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Abstract. We study the classic Graph Motif problem: given a graph
G = (V,E) with a set of colors for each node, and a multiset M of colors,
we seek a subtree T ⊆ G, and a coloring of the nodes in T , such that T
carries exactly (also with respect to multiplicity) the colors in M . Graph

Motif plays a central role in the study of pattern matching problems,
primarily motivated from the analysis of complex biological networks.

Previous algorithms for Graph Motif and its variants either rely on
techniques for developing randomized algorithms that, if derandomized,
render them inefficient, or the algebraic narrow sieves technique for which
there is no known derandomization. In this paper, we present fast deter-
ministic parameterized algorithms for Graph Motif and its variants.
Specifically, we give such an algorithm for the more general Graph Mo-

tif with Deletions problem, followed by faster algorithms for Graph

Motif and other well-studied special cases. Our algorithms make non-
trivial use of representative families, and a novel tool that we call guiding
trees, together enabling the efficient construction of the output tree.

1 Introduction

With the advent of network biology and complex network analysis in general, the
study of pattern matching problems in graphs has become of major importance
[12,16]. Indeed, the term “graph motif” plays a central role in this context, with
different node colors used to model different functionalities of the network (see,
e.g., [17,7]). Due to the generic nature of the Graph Motif (GM) problem
(also known as the Topology-Free Network Query problem), the so called
motif analysis approach has become useful also in the study of social networks
(see, e.g., [23] and the references therein).

The GM problem is a natural variant of classic pattern matching problems,
where the topology of the pattern M is unknown or of lesser importance. Given
a graph G = (V,E) with a set of colors for each node, and a multiset M of
colors, we seek a subtree T ⊆ G, and a coloring of the nodes in T , such that T
carries exactly (also with respect to multiplicity) the colors in M . We call T an
occurrence ofM in G. To allow more flexibility in the definition of an occurrence,
and since biological network data often contains noise, a generalized version of
GM allows deleting colors from M .

Parameterized algorithms solve NP-hard problems by confining the combina-
torial explosion to a parameter k. More precisely, a problem is fixed-parameter
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Fig. 1. An input for GMD (A), and two possible solutions (B)

tractable (FPT) with respect to a parameter k if it can be solved in time O∗(f(k))
for some function f , where O∗ hides factors polynomial in the input size. Since
GM is NP-complete [17], there is a growing body of literature studying its param-
eterized complexity (see the excellent survey in [26]). In this paper, we present
fast deterministic parameterized algorithms for GM and its variants.

1.1 Problem Statement

The most general variant considered in this paper isGraph Motif with Dele-

tions (GMD): the input is a set of colors C, a multiset M of colors from C,
and an undirected graph G = (V,E). The nodes in V are associated with colors
via a (set-)coloring Col : V → 2C . We are also given a parameter k ≤ |M |.

We need to decide if there exists a subtree T = (VT , ET ) of G on k nodes, and
a coloring col : VT → C that assigns a color from Col(v) to each node v ∈ VT ,
such that

∀c ∈ C : |{v ∈ VT : col(v) = c}| ≤ occ(c), (1)

where occ(c) is the number of occurrences of a color c in M (see Fig. 1).1

Special Cases: Restricted GMD (RGMD) is the special case ofGMD where
for any node v ∈ V , |Col(v)| = 1. Also, GM and RGM are the special cases
of GMD and RGMD, respectively, where deletions are not allowed (i.e., the
inequality in (1) is replaced by equality, and k = |M |).

1.2 Known Results and Our Contribution

GMD has received considerable attention since it was introduced by Lacroix et
al. [17]. The paper [17] also shows that RGM is NP-hard when M is a set and G
is a tree. Even seemingly simpler cases of RGM are known to be NP-hard (see
[11,2,8]). Moreover, a natural optimization version of RGMD, minimizing the

number of deletions from M , is hard to approximate within factor |V | 13−ε [24].

1 Some papers define GMD as a problem where one seeks a connected subgraph S of
G, which is equivalent to our definition (simply consider some spanning tree T of S).



Deterministic Parameterized Algorithms for the Graph Motif Problem 591

On the positive side, using techniques for developing randomized parameter-
ized algorithms, many such algorithms have been obtained for GMD and its
variants [3,4,6,7,9,10,14,15,21,22]. Some of these algorithms can be derandom-
ized, resulting, however, in inefficient algorithms. In particular, Fellows et al.
[10] gave a deterministic algorithm for RGM that runs in time O∗(87k), based
on a derandomization of the color coding technique [1]. Currently, the best ran-
domized algorithm for GMD runs in time O∗(2k), due to Björklund et al. [6].
This algorithm is based on the narrow sieves technique [5], for which there is no
known derandomization. Thus, previous studies left open the existence of a fast
deterministic parameterized algorithm for GMD.

In this paper, we present fast deterministic parameterized algorithms for
GMD and its variants. In particular, we develop an O∗(6.86k) time algorithm
for GMD, an O∗(5.22k) time algorithm for GM, and an O∗(5.18k) time algo-
rithm for RGMD.

Due to space constraints, some of the proofs are omitted. The detailed results
appear in [20].

1.3 Techniques

Our algorithms make non-trivial use of representative families, and a novel tool
that we call guiding trees, together enabling the efficient construction of the out-
put tree. Informally, a guiding tree is a constant-size rooted tree which provides
some structural information about the solution tree. To efficiently compute a
family S of partial solutions, we first construct a polynomial number of suitable
guiding trees. We then use these trees to generate S, by combining previously
computed families of partial solutions. Thus, we avoid iterating over all O∗(2k)
possible topologies for the solution tree.

The efficiency of our algorithms is further improved via replacement of each
family of partial solutions, S, by a subfamily ̂S ⊆ S, which represents S. Each
representative family ̂S contains enough sets from S, thus, we preserve the cor-
rectness of the algorithm while improving its running time.

Building on the powerful technique of Fomin et al. [13], for efficient con-
struction of representative families, we tailor the definitions of these sets to the
problem at hand. This also leads to replacing uniform matroid (often used for
fast computation of representative families) by partition matroid, which captures
more closely the restricted variants of GM.

2 Preliminaries

Given a graph H , let VH and EH denote its node-set and edge-set, respectively.

Matroids: In deriving our results, we use two types of matroids.2 Given a
constant k, the first is defined by a pair M = (E, I), where E is an n-element
set, and I = {S ⊆ E : |S| ≤ k}. Such a pair is called a uniform matroid, denoted
by Un,k.

2 For a broader overview of matroids, see, e.g., [19].
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Given some constants � and k1, k2, . . . , k�, the second is defined by a pair
(E, I), where E is an n-element set partitioned into disjoint sets E1, E2, . . . , E�,
and I = {S ⊆ E : |S ∩ E1| ≤ k1, |S ∩ E2| ≤ k2, . . . , |S ∩ E�| ≤ k�}. Such a pair
is called a partition matroid. Note that, when � = 1, the definitions for the two
types of matroids coincide.

Representative Families: Given a family S of sets that are partial solutions,
we would like to replace S by a smaller subfamily ̂S ⊆ S. If there is a partial
solution in S that can be extended to a solution, it is clearly necessary that there
would also be a partial solution in ̂S that can be extended to a solution. The
following definition captures such a family ̂S.

Definition 1. Given a matroid M = (E, I), and a family S of subsets of size

p of E, we say that a subfamily ̂S ⊆ S q-represents S if for every pair of sets
X ∈ S, and Y ⊆ E \X such that |Y | ≤ q and X ∪ Y ∈ I, there is a set ̂X ∈ ̂S
disjoint from Y such that ̂X ∪ Y ∈ I.

The next two results enable the efficient construction of small representative
families.

Theorem 1 ([13,25]). Given a parameter c ≥ 1, a uniform matroid Un,k =

(E, I), and a family S of subsets of size p of E, a family ̂S ⊆ S of size at

most
(ck)k

pp(ck − p)k−p
2o(k) logn that (k − p)-represents S can be found in time

O(|S|(ck/(ck − p))k−p2o(k) logn).

Theorem 2 ([13,18]). Given constants �, k1, k2, . . . , k� and k ≤
�

∑

i=1

ki, a cor-

responding partition matroid M = (E, I), and a family S of subsets of size p

of E, a family ̂S ⊆ S of size at most
(

k
p

)

nO(1) that (k − p)-represents S can be

found in time O(|S|
(

k
p

)w̃−1
nO(1)), where w̃ < 2.3727 is the matrix multiplication

exponent [27].

Let UniRep(c, Un,k,S) and ParRep(k,M,S) be the algorithms implied by The-
orems 1 and 2, respectively.

Guiding Trees: Recall that G = (V,E) is the input graph, and let 2 ≤ d ≤ k/2
be a constant (to be determined).3 Given a rooted tree T and a node v ∈ VT that
is not the root of T , let fT (v) be the father of v in T . Given nodes v, u ∈ V , we
say that a tree T rooted at v is a (v, u)-tree if u ∈ VT . Furthermore, a (v, u)-tree
R is a (v, u)-guide if 3 ≤ |VR| ≤ 2d and VR ⊆ V (ER may not be contained in
E). Let Gv,u be the set of (v, u)-guides. Finally, let Tv,u,� be the set of (v, u)-trees
on � nodes, that, when unrooted, are subtrees of G.

We now define which subtrees of G listen to the instructions of a given guide
(see Fig. 2).

3 The choice of d concerns the analysis of the running times of our algorithms.
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Fig. 2. A (v, u)-tree T , and a (v, u)-guide R, where d = 3, k = 12, and T listens to R

Definition 2. Given v, u ∈ V and � ≤ k, we say that T ∈ Tv,u,� listens to
R ∈ Gv,u if the following two conditions are fulfilled.

1. ∀v′, u′ ∈ VR : v′ is an ancestor of u′ in R iff v′ is an ancestor of u′ in T .
2. For each tree X in the forest obtained by removing VR from T , let NX =

{v′ ∈ VR : {v′, u′} ∈ ET for some u′ ∈ VX}.
Then, |NX | ≤ 2, and [NX 
= {v} → (|VX ∪NX | ≤ k/d)].

The next lemma, which asserts that none of the subtrees of G relevant to
solving GMD is completely undisciplined, is implicit in [13].

Lemma 3. For any rooted tree T ∈ Tv,u,�, where v, u ∈ V and 3 ≤ � ≤ k, there
exists R ∈ Gv,u to whom T listens.

Feasible Colorings: Given U ⊆ V , we say that a coloring col : U → C is
feasible if [∀v ∈ U : col(v) ∈ Col(v)] and [∀c ∈ C : |{v ∈ U : col(v) = c}| ≤
occ(c)]. Denote by ima(col) the image of col.

3 An Algorithm for GMD

In this section we solve GMD in time O∗(6.86k). Since in GMD each node is
assigned a set of colors whose size can be greater than 1, we may assume w.l.o.g
that M is a set equal to C (a formal proof is given, e.g., in [22]).

The main idea of the algorithm is to iterate over all pairs of nodes v, u ∈ V ,
and all values 1 ≤ � ≤ k. When we reach such v, u and �, we have already
computed, for all v′, u′ ∈ V and 1 ≤ �′ < �, representative families for families of
corresponding “partial solutions”. Each such partial solution is a union of a set
A containing exactly �′ nodes, and a set B containing exactly �′ colors. The sets
A and B correspond to a pair of a rooted tree T ∈ Tv′,u′,�′ satisfying A = VT ,
and a feasible coloring col : A → B.

To compute a family of partial solutions corresponding to v, u and �, we iterate
over all (v, u)-guides in Gv,u. We follow the instructions of the current guide R by
using another, internal dynamic programming-based computation. At each stage
of this computation, we have a family of partial solutions listening to a certain
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subtree of R. We unite these partial solutions with other small partial solutions,
according to the instructions of R, thus efficiently constructing a family of partial
solutions listening to a greater subtree of R. For this family, we compute a smaller
representative family, so that the following stage can be executed efficiently. After
iterating over all relevant guides, we find a family representing the union of the
families returned by the internal dynamic programming-based computations.
This family includes enough, but not too many, partial solutions corresponding
to v, u and �, which ensures the correctness of the algorithm.

3.1 The Algorithm

We now describe GMD-Alg, our algorithm for GMD (see the pseudocode below).
GMD-Alg first generates a matrix M, where each entry [v, u, cv, cu, �] holds a
family that represents Solv,u,cv,cu,�, the family of every set (X ∪ Y ) satisfying
|X | = |Y | = �, for which there exist T ∈ Tv,u,� such that X = VT , and a feasible
col : X → Y satisfying col(v) = cv and col(u) = cu.

Algorithm 1. GMD-Alg(C,G = (V,E), Col, k)

1. let M be a matrix that has an entry [v, u, cv, cu, �] for all v, u∈V, cv∈Col(v),
cu ∈ Col(u), and 1 ≤ � ≤ k, initialized to ∅.

2. M[v,v,c,c,1]⇐{{v,c}} for all v∈V and c∈Col(v).
3. M[v,v,c,c,2]⇐{{v,u,c,c′} : {v,u}∈E, c′∈Col(u)\{c}} for all v∈V and c∈Col(v).
4. M[v,u,c,c′ ,2]⇐{{v,u,c,c′}} for all {v, u}∈E, c ∈ Col(v) and c′∈ Col(u)\{c}.
5. for all v, u∈V , cv∈Col(v), cu∈Col(u), and � = 3, . . . , k do
6. let N be a matrix that has an entry [R, colR] for all R ∈ Gv,u, and feasible

colR : VR → C satisfying colR(v) = cv and colR(u) = cu, initialized to ∅.
7. for all [R, colR] ∈ N do
8. let w1, . . . , w|VR| be a preorder on VR, where w1=v.
9. let L be a matrix that has an entry [i, �′] for all 1 ≤ i ≤ |VR| and 1 ≤ �′

≤ �, initialized to ∅.
10. L[1, �′] ⇐ M[v, v, cv, cv, �

′] for all 1 ≤ �′ < �.
11. for i = 2, . . . , |VR|, and �′ = 2, . . . , � do
12. let A include all sets (U ∪W ) for which there exists 2 ≤ �′′≤ min{�′,

�− 1, k/d} satisfying (1) or (2):
(1) U ∩W = {fR(wi), colR(fR(wi))},

U ∈M[fR(wi),wi,colR(fR(wi)),colR(wi),�
′′] and W∈L[i−1, �′−�′′+1].

(2) U ∩W = {wi, colR(wi)},
U ∈ M[wi, wi, colR(wi), colR(wi), �

′′] and W ∈ L[i, �′−�′′+1].
13. L[i, �′] ⇐ UniRep(1.447, U(|V |+|C|),2k,A).
14. end for
15. N[R, colR] ⇐ L[|VR|, �].
16. end for
17. M[v, u, cv, cu, �] ⇐ UniRep(1.447, U(|V |+|C|),2k,

⋃
[R,colR]∈N N[R, colR]).

18. end for
19. accept iff (

⋃
v∈V,cv∈Col(v) M[v, v, cv, cv, k]) 
= ∅.
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Then, in Steps 2–4, GMD-Alg computes all “basic” entries of M, i.e., entries of
the form [v, u, cv, cu, �], where � ≤ 2. Next, in Step 5, GMD-Alg iterates over all
values v, u, cv, cu and � that define an entry of M that is not basic, in an order
that guarantees that when we reach an entry [$] of M, we have already computed
entries of M that are relevant to [$]. Now, consider a specific iteration of Step 5,
and note that the goal of this iteration is to compute M[v, u, cv, cu, �].

GMD-Alg, in Step 6, generates a matrix N. Each entry [R, colR] holds a family
that represents a subfamily of Solv,u,cv,cu,�. A set (X∪Y ) ∈ Solv,u,cv,cu,� belongs
to this subfamily if its corresponding (v, u)-tree T ∈ Tv,u,� and feasible coloring
col also satisfy the requirements that T listens to R, and col colors the nodes
in VR exactly as colR colors them. Now, consider a specific iteration of Step 7,
and note that the goal of this iteration is to compute N[R, colR]. To this end,
GMD-Alg executes an internal dynamic programming-based computation, which
takes place in Steps 9–14.

First, in Step 9, GMD-Alg generates a matrix L. Almost every entry [i, �′]
holds a family that represents Soli,�′ ,

4 the family including every set (X ∪ Y )
satisfying |X | = |Y | = �′, for which there exist a (v, wi)-tree T ∈ Tv,wi,�′ and a
feasible coloring col : X → Y , satisfying the following conditions. The subtree
T listens to the subtree of R induced by {w1, . . . , wi}, X = VT , and col colors
the nodes in {w1, . . . , wi} exactly as colR colors them. Note that the subgraph
of R induced by {w1, . . . , wi} is a tree because of the preorder defined in Step
8. Then, in Step 10, GMD-Alg computes all “basic” entries of L, i.e., entries of
the form [1, �′]. Next, in Step 11, GMD-Alg iterates over all values i and �′ that
define an entry of L that is not basic, in an order that guarantees that when we
reach an entry [$] of L, we have already computed entries of L that are relevant
to [$]. Now, consider a specific iteration of Step 11, and note that the goal of
this iteration is to compute L[i, �′].

GMD-Alg, in Step 12, computes a family A that represents Soli,�′ . The compu-
tation involves uniting sets U , found in previous stages of the external dynamic
programming-based computation (i.e., U belongs to an entry of M), with sets
W , found in previous stages of the internal dynamic programming-based compu-
tation (i.e., W belongs to an entry of L). It is easy to verify that the restrictions
posed on the choices of U and W gaurantee that their union indeed belongs
to Soli,�′ , noting the following observations. The restriction �′′ ≤ k/d concerns
Condition 2 in Definition 2, whose relevance follows from the requirement of
existence of a (v, wi)-tree T as defined above. The first line in each of the op-
tions (1) and (2) ensures that we do not use any node or color more than once.
The other line of option (1) ensure that U ∈ SolfR(wi),wi,colR(fR(wi)),colR(wi),�′′

and W ∈ Soli−1,�′−�′′+1, and the other line of option (2) ensures that U ∈
Solwi,wi,colR(wi),colR(wi),�′′ and W ∈ Soli,�′−�′′+1.

After computing A, GMD-Alg computes L[i, �′] (in Step 13) by finding a
smaller family that represents A. Upon completing the computation of L, since
VR = {w1, . . . , w|VR|}, GMD-Alg can compute N[R, colR] (in Step 15) by a simple
assignment. Then, the union of the families stored in N is a family that represents

4 More precisely, here we refer to all entries [i, �′] such that (�′ = � → i = |VR|).
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Solv,u,cv,cu,�, a claim supported by Lemma 3. Therefore, in Step 19,GMD-Alg can
compute M[v, u, cv, cu, �] by simply finding a family that represents this union.

Finally, GMD-Alg accepts iff
⋃

v∈V,cv∈Col(v) M[v, v, cv, cv, k] 
= ∅. Indeed, note
that the input is a yes-instance iff

⋃

v∈V,cv∈Col(v) Solv,v,cv,cv,k 
= ∅.

3.2 Correctness

Recall that Solv,u,cv,cu,� is the family of every set (X∪Y ) satisfying |X | = |Y | =
�, for which there exist T ∈ Tv,u,� such that X = VT , and a feasible col : X → Y
satisfying col(v) = cv and col(u) = cu.

The correctness of the algorithm follows directly from the next lemma.

Lemma 4. Every entry M[v, u, cv, cu, �] (2k − 2�)-represents Solv,u,cv,cu,�.

Proof (Lemma 4). By Steps 1–4, the lemma holds for any entry [v, u, cv, cu, �]
in M such that � ≤ 2. Now, consider some v, u ∈ V , cv ∈ Col(v), cu ∈ Col(u)
and 3 ≤ � ≤ k, and assume that the lemma holds for all v′, u′ ∈ V , c′v ∈ Col(v′),
c′u ∈ Col(u′) and 1 ≤ �′ < �.

For an entry N[R, colR], let Sol(R, colR)v,u,cv ,cu,� include every set (X ∪Y ) ∈
Solv,u,cv,cu,� whose corresponding (v, u)-tree T ∈ Tv,u,� and feasible coloring col
also satisfy the requirements that T listens to R, and col colors the nodes in VR

exactly as colR colors them.
Towards proving the main inductive claim, we need the following claim.

Claim 1. Every entry N[R, colR] (2k − 2�)-represents Sol(R, colR)v,u,cv ,cu,�.

We first show that Claim 1 implies the correctness of the main inductive
claim. Since representation is a transitive relation, it is enough to prove that
B =

⋃

[R,colR]∈N N[R, colR] (2k − 2�)-represents Solv,u,cv,cu,�. By Claim 1, B ⊆
⋃

[R,colR]∈N Sol(R, colR)v,u,cv ,cu,� ⊆ Solv,u,cv,cu,�.

Consider some sets A ∈ Solv,u,cv,cu,�, and B ⊆ (V ∪ C) \ A such that |B| ≤
2k− 2�. Since A ∈ Solv,u,cv,cu,�, we have that A is of the form (XA ∪YA), where
|XA| = |YA| = �, for which there exist T ∈ Tv,u,� such that XA = VT , and a
feasible col : XA → YA satisfying col(v) = cv and col(u) = cu. By Lemma 3,
there exists R ∈ Gv,u such that T listens to R. Let colR be defined as col when
restricted to the domain VR. We get that A ∈ Sol(R, colR)v,u,cv ,cu,�. By Claim

1, there is ̂A ∈ N[R, colR] ⊆ B such that ̂A∩B = ∅. Thus, B (2k−2�)-represents
Solv,u,cv,cu,�. �

We now turn to prove Claim 1.

Proof (Claim 1). Consider an iteration of Step 7, corresponding to an entry N[R,
colR]. For an entry L[i, �′], let R(i) be the subtree of R induced by {w1, . . . , wi}.
Moreover, let Soli,�′ be the family including every set (X ∪ Y ) satisfying |X | =
|Y | = �′, for which there exist a (v, wi)-tree T ∈ Tv,wi,�′ and a feasible coloring
col : X → Y , satisfying the following conditions. The subtree T listens to R(i),
X = VT , and col colors the nodes in {w1, . . . , wi} exactly as colR colors them.

Towards proving Claim 1, we need the following claim.
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Claim 2. Every entry L[i,�′], where (�′=�→ i= |VR|), (2k−2�′)-represents Soli,�′ .

Since N[R, colR] = L[|VR|, �] and Sol(R, colR)v,u,cv,cu,� = Sol|VR|,�, Claim 2
implies the correctness of Claim 1. �

Finally, we turn to prove Claim 2, concluding the correctness of the algorithm.

Proof (Claim 2). By Steps 9 and 10, and the induction hypothesis concerning
the matrix M, the claim holds for (i = 1 and all 1 ≤ �′ < �) and (all 1 ≤ i ≤ |VR|
and �′ = 1). Now, consider some 2 ≤ i ≤ |VR| and 2 ≤ �′ ≤ �, and assume that
the claim holds for all 1 ≤ i′ ≤ i and 1 ≤ �′′ < �′. Since representation is a
transitive relation, it is enough to prove that A (2k − 2�′)-represents Soli,�′ .

By definition, a set A belongs to Soli,�′ iff there are sets U and W whose
union is A, for which there exists 2 ≤ �′′ ≤ min{�′, �−1, k/d} satisfying (1) or (2):

1. U ∩W = {fR(wi), colR(fR(wi))},
U ∈ SolfR(wi),wi,colR(fR(wi)),colR(wi),�′′ and W ∈ Soli−1,�′−�′′+1.

2. U ∩W = {wi, colR(wi)},
U ∈ Solwi,wi,colR(wi),colR(wi),�′′ and W ∈ Soli,�′−�′′+1.

Thus, by Step 12 and the inductive hypotheses for the matrices M and L,
A ⊆ Soli,�′ . Now, consider some A ∈ Soli,�′ , and B ⊆ (V ∪ C) \ A such that
|B| ≤ 2k − 2�′. Since A ∈ Soli,�′ , there are U , W , and �′′ as mentioned above.

First, suppose that U , W , and �′′ correspond to the first option. Note that
|(W \ {fR(wi), colR(fR(wi))}) ∪ B| = |W | − 2 + |B| ≤ 2(�′ − �′′ + 1) − 2 +
(2k − 2�′) = 2k − 2�′′. Therefore, by the inductive hypothesis concerning M,

there is a set ̂U ∈ M[fR(wi), wi, colR(fR(wi)), colR(wi), �
′′] such that ̂U ∩ ((W \

{fR(wi), colR(fR(wi))})∪B) = ∅. Moreover, |(̂U \{fR(wi), colR(fR(wi))})∪B| =
|̂U | − 2 + |B| ≤ (2�′′) − 2 + (2k − 2�′) = 2k − 2(�′ − �′′ + 1). Therefore, by the

inductive hypothesis concerning L, there is a set ̂W ∈ L[i − 1, �′ − �′′ + 1] such

that ̂W ∩ ((̂U \ {fR(wi), colR(fR(wi))}) ∪B) = ∅.
Now, suppose that U , W , and �′′ correspond to the second option. Note that

|(W \ {wi, colR(wi)}) ∪ B| = |W | − 2 + |B| ≤ 2(�′ − �′′ + 1) − 2 + (2k − 2�′) =
2k − 2�′′. Therefore, by the inductive hypothesis concerning M, there is a set
̂U ∈ M[wi, wi, colR(wi), colR(wi), �

′′] such that ̂U∩((W \{wi, colR(wi)})∪B) = ∅.
Moreover, |(̂U \ {wi, colR(wi)}) ∪B| = |̂U | − 2 + |B| ≤ (2�′′)− 2 + (2k − 2�′) =
2k − 2(�′ − �′′ + 1). Therefore, by the inductive hypothesis concerning L, there

is a set ̂W ∈ L[i, �′ − �′′ + 1] such that ̂W ∩ ((̂U \ {wi, colR(wi)}) ∪B) = ∅. �

3.3 Running Time

Let 0 < ε < 1 be some constant, c = 1.447, and q = 2k. Choose a constant d ≥ 2

satisfying, for any integer n,

(

cn

n/d

)

= O(2εn) and 1/d ≤ ε.

For any 0 ≤ r∗ ≤ q and call UniRep(c, U|V |+|C|,q,S) executed by GMD-Alg,
where S is a family of subsets of size r∗ of V ∪ C, there exists 0 ≤ r′ ≤
min{r∗, q/d} such that
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|S| ≤ 2o(q)|V |O(d)(
(cq)q

(r∗ − r′)r∗−r′(cq − (r∗ − r′))q−(r∗−r′) )(
(cq)q

r′r
′
(cq − r′)q−r′

).

We get that GMD-Alg runs in time

O(2o(q)|V |O(d) q
max
r=0

min{q−r,q/d}
max
r′=0

{

(
(cq)q

rr(cq−r)q−r
)(

(cq)q

r′r
′
(cq−r′)q−r′

)(
cq

cq−(r+r′)
)q−(r+r

′)
}

)

=O(2o(q)|V |O(1) q
max
r=0

min{q−r,q/d}
max
r′=0

{

(
(cq)q

rr(cq−r)q−r
)

(

cq

r′

)

(
cq

cq−(r+q/d)
)q−r

}

)

=O(2o(q)|V |O(1) q
max
r=0

{

(
(cq)q

rr(cq−r)q−r
)

(

cq

q/d

)

(
cq

cq−r−(1/d)q
)q−r

}

)

=O(2εq+o(q)|V |O(1) q
max
r=0

{

(
(cq)q

rr(cq−r)q−r
)(

cq

cq−r−εq
)q−r

}

).

By choosing a small enough ε > 0, the maximum is obtained at r = αq, where
α ∼= 0.55277. Thus, GMD-Alg runs in time O(6.85414k|V |O(1)).

4 An Algorithm for GM

In this section we develop algorithm GM-Alg, proving the following result.

Theorem 5. GM-Alg solves GM in time O∗(5.21914k).

Algorithm GM-Alg computes families of “partial solutions” that contain only
nodes, and handles colors by adding a parameter to the matrices holding these
families. More precisely, given a pair of nodes v, u ∈ V , and a subset of colors
D ⊆ C, we compute families of partial solutions of the following form. A partial
solution is a subset U ⊆ V of |D| nodes, for which there exist a (v, u)-tree
T ∈ Tv,u,|D| satisfying U = VT , and a feasible coloring col : U → D. Having a
family of such partial solutions, we compute a family that represents it, calling
algorithm UniRep. Such computations of representative families are embedded
in a dynamic programming-based framework, whose progress is governed by
guiding trees. Note that, since we iterate over every subset D ⊆ C, the running
time of GM-Alg crucially relies on the fact that deletions are not allowed in GM.

5 An Algorithm for RGMD

In this section we develop algorithm RGMD-Alg, proving the following result.

Theorem 6. RGMD-Alg solves RGMD in time O∗(5.1791k).

To efficiently compute representative families, we define a partition matroid
P = P (C,M,G,Col) = (E, I) as follows. Denote C = {c1, . . . , c|C|}. Now, let
E = V be partitioned into sets E1, . . . , E|C|, where Ei = {v ∈ V : ci ∈ Col(v)},
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for all 1 ≤ i ≤ |C|. The sets E1, . . . , E|C| are disjoint because |Col(v)| = 1, for all
v ∈ V . Now, let ki = occ(ci) for all 1 ≤ i ≤ |C| (recall that occ(c) is the number
of occurences of a color c in M). Accordingly, define I = I(C,M,G,Col) =
{S ⊆ E : |S ∩ E1| ≤ k1, . . . , |S ∩ E|C|| ≤ k|C|}.

Intuitively, this definition ensures that U ∈ I iff U can be colored without
using any color “too many” times, i.e., there exists a feasible coloring col : U→C.

Algorithm RGMD-Alg computes families of “partial solutions” that contain
only nodes, and handles colors by computing representative families with respect
to the partition matroid P . More precisely, when we now consider a pair of nodes
v, u ∈ V , and a value 1 ≤ � ≤ k, we compute families of partial solutions of the
following form. A partial solution is a set of nodes U ∈ I, for which there exists a
(v, u)-tree T ∈ Tv,u,� satisfying U = VT . Having a family of such partial solutions,
we compute a family that represents it with respect to the matroid P , calling
algorithm ParRep. Such computations of representative families are embedded
in a dynamic programming-based framework, whose progress is governed by
guiding trees.
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