗ GlobalRecovery.notifyFailure())&& target(ru) ;
4 after(GlobalRecovery ru): notified(ru) {
5 //invoke init method of
6 //the initiator process via reflection
7 ...
8 for (AppProcess p: ru.getProcesses())
9 if (p != ru.getInitiator()){

10 //invoke kill method via reflection
11 //invoke init method via reflection
12 }
13 }
14 }

Listing 4. Modular representation of the concern ProcessManager

Let us assume that the media-player software evolves such that the functionality of
representing user interface is no longer handled by the child process MPCore. Instead, a
new child process named UserInterface is introduced, which executes the module GUI
as depicted in Figure 4.

This new child process must be taken into account for global recovery. In addition,
to improve the availability of the media-player software, we would like to also apply
Recoverable Process for the local recovery of UserInterface. This means that if this
child process is destroyed, it must be restarted individually, while other child processes
can continue their operation.

To implement the above-mentioned evolutions, we have to extend the media-player
software with new methods indicating the construction and destruction of the User-
Interface child process, and must provide a sub-class of the aspect AppProcess to
represent this child process. In addition, the aspect GlobalRecovery in Listing 3
must be extended to consider this child process.

To implement the local recovery, we must define a new recovery unit, say named as
LocalRecovery, which only consists of UserInterface. The functionality to restart

380 S. Malakuti and M. Aksit

child processes is the same for both local and global recovery, as such we would like
to reuse the aspect ProcessManager. As a possible solution, we may consider ex-
tending the pointcut predicate notified in the aspect ProcessManager to select
the corresponding joint points in LocalRecovery too. Since in future it may be
demanded to change the set of applied recovery strategies, for example, by removing
global recovery and adding local recovery for each child process, we would like to avoid
redefining ProcessManager for each evolution, and make it as reusable as possible.

To this aim as shown in Listing 5, we define RecoveryUnit as the base class for
the aspects representing recovery units. Listing 5 also shows the evolved implementa-
tion of GlobalRecovery and the implementation of the aspect LocalRecovery.
We also have to redefine the pointcut notified in the aspect ProcessManager to
let it interact with RecoveryUnit; this is shown in Listing 5.

As this example shows, a change in the architecture of Recoverable Process let us
experience reuse anomaly as we were obliged to apply several redefinitions in the im-
plementations to make them more reusable for possible future evolutions.

1 public abstract aspect RecoveryUnit{
2 public abstract AppProcess[] getProcesses();
3 public abstract AppProcess getInitiator();
4 pointcut e processfailed (AppProcess p) :
5 call(∗ AppProcess.killed()) &&
6 target(p) && destroyedProcess(AppProcess);
7 abstract pointcut destroyedProcess (AppProcess x);
8 after (AppProcess process): e processfailed(process) {notifyFailure();}
9 public void notifyFailure(){}

10 }
11 public aspect GlobalRecovery extends RecoveryUnit{
12 public AppProcess[] getProcesses(){
13 return new AppProcess[] {
14 MPCoreProcess.aspectOf(),
15 UserInterfaceProcess.aspectOf(),
16 AudioProcess.aspectOf(),
17 VideoProcess.aspectOf()};
18 }
19 public AppProcess getInitiator(){ return MPCoreProcess.aspectOf(); }
20 pointcut destroyedProcess(AppProcess x) :
21 target(x) && if(x == MPCoreProcess.aspectOf());
22 }
23 public aspect LocalRecovery extends RecoveryUnit{
24 public AppProcess[] getProcesses(){
25 return new AppProcess[]{ UserInterfaceProcess.aspectOf() }};
26 public AppProcess getInitiator(){ return UserInterfaceProcess.aspectOf();}
27 pointcut destroyedProcess(AppProcess x) :
28 target(x) && if(x == UserInterfaceProcess.aspectOf());
29 }
30 public aspect ProcessManager{
31 pointcut notified (RecoveryUnit ru):
32 call(∗ RecoveryUnit.notifyFailure())&& target(ru) ;
33 ...
34 }

Listing 5. Evolved representation of the concerns

Event-Based Modularization of Reactive Systems 381

During the global recovery of the media player software, the process UserInterface
is killed and re-initialized. LocalRecovery detects the destruction of UserInterface
during the global recovery, and notifies it to ProcessManager, which consequently
re-initializes the process UserInterface again. To prevent having two processes running
as UserInterface, we must define a constraint between local and global recovery strate-
gies: if a process is killed during global recovery, it must not locally be re-initialized.

We have various alternatives to express this constraint. For example, we can com-
pose GlobalRecovery and LocalRecovery such that LocalRecovery does
not publish a failure event if UserInterface is killed during the global recovery. This
constraint can be represented as the clause ”!cflow(adviceexecution() &&
within(RecoveryUnit))”, which must be conjuncted to destroyedProcess
of the aspect LocalRecovery in Listing 5. However, this solution causes the spec-
ification of architectural constraints gets tangled with the aspect LocalRecovery,
which increases the complexity of the aspect, and makes it fragile to the evolution in
the architectural constraints. Another alternative implementation is to encode this con-
straint in the aspect ProcessManager, which suffers from the same problems.

Assume that the architectural constraint evolves such that if the global recovery
fails to successfully restart UserInterface, local recovery must still be applied to this
process. To increase reuse, we would like to define this constraint modularly via as-
pects. For this, we have to replace ProcessManager with two aspects, named as
ProcessManager4GR and ProcessManager4LR, so that it is possible to dis-
tinguish between the action for the global and local recovery. Second, the aspects
GlobalRecovery and LocalRecovery must be redefined so that the method
notifyFailure is invoked from within them, instead of from their base class.

Listing 6 shows an excerpt of the aspect ProcessManager4GR. Here, line 11
initializes a process and assigns the result of initialization to the variable result. If
the initialization succeeds, the unique identifier of the process, which is generated by
the operating system, is returned; otherwise the return value is -1. In lines 12 and 13 if
the result equals -1, the helper method failedRecovery is invoked with the name
of the failed process as its argument.

Listing 6 defines the aspect Coordinator that modularizes the architectural con-
straint. It selects the invocations of the method failedRecovery on the instances of
ProcessManager4GR. If the failed process is UserInterface, it invokes the method
notifyFailure on the aspect LocalRecovery. Consequently, the recovery is
performed for the process UserInterface.

As the example implementation of Recoverable Process in AspectJ shows, sev-
eral helper methods in the base program and aspects were defined to overcome the
limited join point model of AspectJ; examples are the methods initMPCore and
killMPCore that are referred to in Listing 2, and the methodsinitiated, killed
and notifyFailure in Listings 1 and 3, respectively. Moreover, avoiding reuse
anomaly in AspectJ is a challenge, because the concerns cannot properly be separated
and modularized. Consequently, evolution demands, for example changes in the base
program and architectural constraints, have ripple modification effects on several parts
of the implementation, and cause redefinition of the parts that are irrelevant to the evo-
lution demands.

382 S. Malakuti and M. Aksit

1 public aspect ProcessManager4GR{
2 pointcut notified (GlobalRecovery ru):
3 call(∗ GlobalRecovery.notifyFailure())&& target(ru);
4 after(GlobalRecovery ru): notified(ru){
5 //invoke init method of
6 //the initiator process via reflection
7 ...
8 for (AppProcess p : ru.getProcesses())
9 if (p != ru.getInitiator()){

10 //invoke kill method via reflection
11 int result = //invoke init method via reflection
12 if (result == −1)
13 failedRecovery(p.name);
14 }
15 }
16 protected void failedRecovery(String name){}
17 }
18 public aspect Coordinator{
19 pointcut notified (String name):
20 call(∗ ProcessManager4GR.failedRecovery(String)) && args(name);
21 after(String name): notified(name){
22 if (name.equals(”UserInterface”))
23 LocalRecovery.aspectOf().notifyFailure();
24 }
25 }

Listing 6. A modular representation of the coordination concern

AspectJ Extensions: Several extensions are proposed to overcome the limitations of
AspectJ; however, they still fall short to fulfill the requirements outlined in Section 2.3.
In the following, we briefly discuss a relevant set of these extensions.

There have been attempts to extend the join point model of AspectJ with new ele-
ments. For example in [20], the so called loop join point is introduced. Unfortunately,
such extensions do not change ”the fixed set of elements feature” of the join point
model. EJP [26] facilitates specifying arbitrary Java code blocks as event calls. Here, a
new join point can be declared as a special kind of method interface. In the code where
a join point must be activated, a reference to the corresponding join point declaration is
made. In case multiple languages are adopted in the implementation of the non-reactive
part, such an approach may become too limited since it works only with Java based im-
plementations. IIIA [26] is another approach which has the same shortcomings as EJP
in case multiple languages are adopted.

Tracematches [18] adopts the regular expression formalism over AspectJ pointcuts
to express the expected sequence of event calls. The advice code is executed when the
sequence matches at runtime. Although Tracematches extends the expressive power of
AspectJ’s pointcut language in binding to event calls of interest, it still limited to the
expressive power of regular expressions. As it is extensively studied in the runtime
verification community [27], the expressive power of other kinds of formalisms, such
as temporal logics or state machines, may be needed to bind to the desired event calls.

Event-Based Modularization of Reactive Systems 383

Association Aspects [19] facilitates parameterizing aspects with a group of objects,
which has a fixed length; it also offers pointcuts predicates to select join points that are
activated on such a group of objects. Although this improves the expressive power of
AspectJ pointcut language, the pointcut expressions are not defined separately from the
aspect implementation, and the same implementation cannot be reused for two different
groups of objects with different length.

A vision to extend AspectJ to define event calls and reactions to event calls is pro-
posed in [21]. This approach distinguishes between event call declaration and aspect
declaration blocks. The former facilitates programming composite event calls over the
primitive event calls that are defined in the AspectJ join point model, and/or other com-
posite event calls. The aspect declaration block selects the specified event calls of in-
terest and define reactions to them. Inherited from AspectJ, this proposal also suffers
from a fixed set of primitive events that can be published from Java programs, lack of
support for DSLs, and the same set of problems in defining architectural constraints.

Compose*: Compose* [17] is a platform-independent language, which can be used to
enhance the composition mechanisms of the Java, C and .Net languages. The join point
model of Compose* includes the event calls that correspond to the incoming and outgo-
ing messages to and from objects. To react on the incoming and/or outgoing messages,
Compose* defines the notion of filters which are attached to objects. Each filter has a
type that implements its functionality. A group of correlated filters are defined as a filter
module, which is a unit of reuse. The pointcut predicates in Compose* are termed as
superimposition specification, which are expressed using a Prolog program. Superim-
position specifications facilitate selecting the objects of interest (i.e. the non-reactive
part) and composing the corresponding filter modules with these objects.

Since the join point model of Compose* is also fixed, the same problems that were
discussed for AspectJ may appear. Although the Compose* compiler supports multiple
base languages, it is limited to one language at a time for its Java and C implementa-
tions, and it does not facilitate abstracting event calls from the non-reactive part imple-
mented in multiple languages. In Compose*, this shortcoming has been overcome in
the .Net languages.

Filter modules can be regarded as a means to modularize the reactive part; since filter
modules are defined separately from superimposition specifications, the reuse possibil-
ities of filter modules are enhanced in comparison to AO languages where advice code
and pointcut predicates are integrated under a single linguistic abstraction.

By means of filter types, Compose* facilitates defining domain-specific advice code.
In [28], we defined the E-Chaser language [28], which is an extension to Compose*, and
showed the possibility to define domain-specific filter types for the runtime verification
domain.

Compose* supports one instantiation strategy; i.e. individual instances of filter mod-
ules are created for each individual object on which the filter module must be superim-
posed. This reduces the reusability of the reactive part if they must process event calls
that are triggered by more than one object.

384 S. Malakuti and M. Aksit

The set of filters that are grouped within a filter module provide the actual function-
ality of the reactive part. Filters cannot publish event calls; consequently, the reactive
part must be implemented as one monolithic module, which increases the complexity
of implementations and reduce their reusability.

3.3 Languages Supporting Event-Based Communication

Due to the inherent event-based communication of the non-reactive part with reactive
part, one may consider adopting programming languages that provide dedicated con-
structs that support event-based communications. In the following, we discuss reuse
anomalies in a representative set of these languages.

Event-Delegate Mechanism of C#: The OO languages usually offer an event-delegate
mechanism to facilitate implementation of event-based applications. This sections eval-
uates the event-delegate mechanism of C#, nevertheless the discussions can be general-
ized for the other event-delegate mechanisms that have similar characteristics.

In the event-delegate mechanism of C# [29], new event types and their attributes
can be defined via special kinds of classes, which extend class System.EventArgs. To
facilitate the binding of event publishers to event consumers, C# provides a pointer-like
mechanism named as delegate, which is a type that references a method; any method
that matches the delegates signature, which consists of the return type and parameters,
can be assigned to the delegate. This facilitates binding various event consumer methods
to an event. Events are published by instantiating the corresponding event type, and
invoking the corresponding delegate. As a result, the event consumer methods that are
bound to that delegate are invoked to process the event.

The non-reactive part of the system can be implemented as classes that define event
types along with necessary delegates, and publish the necessary information as events.
The reactive part can be implemented as classes that define methods whose signature
matches the desired delegates; these methods implement the functionality to process the
events. Although new kinds of events can be programmed, they can only be published
from programs that are written in C#. As for AspectJ, there is a lack of support for DSLs
to implement the reactive part.

Although event-based communication facilitate loose coupling of the non-reactive
and the reactive parts, the types of events that are processed by the reactive part is
fixed by the signature of methods that are defined in the reactive part. The lack of
support for quantifying over events, may reduce the reusability of the reactive part; for
example, if it must be reused to process multiple different types of events published
from various sources. Moreover, the need for explicit binding of the reactive part to
the non-reactive part also reduces the reusability of implementations. For example, if
new events and event calls are introduced, the reactive and the binding parts must be
redefined accordingly.

The evolution of architecture of system may also have ripple modification effects on
various parts of programs. For example, if system evolves such that there are multiple
reactive parts processing one event, it may be necessary to define the event processing
order. C# does not provide dedicated constructs for this matter; hence, programmers are

Event-Based Modularization of Reactive Systems 385

obliged to provide workaround code in the non-reactive, binding and/or reactive parts.
Such workarounds scatter across and tangle with multiple classes and consequently re-
duces the reusability of implementations for various kinds of architectures. More com-
plex constraints, such as conditional reactions to a specific set of events, must be imple-
mented within the methods in the reactive parts. This reduces the reusability of reactive
part for architectural configurations.

EScala: EScala [30] is an extension to the Scala [31] language with object-oriented
events. EScala supports implicit events, which correspond to the join points in AO lan-
guages and marks language-specific execution points, such as the beginning or the end
of the execution of a method. These events can be selected by the available pointcut
predicates. The EScala language also facilitates defining so-called imperative events
which are similar to the C# events; these must be explicitly published from within ap-
plication classes.

EScala combines the idea of event-based programming from C#-like languages, and
AO languages to define events at the interface of objects. However, the limitations dis-
cussed for AspectJ and C# are valid for EScala. For example, although new kinds of
imperative events can be defined, these are limited to the base software events as im-
plemented in Scala. Moreover, similar to C# and AspectJ, the implementation of con-
straints among multiple reactive part may scatter across and tangle with the reactive
part, and consequently may introduce reuse anomalies. DSLs are not supported to im-
plement the reactive part; last but not least, the pointcut predicates have limited ex-
pression power to select the event calls of interest. Consequently, complex selection
semantics must be programmed in the reactive part, which increases the complexity of
implementation and reduces its reusability.

Ptolemy: In Ptolemy [32], the execution of arbitrary expressions can be identified as
events. Ptolemy facilitates defining event types for abstracting over such events. Events
must explicitly be published by binding an event type to an expression in the base pro-
gram. Ptolemy allows handler methods to be declaratively registered for a set of events
using one succinct pointcut predicate. Handler methods and pointcut predicates can be
regarded as a means to define reactive part and their binding to events, respectively.

Although new kinds of event types and events can be defined, Ptolemy is limited
to support programs implemented in Java. As for AspectJ, the pointcut language of
Ptolemy has a limited expressive power to select the events of interest; i.e. queries can
only be expressed over event types. Consequently, if needed, complex binding seman-
tics must be expressed as a part of handler methods, which will reduce the reusability
of these methods in case different binding semantics are needed.

Handler methods and pointcut expressions are defined within one class. Such a
tight coupling of handler methods to the specification of events of interest, reduces the
reusability of handlers for different events. The necessary interaction constraints must
be programmed as part of handler methods. This may reduce the reusability of handler
methods in case different constraints are needed due to evolution requirements.

386 S. Malakuti and M. Aksit

3.4 Dedicated Languages

In addition to the general-purpose languages explained in the previous sections, there
are diverse sets of DSLs that can be adopted for implementing reactive systems. Exam-
ples are the languages developed for the domain of runtime verification [28, 33, 13, 34].

In [10], we performed an extensive study of the available languages for the domain
of runtime verification, and identified that they significantly fall short to fulfill the re-
quirements mentioned in Section 2.3. Except for the E-Chaser languages [28], these
DSLs support a limited set of events and event calls, which can be published from a
single implementation languages. Consequently, if the non-reactive part evolves with
different implementation languages, multiple DSLs must be adopted to implement the
reactive part, without a standard means to compose these DSLs.

The DSLs developed for the domain of runtime verification do not facilitate mod-
ularizing various concerns that appear in the reactive part. Moreover, they support a
fixed architecture for reactive systems, and do not offer means to express architectural
constraints such as ordering and conditional execution of the reactive parts. Last but
not least, these languages do not facilitate defining hierarchal architectures for reactive
systems.

4 Event Composition Model

In [8, 10] we proposed Event Composition Model, which offers a set of novel concepts
to effectively modularize and compose concerns that typically appear in runtime verifi-
cation systems. This paper explains the core concepts of Event Composition Model and
their suitability in structuring reusable reactive systems.

Figure 5 is a UML class diagram, which depicts the core concepts of reactive systems
in terms of the concepts introduced by Event Composition Model. Here, we assume that
a reactive system consists of a set of non-reactive part and event module.

We regard events as the core concept for implementing reactive systems. In Event
Composition Model, events are typed entities. Event Composition Model distinguishes
between base events, which represent the events that are published by the non-reactive
part, and reactor events, which represent the events that are published by event mod-
ules. An event type defines a set of attributes for the events. Application-specific and
domain-specific attributes can be defined for each type of event.

Event modules facilitate modularizing a group of related events and the reactions to
them. In the literature, module is defined as a reusable software unit with well-defined
interfaces and implementation. The implementation is encapsulated, and the interfaces
of the module are points of interaction with its environment. Event modules adhere to
this definition in the following ways.

To facilitate reuse, event modules are identifiable and referable by their unique
names. An event module has an input interface, which specifies the set of events
of interest to which the event module must react. One important difference between
the input interface of modules in programming languages and the input interface of
event modules is that in programming languages input interfaces are invoked ex-
plicitly, whereas in event modules invocations are implicit. The explicit invocation
means that programmers write code for invoking the input interface of a module. In

Event-Based Modularization of Reactive Systems 387

event module

-name: String

reactor event type
- inner

event type

reactor type

event

input interface output interfacereactor chain

attribute
0..*
has

reactorvariable
 0..*
has

 1..*has

reactive system

0..* selected by

*

publishes

non-reactive part

0..*

publishes

base event type

Fig. 5. A representation of reactive systems in Event Composition Model

contrast, implicit invocation [22] means that there is no need for such code; when an
event of interest occurs, the corresponding event module is activated by the language
environment.

The implementation of an event module is termed as reactor chain, which contains
a set of reactors and variables. Each reactor processes (a subset of) the events specified
in the input interface of the event module. Reactors are typed entities; a reactor type
is a domain-specific type that defines the semantics in processing the events of interest.
The input interface and implementation of an event module are separated from each
other, and yet bound to each other so that the implementation can process the specified
input events.

While processing an input event, a reactor may publish new events, which are termed
as reactor events. These events have a special attribute named as inner that keeps a
reference to the input event being processed by the reactor. This facilitates maintaining
necessary information about the casual dependency of events. An event module has
an output interface, which defines the set of events that are published by the event
module to its environment. The output interface of an event module bound to (a sub-set
of) reactor events that are published by the reactors. The events published by an event
module are available in the execution environment, and can be selected by other event
modules. This facilitates composing multiple event modules with each other to form
a hierarchy. The event modules in higher levels of the hierarchy can implement and
modularize the composition constraints among the event modules residing at the lower
levels of the hierarchy.

388 S. Malakuti and M. Aksit

5 The EventReactor Language

In [8, 23, 10], we introduced the EventReactor language2, which offers dedicated con-
structs to define the concepts of Event Composition Model. In [10], we illustrated how
the features of EventReactor improves on the existing DSLs for the domain of runtime
verification. In this section makes use of our illustrative Recoverable Process example
to explain the features of EventReactor and their suitability to achieve reusable imple-
mentations.

5.1 Implementing Recoverable Process in EventReactor

To implement the concerns of interest in EventReactor, the following tasks must be
carried out: a) the necessary event types and events must be defined in EventReactor;
b) the base software must be instrumented to publish the specified events to the run-
time environment of EventReactor; c) the necessary reactor types must be defined in
EventReactor; and d) the concerns of interest must be defined as event modules.

It is important to note that the defined event types, events, reactor types, reac-
tor chains and event modules are treated as libraries and can be reused. The above-
mentioned steps are explained in the following.

Defining Event Types and Events: Event types are data structures that define a set of
static and dynamic attributes for events. The former includes the set of attributes whose
values do not change and are known at the time an event is defined in the framework.
The latter defines the set of attributes whose values are known at the time an event is
published during the execution of software. EventReactor offers a dedicated language
to programmers to define the event types of interest. As Listing 7 shows, EventRe-
actor also makes use of this language to define three built-in event types EventType,
BaseEventType and ReactorEventType.

The data structure EventType, which is the super data structure for all event types,
defines publisher, thread, stacktrace, and returnflow as dynamic at-
tributes. The attribute publisher refers to the element that publishes the event; the
attribute thread refers to the thread of execution in which the event is published; the
attribute stacktrace refers to a report of the active stack frames at a certain point in
time during the execution of a software; the type StackTrace is defined by Event-
Reactor to keep the list of active stack frames. The attribute returnflow specifies
the changes that must be applied to the flow of execution of the publisher after an event
is successfully processed. The type Flow is defined by EventReactor as an enumera-
tion with the fields Continue, Exit and Return. The field Continue means that
the flow of execution must not be changed. The field Exit means that the execution
of program must terminate. The field Return means that the flow of execution must
return to the publisher.

2 http://sourceforge.net/projects/eventreactor/

http://sourceforge.net/projects/eventreactor/

Event-Based Modularization of Reactive Systems 389

1 eventtype EventType {
2 dynamiccontext:
3 publisher: Object;
4 thread: Long;
5 stacktrace: StackTrace;
6 returnflow: Flow;
7 }
8 eventtype BaseEventType extends EventType {}
9 eventtype ReactorEventType extends EventType {

10 dynamiccontext:
11 inner: EventType;
12 }

Listing 7. The specification of built-in super event types

Since Event Composition Model distinguishes between base events (i.e. published
by non-reactive part) and reactor events, EventReactor also provides the data struc-
tures BaseEventType and ReactorEventType to represent these two categories
of events. The data structure ReactorEventType defines the attribute inner to
maintain a reference to the event whose processing causes a reactor event to be pub-
lished.

As the concern AppProcess in Figure 2 shows, two events initiated and killed must
be defined for each child process of interest. These events indicate the creation and
the destruction of a child process, respectively. Listing 8 shows the specification of
the event type ChildProcessEvent. Here, the attributes PID and parent represent the
unique identifier of the child process and its parent, which is generated by the operat-
ing system. The events MPCoreInitiated and MPCoreKilled are defined of the
type ChildProcessEvent to represent the initialization and destruction of the child
process MPCore. The other events of interest are defined likewise.

1 eventtype ChildProcessEvent extends BaseEventType{
2 dynamiccontext:
3 PID: long;
4 parent: long;
5 }
6 event MPCoreInitiated instanceof ChildProcessEvent{}
7 event MPCoreKilled instanceof ChildProcessEvent{}

Listing 8. The specification of a user-defined event type

Publishing Events: To publish an event, it is necessary to initialize its attributes and
inform the runtime environment of EventReactor of the event. The API of EventReactor
offers two routines for this matter. In the first one, the information about the event is
provided as a comma-separated list of attributes and their values. This API is useful
if the base software is implemented in a language other than Java. The second API
is useful if the events are published from a Java program. In this case, EventReactor
generates Java classes from the specification of events; such a class defines the name of
the event and both the static and dynamic attributes specified for the event. To publish an
event, the corresponding Java class must be instantiated, the attributes specified in the

390 S. Malakuti and M. Aksit

part dynamiccontextmust be initialized, and finally the instantiated object must be
sent to the runtime environment of EventReactor.

1 public class MPCoreClass{
2 void initMPCore() {
3 ...
4 int processID= \\ create the child process MPCore
5 ...
6 MPCoreInitiated event = new MPCoreInitiated();
7 event.initializeDynamicAttribute(”publisher”, parentPID);
8 event.initializeDynamicAttribute(”thread”,CurrentThread.ID);
9 event.initializeDynamicAttribute(”stacktrace”,CurrentThread.stacktrace);

10 event.initializeDynamicAttribute(”PID”,processID);
11 event.initializeDynamicAttribute(”parent”, parentPID);
12 EventReactor.publish(event);
13 }
14 void killMPCore(){...}
15 }

Listing 9. An excerpt of MPCoreClass

In the media-player example, the parent process is the only publisher of events of in-
terest; consequently, the runtime environment of EventReactor is executed in the parent
process by its main thread of execution. For each child process of interest, we extend
the media-player software with a class that defines two methods: one for initiating the
child process, and one for killing it. From within these methods, the events that are de-
fined for the child process are published to the runtime environment of EventReactor.
The media-player software is also changed such that the parent process invokes these
methods when needed. Listing 9 shows an example of such a class for the child process
MPCore, in which two methods initMPCore and killMPCore are defined.

Defining Auxiliary Information for Control Calls: As Figure 2 shows, the concern
AppProcess has two attributes init and kill, which represent the methods that are used by
the media-player software to create or kill a child process, respectively. These methods
are invoked by ProcessManager to perform recovery. The necessary information about
these methods must also be defined in EventReactor. The compiler of EventReactor is
extendable with new kinds of specifications, providing that suitable generators are pro-
vided to translate them to Prolog facts and queries. Using this feature of EventReactor,
we provide a specification language to define the method of interest in EventReactor.
Listing 10 shows an excerpt of such specifications for the child process MPCore.

1 Method void initMPCore() In Class MPCoreClass
2 Method void killMPCore() In Class MPCoreClass

Listing 10. An excerpt of the specification auxiliary

Event-Based Modularization of Reactive Systems 391

Defining Reactor Types: EventReactor offers a dedicated language to define the re-
actor types of interest. Each reactor type is defined via a so-called action class and a
specification of meta information. The action class, which is implemented in Java, pro-
vides the functionality of reactor type in processing input events. The specification of
meta information defines the name of the reactor type, the name of its action class, the
name and type of reactor events that are published by the reactor type, and the parame-
ters of the reactor type.

1 reactortype React {
2 reaction = ReactClass;
3 events = { parameters.name: ReactorEventType};
4 parameters = {name: String};
5 }
6 reactortype RestartProcess {
7 reaction = RestartProcessClass;
8 parameters = {processes: List};
9 }

Listing 11. The specification of the reactor types

To implement our running example, we provide two reactor types: React and
RestartProcess, whose specification is depicted in Listing 11. The sole function
of React is to publish a reactor event when it receives an event to process. The name of
the reactor event must be provided as an argument to the reactor type. The reactor type
RestartProcess restarts a group of child processes that is specified as the parame-
ter of the reactor type. Listing 12 shows the implementation of the class ReactClass,
which provides the functionality of the reactor type React.

1 public class ReactClass extends ReactorAction {
2 String name;
3 @Override
4 public void initialize(Context context) throws Exception{
5 if (this.getParameters(”name”) == null)
6 {
7 throw new Exception(”The required parameter \”name\” is not
8 initialized”);
9 }

10 ...
11 }
12 @Override
13 public void execute(Event event, Context context) throws Exception{
14 ReactorEventType result = new ReactorEventType();
15 result.initializeStaticAttribute(”name”, name);
16 result.initializeDynamicAttribute(”inner”,event);
17 result.initializeDynamicAttribute(”publisher”,context.getEventModule());
18 ...
19 EventReactor.publish(result);
20 }
21 }

Listing 12. The implementation of an action class

392 S. Malakuti and M. Aksit

This class extends ReactorAction, which is the base action class provided by
EventReactor, and provides two methods initialize and execute. The former is
executed when the corresponding reactor is instantiated, for example to initialize the pa-
rameters of the reactor. The latter is executed when the corresponding reactor receives
an event to process. These methods can access the instances of the corresponding reac-
tor, reactor chain and event module via their argument context.

In Listing 12, the method initialize ensures that the parameter name is initial-
ized by the corresponding reactor. The method execute creates a reactor event, sets
the name of the reactor event, initializes the attribute inner with event whose pro-
cessing causes the reactor event be published, specifies the corresponding event module
as the publisher, and finally publishes the reactor event. For the sake of brevity, the
implementation of other reactor types is not discussed.

Defining the Non-reactive Part: In implementing Recoverable Process, we require
to represent the child process of interest as AppProcess. The actual representation of
child processes is provided by the operating system, and may not be directly accessible
to programmers. To achieve implementations that are abstract from a specific platform
and operating system, it is possible to adopt event modules to provide an abstract rep-
resentation of the non-reactive part. An abstract representation of child processes of
interest by means of event modules is explained in this section.

EventReactor offers a dedicated language to define the event modules and reactor
chains of interest. To increase the reusability of implementations, reactor chains are
defined as separate modules, so that they can be reused as the implementation of mul-
tiple event modules. Event modules are packaged within in so-called event packages.
Listing 13 defines the event package Processes in which event modules are defined
to represent the child processes of the media-player software. Line 3 selects the event
named as MPCoreInitiated that represents the initialization of MPCore during the
execution of the media-player software. Likewise, line 4 selects the event named as
MPCoreKilled that represents the destruction of MPCore during the execution of
the media-player software.

Lines 5–6 select information about the method initMPCore whose execution in
the media-player software initializes the child process MPCore. This method is defined
in the EventReactor language as shown in Listing 10. Likewise, lines 7–8 specify infor-
mation about the method killMPCore whose execution in the media-player software
terminates the child process MPCore. The events and methods for other child processes
of the media-player software must be defined similarly.

Lines 11–13 define the event module MPCoreProcess to represent the child pro-
cess MPCore. Here, the events selected by e inited and e killed are grouped as
the input interface of the event module. The reactor chain AppProcessImpl is spec-
ified as the implementation of this event module. The selected events and methods are
passed to the reactor chain as its arguments. As the output interface, the event module
publishes the events inited and killed. Since there is only one child process as
MPCore in the media-player software, the event module is specified to be instantiated
in a singleton manner. The other child processes of interest must be specified in a similar
way.

Event-Based Modularization of Reactive Systems 393

1 eventpackage Processes{
2 selectors
3 e inited = {E | isEventWithName(E, ’MPCoreInitiated’)};
4 e killed = {E | isEventWithName(E, ’MPCoreKilled’)};
5 m init = {M | isMethodWithName (M, ’initMPCore’),
6 isClassWithName (C, ’MPCoreClass’), isDefinedIn(M, C)};
7 m kill = {M | isMethodWithName (M, ’killMPCore’),
8 isClassWithName (C, ’MPCoreClass’), isDefinedIn(M, C)};
9 ...

10 eventmodules
11 MPCoreProcess := {e inited, e killed} <−
12 AppProcessImpl (m init, m kill, e inited, e killed) −>
13 {inited: ReactorEventType, killed: ReactorEventType};
14 AudioProcess := ...
15 VideoProcess := ...
16 }

Listing 13. The specification of the child processes of interest

Listing 14 defines the reactor chain AppProcessImpl to implement the function-
ality of the concern AppProcess. Here, the parameters pinit and pkill represent
the methods that create or kill a child process, respectively. The parameters pinited
and pkilled represent the events indicating that a child process is initiated or killed,
respectively. As Figure 2 shows, the concern AppProcess has a set of attributes and
events. These attributes and events are represented via the variables and reactors in the
reactor chain, respectively.

1 reactorchain AppProcessImpl (pinit:Method,pkill:Method,pinited:Event,pkilled:Event) {
2 variables
3 init : Method = pinit;
4 kill : Method = pkill;
5 pid : Integer;
6 status : String;
7 reactors
8 reportInitiated : React = (event.name == pinited.name) =
9 { status = ’running’; pid = event.PID; reactor.name = ’inited’; };

10 reportKilled : React = (event.name == pkilled.name) =
11 { status = ’terminated’; pid = −1; reactor.name = ’killed’;};
12 }

Listing 14. The specification of the reactor chain AppProcesssImpl

Lines 3–4 define the variables init and kill and initializes them with the corre-
sponding parameters of the reactor chain. Line 5 defines the variable pid of type
Integer, which will maintain the unique identifier of the corresponding child pro-
cess. Line 6 defines the attribute status, which will maintain the state of the cor-
responding child process. Lines 8–9 define the reactor reportInitiated of type
React, which only processes the input events represented by pinited. In the body
of this reactor, the value ’running’ is assigned to the attribute status of the re-
actor chain, the unique identifier of the created process is retrieved from the attribute
PID of the selected event and is assigned to the attribute pid of the reactor chain, the

394 S. Malakuti and M. Aksit

value ’inited’ is specified as the name of the event that will be published by the
reactor. As a result, upon the occurrence of the event pinited, the event inited is
published by the reactor, and the specified values are assigned to the attributes of the
reactor chain.

Lines 10–11 define the reactor reportKilled of type React, which specifies
the event pkilled to be of interest. As it is specified in the body of the reactor, upon
the occurrence of pkilled, the value ’terminated’ is assigned to the attribute
status, the value -1 is assigned to the variable pid of reactor chain, and the value
’killed’ is specified as the name of the reactor event.

At runtime when the child process MPCore is created in the media-player software,
the event MPCoreInitiated is published to the runtime environment of EventRe-
actor by the code depicted in Listing 9. The runtime environment first checks whether
the event kind is known in the language. Since it is so, it creates a single instance of the
event module, instantiates the reactor chain AppProcessImpl for it, and initializes
the attributes of the reactor chain as it is specified. The reactor ReportInitiated
receives the event, and since the event is of interest, the reactor assigns the specified
values to the variables defined in the reactor chain, and publishes the reactor event
inited. Afterwards, the event is received by the reactor ReportKilled, but the
reactor ignores it because it is not of interest.

Defining the Reactive Part RecoveryUnit: Listing 15 defines the GRUnit event pack-
age in which an event module is defined to represent a recovery unit for the global recov-
ery of the media-player software. This recovery unit must group all the child processes,
and it must report a failure when the child process MPCore is killed.

1 eventpackage GRUnit{
2 selectors
3 e killed = {E | isEventWithName(E, ’killed’),
4 isEventModuleWithName (EM, ’∗.MPCoreProcess’), isPublishedBy(E, EM)};
5 em mpcore = {EM | isEventModuleWithName (EM, ’∗.MPCoreProcess’)};
6 em audio = ...
7 em video = ...
8 eventmodules
9 GlobalRU := {e killed} <−

10 RecoveryUnitImpl ({em mpcore, em audio, em video})
11 −> {failure : ReactorEventType};
12 }

Listing 15. The specification of the global recovery unit

Lines 3–4 of Listing 15 select the event killed that is in the output interface of the
event module MPCoreProcess, and name it as e killed in the event package. Line
5 selects the event module MPCoreProcess. Likewise, lines 5–7 select other event
modules representing the other child processes of the media-player software. Lines 9–
11 define the event module GlobalRU. The event e killed is specified as its input
interface, and RecoveryUnitImpl is specified as its implementation. The list of
selected child processes is passed to the reactor chain RecoveryUnitImpl. The
event module publishes a reactor event named failure as its output interface.

Event-Based Modularization of Reactive Systems 395

Listing 16 defines the reactor chain RecoveryUnitImpl to implement the func-
tionality of the concern RecoveryUnit. The reactor chain receives the list of corre-
sponding child processes in its parameter processLst. In the body of the reactor
chain, the variable processes is initialized with processLst, and the reactor
reportFailure is defined of type React. The name of the reactor event that will
be published by reportFailure is specified as ’failure’.

1 reactorchain RecoveryUnitImpl (processLst: List) {
2 variables
3 processes : List = processLst;
4 reactors
5 reportFailure : React = { reactor.name = ’failure’; };
6 }

Listing 16. The specification of the reactor chain RecoveryUnitImpl

At runtime if the child process MPCore is killed, the event killed is published by
the event module MPCoreProcess. As a result, a single instance of the event module
GlobalRU and its reactor chain is created and the event is provided to the reactor
reportFailure, which consequently publishes the reactor event failure as it is
specified in line 5 of Listing 16.

Defining the Reactive Part ProcessManager: Listing 17 defines the event package
ProcessManager in which event modules are defined to represent the concern Pro-
cessManager of Recoverable Process. Lines 3–5 select the recovery unit GlobalRU
and the event published by it. Lines 7–8 define the event module RestartAll. It
takes the event selected by e global failure as input interface and binds the reac-
tor chain ProcessManagerImpl to it. The value of the attribute processes that
is defined in the implementation of GlobalRU is passed as the argument; the event
module does not publish any event as its output interface.

Listing 18 defines the reactor chain ProcessManagerImpl to implement the
functionality of the concern ProcessManager. The reactor chain receives the list of
processes to be restarted via its processes parameter. These are, in fact, expected to
be event modules whose implementation is the reactor chain AppProcessImpl. Line
3 defines the reactor restart of type RestartProcess and assigns processes
to the parameter processes of the reactor type.

1 eventpackage ProcessManager{
2 selectors
3 e global failure = {E | isEventWithName(E, ’failure’),
4 isEventModuleWithName (EM, ’∗.GlobalRU’), isPublishedBy(E, EM)};
5 em global = {EM | isEventModuleWithName (EM, ’∗.GlobalRU’)};
6 eventmodules
7 RestartAll := {e global failure} <−
8 ProcessManagerImpl(em global.processes) −> {};
9 }

Listing 17. The specification of a process manager

396 S. Malakuti and M. Aksit

1 reactorchain ProcessManagerImpl(processes: List){
2 reactors
3 restart : RestartProcess = {reactor.processes=processes};
4 }

Listing 18. The specification of the reactor chain ProcessManagerImpl

At runtime, if the event failure is published by the event module GlobalRU the
reactor Restart is informed of the event, and restarts the child processes that form
the recovery unit. For this matter, the reactor retrieves the necessary information about
the methods that kill and re-initialize a child process from the attributes init and
kill of the corresponding instance of AppProcessImpl, and invokes them.

6 Reusable Implementations in EventReactor

By means of a set of evolution scenarios, this section illustrates how the EventReactor
language supports reusable implementations of Recoverable Process.

6.1 Evolution of the Non-reactive Part and Event Calls

As it is explained in 3.2, assume for example that the media-player software evolves
such that the functionality of representing user interface is no longer handled by the
child process MPCore. Instead, a new child process named UserInterface is introduced,
which executes the module GUI.

Through event modules, we can modularly extend the implementation explained in
the previous section with an abstract representation for UserInterface. Listing 19 shows
the definition of the event module UIProcess. In contrary to the AspectJ implemen-
tation, no redefinition of the modules is required, and the AppProcessImpl reactor
chain is reused with suitable arguments to provide the implementation of the event
module.

In is worth mentioning that EventReactor is extensible with new event types, events
and auxiliary information for control calls. The set of events and auxiliary methods that
must be defined for this matter are similar to the ones explained in Sections 5.1.

1 eventpackage UserInterfaceProcess { selectors
2 e inited = {E | isEventWithName(E, ’UIInitiated’)};
3 e killed = {E | isEventWithName(E, ’UIKilled’)};
4 m init = {M | isMethodWithName (M, ’initUI’),
5 isClassWithName (C, ’UIClass’), isDefinedIn(M, C)};
6 m kill = {M | isMethodWithName (M, ’killUI’),
7 isClassWithName (C, ’UIClass’), isDefinedIn(M, C)};
8 eventmodules
9 UIProcess := {e inited, e killed} <−

10 AppProcessImpl (m init, m kill, e inited, e killed) −>
11 {inited: ReactorEventType, killed: ReactorEventType};
12 }

Listing 19. The specification of the child process UIProcess

Event-Based Modularization of Reactive Systems 397

1 eventpackage GRUnit{
2 selectors
3 e killed = ...
4 em mpcore = ...
5 em audio = ...
6 em video = ...
7 em ui = {EM | isEventModuleWithName (EM, ’∗.UIProcess’)};
8 eventmodules
9 GlobalRU := {e killed} <−

10 RecoveryUnitImpl ({em mpcore, em ui, em audio, em video})
11 −> {failure : ReactorEventType};
12 }

Listing 20. The evolved specification of the global recovery unit

The child process UserInterface must be considered in the global recovery too.
Therefore, inevitably, we must extend the implementation in Listing 15 to include
UserInterface. Listing 20 shows the evolved implementation of the GlobalRU event
module. Here, we define line 7 to select the event module UIProcess, and we modi-
fied line 10 to include the selected event module in the arguments of the reactor chain
RecoveryUnitImpl. As this listing shows, in contrary to the AspectJ implementa-
tion, such an extension can easily be performed by adapting the arguments of the reactor
chain RecoveryUnitImpl, without the need for changing the internal implementation of
this reactor chain.

1 eventpackage LRUnit{
2 selectors
3 e uikilled = {E | isEventWithName(E, ’killed’),
4 isEventModuleWithName (EM, ’∗.UIProcess’), isPublishedBy(E, EM)};
5 em ui = {EM | isEventModuleWithName (EM, ’∗.UIProcess’)};
6 eventmodules
7 LocalRU := {e uikilled} <− RecoveryUnitImpl({em ui})
8 −>{failure : ReactorEventType};
9 }

10 eventpackage UIProcessManager{
11 selectors
12 e local failure = {E | isEventWithName(E, ’failure’),
13 isEventModuleWithName (EM, ’∗.LocalRU’), isPublishedBy(E, EM)};
14 em local = {EM | isEventModuleWithName (EM, ’∗.LocalRU’)};
15 eventmodules
16 RestartUI := {e local failure} <− ProcessManagerImpl(em local.processes)−> {};
17 }

Listing 21. The specification of a local recovery unit and its process manager

To improve the availability of the media-player software, we would like to also ap-
ply Recoverable Process for the local recovery of UserInterface. Listing 21 defines
LocalRU to modularly represent a recovery unit containing the UserInterface child
process, and defines the event module RestartUI to modularly represent the local re-
covery of this child process. In contrary to the AspectJ implementation, the extensions
were applied modularly without the need for redefining the implementations. Besides,

398 S. Malakuti and M. Aksit

the separation of reactor chains from the interfaces of event modules as well as the
support for parametric reactor chains help to improve the reusability of the implemen-
tation further. Here, the RecoveryUnitImpl and ProcessManagerImpl reactor
chains are reused with suitable arguments.

6.2 Evolution of the Reactive Part and Event/Control Calls

The event modules GlobalRU and LocalRU in Listings 20 and 21 both specify the
child process UserInterface as an element of their recovery unit. Assume that at run-
time the child process MPCore fails. As a consequence the global recovery kills and
re-initializes the child processes Audio, Video, UserInterface. When the child process
UserInterface is killed for the global recovery, the event failure, which is speci-
fied in lines 3–4 of Listing 17, is detected and the child process UserInterface is re-
initialized for the local recovery. As a result, there will be two processes running as
UserInterface.

To overcome the above problem, we want to extend the implementation of the reac-
tive part of our example with a constraint: If the global recovery is being executed on
a group of processes, these processes must not be recovered locally. Listing 22 defines
the event package RecoveryConstraint in which this constraint is specified.

EventReactor facilitates defining the desired constraints among the event modules
RestartAll and RestartUI, separately from the corresponding event modules, in
the part constraints of the event package. In line 6, the operator ignore, which
is a predefined composition operator in EventReactor, indicates that the event module
em RestartUI must ignore the events that are published during the execution of the
event module em RestartAll.

1 eventpackage RecoveryConstraint{
2 selectors
3 em restartAll = {EM | isEventModuleWithName (EM, ’∗.RestartAll’)};
4 em restartUI = {EM | isEventModuleWithName (EM, ’∗.RestartUI’)};
5 constraints
6 ignore(em restartUI, em restartAll);
7 }

Listing 22. The specification of an architectural constraint

More complex constraints can be defined as event modules, and dedicated reactor
types can be defined for their implementation. As another evolution case, assume that if
the global recovery fails to re-initialize UserInterface, the local recovery must still try
to do so.

To implement this case, we need to define a new event call from the event module
RestartAll, indicating that the restart operation for a child process is failed. In EventRe-
actor, such an event will be a reactor event, which must be published from within the
reactor Restart in Listing 18. To define such a reactor event, we need to extend the
specification and implementation of the reactor type RestartProcess. Listing 23
shows the evolved specification of this reactor type, which indicates that the reactor
eventfailed of the type RecoveryResult is published if the reactor fails to restart

Event-Based Modularization of Reactive Systems 399

a child process. The event type RecoveryResult must also be defined in EventRe-
actor similarly to the other events types of interest. In short, it has an attribute named as
processName in its dynamic context, which specifies the name of the child process
that the reactor type aims to restart.

We also need to modify the event module RestartAll so that it publishes the
event failed as its output interface to it environment. Listing 24 shows the evolved
event module RestartAll.

1 reactortype RestartProcess {
2 reaction = RestartProcessClass;
3 events = { failed: RecoveryResult};
4 parameters = {processes : List};
5 }

Listing 23. The evolved specification of the reactor type RestartProcess

1 eventpackage ProcessManager{
2 selectors
3 ...
4 eventmodules
5 RestartAll := {e global failure} <−
6 ProcessManagerImpl(em global.processes) −> {failed: RecoveryResult};
7 }

Listing 24. The evolved specification of a process manager

After these preparations, we can modularly extend the implementation of the re-
active part of our example to coordinate the global and local recovery. Listing 25
defines the event module Coordinator for this matter. Here, lines 3–4 select the
event failed that is published by the event module RestartAll. Line 5 selects the
event module UIProcess. Lines 7 defines the event module Coordinator, speci-
fies e failure as its input interface, and the reactor chain CoordinatorImpl as
its implementation. The argument ’UserInterface’ of the reactor chain indicates
the name of the child process of interest, and the argument em ui represents the child
process.

1 eventpackage Coordination{ selectors
2 e failure = {E | isEventWithName (E, ’failed’),
3 isEventModuleWithName (EM, ’∗.RestartAll’), isPublishedBy(E, EM)};
4 em ui = {EM | isEventModuleWithName (EM, ’∗.UIProcess’)};
5 eventmodules
6 Coordinator := {e failure}<− CoordinatorImpl (’UserInterface’, em ui)−>{ };
7 }

Listing 25. The specification of a complex architectural constraint

Listing 26 defines CoordinatorImpl, which receives the name of the child pro-
cess of interest and a reference to the event module representing it as its parameters.
In the body of the reactor chain, we reuse the reactor type RestartProcess to

400 S. Malakuti and M. Aksit

define the reactor restart. This reactor processes only those events whose attribute
processName is equal to failedProcess. In the body of the reactor, the param-
eter process is assigned to the parameter processes of the reactor. At runtime,
if the event module RestartAll publishes the event failed for the child process
UserInterface, the event module coordinator will be instantiated, and the reactor
chain CoordinatorImpl will restart the child process.

1 reactorchain CoordinatorImpl (failedProcess, process){
2 reactors
3 restart : RestartProcess = (event.processName ==failedProcess)
4 {reactor.processes = {process};}
5 }

Listing 26. The specification of the reactor chain CoordinatorImpl

7 Evaluation

The concepts introduced by Event Composition Model, which are implemented in the
EventReactor language, facilitate achieving reusability in the implementation of reac-
tive systems, in the following ways:

– Events: As we explain it in 8, the compiler of EventReactor automatically detects
a set of general-purpose events, such as method invocation and execution, and de-
fines them in EventReactor. As it is shown in the previous section, new event types
and events can be defined according to application demands. This feature helps to
overcome the problem of ”fixed join point model” that exists in the current AO
languages, as such facilitates defining process-related events without the need for
workaround helper methods.

– Event calls: Events can be published from programs implemented in different lan-
guages; for non-Java programs, Java-JNI [35] must be adopted to provide events to
the runtime environment of EventReactor. The specification of event modules and
reactor chains are independent of the implementation language of base program.
As we extensively studied in [10], this feature helps to increase the modularity of
implementations if the base program is implemented in multiple languages and/or
its implementation language changes in due time. As we have shown in [8, 36],
to some extent, they are also independent of the distribution of base program.
This increases the reusability of specifications if the distributation of base program
changes.

– Reactive parts: Abstractions over the non-reactive part and the reactive part of re-
active systems can be implemented and modularized as event modules. This facil-
itates localizing the changes within the corresponding event modules. For example
the evolution of the non-reactive part by introducing the child process UserInterface
could effectively be handled by introducing new modules UIProcess, LocalRU
and RestartUI in Listings 19 and 21.
• Selection of event calls: When new event types and events are defined, the

EventReactor compiler automatically generates Prolog expressions from the

Event-Based Modularization of Reactive Systems 401

specifications of event types and events. As shown in Listing 13, the generated
expressions can be used in the event packages to select the events of interest.
If more complex queries to select events are needed, they can be expressed and
modularized via event modules. In [10], we show the possibility to adopt reg-
ular expressions to define the expected order of events. Since EventReactor is
extensible with new reactor types, it is possible to define and adopt domain-
specific languages to express complex queries. These features of EventReactor
help to tackle the problems with limited expression power of pointcut pred-
icates and workaround code, which are experienced in the current AO lan-
guages.

• Reactions to event calls: By means of reactor types, DSLs are supported to
program the implementation part of event modules; examples are the reactor
types RestartProcess and React in Listings 11. Since EventReactor is
open-ended with new DSLs, it can be reused for implementing reactive sys-
tems in various domains.
The separation of the interfaces of an event module from its implementa-
tion (i.e. reactor chains), and the modularization of the reactor chains facili-
tate reusing them for multiple event modules. Examples are the reactor chains
AppProcessImpl and RestartProcess, which are reused in Listing 19
and 26. The explicit interfaces of event modules facilitate localizing the cor-
responding changes to interfaces, without influencing the implementations; for
example in Listing 15, we could localize the changes in the interface of event
module GlobalRU to take the UserInterface process into account.

– Control calls: To reduce the coupling of reactive to the non-reactive part in mak-
ing control calls, EventReactor facilitates selecting necessary information to make
control calls, and enables programming event modules with this information. This
is shown, for example, in Listing 13, in which the necessary information about the
methods initMPCore and killMPCore is selected and is provided to the event
module MPCoreProcess as arguments.

– Architectural constraints: The event-based interface of event modules helps to
keep the event modules loosely-coupled from each other and from the non-reactive
part. The possibility to select the events that are published by event modules helps
to flexibly change the architecture of the reactive part. For example in Listing 25,
we extended the reactive part with the new module Coordinator, to manage the
interference among other event modules. The possibility to define the composition
constraints using the available keywords separately from the corresponding event
modules (see Listing 22), or modularizing complex constraints via event modules
(see Listing 25) increases the reusability of event modules for different architec-
tures, without the need for redefining them.

8 The Compiler of EventReactor

In [10], we explain the runtime behavior of EventReactor is processing events. In this
section, we briefly explain the compiler of EventReactor.

Figure 6 provides a global overview of the compiler of EventReactor. The major
functionality of this compiler is similar to the compiler of Compose* aspect-oriented

402 S. Malakuti and M. Aksit

Compiler

Input / Output

Module

Data store

Flow of control/data

Fig. 6. An overall view of the EventReactor compiler

language, which is explained in several articles [37, 38]; therefore, we avoid detailed
discussion. The modules of the compiler make use of a shared Repository to exchange
information among each other.

8.1 Input and Output of the Compiler

As shown at the top of the Figure 6, the compiler receives the specifications of Event
Types, Events, Reactor Types, Event Packages and Reactor Chains as its input. In addi-
tion, the compiler receives Program Code, which represents the base software publish-
ing programmer-defined events and/or the base software from which the list of standard
events must be extracted.

EventReactor is open-ended with new kinds of information that are needed for im-
plementing RE techniques. The input Misc. indicates the specification of such informa-
tion, and Misc. Generator represents a tool that generates Prolog facts and expressions
from the specifications and stores them in Repository. This tool is not part of standard
EventReactor compiler, and must be provided by programmers.

As its output, the compiler creates the runtime environment of the program and mod-
ifies Program Code such that it announces standard events to the runtime environment.
These are shown as Runtime Environment and Executable Program Code in Figure 6,
respectively.

Event-Based Modularization of Reactive Systems 403

8.2 Parsing

The specifications are input to the module Parser, which performs the following tasks:

1. It checks that the specifications are syntactically correct.
2. It checks the correctness of cross references within the specifications.
3. From the specification of reactor types, it extracts and defines the specified reactor

types in Repository.
4. From the specification of event modules, it extracts and defines the specified output

events in Repository.
5. It generates Prolog facts and Prolog query expressions from the statically available

information in the specifications. These expressions facilitate selecting events and
auxiliary information based on the static and dynamic attributes that are defined for
them.

6. It stores data records representing these Prolog facts and query expressions and a
reference to the original specifications in Repository.

In addition to programmer-defined specifications, Parser receives the specification of
Standard Event Types which is provided by EventReactor itself, and generates Prolog
facts and query expressions from them and stores them in Repository.

The module Type Harvester is adopted from the Compose* compiler. This module
parses Program Code and converts it to a common internal representation to which Java,
.Net and C programs can be converted. Among others, this representation contains the
following information: a) the static structure of the program code in terms of the classes
defined in the program; b) the interfaces that are implemented by each class; c) the
methods and attributes defined in each class; and d) the methods that are invoked by the
classes.

For each method invocation in Program Code, Type Harvester defines two events of
the event type MethodBased; one representing the state change before the invocation,
and one representing the state change after the invocation. For each method defini-
tion, it creates two events of the event type MethodBased; one representing the state
change after the invocation and immediately before the execution of the method, and
one representing the state change after the execution of the method, which terminates
normally. Type Harvester specifies the code segments in Program Code from which the
events must be published. This information is provided as the specification of Standard
Events to the module Parser, which generates Prolog facts from them and stores them
in Repository.

8.3 Analysis

Although events occur at runtime, the data records stored in Repository facilitate per-
forming various static checks on the specifications. The following checks are performed
by the module Analyzer and the results are stored in Repository:

1. It evaluates the specified Prolog query expressions against the Prolog facts stored
in Repository, selects the data records that match the queries, and maintains a link
between the Prolog query expressions and the selected data records in Repository.

404 S. Malakuti and M. Aksit

2. It checks whether a selected data record refers to an event that is specified as the
input interface of multiple event modules. If it is so and the order in which the event
modules must process the event is not specified via the operator precede, it shows
a warning to programmers.

3. If the constraint ignore is specified for two event modules, say A and B, Analyzer
tags the reactors that are bound to A as conditional so that they ignore the events that
are published during the execution of the reactors bound to B. This modification is
stored in Repository.

8.4 Code Generation

The final step of the compilation is the generation of the executable program and the
runtime environment of EventReactor. If not disabled by the programmer, the compiler
generates code to publish the standard events to the runtime environment of Event-
Reactor. For this matter, Code Generator creates the modules Notifier as part of the
runtime environment of EventReactor, which inform the runtime environment of the
occurrence of the specified standard event. Code Generator retrieves the data records
corresponding to the specified standard events from Repository, and identifies the code
segments from which the standard events must be published. This information is pro-
vided as Weave Specification to the module Weaver, which also receives Program Code
as input and inserts invocations to Notifier in specified places in Program Code.

9 Conclusion and Future Work

We discussed the need to achieve reusability in the implementation of reactive systems,
and identified five reuse requirements. We evaluated a representative set of languages,
and identified that the implementation of reactive systems in these languages signifi-
cantly suffers from various reuse anomalies. As a result of this evaluation, we concluded
that reuse anomalies can be avoided if a language facilitates a) defining open-ended
kinds of event calls, b) publishing these event calls from various kinds of elements that
form the non-reactive part, c) defining various semantics for selecting event calls of in-
terest, d) defining desired reactive parts, e) defining open-ended kinds of control calls,
and f) defining various kinds of architectural constraints modularly.

We introduced Event Composition Model, whose concepts respect the above require-
ments. Event Composition Model considers events as the core concepts in implement-
ing reactive systems, and introduces a novel kind of module termed as event modules
to modularize the reactive part and/or abstractions over the non-reactive part. Event
modules communicate with each other and with the non-reactive part via events, which
helps to achieve loose coupling among the modules.

The EventReactor language can be compared to language-agnostic AO languages
since it can be integrated with different base languages through events. Since events
can be gathered from various places in the base program, event modules can be adopted
to modularly implement crosscutting concerns. Unlike current AO languages, EventRe-
actor is open-ended with new (domain-specific) event types and events, as well as DSLs
to express the functionality of event modules. These facilitate representing domain-
specific concerns in their DSL, without the need for designing an AO DSL from scratch.

Event-Based Modularization of Reactive Systems 405

Composition of event modules with each other is a means to compose the concerns that
are implemented in different DSLs.

As future work, we would like to extend the EventReactor language with various
composition operators such as inheritance for event modules and selectors. We would
also like to adopt EventReactor for implementing other kinds reactive systems such as
self-energy-adaptive software systems [39]. Event Composition Model does not fix pos-
sible implementation of its concepts. For example, in the current implement of Event-
Reactor, reactors are composed with each other within a reactor chain in a sequential
manner. A language may also implement parallel composition of reactors. Likewise,
a language may support more complex predicate-based instantiation strategy of event
modules. As future work, we would like to extend EventReactor to support other alter-
native implementation of the concepts of Event Composition Model.

Acknowledgments. We acknowledge the support of Prof. Yonezawa in the develop-
ment of Composition Filters Model and the Compose* language. Event Composition
Model and the EventReactor language are the successors of the Composition Filters
Model and the Compose* language, respectively.

References

1. Harel, D., Pnueli, A.: On the Development of Reactive Systems. In: Apt, K.R. (ed.) Logics
and Models of Concurrent Systems, pp. 477–498. Springer, New York (1985)

2. Güleşir, G.: Evolvable Behavior Specifications Using Context-Sensitive Wildcards. PhD the-
sis, University of Twente, Enschede (2008)

3. Salvaneschi, G., Mezini, M.: Reactive Behavior in Object-Oriented Applications: an Analy-
sis and a Research Roadmap. In: AOSD 2013, pp. 37–48. ACM (2013)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional (1994)

5. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.: Documenting Software
Architectures: Views and Beyond. Addison-Wesley Professional (2002)

6. Basten, T., Hamberg, R., Reckers, F., Verriet, J.: Model-Based Design of Adaptive Embedded
Systems. Springer (2013)

7. Boussinot, F.: Reactive C: An Extension of C to Program Reactive Systems. Software: Prac-
tice and Experience 21(4), 401–428 (1991)

8. Malakuti, S.: Event Composition Model: Achieving Naturalness in Runtime Enforcement.
PhD thesis, University of Twente (2011)

9. de Roo, A., Sözer, H., Aksit, M.: Verification and Analysis of Domain-Specific Models of
Physical Characteristics in Embedded Control Software. Information and Software Technol-
ogy 54(12), 1432–1453 (2012)

10. Malakuti, S., Akşit, M.: Event Modules: Modularizing Domain-Specific Crosscutting RV
Concerns. In: Chiba, S., Tanter, É., Bodden, E., Maoz, S., Kienzle, J. (eds.) Transactions on
AOSD XI. LNCS, vol. 8400, pp. 27–69. Springer, Heidelberg (2014)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview
of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353.
Springer, Heidelberg (2001)

12. Salehie, M., Tahvildari, L.: Self-adaptive Software: Landscape and Research Challenges.
ACM Trans. Auton. 4(2), 14:1–14:42 (2009)

406 S. Malakuti and M. Aksit

13. Delgado, N., Gates, A., Roach, S.: A Taxonomy and Catalog of Runtime Software-Fault
Monitoring Tools. IEEE Transactions on Software Engineering 30(12), 859–872 (2004)

14. Koob, G.M., Lau, C.G.: Foundations of Dependable Computing: Paradigms for Dependable
Applications. Springer (1994)

15. Sozer, H.: Architecting Fault-Tolerant Software Systems. PhD thesis, University of Twente
(2009)

16. Ingalls, D.H.H.: A Simple Technique for Handling Multiple Polymorphism. In: OOPLSA
1986, pp. 347–349. ACM (1986)

17. Compose, http://composestar.sourceforge.net/
18. Pavel, C.A., Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Moor,

O.D., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with Free Variables to
AspectJ. In: OOPSLA 2005, pp. 345–364 (2005)

19. Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., Komiya, S.: Association Aspects. In:
Proceedings of the 3rd International Conference on Aspect-oriented Software Development,
pp. 16–25. ACM, Lancaster (2004)

20. Harbulot, B., Gurd, J.R.: A Join Point for Loops in AspectJ. In: AOSD, pp. 63–74. ACM
(2006)

21. Bockisch, C., Malakuti, S., Katz, S., Aksit, M.: Making Aspects Natural: Events and Com-
position. In: AOSD 2011, pp. 285–299. ACM (2011)

22. Steimann, F., Pawlitzki, T., Apel, S., Kästner, C.: Types and Modularity for Implicit Invoca-
tion with Implicit Announcement. ACM Transactions on Software Engineering and Method-
ology 20, 1:1–1:43 (2010)

23. Malakuti, S., Aksit, M.: Evolution of Composition Filters to Event Composition. In: Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC 2012, pp. 1850–
1857. ACM (2012)

24. AspectC, http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
25. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Modularity. In:

Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer, Heidelberg (2005)
26. Hoffman, K., Eugster, P.: Cooperative Aspect-Oriented Programming. Sci. Comput. Pro-

gram. 74, 333–354 (2009)
27. Khurshid, S., Sen, K. (eds.): RV 2011. LNCS, vol. 7186. Springer, Heidelberg (2012)
28. Malakuti, S., Bockisch, C., Aksit, M.: Applying the Composition Filter Model for Runtime

Verification of Multiple-Language Software. In: ISSRE 2009, pp. 31–40. IEEE Press, Pis-
cataway (2009)

29. Microsoft Corporation. C# language specification,
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx

30. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: EScala: Modular Event-Driven
Object Interactions in Scala. In: AOSD 2011, pp. 227–240. ACM (2011)

31. Odersky, M.: Programming in Scala: A Comprehensive Step-by-Step Guide. Artima Inc.
(2008)

32. Rajan, H., Leavens, G.T.: Ptolemy: A Language with Quantified, Typed Events. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155–179. Springer, Heidelberg (2008)

33. Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Framework. In:
Object-Oriented Programming, Systems, Languages and Applications(OOPSLA 2007), pp.
569–588. ACM Press (2007)

34. Havelund, K.: Runtime Verification of C Programs. In: Suzuki, K., Higashino, T., Ulrich, A.,
Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 7–22. Springer, Heidelberg
(2008)

35. Java-JNI, http://download.oracle.com/javase/1.5.0/docs/
guide/jni/spec/jniTOC.html

http://composestar.sourceforge.net/
http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html

Event-Based Modularization of Reactive Systems 407

36. Malakuti, S., Aksit, M., Bockisch, C.: Runtime Verification in Distributed Computing. Jour-
nal of Convergence: An International Journal of Future Technology Research Association
International 2(1) (2011)

37. de Roo, A., Hendriks, M., Havinga, W., Durr, P., Bergmans, L.: Compose: A Language- and
Platform-Independent Aspect Compiler for Composition Filters. In: International Workshop
on Academic Software Development Tools and Techniques (2008)

38. Nagy, I.: On the Design of Aspect-Oriented Composition Models for Software Evolution.
Phd thesis, IPA (May 2006), ISBN: 90-365-2368-0

39. Malakuti, S., te Brinke, S., Bergmans, L., Bockisch, C.: Towards Modular Resource-Aware
Applications. In: VariComp 2012, pp. 13–17. ACM, New York (2012)

From Actors and Concurrent Objects to

Agent-Oriented Programming in simpAL

Alessandro Ricci and Andrea Santi

DISI, University of Bologna
via Venezia 52, Cesena (FC), Italy
{a.ricci,a.santi}@unibo.it

Abstract. Today we are witnessing a fundamental turn of software
towards concurrency, distribution and interaction in every-day program-
ming. This calls for introducing further abstraction layers on top of
mainstream programming paradigms, to tackle more effectively the com-
plexities that such turn implies. To this purpose, agent-oriented program-
ming can be framed as an evolution of actors and concurrent objects,
introducing a further level of human-inspired concepts for programming
software systems. In that perspective, a program is conceived like an or-
ganization of human workers (agents), proactively doing some tasks and
working together inside a possibly distributed environment—sharing re-
sources and tools. In this paper we describe a new programming language
called simpAL which allows for investigating agent-oriented programming
as a general purpose paradigm for developing software systems.

1 Introduction

Pushed by the evolution of hardware architectures (e.g. multi-core, many-core,
mobile platforms) and network availability, the fundamental turn of software
towards concurrency, distribution and interaction is having a strong impact on
everyday programming. As stated in [58], the free lunch is over : concurrent and
distributed programming are no more a matter of specific application domains
(e.g. high-performance computing) only, but are more and more issues to take
into the account in mainstream programming. Besides, modern software systems
are more and more complicated by reflecting more and more demand from the
real-world. Since the real-world is inherently concurrent, we inevitably incorpo-
rate concurrency in software systems.

This caused a big tide on concurrency, and the consequent development of
libraries, frameworks and fine-grained mechanisms on top of existing languages
specifically tailored to harness the power of multi-core, many-core and cloud-core
architectures in programs. However, we argue that the free lunch is over also
for conceptual modeling and abstraction. That is, besides mechanisms we need
programming models and languages that make it possible to think concurrent,
to exploit concurrency, decentralization of control and interaction as first-class
dimensions of program design and development.

G. Agha et al. (Eds.): Yonezawa Festschrift, LNCS 8665, pp. 408–445, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

From Actors and Concurrent Objects to Agent-Oriented Programming 409

To this purpose, a main reference is the research on object-oriented concurrent
programming developed in 1980s and 1990s in particular [65,6,16]. At that time,
we were still free lunching so-to-say and the context of such research was not
really mainstream programming but high-performance computing and parallel
programming. The actor computing model [5] and concurrent objects [65,2] were
among the main results and target of investigations, along with the development
of several new programming languages and frameworks based on the actor and
the concurrent object idea [65,6].

Actors provide a clean and sound foundation for unifying objects1 and con-
currency [2]. An actor can be defined as an object encapsulating a control flow,
with a mailbox where messages are enqueued [1]. The model is based on the re-
activity principle [35]. An actor reacts to the arrival or availability of a message
in the mailbox, by selecting and executing a corresponding method (handler).
The execution of the method is atomic and may cause the update of the current
state of the actor, the delivery of messages and the creation of other actors.

Actors are getting a momentum today, as far as one considers their injections
in terms of libraries and frameworks developed on top of existing programming
languages [36], or directly supported by new languages (e.g. DART [26], with
isolates). However, as remarked in [39] (pag. 444): “although the simplicity of
the actor model is appealing, [..] problems with message order, message delivery,
and coordination between sequences of concurrent actions also help us appreci-
ate the programming value of more complex concurrent languages”. This is a
fundamental problem when assuming a software development perspective.

One possible way to address this problem is to introduce ad hoc program-
ming abstractions to tackle specific issues, without changing the basic comput-
ing model. Examples are synchronisation constraints [4] and synchronizers [22].
This approach has the merit to keep the clean foundation of the basic model,
but it makes the overall programming model quite complex and the integration
of the features not clear [50].

Another way to tackle the problem is to directly extend the basic computa-
tional and programming model. This is what has been done by the notion of
concurrent objects as introduced by ABCL family [63,62]. In fact, the concurrent
object model enriches the basic actor one with features targeted to raise the
level of abstraction in modelling and programming systems and finally simpli-
fying them. Examples of such features are the past/now/future type message
passing, the ordinary and express mode message passing, the waiting mode with
the selective receive [62].

Following this perspective, the vision of agent-oriented programming proposed
in this paper can be framed as a conceptual extension of actors and concur-
rent objects in particular, where a further human-inspired abstraction layer is
added [51,57]. Such an abstraction layer draws inspiration from concepts, models
and even existing languages developed in agents and multi-agent systems [32].

Actually, agents have been introduced and developed mainly in the context of
Distributed Artificial Intelligence (DAI). This strongly influenced both the idea

1 As defined in modern OOP.

410 A. Ricci and A. Santi

of agent-oriented programming – originally introduced in [57] – and the further
development of agent programming languages [11,12]. The focus has been mostly
on theoretical aspects, in particular related to agent reasoning capabilities.

Our work aims at introducing a further perspective about agent-oriented pro-
gramming, taking programming paradigms – in particular concurrent and dis-
tributed programming – and software development as the reference context. The
general objective is to explore agent-oriented programming as a general-purpose
programming paradigm, in the same track of actors and concurrent objects. To
this end, we conceived a new programming language and platform called simpAL.
The aim of this paper is to provide an overview of the main concepts character-
izing the simpAL model and language, discussing its key features to deal with
some relevant issues in design and programming. The first ideas about this view-
point and about the simpAL project have been already sketched in a previous
paper [49]. Here instead we discuss their development and maturation that lead
to the current version of the simpAL programming language and platform.

The remainder of the paper is organized as follows: In Section 2 we provide
a brief background about agents and multi-agent systems focused on the key
aspects that are interesting for this paper. In Section 3 we describe the main
concepts on which simpAL is based. In Section 4 we move from the concepts to
the programming language, describing the key points that characterize simpAL
programming and in Section 5 we briefly report about some aspects that concern
the current implementation of simpAL platform and tools. In Section 6 we discuss
some key aspects of the approach, compared to actors and concurrent objects in
particular. Finally, in Section 7 we provide an overview of related works and in
Section 8 we conclude the paper by sketching open issues and future work.

2 Motivations and Background – Agents as a Modelling
and Programming Paradigm

The notion of agents and multi-agent systems appeared in many different com-
puter science contexts – main examples are Distributed Systems, Artificial In-
telligence, (Agent-Oriented) Software Engineering and (Agent-Based) Modeling
& Simulation. Two key features that characterize the agent abstraction in spite
of the specific contexts are:

– Autonomy — agents are autonomous entities, encapsulating a state, a be-
haviour and the control of such a behavior.

– Interaction as a main design dimension — a (not naive) system is
designed in terms of a dynamic set of agents that interact and cooperate
either by exchanging messaging using some Agent Communication Language
(ACL) or by acting and perceiving events from the environment where they
are logically situated.

The notion of Agent-Oriented Programming was introduced at the beginning
of the 1990s with a seminal paper by Shoham in a AI context [57]. In spite of
the AI-oriented perspective, the paper conceived Agent-Oriented Programming

From Actors and Concurrent Objects to Agent-Oriented Programming 411

as an evolution of the OO paradigm towards an cognitive and societal view of
computation. In this view, agents are specialization of objects with mental com-
ponents (such as beliefs, intentions, goals) and the capability of interacting with
other agents with high-level speech-act based ACL. That work was the root of
many Agent Programming Languages (APL) and platforms developed in the two
subsequent decades [11,12,15], still in the of context of Agents and Multi-Agent
Systems. Main examples include AgentSpeak(L) [45] and Jason [14], 3APL [21]
and 2APL [20], GOAL [31], Jadex [44], JaCaMo [10]. All these languages are
directly or indirectly based on the BDI (Belief-Desire-Intention) agent architec-
ture [46] and are especially targeted to the development of intelligent agents and
multi-agent systems based on them. The main reference context is Distributed
AI.

In the context of Agent-Oriented Software Engineering (AOSE) [33] agents
have been proposed as high-level software components, conceptually extending
objects with high-level features, such as autonomy and high-level communication
based on speech acts. Such works lead to the development of platforms and
frameworks that make it possible to design and implement multi-agent systems
on top of mainstream OO languages – a main example is JADE [8], based on
Java. The value of agents and multi-agent systems in this case is explored more at
the architectural level, as an effective approach for designing complex distributed
systems.

The simpAL project has been conceived with a different (but related) objec-
tive, which is to explore the value of agents and related concepts as first-class
abstractions to tackle the complexities affecting modern programming—related
to concurrency, asynchronous programming, distribution, and so on. In other
words, our objective is to explore the value of agents as a modelling and pro-
gramming paradigm, conceptually extending actors and concurrent objects.

Key Features and Contribution. Compared to actors and related extensions,
the agent-oriented approach as implemented in simpAL provides the following key
features and improvements:

– Integrating reactivity and proactivity – actors and objects are based on
the reactivity principle [37], founded on message passing. Agents integrates
reactivity with a first-class support to proactivity, i.e. they act (and react)
in order to achieve some explicit task. Tasks are first-class concepts of the
model.

– Interaction model based on actions and observations – people inter-
act both by direct communication and by acting and perceiving in a shared
environment, by doing actions that cause some observable effect which can
be perceived indirectly by other people, possibly in a different timeframe.
Actually, the usefulness of uncoupled models of interaction – based e.g. on
events and patterns like the observer – is well-known also in software en-
gineering and programming. In the agent model adopted in simpAL, this
kind of interaction is adopted at the foundational level, along with direct
communication.

412 A. Ricci and A. Santi

observe
use

communicate with
WORKSPACE B

ARTIFACTS

ARTIFACTS

WORKSPACE A

AGENTS

ORGANIZATION

Fig. 1. Abstract view of a simpAL program

– Human-inspired modelling and programming – actors promote a mod-
elling approach where everything is modelled as an (autonomous) actor
and every interaction can be modelled in terms of message passing. Agent-
oriented approaches have a stronger view about autonomy, promoting a mod-
elling approach which forces to clearly separate in a system what can be
suitably modelled as an autonomous entity – encapsulating the control of
activities – and what is better modelled as an non-autonomous entity – part
of the environment manipulated by such activities. Such a modelling ap-
proach can be labelled as human-inspired since it promotes a view about
any system as an organization of people (agents) interacting in the same
organization environment – sharing and co-using resources and tools – so
as to accomplish both individual tasks and cooperative tasks at the system
level.

These points will be discussed in detail in the remainder of the paper.

3 The simpAL Model – An Informal Overview

simpAL main concepts are based on the A&A (Agents and Artifacts) conceptual
model [41] and the BDI (Belief-Desire-Intention) agent architecture [46,45,13].
A program in simpAL is conceived as an organization of agents working & in-
teracting inside a common environment, composed by dynamic set of artifacts
located in workspaces , distributed over the organization nodes (see Fig. 1). In
particular:

– An agent is a computational component that encapsulates the control of
activities, which are oriented to accomplish some tasks. Agents are both
proactive and reactive. Proactive means that they have an explicit notion
of task to be fulfilled and actions are continuously selected and performed
to achieve tasks. Reactive means that in general, in order to fulfil a task,

From Actors and Concurrent Objects to Agent-Oriented Programming 413

agents can process asynchronous events that occur in the environment where
they are situated and to messages communicated by other agents (including
themselves).

– An artifact is a non-autonomous component that encapsulates a set of oper-
ations that can be triggered by agents, and an observable state – represented
by a set observable properties – which may be observed by interested agents.
Artifacts represent the basic building blocks to design and compose the en-
vironment which is shared and used by agents to do their tasks. Examples
of computational entities that can be properly modeled as artifacts are a
simple counter, a bounded buffer, and a blackboard.

– Workspaces are logical containers of agents and artifacts, running on some
specific node of the network. So the overall (dynamic) set of agents and arti-
facts of a simpAL organization is partitioned into one or multiple workspaces,
possibly running on different nodes of the network. Workspaces make it pos-
sible then to explicitly define the logical topology of a simpAL organization,
to handle the logical/physical distribution of an application.

A simpAL program is called an organization since agents participate to the sys-
tem by playing some specific roles, that actually define their responsibilities in
terms of tasks to accomplish.

3.1 The Agent Computational Model and Control Architecture

In a very abstract view, an agent is an autonomous component that continuously
selects what actions to do in order to fulfil its tasks and execute them, eventually
changing its state and the environment where it is situated. Action selection is
driven by both the tasks the agent aims at fulfilling, its current internal state
and the state of the environment which is observing, including messages sent by
other agents.

The computational model of an agent in simpAL is based on the following
first-class concepts:

– Tasks – representing the description of the jobs that agents have to do. At
runtime, agents can instantiate tasks as instances of some task type, and
assign them to other agents.

– Plans – representing modules that encapsulate the procedural knowledge
about how to accomplish tasks. At runtime an agent has a (possibly dy-
namic) set of plans that can be used to accomplish tasks that are assigned
to it.

– Beliefs – representing the knowledge that an agent has about its state and
the observable state of the environment which is using. Beliefs in simpAL are
like variables, having a value and a type—ranging from primitive data types,
objects instances of classes2, or references to specific simpAL abstractions
(agents, artifacts, tasks, etc.).

2 In the simpAL language, a subset of Java is used to define the OOP layer.

414 A. Ricci and A. Santi

SENSE
stage

PLAN
stage

ACT
stage

actions

Belief
Base

Plan
Library

 Ongoing
Plans / Tasks

events
event queue

actions-todo

EXECUTION / CONTROL LOOP

Fig. 2. An abstract view of the architecture of an agent and its execution cycle

Based on these concepts, the abstract architecture of an agent is composed of
(see Fig. 2):

– a belief-base, which is the long-term private memory of the agent, storing the
beliefs;

– a plan library, storing the current set of plans available for doing tasks;
– a set of plans in execution, called intentions – the agent can carry on multiple

intentions at the same time;
– an event-queue, where inputs from the environment/other agents are asyn-

chronously enqueued.

The behaviour of the agent is governed by an execution cycle called control loop.
It is inspired to the reasoning cycle of BDI agents [46] and can be framed as
an extension of the the basic event loop found in actors [38]. Next page shows
an abstract version of the control loop in pseudo-code. According to that, the
behaviour of an agent can be conceived as a loop continuously executing three
stages in sequence:

– A sense stage, in which an event is removed (if available) from the external
event queue and processed, updating the agent internal state.

– A plan stage, in which the set of actions to do in the current cycle is se-
lected, given the current state and intentions of the agent. First, for each
new assigned task, a plan for executing the task is selected from the plan
library (if available) and instantiated and added to the list of intentions.
Then, actions are selected by checking every intention. If a plan in execution
is completed, i.e. the related task is fulfilled, then the intention is dropped
from the list.

– An act stage, in which the selected actions are executed. Actions can be
either internal, i.e. just updating the internal state of the agent (e.g. updating

From Actors and Concurrent Objects to Agent-Oriented Programming 415

Algorithm 1. simpAL Agent Control Loop

1: BB ← BB0 /* Belief-base */
2: PL ← PL0 /* Plan library */
3: EQ ← [] /* Event queue */
4: TD ← [] /* Task todo list */
5: IL ← [] /* List of intentions (i.e. plans in execution) */
6: while true do
7: � SENSE stage
8: ev ← ⊥
9: if EQ
= [] then
10: < ev,EQ >← PickEvent(EQ)
11: < BB, TD >← UpdateAgentState(ev,BB, TD)
12: end if
13: � PLAN stage
14: if TD
= [] then
15: for td ∈ TD do
16: pl ← SelectPlan(td,BB,PL)
17: IL ← IL ∪ {NewIntention(pl, td,BB)}
18: end for
19: TD ← []
20: end if
21: AL ← []
22: for in ∈ IL do
23: if TaskFulfilled(in) then
24: IL ← IL \ {in}
25: else
26: for < et, c, ac >∈ ActionRules(in) do
27: if Match(et, ev) ∧Hold(c, BB) then
28: AL ← AL ∪ {ac}
29: end if
30: end for
31: end if
32: end for
33: � ACT stage
34: for ac in AL do
35: < BB, IL, TD,PL >← Execute(ac,BB, IL, TD,PL)
36: end for
37: end while

the value of a belief, dropping a plan in execution, creating a new task todo);
or external, i.e. triggering the execution of an operation on an artifact and
communicating with other agents. For external ones, the completion of an
action (with success or failure) may arrive in the future, as an asynchronous
event enqueued in the event queue. In the former case, such an event is
immediately enqueued with the execution of the stage itself.

From a conceptual point of view the execution cycle of an agent is never blocked :
it is continuously looping on these stages, possibly without choosing any action

416 A. Ricci and A. Santi

100count

inc

reset

100count

inc

reset

inc

inc
completed

count
changed

count = 100

Fig. 3. (Left) A representation of an artifact, with in evidence its usage interface:
the operations (inc and reset) and one observable property (count). (Right) Agents
interacting with the artifact, executing an action and perceiving its observable state.

to perform if there are no active tasks or whether there is nothing to do in
current tasks in execution.

3.2 A Computational Model for Artifacts

Artifacts have a simpler architecture than the agents’ one, more similar to mon-
itors as introduced in concurrent programming. Fig. 3 shows a pictorial repre-
sentation of an artifact, representing a simple counter. Similarly to objects and
tools used by humans, artifacts provide a usage interface which is exploited by
agents to use and observe them. Such an interface includes:

– A set of operations, that correspond to the set of atomic actions available
to agents for using the artifact. So the repertoire of an agent’s actions at
runtime depends on the artifacts that the agent knows and can use. In the
counter example, inc and and reset are the two operations provided by the
artifact. An agent that wants to use the counter has an inc action and reset
action in its action repertoire.

– A set of observable properties, as variable-like information items stor-
ing those properties of the artifact that may be perceived and exploited by
the agents using it. In the counter example, the artifact has a single count
property, whose value is currently 100.

Besides an observable state, an artifact can have also an internal (hidden) state
composed by state variables, which can be accessed and updated by operations.

In action/operation execution, there is no transfer of control between an agent
and the used artifact. However, from a logical point of view, the execution model
of an action over an artifact is synchronous. When an agent does an action (in
the act stage of the control loop) corresponding to an operation in an artifact,
such operation is executed logically in a separate control flow. An event is then
explicitly generated when (if) the operation/action completes or fails, fetched
by the agent control loop in the sense stage. So the agent can properly react to
action completion or failure.

The way in which agents using an artifact perceive its observable state is
event-driven, making the observer pattern directly part of the basic interaction

From Actors and Concurrent Objects to Agent-Oriented Programming 417

model. In particular, an agent which is observing/using an artifact for doing
its tasks, automatically has a belief about the current value of each artifact’s
observable property. Every time an observable property of the artifact is up-
dated by the successful execution of an operation, a proper event is generated
and asynchronously notified to all the agents using that artifact. The event is
eventually fetched in the sense stage of the control loop and the corresponding
belief updated with the new value.

Artifacts can be observed and used concurrently by multiple agents, automat-
ically enforcing all the constraints that are necessary for avoiding interferences.
To that purpose, operation execution in artifacts is atomic: operations are ex-
ecuted in a mutually exclusive way and the changes to the observable state of
the artifact (properties) are made observable atomically, only after operation
completion. Changes are perceived by agents observing the artifact only when
an operation completes (with success).

Then, for implementing coordination artifacts – i.e. artifacts providing co-
ordination functionalities – it is necessary to have operations whose execution
overlap in time, but without interferences. To that end, operations can be ex-
plicitly suspended waiting for some conditions, allowing then other operations
to be triggered and executed. A concrete example (a bounded buffer) will be
given in next sections.

It is worth remarking that if an agent executed an action over an artifact
and the corresponding operation is suspended or it has still to be completed,
the agent control cycle is not blocked—so the agent is always ready to perceive
events coming from its environment.

4 The simpAL Programming Language

In this section we introduce the key elements of the simpAL programming lan-
guage using a simple program implementing a producer-consumer architecture
(see Fig. 4). The program implements a simpAL organization composed by three
workspaces (main, producers, consumers). In the producers workspace, some
producer agents have the task of producing continuously some items that are con-
sumed by a couple of consumer agents, in the consumers workspace. A bounded
buffer artifact, located in the consumers workspace, is used as a tool by the pro-
ducers and consumers to coordinate their activity. Producer agents must stop
the production as soon as the user stops it through a GUI, represented by an
artifact in the main workspace. Consumer agents must stop their activities either
in the case that the total number of items processed is greater than a certain
value or if the user issues a stop by means of the GUI. A shared counter is
used by consumers to keep track of the total number of items processed. Finally,
a manager agent in the producers workspace has the responsibility of creating
the producer agents and eventually to inform them if more items need to be
produced, during the producing task.

In the following we proceed bottom-up, first introducing the programming of
agents and artifacts as basic components of a program, and then the definition
of the organization, used to specify the overall structure of the program.

418 A. Ricci and A. Santi

PRODUCER
AGENTS

CONSUMER
AGENTS

100nItemsAvailable

put

get

BUFFER

COUNTER

100count

inc

Action

Communication

Perception

PRODUCERS
workspace

CONSUMERS
workspace

MAIN
workspace

MANAGER

false

stopPressed

GUI

Agent Artifact

 obs

op

Fig. 4. An abstract view of the producers-consumers example with in evidence the
agents and artifacts involved

4.1 Programming Agents

The principle of separation between interface and implementation is pervasively
adopted in the language. Accordingly, the agent programming model is charac-
terized on the one side by roles, representing the interface of agents in terms of
what they are capable to do, their skills in terms of task types. On the other
side by agent scripts, containing the implementation of concrete plans useful to
accomplish the tasks related to one or multiple roles.

Defining Agent Types: Roles and Tasks. Tasks are first-class entities of
the language. They can be instantiated given a task type and then assigned to
some agent in order to fulfil it. Task types are used to define the information

1 role Producer {
2

3 task Booting { }
4

5 task Producing {
6

7 input -params {
8 numInitialItemsToProduce: int
9 bufToUse : Buffer

10 }
11

12 understands {
13 newItemsToProduce: int
14 }
15 }
16 }

1 role Consumer {
2

3 task Consuming {
4

5 input -params {
6 maxItemsToProcess: int
7 }
8

9 output -params {
10 totItemsProcessed: int
11 }
12

13 }
14 }

Fig. 5. Definition of roles in simpAL: the Producer role (left) and the Consumer role
(right)

From Actors and Concurrent Objects to Agent-Oriented Programming 419

and structure of the tasks. A role collects the description of one or multiple task
types and is used to define the type of an agent, representing the set of agents
that are able to fulfil those specified types of tasks.

Fig. 5 shows the definition of the Producer and Consumer roles, part of the
example. Each task type is defined by a name and the declaration of a set
of typed input/output parameters, representing information about the task to
do, specified by agents at runtime. In the example, the role Producer has two
types of tasks, Booting and Producing. The task Producing is characterized
by a couple of input parameters, indicating the initial number of items to be
produced (maxItemsToProduce) and the buffer artifact to be used (bufToUse).
The role Consumer has a task, Consuming, which has also an output parameter,
totItemsProcessed – reporting the number of items processed by the consumer
in doing the task.

Besides input/output parameters, the definition of a task type can include a
set of predefined attributes to refine task type specification. Among the others,
understandsmakes it possible to specify messages that can be sent to the agent
performing the task. In the example, Producer agents can be told about the
value of newItemsToProduce belief, which is of integer type. A further attribute,
not shown in the example, is talks-about, which makes it possible to specify
messages that can be sent by the agent assignee of the task.

Defining Agent Structure and Behaviour: Scripts and Plans. A script
represents a module of agent behavior, implementing some role. It can contain
both the definition of a set of plans useful to accomplish the task types defined
in the role, and a set of beliefs that are shared among the plans. By loading a
script, an agent adds the declared beliefs to its belief-base and the plans to its
plan library.

In the example, the SimpleProducer script shown in Fig. 6 has three plans –
one for the Booting task type and two for Producing – and a couple of global
beliefs, testing and itemMaker. The first is a boolean flag, while the latter can
store the identifier of an ItemMaker artifact.

Plan Definition and Action Rule Blocks. The definition of a plan in-
cludes the specification of the type of task for which the plan can be used (e.g.
Producing) and a plan body, containing a specification of the procedural knowl-
edge that the agent can use in order to accomplish the task. Multiple plans can
be specified for the same type of task (e.g. Producing). In that case, an attribute
context:Cond makes it possible to specify the condition over the belief base that
must hold at runtime in order to consider the plan applicable. When a task is as-
signed, the first plan in the plan library which matches the task type and which
is applicable is selected and instantiated. In the SimpleProducer script, when a
Producing task is assigned to the agent using this script, the two different plans
are chosen depending on the value of the testing belief.

The plan body is represented by an action rule block, denoted by {...}. Action
rule blocks are meant to be the basic module to encapsulate the definition of

420 A. Ricci and A. Santi

1 agent -script SimpleProducer implements Producer in ProdConsModel {
2

3 itemMaker: ItemMaker
4 testing : boolean
5

6 plan -for Booting {
7 new -artifact ACMEItemMaker() ref: itemMaker
8 testing = false
9 }

10

11 plan -for Producing context : !testing {
12 #completed -when: is -done jobDone || is -done stopNotified
13 #using: console@main , gui@main
14

15 noMoreItemsToProduce: boolean = false
16 nItemsProduced: int = 0
17 nItemsToProduce: int = numInitialItemsToProduce
18

19 println (msg: "num items to produce : "+nItemsToProduce);
20 {
21 #to-be-rep -until: nItemsProduced >= nItemsToProduce || stopPressed
22 #using: itemMaker , bufToUse
23

24 newItem : acme.Item
25

26 makeItem (item: newItem);
27 put(item: newItem) on bufToUse ;
28 nItemsProduced = nItemsProduced + 1
29 };
30 println (msg: "job done") #act: jobDone
31

32 when changed stopPressed in gui@main => {
33 println (msg:"stopped .")
34 } #act: stopNotified
35

36 every -time told newItemsToProduce => {
37 println (msg: "new items to produce : "+newItemsToProduce);
38 nItemsToProduce = nItemsToProduce + newItemsToProduce
39 }
40 }
41

42 plan -for Producing context : testing {
43 #using: console@main
44 println (msg: "this is a test")
45 }
46 }

Fig. 6. Definition of a script in simpAL: the SimpleProducer script

From Actors and Concurrent Objects to Agent-Oriented Programming 421

behaviour which may need to integrate and mix the autonomous execution of
some workflow of actions along with reactions to some events or condition over
the state of the agent. An example is given by the plan for Producing (lines 11-
40). The plan repeatedly creates new items by using an ItemMaker artifact and
insert them in the buffer, until the number of items to produce specified in the
task is achieved (lines 19-30). Both bufToUse and numInitialItemsToProduce

are input task parameters. Besides, every-time a message about new items to
produce is received, the agent must promptly react and consider the updates
(lines 36-39). Also, the producing process must be stopped when a stopped
event generated by the GUI is perceived (lines 32-34).

The definition of an action rule block includes: a (possibly empty) set of local
beliefs, i.e. beliefs whose scope is the block, as a kind of short-term memory, and
a set of action rules, each one specifying when to execute what action. Action
rule blocks can be nested, making it possible to structure the behaviour inside
a plan – this point will be discussed extensively in next sections.

A set of pre-defined attributes (denoted by symbols starting with #) can be
specified at the beginning of the block to declare further information affecting
how the block will be executed. A main one is #using:, which specifies the list
of the identifiers of the artifacts used inside the block (e.g., lines 13, 22 in the
SimpleProducer script). An artifact inside a block can be used/observed only if
explicitly declared. At runtime, when entering a block where an artifact is used,
automatically the observable properties of the artifact are continuously perceived
and their value is stored in corresponding beliefs in the belief base—updated in
the sense stage of the agent execution cycle. Another important attribute is
#completed-when:Cond , which makes it possible to specify the condition Cond

for which the action rule block execution can be considered completed with
success. Other attributes will be described in next sections.

Action Rules: Events, Conditions, Actions. The action rule model has
been conceived to be expressive enough to specify any pattern of actions and
reactions. In the most general case, an action rule is of the kind:

ev : cond => act #act: tag

meaning that the specified action act labelled as tag can be executed every time
the specified event ev occurs and the specified condition cond holds.

The event template ev can refer to: a change to the observable properties of
an artifact currently used by the agent (changed obs-prop); the success or failure
of the execution of an action (done tag, failed tag) or of a task (done t, failed
t – where t is a belief denoting a task); the arrival of a message sent by other
agents (told msg). The event template ev can be omitted, meaning that the
triggering of the rule is based solely on the condition.

The condition cond is a boolean expression over the agent belief base (includ-
ing plan local beliefs). Some predefined predicates over actions and tasks can be
used: is-done tag / is-failed tag to check is an action has been completed
with success or has failed; todo tag to check if an action has never been selected
and executed yet. For tasks, predicates with the same names are available.

422 A. Ricci and A. Santi

An example of action rule block including some action rules follows:

1 {
2 c1, c2, c3: Counter
3 log: Console
4 v: int = 0
5

6 !todo a1 => inc() on c1 #act: a1
7 !todo a2 => inc() on c2 #act: a2
8 is -done a1 && is -done a2 => v = v + 1 #act: a3
9 done a3 : true => inc() on c3

10 changed count on c3 : count on c3 > 2 => println (msg: "alarm") on log
11 }

This block is composed of five local beliefs (c1, c2, c3, log and v—lines 2–4) and
five action rules (lines 6–10). The resulting behaviour is to immediately request
an inc operation on two counter artifacts. Then, as soon as both the actions
(labelled as a1 and a2) have been completed, the belief v is incremented and
(in sequence) a third counter – referenced by the belief c3 – is incremented.
Besides, every time the observable property count on the counter referenced by
c3 is updated and its value is greater than two, then a message is printed on the
console referenced by log.

Some syntactic sugar is provided to ease the implementation of frequently
used patterns of actions. One is the sequence of actions. A sequence or chain of
actions is defined by a list of actions ai , where: (i) the action ak can be executed
only when the completion of action ak−1 is perceived; and (ii) any action ai must
be executed only once. This can be specified as a simple list of actions (with no
event or condition specified) using ; as separator. If the sequence is composed
of a single action, then that action can be selected and executed immediately,
but only once.

An example of sequence of actions is shown in the plan for the task Producing,
in Fig. 6. The plan first prints a message on a console (line 19), then a nested
block (lines 20-29) is executed and, when the block has been completed, then
the last message is printed (line 30). The block (lines 20-29) contains a sequence
(lines 26-28), in which: first an item is created by executing a makeItem operation
over the ItemMaker artifact. Then the item is inserted in the buffer by means of
the put action. Finally, when the put succeeded, the number of items produced
is incremented.

A block can contain also multiple independent sequences, which are carried
on in parallel. An example is given in the ManagerScript script, shown in Fig. 8.
The script implements the Manager role, who is responsible in the example of
setting up the producer agents. The plan SetupProducers has two sequences
(lines 8-11 and lines 13-16), each one creating a Producing task and assigning
it to a new producer agent.

Some syntactic sugar is provided also on the reaction side. The when keyword
can be used to specify rules that must be triggered only once in the lifespan of
the action block:

when ev : cond => act #act: tag

when ev => act #act: tag

when cond => act #act: tag

From Actors and Concurrent Objects to Agent-Oriented Programming 423

when rules are translated in flat ones by simply adding a further condition in
cond that make the rule applicable if the action tag is still todo. An example is
shown in the Producing plan of the SimpleProducer script (lines 32-34).When a
change of the observable property stopPressed in the GUI artifact is perceived,
then the agent must react, printing a message. Another example – without the
event specified, with only the condition – is shown in the Manager script (Fig. 8,
lines 18-20). Only when both the tasks previously created and assigned to the
two agents have been successfully completed, a message is printed on the console.

Besides when rules, every-time rules are triggered every time some event /
condition holds:

every-time ev : cond => act #act: tag

every-time ev => act #act: tag

every-time cond => act #act: tag

An example is provided in the Producing plan, lines 36-39. Every-time a
message about the new threshold is told, the agent must react and update the
total number of items to produce.

Action Rule Block Management: Nesting, Interruption, Completion
and Repetition. Actions include also the instantiation of a new action rule
block, to support nested blocks. At runtime, for each intention (i.e. plan in exe-
cution), a stack of action rule blocks is managed. Whenever an internal action
instantiating an action rule block is executed, the block is pushed on top of the
stack. That internal action is then considered completed as soon as the action
rule block is completed, and then the block is removed from the stack.

Besides being useful to structure the set of rules, block nesting makes it pos-
sible to realize an interrupt behaviour.
For instance:

1 counter : Counter
2 nInterrupts: int = 0
3 ...
4 println (msg: "this ");
5 println (msg: "can be");
6 println (msg: "interrupted")
7

8 when changed count in counter => {
9 println (msg: "interruption!");

10 nInterrupts++
11 }

In this example, the sequence of printing actions can be interrupted in any point
as soon as the agent perceives that the observable property count has changed.
When (if) this occurs, the block in lines 8-11 is pushed on the stack. Blocks
pushed by reactions – like in this case – are tagged by default as hard-blocks.
This means that when selecting actions in the plan stage, if a hard-block is at
the top of the stack, only the rules of this block are considered, and the rules of
other blocks below in the stack are ignored. In other words, hard-blocks cannot
be interrupted by rules not belonging to the block.

424 A. Ricci and A. Santi

1 agent -script SimpleConsumer implements Consumer in ProdConsModel {
2

3 consumed : int
4

5 plan-for Consuming {
6 #using: console@main , gui@main
7 consumed = 0;
8 {
9 #using: counter@consumers, buffer

10 #to-be -rep-until: (count >= maxItemsToProcess) || stopPressed
11

12 item: acme.Item;
13 get(item: item);
14 do -task new -task ProcessItem(item: item);
15 inc()
16 };
17 println (msg: "consumer done - num items processed: "+consumed);
18 totItemsProcessed = consumed
19 }
20

21 plan-for ProcessItem {
22 #using: console @ main
23 consumed = consumed + 1;
24 println (msg: "processed "+item)
25 }
26

27 task ProcessItem {
28 input -params {
29 item: acme.Item
30 }
31 }
32 }

Fig. 7. The SimpleConsumer script

1 agent -script ManagerScript implements Manager in ProdConsModel {

2 plan -for SetupProducers {

3 #using: console@main

4

5 prodA : Producer

6 prodB : Producer

7

8 t1: Producing = new -task Producing (numInitialItemsToProduce : 20000,

9 bufToUse : buffer@consumers);

10 new -agent SimpleProducer () init -task : new -task Producer .Booting () ref: prodA ;

11 assign -task t1 to: prodA

12

13 t2: Producing = new -task Producing (numInitialItemsToProduce : 20000,

14 bufToUse : buffer@consumers);

15 new -agent SimpleProducer () init -task : new -task Producer .Booting () ref: prodB ;

16 assign -task t2 to: prodB

17

18 when is-done t1 && is-done t2 => {

19 println (msg: "job done by both .")

20 }

21 }

22 }

Fig. 8. Definition of a script in simpAL

From Actors and Concurrent Objects to Agent-Oriented Programming 425

Blocks pushed on the stack by pure actions (rules without the event/condi-
tion) are by default tagged as soft-blocks. In that case, when selecting actions in
the plan stage, if a soft-block is at the top of the stack, also the other blocks in
the stack are considered. For instance:

1 counter : Counter
2 nInterripts: int = 0
3 condition: boolean
4 ...
5 println (msg: "this ");
6 if (condition){
7 println (msg: "can be");
8 println (msg: "interrupted")
9 }

10

11 when changed count in counter => {
12 println (msg: "interruption!");
13 nInterrupts++
14 }

Here if is a pre-defined simpAL internal action, pushing on the stack the block
specified in the “then” arm if the condition holds. In this case the block speci-
fied in lines 6-9 is soft and can be interrupted. The attribute hard/soft can be
explicitly specified using the pre-defined #hard-block and #soft-block.

Among the other attributes influencing action selection in the plan stage, an
important one is #atomic. This can be used to specify that, when a block with
this attribute is instantiated in a plan in execution, then the selection of action
rules must be restricted to that intention, until the block is completed. In other
words, only this plan in execution must be carried on.

The completion of a block is defined by the #completed-when: attribute. If
this attribute is not explicitly specified by the programmer, then some different
cases are considered by default, depending on the content of the block. If the
block contains only one or multiple sequences of actions – no reactions – then the
condition implicitly defined in #completed-when: is the completion with success
of the last action of every sequence. In other words, the block completes when
all the sequences of actions complete. Instead, if the block contains at least one
reaction, i.e. an action rule with the event/condition specified, then the default
value for #completed-when: is false. In this case the block is meant to be never
completed—this is useful, for instance, in maintenance tasks.

Finally, proactive tasks typically account for repeatedly executing
some set of actions. In simpAL this can be expressed declaratively, by
means of some attributes of an action rule block: #to-be-repeated and
#to-be-rep-until:Cond . The former says that once completed, the action rule
block should be re-instantiated on the stack. The latter is a variant in which
the block is re-instantiated until the specified condition holds. In the example,
this attribute is used both in Producing and Consuming plans. In the former
case (line 21), it is used to specify that the block should be repeated until all the
items have been produced or a stop command on the GUI has been issued. In the
latter case (line 10), the block is repeated until the count observable property
of the counter shared by the consumers achieved the desired value or, again, the
GUI issued a stop.

426 A. Ricci and A. Santi

More about Actions. The repertoire of actions that an agent can perform
includes a pre-defined set of actions useful to change its internal state. An ex-
ample is given by the belief-assignment action, used to assign a new value to a
belief. Values can be also plain old Java objects: the language provides internal
actions to instantiate objects (new-object) and invoke methods. It is worth re-
marking that the OOP layer is used only to define and reuse data structures:
Java mechanisms and classes related to concurrency, time and I/O are obviously
not considered—being modelled by the agent-oriented layer.

Other examples of internal actions include those working with tasks: to create
new tasks (new-task), to assign them (assign-task, do-task) and manage their
in execution (suspend-task, drop-task, etc.). An example is shown in the plan
for the task SetupProducers, in the ManagerScript (Fig. 8). Two instances of
the Producing task are created (line 8-9 and line 13-14) and assigned to agents
by means of the assign-task action.

Some pre-defined actions can be defined as communicative actions, since they
involves the communication with other agents. The tell action can be used to
send a message about the value of some belief. For instance, in the plan for the
SetupProducers task in the ManagerScript (Fig. 8), the manager could send a
message to a producer as follows:

1 prodA: Producer
2 ...
3 t1: Producing = new-task Producing (numInitialItemsToProduce: 20000,

bufToUse : buffer@consumers);
4 ...
5 assign -task t1 to: prodA
6 ...
7 tell t1.newItemsToProduce = 10

The receiver of the message in tell is omitted, since it is implicitly the assignee
of the task. It is worth noting that communications are necessarily bound – or,
contextualised – to tasks: the basic idea is that any message exchange can occur
only in the context of some task.

Also actions assigning tasks to other agents are communicative. An example
is shown in line 11 and 16 of the ManagerScript in Fig. 8.

Besides pre-defined actions, the repertoire of an agent’s action is open, since
by definition it includes the operations of artifacts that an agent may want to
use. The complete syntax of these kinds of action is:

op (Params) on art

where op is the name of the operation provided by the artifact referred by art,
specifying Params as parameters. The reference art can be either a belief or
directly a literal (e.g. gui@main) denoting the identifier of the target artifact.
The target artifact can be omitted when it can be deduced at compile time by
the name of the operation and the artifacts declared in the #using: attribute.

Finally, some pre-defined actions at the language level are just a syntac-
tic sugar for referring operations on predefined artifacts. Main examples are
new-artifact and new-agent, which can be used respectively to dynamically
create a new artifact and spawn a new agent. These are operations provided

From Actors and Concurrent Objects to Agent-Oriented Programming 427

by a pre-defined workspace artifact, available by default in every workspace,
providing functionalities for its management. In the example, new-artifact is
used in the Booting plan (line 7, Fig. 6) to create a new ItemMaker artifact.
Instead, new-agent is used in the SetupProducers plan of the ManagerScript

to spawn producer agents. Another example of pre-defined artifact – available
by default in the main workspace – is console, which is used in the example to
print messages on standard output (println operation).

Structuring Complex Plans. Complex plans can be modularized by breaking
them into sub-plans and corresponding sub-tasks, that can be instantiated and
managed by pre-defined actions mentioned in previous section. An example is
reported in the script of the consumer shown in Fig. 7. The processing of the item
is represented by a private task type ProcessItem defined in the script (lines
27–31), as well as a plan for handling it (lines 21–25). The sub-task is assigned
at line 14 by means of the do-task action, after having successfully retrieved an
item from the buffer. As soon as the action completes – that happens when the
self-assigned sub-task is completed – the counter is incremented.

4.2 Programming Artifact-Based Environments

The programming model of artifacts is simpler than the agents’ one, more similar
to the model used for classic passive entities, such as monitors or objects. Analo-
gously to the agent case, also for artifact programming we separate the abstract
description of the artifact functionalities from their concrete implementation.
The former is specified by usage interfaces – examples are Counter shown in
Fig. 9 and Buffer shown in Fig. 10. Usage interfaces define the type of artifacts.

The definition of a usage interface includes the name of the interface, a set
of observable properties and the declaration of a set of operations. Observable
properties are similar to variables, characterized by a name, a value and a type.
The parameters declared by operations are keyword based—for instance, put
has a parameter called item. On the agent side, when invoking the operation
(i.e. executing an action), the parameters must be specified with the keyword, in
any order. A parameter can be declared to be an action feedback, i.e. an output
parameter which is computed by the operation and returned to the agent (e.g.
item parameter in get operation) when the operation (action) has completed.
An operation can include multiple output parameters.

The implementation of an artifact is defined in artifact templates – examples
are CounterImpl in Fig. 9 and BoundedBuffer in Fig. 10. Like classes in OOP,
artifact templates are a blueprint for creating instances of artifacts. As already
mentioned, on the agent side, the new-artifact action can be used to create a
new artifact, specifying the template, the initial parameters and a belief where
to store the reference to the artifact created, e.g.:

428 A. Ricci and A. Santi

myCount: Counter

...

make-artifact Counter(startCount: 10) ref: myCount

...

The definition of an artifact’s template includes a name, the declaration of the
implemented artifact model, the concrete implementation of operations and the
definition of internal (non observable) state variables, that can be accessed by
operations. In templates, the observable properties are not re-declared, being
already declared in the usage interface.

1 usage -interface Counter {
2

3 obs -prop count: int
4

5 operation inc()
6

7 }

1 artifact CounterImpl implements Counter {
2

3 init (startValue: int) {
4 count = startValue;
5 }
6

7 operation inc() {
8 count = count + 1;
9 }

10

11 }

Fig. 9. Usage interface (Counter) and template implementation (CounterImpl) of a
counter artifact

1 usage -interface Buffer {

2

3 obs -prop nElems: int;

4

5 operation put(item : acme .Item);

6 operation get(item : acme .Item #out);

7

8 }

1 artifact BoundedBuffer implements Buffer {

2

3 elems : acme .Item [];

4 numMaxElems : int;

5 first : int; last : int;

6

7 init (maxElems : int) {

8 numMaxElems = maxElems ;

9 elems = new acme .Item [numMaxElems];

10 first = 0; last = 0; nElems = 0;

11 }

12

13 operation put (item : acme .Item) {

14 await nElems < numMaxElems ;

15 nElems = nElems + 1;

16 elems [last] = item ;

17 last = (last + 1) % numMaxElems ;

18 }

19

20 operation get (item : acme .Item #out) {

21 await nElems > 0;

22 nElems = nElems - 1;

23 item = elems [first];

24 first = (first + 1) % numMaxElems ;

25 }

26 }

Fig. 10. Usage interface (Buffer) and template implementation (BoundedBuffer) of a
bounded buffer

From Actors and Concurrent Objects to Agent-Oriented Programming 429

1 org -model ProdConsModel {

2

3 workspace producers {

4 manager : Manager

5 }

6

7 workspace consumers {

8 buffer: Buffer

9 counter : Counter

10 consA : Consumer

11 consB : Consumer

12 }

13

14 workspace main {

15 gui: GUI

16 }

17 }

1 org ProdCons implements ProdConsModel {

2

3 workspace main {

4 gui =

5 new -artifact SimpleGUI (title :"Simple GUI ")

6 }

7

8 workspace producers {

9 manager =

10 new -agent ManagerScript () init -task :

11 new -task Manager.SetupProducers ()

12 }

13

14 workspace consumers {

15 counter =

16 new -artifact CounterImpl (startValue :0)

17 buffer =

18 new -artifact BoundedBuffer (maxElems :10)

19 consA =

20 new -agent SimpleConsumer () init -task :

21 new -task Consuming (maxItemsToProcess :15000)

22 consB =

23 new -agent SimpleConsumer () init -task :

24 new -task Consuming (maxItemsToProcess :15000)

25 }

26 }

Fig. 11. An example of an organzation model (ProdConsModel) and of a concrete
organization implementing it (ProdCons)

Operation behavior is given by a simple sequence of statements, in pure im-
perative style, using classic control flow constructs, assignment operators, etc.
As mentioned previously, Java is used as a language for defining data structures.
So objects as well as primitive values can be used in expressions and as value of
variables and observable properties, and method invocation appears among the
statement of the language. For instance, in the BoundedBuffer implementation,
the class acme.Item (not shown) is used to represent the elements produced and
consumed by agents, and stored in the buffer.

Besides classic statements, specific primitives are introduced to synchronize
operation execution. For instance, the await statement allows for suspending
the operations until the specified condition is met. An example of use is in the
implementation of the put and get operations of the bounded buffer. The former
is suspended until the buffer is not full, the latter until the buffer is not empty.
As in the case of monitors, only one operation can be in execution: so if multiple
suspended operations can be resumed a certain time, only one is selected. This
feature is useful in particular to implement coordination artifacts, i.e. artifacts
explicitly designed to provide also coordinating/synchronizing functionalities to
the agents sharing and concurrently using them.

Operations may complete with success or fails. Correspondingly the agent
who issued the operation will eventually receive an action completion event with
success or an action failure event.

430 A. Ricci and A. Santi

4.3 Defining the Organization

The global structure of a simpAL program and its initial configuration are speci-
fied by the notion of organization. The organization model contains the descrip-
tion of the topology of the organization in terms of a set of workspaces, each
possibly including the name (identifier) and the type of some agents and artifacts
that are known to be part of that workspace.

As an example, Fig. 11 shows the definition of the ProdConsModel organisation
model, composed by three workspaces: producers, consumers, and main—the
latter is available by default in every organization. The workspace producers

is declared to host an agent called manager playing the role of Manager (not
shown). The workspace consumers is declared to host a couple of agents called
consA and consB playing the role of Consumer, along with a Counter artifact
called counter and a Buffer artifact called buffer. The main workspace hosts
a gui artifact of type GUI. An organization can contain further agent/artifact
instances created at runtime, besides those statically declared in the organization
model. The static case is useful anyway to specify the identifier of those elements
whose name and type must be known at the organizational level, at compile
time. In other words, to define global symbols that can be resolved and checked
in scripts that explicitly declared to play a role inside an organization of this
type (e.g. SimpleProducer script which declares to implement the Producer role
inside the ProdConsModel). By doing so, the symbols and identifiers declared in
the organization model can be referred as literals also in the script (e.g., gui@main
in #using: attribute) and then checked at compile time.

The definition of a concrete organization accounts for specifying the concrete
instances of agents and artifacts declared in the org model (see Fig. 11, on the
right). For artifacts, the artifact template is specified, possibly including also
the value of some initialization parameters. For agents, the initial script to be
loaded must be specified, along with the initial task to do.

Finally, a simpAL program can be launched by specifying a configuration file
specifying further deployment information, such as the Internet address of the
workspaces defined in the program [56]. An example of deployment file for the
producer-consumer organization is:

1 org ProdCons
2 org-id my-test -app
3 workspace-addresses {
4 main = localhost
5 producers = localhost:1000
6 consumers = 137.204.107.188
7 }

In this case, the program will be distributed transparently among three simpAL
nodes, in two different hosts.

5 simpAL Implementation: Platform and Tools

An important aspect of our investigation related to agent-oriented programming
concerns also the design of the technologies. In particular, we are interested to

From Actors and Concurrent Objects to Agent-Oriented Programming 431

Fig. 12. IDE Overview

explore both how the new abstraction layer can be supported by platforms and
tools, and how it would impact on the deployment, debugging and profiling of
programs.

The current prototype of simpAL platform3 has been developed in Java and
includes a compiler, a runtime – including an infrastructural layer for the ex-
ecution of distributed programs – and an Eclipse-based IDE. The compiler is
based on the Xtext language development framework4 and it produces binaries
that can be read and executed by the simpAL runtime. Such a runtime map the
logical level of concurrency defined in a program into the physical one, like it
happens in other modern actor-based technologies [7,28,36].

In simpAL programs, the execution of agents is concurrent, as well as the
execution of operations on distinct artifacts. This is at the logical level. It is
then responsibility of the runtime platform to effectively map these concurrent
entities and activities on the physical processors available in the systems. This
is currently done by exploiting a pool of threads, whose size is strictly related to
the number of such processors. This makes it possible to have a certain degree
of scalability and finally running effectively programs composed by a very large
number of agents (and artifacts) on the same node, like simple objects in OOP
programs.

3 Available as an open-source project here: http://simpal.sourceforge.net
4 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

432 A. Ricci and A. Santi

A critical aspect of the runtime concerns the implementation of the agent con-
trol architecture and its execution cycle (described in Section 3). In principle, it
would introduce a substantial overhead compared to simple threads and actor
event loops. This is because, in theory, an agent (interpreter) is never blocked,
but continuously doing a sense-plan-act cycle. In practice, however, it is possi-
ble to foresee many optimizations that make it possible to greatly reduce such
overhead.

A first one accounts for doing the cycle only by need. For instance, if in a cycle
N no rules are selected, then the execution of the cycle N+1 can be postponed
until an event can be fetched from the event queue. It is worth remarking that
in simpAL temporal events can be modelled as events generated by artifacts
providing functionalities related to time management. An example is given by
the clock artifact, available among the pre-defined types of artifacts.

Another optimization concerns chains of actions, which make it possible to
simplify action selection in the plan stage. Finally, the availability of artifacts as
dual abstraction with respect to agents enhances the space of the possibilities
related to the organization of a program. In particular, it allows for encapsulating
those computational behaviors that need to be executed with the maximum
efficiency in artifacts, being artifacts characterized by a far simpler execution
model and architecture compared to agents.

The infrastructural layer supports the distributed deployment and execution
of programs that span over multiple workspaces on different network nodes.
Actually many important issues have not been considered so far – such as the
(distributed) garbage collection of agents and artifacts – and will be considered
in future work.

Finally, the IDE has been conceived and developed exploiting the Eclipse tool
ecosystem. It includes typical features of Eclipse-based IDE, such as a project-
manager and file editors with features such as context-assist, code completion,
template proposals, cross-referencing. Fig. 12 shows a screenshot of the IDE in
action.

6 Discussion

In this section we discuss some key aspects of simpAL and agent-oriented pro-
gramming, compared to actors and concurrent objects in particular.

6.1 From a Reactivity to a Proactivity Principle

A distinguished feature of the computational and programming model of agents
in simpAL is the proactivity principle, compared to the reactivity one defined for
actors. Agents act (and react) because they have a task to do, not necessarily
because they received a message. Conceptually, the activity of a simpAL agent
is state-driven, not event-driven. In fact, they keep on selecting actions until
the task has been fulfilled – in spite of the task allocation event. Tasks may be
assigned by means of message passing, but this is not necessarily the only case.

From Actors and Concurrent Objects to Agent-Oriented Programming 433

This makes it possible to reduce the gap between design and implementation.
Task-oriented decomposition and division of labor is a common strategy used
to design concurrent programs. At that level, tasks are not messages, but the
description of a unit of work to be done — which may involve the adoption of
some interaction protocol or some further decomposition in subtasks and related
coordination. By adopting tasks as a first-class concept also at the level of the
computation/programming model, we keep this level of abstraction alive.

6.2 Integration of Autonomous and Reactive Behavior

In the most general case, a plan must integrate both the execution of some pre-
defined workflow of actions and reactions handing asynchronous events that are
relevant for the task. The plan model in simpAL aims at making it possible to
easily specify in a modular and simple way strategies that include both actions
and reactions. From the execution point of view, this is supported then by the
control loop, which defines the agent execution cycle.

This makes it possible to tackle two main issues that affect in general asyn-
chronous programming, i.e. inversion of control and asynchronous spaghetti. A
comprehensive discussion about this aspect can be found in [50] – in the following
we report just some glances.

Events without Inversion of Control. In Object-Oriented Programming,
inversion of control (IoC) refers to the method used in frameworks to execute
user’s application code [34]. The framework plays the role of the main program
in coordinating and sequencing application activity, controlling the execution
also of components encapsulating the business logic of the application.

In concurrent programming, this method is often used to realize the asyn-
chronous interaction among parts executed by different threads of controls [27].
In these cases IoC occurs when, instead of calling blocking or long-term oper-
ations for waiting the occurrence of certain events, a program merely registers
its interest to be resumed on certain events (e.g. an event signaling a pressed
button), by installing proper handlers (callbacks) in the execution environment.
The program never calls these event handlers itself. Instead, the execution envi-
ronment dispatches occurred events to the installed handlers. Thus, the control
over the execution of program logic is “inverted.”

All approaches based on inversion of control suffer from the following two
problems [27]: (i) the interactive logic of a program is fragmented across multiple
event handlers (or classes, as in the state design pattern [23]) and (ii) control flow
among handlers is expressed implicitly through manipulation of shared state [17].

In simpAL there is no inversion of control. The control is logically encapsulated
in the agent control loop. Event handlers are modeled directly by action rules,
which are evaluated and possibly selected and related actions executed by the
same logical control flow, i.e. the agent control loop.

Avoiding asynchronous spaghetti. Also in pure actor-based solutions there
is no inversion of control: the control flow is encapsulated by the event loop,

434 A. Ricci and A. Santi

1 public class TestActor extends Actor {
2

3 int first = -1;
4 boolean ignore = false;
5

6 @message
7 public void printLowest(ActorName s1, ActorName s2, String item) {
8 send(s1,"request ",item ,self());
9 send(s2,"request ",item ,self());

10 ignore = false;
11 }
12

13 @message
14 public void stop() {
15 ignore = true;
16 call(stdout ,"print","Stopped .");
17 }
18

19 @message
20 public void reply(Integer value) {
21 if (!ignore) {
22 if (first == -1) {
23 first = value; /* first value received */
24 } else {
25 /* both values available */
26 int lowest = (value < first ? value : first);
27 call(stdout,"print","Lowest: "+lowest+"\n");
28 }
29 }
30 }
31 }

Fig. 13. The simple example implemented in ActorFoundry

which repeatedly fetches a message from the mailbox and executes the corre-
sponding method. However, in that case the logic of a plan used to accomplish
some task must be necessarily fragmented into a set of handlers that are re-
lated to the messages to be received. In other words, the criteria that can be
used to modularize the complex behavior of an actor must be related to message
handling [50]. In simpAL, the strategy needed to accomplish some task can be
encapsulated into a plan, without fragmentations. The plan of a complex task
can break the task in sub-tasks, self-assigned through do-task but encapsulat-
ing the logic of the sub-task management and aggregation of task results in the
same plan.

Let’s consider a simple example. Suppose that we want to implement an ac-
tor/agent whose job is to get the prices of two items by interacting with some
external services and to print to output the lowest price. Besides, the actor/agent
should be able to react to a stop input by the user—in that case the actor/agent
must print a stop message. We want that (i) the two requests are carried on in
parallel, and (ii) there is a prompt reaction to used input.

A solution based on actors – using the pure (simplest) model - is shown in
Fig. 13, implemented in ActorFoundry [36], a well-known actor framework based
on the JVM. The printLowest message handler sends the requests to the two
service actors. Then the actor waits either for replies or for a stop message. The
reply handler is called each time the actor receives the response by a service

From Actors and Concurrent Objects to Agent-Oriented Programming 435

1 plan -for PrintLowest {
2

3 #using: cons , gui, s1 , s2
4 #completed -when: is -done print || is -done stop
5 p1,p2: int
6

7 {
8 request (item: id, reply: p1) on s1
9 request (item: id, reply: p2) on s2

10 };
11 {
12 if (p1 < p2){
13 println (msg:"Lowest : "+p1) on cons
14 } else {
15 println (msg:"Lowest : "+p2) on cons
16 }
17 } #act: print
18

19 when changed stopPressed in gui => {
20 println (msg: "Stopped .") on cons
21 } #act: stop
22 }

Fig. 14. The same example implemented in simpAL

actor. If both replies have been received, then the lowest value can be computed
and the message can be printed to output. If a stop is received, a flag (ignore)
is set, in order not to process messages arriving later.

in spite of the simplicity of the example, the behaviour of the actor must be
necessarily fragmented into (at least) three message handlers. Such a decomposi-
tion is not suggested by design principles to improve modularity, but is enforced
by the message flow. In other words, the reply handler is not really a module
storing a self-contained reusable part of the strategy; it can be more correctly
conceived as the continuation5 of a single conceptual module, started with the
printLowest handler.

It is worth noting that call in ActorFoundry is a built-in mechanism imple-
menting an RPC-like messaging on top of the basic actor communication model.
In this case it is used to interact with the stdout predefined actor; RPC-like
messaging is not useful to solve the problem in this case—e.g., by using call

when doing the requests before computing the lowest value because it would
sequentialize the computation.

A sketch of a plan in simpAL implementing this behaviour is shown in Fig. 14.
The services are represented in this case by a couple of artifacts – referenced
by the s1 and s2 parameter of the PrintLowest task. The action block in lines
7-10 executes the two requests in parallel and implicitly completes when both
the actions (each corresponding to a sequence of a single action) have been com-
pleted, carrying thier results in p1 and p2 integer variables. After the completion
of this block (note the ; at line 10), a further block printing the lowest value is
executed. The reaction to user input is modelled by a rule triggered when the a

5 A solution based on continuations as first-class linguistic construct will be described
later.

436 A. Ricci and A. Santi

1 behavior Test {
2 boolean ignore = false;
3

4 void printLowest(Service s1, Service s2, String item){
5 join { s1<-request (item); s2<-request (item); } @ computeLowest (token);
6 }
7

8 void computeLowest(Object values []){
9 if (!ignore){

10 int v0 = (Integer)values [0];
11 int v1 = (Integer)values [1];
12 if (v0 < v1){
13 standardOutput <-println ("Lowest: "+v0);
14 } else {
15 standardOutput <-println ("Lowest: "+v1);
16 }
17 }
18 }
19

20 void stopMsg (){
21 standardOutput <-println ("Stopped . ");
22 ignore = true;
23 }
24 }

Fig. 15. The simple example implemented in SALSA

change to the stopped observable property is observed (lines 19-21). As speci-
fied at line 4, the action rule block representing the plan body can be considered
completed either when the lowest value is printed or the stop is processed. In
this case, the strategy is fully encapsulated in a single plan, whose structure
follows quite faithfully the high-level description of the strategy. In particular:
(i) the continuation behaviour after receiving the replies from the two services
is written just after the block storing the two request actions; (ii) the prompt
response to user input is guaranteed by the reaction to stopPressed, which –
if triggered – interrupts the sequence of actions and causes the main body to
complete. The code is not polluted by explicit if-based tests to check if a stop
has been issued or not.

The actor solution can be improved by exploiting join continuations [2],
which are provided by some actor languages and frameworks. Essentially, join-
continuations make it possible to express in a single handler workflows of actions
implementing a divide-and-conquer pattern, whose management is in charge of a
continuation actor automatically created by the runtime. SALSA [60] is an actor
language providing first-class continuations. Fig. 15 shows an implementation of
the example in SALSA. In the printLowest message handler, the join contin-
uation (line 5) sends the two request messages to the service actors and then,
as soon as both the replies about the requests are available, a computeLowest

message is sent back to the actor. On the one side, this solution improves the pre-
vious actor one since the structure of the workflow of actions is encapsulated in
a single place (the printLowest handler). On the other side, (i) the programmer
is still forced to break the code in multiple handlers corresponding to messages
that are received; (ii) the semantics of behaviour mixing join continuations and

From Actors and Concurrent Objects to Agent-Oriented Programming 437

1 print_lowest(S1,S2,Item) ->
2 io:format("started ~n", []),
3 S1 ! {request , Item , self()},
4 S2 ! {request , Item , self()},
5 receive_first_reply().
6

7 receive_first_reply() ->
8 receive
9 {reply , N} -> receive_second_reply(N);

10 stop -> io:format("Stopped ~n", [])
11 end.
12

13 receive_second_reply(N1) ->
14 receive
15 {reply , N2} -> io:format("Lowest :~p~n", [min(N1,N2)]);
16 stop -> io:format("Stopped .~n", [])
17 end.

Fig. 16. The simple example implemented in Erlang

reactions to events could be tricky to grasp. In the example, the actor correctly
reacts to a stop message (stopMsg) even in the middle of the workflow specified
by the join continuation, so before that the computeLowest message has been
received. Like in the previous actor solution, an explicit test must be used in the
computeLowest handler to check if a stop has arrived.

A more high-level solution – similar to simpAL’s one – can be conceived by
using concurrent objects and ABCL [64], exploiting (i) the selective message
reception and the waiting mode—to wait for replies inside an handler after
sending the requests; and (ii) the express mode message passing—to promptly
react to the stop message, possibly interrupting object current activities. The
availability of an explicit selective receive is found also in modern hybrid actor-
based approaches like Erlang [7] and Scala actors [29], unifying event-driven
behavior with a thread-like one. Fig. 16 shows a solution of the problem us-
ing Erlang, which is a classic approach provided by any framework support-
ing asynchronous message passing. The body of the actor – represented by the
print lowest function – is decomposed in two functions, receive first reply

and receive second reply, each one doing a selective receive. This decompo-
sition is not strictly necessary in this case—both the receives could be packed
inside the print lowest. Compared to the simpAL solution, here we have to
manage the explicit exchange of messages and – depending on the design – the
handling of the stop message may need to be replicated.

Task Decomposition and Atomic Blocks. Fig. 17 shows a solution in sim-
pAL of the same toy example in which a task/plan decomposition is exploited.
A SubTask task is used to encapsulate the interaction with services and the
computation and printing of the lowest value. Then, the main plan creates an
instance of the sub-task and self-assigns it. In this case there are two plans in
concurrent execution inside the agent, that may interleave their actions. The
execution of individual actions (including the evaluation of expressions related

438 A. Ricci and A. Santi

1 plan -for PrintLowest {
2

3 t: SubTask = new -task SubTask(serv1: s1 ,
4 serv2: s2 ,
5 it: id);
6 {
7 #using: gui , cons
8 #completed -when: is -done t ||
9 is -done stop

10 do -task t
11

12 when changed stopPressed in gui => {
13 #atomic
14

15 println(msg: "Stopped.") on cons
16 if (!is -done t){
17 drop -task t
18 }
19 } #act: stop
20 }
21 }

1 plan -for SubTask {
2

3 #using: s1 , s2 , cons
4

5 p1,p2: int
6 {
7 request(item: it, reply: p1) on serv1
8 request(item: it, reply: p2) on serv2
9 };

10 {
11 if (p1 < p2){
12 println(msg:"Lowest: "+p1) on cons
13 } else {
14 println(msg:"Lowest: "+p2) on cons
15 }
16 }
17 }

Fig. 17. The example in simpAL with subtasks

to action parameters) is guaranteed to be atomic—occurring in the act stage of
the agent control loop. Even if multiple actions are scheduled to be executed in
the same execution cycle, they are executed in sequence in the act stage. So no
low-level races can occur, e.g. for actions accessing to the same beliefs—declared
at the agent script level, which are shared by plans in execution. However, this
does not prevent high-level races to occur, involving the interleaving of groups
of actions. This can be avoided by exploiting the #atomic attribute in action
blocks. In the example, as soon as the action rule block in lines 12-20 is pushed
on top of the intention stack (when a stopPressed is perceived), only actions
from this intention are chosen in the agent execution cycle (as explained in Sub-
section 4.1). So no interleaving can occur with actions selected from the plan in
execution for SubTask.

6.3 Asynchronous & Synchronous Interaction and Indirect
Communication

Even if asynchronous message passing can be adopted as unique foundational
interaction model, the use of synchronous interactions and high-level coordina-
tion mechanisms/patterns – such as tuple spaces [24] – can strongly simplify
programming in many cases. For this reason, almost any actor framework pro-
vides mechanisms to enrich the basic asynchronous message passing model. The
simplest example is given by RPC-like interaction, which is implemented by
means of mechanisms such as continuation actors [4] or now type message pass-
ing [63] or directly by specific primitives such as call in ActorFoundry [36]. More
complex examples include synchronizers [22] and actor spaces [3] for supporting
uncoupled communication.

In simpAL this general issue is tackled at the computation/programming
model level, by introducing artifacts (i.e., the environment) as a further first-
class computational abstraction aside agents. This makes it possible to define a

From Actors and Concurrent Objects to Agent-Oriented Programming 439

general notion of action and observable state. Actions allow for expressing syn-
chronous interactions in a natural way. The notion of observable state makes it
possible to uniformly and elegantly implement the observer pattern and related
even-driven/uncoupled communication.

Coordinating Agent Actions with Artifacts. Artifacts make it possible to
adopt a further coordination style among agents besides direct message pass-
ing, that is environment-based coordination [47,42]. As such, an artifact can be
designed to function as a coordination medium [18] (i) enabling the indirect
interaction among agents and (ii) enforcing some coordination laws managing
the dependencies among actions executed by agents. This makes it possible to
encapsulate coordination strategies inside artifacts (functioning as coordination
artifacts [42]), instead of distributing the burden of coordination among the par-
ticipants. In agent literature this is called objective coordination (vs. subjective
one) [40] and was strongly inspired by the works on coordination models and
languages [25].

Objective coordination implies a form of centralization (either conceptual or
practical) in coordinating agents—being the coordination medium the entity
where such coordination is encapsulated. So not every problem can be effectively
solved by adopting this style—in same cases, full decentralization of coordination
(i.e., subjective coordination) is a better solution [40]. This is the reason why
simpAL supports both styles.

It is worth remarking that the await primitive in artifact programming model
(Subsection 4.2) is a necessary mechanism for implementing coordination arti-
facts. In fact, the synchronization of concurrent actions – which is the basic
step of coordination – implies that the execution of actions inside an artifact
would overlap, but without violating the artifact mutual exclusion property. So
await allows for suspending current action execution, allowing other actions to
be executed. This is analogous to the condition variable mechanism in moni-
tors—in simpAL the condition can be directly specified as a parameter of the
await primitive, instead of using condition variables.

6.4 Static Typing

simpAL is a statically and strongly typed programming language. In particular,
agents and artifacts are typed—roles are used to define the types of agents, while
usage interfaces are used for artifacts.

This makes it possible to enact a wide spectrum of compile-time checks on
how agents and artifacts are implemented and how they interact. For instance,
on the agent side we can check that if a script S has been declared to implement
some role R, then S must implement at least one plan for each type of task T
described in R. Then, given the identifier of an agent a of some type R, then
only instances of tasks whose type is included in R can be assigned to a.

Generally speaking, the usefulness of typing goes far beyond error check-
ing [43]. It is an effective tool for improving the modelling and design of a

440 A. Ricci and A. Santi

program, making it more extensible, reusable, etc. For instance, the definition
of a sub-typing relationship between roles would make it possible to conceive a
sound principle of substitutability [61] also for agents. A first discussion about
these points can be found here [52]: a more comprehensive treatment, including
the definition of formal type system, will be considered in future work.

7 Related Work

simpAL is – on the one side – strongly related to existing agent programming
languages – especially to Jason [14] and its integration with CArtAgO environ-
ment framework [48], which have been an important source of inspiration. On the
other side, the language is deeply different from existing approaches in AI since
it has been designed from scratch with software development in mind. The aim
is to bring inside an agent-oriented programming language the same robustness,
usability and flexibility which is found in mainstream programming languages.

Besides existing agent programming languages in (D)AI context, our work is
related to existing frameworks and platforms that allow for developing agent-
oriented programs exploiting existing programming languages. Among these,
JADE [9] which has been introduced in Section 2, is one of the most used Java-
based FIPA6 compliant platform for developing agent-based software. JADE
makes it possible to write agent programs in Java, where agents communicate
using FIPA ACL as a standard high-level agent communication language. The
model adopted for defining agent is based on behaviors, which share some similar-
ities with the notion of plan adopted in simpAL. Besides agents, recently JADE
model has been extended with a notion of service which is quite similar to the
notion of artifact used in simpAL and in A&A, as non-autonomous components
providing operations to agents.

In the context of concurrent programming, the agent-oriented abstractions
in simpAL can be seen as a conceptual extension of the concept of actors and
concurrent objects [63,2]. The extension concerns introducing specific first-class
concepts to improve the structuring of autonomous behaviors (tasks, plans),
the integration of task-oriented and event-driven behaviors, the separation of
concerns related to autonomous (agents) and non-autonomous (environment)
entities. The aims of raising the level of abstraction to be adopted in modelling
and programming with respect to the pure actor model makes simpAL strongly
related to the ABCM model and the ABCL language family [62] in particular.
Like the Concurrent Object abstraction, also agents have an explicitly anthropo-
morphic nature. Also, some features that concern the agent programming model
in simpAL have a clear correspondence in ABCL and not in the actor model. Ex-
amples are given by the waiting modality with selective receive and the express
mode in message passing provided by ABCL. In simpAL, corresponding features
are provided by the plan model, which integrate actions and reactions.

In concurrent programming the notions of actor and agent are often used as
synonyms, to generically refer to active entities that exchange asynchronously

6 Foundation for Intelligent Physical Agents, http://www.fipa.org

http://www.fipa.org

From Actors and Concurrent Objects to Agent-Oriented Programming 441

messages and are reactive, in particular react to messages received in input by
other agents. An example is given by recent works exploiting the F# functional
language – and its asynchronous programming model – to implement agent-based
concurrency and agent-oriented programs on top of functional programs [59]. Al-
ways in the context of concurrent programming, a notion of agent is used also in
the Clojure language [30], as a state-full, reactive, non-autonomous entity which
is used as a simple concurrency mechanism to manage the execution of asyn-
chronous I/O operations. A common issue which is considered very important by
these approaches as well as in simpAL is the the availability of some programming
support for easily integrating thread-based and event-driven behavior. This is a
central point tackled also in the implementation of actors as a library on top the
Scala language [29].

Finally, simpAL is related to our previous work simpA [55], a Java-based frame-
work for developing concurrent programs using agent-oriented abstractions. sim-
pAL can be considered an evolution of that work, (i) introducing a new language
instead of relying on a framework based on existing technologies, and (ii) adopt-
ing a different computational model for agents, inspired to BDI.

8 Conclusion and Future Work

The simpAL language introduces a basic agent-oriented abstraction layer over the
actors and concurrent objects, aimed at raising the level of abstraction in pro-
gramming concurrent systems. The work is just the first step allowing for investi-
gating and exploiting agent-oriented programming as a programming paradigm,
and many further issues are worth to be explored from this starting point.

Different kinds of improvements can be devised about the basic agent and
artifact model. A main one is the generalization of the task model to consider
also cooperative tasks. In the current model tasks are individual : they can be
assigned to a single agent – the task assignee – and communication can occur
only between the task assigner and the task assignee. This basic model is not
effective to represent tasks that involve multiple agents, working together and
playing different roles in the same task. This model can be extended to capture
directly these kinds of tasks, making it possible to specify also interaction pro-
tocols among agents playing the different roles. Another main improvement is
the introduction of sub-typing and inheritance for agents (for roles, scripts) and
artifacts (for artifact models, templates) for better supporting extensibility and
reuse.

Besides these improvements, a main objective of our ongoing and future work
is the definition of a unified model that makes it possible to integrate in a clean
and sound way agent-oriented abstractions – based on the simpAL model – and
object-oriented programming. First results about this direction are described
here [53,54] and concerns a language and system called ALOO7. ALOO artifacts
and objects have been unified in a single object model, which essentially extends

7 ALOO is the short version of simpAL-OO, which means simpAL integrated with OOP.

442 A. Ricci and A. Santi

the original OOP one with artifacts features. So an ALOO program is an organi-
zation of agents and objects. Also the agent abstraction in ALOO is a simplified
version compared to simpAL one, so as to keep the model as simple as possi-
ble, yet preserving the key features of the agent abstraction. This language will
make it easier to define a formal semantics to study more rigorously the prop-
erties (and problems) of the computational model. Some initial investigations
about this point have been done in the past using the simpA framework [19].

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Agha, G.: Concurrent object-oriented programming. Commun. ACM 33(9), 125–
141 (1990)

3. Agha, G., Callsen, C.J.: Actorspace: an open distributed programming paradigm.
SIGPLAN Not. 28(7), 23–32 (1993)

4. Agha, G., Frolund, S., Kim, W., Panwar, R., Patterson, A., Sturman, D.: Ab-
straction and modularity mechanisms for concurrent computing. IEEE Parallel
Distributed Technology: Systems Applications 1(2), 3–14 (1993)

5. Agha, G., Hewitt, C.: Concurrent programming using actors. In: Yonezawa, A.,
Tokoro, M. (eds.) Object-oriented Concurrent Programming, pp. 37–53. MIT Press,
Cambridge (1987)

6. Agha, G., Yonezawa, A., Wegner, P. (eds.): Research Directions in Concurrent
Object-Oriented Programming. The MIT Press (1993)

7. Armstrong, J.: Erlang. Communications of the ACM 53(9), 68–75 (2010)
8. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade: A software framework

for developing multi-agent applications. lessons learned. Information & Software
Technology 50(1-2), 10–21 (2008)

9. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

10. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747–
761 (2013)

11. Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming Languages, Platforms and Applications, vol. 1, 15. Springer (2005)

12. Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent
Programming Languages, Platforms and Applications, vol. 2. Springer (2009)

13. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using jason
(Tutorial paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI),
vol. 3900, pp. 143–164. Springer, Heidelberg (2006)

14. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

15. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Special Issue: Multi-
Agent Programming, vol. 23 (2). Springer (2011)

16. Briot, J.-P., Guerraoui, R., Lohr, K.-P.: Concurrency and distribution in object-
oriented programming. ACM Comput. Surv. 30(3), 291–329 (1998)

17. Chin, B., Adsul, B.: Responders: Language support for interactive applications. In:
Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 255–278. Springer, Heidel-
berg (2006)

From Actors and Concurrent Objects to Agent-Oriented Programming 443

18. Ciancarini, P.: Coordination models and languages as software integrators. ACM
Comput. Surv. 28(2), 300–302 (1996)

19. Damiani, F., Giannini, P., Ricci, A., Viroli, M.: A calculus of agents and artifacts.
In: Cordeiro, J., Ranchordas, A., Shishkov, B. (eds.) ICSOFT 2009. CCIS, vol. 50,
pp. 124–136. Springer, Heidelberg (2011)

20. Dastani, M.: 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

21. Dastani, M., van Riemsdijk, M.B., Dignum, F.P.M., Meyer, J.-J.C.: A programming
language for cognitive agents goal directed 3APL. In: Dastani, M., Dix, J., El
Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–
130. Springer, Heidelberg (2004)

22. Frolund, S., Agha, G.: Abstracting interactions based on message sets. In: Ciancar-
ini, P., Wang, J. (eds.) ECOOP-WS 1994. LNCS, vol. 924, pp. 107–124. Springer,
Heidelberg (1995)

23. Gamma, E.: Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional (1995)

24. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

25. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

26. Google. Dart programming language specification, Online document, available at:
http://www.dartlang.org/docs/spec/ (last retrieved: April 12, 2012)

27. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

28. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science (2008)

29. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(23), 202–220 (2009)

30. Hickey, R.: Agents and asynchronous actions (in clojure), Online document, avail-
able at: http://clojure.org/agents (last retrieved: September 1, 2011)

31. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Das-
tani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming:
Languages, Platforms and Applications, vol. 2, pp. 3–37. Springer (2009)

32. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

33. Jennings, N.R., Wooldridge, M.: Agent-oriented software engineering. Artificial
Intelligence 117, 277–296 (2000)

34. Johnson, R.E., Foote, B.: Designing reusable classes. Journal of Object-Oriented
Programming 1(2) (1988)

35. Karmani, R.K., Agha, G.: Actors. In: Padua, D.A. (ed.) Encyclopedia of Parallel
Computing, pp. 1–11. Springer (2011)

36. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform:
a comparative analysis. In: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, PPPJ 2009, pp. 11–20. ACM,
New York (2009)

37. Kay, A.C.: The early history of smalltalk. In: Bergin Jr., T.J., Gibson Jr., R.G.
(eds.) History of programming languages—II, pp. 511–598. ACM, New York (1996)

38. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency among strangers. In: De
Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer,
Heidelberg (2005)

http://www.dartlang.org/docs/spec/
http://clojure.org/agents

444 A. Ricci and A. Santi

39. Mitchell, J.: Concepts in Programming Languages. Cambridge University Press
(2002)

40. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineer-
ing of agent systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.)
Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 179–202. Springer,
Heidelberg (2003)

41. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

42. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) AAMAS 2004, vol. 1, pp. 286–293. ACM
(2004)

43. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
44. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:

Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Multi-Agent Pro-
gramming. Kluwer (2005)

45. Rao, A.S.: AgentSpeak(l): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

46. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: First Inter-
national Conference on Multi Agent Systems, ICMAS 95 (1995)

47. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23,
158–192 (2011)

48. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.)
Multi-Agent Programming: Languages, Platforms and Applications, vol. 2, pp.
259–288. Springer (2009)

49. Ricci, A., Santi, A.: Designing a general-purpose programming language based
on agent-oriented abstractions: the simpAL project. In: Proc. of AGERE! 2011,
SPLASH 2011 Workshops, pp. 159–170. ACM, New York (2011)

50. Ricci, A., Santi, A.: Programming abstractions for integrating autonomous and
reactive behaviors: an agent-oriented approach. In: Proc. of AGERE! 2012, pp.
83–94. ACM, New York (2012)

51. Ricci, A., Santi, A.: A programming paradigm based on agent-oriented abstrac-
tions. International Journal on Advances in Software 5, 36–52 (2012)

52. Ricci, A., Santi, A.: Typing multi-agent programs in simpAL. In: Dastani, M.,
Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 138–157.
Springer, Heidelberg (2013)

53. Ricci, A., Santi, A.: Concurrent object-oriented programming with agent-oriented
abstractions the aloo approach. In: Proc. of AGERE! 2013, ACM, New York (2013)

54. Ricci, A., Santi, A.: Concurrent OOP with agents. In: Proceedings of the 4th
Annual Conference on Systems, Programming, and Applications: Software for Hu-
manity, SPLASH 2013. ACM, New York (to appear, 2013), Extended abstract

55. Ricci, A., Viroli, M., Piancastelli, G.: simpA: An agent-oriented approach for pro-
gramming concurrent applications on top of java. Sci. Comput. Program. 76, 37–62
(2011)

56. Santi, A., Ricci, A.: Programming distributed multi-agent systems in simpAL. In:
Flavio, D.P., Giuseppe, V. (eds.) Proceedings of the 13th Workshop on Objects and
Agents (WOA 2012). CEUR Workshop Proceedings, vol. 892, Sun SITE Central
Europe, RWTH Aachen University (2012)

From Actors and Concurrent Objects to Agent-Oriented Programming 445

57. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

58. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue: To-
morrow’s Computing Today 3(7), 54–62 (2005)

59. Syme, D., Petricek, T., Lomov, D.: The F# asynchronous programming model.
In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 175–189.
Springer, Heidelberg (2011)

60. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
salsa. SIGPLAN Not. 36(12), 20–34 (2001)

61. Wegner, P., Zdonik, S.B.: Inheritance as an incremental modification mechanism
or what like is and isn’t like. In: Gjessing, S., Chepoi, V. (eds.) ECOOP 1988.
LNCS, vol. 322, pp. 55–77. Springer, Heidelberg (1988)

62. Yonezawa, A.: ABCL – an object-oriented concurrent system. MIT Press series in
computer systems. MIT Press (1990)

63. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Meyrowitz, N.K. (ed.) Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA 1986), Portland, Ore-
gon, pp. 258–268. ACM (1986)

64. Yonezawa, A., Shibayama, E., Takada, T., Honda, Y.: Modelling and programming
in an object-oriented concurrent language ABCL/1. In: Yonezawa, A., Tokoro, M.
(eds.) Object-oriented Concurrent Programming, pp. 55–89. MIT Press, Cambridge
(1987)

65. Yonezawa, A., Tokoro, M. (eds.): Object-oriented concurrent programming. MIT
Press (1987)

Author Index

Agha, Gul 276
Aksit, Mehmet 367
Alagić, Suad 251

Briot, Jean-Pierre 18

Chen, Tzu-Chun 105

Demangeon, Romain 105
De Meuter, Wolfgang 317
Deniélou, Pierre-Malo 105
Desell, Travis 144

Fazeli, Adnan 251

Halstead, Robert H. 167
Honda, Kohei 105
Hu, Raymond 105

Kale, Laxmikant V. 196
Kobayashi, Naoki 128
Kwon, YoungMin 276

Lifflander, Jonathan 196
Lombide Carreton, Andoni 317

Madsen, Ole Lehrmann 66
Malakuti, Somayeh 367

Mechitov, Kirill 276
Mostinckx, Stijn 317

Nakashima, Jun 222
Neykova, Rumyana 105

Pinte, Kevin 317

Ricci, Alessandro 408

Santi, Andrea 408
Shibayama, Etsuya 18

Taura, Kenjiro 222

Ueda, Kazunori 341

Van Cutsem, Tom 317
Varela, Carlos A. 144

Watanabe, Takuo 44

Yasugi, Masahiro 239
Yonezawa, Akinori 1, 18, 44
Yoshida, Nobuko 105

	Preface
	Papers in This Festschrift
	Symposium “Concurrent Objects and Beyond”
	Brief Biography of Professor Akinori Yonezawa
	List of PhDs Supervised
	Table of Contents
	My Early Education and Concurrent Objects
	Part I My Early Education
	1 Before Reaching University
	2 Undergraduate School in Japan (1966-1970)
	3 Graduate School in Japan (1970-1973)
	Part II Concurrent Objects1
	1 Some History and Motivations
	2 Concurrent Objects
	3 What Can Be Contained in Messages?
	4 Modeling Customers Coming to a Post Office
	5 Need for Autonomous Mobility and Ambients
	6 ABCL, A Language for Concurrent Objects and Its Reflective Versions
	7 Large Scale Applications of Concurrent Objects
	References

	Object-Oriented Concurrent Programmingin ABCL/1
	1 Introduction
	2 Objects
	3 Message Passing
	4 Messages
	5 An Overview of the Language ABCL/1
	5.1 Design Principles
	5.2 Creating Objects and Returning Messages
	5.3 Ordinary Mode and Express Mode in Message Passing

	6 A Minimal Computation Model
	6.1 Reducing Now Type
	6.2 Reducing Future Type

	7 Project Team: A Scheme of Distributed Problem Solving
	8 Delegation
	9 A Distributed Algorithm for the Same Fringe Problem
	10 Concluding Remarks
	10.1 Importance of the Waiting Mode
	10.2 Express Mode Message Passing
	10.3 Interrupt vs. Non-Interrupt
	10.4 Parallelism and Synchronization
	10.5 Relationship to Other Work
	10.6 Other Program Examples

	References

	Reflection in an Object-Oriented ConcurrentLanguage
	1 Introduction
	2 Object-Oriented Concurrent Computation Model
	2.1 Overview of the Computation Model
	2.2 Structure of an Object
	2.3 Message Transmission
	2.4 Types of Message Transmissions

	3 Reflection in Our Model
	4 Meta-Objects and Reflective Language ABCL/R
	4.1 Object Definition in ABCL/R
	4.2 Definition of a Meta-Object in ABCL/R
	4.3 Meta Circularity of Objects

	5 Reflective Programming Facilities in ABCL/R
	5.1 Sending Messages to Meta-Objects
	5.2 Reflective Functions

	6 Reflective Programming in ABCL/R
	6.1 Dynamic Modification of Objects
	6.2 Dynamic Acquisition (Inheritance) of Scripts
	6.3 Monitoring Running Objects
	6.4 Time Warp Mechanism

	7 Concluding Remarks
	7.1 Summary
	7.2 Current Status of ABCL/R
	7.3 Future Work

	References
	A Code for Simple Time Warp Mechanism

	Building Safe Concurrency Abstractions
	1 Introduction
	2 Modeling
	2.1 Submethods in Beta

	3 Multi-sequential Action-Sequences
	3.1 The Monitor Abstraction
	3.2 Rendezvous
	3.3 Alternation
	3.4 A Simple Shop Example

	4 Implementation in Beta
	4.1 Coroutines
	4.2 Monitor Abstraction
	4.3 Imlementing Rendezvous System
	4.4 Summing Up

	5 Subpattern Restrictions
	5.1 Restrictions
	5.2 Monitor System
	5.3 Rendezvous System
	5.4 Summary of Subpattern Restrictions

	6 Evaluation and Related Work
	7 Conclusion
	References

	Structuring Communication with Session Types
	1 Introduction
	2 Background
	2.1 Structuring Sequential Programs
	2.2 Communication and Concurrency
	2.3 Structuring Communication

	3 Multiparty Protocols and Sessions
	3.1 Session Types
	3.2 Writing Protocols
	3.3 Writing Programs with Sessions

	4 Using Session Types
	4.1 Session Types in Distributed Systems
	4.2 Using Session Types for End-to-End Cyberinfrastructure

	5 Conclusion
	References

	From Linear Types to Behavioural Typesand Model Checking
	1 Introduction
	2 Linear Types for Concurrency
	3 From Linear Types to Behavioral Types
	4 From Behavioral Types to Higher-Order Model Checking
	5 Conclusions
	References

	SALSA Lite: A Hash-Based Actor Runtimefor Efficient Local Concurrency
	1 Introduction
	2 Related Actor Languages and Frameworks
	2.1 Erlang
	2.2 Kilim
	2.3 Scala

	3 The SALSA Lite Runtime
	3.1 Actor Creation
	3.2 State Encapsulation
	3.3 Safe Message Passing
	3.4 Garbage Collection

	4 Performance Benchmarks
	4.1 ThreadRing
	4.2 Chameneos-Redux
	4.3 FibonacciTree

	5 Discussion
	6 Future Work
	References
	A Fibonacci.salsa
	B ThreadRing.salsa

	Past and Future Directions for ConcurrentTask Scheduling
	1 Introduction
	1.1 Achieving Parallel Execution on Multicore Processors
	1.2 Overview of the Paper

	2 Examples of Non-Speculative Parallel Computing
	2.1 Divide-and-Conquer Computations
	2.2 Pipelined Computations
	2.3 Mostly Functional Programming

	3 Scheduling for Task-Based Parallel Computing
	3.1 Fair Scheduling Is Not Always Best
	3.2 Threads vs. Tasks
	3.3 Work-Stealing Schedulers
	3.4 Optimality of Work Stealing
	3.5 Lazy Task Creation
	3.6 Work Stealing and Lazy Task Creation Today

	4 Speculative Computing
	4.1 Sources of Speculative Parallelism
	4.2 Requirements for Speculative Task Scheduling
	4.3 Applications at the System Level
	4.4 The Sponsor Model
	4.5 Using the Sponsor Model
	4.6 Challenges for the Sponsor Model
	4.7 Speculative Computing Today

	5 Conclusion
	References

	Controlling Concurrency and ExpressingSynchronization in Charm++ Programs
	1 Introduction
	2 Charm++ and CSE Applications
	2.1 Comments on the Charm++ Model

	3 Concurrency Control within a Parallel Object
	3.1 Dagger
	3.2 Structured Dagger
	3.3 Threads
	3.4 Comparing Concurrency Control Mechanisms

	4 Controlling Concurrency across Parallel Objects
	4.1 Asynchronous Collective Operations
	4.2 Queuing Policies
	4.3 Memory-Aware Scheduling in LU
	4.4 Charisma: Controlling Concurrency across Chares

	5 Case Studies and Performance
	5.1 LeanMD
	5.2 Dense LU Factorization

	6 Conclusion
	References

	MassiveThreads: A Thread Libraryfor High Productivity Languages
	1 Introduction
	2 Related Work
	3 Design and Implementation
	3.1 Design Overview
	3.2 Definition of Terms
	3.3 Thread Scheduling
	3.4 Blocking I/O Call Handling

	4 Evaluation
	4.1 Thread Create and Join Overheads
	4.2 Load Balancing on Unbalanced Tree Search
	4.3 Performance of Practical Programs
	4.4 Blocking I/O Performance

	5 Conclusion and Future Work
	References
	Appendix A: Join Implementation with Double-Checked Locking Optimization

	On Efficient Load Balancing for IrregularApplications
	1 Introduction
	2 Load Balancing
	2.1 Lazy Task Creation
	2.2 Cilk
	2.3 Other Versions of Cilk
	2.4 Tascell
	2.5 Other Frameworks

	3 Future Perspective
	References

	Verifiable Object-Oriented Transactions
	1 Introduction
	2 Transaction Model
	3 Concurrent Transactions and Integrity Constraints
	4 Owners and Peers
	5 Levels of Consistency
	6 Constraints forSchemas
	7 Sample Transactions
	8 Constraints and Queries
	9 Specification Inheritance
	10 Abstraction
	11 Dynamic Checking of Constraints
	12 Database Platform
	13 Related Research
	14 Conclusions
	References

	Design and Implementation of a Mobile ActorPlatform for Wireless Sensor Networks
	1 Introduction
	2 Motivation
	3 ActorNetDesign
	3.1 Network Architecture Design
	3.2 Actor Language Design
	3.3 ActorNet Platform Design

	4 Example
	5 Actor Language
	5.1 Rewriting Theory
	5.2 Syntax
	5.3 Semantics

	6 ActorNet Implementation
	6.1 ActorNet Network Implementation
	6.2 ActorNet Language Implementation
	6.3 ActorNet Platform Implementation

	7 Performance Evaluation
	7.1 Virtual Memory Performance
	7.2 Multi-Phase GC Performance
	7.3 Evaluation of Communication Performance

	8 Case Study: Ambiance Platform
	9 Related Work
	9.1 Mobile Agent Systems for WSNs
	9.2 Intelligent Agent Systems for WSNs
	9.3 WSNs as a Data Provider
	9.4 Related Work in Other Aspects

	10 Future Research Directions
	References

	Objects in Space
	1 Introduction
	1.1 Scenario: Intelligent Kitchens
	1.2 Middleware vs. Programming Languages

	2 A Brief Tour of AmbientTalk
	2.1 Service Discovery
	2.2 Fault Tolerance with Respect to Volatile Connections
	2.3 Futures
	2.4 Parameter Passing Rules
	2.5 Summary

	3 Problem Statement and Research Agenda
	3.1 Representing and Accessing Objects in Space
	3.2 Highly Event-Driven Nature
	3.3 Problem Analysis

	4 Research Results
	4.1 Representation: Things
	4.2 Designation: Ambient References
	4.3 Synchronization: Reactive Sets
	4.4 Discussion

	5 Conclusion
	5.1 Limitations and Future Work
	5.2 Contributions

	References

	Towards a Substrate Framework of Computation
	1 Introduction
	2 LMNtal: A Model and Language Based on Graph Rewriting
	2.1 Basic Syntax
	2.2 Operational Semantics
	2.3 Extended Syntax and Examples

	3 Incorporating Hyperlinks
	4 Analyzing HyperLMNtal Programs
	4.1 Assigning Polarities and Capabilities to Links and Hyperlinks
	4.2 Composition Analysis

	5 Encoding the Pure Lambda Calculus into HyperLMNtal
	5.1 Representing λ-terms in HyperLMNtal
	5.2 Representing λ-terms
	5.3 Reaction Rules with Color Management
	5.4 Examples
	5.5 Properties of the Encoding
	5.6 Typing the Encoding

	6 Conclusion
	References

	Event-Based Modularization of Reactive Systems
	1 Introduction
	2 Reactive Systems
	2.1 Definitions
	2.2 An Illustrative Example: Recoverable Process
	2.3 Language Requirements for Reusable Reactive Systems

	3 Reuse Anomalies in Reactive Systems
	3.1 Object-Oriented Implementation of Reactive Systems
	3.2 Aspect-Oriented Implementation of Reactive Systems
	3.3 Languages Supporting Event-Based Communication
	3.4 Dedicated Languages

	4 Event Composition Model
	5 The EventReactor Language
	5.1 Implementing Recoverable Process in EventReactor

	6 Reusable Implementations in EventReactor
	6.1 Evolution of the Non-reactive Part and Event Calls
	6.2 Evolution of the Reactive Part and Event/Control Calls

	7 Evaluation
	8 The Compiler of EventReactor
	8.1 Input and Output of the Compiler
	8.2 Parsing
	8.3 Analysis
	8.4 Code Generation

	9 Conclusion and Future Work
	References

	From Actors and Concurrent Objects toAgent-Oriented Programming in simpAL
	1 Introduction
	2 Motivations and Background – Agents as a Modelling and Programming Paradigm
	3 ThesimpAL Model – An Informal Overview
	3.1 The Agent Computational Model and Control Architecture
	3.2 A Computational Model for Artifacts

	4 ThesimpAL Programming Language
	4.1 Programming Agents
	4.2 Programming Artifact-Based Environments
	4.3 Defining the Organization

	5 simpAL Implementation: Platform and Tools
	6 Discussion
	6.1 From a Reactivity to a Proactivity Principle
	6.2 Integration of Autonomous and Reactive Behavior
	6.3 Asynchronous & Synchronous Interaction and Indirect Communication
	6.4 Static Typing

	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

