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Abstract. Mobile robot localization with different sensors and algo-
rithms is a widely studied problem, and there have been many approaches
proposed, with considerable degrees of success. However, every sensor
and algorithm has limitations, due to which we believe no single lo-
calization algorithm can be “perfect,” or universally applicable to all
situations.

Laser rangefinders are commonly used for localization, and state-of-
the-art algorithms are capable of achieving sub-centimeter accuracy in
environments with features observable by laser rangefinders. Unfortu-
nately, in large scale environments, there are bound to be areas devoid
of features visible by a laser rangefinder, like open atria or corridors
with glass walls. In such situations, the error in localization estimates
using laser rangefinders could grow in an unbounded manner. Localiza-
tion algorithms that use depth cameras, like the Microsoft Kinect sensor,
have similar characteristics. WiFi signal strength based algorithms, on
the other hand, are applicable anywhere there is dense WiFi coverage,
and have bounded errors. Although the minimum error of WiFi based
localization may be greater than that of laser rangefinder or depth cam-
era based localization, the maximum error of WiFi based localization is
bounded and less than that of the other algorithms.

Hence, in our work, we analyze the strengths of localization using all
three sensors - using a laser rangefinder, a depth camera, and using WiFi.
We identify sensors that are most accurate at localization for different
locations on the map. The mobile robot could then, for example, rely on
WiFi localization more in open areas or areas with glass walls, and laser
rangefinder and depth camera based localization in corridor and office
environments.
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1 Introduction and Related Work

Localization is an ability crucial to the successful deployment of any autonomous
mobile robot, and has been a subject of continuous research. As technologies
have evolved, we have seen a parallel evolution of algorithms to use new sensors,
from SONAR, to infrared rangefinders, to vision, laser rangefinders, wireless

S. Behnke et al. (Eds.): RoboCup 2013, LNAI 8371, pp. 468–479, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Multi-sensor Mobile Robot Localization for Diverse Environments 469

beacons, vision, and most recently depth cameras. The wide-scale deployment of
autonomous robots has for a long time been hampered by the limitations of the
sensors and the algorithms used for robot autonomy. This has led to work on
robots like Minerva [1] that used a “coastal planner” to avoid navigation paths
with poor information content perceivable to the robot. Exploration and naviga-
tion approaches that account for perceptual limitations of robots [2] have been
studied as well. These approaches acknowledge the limitations in perception, and
seek to avoid areas where perception is poor.

A number of robotics projects have been launched over the years in pursuit of
the goal of long-term autonomy for mobile service robots. Shakey the robot [3]
was the first robot to actually perform tasks in human environments by decom-
posing tasks into sequences of actions. Rhino [4], a robot contender at the 1994
AAAI Robot Competition and Exhibition, used SONAR readings to build an
occupancy grid map [5], and localized by matching its observations to expected
wall orientations. Minerva [1] served as a tour guide in a Smithsonian museum.
It used laser scans and camera images along with odometry to construct two
maps, the first being an occupancy grid map, the second a textured map of the
ceiling. For localization, it explicitly split up its observations into those corre-
sponding to the fixed map and those estimated to have been caused by dynamic
obstacles. Xavier [6] was a robot deployed in an office building to perform tasks
requested by users over the web. Using observations made by SONAR, a laser
striper and odometry, it relied on a Partially Observable Markov Decision Pro-
cess (POMDP) to reason about the possible locations of the robot, and to reason
about the actions to choose accordingly. A number of robots, Chips, Sweetlips
and Joe Historybot [7] were deployed as museum tour guides in the Carnegie
Museum of Natural History, Pittsburgh. Artificial fiducial markers were placed
in the environment to provide accurate location feedback for the robots. The
PR2 robot at Willow Garage [8] has been demonstrated over a number of mile-
stones, where the robot had to navigate over 42 km and perform a number of
manipulation tasks. The PR2 used laser scan data along with Inertial Measure-
ment Unit (IMU) readings and odometry to build an occupancy grid map using
GMapping [9], and then localized itself on the map using KLD-sampling [10].
The Collaborative Robots (CoBots) project [11] seeks to explore the research
and engineering challenges involved in deploying teams of autonomous robots
in human environments. The CoBots autonomously perform tasks on multiple
floors of our office building, including escorting visitors, giving tours and trans-
porting objects. The annual RoboCup@Home competition [12] aims to promote
research in mobile service robots deployed in typical human home environments.

Despite the localized successes of these robotic projects, we still are short of
the goal of having indefinitely deployed robots without human intervention. To
have a robot be universally accessible, it needs to be able to overcome individual
sensor limitations. This has led to the development of a number of algorithms
for mobile robot localization by “fusing” multiple sensor feeds. There are a num-
ber of approaches to sensor fusion [13] for robot localization, including merging
multiple sensor feeds at the lowest level before being processed homogeneously,
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and hierarchical approaches to fuse state estimates derived independently from
multiple sensors.

Our approach, instead of merging sensor feeds into a single algorithm, is to
select one out of a set of localization algorithms, each of which independently pro-
cesses different sensory feeds. The selection is driven by the results of evaluating
the performance of the individual algorithms over a variety of indoor scenarios
that the mobile robot will encounter over the course of its deployment. We use
three localization algorithms, each using a different sensor: a laser rangefinder
based localization algorithm that uses a Corrective Gradient Refinement [14]
particle filter, a depth camera based localization algorithm [15], and a WiFi lo-
calization algorithm that is a cross between graph-based WiFi localization [16]
and WiFi localization using Gaussian Processes [17]. Algorithm selection [18]
is a general problem that has been applied to problems like SAT solving [19],
and spawned the field of “meta-learning” [20]. Here we apply the problem of
algorithm selection to the problem of mobile robot localization.

By running each localization algorithm independently, we can decide to pick
one over the others for different scenarios, thus avoiding the additional com-
plexity of fusing dissimilar sensors for a single algorithm. To determine which
algorithm is most robust in which scenario, we collected sensor data over the
entire map, and evaluated each of the algorithms (with respect to ground truth)
over the map and over multiple trials. This data is used to determine which al-
gorithm is most robust at every location of the map. Additionally, by comparing
the performance of the algorithms while the robot navigates in corridors and
while it navigates in open areas, we show that different algorithms are robust
and accurate for different locations on the map.

2 Multi-sensor Localization

We use three sensors for localization - a laser rangefinder, a depth camera, and
the WiFi received signal strength indicator (RSSI). Each sensor, along with robot
odometry, is processed independently of the others. For the laser rangefinder, we
use a Corrective Gradient Refinement (CGR) [14] based particle filter. The depth
camera observations are processed by the Fast Sampling Plane Filtering [15]
algorithm to detect planes, which are then matched to walls in the map to localize
the robot using a CGR particle filter. The WiFi RSSI values observed by the
robot are used for localization using a Gaussian Processes-Learnt WiFi Graph.
This WiFi localization algorithm combines the strengths of graph-based WiFi
localization [16] with Gaussian Processes for RSSI based location estimation [17].
We first review each of these sensor-specific localization algorithms.

2.1 Corrective Gradient Refinement

For localization using a laser rangefinder sensor, the belief of the robot’s loca-
tion is represented as a set of weighted samples or “particles”, as in Monte Carlo
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Localization (MCL)[21]: Bel(xt) =
{
xi
t, w

i
t

}
i=1:m

. The Corrective Gradient Re-
finement (CGR) algorithm iteratively updates the past belief Bel(xt−1) using
observation yt and control input ut−1 as follows:

1. Samples of the belief Bel(xt−1) are evolved through the motion model,
p(xt|xt−1, ut−1) to generate a first stage proposal distribution q0.

2. Samples of q0 are “refined” in r iterations (which produce intermediate dis-
tributions qi, i ∈ [1, r − i]) using the gradients δ

δxp(yt|x) of the observation
model p(yt|x).

3. Samples of the last generation proposal distribution qr and the first stage
proposal distribution q0 are sampled using an acceptance test to generate
the final proposal distribution q.

4. Samples xi
t of the final proposal distribution q are weighted by corresponding

importance weights wi
t, and resampled with replacement to generateBel(xt).

Thus, given the motion model p(xt|xt−1, ut−1), the observation model p(yt|x),
the gradients of the observation model δ

δxp(yt|x) and the past belief Bel(xt−1),
the CGR algorithm computes the latest belief Bel(xt).

2.2 Depth Camera Based Localization

Depth cameras provide, for every pixel, color and depth values. This depth in-
formation, along with the camera intrinsics (horizontal field of view fh, vertical
field of view fv, image width w and height h in pixels) can be used to recon-
struct a 3D point cloud. Let the depth image of size w×h pixels provided by the
camera be I, where I(i, j) is the depth of a pixel at location d = (i, j). The cor-
responding 3D point p = (px, py, pz) is reconstructed using the depth value I(d)

as px = I(d)
(

j
w−1 − 0.5

)
tan

(
fh
2

)
, py = I(d)

(
i

h−1 − 0.5
)
tan

(
fv
2

)
, pz = I(d).

With limited computational resources, most algorithms (e.g. localization, map-
ping etc.) cannot process the full 3D point cloud at full camera frame rates in
real time with limited computational resources on a mobile robot. The näıve
solution would therefore be to sub-sample the 3D point cloud for example, by
dropping (say) one out of N points, or sampling randomly. Although this re-
duces the number of 3D points being processed by the algorithms, it ends up
discarding information about the scene. An alternative solution is to convert the
3D point cloud into a more compact, feature - based representation, like planes
in 3D. However, computing optimal planes to fit the point cloud for every ob-
served 3D point would be extremely CPU-intensive and sensitive to occlusions
by obstacles that exist in real scenes. The Fast Sampling Plane Filtering (FSPF)
algorithm combines both ideas: it samples random neighborhoods in the depth
image, and in each neighborhood, it performs a RANSAC based plane fitting on
the 3D points. Thus, it reduces the volume of the 3D point cloud, it extracts
geometric features in the form of planes in 3D, and it is robust to outliers since
it uses RANSAC within the neighborhood.

Fast Sampling Plane Filtering (FSPF) [15] takes the depth image I as its
input, and creates a list P of n 3D points, a list R of corresponding plane
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Algorithm 1 Fast Sampling Plane Filtering

1: procedure PlaneFiltering(I)
2: P ← {} � Plane filtered points
3: R ← {} � Normals to planes
4: O ← {} � Outlier points
5: n ← 0 � Number of plane filtered points
6: k ← 0 � Number of neighborhoods sampled
7: while n < nmax ∧ k < kmax do
8: k ← k + 1
9: d0 ← (rand(0, h− 1), rand(0, w − 1))
10: d1 ← d0 + (rand(−η, η), rand(−η, η))
11: d2 ← d0 + (rand(−η, η), rand(−η, η))
12: Reconstruct p0, p1, p2 from d0,d1,d2
13: r = (p1−p0)×(p2−p0)

||(p1−p0)×(p2−p0)|| � Compute plane normal

14: z̄ = p0z+p1z+p2z
3

15: w′ = w S
z̄
tan(fh)

16: h′ = hS
z̄
tan(fv)

17: [numInliers, P̂ , R̂] ← RANSAC(d0, w
′, h′, l, ε)

18: if numInliers > αinl then
19: Add P̂ to P
20: Add R̂ to R
21: numPoints ← numPoints + numInliers
22: else
23: Add P̂ to O
24: end if
25: end while
26: return P,R,O
27: end procedure

normals, and a list O of outlier points that do not correspond to any planes.
Algorithm1 outlines the plane filtering procedure. It uses the helper subrou-
tine [numInliers, P̂ , R̂] ← RANSAC(d0, w

′, h′, l, ε), which performs the classical
RANSAC algorithm over the window of size w′ × h′ around location d0 in the
depth image, and returns inlier points and normals P̂ and R̂ respectively, as well
as the number of inlier points found. The configuration parameters required by
FSPF are listed in Table1.

FSPF proceeds by first sampling three locations d0,d1,d2 from the depth im-
age (lines 9-11). The first location d0 is selected randomly from anywhere in the
image, and then d1 and d2 are selected from a neighborhood of size η around
d0. The 3D coordinates for the corresponding points p0, p1, p2 are then com-
puted (line 12). A search window of width w′ and height h′ is computed based
on the mean depth (z-coordinate) of the points p0, p1, p2 (lines 14-16) and the
minimum expected size S of the planes in the world. Local RANSAC is then
performed in the search window. If more than αinl inlier points are produced as
a result of running RANSAC in the search window, then all the inlier points are
added to the list P , and the associated normals (computed using a least-squares
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Table 1. Configuration parameters for FSPF

Parameter Value Description

nmax 2000 Maximum total number of filtered points
kmax 20000 Maximum number of neighborhoods to sample
l 80 Number of local samples
η 60 Neighborhood for global samples (in pixels)
S 0.5m Plane size in world space for local samples
ε 0.02m Maximum plane offset error for inliers
αin 0.8 Minimum inlier fraction to accept local sample

fit on the RANSAC inlier points) to the list R. This algorithm is run a maxi-
mum of mmax times to generate a list of maximum nmax 3D points and their
corresponding plane normals.

With the list P and R, non-vertical planes are ignored, and the remaining
planes are matched to a 2D vector map. These remaining matched points are
then used for localization using CGR.

2.3 WiFi Based Localization

WiFi localization using a graph based WiFi map [16] provides fast, accurate
robot localization when constrained to a graph. In this approach, the mean
and standard deviations of WiFi RSSI observations are approximated by linear
interpolation on a graph. This leads to a computationally efficient observation
likelihood function, with the computation time of each observation likelihood
being independent of the number of training instances. The disadvantage is that
to construct the WiFi graph map, the robot needs to be accurately placed at
every vertex location of the graph to collect WiFi RSSI training examples.

RSSI based localization using Gaussian Processes [17], on the other hand,
does not require training observations from specific locations. Given an arbitrary
location x∗ and the covariance vector k∗ between the training locations and x∗,
the expected mean μx∗ and variance is given by,

μx∗ = kT∗ (K + σ2
nI)

−1y (1)

σ2
x∗ = k(x∗, x∗)− kT∗ (K + σ2

nI)
−1k∗. (2)

Here, σ2
n is the Gaussian observation noise, y the vector of training RSSI

observations, and k(·, ·) the kernel function used for the Gaussian Process (most
commonly a squared exponential). The drawback with this approach is that the
computational complexity for Eq.1-2 grows quadratically with the number of
training samples, which is more than 100, 000 samples per access point for our
single floor map. We introduce an approach that combines the advantages of both
algorithms while overcoming each of their limitations. In our approach, training
examples are first collected across the map while driving the robot around (not
from any specific locations). Next, using Gaussian Processes, the WiFi mean and
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Fig. 1. Gaussian Process-learnt WiFi graph for a single access point. The mean RSSI
values are color-coded, varying from −90dBm to −20dBm. The locations where the
robot observed signals from the access point are marked with crosses.

variance for the nodes of a WiFi Graph (with regularly spaced sample locations
on the map) are learnt offline. Once the WiFi graph is learnt, WiFi mean and
variance at locations during run time are estimated by bicubic interpolation
across nodes of the graph. Figure 1 shows a Gaussian Process-learnt WiFi graph
for a single access point on the floor.

3 Comparing Localization Algorithms

To evaluate the robustness of the different localization algorithms over a variety
of environments, we collected laser scanner, depth camera, and WiFi sensor data
while our mobile robot autonomously navigated around the map. The navigation
trajectory covered each corridor multiple times, and also covered the open areas
of the map. The sensor data thus collected was then processed offline for 100
times by each of the algorithms (since the algorithms are stochastic in nature),
and the mean localization error across trials evaluated for each sensor. Figure 2
shows the errors in localization when using the three different sensors. It is seen
that in corridors, the laser rangefinder based localization algorithm is the most
accurate, with mean errors of a few centimeters. The depth camera (Kinect)
based localization has slightly higher errors of about ten centimeters while the
robot travels along corridors. The WiFi localization algorithm consistently had
errors of about a meter across the map.
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(a) (b) (c)

Fig. 2. Errors in localization using (a) a laser rangefinder, (b) the Kinect, and (c)
WiFi, while autonomously driving across the map. The error in localization for every
true location of the robot is coded by color on the map. All units are in meters.

We then ran additional trials in a large open area of the map, where the
dimensions of the area exceed the maximum range of the laser rangefinder and
depth image sensors. Figure 3 shows a photograph of this open area. In these tri-
als, the robot started out from the same fixed location, and was manually driven
around the open area. The robot was then driven back to the starting location,
and the error in localization noted. Figure 4a shows part of such a trajectory
as the robot was driven around the open area. This was done 20 times for each
localization algorithm, and the combined length of all the trajectories was over
2Km, with approximately 0.7Km per algorithm. Figure 4b shows a histogram of
the recorded errors in localization at the end of the driven trajectories for each

Fig. 3. The open area in which localization using different sensors were compared
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Fig. 4. Trials in the open area: (a) part of a test trajectory of the robot, and (b)
histogram of errors in localization across trials for each algorithm

localization algorithm. The following table tabulates the minimum, maximum,
and median errors for the different algorithms:

Laser Rangefinder Kinect WiFi
Min Error 0.01 0.17 0.20
Max Error 14.77 3.47 1.88

Median Error 1.83 1.08 0.76

The laser rangefinder has the smallest minimum error during trajectories that
the algorithm tracked successfully, but also has the largest maximum error. The
WiFi localization algorithm, however, was consistently able to track the robot’s
trajectory for every trial with a median error of less than a meter.

4 Choosing between Sensors for Localization

A robot equipped with multiple sensors and running different localization algo-
rithms for each sensor needs to decide when to rely on each of the algorithms.
There are three broad approaches to choosing between sensors and algorithms
for localization: computed uncertainty based selection, sensor mismatch based
selection, and data-driven selection.

4.1 Computed Uncertainty Based Selection

Every localization algorithm maintains a measure of uncertainty of the robot’s
pose estimates. The uncertainty of a particle filter based localization algorithm
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is captured by the distribution of its particles, while in an Extended Kalman
Filter (EKF) based localization algorithm the covariance matrix captures the
uncertainty of the robot’s pose. Given a measure of the uncertainty of localization
using the different sensors, the robot could choose the algorithm (and hence the
sensor) with the least uncertainty at any given point of time. However, it is not
possible to directly compare the uncertainty measures from different algorithms
because of the assumptions and simplifications specific to each algorithm. For
example, an EKF based algorithm assumes a unimodal Gaussian distribution of
the robot’s pose, which is not directly comparable to the sample based multi-
modal distribution of poses of a particle filter.

4.2 Sensing Mismatch Based Selection

A more algorithm-agnostic approach to computing a measure of uncertainty
for localization algorithms is to compute the mismatch between the observation
likelihood function P (l|s) and the belief Bel(l). Sensor Resetting Localization
(SRL) [22] evaluates this mismatch by sampling directly from the observation
likelihood function P (l|s), and adds the newly generated samples to the particle
filter proportional to the mismatch. KLD Resampling [10] similarly evaluates
the mismatch by sampling from the odometry model P (li|li−1, ui) and comput-
ing the overlap with the belief Bel(l). With the estimates of sensor mismatch
between each localization algorithm and their respective belief distributions, the
robot could select the algorithm with the best overlap between the observation
likelihood function and the belief. Such an approach would work well for choos-
ing between different algorithms that use similar sensors, like depth cameras and
laser rangefinders. However, algorithms using different types of sensors like WiFi
signal strength measurements as compared to rangefinder based measurements,
cannot be compared directly based on their sensor meismatch due to the very
different forms of the observation likelihood functions for the different sensors.

4.3 Data - Driven Selection

If neither uncertainty based nor sensor mismatch based selection is feasible, a
data-driven selection of the localization algorithms might be the only recourse.
In order to select the best localization algorithm for a given location, the data-
driven approach requires experimental evaluation of every localization algorithm
(as described in Section 3) over all areas in the environment. During deployments,
the robot would then select (at each location) that algorithm which exhibited
least variance during the experimental evaluation at the same location. Such
an approach would work for any localization algorithm, and does impose any
algorithmic limitations on the individual localization algorithms, unlike uncer-
tainty or sensing mismatch based selection. However, this approach does require
experimental evaluation of all localization algorithms in all the areas of the en-
vironment, which might not be feasible for large areas of deployment.
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5 Conclusion and Future Work

In this work, we tested the robustness of localization using three different sensors
over an entire map. We showed that in areas where there are features are visible
to the laser rangefinder and Kinect, they are both more accurate than WiFi.
However, in open areas, localization using a laser rangefinder or Kinect is sus-
ceptible to large errors. In such areas, the maximum error of WiFi is bounded,
and its median error is lower than that using a laser rangefinder or a Kinect.
This indicates that although no single sensor is universally superior for localiza-
tion, by selecting different sensors for localization for different areas of the map,
the localization error of the robot is bounded. Based on these results, we are
now interested in learning how to predict a priori which sensors would be most
robust for localization for different areas of the map.
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