
Knocking Out Pk-free Graphs

Matthew Johnson, Daniël Paulusma�, and Anthony Stewart

School of Engineering and Computing Sciences, Durham University,
South Road, Durham, DH1 3LE, UK

{matthew.johnson2,daniel.paulusma,a.g.stewart}@durham.ac.uk

Abstract. A parallel knock-out scheme for a graph proceeds in rounds
in each of which each surviving vertex eliminates one of its surviving
neighbours. A graph is KO-reducible if there exists such a scheme that
eliminates every vertex in the graph. The Parallel Knock-Out prob-
lem is to decide whether a graph G is KO-reducible. This problem is
known to be NP-complete and has been studied for several graph classes
since MFCS 2004. We show that the problem is NP-complete even for
split graphs, a subclass of P5-free graphs. In contrast, our main result is
that it is linear-time solvable for P4-free graphs (cographs).

1 Introduction

We consider parallel knock-out schemes for finite undirected graphs with no self-
loops and no multiple edges. These schemes, which were introduced by Lampert
and Slater [14], proceed in rounds. In the first round each vertex in the graph
selects exactly one of its neighbours, and then all the selected vertices are elim-
inated simultaneously. In subsequent rounds this procedure is repeated in the
subgraph induced by those vertices not yet eliminated. The scheme continues
until there are no vertices left, or until an isolated vertex is obtained (since an
isolated vertex will never be eliminated). A graph is called KO-reducible if there
exists a parallel knock-out scheme that eliminates the whole graph. The parallel
knock-out number of a graph G, denoted by pko(G), is the minimum number of
rounds in a parallel knock-out scheme that eliminates every vertex of G. If G is
not KO-reducible, then pko(G) = ∞.

Examples. Every graph G with a hamiltonian cycle has pko(G) = 1, as each
vertex can select its successor on a hamiltonian cycle C of G after fixing some
orientation of C. Also every graph G with a perfect matching has pko(G) = 1, as
each vertex can select its matching neighbour in the perfect matching. In fact it
is not difficult to see [2] that a graph G has pko(G) = 1 if and only if G contains
a [1,2]-factor, that is, a spanning subgraph in which every component is either
a cycle or an edge.

We study the computational complexity of the Parallel Knock-Out prob-
lem, which is the problem of deciding whether a given graph is KO-reducible.

� Supported by EPSRC grant EP/K025090/1.

E. Csuhaj-Varjú et al. (Eds.): MFCS 2014, Part II, LNCS 8635, pp. 396–407, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Knocking Out Pk-free Graphs 397

The main motivation for doing so stems from the close relation to cycles and
matchings as illustrated by the above examples. We also consider the variant
in which the number of rounds permitted is fixed. This problem is known as
the k-Parallel Knock-Out problem, which has as input a graph G and ask
whether pko(G) ≤ k for some fixed integer k (i.e. that is not part of the input).

Known Results. The 1-Parallel Knock-Out problem is polynomial-time
solvable, because it is equivalent [2] to testing whether a graph has a [1, 2]-factor,
which is well-known to be polynomial-time solvable (see e.g. [3] for a proof).
However, both the problems Parallel Knock-Out and k-Parallel Knock-
Out with k ≥ 2 are NP-complete even for bipartite graphs [3]. On the other
hand, it is known that Parallel Knock-Out and k-Parallel Knock-Out
(for all k ≥ 1) can be solved in O(n3.5 log2 n) time on trees [2]. These results were
later extended to graph classes of bounded treewidth [3]. It remains open whether
a further generalization is possible to graph classes of bounded clique-width.
Broersma et al. in [4] gave an O(n5.376) time algorithm for solving Parallel
Knock-Out on n-vertex claw-free graphs. Afterward this was improved to an
O(n2) time algorithm for almost claw-free graphs (which generalize the class
of claw-free graphs) [13]. The latter paper also gives a full characterization of
connected almost claw-free graphs that are KO-reducible. In particular it shows
that every KO-reducible almost claw-free graph has parallel knock-out number at
most 2. In general, KO-reducible graphs (even KO-reducible trees [2]) may have
an arbitrarily large parallel knock-out number. Broersma et al. [4] showed that a

KO-reducible n-vertex graphG has pko(G) ≤ min{− 1
2+(2n− 7

4)
1
2 , 1

2+(2α− 7
4)

1
2 }

(where α denotes the size of a largest independent set in G). This bound is
asymptotically tight for complete bipartite graphs [2]. Broersma et al. [4] also
showed that every KO-reducible graph with no induced (p+1)-vertex star K1,p

has parallel knock-out number at most p− 1.

Our Results.We address the open problem of whether Parallel Knock-Out
is polynomial-time solvable on graph classes whose clique-width is bounded by
a constant. This seems a very challenging problem, and in this paper we focus
on graphs of clique-width at most 2. It is known that a graph has clique-width
at most 2 if and only if it is a cograph [7]. Cographs are also known as P4-free
graphs (a graph is called Pk-free if it has no induced k-vertex path).

In Section 3 we give a linear-time algorithm for solving the Parallel Knock-
Out problem on cographs. The first step of the algorithm is to compute the
cotree of a cograph. It then traverses the cotree twice. The first time to compute
to what extent “large” subgraphs can be reduced by themselves and how many
free “firings” from outside are available. The second time to check whether the
number of free external firings is sufficient to knock them out. In this way it will
be verified whether the whole graph is KO-reducible. In Section 4 we prove that
both the Parallel Knock-Out problem and the k-Parallel Knock-Out
problem (k ≥ 2) are NP-complete even for split graphs. Because split graphs are
P5-free, our results imply a dichotomy result for the computational complexity
of the Parallel Knock-Out problem restricted to Pk-free graphs, as shown
in Section 5, where we also give some (other) open problems.

398 M. Johnson, D. Paulusma, and A. Stewart

2 Preliminaries

We denote a graph by G = (V (G), E(G)) and write |G| = |V (G)| to denote
the order of G. An edge joining vertices u and v is denoted by uv. If not stated
otherwise a graph is assumed to be finite, undirected and simple.

Let G = (V,E) be a graph. The neighbourhood of u ∈ V , that is, the set of
vertices adjacent to u is denoted by NG(u) = {v |uv ∈ E}. For a subset S ⊆ V ,
we let G[S] denote the induced subgraph of G, which has vertex set S and edge
set {uv ∈ E | u, v ∈ S}. A set I ⊆ V is called an independent set of G if no
two vertices in I are adjacent to each other. A subset C ⊆ V is called a clique
of G if any two vertices in C are adjacent to each other. A subset D ⊆ V is a
dominating set of a graph G = (V,E) if every vertex of G is in D or adjacent to
a vertex in D.

The union of two graphs G and H is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H). If V (G) ∩ V (H) = ∅, then we say that the union
of G and H is disjoint and write G+H . We denote the disjoint union of r copies
of G by rG.

For n ≥ 1, the graph Pn denotes the path on n vertices, that is, V (Pn) =
{u1, . . . , un} and E(Pn) = {uiui+1 | 1 ≤ i ≤ n − 1}. For n ≥ 3, the graph Cn

denotes the cycle on n vertices, that is, V (Cn) = {u1, . . . , un} and E(Cn) =
{uiui+1 | 1 ≤ i ≤ n − 1} ∪ {unu1}. The graph Kn denotes the complete graph
on n vertices, that is, the n-vertex graph whose vertex set is a clique. A graph
is complete bipartite if its vertex set can be partitioned into two classes such
that two vertices u and v are adjacent if and only if u and v belong to different
classes. The graph Kp,q is the complete bipartite graph with partition classes of
sizes p and q, respectively.

Let G be a graph and let {H1, . . . , Hp} be a set of graphs. We say that G
is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}. If p = 1 we may write H1-free instead of (H1)-free. A P4-free
graph is also called a cograph. A graph G is a split graph if its vertex set can
be partitioned into a clique and an independent set. Split graphs coincide with
(2K2, C4, C5)-free graphs [9].

We also need some formal terminology for parallel knock-out schemes. For a
graph G = (V,E), a KO-selection is a function f : V → V with f(v) ∈ N(v)
for all v ∈ V . If f(v) = u, we say that vertex v fires at vertex u, or that u is
knocked out by a firing of v. If u ∈ U for some U ⊆ V then the firing is said to
be internal with respect to U if v ∈ U ; otherwise it is said to be external (with
respect to U).

For a KO-selection f , we define the corresponding KO-successor of G as the
subgraph of G that is induced by the vertices in V \ f(V); if G′ is the KO-
successor of G we write G � G′. Note that every graph without isolated vertices
has at least one KO-successor. A sequence

G � G1 � G2 � · · · � Gs,

is called a parallel knock-out scheme or KO-scheme. A KO-scheme in which Gs

is the null graph (∅, ∅) is called a KO-reduction scheme; in that case G is also

Knocking Out Pk-free Graphs 399

called KO-reducible. A single step in a KO-scheme is called a (firing) round .
Recall that the parallel knock-out number of G, pko(G), is the smallest number
of rounds of any KO-reduction scheme, and that if G is not KO-reducible then
pko(G) = ∞.

We will use the following result of Broersma et al. [2].

Lemma 1 ([2]). Let p and q be two integers with 0 < p ≤ q. Then Kp,q is
KO-reducible if and only if pko(Kp,q) ≤ p if and only if q ≤ 1

2p (p+ 1).

3 Cographs

In this section we show that Parallel Knock-Out can be solved in linear
time for cographs. For doing so we need to introduce some extra notation and
terminology.

Let G1 and G2 be two disjoint graphs. The join operation ⊗ adds an edge
between every vertex of G1 and every vertex of G2. The union operation ⊕
creates the disjoint union of G1 and G2 (note that we may also write G1 +G2

instead of G1 ⊕G2).
It is well known (see, for example, [1]) that a graph G is a cograph if and only

if G can be generated fromK1 by a sequence of operations, where each operation
is either a join or a union. Such a sequence corresponds to a decomposition tree,
which has the following properties:

1. its root r corresponds to the graph Gr = G;
2. every leaf x of it corresponds to exactly one vertex of G, and vice versa,

implying that x corresponds to a unique single-vertex graph Gx;
3. every internal node x has at least two children, is either labeled ⊕ or ⊗, and

corresponds to an induced subgraph Gx of G defined as follows:
• if x is a ⊕-node, then Gx is the disjoint union of all graphs Gy where y
is a child of x;

• if x is a ⊗-node, then Gx is the join of all graphs Gy where y is a child
of x.

A cograph G may have more than one such tree but has exactly one unique
tree [5], called a cotree, if the following additional property is required:

4. Labels of internal nodes on the (unique) path from any leaf to r alternate
between ⊕ and ⊗.

We denote the cotree of a cograph G by TG and use the following result of
Corneil, Perl and Stewart [6] as a lemma.

Lemma 2 ([6]). Let G be a graph with n vertices and m edges. Deciding if G
is a cograph and constructing TG (if it exists) can be done in time O(n+m).

We now present our algorithm, which we call Cograph-PKO, for solvingParallel
Knock-Out on cographs.

400 M. Johnson, D. Paulusma, and A. Stewart

Sketch. We start by giving some intuition. Let G be a cograph. We may assume
without loss of generality that G is connected, as otherwise we could consider
each connected component of G separately. We first construct the cotree TG.
Because G is connected, the root r of TG is a ⊗-node. Recall that Gr = G by
definition. Consider a partition (X,Y) of the set of children of r such that

p =
∑

x∈X

|Gx| ≤
∑

y∈Y

|Gy| = q.

Note that G has a spanning complete bipartite graph with partition classes⋃
x∈X V (Gx) and

⋃
y∈Y V (Gy). Hence, if q ≤ 1

2p(p+ 1) then G is KO-reducible
by Lemma 1. However, such a partition (X,Y) need not exist, but G might still
be KO-reducible. In order to find out, we must analyze the cotree of G at lower
levels.

The main idea behind our algorithm is as follows. As mentioned above, the
graph Gx corresponding to a join node x has at least one spanning complete bi-
partite subgraph. We will show that it is sufficient to consider only bipartitions,
in which one bipartition class corresponds to a single child z of x. We chose z in
such a way that if the corresponding complete bipartite subgraph is unbalanced
(with respect to the ratio prescribed in Lemma 1) then the vertices of Gz corre-
spond to a “large” bipartition class. We will then try to reduce Gz as much as
possible by internal firings only. If Gz cannot be reduced to the empty graph,
then external firings are needed. In particular, some of these external firings will
be internal firings for supergraphs of Gz . Hence, we first traverse TG from top to
bottom, starting with the root r, to determine the number of external firings for
each graph Gz . Afterward we can then use a bottom-up approach, starting with
the leaves of TG, to determine the number of vertices a graph Gz can be reduced
to by internal firings only. If this number is zero for r then G is KO-reducible;
otherwise it is not.

Full Description. Let G be a connected cograph, and let x ∈ V (TG). We say
that |Gx| is the size of x. We fix a largest child of x, that is, a child of x with
largest size over all children of x. We denote this child by z(x) (if there is more
than one largest child we pick an arbitrary largest one). Let C(x) consist of all
other children of x in TG (so excluding z). We write F (x) =

∑
y∈C(x)Gy.

In our algorithm we recursively define two functions f and l that assign a
positive integer to the nodes of V (TG). We write f(x) = ⊥ or l(x) = ⊥ if we
have not yet assigned an integer f(x) or l(x) to node x; for some nodes x our
algorithm might never do this (as we shall see, l will define an integer to a node x
if and only if f has previously done so). The meaning of these two functions will
be made more clear later. In particular, we will show that f(x) (if defined) is
the the number of vertices in V (G) \ Vx adjacent to each vertex of Vx. This
function will help us in determining how many additional internal firing rounds
we have when we expand Gx to a larger subgraph of G by moving up the tree.
The integer l(x) (if defined) is, as we will prove, equal to the smallest number
of vertices in Gx that cannot be knocked out internally (that is, within Gx)
by any KO-scheme of G. We will show that l(r) is defined, that is, l(r) �= ⊥.

Knocking Out Pk-free Graphs 401

Hence, there exists a KO-scheme that knocks out all vertices of V (Gr) = V (G)
if and only if l(r) = 0.

Cograph-PKO

input : a connected cograph G
output : yes if G is KO-reducible; no otherwise

Step 1. Compute the size |Gx| for all x ∈ V (TG).

Step 2.Recursively define a function f . Initially set f(x) := ⊥ for all x ∈ V (TG).
Set f(r) := 0. Now let x be a vertex in TG with f(x) �= ⊥.

2a. If x is a ⊕-node: f(y) := f(x) for all y ∈ C(x) ∪ {z(x)}.
2b. If x is a ⊗-node: f(z(x)) := f(x) + |F (x)|.

Step 3. Let B = {� | � is a leaf of TG with f(�) �= ⊥}.

Step 4. Recursively define a function l. Initially set l(x) := ⊥ for all x ∈ V (TG).
Set l(�) := 1 for all � ∈ B. Now let x be a vertex in T that is either a ⊕-node
with l(y) �= ⊥ for all y ∈ C(x) ∪ {z(x)} or a ⊗-node with l(z(x)) �= ⊥.

4a. If x is a ⊕-node: l(x) := l(z(x)) +
∑

y∈C(x) l(y).

4b. If x is a ⊗-node: l(x) := max{0, l(z(x))−f(x)·|F (x)|− 1
2 |F (x)|(|F (x)|+1)}.

Step 5. If l(r) = 0 then return yes; otherwise return no.

Note that for some x ∈ V (TG), it may happen indeed that f(x) = ⊥ or l(x) = ⊥
holds (for example, if x is a leaf node not in B then l(x) = ⊥).

We need some new terminology and a number of lemmas. Let x be a node
in TG. From now on we write Vx = V (Gx). We say that a vertex v ∈ V (G) is
complete to a set U ⊆ V (G) with v /∈ U if v is adjacent to all vertices of U .

Lemma 3. Let x ∈ V (TG) with f(x) �= ⊥. The following two statements hold:

(i) any vertex in V (G) \ Vx adjacent to a vertex of Vx is complete to Vx;
(ii) the number of vertices in V (G) \ Vx complete to Vx is equal to f(x).

Proof. Let x ∈ V (TG) with f(x) �= ⊥. Statement (i) follows from the definition
of TG. We prove (ii) as follows. Let dist(x, r) denote the distance between x
and r in TG. We use induction on dist(x, r). The claim is true for dist(x, r) = 0
because in that case x = r and V (G) \ Vx = ∅.

Let dist(x, r) ≥ 1. Then x has a parent in TG. Denote this parent by x′. By
the induction hypothesis, f(x′) is equal to the number of vertices not in Gv′ that
are complete to Vx′ . Because Vx is contained in Vx′ , these vertices are complete
to Vx as well. Suppose that x is a ⊕-node. Then x′ is a ⊗-node. This means that

402 M. Johnson, D. Paulusma, and A. Stewart

all vertices in F (x′) are complete to Vx. Hence, the total number of vertices in
V (G) \ Vx that are complete to Vx is equal to f(x′) + |F (x′)| = f(x). Suppose
that x is a ⊗-node. Then x′ is a ⊕-node. This means that no vertex in F (x′) is
adjacent to a vertex in Vx. Hence, the total number of vertices in V (G)\Vx that
are complete to Vx is equal to F (x′) = f(x). ��
The following lemma follows directly from the construction of our algorithm.

Lemma 4. Let x ∈ V (TG). Then l(x) �= ⊥ if and only if V (Gx) ∩B �= ∅.
Let x be a node in TG. An x-pseudo-KO-selection of G is a function Vx → V (G)
with f(v) ∈ N(v) for all v ∈ V . We copy some terminology. If f(v) = u,
we say that v fires at u, or that u is knocked-out by a firing of v. Note that
every KO-selection of Gx is an x-pseudo-KO-selection of G (but the reverse
implication is not necessarily true). For an x-pseudo-KO-selection, we define the
x-pseudo-KO-successor of G as the subgraph of G induced by V (G) \ f(V). We
write G �x G′ to denote that G′ is an x-pseudo-KO-successor of G. We call a
sequence G �x G1 �x · · · �x Gs an x-pseudo-KO-scheme (where each
single step is called a round) if in addition there is no vertex of Vx that fires at
a vertex of Vx in some round and at a vertex V (G) \ Vx in some later round.
We say that G is x-pseudo-reducible to Gs. Define pseudo(x) as the number of
vertices in a smallest graph to which G is x-pseudo-reducible and say that a
corresponding x-pseudo-KO-scheme is optimal.

Lemma 5. The cograph G is KO-reducible if and only if pseudo(r) = 0.

Proof. Recall that Vr = V (G). Then the statement of the lemma holds because
every KO-reduction scheme of G (if there exists one) is an r-pseudo-KO-scheme
with pseudo(r) = 0, and vice versa. ��
The following lemma is crucial for the correctness of our algorithm.

Lemma 6. Let x ∈ V (TG) be a ⊗-node with l(x) �= ⊥. Then l(x) = pseudo(x).

Proof. Let x ∈ V (TG) be a ⊗-node with l(x) �= ⊥. By Lemma 4, V (Gx)∩B �= ∅.
We write z = z(x). Let |Vz | = q and |F (x)| = p. This enables us to write:

l(x) = max{0, l(z)− f(x) · |F (x)| − 1
2 |F (x)|(|F (x)| + 1)}

= max{0, l(z)− f(x) · p− 1
2p(p+ 1)}.

Note that q ≥ 1 and p ≥ 1 by the definition of a ⊗-node. Let d denote the
number of ⊗-nodes on the longest path from x to a leaf in the subtree of TG

rooted at x. We prove the lemma by induction on d.
Let d = 0. Then every child of x is a leaf or otherwise all children of that child

are leaves.
First suppose z is a leaf. Because V (Gx) ∩B �= ∅, we find that z ∈ B. Hence,

l(z) = 1. Then, as p ≥ 1, we find that l(z) − f(x) · p − 1
2p(p + 1) ≤ 0. Hence,

l(x) = 0. Note that q = 1. Because z is a largest child of x, all children of x are

Knocking Out Pk-free Graphs 403

leaves. Hence, Gx is a complete graph on p+ 1 vertices. This means that Gx is
KO-reducible. We conclude that pseudo(x) = 0 = l(x).

Now suppose z is not a leaf. Then z has at least two children (which are all
leaves). Hence, q ≥ 2. Because V (Gx) ∩B �= ∅, every child of z is in B, that is,
Vz = B is an independent set, in particular, q = |B|. Because l(�) = 1 for every
� ∈ B, this means that l(z) = |B| = q. We distinguish three cases.

Case 1. q < p.
Then l(z)− f(x) · p− 1

2p(p+ 1) = q − f(x) · p− 1
2p(p+ 1) ≤ 0. Hence, l(x) = 0.

Let y1, . . . , yr, z be the children of x for some r ≥ 0. In fact, because 2 ≤ q < p
and z is the largest child of x, we find that r ≥ 2. Assume that |Vy1 | ≥ · · · ≥ |Vyr |.
By definition, q = |Vz | ≥ |Vy1 |. Because q < p, we can pick a set D of q−|Vy1| ≥ 0
vertices of V (F (x))\Vy1 . We define T1 = Vy1∪D and Ti = Vyi \D for i = 2, . . . , r.
Note that |T1| = q. Let {|T1|, . . . , |Tr|} = {j1, . . . , js} for some s ≤ r, where
j1 ≥ · · · ≥ js. Because |T1| = q, we find that j1 = q. We partition V (Gx) into s
subsets. For the first subset we pick js vertices from Vz and also js vertices from
each non-empty Ti. The graph induced by the union of all these vertices has a
hamilton cycle, as q < p, so besides T1 at least one other set Ti is nonempty. We
remove all chosen vertices. Then, for the second subset of our partition, we pick
js−1 − js vertices from Vz and also js−1 − js vertices from each Ti that is not
yet empty. The graph induced by the union of all chosen vertices has a hamilton
cycle if there are two non-empty sets Ti and a perfect matching otherwise. We
repeat this procedure until all sets Ti are empty. In this way we have found a
[1, 2]-factor of Gx. Consequently, pko(Gx) = 0. Hence, pseudo(x) = 0 = l(x).

Case 2. q ≥ p and l(x) = 0.
As l(z) = q, the assumption that l(x) = 0 implies that q − f(x) · p ≤ 1

2p(p+ 1).
By Lemma 3, all vertices in V (G)\Vx that are adjacent to Vx are complete to Vx

and moreover, the number of such vertices is equal to f(x). This enables us to
define the following x-pseudo-KO-scheme. Let all vertices of F (x) fire at different
vertices in Vz for the first f(x) rounds. Let all vertices in Vz fire at the same
vertex of V (G) \ Vx for the first f(x) rounds. Note that q decreases in this way.
However, we may not need to perform all these rounds: after each round we check
whether p ≤ q ≤ 1

2p(p+ 1). Because q − f(x) · p ≤ 1
2p(p+ 1), it will eventually

happen that q ≤ 1
2p(p + 1). If it turns out that q < p, we slightly adjust the

previous round by letting a sufficient number of vertices of F (x) fire at the same
vertex in Vz instead of at different vertices, in order to get p ≤ q ≤ 1

2p(p + 1).
We then apply Lemma 1 to knock out the remaining vertices of Vx in at most p
additional rounds. Hence pseudo(x) = 0 = l(x).

Case 3. q ≥ p and l(x) > 0.
As l(z) = q, the assumption that l(x) > 0 implies that q > f(x) · p+ 1

2p(p+ 1).
Recall that, by Lemma 3, all vertices in V (G) \ Vx that are adjacent to Vx are
complete to Vx, and moreover, the number of such vertices is equal to f(x). This
enables us to define the following x-pseudo-KO-scheme. Let all vertices of F (x)
fire at different vertices in Vz for the first f(x) rounds. Let all vertices in Vz

fire at the same vertex of V (G) \ Vx for the first f(x) rounds. Afterward we can

404 M. Johnson, D. Paulusma, and A. Stewart

reduce the number of vertices of Vx by at most 1
2p(p+ 1) by letting all vertices

of F (x) fire at different vertices in Vz , whereas all vertices in Vz fire at the same
vertex of F (x) until F (x) = ∅. Because F (x) = ∅ in the end, and in each round
we have reduced the maximum number of vertices of the independent set Vz, we
find that pseudo(x) = q− f(x) ·p− 1

2p(p+1) = l(z)− f(x) ·p− 1
2p(p+1) = l(x).

Let d ≥ 1. Then z is not a leaf as otherwise all children of x are leaves, which
contradicts d ≥ 1. Consequently, z is a ⊕-node. We distinguish two cases.

Case 1. q < p.
Observe that l(z) ≤ q. Then l(z)−f(x)·p− 1

2p(p+1) ≤ q−f(x)·p− 1
2p(p+1) ≤ 0.

Hence, l(x) = 0. We repeat the same arguments as for the corresponding case
for d = 0 to obtain that pseudo(x) = 0 = l(x). So Case 1 is proven.

Before we consider Case 2, we first analyze the subtree of TG rooted at x. Let
s1, . . . , sp be the children of z with l(si) > 0 for i = 1, . . . , p (if such children
exist) and let t1, . . . , tq be the children of z with l(ti) = 0 for i = 1, . . . , q (if
such children exist). Note that all children of z are either leaves or ⊗-nodes.
Let z′ be a child of z. If z′ is a leaf, then pseudo(z′) = 1 = l(z′). If z′ is a
⊗-node, we may apply the induction hypothesis to find that pseudo(z′) = l(z′).
In other words, pseudo(si) = l(si) for i = 1, . . . , p and pseudo(ti) = l(ti) for
i = 1, . . . , q. Then, because Gz = Gs1 + · · ·+Gsp +Gt1 + · · ·+Gtq , we find that
an optimal z-pseudo-KO-scheme mimics the optimal si-pseudo-KO-schemes and
optimal tj-pseudo-KO-schemes (we may assume without loss of generality that
all external firings outside Gz in a round are always at a single vertex). Hence,
pseudo(z) = l(s1) + · · ·+ l(sp) + l(t1) + · · ·+ l(tq) = l(z).

Case 2. q ≥ p.
We define the following x-pseudo-KO-selection scheme. The firing rounds for
the vertices in Gz are according to an optimal z-pseudo-KO-scheme under the
following conditions. For the first f(x) rounds any external firings outside Gz

are at a single vertex, which is not in Gx. Note that this is possible by Lemma 3.
Afterward any external firing outside Gz must be in F (x) and also for such
firings we require that they are at a single vertex in every round. The vertices in
F (x) fire in each round at different vertices of Gx that are in Gs1 + · · ·+Gsp and
that are not being fired at by vertices in Gx. They stop firing in a graph Gsi as
soon as they have knocked out l(si) of its vertices. Note that we are guaranteed
a budget of exactly f(x) · p+ 1

2p(p+1) firings from vertices outside Gz into Gz .
First suppose that l(z) − f(x) · p ≤ 1

2p(p + 1), so l(x) = 0. Then we can
knock out all l(z) vertices of Gz that cannot be knocked out by internal firings
inside Gz. As we still need to knock out the vertices of F (x), we check after
each round whether q has decreased such that p ≤ q ≤ 1

2p(p+1) holds. Because
q− f(x) · p ≤ 1

2p(p+1), it will eventually happen that q ≤ 1
2p(p+1). If it turns

out that q < p, we slightly adjust the previous round as we did in Case 2 for
d = 0, in order to get p ≤ q ≤ 1

2p(p+ 1). We then apply Lemma 1 to knock out
the remaining vertices of Vx in at most p additional rounds. We conclude that
pseudo(x) = 0 = l(x).

Knocking Out Pk-free Graphs 405

Now suppose that l(z) − f(x) · p > 1
2p(p + 1), so l(x) > 0. Then, by the

definition of our x-pseudo-KO-reduction scheme, all vertices in F (x) have fired
at different vertices in every round for f(x) · p+ 1

2p(p+1) rounds. Moreover, all
vertices in F (x) are knocked out afterward. Because pseudo(z) = l(z) and we
mimicked an optimal z-pseudo-KO-scheme as regards the firings of the vertices
of Gz in each round, we cannot improve. We conclude that pseudo(x) = l(z)−
f(x) · p− 1

2p(p+ 1) = l(x). This completes the proof of Lemma 6. ��
Theorem 1. The Parallel Knock-Out problem can be solved in O(n +m)
time on cographs with n vertices and m edges.

Proof. Let G be a cograph with n vertices and m edges. If G is disconnected we
consider each connected component of G separately. Hence, assume that G is
connected. We construct TG. Run Cograph-PKO with input G. By Lemma 4, we
find that l(r) �= ⊥. Hence, we may apply Lemma 6 to find that l(r) = pseudo(r).
By Lemma 5, we find that G is KO-reducible if and only if pseudo(r) = 0. As
Cograph-PKO outputs a yes-answer if and only if l(r) = 0, we find it is correct. It
remains to show that it runs in linear time. We can perform Step 1 in a bottom-
up approach starting from the leaves of TG. So, Steps 1-3 each visit each node
at most once. This means that every node of x is visited at most three times in
total. Because every co-tree has at most n+n−1 = 2n−1 vertices, we find that
the running time of Cograph-PKO is O(n). Because constructing TG costs time
O(n+m) by Lemma 2, the total running time is O(n+m). ��

4 Split Graphs

We show the following result, the proof of which is (partially) based on the
NP-hardness proof of 2-Parallel Knock-Out for bipartite graphs from [3].

Theorem 2. The Parallel Knock-Out problem and, for any k ≥ 2, the
k-Parallel Knock-Out problem are NP-complete for split graphs.

Proof. First consider the Parallel Knock-Out problem. We reduce from the
Dominating Set problem, which is well known to be NP-complete (see [10]).
This problem takes as input a graph G = (V,E) and a positive integer p. We
may assume without loss of generality that p ≤ |V |. The question is whether G
has a dominating set of cardinality at most p.

From an instance (G, p) of Dominating Set we construct a split graph G′

as follows. Let V (G) = {v1, . . . , vn}. We let V (G′) consist of three mutually
disjoint sets: the set V = {v1, . . . , vn}, a set V ′ = {v′1, . . . , v′n} and a set W =
{w1, . . . , wr} where r = 1

2 (n−p)(n−p+1). We define E(G′) as follows. First we
add the edges viv

′
i for i = 1, . . . , n. For all i �= j, we add the edges viv

′
j and vjv

′
i

if and only if vivj is an edge in E(G). We also add an edge between every vi
and every wj . Finally, we add an edge between any two vertices in V . Observe
that G′ is indeed a split graph in which V is a clique of size n and V ′ ∪W is an
independent set of size n + r. We claim that G has a dominating set of size at
most p if and only if G′ is KO-reducible.

406 M. Johnson, D. Paulusma, and A. Stewart

First suppose G has a dominating set D of size at most p. Because p ≤ |V |,
we may assume without loss of generality that D = {v1, . . . , vp}. We construct a
KO-reduction scheme of G′ as follows. In the first round let every vertex vi ∈ V
fire at v′i ∈ V ′. For i = 1, . . . , p, let v′i fire at vi. For i = p+1, . . . , n let v′i fire at
an arbitrary vertex in D, which is possible because D is a dominating set of G.
Finally, let every vertex in W fire at an arbitrary vertex in D as well; this is
possible by the construction of G′. The resulting (split) graph G′′ consists of a
clique V \D of size n − p and the independent set W of size 1

2 (n − p)(n − p).
Because there is an edge between every vertex in V and every vertex in W , we
find that G′′ is KO-reducible by Lemma 1.

Now suppose G′ is KO-reducible. Consider a KO-reduction scheme of G′. Let
D be the subset of vertices that are knocked out in the first round. Because
each vertex must fire at a neighbour, D is a dominating set of G. We claim that
|D| ≤ p. For contradiction, suppose that |D| ≥ p + 1. Let V1 = V \ D be the
subset of V consisting of vertices not knocked out in the first round. Because
|D| ≥ p + 1, we obtain |V1| = |V | − |D| ≤ n − p − 1. Let V ∗ and W ∗ be the
subsets of V ′ and W , respectively, that consist of vertices not knocked out in
the first round. Vertices in V ′ ∪ W can only be knocked out by vertices of V .
Moreover, the total number of vertices that V can knock out in the first round
is at most |V | = n. This means that V ∗ ∪W ∗ is an independent set of size

|V ∗ ∪W ∗| = |V ∗|+ |W ∗| ≥ |V ′|+ |W | − n = 1
2 (n− p)(n− p+ 1).

However, as in every round the size of V1 is reduced by at least 1, the maximum
number of vertices in V ∗ ∪W ∗ that V1 can knock out is at most (n− p − 1) +
(n − p − 2) + · · · + 1 < 1

2 (n − p)(n − p + 1). Hence, the scheme is not a KO-
reduction scheme of G′. This is a contradiction, and we have completed the proof
for Parallel Knock-Out.

Now let k ≥ 2 and consider the k-Parallel Knock-Out problem. We use
the same reduction and the same arguments as for Parallel Knock-Out after
changing the size of W into r := (n− p)+ (n− p− 1)+ · · ·+(n− p− k+2). ��

5 Conclusions

We have shown in Theorem 1 that Parallel Knock-Out is linear-time solv-
able for P4-free graphs (whether it is possible to compute pko(G) in polynomial
time for cographs is still open). We have also shown in Theorem 2 that Parallel
Knock-Out and, for any k ≥ 2, k-Parallel Knock-Out are NP-complete
for split graphs. Because split graphs are (2K2, C4, C5)-free [9], they are P5-free.
Hence, Theorems 1 and 2 have the following consequence.

Corollary 1. The Parallel Knock-Out problem restricted to Pr-free graphs
is linear-time solvable if r ≤ 4 and NP-complete if r ≥ 5.

We recall that our long standing goal is to determine the complexity of Par-
allel Knock-Out on graph classes of bounded clique-width and that cographs
are exactly those graphs that have clique-width at most 2 [7]. Can we solve Par-
allel Knock-Out in polynomial time for graphs of clique-width at most 3?

Knocking Out Pk-free Graphs 407

For this we could start by considering the class of distance-hereditary graphs,
which have clique-width at most 3 [11]. We also do not know whether there is
a constant c such that Parallel Knock-Out is NP-complete for graphs of
clique-width at most c. However, it is known that the related NP-complete prob-
lem Hamilton Cycle, which tests whether a graph has a hamiltonian cycle, is
polynomial-time solvable on any graph class whose clique-width is bounded by
a constant (this follows from combining results of [12,15], also see [8]).

A different direction from above for extending our results would be to classify
the complexity of Parallel Knock-Out restricted to H-free graphs. The com-
plexity status is open even for small graphs H ∈ {4P1, 2P1+2P2, P1+P3,K1,4}.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAMMonographs
on Discrete Mathematics and Applications (1999)

2. Broersma, H.J., Fomin, F.V., Královič, R., Woeginger, G.J.: Eliminating graphs by
means of parallel knock-out schemes. Discrete Applied Mathematics 155, 92–102
(2007); See also Broersma, H., Fomin, F.V., Woeginger, G.J.: Parallel knock-out
schemes in networks. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 204–214. Springer, Heidelberg (2004)

3. Broersma, H.J., Johnson, M., Paulusma, D., Stewart, I.A.: The computational
complexity of the parallel knock-out problem. Theoretical Computer Science 393,
182–195 (2008)

4. Broersma, H.J., Johnson, M., Paulusma, D.: Upper bounds and algorithms for
parallel knock-out numbers. Theoretical Computer Science 410, 1319–1327 (2008)

5. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs.
Discrete Applied Mathematics 3, 163–174 (1981)

6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM Journal on Computing 14, 926–934 (1985)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101, 77–144 (2000)

8. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded Graphs in polynomial time. In: Brandstädt, A., Le, V.B.
(eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

9. Földes, S., Hammer, P.L.: Split graphs, 8th South–Eastern Conf. on Combinatorics.
Graph Theory and Computing, Congressus Numerantium 19, 311–315 (1977)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1979)

11. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science 11, 423–443 (2000)

12. Johansson, O.: Clique-decomposition, NLC-decomposition, and modular decompo-
sition – relationships and results for random graphs. Congressus Numerantium 132,
39–60 (1998)

13. Johnson, M., Paulusma, D., Wood, C.: Path factors and parallel knock-out schemes
of almost claw-free graphs. Discrete Mathematics 310, 1413–1423 (2010)

14. Lampert, D.E., Slater, P.J.: Parallel knockouts in the complete graph. American
Mathematical Monthly 105, 556–558 (1998)

15. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Applied Mathe-
matics 54, 251–266 (1994)

	Knocking Out Pk-free Graphs
	1 Introduction
	2 Preliminaries
	3 Cographs
	4 Split Graphs
	5 Conclusions
	References

