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Abstract. The directed graph reachability problem takes as input an
n-vertex directed graph G = (V,E), and two distinguished vertices v0,
and vertex v∗. The problem is to determine whether there exists a path
from v0 to v∗ in G. The main result of this paper is to show that the
directed graph reachability problem restricted to planar graphs can be
solved in polynomial time using only ˜O(

√
n) space1.

1 Introduction and Motivation

For a directed graph G = (V,E), its underlying graph is the undirected graph
‘G = (V, ‘E), where the vertex pair {u, v} belongs to ‘E if and only if at least one
of (u, v) or (v, u) belongs to E. The planar directed graph reachability problem
is a special case of the directed graph reachability problem where we restrict
attention to input graphs whose underlying graph is planar.

The general directed graph reachability problem is a core problem in compu-
tational complexity theory. It is a canonical complete problem for nondetermin-
istic log-space, NL, and the famous open question L = NL is essentially asking
whether the problem is solvable deterministically in log-space. The standard
breadth first search algorithm and Savitch’s algorithm are two of the most fun-
damental algorithms known for solving the directed graph reachability problem.
The former uses space and time linear in the number of edges of the input graph
and the latter uses only O((log n)2)-space but requires Θ(nlog n) time. Hence a
natural and significant question is whether we can design an algorithm for di-
rected graph reachability that is efficient in both space and time. In particular,
can we design a polynomial-time algorithm for the directed graph reachability
problem that uses only O(nε)-space for some small constant ε < 1? This question
was asked by Wigderson in his excellent survey paper [13], and it remains unset-
tled. The best known result in this direction is the two decades old bound due to
Barns, Buss, Ruzzo and Schieber [4], who showed a polynomial-time algorithm

for the problem that uses O(n/2
√
logn) space. Note that this space bound is only

1 In this paper “ ˜O(s(n))-space” means O(s(n))-words intuitively and precisely
O(s(n) log n)-space.
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slightly sublinear, and improving this bound remains a significant open ques-
tion. In fact, there are indications that it may be difficult to improve this bound
because there are matching lower bounds known for solving the directed graph
reachability problem on a certain model of computation known as NNJAG; see,
e.g., [5]. Though NNJAG is a restrictive model, all the known algorithms for the
directed reachability can be implemented in NNJAG without significant blow
up in time and space.

Some important progress has been made for restricted graph classes. The most
remarkable one is the log-space algorithm of Reingold (which we will refer as
UReach) for the undirected graph reachability [12]. Recently, Asano and Doerr [2]

gave a ˜O(n1/2+ε)-space and nO(1/ε)-time algorithm for the reachability problem
restricted to directed grid graphs. Inspired by this result Imai et al. proposed [8]

an ˜O(n1/2+ε)-space and nO(1/ε)-time algorithm for the planar graph reachability

problem. It has been left open to design an ˜O(n1/2)-space and yet polynomial-
time algorithm. More recently, Asano and Kirkpatrick [3] introduced a more

efficient way to control the recursion, thereby succeeding to obtain an ˜O(
√
n)-

space and polynomial time algorithm for the reachability problem restricted to
directed grid graphs. The main result of this paper is to show that this technique
can be adapted to design an ˜O(

√
n)-space and polynomial-time algorithm for the

planar graph reachability problem.

2 Background

The Planar Separator Theorem, shown first by Lipton and Tarjan [10], asserts
that, for any n-vertex undirected planar graph G, there is a polynomial-time
algorithm for computing an O(

√
n)-size “separator” for G, i.e. a set of O(

√
n)

vertices whose removal separates the graph into two subgraphs of similar size.
The key idea of the ˜O(n1/2+ε)-space algorithm of Imai et al. is to use an space-
constrained algorithmic version of the Planar Separator Theorem. For a given
input instance (G, v0, v∗), they first compute a separator S of the underlying pla-
nar graph of G that separates G into two smaller subgraphs G0 and G1. They
then consider a new directed graph H on S∪{v0, v∗}; it has a directed edge (a, b)
if and only if there is a path from a to b in either G0 or G1. Clearly, reachability
(of v∗ from v0) in H is equivalent to the original reachability. On the other hand,
since S has O(

√
n) vertices, the standard linear-space and polynomial-time al-

gorithm can be used to solve the reachability problem in H by applying the
algorithm recursively to G0 and G1 whenever it is necessary to know if an edge
(a, b) exists in H . It should be mentioned that the idea of using separators to
improve algorithms for the reachability and related problems is natural, and in
fact it has been proposed by several researchers; see, e.g., [7]. The main contri-
bution of [8] is to show how to implement this idea by giving a space efficient
separator algorithm based on the parallel separator algorithms of Miller [9] and
Gazit and Miller [6].

The algorithm of Asano and Kirkpatrick uses a recursive separation of a grid
graph; at each level a separator is formed by the set of vertices on one of the grid



˜O(
√
n)-Space Algorithm for Planar Directed Graph Reachability 47

center lines. In order to get a polynomial time bound, Asano and Kirkpatrick
introduce a kind of budgeted recursion, controlled by a “universal sequence”,
that restricts the time complexity of each recursive execution on smaller grids.
Here we use the same idea for the general planar graph reachability. To mimic
the grid-based algorithm of Asano and Kirkpatrick we need a simple separator
that allows us to express/identify a hierarchy of subgraphs succinctly/simply.
The main technical contribution of this paper is to describe a space efficient way
to construct such a simple separator together with a succinct way to express
the separated subgraphs. (We note that it is not immediately clear whether
the sublinear-space algorithm of [8] always yields such a simple separator. Here
instead of analyzing the separator algorithm of [8], we show how to modify a
given separator to obtain a suitable cycle-separator.)

3 Planar Graph Reachability Algorithm

3.1 Preliminaries

Let G = (V,E) denote an arbitrary directed graph. For any subset U of V we
use G[U ] to denote the subgraph of G induced by U . For two graphs G1 and
G2, by G1 ∪ G2 we mean the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). For any
graph G, consider any subgraph H of G and any vertex v of G that is not in
H ; then by H �G v we denote an induced subgraph of G obtained from H by
adding vertex v; that is, H �G v = G[V (H)∪{v}]. Similarly, for an arbitrary set
A ⊂ V , we use H �G A to denote G[V (H) ∪ A].

Recall that a graph is planar if it can be drawn on a plane so that the edges
intersect only at end vertices. Such a drawing is called a planar embedding. Here
we use the standard way to specify a planar embedding of G; that is, a sequence of
vertices adjacent to v in a clockwise order around v under the planar embedding,
for all v ∈ V . We use N(v) to denote this sequence for v, which is often regarded
as a set. For a planar graph and its planar embedding, its triangulation (w.r.t.
this planar embedding) means to add edges to the planar graph until all its
faces under the planar embedding (including the outer one) are bounded by
three edges. We note that, in assuming that the input of our algorithm is a
planar graph, we assume only that a planar embedding exists, not that it is
given as part of the input.

3.2 The Algorithm

We now describe our algorithm for planar graph reachability. To illustrate the
idea of the algorithm we consider first the case in which the input graph G is
a subgraph of a bi-directed grid graph like Figure 1(a). Here we assume that
the original bi-directed grid graph is a (2h − 1) × (2h − 1) square grid. Let ‘G
denote the undirected version of this original grid. Note that both G and ‘G
have n = (2h − 1)× (2h − 1) vertices.

Although reachability is determined by the edges of G, the computation is
designed based on the underlying graph ‘G. Consider a set S of vertices that are
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(a) (b) (c)

Fig. 1. Example grid graph G and a path from v0 to v∗

on the horizontal center line. We call S a grid-separator because ‘G is separated
to two disconnected subgraphs by removing S. Our strategy is to determine, for
every vertex v ∈ G, the reachability from v0 in each subgraph independently,
thereby saving the space for the computation. More specifically, we consider a
subgraph ‘G0 (resp., ‘G1) of ‘G consisting of vertices below (resp., above) S
including S (cf. Figure 1(b)), and compute the reachability from v0 on G in
the area defined by each subgraph. A crucial point is that we need to keep the
reachability information only for vertices in S in order to pass the reachability
information to the next computation on the opposite subarea. Also for showing
the ˜O(

√
n)-space bound, it is important that S consists of 2h− 1 =

√
n vertices,

and that both subgraphs ‘G0 and ‘G1 are almost half of ‘G.
Suppose that v∗ is reachable from v0 in G. We explain concretely our strategy

to confirm this by identifying some directed path that witnesses the reachability
from v0 to v∗. Notice here that such a path p is divided into some x subpaths
p1, . . . , px such that the following holds for each j ∈ [x− 1] (cf. Figure 1(c)): (i)
the end vertex wj of pj (that is the start vertex of pj+1) is on S, and (ii) all
inner vertices of pj are in the same V b for some b ∈ {0, 1}, where V 0 and V 1 are
respectively the set of vertices below and above the separator S. Then it is easy
to see that we can find that w1 is reachable from v0 by searching vertices in S
that are reachable from v0 in G[S ∪ V 0]. Next we can find that w2 is reachable
(from v0) by searching vertices in S that are reachable in G[S ∪ V 1] from some
vertex in S for which we know already its reachability; in fact, by the reachability
from w1 we can confirm that w2 is reachable from v0. Similarly, the reachability
of w3, . . . , wx−1 is confirmed, and then by considering the subgraph G[S ∪ V 1]
we confirm that v∗ is reachable from v0 because it is reachable from wx−1. This
is our basic strategy. Note that the reachability in each subgraph can be checked
recursively.

Since a path can cross the separator Θ(
√
n) times, we cannot avoid making

as many recursive calls at each level of recursion as there are vertices in the
separator at that level. Consequently, without some modification the algorithm
as described cannot hope to terminate in time bounded by some polynomial
in n. In order to achieve polynomial-time computability, we introduce the idea
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of “budgeted recursion”: the computation time allocated to individual recursive
calls for checking the reachability in each subgraph is restricted in accordance
with a predetermined sequence. Since the time required to trace a connecting
path within an individual subgrid is not known in advance, we rely on a univer-
sality property of the sequence: eventually every subproblem will be allocated
a budget sufficiently large to complete the required computation within that
subproblem.

Asano and Kirkpatrick [3] describe the construction of a “universal sequence”
suitable for this purpose. A similar universal sequence has been used in the con-
text of oblivious algorithms; see [11], for example. Here we consider the following
version.

For any s ≥ 0, the universal sequence σs order s is defined inductively by

σs =

{

〈1〉 if s = 0, and

σi−1 
 〈2i〉 
 σi−1 otherwise,

where 
 signifies concatenation of sequences. By the definition, each element of
the sequence is a power of 2. The length of the sequence σs is 2s+1 − 1. For
example, σ2 = 〈1, 2, 1, 4, 1, 2, 1〉. We will use the following properties of universal
sequences in the design and analysis of our algorithm. Their proof is straightfor-
ward, and is omitted here due to space constraints.

Lemma 1. (a) The sequence σs = 〈c1, . . . , c2s+1−1〉 is 2s-universal in the sense
that for any positive integer sequence 〈d1, . . . , dx〉 such that

∑

i∈[x] di ≤ 2s, there

exists a subsequence 〈ci1 , . . . , cix〉 of σs such that dj ≤ cij holds for all j ∈ [x];
(b) the sequence σs contains exactly 2s−i appearances of the integer 2i, for all
i ∈ [s], and nothing else; and (c) the sequence σs is computable in O(2s)-time

and ˜O(1)-space.

Now we define our reachability algorithm following the strategy explained
above. The technical key point here is to define a sequence of separators dividing
subgraphs into two parts in a way that we can specify a current target subgraph
succinctly. For this we introduce the notion of “cycle-separator.” Intuitively, a
cycle-separator S of a graph G is a set of cycles S = {C1, . . . , Ch} that separates
G into two subgraphs, those consisting of vertices located left (resp., right) of
the cycles (including cycle vertices). In section 4 we outline how such a simple
cycle-separator can be efficiently computed from any given separator. Based on
this we have the following lemma.

Lemma 2. There exists an ˜O(
√
n)-space and polynomial-time algorithm (which

we refer as CycleSep) that computes a cycle-separator S for a given undirected
graph G = (V,E) with its triangulated planar embedding. The size of the sepa-
rator is at most csep

√
n. Furthermore, there is a way to define subsets V 0 and

V 1 of V with the following properties: (a) V 0 ∪ V 1 = V , V 0 ∩ V 1 = S, and (b)
|V b| ≤ (2/3)|V |+ csep

√
n for each b ∈ {0, 1}.

Intuitively we can use cycle-separators like grid-separators to define a sequence
of progressively smaller subgraphs of a given planar directed graph G. (Note that
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its underlying graph ‘G is used for defining the subgraphs.) From technical rea-
son2, however, we need to add some edges to the outer faces of ‘G[V b] to get it tri-
angulated under the current embedding. We can show that the number of added
edges is bounded by O(|S|) and that there is an algorithm AddTri that computes

these edges and their planar embedding in ˜O(|S|)-space and polynomial-time.
We refer to this information as an additional triangulation edge list T and con-
sider it with a cycle-separator S and a Boolean label b. By [‘G]bS,T we mean both

a graph obtained from ‘G[V b] by adding those triangulation edges specified by
T and its planar embedding obtained by modifying the original planar embed-
ding by T . In general, for any sequence S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 of such
triples of a label, a cycle-separator and an edge list, we define [‘G]S by

[‘G]S =

[

· · ·
[

[‘G]b1S1,T1

]b2

S2,T2

· · ·
]bt

St,Tt

,

which we call a depth t subarea of G. We should note here that it is easy to
identify a depth t subarea by using S; for a given S, we can determine whether
v ∈ V is in the subarea [‘G]S by using only O(log n)-space.

Armed with this method of constructing/specifying subareas we now imple-
ment our algorithm idea discussed above as a recursive procedure ExtendReach
(see Algorithm 1). First we explain what it computes. We use global variables
to keep the input graph G, the triangulated planar embedding of its underly-
ing graph ‘G, the start vertex v0, and the goal vertex v∗. As we will see in the
next section, the triangulated planar embedding is O(log n)-space computable.
Hence, we can compute it whenever needed; thus, for simplicity we assume here
that the embedding is given also as a part of the input. Note that for the space
complexity this additional input data is not counted. On the other hand, we
define global variables A and R that are kept in the work space. The variable A

is for keeping grid-separator vertices that are currently considered; the vertices
v0 and v∗ are also kept in A. The array R captures the reachability information
for vertices in A; for any v ∈ A, R[v] = true iff the reachability of v from v0 has
been confirmed. Besides these data in the global variables, the procedure takes
arguments S and �, where S specifies the current subarea of ‘G and � is a bound
on the length of path extensions. Our task is to update the reachability from v0
for all vertices in A by using paths of length ≤ � in the current subarea. More
precisely, the procedure ExtendReach(S, �) does the following: for each vertex
v ∈ A, it sets R[v] = true if and only if there is a path to v in G[A ∪ VS] of
length ≤ � from some vertex u ∈ A whose value R[u] before the execution equals
true, where VS is the set of vertices of the current subarea of ‘G specified by
S. Since any vertex in G that is reachable from v0 is reachable by a path of
length at most 2�logn�, the procedure ExtendReach can be used to determine

2 The algorithm CycleSep is defined based on the separator algorithm of Lemma 4
that assumes a triangulated graph as input. Thus, in order to apply CycleSep to
divide ‘G[V b] further, we need to get it triangulated.
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the reachability of vertex v∗ from v0 as follows, which is our planar graph reach-
ability algorithm: (1) Set A ← {v0, v∗}, R[v0] ← true, and R[v∗] ← false; and
(2) Execute ExtendReach(〈 〉, 2�log n�), and then output R[v∗].

Next we give some additional explanation concerning Algorithm 1. Consider
any execution of ExtendReach for given arguments S and � (together with data
kept in its global variables). Let VS be the set of vertices of the subarea [‘G]S
specified by S. There are two cases. If VS has less than 144c2sep vertices, then
the procedure updates the value of R in a straightforward way. As we will see
later G[A ∪ VS] has at most O(

√
n) vertices; hence, we can use any standard

linear-space and polynomial-time algorithm (e.g., breadth-first search) to do
this task. Otherwise, ExtendReach divides the current subarea [‘G]S into two
smaller subareas with new separator vertex set S′

t+1 that is added to A. It then
explore two subareas by using numbers in the universal sequence σs to control
the length of paths in recursive calls.

The correctness of Algorithm 1 is demonstrated in Lemma 3 below. From this,
as summarized in Theorem 1, it is clear that our algorithm correctly determines
the reachability of vertex v∗ from vertex v0 in the input graph G.

Lemma 3. For any input instance G, v0, and v∗ of the planar graph reachability
problem, consider any execution of ExtendReach(S, �) for some S = 〈(b1, S1, T1),
. . . , (bt, St, Tt)〉 and � = 2s. Let VS denote the set of vertices of [‘G]S. For each
vertex v that is in A before the execution, R[v] is set to true during the execution
if and only if there is a path to v in G[A ∪ VS] of length at most 2s, from some
vertex u ∈ A whose value R[u] before the execution equals true.

Proof. Suppose that there is a path p = u0, u1, . . . , uh in G[A∪VS], where (i) u0

and uh both belong to A, (ii) h ≤ 2s, and (iii) R[u0] = true before executing the
procedure. For the lemma, it suffices to show that R[uh] is set true during the
execution of the procedure.

We prove our assertion by induction on the size of VS. If |VS| ≤ 144c2sep,
then it is clear from the description of the procedure. Consider the case where
|VS| > 144c2sep. Then the part from line 7 of the procedure is executed. Let
St+1, T

0
t+1, and T 1

t+1 be the separator and the edge lists computed there. For
any b ∈ {0, 1}, let Sb denote 〈(b1, S1, T1), . . . , (bt, St, Tt), (b, St+1, T

b
t+1)〉; also let

‘Gb = [‘G]Sb (= [[‘G]S](b,St+1,T b
t+1)

) and V b = V(‘Gb) \ St+1.

We observe that p can be decomposed into some number x ≤ |A ∪ St+1| − 1
of subpaths p1, p2, . . . , px, such that (i) both start(pj) and end(pj) belong to
A ∪ St+1 for each j ∈ [x], (ii) the internal vertices of pj belong either to V 0 or
V 1 for each j ∈ [x], and (iii) end(pj) = start(pj+1) for each j ∈ [x− 1], where by
start(pj) and end(pj) we mean the start and end vertices of pj respectively. Let hj

denote the number of edges in path pj . By construction (i) hj ≥ 1 for all j ∈ [x],
and (ii)

∑

j∈[x] hj = h ≤ 2s. Then by Lemma 1(a), the sequence 〈h1, . . . , hx〉 is
dominated by the universal sequence σs = 〈c1, . . . , c2s+1〉. That is, there exists a
subsequence 〈ck1 , ck2 , . . . ckx〉 of σs such that hj ≤ ckj for all j ∈ [x]. Thus, for
any j ∈ [x], if R[start(pj)] = true before the execution of ExtendReach(S0, ckj ),
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Algorithm 1. ExtendReach(S, �)

Given: (as arguments) A sequence S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 of triples of a
binary label, a cycle-separator, and an additional triangulation edge list, and a
bound � = 2s on the length of path.
// In this description we use VS to denote the set of vertices of [‘G]S.
(as global variables) The input graph G, its triangulated planar embedding, the
source vertex v0, the goal vertex v∗, a set A of the currently considered vertices,
and a Boolean array R specifying known reachability from v0, for all v ∈ A.

Task: For each vertex v ∈ A, set R[v] = true if there is a path to v in G[A ∪ VS] of
length at most 2s from some vertex u ∈ A whose value R[u] before the current
procedure execution equals true.
// Invariant: A = {v0, v∗} ∪

⋃

i∈[t] Si. R[v] = true ⇒ v is reachable from v0 in G.

1: if the number of vertices of Vt is less than 144c2sep then
2: Rt ← {u ∈ A : R[u] = true};
3: for each vertex v ∈ A do
4: R[v] ← true iff v is reachable from some u ∈ Rt in G[A ∪ VS] by a path of

length ≤ �; // Use any linear space and polynomial-time algorithm here.
5: end for
6: else
7: Use CycleSep and AddTri to create a new cycle separator St+1 of [‘G]S and its

additional triangulation edge lists T 0
t+1 and T 1

t+1;
8: S′

t+1 ← St+1 \ A; A ← A ∪ S′
t+1;

9: R[v] ← false for each vertex v ∈ S′
t+1;

10: for each ci = 2si in the universal sequence σs (where i ∈ [2s+1 − 1]) do
11: ExtendReach(〈(b1, S1, T1), . . . , (b2, St, Tt), (0, St+1, T

0
t+1)〉, ci);

12: ExtendReach(〈(b1, S1, T1), . . . , (b2, St, Tt), (1, St+1, T
1
t+1)〉, ci);

13: end for
14: A ← A \ S′

t+1;
15: end if

then we have R[end(pj)] = true after the execution because of the induction
hypothesis. Hence, by executing the fragment:

ExtendReach(S0, ck1); ExtendReach(S1, ck1); · · · ExtendReach(S0, ckx−1);
ExtendReach(S1, ckx−1); ExtendReach(S0, ckx); ExtendReach(S1, ckx);

we have R[end(px)] = true since R[start(p1)] = true by our assumption. There-
fore, R[uh] (where uh = end(px)) is set true as desired since the above fragment
must be executed as a part of the execution of line 10–13 of the procedure. �

By analyzing the time and space complexity of our algorithm, we conclude as
follows.

Theorem 1. For any input instance G, v0, and v∗ of the planar directed graph
reachability problem (where n is the number of vertices of G), our planar graph
reachability algorithm determines whether there is a path from v0 to v∗ in G in
˜O(
√
n) space and polynomial-time.
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Proof. The correctness of the algorithm follows immediately from Lemma 3. For
the complexity analysis, we consider the essential part, that is, the execution of
ExtendReach(〈 〉, 2�log n�).

As a key step for estimating the space and time bounds, we show here a bound
on the depth of recursion during the execution. Let tmax denote the maximum
depth of recursive calls in the execution, for which we would like to show that
tmax ≤ 2.5 logn holds. Consider any depth t recursive call of ExtendReach; in
other words, the execution of ExtendReach(S, �) with a sequence S of length
t. (Thus, the inital call of ExtendReach is regarded as depth 0 recursive call.)
Here some depth t subarea [‘G]S is examined; let nt be the number of vertices
of this subarea. Assume that nt ≥ 144c2sep. Then two smaller subareas of [‘G]S
are created and ExtendReach is recursively executed on them. Let nt+1 denote
the number of vertices of a lager one of these two smaller subareas. Then by
Lemma 2 we have nt+1 ≤ 2nt/3 + csep

√
nt ≤ 3nt/4 since nt ≥ 144c2sep. Hence,

tmax is bounded by 2.5 logn as desired because n(3/4)2.5 logn < 144c2sep.

We bound the memory space used in the execution ExtendReach(〈 〉, 2�log n�).
For this, it is enough to bound the number of vertices in A because the number
of words needed to keep in the work memory space during the execution is
proportional to |A|. Note further that A = {v0, v∗} ∪

⋃

i∈[t] Si at any depth t
recursive call of ExtendReach. On the other hand, by using the above notation,
it follows from the above and Lemma 2 we have

|A \ {v0, v∗}| ≤
∑

i∈[tmax]

|Si| ≤
∑

i∈[tmax]

csep
√
ni

≤
∑

i∈[tmax]

csep

√

(

3

4

)i−1

n ≤ (

csep
√
n
)

⎛

⎝

∑

i≥0

(

3

4

)i/2
⎞

⎠ = O(
√
n),

which gives us the desired space bound.
For bounding the time complexity by some polynomial, it suffices to show

that the total number of calls of ExtendReach is polynomially bounded. To see
this, we estimate N(t, 2s), the max. number of calls of ExtendReach during
any depth t recursive call of ExtendReach(S, 2s) that occurs in the execution
of ExtendReach(〈 〉, 2�log n�). (Precisely speaking, N(t, 2s) = 0 if no call of type
ExtendReach(S, 2s) occurs.) Clearly, N(tmax, 2

s) = 0 for any s. Also it is easy to
see thatN(t, 20) = 2+2N(t+1, 20) for any t < tmax; hence, we haveN(t, 20) ≤ 2·
(2tmax−t−1) ≤ 2tmax−t+1. Consider any t < tmax and s ≥ 1. From the description
of ExtendReach and the property of the universal sequence σs (Lemma 1(b)),
we have

N(t, 2s) = 2
∑

i∈[2s+1]

(1 +N(t+ 1, ci)) = 2s+2 +
∑

0≤j≤s

2s−jN(t+ 1, 2j),

from which we can derive N(t, 2s) = 2N(t + 1, 2s) + 2N(t, 2s−1). Then by in-
duction we can show

N(t, 2s) ≤ 2tmax−t+s+1

(

tmax − t+ s

s

)

.



54 T. Asano et al.

Thus, N(0, 2�logn�), the total number of calls of ExtendReach is polynomially
bounded. �

4 Cycle-Separators

We expand here the notion of a cycle-separator and Lemma 2 used in the pre-
vious section. Throughout this section, we consider only undirected graphs. In
particular, we fix any sufficiently large planar undirected graph G = (V,E) and
discuss a cycle-separator for G; all symbols using G are used to denote some
graph related to G.

Roughly speaking, a cycle-separator is a separator S consisting of cycles. In
this paper, we assume some orientation for each cycle, and our cycle-separators
is required to separate G into two subgraphs by considering a part located left
(resp., right) of cycles (cf. Figure 2).

(a) (b)

S consists of cycles C1, C2, C3, each of which has an orientation specified as in
the figure. Dashed lines indicate the cuts corresponding to edges located in the
(a) left and (b) right of each cycle. These cuts are used to identify G[V 0] and G[V 1]

Fig. 2. An example of a cycle-separator

Recall that we do not assume that our input graph comes equipped with
a planar embedding. This is unnecessary for our purposes since Allender and
Mahajan [1] showed that the problem of computing a planar embedding can
be reduced to the undirected graph reachability problem. Hence, by using the
algorithm UReach of Reingold, we can compute a planar embedding ofG by using
O(log n)-space. Also it is also easy to to obtain some triangulation w.r.t. this
embedding, and thus we may assume an O(log n)-space algorithm that computes
a triangulated planar embedding for a give planar graph. In our reachability
algorithm, this O(log n)-space algorithm is used (implicitly) before starting the
actual computation and so in the description that follows we proceed as though
our input graph G is given with some triangulated planar embedding.

The Planar Separator Theorem guarantees that every planar graph has a
separator of size O(

√
n) that disconnects a graph into two subgraphs each of

which has at most 2n/3 vertices, which we call a 2/3-separator. Imai et al. has
shown an algorithm that computes a 2/3-separator by using O(

√
n)-space and in

polynomial-time. Though we use such a separator algorithm as a blackbox, we
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introduce some modification so that we can specify two subgraphs disconnected
by a separator in order to use them in the context of sublinear-space computa-
tion. A labeled-separator of G is a pair of a separator S and a set τ = {v1, . . . , vk}
of vertices of G (which we simply denote by Sτ) such that no two vertices of τ
belong to the same connected component of G[V \S]. Graphs G0

Sτ and G1
Sτ are

two disconnected subgraphs of G[V \ S] defined by Sτ ; G0
Sτ =

⋃k
i=1 Ki where

each Ki is the connected component of G[V \ S] containing vi, and G1
Sτ is a

subgraph of G consisting of all the other connected components of G[V \ S].
By the planarity, we can show that G[V \ S] has at most 2|S| − 4 connected
components. (Recall that we assumed G is triangulated and hence connected.)

Thus, each labeled-separator can be stored in ˜O(|S|)-space. Furthermore, by
using UReach, we can identify, for each vi ∈ τ , the connected component Ki con-
taining vi in O(log n)-space. Since counting is also possible in O(log n)-space, for
a given 2/3-separator, we can in fact collect connected componentsK1, . . . ,Kk of
G[V \S] (and their representative vertices v1, . . . , vk) so that |V(G0

Sτ )| ≤ 2|V |/3
and |V(G1

Sτ )| ≤ 2|V |/3 hold with τ = {v1, . . . , vk}. In summary, we have the
following separator algorithm that is the basis of our cycle-separator algorithm.

Lemma 4. There exists an ˜O(
√
n)-space and polynomial-time algorithm that

yields a 2/3-labeled-separator of size ≤ csep
√
n for a given planar graph, where

csep is some constant, which has been used in the previous section.

Recall that we assume some planar embedding of G; the following notions are
defined with respect to this embedding. For any cycle C of G, we use a sequence
〈u1, . . . , ur〉 of vertices of G in the order of appearing in C under one direction.
We call such a sequence as a cycle representation. With this orientation, we
define the left and the right of the cycle C. Our main technical lemma (see
a technical report version [ECCC, TR14-071] for the full proof) is to show a
way to compute a set S′ of cycles from a given separator S that can be used
as a separator in ˜O(|S|)-space and polynomial-time. More specifically, by using
cycles in S′, we define two subsets V 0 and V 1 of V as sets of vertices respectively
located left and right of the cycles. Then they satisfy Lemma 2; that is, G[V 0]
and G[V 1] are subgraphs covering G and sharing only vertices in S′, which
corresponds to ‘G0, ‘G1, and the separator S in the grid case. Furthermore,
their size is (approximately) bounded by 2n/3, and since S′ ⊆ S as a set, we
have |S′| ≤ csep

√
n. This S′ is called a cycle-separator in this paper. We also

provide a way to identify graphs G[V 0] and G[V 1], which is used as a basis of
an algorithm identifying [‘G]S.

5 Conclusion

It should be noted that, though restricted to grid graphs, the problem studied
by Asano et al. in [2,3] is the shortest path problem, a natural generalization of
the reachability problem. In order to keep the discussion in this paper as simple
as possible, and focus on the key ideas, we have restricted our attention here to
the graph reachability problem. However, it is not hard to see that our algorithm
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for reachability can be modified to the shortest path problem (with a modest
increase in the polynomial time bound).

Similarly, the focus in Asano et al. in [2,3] is on space efficient and yet prac-
tically useful algorithms, including time-space tradeoffs. In this paper, on the
other hand, our motivation has been in extending a graph class that is solv-
able in ˜O(

√
n)-space and polynomial-time, and the specific time complexity of

algorithms is not so important so long as it is within some polynomial. In fact,
since the algorithm of Reingold for the undirected reachability is used heavily,
we need very large polynomial to bound our algorithm’s running time.

Since we use Reingold’s undirected reachability algorithm, our algorithm (and
also the one by Imai et al.) have no natural implementation in the NNJAG model.
While the worst-case instances for NNJAG given in [5] are non-planar, it is an
interesting question whether we have similar worst-case instances based on some
planar directed graphs. A more important and challenging question is to define
some model in which our algorithm can be naturally implemented and show
some limitation of space efficient computation.
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