
An Improved Deterministic #SAT Algorithm

for Small De Morgan Formulas

Ruiwen Chen1, Valentine Kabanets1, and Nitin Saurabh2

1 Simon Fraser University, Burnaby, Canada
ruiwenc@sfu.ca, kabanets@cs.sfu.ca

2 Institute of Mathematical Sciences, Chennai, India
nitin@imsc.res.in

Abstract. We give a deterministic #SAT algorithm for de Morgan for-

mulas of size up to n2.63, which runs in time 2n−nΩ(1)

. This improves
upon the deterministic #SAT algorithm of [3], which has similar run-
ning time but works only for formulas of size less than n2.5.

Our new algorithm is based on the shrinkage of de Morgan formulas
under random restrictions, shown by Paterson and Zwick [12]. We prove
a concentrated and constructive version of their shrinkage result. Namely,
we give a deterministic polynomial-time algorithm that selects variables
in a given de Morgan formula so that, with high probability over the
random assignments to the chosen variables, the original formula shrinks
in size, when simplified using a deterministic polynomial-time formula-
simplification algorithm.

Keywords: de Morgan formulas, random restrictions, shrinkage, SAT
algorithms.

1 Introduction

Subbotovskaya [16] introduced the method of random restrictions to prove that
Parity requires de Morgan formulas of size Ω(n1.5), where a de Morgan formula
is a boolean formula over the basis {∨,∧,¬}. She showed that a random restric-
tion of all but a fraction p of the input variables yields a new formula whose size
is expected to reduce by at least the factor p1.5. That is, the shrinkage exponent
Γ for de Morgan formulas is at least 1.5, where the shrinkage exponent is defined
as the least upper bound on γ such that the expected formula size shrinks by
the factor pγ under a random restriction leaving p fraction of variables free.

Impagliazzo and Nisan [9] argued that Subbotovskaya’s bound Γ � 1.5 is not
optimal, by showing that Γ � 1.556. Paterson and Zwick [12] improved upon [9],
getting Γ � (5−√

3)/2 ≈ 1.63. Finally, H̊astad [6] proved the tight bound Γ = 2;
combined with Andreev’s construction [1], this yields a function in P requiring
de Morgan formulas of size Ω(n3−o(1)).

While the original motivation to study shrinkage in [16,9,12,6] was to prove for-
mula lower bounds, the same results turn out to be useful also for designing non-
trivial SATalgorithms for small deMorgan formulas. Santhanam [14] strengthened
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Subbotovskaya’s expected shrinkage result to concentrated shrinkage, i.e., shrink-
age with high probability, and used this to get a deterministic #SAT algorithm
(counting thenumber of satisfying assignments) for linear-size deMorgan formulas,
with the running time 2n−Ω(n). Santhanam’s algorithm deterministically selects a
most frequent variable in the current formula, and recurses on the two subformu-
las obtained by restricting the chosen variable to 0 and 1; after n−Ω(n) recursive
calls, almost all obtained formulas depend on fewer than the actual number of free
variables remaining, which leads to nontrivial savings over the brute-force SAT al-
gorithm for the original formula. A similar algorithmworks also for formulas of size

less than n2.5, with the running time 2n−nΩ(1)

[3].
Motivated by average-case formula lower bounds, Komargodksi et al. [11]

(building upon [8]) showed a concentrated-shrinkage version of H̊astad’s optimal
result for the shrinkage exponent Γ = 2. Combined with the aforementioned
algorithm of Chen et al. [3], this yields a nontrivial randomized zero-error #SAT

algorithm for de Morgan formulas of size n3−o(1), running in time 2n−nΩ(1)

.
The main question addressed by our paper is whether there is a deterministic

#SAT algorithm, with similar running time, for formulas of size close to n3.
This question is interesting since getting a deterministic algorithm often yields
deeper understanding of the problem by revealing additional structural proper-
ties. It also provides better understanding of the role of randomness in efficient
algorithms, as part of research on derandomization.

We give a deterministic #SAT algorithm for formulas of size up to n2.63. In
the process, we refine the results of Paterson and Zwick [12] on shrinkage of de
Morgan formulas by making their results constructive in a certain precise sense.
We provide more details next.

1.1 Our Main Results and Techniques

Our main result is a deterministic #SAT algorithm for de Morgan formulas of

size up to n2.63, running in time 2n−nΩ(1)

.

Theorem 1 (Main). There is a deterministic algorithm for counting the num-
ber of satisfying assignments in a given de Morgan formula on n variables of size

at most n2.63 which runs in time at most 2n−nδ

, for some constant 0 < δ < 1.

As in [14,3], we use a deterministic algorithm to choose a next variable to
restrict, and then recurse on the two resulting restrictions of this variable to
0 and 1. Instead of Subbotovskaya-inspired selection procedure (choosing the
most frequent variable), we use the weight function introduced by Paterson and
Zwick [12], which measures the potential savings for each one-variable restriction,
and selects a variable with the biggest savings. Since [12] gives the shrinkage
exponent Γ ≈ 1.63, rather than Subbotovskaya’s 1.5, this could potentially lead
to an improved #SAT algorithm for larger de Morgan formulas.

However, computing the savings, as defined by [12], is NP-hard, as it requires
computing the size of a smallest logical formula equivalent to a given one-variable
restriction. In fact, the shrinkage result of [12] is nonconstructive in the following
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sense: the expected shrinkage in size is proved for the minimal logical formula
computing the restricted boolean function, rather than for the formula obtained
from the original formula using efficiently computable simplification rules. In
contrast, the shrinkage results of [16,6] are constructive: the restricted formula
is expected to shrink in size when simplified using a certain explicit set of logical
rules, so that the new, simplified formula is computable in polynomial time from
the original restricted formula.

While the constructiveness of shrinkage is unimportant for proving formula
lower bounds, it is crucial for designing shrinkage-based #SAT algorithms for
de Morgan formulas, such as those in [14,3,11]. Our main technical contribution
is a proof of the constructive version of the result in [12]: we give deterministic
polynomial-time algorithms for formula simplification and extend the analysis of
[12] to show expected shrinkage of formulas with respect to this efficiently com-
putable simplification procedure. The same simplification procedure allows us
to choose, in deterministic polynomial-time, which variable should be restricted
next. The merit of deterministic variable selection and concentrated and con-
structive shrinkage, for a shrinkage exponent Γ , is that they yield a deterministic
satisfiability algorithm for de Morgan formulas up to size nΓ+1−o(1), using an
approach of [3].

Namely, once we have this constructive shrinkage result, based on restricting
one variable at a time, we apply the martingale-based analysis of [10,3] to derive
a concentrated version of constructive shrinkage, showing that almost all random
settings of the selected variables yield restricted formulas of reduced size, where
the restricted formulas are simplified by our efficient procedure. The shrinkage
exponent Γ = (5 − √

3)/2 ≈ 1.63 is the same as in [12]. Using [3], we then get

a deterministic #SAT algorithm, running in time 2n−nΩ(1)

, that works for de
Morgan formulas of size up to nΓ+1−o(1) ≈ n2.63.

1.2 Related Work

The deep interplay between lower bounds and satisfiability algorithms has been
witnessed in several circuit models. For example, Paturi, Pudlak and Zane [13]
give a randomized algorithm for k-SAT running in time O(n2s2n−n/k), where n
is the number of variables and s is the formula size; they also show that PAR-
ITY requires depth-3 circuits of size Ω(n1/42

√
n). More generally, Williams [18]

shows that a “better-than-trivial” algorithm for Circuit Satisfiability, for a class
C of circuits, implies a super-polynomial lower bounds against the circuit class C
for some language in NEXP; using this approach, Williams [19] obtains a super-
polynomial lower bound against ACC0 circuits1 by designing a nontrivial SAT
algorithm for ACC0 circuits.

Following [14], Seto and Tamaki [15] get a nontrivial #SAT algorithm for
general linear-size formulas (over an arbitrary basis). Impagliazzo et al. [7] use
a generalization of H̊astad’s Switching Lemma [5], an analogue of shrinkage for

1 constant-depth, unbounded fanin circuits, using AND, OR, NOT, and (MOD m)
gates, for any integer m.
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AC0 circuits2, to give a nontrivial randomized zero-error #SAT algorithm for

depth-d AC0 circuits on n inputs of size up to 2n
1/(d−1)

. Beame et al. [2] give
a nontrivial deterministic #SAT algorithm for AC0 circuits, however, only for
circuits of much smaller size than that of [7].

Recently, the method of (pseudo) random restrictions has also been used to get
pseudorandom generators (yielding additive-approximation #SAT algorithms)
for small de Morgan formulas [8] and AC0 circuits [17].

Remainder of the Paper. We give basic definitions in Section 2. Section 3 con-
tains our efficient formula-simplification procedures. We use these procedures in
Section 4 to prove a constructive and concentrated shrinkage result for de Mor-
gan formulas. This is then used in Section 5 to describe and analyze our #SAT
algorithm from Theorem 1. Section 6 contains some open questions. Some proofs
had to be omitted from this extended abstract due to space limitations; for a
more complete version, please see [4].

2 Preliminaries

A (de Morgan) formula is a binary tree where each leaf is labeled by a literal
(a variable x or its negation x) or a constant (0 or 1), and each internal node
is labeled by ∧ or ∨. A formula naturally computes a boolean function on its
input variables.

Let F be a formula with no constant leaves. We define the size of F , denoted
by L(F ), as number of leaves in F . Following [12], we define a twig to be a
subtree with exactly two leaves. Let T (F ) be the number of twigs in F . We
define the weight of F as w(F ) = L(F ) + α · T (F ), where α =

√
3 − 1 ≈ 0.732.

For convenience, if F is a constant, we define L(F ) = w(F ) = 0. We say F is
trivial if it is a constant or a literal. Note that we define the size and weight only
for formulas which are either constants or with no constant leaves; this is without
loss of generality since constants can always be eliminated using a simplification
procedure below.

It is easy to see that L(F )+α � w(F ) � L(F )(1+α/2), since the number of
twigs in a formula is at least one and at most half of the number of leaves.

We denote by F |x=1 the formula obtained from F by substituting each ap-
pearance of x by 1 and x by 0; F |x=0 is similar. We say a formula ∨-depends
(∧-depends) on a literal y if there is a path from the root to a leaf labeled by y
such that every internal node on the path (including the root) is labeled by ∨
(by ∧).

3 Formula Simplification Procedures

3.1 Basic Simplification

We define a procedure Simplify to eliminate constants, redundant literals and
redundant twigs in a formula. The procedure includes the standard constant

2 constant-depth, unbounded fanin circuits, using AND, OR, and NOT gates.
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simplification rules and a natural extension of the one-variable simplification
rules from [6].

Simplify(F ):
If F is trivial, done. Otherwise, apply the following transformations
whenever applicable. We denote by y a literal and G a subformula.

1. Constant elimination.
(a) If a subformula is of the form 0 ∧G, replace it by 0.
(b) If a subformula is of the form 1 ∨G, replace it by 1.
(c) If a subformula is of the form 1 ∧G or 0 ∨G, replace it by G.

2. One-variable simplification.
(a) If a subformula is of the form y ∨ G and y or y appears in G,

replace the subformula by y ∨G|y=0.
(b) If a subformula is of the form y ∧ G and y or y appears in G,

replace the subformula by y ∧G|y=1.
(c) If a subformula G is of the form G1 ∨G2 for non-trivial G1 and

G2, and G ∨-depends on a literal y, then replace G by y∨G|y=0.
(d) If a subformula G is of the form G1 ∧G2 for non-trivial G1 and

G2, and G ∧-depends on a literal y, then replace G by y∧G|y=1.

We call a formula simplified if it is invariant under Simplify. Note that a
simplified formula may not be a smallest logically equivalent formula; e.g., (x ∧
y) ∨ (x ∧ y) is already simplified but it is logically equivalent to y.

The rules 1(a)–(c) and 2(a)–(b) are from [6,14]. Rules 2(c)–(d) are a natural
generalization of the one-variable rule of [6], which allow us to eliminate more
redundant literals and reduce the formula weight. For example, the formula
(x ∨ y) ∨ (x ∧ y) simplifies to x ∨ y under our rules but not the rules in [6,14].
For another example, the formula (x∨ y)∨ (z ∧w) with weight 4+ 2α simplifies
to x ∨ (y ∨ (z ∧ w)) with weight 4 + α.

The next lemma (proof omitted) shows Simplify is efficient.

Lemma 1. Simplify runs in polynomial time.

3.2 Simplification under All One-Variable Restrictions

Here we consider how a formula simplifies when one of its variables is restricted.
Let F be a formula. We define a recursive procedure RestrictSimplify which
produces a collection of formulas for F under all one-variable restrictions. We
denote the output of the procedure by {Fy}, where y ranges over all literals.
Note that each Fy is logically equivalent to F |y=1.

The idea behind the transformations in RestrictSimplify is the following.
When a formula simplifies to a literal under some one-variable restriction, then
the formula must be logically equivalent to some special form. For example, if
we know that F |x=1 simplifies to a literal y, then F itself must be logically
equivalent to (x ∧ y) ∨ (x ∧ G) for some G. This logically equivalent form may
help to simplify F under other one-variable restrictions.
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RestrictSimplify(F ):
If F is a constant c, then let Fy := c for all y. If F is a literal, then let
Fy := F |y=1 for all y.
If F is G ∨ H or G ∧ H , recursively call RestrictSimplify to com-
pute {Gy} and {Hy}, and initialize each Fy := Simplify(Gy ∨ Hy) or
Fy := Simplify(Gy ∧Hy), respectively. Then apply the following trans-
formations whenever possible. We suppose there are two literals x and y
over distinct variables such that Fx = y.
1. If Fx = y, then let Fw := y|w=1 for every literal w.
2. If Fx = z for some literal z /∈ {x, x, y}, then let Fw := Simplify((x∧

y) ∨ (x ∧ z)|w=1) for every literal w.
3. (a) If neither x nor x appears in Fy, then let Fy := 1; (b) otherwise,

let Fy := Simplify(x ∨ (Fy |x=0)).
4. (a) If neither x nor x appears in Fy, then let Fy := 0; (b) otherwise,

let Fy := Simplify(x ∧ (Fy |x=0)).
5. For z /∈ {x, x, y, y}, if neither x nor x appears in Fz , then let Fz := y.

Correctness of RestrictSimplify. The above transformations are based on logical
implications. In case 1, Fx = Fx = y implies that F ≡ y. In case 2, Fx = y and
Fx = z implies that F ≡ (x ∧ y) ∨ (x ∧ z). Note that in this case z might be y.
In case 3, we have Fy|x=1 ≡ Fx|y=1 = 1; if neither x nor x appears in Fy then
Fy = Fy|x=1 ≡ 1, otherwise Fy ≡ x ∨ (Fy |x=0). Case 4 is dual to case 3. In case
5, if neither x nor x appears in Fz then Fz = Fz |x=1 ≡ Fx|z=1 = y.

Remark 1. It is possible to introduce more simplifications rules in Restrict-
Simplify, e.g., when Fx is a constant for some literal x, or when, in case 5, x or
x appears in Fz

3. However, such simplifications are not needed for our proof of
constructive shrinkage.

It is easy to show that RestrictSimplify is efficient.

Lemma 2. RestrictSimplify runs in polynomial time.

The solo structure of a formula F is the relation on literals defined by x ⇒ y
if Fx = y, where the collection of formulas {Fx} is produced by the procedure
RestrictSimplify. The following lemma gives all possible solo structures; it
resembles the characterization of solo structures for boolean functions from [12].

Lemma 3. The solo structure of a non-trivial formula F must be in one of the
following forms:

(i) the empty relation,
(ii) there exists y such that for all literals x /∈ {y, y} we have x ⇒ y in the

relation,
(iii) {x1 ⇒ y, . . . , xk ⇒ y} for some k � 1 and xi’s are over distinct variables,
(iv) {x ⇒ y, y ⇒ x, x ⇒ y, y ⇒ x},
(v) {x ⇒ y, x ⇒ z},
(vi) {x ⇒ y, y ⇒ x},
(vii) {x ⇒ y, y ⇒ x}.
3 then we could let Fz := (x ∧ y) ∨ (x ∧ Simplify(Fz|x=0)).
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4 Constructive and Concentrated Shrinkage

Here we prove a constructive and concentrated version of the shrinkage result
from [12]. For each literal y of a given formula F , we define the savings (reduction
in weight of F ) when we replace F by the new formula Fy , as computed by the
procedureRestrictSimplify. We first prove that the lower bound on the average
savings (over all variables of F ) shown by [12] continues to hold with respect to
our efficiently computable one-variable restrictions Fy.

4.1 Average Savings under One-Variable Restrictions

Assume a formula F is simplified; otherwise, let F := Simplify(F ). For a for-
mula F and a literal y, we define σy(F ) = w(F )−w(Fy), where Fy is produced
by RestrictSimplify. Let σ(F ) =

∑
x(σx(F ) + σx(F )), where the summation

ranges over all variables of F . The quantity σ(F ) measures the total savings
under all one-variable restrictions.

Theorem 2. For any formula F , it holds that σ(F )/w(F ) � 2γ, where γ =
(5−√

3)/2 ≈ 1.63.

The proof is by induction, as in [12]. The difficulty here is that we need to ap-
ply the “syntactic simplifications” defined by the procedure RestrictSimplify,
instead of using the smallest logically equivalent formulas as in [12].

For the base case, the following lemma can be proved by enumerating all
possible formulas of size at most 4 (the proof is omitted).

Lemma 4. For any simplified F of size at most 4, we have σ(F )/w(F ) � 2γ.

For formulas of size larger than 4, we consider whether one child of the root is
trivial. Without loss of generality, we assume the root is labeled by ∨; the other
case is dual. The following lemma considers if one child of the root is trivial. The
proof is omitted here but it is similar to [12].

Lemma 5. If F is a simplified formula of the form x∨G for some literal x and
subformula G, and L(F ) � 5, then σ(F )/w(F ) � 2γ.

Now we consider formulas where both children of the root are non-trivial.

Lemma 6. Suppose F is of the form G ∨H with L(F ) � 5 and G,H are non-
trivial. Then σ(F )/w(F ) � 2γ.

Intuitively, we need to take care of the cases where both G and H simplify to
literals on distinct variables (thereby forming a new twig); otherwise the result
holds by the induction hypothesis. Suppose Gx ∨Hx is a twig for some literal x.
Then σx(F ) = σx(G) + σx(H)− α, i.e., we get the savings from restricting x in
G and H , but then need to pay the penalty α for the twig created. We will argue
that there are “extra savings” from restricting other literals in the formula F
that can be used to compensate for the penalty α at x.
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Proof. We shall need the following basic property of RestrictSimplify.

Claim. For F = G∨H or F = G∧H , we have w(Fy) � w(Gy) +w(Hy), for all
literals y except those where Gy and Hy are literals over distinct variables.

Proof (of Claim). Let F = G ∨ H ; the other case is identical. For Fy :=
Simplify(Gy ∨Hy), the required inequality holds initially. All transformations,
except 3(b) and 4(b), produce the smallest logically equivalent formula; rules
3(b) and 4(b) do not increase the weight of the formula. 	


We first prove that, for a literal x, if Gx and Hx are not literals over distinct
variables, then σx(F ) � σx(G) + σx(H). Indeed, since w(F ) = w(G) + w(H),
this follows from w(Fx) � w(Gx) + w(Hx), which holds by the claim above.

Next, let k be the number of different literals x such that Gx ∨Hx is a twig
(i.e., Gx and Hx are literals over distinct variables). Thus there are k twigs
created as we consider all possible one-variable restrictions. We will argue that,
for different cases of k, the weight kα of these new twigs can be compensated
from savings in other restrictions.

Case k = 0: We have σy(F ) � σy(G) + σy(H) for all literals y, and thus
σ(F ) � σ(G) + σ(H). The result is by the induction hypothesis on G and H .

Case 1 � k � 2: Let x be such that Gx = y and Hx = z. Without loss of
generality, assume x, y, z are distinct variables. Consider F under the restrictions
y = 1 and z = 1. We will argue that the extra savings from applying Simplify
on Gy ∨Hy and Gz ∨Hz are at least 2 > kα.

Since Gx = y, transformation 3(a)–(b) in RestrictSimplify guarantee that
either Gy is constant 1 or it ∨-depends on x. Similarly either Hz is constant
1 or it ∨-depends on x. Since Hy|x=1 ≡ Hx|y=1 = z, we get that Hy is not a
constant (it depends on z), and if it is a literal it must be z. Similarly Gz is not
a constant (it depends on y), and if it is a literal it must be y.

We first consider the case that either Gy or Hz is constant 1. If Gy = Hz = 1,
then there are at least 2 savings from simplifying Gy ∨ Hy and Gz ∨ Hz by
eliminating constants. If Gy = 1 and Hy is not a literal, then there are at least
2 savings from simplifying Gy ∨ Hy. If Gy = 1, Hy = z and Hz �= 1, we first
have one saving from simplifying Gy ∨ Hy; then since Hy = z and Hz �= 1, by
the transformation 3(b) in RestrictSimplify Hz ∨-depends on y, and since Gz

depends on y, we get another saving from simplifying Gz ∨Hz. The cases where
Hz = 1 are similar.

Next we consider that both Gy and Hz ∨-depends on x. In the following we
analyze different possibilities for Hy and Gz.

– If x appears in both Hy and Gz, then there are at least 2 savings from
simplifying Gy ∨Hy and Gz ∨Hz by eliminating x.

– If x appears in Hy but not Gz , then by the transformation 5 in Restrict-
Simplify we have Gz = y, and thus Gy ∨-depends on both x and z. Then
since Hy depends on both x and z, we have two savings from simplifying
Gy ∨Hy by eliminating both x and z from Hy.
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– If x appears in Gz but not Hy, this is similar to the previous case.

– If x appears in neither Hy nor Gz , then by the transformation 5 in Re-
strictSimplify we have Gz = y and Hy = z. Thus Gy ∨-depends on both
x and z, and Hz ∨-depends on both x and y. Therefore we have at least 2
savings, one from simplifying Gy ∨ Hy by eliminating z, and another from
simplifying Gz ∨Hz by eliminating y.

Case k � 3: By Lemma 3, the solo structure of G and H must be one of cases
(ii), (iii), or (iv).

First assume that either G or H is in case (ii) of Lemma 3. Without loss of
generality, suppose G is in case (ii); then G is logically equivalent to a literal y
but itself is non-trivial, which implies that w(G) � 4 + α. (The smallest non-
trivial, simplified formula equivalent to a literal has size at least 4). We have
that w(Gz) = 1 for at least k literals z /∈ {y, y}, and w(Gy) = w(Gy) = 0. Then
by the fact that w(F ) = w(G) + w(H) and the induction hypothesis on H , we
have

σ(F ) � k(w(G) − 1) + 2w(G) + σ(H) − kα

� 2γ · w(F ) + (2 + k − 2γ)w(G)− k(1 + α) � 2γ · w(F ).

If both G and H are in case (iv), then, under each restriction, they reduce to
literals on the same variable. Since in case (iii) all xi’s are over distinct variables,
it is not possible that one of G and H is in case (iv) while the other is in case
(iii). Thus, we now only need to analyze if both G and H are in case (iii).

Without loss of generality, suppose that x1, . . . , xk, y, z are distinct variables
such that Gxi = y and Hxi = z for i = 1, . . . , k. By the transformation 3 in
RestrictSimplify, either Gy = 1 or Gy ∨-depends on x1, . . . , xk; and Hz is
similar.

If every xi appears in Hy, then there are k savings from simplifying Gy ∨Hy

by eliminating xi’s. Similarly, if every xi appears in Gz , there are also k savings
from simplifying Gz ∨Hz.

If some xi does not appear in Hy and some xi does not appear in Gz . By the
transformation 5 in RestrictSimplify, we have Hy = z and Gz = y. Therefore,

σxi(F ) = w(F ) − (2 + α), i = 1, . . . , k

σy(F ) � 1 + (w(H) − 1) = w(H)

σz(F ) � 1 + (w(G) − 1) = w(G)
∑

v

σv(F ) � L(F ) � w(F )/(1 + α/2), v ranges over all variables of F

Summing the above cases together yields σ(F ) � 2γ · w(F ). 	


Proof (Theorem 2). The proof is by combining the base case in Lemma 4 and
the two inductive cases in Lemma 5 and Lemma 6. 	
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4.2 Concentrated Shrinkage

Theorem 2 characterizes the average shrinkage of the weight of a formula when
a randomly chosen literal is restricted. Given a formula F on n variables, if
we randomly pick one variable and randomly assign it 0 or 1, the weight of
the restricted formula (produced by RestrictSimplify) reduces by at least γ ·
w(F )/n on average.

The procedure RestrictSimplify also allows us to deterministically pick the
variable with the best savings in polynomial time. That is, given a formula
F , we run RestrictSimplify to produce a collection of formulas {Fy}, and
then pick a variable x such that σx(F ) + σx(F ) is maximized. We show that
randomly restricting such a variable significantly reduces the expected weight of
the simplified formula.

Lemma 7. Let F be a formula on n variables. Let x be the variable such that
σx(F )+σx(F ) is maximized. Let F ′ be Fx or Fx with equal probability. Then we
have w(F ′) � w(F ) − 1 and E[w(F ′)] �

(
1− 1

n

)γ · w(F ).

Proof. Restricting one variable eliminates at least one leaf; therefore w(F ′) �
w(F )− 1. By Theorem 2, n(σx(F ) + σx(F )) � σ(F ) � 2γ ·w(F ). Then we have
E[w(F ′)] = w(F )− 1

2 (σx(F ) + σx(F )) �
(
1− γ

n

) · w(F ) �
(
1− 1

n

)γ · w(F ). 	

Next we use the martingale-based analysis from [10,3] to derive a “high-

probability shrinkage” result from Lemma 7. Let F0 = F be a formula on n
variables. For 1 � i � n, let Fi be the (random) formula obtained from Fi−1 by
assigning the variable with the best savings with a random value Ri ∈ {0, 1}.
The following Lemma shows the weight of a given de Morgan formula reduces
with high probability under the restriction process. The proof, which is similar
to [3], is omitted here due to space constraints.

Lemma 8 (Concentrated weight shrinkage). For any de Morgan formula

F on n variables and any k > 10, Pr
[
w(Fn−k) � 2 · w(F ) · ( k

n

)γ]
< 2−k/10.

Finally, by w(F )/(1 + α/2) � L(F ) � w(F ) for all F , we get from Lemma 8
the desired concentrated constructive shrinkage with respect to the restriction
process defined above.

Corollary 1 (Concentrated constructive shrinkage). Let F be an arbi-
trary de Morgan formula. There exist constants c, d > 1 such that, for any

k > 10, Pr
[
L(Fn−k) � c · L(F ) · ( k

n

)γ]
< 2−k/d.

5 #SAT Algorithm for n2.63-size de Morgan Formulas

Here we prove our main result.

Theorem 3. There is a deterministic algorithm for counting the number of sat-
isfying assignments in a given formula on n variables of size at most n2.63 which

runs in time t(n) � 2n−nδ

, for some constant 0 < δ < 1.
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Proof. Suppose we have a formula F on n variables of size n1+γ−ε for a small
constant ε > 0. Let k = nα such that α < ε/γ. We build a restriction decision
tree with 2n−k branches as follows:

Starting with F at the root, run RestrictSimplify to produce a collec-
tion {Fy}, pick the variable x which will make the largest reduction in
the weight of the current formula. Make the two formulas Fx and Fx the
children of the current node. Continue recursively on Fx and Fx until
get a full binary tree of depth exactly n− k.

Note that constructing this decision tree takes time 2n−kpoly(n), since the
procedureRestrictSimplify runs in polynomial time. By Corollary 1, all but at
most 2−k/d fraction of the leaves have the formula size L(Fn−k) < c·L(F )

(
k
n

)γ
=

cn1−ε+γα.
To solve #SAT for all “big” formulas (those that haven’t shrunk), we use

brute-force enumeration over all possible assignments to the k free variables left.
The running time is at most 2n−k · 2−k/d · 2k · poly(n) � 2n−k/d · poly(n).

For “small” formulas (those that shrunk to the size less than cn1−ε+γα), we
use memoization. First, we enumerate all formulas of such size, and compute
and store the number of satisfying assignments for each of them. Then, as we go
over the leaves of the decision tree that correspond to small formulas, we simply
look up the stored answers for these formulas.

There are at most 2O(n1−ε+γα)poly(n) such formulas, and counting the sat-
isfying assignments for each one (with k inputs) takes time 2kpoly(n). Includ-
ing pre-processing, computing #SAT for all small formulas takes time at most
2n−k · poly(n) + 2O(n1−ε+γα) · 2k · poly(n) � 2n−k · poly(n).

The overall running time of our #SAT algorithm is bounded by 2n−nδ

for
some δ > 0. 	


6 Open Questions

The main open problem is to get a nontrivial deterministic #SAT algorithm for
de Morgan formulas of size up to n3−o(1). Can one derandomize the zero-error
algorithm of [11] that is based on H̊astad’s shrinkage result [6]?

Can one improve the analysis of the shrinkage result of [12] (by considering
more general patterns than just twigs), getting a better shrinkage exponent?
If so, this could lead to a deterministic #SAT algorithm for larger de Morgan
formulas.
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