RoSHA: A Multi-robot Self-healing
Architecture*

Dominik Kirchner, Stefan Niemczyk, and Kurt Geihs

University Kassel, Distributed Systems Group,
Wilhelmshoeher Allee 73, 34121 Kassel, Germany
{kirchner,niemczyk,geihs}@vs.uni-kassel.de

http://www.vs.uni-kassel.de

Abstract. Reliability is one of the key challenges in multi-robot systems
to increase practicable applicability and hence the commercial usage.
This paper presents RoSHA, a self-healing architecture for multi-robot
systems. RoSHA is based on the established robot middleware ROS and
provides components for application independent analysis and repair. A
plug-in architecture enables the developer to simply add new components
for repair and analysis. Bayesian networks are used to diagnose failures
and their root causes. ALICA, a domain specific language for multi-robot
systems, is applied to coordinate recovery plans in multi-robot systems.

Keywords: self-healing, multi-robot system, system monitoring, failure
diagnosis, system recovery.

1 Introduction

Multi-robot systems become more and more important for many application
domains, like search and rescue, warehouse management, or urban exploration.
Often the complexity of tasks and domains demands autonomous operation in
unknown and dynamic environments. These systems are confronted with com-
plex tasks, like planning, localization, or coordination. The dynamic environment
and the intricate interaction between these tasks result in a failure-prone setting
[1,2]. Accordingly, an architecture of multi-robot systems often consists of con-
nected components. A failure in a single component can lead to a degeneration
or even a crash of the total system. For example, in a single robot task, the
localization of the robot relies on the fusion of multiple sensor information, like
a direction, determined by a compass module and a distance scan, extracted
from a camera image. If an error occurs in only one of the involved sensors, the
robot could be delocalized. Due to the coordination and interactions of single
robots in a multi-robot task, the resulting susceptibility to failures is expected
to become even worse.

* The project IMPERA is funded by the German Space Agency (DLR, Grant number:
50RA1112) with federal funds of the Federal Ministry of Economics and Technology
(BMWi) in accordance with the parliamentary resolution of the German Parliament.

S. Behnke et al. (Eds.): RoboCup 2013, LNAI 8371, pp. 304-315, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

http://www.vs.uni-kassel.de

RoSHA: A Robot Self-healing Architecture 305

In order to foster real-world applications and to increase the commercial use,
reliability is a key design challenge. Carefully tested system design is one step in
this direction. However, many errors result from the dynamic operation condi-
tions, thus automatic failure detection and self-healing is required at runtime. To
achieve self-healing capabilities, the system needs to identify root causes of a fail-
ure and execute a recovery policy. A more advanced concept than static failure
handling is required. In this paper we present a generic and abstract robot self-
healing architecture, called RoSHA. This architecture is based on ROS (Robot
Operating System) diagnostics! and is inspired by the MAPE-K cycle [3]. It
contains the five blocks monitoring, diagnostic, recovery planning, repair exe-
cution, and a knowledge base. We use an abstract system model and Bayesian
networks as knowledge base to determine the root causes for detected failures,
like a component crash, a deadlock, etc..

The rest of this paper is organized as follows. Section 2 identifies the require-
ments for a self-healing architecture. In Section 3 we introduce ROS and the
existing diagnostic stack. The architecture and basic concepts of RoSHA are
presented in Section 4. In Section 5 we name and discuss existing solutions.
Finally, in Section 6 we conclude the paper and propose future work.

2 Requirements

Robustness of multi-robot systems is a key challenge that only little research
has been directed to. In order to contribute to this challenge the proposed ar-
chitecture offers self-healing capabilities. Often the architecture of a multi-robot
system is characterized by a high degree of complexity. Therefore, the interac-
tion between the robot system and the self-healing add-on should be carefully
designed and limited to few well defined interfaces. The integration effort for
robot developers should be minimized. Moreover, the self-healing add-on should
not be application nor domain specific, rather provide its services in a general
way. Most robot systems have limited resources and need to perform their tasks
in soft real-time. Therefore, the architecture of the self-healing add-on should be
resource-efficient to prevent indirect interferences. Scalability is another impor-
tant requirement. The self-healing add-on should be independent from size and
distribution of a multi-robot system.

Beside these envisioned features of a self-healing architecture, humans should
be still able to oversee and control the system. If executed wrongly, repair actions
can disturb the operational performance of the robots, e.g. in the case of an un-
necessary restart of a core component. To cope with these risks, human operators
should be able to intervene at any time. Furthermore, logged human intervention
actions provide a valuable source of labeled training data for improvements. In
summery we identified the following requirements of a self-healing architecture:

Ease of integration: To support existing robot systems without extensive in-
tegration efforts, well-defined interfaces between the robot system and the
add-on have to be claimed.

! http://www.ros.org/wiki/diagnostics

http://www.ros.org/wiki/diagnostics

306 D. Kirchner, S. Niemczyk, and K. Geihs

Resource-efficient: The runtime support must not decrease the robot’s per-
formance. Therefore, the self-healing add-on has to be implemented in a
light-weighted resource-efficient way.

High degree of configurability: The application and domain independent
components of the self-healing add-on require a high degree of configura-
bility. This is necessary to adjust these components to special needs of an
existing robot system.

Human controllability: An unnecessary executed recovery action can decrease
the performance of the whole robot system. Therefore, human intervention
and control should be supported.

Extensibility and modularity: To extend the self-healing add-on to domain
and application specific requirements a flexible design is required. Further ap-
plication specific components, e.g. a new specialized control interface, should
be simple to develop and integrate.

Multi-robot support: To improve the recovery, inter-robot interactions should
be considered in the recovery execution. Therefore, multi-robot coordination
for complex recovery processes should be supported.

3 Background

In order to realize the requirements stated in Section 2, we use ROS (Robot
Operating System) [4], which is introduced in the remainder of this section.

3.1 Robot Operating System

ROS is a software framework for single and multi-robot system development. It
provides standard operating system services such as hardware abstraction, low-
level device control, implementation of commonly-used functionality, message-
passing between components, and package management. The middleware is based
on a graph architecture where processing takes place in nodes. These nodes
receive and send messages using a publish/subscribe mechanism. This multi-
component structure directly supports the required ease of integration and exten-
sibility. The middleware services, like connecting different nodes, are dynamically
organized from a central arbiter, the roscore. Communication in this system is
not limited to local inter process communication (IPC) and could be distributed
over a network as well. ROS contains repositories for additional packages. Users
can contribute packages to the community that implement common functionali-
ties for reuse, such as simultaneous localization and mapping, planning, percep-
tion, simulation, and so on.

3.2 ROS Diagnostics

In ROS the task of analyzing and intuitive reporting the system state is pro-
vided by the diagnostics stack. It consists of development support for collecting

RoSHA: A Robot Self-healing Architecture 307

and publishing information, an analysis and aggregation node, and visualiza-
tion tools. This tool-chain is built around standardized interfaces, namely the
diagnostic topic for monitoring information and the diagnostic agg topic for the
analyzed and aggregated results.

To make relevant information available, the diagnostic stack provides support
for integration of a monitoring publisher in a ROS nodes. This allows the nodes
to publish diagnostic data, the node status, or to monitor processing timings.
Gathered data are published continuously on the diagnostic topic. Additional,
there exists support for triggered node self-tests. The diagnostic aggregator node
is responsible for analyzing and aggregating reported data at runtime. The ag-
gregation is used to categorize the monitoring data to an information item that
summarizes one aspect of the system, e.g. status information of one compo-
nent. The analysis is performed using a plug-in model. Each plug-in provides
one analyzer that analyzes and aggregates information on a system’s aspect.
This aggregated information is sent on the diagnostic agg topic for notification
or visualization. A standard tool for visualization is the robot monitor node
that highlights the overview. Detailed information can be easily accessed for
all aspects. Due to the defined interface the integration of application specific
reporting is facilitated.

In summary the ROS diagnostic stack provides the required features for multi-
robot support, extensibility and modularity, and human control. The ROS mid-
dleware offers local and network communication and hence supports multi-robot
systems. The multi-component support in combination with the defined inter-
faces in the ROS diagnostic stack facilitates extensions in a convenient way.

Beside the discussed strength, there exist some shortcomings as well. The
information gathering has to be integrated in the source code of the components.
Moreover, the robot system must be developed with ROS to communicate the
diagnostic data from the nodes. Therefore, the claimed ease of integration to
an existing system is not fulfilled. However, the main shortcoming is the lack of
autonomous failure recovery. For system recovery ROS diagnostics strictly relies
on human operators to manually repair the system.

4 RoSHA Design and Architecture

In this section, we describe our approach to realize a self-healing add-on that
fulfills the requirements identified in Section 2. Apart from the discussed short-
comings, ROS diagnostics already provide some of these requirements discussed
in the previous section. Thus, we decided to build on ROS and the ROS diag-
nostics stack to develop RoSHA. In the development, we explicitly consider the
special needs of multi-robot recovery, as described later.

As depicted in Figure 1, the structure of the overall system consists of two
basic parts, which outline the local and the distributed aspect of the system.
Here, the distribution of a multi-robot system is abstracted as interactions of a
local robot with its team. Details of our proposed self-healing architecture are
presented in the robot part. This part consists of four basic blocks (presented

308 D. Kirchner, S. Niemczyk, and K. Geihs

as gray areas). The ROS middleware and the operation system serve as the fun-
damental hardware abstraction and execution layer that provides basic system
services. The robot system realizes functionalities for the intended operation of
the robot. The last block is RoSHA, which supports the reliability of the robot
system and the user, who operates the system. The internal structure of RoSHA
is built on the concept of MAPE-K [3] as the underlying decision cycle. This cy-
cle is composed of five basic blocks, monitoring, analyzing, planning, execution,
and a knowledge base. Following the requirement of modularity, we realized each
block as an independent component.

Robot Team
‘ User Interface
Robot System RoSHA
repair
. Repair Executer B Recovery Manager
Component 1 _ | 7%] Plan repository ||
RP (1 N @
_— Knowledge /J e
Component 2 =
Monltormg ‘ Dlagnostlc
il
, Analyzers
ROS
Operation System TS
——> injects interacts analyzer plugin repair plugin

Fig. 1. Overview of the overall robot system architecture

The monitoring component collects information about the current system
state. Therefore, two different aspects of the system are monitored. The first
one is the knowledge provided by the operation system, like the current resource
usage of a component (CPU load, memory usage, thread count, etc.). The sec-
ond aspect is information provided by the components themself. If used, each
component can directly send status information on the ROS monitoring topic,
which is received by the monitoring component of RoSHA.

The diagnostic component uses the collected information to identify failures
and their root causes. A set of basic plug-ins exist that supports generic and
component independent analysis. In our opinion generic analyzing is not enough
to identify all failures. The developer of the component is best capable of provid-
ing component specific analysis. Each component can provide its own analyzing
plug-in (AP). This is injected into the diagnostic component at runtime. A sys-
tem model is used to determine the root causes for each detected fault.

Detected faults are reported to the recovery manager. This component selects
a recovery plan from a set of predefined policies to recover from the failure. The

RoSHA: A Robot Self-healing Architecture 309

repair execution component performs the repair actions included in the selected
recovery policy. Similar to the diagnostic component the execution component
provides a set of generic repair actions. This set can be extended with component
specific actions, which can be offered as repair plug-ins (RP).

4.1 System Model

In accordance to the decision cycle, we use a single model to represent the
accumulated knowledge. This model describes the current configuration of the
multi-robot system. Additionally, configuration information of the self-healing
add-on are included, e.g. the configuration details of a robot specific monitoring.

Team:

Robot:

Skills:

Processing Chain:

Interfaces:

Hardware Processing
Chain:

Fig. 2. Layered visualization of an exemplary system model in a multi-robot setting

We define a representation of the system according to the information flow
between the components (see Figure 2). Therefore, we transformed a data flow di-
agram (graph representation) in a tree structure to express sequence and parallel
component configuration. Furthermore, we include additional semantic elements
on the upper levels of the model. The top-level element is the team node that
represents the total multi-robot system. A team consists of robot nodes, which
are placed on the second layer. All configuration-related to the overall robot sys-
tem is specified here. On the next level, the model is decomposed in the robot’s
basic skills, like the ability to move, detect objects, localize, or plan. The set
of skills is divided in capabilites, cognition, and cosmetics. Capabilities are used
for sensor and actor skills, cognition, for cognitive skills like the planning and
decision making of an autonomous systems, and cosmetics, for pure supportive
skills, like a graphical user control interface. Each skill consists of functionali-
ties and channels to represent the processing flow. Functionalities correlate with

310 D. Kirchner, S. Niemczyk, and K. Geihs

the system components of the robot system and channels represent the com-
munication links between them. Components that are present in multiple skills
are presented separately in each skill and linked together. This processing chain
ends with an interface element that marks the end of the software domain layer
and the beginning of the hardware layer. Modeling the information flow on the
hardware layer is not yet included, but part of the future work.

4.2 Monitoring

The monitoring is responsible to observe the current system state. The system,
as described in Section 4.1, is composed of connected components. Therefore,
capturing the entire robot system’s state means to collect information of each
component. However, properly working components do not directly induce a
working system, the interactions between these components have to be consid-
ered as well. Therefore, we define two categories: the component monitoring, to
capture components’ state information and the flow monitoring, to supervise the
communication flow between components.

The subject of the monitoring is one aspect of the information collection, the
provider is the other. A common way to do this is to extend the components
of the robot system to send current state information. An example for this is a
heart beat signal. The component itself continuously sends a message to show its
liveliness. We call that type of information collection active monitoring, because
the components of the robot system have to provide their state information by
their own. The self-healing architecture supports this monitoring, however we
focus on a more flexible information collection. The proposed monitoring process
focuses on the collection of general characteristic information of a component,
like its resource usage. No direct support of the component is needed. This is
referred as passive monitoring in the context of our work.

Passive monitoring can be very resource-inefficient. Therefore, we developed
an adaptive monitoring, which is based on system specific aspects defined in the
system model. For each component a set of characteristics are defined and moni-
tored due to a set of properties. For example one characteristic could be the CPU
usage of a component. The property describes the expected range from 15% to
25% with a typical value of 17%. The distance between the typical value and
current value in respect to the borders is used as the distance metric to adapt the
monitoring process. If the CPU usage is near the typical value, the monitoring
level will decrease and the monitoring interval will increase and vice versa. The
adaptive monitoring reduces the system load in error free situations. Further-
more, it reduces the amount of data to analyze as well. In a typical robot system
components are not equally important. Therefore, the system model supports
the configuration of initial monitoring levels for each functionality and channel.

4.3 Diagnostics

After monitoring the state of the system, the interpretation has to be done. This
is addressed by the diagnostic component. The perceived state information can

RoSHA: A Robot Self-healing Architecture 311

be seen as symptoms of the overall system health. Therefore, the goal of the
diagnostic component is to aggregate related symptoms, calculate an estimation
of the health state, and identify possible root causes.

As described in Section 4.1, we defined a model of the component dependen-
cies. This structure is composed of component items and communication items.
Both are subjects of our monitoring and hence, state information are continu-
ously updated. In our work we apply Bayesian networks for the diagnosis [5].
Bayesian inference needs a structured knowledge representation, a Bayesian net-
work, to perform the diagnostic analysis. In our self-healing add-on this knowl-
edge representation models the correlation of symptoms, root causes, and the
resulting failure probability (see Figure 3). The resulting model can be struc-
tured in three layers, the symptom layer: the root cause layer, and the component
failure layer. In the context of the Bayesian formalism, the monitored informa-
tion is regarded as continuously updated evidences of the symptoms. Therefore,
ongoing inference of the model is needed. In order to address temporal char-
acteristics, we extend the models to dynamical Bayesian networks by including
temporal dependencies to capture time series properties. With this extension
we are able to model and analyze trends in symptoms to improve the failure
analysis, e.g. an increasing memory usage in the case of a memory leak.

Diagnostic Analyzer Plug-in
Failure: Component
Failure
Diagnostic Output
Root Cause:
Deadlock Crash
Symptom: / \ / \
Heartbeat
CPU Load VIREEE: | | Memory
Monitoring Input Number nterva Usage
“— Dependency
O Bayesian Variable

Fig. 3. Bayesian network for the diagnostic task

Besides a similar layered structure of the failure models, the included knowl-
edge, like a-priori probabilities and dependencies, is specific for each component.
This enables the distribution of the models to the location of the correspond-
ing component to support an alignment of failure modeling. In order to process
these distributed models, we apply the plug-in model to loosely connect the
failure models with the diagnostic component of the self-healing add-on.

With these distributed models, inference of failure probabilities and root cause
probabilities can be inferred separately. In order to infer a reliability estimate for

312 D. Kirchner, S. Niemczyk, and K. Geihs

the entire robot system, or some subsystem of it, the interference of components’
failure probabilities has to be considered. This combination can be calculated
using reliability theory [6]. Therefore, we apply the formalism of reliability block
diagrams (RBD) to compute the (sub-) system reliability.

4.4 Recovery Manager

After diagnosis, detailed information of failure probabilities of the robot system
are available. In addition, the diagnostic component provides probabilities of root
causes to identify the most likely reason for a potential failure. Based on these
information, the responsibility of this component is to select a fitting recovery
policy to restore the system. As mentioned before, monitoring information, and
hence the diagnostic results, change in real-time. Dynamic planning for each
situation is a time consuming task that requires much resources [7]. This is
in conflict with the requirement of recourse efficiency. Therefore, we decided to
provide a set of predefined, but proven recovery policies. These policies are stored
in the plan repository of the component.

For plan selection and team recovery coordination we use the multi-agent
coordination language ALICA [8]. ALICA inherently fulfills the requirement of
multi-agent support. The policies, called plans in ALICA, set up a strategy of
repair and assessment actions for a team of agents. In such a plan we are able
to model complex repair and check procedures with multiple robots involved.

SupervisedMotionRecovery

RecoveryAction1 R /Action2
ecoveryAction LocalCheck
- ptately—————— WiStatel e

o P ‘__,M._a State

e ; ResetMotion ’ Restaritontroil Success
¥ LocalTask ﬂ ! B RESTATEEOnHETars I - TestDrive1l [;;Q
% RemoteTask o . ek \iagre
repareForRemoteChec RemoteCheCk/i"

S

State — State

[MotionRecoveryAssessmentPreparation) _ MotionRecoveryAssessment

Fig. 4. Recovery plan in ALICA

Figure 4 illustrates an example recovery policy that is designed to recover a
robot’s motion process. It performs two recovery actions and locally verifies the
success by a test drive. Additionally, an independent assessment of the recovery
is done by supportive robots that confirm the success through their independent
observation of a matching movement. Therefore, explicit knowledge exchange
between the robot system and the recovery manager is used. The recovery policies
are case specific and modeled manually. The needed environment knowledge for
the recovery assessment has to be communicated to the self-healing add-on by

RoSHA: A Robot Self-healing Architecture 313

the robot system. The communication can rely on IPC or the plug-in model.
Without the robot system’s support, the recovery manager is limited to local
repair coordination based on monitoring and diagnostic information.

4.5 Repair Execution

The recovery manager selects an appropriate recovery policy and coordinates the
involved repair actions. These actions are communicated to the repair executor
node. Two types of repair actions are distinguished. Generic repair actions that
provide repair services independent of the target component and specific repair
actions that are designed for one specific target node. Both types are realized
as plug-ins, similar to the analyzers of the diagnostic component. The recovery
impact of generic repair, like a restart of a component, is limited due to their
general scope. Specialized component knowledge is needed to implement more
specific repair actions, e.g. a runtime reconfiguration of the component. Only the
component’s developers possess this detailed knowledge and seems best fitted to
implement these specific repairs. To support the extensibility of the self-healing
add-on, the specific repair plug-ins are located in the components. A third, more
sophisticated way to restore a system is an architectural recovery. The goal of
this recovery policy is to change the architecture of the robot system in order
to restore the operational mode. Thereby, the architectural changes comprise
adding, removal, and connection of system components. In this policy a sequence
of architectural repair actions are performed. These repairs are not limited to
local actions, but involve the total system. In a multi-robot system we need
to perform distributed architectural actions. After an unsuccessful local recov-
ery, distributed repairs allow to compensate this failure through relocation of
the failed component to another robot system. If local and distributed recovery
failed, the robot looses some of its capabilities and is seen as degenerated. How-
ever, such a robot could still contribute to the global task. In order to continue
this task as good as possible, the degree of degeneration has to be considered
and appropriate adaptation actions should be performed, e.g. a global task re-
allocation. These repair actions are ongoing work in RoSHA .

5 Related Work

The general problem of self-healing is addressed in several projects. In the fol-
lowing we like to present some of the related work and discuss their strength
and shortcomings.

The SHAGE (Self-Healing, Adaptive, and Growing Software) framework [9]
consists of two parts that enable the self-management of a robot. The first part
comprises several components to manage the system, while the second part con-
tains internal and external repositories to store architectural reconfiguration
descriptions and components. These two parts work together to observe the
situation of the environment and to trigger appropriate architectural reconfig-
urations. Furthermore, SHAGE includes a learning component to improve the

314 D. Kirchner, S. Niemczyk, and K. Geihs

reconfiguration due to previous experiences. This reconfiguration aims to adapt
the behavior of the robot in exceptional situations. However, the challenge how
to identify these situations is kept open. Recovery of these situations is done
by changing the behavior of the robot through architectural adaptation while
component failure recovery is not addressed. The framework includes interfaces
to external repositories to share knowledge, but does not support coordination
of multiple robots.

The Rainbow project [10,11] proposes an architecture-based self-adaptation
approach. It provides reusable infrastructure together with mechanisms to tailor
these to the domain’s needs. These specializations allow the developer to define
aspects of the system, like monitoring targets or adaptation conditions and ac-
tions. The adaptation is done through statically associated sets of action rules
for each identified adaption cause. The information collection and the execution
of adaptation actions rely on direct support of the target system. Therefore,
integration in an already existing system seems difficult. Furthermore, the ar-
chitecture is inherently centralized and thus sensitive to single-point of failures
and of limited use for distributed systems, like multi-robot systems.

LeaF (learning-based fault diagnosis) [12] from Parker and Kannen is based
on an adaptive causal model for fault diagnosis and recovery. The approach
focuses on multi-robot systems. The causal model represents expected faults
and is initially created by the developers at design time. A case based reasoning
is used to handle unexpected faults during runtime. The system extracts possible
recovery options from the existing model and adds the new fault and a recovery
method afterwards. Furthermore, the model can represent faults that only occur
during the interaction between robots. However, this approach does not cover
hardware related monitoring and fault detection. The authors make no statement
how to integrate LeaF in an already existing robot system or how to change or
replace existing components.

Often, a robot system is built without considerations of system management,
including self-healing. The main concern is to create a working system for a given
task. Developers tend to neglect reliability in this design phase. That could lead
to the situation in which it is necessary to integrate self-healing abilities to
an already existing system. The discussed projects propose remarkable results
in the field of self-healing through architectural adaptation. However, they do
not address questions of practicable usability, like the integration in an existing
system, or resource efficiency. We argue that these properties are central design
decisions and should be reflected as architectural requirements. We argue as well
that coordination and assessment of multi-robot recovery actions are central
requirements for a domain and task independent self-healing architecture. In
comparison with the discussed projects, RoSHA considers these requirements.

6 Conclusion and Future Work

Due to the system complexity of modern robot systems, reliability cannot be
ensured in design time. Hence, runtime failure recovery in a self-healing add-
on is needed. The integration of the self-healing add-on in an already existing

RoSHA: A Robot Self-healing Architecture 315

multi-robot systems is essential in the sense of practicable usage. Therefore,
increased usability and multi-robot support is required. In this paper, we pre-
sented a robot self-healing architecture to address these challenges. We propose a
framework that is tailored for generic use in multi-robot scenarios. The design of
the framework addresses the need for resource efficiency through the usage of an
adaptive monitoring. Plug-in support with existing generic repair and analysis
plug-ins enables an ease of integration. The coordination of multi-robot recovery
policies is given by the language ALICA .

As part of our ongoing research we plan to integrate distributed failure learn-
ing methods to reduce the dependency of expert knowledge. A comprehensive
real-world evaluation of the self-healing add-on will be done at the RoboCup?
world championships 2013. In this dynamic setting the suitability for multi-robot
teams will be evaluated. Furthermore, we plan to compare the recovery perfor-
mance of a fully supported self-healing add-on with results from limited system
support, e.g. with restricted support to generic monitoring and recovery actions.

References

1. Carlson, J., Member, S., Murphy, R.: How UGVs Physically Fail in the Field. IEEE
Transactions on Robotics 21(3), 423-437 (2005)

2. Carlson, J., Murphy, R.: Reliability analysis of mobile robots. In: International
Conference on Robotics and Automation, vol. 1, pp. 274-281. IEEE (2003)

3. Huebscher, M., McCann, J.: A survey of autonomic computing degrees, models,
and applications. ACM Computing Surveys 40(3), 1-28 (2008)

4. Quigley, M., Conley, K., Brian, G., Josh, F., Tully, F., Jeremy, L., Rob, W., Andrew,
N.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open
Source Software. Number Figure 1 (2009)

5. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman Publ. Inc. (1997)

6. Shooman, M.: Reliability of Computer Systems and Networks: Fault Tolerance,
Analysis, and Design. John Wiley & Sons, Inc. (2002)

7. Ghallab, M., Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., Weld, D.: PDDL - The
Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control (1998)

8. Skubch, H.: Modelling and Controlling Behaviour of Cooperative Autonomous Mo-
bile Robots. Phd thesis, University of Kassel (2012)

9. Kim, D., Park, S., Jin, Y., Chang, H.: SHAGE: a framework for self-managed
robot software. In: Proceedings of the International Workshop on Self-adaptation
and Self-managing Systems, pp. 79-85. ACM Press, Shanghai (2006)

10. Garlan, D., Cheng, S.W., Schmerl, B., Steenkiste, P.: Rainbow: Architecture- Based
Self-Adaptation with Reusable. Computer 37(10), 46-54 (2004)

11. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the Rain-
bow self-adaptive system. In: 2009 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pp. 132-141 (May 2009)

12. Parker, L., Kannan, B.: Adaptive Causal Models for Fault Diagnosis and Recovery
in Multi-Robot Teams. In: Intelligent Robots and Systems, pp. 2703-2710 (2006)

2 http://www.robocup2013.org

http://www.robocup2013.org

	RoSHA: A Multi-robot Self-healing
Architecture

	1 Introduction
	2 Requirements
	3 Background
	3.1 Robot Operating System
	3.2 ROS Diagnostics

	4 RoSHA Design and Architecture
	4.1 System Model
	4.2 Monitoring
	4.3 Diagnostics
	4.4 Recovery Manager
	4.5 Repair Execution

	5 Related Work
	6 Conclusion and Future Work
	References

