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Abstract. We study the following generalization of the maximum
matching problem in general graphs: Given a simple non-directed graph
G = (V,E) and a partition of the edges into k classes (i.e. E = E1 ∪
· · · ∪ Ek), we would like to compute a matching M on G of maximum
cardinality or profit, such that |M ∩ Ej | ≤ wj for every class Ej . Such
problems were first studied in the context of network design in [17].
We study the problem from a linear programming point of view: We
provide a polynomial time 1

2
-approximation algorithm for the weighted

case, matching the integrality gap of the natural LP formulation of the
problem. For this, we use and adapt the technique of approximate convex
decompositions [19] together with a different analysis and a polyhedral
characterization of the natural linear program to derive our result. This
improves over the existing 1

2
, but with additive violation of the color

bounds, approximation algorithm [14].

1 Introduction

In modern optical fiber network systems, we encode the information as an elec-
tromagnetic signal and we transfer it through the optical fiber as a beam of light
in a specified frequency. Typically, at most one beam of light is allowed to travel
through the fiber at any given time. In WDM1 optical networks we allow multi-
plexing of a number of different light beams to travel simultaneously through the
optical fiber as follows: We partition the electromagnetic spectrum into a number
of k non-overlapping intervals. For each interval fi we have an upper bound on
how many different beams of light that have frequencies within this interval can
travel at the same time through the optical carrier. This constraint is imposed
since, otherwise, we would have quantum phenomena as interference of the light
beams of a given interval. Naturally, if we allow a large number of beams of light
with frequencies within a small interval to travel through the optical fiber, we
can expect with very high probability two or more beams to be interfered. Our
goal in an optical network is to establish communication between an as large as

� Part of this work was done while the author was a PhD student at IDSIA.
1 WDM stands for Wavelength-Division Multiplexing
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possible number of pairs that want to communicate in their own frequency, such
that in a given interval of frequencies fi we allow no more than wi connections
to be established. This naturally reduces to the following problem:

Bounded Color Matching: We are given a (simple, non-directed) graph G =
(V,E). The edge set is partitioned into k sets E1 ∪E2 ∪ · · · ∪Ek i.e. every edge
e has color cj if e ∈ Ej and a profit pe ∈ Q+. We are asked to find a maximum
(weighted) matching M such that in M there are no more that wj edges of color
cj , where wj ∈ Z+ i.e. a matching M such that |M ∩ Ej | ≤ wj , ∀j ∈ [k].

In the following, we denote as C the collection of all the color classes. In other
words, C = {cj}j∈[k]. Moreover, for a given edge e ∈ E(G), we denote by c−1(e)
its color i.e. c−1(e) = cj ⇔ e ∈ cj .

Bounded Color Matching is a budgeted version of the classical matching prob-
lem: For a given instance G, let F be the set of all feasible solutions. Associated
with every feasible solution M ∈ F we are given a set of � linear cost functions
{αi}i∈[�] and a linear profit function π such that π, αi : F :→ Q+ and for every
cost function αi a budget βi ∈ Q+. The goal is to find M ∈ F : αi(F ) ≤ βi, ∀i ∈
[�] that also maximizes π(M). Budgeted versions of the maximum matching
problem have been recently studied intensively. When G is bipartite there is a
PTAS for the case where � = 1 [2] and the case where � = O(1) [11]. For general
graphs there is a PTAS for the 2-budgeted maximum matching problem [12] and
a bicriteria PTAS for � = O(1) [7] (where the returned solution might violate the
budgets by a factor of (1+ ε)). This approach works also for unbounded number
of budgets albeit a logarithmic overflow of the budgets.

Bounded Color Matching (BCM) not only isNP-hard even in bipartite graphs
where wj = 1, ∀cj ∈ C [10] but also APX-hardness can be deduced even in
2-regular bipartite graphs from [15]. In [13] the BCM was considered from a
bi-criteria point of view: given a parameter λ ∈ [0, 1] there is an ( 2

3+λ) approx-
imation algorithm for BCM which might violate the budgets wj by a factor of
at most ( 2

1+λ).
To the best of our knowledge, the first case where matching problems with car-

dinality (disjoint) budgets were considered, was in [17] where the authors defined
and studied the blue-red Matching problem: compute a maximum (cardinality)
matching that has at most w blue and at most w red edges, in a blue-red colored
(multi)-graph. A 3

4 polynomial time combinatorial approximation algorithm and
an RNC2 algorithm (that computes the maximum matching that respects both
budget bounds with high probability) were presented. This was motivated by
network design problems, in particular they showed how blue-red Matching can
be used in approximately solving the Directed Maximum Routing and Wave-
length Assignment problem (DirMRWA) [16] in rings which is a fundamental
network topology, see [17] (also [4] for alternative and slightly better approxi-
mation algorithms and [1] for combinatorial algorithms). Here, approximately
solving means that an (asymptotic) α-approximation algorithm for blue-red re-
sults in an (asymptotic) α+1

α+2 -approximation algorithm for DirMRWA in rings.
We note that the exact complexity of the blue-red matching problem is not

known: it is only known that blue-red matching is at least as hard as the Exact
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Matching problem [18] whose complexity is open for more than 30 years. A poly-
nomial time algorithm for the blue-red matching problem will imply that Exact
Matching is polynomial time solvable. On the other hand, blue-red matching
is probably not NP-hard since it admits an RNC2 algorithm. We note that
this algorithm can be extended to a constant number of color classes with arbi-
trary bounds wj . Using the results of [20] one can deduce an “almost” optimal
algorithm for blue-red matching, i.e. an algorithm that returns a matching of
maximum cardinality that violates the two color bounds by at most one edge.
This is the best possible, unless of course blue-red matching (and, consequently,
exact matching) is in P.

If we formulate BCM as a linear program, the polyhedron Mc containing all
feasible matchings M for the BCM is

Mc =
{
y ∈ {0, 1}|E| : y ∈ M

∧ ∑
e∈Ej

ye ≤ wj , ∀j ∈ [k]
}

(1)

where M is the usual matching polyhedron: M = {x ∈ {0, 1}|E| :
∑

e∈δ(v) xe ≤
1, ∀v ∈ V }. We would like to find y ∈ {0, 1}|E| such that y = maxx∈Mc{pTx =∑

e∈E pexe}, p ∈ Q
|E|
≥0 . As usual, we relax the integrality constraints y ∈

{0, 1}|E| to y ∈ [0, 1]|E| and we solve the corresponding linear relaxation effi-
ciently to obtain a fractional |E|-dimensinal vector y. It is not hard to show (see
later section) that the integrality gap of Mc is essentially 2 and this is true even
if we add the blossom inequalities i.e. if instead of M as defined here, we use
the well known Edmond’s LP [8].

Our Contribution: In this work we study the BCM problem with unbounded
number of budgets: we provide a deterministic 1

2 approximation algorithm based
on the concept of approximate convex decompositions from [19] together with a
different analysis and an extra step based on polyhedral properties of extreme
point solutions of Mc. This might be helpful also in the context of k-uniform b-
matching problem. This result improves over the 1

2 but with an additive violation
of the color bounds wj from [13] and matches the integrality gap of 2 of the
natural linear formulation of the problem (captured by 1) which implies that
a 1

2 approximation algorithm is the best we can hope using this natural linear
relaxation.

We note that the BCM problem can be easily seen as a special case of the
3-hypergraph β-matching problem [19] or 3-set packing. Using the existing LP-
based results for these problems which guarantee a

k−1+ 1
k

for the k-hypergraph

β-matching, we can only guarantee a 3
7 -approximation algorithm [19]. We show

that by taking advantage of the special structure of the problem we can do better
than this. For 3-set packing there there exists a 1

2 − ε approximation algorithm
for the weighted case [3] and a recent 3

4 for the non-weighted case [9]. But these
tell us nothing about the strengths (and limitations) of linear programming
techniques for the problem, which is our main motivation. See also [6] for a
similar study on the effect of linear programming techniques on k-dimensional
matching problems.
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2 A 1
2
Approximation Based on Approximate Convex

Decompositions

In this section we will provide a polynomial time 1
2 -approximation algorithm

for BCM based on the technique of approximate convex decompositions from
[19]. Given x∗, an optimal solution of the LP for the BCM, the main idea of
the algorithm is to construct a collection of feasible (for the BCM problem)
matchings μ1, μ2, . . . , μρ for some ρ, such that an approximate version of pTx
can be written as a convex combination of these matchings μi. Recall the famous
Carathéodory’s theorem:

Theorem 1 (Carathéodory[5]). Let P = {x | Ax ≤ b} where x ∈ Rn, A ∈
Rm×n and b ∈ Rm be a polyhedron in Rn. Assume a point z ∈ P and assume that
this point satisfies r of the m inequalities with equality. Then z can be written
as a convex combination of at most n− r + 1 vertices of the polyhedron P .

As an immediate corollary, we have that any point z belonging in (the convex
hull of) a bounded convex polyhedron P ⊆ Rn can be written as a convex
combination of at most n+ 1 vertices of P .

Let x∗ be an optimal (fractional) solution of the relaxation of Mc. Ideally we
would like to use Carathéodory’s theorem to write x∗ as a convex combination
of feasible integral extreme point solutions (vertices) of Mc. But unfortunately
this is not always the case, meaning that x∗ might not belong in the convex
hull of all feasible integral vertices of Mc. Instead of that, we will settle for
an approximate convex combination of x∗ by vertices of Mc. An approximate
convex combination of x∗ is a convex combination of ρ extreme points μi of Mc

satisfying the following:

αpTx∗ =
∑
i∈[ρ]

λiμi, α ∈ (0, 1],
∑
i∈[ρ]

λi = 1, μi ∈ Mc (2)

The fact that we insist for convex combination directly implies that λi ≥
0, ∀i. An important feature of the above convex combination is that it gives
us immediately an α approximation algorithm. Indeed, since all points μi, for
i ∈ [ρ], are feasible and they constitute a convex combination of pTx∗ then, by
a standard averaging argument, at least one of the μis will have profit at least
α · pTx∗, and so we have the following:

Lemma 1. Given an optimal fractional solution x∗ of the relaxation of Mc and
assume that x∗ can be written as in (2) then we can retrieve a feasible integral
solution for Mc with total profit at least α times pTx∗.

We will inductively construct an α approximate convex combination of x̄∗

where x̄∗ is x∗ without a specific edge (i.e. after removing an edge e in supp(x∗)
where we define for any vector y ∈ Rn supp(y) = {j ∈ [n] : yj �= 0}). Then, if we
can add e in a α fraction of the points μ̄i constituting the α approximate convex
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combination of x̄∗, we will have a convex combination with the desired properties.
In other words, we require that

∑
j∈κ λj ≥ αx∗

e , where κ = {μi : μi∪ e ∈ Mc} is
the set of all the solutions (that constitute the approximate version of x̄∗) that
can facilitate e preserving feasibility.

The inductive process of obtaining (constructing) μis is roughly the following:
at the “bottom” of the induction process we start with the trivial empty solution
(μ1 = ∅). At each next step we try to pack any of the edges ej into exactly an α
fraction of the current set of the matchings. This is the step where we may create
new solutions in order to maintain the invariant “pack any edge into exactly α
fraction”. Usually this process in its basic form greedily packs ej and, moreover,
is oblivious to any ordering of the edges. In our case however, this cannot lead
to any meaningful approximation guarantee. We will show how we can carefully
select an edge at the current step i such that edge ei to be packed can fit into
an 1

2 fraction of the current set of solutions {μj}. In other words, we will define
an ordering of the edge set (e1, . . . , em) (m = |E(G)|) such that at step i ∈ [m],
assuming that we have an α-approximate convex decomposition for (e1, . . . ei−1)
(characterized by a set of feasible matchings {μj}), then the current edge ei can
be successfully inserted into at least an α fraction of the μjs. We will show that
in our case we can in fact select α = 1

2 , thus giving us the desired approximation
guarantee.

Now we will define the ordering on the edges {ei}i∈[m]. Assume that we are
in some inductive step where the remaining edges are Ri = {e1, e2, . . . , ei} for
some i, i.e. we have removed m− i edges to iteratively obtain an α-approximate
decomposition for the remaining solution. How do we choose which edge to
select from Ri? Intuitively, the larger the fractional value of xe is, the larger the
fraction of matchings μi that can be added is. This is because high fractional
value of xe implies low fractional values of the other “blocking” components.
And low value of these components means “few” matchings μj that are actually
blocking e. So, a good starting strategy is to select at each step edges with high
fractional value. Unfortunately, we cannot always guarantee that such edges are
present in x∗. But there is hope: let x′ be x∗ restricted to the set of edges Ri.
Now, it is not hard to see (we omit the easy proof) that x′ is an extreme point
solution for the reduced instance where we set wj := wj −

∑
e∈Ej\Ri

x∗
e, ∀Cj

and βv :=
∑

e∈δv\Ri
x∗
e , ∀v ∈ V . Such extreme point solutions have very nice

properties. To see that, we use the following slight generalization of a result due
to [13] where we consider a version where for each vertex v ∈ V we have a bound
βv ≤ 1 and where wj are no longer integers such that, when we say “tight”
vertex (with respect to x∗) we mean a vertex v such that

∑
e∈δ(v) xe = βv. The

same for tight color classes. Initially, all wj are integers and βv = 1, ∀v. Define
the residual graph with respect to a solution vector x to be the graph where we
include an edge e only if xe > 0.

Lemma 2. Take any basic feasible solution x of Mc (where we no longer require
the degree bounds on vertices and the bounds on color classes be integer anymore)
such that 0 < xe < 1, ∀e (i.e. remove all integer variables reducing the bounds
appropriately if necessary). Then one the following must be true:
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1. either there is a tight color class cj ∈ Q such that |Ej | ≤ wj� + 1 in the
residual graph,

2. or there is a tight vertex v ∈ F such that the degree of v in the residual graph
≤ βv�+ 1.

The proof follows similar lines as in [13] and we omit it from the current
version. In our lemma, F,Q are the linearly independent set of rows of the LP
(Mc) that characterize the basic solution x. This lemma will give us what we
need in order to successfully select the right edge from Ri and prove that we
can successfully pack it into 1

2 of the matchings for the inductively obtained
approximate convex decomposition for the rest of the edges i.e. for Ri−1:

1. Given x∗ select e according to Lemma 2:
(a) if ∃v ∈ F : |supp(x∗∩δ(v))| ≤ 2 then select as e the edge ∈ δ(v) : xe ≥ βv

2 .
(b) else ∃cj ∈ Q : |supp(x∗)∩Ej | ≤ wj�+1. Select in this iteration an edge

e ∈ cj with x∗
e ≥ wj

�wj�+1 .

2. Zero out the coordinate of x∗ corresponding to e and let x′ the resulting
vector.

3. Iteratively obtain an approximate convex decomposition for x′.
4. Add e to the convex decomposition of x′ obtained in the previous step.

Using Lemma 2 we will show now how, in each iteration of our algorithm, we
can successfully pack an edge e = {u, v} ∈ supp(x∗) into a large number (i.e.
half) of the solutions that constitute the approximate convex decomposition
of the residual solution vector x′. In order to insert e into a large number of
the solutions μi that constitute the approximate convex decomposition of the
residual solution vector x′, we need to see in what fraction of the μi’s the edge
e cannot be added. These are all μi’s such that

(1): ∃e′ ∈ μi: u ∨ v ∈ e′, or
(2): |μi ∩Ej | = wj , where j ∈ [k] is the color of edge e.

The first condition says that e cannot be added to those matchings μi (which
constitute that approximate convex decomposition of x′) that have edges incident
to either of the endpoints of e. The second condition says that, additionally, e
cannot be added to all μis that are “full” of color cj . All these matchings are
blocking the insertion of e, meaning that for such a μi, μi ∪ e is not feasible
anymore for either of the previous two reasons. In order to guarantee that e can
be added to exactly α fraction of the matchings we may need to double a current
solution μi and break its multiplier λi appropriately (see appendix).

We will distinguish between two cases (one for each case of the algorithm,
i.e. step 1.(a) or 1.(b)) and we will prove the result inductively. The base case
of the induction inside the algorithm is the trivial case of the empty graph.
Focus, w.l.o.g., at the first execution of the algorithm and assume that we have
an α-approximate convex decomposition of x′ (x∗ without edge e) i.e. αpTx′ =∑

i λiμi where μi’s ∈ Mc and 1Tμ = 1. Moreover, by Carathéodory’s Theorem,
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this collection of matchings is sparse (at most |supp(x′)|+ 1 matchings μi). Let
u, v the endpoints of e selected in the first step of the algorithm and assume
that c−1(e) = j ∈ [k]. Firstly, we will handle the case where the edge e has been
selected according to the rule 1.(b) of the algorithm, which is slightly easier.

According to the algorithm (using Lemma 2), we know that there must exist
a tight color class cj ∈ C with the property that

|supp(x∗) ∩Ej | ≤ wj�+ 1 ⇒ ∃e ∈ supp(x∗) ∩ cj : x∗
e ≥ wj

wj�+ 1

Lemma 3. If we select to pack an edge e of color cj according to rule 1.(b) of
the algorithm, then the fraction of the solutions μi that e can be added is at least
1
2 i.e.

∑
j∈κe

λj ≥ 1
2 .

Proof. We will show that at least 1
2 fraction of the solutions μi can facilitate

such an e. Assume that we can identify a color class cj ∈ Q in the reduced
instance induced by the current set of edges such that for these reduced color
bounds we have that |supp(x∗)∩Ej | ≤ wj�+1. Let e = {u, v} be an edge from
supp(x∗) ∩ Ej . Let ξ ∈ supp(x∗) be the index of e. Observe that in the reduced
solution x′ (defined as x∗ without e), there are exactly wj� edges of color cj
(summing up to wj − x∗

e) and, moreover, this number wj� is at most the initial
(integer) color bound for Ej .

All the solutions μi that constitute the α-approximate decomposition for the
residual solution x′ that block the insertion of e (i.e. the solutions μi such that
μi∪{e} is not feasible anymore) are these μis that have edges adjacent to either
of u, v and those that have wj� edges of color j and so we have that in an
α-approximate decomposition, the fraction of μi’s that block e is

α(1 − xe) + α(1 − xe) + α(
wj − xe

wj� ) = A

and so if we would like to pack edge e to an α fraction of the μi’s that
constitute the α approximate decomposition of x′, then we must require that
1−A ≥ αx∗

e . From this we conclude that the fraction of the solutions that e can
be added is

1−
(
α(1 − xe) + α(1 − xe) + α(

wj − xe

wj� )
)

from which we get that α ≤ 1

2+
wj

�wj�−xe(1+
1

�wj� )
= 1

σ . We will deliver an upper

bound on σ. Using the bound on the variable xe, we have that

σ ≤ 2 +
( wj

wj� − wj

wj�+ 1
(1 +

1

wj� )
)

= 2 +
( wj

wj� − wj

wj�+ 1
− wj

wj� · 1

wj�+ 1

)

= 2 +
( (wj�+ 1)wj − wjwj� − wj

wj�(wj�+ 1)

)
= 2
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and so 1/σ ≥ 1/2 so we can select α = 1
2 to satisfy the bound on α delivered

above i.e. α ≤ 1
σ .

Now we move on to prove the second case: if we select an edge e (with end-
points u, v ∈ V and color j ∈ [k]) according to rule 1.(a) of the algorithm, then
this edge can be packed again into an α fraction of the solutions (matchings)
that constitute an α-approximate decomposition of the subgraph induced by the
current residual solution x′ without the edge e. For this, we need to define the
set of the solutions μi that block the insertion of e slightly more carefully.

Let Be be the set of all solutions μi that constitute an α-approximate decom-
position of x′ (current solution without edge e) that block the insertion of e. In
Be, as before, we add all μi that have edges adjacent to either of the endpoints
u, v of e. We need to describe which solutions μi are blocking solutions for e with
respect to its color class cj . The natural way is to consider the solutions that are
“full” of color cj i.e. have wj edges of color cj (condition (2)). Unfortunately, if
we follow this rule, the result would be a slightly worse approximation guarantee
than our goal i.e. we can guarantee that e can be packed into a 2

5 fraction of the
μi’s resulting in a 2

5 approximation guarantee.
Instead, we will define blocking solutions of edge e, with respect to color cj ,

all the solutions μi such that |μi ∩Ej | = ∑e′∈Ej
x∗
e′� (in the subgraph induced

by the current solution vector x∗).

Lemma 4. Let x ∈ [0, 1]E be any fractional feasible solution of the natural LP
for the BCM problem and let θj = ∑e∈Ej

xe� ≤ wj, for every color class
cj ∈ C. Assume that we have an α-approximate decomposition I for x, i.e. a
collection of feasible matchings {μi}i∈I together with their multipliers such that
α · x =

∑
i λiμi. For a color class cj define W (j) = {μi : |μi ∩ Ej | = θj}. Then

we have that

Λ(Wj) =
∑

μi∈W (j)

λi ≤ α
(
1 + F

( ∑
e′∈Ej

xe′
))

where F(y) = y − y� for y > 0 is the fractional part of y. Moreover, let
e = {u, v} be an edge with c(e) = cj , j ∈ [k] such that xe > 0. Let G[x′] :=
G[x] \ {e} and assume that we have an α approximate convex decomposition for
G[x′] for some α ∈ (0, 1). Define the set of blocking solutions (with respect to
the approximate decomposition of x′) for e due to color cj as:

Be(j) =

{
μi : |μi ∩Ej | = 

∑
e′∈Ej

xe′�
}

Then we have that

∑
i:μi∈Be(j)

λi ≤ α(1 − xe)

Proof. We will prove the first claim with induction on x. The second claim will
follow easily from the first one. For the base case assume that x = 0E. Then the
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condition is automatically satisfied (take any empty matching with multiplier
equal to 1). In this case Wj = ∅, for all color classes cj.

Assume that the claim is true for all but the first edge of color cj to be
removed (first with respect to the inductive process of obtaining approximate
decompositions), i.e., assume that it is true for the subgraph G[x′] := G[x]\ {e}.
Let ef be that edge. Define Xēf =

∑
e∈Ej\{ef} xe in the current subgraph. We

will distinguish between two cases:

First case: Xēf � = Xēf + xef �: In this case we have that

∑
j∈W (j)

λj ≤
∑
μγ∈Γ

λμγ + αxēf ≤ α
(
1 + F

(
Xēf

))
+ αxēf =

= α
(
1 +

∑
e∈Ej\{ef}

xe − 
∑

e′∈Ej\{ef}
xe′�+ xef

)

= α
(
1 +

∑
e∈Ej

xe − Xēf �
)

= α
(
1 +

∑
e∈Ej

xe − Xēf + xef �
)

= α
(
1 +

∑
e∈Ej

xe − 
∑
e∈Ej

xe�
)

= α
(
1 + F

( ∑
e′∈Ej

xe′
))

where Γ = {μγ : |μi∩Ej | = Xēf �} for the feasible matchings μγ that consti-
tute the approximate decomposition of the current subgraph G[x′] (without
the edge ef). The first inequality is true because we have inserted an α frac-
tion of ef into the current approximate decomposition. The second inequality
follows by the inductive hypothesis.

Second case: Xēf � �= Xēf + xef �: Observe that in this case we have that
Xēf � = Xēf +xef �− 1. Assume that we have an α-approximate decompo-
sition for the subgraph induced by all the edges except ef . Now, the set of
matchings that block the insertion of edge ef to the current approximate de-
composition contains all the matchings μi such that |μi ∩Ej | = ∑e∈Ej

xe�
(for the current set of edges of color cj). But observe that since Xēf � �=
Xēf + xef � = ∑e∈Ej

xe�, no matching μi from the current approximate

decomposition has this property (that |μi ∩ Ej | = ∑e∈Ej
xe�). If either of

axef or Λ(Wj) (for the subgraph induced by all edges but ef ) is less than
α(1 +F(

∑
e′∈Ej

xe′ )), then we are done. Otherwise we might need to dupli-
cate some solutions μi that constitute the approximate convex decomposition
of x′ to make sure that Λ(Wj) = α(1 + F(

∑
e′∈Ej

xe′ )).

We need to prove the second claim i.e.,
∑

i:μi∈Be(j)
λi ≤ α(1−xe). In the first

case (Xēf � = Xēf +xef �), observe that Be(j) does not change after the removal
of ef , i.e., in the subgraph induced by the remaining edges, the matchings μi

with the property |μi ∩ Ej | = ∑e′∈Ej
xe′� are the same in both cases. So we

have that
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∑
i:μi∈Be(j)

λi = Λ(Wj) =
∑

μi∈W (j)

λi ≤ α
(
1 + F

( ∑
e′∈Ej\{xef

}
xe′

))

= α
(
1 +

∑
e∈Ej\{ef}

xe′ − 
∑

e∈Ej\{ef}
xe′�

)

= α
(
1 +

∑
e∈Ej

xe′ − xef − Xef + xef �
)

= α
(
1− xef +

∑
e∈Ej

xe′ − Xef + xef �
︸ ︷︷ ︸

≤0

)

≤ α(1− xef )

where the quantities Λ(Wj) and
∑

μi∈W (j) λi are defined in the subgraph

without ef and with respect to the α-approximate decomposition defined by x′.
As for the second case, we already claimed that in an α-approximate decom-

position I for G[x′] = G[x] \ {ef}, no solution μi ∈ I can block the insertion of
ef because in G[x′] we have that X̄ef � = Xēf + xef � − 1 and by construction
in I we do not have any μi such that |μi∩Ej | = X̄ef �+1 to block the insertion
of ef . Now, as we already argued, if Λ(Wj) (in G[x′] which to avoid confusion
we denote as Λx′(Wj)is less than α(1 + F(

∑
e′∈Ej

xe′)) then Bef (j) = ∅ in this

case and we are done. But in the case that Λ(Wj) (in G[x′])is strictly more than
α(1 + F(

∑
e′∈Ej

xe′)), then we should set Bef (j) ⊆ Λx′(Wj) such that

∑
i∈Bef

(j)

= Λx′(Wj)− α(1 + F(
∑

e′∈Ej

xe′))

≤ α
(
1 + X̄ef − X̄ef �

)
− α

(
1 + X̄ef + xef − X̄ef + xef �

)

= α
(
− xef −X̄ef �+ X̄ef + xef �︸ ︷︷ ︸

=1

)

= α
(
1− xef

)

Now, with the help of the previous claim, we will show that when we apply
rule 1.(a) of our algorithm, we can add the selected edge e into an α = 1

2 of the
matchings μi that constitute an α approximate convex decomposition I of the
residual solution. Remember that the rule 1.(a) says that

∃v ∈ F : |supp(x∗ ∩ δ(v))| ≤ 2 ⇒ ∃e ∈ δ(v) : xe ≥ βv

2

As before, we want to calculate the fraction of the matchings μi that e = {u, v}
of color cj ∈ C can be inserted preserving feasibility (i.e., μi is still a matching)
and the above rule (that in the resulting matching μi after the addition of e
we have that |μi ∩ Ej | ≤ θj). For this, we will calculate the fraction of μi that
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block the insertion of e: these are all the matchings μi that have edges adjacent
to either u or v, and all the matchings μj that have θj edges of color cj. In the
residual solution vector x′ (x without e) we have that (1)

∑
e′∈δ(u) x

′
e′ ≤ 1− xe,

(2) the single edge e2 adjacent to v has xe2 = βv − xe ≤ βv/2 (remember that
we have selected v such that the degree of v is equal to 2), and since we have
an α-approximate convex decomposition of x′, this means that the fraction of
solutions that block the insertion of e (using also the previous claim) is at most

α(1 − xe) + α(βv − xe) + α(1 − xe) = B

In clear analogy with the previous case (Lemma 3), since we want to insert e
into an α fraction of the matchings in I, we want that 1−B ≥ αxe from which
we conclude that the fraction of the matchings μi of I that e can be inserted is
at least

1− α
(
1− xe + βv − xe + 1− xe

)
≥ αxe ⇒ α ≤ 1

1 + βv − xe + 1− xe

and using the fact that xe ≥ βv

2 ⇒ βv − 2xe ≤ 0 we conclude that α ≤ 1
2

such that we can select α = 1
2 in this case as well. And so, in clear analogy with

Lemma 3 we have proved the following:

Lemma 5. If we select to insert an edge e of color cj according to rule 1.(a) of
the algorithm, then the fraction of the solutions μi of an α-approximate convex
decomposition of the residual solution x′ that e can be added is at least 1

2 .

Theorem 2. We can, in polynomial time, construct an 1
2 -approximate convex

decomposition of x∗, resulting in a polynomial time 1
2 -approximation algorithm

for BCM in general graphs.
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