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Abstract. Humans have the subconscious ability to create simple ab-
stractions from observations of their physical environment. The ability to
consider the colour of an object in terms of “red” or “blue”, rather than
spatial distributions of reflected light wavelengths, is vital in processing
and communicating information about important features within our lo-
cal environment. The real-time identification of such features in image
processing necessitates the software implementation of such a process;
segmenting an image into regions of salient colour, and in doing so re-
ducing the information stored and processed from 3-dimensional pixel
values to a simple colour class label. This paper details a method by
which colour segmentation may be performed offline and stored in a static
look-up table, allowing for constant time dimensionality reduction in an
arbitrary environment of coloured features. The machine learning frame-
work requires no human supervision, and its performance is evaluated in
terms of feature classification performance within a RoboCup robot soc-
cer environment. The developed system is demonstrated to yield an 8%
improvement over slower traditional methods of manual colour mapping.

Keywords: Computer vision, colour vision, robotics, RoboCup, LUT
generation.

1 Introduction

Szeliski describes image segmentation simply as the task of finding groups of
pixels that “go together” [9]. This is an abstract notion that corresponds with
an inherently subconscious human process: the ability to look at an image and
identify salient features, such as a person, landmark or household item. Hundreds
of algorithms exist for image segmentation, with most relying on the assignment
of a feature vector (containing spatial and/or colour information) to each pixel.
For real-time applications, the dimensionality of this feature vector is commonly
reduced to contain only colour information, with each pixel assigned a colour
class label corresponding with higher level notions of colour (such as “red” or
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Fig. 1. An example of poor (left) versus good (right) quality colour image segmentation
of a common RoboCup scenario. Segmentation was accomplished using the k-means
algorithm (k = 5) over RGB (left) and Y CbCr (right) colour space representations [2].

“yellow”). This reduction has two primary advantages: the reduction of compu-
tational complexity, by processing over a lower dimensional search space; and
the removal of spatial class dependencies, allowing for the pixel-label mapping
to be calculated offline and stored in a static data structure for constant time
access. An example of colour segmentation within a RoboCup environment is
presented in Fig. 1.

This work focuses on this reduced task of colour segmentation, within an envi-
ronment where salient features exhibit some significant degree of colour-coding.
RoboCup robot soccer [6] was chosen as such as scenario for experimentation,
where field lines, goals and the ball are each assigned unique colours, and where
maintaining real-time processing performance is critical for robot responsive-
ness. A system for generating and storing a pixel-label mapping without human
supervision was developed for the Robotis DARwIn-OP humanoid robot, with
the mapping quality evaluated in terms of feature classification performance. Fi-
nally, the developed method was quantitatively compared to mappings generated
manually by a human expert, both in terms of the aforementioned performance
and required time for mapping generation.

2 Colour Vision Methodology

2.1 Colour Spaces

Past research has demonstrated the Y CbCr colour space as optimal (compared
to RGB, HSV and CIE L*a*b) for unsupervised colour segmentation, in terms
of both internal and external validation techniques [2]. As Y CbCr is also the
native colour space for many cameras, including the Logitech C905 fitted to the
utilised DARwIn-OP robot platform, all pixel values throughout this work are
processed and represented in Y CbCr format.
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2.2 Colour Look-Up Tables

In computer vision, a mapping from an arbitrary 3-component colour space C to
a set of colours M assigns a class label mi ∈ M to every point cj ∈ C [3]. If each
channel is represented by an n-bit value and k = |M | represents the number of
defined class labels, then

C → M,

where
C = {0, 1, . . . , 2n − 1}3 and M = {m0,m1, . . . ,mk−1} .

Concretely, in a colour space C, each pixel in an image is represented by a
triplet with each value representing the contribution of each component to the
overall colour of that pixel. Projecting the pixel values into the colour space
constructed by the orthogonal component axes results in a projected colour
space distribution of the original image. If computational resources are limited,
the colour segmentation process is performed offline, with the resultant mapping
represented in the form of a 2n×2n×2n look-up table (LUT). This LUT can then
be used for efficient, real-time colour classification; as such, the focus of this work
reduces to the task of generating effective LUTs without human supervision.

3 Mean Shift and Mode Finding Algorithms

As described in Sec. 1, image segmentation algorithms typically require the as-
signment of a feature vector to each pixel in an image. Where this feature vector
contains only colour (i.e. not spatial) information, the segmentation task is re-
duced to that of colour segmentation. Although many algorithms exist for the
task of colour segmentation (and image segmentation is general), this work con-
siders only mean shift and mode finding techniques. Such techniques involve the
assumption that each pixel’s feature vector is sampled from some unknown un-
derlying probability distribution, and attempts to locate clusters (modes) within
this distribution [9].

Specifically, three algorithms were considered: k-means clustering [5], which
parameterises the underlying distribution as a superposition of hyperspherical
distributions; expectation maximisation [1], which generalises k-means by assum-
ing a mixture of Gaussians; and mean shift [4], which generates a non-parametric
model of the entire distribution by convolving all feature vectors by some kernel
function.

3.1 k-Means Clustering

Given a set of m data points (corresponding with feature vectors in the scenario
of colour segmentation) P = {x(1), . . . , x(N)} (x(i) ∈ R

m), k-means clustering
attempts to partition P into K sets (known as clusters) S = {S1, . . . , SK} such
that the following objective function J is minimised
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J(c(1), . . . , c(m), μ1, . . . , μK) =
1

m

m∑

i=1

‖x(i) − μc(i)‖2,

where ci is the index of the cluster (1, . . . ,K) to which data point x(i) is currently
assigned, μk is the cluster centroid of Sk (μk ∈ R

n), and therefore μc(i) is the
centroid of the cluster to which x(i) has been assigned [5,9]. This is accomplished
by repeating the following two-step algorithm until convergence:

Assignment Step:

S
(t)
i = {x(p) : ‖x(p) − μ

(t)
i ‖ ≤ ‖x(p) − μ

(t)
j ‖ ∀ 1 ≤ j ≤ k}.

Update Step:

μ
(t+1)
i =

1

|S(t)
i |

∑

x(j)∈S
(t)
i

x(j).

3.2 Expectation Maximisation

As opposed to k-means, which associated each data point to a respective label via
the nearest neighbours method (i.e. minimum Euclidean distance), expectation
maximisation (EM) utilises a Mahalanobis distance [7,9]

d(x(i), μk;Σk) = (x(i) − μk)
TΣ−1

k (x(i) − μk),

where x(i) and μk are data points and cluster centroids respectively (x(i), μk ∈
R

n), and Σk are their corresponding covariance estimates. As opposed to the
hard assignment result of k-means, EM then allows for each data point to be
probabilistically associated with several clusters. This is performed by iteratively
re-estimating the parameters for a mixture of Gaussians density function [1,9]

p(x|πk, μk,Σk) =
∑

k

πk N (x|μk,Σk),

where πk is the mixing coefficient, μk and Σk are the Gaussian mean and covari-
ance respectively, andN (x|μk,Σk) is the multivariate Gaussian distribution [1,9]

N (x|μk,Σk) =
1

|Σk|e
−d(x,µk;Σk).

This process is accomplished by repeating the following two-step algorithm until
convergence:

Expectation Step: Estimates the likelihood of a data point x(i) having been
generated from the kth Gaussian cluster

zik =
1

Zi
πk N (x|μk,Σk),

∑

k

zik = 1.
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Maximisation Step: Updates the parameter values

μk =
1

Nk

∑

i

zikx
(i),

Σk =
1

Nk

∑

i

zik(x
(i) − μk)(x

(i) − μk)
T

πk =
Nk

N
,

where Nk is an approximation of the number of data points belonging to each
cluster

Nk =
∑

i

zik.

Where hard cluster assignment is required in the generalised case (includ-
ing the traditional colour segmentation scenario), each data point x(i) may be
mapped simply to the cluster k that maximises zik.

3.3 Mean Shift

As opposed to k-means and EM, which rely on explicitly parametric mixture
models of the underlying distribution, the mean shift algorithm estimates the
density function f(x) by convolving the sparse set of data points (corresponding
with pixel feature vectors) by some kernel function k(r) [4,9]

f(x) =
∑

i

K(x− x(i)) =
∑

i

k

(‖x− x(i)‖2
h2

)
,

where h is the kernel width and x(i) are the data points (x(i) ∈ R
n). Unfortu-

nately for a very large number of data points (potentially millions of pixels in the
case of an entire image), calculating the density function over the entire search
space can become too computationally expensive. Instead, a method known as
multiple restart gradient descent [9] can be utilised, which iteratively estimates
the gradient vector at some point yt and takes an “uphill” step in that direction.
The gradient of the probability density function with derivative kernel G(x) is
estimated as

∇f(x) =
∑

i

(x(i) − x)G(x − x(i)) =

(
∑

i

G(x − x(i))

)
m(x),

where g(r) = −k′(r) is the first derivative of k(r), and m(x) (the mean shift) is
calculated as

m(x) =

∑
i x

(i)G(x− x(i))∑
iG(x − x(i))

− x.

Finally, the procedure updates the point yt (at iteration t) by its locally weighted
mean (yt+1 = yt+m(yt)) [9]. Although a non-parametric method of clustering by
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definition, the estimated probability density function f(x) is implicitly parame-
terised by the selection of kernel function k(r). Two such kernels were considered
for colour segmentation: the Gaussian kernel function

kN (r) = e−
1
2 r,

and flat kernel function

kF (r) =

{
1 if |r| ≤ 1

0 otherwise
.

The latter was chosen due to the simplified implementation and improved com-
putational efficiency. As long as the kernel k(r) is chosen to be monotonically
decreasing, the mean shift algorithm is proven to converge [4].

4 System Implementation

4.1 Image Stream Generation

A MATLAB utility was developed to allow for the creation of DARwIn-OP
compatible image streams from a set of selected images. Specifically, this work
utilises a library of 100 images captured by the DARwIn-OP for LUT generation,
with each salient RoboCup feature (goals, lines, ball, etc.) equally represented.
This library is partitioned into equal sized training and evaluation sets, with
each partition maintaining this equal representation1.

Although this library of images was captured manually, a known initial place-
ment of the DARwIn-OP allows for simple development of a behaviour to auto-
matically capture equivalent representative images.

4.2 Look-Up Table Generation

Given an input training library of 50 images, the process of LUT generation
involves the following four steps:

1. Selection of training images: It was hypothesised that the classification
performance of an autonomously generated LUT would be some function
of the number of training images considered during its generation. Too few
images would provide insufficient information to allow robust classification,
whereas too many would result in the over-classification of colours, intro-
ducing substantial background noise. As such, for each proposed method
of LUT generation, LUTs were generated for different sized subsets of the
training set of 50 images. For each method, the number of training images
ranged from 5 to 50, increasing in multiples of 5, with each image selected
at random from the initial training set while ensuring the preservation of
feature distribution.

1 Available at: http://davidbudden.com/experimental_data/testImages0912.zip

http://davidbudden.com/experimental_data/testImages0912.zip
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2. Cluster generation: Each of the three clustering algorithms described in
Sec. 3 (k-means, expectation maximisation and mean shift) were applied
separately to each selected training image within the 3-dimensional Y CbCr

colour space. The pixel-cluster mapping for each pixel is stored.
3. Cluster merging: Although cluster validation assigns a label to each pixel

within the original image, there are two fundamental problems. Firstly, the
number of clusters is in no way representative of the number of salient colours
actually present within the image, but rather restricted by some algorithm
parameter. Secondly, there is no direct relation between cluster labels (an
arbitrary enumeration) and actual high-level colours (red, blue, etc.) These
issues are solved by cluster merging, which requires a human user to initially
define a number of Y CbCr (or RGB equivalent) triplets for potential colours
of interest2. Each pixel is assigned its final colour class label by determining
which optimal triplet is the nearest neighbour of that pixel’s assigned cluster
centroid.

4. LUT generation: After each clustering is performed, the mapping between
every Y CbCr triplet and respective colour class label is stored. However,
there are often clashes between mappings across a set of images; for exam-
ple, a triplet may map to the yellow class label in one image and the orange
class label in another, due to different colour distributions affecting the near-
est neighbour of the cluster centroid. To deal with this, a voting system is
implemented, where the class label most frequently associated with a given
triplet defines the value eventually stored in the LUT. The LUT is simply
a data file storing a flattened 256 × 256 × 256 matrix of colour class labels
(0 for unclassified), indexed by Y CbCr value and generated in a raw for-
mat (no headers or formatting bytes) understood by the remainder of the
DARwIn-OP vision system.

4.3 Look-Up Table Generalisation

Previous research has indicated that the quality of a manually generated LUT
may be improved via the process of generalisation; filling gaps and removing
outliers by support vector machine (SVM) post-processing [8]. For each colour
class label, a single one-class SVM was created. The purpose of each SVM was to
determine the likelihood (between −1 and 1) of each of the 2563 data points (i.e.
Y CbCr pixel coordinates, also scaled between −1 and 1 for each axis) belonging
to that respective class. Specifically, a MATLAB implementation of the LIBSVM
one-class SVM implementation was used [10].

Despite the fact that previous research has indicated the implementation of
such a generalisation process improves LUT performance [8], a course-grain grid
search of SVM parameters yielded consistent reduction in performance. This
discrepancy may be influenced by a number of factors: the improved quality of
input LUTs, the smoother nature of input class regions (resulting from clustering

2 In the RoboCup environment, all salient features are encoded with colours corre-
sponding with the corners of the RGB cube.
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rather than some manual process) and the selection of a different colour space
(Y CbCr rather than HSV ).

4.4 Performance Evaluation

As several thousand LUTs were generated for this work, it is infeasible to qualita-
tively assess the performance of each by “how good” the corresponding classified
images appear (the standard approach the evaluating a manually generated LUT
within the NUview utility). Furthermore, although previous research has demon-
strated a correlation between internal and external cluster validation techniques
in the context of colour classification [2], a more explicit method of evaluating
LUT performance is necessary.

As described in Sec. 4.1, a library of 50 images was used for the purpose
of LUT performance evaluation. A feature vector of binary features was manu-
ally generated for each image, which each bit corresponding with the presence
of some salient RoboCup feature (goals, lines, ball, etc.) within that frame. By
generating a similar feature vector by processing each LUT-classified image with
the DARwIn-OP robot vision system, classification performance can be calcu-
lated directly. Furthermore, by maintaining the same vision system version and
same set of 50 images between experiments, the colour segmentation represented
by the LUT becomes the only experimental variable. In this case, it follows that
the following metrics are representative of the performance of a LUT:

– Sensitivity: Measures the probability of classifying some feature, given that
the feature is present

sensitivity =
number of true positives

number of true positives + number of false negatives
.

– Specificity: Measures the probability of not classifying some feature, given
that the feature is not present

specificity =
number of true negatives

number of true negatives + number of false positives
.

5 Results

As described in Section 4, look-up tables (LUTs) were generated for differing
sized subsets of the initial training set of 50 images, based on the presumption
that an optimal quantity of training data should be evident. As such, for each
clustering technique, 10 LUTs were generated to assess a range of training set
sizes from 5 to 50 images. Furthermore, to ensure the statistical significance
of the experimental results, each of these 10 LUTs were generated 120 times,
with the presented results representing the mean performance. This step was
necessary due to two stochastic elements of the generation process: the random
selection of image subsets from the original training set; and the random initial
placement of cluster centroids, resulting in final clusters of varying density and
separation.
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Fig. 2. Two examples of colour look-up tables generated for the training set of 50
images: a manually tuned LUT (left), created within the NUview utility using a point-
and-click approach over the period of 1 hour; and an autonomously generated LUT
(right), utilising k-means clustering over a subset of 30 training images and generated
in less than 10 seconds.

5.1 Classification Performance

Fig. 3 presents the mean sensitivity and specificity values for LUTs produced
using the k-means (blue), expectation maximisation (red) and mean shift (ma-
genta) algorithms. These plots represent data collected from 3600 LUTs, each
tested over 50 images, resulting in the binary classification of more than of 1.2
million features.

Some interesting observations follow from these results. Firstly, the specificity
curve for all methods follow the expected trend, decreasing as the number of
training images increases as the result of over-classification of colour. Secondly,
the sensitivity curve for mean shift and expectation maximisation confirmed the

5 10 15 20 25 30 35 40 45 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of training images

M
ea

n 
cl

as
si

fic
at

io
n 

se
ns

iti
vi

ty

5 10 15 20 25 30 35 40 45 50
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Number of training images

M
ea

n 
cl

as
si

fic
at

io
n 

sp
ec

ifi
ci

ty

Fig. 3. Comparison of colour look-up table feature classification sensitivity (left) and
specificity (right) as a function of the number of training images, for k-means (blue),
expectation maximisation (red) and mean shift, utilising a flat kernel (magenta). The
performance of a manually tuned LUT is indicated by the dashed lines. It is evident that
k-means clustering yields the best classification sensitivity for most training set sizes,
with comparatively little difference evident between the specificities of each method.
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initial hypothesis: poor classification for too few images due to a lack of training
data. Similarly, convergence to relatively poor classification was evident for too
many images, due to the excess classification of background noise preventing
effective feature extraction. For some intermediate values (10 for mean shift,
and 20 for EM), optimum sensitivity is achieved.

Fig. 3 demonstrates that k-means does not experience the same overshoot in
sensitivity as EM and mean shift, but rather asymptotically approaches its opti-
mum sensitivity value. Furthermore, k-means overall outperforms both EM and
mean shift algorithms. As k-means is a specific case of EM that assumes underly-
ing hyperspherical distributions of data, it can be inferred that human-perceived
salient colours may form approximately spherical distributions within the Y CbCr

colour space, therefore allowing more optimal partitions to be formed within the
algorithm’s internal iteration limit. This observation is consistent with earlier re-
search suggesting that clusters of maximum density and separation occur within
the Y CbCr space, and correspond with qualitatively accurate segmentation of
an image into regions of salient colour [2].

5.2 Optimal Method Selection and Evaluation

From the previous experimentation, it has been demonstrated that the best
performing colour look-up tables are produced by k-means clustering. Given
this information, the remaining task is to determine the optimal set of internal
clustering parameters. Specifically, the MATLAB implementation of k-means
clustering is parameterised by two values of interest: k, the initial number of
parameters (later reduced to the number of colour class labels by the LUT gen-
eration implementation); and the iteration count3. For an iteration count greater
than 1 (the default value used previously in experimentation), each clustering is
repeated an equal number of times, with only the clusters yielding the best spa-
tial properties (lowest average distance from centroids to corresponding points)
being retained. Although it is intuitive that clusters of improved spatial prop-
erties may yield LUTs which exhibit improved classification performance, this
correlation has not been experimentally verified.

The experimental range for k was set to be from 5 to 14 (with the previous
default as 10), and that for the iteration count set from 1 to 10. For each of
the 100 resulting pairs of parameter values, 120 LUTs were generated, resulting
final autonomous creation of 15,600 LUTs and respective evaluation of more
than 5 million binary features. The average sensitivity and specificity for each
parameter pair are presented in Fig. 4.

Fig. 4 demonstrates that increasing both the number of clusters and number of
iterations results in an overall diminishing performance increase, in terms of both
sensitivity and specificity. The optimal pair of parameters was experimentally
determined to be: number of clusters k = 11, and number of iterations = 10.

3 Note that “number of iterations” refers to the MATLAB parameter (i.e. complete
reruns of the clustering process), with each allowed to run until convergence. The
cluster assignments retained are those that maximise cluster density and separation.
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Fig. 4. Mean classification performance for colour look-up tables generated by k-means
clustering, parameterised by both the number of clusters and clustering iteration count,
presented in terms of sensitivity (left) and specificity (right). See Sec. 4.4 for definitions.

The mean performance of the 120 LUTs generated for this parameter pair is
presented in Table 1, along with the performances of the manually generated
benchmark LUT, and the overall best performing LUT from the set of 120.

Table 1. Salient feature classification performance over 50 images, for 120 LUTs gener-
ated using k-means clustering (k = 11, number of iterations = 10). The best generated
LUT yields an 8% improvement sensitivity for zero tradeoff in specificity.

Benchmark Mean Best Performance

Sensitivity 0.6596 0.5964 0.7163 1.08
Specificity 0.9768 0.9465 0.9747 1.00

It is evident that, although the mean performance of the 120 generated LUTs
is overall slightly worse than the manually generated benchmark, the best per-
forming LUTs yield an 8% increase in classification sensitivity, for zero tradeoff
in specificity.

6 Conclusion

It has been demonstrated that a system can be developed to solve a seemingly
subjective problem (the mapping of millions of pixel values to a small set of
colour class labels) without human supervision, despite the inherent similarity
to subconscious human abstraction. Moreover, it has been demonstrated that,
in addition to solving the problem in orders of magnitude less time than is
required by a human expert (in the order of seconds, rather than hours), the
autonomous colour look-up table (LUT) generation system is able to produce
LUTs that yield up to an 8% improvement in classication performance over those
manually tuned within the NUview utility. Although demonstrated solely within
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a RoboCup robot soccer environment, this development has strong potential in
any image processing or machine vision system requiring real-time recognition
of coloured features.
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