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Abstract. Estimation of camera motion from RGB-D images has been
an active research topic in recent years. Several RGB-D visual odome-
try systems were reported in literature and released under open-source
licenses. The objective of this contribution is to evaluate the recently
published approaches to motion estimation. A publicly available dataset
of RGB-D sequences with precise ground truth data is applied and re-
sults are compared and discussed. Experiments on a mobile robot used
in the RoboCup@Work league are discussed as well. The system showing
the best performance is capable of estimating the motion with drift as
small as 1 cm/s under special conditions, though it has been proven to be
robust against shakey motion and moderately non-static scenes.

1 Introduction

The objective of a visual odometry system is to compute a continuous camera
trajectory through examination of the changes that the motion induces on the
images. Research in this area has a long history in robotics [1]. Initially motivated
by the NASA Mars exploration program in the 80s, over the years it has yielded
systems that were applied on in- and out-door wheeled robots, cars, aerial and
underwater vehicles, and even quadruped dog-like robots [2].

The wide choice of vision systems that were used to implement visual odom-
etry includes monocular, stereo, omni-directional and multi-camera setups. Re-
cently low-cost RGB-D cameras were introduced to the market. These visual
sensors combine a conventional RGB video camera with a depth sensor, and
deliver color images with pre-registered per-pixel depth information at the stan-
dard video frame rate. RGB-D cameras have relatively low power consumption
and weight which made them suitable and effective sources of information about
the environment (and thus the robot’s motion). This motivated many researches
to explore the possibility of implementing an RGB-D visual odometry system.

Over the past few years a number of such systems were reported in the lit-
erature [3,4,5,6,7]. A closely related topic: mapping with RGB-D cameras, also
enjoyed considerable attention [8,9,10,11]. The latter emphasizes globally consis-
tent alignment of all captured data, but often involves an odometry subsystem
that performs preliminary local alignment. A number of distinct approaches with
various benefits and deficits, constraints, and computational complexities exist.
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A comparative evaluation of the recent state of the art RGB-D visual odome-
try systems has been conducted in this contribution. The scope of the evaluation
is limited to the software released open-source and capable of real-time perfor-
mance on the CPU core of a common laptop. Our interest in this area is moti-
vated by participation in the Robocup@Work league. Our target platform is an
omni-directional mobile base equipped with an RGB-D camera on which a visual
odometry system should be applied. A publicly available RGB-D dataset with
various environments and 6 degrees of freedom motions is used for evaluation as
well as a dataset captured by ourselves on the target platform.

The remainder of the contribution is organized as follows. Section 2 summa-
rizes the state of the art in RGB-D visual odometry and closely related fields.
The evaluated open-source systems are introduced in more detail in Section 3.
Section 4 describes the datasets, types of experiments, and metrics that were
used to evaluate the systems. The evaluation results and discussion are provided
in Section 5. Section 6 summarizes the results and draws the conclusions.

2 Related Work

One core problem of visual odometry is the frame-to-frame transform compu-
tation. That is, given two data frames captured by a moving camera at two
different time points, compute the rigid transform that relates the positions of
the camera. The existing approaches to solve this problem for an RGB-D camera
are broadly classified into three groups based on the way they treat the data.

The methods of the first group, often called sparse or feature-based methods,
are straightforward adaptations of the classical Structure from Motion stereo
odometry pipeline [12]. They compute the motion between frames by solving
the absolute orientation problem for a sparse set of 3D points, each of which is
a salient and repeatable feature of the environment. This is usually embedded
inside a robust estimation framework to tolerate outlier points, which result from
incorrect correspondences and independently moving objects. Huang et al. [3]
demonstrated such a system for a quadrotor micro aerial vehicle. It is capable of
running in real time and performs sufficiently well to allow for autonomous flight
in static indoor environments with rich visual features. Du et al. [9] designed
an odometry system for interactive environment modeling. It employs a novel
hypothesis grading approach which computes visibility conflict criterion for the
dense depth data. Recently Domı́nguez et al. [5] presented a system with an
explicit feature filtering stage where a set of rules is applied to keep only the
most reliable and consistent in terms of relative 3D positions features.

The second group often referred to as dense or direct methods, solve the mo-
tion estimation problem by iteratively aligning the frames to minimize a certain
error function. For example: usage of geometrical error between 3D surfaces as
defined by the depth images yields a well-understood Iterative Closest Point
(ICP) algorithm. Pomerleau et al. [4] presented a modular and efficient ICP
library and odometry system. It does not consider color information and is ca-
pable of running in real time. Alternatively, Steinbrücker et al. [6] minimize
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photometric error between intensity images. Their algorithm excels at small dis-
placements but assumes small camera displacements and a static environment.
Recently Kerl et al. [7] presented a generalized and extended version which is
more accurate and can tolerate moderate dynamics in the environment.

The third group contains hybrid methods. In the pioneering work on RGB-D
visual odometry Henry et al. [8] presented a two-stage algorithm. Feature-based
method produces an initial motion estimate which is then used as a starting
point for the ICP algorithm. The authors reported experiments that showed that
the proposed algorithm outperforms its components, however the computational
complexity prevents it from running in real time. A similar combined approach
was exercised later by by Endres et al. [10] and Hu et al. [11].

3 Evaluated RGB-D Visual Odometry Systems

3.1 Dense Visual Odometry

Dense Visual Odometry (DVO) was developed by Kerl et al. [7] and released
open-source1 as a ROS package. The approach is based on the photo-consistency
assumption. It states that the same scene point observed by a camera at two
consecutive time instants should have the same intensity in both images. The
difference in the intensity between the first and the warped second image is
defined as the residual and is regarded as a function of the camera motion.
The algorithm proceeds by finding the transform that maximizes the posterior
probability of the camera motion given the residual image.

The authors focused exclusively on frame-to-frame motion computation and
the system maintains the pose by merely multiplying in estimated transforms.
Errors in each estimation are accumulated as well. A technique that is often
applied to reduce the drift is keyframe insertion. For an incoming frame instead
of estimating transform between it and the previous one, the system computes
the transform between it and the keyframe. The latter is periodically updated
according to a pre-defined rule. This slows down drift accumulation as only the
estimation errors at the moments of keyframe insertion are summed. To allow a
fair comparison with other systems, DVO was augmented with a simple keyfram-
ing technique. A keyframe is inserted when the transform estimation failed or
when the output transform exceeds 4 cm or 0.05 radians. Sometimes DVO pro-
duces erroneous estimations without reporting a failure. Such cases are recog-
nized when the transform is greater than 8 cm or 0.08 radians. These numbers
are based on the empirical evaluation detailed in Section 5.

3.2 Fast Odometry from Vision

The Fast Odometry from Vision (FOVIS) system was developed by Huang et
al. [3] and released open-source2. It is based on the standard stereo odome-
try pipeline and adopts a number of optimization techniques reported in the

1 https://github.com/tum-vision/dvo
2 https://code.google.com/p/fovis

https://github.com/tum-vision/dvo
https://code.google.com/p/fovis
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literature. The FAST detector with adaptive threshold is used for feature detec-
tion. Uniform distribution of features in the frame is achieved using bucketing
technique. An initial estimation of rotation is produced through direct mini-
mization of the sum of squared pixel errors between frames. This accelerates
feature matching and reduces the fraction of invalid matches by restricting the
search window. Nevertheless, a certain amount of incorrectly associated features
remain, and need to be pruned by the inlier detection algorithm. It proceeds by
computing the graph of consistent (in terms of pair-wise spatial relations) feature
matches and finds the maximum clique in it. This is considered to be the set of
inliers. Finally the motion is estimated by solving the absolute orientation prob-
lem and then iteratively refining the solution by minimizing the re-projection
error by discarding the outliers which have survived all the previous processing.

3.3 PointMatcher

PointMatcher (PM) is a modular ICP library developed by Pomerleau and Magne-
nat and released open-source3. The transform computation between two frames
is regarded as registration of two point clouds. This process is implemented as a
reconfigurable chain of modules: data filters, matchers, error minimizers, etc. The
authors supply default configuration obtained as a result of extensive tests [4].

Usage of full-resolution depth images is computationally prohibitive and does
not allow real-time performance. There are two options how to reduce the amount
of data and hence the running time of the algorithm. Either the depth images
should be down-scaled, or the point clouds obtained from the full-resolution depth
images should be aggressively downsampled. Our initial experiments showed that
the former yields better results, so for the evaluation the depth images were down-
scaled to 160× 120 pixels in a pre-processing step.

4 Evaluation Strategy

4.1 RGB-D Datasets

A quantitative evaluation of visual odometry systems requires a dataset of im-
age sequences for which the intrinsic camera parameters and the ground truth
trajectories are known. One such dataset was recently published by Sturm et
al. [13]. It contains a large number of RGB-D image sequences captured with a
Microsoft Kinect camera in a typical office and in a large industrial hall. The
data are recorded at a resolution of 640×480 pixels and at a frame-rate of 30Hz.
Sequences are accompanied by time-synchronized trajectories of the camera esti-
mated with a high-precision motion capture system. The authors state that the
relative error on the frame-to-frame basis is below 1mm and 0.5◦. Thus, these
trajectories could be used as ground truth data for visual odometry evaluation.

The KUKA youBot [14] is currently the most widely used robot platform in
the RoboCup@Work league. It has an omni-directional base with four swedish

3 https://github.com/ethz-asl/libpointmatcher

https://github.com/ethz-asl/libpointmatcher
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wheels. Our team has customized it by mounting a sensor tower on the back
platform. It hosts a Microsoft Kinect camera which is pointed forwards and is
slightly tilted (see Fig. 1a). The robot localizes itself using a laser scanner and
a pre-built map of the environment. We drove the robot around a lab and a
campus corridor to record several data sequences with trajectories up to 27m
long. The corridor is challenging for visual odometry as the texture is scarce and
the structures are ambiguous there, as demonstrated in Fig. 1b and Fig. 1c.

(a) KUKA youBot (b) Campus corridor (c) Textureless wall

Fig. 1. The robot and the environment used for evaluation

4.2 Frame-to-Frame Transform Computation

The principal component of a visual odometry system is the module that es-
timates the relative transform between two given frames. The quality of this
estimation is the limiting factor for the accuracy of the system as a whole [1].
In order to analyze the estimation errors the transform computation module of
each system is isolated and a large number of RGB-D frame pairs with known
ground truth transforms between them are applied.

We isolate the transform computation module of each system, feed it a large
number of RGB-D frame pairs with known ground truth transforms between
them and analyze the estimation errors.

Formally, given a pair of consecutive RGB-D frames, ground truth transform
between them Tg , and the transform estimated by an odometry module Te, the
estimation error is defined as E = T−1

g Te. Trans (T) and rot (T) are used to
denote the translational and rotational components of a transform T.

Analysis of the collected data yields helpful insights. First, we studied how
the magnitude of errors trans (E) and rot (E) depend on the actual transforms
Tg. This information allows to understand the limitations the odometry systems
impose on the maximum motion velocities. Secondly, we studied how the relative

estimation error which is defined as ηtrans = trans(E)
trans(Tg)

and ηrot =
rot(E)
rot(Tg)

(for

translational and rotational components) is related with the estimated trans-
forms Te. In other words, for each possible output transform the average error
that this transform bears is empirically calculated. Knowing this allows to make
informed choices of the strategy for keyframe insertion.
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In order to have representative statistics about the errors, a large number of
sample frame pairs that cover the spectrum of possible transforms is required.
We boost the number of sample frame pairs by considering frames in the image
sequences that are not strictly adjacent. In specific, for each frame a subset of its
successors are selected so that the ground truth transform between the frames is
limited by 30 cm and 0.15 radians. This way the number of examples is increased
up to almost a million and cover the whole spectrum of translation and rotation
combinations (of course limited by the mentioned numbers).

4.3 Odometry for Unconstrained Motion

In this group of experiments the visual odometry systems are evaluated with the
sequences from the RGB-D dataset and the performance is assessed with the
Relative Pose Error (RPE) metric proposed by Sturm et al. [13].

Formally, given an estimated trajectory consisting of a set of poses P1, . . . ,Pn

and a ground truth trajectory consisting of a set of poses Q1, . . . ,Qn the RPE
error at a time step i is defined as follows:

Ei =
(
Q−1

i Qi+Δt

)−1 (
P−1

i Pi+Δt

)
, (1)

where Δt is a fixed time interval which is set to 1 s here, so that the value of RPE
could be interpreted as drift per second, a natural and comprehensible metric.
Following Sturm et al. we summarize RPE distributions by computing root-
mean-square error (RMSE). This is in contrast with commonly used median or
mean values which give less influence to gross errors yielding optimistic results.

4.4 Odometry for Planar Motion

In this group of experiments, the in-house dataset is applied to evaluate the
performance of the visual odometry systems on a ground mobile robot. Both
intrinsic and extrinsic camera parameters are known. This allows us to project
the pose estimates computed by the systems on the ground plane and zero out
pitch and roll rotations. The resulting trajectories were compared with the out-
put of the laser-based localization system. The latter is not precise enough to
make quantitative assessments. However, it is globally accurate so the amount
of drift could be visually assessed.

5 Evaluation Results

5.1 Frame-to-Frame Transform Computation

First the evaluation of frame-to-frame transform computation was conducted.
The sequences from the “Testing and Debugging” and “Handheld SLAM” groups
were used with exclusion of “large with loop”, “large no loop” sequences because
they do not have entire ground truth trajectory. This provided us with nearly
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Fig. 2. Magnitude of the translational component of the estimation error (in meters,
color-coded) versus ground truth transform rotation (in radians along x-axis) and trans-
lation (in meters along y-axis) for the three transform computation modules DVO (left),
FOVIS (middle), and PM (right).

one million frame pairs. For each sample the magnitudes of the translational and
rotational components of the estimation error were computed.

Figure 2 displays the relation between translational components of estimation
errors trans (E) and ground truth transforms. All the samples are distributed in
a 2D histogram and the mean of each cell is encoded with color. To ensure the
same color mapping in all histograms errors above 10 cm were truncated. Thus
dark brown corresponds to an error of 10 cm or more. Note that the samples
for which the estimation module declared a failure are not included. We ob-
served that FOVIS can handle the whole spectrum of examined transforms with
a reasonable accuracy. However, its performance significantly degrades when the
translation is more than 15 cm. Both DVO and PM are more restricted. The range
of transforms that result in good estimates is limited to about 5◦ and 15 cm,
and in this region DVO is consistently move accurate than PM. The distribution
of rotational components of estimation errors rot (E) is very similar and is not
reproduced here due to space constraints.

Next the relative error in estimated transform versus its magnitude was con-
sidered. Figure 3 presents the translational ηtrans and rotational ηrot compo-
nents. The data are again distributed in a 2D histogram and the mean of each
cell is encoded with color. Relative errors above 30% were truncated, thus dark
brown corresponds to a relative error of 30% or more. This value could be in-
terpreted as the measure of reliability of an estimated transform. For example:
when the translational component of a transform output by DVO is greater than
4 cm and is less than 8 cm and the rotational component is less than 0.05 radians
the translational error will be about 15% on average. Therefore, it makes sense
to insert a keyframe when the estimated transform falls in the region with the
smallest average relative error which will lead to the slowest drift accumulation.
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Fig. 3. Relative error ηtrans in the translational component (top row) and ηrot in the
rotational component (bottom row) versus estimated transform rotation (in radians
along x-axis) and translation (in meters along y-axis) for the three transform compu-
tation modules DVO (left), FOVIS (middle), and PM (right).

5.2 Odometry for Unconstrained Motion

The visual odometry systems were evaluated on all sequences from the RGB-D
dataset and the summarized results are presented in Table 1.

The sequences in “Handheld SLAM” group contain free flying camera mo-
tions with various average velocities and environments. It has been shown that
DVO is typically marginally better than FOVIS in terms of translational drift,
however in several cases (“fr1/360” and “fr1/desk2”) it has a larger drift. The
rotational drift, on the other hand, is slightly less for FOVIS. PM consistently gives
considerably larger drift. One notable case (“fr2/360 hemisphere”) is where the
performance of all systems significantly degrades. We attribute this to the fact
that in a high percentage of frames in the sequence only the ceiling of the in-
dustrial hall is visible. It is distant and hence the depth data is inaccurate. The
distribution of RPE of all sequences of the group excluding the aforementioned
sequence is presented in Fig. 4. DVO and FOVIS performance is almost identical.
However, the latter has a smaller spread but marginally larger median value.

In the “Robot SLAM” sequences the camera is mounted on a Pioneer robot
which is driven around in an industrial hall. Wires scattered over the concrete
ground produce a severe jittering in the video. Furthermore, the structures are
often found at a large distances from the camera. It has been shown that DVO

is consistently better than FOVIS. PM completely fails in these sequences as the
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Table 1. Evaluation results for the three visual odometry systems on the sequences
from RGB-D dataset. The second group column shows the average translational (m/s)
and rotational (deg/s) velocities in a sequence according to the ground truth data. The
third and fourth group columns show RMSE of translational drift (m/s) and rotational
drift (deg/s) respectively for each odometry system.

Avg. velocity Translational drift Rotational drift

Sequence name trans rot DVO FOVIS PM DVO FOVIS PM

Testing and Debugging

fr1/xyz 0.244 8.92 0.025 0.027 0.082 1.53 1.44 3.84
fr1/rpy 0.062 50.15 0.036 0.053 0.080 10.47 16.42 6.07
fr2/xyz 0.058 1.72 0.005 0.004 0.075 0.30 0.31 2.74
fr2/rpy 0.014 5.77 0.011 0.005 0.058 0.54 0.36 2.45

Handheld SLAM

fr1/360 0.210 41.60 0.129 0.083 0.113 4.18 2.53 4.93
fr1/floor 0.258 15.07 0.054 0.054 0.163 2.40 2.12 6.90
fr1/desk 0.413 23.33 0.049 0.055 0.210 7.17 6.86 12.07
fr1/desk2 0.426 29.31 0.066 0.057 0.109 4.77 4.65 6.38
fr1/room 0.334 29.88 0.054 0.064 0.115 2.53 2.23 6.29
fr2/360 hemisphere 0.163 20.57 0.111 0.132 0.685 2.62 6.81 11.39
fr2/desk 0.193 6.34 0.011 0.013 0.065 0.56 0.54 2.49
fr3/long office household 0.249 10.19 0.013 0.014 0.052 0.54 0.64 2.22

Robot SLAM

fr2/pioneer 360 0.225 12.05 0.063 0.163 0.649 4.01 5.80 8.11
fr2/pioneer slam 0.261 13.38 0.071 0.142 0.412 2.86 3.17 6.74
fr2/pioneer slam2 0.190 12.21 0.061 0.132 0.462 3.31 3.61 5.49
fr2/pioneer slam3 0.164 12.34 0.091 0.102 0.324 2.75 1.92 6.41

Structure vs. Texture

fr3/nostruct notext far 0.196 2.71 0.200 0.183 0.220 6.30 3.67 3.13
fr3/nostruct notext near 0.319 11.24 0.300 0.295 0.321 9.89 10.70 12.95
fr3/nostruct text far 0.299 2.89 0.186 0.092 0.301 2.37 1.70 2.55
fr3/nostruct text near 0.242 7.43 0.048 0.017 0.254 1.46 0.86 8.41
fr3/struct notext far 0.166 4.00 0.110 0.109 0.066 2.69 3.09 0.73
fr3/struct notext near 0.109 6.25 0.142 0.105 0.021 7.75 5.21 0.97
fr3/struct text far 0.193 4.32 0.012 0.014 0.028 0.45 0.50 0.99
fr3/struct text near 0.141 7.68 0.040 0.014 0.051 1.60 0.71 1.91

Dynamic objects

fr2/desk with person 0.121 5.34 0.013 0.033 0.082 0.45 0.87 2.59
fr3/sitting static 0.011 1.70 0.008 0.014 0.040 0.25 0.33 1.21
fr3/sitting xyz 0.132 3.56 0.014 0.030 0.055 0.52 0.97 1.88
fr3/sitting halfsphere 0.180 19.09 0.036 0.056 0.108 1.31 6.98 4.92
fr3/sitting rpy 0.042 23.84 0.045 0.075 0.145 0.88 5.13 4.84
fr3/walking static 0.012 1.39 0.194 0.153 0.268 3.26 2.18 5.29
fr3/walking xyz 0.208 5.49 0.405 0.256 0.419 7.38 4.76 6.71
fr3/walking halfsphere 0.221 18.27 0.325 0.240 0.380 5.30 5.31 8.02
fr3/walking rpy 0.091 20.90 0.406 0.306 0.429 7.01 8.66 8.51
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Fig. 4. Aggregated translational drift (left) and rotational drift (right) in the “Hand-
held SLAM” sequences. DVO and FOVIS demonstrated similar performance, PM has sig-
nificantly larger drift.
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Fig. 5. Aggregated translational drift (left) and rotational drift (right) in the “Robot
SLAM” sequences. DVO outperforms the other systems in terms of translational drift.

translational drift that it exposes is twice as large as the average velocity. The
aggregate RPE of all the sequences of the group is presented in Fig. 5.

“Structure vs. Texture” sequences expose environments with different amount
of structure and visual texture. In the most challenging environment with no
texture and no structure all systems completely fail producing drift that is of
the same or larger magnitude than the average velocity. In the setup with no
structure and visual texture FOVIS is superior to DVO and PM fails as is has
virtually no data to compute on. In the sequences with structure and no visual
features PM as expected outperforms other systems. It is interesting to note that
in the sequences with structure PM performs significantly better than in the other
groups. The difference is that here the structures are within approximately one
meter and always contain several intersecting planes. Therefore, we conclude
that PM is particularly suitable when there is always a structure at the close
distance.

The sequences from the “Dynamic Objects” group have people moving around
in the scene. In the first five sequences the amount of spurious motion is small and
DVO performs significantly better. In the last four sequences people move faster
and occupy most of the image area. FOVIS gives much less drift, nevertheless we
hold that all the systems failed to produce useful results.

5.3 Odometry for Planar Motion

Furthermore, a number of experiments with the youBot platform as described in
Section 4.1 were performed. Figure 6 presents the estimated planar trajectories
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of the three visual odometry systems for one of the sequences (in red). The
ground truth trajectory as output by the laser scanner based localization system
is plotted in green. The trajectory estimated by DVO is similar to the actual path.
One noticeable deviation happens in the bottom-right corner where the robot
rotated in front of a flat textureless wall (see Fig. 1c). FOVIS also showed a good
estimation with a similar flaw in the same spot which, however, manifested itself
in a wrong turn. The estimate of PM also follows the real path on the whole,
however is more erroneous. In general, we observed that the output trajectories
mostly preserve the distances and are precise in rotations as well.

0 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

0

1

DVO

0 1 2 3 4 5 6

FOVIS

0 1 2 3 4 5 6

PM

Fig. 6. Planar trajectories of the robot estimated by the odometry systems. Ground
truth and estimated trajectories are plotted in thin green and thick red respectively.

6 Conclusions

An evaluation of the three state of the art visual odometry systems (DVO, FOVIS,
and PM) was presented. Their frame-to-frame transform estimation components
were considered in isolation. The feature-based approach implemented in FOVIS

is able to handle the widest spectrum of motions. We presented the relative error
in transform estimation as a function of estimated transform which provides an
insight for devising a strategy of keyframe insertion for odometry systems.

The algorithms were evaluated on the publicly available RGB-D dataset with
precise ground truth. When the motion is smooth and the environment has
rich texture and structure both FOVIS and DVO performed equally well giving
translational and rotational drift at the level of 1 cm/s and 0.5 deg/s. When the
motions are faster and abrupt the performance degrades to nearly 5 cm/s and 5
deg/s. In a particularly challenging group of sequences with excessive jitter DVO

clearly outperformed the other methods. It also demonstrated robustness against
moderately dynamic scenes where its drift is significantly lower than the others.

The representative of direct methods that minimize geometric error (PM) has
performed significantly worse. In the favourable conditions when rich structure
is present at the close distance from the camera, it gives drift at the level of
2 cm/s to 6 cm/s and 1 deg/s to 2.5 deg/s. In more challenging conditions it mostly
failed producing drift of the same magnitude as the average camera motion. As
expected, it outperformed the other systems in a textureless environment.
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The systems were evaluated on in-house data collected on an omni-directional
robot. The estimated trajectories follow the path of the robot accurately enough.

We conclude that both DVO and FOVIS could be equally well used as odometry
systems. The former performs slightly better in normal conditions and is more
robust against shakey camera motion and moderately non-static scenes. They
both have the same failure mode when the environment has poor visual texture.
If this is the target environment for a robot then PM should be considered.
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